
Frank Dehne
Roberto Solis-Oba
Jörg-Rüdiger Sack (Eds.)

 123

LN
CS

 8
03

7

13th International Symposium, WADS 2013
London, ON, Canada, August 2013
Proceedings

Algorithms
and Data Structures



Lecture Notes in Computer Science 8037
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany



Frank Dehne Roberto Solis-Oba
Jörg-Rüdiger Sack (Eds.)

Algorithms
and Data Structures

13th International Symposium, WADS 2013
London, ON, Canada, August 12-14, 2013
Proceedings

13



Volume Editors

Frank Dehne
Carleton University, Ottawa, ON, Canada
E-mail: frank@dehne.net

Roberto Solis-Oba
The University of Western Ontario, London, ON, Canada
E-mail: solis@csd.uwo.ca

Jörg-Rüdiger Sack
Carleton University, Ottawa, ON, Canada
E-mail: sack@scs.carleton.ca

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-40103-9 e-ISBN 978-3-642-40104-6
DOI 10.1007/978-3-642-40104-6
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013944325

CR Subject Classification (1998): F.2, E.1, G.2, I.3.5, G.1, C.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

This volume contains the papers presented at WADS 2013: Algorithms and Data
Structures Symposium (formerly Workshop on Algorithms and Data Structures)
held during August 11–13, 2013, in London, Ontario. WADS alternates with the
Scandinavian Workshop on Algorithms Theory (SWAT), continuing the tradition
of SWAT and WADS starting with SWAT 1988 and WADS 1989.

In response to the call for papers, 139 papers were submitted. From these sub-
missions, the Program Committee selected 44 papers for presentation at WADS
2013. In addition, invited lectures were given by the following distinguished
researchers: Anjul Bhambhri (IBM Silicon Valley Lab), Timothy M. Chan (Uni-
versity of Waterloo), and Sergei Vassilvitskii (Google).

On behalf of the Program Committee, we would like to express our appre-
ciation to the invited speakers, reviewers, and all the authors who submitted
papers.

May 2013 Frank Dehne
Roberto Solis-Oba

Joerg-Ruediger Sack



Organization

Program Committee

David Bader
Marin Bougeret
Danny Chen
Jianer Chen
Siu-Wing Cheng
Andrea Clementi
Jose Correa
Amitava Datta
Frank Dehne
Shlomi Dolev
Faith Ellen
Thomas Erlebach
Scott Hazelhurst
Klaus Jansen
Petteri Kaski
Naoki Katoh
Rolf Klein
Darek Kowalski
Mike Langston
Monaldo Mastrolilli
Friedhelm Meyer Auf der Heide
Andrew Rau-Chaplin
Joerg-Ruediger Sack Roberto Solis-Oba
Frits Spieksma
Takeshi Tokuyama
Gottfried Vossen

Additional Reviewers

Abu-Khzam, Faisal
Albar, Boris
Aloupis, Greg
Arya, Sunil
Bae, Sang Won
Baert, Anne-Elisabeth
Barba, Luis
Barenboim, Leonid

Becchetti, Luca
Bienkowski, Marcin
Bilò, Davide
Bohler, Cecilia
Bollig, Beate
Boudet, Vincent
Bousquet, Nicolas
Brandstadt, Andreas



VIII Organization

Brodal, Gerth Stølting
Cardinal, Jean
Castelli Aleardi, Luca
Chalermsook, Parinya
Chambers, Erin
Chan, Timothy
Chechik, Shiri
Cheilaris, Panagiotis
Cord-Landwehr, Andreas
Crama, Yves
Crescenzi, Pierluigi
Damaschke, Peter
De Marco, Gianluca
Delling, Daniel
Di Ianni, Miriam
Dietzfelbinger, Martin
Dragan, Feodor
Duckham, Matt
Durocher, Stephane
Ediger, David
Elbassioni, Khaled
Eppstein, David
Fairbanks, James
Fischer, Johannes
Fischer, Matthias
Fox, Kyle
Fujiwara, Hiroshi
Funke, Stefan
Fusy, Eric
Gagie, Travis
Gal, Avigdor
Gao, Jie
Garcia, Alfredo
Garnero, Valentin
Gasieniec, Leszek
Gaspers, Serge
Gasten, Stefan
Gawrychowski, Pawel
Gilbers, Alexander
Green, Oded
Gualà, Luciano
Gutin, Gregory
Hagan, Ron
Har-Peled, Sariel
Hauptmann, Mathias

Haverkort, Herman
Hermelin, Danny
Higashikawa, Yuya
Hong, Seok-Hee
Ikebe, Yoshiko
Imai, Keiko
Itoh, Takehiro
Jansen, Bart
Jansen, Bart M. P.
Jansson, Jesper
Jiang, Minghui
Jung, Daniel
Kamiyama, Naoyuki
Kaothanthong, Natsuda
Kaufmann, Michael
Kawamura, Akitoshi
Kedem, Klara
Kijima, Shuji
Kobourov, Stephen
Koenemann, Jochen
Koivisto, Mikko
Korman, Matias
Kortsarz, Guy
Koutsopoulos, Andreas
Kraft, Stefan
Kratochvil, Jan
Krause, Philipp Klaus
Laekhanukit, Bundit
Lampis, Michael
Land, Felix
Langetepe, Elmar
Laughon, David
Lechtenbörger, Jens
Levcopoulos, Christos
Lingas, Andrzej
Liptak, Zsuzsanna
Liu, Chih-Hung
Lopez-Ortiz, Alejandro
Lu, Xin
Lubiw, Anna
Luxen, Dennis
Löffler, Maarten
McColl, Robert
Misra, Neeldhara
Miyazaki, Shuichi



Organization IX

Mnich, Matthias
Molnar, Miklos
Morgenstern, Gila
Moric, Filip
Morin, Pat
Mount, David
Mulzer, Wolfgang
Narasimhan, Giri
Navarro, Gonzalo
Nederlof, Jesper
Nekrich, Yakov
Niedermann, Benjamin
Niedermeier, Rolf
Nilsson, Bengt
Nouri Baygi, Mostafa
Nussbaum, Yahav
Nöllenburg, Martin
Okamoto, Yoshio
Otachi, Yota
Otoo, Ekow
Palop, Belen
Paluch, Katarzyna
Pasquale, Francesco
Penninger, Rainer
Phillips, Charles
Pietracaprina, Andrea
Pietrzyk, Peter
Pitre, Sylvain
Polishchuk, Valentin
Potapov, Igor
Proietti, Guido
Pérez-Lantero, Pablo
Rapaport, Ivan
Riedy, Jason
Robillard, David
Roselli, Vincenzo
Räcke, Harald
S. Anders, Peter
Saitoh, Toshiki

Sanders, Ian
Sanders, Peter
Satti, Srinivasa Rao
Saurabh, Saket
Sawada, Joe
Schlotter, Ildikó
Schoenrock, Andrew
Shioura, Akiyoshi
Silvestri, Riccardo
Sinaimeri, Blerina
Skiena, Steven
Smid, Michiel
Smorodinsky, Shakhar
Soltys, Karolina
Soto, Jose A.
Tanigawa, Shin-Ichi
Thorup, Mikkel
Tsakalidis, Konstantinos
Ukkonen, Antti
Uwe Haus, Utz
Vahrenhold, Jan
van Kreveld, Marc
Vocca, Paola
Wang, Kai
Watrigant, Rémi
Widmayer, Peter
Williams, Ryan
Wismath, Steve
Wolff, Alexander
Ximing, Li
Xue, Jason
Yamanaka, Katsuhisa
Young, Maxwell
Zaboli, Hamidreza
Zakrzewska, Anita
Zarrabi-Zadeh, Hamid
Zhu, Binhai
Ziv-Ukelson, Michal



Table of Contents

On Maximum Weight Objects Decomposable into Based Rectilinear
Convex Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Mahmuda Ahmed, Iffat Chowdhury, Matt Gibson,
Mohammad Shahedul Islam, and Jessica Sherrette

Bundling Three Convex Polygons to Minimize Area or Perimeter . . . . . . 13
Hee-Kap Ahn, Helmut Alt, Sang Won Bae, and Dongwoo Park

Smart-Grid Electricity Allocation via Strip Packing with Slicing . . . . . . . 25
Soroush Alamdari, Therese Biedl, Timothy M. Chan, Elyot Grant,
Krishnam Raju Jampani, Srinivasan Keshav, Anna Lubiw, and
Vinayak Pathak

On (Dynamic) Range Minimum Queries in External Memory . . . . . . . . . . 37
Lars Arge, Johannes Fischer, Peter Sanders, and Nodari Sitchinava

Distance-Sensitive Planar Point Location . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Boris Aronov, Mark de Berg, Marcel Roeloffzen, and
Bettina Speckmann

Time-Space Tradeoffs for All-Nearest-Larger-Neighbors Problems . . . . . . 61
Tetsuo Asano and David Kirkpatrick

Coloring Hypergraphs Induced by Dynamic Point Sets and Bottomless
Rectangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Andrei Asinowski, Jean Cardinal, Nathann Cohen,
Sébastien Collette, Thomas Hackl, Michael Hoffmann,
Kolja Knauer, Stefan Langerman, Micha�l Lasoń, Piotr Micek,
Günter Rote, and Torsten Ueckerdt

Socially Stable Matchings in the Hospitals/Residents Problem . . . . . . . . . 85
Georgios Askalidis, Nicole Immorlica, Augustine Kwanashie,
David F. Manlove, and Emmanouil Pountourakis

Parameterized Complexity of 1-Planarity . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Michael J. Bannister, Sergio Cabello, and David Eppstein

On the Stretch Factor of the Theta-4 Graph . . . . . . . . . . . . . . . . . . . . . . . . . 109
Luis Barba, Prosenjit Bose, Jean-Lou De Carufel,
André van Renssen, and Sander Verdonschot



XII Table of Contents

Better Space Bounds for Parameterized Range Majority
and Minority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Djamal Belazzougui, Travis Gagie, and Gonzalo Navarro

Online Control Message Aggregation in Chain Networks . . . . . . . . . . . . . . 133
Marcin Bienkowski, Jaroslaw Byrka, Marek Chrobak, �Lukasz Jeż,
Jǐŕı Sgall, and Grzegorz Stachowiak

Fingerprints in Compressed Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Philip Bille, Patrick Hagge Cording, Inge Li Gørtz, Benjamin Sach,
Hjalte Wedel Vildhøj, and Søren Vind

Beacon-Based Algorithms for Geometric Routing . . . . . . . . . . . . . . . . . . . . 158
Michael Biro, Justin Iwerks, Irina Kostitsyna, and
Joseph S.B. Mitchell

Interval Selection with Machine-Dependent Intervals . . . . . . . . . . . . . . . . . . 170
Kateřina Böhmová, Yann Disser, Matúš Mihalák, and
Peter Widmayer

On the Spanning Ratio of Theta-Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Prosenjit Bose, André van Renssen, and Sander Verdonschot

Relative Interval Analysis of Paging Algorithms on Access Graphs . . . . . 195
Joan Boyar, Sushmita Gupta, and Kim S. Larsen

On Explaining Integer Vectors by Few Homogenous Segments . . . . . . . . . 207
Robert Bredereck, Jiehua Chen, Sepp Hartung,
Christian Komusiewicz, Rolf Niedermeier, and
Ondřej Suchý

Trajectory Grouping Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Kevin Buchin, Maike Buchin, Marc van Kreveld,
Bettina Speckmann, and Frank Staals

The Art of Shaving Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Timothy M. Chan

Treewidth and Pathwidth Parameterized by the Vertex
Cover Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

Mathieu Chapelle, Mathieu Liedloff, Ioan Todinca, and
Yngve Villanger

Visibility and Ray Shooting Queries in Polygonal Domains . . . . . . . . . . . . 244
Danny Z. Chen and Haitao Wang

Lift-and-Project Methods for Set Cover and Knapsack . . . . . . . . . . . . . . . . 256
Eden Chlamtáč, Zachary Friggstad, and Konstantinos Georgiou



Table of Contents XIII

Optimal Time-Convex Hull under the Lp Metrics . . . . . . . . . . . . . . . . . . . . 268
Bang-Sin Dai, Mong-Jen Kao, and D.T. Lee

Blame Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
Erik D. Demaine, Pavel Panchekha, David A. Wilson, and
Edward Z. Yang

Plane 3-trees: Embeddability and Approximation
(Extended Abstract) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

Stephane Durocher and Debajyoti Mondal

A Dynamic Data Structure for Counting Subgraphs in Sparse
Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

Zdeněk Dvořák and Vojtěch T̊uma

Combinatorial Pair Testing: Distinguishing Workers from Slackers . . . . . . 316
David Eppstein, Michael T. Goodrich, and Daniel S. Hirschberg

Approximation Algorithms for B1-EPG Graphs . . . . . . . . . . . . . . . . . . . . . . 328
Dror Epstein, Martin Charles Golumbic, and Gila Morgenstern

Universal Point Sets for Planar Three-Trees . . . . . . . . . . . . . . . . . . . . . . . . . 341
Radoslav Fulek and Csaba D. Tóth

Planar Packing of Binary Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
Markus Geyer, Michael Hoffmann, Michael Kaufmann,
Vincent Kusters, and Csaba D. Tóth

Hierarchies of Predominantly Connected Communities . . . . . . . . . . . . . . . . 365
Michael Hamann, Tanja Hartmann, and Dorothea Wagner

Joint Cache Partition and Job Assignment on Multi-core Processors . . . . 378
Avinatan Hassidim, Haim Kaplan, and Omry Tuval

Finding the Minimum-Weight k-Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
Avinatan Hassidim, Orgad Keller, Moshe Lewenstein, and
Liam Roditty

Compressed Persistent Index for Efficient Rank/Select Queries . . . . . . . . . 402
Wing-Kai Hon, Lap-Kei Lee, Kunihiko Sadakane, and
Konstantinos Tsakalidis

Tight Bounds for Low Dimensional Star Stencils in the External
Memory Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415

Philipp Hupp and Riko Jacob

Neighborhood-Preserving Mapping between Trees . . . . . . . . . . . . . . . . . . . . 427
Jan Baumbach, Jiong Guo, and Rashid Ibragimov



XIV Table of Contents

Bounding the Running Time of Algorithms for Scheduling and Packing
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439

Klaus Jansen, Felix Land, and Kati Land

When Is Weighted Satisfiability FPT? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
Iyad A. Kanj and Ge Xia

Two-Sided Boundary Labeling with Adjacent Sides . . . . . . . . . . . . . . . . . . . 463
Philipp Kindermann, Benjamin Niedermann, Ignaz Rutter,
Marcus Schaefer, André Schulz, and Alexander Wolff

Optimal Batch Schedules for Parallel Machines . . . . . . . . . . . . . . . . . . . . . . 475
Frederic Koehler and Samir Khuller

Unions of Onions: Preprocessing Imprecise Points for Fast Onion Layer
Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487

Maarten Löffler and Wolfgang Mulzer

Dynamic Planar Point Location with Sub-logarithmic Local Updates . . . 499
Maarten Löffler, Joseph A. Simons, and Darren Strash

Parameterized Enumeration of (Locally-) Optimal Aggregations . . . . . . . 512
Naomi Nishimura and Narges Simjour

MapReduce Algorithmics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524
Sergei Vassilvitskii

The Greedy Gray Code Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525
Aaron Williams

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537



On Maximum Weight Objects Decomposable

into Based Rectilinear Convex Objects

Mahmuda Ahmed, Iffat Chowdhury, Matt Gibson,
Mohammad Shahedul Islam, and Jessica Sherrette

Department of Computer Science
University of Texas at San Antonio

San Antonio, TX USA
{mahmed,ichowdhu,gibson,msislam,jsherett}@cs.utsa.edu

Abstract. Our main concern is the following variant of the image seg-
mentation problem: given a weighted grid graph and a set of verti-
cal and/or horizontal base lines crossing through the grid, compute a
maximum-weight object which can be decomposed into based rectilinear
convex objects with respect to the base lines. Our polynomial-time algo-
rithm reduces the problem to solving a polynomial number of instances
of the maximum flow problem.

1 Introduction

An area of work that has recently attracted extensive attention in the pattern
recognition and computer vision communities is image segmentation. It is the
process of partitioning a digital image into multiple objects for better represen-
tation and analysis of an image. From another view point, image segmentation
is assigning labels to the pixels of an image such that the pixels with the same
label define a particular object which may have certain visual characteristics.
In practice image segmentation is used to detect objects and boundaries in the
image. An example, in medical imaging, image segmentation is used to help lo-
cate tumors and other pathologies, measure tissue volumes, computer-guided
surgery, diagnosis, treatment planning, study of anatomical structure etc. There
are many other applications of image segmentation including fingerprint recog-
nition, traffic control systems and agriculture imaging.

Image Segmentation as an Optimization Problem. Finding a “good” seg-
mentation is often treated as an optimization problem, see for example
[2,12,13,4,5,9,7,1]. Using the framework of Asano et al. [2] we are given a weighted
grid graph where each grid cell corresponds to a pixel in the original image and
weights on the grid cells are related to the likelihood that the particular pixel
is in the object we wish to identify (positive weights are assigned to grid cells
whose corresponding pixel is likely in the object and negative weights are as-
signed to grid cells whose corresponding pixel is likely in the background). Then
we attempt to find some subset of the grid that optimizes an objective function

F. Dehne, R. Solis-Oba, and J.-R. Sack (Eds.): WADS 2013, LNCS 8037, pp. 1–12, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 M. Ahmed et al.

subject to some constraints. Let G be an
√
n×√n four-neighborhood grid graph.

For 1 ≤ i ≤
√
n and 1 ≤ j ≤

√
n the grid cell p at the (i, j) position in the grid

has a real value w(p) called the weight of p. We call i the x-coordinate of p
and j the y-coordinate of p and let px (resp. py) denote the x-coordinate (resp.
y-coordinate) of p. A region (or object) R will be defined as any subset of grid
cells, and we define the weight of R to be w(R) =

∑
p∈R w(p). We are interested

in computing the region R with maximum weight subject to some constraints.
Research has shown that knowledge of the geometric shape of the object

that you are looking for can greatly increase an algorithm’s effectiveness in
practice, see for example [10,19,3,18,11]. Polynomial-time algorithms have been
given which identify an optimal solution for the following classes of objects:
x-monotone regions, based monotone regions, rectilinear convex regions, and
star-shaped regions [4,9,8].

Objects Decomposable into Elementary Shapes. Chun et al. [7] consider the
maximum-weight region problem with a twist on the constraints of some previ-
ous works. They are interested in finding a maximum-weight region that may
not have simple geometric structure, but can be decomposed into objects with
simple geometric structure. A region R can be decomposed into m objects of a
particular structure if and only if there exists a coloring of the grid cells of R
using m colors such that each of the objects induced by the grid cells of each of
the color classes have the desired structure.

This type of problem is very interesting from both a practical perspective as
well as a theoretical perspective. It is interesting in practice because an algorithm
for such a problem can identify more complicated objects while still allowing
control of the topology of the output object. It is interesting from a theoreti-
cal perspective because the decomposition constraints of the problem poses an
interesting computational challenge to overcome. If we instead consider finding
objects which are the union of m objects with simple geometric structure, the
problem often becomes much harder (for example, finding the maximum-weight
object that is the union of two star-shaped objects is NP-hard [7]). The decom-
position variant of the problems may admit polynomial-time algorithms, but it
is not trivial to design such an algorithm for many classes of objects even when
m = 2.

Chun et al.[7] give an efficient algorithm for computing the maximum-weight
region that can be decomposed into two digital star-shaped regions with respect
to two given “center” grid cells. Gibson et al. [14] give a maximum-flow based
algorithm for the same 2-star problem and recently Gibson et al. [15] extend
the result of [14] to identify the maximum-weight object decomposable into c
star-shaped objects for any constant c in polynomial time.

Chun et al. [7] consider the problem of computing the maximum-weight object
decomposable into based monotone object with respect to a set of k given base
lines. A base line of the grid graph G is a vertical (x = i) or horizontal (y =
j) path of grid cells across the grid for 1 ≤ i ≤

√
n and 1 ≤ j ≤

√
n. For

a given horizontal base line l : y = i, a based monotone object is a union of
segments of columns intersecting the base line. See Figure 1 (a) and (b) for an



On Maximum Weight Objects Decomposable 3

illustration. They do not require a based monotone object for a particular base
line to be a connected region. This allows them to use the base lines to partition
the grid into O(k2) subproblems which they solve independently using dynamic
programming. Recently Chun et. al [6] gave an algorithm for finding the optimal
baseline locations using quadtree decomposition.

Our Contribution. Given a weighted grid graph, we are interested in identifying
the maximum-weight object decomposable into Based Rectilinear Convex (BRC)
objects with respect to c given base lines for a constant c. For a given horizontal
base line l : y = i, a BRC object with respect to l satisfies the properties of being
a based monotone object with the additional constraint that the intersection of
the object with any horizontal line is always undivided (a symmetric notion is
defined for vertical base lines). See Figure 1 (c) and (d) for an illustration. In
contrast to a based monotone object, a BRC object is by definition a connected
object. Therefore, as opposed to the based monotone case, the base lines do not
decompose the grid into subproblems which can be solved independently.

(a) (b) (c) (d)

Fig. 1. Part (a) is a based monotone object with respect to the base line. Part (b) is
not a based monotone object. Part (c) is a BRC object with respect to the base line.
Part (d) is not a BRC object (the intersection of the object with the dotted line is not
connected).

Fig. 2. A 3-BRC object with respect to 3 given base lines

We call an object which can be decomposed into c different BRC objects a
c-BRC object. See Figure 2 for an illustration. When c = 1 the problem is easily
solvable, but until now there has been no polynomial-time algorithm given even
when c = 2. Our main contribution is the following theorem.



4 M. Ahmed et al.

Theorem 1. There exists a polynomial-time algorithm which computes a
maximum-weight object decomposable into based rectilinear objects with respect
to a set of c given base lines in a weighted grid graph for any constant c ≥ 1.

We prove Theorem 1 by giving a polynomial-time algorithm for computing a
maximum-weight 2-BRC object for a restricted special case of the 2-BRC prob-
lem. We solve this restricted special case by observing some key geometric prop-
erties of a BRC object and show that these observations allow us to reduce the
problem to computing the maximum-weight closed set in a polynomial number of
appropriately defined directed graphs. It is well known that a maximum-weight
closed set can be computed in polynomial time [17,16] via a reduction to the
maximum flow problem. We then show how to carefully reduce the c-BRC prob-
lem to several instances of the restricted 2-BRC problem. This reduction will
be done in a way so that the solution to the 2-BRC instances can be merged to
obtain an optimal solution for the c-BRC instance.

To guarantee that our algorithm returns an optimal solution, our algorithm
iteratively guesses the structure of an optimal solution. For each guess, we com-
pute the maximum-weight c-BRC object which corresponds to this guess. We
show that by making a polynomial number of guesses, we can guarantee that we
guess the correct structure for an optimal solution; however, the polynomial is
too large to be of practical interest. That being said, our result shows how the
structure of a solution can be used to reduce the problem to the maximum flow
problem. If this structure is given as input by a user or is found via a heuristic,
then our work shows that the problem can be reduced to solving a small number
of maximum flow instances which would be of practical interest. Also, our tech-
nique can easily be modified to compute the complement of a maximum weight
c-BRC object (this may be more efficient for some inputs).

Organization of the Paper. In Section 2, we give an algorithm which computes
a maximum-weight 2-BRC object for a restricted version of the problem. In
Section 3, we extend the result to find a maximum-weight c-BRC object for any
constant c ≥ 2.

2 Algorithm for a Restricted 2-BRC Problem

In this section, we give a polynomial-time algorithm for a restricted version of
2-BRC object using an

√
n×
√
n four-neighborhood grid graph G and two base

lines at the boundary of the grid. We show that this problem can be solved by
computing the maximum-weight closed set for a linear number of appropriately
constructed directed graphs. Given a weighted, directed graph D = (V,E), a
closed set is a subset of the vertices C ⊆ V such that if u ∈ C and (u, v) ∈ E
then v ∈ C. Intuitively, if C is a closed set then there is no edge from a vertex
in C to a vertex in V \C. The weight of a closed set C is simply the sum of the
weights of the vertices in C.



On Maximum Weight Objects Decomposable 5

Preliminaries. Initially, we assume that the base lines are parallel and without
loss of generality the base lines are at y = 1 and y =

√
n. At the end of this

section, we show how to handle the case where base lines are perpendicular. We
view each grid cell as having a x-coordinate and a y-coordinate (the grid cell in
the lower left corner has x-coordinate = y-coordinate = 1 and the grid cell in
the upper right corner has x-coordinate = y-coordinate =

√
n). If O is a BRC

object with respect to the top of the grid, we say that O is a type-N BRC object
(its base line is the “northern” base line). Similarly, if O is a BRC object with
respect to the bottom of the grid, we say that O is a type-S BRC object.

Let O be a BRC object and without loss of generality assume it is a type-S
object. A peak of O is a grid cell p ∈ O for which no other grid cells p′ ∈ O have
y-coordinate greater than the y-coordinate of p. Similarly, for type-N object,
a peak is a pixel with minimum y-coordinate over all pixels in the object. We
define a peak line of O to be a vertical line through the grid which contains a
peak. See Figure 3 (a) for an illustration.

l1 l2

(a) (b)

Fig. 3. Peak lines: (a) A peak line where the shaded region is a type-S BRC object. (b)
The patterned and shaded portion of the grid are the peak lines l1 and l2 respectively.

The following observation is the key idea that allows us to reduce the restricted
2-BRC problem to a maximum-weight closed set problem. The proof has been
omitted due to lack of space.

Observation 2. Let O be a subset of grid cells in the grid, and let l be the
vertical line through the grid at x = α. Then O is a type-S (resp. type-N) BRC
object with respect to peak line l if and only if the following properties hold:

1. for each o ∈ O such that ox ≤ α, each grid cell p such that px = ox and
py ≤ oy (resp. py ≥ oy) is in O and each grid cell q such that qy = oy and
ox ≤ qx ≤ α we have q ∈ O.

2. for each o′ ∈ O such that o′x > α, each grid cell p′ such that p′x = o′x and
p′y ≤ o′y (resp. p′y ≥ o′y) is in O and each grid cell q′ such that q′y = o′y and
o′x ≥ q′x ≥ α we have q′ ∈ O.

The consequence of Observation 2 is that if we know a peak line for each BRC
object, then we can compute them via a single maximum-weight closed set com-
putation in an appropriately defined directed graph (we can guess all possible
pairs of peak lines using

√
n×
√
n = n guesses).



6 M. Ahmed et al.

Construction of the Directed Graph. We now describe the construction of the
directed graph to find the 2-BRC object with respect to two peak lines l1 and
l2. See Figure 3 (b) which shows the peak line l1 for type-S object and l2 for
type-N object. For the remainder section, we assume when we mention a 2-BRC
object, we refer a 2-BRC object with respect to l1 and l2.

We call our graph D{l1,l2}. There are two “sections” of vertices in D{l1,l2}, and
each grid cell in G has exactly one vertex in each of these sections. The vertices in
a closed set from the first section will determine what grid cells are in the type-S
BRC object in G, and the vertices in a closed set from the second section will
determine what grid cells are in the type-N BRC object in G. Let V1 denote the
vertices in the section for the type-S BRC object, and let us define V2 similarly
for type-N BRC object. For a grid cell g, let v1g denote its corresponding vertex
in V1 and let v2g denote its corresponding vertex in V2. For ease of description,
we view V1 and V2 being embedded in the same layout as the grid cells in G.

We will now define three edge sets E1, E2, and E3. E1 will consist of edges
with both endpoints in V1, E2 will consist of edges with both endpoints in V2,
and E3 will consist of edges with their tail in V1 and their head in V2. Let us now
define the edge set E1. See Figure 4(a) for an illustration. In V1, every vertex
has an edge to a vertex directly ‘below’ it (if it exists). And all the “horizontally
adjacent” vertices have an edge between the corresponding vertices directed
towards the peak line l1. These are the all edges in the edge set E1.

(a) (b)

Fig. 4. (a) The arrangement of edge set of E1 where patterned line is the peak line l1
and this vertex set is in V1. (b) The arrangement of edge set of E2 where lightly shaded
line is the peak line l2 and this vertex set is in V2.

We now describe the edge set E2. See Figure 4(b) for an illustration. Similarly,
in V2, every vertex has an edge to a vertex directly below it (if it exists). But
all the horizontally adjacent vertices have an edge between the corresponding
vertices directed away from the peak line. These are all the edges in the set E2.

The edge set E3 consists of the directed edges (v1g , v
2
g) for each grid cell g.

This completes the construction of the edge sets E1, E2, and E3.
Our directed graph D{l1,l2} has vertex set V := V1 ∪ V2 and edge set E :=

E1 ∪ E2 ∪ E3. We assign weights on the vertices as follows. The weight of each
vertex v1g ∈ V1 is set to be w(g). The weight of each vertex v2g ∈ V2 is set to be
−w(g). This completes the construction of the graph.



On Maximum Weight Objects Decomposable 7

Relationship between a Closed Set and a 2-BRC Object. We now describe a
function T which will take as input a subset of vertices in D{l1,l2} and outputs
a subset of grid cells in G. Fix any subset V ′ ⊆ V of D{l1,l2}. For any vertex
v1g ∈ V ′∩V1, the corresponding grid cell g is in T (V ′). For any vertex v2g ∈ V2\V ′,
the corresponding grid cell g is in T (V ′). In other words, a grid cell g is in T (V ′)
if v1g is in V ′ or if v2g is not in V ′. If v1g is not in V ′ and v2g is in V ′, then g is not
in T (V ′). We will prove in Lemma 1 that if V ′ is a closed set of D{l1,l2} then
T (V ′) is a 2-BRC object whose weight is the same as the weight of V ′ (minus a
constant).

We now define another function T ′ which takes as input a 2-BRC object and
returns a set of vertices in D{l1,l2}. T ′ is the inverse of T . Fix R to be any subset
of grid cells that can be decomposed into a type-S BRC object and a type-N
BRC object. Fix such a decomposition, and color the grid cells in the type-S
BRC object red and the cells in the type-N BRC object blue. Let us call the
red grid cells R1 and the blue grid cells R2. For each red cell r ∈ R1 we have
that v1r ∈ T ′(R) and v2r ∈ T ′(R). For each blue cell b ∈ R2 we have v1b 	∈ T ′(R)
and v2b 	∈ T ′(R). For all uncolored cells g we have v1g 	∈ T ′(R) and v2g ∈ T ′(R).
This concludes the definition of the function T ′(R), and in Lemma 2 we will
prove that T ′(R) is a closed set in D{l1,l2} and has weight equal to R (minus a
constant).

Note that we have T ′(T (C)) = C for every closed set C and T (T ′(R)) = R
for every 2-BRC object. Thus proving Lemma 1 and Lemma 2 will complete the
proof that the maximum-weight region in G that is decomposable into two BRC
objects with respect to the peak lines can be computed by finding a maximum-
weight closed set in D{l1,l2}. The proof of Lemma 2 is similar to the proof of
Lemma 1 and is omitted due to lack of space.

Lemma 1. Fix any closed set C of D{l1,l2}. Then T (C) is a 2-BRC object and
has weight equal to C (minus a constant).

Proof. We first show that T (C) is a 2-BRC object. Let C1 be C∩V1, and abusing
notation let T (C1) ⊆ T (C) be the grid cells g such that v1g ∈ C1. We will argue
that T (C1) is a type-S BRC object by showing T (C1) satisfies properties 1 and
2 of Observation 2. We can show this is true by considering the construction of
D{l1,l2}. There is an edge in D{l1,l2} from v1g to the vertex corresponding to the
grid cell towards l1 on the same horizontal line and the vertex directly below it.
Since C is a closed set, it follows that both of these vertices must also be in the
closed set. It follows from a simple inductive argument that for any v′g ∈ C1,
all of the vertices v1c which are between v′g and the peak line l1 on the same
horizontal line and all of the vertices v1c′ which are below v′g on the same vertical
line will be in C. See Figure 4 (a). By the definition of T , it must be that all
such grid cells c and c′ are in T (C). We thus have by Observation 2 that T (C1)
is a type-S BRC object.

Now let C2 be C ∩ V2, and abusing notation let T (C2) ⊆ T (C) be the grid
cells g such that v2g /∈ C2. We will now show that T (C2) is a type-N BRC object.
Let α2 denote the x-coordinate of the points on l2. We remind the reader that
by the definition of T , vertices in V2 \ C2 correspond with the grid cells that



8 M. Ahmed et al.

are in T (C2). Again, to show that T (C2) is type-N BRC object, we will show
that properties 1 and 2 of Observation 2 hold for T (C2). Suppose for the sake
of contradiction that g ∈ T (C2) (without loss of generality assume gx ≤ α2) but
there is a grid cell g′ such that gx = g′x and gy < g′y and g′ is not in T (C2). Since
g′ is not in T (C2), we have v2g′ ∈ C2. According to the construction of D{l1,l2},

there must be an edge from v2g′ to the vertex below it. Since C is a closed set,
we must have that these vertices are in C2. An inductive argument follows that
all of the vertices corresponding to grid cells below g′ on the same vertical line
must be in C2. This of course implies that g 	∈ T (C2), a contradiction. We have
the similar argument for a grid cell g′′ such that g′′y = gy and gx ≤ g′′x ≤ α2. We
thus prove the properties 1 and 2 of Observation 2 and hence T (C2) is a type-N
BRC object.

We will now argue that T (C) is a 2-BRC object. We will prove this by showing
that T (C1) and T (C2) are disjoint. This is easy to see from the definition of the
edge set E3. Let g be some grid cell in T (C1). By definition, this implies that
v1g ∈ C1. The edge (v1g , v

2
g) is in E3, and since C1 is a closed set it must be

that v2g ∈ C2. This implies that for any g ∈ T (C1), we have g /∈ T (C2). This
completes the proof that T (C1) and T (C2) are disjoint and therefore T (C) can
be decomposed into two BRC objects.

This concludes the proof that T (C) is a 2-BRC object, and we will now prove
that C and T (C) have the same weight (minus a constant). First let w1 be the
sum of the weights of the vertices in C1, and let w2 be the sum of the weights
of the vertices in C2. The weight of the closed set is exactly w1 + w2. The
corresponding grid cell for each vertex in C1 is also in T (C), and moreover has
the exact same weight. So the sum of the weights of the grid cells in T (C1) is
w1. Recall that the vertices in C2 correspond to the exact set of grid cells that
are not in T (C2), and thus the weight of the grid cells in T (C2) is w(V2) + w2

(we remind the reader that the weight of a vertex in C2 is the negative of the
weight of its corresponding grid cell). Therefore, the weight of the grid cells in
T (C) is w1 +w2 +w(V2). Since w1 +w2 is the weight of C, we conclude that the
weight of C is equal to the weight of the grid cells in T (C) minus w(V2). This
concludes the proof of the lemma. 
�

Lemma 2. Fix any subset R of grid cells in G that is a 2-BRC object. Then
T ′(R) is a closed set in D{l1,l2} and has weight equal to R (minus a constant).

So now we have that if C is a maximum-weight closed set of D{l1,l2}, then T (C)
is a maximum-weight 2-BRC object. There are n total pairs of peak lines, so we
can check all possible pairs. One of those pairs will correspond with the peak
lines for the maximum-weight 2-BRC object, and therefore the maximum-weight
2-BRC object obtained for these peak lines will be the maximum-weight 2-BRC
object for the entire problem.

Handling Perpendicular Base Lines. Now we will assume that the base lines can
be perpendicular. Since we now have a vertical base line, the “sides” of the grid
can be base lines. In this setting, we say an object O is a type-W (resp. type-E)



On Maximum Weight Objects Decomposable 9

BRC object if O is a BRC object with respect to the “western” (resp. “eastern”)
base line.

Without loss of generality, assume we have the southern base line and the
western base line and we wish to find the maximum-weight 2-BRC object de-
composable into a type-S BRC object and a type-W BRC object. We can com-
pute this object using a similar approach as to what we used in Section 2 by
slightly changing the construction of the directed graph. Note that a peak line
for a type-W object is a horizontal line (perpendicular to the base line). Suppose
we are given a vertical peak line l1 and a horizontal peak line l2. We will con-
struct the directed graph D{l1,l2} slightly differently. The vertex set will again
be V1 ∪ V2 where V1 will be used to identify the type-S object and V2 will be
used to identify the type-W object. The edge sets E1 and E3 will be exactly as
defined above, but the edge set E2 will change. The edge set E2 will consist of
horizontal edges directed towards the base line and vertical edges directed away
from the peak line. The weights are assigned the same way as before. We can
argue similarly as we did in Lemma 1 and Lemma 2 that for a maximum-weight
closed set C of D{l1,l2}, we have T (C) is a maximum-weight 2-BRC object with
respect to l1 and l2, and by considering all

√
n×
√
n possible pairs of base lines

we can compute in polynomial time the maximum-weight 2-BRC object with
respect to the southern and western base lines. We conclude that for any two
base lines, we can compute in polynomial-time the maximum-weight object for
the restricted 2-BRC problem.

3 Extension to the c-BRC Problem

We now give a polynomial-time algorithm for the original problem in which we
are given a weighted grid graph G and c base lines, and we wish to compute a
maximum-weight c-BRC object. Our algorithm iteratively makes guesses about
the structure of an optimal solution OPT . Using this structure, we reduce the
problem to several instances of the restricted 2-BRC problem. The reduction is
handled in two parts. First we decompose the grid into O(c2) rectangular-subgrid
instances of a restricted version of the 4-BRC problem. This restricted version
will be similar to the restricted 2-BRC problem considered in Section 2 (base
lines are at the boundary of the grid). The key property of this instance is that
for each instance I of the restricted 4-BRC problem, we have that I ∩OPT can
be decomposed into at most 4 BRC objects with respect to the base lines at the
boundary of I. We then use a digital Voronoi diagram to break the restricted
4-BRC problem into at most 5 instances of the restricted 2-BRC problem, which
we solve using the algorithm given in Section 2. The reduction is carefully done
so that the merging of the solutions will be a feasible c-BRC object. When we
correctly guess the structure of OPT , we show that the merged solutions will be
an optimal c-BRC object. This approach is similar in flavor to the approach of
Gibson et al. [15] for computing the maximum-weight object decomposable into
c star-shaped objects for any fixed c. An overview of our reduction is now given.
Further details and the algorithm have been omitted due to lack of space.



10 M. Ahmed et al.

Reduction to the Restricted 4-BRC Problem. We will now reduce the c-BRC
problem into O(c2) instances of the restricted 4-BRC problem in which there
are at most four base lines, each of which are at the boundary of the grid.
Let B1, B2, . . . , Bc be the c disjoint BRC objects that OPT decomposes into.
Consider some Bi, and without loss of generality assume that the base line of Bi

is horizontal. Let bi denote the intersection of Bi with its base line. Let �i and ri
denote the leftmost and rightmost grid cell of bi respectively, and consider the
vertical paths through �i and ri. Note that by the definition of a BRC object,
any g ∈ Bi cannot be “outside” of these vertical paths. Similarly a Bi with a
vertical base line has a vertical bi and must be between two horizontal paths.

Now consider any grid cell g ∈ G, and consider shooting four axis-parallel
rays from g in all four directions until it hits the boundary of G or hits a bi. We
can hit at most four bis, and g can only be in a Bi such that a ray shot from g
hit bi. To see this, first note that g can only be in a Bi such that the vertical or
horizontal line through g hits bi (otherwise g would be outside of the “vertical
paths” described above). Now suppose for the sake of contradiction that an axis-
parallel ray from g ∈ Bi to bi pierces through a bi′ . By the definition of BRC
object, we have that every grid cell along this ray is in Bi including the grid cell
g′ ∈ bi′ pierced by the ray. That implies g′ ∈ Bi and g′ ∈ Bi′ , a contradiction.

The subset of grid cells whose axis-parallel rays hit the same set of bi (from the
same “ray direction”) induce the desired rectangular instances of the restricted
4-BRC problem. Let I be one such instance, and consider I ∩OPT . As we just
argued, there will be grid cells from c′ different Bi in I for some 1 ≤ c′ ≤ 4
(at most one from each “direction”). Clearly, Bi ∩ I for each of these Bi will be
a BRC object with respect to a unique “side” of I. Thus we can view I as an
instance of the restricted 4-BRC problem where we have c′ base lines, each on
a different “side” of I. We note that the optimal 4-BRC object for this problem
may not be OPT ∩ I. We can fix this issue by modifying the weights of the grid
cells along the base line.

Reduction to the Restricted 2-BRC Problem. We now suppose we are given an
instance I of the restricted 4-BRC problem and we give an overview of how to
reduce it to at most 5 instances of the restricted 2-BRC problem. Due to lack of
space, the details have been omitted.

First note that if there are at most 2 base lines in I, then the problem is
already an instance of the 2-BRC problem. It remains to show how to handle
the cases in which we have three or four base lines in a single instance. For the
rest of the paper, we will assume that our instance will have all four base lines
(it will be clear how to handle the case when we have three base lines).

We will now give a high level overview of the details of the decomposition of
the restricted 4-BRC problem into several instances of the 2-BRC problem. Let
OPT (I) denote OPT ∩ I. OPT (I) can be decomposed into type-N, a type-E, a
type-S, and a type-W BRC objects, so fix such a decomposition and let N,E, S,
and W respectively denote each of these objects. We will consider the digital
Voronoi diagram for these four sets. That is, we will partition the grid cells of G
into four Voronoi regions V (N), V (E), V (S), and V (W ) such that any grid cell



On Maximum Weight Objects Decomposable 11

in a Voronoi region is “closer” to that particular BRC object than it is to any of
the other three. See Figure 5 for an illustration. We will show that we can use the
vertices of the Voronoi diagram to help us partition the problem into instances
of the 2-BRC problem. Intuitively, a vertex of the Voronoi diagram occurs where
three or four different Voronoi regions “touch each other”. Consider a vertex of
the Voronoi diagram, and suppose this is a vertex where exactly three of the
Voronoi regions “come together”. For this vertex, we will find three paths in
the grid. Each path will begin at this vertex and will end at one of the base
lines (one path per base line). The paths will be chosen in a way such that
they will consist of grid cells which all belong to the same Voronoi region (the
Voronoi region associated with the base line at which the path ends). We find
these paths for each of the vertices of the Voronoi diagram, and we will show
that if we remove the grid cells in these paths then we are left with a constant
number of connected components, each of which contains grid cells from at most
2 Voronoi regions. This allows us to use the algorithm of Section 2 to compute the
maximum-weight 2-BRC object from these components and merge the solutions
together to obtain OPT (I).

(a) (b) (c)

Fig. 5. Decomposing into 2-BRC instances. (a) Suppose this is OPT (I). (b) The
Voronoi diagram associated with OPT (I). (c) The vertices and paths used to de-
compose into 2-BRC instances.

References

1. Anzai, S., Chun, J., Kasai, R., Korman, M., Tokuyama, T.: Effect of corner informa-
tion in simultaneous placement of k rectangles and tableaux. Discrete Mathematics,
Algorithms and Applications 2(4), 527–537 (2010)

2. Asano, T., Chen, D.Z., Katoh, N., Tokuyama, T.: Efficient algorithms for
optimization-based image segmentation. Int. J. Comput. Geometry Appl. 11(2),
145–166 (2001)

3. Chan, T.F., Zhu, W.: Level set based shape prior segmentation. In: CVPR (2), pp.
1164–1170 (2005)

4. Chen, D.Z., Chun, J., Katoh, N., Tokuyama, T.: Efficient algorithms for approx-
imating a multi-dimensional voxel terrain by a unimodal terrain. In: Chwa, K.-
Y., Munro, J.I. (eds.) COCOON 2004. LNCS, vol. 3106, pp. 238–248. Springer,
Heidelberg (2004)



12 M. Ahmed et al.

5. Chen, D.Z., Hu, X.S., Luan, S., Wu, X., Yu, C.X.: Optimal terrain construction
problems and applications in intensity-modulated radiation therapy. In: Möhring,
R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 270–283. Springer,
Heidelberg (2002)

6. Chun, J., Horiyama, T., Ito, T., Kaothanthong, N., Ono, H., Otachi, Y., Tokuyama,
T., Uehara, R., Uno, T.: Base location problems for base-monotone regions. In:
Ghosh, S.K., Tokuyama, T. (eds.) WALCOM 2013. LNCS, vol. 7748, pp. 53–64.
Springer, Heidelberg (2013)

7. Chun, J., Kasai, R., Korman, M., Tokuyama, T.: Algorithms for computing the
maximum weight region decomposable into elementary shapes. In: Dong, Y., Du,
D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 1166–1174. Springer,
Heidelberg (2009)

8. Chun, J., Korman, M., Nöllenburg, M., Tokuyama, T.: Consistent digital rays.
Discrete & Computational Geometry 42(3), 359–378 (2009)

9. Chun, J., Sadakane, K., Tokuyama, T.: Efficient algorithms for constructing a
pyramid from a terrain. IEICE Transactions 89-D(2), 783–788 (2006)

10. Das, P., Veksler, O., Zavadsky, V., Boykov, Y.: Semiautomatic segmentation with
compact shape prior. Image Vision Comput. 27(1-2), 206–219 (2009)

11. Freedman, D., Zhang, T.: Interactive graph cut based segmentation with shape
priors. In: CVPR (1), pp. 755–762 (2005)

12. Fukuda, T., Morimoto, Y., Morishita, S., Tokuyama, T.: Data mining using two-
dimensional optimized accociation rules: Scheme, algorithms, and visualization. In:
Jagadish, H.V., Mumick, I.S. (eds.) SIGMOD Conference, pp. 13–23. ACM Press
(1996)

13. Fukuda, T., Morimoto, Y., Morishita, S., Tokuyama, T.: Data mining with op-
timized two-dimensional association rules. ACM Trans. Database Syst. 26(2),
179–213 (2001)

14. Gibson, M., Han, D., Sonka, M., Wu, X.: Maximum weight digital regions decom-
posable into digital star-shaped regions. In: Asano, T., Nakano, S.-I., Okamoto,
Y., Watanabe, O. (eds.) ISAAC 2011. LNCS, vol. 7074, pp. 724–733. Springer,
Heidelberg (2011)

15. Gibson, M., Varadarajan, K., Wu, X.: On a planar segmentation problem (2012)
16. Hochbaum, D.S.: A new - old algorithm for minimum-cut and maximum-flow in

closure graphs. Networks 37(4), 171–193 (2001)
17. Picard, J.-C.: Maximal closure of a graph and applications to combinatorial prob-

lems. Management Science 22(11), 1268–1272 (1976)
18. Thiruvenkadam, S.R., Chan, T.F., Hong, B.-W.: Segmentation under occlusions

using selective shape prior. SIAM J. Imaging Sciences 1(1), 115–142 (2008)
19. Veksler, O.: Star shape prior for graph-cut image segmentation. In: Forsyth, D.,

Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 454–467.
Springer, Heidelberg (2008)



Bundling Three Convex Polygons to Minimize

Area or Perimeter�

Hee-Kap Ahn1, Helmut Alt2, Sang Won Bae3,��, and Dongwoo Park1

1 POSTECH, South Korea
{heekap,dwpark}@postech.ac.kr

2 Freie Universität Berlin, Germany
alt@mi.fu-berlin.de

3 Kyonggi University, South Korea
swbae@kgu.ac.kr

Abstract. Given a set P = {P0, . . . , Pk−1} of k convex polygons having
n vertices in total in the plane, we consider the problem of finding k
translations τ0, . . . , τk−1 of P0, . . . , Pk−1 such that the translated copies
τiPi are pairwise disjoint and the area or the perimeter of the convex hull
of

⋃k−1
i=0 τiPi is minimized. When k = 2, the problem can be solved in

linear time but no previous work is known for larger k except a hardness
result: it is NP-hard if k is part of input. We show that for k = 3 the
translation space of P1 and P2 can be decomposed into O(n2) cells in
each of which the combinatorial structure of the convex hull remains the
same and the area or perimeter function can be fully described with O(1)
complexity. Based on this decomposition, we present a first O(n2)-time
algorithm that returns an optimal pair of translations minimizing the
area or the perimeter of the corresponding convex hull.

1 Introduction

We consider the problem of finding translations of k convex polygons such that
they are contained in a smallest possible convex region while their interiors are
disjoint. This problem can be modelled as follows: given a set P = {P0, . . . , Pk−1}
of k convex polygons in the plane with n vertices in total, find k translations
τ0, . . . , τk−1 of P0, . . . , Pk−1 such that the translated copies τiPi’s, for 0 � i �
k− 1, do not overlap each other and the area or the perimeter of the convex hull
of

⋃k−1
i=0 τiPi is minimized.

This problem can be seen as a generalization of a packing problem of finding
a smallest region, called a container, of a given shape (such as a disk, a square,
or a rectangle) that packs the input objects under translations. Packing prob-
lems have received significant attention in a number of disciplines. For instance,
it goes back to Kepler’s conjecture on sphere packing in three-dimensional Eu-
clidean space. Sugihara et al. considered a related problem of minimizing the

� The research by H.-K. Ahn and D. Park was supported by NRF grant 2011-0030044
(SRC-GAIA) funded by the government of Korea.

�� Corresponding author.

F. Dehne, R. Solis-Oba, and J.-R. Sack (Eds.): WADS 2013, LNCS 8037, pp. 13–24, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



14 H.-K. Ahn et al.

disk bundling a set of disks [8] with applications to minimizing the sizes of
holes through which sets of electric wires are to pass. They proposed a heuristic
method that makes use of the Voronoi diagram of circles. Milenkovic studied the
packing of a set of polygons into another polygon container with applications
in the apparel industry [7]. He gave a O(nk−1 logn) time algorithm for packing
k convex n-gons under translations into a minimum area axis-parallel rectangle
container. Later, Alt and Hurtado [3] presented an algorithm for packing two
convex polygons into a minimum area or perimeter rectangle whose running time
is close to linear.

Much less is known about the case when the container has no restriction on
its shape, for instance, when the convex hull of (the translated copies of) the
input objects forms a container. For k = 2, Lee and Woo [6] presented a linear
time algorithm for finding a translation that minimizes the area of the convex
hull. The same algorithm works for minimizing the perimeter of the convex hull.
Tang et al. [9] gave an O(n3) time algorithm for finding a rigid motion that
minimizes the area of the convex hull. When k is part of input, the problem is
known to be NP-hard even if the polygons are rectangles [4]: The proof is done
by reducing the partition problem [5] into this problem. Very recently, Ahn and
Cheong [1,2] presented a near-linear time approximation algorithm for finding a
rigid motion that minimizes either the perimeter or the area of the convex hull.

Our Results. We consider the problem of bundling three convex polygons under
translations only. We show that the translation space of P1 and P2 can be de-
composed into O(n2) cells in each of which the combinatorial structure of the
convex hull remains the same and the area or perimeter function can be fully de-
scribed with O(1) complexity. This is shown to be possible by a careful analysis
on all event configurations at which the combinatorial structure of the convex
hull changes. We then present an O(n2) time algorithm that returns an optimal
pair of translations that minimizes the area or the perimeter of the convex hull
of the union.

2 Preliminaries

Let P0, . . . , Pk−1 be k convex polygons in R2 with n vertices in total. For a
vector τ ∈ R2k, we write τ = (τ0, . . . , τk−1), where τi ∈ R2. The translate of Pi

by τi, denoted by τiPi, is {a + τi | a ∈ Pi}. We let U(τ) =
⋃k−1

i=0 τiPi and let
conv(τ) := conv(U(τ)).

Our problem can be viewed as an optimization problem of minimizing the area
‖conv(τ)‖ or the perimeter |conv(τ)| over τ ∈ R2k subject to τiPi ∩ τjPj = ∅
for all 0 � i < j � k − 1. Ahn and Cheong [2] studied the area and perimeter
functions and observed the following.

Lemma 1 (Ahn and Cheong [2]). The function f : R2k �→ R with f(τ) =
|conv(τ)| is convex for any k � 2. The function g : R2k �→ R with g(τ) =
‖conv(τ)‖ is convex and piecewise linear for k = 2, but this is not necessarily
the case for k > 2.



Bundling Three Convex Polygons to Minimize Area or Perimeter 15

In the bundling problem, one can reduce the search space by a simple observation.

Lemma 2. For the bundling problem with respect to either area or perimeter,
there is an optimal translation vector τ∗ ∈ R2k such that the union U(τ∗) is
connected, that is, every translate touches another translate under τ∗.

We can thus concentrate only on the cases where the k polygons are connected.
We shall call τ ∈ R2k a configuration if U(τ) is connected and each translate
touches another translate under τ . A configuration τ is feasible if and only if
the interiors of the translates are disjoint under τ . Thus, our goal is to find an
optimal feasible configuration with respect to area or perimeter.

Let K be the set of configurations for given k polygons P0, . . . , Pk−1. Each
configuration τ ∈ K is associated with several properties describing the structure
of the convex hull conv(τ). If τiPi and τjPj are touching, then a vertex v of Pi

lies on an edge e of Pj under τ , or vice versa. We call the pair (v, e) a contact
induced by τ . Let C(τ) be the set of contacts induced by a configuration τ ∈ K.
Note that Lemma 2 implies that |C(τ)| � k − 1. The convex hull conv(τ) is a
closed polygonal curve consisting of the boundaries of Pi’s and edges connecting
the boundaries. We call such an edge a bridge between two polygons appearing
consecutively along the boundary of the convex hull. More specifically, a vertex
vi of Pi and another vj of Pj form a bridge (vi, vj) induced by τ if Pi and Pj

appear consecutively along the boundary of the convex hull. Let H(τ) be the set
of those pairs of vertices induced by τ ∈ K. Two configurations τ, τ ′ ∈ K are said
to have the same combinatorial structure if C(τ) = C(τ ′) and H(τ) = H(τ ′).

In the following sections, we will show that the configuration space can be
decomposed into a number of cells in which the configurations have the same
combinatorial structure, so that the area or the perimeter function is described
and minimized. For convenience of elaboration, we make a general position as-
sumption on the input polygons in the sense that no two edges from the k input
polygons are parallel.

3 The Configuration Space for Three Polygons

3.1 Parametrization of Configurations

As a warm-up exercise, consider the case of k = 2 where two convex polygons
P0 and P1 are given. By Lemma 2, any configuration τ ∈ K requires P1 to touch
P0. Imagine that P0 is stationary and P1 translates around P0 in the counter-
clockwise direction, keeping touching each other, until P1 then reaches back to
the initial position. The setK of configurations thus forms a space homeomorphic
to a unit circle. This motion of P1 around P0 is piecewise affine, and the total
distance that P1 travels is exactly |P0|+ |P1|. Therefore, letting L := |P0|+ |P1|,
the interval [0, L) fully describes the configuration space K: For any λ ∈ [0, L),
let τ(λ) be the configuration whose corresponding translated copy of P1 is a
snapshot at a moment when P1 travels a distance of exactly λ around P0 from
its initial position.



16 H.-K. Ahn et al.

P0

P1(0)
u

P0 P2(0)
v

Fig. 1. Sliding P1 and P2 around P0: we parameterize the configuration space K0 by a
pair of parameters (λ1, λ2) for λ1 ∈ [0, L1) and λ2 ∈ [0, L2)

We now turn to the case of k = 3, where three convex polygons P0, P1, and
P2 are given as input. Lemma 2 implies that in any configuration τ ∈ K, at least
one of the three polygons touches the other two, simultaneously. Without loss of
generality, we assume that both P1 and P2 translate around P0 keeping touching
P0, while P0 remains stationary. Let K0 ⊂ K be the space of configurations in
which τ0 = (0, 0) and P0 touches both of P1 and P2. As discussed above for
k = 2, the distance that each of P1 and P2 travels around P0 is exactly L1 and
L2, respectively, where L1 := |P0|+ |P1| and L2 := |P0|+ |P2|. See Fig. 1. Then,
any pair (λ1, λ2) ∈ [0, L1)× [0, L2) corresponds to a configuration τ(λ1, λ2) when
P1 and P2 travel around P0 by distance exactly λ1 and λ2, respectively, from
their initial positions.

Notice that the definition of configurations do not prevent P1 and P2 from
overlapping each other; rather, the translates of P1 and P2 around P0 are inde-
pendent, and are determined independently by two different parameters λ1 and
λ2, respectively. We denote by P1(λ1) and P2(λ2) the translated copy of P1 and
P2, respectively, corresponding to the parameters λ1 and λ2, respectively. By
abuse of notation, we shall call a pair (λ1, λ2) a configuration in K0 and regard
K0 to be [0, L1)× [0, L2).

3.2 Events and Event Curves

Recall that any configuration τ ∈ K0 is associated with the set C(τ) of contacts
and the set H(τ) of bridges of the corresponding convex hull. These two com-
binatorial associates determine the structure of the convex container and the
motion of the polygons, thus being helpful in describing the objective function
on the configuration space as will be shown in next sections. One natural ap-
proach would decompose the configuration space K0 into cells in each of which
C(τ) and H(τ) remain the same for all configurations τ in the cell.

We call a configuration τ = (λ1, λ2) ∈ K0 an event if it is one of the following
cases:

C0 event. A vertex of P1(λ1) or P2(λ2) reaches a vertex of P0; that is, a vertex-
vertex contact occurs between P0 and one of the others.



Bundling Three Convex Polygons to Minimize Area or Perimeter 17

(b)(a)

�

P0

P1(λ1)

P2(λ2)
P0

�

P0

(c)

e

v

P1(λ1)

P2(λ2)
P1(λ1)

P2(λ2)

Fig. 2. Corresponding translates of the three polygons at events of different types: (a)
C2 event, (b) H1 event, and (c) H2 event

C1 event. P1(λ1) and P2(λ2) touch each other at a vertex of P1(λ1) and a
vertex of P2(λ2); that is, a vertex-vertex contact occurs between P1 and P2.

C2 event. P1(λ1) and P2(λ2) touch each other; that is, the three polygons are
pairwise touching and it holds that |C(τ)| = 3. See Fig. 2(a).

H0 event. Pi(λi), for i = 1 or 2, is tangent to the supporting line of an edge of
P0 from the side containing P0, or vice versa.

H1 event. P1(λ1) is tangent to the supporting line of an edge of P2(λ2) from
the side containing P2(λ2), or vice versa. See Fig. 2(b).

H2 event. The three polygons P0, P1(λ1), and P2(λ2) have a common tangent
line � and the three lie in the same side of �. See Fig. 2(c).

Remark that K0 includes configurations whose corresponding translates of P1

and P2 may overlap each other; the set of C2 events indeed form the borderline
between configurations causing overlap and those not causing overlap. Note,
however, that all the changes of C(τ) and H(τ) can be captured by a series of
the events, when τ continuously moves inside K0 while it avoids overlap between
P1 and P2. In particular, although some portions of H1 events indeed imply an
overlap between P1 and P2, it suffices to track all the changes of H(τ) by H0,
H1, and H2 events if τ continuously moves without any overlap. On the other
hand, events of type C1 and C2 by definition imply no overlap between P1 and
P2. Also, any C1 event is a C2 event by definition.

The set of all events forms a set of curves in the configuration space K0 =
[0, L1)× [0, L2), and thus decomposes it into cells. To see this more precisely, we
partition the set of events into subsets as follows:

Curves of C0 events. Any C0 event corresponds to a vertex-vertex contact,
involving a pair (v, v′) of vertices, exactly one of which belongs to P0. We
denote by γC0

vv′ = γC0
v′v the set of all C0 events with the involved pair (v, v′).

Curves of C2 events. For any C2 event τ = (λ1, λ2), P1(λ1) and P2(λ2) touch
each other. We have two cases: either P2(λ2) is ahead of P1(λ1) (in the sense
that P1(λ1 + ε) overlaps P2(λ2) for arbitrarily small ε > 0) as depicted in
Fig. 2(a), or vice versa. We denote the the set of C2 events corresponding to
the former by γC2

1 and the set of C2 events corresponding to the latter one
by γC2

2 . Note that every C1 event coincides with a C2 event by definition,
and thus all the C1 events are included in γC2

1 ∪ γC2
2 .



18 H.-K. Ahn et al.

Curves of H0 events. Any H0 event τ corresponds to a collinearity of an edge
e and a vertex v, one of which belongs to P0. Let � be the supporting line
of e and assume that � is directed so that the two polygons that each of
v and e belongs to lie on its left side. There are two cases: the vertex v is
ahead of e or behind e, along the directed line �. We denote the set of all
H0 events corresponding to the former by γH0

ve and the set of all H0 events
corresponding to the latter by γH0

ev .

Curves of H1 events. Any H1 event τ = (λ1, λ2) corresponds to a collinearity
of an edge e and a vertex v, each of which belongs mutually to P1 or P2. Let �
be the supporting line of e and assume that � is directed so that both P1(λ1)
and P2(λ2) lie on its left side. Note that � translates as e (and the polygon
containing e) translates. Observe that there are two different translations for
P1 around P0 such that � keeps being tangent to the translate of P1; P1 is
ahead of P0 along the directed line � or vice versa. The analogue also holds
for P2. Thus, τ = (λ1, λ2) falls into one of the four cases. We denote by γH1

ve,11

the set of H1 events (λ1, λ2) defined by (v, e) such that P1(λ1) is ahead of
P0 and P2(λ2) is also ahead of P0. Similarly, define the other three γH1

ve,12,

γH1
ve,21, and γH1

ve,22. Fig. 2(b) shows a H1 event in the set γH1
ve,21.

Curves of H2 events. Any H2 event τ = (λ1, λ2) is associated with a line �
commonly tangent to the three polygons P0, P1(λ1), and P2(λ2). We assume
that � is always directed so that P0, together with the other two, lies on its
left side. We have again four cases as we have for H1 event curves; either
P1(λ1) (or P2(λ2)) is ahead of P0 along � or is behind P0. We divide the set
of H2 events into four subsets as we did for H1 events and denote them by
γH2
11 , γH2

12 , γH2
21 , and γH2

22 , respectively. Fig. 2(c) shows a H2 event in the set
γH2
ve,21.

We let Γ be the family of those nonempty subsets of events defined above.
We show in the following that every γ ∈ Γ forms a monotone curve (or a set of
monotone curves) in K0 with several nice behaviors.

Lemma 3. Any set γ ∈ Γ is monotone in both the λ1-axis and the λ2-axis, and
consists of at most three curves on the configuration space K0. In addition, γ
has following properties according to its type. The asterisks below mean “any.”

– γ = γC0
∗ or γH0

∗ : γ is a line parallel to the λ1-axis or the λ2-axis.

– γ = γC2
∗ : γ is the graph of a function from [0, L1) to [0, L2) that is increasing

and piecewise linear, each of whose breakpoints coincides with a C0 or C1
event.

– γ = γH1
∗ : γ is the graph of a partial function on [0, L1) that is monotone and

piecewise linear, each of whose breakpoints coincides with a C0 event.

– γ = γH2
∗ : γ is the graph of a function from [0, L1) to [0, L2) that is increasing

and piecewise hyperbolic, each of whose breakpoints coincides with a C0 or
H0 event.

Each γ ∈ Γ thus consists of one, two, or three curves unless it is axis-parallel.
As shown in the proof of Lemma 3, the endpoints of γ occur when λ1 ∈ {0, L1}



Bundling Three Convex Polygons to Minimize Area or Perimeter 19

or λ2 ∈ {0, L2}, except the endpoints of H1 event curves that lie on a C2 event
curve. This discontinuity is because the configuration space K0 is indeed periodic;
if we extend P1(λ1) and P2(λ2) for λ1 > L1 and λ2 > L2, then we have P1(λ1 +
L1) = P1(λ1) and P2(λ2 + L2) = P2(λ2), and therefore γ becomes connected.
We thus call each γ ∈ Γ an event curve of type C0, C2, H0, H1, or H2 according
to its type.

3.3 Complexity of Event Curves

We now discuss the complexity of event curves and of their arrangement A(Γ ).

Lemma 4. The family Γ consists of O(n) event curves and the number of C1
events is bounded by O(n). Also, each event curve in Γ consists of either O(n)
line segments or O(n) hyperbolic segments.

We now consider the arrangement A(Γ ) of the event curves Γ .

Lemma 5. The complexity of the arrangement A(Γ ) is O(n3), and each of its
edges is either a line segment or a hyperbolic arc. More specifically, the number
of crossings between any two event curves in Γ is O(n).

Proof. We first show that the number of crossings between any two event curves
in Γ is bounded by O(n), which implies that the combinatorial complexity of the
arrangement A(Γ ) is bounded by O(n3) since Γ consists of O(n) event curves
by Lemma 4. By Lemma 3, any C0 or H0 event curve is axis-parallel and any
γ ∈ Γ is monotone in both axes. Thus, any C0 or H0 event curve intersects any
other event curve at most once.

Consider two event curves γ1, γ2 ∈ Γ of type C2, H1, or H2. Let f1 and f2 be
the functions from [0, L1) to [0, L2) such that γi is the graph of fi for i = 1, 2.
By Lemmas 3 and 4, each fi is monotone and has O(n) breakpoints. And fi
is either linear or hyperbolic on any interval of [0, L1) between two consecutive
breakpoints of fi. This implies that there are at most two values of λ1 in the
interval such that f1(λ1) = f2(λ1). Therefore, there are at most O(n) crossings
between γ1 and γ2. Since there are only O(n) event curves of type C2, H1, or
H2, there are at most O(n2) such combinations of (γ1, γ2). We thus have at most
O(n3) crossings in this case.

Note that the complexity of A(Γ ) can be Ω(n3) by a concrete construction of
input polygons, so the bound of Lemma 5 is shown to be tight. Nonetheless,
we prove a better bound if we focus on the feasible configurations, which imply
no overlap between P1 and P2. We can easily see that the O(n3) complexity of
A(Γ ) is completely due to crossings among H1 event curves. By Lemma 3, any
C0 or H0 curve crosses any other curve at most once. Since there are only six
curves of type C2 and H2, the number of combinations (γ1, γ2) of any two curves
of type C2, H1, or H2 but not both of H1 is O(n), which implies that the total
number of crossings between such combinations of curves is at most O(n2) by
Lemma 5. Fortunately, the number of H1–H1 crossings that are feasible is shown
to be much smaller.



20 H.-K. Ahn et al.

Recall that the two C2 curves divide K0 into two regions, one consisting of all
feasible configurations and the other of all infeasible configurations in K0. We
denote by F ⊂ K0 the former region. Since we want to find an optimal feasible
configuration, we are mostly interested in the feasible region F and how it is
decomposed.

Lemma 6. For any two H1 event curves γ1, γ2 ∈ Γ , the number of crossings
between γ1 and γ2 that lie in F is at most two. Therefore, the arrangement A(Γ )
consists of O(n2) vertices and edges in F .

Proof. Consider two distinct H1 curves γ1, γ2 ∈ Γ , and suppose that γ1∩γ2 	= ∅
and (λ1, λ2) ∈ γ1∩γ2∩F . Without loss of generality, assume that γ1 is defined by
a collinearity of a vertex v of P1 and an edge e of P2, and γ2 is by a vertex v′ and
an edge e′ whichever of P1 and P2 they belong to. Let � be the line supporting
e of P2(λ2) and �′ be the line supporting e′ at this configuration. Then, we have
v ∈ � and v′ ∈ �′. Also, let d be the distance between v and the closer endpoint of
e along �. We then observe that for any crossing in γ1 ∩ γ2 the distance between
v and the closer endpoint of e must be exactly d. This can be seen by simple
geometry: Imagine that P1 moves along � towards e of P2 from infinity, and see
the distance between the line supporting e′ and the vertex v′. There is at most
one instance where e′ and v′ are aligned, and the distance between v and the
closer endpoint of e is exactly d at the moment.

Now, consider the location of P1 and P2 as above. Since (λ1, λ2) ∈ F , they do
not overlap each other. We then have at most two possible position of P0 that
touches both P1 and P2. This means that there are at most two such coordinates
(λ1, λ2), and thus two H1 curves can intersect at most twice in F . Since there
are O(n) H1 curves in Γ , this suffices to show that the number of crossings in
F among all H1 curves is O(n2). From Lemmas 4 and 5, we know that all the
event curves consist of O(n2) line and hyperbolic segments and the number of
crossings between γ1 ∈ Γ and γ2 ∈ Γ is O(n) if γ1 and γ2 are of type C2, H1, or
H2. Since the number of event curves of type C2 and H2 is only six, it suffices
to show that the number of crossing among all H1 curves that lie in F is O(n2).

Fig. 3 shows the arrangement A(Γ ) of the event curves for the three input
polygons depicted in Fig. 1. Although we insist to decompose K0 into cells in
each of which the contacts C(τ) and the bridges H(τ) stay constant, remark
that some cells of A(Γ ) are in fact not the case. For our purpose, however, it
suffices to well decompose the feasible region F , which imply no overlap between
P1 and P2.

Lemma 7. The arrangement A(Γ ) of the event curves decomposes the feasible
region F ⊂ K0 into cells σ such that both C(τ) and H(τ) remain constant over
all τ ∈ σ.

Recall that all configurations in K0 assume P0 to keep contact with both P1 and
P2. Alternating the role of P0 by P1 or P2, we achieve a complete description
of the configuration space K. Letting K1 and K2 be the analogous configuration
space for P1 and P2, respectively, we have K = K0 ∪ K1 ∪ K2.



Bundling Three Convex Polygons to Minimize Area or Perimeter 21

Fig. 3. The arrangement A(Γ ) of the event curves in the configuration space K0:
event curves of type C0 (light blue), H0 (light green), H1 (black), C2 (red), and H2
(purple). Any configuration in the gray region is infeasible, so the feasible region F
is the complement of the gray region. For any configuration τ in the purple region
enclosed by H2 event curves, we have |H(τ )| = 4.

4 Algorithms

In this section, we present an algorithm that computes an optimal feasible con-
figuration that minimizes the area or the perimeter of the convex hull of the three
convex polygons under translation. The arrangement A(Γ ) of the event curves
is indeed sufficient to deal with the area or perimeter function in each feasible
cell. Note that for any feasible configuration τ ∈ F , we have 2 � |H(τ)| � 4.

Lemma 8. Let σ be any cell of A(Γ ) with σ ⊂ F . The area function is hyper-
bolic paraboloidal on σ if |H(τ)| = 3 for τ ∈ σ, or linear otherwise; the perimeter
function is convex with O(1) complexity on σ and on any edge incident to σ.

An outline of our algorithm is as follows. We simply consider every feasible cell σ
of A(Γ ) in a certain order. Lemma 8 implies that the area or the perimeter func-
tion is fully described and can be minimized in constant time. For the purpose,
we perform two phases: Firstly, compute the arrangement A(Γ ) in the feasible
region F only, and secondly traverse all of its cells that are feasible to minimize
the area or the perimeter function restricted in each of those.

By Lemma 8, the second phase is relatively easy once the cells and the edges
of A(Γ ) lying in F are fully specified. At this phase, we visit every cell in F by
crossing over an incident edge and thus moving to a neighboring cell. Then, by
coherence, the description of the objective function restricted in the next cell can
be obtained in constant time. Lemma 8 guarantees that the area or the perimeter
function can be minimized in O(1) time in a cell or on each of its bounding edges.
Hence, the total time complexity of the second phase is bounded by O(n2) time
by Lemma 6.



22 H.-K. Ahn et al.

Computing the arrangement can be easily done in O(n2 logn) time by a typical
plane-sweep algorithm. In the following, we focus on improving the time bound
to O(n2) for the task.

4.1 Computing the Arrangement A(Γ ) in F
In order to compute the arrangementA(Γ ), we first compute all the event curves
in Γ with full description, and then identify all the intersections among them
that lie in F .

Preprocessing. As a preprocessing, we take any two polygons Pi and Pj for 0 �
i < j � 2 and move Pj around Pi keeping a contact to Pi in the counterclockwise
direction. During this motion, we gather all occurrences of vertex-vertex contact
in order and store them into a sorted list Cij with the corresponding pair of
vertices. In addition, we maintain two external common tangents of Pi and Pj

and gather all occurrences at which one of the two tangents supports an edge of
Pi or Pj . We also store them into a sorted list Hij with the corresponding pair
of vertex and edge. Let us make Cij and Hij to be a circular list for later use.
This preprocessing can be handled in O(n) time as done in [6]. Observe that
each member of C01 and C02 describes a C0 event curve in K0, and each of H01

and H02 describes an H0 event curve. We thus find all C0 and H0 event curves
by traversing these lists.

Computing the Event Curves. Let G be the grid on K0 induced by all the C0
and H0 event curves. The other event curves can be obtained by tracing each
across the grid cells of G. Consider the four H2 curves. By Lemma 3, each H2
event curve γ appears to be a hyperbolic segment in each grid cell σ intersected
by itself, and the equation of each segment in σ can be described with help of
the lists Cij and Hij . Its starting point at λ1 = 0 can be found in O(n) time, and
then we trace γ cell by cell. As we walk along γ and move to the next grid cell
σ′, we immediately know the change of the contacts and the bridges so that the
equation of γ in σ′ can be updated in O(1) time. Hence, tracing γ spends time
proportional to the number of grid cells of G that are intersected by γ. Lemma 4
tells us that the number of such grid cells, and thus the cost of tracing an H2
curve is O(n).

The other event curves of different types can be traced in the same fashion,
taking O(n) time for each. While tracing a C2 event curve, we can also specify
all C1 events: this can be done by looking up the list C12 with a pointer that
indicates the current contact between P1 and P2. Tracing an H1 event curve
needs to look up the list H12; in fact, only the members of H12 can determine
an H1 event curve. We hence can compute all the event curves in Γ with their
full description in O(n2) time.

Specifying All Necessary Crossings. We then compute the arrangement A(Γ ) in
F by specifying all necessary crossings among the event curves in Γ .



Bundling Three Convex Polygons to Minimize Area or Perimeter 23

P1

e′

v′

δv′e′

P2

Fig. 4. Illustration to the list Δ

Note that for any two event curves γ1, γ2 ∈ Γ , all the crossings between them
can be computed in O(n) time by Lemmas 3 and 5. For all pairs (γ1, γ2) of event
curves such that γ1 is of type C2 or H2 and γ2 is of type C2, H1, or H2, we are
thus able to specify all the crossings between γ1 and γ2 in O(n2) time, since the
number of such pairs (γ1, γ2) is O(n). What remains is to specify the crossings
among the H1 event curves.

For the last task, we take only feasible portions of every event curve into
account. Let ΓF := {γ∩F | γ ∈ Γ}. Computing ΓF can be done by cutting each
γ ∈ Γ by the C2 curves and discard its infeasible portions. The type of γ′ ∈ ΓF
is inherited from γ ∈ Γ such that γ′ = γ ∩F . Fortunately, this cutting does not
increase the number of curves much, especially, H1 event curves.

Lemma 9. The number of H1 event curves in ΓF is O(n)

Lemma 6 implies that the number of crossings in F between a fixed H1 curve
γ and all the other H1 curves is O(n). In the following, we show that all the
crossings on a fixed γ with other H1 curves can be specified in O(n) time. By
Lemma 9, it suffices to conclude the total O(n2) time.

For the purpose, we need some more observations. Let γ ∈ ΓF be an H1 event
curve defined by a pair (v, e) ∈ H12 of vertex v and edge e of P1 and P2. For any
configuration (λ1, λ2) ∈ γ, P1(λ1) and P2(λ2) have a common external tangent
that supports e. Let g be a function partially defined on [0, L1) whose graph is γ,
and define dγ(λ1) to be the distance between v and the endpoint of e that are the
closer to v in the corresponding translates P1(λ1) and P2(g(λ1)). Observe that dγ
is linear in a grid cell σ of G since P1 and P2 move in a linear way in σ along γ.

On the other hand, we consider the other external common tangent �(λ1)
of P1(λ1) and P2(g(λ1)). When an edge e′ of P1 or P2 lies on �(λ1), we have a
crossing between γ and another H1 event curve γ′ defined by (v′, e′) for the vertex
v′ lying on �(λ1); we let δv′e′ := dγ(λ1) at such a value of λ1. By a geometric
observation, at such a crossing, P1(λ1) and P2(g(λ1)) have two external common
tangents, one supporting e and the other supporting e′; this fixes a unique value
of dγ(λ1) to be δv′e′ . This implies that for any λ1, γ′ crosses γ at (λ1, g(λ1)) if
and only if dγ(λ1) = δv′e′ .

We thus perform the following procedure. (See Fig. 4 for an illustration.) We
compute the value δv′e′ for all (v′, e′) ∈ H12 and store them into a sorted array
Δ with corresponding label (v′, e′). Then, we walk along γ cell by cell to find
all occurrences such that dγ(λ1) = δ for some δ ∈ Δ. This completely specifies



24 H.-K. Ahn et al.

all crossings between γ and all other H1 event curves in ΓF . To compute Δ,
initially make P1 and P2 touch each other, keeping a common tangent going
through v and e, and consider the other common tangent line �. If we move P2

in the direction parallel to e and away from P1, then the tangent line � will rotate
monotonously in one direction. This implies that the order of δv′e′ follows from
the order of (v′, e′) in the list H12. Thus, we can compute Δ in O(n) time.

Let δ1, . . . , δm be the members of Δ in the order. Once we compute Δ, we
walk along γ by increasing λ1 to find all λ1 such that dγ(λ1) = δ holds for some
δ ∈ Δ. Since dγ is linear in each cell σ of G intersected by γ, the task is not
difficult if we maintain a variable a such that δa � dγ(λ1) < δa+1 for the current
value of λ1. Hence, we can find all crossings on γ ∩ σ with the other H1 event
curves in time O(1 + c), where c is the number of the reported crossings in σ. If
we sum up this over all grid cells intersected by γ, we obtain O(n) time bound.

Putting it all together, we can specify all intersections among curves in ΓF in
O(n2) time, which are the vertices of A(ΓF ). We then cut each curve γ ∈ ΓF by
the crossings on γ to obtain the edges of A(ΓF ). As a result, we can build the
underlying graph of the arrangement A(ΓF ), and then the arrangement A(ΓF )
can be built in the same time bound O(n2). We finally conclude our main result.

Theorem 1. Given three convex polygons P0, P1, and P2 having a total of n
vertices, one can find in O(n2) time using O(n2) space an optimal pair (τ1, τ2) of
translation vectors such that the area ‖conv(P0 ∪ τ1P1 ∪ τ2P2)‖ or the perimeter
|conv(P0 ∪ τ1P1 ∪ τ2P2)| is minimized.

References

1. Ahn, H.-K., Cheong, O.: Stacking and bundling two convex polygons. In: Deng, X.,
Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 882–891. Springer, Heidelberg
(2005)

2. Ahn, H.K., Cheong, O.: Aligning two convex figures to minimize area or perimeter.
Algorithmica 62, 464–479 (2012)

3. Alt, H., Hurtado, F.: Packing convex polygons into rectangular boxes. In: Akiyama,
J., Kano, M., Urabe, M. (eds.) JCDCG 2000. LNCS, vol. 2098, pp. 67–80. Springer,
Heidelberg (2001)

4. Daniels, K., Milenkovic, V.: Multiple translational containment, part i: An approx-
imation algorithm. Algorithmica 19, 148–182 (1997)

5. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman and Co., San Francisco (1979)

6. Lee, H., Woo, T.: Determining in linear time the minimum area convex hull of two
polygons. IIE Trans. 20, 338–345 (1988)

7. Milenkovic, V.: Translational polygon containment and minimum enclosure using
linear programming based restriction. In: Proc. 28th Annual ACM Symposium on
Theory of Computation (STOC 1996), pp. 109–118 (1996)

8. Sugihara, K., Sawai, M., Sano, H., Kim, D.S., Kim, D.: Disk packing for the estima-
tion of the size of a wire bundle. Japan J. Industrial and Applied Math. 21, 259–278
(2004)

9. Tang, K., Wang, C., Chen, D.: Minimum area convex packing of two convex poly-
gons. Internat. J. Comput. Geom. Appl. 16, 41–74 (2006)



Smart-Grid Electricity Allocation

via Strip Packing with Slicing�

Soroush Alamdari1, Therese Biedl1, Timothy M. Chan1, Elyot Grant2,
Krishnam Raju Jampani3, Srinivasan Keshav1,

Anna Lubiw1, and Vinayak Pathak1

1 Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada
{s26hosseinialamdari,biedl,tmchan,alubiw,keshav,vpathak}@uwaterloo.ca

2 Massachusetts Institute of Technology, Cambridge, USA
elyot@mit.edu

3 University of Guelph, Guelph, Canada
rjampani@uoguelph.ca

Abstract. One advantage of smart grids is that they can reduce the peak
load by distributing electricity-demands overmultiple short intervals. Find-
ing a schedule that minimizes the peak load corresponds to a variant of a
strip packing problem. Normally, for strip packing problems, a given set
of axis-aligned rectangles must be packed into a fixed-width strip, and
the goal is to minimize the height of the strip. The electricity-allocation
application can be modelled as strip packing with slicing: each rectangle
may be cut vertically into multiple slices and the slices may be packed into
the strip as individual pieces. The stacking constraint forbids solutions in
which a vertical line intersects two slices of the same rectangle.

We give a fully polynomial time approximation scheme for this prob-
lem, as well as a practical polynomial time algorithm that slices each
rectangle at most once and yields a solution of height at most 5/3 times
the optimal height.

1 Introduction

The conventional approach to generating and distributing electricity relies on
sizing infrastructure to support the peak load, when demand for electricity is
highest. However, this peak is rarely reached, so much of the expensive infras-
tructure is idle most of the time. For example, in 2009, 15% of the generation
capacity in Massachusetts was used less than 88 hours per year [7]. Reducing the
infrastructure size is not practical since unsupported demand can cause black-
outs. Therefore, there is considerable benefit to reducing the peak load itself.

Peak load occurs when many consumers use power-hungry appliances simul-
taneously. However, there is often flexibility in scheduling the use of particular
appliances. For example, a water heater requires a certain amount of electricity
to heat the water, but can equally well heat the water in one continuous interval

� This work was done as part of an Algorithms Problem Session at the University of
Waterloo. Research of TB, TC, SK and AL supported by NSERC.

F. Dehne, R. Solis-Oba, and J.-R. Sack (Eds.): WADS 2013, LNCS 8037, pp. 25–36, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



26 S. Alamdari et al.

or in multiple short intervals.1 It is anticipated that future smart grids would
obtain (at each substation) daily “demand schedules” for appliance use from the
consumers in its local area, and then automatically re-schedule appliance use to
minimize peak load [18].

The demand schedule can be modelled as a set of rectangles, one for each
appliance, with power consumption as height, and desired running time as width.
The re-scheduling should cover a given length of time, which corresponds to a
strip of given width. The objective is then to pack slices of the rectangles into
the strip so as to minimize the maximum power consumption, i.e., the maximum
height of the packing. Because appliances cannot be powered at double the
usual power, we have the additional stacking constraint requiring that no vertical
line may intersect two slices from the same rectangle. Slicing with the stacking
constraint is new, but strip packing has been well-studied, as we review in the
following section.

Strip Packing Problems. In the two-dimensional strip packing problem (ab-
breviated 2SP), a set of axis-aligned rectangles of specified dimensions must be
packed, without rotation, into a rectangular strip of fixed width, with the goal
of minimizing the height of the strip. The 2SP problem is very well-studied [14],
and generalizes the bin packing problem, which is equivalent to the case in which
all rectangles have unit height. The current best approximation algorithm for
2SP has an approximation factor of 5/3 + ε for any ε > 0 [9], and was achieved
after a long sequence of successive improvements [1,16,17,19]. This is an abso-
lute performance bound, i.e., the height achieved is at most 5/3 + ε times the
optimal height. Many other authors have proposed algorithms with asymptotic
performance guarantees [4,13,11] where an additive term is allowed.

Motivated by the electricity-allocation problem, we study a variant called
two-dimensional strip packing with slicing (hereafter 2SP-S). In 2SP-S, we are
allowed to cut each rectangle vertically into multiple slices, which may be packed
into the strip as individual rectangles. Formally, the input consists of a number
W and a set of rectangles r1, r2, . . . , rn. Here W is the width of the strip, which
consists of two vertical sides at x = 0 and x = W , and the “base” at y = 0.
Rectangle ri has width wi and height hi; let hmax = maxn

i=1 hi be the maximum
height. A solution to 2SP-S consists of a partition of each rectangle ri into
vertical slices and an assignment of positions to the slices so that the interiors
of the slices are pairwise disjoint. Slices must not be rotated. The height of a
solution, denoted by H , is the minimum y-coordinate above which the strip is
empty. The objective is to find a solution with minimal possible height HOPT.

Related Results: Strip packing with slicing has been studied for a variant in
which the width of each rectangle represents a demand for a number of concur-
rently running processors [2]. However, this problem differs substantially from
2SP-S because the slices must have integer widths and must be horizontally
aligned due to concurrency, and results for it do not carry over.

1 To simplify the modelling we presume that no extra electricity is needed for re-
starting the appliance.



Smart-Grid Electricity Allocation via Strip Packing with Slicing 27

One may observe that if each rectangle is pre-cut into slices of some small
width δ = W/m (where m is a positive integer), then solving the resulting 2SP
problem is precisely equivalent to solving the minimum makespan scheduling
problem on m parallel machines (the Pm||Cmax problem, in three-field notation).
Unfortunately, the known approximation schemes for this problem all have a
running time that is either exponential in m [15] or in 1

ε [10]. In fact, when
the number of machines m is an input to the problem, minimum makespan
scheduling on m parallel machines admits no FPTAS unless P=NP [3], so it
appears hopeless to find an FPTAS for 2SP-S using such an approach.

A second reason that existing results do not apply to electricity-allocation (at
least not as far as we can prove) is that in our application we have the additional
stacking constraint requiring that no vertical line may intersect two slices from
the same rectangle. The version of 2SP-S with the stacking constraint is denoted
by 2SP-SSC. Many of our results in this paper hold for both 2SP-S and 2SP-SSC;
we shall note situations in which there are differences.

Results For 2SP-S and 2SP-SSC. The freedom to slice rectangles can be
highly beneficial. It is easy to construct an example where slicing reduces the
required height by a factor of 2−ε. Slicing also makes a difference in the complex-
ity of the problem. Standard 2SP generalizes bin packing and is thus strongly
NP-complete. Also, a simple reduction from the Partition problem [5] shows that
2SP admits no (3/2− ε)-approximation for any ε > 0 unless P=NP. In contrast,
2SP-S and 2SP-SSC are easily shown to be NP-hard, but not hard to approxi-
mate: we will give a fully polynomial-time approximation scheme (FPTAS).

The FPTAS is based on solving a linear program with exponentially many
constraints, and hence mostly of theoretical interest. We also develop simpler,
more practical algorithms, and also limit the number of times a rectangle may be
sliced (which is of interest in the electricity-allocation problem to avoid start-up
costs for the appliance).2 We give two simple 2-approximation algorithms based
on the well-known First Fit and Shelf paradigms. In fact, these algorithm achieve
height HOPT + hmax, hence they achieve optimal height up to an additive term.
Then, building on these algorithms, and splitting the problem into two halves,
we give two other polynomial-time algorithms that perform no worse than First
Fit and Shelf. One has absolute performance bound 3/2. The other uses at most
one cut per rectangle and has absolute performance bound 5/3.

Our paper is organized as follows. The First Fit and Shelf algorithms are
in Section 2. Section 3 contains the FPTAS, and Section 4 develops practical
algorithms. We conclude in Section 5.

2 Basic Algorithms

This section describes the First Fit and Shelf heuristics for 2SP-S and 2SP-
SSC. Both algorithms achieve an approximation factor of 2, which is noteworthy

2 More precisely, we want to minimze the times a rectangle is interrupted, i.e., one slice
ends and no other slice starts. The number of times a rectangle is sliced is certainly
an upper bound for this.



28 S. Alamdari et al.

given that, for the standard strip packing problem, 2-approximation algorithms
are difficult to obtain [16,19]. Both algorithms in fact achieve a height of HOPT +
hmax, and hence have asymptotically performance bound 1.

First Fit Algorithm. Given a list of rectangles r1, r2, . . . , rn, the First Fit
algorithm processes them in order, repeatedly finds the lowest column in the
current solution where a slice of ri can be placed, and places the widest possible
slice of ri there, breaking ties arbitrarily. Repeat with the remainder of ri, and
continue until all rectangles have been processed. In the case of 2SP-SSC, the
stacking constraint must be respected when placing slices. See Figure 1.

0 1 2 3 4

0

1

2

3

4

5

6

r1

r2

r3

r3

r3 F

H

Fig. 1. An execution of the First Fit algorithm on a 2SP-SSC instance. Note that r3 is
sliced twice, and a smaller height would be achieved without the stacking constraint.

It is not hard to show that after placing each rectangle, the difference between
the maximum height H and the floor F (the maximum height to which the
entire strip is filled) is at most hmax. Since by area-consideration HOPT ≥ F ,
First Fit achieves height at most HOPT + hmax and is a 2-approximation since
hmax ≤ HOPT.

Unfortunately there are instances where First Fit needs nearly twice the op-
timal height. A natural improvement to First Fit is to sort the rectangles by
decreasing heights first; we call this variant First Fit Decreasing. One can easily
construct an instance on which even First Fit Decreasing is a factor of 4

3 away
from the optimum. We do not know whether this is tight, but we can show:

Lemma 1. First Fit Decreasing is a 3
2 -approximation.

Proof. (Sketch) We prove this by defining another algorithm that packs (until a
certain condition is fulfilled) as much as possible into columns that contain only
rectangles of height at most HOPT/2. One can show that the “tall” (in some
sense) columns of this algorithm have the same heights as the “tall” columns
of First Fit Decreasing. One can also show that this other algorithm is a 3

2 -
approximation. Putting the two together shows that First Fit Decreasing is a
3
2 -approximation. 
�



Smart-Grid Electricity Allocation via Strip Packing with Slicing 29

Shelf Algorithm. Given a set of rectangles, the Shelf algorithm works as
follows. Sort the rectangles by decreasing height so that h1 ≥ h2 ≥ . . . ≥ hn.
Pack the rectangles in this order on “shelves” (also called “levels”). The first
shelf is the base of the strip. Place rectangles on the current shelf from left to
right. When we reach a rectangle ri that is too wide for the remaining space,
we pack the widest possible slice of ri. The rest of ri goes back in the list of
remaining rectangles. Then we place a horizontal line across the strip to form a
new shelf at the current maximum height of the packing, and continue on the
new shelf with the remaining rectangles. See Figure 2. Note that the stacking
constraint is automatically satisfied, and each rectangle is sliced at most once.

0 1 2 3 4

0

1

2

3

4

5

6

r3

r1

r2

r2

H

S

Fig. 2. An execution of the Shelf algorithm on the same instance as Figure 1 (but
rectangles have been sorted by height)

The Shelf algorithm is the same as the Next-Fit-Decreasing-Height algorithm
for strip packing [4], except that we fill the entire width of the shelf immediately
because we can slice rectangles. It is known that Next-Fit-Decreasing-Height
achieves height 2 ·HOPT + hmax even for strip packing without slicing [4]. As we
will show now, permitting to slice allows to decrease this bound to HOPT+hmax.

Observe that (with hn+1 := 0) the empty space below height H has area at
most

∑n
i=1(hi−hi+1) ·W . To see this, partition the empty space into rectangles

by cutting it horizontally, and assign each empty rectangle to the rectangle ri
that has a slice below it in the same shelf. Therefore, the empty space is at most
h1 ·W = hmax ·W , which proves that the Shelf algorithm achieves height at most
HOPT + hmax.

3 Approximation Schemes

In this section, we sketch the FPTAS for 2SP-S and 2SP-SSC.

Theorem 1. For any ε > 0, there exist (1 + ε)-approximation algorithms for
2SP-S and 2SP-SSC, assuming input numbers are rationals represented explicitly
in binary. Their run-time is polynomial in the input size and 1

ε .



30 S. Alamdari et al.

The approach uses a linear programming relaxation and is relatively standard
in the literature; in particular it resembles the classic work of Karmarkar and
Karp concerning the bin-packing problem [12]. The linear program we solve is
similar to the one used to obtain fractional strip packings in [13], though our full
algorithm requires different searching and rounding routines since the variables
in our linear program must correspond to vertical configurations rather than
horizontal ones.

In the remainder of this section, we prove Theorem 1 for the case of 2SP-SSC;
we omit the (minor) changes that must be done for 2SP-S.

Step 1: Reducing the general problem to a decision version
Given a guess HGUESS for the optimal height HOPT, the main algorithm that
we describe in steps 2 through 5 is capable of establishing one of the following:

(YES) There is a solution of value at most HGUESS(1 + ε
2 ).

(NO) There is no solution of value less than or equal to HGUESS.

Since the optimal height HOPT is at most
∑n

i=1 hi and at least 1
n

∑n
i=1 hi, it is

possible, via binary search, to establish HOPT to within a multiplicative factor
of 1 + ε using only O(log(nε )) queries to our main algorithm. This then yields a
(1 + ε)-approximation for the problem. The remaining steps describe how such
queries can be answered constructively in polynomial time.

Step 2: Rounding the heights
Our linear programming method will require us to solve an instance of the knap-
sack problem to obtain a solution to the separation problem for the dual lin-
ear program. To render these knapsack instances tractable, we must round the
heights of the rectangles in the input to multiples of an appropriate value h0.

For 2SP-SSC, given a value of HGUESS, we round all of the heights of the input
rectangles down to the nearest multiple of h0 = ε

2nHGUESS. We will subsequently
solve the resulting instance exactly using linear programming, obtaining a solu-
tion S of height H∗. It is immediate that H∗ ≤ HOPT, and thus if H∗ ≥ HGUESS,
then there is no solution of value less than or equal to HGUESS. Conversely, the
stacking constraint implies that each vertical line passes through the interior of
at most n rectangles in S, so after undoing the rounding, the height of S increases
by at most ε

2HGUESS. Thus if H∗ ≤ HGUESS, then there exists a solution to the
original (unrounded) problem of value at most HGUESS(1 + ε

2 ). Consequently,
we can answer (YES) or (NO) depending on whether or not H∗ ≤ HGUESS.

Step 3: Linear programming formulation
After rounding, each rectangle’s height is a multiple of h0, and we attempt to
pack all rectangles into a strip of height at most HGUESS. We define a pattern
to be any subset of {r1, . . . , rn} whose total height is at most HGUESS, and let
P denote the set of all patterns. We observe that if arbitrary vertical slicing
is permitted, then a solution to the strip packing problem can be exhibited by
specifying, for each pattern P ∈ P , the total width of pattern P used in the
arrangement. This idea motivates our formulation.

For each pattern P , we define the variable xP to represent the total width
of pattern P used in a solution. It follows that determining the minimum strip



Smart-Grid Electricity Allocation via Strip Packing with Slicing 31

width required to pack all of the rectangles into a strip of height HGUESS is
equivalent to solving the following linear program:

minimize:
∑
P∈P

xP

subject to:
∑

P∈P|ri∈P

xP ≥ wi for all 1 ≤ i ≤ n

xP ≥ 0 for all P ∈ P

(LP)

It is immediate that upon solving this exactly, we may answer (YES) if and only
if the optimal objective value W ∗ is at most W .

Step 4: Solving the linear program
We provide a polynomial algorithm for finding the optimal objective value W ∗

to our linear program. To do this, we examine the following dual of (LP):

maximize:
n∑

i=1

wiyi

subject to:
∑

i|ri∈P

yi ≤ 1 for all P ∈ P

yi ≥ 0 for all 1 ≤ i ≤ n

(LP*)

Despite this linear program having exponentially many constraints, we can tackle
it using the ellipsoid algorithm. Specifically, since we assumed that the widths of
the rectangles in the input are rational numbers represented explicitly in binary,
we can find the exact optimal objective value of (LP*) in time polynomial in
the input size and 1

ε , provided that we can solve the corresponding separation
problem in time polynomial in the input size and 1

ε .
The separation problem for this linear program asks the following: Given

values of yi, either find a pattern P such that
∑

i|ri∈P yi > 1, or determine
that no such pattern exists. If we regard each rectangle as having height hi

and value yi, then this essentially asks if there is any set of rectangles of total
height less than HGUESS having total value greater than 1, and to return such a
pattern if one exists. This can be answered by solving a knapsack instance having
weight-value pairs (hi, yi) and maximum weight HGUESS. Since each height in
the rounded problem is a multiple of h0 and HGUESS = 2n

ε h0, this can be done

in O(n
2

ε ) time using standard dynamic programming methods.
If one wishes to achieve a more practical running time, it is feasible to replace

the ellipsoid algorithm with the simplex algorithm, using the column generation
technique of Gilmore and Gomory [6].

Step 5: Returning the solution
We observe that it is possible to reconstruct an optimum solution to (LP) while
solving (LP*) using this technique (see [12] for details). Consequently, we can
not only approximate the optimum height of a packing, but can in fact return
a packing having that height. We already argued with Step 2 that this satisfies
the approximation bound. Moreover, since a basic solution to (LP) is obtained,



32 S. Alamdari et al.

there are at most n patterns P for which the primal variables xP are non-zero
in the solution, implying that our algorithm returns a solution in which each
rectangle is sliced at most n− 1 times.

We also observe that in the solution produced by the FPTAS, the number of
cuts per rectangle can be further reduced to a constant that depends only on ε.
More precisely, we can show (details are omitted) that any feasible solution can
be modified so that each rectangle is sliced at most (1/ε)O(1/ε) times, without
increasing the height by more than a factor of 1 + O(ε).

4 Algorithms with Few Slices

Although the approximation scheme from the previous section may be more prac-
tical if the simplex method is used, it is still unsuitable for electricity-allocation
applications both due to its runtime and because it may result in rectangles that
have been sliced numerous times. In fact, we can create instances where some
rectangle must be sliced Ω(n/ logn) times in any optimal solution. For practi-
cal purposes, it would be worth sacrificing some height if in exchange we can
guarantee that rectangles are not sliced too often. We develop such algorithms
now.

The approach is to partition the bin vertically into two parts, slice each rect-
angle once, and pack the two slices in the two parts with Shelf. With a judicious
choice of where to partition and slice, this results in a 5/3-approximation that
slices each rectangle at most three times. (We note that this result is achieved
with Shelf already if hmax ≤ 2

3HOPT.) With some more work we can align rect-
angle slices so that each rectangle is sliced at most once.

The algorithm assumes that the value of HOPT is known (we will find HOPT

with binary search as explained later). It depends on some parameter t >
HOPT/2; using t = 2HOPT/3 gives the best approximation bound.

Step 1. Assuming the rectangles have been sorted in decreasing order of
heights, find the largest k such that w1 + · · · + wk ≤ W . By t > HOPT/2 we
have hk+1 ≤ t. Find the largest j ≤ k such that hj ≥ t. (In case hmax < t,
we define j to be 0; the algorithm becomes identical to Shelf in this case.) Call
r1, . . . , rj the left floor rectangles (of heights ≥ t) and rj+1, . . . , rk the right floor
rectangles (of heights < t). We divide the strip into two parts, where the left
side has width w1 + · · ·+ wj . Define α to be (w1 + · · ·+ wj)/W , so the left side
has width αW and the right side has width (1 − α)W . Note that we may have
α = 0 or α = 1, but α ≤ 1 since in any optimal packing no two floor rectangles
may overlap vertically by t > HOPT/2.

Step 2. We split each rectangle into left and right pieces, subject to the
constraint that the width of the left (resp. right) piece is at most αW (resp. (1−
α)W ). Either piece is allowed to be empty. The splitting procedure is described
below. In the following, shifting a rectangle rightward means enlarging the width
of its right piece by δ and shrinking the width of its left piece by δ for some
amount δ > 0. Shifting a rectangle leftward is similarly defined.



Smart-Grid Electricity Allocation via Strip Packing with Slicing 33

We say that a rectangle is shifted completely rightward if the left piece is
empty or the right piece has width (1−α)W . We say that a rectangle is shifted
completely leftward if the right piece is empty or the left piece has width αW .

All left floor rectangles are shifted completely leftward and all right floor
rectangles are shifted completely rightward. All non-floor rectangles are initially
shifted completely rightward. Let A0

L and A0
R be the total area of all left (resp.

right) pieces after this initialization. We now shift rectangles so that AR (the
area of the current right pieces) equals (1− α)HOPTW , if possible, and do this
using a greedy procedure:

– If A0
R ≤ (1 − α)HOPTW , then stop.

– Otherwise, for each non-floor rectangle from minimum to maximum height
while AR > (1− α)HOPTW , decrease AR by shifting the rectangle leftward
either completely or until AR = (1− α)HOPTW .

Observe that except for one critical rectangle, which we denote by rx, all rectan-
gles are either shifted completely leftward or completely rightward. We also claim
that the above procedure ends with either AR = A0

R or AR = (1 − α)HOPTW ,
whichever is smaller. For assume that all non-floor rectangles have been shifted
completely leftward. The left floor rectangles have total area at least tαW and
the right floor rectangles have total area less than t(1−α)W , so among the floor
rectangles, at least an α-fraction of the area has been assigned to the left. Each
non-floor rectangle (shifted completely leftward) has at least an α-fraction of the
area on the left. Therefore the area to the left is at least α-fraction of the total
area, or AL ≥ αA, which implies AR = A− AL ≤ (1 − α)A ≤ (1 − α)HOPTW .
So if A0

R > (1 − α)HOPTW , then at some point during the shifting process we
reach a moment when AR = (1− α)HOPTW as desired.

Step 3. Pack the left pieces into the left strip and the right pieces into the
right strip, using Shelf on both sides.

Theorem 2. There exists a 5/3-approximation for 2SP-SSC that slices every
rectangle at most three times and runs in time O(n log (nM)), where M is an
upper bound on the integer heights of the rectangles.

Proof. Assume for now that HOPT is known and apply the above algorithm.
This gives a packing with at most 3 cuts per rectangle (one to partition it into
the left and right piece, and one by each application of Shelf), and the only
rectangle that may have 3 cuts is rx.

We first analyze the height of the left strip. The bottommost shelf has height
hmax, and (by definition) contains the left floor rectangles whose total area is at
least tαW . The left pieces of non-floor rectangles hence have total area at most
AL − tαW =: ANFL. Let � be the tallest height of a non-floor rectangle whose
left piece is non-empty (� = 0 if there is no such piece.) By the same analysis
as for Shelf, the shelves for the left pieces of non-floor rectangles have empty
space at most �αW , hence they contribute height at most (ANFL)/(αW ) + � =
AL/αW − t + �.

Claim: � + t ≤ HOPT. Clearly this holds if � = 0, so assume � > 0. To prove
the claim, consider an optimal packing S∗ and assume that its height is less than



34 S. Alamdari et al.

� + t. Then no vertical line intersects two left floor rectangles in S∗, since these
all have height ≥ t and ≥ �. Rearrange S∗ so that all vertical lines containing
left floor rectangles appear at the left end, and call this part the left strip of S∗,
which has width αW . Again, since the height of S∗ is less than � + t, no right
floor rectangles and no non-floor rectangle of height ≥ � can appear in the left
strip of S∗. Thus the right floor rectangles and non-floor rectangles of height ≥ �
all fit in the right strip of S∗. Also, all such non-floor rectangles have width at
most (1−α)W . Finally, for any non-floor rectangle of height < �, at most a slice
of width αW can be in the left strip, so if the rectangle has width > αW , then
its right piece, even when entirely shifted leftward, also fits within the right strip
of S∗.

Recall that the greedy procedure for splitting rectangles processes rectangles
in increasing height. Since we have a left piece of a non-floor rectangle of height
�, all non-floor rectangles of height < � must be completely shifted leftward.
So by the time the procedure reaches the rectangle of height �, the right pieces
consists of the right floor rectangles, the minimum possible right pieces of non-
floor rectangles of height < �, and the entire non-floor rectangles of height ≥ �.
By the above discussion, all these pieces fit into the right strip of S∗, which has
area (1 − α)WHOPT. But then AR < (1 − α)WHOPT already and the greedy
procedure would have stopped and not shifted the rectangle of height � leftward.
This is a contradiction, so the optimal height is at least t + �, which proves the
claim.

Putting all of this together and using hmax ≤ HOPT, the left strip has height
at most

hmax +
AL

αW
− t + � ≤ HOPT +

AL

αW
− t + HOPT − t = 2HOPT − 2t +

AL

αW
.

In the right strip, all rectangles have height at most t. Hence the right strip has
at most t(1− α)W empty area, and its height is at most

AR

(1− α)W
+ t ≤ (1− α)HOPTW

(1− α)W
+ t = HOPT + t ≤ 5

3
HOPT

by choice of t. We have chosen the partition into left and right pieces carefully
to ensure that AL is “just right”. In the first case, AR = (1−α)HOPTW , which
implies that AL ≤ αHOPTW . In this case the left strip has height at most
3HOPT− 2t ≤ 5

3HOPT by choice of t. To prove the bound for the left strip in the
second case where AR = A0

R < (1 − α)HOPTW , we need the following result:

Claim:
A0

L

αW ≤ HOPT. To prove this claim, let R0
L denote the set of left pieces

(including the left floor rectangles r1, . . . , rj) when all non-floor rectangles are
shifted completely rightward. Consider again an optimal solution S∗ (with an
unbounded number of slices) and rearrange the columns in S∗ so that the left
floor rectangles form a left strip of width αW . Then the left side of the strip in
S∗ must contain at least the pieces in R0

L and thus must contain a total area of
at least A0

L. It follows that A0
L ≤ HOPTαW , and hence the claim holds.

With this claim, the left strip has height 2HOPT − 2t +
A0

L

αW ≤ 3HOPT − 2t ≤
5
3HOPT by choice of t, and we have now proved the approximation bound.



Smart-Grid Electricity Allocation via Strip Packing with Slicing 35

Lastly, we remove the assumption that the value of HOPT is given. By re-
placing HOPT with a user-supplied value HGUESS in the algorithm, it is easy to
check that the algorithm has the following behavior: if HGUESS ≥ HOPT, the so-
lution returned has height at most (5/3)HGUESS. Thus, if the solution returned
has height at most (5/3)HGUESS, we can conclude that HOPT ≤ (5/3)HGUESS,
otherwise HOPT > HGUESS.

We can apply a binary search to find an approximation to HOPT. Start with
X = 1

2HS, the height computed by the Shelf algorithm. We know X ≤ HOPT ≤
(5/3)cX with c = 6/5, so this is a (5/3)c-approximation. Now run the above
algorithm with HGUESS =

√
cX , and conclude either that HOPT ≤ (5/3)

√
cX or

HOPT >
√
cX . In either case, we obtain a ((5/3)

√
c)-approximation. Repeating

for O(log(1/ε)) iterations, we then obtain a (5/3 + ε)-approximation. Assuming
that all rectangle heights are integers bounded by M , we can set ε = 1/(4nM),
for example, and a (5/3 + ε)-approximation becomes a 5/3-approximation; the
running time increases by an O(log(nM)) factor only. 
�

We can reduce the number of slices even further by packing them into the shelves
carefully so that pieces become aligned on the shelf, and (in some cases) apply
Steinberg’s algorithm for 2SP [19] on one of the sides. Details are omitted.

Theorem 3. There exists a 5/3-approximation for 2SP-SSC that slices every
rectangle at most once and runs in time O(n log2 n log(nM)/ log logn).

5 Conclusions

Motivated by an application in electricity allocation, this paper explored variants
of the strip packing problem in which rectangles could be sliced vertically as long
as no two slices of the same rectangle are stacked atop each other. We provided
simple 2-approximation algorithms, an FPTAS of mostly theoretical interest,
and practical approximation algorithms that slice rectangles only a few times.

The main remaining open problem is to find practical algorithms with better
approximation factors. For example we conjecture that First Fit Decreasing is
actually a 4/3-approximation. Without the stacking constraint, this follows from
Graham’s 4/3-approximation bounds for multiprocessor scheduling [8], but with
the stacking constraint the best bound we can prove is 3/2. Also, can we find a
3
2 -approximation (or even 4

3 -approximation) that slices every rectangle at most
once? Finally, is there a simple PTAS for strip packing with slicing (with or
without the stacking constraint)?

References

1. Baker, B.S., Coffman, E.G., Rivest, R.L.: Orthogonal packings in two dimensions.
SIAM Journal on Computing 9(4), 846–855 (1980)

2. Bougeret, M., Dutot, P.F., Jansen, K., Otte, C., Trystram, D.: Approximating the
non-contiguous multiple organization packing problem. In: Calude, C.S., Sassone,
V. (eds.) TCS 2010. IFIP AICT, vol. 323, pp. 316–327. Springer, Heidelberg (2010)



36 S. Alamdari et al.

3. Chen, B., Potts, C.N., Woeginger, G.J.: A review of machine scheduling: complex-
ity, algorithms and approximability. In: Handbook of Combinatorial Optimization,
vol. 3, pp. 21–169. Kluwer Acad. Publ., Boston (1998)

4. Coffman Jr., E.G., Garey, M.R., Johnson, D.S., Tarjan, R.E.: Performance bounds
for level-oriented two-dimensional packing algorithms. SIAM J. Comput. 9(4), 808–
826 (1980)

5. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman & Co. Ltd. (1979)

6. Gilmore, P.C., Gomory, R.E.: A linear programming approach to the cutting-stock
problem. Operations Res. 9, 849–859 (1961)

7. Giudice, P.: Our energy future and smart grid communications. Testimony before
the FCC Field Hearing on Energy and Environment (2009),
http://www.broadband.gov/fieldevents/fh_energy_environment/giudice.pdf

8. Graham, R.: Bounds on multiprocessing timing anomalies. SIAM J. Appl.
Math. 17, 416–429 (1969)

9. Harren, R., Jansen, K., Prädel, L., van Stee, R.: A (5/3 + ε)-approximation for
strip packing. In: Dehne, F., Iacono, J., Sack, J.-R. (eds.) WADS 2011. LNCS,
vol. 6844, pp. 475–487. Springer, Heidelberg (2011)

10. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for schedul-
ing problems: theoretical and practical results. J. Assoc. Comput. Mach. 34(1),
144–162 (1987)

11. Jansen, K., Solis-Oba, R.: New approximability results for 2-dimensional packing
problems. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp.
103–114. Springer, Heidelberg (2007)

12. Karmarkar, N., Karp, R.M.: An efficient approximation scheme for the one-
dimensional bin-packing problem. In: Symposium on Foundations of Computer
Science, pp. 312–320. IEEE (1982)

13. Kenyon, C., Rémila, E.: A near-optimal solution to a two-dimensional cutting stock
problem. Math. Oper. Res. 25(4), 645–656 (2000)

14. Lodi, A., Martello, S., Monaci, M.: Two-dimensional packing problems: A survey.
European Journal of Operational Research 141(2), 241–252 (2002)

15. Sahni, S.K.: Algorithms for scheduling independent tasks. J. Assoc. Comput.
Mach. 23(1), 116–127 (1976)

16. Schiermeyer, I.: Reverse-Fit: A 2-optimal algorithm for packing rectangles. In: van
Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 290–299. Springer, Heidelberg
(1994)

17. Sleator, D.D.: A 2.5 times optimal algorithm for packing in two dimensions. Infor-
mation Processing Letters 10(1), 37–40 (1980)

18. Srikantha, P., Rosenberg, C., Keshav, S.: An analysis of peak demand reductions
due to elasticity of omestic appliances. In: Proc. Energy-Efficient Computing and
Networking (e-Energy 2012), p. 28. ACM (2012)

19. Steinberg, A.: A strip-packing algorithm with absolute performance bound 2. SIAM
Journal on Computing 26(2), 401–409 (1997)

http://www.broadband.gov/fieldevents/fh_energy_environment/giudice.pdf


On (Dynamic) Range Minimum Queries

in External Memory

Lars Arge1, Johannes Fischer2, Peter Sanders2, and Nodari Sitchinava2

1 MADALGO�, Aarhus University, Aarhus, Denmark
large@madalgo.au.dk

2 Karlsruhe Institute of Technology, Karlsruhe, Germany
{johannes.fischer,sanders}@kit.edu, nodari@ira.uka.de

Abstract. We study the one-dimensional range minimum query (RMQ)
problem in the external memory model. We provide the first space-
optimal solution to the batched static version of the problem. On an
instance with N elements and Q queries, our solution takes Θ(sort(N +

Q)) = Θ
(

N+Q
B

logM/B
N+Q

B

)
I/O complexity and O(N + Q) space,

where M is the size of the main memory and B is the block size. This
is a factor of O(logM/B N) improvement in space complexity over the
previous solutions. We also show that an instance of the batched dy-
namic RMQ problem with N updates and Q queries can be solved in

O
(

N+Q
B

log2
M/B

N+Q
B

)
I/O complexity and O(N +Q) space.

1 Introduction

Static one-dimensional range minimum queries (RMQs) are defined as follows:
Given an array A[1, N ] of N elements from a totally ordered universe U , and a
query in the form RangeMin(i, j), return the index of the smallest element in
the subarray A[i, j].

RMQs have a wide range of applications in many areas of data structures
and algorithms, for example in data compression, text indexing, and graph al-
gorithms. For more applications, we refer the interested reader to a recent arti-
cle [8], which also contains optimal solutions for one-dimensional static RMQs
in the RAM model. Research on RMQs remains a hot topic, see for example a
recent invited talk by Raman [12].

In this paper we consider the external memory (EM) model [1], where perfor-
mance is measured by the number of block transfers (I/Os) of B words each, and
where the internal memory size is limited to M words. In this setting, in case
of the online RMQ problem (meaning that each query must be answered imme-
diately as it arrives) all previous O(1) time, linear space static internal memory
solutions [8] are also optimal in the EM model, since each query must spend at
least one I/O to report the output. However, if we consider the offline version
of the problem (also often referred to as batched), where the initial array and all

� MADALGO is a center of the Danish National Research Foundation.

F. Dehne, R. Solis-Oba, and J.-R. Sack (Eds.): WADS 2013, LNCS 8037, pp. 37–48, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



38 L. Arge et al.

queries are specified in advance and queries can be answered in arbitrary order,
we can achieve better amortized bounds. In particular, Chiang et al. [7] showed
that Q queries in the static batched range minima problem can been answered
with O((n + q) logm(n + q)) = O(sort(N + Q)) I/Os. (Following the common
notation in the EM literature, we define n = N/B, q = Q/B and m = M/B.)
Their solution takes O(Q + N logm N) space. Batched range minima arise in
suffix sorting [11] (if one also wants to find longest common prefixes) and other
stringology problems, for example in string mining tasks [9].

We also consider a dynamic scenario, where N updates (insertions and dele-
tion of elements) to the underlying array are arbitrarily interspersed with the
Q queries. In this setting, it is impossible to achieve constant time per opera-
tion [10]: we can sort N items by first inserting them into the array, and then
repeatedly querying for and removing the minimum of the entire array. This
shows that online dynamic RMQs are at least as hard as priority queues.

1.1 Our Contributions

We formulate the dynamic batched range minima problem as follows: Given a
batch of N updates (Insert/Delete operations) affecting a dynamically chang-
ing “structure” over a universe U and Q RangeMin operations, report answers
to all RangeMin queries. Answers to queries may arrive in arbitrary order, but
must be correct based on the state of the “structure” at the time of the query.

Because there is no definite concept on what the dynamization of a static
array should be, in Section 2 we explore three possible versions of the underlying
“structure” in the above problem definition: a linked list, a dynamic array and
a point set. In section 4.2 we present a solution to the third version, which, at a
first glance, seems to be the simplest to reason about in the EM model. However,
in Section 5 we show that we can reduce one version to another in O(sort(N+Q))
I/Os. We conjecture that Ω(sort(N + Q)) I/Os is the lower bound even for the
static batched range minima problem, i.e., that our reductions are tight and that
the three versions are equivalent.

In addition, in Section 4.1 we improve the solution of Chiang et al. [7] and
present the first linear space solution to the static batched RMQ problem. Our
solution also implies a linear space parallel I/O-efficient solution to the RMQ
problem in the parallel external memory (PEM) model [3].

2 Different Scenarios for Dynamic RMQ

In general, there are different ways to think about how the Insert/Delete

operations affect the array, and what the answers to RangeMin queries should
be. This section is meant to explain their differences. See also Fig. 1.

Dynamic Array Version. This version most closely resembles the static ver-
sion: we identify elements by their rank (number of elements, including itself, to
the left) in the array at the time of the operation. Hence, although the elements
are stored in a dynamic data structure, we can treat them as if they were stored
in an array, and consequently denote them by A[i].



On (Dynamic) Range Minimum Queries in External Memory 39

7,5,9,3,8,2
1 2 3 4 5 6

RangeMin(2,5)

⇓Delete(3)

7,5,3,8,2
RangeMin(2,5)

1 2 3 4 5

(a) Dynamic ar-
ray.

G (2)E (8)D (3)C (9)B (5)

Delete(C)

RangeMin(B,E)

⇓
A (7) G (2)E (8)D (3)B (5)

RangeMin(B,E)

A (7)

(b) Linked list (with priorities in parentheses).

x

y

RangeMin(2,6)

x

y

RangeMin(2,6)

⇒
Delete(3,9)

(c) Point grid.

Fig. 1. Different versions of dynamic range minimum queries. Range Minima are shown
in bold.

Insert(i, x): insert a new element with value x ∈ U right after position i into
A; all positions originally after i will be shifted right by one element: A ←
A[1, i] · [x] · A[i + 1, N ].

Delete(i): delete the element at position i from A; all positions originally after
i will be shifted left by one element: A← A[1, i− 1] · A[i + 1, N ].

RangeMin(i, j): return (the position of) the minimum in A[i, j], as in the static
setting.

Though closely matching the static scenario, this version actually turns out to be
most difficult to deal with: the intuitive reason for this is that the indices specify
ranks in a dynamically changing array, and hence first need to be unranked
(selected) before knowing which object they affect. This issue will be addressed
in Sect. 5.2.

Linked List Version. Elements are part of a doubly linked list, and are identi-
fied by handles (pointers to the elements). Each list element v has an associated
priority (value) pv ∈ U .

Insert(v, u, pv): Insert a new element v with priority pv ∈ U right after element
u: if the list A was originally A1 � u → w � A2, it now becomes A1 �
u→ v → w � A2.

Delete(v): Delete the element v from A: if the list A was originally A1 � u→
v → w � A2, it now becomes A1 � v → w � A2.



40 L. Arge et al.

A (7) G (2)E (8)D (3)B (5)

RangeMin(B,E)

G

D

B G2

3

2

5

=RangeMin(2,4)

Fig. 2. Data structure to support dynamic RMQs in internal memory. Internal nodes
store pointers (depicted within the nodes) to an element below them with minimum
priority. The path tracked by the query RangeMin(B,E) is shown in bold. To the
right of each internal node v is the number of leaves in the subtree rooted at v, needed
for the dynamic array version (e.g., query RangeMin(2, 4)).

RangeMin(u, v): return (a pointer to the element with) the minimum priority
among all elements that are currently between u and v (both inclusively).

Geometric Version. Elements are pairs of the form (x, y), and we think of
them as being points on the plane. We denote the set of all points currently
stored as S.

Insert(x, y): Insert a new point (x, y) into S.
Delete(x, y): Delete the point (x, y) from S.
RangeMin(x1, x2): return the point (x, y) such that x1 ≤ x ≤ x2, and y is

minimum among all those points (or return only the y-value of that point).

3 Simple Dynamic Internal Memory Algorithms

As a warmup, in this section we present a fully dynamic data structure for
RMQs in the internal memory (RAM/comparison) models. We show it primarily
because it forms the basis of all our EM data structures. Note that distinguishing
between offline and online queries is irrelevant in internal memory.

Linked List Version. We maintain a balanced binary tree over the linked list.
The leaves of the tree store the elements of the linked list, and internal nodes
correspond to ranges of consecutive elements of the list. Each internal node v
stores a pointer to a leaf μ in the subtree rooted at v with minimum priority; we
denote that pointer by μv. At any time, the size of the data structure is linear
with the number of nodes present in the list. See also Fig. 2.

To perform Insert or Delete operations, we go directly to the node specified
by the operation, and traverse the path up to the root, updating the values μx



On (Dynamic) Range Minimum Queries in External Memory 41

for each node x on the path bottom up. To perform a query RangeMin(u, v),
we traverse the two paths from u (resp. v) to the root until they meet. From
there, we go back down to u (resp. v) and report the leaf μx with the smallest
priority among those nodes x hanging off to the right (resp. left) of those paths.

The time for each operation is O(logN), where N is the number of elements
in the linked list at the time of the operation.

Dynamic Array Version. The difference to the list version is that the queries
do not specify pointers to the leaves of the tree, but rather ranks in the linked
list. So the elements need to be first unranked in the list, which can be achieved
by a top-down search in the tree. To support this search, we augment each
node v with the size of the subtree rooted at v. Then a top-down traversal
easily locates an element in O(logN) time given its rank. Having identified
the elements, queries are processed exactly as in the linked list version. If the
RangeMin query asks for the position of the minimum, we finally have to rank
the minimum element by a bottom-up traversal. The subtree sizes are also easily
updated during insertions/deletions and when doing rebalancing operations.

Geometric Version. We maintain a balanced search tree over the x coordinates
of the elements in S. In addition to storing minimum y-values, each internal node
stores the largest x-coordinate of an element in its left subtree. Then we locate
the elements as in the dynamic array version (by finding predecessors of the
x-coordinates), and answer queries as in the linked list version.

4 External Memory Solutions to the Geometric Version

In this section we present a solution to the geometric version of the RMQ prob-
lem. We start with a data structure for the static case, as it will form the basis
of our dynamic solution.

4.1 Batched Static RMQ

In this section we present a solution to the static RMQ problem that uses only
linear space but still incurs only O(sort(N)) I/O complexity.

We sort the set S of N points by the x-coordinates and build a fully balanced
k-ary search tree T with Θ(N/M) leaves on top of them. Each leaf of T is
associated with a contiguous x-range of Θ(M) elements. We set k = Θ(m),
thus, the height of the tree is Θ(logk(N/M)) = Θ(logm(N/M)). Each internal
node of the tree is associated with the range that is the union of the ranges of
its children. Each node v of the tree storesMv – a set of k minima of the ranges
associated with the k children of v. (In contrast, the solution of Chiang et al. [7]
stores prefix minima for every element of the child subtrees.) We assume thatMv

also stores the relevant output information, e.g. the index of the corresponding
element within the array. There are a total of O( N

kM ) internal nodes each storing
Θ(k) elements. Thus, the size of the tree is O(N).

We populate the sets Mv bottom up. Each entry Mv[i] at the parent v of
the leaf nodes is set to the minimum of the elements stored at each leaf wi. The



42 L. Arge et al.

entries at each remaining internal node v are constructed by scanning the entries
Mw of the children nodes w and computing their minima. Thus, the tree T can
be built in O(logm(N/M)) rounds by scanning each level of O(N) elements for
a total of O(sort(N)) I/O complexity.

We process the queries in rounds, in each round processing all queries on a
single level (starting with the root level) and propagating them down to the next
level. For each query at node v, if the range of the query fully falls within the
range of some child w of v, we associate the query with w for further processing
and continue with the next query. If the endpoints of the query fall within
ranges of two different children wl and wr , we can compute the value of the range
minima query for the portion of the query that spans the children wl+1, . . . , wr−1

by computing the minimum among the subset of values Mv and any partial
answer stored with the query up to this point. We save this value with the query
as a tentative answer and associate the query with the two children wl and wr

containing the endpoints of the query for further processing. At the leaf nodes,
we load the leaf of size Θ(M) into internal memory and answer the query in
internal memory. Once all nodes of the tree are processed, for each query we
might have up to two potential answers, each stored at the leaves containing
the two endpoints of the query. The final answer is the minimum value of the
two copies and can be found I/O-efficiently as follows. We sort the answers
by the query identifiers (e.g., lexicographically by the left and right indices of
the ranges). This process places the two copies of each query in contiguous
memory and we can compute the minimum among all pairs of potential answers
by scanning the sorted list.

Let Q be the total number of queries. Each query is associated with at most
two nodes of the tree. And since we process all queries through each level, we
use only O(Q) space for the queries. Together with O(N) space for the data
structure, we use a total of O(N + Q) space. The I/O complexity is O((n +
q) logm n): there are O(logm(N/M)) internal levels of the tree and at each level
of the tree we scan the set of queries (and the internal structures of the tree, which
are at most O(N/M)). At the leaves we load each leaf into internal memory once,
thus, spending O(n) I/Os and scan the set of queries. Finally, the sorting step
takes O(sort(Q)) I/Os. Thus, the total I/O complexity is bounded by O(sort(Q+
N)).

Parallel Extensions in the PEM Model. The algorithm of Chiang et al. [7] has
been used by Arge et al. [4] to develop a parallel solution to the static batched
RMQ problem in the parallel external memory (PEM) model [3]. Our new linear
space EM solution immediately leads to a linear space PEM solution.

4.2 Batched Dynamic RMQ

Arge et al. [5] present a framework for solving dynamic problems in the external
memory model for the so-called external decomposable batched problems. Let us
review a few definitions from [5]. (Since the RMQ problem has constant output
size per query, we omit the parts relevant for the output-sensitive problems).



On (Dynamic) Range Minimum Queries in External Memory 43

Definition 1. [5] Let P be a searching problem and let P(x, V ) denote the
answer to P with respect to a set of objects V and a query object x. P is called
external decomposable, if for any partition A ∪ B of the set V and for every
query x, P(x, V ) can be computed in O (1) additional I/Os given P(x,A) and
P(x,B) in appropriate form.

Definition 2. [5] Let P be an external decomposable batched searching problem.
Consider the problem PC where a color chosen from a set C is associated with
each query x, and where a set of colors Cv is associated with each object v ∈ V .
Only objects where color(x) ∈ Cv are considered when answering x. Problem P
is called (I(N,K), S(N,K)) m1/c-colorable if the following two conditions hold:

1. For all colorings where |C| = Θ(
√
m1/c) and where the number of different

color sets Cv is O(m1/c), for some constant c ≥ 1, PC can be solved in
O(I(N,K))) I/O operations and O(S(N,K)) space after an initial sorting
step, and

2. If (V1, Q1) and (V2, Q2) are two valid instances of P then (V1 ∪V2, Q1 ∪Q2)
is also a valid instance.

Lemma 1. The static range minima problem is ((n + q) logm(n + q), N + Q)
colorable.

Proof. Obviously, the RMQ problem is external decomposable by Definition 1.
The solution to static RMQ is similar to the solution presented in Section 4.1.
We build a full balanced k = Θ(

√
m)-ary tree T on the elements ordered by the

x-coordinate and each leaf node containing Θ(M) elements. Thus, the height
of the tree is still O(logk(N/M)) = O(logm(N/M)). At each internal node v,
instead of storing k minima (one for each subtree rooted at the k children of v),
we store |C| = Θ(

√
m) sets of such k minima: one set for each color.

We populate these sets bottom up. To construct the sets of minima at the
parent node v of the leaves, we load Θ(M) elements of each leaf into internal
memory and construct the set of the |C| minima for that leaf, one leaf at a time.
We construct the sets of minima for the remaining internal nodes by computing
the minima for each color from the ones stored at the children nodes bottom up.

We process the queries as before, top-down level by level, except for each
query we use the minima among the ones with the same color as the query.

There are a total of O(N/M) leaves in the tree, and, consequently, O( N
kM )

internal nodes, each storing k|C| minima. Thus, the total space used by the
minima is O(N |C|/M). Each node can be at most O(m) in size to perform
the construction of the tree and processing of the queries I/O-efficiently, i.e.,
k|C| = O(m). Thus, if we set k = |C| =

√
m, the tree uses linear space and each

node stores O(m) items. 
�
Theorem 1. The batched dynamic range minima problem can be solved in
O((n + q) log2

m(n + q)) I/Os and O(N + Q) space.

Proof. Arge et al. [5] proved that the batched dynamic version of a static problem
P that is (I(N,Q), S(N,Q)) colorable, can be solved in O(I(N,Q) · logm(n+ q))
I/Os using O(S(N,Q)) space. Combined with Lemma 1, the proof follows. 
�



44 L. Arge et al.

5 Reductions between Dynamic Array, Linked List, and
Geometric Versions in the EM Model

In this section we reduce the linked list version of the problem to the geometric
version, and the dynamic array version to the linked list version. All the reduc-
tions take sorting complexity in the EM model, which is less than the complexity
of our solution to the geometric version (Section 4). This implies that Theorem 1
also applies to the linked list and dynamic array versions of the problem.

In addition, we show that the geometric version can in turn easily be reduced
to the dynamic array version. This would show the equivalence of the three
versions if there were a sorting lower bound to any of the versions. However, the
sorting lower bound mentioned in the introduction only applies to the online
dynamic case, but not to the batched case.

5.1 Linked List to Geometric Reduction

We show how to transform a sequence of N+Q Insert(v, u, pv), Delete(v), and
RangeMin(u, v) linked list operations into a sequence of N + Q Insert(x, y),
Delete(x, y), RangeMin(x1, x2) geometric operations, by mapping each linked
list node v to a point (xv, yv) on a plane.

For each linked list node v, we set yv = pv by scanning the Insert(v, u, pv)
operations. Finding the xv’s is harder, as described next.

The Insert and Delete operations in the linked list define the following
partially persistent linked list (see Fig. 3a for an illustration). The structure is
a DAG G, initially consisting of a dummy node ⊥, representing an artificial list
head. Insert(v, u) adds the edges u→ v and v → w, where w is the most recent
successor of v in the structure. Likewise, Delete(v) creates the edge u → w,
where u and w are the predecessor and successor of v, respectively, at the time
of the operation.

To compute the values xv, we embed G in one-dimensional space (a line)
according to a topological ordering of G. That is, we set xv equal to the position
of the node v in a topological ordering of G. Note that in such an embedding
any range [xu, xv] includes the nodes of all versions of the linked lists u � v,
and that every node of a linked list u � v is contained within the range [xu, xv].
Therefore, xv is the correct assignment of the x coordinate to node v.

As G is planar, we could compute its topological order in O(sort(N)) I/O
complexity [6]. However, we do not know how to construct G I/O-efficiently.
Instead, we consider the following subgraph T of G, which will be enough for our
purposes.

For each Insert(v, u, pv) operation we create an edge (u, v) annotated with
the timestamp of the operation. Graph T is defined by the adjacency list rep-
resentation with an ordered set of neighbors for each node u by sorting the
generated edges (u, v) lexicographically, primarily by the first node u and secon-
darily by the edges’ timestamps in decreasing order. The following lemma shows
that we can use T to compute a topological order of G.



On (Dynamic) Range Minimum Queries in External Memory 45

Insert(C, ⊥, 9)

Insert(F, C, 4)

Insert(A, ⊥, 7)

Insert(G, F, 2)

Delete(F)

Insert(E, C, 8)

Insert(B, A, 5)

A (7)

C (9)

E (8)

B (5)

Insert(D, C, 3)D (3)

Delete(C)

⊥ (∞)

ti
m

e

F (4)

G (2)

(a) Operations and corresponding DAG G.

⊥

CA

B

G

D E F

0

1

2

3

654

7

(b) Ordered Tree.

Fig. 3. Reduction from linked list to geometry version

Lemma 2. Graph T defines a tree rooted at ⊥. Moreover, T contains all nodes
of G, and the preorder traversal of T defines a valid topological order on G.

Proof. Imagine the DAG G embedded on a plane, such that the y-coordinate of
a node’s embedding equals to the timestamp of the insertion operation. Since
an Insert(v, u) operation creates a node v below all other nodes, Insert(v, u)
creates a downward pointing edge (u, v) and an upward pointing edge (v, w). We
draw each edge (u,w) inserted due to Delete(v) operation as a zig-zag: first
pointing downward then upward, with the kink at the y-coordinate equal to the
timestamp of the Delete operation. We draw G such that node v corresponding
to Insert(v, u) and the kinks in edges corresponding to Delete(v) at time t
are drawn to the left of all siblings of v up to time t. Then all edges (u, vi) for
node u (in left to right order) point to nodes vi with decreasing timestamps.
The version of the list at time t is then defined by the traversal of G starting
at node ⊥ and at each node following the leftmost edge that does not cross the
horizontal line y = t.

Graph T consists of all nodes of G and only the downward pointing edges due
to insertions, i.e., it is G with the zig-zag and “up-edges” removed. Thus, it is a
tree. The preorder traversal of T implies a valid topological order of G for the
following two reasons: (1) The zig-zag edges introduced by deletions do not affect
the topological ordering of G. This is simply because adding an edge u→ w upon
a deletion already implies the existence of the path u → v → w, and because
there cannot occur a subsequent Insert(·, v) operation after v was deleted. (2)
The “up-edges” created by Insert(v, u, pv) always point to the elements inserted
earlier, i.e. to the nodes in the subtrees rooted at siblings of v that appeared
before v. Since v appears to the left of those siblings, the preorder traversal of
the tree places v before any node it might point to. 
�

The preorder traversal of T can be accomplished I/O-efficiently by building an
Euler tour on T and performing list ranking with the appropriate weights in
O(sort(N)) I/Os [7].



46 L. Arge et al.

Thus, we successfully mapped the linked list nodes to points on the plane.
In other words, we computed the mapping v → (x, y) for every node in the
linked list. We use these mappings to replace Insert(v, u, pv), Delete(v) and
RangeMin(u, v) with the corresponding Insert(xv, yv), Delete(xv, yv), and
RangeMin(x1, x2). The replacement can be performed I/O-efficiently, by sort-
ing the operations and the mapping by the node names and simultaneously
scanning the operations and the mapping, generating the geometric operations.

Given the answers to the geometric queries (namely x-coordinates of the an-
swers), we can map them back to the linked list nodes similarly by sorting the
answers and the mapping by the x-coordinates.

5.2 Dynamic Array to Linked List Reduction

In this section we show how to map each index and the corresponding timestamp
to a node identifier in the linked list.

We will use the buffer tree technique of Arge [2] to perform this conversion.
The buffer tree is an (a, b)-tree with branching parameters a, b ∈ Θ(m) and
each leaf of size Θ(B). I.e., buffer tree is a balanced m-ary search tree of depth
O(logm(n+q)). In addition, each internal node is augmented with a buffer of size
Θ(M). All updates and queries are simply inserted into the buffer of the root,
annotated with the timestamp of the operation. When a node’s buffer is full, the
buffer is emptied by loading its elements into the internal memory, processing
the elements and pushing them to the buffers of the children nodes. If this causes
some child node’s buffer to become full, it is processed and emptied recursively.
Rebalancing of the tree is performed in a bottom-up way, as in an ordinary
(a, b)-tree.

In our case, we use the buffer tree to represent the elements of the underlying
dynamic array as a linked list. Each leaf stores Θ(B) consecutive alive elements
of the linked list, i.e., elements that haven’t been deleted yet. Each index (in
the dynamic array) is given a name that serves as an identifier in the linked
list. Those names are stored at the leaves of the buffer tree until the element is
deleted: when an Insert operation reaches a leaf, we take the next free name
from a pool of names and associate it with the element.

The goal of the conversion is that for each of the operations Insert(i, x),
Delete(i), and RangeMin(i, j) we identify the name of the element i (and
also j in the case of RMQs) at the current time. To this end, every internal node
v with children w1, . . . , wm stores a list x1, . . . , xm of m numbers such that xi

is the number of alive elements in the subtree rooted at wi, i.e., the difference
between the number of Insert and Delete operations that passed wi. Note that
xi is not the number of elements currently stored in the leaves of the subtree
rooted at wi, because there could still be some inserts and/or deletes waiting in
the buffers between wi and the leaves of the subtree rooted at wi.

1

Hence, during the buffer emptying process, we can route the operations to the
correct children when emptying a buffer: at the root v with children w1, . . . , wm

1 However, the tree balancing is still performed based on the actual number of elements
stored in the leaves.



On (Dynamic) Range Minimum Queries in External Memory 47

and routing elements x1, . . . , xm, we process the operations in the buffer in the
order of increasing timestamps, and route an operation referring to index i to
the child wj such that xj−1 < i < xj . Before passing the operation to the buffer
of wj , we update it to refer to the array index i −

∑
k<j xk; by maintaining

prefix sums we can keep track of these subtree ranks easily. Note that we have
to update the routing elements xi immediately when processing an update oper-
ation (i.e., increasing/decreasing xi by one when handling an insertion/deletion,
respectively), such that future operations get routed to the correct element.

This way, all Insert and Delete operation reach the leaf where the element
they are referring to is stored. There, they are scanned by increasing timestamp,
thereby identifying the name of the element they are referring to in the linked list.
Corresponding operations in the linked list version are subsequently generated
(together with their original timestamps), and the insertion or deletion is actually
applied on the linked list stored at the leaf.

The RangeMin queries are handled similarly, with only one difference: for a
query RangeMin(i, j) at time t, we create two tuples (i, t) and (j, t) and insert
these tuples at the root. As before, those tuples will be routed to a leaf (using the
first components of the tuples for the search), where they will be associated with
a name. A final sort by the second component of the tuples (time) will bring the
query endpoints back to each other; they are then translated into corresponding
queries in the linked list.

A standard analysis on buffer trees concludes that in O(sort(N)) I/Os we
create linked list operations whose answers correspond to the dynamic array
queries. It remains to map the answers (elements in a linked list) back to the
dynamic array version (indices in the array). We accomplish this by processing
all insertions, deletions and the answers to the queries using a buffer tree again.
However, this time we use the buffer tree in its “native” setting: from the solution
to the geometric version we know the x-coordinates of all elements; therefore, we
can use x-coordinates as the routing elements. As before, each node stores the
number of alive elements in each of its subtrees, and these numbers are updated
immediately upon handling an operation waiting in the node’s buffer. If a query
answer (a linked list element) is routed to child wj of v, we need to count the sum
of alive elements in v’s children to the left of wj and propagate this information
down with the query. Finally, when a query answer reaches a leaf of the buffer
tree, we count its relative rank within the Θ(B) elements currently stored at the
leaf; this results in the final rank of the query answer.

5.3 Geometric to Dynamic Array Reduction

To convert a batch of operation from the geometric setting to the dynamic
array setting, we use the ranking mechanism explained at the end of Section 5.2
(using buffer trees) to determine each point’s rank. We also store the original
x-coordinates (of the geometric setting) along with the new batch of operations.



48 L. Arge et al.

6 Conclusions and Open Questions

We addressed the problem of static and dynamic batched range minimum queries
in external memory and presented several algorithms for solving the problem.
Since the sorting lower bound only applies to the online dynamic case, and not
to batched queries, the following open questions for future research immediately
come to mind: (i) what is the optimal I/O complexity of static batched range
minima? We conjecture that it is the sorting bound. (ii) Likewise, what is the
optimal I/O complexity of the dynamic batched version of the problem?

Other open questions concern dynamic solutions in more advanced models,
like the cache oblivious model or the parallel external memory (PEM) model.
The difficulty in addressing the dynamic setting in parallel lies in the seemingly
sequential relationship between past updates and future queries.

References

1. Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related
problems. Communications of the ACM 31(9), 1116–1127 (1988)

2. Arge, L.: The buffer tree: A technique for designing batched external data struc-
tures. Algorithmica 37(1), 1–24 (2003)

3. Arge, L., Goodrich, M.T., Nelson, M.J., Sitchinava, N.: Fundamental parallel al-
gorithms for private-cache chip multiprocessors. In: SPAA, pp. 197–206 (2008)

4. Arge, L., Goodrich, M.T., Sitchinava, N.: Parallel external memory graph algo-
rithms. In: IPDPS, pp. 1–11 (2010)

5. Arge, L., Procopiuc, O., Ramaswamy, S., Suel, T., Vitter, J.S.: Theory and practice
of I/O-efficient algorithms for multidimensional batched searching problems. In:
SODA, pp. 685–694 (1998)

6. Arge, L., Toma, L., Zeh, N.: I/O-efficient topological sorting of planar DAGs. In:
SPAA, pp. 85–93. ACM Press (2003)

7. Chiang, Y.J., Goodrich, M.T., Grove, E.F., Tamassia, R., Vengroff, D.E., Vitter,
J.S.: External-memory graph algorithms. In: SODA, pp. 139–149 (1995)

8. Fischer, J., Heun, V.: Space efficient preprocessing schemes for range minimum
queries on static arrays. SIAM J. Comput. 40(2), 465–492 (2011)

9. Fischer, J., Mäkinen, V., Välimäki, N.: Space efficient string mining under fre-
quency constraints. In: Proc. ICDM, pp. 193–202. IEEE Computer Society (2008)

10. Franceschini, G., Grossi, R.: A general technique for managing strings in
comparison-driven data structures. In: Dı́az, J., Karhumäki, J., Lepistö, A., San-
nella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 606–617. Springer, Heidelberg
(2004)

11. Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction.
J. ACM 53(6), 1–19 (2006)

12. Raman, R.: Range extremum queries. In: Smyth, B. (ed.) IWOCA 2012. LNCS,
vol. 7643, pp. 280–287. Springer, Heidelberg (2012)



Distance-Sensitive Planar Point Location�

Boris Aronov1, Mark de Berg2, Marcel Roeloffzen2, and Bettina Speckmann2

1 Dept. of Computer Science and Engineering, Polytechnic Institute of NYU, USA
aronov@poly.edu

2 Dept. of Computer Science, TU Eindhoven, The Netherlands
{mdberg,mroeloff,speckman}@win.tue.nl

Abstract. Let S be a connected planar polygonal subdivision with n
edges and of total area 1. We present a data structure for point location
in S where queries with points far away from any region boundary are
answered faster. More precisely, we show that point location queries can
be answered in time O(1 +min(log 1

Δp
, log n)), where Δp is the distance

of the query point p to the boundary of the region containing p. Our
structure is based on the following result: any simple polygon P can
be decomposed into a linear number of convex quadrilaterals with the
following property: for any point p ∈ P , the quadrilateral containing p
has area Ω(Δ2

p).

1 Introduction

Point location is one of the most fundamental problems in computational geom-
etry. Given a subdivision S the goal is to preprocess it so that we can determine
efficiently which region of S contains a query point p. Many different variants of
the point-location problem exist; in our work we focus on planar point location
in a connected polygonal subdivision S.

There are several different solutions for planar point location that are worst-
case optimal, that is, that require O(n logn) preprocessing, use O(n) space, and
can answer a point-location query in O(log n) time; see the survey of Snoeyink [17]
for an overview. A query time of O(log n) is optimal in the worst case, but it may
be possible to do better for certain types of query points. For example, if the query
points are not distributed uniformly among the regions of S, then it may be desir-
able to reduce the query time for points in frequently queried regions. Iacono [11]
showed that this is indeed possible: given a triangulation S where each triangular
region Ri has a probability γi associated with it—the probability that the query
point p falls in Ri—then one can answer a point-location query in expected time
O(H(S)), where

H(S) :=
∑
Ri∈S

γi log(1/γi),

� M. Roeloffzen and B. Speckmann were supported by the Netherlands’ Organisation
for Scientific Research (NWO) under project no. 600.065.120 and 639.022.707, respec-
tively. B. Aronov has been supported by grant No. 2006/194 from the U.S.-Israel
Binational Science Foundation, by NSF Grants CCF-08-30691, CCF-11-17336, and
CCF-12-18791, and by NSA MSP Grant H98230-10-1-0210.

F. Dehne, R. Solis-Oba, and J.-R. Sack (Eds.): WADS 2013, LNCS 8037, pp. 49–60, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



50 B. Aronov et al.

is the entropy of S. This result is optimal, because the entropy is a lower
bound on the expected query time [14,16]. Several other point-location struc-
tures have been proposed that answer queries in O(H(S)) (expected) time [1,2].
The structure presented by Arya, Malamatos, and Mount [1] is relatively sim-
ple and efficient in practice. It works for subdivisions with constant-complexity
regions and, for any region Ri the worst-case query time for points inside Ri

is O(1 + min(log(1/γi), logn)). The results mentioned so far assume that the
distribution is known in advance. Recently Iacono [12] proposed an algorithm
that eventually achieves O(H(S)) query time, but does not need any knowledge
of the query distribution. Instead, the algorithm changes the structure accord-
ing to the queries received. The results mentioned above require the regions of
the input subdivision S to have constant complexity. This requirement is nec-
essary. Indeed, if a subdivision with n edges has only two regions, each with
associated probability 1/2, then we cannot hope to achieve O(1) query time. Re-
cently, however, Collette et al. [8] gave an interesting extension to subdivisions
with regions of non-constant complexity. They showed how to compute, for any
simple polygon P and any probability distribution over P , a Steiner triangu-
lation with near-optimal entropy, and they proved that the minimum entropy
of any triangulation is a lower bound on the point-location time (in the linear
decision-tree model). By applying their Steiner triangulation to every region in
the given subdivision, and using the resulting triangles as input for an entropy-
based point-location structure, near-optimal expected query time is achieved.

We also want to develop a point-location structure that is faster for certain
query points than for others. However, instead of assuming a probability distribu-
tion over the regions, we take a more geometric approach, based on the intuition
that answering a query for a point far from the boundary of its containing region
should be easier than answering a query for a point near the region boundary.
To make this more precise, let S be a planar connected polygonal subdivision
with n edges in total, and assume without loss of generality that the total area
of the subdivision is equal to 1. For a query point p, let Δp denote the Euclidean
distance from p to the boundary of the region containing it. We want to create
a data structure where the query time for a point p is sensitive to Δp. More pre-
cisely, our goal is to obtain O(1 + min(log(1/Δp), logn)) query time. When the
regions in the subdivision have constant complexity, then this can be achieved
using, for instance, the entropy-based point-location structure of Arya, Malam-
atos, and Mount [1]. To this end we simply define the probability of each region
Ri to be γi := area(Ri). Since for any point p ∈ Ri the distance to the boundary
of Ri is O(

√
area(Ri)), this gives the desired query bound.

Entropy-based point-location structures require each region to have constant
complexity. So the main question that we wish to answer is this: is it possible to ob-
tain O(1+min(log(1/Δp), logn)) query time for subdivisions in which the regions
do not have constant complexity? One may hope to use the already mentioned re-
sult of Collette et al. [8] to this end, perhaps by defining a probability distribution
where points far away from the boundary get a higher probability. However, it is
unclear how to do this, especially since their Steiner triangulation guarantees only



Distance-Sensitive Planar Point Location 51

an overall expected bound. Furthermore it may generate some small triangles in
areas of high probability. Hence, the main objective of our paper is to compute a
suitable decomposition directly. Our requirements are as follows: Let P be a sim-
ple polygon with nP edges. We want to compute a decomposition of P into O(nP )
subpolygons with the following properties:

– each subpolygon R is convex and has constant complexity;
– for some absolute constant α the decomposition has the α-distance property:

for any point p ∈ P , the subpolygon R containing p has area at least α ·Δ2
p,

where Δp is the distance from p to the boundary of P .

We do not require the decomposition to be conforming, that is,
we allow T-junctions. When we measure the complexity of a sub-
polygon, we disregard interior vertices on the edges (that is, T-
junctions “on the opposite side” of the edge). For instance, the
shaded polygon to the right is considered to have five vertices.

The problem of computing a decomposition with these properties can be con-
sidered a mesh-generation problem. Many different types of meshes exist; see the
survey by Bern [4] for an overview. Several of these meshes guarantee that the
number of mesh elements (subpolygons) is linear in the complexity of the poly-
gon. For example the meshing algorithm proposed by Bern et al. [6] produces
triangles with angles of at most 90◦. However, these meshes do not guarantee
any relation between the distance of a point to the boundary and the area of the
containing mesh element. There are also meshes that are designed to be more
detailed near the polygon boundary and coarser further away from the boundary.
These meshes, however, do not guarantee a relation between the distance to the
boundary and the size of mesh elements [15] or they do not have a bound on the
number of mesh elements [5]. To the best of our knowledge no published mesh
generation method guarantees that the mesh consists of O(nP ) elements that
have the required distance property.

Our Results. We start by giving a simple decomposition algorithm for convex
polygons. Here we actually do not need to use non-conforming subdivisions: we
show that any convex polygon can be triangulated in such a way that the result-
ing triangulation has the α-distance property for α = 1. For possibly non-convex
simple polygons we investigate several different settings that have different re-
strictions on the resulting subdivision. We show that it is not always possible to
create a triangulation with the α-distance property without using Steiner points,
and that the number of Steiner points needed in such a triangulation cannot be
bounded as a function of the complexity of the polygon P . We then turn our at-
tention to non-conforming decompositions. We prove that any simple polygon P
admits a decomposition into O(nP ) convex quadrilaterals and triangles that has
the α-distance property for some absolute constant α > 0. The decomposition
can be computed in O(nP lognP ) time. This result is used to obtain a linear-size
data structure for point location in a planar connected polygonal subdivision S
of area 1, such that the query time is O(1 + min(log(1/Δp), log n)), where Δp is
the distance from the query point p to the boundary of its containing region.



52 B. Aronov et al.

2 Convex Polygons

As a warm-up exercise, we start with the problem of decomposing a convex
polygon P so that the decomposition has the α-distance property for α = 1. For
this case the decomposition will actually be a triangulation.

Our algorithm is quite simple. First we split P by adding a diagonal between
the vertices defining the diameter of P . We further decompose each of the two
resulting subpolygons using a recursive algorithm, which we describe next. We
call the edges of the input polygon P polygon edges and the edges created by
the subdivision process subdivision edges. The boundary of each subpolygon we
recurse on consists of one subdivision edge and a convex chain of polygon edges,
where the angles between the chain and the subdivision edge are acute. Let Q be
such a subpolygon and e the corresponding subdivision edge. We construct the
largest triangle T contained in Q that has e as an edge by finding the vertex v
on the convex chain that is farthest from e. Because the chain is convex this
vertex can be found in O(log nQ) time, where nQ is the number of vertices of Q.

Theorem 1. For any convex polygon P with nP vertices we can compute in
O(nP lognP ) time a triangulation that has the 1-distance property.

e

Q

v

�

h

Proof. Consider the algorithm described above.
To prove the resulting triangulation has the
1-distance property, consider a triangle T cre-
ated by the algorithm. Suppose that T is cre-
ated when a subpolygon Q is handled. Let e be
the subdivision edge of Q. Without loss of generality assume that e is horizontal
and let v denote the highest point of Q. Since the angles at e’s endpoints are
acute, Q must be contained in an �×h rectangle where � = |e| and h = dist(v, e).
It follows that for any point p ∈ T we have

Δ2
p ≤ min(h, �/2)2 ≤ h�/2 = area(T ).

The diameter of a convex polygon can be computed in O(nP ) time and the
creation of each triangle takes O(log nP ) time. Since there are nP − 2 triangles
it follows that the algorithm takes O(nP lognP ) time. 
�

3 Arbitrary Polygons

We now consider non-convex polygons. We wish to compute a decomposition of a
simple polygon P into constant-complexity subpolygons that have the α-distance
property. This is not always possible with a triangulation: any triangulation of
the polygon in Fig. 1 must include triangle uvw or uvz, and when ε tends to zero
the α-distance property is violated for points in the middle of these triangles. A
Steiner triangulation with the α-distance property always exists: the quadtree-
based mesh of Bern et al. [5] can be adapted to have the α-distance property—the
(small) adaptations are required only around acute angles. However, the number
of Steiner points and, hence, the number of triangles cannot by bounded as a
function of the number of vertices of P . Next we show that this is necessarily so.



Distance-Sensitive Planar Point Location 53

Theorem 2. For any constant α > 0 and any m > 0, there is a simple poly-
gon P with eight vertices such that any Steiner triangulation of P with the α-
distance property uses at least m Steiner points.

w z

2

1− ε
2

ε 1− ε
2

vu

r s

Fig. 1. Any triangulation of P
with the α-distance property re-
quires many Steiner points

Proof Sketch. Let P be the polygon shown in
Fig. 1. Consider a Steiner triangulation T of P
with the α-distance property. Let T0 be the tri-
angle in T that has uv as an edge.1 If ε is very
small then the other two edges of T0 cannot be
very long either, otherwise the α-distance prop-
erty is violated inside T0. This in turn implies
that the neighboring triangles of T0 cannot be
very large. The idea is to repeat this argument to
show that many triangles are needed to cover P .

Specifically, we define a sequence of triangles
T0, T1, T2, . . ., as follows. Suppose we are given
a triangle Ti and an edge ei bounding Ti from
below. (For i = 0, we have ei = uv.) Consider
the other two edges of Ti. We select one of these two edges as ei+1 and define
Ti+1 as the triangle directly above ei+1. We select ei+1 as follows. If only one of
the edges bounds Ti from above, then this edge is selected. If both edges bound
Ti from above, then we select the edge with the smaller absolute slope. This
selection guarantees that for every edge ei at least one endpoint is above e0.

Our goal is now to prove that the size of the triangles T0, T1, . . . does not in-
crease too rapidly—more precisely, that Ti+1 cannot be arbitrarily larger than Ti.
This requires an invariant on the length of the edges ei, but also on their abso-
lute slope. We denote the absolute slope of ei by σi. Thus σi = |ei|y/|ei|x, where
|ei|x and |ei|y denote the lengths of the projection of ei on the x- and y-axis.
Let P− denote the square with edge length 1 centered at the midpoint of uv. In
Fig. 1 this square is shaded. Our argument will use the fact that for Ti inside
P− the nearest boundary point for any p ∈ Ti lies on uv, ur, or vs. We show
that both the slope and length of edge ei are bounded as a function of i, and
that ei remains inside P−, until σi · |ei| is large enough. More precisely, we can
prove that as long as max(4, σ2

i ) · |ei| < α
8
√
2

the following three properties hold,

where (i) and (ii) are needed to prove (iii):

(i) edge ei is contained in P−;
(ii) the slope σi of ei satisfies σi ≤ (2i+1 − 2)/α;

(iii) edge ei has length at most 8ε · 2(i+1)(i+7)/(α3i).

It follows from property (iii) that we can always choose ε small enough that we
need at least m Steiner points before Ti can leave the square P−. Property (i) is
proven using an induction on i. Clearly edge e0 is contained in P−. For edge ei
1 The edge uv can contain Steiner vertices in its interior, as the only requirement we
have for the Steiner triangulation is that any two triangles either meet in a single
vertex, along a complete edge, or not at all. When uv contains Steiner vertices, we
can replace uv by any subedge of uv, and the argument still holds.



54 B. Aronov et al.

P−

ei−1

p

ei u v

r s

w z

Fig. 2. Triangle Ti−1 inter-
sects the boundary of P− in p

with i > 0 we can assume that ei−1 is contained
in P− and that max(4, σ2

i−1) · |ei−1| < α
8
√
2
. We

assume for a contradiction that ei extends out-
side of P− and show that if this is the case, then
Ti−1 does not have the α-distance property for
the given α. The area of Ti−1 is upper bounded
by |ei−1| · |ei| ≤ |ei−1| · 2

√
2. Since ei extends out-

side of P− and ei−1 is inside it there must be a
point p ∈ Ti−1 that is on the boundary of P−.
If p is on the left, top or right edge of P− then
Δp ≥ (1− ε)/2 ≥ 1/4. If p is on the bottom edge
of P− we can use the slope of ei−1 and the fact
that its top endpoint is above e0 to bound the dis-

tance from p to the boundary of P . Without loss of generality assume that p is
to the left of ur. Since one endpoint of ei−1 is above e0 and ei−1 cannot intersect
e0 the distance from p to ur (the nearest boundary edge) is at least 1/(2σi−1),
see also Fig. 2. We get that Δp ≥ 1/(2 max(2, σi−1)). This would imply that

area(Ti) ≤ |ei−1| · 2
√

2 <
α

8
√

2 max(4, σ2
i−1)

· 2
√

2 ≤ α ·Δ2
p,

contradicting that Ti has the α-distance property. Hence, we can conclude that
ei must be contained in P−. Using (i) we can prove (ii), which can be used to
prove (iii) (proof omitted here). The lemma follows then from (iii). 
�
Theorem 2 implies that we cannot restrict ourselves to triangulations if we want
a linear-size decomposition with the α-distance property. We hence consider
possibly non-conforming decompositions using convex k-gons (that is, we allow
T-junctions). We first show how to compute a linear-size decomposition with the
α-distance property that uses convex k-gons for k ≤ 7, and then we argue that
each k-gon can be further subdivided into convex quadrilaterals and triangles.

a)

b)

Fig. 3.

A Decomposition with 7-Gons. We assume without loss of gen-
erality that no two vertices of the input polygon P have the
same x- or y-coordinates. We describe a recursive algorithm
that computes in each step a single 7-gon2 of the subdivi-
sion and then recurses on up to four smaller polygons. In a
generic step of the recursive procedure, we are given a polygon
bounded by a chain of edges from the original polygon and
by two subdivision edges, one vertical and one horizontal; see
Fig. 3a. (In our figures we use gray lines for subdivision edges,
solid black lines for polygon edges, and dotted black lines to indicate an un-
specified continuation of the boundary of the input polygon. Black circles mark
vertices of the input polygon.) The subdivision edges meet in a vertex, the corner
of the polygon. One of the subdivision edges can have zero length (see Fig. 3b).

2 From now on, when we use the term 7-gon, we mean a convex k-gon for k ≤ 7.



Distance-Sensitive Planar Point Location 55

Without loss of generality we assume that the horizontal subdivision edge, eh, is
the longer of the two subdivision edges, and that the vertical subdivision edge
ev extends upward from the left endpoint of eh. Initially, P does not have the
right form as there are no subdivision edges. Hence we first pick an arbitrary
point in the interior of P and shoot axis-aligned rays in all four directions. This
subdivides P into four polygons that each have exactly two subdivision edges
that meet in a vertex.

We now describe how we generate a 7-gon of the decomposition in a recursive
step on input polygon Q ⊂ P with two subdivision edges, eh and ev, meeting
in corner v. We first grow a square with v as lower-left corner, until the square
hits the boundary of Q. (This could be immediately, if the vertical subdivision
edge has zero length.) If one of the edges of the square hits a vertex of the
original polygon P , we stop. Otherwise a vertex of the square hits an edge of P .
We then start pushing the square along the edge, meanwhile growing it so that
it remains in contact with the subdivision edge. This again continues until the
boundary of P is hit, which may either terminate the process (when a vertex of
P is hit) or not (when an edge is hit), and so on. The 7-gon will be the union
(swept volume) of all squares generated during the entire process. Fig. 4 gives an
overview of the cases that can arise, with A being the start configuration. Thick
arrows indicate a transition from one case to another. As mentioned, we stop
pushing a square when a new vertex of P occurs on the boundary. Cases where
this happens are given a number (A1, B1, B2, . . .). Next we provide more details
on how to push the squares in each of the cases and when one case transitions to
another. The top left, top right, bottom left, and bottom right vertex of a square
will be denoted by pnw, pne, psw, pse, respectively, and the top, right, bottom, and
left edge by en, ee, es, ew. In each case the process ends when a vertex of P is hit.

A We grow a square from the corner while keeping es on eh and ew on ev until it
hits an edge or vertex of P . We go into case B if pnw hits an edge enw of P or
into case E and F if pne hits an edge ene. Note that pse cannot hit an edge of the
polygon before pnw, since eh is at least as long as ev.

B The vertex pnw is on an edge enw of P and es is on eh. We push the square to the
right while maintaining these contacts. We go into case C if pse hits an edge ese of
P or into case D and F if pne hits an edge ene of P .

C The vertex pnw is on an edge enw of P and pse is on an edge ese of P . We push the
square up and to the right maintaining these contacts. We go into case D and G
if pne hits an edge ene of P .

D The vertex pnw is on an edge enw and pne is on an edge ene of P . We push the
square upward while maintaining these contacts.

E The vertex pne is on an edge ene of P and ew is on ev. We push the square upward
while maintaining these contacts. We go into case D if pnw hits an edge of P .

F The vertex pne is on an edge ene of P and es is on eh and we push the square to
the right while maintaining these contacts. We go into case G if pse hits an edge
of P .

G The vertex pne is on an edge ene and pse is on an edge ese of P and we push the
square to the right while maintaining these contacts.



56 B. Aronov et al.

AA1

B

B1

B2

B3
C1

C2

C3

D1

D2

D3

E3

E1

E2
C

E

B

F D

G

F3

F1

F2

G3

G1

G2

Fig. 4. We construct 7-gons by pushing squares through the polygon according to
cases A to G. Fat arrows indicate a transition from one case to another and a split
means that we continue in two separate directions. Note that cases E and F, and D
and G are symmetric.



Distance-Sensitive Planar Point Location 57

Lemma 1. The process above generates a convex k-gon C with k ≤ 7. Moreover,
for any p ∈ C we have area(C) ≥ 1

2 ·Δ2
p, where Δp denotes the distance from p

to the boundary of the original polygon P .

Proof. A straightforward case analysis of the different paths that the process may
follow in Fig. 4—note that we can actually follow several paths, since sometimes
we continue pushing in two separate directions—shows that C is a convex 7-gon.
The construction guarantees that C is the union of a (possibly infinite) set of
squares that each touch the boundary of P . Let σ be such a square containing p.
Then Δp ≤

√
2 · length(σ), where length(σ) denotes the edge length of σ. It

follows that area(C) ≥ area(σ) = length(σ)2 ≥ 1
2 ·Δ2

p. 
�

B3

After constructing the 7-gon C, we should recurse on the
remaining parts of the polygon. The parts we can recurse
on must have at most two orthogonal subdivision edges
that meet in a point, as in Fig. 3. Parts for which this is
not yet the case are first subdivided further by shooting
horizontal and/or vertical rays from certain vertices of C
so that the required property holds for the resulting subparts. Which rays to
shoot depends on the final case in the construction of C. The figure to the right
shows case B3; the corners of the parts on which we recurse are also indicated. In
total, we may get up to four parts in which we recursively construct new 7-gons.

Lemma 2. The algorithm described above creates O(nP ) 7-gons in total, when
applied to a polygon P with nP vertices.

Proof Sketch. Let VQ denote the subset of vertices of P that are on the boundary
of a polygon Q ⊂ P on which we recurse, excluding the possible vertices of P that
are the endpoints of the subdivision edges of Q. Recall that after we construct
a 7-gon C inside Q, the remainder of Q is subdivided into at most four parts
on which we recurse again. At least one vertex of VQ is on the boundary of
C, so each part has strictly fewer vertices of P on its boundary. We also know
that each vertex of VQ can be on the boundary of at most one part (recall that
vertices on endpoints of subdivision edges are not considered). It follows that
only O(nP ) 7-gons are constructed. 
�
Next we describe how to implement the algorithm in O(nP lognP ) time. Each
of the cases A to G can be viewed as moving a square from a start location to
an end location such that all intermediate squares have specific contacts to the
polygon Q as detailed in each case description. To find the swept volume of this
sequence of squares it suffices to know at which squares we start and end. To
find these start and end squares we need some supporting data structures.

We use the medial axis M of P , with the following asymmetric distance
measure. Let p and q be two points in the plane. The distance from p to q is the
scaling factor of a unit square with its lower left corner on p, that has q on its
boundary. This distance is defined only if q lies to the north-east of p. However,
for any point inside P the distance to the boundary of P and the nearest point on
the boundary are well defined, which is sufficient for our purpose. Conceptually,



58 B. Aronov et al.

one can also set the undefined distances to infinity. We compute four such medial
axes, one for each direction in which we can grow squares, in O(n log n) time [10].
We then construct the following data structures:

– We preprocess each medial axis so that we can do point location in O(log n)
time. Since the medial axis is a connected subdivision this can be done in
O(n) time [13].

– We also preprocess each medial axis so that we can answer horizontal and
vertical ray shooting queries in O(log n) time. This can again be done in
O(n) time by first computing the horizontal and vertical decomposition of
P [7], and then preprocessing these trapezoidal maps for point location.

– Finally, we preprocess P itself in O(n) time such that we can do horizontal
and vertical ray shooting in O(log n) time.

Initially (case A) we want to find the largest square that we can grow from the
corner v. We locate the cell of M that contains v, which gives us the vertex
or edge of the polygon, say edge e, that is closest to v in the specified distance
measure. This implies that e is the first edge hit by the boundary of a square
grown from v. In this way we determine in O(log n) time if we are in case A, B,
or E. Next we push the square upward or to the right. We then have to determine
the final square for that movement and in which case we should continue. We
distinguish two different types of movement for the square. Either the square
has one edge on one of the vertical or horizontal subdivision edges (case B, E,
and F), or it has two corners on polygon edges of P (case C, D, and G).

If one edge of the square stays on a subdivision edge then specifically the lower
left vertex stays on the subdivision edge and the series of squares that we create
are exactly the largest squares with their lower left corners on the subdivision
edge. Recall that we stop moving the square when another edge or vertex of P
hits the boundary of the square. Let q denote the lower left corner of this square.
By definition of M the point q has to be on a bisector of M as there are two
different features (edges or vertices) of P that are at equal distance. Hence, the
process of moving a square along a subdivision edge is essentially the same as
moving its lower left corner point until it hits an edge of the medial axis (or P ).
We can use horizontal or vertical ray shooting to find in O(log n) time the point
q where we end the movement along the subdivision edge.

When we move a square while keeping two vertices on edges of P it follows
from the definition of the medial axis and our distance measure that the lower left
vertex of the square remains on the bisector of the two edges of P . The movement
ends when a third edge or vertex of P is on the boundary of the square, so at a
vertex of the medial axis. Specifically the vertex where the bisector along which
the lower left vertex was moving, ends. To find the final square of the movement
we have to find the bisector, determine which endpoint of the bisector we need
and find the three edges or vertices of P that determine that vertex. Since we
already found the right bisector in the previous case, each of these steps can be
done in O(1) time after which we can determine in O(1) time how to continue.
To summarize, we obtain the following lemma.



Distance-Sensitive Planar Point Location 59

Lemma 3. Computing the 7-gon in a recursive step of the algorithm takes
O(log n) time, after O(n) preprocessing.

From 7-gons to quadrilaterals and triangles. As a last step we can convert the
7-gons from our decomposition into convex quadrilaterals and triangles. The
resulting decomposition still has the α-distance property, although the value for
α will decrease from 1/2 to 1/8. Let Q denote a convex polygon with nQ vertices.
By the ham-sandwich theorem [9], there exists a line cutting Q into two portions
of equal area with at most �nQ/2� vertices of Q strictly on each side of the line.
Cutting along this line, we obtain two polygons with half the area and at most
�nQ/2�+2 vertices each. By repeating this process, if necessary, we obtain either
triangles or quadrilaterals. We hence arrive at the following theorem.

Theorem 3. Given a simple polygon P we can compute in O(n log n) time a
subdivision of P consisting of O(n) triangles and convex quadrilaterals with the
(1/8)-distance property.

Proof. By Lemmas 2 and 3 we can compute in O(n logn) time a decomposition
of P into O(n) convex k-gons, for k ≤ 7, that has the (1/2)-distance property.
We further subdivide each k-gon using ham-sandwich cuts, as explained above.
In the worst case we start with a 7-gon that is split into two 5-gons by the first
ham-sandwich cut, after which each 5-gon is split into two quadrilaterals. We
then get four quadrilaterals each having 1/4 of the area of the 7-gon. Since the
decomposition into 7-gons had the (1/2)-distance property, the new decomposi-
tion has the (1/8)-distance property. 
�

Distance-sensitive point location. Let us return to the problem of point-location
in a subdivision S, where the goal is to obtain faster query time for query points
far away from the boundary of the region they are contained in. We decompose
each region of S using Theorem 3. Next we assign each quadrilateral or triangle Q
in the new decomposition a probability of area(Q), and we apply the entropy-
based point-location method of Arya et al. [2]. (Recall that we assume that
area(S) = 1.) This method requires each face of the decomposition to have
constant complexity. More precisely, since they use a randomized incremental
method that adds the maximal segments defining the subdivision one by one,
it is sufficient if each face is bounded by a constant number of such maximal
segments. Thus it is not a problem that our subdivision is non-conforming. We
can therefore conclude with the following theorem.

Theorem 4. Given a subdivision S with area(S) = 1 we can compute in
O(n log n) time a data structure for point location, such that for any query point p
the query time is O(1 + min(log(1/Δp), log n)), where Δp is the distance from p to
the boundary of the region containing p.

4 Conclusions

We presented a data structure for distance-sensitive point location in a con-
nected planar polygonal subdivision S. The key ingredient is a non-conforming



60 B. Aronov et al.

decomposition of each region P ∈ S into a linear number of quadrilaterals and
triangles with the (1/8)-distance property. We also proved that if we insist on
decomposing each region using a conforming Steiner triangulation, then the num-
ber of Steiner vertices cannot be bounded as a function of the region complexity.
This poses obvious open problems: can we obtain a linear-size decomposition
with the α-distance property (for some constant α) that uses only triangles, or
one that uses both triangles and quadrilaterals but is conforming? Another in-
teresting question is whether the decomposition can be generalized to R3. Note,
however, that this does not directly lead to distance-sensitive point location since,
to our knowledge, no 3D entropy-based point location structures are known.

References

1. Arya, S., Malamatos, T., Mount, D.M.: A simple entropy-based algorithm for pla-
nar point location. ACM Trans. Algorithms 3, article 17 (2007)

2. Arya, S., Malamatos, T., Mount, D.M., Wong, K.C.: Optimal expected-case planar
point location. SIAM J. Comput. 37, 584–610 (2007)

3. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geome-
try: Algorithms and Applications, 3rd edn. Springer (2008)

4. Bern, M.: Triangulations and mesh generation. In: Goodman, J.E., O’Rourke, J.
(eds.) Handbook of Discrete and Computational Geometry, 2nd edn., ch. 25. Chap-
man & Hall/CRC (2004)

5. Bern, M., Eppstein, D., Gilbert, J.: Provably good mesh generation. J. of Computer
and System Sciences 48(3), 384–409 (1994)

6. Bern, M., Mitchell, S., Ruppert, J.: Linear-size nonobtuse triangulation of polygons.
Discrete & Computational Geometry 14(1), 411–428 (1995)

7. Chazelle, B.: Triangulating a simple polygon in linear time. Discrete & Computa-
tional Geometry 6, 485–524 (1991)

8. Collette, S., Dujmović, V., Iacono, J., Langerman, S., Morin, P.: Entropy, trian-
gulation, and point location in planar subdivisions. ACM Trans. Algorithms 8(3),
1–18 (2012)

9. Edelsbrunner, H.: Algorithms in Combinatorial Geometry. Springer (1987)
10. Fortune, S.: A fast algorithm for polygon containment by translation. In: Brauer,

W. (ed.) ICALP 1985. LNCS, vol. 194, pp. 189–198. Springer, Heidelberg (1985)
11. Iacono, J.: Expected asymptotically optimal planar point location. Computational

Geometry 29(1), 19–22 (2004)
12. Iacono, J., Mulzer, W.: A static optimality transformation with applications to

planar point location. Int. J. of Comput. Geom. and Appl. 22(4), 327–340 (2012)
13. Kirkpatrick, D.: Optimal search in planar subdivisions. SIAM J. Comput. 12(1),

28–35 (1983)
14. Knuth, D.E.: Sorting and Searching, 2nd edn. The Art of Computer Programming,

vol. 3. Addison-Wesley (1998)
15. Ruppert, J.: A Delaunay refinement algorithm for quality 2-dimensional mesh gen-

eration. J. Algorithms 18(3), 548–585 (1995)
16. Shannon, C.E.: A mathematical theory of communication. Bell Sys. Tech. Jour-

nal 27, 379–423, 623–656 (1948)
17. Snoeyink, J.: Point location. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of

Discrete and Computational Geometry, 2nd edn., ch. 34. Chapman & Hall/CRC
(2004)



Time-Space Tradeoffs

for All-Nearest-Larger-Neighbors Problems

Tetsuo Asano1 and David Kirkpatrick2

1 School of Information Science, JAIST, Japan
2 Department of Computer Science, University of British Columbia, Canada

Abstract. This paper addresses two versions of a fundamental prob-
lem, referred to as the All-Nearest-Larger-Neighbors (ANLN) problem,
defined as follows: given a one-dimensional array A of n real-valued keys,
find, for each array element A[i], the index of a nearest array element, if
one exists, whose key is strictly larger than A[i].

We develop algorithms for one- and two-sided versions of the ANLN
problem that run in O(n logb n) time, using Θ(b) work-space, for all
b = O(n), exhibiting a full time-space tradeoff that subsumes all known
(memory-restricted) special cases. In addition, a non-trivial lower bound
is developed for the time complexity of solving both versions on a pointer
machine with limited work-space. This lower bound matches the time
complexity of our algorithms, when restricted to constant space.

The fundamental nature of ANLN problems make them intrinsically
interesting to study. They also capture the essence of a variety of other
familiar problems, such as determining the forest structure associated
with a given string of nested parentheses, and triangulating monotone
polygons. For both of these, we describe reductions to versions of the
ANLN problem, achieving the same time-space tradeoffs.

1 Introduction

We consider the following All-Nearest-Larger-Neighbor (ANLN) problem: Given
an array A[0 : n−1] of n real values, determine an array NLN [0 : n−1], where
NLN [i] is the index of a nearest larger neighbor of A[i] in A[0 : n−1], i.e. an
index j such that A[j] > A[i] and |j − i| is minimized. (If A[i] is a maximum
element in A[0 : n−1], i.e. it has no larger neighbor, this is signified by assigning
NLN [i] 	∈ [0 : n−1].)

Of course, the nearest larger neighbor of A[i] is the closer of its nearest larger
left-neighbor and its nearest larger right-neighbor (with the obvious definitions).
We refer to the variant of the ANLN problem in which neighbors are restricted
to right-neighbors as the All-Nearest-Larger-Right-Neighbor (ANLRN) problem.
It is straightforward to design a linear-time algorithm for solving the ANLRN
problem, if we are free to use linear work-space: simply scan the input array
A from right to left while keeping a monotonically decreasing subsequence in a
stack to find, for each successive element of A, the nearest larger neighbor to
its right. Combining this with the symmetric left to right scan, constructing all

F. Dehne, R. Solis-Oba, and J.-R. Sack (Eds.): WADS 2013, LNCS 8037, pp. 61–72, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



62 T. Asano and D. Kirkpatrick

nearest larger left-neighbors, gives an equally straightforward solution to the full
ANLN problem; we will refer to this as the double-scan algorithm.

We are interested in understanding the complexity of solving the ANLN prob-
lem with sub-linear work space. For this reason, we assume that the input array
A is read-only, and the output array NLN is write-once. In this setting, the
complexity of the ANLN problem turns out to depend on (1) whether or not we
allow duplicate keys, and (2) whether we require the outputs to be constructed
in some specified order (think of this as an on-line version); in the easiest case
keys are distinct and arbitrary output order is permitted.

Throughout this paper, we measure work-space by the number of words of
O(log n) bits used in an algorithm in addition to input data stored in a read-
only array. Thus, by a Θ(b)-work-space algorithm we mean an algorithm that
uses work-space consisting of Θ(b) words of O(log n) bits, which can be used
as counters, indices and pointers, with a range of Θ(n) values. This generalizes
the constant work-space model introduced by Asano et al [1,3,2] for the study
of a variety of geometric problems. It is also consistent with the framework of
memory-adjustable algorithms, and the time-space tradeoffs, described in [2] and
[4] respectively. Of course, memory-constrained computational models and time-
space tradeoffs have been the subject of study for a long time (see, for example,
[7,8]); we refer the reader to [2] for a succinct overview of this background work.

In an earlier paper [1], we showed that the ANLN problem can be solved in
O(n log n) time using only constant work-space. In section 2, we give a full space-
time tradeoff: an algorithm that runs in O(n logb n) time with Θ(b) work-space,
in particular, O(n/ε) time, if b = Θ(nε). In section 3, we present an algorithm
for the ANLRN problem with a similar tradeoff. (It should be noted that the
close relationship between these problems, in the absence of space constraints,
cannot be exploited in general; athough they have some common features, the
algorithms that we develop for the two problems are fundamentally different.)
Of course, the same results follow if we restrict attention to left-neighbors, or if
we want to determine smaller, rather than larger neighbors; we assume that the
reader will interpret the acronyms ANSN, ANSLN, etc. appropriately.

Section 4 describes a lower bound on the product of time and work-space
that applies to both the ANLN and ANLRN problems. This bound is based
on a pointer machine model that is sufficiently powerful to realize all existing
algorithms for these problems. This lower bound matches the time complexity
of our algorithms, when restricted to constant space.

Our algorithms for ANLN problems provide a foundation for the solution of
other problems such as extracting the forest structure implicit in a given string
of nested parentheses, and constructing a triangulation of a monotone poly-
gon. In sections 5 and 6, we present algorithms for these problems that run in
O(n logb n) time using Θ(b) work-space, using direct reductions to variants of
the ANLN problem. This improves the earlier O(n2)-time constant work space
algorithm of [2] for triangulating mountain polygons (a special sub-class of mono-
tone polygons), and the algorithm of [4], for b in the range [1, logn] (including



All-Nearest-Larger-Neighbors Problems 63

their O(n2)-time constant work-space and O(n log n)-time Θ(log n) work-space
algorithms).

2 The All-Nearest-Larger-Neighbor Problem

2.1 Background

Let A[0 : n−1] be an array of (not necessarily distinct) real-valued keys. As
previously noted, a straightforward double-scan algorithm provides a linear-time
solution for the ANLN problem on A, if we are free to use linear work-space.
It was shown in [1] that, assuming distinctness of inputs, the problem can be
solved in O(n log n) time, using only constant work-space, by using a simple
bidirectional search from each element of A[0 : n−1]. In fact, Bose and Moran [5]
showed even earlier that a problem, equivalent to the ANLN Problem for circular
lists of length n containing distinct numbers, can be solved using bidirectional
search, using Θ(1) pointers, in O(n log n) time.

Theorem 1. [5,1] There is an algorithm using bidirectional search that solves
the All-Nearest-Larger-Neighbor problem for n distinct numbers, in O(n log n)
time in the worst case, using only Θ(1) work-space.

2.2 A New Time-Space Tradeoff Using a Hierarchical
Decomposition

We have noted the existence of two different algorithms for the general ANLN
problem (with duplicate inputs permitted). The first one runs in O(n) time using
O(n) work space, and the other takes O(n log n) time but uses only O(1) work-
space. In this section, we describe a unified algorithm with space-time tradeoffs
matching the results above. More precisely, the algorithm is characterized by the
amount b of work-space, and runs in O(n logb n) time. In particular, it runs in
O(n/ε) time, if b = Θ(nε) for any ε ∈ (0, 1], and O(n log n) time if b = Θ(1).

Our algorithm is based on an implicit hierarchical decomposition of the input
array. For ease of description, we let k = �logb n� and we assume that the input

Bs
i Bs

i+1Bs
i−1

Bs−1
(i+1)bs−1Bs−1

ibs+1Bs−1
ibs

Fig. 1. Computing the approximate NLN values for the maximum elements of the 3b
sub-blocks of Bs

i−1, B
s
i and Bs

i+1



64 T. Asano and D. Kirkpatrick

array A[0 : n−1] has been augmented appropriately so that A[i] = −∞, for
indices i outside the range [0 : n−1], except for A[bk+1−1] and A[−bk], which
take the value ∞. Of course, this requires no additional space, since accesses
outside of A[0 : n−1] can be handled by index checking. By this convention, we
ensure that all elements in A[0 : bk−1] have a well-defined nearest larger left-
and right-neighbors in the augmented array, and reduce our problem to the case
where n = bk, for some integer k.

For each s, 0 ≤ s ≤ k, and i, −1 ≤ i < bk−s, we denote by Bs
i the sub-array

A[ibs : (i+1)bs−1], which we refer to as the i-th bs-block of A. For s > 0, the
block Bs

i is the concatenation of bs−1-blocks Bs−1
ib , Bs−1

ib+1, . . . , B
s−1
(i+1)b−1, which

we refer to as the sub-blocks of Bs
i . (See Figure 1.)

For each block Bs
i , with 0 ≤ s ≤ k, and 0 ≤ i ≤ bk−s, we determine the NLN-

indices for the maximum elements in each of the sub-blocks of Bs
i , with the

exception of those one or more sub-blocks that contain the maximum value in
the entire block Bs

i . We exploit the (easily confirmed) fact that the NLN-indices
of each of these sub-block maxima must lie outside of its own sub-block, but
within one of the blocks Bs

i−1, Bs
i or Bs

i+1. For this purpose, we first construct
an array M [−b : 2b− 1], where M [t] contains the maximum element in the
sub-block Bs−1

ib+t, that is M [−b : 2b−1] records the sub-block maxima for all 3b
sub-blocks of Bs

i−1, Bs
i and Bs

i+1. Using the double-scan algorithm, we determine
the NLN-indices for all elements in M [0 : b−1] within M [−b : 2b−1].

The NLN-indices for the elements in M [0 : b] provide approximate NLN-
indices for the corresponding elements of A in the sense that if t′ is the NLN-
index of M [t] in M [−b : 2b−1], then the exact NLN-index of the corresponding
elements of A (i.e. the maximum elements in Bs−1

ib+t), must lie either in Bs−1
ib+t−Δ

or Bs−1
ib+t+Δ, where Δ = |t′ − t|.

It remains to determine pl, the index of the rightmost element of Bs−1
ib+t−Δ that

is larger than M [t] (choosing pl = −bk, if such an element does not exist), and
the index of the leftmost element of Bs−1

ib+t+Δ that is larger than M [t] (choosing

pr = 2bk− 1, if such an element does not exist). We then assign the exact NLN-
index to all maxima in Bs−1

ib+t by assigning the closer of A[pl] and A[pr]. See
Algorithm 1 below.

The following captures the essence of our algorithm:

Lemma 1. The loop at line 2 of Algorithm 1 constructs the NLN-values for the
maximum elements of all b principal sub-blocks of Bs

i that are not maximum
elements of Bs

i , in O(bs) time, using Θ(b) work-space.

Proof. In the first step (lines 3-4), we scan 3 · bs elements, and determine (and
record) 3b sub-block maxima. Lines 5-9 determine the NLN-values restricted to
these sub-block maxima (using the double-scan algorithm). Finally, lines 10-18
convert each of these approximate NLN-values to actual NLN-values, by search-
ing exhaustively in the appropriate sub-block of size bs−1. 
�

Since the loop at line 2 is repeated for all bk−s bs-blocks, for all s, 1 ≤ s ≤ k,
the following is an immediate consequence of Lemma 1:



All-Nearest-Larger-Neighbors Problems 65

Algorithm 1. Two-sided All-Nearest-Larger-Neighbors

Input: Read-only array A[0 : bk − 1] of keys.
Output: Write-once array NLN [0 : bk − 1], where A[NLN [p]] is the

nearest larger neighbor of A[p].
1 for s← 1 to k do
2 for i← 0 to bk−s−1 do //determine NLN-values for all

//sub-block maxima that are not block maxima of Bs
i ;

3 for t← −b to 2b− 1 do
4 M [t]← max{Bs−1

ib+t} //find maximum elements in each of;

//the sub-blocks of Bs
i−1, Bs

i , and Bs
i+1;

5 for t← 0 to b− 1 do
6 Δ←∞;
7 if M [t] 	= max{M [0 : b− 1]} then
8 Δ← distance to NLN of M [t] within M [−b : 2b− 1]
9 (using the double-scan algorithm)

10 ;

11 for t← 0 to b−1 do
12 if Δ <∞ then
13 pl ← index of rightmost element of Bs−1

ib+t−Δ with

14 value greater than M [t] (pl ← −bk, otherwise) ;

15 pr ← index of leftmost element of Bs−1
ib+t+Δ with

16 value greater than M [t] (pr ← 2bk − 1, otherwise);
17 pm ← �(pl + pr)/2� ;

18 for each element A[u] of Bs−1
ib+t with A[u] = M [t] do

19 if u ≤ pm then NLN [u]← pl else NLN [u]← pr;

Theorem 2. We can find the NLN-values of all elements in a given array of n
(not-necessarily-distinct) elements using Θ(b) work-space and O(n logb n) time.

Remark. We note that our algorithm has a straightforward implementation,
with the same asymptotic cost, in which the only index operations used are (i)
increment, (ii) decrement, and (iii) copy. Thus, it can be applied directly to a
variant of the ANLN problem in which the input is given as an immutable list,
and the output is provided as a sequence of pointer pairs.

3 The All-Nearest-Larger-Right-Neighbor Problem

Suppose that we are given n real numbers in an array A[0 : n−1]. For each
i ∈ [0 : n−1], we wish to determine the nearest larger right-neighbor of A[i],
NLRN [i], that is the smallest index j ∈ [i+1 : n−1] such that A[j] > A[i]. Note
that there may be many elements A[i] that do not have such a nearest larger
right-neighbor; this is signified by assigning NLRN [i] 	∈ [0 : n−1].



66 T. Asano and D. Kirkpatrick

In this section, we describe an algorithm that solves this ANLRN problem,
within the same O(n logb n) time and Θ(b) work-space constraints as the two-
sided variant. As in the previous section, we find it convenient to assume that
n = bk and that the array A has been augmented appropriately so that indices
outside the range [0 : n−1] return the value −∞, except for A[n], which takes
the value∞. By this convention, we ensure that all elements in A[0 : n−1] have
a well-defined nearest larger right-neighbor in the augmented array.

We exploit the same hierarchical decomposition of A as before. Specifically,
for each s, 0 ≤ s ≤ k, and i, −1 ≤ i ≤ bk−s, Bs

i denotes the sub-array A[ibs :
(i+1)bs−1] (the i-th bs-block of A) and for s > 0, the block Bs

i is the concatenation
of the bs−1-blocks Bs−1

ib , Bs−1
ib+1, . . . , B

s−1
(i+1)b−1, (the b sub-blocks of Bs

i ).

We say that a pair (p, q) is a NLRN-pair if q = NLRN [p]. Such a pair is said
to have span s if p and q belong to the same bs-block, but different bs−1-blocks.
The s-profile of block Bs−1

ib+r , the r-th sub-block of block Bs
i , is defined to be the

smallest interval in Bs−1
ib+r, possibly empty, that contains all of the left endpoints

of NLRN-pairs whose right endpoints lie outside of Bs
i . (More generally, for

r ≤ t, the t-intermediate s-profile of Bs−1
ib+r is defined to be the smallest interval

in Bs−1
ib+r, possibly empty, that contains all of the left endpoints of NLRN-pairs

whose right endpoints lie to the right of Bs−1
ib+t; the b−1-intermediate s-profile of

Bs−1
ib+r is exactly the same as the s-profile of Bs−1

ib+r.) The s-profile of Bs
i is just the

sequence of the at most b non-empty s-profiles associated with its sub-blocks.
We construct the s-profile of Bs

i iteratively, introducing sub-blocks from left
to right. As a by-product we identify and output all NLRN-pairs with span
s whose left endpoints lie in Bs

i . After introducing sub-block Bs−1
ib+t we have

the invariant that (i) the non-empty t-intermediate s-profiles of Bs−1
ib , . . . , Bs−1

ib+t

appear, from bottom to top, on a stack S (initialized to contain the interval
[−1,−1]), as interval endpoint pairs, and (ii) all NLRN-pairs with span s with
both endpoints in Bs−1

ib , . . . , Bs−1
ib+t have been detected and output.

Phase t, for 0 ≤ t ≤ b − 1, introduces the sub-block Bs−1
ib+t; this involves a

simultaneous left-to-right scan of Bs−1
ib+t with a right-to-left scan of the (t−1)-

intermediate s-profiles on S. We advance the scan on Bs−1
ib+t until the maxi-

mum element discovered so far in that block, A[jr ], dominates the current max-
imum element discovered so far, A[jl], in the profile scan (at which point we set
NLRN [jl] = jr). While this latter condition holds we advance the profile scan,
updating jl when a newly scanned element exceeds the current A[jl] and either
setting NLRN [jl]=jr, if A[jl] continues to be dominated by A[jr ], or switching
back to the scan on Bs−1

ib+t, otherwise. If the profile scan exhausts the current
(t−1)-intermediate s-profile at the top of S, it pops S and continues with the
next (t−1)-intermediate s-profile. The process continues until the scan of Bs−1

ib+t

is completed, since the stack contains a reference to an element with value ∞
at it bottom, in which case the interval [jr, (ib+t+1)bs−1−1], the elements of
Bs−1

ib+t to the right of its leftmost maximum element, is pushed on to S, thereby
completing the phase.



All-Nearest-Larger-Neighbors Problems 67

Once again, our algorithm has a straightforward implementation, with the
same asymptotic cost, in which the only index operations used are (i) increment,
(ii) decrement, and (iii) copy. Thus, it is directly applicable to a variant of the
ANLRN problem in which the input is given as an immutable list, and the output
is provided as a sequence of pointer pairs.

4 A Lower Bound via Interval-Acknowledgment

In the preceding two sections we have seen that the ANLN and ANLRN problems
for arrays of size n both have has an O(n log n)-time solution with O(1) work
space, even if duplicate elements exist. It is natural to ask if it is possible to
reduce the time complexity without increasing the work-space.

Suppose we are given an array A[0 : n−1] of n keys drawn from some key
space, and a collection of k registers (pointers) whose values range over the set
{0, 1, . . . , n−1}. We consider a computation model that permits registers to be
incremented or decremented, compared to one another or to any integer constant
in the range [0, n−1], or copied. (As we have noted, our algorithms, in fact all
algorithms that we can imagine for addressing ANLN and ANLRN problems,
can be realized in this model.)

We present a nontrivial lower bound for the time complexity of algorithms
in this model that solve instances of the following fundamental array processing
problem.

Interval-Acknowledgement Problem: Let I be a set of intervals [ai, bi], i =
0, 1, . . . , n−1 such that ai, bi ∈ {0, 1, . . . , n−1}. Initially all registers have the
value 0. An interval [ai, bi] is said to be acknowledged at time t if at that time
some register has value ai and some other register has value bi. The problem is
to acknowledge all of the intervals in I.

It should be clear that for any set I of nested intervals (where no pair of
intervals [ai, bi] and [aj , bj], satisfies ai < aj < bi < bj), there is an array A[0 :
n−1] such that A[bi] is the nearest larger neighbor of A[ai] or A[ai] is the nearest
larger neighbor of A[bi], for i = 0, 1, . . . , n−1. For this reason, lower bounds on
the (space-constrained) time-complexity of Interval-Acknowledgement for nested
intervals carry over to the ANLN (and ANLRN) problems.

A set of nested intervals I is said to be well-nested if for every non-disjoint
pair I1, I2 ∈ I either (i) I1 is a subset of either the first or second half of I2, or
(ii) I2 is a subset of either the first or second half of I1.

An interval [a, b] has two endpoint neighborhoods both of size (b−a)/2: the left
(resp., right) endpoint neighborhood is the interval [(5a−b)/4, (3a+b)/4] (resp.,
[(3b + a)/4, (5b− a)/4]). It is straightforward to confirm that if I is well-nested
then the following endpoint neighborhood property must hold: for any pair of
intervals I1, I2 ∈ I, if |I1| ≥ |I2| then one of the endpoint neighborhoods of I1
must be disjoint from both of the endpoint intervals of I2.

Theorem 3. Any k-register algorithm A that solves the Interval-
Acknowledgment problem for a well-nested set I of intervals must make a
total of Ω((1/k)

∑
I∈I |I|) register modifications.



68 T. Asano and D. Kirkpatrick

Proof. We say that two registers p and q approximate the interval I if p has a
value in I’s left endpoint interval and q has a value in I’s right endpoint interval.
It follows directly from the endpoint neighborhood property that at any fixed
time any pair of registers approximates at most one interval in I.

Let [a, b] be any interval in I. For 0 ≤ y ≤ (b− a)/4, we define t
[a,b]
y to be the

first time step when, for some pair of registers p, q, |a− p| ≤ y and |b − q| ≤ y.

Note that, since A acknowledges all intervals in I, t
[a,b]
0 (and hence t

[a,b]
y , for all

0 ≤ y ≤ (b−a)/4) is well defined. Furthermore, since register values can only be

incremented, decremented or copied, it is clear that at time t
[a,b]
y we must have

either |a− p| = y or |b− q| = y.

So, we charge interval [a, b] for each time step t
[a,b]
y , where 0 ≤ y ≤ (b− a)/4.

There are clearly 1
4

∑
I∈I |I| charges in total. But no time step is charged to more

than k − 1 intervals, since only one register is modified at time t
[a,b]
y and hence

there are only k − 1 register pairs that can generate charges (and, as previously
observed, each pair can generate at most one charge). Thus, there must be at
least 1

4k

∑
I∈I |I| distinct steps of A at which charges are made. 
�

Consider an array A[0 : n−1] whose elements form a recursively defined sequence
σlog n. The sequence σ0 is defined as < 0 >; to form the sequence σi+1 we
concatenate the sequence σ+

i , formed from σi by incrementing the first element,
and σr

i , formed by reversing the sequence σi. Thus, we have
σ1 =< 1, 0 >, σ2 =< 2, 0, 0, 1 >, σ3 =< 3, 0, 0, 1, 1, 0, 0, 2 >,
σ4 =< 4, 0, 0, 1, 1, 0, 0, 2, 2, 0, 0, 1, 1, 0, 0, 3 >, . . .

Let I be the set of intervals [a, b] corresponding to a pair of indices a, b in the
array A[0 : n−1] for which either (i) b is the index of the NLN of A[a] or (ii) a
is the index of the NLN of A[b]. It is easy to confirm that

∑
I∈I |I| = Ω(n log n).

In summary, we have:

Corollary 1. Any k-register algorithm that solves either the ANLN problem
requires Ω((n/k) log n) time in the worst case.

A similar construction gives the same worst case lower bound for the ANLRN
problem. Note that the lower bound for Interval-Acknowledgement applies even
to non-deterministic algorithms, and counts only increment and decrement oper-
ations on registers. Nevertheless, we conjecture that the deterministic complexity
of our ANLN problems is fully captured by the non-deterministic complexity of
Interval-Acknowledgment, and that both will be shown to coincide with our
upper bounds, in the worst case.

5 Extracting Forest Structure from a Parenthesis String

A well-formed parenthesis string has the familiar recursive definition: (i) the
string () is well-formed, and (ii) if X and Y are well-formed strings, then so
are (X) and XY . Let Z be any well-formed parenthesis string of length 2n. We
associate an n-node forest with Z as follows: (i) if Z has the form () then its



All-Nearest-Larger-Neighbors Problems 69

corresponding forest is a single node, (ii) if Z has the form (X), then its forest
is the tree whose root has, as children, the root nodes of the forest associated
with X , and (iii) if Z has the form XY , then its forest is the union of the forests
associated with X and Y . There is an obvious association between the matching
pairs of parentheses in Z and the nodes of its associated forest. (See Figure 2
for an example.)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

( ( ( ) ( ( ) ( ) ) ( ) ) )

(1,14)

(2,13)

(3,4) (5,10) (11,12)

(6,7) (8,9)

Fig. 2. An example of a well-formed paren-
thesis string and its associated forest ex-
pression

It is straightforward to identify the
matching pairs of parentheses in a
given well-formed parenthesis string
in linear time, using a stack that may
consist of linearly many indices. In
fact, if we are only interested in verify-
ing the well-formed property, then by
simply maintaining a depth-of-nesting
count, initially zero, of the excess of
left parentheses over right parenthe-
ses, a single counter suffices.

While some underlying structure,
for example left-child and next-sibling
associations, is readily available from
the parenthesis string, it is not so straightforward to identify matching paren-
thesis pairs, and the parent structure in the associated forest, if work-space is
limited. We note, however, that the single counter algorithm associates with the
input string a depth-of-nesting sequence (the counter values) that embodies in-
formation that can be exploited in this task. Fortunately, this information does
not need to be recorded; the nesting depth associated with every index used is
easily maintained by any algorithm whose indexing operations are restricted to
increment, decrement and copy. Thus we can view this depth-of-nesting sequence
as a read-only input sequence D suitable for input to our ANLN algorithms.

By the definition of the depth-of-nesting sequence, if the i-th parenthesis is
a left parenthesis and D[i] has D[j] as its nearest smaller right neighbor, then
the parentheses in positions i and j form a matching pair. Moreover, if the i-th
parenthesis is a right parenthesis and D[i] has D[j] as its nearest smaller right
neighbor, then the pair of parentheses ending at the i-th parenthesis has, as
its parent, the pair ending at the j-th parenthesis. It follows that, using O(b)
work-space, we can compute left-child, next-sibling, partner and parent relations
for all parentheses in an array (or list) representation of a well-formed string of
parentheses, in O(n logb n) time.

6 Triangulation of Monotone Polygons

A simple polygonal chain is monotone with respect to a line � if the orthogonal
projection of its vertices onto �, in order, form a monotonically increasing (or
decreasing) sequence on �. A simple polygon is monotone with respect to a line
� if it can be split into two chains both of which are monotone with respect



70 T. Asano and D. Kirkpatrick

to �. Monotone polygons arise frequently in the decomposition of more general
simple polygons; in particular, a simple approach to the triangulation of simple
polygons exploits the fact that monotone polygons can be triangulated in linear
time [6].

This section presents an algorithm for triangulating an arbitrary x-monotone
polygon P with n vertices, using Θ(s) work-space. We assume that P is given by
two non-intersecting x-monotone chains, the upper chain U = (u1, u2, . . . , un1)
and the lower chain V = (v1, v2, . . . , vn2), whose first and last vertices coincide.

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11 u12

u13

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13
v14

v15

v16

v17

v18

Fig. 3. Triangulation of an x-monotone polygon

A special class of x-monotone polygons is called a mountain when the lower
chain consists of exactly one edge. Let P be a mountain polygon with upper
chain U = (u1, u2, . . . , un). We associate with each vertex ui, 1 ≤ i ≤ n, a value
hi corresponding to the distance from ui to the line through u1 and un. We treat
the sequence h1, h2, . . . , hn as an all nearest smaller neighbor input sequence. It
is straightforward to confirm (using the nesting properties of NSN-pairs) that:
(i) if (hi, hj) is a nearest smaller right-neighbor pair, with j > i+1, then (ui, uj)
is a chord of P ; and (ii) if (hi, hj) is a nearest smaller left-neighbor pair, with
j < i− 1, then (ui, uj) is a chord of P .

In fact, the NSN-chords defined in (i) and (ii) serve to fully triangulate P :

Lemma 2. A mountain P = (u1, u2, . . . , un) with a single edge (u1, un) on the
lower boundary can be triangulated by repeatedly adding NSN-chords according
to rule (i) or (ii) above, whenever they are applicable.

Proof. For simplicity we assume all vertices have different h-values. It suffices to
observe that (a) no two chords selected by rules (i) and (ii) cross, and (b) the
faces that remain after all applications of rules (i) and (ii) are all triangles.

The first follows immediately from the nesting properties of NSN-pairs. We
prove the second by contradiction. Suppose that there is a face bounded by four
or more edges of P and NSN-chords that contains no internal NSN-chord. Let
ui be the vertex on this face with the maximum h-value, and let uj and uk be
its adjacent vertices (on the face). If hj > hk then uj must have an NSN-chord
to uk, or to some other vertex on P between ui and uk. But the latter would
intersect the chord (or polygon edge) (ui, uk), contradicting (a). 
�



All-Nearest-Larger-Neighbors Problems 71

Since the hi-values need not be explicitly stored (they can be computed, when
needed, from ui, u1 and un), it follows from the results of section 3 that:

Lemma 3. A mountain polygon consisting of n vertices can be triangulated in
O(n logs n) time using O(s) work-space.

We can extend the above result to arbitrary monotone polygons as follows. Given
an x-monotone polygon P , we choose the s-th vertex in the increasing order of
their x-coordinates. Assume that a vertex ui on the upper chain is the s-th vertex.
Let vj−1 and vj be the vertices on the lower chain such that vj−1.x ≤ ui.x ≤ vj .x,
where v.x denotes the x-coordinate of vertex v (see Figure 4).

ui−1

ui

vj

vj−1

u1
v1

u2

v2

Fig. 4. The s-th vertex ui from
the left and its associated vertices
ui−1, vj and vj−1

ui−1

ui

vjvj−1

u1
v1

u2

v2

ur

ul

Pl Pr

Fig. 5. Two vertices ul and ur associated
with vj−1 and vj

Let ul be the first vertex on the upper boundary with ul.x > vj−1.x. and let
ur be the last vertex on the upper boundary with ur.x < vj .x. These vertices
can be found by traversing the upper boundary from ui; the cost of this traversal
can be charged to the following triangulation.

It follows that (ul, vj−1) is a chord since there is no vertex with x-coordinate
between ul.x and vj−1.x. For the same reason, (ur, vj) is also a chord. The mono-
tone sub-polygon Pl = (u1, . . . , ul; v1, . . . , vj−1) to the left of the chord (ul, vj−1)
contains O(s) vertices, and hence it can be triangulated in O(s) time using O(s)
space. The right sub-polygon Pr = (vj−1, u1, . . . , ur; vj−1, vj) is a mountain, and
hence it can be triangulated in O(m logs m) time in O(s) space if it has m ver-
tices. By the definition of Pl and Pr, the number of vertices in Pl and Pr is Ω(s).
The remaining monotone polygon P ′ = (ur, ur+1, . . . , un1 ; vj , vj+1, . . . , vn2) is
triangulated in the same manner.

Thus, we have the following theorem:

Theorem 4. Any n-vertex x-monotone polygon can be triangulated in
O(n logs n) time using Θ(s) work-space.

7 Concluding Remarks and Future Work

We have seen in this paper that variants of the All-Nearest-Larger-Neighbors
problem admit a rich variety of memory-constrained algorithms. Our central



72 T. Asano and D. Kirkpatrick

result is a full time-space tradeoff for the solution of two these variants; a lower
bound demonstrates that these are asymptotically optimal when the work-space
is restricted to a constant number of registers, on a computational model that
permits such registers to be used as pointer/indices into the input array. It would
be very interesting to strengthen our lower bound results, when the number of
pointers grows as a function of the input size.

It would be desirable to characterize, in the spirit of time-space tradeoff re-
sults for stack-based algorithms in [4], those applications for which time-space
tradeoffs can be achieved by reduction to variants of the ANLN problem.

Acknowledgment. The work of T.A. was supported in part by KAKENHI
No. 24106004 and No. 23300001, and that of D.K. was partially by the Natural
Sciences and Engineering Research Council of Canada. The authors would like
to thank Jun Tarui, for suggesting the one-sided ANLN problem and for prelim-
inary results associated with it, and Sergey Bereg and Faith Ellen, for helpful
discussions, particularly concerning lower bounds.

References

1. Asano, T., Bereg, S., Kirkpatrick, D.: Finding Nearest Larger Neighbors: A Case
Study in Algorithm Design and Analysis. In: Albers, S., Alt, H., Näher, S. (eds.)
Efficient Algorithms. LNCS, vol. 5760, pp. 249–260. Springer, Heidelberg (2009)

2. Asano, T., Buchin, K., Buchin, M., Korman, M., Mulzer, W., Rota, G., Schultz, A.:
Memory-constrained algorithms for simple polygons. In: 28th European Workshop
on Computational Geometry (EuroCG), Booklet of Abstracts, pp. 49–52 (2012)

3. Asano, T., Mulzer, W., Rote, G., Wang, Y.: Constant-work-space algorithms for
geometric problems. Journal of Computational Geometry 2(1), 46–68 (2011)

4. Barba, L., Korman, M., Langerman, S., Sadakane, K., Silveira, R.I.: Space-time
trade-offs for stack-based algorithms. Proc. STACS, pp. 281–292 (2013)

5. Bose, P., Morin, P.: An improved algorithm for subdivision traversal without extra
storage. International Journal of Computational Geometry & Applications 12(4),
297–308 (2002)

6. Garey, M.R., Johnson, D.S., Preparata, F.P., Tarjan, R.E.: Triangulating a simple
polygon. Information Processing Letters 7(4), 175–179 (1978)

7. Munro, J.I., Raman, V.: Selection from read-only memory and sorting with mini-
mum data movement. Theoretical Computer Science 165, 311–323 (1996)

8. Munro, J.I., Paterson, M.S.: Selection and sorting with limited storage. Theoretical
Computer Science 12, 315–323 (1980)



Coloring Hypergraphs Induced by Dynamic

Point Sets and Bottomless Rectangles

Andrei Asinowski1, Jean Cardinal2, Nathann Cohen3, Sébastien Collette4,
Thomas Hackl5, Michael Hoffmann6, Kolja Knauer7, Stefan Langerman2,

Micha�l Lasoń8, Piotr Micek8, Günter Rote9, and Torsten Ueckerdt10

1 Freie Universität Berlin
asinowski@mi.fu-berlin.de

2 Université Libre de Bruxelles
{jcardin,slanger}@ulb.ac.be

3 Université Paris-Sud 11
nathann.cohen@gmail.com

4 Université Libre de Bruxelles
me@scollette.com

5 TU Graz
thackl@ist.tugraz.at

6 ETH Zürich
hoffmann@inf.ethz.ch

7 Université Montpellier 2
kolja.knauer@gmail.com

8 Jagiellonian University in Krakow
{mlason,piotr.micek}@tcs.uj.edu.pl

9 Freie Universität Berlin
rote@inf.fu-berlin.de

10 Karlsruhe Institute of Technology
torsten.ueckerdt@kit.edu

Abstract. We consider a coloring problem on dynamic, one-dimensional
point sets: points appearing and disappearing on a line at given times.
We wish to color them with k colors so that at any time, any sequence of
p(k) consecutive points, for some function p, contains at least one point
of each color.

We prove that no such function p(k) exists in general. However, in the
restricted case in which points appear gradually, but never disappear,
we give a coloring algorithm guaranteeing the property at any time with
p(k) = 3k−2. This can be interpreted as coloring point sets in R2 with k
colors such that any bottomless rectangle containing at least 3k−2 points
contains at least one point of each color. Here a bottomless rectangle is
an axis-aligned rectangle whose bottom edge is below the lowest point of
the set. For this problem, we also prove a lower bound p(k) > ck, where
c > 1.67. Hence, for every k there exists a point set, every k-coloring
of which is such that there exists a bottomless rectangle containing ck
points and missing at least one of the k colors.

Chen et al. (2009) proved that no such function p(k) exists in the case
of general axis-aligned rectangles. Our result also complements recent
results from Keszegh and Pálvölgyi on cover-decomposability of octants
(2011, 2012).

F. Dehne, R. Solis-Oba, and J.-R. Sack (Eds.): WADS 2013, LNCS 8037, pp. 73–84, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



74 A. Asinowski et al.

1 Introduction

It is straightforward to color n points lying on a line with k colors in such
a way that any set of k consecutive points receive different colors; just color
them cyclically with the colors 1, 2, . . . , k, 1, . . . . What can we do if points can
appear and disappear on the line, and we wish a similar property to hold at any
time? More precisely, we fix the number k of colors, and wish to maintain the
property that at any given time, any sequence of p(k) consecutive points, for
some function p, contains at least one point of each color.

We show that in general, such a function does not exist: there are dynamic
point sets on a line that are impossible to color with two colors so that monochro-
matic subsequences have bounded length. This holds even if the whole schedule
of appearances and disappearances is known in advance. This family of point
sets is described in Section 2.

We prove, however, that there exists a linear function p in the case where
points can appear on the line at any time, but never disappear. Furthermore,
this is achieved in a constructive, semi-online fashion: the coloring decision for
a point can be delayed, but at any time the currently colored points yield a
suitable coloring of the set. The algorithm is described in Section 3.

In Section 4, we restate the result in terms of a coloring problem in R2: for
any integer k ≥ 1, every point set in R2 can be colored with k colors so that
any bottomless rectangle containing at least 3k − 2 points contains one point of
each color. Here, an axis-aligned rectangle is said to be bottomless whenever the
y-coordinate of its bottom edge is −∞.

In Section 5, we give lower bounds on the problem of coloring points with
respect to bottomless rectangles. We show that the number of points p(k) con-
tained in a bottomless rectangle must be at least 1.67k in order to guarantee the
presence of at least one point of each color.

Finally, in Section 6, we consider an alternative problem in which we fix the
size of the sequence to k, but we are allowed to increase the number of colors.

Motivation and previous works. The problem is motivated by previous intriguing
results in the field of geometric hypergraph coloring. Here, a geometric hyper-
graph is a set system defined by a set of points and a set of geometric ranges,
typically polygons, disks, or pseudodisks. Every hyperedge of the hypergraph is
the intersection of the point set with a range.

It was shown recently [7] that for every convex polygon P , there exists a
constant c, such that any point set in R2 can be colored with k colors in such
a way that any translation of P containing at least p(k) = ck points contains
at least one point of each color. This improves on several previous intermediate
results [15,17,2]. Similar positive results for other families of geometric hyper-
graphs are given by Aloupis et al. [3,1], and Smorodinsky and Yuditsky [18].
Discussions on the relation between this coloring problem and ε-nets can be
found in Pach and Tardos [13].

The problem for translates of polygons can be cast in its dual form as a
covering decomposition problem: given a set of translates of a polygon P , we



Coloring Hypergraphs Induced by Dynamic Point Sets 75

wish to color them with k colors so that any point covered by at least p(k) of
them is covered by at least one of each color. The two problems can be seen to
be equivalent by replacing the points by translates of a symmetric image of P
centered on these points. The covering decomposition problem has a long history
that dates back to conjectures by János Pach in the early 80s (see for instance
[11,4], and references therein). The decomposability of coverings by unit disks
was considered in a seemingly lost unpublished manuscript by Mani and Pach in
1986. Up to recently, however, surprisingly little was known about this problem.

For other classes of ranges, such as axis-aligned rectangles, disks, translates of
some concave polygons, or arbitrarily oriented strips [5,12,14,16], such a coloring
does not always exists, even when we restrict ourselves to two colors.

Keszegh [8] showed in 2007 that every point set could be 2-colored so that any
bottomless rectangle containing at least 4 points contains both colors. Our posi-
tive result on bottomless rectangles (Corollary 2) is a generalization of Keszegh’s
results to k-colorings. Later, Keszegh and Pálvölgyi [9] proved the following
cover-decomposability property of octants in R3: every collection of translates of
the positive octant can be 2-colored so that any point of R3 that is covered by at
least 12 octants is covered by at least one of each color. This result generalizes
the previous one (with a looser constant), as incidence systems of bottomless
rectangles in the plane can be produced by restricted systems of octants in R3.
It also implies similar covering decomposition results for homothetic copies of a
triangle. More recently, they generalized their result to k-colorings, and proved

an upper bound of p(k) < 122
k

on the corresponding function p(k) [10].

2 Coloring Dynamic Point Sets

A dynamic point set S in R is a collection of triples (vi, ai, di) ∈ R3, with di ≥ ai,
that is interpreted as follows: the point vi ∈ R appears on the real line at time
ai and disappears at time di. Hence, the set S(t) of points that are present at
time t are the points vi with t ∈ [ai, di). A k-coloring of a dynamic point set
assigns one of k colors to each such triple.

We now show that it is not possible to find a 2-coloring of such a point set
while avoiding long monochromatic subsequences at any time.

Theorem 1. For every p ∈ N, there exists a dynamic point set S with the
following property: for every 2-coloring of S, there exists a time t such that S(t)
contains p consecutive points of the same color.

Proof. In order to prove this result, we work on an equivalent two-dimensional
version of the problem. From a dynamic point set, we can build n horizontal
segments in the plane, where the ith segment goes from (ai, vi) to (di, vi). At
any time t the visible points S(t) correspond to the intervals that intersect the
line x = t. It is therefore equivalent, in order to obtain our result, to build a
collection of horizontal segments in the plane that cannot be 2-colored in such a
way that any set of p segments intersecting some vertical segment contains one
element of each color.



76 A. Asinowski et al.

Our construction borrows a technique from Pach, Tardos, and Tóth [14]. In
this paper, the authors provide an example of a set system whose base set cannot
be 2-colored without leaving some set monochromatic. This set system S is built
on top of the 1 + p + · · ·+ pp−1 = 1−pp

1−p vertices of a p-regular tree T p of depth
p, and contains two kinds of sets :

• the 1 + p + · · ·+ pp−2 sets of siblings: the sets of p vertices having the same
father,
• the pp−1 sets of p vertices corresponding to a path from the root vertex to

one of the leaves in T p.

It is not difficult to realize that this set system is not 2-colorable: by contradic-
tion, if every set of siblings is non-monochromatic, we can greedily construct a
monochromatic path from the root to a leaf.

We now build a collection S of horizontal segments corresponding to the
vertices of T p, in such a way that for any set E ∈ S there exists a time t at
which the elements of E are consecutive among those that intersect the line
x = t. For any p (see Fig. 1), the construction starts with a building block B1

p

of p horizontal segments, the ith segment going from (− i
p , i) to (0, i). Because

these p segments represent siblings in T p, they are consecutive on the vertical
line that goes through their rightmost endpoint, and hence cannot all receive
the same color.

Block Bj+1
p is built from a copy of B1

p to which are added p resized and

translated copies of Bj
p : the ith copy lies in the rectangle with top-right corner

(− i−1
p , i+1) and bottom-left corner (− i

p , i). By adding to Bp−1
p a last horizontal

segment below all others, corresponding to the root of T p, the ancestors of
a segment are precisely those that are below it on the vertical line that goes
through its leftmost point. When such sets of ancestors are of cardinality p− 1,
which only happens when one considers the set of ancestors of a leaf, then the
set formed by the leaf and its ancestors is required to be non-monochromatic.

With this construction we ensure that a feasible 2-coloring of the segments
would yield a proper 2-coloring of S, which we know does not exist. 
�

a

b
c

d

e f g
h

i
j

k l m

(a) The tree T 3.

a

b

c

d

e
f

g

h
i
j

k
l
m

(b) The corresponding set of horizontal
segments B2

3 , with a root segment a.

Fig. 1. The recursive construction of Theorem 1, for p = 3



Coloring Hypergraphs Induced by Dynamic Point Sets 77

The above result implies that no function p(k) exists for any k that answers
the original question. If it were the case, then we could simply merge color
classes of a k-coloring into two groups and contradict the above statement.

x

z

y

a

b

c

c

Fig. 2. A corner with coordinates (a, b, c)

Theorem 1 can also be interpreted as
the indecomposability of coverings by
a specific class of unbounded poly-
topes in R3. We define a corner with
coordinates (a, b, c) as the following
subset of R3: {(x, y, z) ∈ R3 : a ≤ x ≤
b, y ≤ c ≤ z}. An example is given
in Fig. 2. One can verify that a point
(x, y, z) is contained in a corner a, b, c
if and only if the vertical line segment
with endpoints (x, y) and (x, z) inter-
sects the horizontal line segment with
endpoints (a, c) and (b, c). The corol-
lary follows.

Corollary 1. For every p ∈ N, there exists a collection S of corners with the
following property: for every 2-coloring of S, there exists a point x ∈ R3 con-
tained in exactly p corners of S, all of the same color. In other words, corners
are not cover-decomposable.

3 Coloring Point Sets under Insertion

Since we cannot bound the function p(k) in the general case, we now consider
a simple restriction on our dynamic point sets: we let the deletion times di be
infinite for every i. Hence, points appear on the line, but never disappear.

A natural idea to tackle this problem is to consider an online coloring strategy,
that would assign a color to each point in order of their arrival times ai, without
any knowledge of the points appearing later. However, we cannot guarantee any
bound on p(k) unless we delay some of the coloring decisions. To see this, consider
the case k = 2, and call the two colors red and blue. An online algorithm must
color each new point in red or blue as soon as it is presented. We can design an
adversary such that the following invariant holds: at any time, the set of points
is composed of a sequence of consecutive red points, followed by a sequence
of consecutive blue points. The adversary simply chooses the new point to lie
exactly between the two sequences at each step.

Our computation model will be semi-online: The algorithm considers the
points in their order of the arrival time ai. At any time, a point in the se-
quence either has one of the k colors, or is uncolored. Uncolored points can be
colored later, but once a point is colored, it keeps its color for the rest of the
procedure. At any time, the colors that are already assigned suffice to satisfy the
property that any subsequence of 3k− 2 points has one point of each color, i.e.,
p(k) ≤ 3k − 2.



78 A. Asinowski et al.

Theorem 2. Every dynamic point set without disappearing points can be k-
colored in the semi-online model such that at any time, every subsequence of at
least 3k − 2 consecutive points contains at least one point of each color.

Proof. We define a gap for color i as a maximal interval (set of consecutive
points) containing no point of color i, that is, either between two successive
occurrences of color i, or before the first occurrence (first gap), or after the last
occurrence (last gap), or the whole line if no point has color i. A gap is simply
a gap for color i, for some 1 ≤ i ≤ k. We propose an algorithm for the semi-
online model keeping the sizes of all gaps to be at most 3k−3. This means every
set of 3k − 2 consecutive points contains each color at least once and implies
p(k) ≤ 3k − 2. The algorithm maintains two invariants:
(a) every gap contains at most 3k − 3 points; (b) if there is some point colored
with i then every gap for color i, except the first and the last gap, contains at
least k − 1 points.

The two invariants are vacuous when the set of points is empty. Now, suppose
that the invariants hold for an intermediate set of points and consider a new
point on the line presented by an adversary. Clearly, invariant (b) cannot be
violated in the extended set as no gaps decrease in size. However, there may
arise some gaps of size 3k − 2 violating (a). If not then the invariants hold for
the extended set and the algorithm does not color any point in this step. Suppose
there are some gaps of size 3k − 2. Consider one of them, say a gap of color i,
and denote the points in the gap in their natural ordering on the line from left
to right as (�1, . . . , �k−1,m1, . . . ,mk, r1, . . . rk−1). Now, color i does not appear
among these points. Invariant (b) yields that none of the k− 1 remaining colors
appears twice among m1, . . . ,mk. Thus, there is some mj , which is uncolored
and the algorithm colors it with i. This splits the large gap into two smaller
gaps. Moreover, since there are k − 1 �-points and k − 1 r-points invariant (b)
is maintained for both new i-gaps. The algorithm repeats that process until all
gaps are of size at most 3k − 3.

This concludes the proof, as after the algorithm ends all remaining uncolored
points can be arbitrary colored. 
�

4 Coloring Points with Respect to Bottomless Rectangles

A bottomless rectangle is a set of the form {(x, y) ∈ R2 : a ≤ x ≤ b, y ≤ c}, for a
triple of real numbers (a, b, c) with a ≤ b. We consider the following geometric
coloring problem: given a set of points in the plane, we wish to color them with k
colors so that any bottomless rectangle containing at least p(k) points contains
at least one point of each color. It is not difficult to realize that the problem is
equivalent to that of the previous section.

Corollary 2. Every point set S ⊂ R2 can be colored with k colors so that any
bottomless rectangle containing at least 3k − 2 points of S contains at least one
point of each color.



Coloring Hypergraphs Induced by Dynamic Point Sets 79

Proof. The algorithm proceeds by sweeping S vertically in increasing y-
coordinate order. This defines a dynamic point set S′ that contains at time
t the x-coordinates of the points below the horizontal line of equation y = t. The
set of points of S that are contained in a bottomless rectangle {(x, y) ∈ R2 : a ≤
x ≤ b, y ≤ t} correspond to the points in the interval [a, b] in S′(t). Hence, the
two coloring problems are equivalent, and Theorem 2 applies. 
�

5 Lower Bound

We now give a lower bound on the smallest possible value of p(k).

Theorem 3. For any k sufficiently large, there exists a point set P such that
for any k-coloring of P , there exists a color i ∈ [k] and a bottomless rectangle
containing at least 1.677k− 2.5 points, none of which are colored with color i.

Proof. Fix k ≥ 100. For n ∈ N and 0 ≤ a < k we define the point set P = P (n, a)
to be the union of point sets L, R and B (standing for left, right and bottom,
respectively) as follows:

L := {(i− n, 2i− 1) ∈ R2 | i ∈ [n]}
B := {(i, 0) ∈ R2 | i ∈ [a]}
R := {(a + i, 2n + 2− 2i) ∈ R2 | i ∈ [n]}

See Figure 3(a) for an illustration. Note that |L| = |R| = n and |B| = a. Consider

L R

B

(a)

p1

p2

p3

p4

p5

X1

X2

X3

X4

X5

X6

(b)

Fig. 3. (a) The point set P = P (n, a) with n = 7 and a = 4, and (b) the bottomless
rectangles X1, . . . , X6 corresponding to the color class P (c∗) = {p1, . . . , p5}

any coloring of the points in P with colors from [k]. For a color i ∈ [k] we define
P (i) to be the subset of points of P colored with i. We assume for the sake of
contradiction that every bottomless rectangle that contains b := �1.677k − 2.5�
points, contains one point of each color. In the remainder of the proof we will



80 A. Asinowski et al.

identify a bottomless rectangle containing b′ points but no point of one particular
color. We give a lower bound for b′ depending on n and a, but independent of
the fixed coloring under consideration. Taking sufficiently large n and choosing
a = �0.655k� we will prove b′ > b, which contradicts our assumption and hence
concludes the proof.

A color used at least once for the points in B is called a low color and a point
colored with a low color is a low point. Note that there are low points outside of
the set B. Let � be the number of low colors. Clearly, � ≤ |B| = a.

Claim 1.

(i) For every non-low color c there are at least
⌊

n
b−a

⌋
points of color c in L.

(ii) There are at least
�−1∑
i=0

⌊
n

b−i

⌋
low points in L.

Proof. Fix a color c ∈ [k] and assume that the j leftmost points inB are not colored
with c. Order the points in L colored with c according to their x-coordinate: p1,
p2,. . . , pm. Now for each 1 < i ≤ m there is a bottomless rectangle containing all
points in L between pi−1 and pi, and the leftmost j points in B, and nothing else.
Additionally, there is a bottomless rectangle containing all points in L to the left
of p1 together with j leftmost points in B, and a bottomless rectangle containing
all points in L to the right of pm together with j leftmost points in B. Note that
all these rectangles are disjoint within L and each point from L not colored with
c lies in exactly one such rectangle. Since each such rectangle X avoids the color c
we get that |X ∩ P | ≤ b− 1 and |X ∩ L| ≤ b− 1− j and therefore

m + (m + 1)(b− 1− j) = m(b− j) + b− j − 1 ≥ |L| = n,

m ≥
⌊

n

b− j

⌋
. (1)

In order to prove (i) consider a non-low color c. As c is not used on points in B
at all we can put j = a in (1) and the statement of (i) follows. Now, if c is a low
color, then j defined as the maximum number of leftmost points in B avoiding c
is always less than a. However, for each low color c we obtain a different j. Thus
the sum of inequality (1) over all low colors is minimized by

∑�−1

i=0� n
b−i�, which

gives (ii). 
�

By Claim 1 (i) and (ii) combined we get that there is a set S of k − a non-

low colors such that at most n −
∑a−1

i=0 � n
b−i� points in L have a color from S.

Analogously, at most n−
∑a−1

i=0 � n
b−i� points in R have a color from S. Summing

up we get:



Coloring Hypergraphs Induced by Dynamic Point Sets 81

∑
c∈S

|P (c)| =
∑
c∈S

(
|P (c) ∩ L|+ |P (c) ∩R|

)
≤ 2n− 2

a−1∑
i=0

⌊
n

b− i

⌋
≤ 2n− 2

a−1∑
i=0

(
n

b− i
− 1

)

= 2n

(
1−

b∑
i=b−a+1

1

i

)
+ 2a

= 2n

(
1−

b∑
i=1

1

i
+

b−a∑
i=1

1

i

)
+ 2a.

Using that
∑x

i=1
1
i = ln(x + 1) −

∑∞
j=1

Bj

j(x+1)j
+ γ for every x ≥ 1, where Bj

are the second Bernoulli numbers and γ is the Euler-Mascheroni constant, we
obtain ∑

c∈S

|P (c)| < 2n (1− ln(b + 1) + ln(b− a + 1)) + 2a

= 2n

(
1− ln

(
b + 1

b− a + 1

))
+ 2a.

From the pigeonhole principle we know that there has to exist a color c∗ ∈ S,
such that

q := |P (c∗)| ≤
⌊

2n(1− ln( b+1
b−a+1

)) + 2a

k − a

⌋
. (2)

Enumerate the points in P (c∗) by p1, p2, . . . , pq according to their increasing y-
coordinates, i.e., we have i < j iff pi has smaller y-coordinate than pj. Now we
consider all maximal bottomless rectangles that completely contain B and con-
tain no point of color c∗. There are exactly q+1 such rectangles: For every point
pi ∈ P (c∗) there is a bottomless rectangle Xi whose top side lies immediately
below pi. And one further bottomless rectangle Xq+1 containing the entire strip
between L and R, and with sides bounded by the point in P (c∗) ∩ L and the
point in P (c∗) ∩R with the highest index. See Figure 3(b) for an illustration.

Claim 2.
∑q

i=1 |Xi ∩ (L ∪R)| ≥ 3
2

(
2n− q − b + a

)
.

Proof. Let Y1 and Yq+1 be the sets of points in L∪R with y-coordinate smaller
than p1 and larger than pq, respectively. Let Yi, 2 ≤ i ≤ q, be the set of points
with y-coordinate between pi−1 and pi. Note that Yi ⊂ Xi ∩ (L ∪ R) for all
1 ≤ i ≤ q + 1, and that the q + 1 sets Y1, . . . , Yq+1 partition the points of
L ∪ R that are not colored with c∗. Clearly, |Xi ∩ Yi| = |Yi|. We claim that
|Xi+1 ∩ Yi| ≥ 1

2
|Yi|, for i = 1, . . . , q.

Without loss of generality, let us assume that pi ∈ L. Then either Yi = ∅
or the point in Yi with largest y-coordinate lies in R. Since points from L and
R alternate in the ordering of L ∪ R with respect to increasing y-coordinate it
follows that Yi is almost equally partitioned into its left part Yi∩L and its right



82 A. Asinowski et al.

part Yi ∩ R. Since the topmost point in Yi lies in R we have |Yi ∩ R| ≥ 1
2
|Yi|.

Now since pi ∈ L we have Xi+1 ⊃ Yi ∩R, and thus

|Xi+1 ∩ Yi| ≥ |Yi ∩R| ≥ 1

2
|Yi|. (3)

Note also that |Xq+1 ∩ Yq|+ |Yq+1| ≤ |Xq+1 ∩ (L ∪ R)| < b − a as Xq+1 avoids
color c∗, so |Xq+1| < b, and contains all a points in B.

Now we calculate

q∑
i=1

|Xi ∩ (L ∪R)| ≥
( q∑
i=1

|Xi ∩ Yi|+ |Xi+1 ∩ Yi|
)
− |Xq+1 ∩ Yq|

(3)

≥
q∑

i=1

3

2
|Yi| − |Xq+1 ∩ Yq|

=
3

2

(
2n− |P (c∗)| − |Yq+1|

)
− |Xq+1 ∩ Yq|

≥ 3

2

(
2n− q − (|Yq+1|+ |Xq+1 ∩ Yq|)

)
≥ 3

2

(
2n− q − (b− a)

)
.


�

From Claim 2 we get from the pigeonhole principle that there is a bottomless
rectangle X∗ ∈ {X1, . . . , Xq} with

|X∗| ≥
3
2
(2n− q − b + a)

q
+ a =

3n

q
− 3

2
− 3(b− a)

2q
+ a

(2)

≥ 3(k − a)

2
(
1− ln

(
b+1

b−a+1

)
+ 2a

n

) + a− 3

2
− 3(b− a)

2q

Now, if we increase n, then q = |P (c∗)| increases as well, and for sufficiently large

n the terms 2a
n in the denominator and the additive term 3(b−a)

2q become negli-

gible. In particular, with a := �0.655k� and b = �1.677k − 2.5� and sufficiently
large n we have

|X∗| ≥ 3(k − a)

2
(
1− ln

(
b+1

b−a+1

)) + a− 3

2

=
3(k − �0.655k�)

2
(
1− ln

( 	1.677k−2.5
+1

	1.677k−2.5
−	0.655k
+1

)) + �0.655k� − 3

2

∼
( 1.035

2
(
1− ln

(
1.677
1.022

)) + 0.655
)
k > 1.68k.

Hence if k is big enough (k ≥ 100 is actually enough) the bottomless rectangle
X∗ contains strictly more than 1.677k−2.5 points but no point of color c∗, which
is a contradiction and concludes the proof. 
�



Coloring Hypergraphs Induced by Dynamic Point Sets 83

6 Increasing the Number of Colors

1

2

3

4

Fig. 4. A point set witnessing c(k) ≥ 2k−1
for k = 4

There is another problem which can
be tackled this time in an online
model. The number c(k) is the mini-
mum number of colors needed to color
the points on a line such that any set
of at most k consecutive points is com-
pletely colored by distinct colors. The
same problem has been considered for
other types of geometric hypergraphs
by Aloupis et al. [3]. Again, the algo-

rithm considers the points in their order of the arrival time ai but now colors
them immediately.

Proposition 1. Every dynamic point set without disappearing points can be
(2k− 1)-colored in the online model such that at any time, every subsequence of
at least k consecutive points contains no color twice.

Proof. At the arrival of a new point p denote by (�1, . . . , �k−1) and (r1, . . . , rk−1)
the k − 1 points to its left and to its right, respectively. Together they have at
most 2k− 2 colors, Thus, there is at least one of the 2k− 1 colors unused among
these points. The algorithm colors p with this color. 
�

Corollary 3. Every point set S ⊂ R2 can be colored with 2k − 1 colors so that
any bottomless rectangle containing at least k points of S contains no color twice.

The number of colors used in Corollary 3 is smallest possible. This is witnessed
by a point set S consisting of k points of the form {(i, 2i) | 0 ≤ i ≤ k − 1} and
k − 1 points of the form {(2k − i, 2i − 1) | 1 ≤ i ≤ k − 1}, see Fig. 4 for an
example. It is easy to see that every pair of points in such a point set is in a
common bottomless rectangle of size at most k. Finally, let us remark that an
upper bound on c(k) for dynamic point sets in which points can both appear and
disappear, as in Section 2, can be obtained by bounding the chromatic number of
the corresponding so-called bar k-visibility graph, as defined by Dean et al. [6]. In
particular, they show that those graphs have O(kn) edges, yielding c(k) = O(k)
for that case.

Acknowledgments. This research is supported by the ESF EUROCORES
programme EuroGIGA, CRP ComPoSe, the Austrian Science Fund (FWF):
P23629-N18 “Combinatorial Problems on Geometric Graphs” (Thomas Hackl),
CRP GraDR and the Swiss National Science Foundation, SNF Project 20GG21-
134306 (Michael Hoffmann). It was initiated at the ComPoSe kickoff meeting
held at CIEM in Castro de Urdiales (Spain) on May 23–27, 2011, and pursued
at the 2nd ComPoSe Workshop held at TU Graz (Austria) on April 16–20, 2012.
The authors warmly thank the organizers of these two meetings as well as all the
other participants. Part of this work was done during a stay of Kolja Knauer,



84 A. Asinowski et al.

Piotr Micek, and Torsten Ueckerdt at ULB (Brussels) and supported as EURO-
CORES short-term visit. A preliminary version was presented by a subset of the
authors at EuroCG’12 in Assisi (Italy).

References

1. Aloupis, G., Cardinal, J., Collette, S., Imahori, S., Korman, M., Langerman, S.,
Schwartz, O., Smorodinsky, S., Taslakian, P.: Colorful strips. Graphs and Combi-
natorics 27(3), 327–339 (2011)

2. Aloupis, G., Cardinal, J., Collette, S., Langerman, S., Orden, D., Ramos, P.: De-
composition of multiple coverings into more parts. Discrete & Computational Ge-
ometry 44(3), 706–723 (2010)

3. Aloupis, G., Cardinal, J., Collette, S., Langerman, S., Smorodinsky, S.: Coloring
geometric range spaces. Discrete & Computational Geometry 41(2), 348–362 (2009)

4. Brass, P., Moser, W.O.J., Pach, J.: Research Problems in Discrete Geometry.
Springer (2005)

5. Chen, X., Pach, J., Szegedy, M., Tardos, G.: Delaunay graphs of point sets in the
plane with respect to axis-parallel rectangles. Random Struct. Algorithms 34(1),
11–23 (2009)

6. Dean, A.M., Evans, W., Gethner, E., Laison, J.D., Safari, M.A., Trotter, W.T.:
Bar k-visibility graphs. J. Graph Algorithms Appl. 11(1), 45–59 (2007)

7. Gibson, M., Varadarajan, K.R.: Optimally decomposing coverings with translates
of a convex polygon. Discrete & Computational Geometry 46(2), 313–333 (2011)

8. Keszegh, B.: Weak conflict-free colorings of point sets and simple regions. In:
CCCG, pp. 97–100 (2007)

9. Keszegh, B., Pálvölgyi, D.: Octants are cover-decomposable. Discrete & Compu-
tational Geometry 47(3), 598–609 (2012)

10. Keszegh, B., Pálvölgyi, D.: Octants are cover-decomposable into many coverings.
CoRR, abs/1207.0672 (2012)

11. Pach, J.: Covering the plane with convex polygons. Discrete & Computational
Geometry 1, 73–81 (1986)

12. Pach, J., Tardos, G.: Coloring axis-parallel rectangles. J. Comb. Theory, Ser.
A 117(6), 776–782 (2010)

13. Pach, J., Tardos, G.: Tight lower bounds for the size of epsilon-nets. In: Proceedings
of the 27th Annual ACM Symposium on Computational Geometry, SoCG 2011,
pp. 458–463 (2011)

14. Pach, J., Tardos, G., Tóth, G.: Indecomposable coverings. In: CJCDGCGT, pp.
135–148 (2005)

15. Pach, J., Tóth, G.: Decomposition of multiple coverings into many parts. Comput.
Geom. 42(2), 127–133 (2009)

16. Pálvölgyi, D.: Indecomposable coverings with concave polygons. Discrete & Com-
putational Geometry 44(3), 577–588 (2010)

17. Pálvölgyi, D., Tóth, G.: Convex polygons are cover-decomposable. Discrete & Com-
putational Geometry 43(3), 483–496 (2010)

18. Smorodinsky, S., Yuditsky, Y.: Polychromatic coloring for half-planes. J. Comb.
Theory, Ser. A 119(1), 146–154 (2012)



Socially Stable Matchings

in the Hospitals/Residents Problem

Georgios Askalidis1, Nicole Immorlica1,2, Augustine Kwanashie3,
David F. Manlove3, and Emmanouil Pountourakis1

1 Dept. of Electrical Engineering and Computer Science, Northwestern University
2 Microsoft Research New England

3 School of Computing Science, University of Glasgow

Abstract. In the Hospitals/Residents (HR) problem, agents are parti-
tioned into hospitals and residents. Each agent wishes to be matched to
an agent (or agents) in the other set and has a strict preference over these
potential matches. A matching is stable if there are no blocking pairs,
i.e., no pair of agents that prefer each other to their assigned matches.
Such a situation is undesirable as it could lead to a deviation in which
the blocking pair form a private arrangement outside the matching. This
however assumes that the blocking pair have social ties or communica-
tion channels to facilitate the deviation. Relaxing the stability definition
to take account of the potential lack of social ties between agents can
yield larger stable matchings.

In this paper, we define the Hospitals/Residents problem under Social
Stability (HRSS) which takes into account social ties between agents by
introducing a social network graph to the HR problem. Edges in the social
network graph correspond to resident-hospital pairs in the HR instance
that know one another. Pairs that do not have corresponding edges in
the social network graph can belong to a matching M but they can never
block M . Relative to a relaxed stability definition for HRSS, called social
stability, we show that socially stable matchings can have different sizes
and the problem of finding a maximum socially stable matching is NP-
hard, though approximable within 3/2. Furthermore we give polynomial
time algorithms for special cases of the problem.

1 Introduction

Matching problems generally involve the assignment of a set (or sets) of agents
to one another. Agents may be required to list other agents they find acceptable
in order of preference, either explicitly or implicitly through a list of desirable
characteristics. Agents may also be subject to capacity constraints, indicating
the maximum number of assignments they are allowed to be involved in.

An example of such a matching problem that has received much attention in
literature is the Hospitals/Residents problem (HR) [9,10,18,15]. An HR instance
consists of a set of residents seeking to be matched to a set of hospitals. Each
resident ranks a subset of the hospitals in strict order of preference, and vice
versa. Further, each resident forms an acceptable pair with every hospital on his

F. Dehne, R. Solis-Oba, and J.-R. Sack (Eds.): WADS 2013, LNCS 8037, pp. 85–96, 2013.

© Springer-Verlag Berlin Heidelberg 2013



86 G. Askalidis et al.

preference list. Finally, each hospital has a capacity, indicating the maximum
number of residents that it can be assigned. A matching is a set assignments
among acceptable pairs such that no resident is assigned to more than one hos-
pital, and no hospital exceeds its capacity. An acceptable pair forms a blocking
pair with respect to a matching, or blocks a matching, if both agents would
rather be assigned to each other than remain with their assignees (if any) in the
matching. A matching is stable if it admits no blocking pair. HR has a wide range
of applications including traditional markets like the assignment of graduating
medical students (residents) to hospitals [13,17] and students to high schools
[1,2], and online markets like oDesk (an online labour market), AirBnB (an on-
line short-term housing rental market), and Match.com/OkCupid/etc. (online
dating markets). In applications such as these, it has been convincingly argued
that stability is a desirable property of a matching [17].

Although the concept of stability is important in many applications of match-
ing problems, there are classes of matching problems (such as the Stable Room-
mates problem) for which an instance is not guaranteed to admit a stable match-
ing [9]. Moreover, enforcing the stability requirement tends to reduce the size
of matchings discovered [6]. This is an issue particularly in the case of appli-
cations where it is desirable to find the largest possible matching. Also, it is
generally assumed that a resident-hospital pair that blocks a matching in theory
will also block the matching in practice. However this assumption is not always
true in some real-life applications, as resident-hospital pairs are more likely to
form blocking pairs in practice if social ties exist between them. These factors
have motivated studies into alternative, weaker stability definitions that still aim
to prevent a given matching from being subverted in practice while increasing
the number of agents involved in the matchings.

Arcaute and Vassilvitskii [3] described the Hospitals/Residents problem in the
context of assigning job applicants to company positions. They observed that
applicants are more likely to be employed by a company if they are recommended
by their friends who are already employees of that company. In their model, an
applicant-company pair (a, c) may block a matching M if (a, c) blocks it in the
traditional sense (as described in the analogous HR context) and a is friends
with another applicant a′ assigned to c in M . Thus their problem incorporates
both the traditional HR problem and additionally an underlying social network,
represented as an undirected graph consisting of applicants as nodes and edges
between nodes where the corresponding applicants have some social ties (e.g.,
are friends). Matchings that admit no blocking pair in this context are called
locally stable due to the addition of the informational constraint on blocking
pairs. Cheng and McDermid [8] investigated the problem (which they called
HR+SN) further and established various algorithmic properties and complexity
results. They showed that locally stable matchings can be of different sizes and
the problem of finding a maximum locally stable matching is NP-hard. They
identified special cases where the problem is polynomially solvable and gave
upper and lower bounds on the approximability of the problem.



Socially Stable Matchings in the Hospitals/Residents Problem 87

While the HR+SN model is quite natural in the job market, it makes an
assumption that the employed applicant a′ will always be willing to make a
recommendation. This however may not be the case as a recommendation may
in practice lead to a′ being rejected by his assigned company. Ultimately this
may lead to a reassignment for a′ to a worse company or indeed a′ may end up
unmatched. While it is true that a scenario may arise where these social ties
between applicants may lead to a blocking pair of a matching, it is arguably
equally likely that social ties between an applicant and the company itself will
exist. That is, an applicant need not know another applicant who was employed
by the company in order to block a matching; it is enough for him to know any
employee in the company (for example the Head of Human Resources). Such a
model could also be natural in many applications both within and beyond the
job market context.

Additionally, many matching markets are cleared by a centralised clearing-
house. While more traditional markets require agents to explicitly list potential
matches, many online markets ask agents to list desirable characteristics and
then use software to infer the preference lists of the agents. In these markets,
communication between agents is facilitated by the centralised clearinghouse.
Some agent pairs in the market may have social ties outside the clearinghouse.
Often these social ties are due to past interactions within the marketplace and
so the clearinghouse is aware of them. These pairs can communicate outside the
clearinghouse and might block proposed matchings. Most pairs, however, only
become aware of each other when the clearinghouse proposes them as a match.
Thus even if they prefer each other to their assigned matches, they will not be
able to discover each other and deviate from the matching.

Based on these ideas, we present a variant of HR called the Hospitals / Res-
idents problem under Social Stability (HRSS). In this model, which we describe
in the context of assigning graduating medical residents to hospital positions, we
assume that a resident-hospital pair will only form a blocking pair in practice if
there exists some social relationship between them. Two agents that have such
a social relationship are called an acquainted pair, and this is represented by
an edge in a social network graph. We call a pair of agents that do not have
such a social relationship an unacquainted pair. Such a pair may be part of a
matching M (given that M is typically constructed by a trusted third party,
i.e., a centralised clearinghouse) but cannot form a blocking pair with respect
to M . As a consequence, although a resident-hospital pair may form a blocking
pair in the classical sense, if they are an unacquainted pair, they will not form a
blocking pair in the HRSS context. A matching that admits no blocking pair in
this new context is said to be socially stable. We denote the one-to-one restric-
tion of HRSS as the Stable Marriage problem with Incomplete lists under Social
Stability (SMISS).

Hoefer and Wagner [11,12] studied a problem that generalises both HR+SN
and HRSS. In their model, the social network graph involves all agents and need
not be bipartite. A pair locally blocks a given matching M if (i) it blocks in the
classical sense, and (ii) the agents involved are at most l edges apart in the social



88 G. Askalidis et al.

network graph augmented by M . This scenario can be viewed as a generalisation
of the HR+SN (l = 2) and HRSS (l = 1) models. They studied the convergence
time for better-response dynamics that converge to locally stable matchings, and
also established a lower bound for the approximabiliy of the problem of finding
a maximum locally stable matching (for the case that l ≤ 2).

Locally stable matchings have also been investigated in the context of the Sta-
ble Roommates problem (a non-bipartite generalisation of the Stable Marriage
problem) in [7]. Here, the Stable Roommates problem with Free edges (SRF) as
introduced was motivated by the observation that, in kidney exchange matching
schemes, donors and recipients do not always have full information about others
and are more likely to have information only on others in the same transplant
centre as them. The problem is defined by the traditional Stable Roommates
problem together with a set of free edges. These correspond to pairs of agents in
different transplant centres that do not share preference information; such pairs
may be involved in stable matchings, but cannot block any matching. It is shown
in [7] that the problem of determining whether a stable matching exists, given
an SRF instance, is NP-complete.

In this paper, we present some algorithmic results for the HRSS model de-
scribed above. In Section 2, we present some preliminary definitions and observa-
tions. In Section 3, we consider the approximability of MAX HRSS, the problem
of finding a maximum socially stable matching in an HRSS instance. We give a
3/2-approximation algorithm for the problem, and also show that it is not ap-
proximable within 21/19−ε, for any ε > 0, unless P=NP, and not approximable
within 3/2−ε, for any ε > 0, assuming the Unique Games Conjecture. In Section
4 we present polynomial-time algorithms for two special cases of MAX HRSS
where (i) the number of unacquainted pairs is constant, and (ii) the number of
acquainted pairs is constant. Finally some open problems are given in Section 5.
All proofs for this paper are omitted for space reasons but can be found in [5].

2 Preliminary Definitions and Results

An instance I of the Hospitals/Residents problem (HR), as defined in [9], con-
tains a set R = {r1, r2, ..., rn1} of residents, a set H = {h1, h2, ..., hn2} of hospi-
tals. Each resident ri ∈ R ranks a subset of H in strict order of preference; each
hospital hj ∈ H ranks a subset of R, consisting of those residents who ranked
hj , in strict order of preference. Each hospital hj also has a capacity cj ∈ Z+

indicating the maximum number of residents that can be assigned to it. A pair
(ri, hj) is called an acceptable pair if hj appears in ri’s preference list. We denote
by A the set of all acceptable pairs. A matching M is a set of acceptable pairs
such that each resident is assigned to at most one hospital and the number of
residents assigned to each hospital does not exceed its capacity. If ri is matched
in M , we denote the hospital assigned to resident ri in M by M(ri). We de-
note the set of residents assigned to hospital hj in M as M(hj). A resident ri
is unmatched in M if no pair in M contains ri. A hospital hj is undersubscribed
in M if |M(hj)| < cj . A pair (ri, hj) is said to block a matching M , or form a



Socially Stable Matchings in the Hospitals/Residents Problem 89

men’s preferences women’s preferences
m1: w1 w1: m2 m1

m2: w1 w2 w2: m2

Fig. 1. SMISS instance (I,G)

blocking pair with respect to M , in the classical sense, if (i) ri is unmatched in
M or prefers hj to M(ri) and (ii) hj is undersubscribed in M or prefers ri to
some resident in M(hj). A matching that admits no blocking pair is stable.

We define an instance (I,G) of the Hospitals/Residents Problem under Social
Stability (HRSS) as consisting of an HR instance I (as defined above) and a
bipartite graph G = (R ∪ H,A), where A ⊆ A. A pair (ri, hj) belongs to A if
and only if ri has social ties with hj . We call (ri, hj) an acquainted pair. We
also define the set of unacquainted pairs (which cannot block any matching) to
be U = A\A. A pair (ri, hj) socially blocks a matching M , or forms a social
blocking pair with respect to M , if (ri, hj) blocks M in the classical sense in the
underlying HR instance I and (ri, hj) ∈ A. A matching M is said to be socially
stable if there exists no social blocking pair with respect to M . If we restrict the
hospitals’ capacities to 1, we obtain the Stable Marriage problem with Incomplete
lists under Social Stability (SMISS).

Clearly every instance of HRSS admits a socially stable matching. This is
because the underlying HR instance is bound to admit a stable matching [9]
which is also socially stable. However socially stable matchings could be larger
than stable matchings. Consider the SMISS instance (I,G) shown in Figure 1,
where the acquainted pairs in the social network graph are underlined in the
preference lists. Matchings M1 = {(m1, w1), (m2, w2)} and M2 = {(m2, w1)} are
both socially stable in (I,G) and M2 is the unique stable matching. Thus an
instance of SMISS (and hence HRSS) can admit a socially stable matching that
is twice the size of a stable matching. Clearly the instance shown in Figure 1 can
be replicated to give an arbitrarily large SMISS instance with a socially stable
matching that is twice the size of a stable matching. This, and applications where
we seek to match as many agents as possible, motivates MAX HRSS.

There is also a strong relationship between HRSS and the HR+SN problem
described in [8]. We have shown (following an idea of Király) in [5] that an
instance (I,G) of HRSS can be transformed in polynomial time to an instance
(I ′, G′) of HR+SN such that a socially stable matching M in (I,G) is locally
stable in (I ′, G′) and a complete locally stable matching (one in which all the
residents are matched) in (I ′, G′) is a complete socially stable matching in (I,G).

3 Approximating MAX HRSS

We begin this section by noting that MAX HRSS is NP-hard even in a very
restricted setting. Let MAX SMISS denote the restriction of MAX HRSS in
which all hospitals have capacity 1.

Theorem 1. MAX SMISS is NP-hard even if each list is of length at most 3.



90 G. Askalidis et al.

In order to deal with this hardness, polynomial-time approximation algorithms
can be developed for MAX HRSS. In this section we present a 3/2-approximation
algorithm for MAX HRSS. We show this is tight assuming the Unique Games
Conjecture (UGC), and also show a 21/19− ε lower bound assuming P 	= NP .
The lower bounds hold even for MAX SMISS. We start by giving the inapprox-
imability result assuming P 	=NP.

Theorem 2. MAX SMISS is not approximable within 21/19−ε, for any ε > 0,
unless P=NP.

We can obtain a better lower bound of 3/2− ε, for any ε > 0, if we strengthen
our assumption from P 	= NP to the truth of the UGC.

Theorem 3. Assuming the UGC, MAX SMISS cannot be approximated within
3/2− ε, for any ε > 0.

For the upper bound for MAX HRSS, we observe that a technique known as
cloning has been described in literature [10,18], which may be used to convert an
HR instance I into an instance I ′ of the Stable Marriage problem with Incomplete
lists in polynomial time, such that there is a one-to-one correspondence between
the set of stable matchings in I and I ′. A similar technique can be used to
convert an HRSS instance to an SMISS instance in polynomial time.

Theorem 4. Given an instance (I,G) of HRSS, we may construct in O(n1 +
cmaxm) time an instance (I ′, G′) of SMISS such that a socially stable matching
M in (I,G) can be transformed in O(cmaxm) time to a socially stable matching
M ′ in (I ′, G′) with |M ′| = |M | and conversely, where n1 is the number of resi-
dents, cmax is the maximum hospital capacity and m is the number of acceptable
resident-hospital pairs in I.

Due to Theorem 4, an approximation algorithm α for MAX SMISS with per-
formance guarantee c (for some constant c > 0) can be used to obtain an ap-
proximation for MAX HRSS with the same performance guarantee. This can be
done by cloning the HRSS instance (I,G) to form an SMISS instance (I ′, G′),
and applying α to (I ′, G′) to obtain a matching M ′. This matching can then be
transformed to a matching M in (I,G) such that |M | = |M ′|. Our first upper
bound for MAX HRSS is an immediate consequence of the fact that any stable
matching is at least half the size of a maximum socially stable matching.

Proposition 5. MAX HRSS is approximable within a factor of 2.

We now present a 3/2-approximation algorithm for MAX SMISS. The algorithm
relies on the principles outlined in the 3/2-approximation algorithms for the
general case of MAX HRT, the problem of finding a maximum cardinality stable
matching given an instance of the Hospitals / Residents problem with Ties, as
presented by Király [14] and McDermid [16]. Given an instance (I,G) of SMISS,
the algorithm works by running a modified version of the extended Gale-Shapley
algorithm [9] where unmatched men are given a chance to propose again by
promoting them on all the preference lists on which they appear. Let A and U
denote the sets of acquainted and unacquainted pairs in (I,G) respectively.



Socially Stable Matchings in the Hospitals/Residents Problem 91

Consider a woman wj in (I,G). We denote an unacquainted man mi on wj’s
preference list as one where (mi, wj) ∈ U . Similarly we denote an acquainted man
mi on wj’s preference list as one where (mi, wj) ∈ A. For a man mi, we denote
next(mi) as the next woman on mi’s list succeeding the last woman to whom he
proposed to or the first woman on mi’s list if he has been newly promoted or is
proposing for the first time. During the execution of the algorithm if a man runs
out of women to propose to on his list for the first time, he is promoted, thus
allowing him to propose to the remaining women on his list beginning from the
first. A man can only be promoted once during the execution of the algorithm.
If a promoted man still remains unmatched after proposing to all the women on
his preference list, he is removed from the instance and will not be part of the
final matching.

In the classical Gale-Shapley algorithm [9], a woman wj prefers a man mi

to another mk if rank(wj ,mi) < rank(wj ,mk). We define a modified version
of the extended Gale-Shapley algorithm [10], mod-EXGS, where a woman does
not accept or reject proposals from men solely on the basis of their positions
on her preference list, but also on the basis of their status as to whether they
are acquainted or unacquainted men on her list and whether they have been
promoted. Given two men mi and mk on a woman wj ’s preference list, we define
the relations �wj , �′wj

and ≺wj as follows:

Definition 6. Let mi and mk be any two men on a woman wj ’s list. Then
1. mi �wj mk if either

(i) (mi, wj) ∈ U , (mk, wj) ∈ U , mi is promoted and mk is unpromoted or
(ii) (mi, wj) ∈ A, (mk, wj) ∈ U and mk is unpromoted.

2. mi �
′
wj

mk if mi /�wj
mk , mk /�wj

mi and wj prefers mi to mk in the classical
sense.
We define ≺wj= �wj ∪ �′wj

.

The relation ≺wj will be used to determine whether a proposal from a man is
accepted or rejected by wj .

The main algorithm approx-SMISS (as shown in Algorithm 1) starts by calling
mod-EXGS (as shown in Algorithm 2) where a proposal sequence is started by
allowing each man to propose to women beginning from the first woman on his
preference list. If a man mi proposes to a woman wj on his list and wj is matched
and mi ≺wj M(wj), then wj is unmatched from her partner mk, and mk will be
allowed to continue proposing to other women on his list. wj is then assigned to
mi. On the other hand, if M(wj) ≺wj mi then wj rejects mi’s proposal. Also if wj

is unmatched when mi proposes, she is assigned to mi. Irrespective of whether
the proposal from mi is accepted or rejected, if (mi, wj) ∈ A then all pairs
(mk, wj) such that rank(wj ,mk) > rank(wj ,mi) are deleted from the instance.
However if (mi, wj) ∈ U no such deletions take place. This proposal sequence
continues until every man is either matched or has exhausted his preference list.

After each proposal sequence (where control is returned to the approx-SMISS
algorithm), if a promoted man still remains unmatched after proposing to all
the women on his preference list, he is removed from the instance. Also if a
previously unpromoted man exhausts his preference lists and is still unmatched,



92 G. Askalidis et al.

Algorithm 1. approx-SMISS

1: initial matching M = ∅;
2: while some unmatched man with a non-empty preference list exists do
3: call mod-EXGS;
4: for all mi such that mi is unmatched and promoted do
5: remove mi from instance;
6: end for
7: for all mi such that mi is unmatched, unpromoted and has a non-empty pref-

erence list do
8: promote mi;
9: end for
10: end while
11: return the resulting matching M ;

Algorithm 2. mod-EXGS

1: while some man mi is unmatched and still has a woman left on his list do
2: wj = next(mi);
3: if wj is matched in M and mi ≺wj M(wj) then
4: M = M \ {(M(wj), wj)};
5: end if
6: if wj is unmatched in M then
7: M = M ∪ {(mi, wj)};
8: end if
9: if (mi, wj) ∈ A then
10: for each mk such that (mk, wj) ∈ A and rank(wj ,mk) > rank(wj ,mi) do
11: delete (mk, wj) from instance;
12: end for
13: end if
14: end while

he is promoted and a new proposal sequence initiated (by calling mod-EXGS ).
The algorithm terminates when each man either (i) is assigned a partner, (ii)
has no woman on his preference list or (iii) has been promoted and has proposed
to all the women on his preference list for a second time.

Lemma 7. If algorithm approx-SMISS is executed on an SMISS instance (I,G),
it terminates with a socially stable matching M in (I,G).

The execution of the mod-EXGS algorithm takes O(m) time where m = |A|
is the number of acceptable pairs. These executions can be performed at most
2n1 times, where n1 is the number of men, as a man is given at most two
chances to propose to the women on his list. Thus the overall time complexity
of the algorithm is O(n1m). The above results, together with Theorem 4, lead
us to state the following theorem concerning the performance guarantee of the
approximation algorithm for MAX HRSS.

Theorem 8. MAX HRSS is approximable within a factor of 3/2.



Socially Stable Matchings in the Hospitals/Residents Problem 93

men’s preferences women’s preferences
m1: w1 w3 w1: m2 m1

m2: w1 w2 w2: m2 m3

m3: w2 w3: m1

Fig. 2. |Mopt| = (3/2).|M |

The SMISS instance shown in Figure 2 (where the acquainted pairs in the social
network graph are underlined in the preference lists) shows that the 3/2 bound
for the algorithm is tight. Here Mopt = {(m1, w3), (m2, w1), (m3, w2)} is the
unique maximum socially stable matching. Also the approximation algorithm
outputs M = {(m1, w1), (m2, w2)} irrespective of the order in which proposals
are made. Clearly this instance can be replicated to obtain an arbitrarily large
SMISS instance for which the performance guarantee is tight.

We remark that a similar 3/2-approximation algorithm for MAX HRSS was
presented independently by Askalidis et al. in [4].

4 Some Special Cases of HRSS

Given the hardness results obtained for the problem of finding a maximum so-
cially stable matching in a general HRSS instance, the need arises to investigate
special cases of the problem that are tractable. This section describes some
polynomial-time solvability results for two special cases of HRSS.

Before presenting the two main results of this section, we first note that we
have given an O(n3/2 logn) algorithm for finding a maximum socially stable
matching, given an instance of MAX SMISS where each man is allowed to have
at most two women on his preference list and n is the total number of men and
women involved. This algorithm, presented in [5], is omitted for space reasons.

4.1 HRSS with a Constant Number of Unacquainted Pairs

It is easy to see that in the special case where the set U of unacquainted pairs
is exactly the set A of acceptable pairs in the underlying HR instance, then
the set A of acquainted pairs satisfies A = ∅ and every matching found is a
socially stable matching. Also if the instance contains no unacquainted pairs
(i.e., A = A and U = ∅), then only stable matchings in the classical sense are
socially stable. In both these cases, a maximum socially stable matching can be
generated in polynomial time. The case may however arise where the number of
unacquainted pairs is constant. In this case, we show that it is also possible to
generate a maximum socially stable matching in polynomial time.

Let (I,G) be an instance of HRSS and let S ⊆ A be a subset of the acceptable
pairs in I. We denote I\S as the instance of HR obtained from I by deleting the
pairs in S from the preference lists in I. The following proposition plays a key
role in establishing the correctness of the algorithm.



94 G. Askalidis et al.

Proposition 9. Let (I,G) be an instance of HRSS. Let M be a socially stable
matching in (I,G). Then there exists a set of unacquainted pairs U ′ ⊆ U such
that M is stable in I ′ = I\U ′. Conversely suppose that M is a stable matching
in I ′ = I\U ′ for some U ′ ⊆ U . Then M is socially stable in (I,G).

By considering all subsets U ′ ⊆ U , forming I ′, finding a stable matching in
each such I ′ and keeping a record of the maximum stable matching found, we
obtain a maximum socially stable matching in (I,G). This discussion leads to
the following theorem.

Theorem 10. Given an instance (I,G) of HRSS where the set U of unac-
quainted pairs is of constant size, a maximum socially stable matching can be
generated in O(m) time, where m = |A| is the number of acceptable pairs.

4.2 HRSS with a Constant Number of Acquainted Pairs

We now consider the restriction of HRSS in which the set A of acquainted
pairs is of constant size k. Given an instance (I,G) of this problem we show
that a maximum socially stable matching can be found in polynomial time. Let
A = {e1, e2, ..., ek} where ei represents an acquainted pair (rsi , hti) (1 ≤ i ≤ k).
A tree T of depth k is constructed with all nodes at depth i labelled ei+1 (i ≥
0). There are left and right branches below ei. Each branch corresponds to a
condition placed on rsi or hti with respect to a matching M . The left branch
below ei (i.e., a resident condition branch) corresponds to the condition that
rsi is matched in M and prefers his partner to hti . The right branch below ei
(i.e., a hospital condition branch) corresponds to the condition that hti is fully
subscribed in M and has a partner no worse than rsi . Satisfying at least one
of these conditions ensures that M admits no blocking pair involving (rsi , hti).
The tree is constructed in this manner with the nodes at depth k − 1, labelled
ek, branching in the same way to dummy leaf nodes ek+1 (not representing
acquainted pairs).

A path P from the root node e1 to a leaf node ek+1 will visit all pairs in
A exactly once. Every left branch in P gives a resident condition and every
right branch gives a hospital condition. Let R′ and H ′ be the set of residents
and hospitals involved in resident and hospital conditions in P respectively.
Given a matching M , enforcing all the conditions along P can be achieved by
first deleting all pairs from the instance I that could potentially violate these
conditions. So if some resident condition along P states that a resident rsi must
be matched in M to a hospital he prefers to hti then rsi ’s preference list is
truncated starting with hti . If some hospital condition states that a hospital hti

must be fully subscribed in M and must not be matched to a resident worse than
rsi then hti ’s preference list is truncated starting from the resident immediately
following rsi . After performing these truncations based on the conditions along
P , a new HR instance I ′ is obtained.

Proposition 11. If M is a matching in I ′ that is computed at the leaf node of
a path P and all residents in R′ are matched in M and all hospitals in H ′ are
fully subscribed in M then M is a socially stable matching in (I,G).



Socially Stable Matchings in the Hospitals/Residents Problem 95

By finding a maximum weight matching in a suitable weighted graph (see [5] for
further details), we may in polynomial time find a largest matching M satisfying
the constraints of Proposition 11 or report that no such matching exists. In the
latter case P is ruled as infeasible and another path is considered, otherwise P
is called feasible.

There are 2k paths from the root node to leaf nodes in the tree T . The following
proposition is important to our result.

Proposition 12. There must exist at least one feasible path in T .

To generate a maximum socially stable matching M in an instance (I,G) of
HRSS, all 2k paths through T from the root node to leaf nodes are considered
with a record kept of the largest matching M (satisfying the constraints of
Proposition 11) computed at the leaf node of each feasible path. M is then the
desired matching as the following proposition shows

Proposition 13. If M is a matching obtained from the process described above,
M is a maximum socially stable matching in (I, G).

The above proposition leads to the following main result of this subsection.

Theorem 14. Given an instance (I,G) of HRSS where the set A of acquainted
pairs satisfies |A| = k for some constant k, a maximum socially stable matching
can be generated in O(cmaxm

√
n1 + C) time where n1 is the number of residents,

m is the number of acceptable pairs, cmax is the largest capacity of any hospital
and C is the total capacity of all the hospitals in the problem instance.

Following the results in Theorems 10 and 14, we conclude this section with the
theorem below showing the existence of FPT algorithms for MAX HRSS under
two different parameterisations.

Theorem 15. MAX HRSS is in FPT with parameter k, where either k = |A|
or k = |U |, and A and U are the sets of acquainted and unacquainted pairs
respectively.

5 Open Problems

The study of the Hospitals / Residents problem under Social Stability is still at
an early stage, and some interesting open problems remain. Firstly it is worth
considering the scenario where ties exist in the preference lists of agents. Also
it could be argued that information about undersubscribed hospitals would be
in the public domain, and hence an undersubscribed hospital may form an ac-
quainted pair with all the residents on its preference list. It would be interesting
to investigate algorithmic aspects of this variant of HRSS.

Acknowledgments. The fourth author is supported by grant EP/K010042/1
from the Engineering and Physical Sciences Research Council. We would like
to thank Martin Hoefer for making the third and fourth authors aware of [4];
Zoltán Király for observing Theorem 15 and for other valuable comments; and
Rob Irving and an anonymous referee for further valuable suggestions concerning
this paper.



96 G. Askalidis et al.

References

1. Abdulkadiroǧlu, A., Pathak, P.A., Roth, A.E.: The Boston public school match.
American Economic Review 95(2), 368–371 (2005)

2. Abdulkadiroǧlu, A., Pathak, P.A., Roth, A.E.: The New York City high school
match. American Economic Review 95(2), 364–367 (2005)

3. Arcaute, E., Vassilvitskii, S.: Social networks and stable matchings in the job mar-
ket. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929, pp. 220–231. Springer,
Heidelberg (2009)

4. Askalidis, G., Immorlica, N., Pountourakis, E.: Socially stable matchings. CoRR
Technical Report 1302.3309, http://arxiv.org/abs/1302.3309

5. Askalidis, G., Immorlica, N., Kwanashie, A., Manlove, D.F., Pountourakis, E.:
Socially stable matchings in the Hospitals / Residents problem. CoRR Technical
Report 1303.2041, http://arxiv.org/abs/1303.2041

6. Biró, P., Manlove, D.F., Mittal, S.: Size versus stability in the marriage problem.
Theoretical Computer Science 411, 1828–1841 (2010)

7. Cechlárová, K., Fleiner, T.: Stable roommates with free edges. Technical Re-
port 2009-01, Egerváry Research Group on Combinatorial Optimization, Budapest
(2009)

8. Cheng, C., McDermid, E.: Maximum locally stable matchings. In: Proc. MATCH-
UP 2012, pp. 51–62 (2012)

9. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. American
Mathematical Monthly 69, 9–15 (1962)

10. Gusfield, D., Irving, R.W.: The Stable Marriage Problem: Structure and Algo-
rithms. MIT Press (1989)

11. Hoefer, M.: Local matching dynamics in social networks. Information and Compu-
tation 222, 20–35 (2013)

12. Hoefer, M., Wagner, L.: Locally stable marriage with strict preferences. In:
Smotrovs, J., Yakaryilmaz, A. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp.
620–631. Springer, Heidelberg (2013)

13. Irving, R.W.: Matching medical students to pairs of hospitals: A new variation on
a well-known theme. In: Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G.
(eds.) ESA 1998. LNCS, vol. 1461, pp. 381–392. Springer, Heidelberg (1998)

14. Király, Z.: Linear time local approximation algorithm for maximum stable mar-
riage. In: Proc. MATCH-UP 2012, pp. 99–110 (2012)

15. Manlove, D.F.: Algorithmics of Matching Under Preferences. World Scientific
(2013)

16. McDermid, E.: A 3/2-approximation algorithm for general stable marriage. In:
Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W.
(eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 689–700. Springer, Heidelberg
(2009)

17. Roth, A.E.: The evolution of the labor market for medical interns and residents: a
case study in game theory. Journal of Political Economy 92(6), 991–1016 (1984)

18. Roth, A.E., Sotomayor, M.A.O.: Two-sided matching: a study in game-theoretic
modeling and analysis. Cambridge University Press (1990)

http://arxiv.org/abs/1302.3309
http://arxiv.org/abs/1303.2041


Parameterized Complexity of 1-Planarity

Michael J. Bannister1, Sergio Cabello2, and David Eppstein1

1 Department of Computer Science, University of California, Irvine, USA
2 Faculty of Mathematics and Physics, University of Ljubljana, Slovenia

Abstract. We consider the problem of finding a 1-planar drawing for
a general graph, where a 1-planar drawing is a drawing in which each
edge participates in at most one crossing. Since this problem is known to
be NP-hard we investigate the parameterized complexity of the problem
with respect to the vertex cover number, tree-depth, and cyclomatic
number. For these parameters we construct fixed-parameter tractable
algorithms. However, the problem remains NP-complete for graphs of
bounded bandwidth, pathwidth, or treewidth.

1 Introduction

1-planar graphs (the graphs that can be drawn in the plane with at most one
crossing per edge) were introduced by Ringel in 1965 [23] and have since been
extensively studied from the point of view of basic properties such as their color-
ings [2,6], edge density [3,22,24], characterization by forbidden subgraphs [18,19],
and embeddings on nonplanar surfaces [26]. In graph drawing, 1-planarity has
more recently become of interest, as a way of generalizing planar drawings in a
controlled way that does not lead to too much visual complexity. Works in this
area have compared 1-planarity to other forms of controlled crossings such as
RAC (right-angle-crossing) graphs [11], found an algorithmic characterization of
the 1-planar drawings that can be straightened to have all edges represented by
straight line segments [17], and studied the transformation of rotation systems
into 1-planar drawings [10]. However, until now there have been no published
algorithms for finding 1-planar drawings of arbitrary graphs. Unfortunately, test-
ing 1-planarity is NP-hard in general [14,19], even for graphs obtained from pla-
nar graphs by adding a single edge [4], so we cannot expect it to be solved by
an algorithm whose running time is a polynomial of the input size.

Because of the difficulty of recognizing 1-planar drawings, and their usefulness
in graph drawing, it becomes of interest to study the complexity of algorithms for
testing 1-planarity that are not fully polynomial. An important tool for this sort
of study is parameterized complexity [9,13], according to which we seek additional
numeric parameters (other than the numbers of edges and vertices) that measure
the complexity of an input graph, and seek algorithms whose running time is the
product of a polynomial in the input size and a non-polynomial function of the
other parameter or parameters. If this can be accomplished, the result will in
general be an algorithm that solves the problem correctly on all graphs, that can

F. Dehne, R. Solis-Oba, and J.-R. Sack (Eds.): WADS 2013, LNCS 8037, pp. 97–108, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



98 M.J. Bannister, S. Cabello, and D. Eppstein

be relied on to be efficient for graphs that have small values of the parameter,
and that has a performance that degrades gracefully as the parameter increases.

In this paper we study for the first time the parameterized complexity of
1-planarity. We provide a fixed-parameter tractable algorithm for the problem
when it is parameterized by the cyclomatic number (the minimum number of
edges that must be removed from the graph to make a forest) or the tree-depth.
For a third parameter, the vertex cover number, we show that even more efficient
FPT algorithms are possible, based on a polynomial kernel (a transformation of
any instance to an equivalent instance with size polynomial in the parameter).
However, as we show in the full version of this paper, the problem remains NP-
complete for graphs of bounded bandwidth; therefore, it is unlikely that there
exists a fixed-parameter tractable algorithm for 1-planarity when parameterized
by bandwidth, pathwidth, treewidth, or clique-width.

Although our primary motivation is in understanding the complexity of 1-
planarity, our research on the vertex cover and tree-depth parameters has a
secondary purpose as well, in exploring the circumstances in which general theo-
rems that guarantee the existence of an inexplicit FPT algorithm (with unknown
dependence on the parameter) can be made explicit. It is known that the graphs
of bounded vertex cover number, and the graphs of bounded tree-depth, are
well-quasi-ordered under induced subgraphs [21]. This means that for any graph
recognition problem closed under induced subgraphs (as 1-planarity is), and for
any fixed bound on vertex cover or tree-depth, there is a finite set of forbidden
induced subgraphs that can be used to characterize the problem, and a linear
time recognition algorithm. However, the theorems that prove these results do
not imply any computable bound on the size of these forbidden subgraphs or on
the dependence on the parameter of these linear time algorithms. In contrast, for
1-planarity with these parameters we provide algorithms whose dependence on
the parameter is known, explicit, and computable (albeit impractically large).

2 Vertex Cover Number

The vertex cover number k of an undirected graph G is the minimum number
of vertices needed to touch all of the edges of G. This number is central to the
theory of parameterized complexity, to the point where Guo et al. call it “the
Drosophila of fixed-parameter algorithmics” [15]. After much earlier work on the
problem, the best fixed-parameter tractable algorithms for computing the vertex
cover number, parameterized by this number, take time O(1.2738k +kn) [5]. We
will show that, when parameterized by vertex cover number, 1-planarity is also
fixed-parameter tractable, using a standard technique, kernelization, whereby
we replace an instance graph by an equivalent instance of size bounded by a
function of the kernel. Although the vertex cover number is a weaker parameter
than the tree-depth that we consider later (a graph of vertex cover number k
has tree-depth at most k+ 1), we begin with this parameter for two reasons: (1)
for this parameter we achieve stronger results, namely a polynomial kernel, than
we do for the other parameters that we consider, and (2) the simplicity of this
case makes it an appropriate warm-up for the other parameters.



Parameterized Complexity of 1-Planarity 99

Fig. 1. Kernelization for vertex cover number k: remove degree-one vertices, and re-
duce each K2,i subgraph (with two cover vertices on one side of the bipartition) to
K2,min{i,2k−3}. Here k = 3, so the K2,i subgraphs are reduced to K2,3.

Lemma 1 (Czap and Hudák [7]). A complete bipartite graph is 1-planar if
and only if it is of the form K1,n, K2,n, K3,i for i ∈ {3, 4, 5, 6}, or K4,4.

Lemma 2. Testing 1-planarity of an n-vertex graph G takes time 2O(n).

Proof. If G has more than 4n edges, we return that it is not 1-planar [22].
Otherwise, we proceed with a divide and conquer algorithm: the existence of
cycle separators [20] implies that in any 1-planar drawing there is a curve passing
through O(

√
n) vertices that separates the drawing into two balanced parts. We

can then solve the problem by solving 2O(n) subproblems, each of them smaller
by a constant fraction. 
�

Lemma 3. Let G be a 1-planar graph, with a subgraph H of the form K2,i

formed by i vertices of degree two, all with the same two neighbors. Then G has
a 1-planar drawing in which the induced drawing of H is planar.

Proof. If two edges of H that share an endpoint cross then we can uncross them,
resulting in a drawing with fewer crossings, and if two non-incident edges of H
cross each other then we can redraw all of H without crossings near the previous
position of these two crossed edges, again reducing the total number of crossings.
Therefore, a 1-planar drawing of G that minimizes the total number of crossings
has the desired property. 
�

Lemma 4. Let a graph G have a known vertex cover C of size |C| = k. Then
in time O(n) we can transform G into an kernel GC of size O(k2) such that
G is 1-planar if and only if GC is 1-planar. A 1-planar drawing of GC may be
transformed into a 1-planar drawing of G in linear time.

Proof. Delete any vertices of degree one in G\C; this cannot change 1-planarity.
If G is to be 1-planar, there are at most 5k two-edge paths connecting distinct
pairs of vertices of C through a different vertex of G \ C; otherwise smoothing
out the internal vertices of those 5k paths we would contradict the bound on [22]
for drawings with at most two crossings per edge. Moreover, in G \ C there are



100 M.J. Bannister, S. Cabello, and D. Eppstein

at most 6k vertices of degree three or more sharing any two fixed neighbors in
C, as otherwise G contains a K3,7. It follows that G \ C has O(k2) vertices of
degree three or more, if G is 1-planar.

The vertices of degree two in G\C can be grouped by radix sort according to
the identities of their two neighbors in C, forming a collection of K2,i subgraphs.
If G is 1-planar, there are O(k) such subgraphs K2,i because each of them gives
a two-edge path connecting two distinct vertices of C. If one of these K2,i sub-
graphs has i > 2k−3 then we claim that G is 1-planar if and only if the subgraph
G′ formed by deleting i−(2k−3) vertices within this subgraph to form a smaller
K2,2k−3 subgraph is also 1-planar. In one direction, if G is 1-planar, then clearly
so is G′. In the other direction, suppose G′ is 1-planar; then by Lemma 3 it has
a 1-planar drawing in which the given K2,2k−3 subgraph is drawn planarly, with
2k − 3 quadrilateral faces. Two adjacent faces among this set of 2k − 3 must
be empty of the k − 2 vertices of C that are not part of the K2,2k−3 subgraph.
Therefore, the two edges e and f separating these two faces cannot be crossed
by any edge of the 1-planar drawing, for any crossing edge would either have
to cross entirely across one of these two faces (violating 1-planarity) or have an
endpoint in each of the two faces (violating the assumption that neither of these
faces contains a vertex of C). The remaining vertices and edges of G that were
deleted to form the K2,2k−3 subgraph may be added to the drawing, near path
ef , without violating 1-planarity, showing as desired that G is 1-planar.

Performing this replacement of K2,i by K2,min(i,2k−3) separately for each of
the groups of vertices in G \ C results in the desired kernel GC . GC has O(k2)
vertices of high degree and O(k) groups of O(k) vertices in K2,i subgraphs, for
a total of O(k2) vertices.

If a drawing of GC is found, a corresponding drawing of G may be found by
eliminating crossings between pairs of edges belonging to the same K2,i sub-
graphs in GC , finding an uncrossed length-two path with two vertices in C as
path endpoints within each K2,2k−3 subgraph, expanding each of these K2,2k−3

subgraphs to K2,i for the correct value of i from the original graph G (placing the
restored vertices near the uncrossed path), and finally adding back any deleted
degree-one vertices of G. 
�

An example of this kernelization is depicted in Figure 1, for a graph with vertex
cover number three.

Theorem 1. We can test the 1-planarity of a given n-vertex graph, parameter-
ized by its vertex cover number k, in time O(n + 2O(k2)).

Proof. Apply an FPT algorithm to find an optimal vertex coverC, apply Lemma 4
to replaceGwith a kernelGC of sizeO(k2), in linear time, and then apply Lemma 2
to this kernel.

To reduce the dependence on n in the time for the initial vertex cover step from
O(kn) to O(n), we abort the algorithm if the input has more than 4n− 8 edges,
and otherwise apply a standard kernelization for vertex cover: find a maximal
matching M in G, and find all vertices of degree greater than 2|M |; these must
all belong to the optimal vertex cover, and can be removed from G, leaving a



Parameterized Complexity of 1-Planarity 101

smaller graph G′ that has O(k2) edges (otherwise it could not be covered by the
remaining low-degree vertices). Apply the vertex cover algorithm to G′ instead
of to G. 
�

Corollary 1. We can test 1-planarity for split graphs in time O(n).

Proof. If a given split graph has a clique of size seven, it is not 1-planar, and
otherwise, it has a vertex cover of size six and we use the above algorithm. 
�

3 Tree-Depth

As we now show, 1-planarity parameterized by tree-depth may be tested by an
FPT algorithm. The tree-depth of a graph G is the smallest depth of a forest
F on the same vertex set as G such that every edge of G connects an ancestor-
descendant pair in F , where we measure the depth of a tree as the maximum
number of vertices on a root-leaf path [21]. Equivalently, it is the size of a
maximum clique in a trivially perfect supergraph of G chosen to minimize this
clique size; here, a trivially perfect graph is the graph of ancestor-descendant
pairs in a forest. A graph G with vertex cover number k has tree-depth at most
k + 1, for we may find a tree T of depth k + 1 that has the k vertices of the
cover on a path, from which all other vertices descend as leaves; all edges of G
connect ancestor-descendant pairs in G. For this reason, in some sense the result
of this section is stronger than that of Theorem 1, although the dependence on
the parameter is worse.

An n-vertex path has tree-depth �log2(n + 1)�. It follows that an arbitrary
depth-first search tree for a given graph G has a depth that is at most 2d − 1
(because otherwise it would contain a path that is too long for the given depth)
and at least the tree-depth d (because the DFS tree has the ancestor-descendant
property from which tree-depth is defined). Based on this observation, one can
derive an FPT algorithm for computing the tree-depth, by finding a DFS tree,
using it to construct a tree decomposition, and applying standard dynamic pro-
gramming techniques to this decomposition [21].

Lemma 5. Let G be a graph with tree-depth at most d, as witnessed by a forest
F of depth d for which all edges of G connect ancestor-descendant pairs. Then
in linear time it is possible to replace G by an equivalent kernel for 1-planarity
consisting of a collection of disconnected subgraphs with O(22d

2+O(d)) vertices
each.

Proof. If G is not biconnected we may test 1-planarity on each biconnected
component of G separately; therefore, we can assume without loss of generality
that the given graph G is 2-connected, and that we have a tree T of depth d
such that every edge of G connects an ancestor-descendant pair in T . We can
also assume without loss of generality that each node of T is adjacent to at
least one node in each of its child subtrees (because otherwise we could move
those children up to be siblings of the node, which does not increase the depth)



102 M.J. Bannister, S. Cabello, and D. Eppstein

and that each child subtree induces a connected subgraph (because otherwise
we could split it into two separate children). Because the tree-depth is d, the
longest path in G has length less than 2d.

Now consider how many children a node v in T can have. For each child
subtree Ti, consider the set Si of v and ancestors of v that are connected to
nodes in Ti. And for each subset S of v and its ancestors, let C(S) be the set of
child subtrees Ti of v for which Si = S. There are at most 2d different sets S,
and we want to show that for each of them, C(S) has bounded size. If |S| = 1,
this is easy: then S = {v} (because otherwise there is no node in Ti adjacent to
v) and v is an articulation point, violating the assumption of 2-connectivity.

Next, consider the case that |S| ≥ 3. That is, we have a set S consisting
of v and two or more of its ancestors, and a set C(S) of child subtrees of v
that are each connected to all of the nodes in S. Choose exactly three nodes
of S and, for each child subtree Ti in C(S), let Xi be a smallest subgraph
connecting the three chosen nodes in the subgraph of G induced by Ti ∪ S. By
the bound on the length of paths in G, |Xi| = O(2d). Note that, among any
three of these trees Xi, Xj , and Xk (all for members of C(S)) there must be
at least one crossing, because contracting each tree to a single node produces a
K3,3 subgraph. There are Ω(|C(S)|3) triples of trees, at least one crossing per
triple, and at most |C(S)| triples that involve any single crossing, so there are
Ω(|C(S)|2) crossings altogether, among a set of only O(|C(S)|2d) edges. In order
to prevent the pigeonhole principle from forcing some edge to be crossed twice,
we must have |C(S)| = O(2d).

Finally, consider the case that |S| = 2. In this case, |C(S)| can be unbounded
(e.g. consider the graph K2,n, which has tree-depth three). But, if it is greater
than 2d, then it does not matter how much greater it is: no cycle in the drawing
can separate the two vertices in S, because the minimal such cycle would have
to have length at most 2d but would have to cross each of the subgraphs Ti, a
contradiction. So in this case we can split the graph into subgraphs formed from
each child Ti together with an uncrossable edge between the two nodes in S,
and test 1-planarity separately for each of these subgraphs. When C(S) is small
enough that no such split is possible, |C(S)| = O(2d).

After performing any splits from the |S| = 2 case, the remaining graph has its
nodes arranged into a tree of height d in which each node has O(22d) children.

Therefore, the total number of nodes in the tree is O(22d
2+O(d)). 
�

By combining this kernelization with the known FPT algorithm for computing
tree-depth and with Lemma 2 for testing the 1-planarity of the kernel, we obtain

Theorem 2. The 1-planarity of a given graph, with tree-depth d, may be com-

puted in time O(n22
2d2+O(d)

).

As an example of the power of this approach, we show how to use it to recognize
1-planar cographs. Cographs are well-quasi-ordered by induced subgraphs [8],
from which it follows that there is an algorithm for testing 1-planarity by check-
ing for the existence of a finite set of forbidden induced subgraphs; however, we



Parameterized Complexity of 1-Planarity 103

� �

�

�

�

�

� �� �

�

�

�

�

�

�

� �

� �

�

� �

�

�

�

Fig. 2. Finding a low-tree-depth representation of a cograph by forming a path for each
1-labeled cotree node, consisting of the cotree leaves that descend from it but are not in
its heaviest child. Left: a cograph. Center: its cotree. Right: the tree formed by connect-
ing together the paths Lx. Each cotree node has the same color as its corresponding
path.

do not know how to explicitly list these forbidden subgraphs nor do we know
how to turn a recognition algorithm along such lines into an algorithm for find-
ing a 1-planar drawing. In contrast, the algorithm outlined below for recognizing
1-planar cographs is explicit (albeit with impractically large constants) and con-
structs a drawing of the graph.

Lemma 6. Let Ca,b denote the class of cographs that do not contain Ka nor Kb,b

as subgraphs. Then the graphs in Ca,b have tree-depth at most 1 + (a− 1)(b− 1).

Proof. For any graph G in this class, we use a cotree representing G, and use
it to guide the construction of a forest F on the nodes of G. A cotree has the
vertices of G as its leaves; every internal node is labeled either 0 or 1, and two
vertices of G are adjacent if and only if their lowest common ancestor is labeled
1. We assume that this tree is in canonical form meaning that no two adjacent
internal nodes have the same label as each other and that each internal node
has at least two children.

For each node x labeled 1 in the cotree, let Hx denote the subtree descending
from a child of x that contains the largest number of leaves (breaking ties arbi-
trarily) and let Lx denote the set of leaf descendants of x that are not in Hx. For
each maximal set Lx (not contained in Ly for some 1-labeled node y), we form a
path, which will form a subgraph of F . If the closest 1-labeled ancestor of cotree
node x is node y, we set the parent of the top node of path Lx to be the bottom
node of path Ly. In addition, if any vertex v of G does not belong to a set Lx,
we make it a leaf of the forest F , and we set the parent of v to be the bottom
node of the path for the lowest 1-labeled ancestor of v in the cotree. The forest
constructed in this way (shown in Figure 2) will necessarily have the defining
property of tree-depth that every edge in G connects an ancestor-descendant
pair in F .

If Lx has at least 2b− 1 leaves, then the leaf descendants of x contain a Kb,b

subgraph. For this reason, every path Lx has at most 2(b − 1) vertices of G in
it. Additionally, on any path from the root to a leaf in the cotree, at most one
of the 1-labeled cotree nodes can have more than b − 1 nodes in Lx, for if one
such node does, then each of its ancestors must have at most b− 1 nodes in Lx,



104 M.J. Bannister, S. Cabello, and D. Eppstein

or else we would again have a Kb,b subtree. Finally, observe that a path from
the root to a leaf in the cotree that has a− 1 1-labeled nodes would give rise to
a Ka subgraph; therefore, every such path has at most a − 2 1-labeled nodes.
By this analysis, the longest path from leaf to root that could exist in the forest
F consists of one vertex of G that does not belong to a set Lx, one set Lx of
size 2(b − 1), and a − 3 sets Lx of size b − 1, matching the depth given in the
statement of the lemma. 
�

Corollary 2. We can recognize 1-planar cographs, and find 1-planar drawings
of them, in O(n) time.

Proof. We first test whether the given cograph contains K7 or K5,5 as a sub-
graph. If it does, it is not 1-planar. If it does not, we may apply Lemma 6 and
Theorem 2. 
�

4 Cyclomatic Number

We say that a graph G has cyclomatic number k if k is the smallest number of
edges that must be removed from G to yield a forest; equivalently k = m−n+c,
where c is the number of connected components in G. By a maximal degree two
path we shall mean a path between two vertices each of degree greater than two
such that all vertices in the interior of the path have degree two. For technical
reasons, an edge between vertices each having degree greater than two will also
be considered a maximal degree two path. Gurevich et al. define a k-almost-
tree to be a graph G such that given a spanning tree T of G every biconnected
component of G has at most k edges not in T [16]. This is equivalent to each
biconnected component having cyclomatic number k.

The cyclomatic number and k-almost-tree parameter have previously been
used as parameters in fixed parameter algorithms. For example, in biology, gene
expression can be represented as a Boolean network in which individual genes are
represented as vertices and edges represent correlations between pairs of genes.
Fixed parameter tractable algorithms have been designed for the control prob-
lem, which involves finding sequences of valid labelings of genes as being active
or inactive [1]. In operations research, fixed-parameter algorithms for the con-
tinuous facility location problem have been constructed, where weighted edges
represent a road network on which to efficiently place facilities serving clients in
the network [16]. Intraprogram communication networks in distributed systems
use vertices to represent modules of a program to be computed in parallel and
edges to represent communicating pairs of modules; they also have structure
yielding fixed-parameter algorithms [12] with respect to this parameter.

Lemma 7. If G is a graph with cyclomatic number k and no degree one vertices,
then G has at most 2k− 2 vertices of degree greater than two. Furthermore, this
bound is tight. Also, the number of maximal degree two paths is at most 3k − 3.

Proof. Double counting edges yields 2(n− c + k) ≥ 2a + 3b, where a is number
of degree two vertices and b is the number of vertices of degree greater than two.



Parameterized Complexity of 1-Planarity 105

RR

Fig. 3. Removing a crossing in a degree two path

Using n = a + b and c ≥ 1 we obtain b ≤ 2k − 2, establishing the upper bound.
For the upper bound consider any biconnencted cubic graph with 2k−2 vertices,
e.g., a cubic Halin graph whose characteristic tree has k leaves.

For the bound on the maximal degree two paths consider the graph G′ where
each maximal degree two path is reduced to a single edge. The graph G′ has
cyclomatic number k and at most 2k − 2 vertices. This implies that G′ has at
most 3k − 3 edges, establishing the bound. 
�

Lemma 8. If G is a 1-planar, then there is a 1-planar drawing of G such that
maximal degree two paths do not self intersect.

Proof. It suffices to show that a self crossing in a maximal degree two path can
be removed without increasing the number of crossings on any edges. We can
locally uncross a self intersection changing the drawing within a circular region
R around the intersection that is not crossed by other edges. See Figure 3 for
an example of this operation. 
�

Lemma 9. Every word on n > 1 symbols, without consecutive equal symbols, of
length greater than 2n! − 1 has a subword on k > 1 symbols, for some k ≤ n,
such that each symbol appears at least k times in the subword. Furthermore, this
bound is tight, i.e., there exists a word w of length 2n! − 1 on n symbols such
that for every 1 < k ≤ n, w has no subword on k symbols in which each symbol
appears at least k times.

Proof. Let w be a word on n symbols of length at least 2(n!)−1, and let σ be the
symbol appearing least often in w. If σ occurs more than n times in w, then we
are done. So assume that σ occurs at most n−1 times. Removing σ from w leaves
us with at least 2(n!)−n symbols split into at most n subwords. Thus, the longest
of these subwords, call it u, has length at least (2(n!) − n)/n = 2(n − 1)! − 1.
Since u contains at most n− 1 unique symbols we are done by induction on n.

To construct a word on n symbols of length 2(n!)− 1 with no reducible sub-
word, let σ0, σ1, . . . , σn be our n symbols. Now recursively define the words by
wk = (wk−1σk)k−1wk−1 and w2 = σ0σ1σ0. A simple induction argument shows
that the length of wk is 2(k!)− 1. 
�

Lemma 10. If G is a 1-planar graph with p maximal degree two paths, then G
has a 1-planar drawing such that every maximal degree two path is crossed at
most 2p!− 1 times.



106 M.J. Bannister, S. Cabello, and D. Eppstein

u v u v
R R

Fig. 4. Left crossing sequence rgbrbrgbrg; Right crossing sequence bg

Proof. We need only show that given a maximal degree two path from u to v
with more than 2p!− 1 crossings, we can reduce the number of times that it is
crossed without increasing the crossing count on other degree two paths.

First, we continuously deform the plane such that the path from u to v is a
straight line. This is possible since we may assume that maximal degree two paths
do not self intersect by Lemma 8. Now we consider the sequence of crossings
through the path from u to v my other maximal degree two paths. In this
sequence there are at most p symbols. So if the number of crossings on the path
from u to v is greater than 2p!− 1, Lemma 9 implies that there is a subword on
p′ symbols such that every symbol appears at least p′ times.

Now, we construct a strictly convex regionR around the crossings represented
by this word such that only paths represented in the word intersect the region,
and such that a path does not reintersect the path from u to v without first
leaving R. For every path we shortcut it from the first time it intersects R to
the last time it intersects R, in path order, with a straight line. So now each
path in R is a straight line, and therefore they can only intersect each other at
most once. So, we have reduced the number of crossings on the path from u to
v, without increasing the crossings on the other paths. 
�

Lemma 11. Let G be a graph with cyclomatic number k. Then in linear time
we can transform G into a kernel GC of size O((3k − 3)(3k − 3)!) such that G
is 1-planar if and only if GC is 1-planar. In addition, a 1-planar drawing of GC

may be transformed into a 1-planar drawing of G in linear time.

Proof. We remove degree one vertices from G until no more are left, producing
the 2-core of G [25]. This process can be done in linear time by maintaining a
queue of degree one vertices. A degree one vertex may be added to any drawing
without introducing crossings, so a graph has a 1-planar drawing if and only if
its 2-core has a 1-planar drawing.

Lemma 7 implies that we have at most p = 3k− 3 maximal degree two paths.
For each of these maximal degree two paths we reduce the number of degree two
vertices to 2p! + 1 if they exceed this amount. Since Lemma 10 guarantees that,
if G is 1-planar, then it has a drawing such that no maximal degree two path is
crossed more than 2p!− 1 times, this reduction does not change the 1-planarity
of the graph. Thus, we have a kernel GC of size O((3k − 3)(3k − 3)!) such that
G is 1-planar if and only if GC is 1-planar. 
�



Parameterized Complexity of 1-Planarity 107

Theorem 3. We can test the 1-planarity of a graph with cyclomatic number k
in time O

(
n + 2O((3k)!)

)
.

Since a graph can be decomposed into its biconnected components in linear
time and edges in separate biconnected components need not cross we have the
following corollary to Theorem 3.

Corollary 3. We can test the 1-planarity of a k-almost tree in time O(n2O((3k)!)).

Acknowledgements. The research of Bannister and Eppstein was supported
in part by the National Science Foundation under grants 0830403 and 1217322,
and by the Office of Naval Research under MURI grant N00014-08-1-1015. The
research of Cabello was supported in part by the Slovenian Research Agency,
program P1-0297, project J1-4106, and within the EUROCORES Programme
EUROGIGA (project GReGAS) of the European Science Foundation. We also
gratefully acknowledge the Slovenian Research Agency for travel funds allowing
the authors to meet and perform this research.

References

[1] Akutsu, T., Hayashida, M., Ching, W.-K., Ng, M.K.: Control of Boolean net-
works: Hardness results and algorithms for tree structured networks. J. Theor.
Biol. 244(4), 670–679 (2007), doi:10.1016/j.jtbi.2006.09.023

[2] Borodin, O.V.: Solution of the Ringel problem on vertex-face coloring of planar
graphs and coloring of 1-planar graphs. Metody Diskret. Analiz. (41), 12–26, 108
(1984)

[3] Brandenburg, F.J., Eppstein, D., Gleißner, A., Goodrich, M.T., Hanauer, K.,
Reislhuber, J.: On the density of maximal 1-planar graphs. In: Didimo, W., Pa-
trignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 327–338. Springer, Heidelberg
(2013)

[4] Cabello, S., Mohar, B.: Adding one edge to planar graphs makes crossing number
and 1-planarity hard. CoRR abs/1203.5944 (2012)

[5] Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theoretical
Computer Science 411(40-42), 3736–3756 (2010), doi:10.1016/j.tcs.2010.06.026

[6] Chen, Z.-Z., Kouno, M.: A linear-time algorithm for 7-coloring 1-plane graphs.
Algorithmica 43(3), 147–177 (2005), doi:10.1007/s00453-004-1134-x

[7] Czap, J., Hudák, D.: 1-planarity of complete multipartite graphs. Discrete Applied
Mathematics 160(4-5), 505–512 (2012), doi:10.1016/j.dam.2011.11.014

[8] Damaschke, P.: Induced subgraphs and well-quasi-ordering. J. Graph Th. 14(4),
427–435 (1990), doi:10.1002/jgt.3190140406

[9] Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Com-
puter Science. Springer (1999), doi:10.1007/978-1-4612-0515-9

[10] Eades, P., Hong, S.-H., Katoh, N., Liotta, G., Schweitzer, P., Suzuki, Y.: Testing
maximal 1-planarity of graphs with a rotation system in linear time. In: Didimo,
W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 339–345. Springer, Hei-
delberg (2013)

[11] Eades, P., Liotta, G.: Right angle crossing graphs and 1-planarity. In: Speckmann,
B. (ed.) GD 2011. LNCS, vol. 7034, pp. 148–153. Springer, Heidelberg (2011)



108 M.J. Bannister, S. Cabello, and D. Eppstein

[12] Fernandez-Baca, D.: Allocating modules to processors in a distributed sys-
tem. IEEE Transactions on Software Engineering 15(11), 1427–1436 (1989),
doi:10.1109/32.41334

[13] Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical
Computer Science. Springer (2006)

[14] Grigoriev, A., Bodlaender, H.L.: Algorithms for graphs embeddable with few cross-
ings per edge. Algorithmica 49(1), 1–11 (2007), doi:10.1007/s00453-007-0010-x

[15] Guo, J., Niedermeier, R., Wernicke, S.: Parameterized complexity of generalized
vertex cover problems. In: Dehne, F., López-Ortiz, A., Sack, J.-R. (eds.) WADS
2005. LNCS, vol. 3608, pp. 36–48. Springer, Heidelberg (2005)

[16] Gurevich, Y., Stockmeyer, L., Vishkin, U.: Solving NP-Hard Problems on Graphs
That Are Almost Trees and an Application to Facility Location Problems. J.
ACM 31(3), 459–473 (1984), doi:10.1145/828.322439

[17] Hong, S.-H., Eades, P., Liotta, G., Poon, S.-H.: Fáry’s theorem for 1-planar
graphs. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.) COCOON 2012. LNCS,
vol. 7434, pp. 335–346. Springer, Heidelberg (2012)

[18] Korzhik, V.P.: Minimal non-1-planar graphs. Discrete Mathematics 308(7), 1319–
1327 (2008), doi:10.1016/j.disc.2007.04.009

[19] Korzhik, V.P., Mohar, B.: Minimal Obstructions for 1-Immersions and Hardness
of 1-Planarity Testing. J. Graph Th. 72(1), 30–71 (2013), doi:10.1002/jgt.21630

[20] Miller, G.L.: Finding Small Simple Cycle Separators for 2-Connected Pla-
nar Graphs. J. Comput. Syst. Sci. 32(3), 265–279 (1986), doi:10.1016/0022-
0000(86)90030-9

[21] Nešetřil, J., Ossona de Mendez, P.: Sparsity: Graphs, Structures, and Algorithms.
Algorithms and Combinatorics 28, 115–144 (2012), doi:10.1007/978-3-642-27875-4

[22] Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinator-
ica 17(3), 427–439 (1997), doi:10.1007/BF01215922

[23] Ringel, G.: Ein Sechsfarbenproblem auf der Kugel. Abhandlungen aus
dem Mathematischen Seminar der Universität Hamburg 29, 107–117 (1965),
doi:10.1007/BF02996313

[24] Schumacher, H.: Zur Struktur 1-planarer Graphen. Mathematische
Nachrichten 125, 291–300 (1986)

[25] Seidman, S.B.: Network structure and minimum degree. Social Networks 5(3),
269–287 (1983), doi:10.1016/0378-8733(83)90028-X

[26] Suzuki, Y.: Optimal 1-planar graphs which triangulate other surfaces. Discrete
Mathematics 310(1), 6–11 (2010), doi:10.1016/j.disc.2009.07.016



On the Stretch Factor of the Theta-4 Graph�

Luis Barba1,2,��, Prosenjit Bose1, Jean-Lou De Carufel1, André van Renssen1,
and Sander Verdonschot1

1 School of Computer Science, Carleton University, Ottawa, Canada
jit@scs.carleton.ca,

{andre,jdecaruf,sander}@cg.scs.carleton.ca
2 Département d’Informatique, Université Libre de Bruxelles, Brussels, Belgium

lbarbafl@ulb.ac.be

Abstract. In this paper we show that the θ-graph with 4 cones has
constant stretch factor, i.e., there is a path between any pair of vertices
in this graph whose length is at most a constant times the Euclidean
distance between that pair of vertices. This is the last θ-graph for which
it was not known whether its stretch factor was bounded.

Keywords: computational geometry, geometric spanners, θ-graphs.

1 Introduction

A c-spanner of a weighted graph G is a connected sub-graph H with the property
that for all pairs of vertices u and v, the weight of the shortest path between u
and v in H is at most c times the weight of the shortest path between u and v
in G, for some fixed constant c ≥ 1. The smallest constant c for which H is a
c-spanner of G is referred to as the stretch factor or spanning ratio of the graph.

The graph G is referred to as the underlying graph. In our setting, the un-
derlying graph is the complete graph on a set of n points in the plane and the
weight of an edge is the Euclidean distance between its endpoints. A c-spanner
of such a graph is called a geometric c-spanner. For a comprehensive overview
of geometric c-spanners, see the book by Narasimhan and Smid [10].

In this paper, we focus on θ-graphs. Introduced independently by Clarkson [7]
and Keil [9], the θm-graph is constructed as follows. Given a set P of points in
the plane, we consider each point p ∈ P and partition the plane into m cones
(regions in the plane between two rays originating from the same point) with
apex p, each defined by two rays at consecutive multiples of θ = 2π/m radians
from the negative y-axis. We label the cones C0(p) through Cm−1(p), in counter-
clockwise order around p, starting from the negative y-axis; see Fig. 1. In each
cone Ci(p), we add an edge between p and pi, the point in Ci(p) nearest to p.
However, instead of using the Euclidean distance, we measure distance in Ci(p)
by projecting each point onto the angle bisector of this cone. Formally, pi is the
point in Ci(p) such that for every other point w ∈ Ci(p), the projection of pi

� Research supported in part by NSERC and FQRNT.
�� Boursier FRIA du FNRS.

F. Dehne, R. Solis-Oba, and J.-R. Sack (Eds.): WADS 2013, LNCS 8037, pp. 109–120, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



110 L. Barba et al.

onto the angle bisector of Ci(p) lies closer to p than the projection of w. For
simplicity, we assume that no two points of P lie on a line parallel to either the
boundary or the angle bisector of a cone.

C1(p)

C0(p)

C2(p)

C3(p)

p1

p0p3

p2

p

Fig. 1. The neighbors of p in the
θ4-graph of P . Each edge supports
an empty isosceles triangle.

It has been shown that θm-graphs are
geometric spanners for m ≥ 7, and their
stretch factor approaches 1 as m goes to in-
finity [4,6,11]. The proofs crucially rely on the
fact that, given two points p and q such that
q ∈ Ci(p), the distance between pi and q is al-
ways less than the distance between p and q.
This property does not hold for m ≤ 6 and in-
deed, the path obtained by starting at p and
repeatedly following the edge in the cone that
contains q, is not necessarily a spanning path.
The main motivation for using spanners is usu-
ally to reduce the number of edges in the graph
without increasing the length of shortest paths
too much. Thus, θ-graphs with fewer cones are more interesting in practice, as
they have fewer edges. This raises the following question: “What is the smallest m
for which the θm-graph is a geometric spanner?” Bonichon et al. [1] showed that
the θ6-graph is a geometric 2-spanner. Recently, Bose et al. [5] proved that the
θ5-graph is a geometric 9.96-spanner. Coming from the other side, El Molla [8]
showed that there is no constant c for which the θ2- and θ3-graphs are geomet-
ric c-spanners. This leaves the θ4-graph as the only open question. Moreover,
its resemblance to graphs like the Yao4-graph [3] and the L∞-Delaunay trian-
gulation [2], both of which are geometric c-spanners, makes this question more
tantalizing. In this paper we establish an upper bound of approximately 237 on
the stretch factor of the θ4-graph. In Section 5, we present a lower bound of 7
that we believe is closer to the true stretch factor of the θ4-graph.

2 Existence of a Spanning Path

Let P be a set of points in the plane. In this section, we prove that the θ4-graph
of P is a spanner. We do this by showing that the θ4-graph approximates the
L∞-Delaunay triangulation. The L∞-Delaunay triangulation of P is a geometric
graph with vertex set P , and an edge between two points of P whenever there
exists an empty axis-aligned square having these two points on its boundary.

Bonichon et al. [2] showed that the L∞-Delaunay triangulation has a stretch

factor of c∗ =
√

4 + 2
√

2, i.e., there is a path between any two vertices whose
length is at most c∗ times their Euclidean distance. We approximate this path
in the L∞-Delaunay triangulation by showing the existence of a spanning path
in the θ4-graph of P joining the endpoints of every edge in the L∞-Delaunay
triangulation. The main ingredient to obtain this approximation is Lemma 1
whose proof is presented in Section 4. Before stating this result, we need a few
more definitions. Given two points s and t, their L1 distance dL1(s, t) is the sum
of the absolute differences of their x- and y-coordinates.



On the Stretch Factor of the Theta-4 Graph 111

Let St(s) be the smallest axis-aligned square centered on t that contains s.
Let �−t and �+t be the lines with slope −1 and +1 passing through t, respectively.

Throughout this paper, we repeatedly use t to denote a target point of P
that we want to reach via a path in the θ4-graph. Therefore, we typically omit
the reference to t and write �−, �+ and S(s) when referring to �−t , �

+
t and St(s),

respectively.
We say that an object is empty if its interior contains no point of P . An

s-t-path is a path with endpoints s and t.

Lemma 1. Let s and t be two points of P such that t lies in C0(s). If the top-
right quadrant of S(s) is empty and C1(s) contains no point of P below �−, then
there is an s-t-path in the θ4-graph of P of length at most 18 · dL1(s, t).

For ease of readability, the proof of Lemma 1 is deferred to Section 4.
Given a path ϕ, let |ϕ| denote the sum of the lengths of the edges in ϕ. Using

Lemma 1, we obtain the following.

Lemma 2. Let s and t be two points of P . If the smallest axis-aligned square
enclosing s and t, that has t as a corner, is empty, then there is an s-t-path in
the θ4-graph of P of length at most (

√
2 + 36) · |st|.

Proof. Assume without loss of generality that s lies in C1(t). Then, the top-
right quadrant of S(s) is empty as it coincides with the smallest axis-aligned
square enclosing s and t that has t as a corner; see Fig. 2(a). Recall that s3 is
the neighbor of s in the θ4-graph inside the cone C3(s). Assume that s3 	= t as
otherwise the result follows trivially. Consequently, s3 must lie either in C0(t) or
in C2(t). Assume without loss of generality that s3 lies in the top-left quadrant
of S(s). As s3 lies in the interior of S(s), S(s3) ⊂ S(s) and hence, the top-
right quadrant of S(s3) is empty. Moreover, s3 lies above �− and hence C1(s3)
contains no point of P below �−. Therefore, by Lemma 1 there is an s3-t-path ϕ
of length at most 18 · dL1(s3, t). Since s3 lies inside S(s), |s3t| ≤

√
2 · |st| and

hence |ϕ| ≤ 18 · dL1(s3, t) ≤ 18
√

2 · |s3t| ≤ 18
√

2
√

2 · |st| = 36 · |st|. Moreover,
the length of edge ss3 is at most dL1(s, t) ≤

√
2 · |st| since s3 must lie above �−.

Thus, ss3 ∪ ϕ is an s-t-path of length |ss3|+ |ϕ| ≤ (
√

2 + 36) · |st|. 
�

The following observation is depicted in Fig. 2(b).

Observation 1 Let S be an axis-aligned square. If two points a and b lie on
consecutive sides along the boundary of S, then there is a square Sab containing
the segment ab such that Sab ⊆ S and either a or b lies on a corner of Sab.

Lemma 3. Let ab be an edge of the L∞-Delaunay triangulation of P . There is
an a-b-path ϕab in the θ4-graph of P such that |ϕab| ≤ (1 +

√
2) · (
√

2 + 36) · |ab|.

Proof. Let T = (a, b, c) be a triangle in the L∞-Delaunay triangulation of P . By
definition of this triangulation, there is an empty square S such that every vertex
of T lies on the boundary of S. By the general position assumption, a, b and c
must lie on different sides of S. If a and b lie on consecutive sides of the boundary



112 L. Barba et al.

a

b

a

S

S

b

Sab

Sab

a) b)

�−
S(s3)

s3

s

t

S(s)

Fig. 2. a) Configuration used in the proof of Lemma 2, grey areas represent empty
regions. b) If a and b lie on consecutive sides of a square S, there is a square Sab such
that ab ⊂ Sab ⊆ S and either a or b lies on a corner of Sab

of S, then by Observation 1 and Lemma 2 there is a path ϕab contained in the
θ4-graph of P such that |ϕab| ≤ (

√
2 + 36) · |ab|.

If a and b lie on opposite sides of S, then both ac and cb have their endpoints
on consecutive sides along the boundary of S. Let Sac be the square contained in
S existing as a consequence of Observation 1 when applied on the edge ac. Thus,
either a or c lies on a corner of Sac. Furthermore, as Sac is contained in S, it is
also empty. Consequently, by Lemma 2, there is a a-c-path ϕac such that |ϕac| ≤
(
√

2+36) · |ac|. Analogously, there is a path ϕcb such that |ϕcb| ≤ (
√

2+36) · |cb|.
Using elementary geometry, it can be shown that since a and b lie on opposite
sides of S, |ac|+ |cb| ≤ (1 +

√
2) · |ab|. Therefore, the path ϕab = ϕac ∪ϕcb is an

a-b-path such that |ϕab| ≤ (1 +
√

2) · (
√

2 + 36) · |ab|. 
�

Theorem 1. The θ4-graph of P is a spanner whose stretch factor is at most

(1 +
√

2) · (
√

2 + 36) ·
√

4 + 2
√

2 ≈ 237

Proof. Let ν be the shortest path joining s with t in the L∞-Delaunay triangula-

tion of P . Bonichon et al. [2] proved that the length of ν is at most
√

4 + 2
√

2·|st|.
By replacing every edge in ν with the path in the θ4-graph of P that exists by
Lemma 3, we obtain an s-t-path of length at most

(1 +
√

2) · (
√

2 + 36) · |ν| ≤ (1 +
√

2) · (
√

2 + 36) ·
√

4 + 2
√

2 · |st| 
�

3 Light Paths

We introduce some tools that will help us prove Lemma 1 in Section 4.
For a point p in the θ4-graph, recall that there is an edge between p and pi,

the point in Ci(p) nearest to p. We call the edge ppi an i-edge. Notice that every
i-edge is associated with an empty isosceles right triangle. For a point p, the
empty triangle generated by its i-edge is denoted by Δi(p).

Let ϕ be a path that follows only 0- and 1-edges. A 0-edge pp0 of ϕ is light
if no edge of ϕ crosses the horizontal ray shooting to the right from p. We say



On the Stretch Factor of the Theta-4 Graph 113

that ϕ is a light path if all its 0-edges are light. In this section we show how to
bound the length of a light path with respect to the Euclidean distance between
its endpoints.

Lemma 4. Given a light path ϕ, every pair of 0-edges of ϕ has disjoint orthog-
onal projection on the line defined by the equation y = −x.

Proof. Let s and t be the endpoints of ϕ. Let pp0 be any 0-edge of ϕ and let νp0

be the diagonal line extending the hypotenuse of Δ0(p), i.e., νp0 is a line with
slope +1 passing through p0. Let γ be the path contained in ϕ that joins p0
with t. We claim that every point in γ lies below νp0 . If this claim is true, the
diagonal lines constructed from the empty triangles of every 0-edge in ϕ split
the plane into disjoint slabs, each containing a different 0-edge of ϕ. Thus, their
projection on the line defined by the equation y = −x must be disjoint.

To prove that every point in γ lies below νp0 , notice that every point in γ
must lie to the right of p since ϕ is x-monotone, and below p since pp0 is light,
i.e., γ is contained in C0(p). Since Δ0(p) is empty, no point of γ lies above νp0

and inside C0(p) yielding our claim. 
�

Given a point w of P , we say that a point p of P is w-protected if C1(p) contains
no point of P below or on �−w , recall that �−w is the line with slope −1 passing
through w. In other words, a point p is w-protected if either C1(p) is empty or
p1 lies above �−w . Moreover, every point lying above �−w is w-protected and no
point in C3(w) is w-protected.

Given two points s and t such that s lies to the left of t, we aim to construct
a path joining s with t in the θ4-graph of P . The role of t-protected points will
be central in this construction. However, as a first step, we relax our goal and
prove instead the existence of a light path σs→t going from s towards t that does
not necessarily end at t.

To construct σs→t, start at a point z = s and repeat the following steps until
reaching either t or a t-protected point w lying to the right of t.

– If z is not t-protected, then follow its 1-edge, i.e., let z = z1.
– If z is t-protected, then follow its 0-edge, i.e., let z = z0.

The pseudocode of this algorithm can be found in Algorithm 1.

Algorithm 1. Given two points s and t of P such that s lies to the left of t,
algorithm to compute path σs→t

1: Let z = s.
2: Append s to σs→t.
3: while z 
= t and z is not a t-protected point lying to the right of t do
4: if z is t-protected then z = z0 else z = z1
5: Append z to σs→t.
6: end while
7: return σs→t



114 L. Barba et al.

Lemma 5. Let s and t be two points of P such that s lies to the left of t.
Algorithm 1 produces a light x-monotone path σs→t joining s with a t-protected
point w such that either w = t or w lies to the right of t. Moreover, every edge
on σs→t is contained in S(s).

t

v

v0

�−

s

Δ0(v)

Fig. 3. If v is a t-protected
point, then edge vv0 is light in
any path σs→t that contains it

Proof. By construction, Algorithm 1 finishes only
when reaching either t or a t-protected point lying
to the right of t. Since every edge of σs→t is either
a 0-edge or a 1-edge traversed from left to right,
the path σs→t is x-monotone. The left endpoint
of every 0-edge in σs→t lies in C2(t) as it most be
t-protected and no t-protected point lies in C3(t).
Thus, if vv0 is a 0-edge, then v lies in C2(t) and
hence, v0 lies inside S(s) and above �+. Otherwise
t would lie inside Δ0(v). Therefore, every 0-edge
in σs→t is contained in S(s).

Every 1-edge in σs→t has its two endpoints ly-
ing below �−; otherwise, we followed the 1-edge
of a t-protected point which is not allowed by Step 4 of Algorithm 1. Thus, every
1-edge in σs→t lies below �− and to the right of s. As 1-edges are traversed from
bottom to top and the 0-edges of σs→t are enclosed by S(s), every 1-edge in
σs→t is contained in S(s).

Let vv0 be any 0-edge of σs→t. Since we followed the 0-edge of v, we know
that v is t-protected and hence no point of P lies in C1(v) and below �−. As
every 1-edge has its two endpoints lying below �− and σs→t is x-monotone, no
1-edge in σs→t can have an endpoint in C1(v). In addition, every 0-edge of σs→t

joins its left endpoint with a point below it. Thus, no 0-edge of σs→t can cross
the ray shooting to the right from v. Consequently, vv0 is light and hence σs→t

is a light path; see Fig 3. 
�

Given two points p and q, let |pq|x and |pq|y be the absolute differences between
their x- and y-coordinates, respectively, i.e., dL1(p, q) = |pq|x + |pq|y.

Lemma 6. Let s and t be two points of P such that s lies to the left of t. If s
is t-protected, then |σs→t| ≤ 3 · dL1(s, t).

Proof. To bound the length of σs→t, we bound the length of its 0-edges and
the length of its 1-edges separately. Let Z be the set of all 0-edges in σs→t and
consider their orthogonal projection on �−. By Lemma 4, all these projections
are disjoint. Moreover, the length of every 0-edge in Z is at most

√
2 times the

length of its projection. Let s⊥ be the orthogonal projection of s on �− and let δ
be the segment joining s⊥ with t. Since s is t-protected and σs→t is x-monotone,
the orthogonal projection of every 0-edge of Z on �− is contained in δ and hence∑

e∈Z |e| ≤
√

2· |δ|. Since |δ| = dL1(s, t)/
√

2 as depicted in Fig. 4(a), we conclude
that

∑
e∈Z |e| ≤ dL1(s, t).

Let O be the set of all 1-edges in σs→t and let η be the horizontal line passing
through t. Since σs→t is x-monotone, the orthogonal projections of all edges in



On the Stretch Factor of the Theta-4 Graph 115

a)

t

s

dL1
(s, t)

dL1
(s,t)√
2

δ

�−

�+

�−

t η

v

qi

v0
pi

�+

�−

t

γ1

γ0

b)

s

η

p1
q1

c)

γi

Fig. 4. a) The segment δ having length dL1(s, t)/
√
2. b) The 0-edges of σs→t have

disjoint projections on �− and the 1-edges have disjoint projections on the horizontal
line passing through t. The slope between the endpoints of the maximal paths γ0 and
γ1 is less than 1. c) The slope between pi with qi is smaller than 1.

O on η are disjoint. Let γ0, . . . , γk be the connected components induced by O,
i.e., the set of maximal connected paths that can be formed by the 1-edges in
O; see Fig. 4(b). We claim that the slope of the line joining the two endpoints
pi, qi of every γi is smaller than 1. If this claim is true, the length of every γi is
bounded by |piqi|x + |piqi|y ≤ 2 · |piqi|x as each γi is x- and y-monotone.

To prove that the slope between pi and qi is smaller than 1, let vv0 be the
0-edge of σs→t such that v0 = pi. Since vv0 is in σs→t, v is t-protected by Step 4
of Algorithm 1 and hence, as Δ0(v) is empty, qi must lie below the line with
slope +1 passing through pi yielding our claim; see Fig. 4(c) for an illustration.

Let ω be the segment obtained by shooting a ray from t to the left until
hitting the boundary of S(s). We bound the length of all edges in O using the
length of ω. Notice that the orthogonal projection of every γi on η is contained
in ω, except maybe for γk whose right endpoint qk could lie below and to the
right of t. Two cases arise: If the projection of γk on η is contained in ω, then∑k

i=0 |γi| ≤
∑k

i=0 2 · |piqi|x ≤ 2 · |ω|. Otherwise, since qk is t-protected, qk lies
below �− and hence dL1(pk, qk) ≤ dL1(pk, t). Moreover, pk must lie above �+ as pk

is reached by a 0-edge coming from above η, i.e., |pkt|y < |pkt|x. Therefore,

|γk| ≤ dL1(pk, qk) ≤ dL1(pk, t) = |pkt|x + |pkt|y ≤ 2 · |pkt|x

Consequently,
∑k

i=0 |γi| ≤ 2·|pkt|x+
∑k−1

i=0 2·|piqi|x ≤ 2·|ω|. Since |ω| ≤ dL1(s, t),

we get that
∑

e∈O |e| =
∑k

i=0 |γi| ≤ 2 · dL1(s, t). Thus, σs→t is a light path of
length at most

∑
e∈O |e|+

∑
e∈Z |e| ≤ 3 · dL1(s, t). 
�

By the construction of the light path in Algorithm 1, we observe the following.

Lemma 7. Let s and t be two points of P such that s lies to the left of t. If
the right endpoint w of σs→t is not equal to t, then w lies either above �+ if
w ∈ C1(t), or below �− if w ∈ C0(t).



116 L. Barba et al.

Proof. If w lies in C1(t), then by Step 4 of Algorithm 1, w was reached by a
0-edge pw such that p is a t-protected point lying above and to the left of t. As
Δ0(p) is empty, t lies below the hypotenuse of Δ0(p) and hence w lies above �+.

Assume that w lies in C0(t). Notice that w is the only t-protected point of σs→t

that lies to the right of t; otherwise, Algorithm 1 finishes before reaching w. By
Step 4 of Algorithm 1, every 0-edge of σs→t needs to have a t-protected left
endpoint. Moreover, every t-protected point of σs→t, other that w, lies above
and to the left of t. Therefore, w is not reached by a 0-edge of σs→t, i.e., w must
be the right endpoint of a 1-edge pw of σs→t. Notice that w cannot lie above �−

since otherwise p is t-protected and hence Algorithm 1 finishes before reaching w
yielding a contradiction. Thus, w lies below �−. 
�

4 One Empty Quadrant

Before stepping into the proof of Lemma 1, we need one last definition. Given
a point p of P , the max1-path of p is the longest x-monotone path having p
as an endpoint that consists only of 1-edges and contains edge pp1. We restate
Lemma 1 using the notions of t-protected and s-t-path.

Lemma 1. Let s and t be two points of P such that t lies in C0(s). If the top-
right quadrant of S(s) is empty and s is t-protected, then there is an s-t-path in
the θ4-graph of P of length at most 18 · dL1(s, t).

Proof. Since s is t-protected, no point of P lies above s, to the right of s and
below �−; see the dark-shaded region in Fig. 5. Let R be the smallest axis-aligned
rectangle enclosing s and t and let k be the number of t-protected points inside R,
by the general position assumption, these points are strictly contained in R. We
prove the lemma by induction on k.

�+ �−

t

s0

S(s)

s

R

S(s0)

Fig. 5. Base case

Base Case: Assume that R contains no t-
protected point, i.e., k = 0. We claim that R
must be empty and we prove it by contradic-
tion. Let q be a point in R and note that q
cannot lie above �− as it would be t-protected
yielding a contradiction. If q lies below �−, we
can follow the max1-path from q until reaching
a t-protected point p lying below �−. Since s is
t-protected, p must lie inside R which is also a
contradiction. Thus, R must be empty.

Assume that s0 	= t since otherwise the result
is trivial. As R is empty and s0 	= t, s0 lies below
t and above �+. Moreover, no point of P lies
above t, below �− and inside S(s0) since s is t-protected. Thus, if we think of the
set of points P rotated 90 degrees clockwise around t, Lemma 6 and Lemma 7
guarantee the existence of an s0-t-path γ of length at most 3 ·dL1(s0, t). Since s0
lies above �+, dL1(s, s0) ≤ dL1(s, t). Furthermore, dL1(s0, t) ≤ 2 · dL1(s, t) as s0



On the Stretch Factor of the Theta-4 Graph 117

lies inside S(s). Thus, by joining ss0 with γ, we obtain an s-t-path of length at
most 7 · dL1(s, t).

Inductive Step: We aim to show the existence of a path γ joining s with
a t-protected point w ∈ R such that the length of γ is at most 18 · dL1(s, w).
If this is true, we can merge γ with the w-t-path ϕ existing by the induction
hypothesis to obtain the desired s-t-path with length at most 18 · dL1(s, t). We
analyze two cases depending on the position of s0 with respect to R.

�−

s0

R

wσs→x

t

s

Fig. 6. Case 1

Case 1. Assume that s0 lies inside R. If s0
lies above �−, then s0 is t-protected and hence
we are done after applying our induction hypoth-
esis on s0. If s0 lies below �−, then we can follow
its max1-path to reach a t-protected point w that
must lie inside R as s is t-protected. By running
Algorithm 1 on s and w, we obtain a path σs→w

that goes through the edge ss0 and then follows
the max1-path of s0 until reaching w; see Fig. 6.

Since s is t-protected and w lies below �−, s is
also w-protected. Therefore, Lemma 6 guarantees that |σs→w | ≤ 3 ·dL1(s, w). By
induction hypothesis on w, there is a w-t-path ϕ such that |ϕ| ≤ 18 · dL1(w, t).
As w lies in R, by joining σs→w with ϕ we obtain the desired s-t-path of length
at most 18 · dL1(s, t).

Case 2. Assume that s0 does not lie in R. This implies that s0 lies below t.
Assume also that σs→t does not reach t; otherwise we are done since |σs→t| ≤
3 · dL1(s, t). Thus, as the top-right quadrant of S(s) is empty, σs→t ends at a
t-protected point z lying in the bottom-right quadrant of S(s). We consider two
sub-cases depending on whether σs→t contains a point inside R or not.

�+

�−

s0

R
w

z
σs→x

t

s

Fig. 7. Case 2.1

Case 2.1. If σs→t contains a point inside R,
let w be the first t-protected point of σs→t after
s and note that w also lies inside R since s is
t-protected. Notice that the part of σs→t going
from s to w is in fact equal to σs→w since w lies
above t and only 1-edges were followed after s0 by
Step 4 of Algorithm 1; see Fig. 7. Thus, as s is also
w-protected, the length of σs→w is bounded by
3 ·dL1(s, w) by Lemma 6. Hence, we can apply the
induction hypothesis on w as before and obtain
the desired s-t-path.

Case 2.2. If σs→t does not contain a point in-
side R, then σs→t follows only 1-edges from s0 until reaching z in the bottom-
right quadrant of S(s); see Fig. 8(a) for an illustration of this case.

Let P ∗ be the set of points obtained by reflecting P on line �+. Since this
reflection preserves 1-edges, it preserves t-protected points. Therefore, if z∗ is
the reflection of z, then z∗ lies in C2(t) and is also t-protected. Hence, we can
use Algorithm 1 to produce a path σz∗→t in the θ4-graph of P ∗. Let γz→t be the
path in the θ4-graph of P obtained by reflecting σz∗→t on �+. Note that γz→t is



118 L. Barba et al.

a path that uses only 1- and 2-edges. Because the top-right quadrant of S(s) is
empty, γz→t ends at a point w such that w is either equal to t or w lies in the top-
left quadrant of S(s); see Fig. 8(a). Since z lies inside S(s), dL1(z, t) ≤ 2·dL1(s, t).
Hence, by Lemma 6, the length of σs→t ∪ γz→t is at most
|σs→t|+|γz→t| ≤ 3·dL1(s, t)+3·dL1(z, t) ≤ 3·dL1(s, t)+6·dL1(s, t) = 9·dL1(s, t).

Two cases arise: If γz→t reaches t (w = t), then we are done since σs→t∪γz→t

joins s with t through z and its length is at most 18 · dL1(s, t).
If γz→t does not reach t (w 	= t), then w lies below �− by Lemma 7 applied

on path σz∗→t. Moreover, as s is t-protected, no point in C1(s) can be reached
by γz→t and hence w must lie inside R. We claim that dL1(s, t) ≤ 2 · dL1(s, w).
If this claim is true, |σs→t ∪ γz→t| ≤ 9 · dL1(s, t) ≤ 18 · dL1(s, w). Furthermore,
by the induction hypothesis, there is a path ϕ joining w with t of length at most
18 · dL1(w, t). Consequently, by joining σs→t, γz→t and ϕ, we obtain an s-t-path
of length at most 18 · dL1(s, w) + 18 · dL1(w, t) = 18 · dL1(s, t).

ρ
�+

�−

t

s0 z

s

a

s⊥Q

Q+ w

S(z)

�+

�−

t

s0

S(s)

s

R

zσs→t σs→t

γz→t

w

γz→t

a) b)

Fig. 8. a) Case 2.2 in the proof of Lemma 1, path σs→t has no point inside R and
reaches a point z lying in the bottom-right quadrant of S(s). b) The inductive argument
proving that the point w, reached after taking the path γz→t, lies outside of the triangle
Q+ containing all the points above ρ and below s. As s is t-protected, the region above
s and below ρ is empty.

To prove that dL1(s, t) ≤ 2 ·dL1(s, w), let s⊥ be the orthogonal projection of s
on �+. Let ρ be the perpendicular bisector of the segment ss⊥ and notice that
for every point y in C0(s), dL1(s, t) ≤ 2 · dL1(s, y) if and only if y lies below ρ.

Let Q be the minimum axis-aligned square containing s and s⊥. Note that ρ
splits Q into two equal triangles Q+ and Q− as one diagonal of Q is contained
in ρ. Assume that Q+ is the triangle that lies above ρ. Notice that all points
lying in C0(s) and above ρ are contained in Q+; see Fig. 8(b). We prove that w
lies outside of Q+ and hence, that w must lie below ρ.

If s0 lies below ρ, then the empty triangle Δ0(s) contains Q+ forcing w to lie
below ρ. Assume that s0 lies above ρ. In this case, z lies above s0 as we only



On the Stretch Factor of the Theta-4 Graph 119

followed 1-edges to reach z in the construction of σs→t by Step 4 of Algorithm 1.
Let a be the intersection of �+ and the ray shooting to the left from z. Notice
that w must lie to the right of a as the path γz→t is contained in the square S(z)
and a is one of its corners. As z lies above s0 and s0 lies above s⊥, we conclude
that a is above s⊥ and both lie on �+. Therefore, a lies to the right of s⊥,
implying that w lies to the right of s⊥ and hence outside of Q+. As we proved
that w lies below ρ, we conclude that dL1(s, t) ≤ 2 · dL1(s, w). 
�

5 Lower Bound

We show how to construct a lower bound of 7 for the θ4-graph. We start with two
points u and w such that w lies in C2(u) and the difference of their x-coordinates
is arbitrarily small. To construct the lower bound, we repeatedly replace a single
edge of the shortest u-w-path by placing points in the corners of the empty
triangle(s) associated with that edge. The final graph is shown in Fig. 9.

We start out by removing the edge between u and w by placing two points,
one inside Δ2(u) and one inside Δ0(w), both arbitrarily close to the corner that
does not contain u nor w. Let v1 be the point placed in Δ2(u). Placing v1 and
the other point in Δ0(w) removed edge uw, but created two new shortest paths,
uv1w being one of them. Hence, our next step is to extend this path.

u

w

v1

v2 v3

v4

Fig. 9. A lower bound for the θ4-graph. One of the shortest paths from u to w goes
via v1, v2, v3, and v4.

We remove edge v1w (and its equivalent in the other path) by placing a point
arbitrarily close to the corner of Δ1(v1) and Δ3(w) that is farthest from u. Let
v2 be the point placed inside Δ1(v1). Hence, edge v1w is replaced by the path
v1v2w. Next, we extend the path again by removing edge v2w (and its equivalent



120 L. Barba et al.

edge in the other paths). Like before, we place a point arbitrarily close to the
corner of Δ0(v2) and Δ2(w) that is farthest from u. Let v3 be the point placed
in Δ0(v2). Hence, edge v2w is replaced by v2v3w.

Finally, we replace edge v3w (and its equivalent edge in the other paths). For
all paths for which this edge lies on the outer face, we place a point in the corner
of the two empty triangles defining that edge. However, for edge v3w which does
not lie on the outer face, we place a single point v4 in the intersection of Δ3(v3)
and Δ1(w). In this way, edge v3w is replaced by v3v4w. When placing v4, we
need to ensure that no edge uv4 is added as this would created a shortcut. This is
easily achieved by placing v4 such that it is closer to v3 than to w. The resulting
graph is shown in Fig. 9.

Lemma 8. The stretch factor of the θ4-graph is at least 7.

Proof. We look at path uv1v2v3v4w from Fig. 9. Edges uv1, v3v4, and v4w have
length |uw|−ε and edges v1v2 and v2v3 have length 2·|uw|−ε, where ε is positive
and arbitrarily close to 0. Hence, the stretch factor of this path is arbitrarily
close to 7. 
�

References

1. Bonichon, N., Gavoille, C., Hanusse, N., Ilcinkas, D.: Connections between Theta-
Graphs, Delaunay Triangulations, and Orthogonal Surfaces. In: Thilikos, D.M.
(ed.) WG 2010. LNCS, vol. 6410, pp. 266–278. Springer, Heidelberg (2010)

2. Bonichon, N., Gavoille, C., Hanusse, N., Perković, L.: The stretch factor of L1-
and L∞-Delaunay triangulations. In: Epstein, L., Ferragina, P. (eds.) ESA 2012.
LNCS, vol. 7501, pp. 205–216. Springer, Heidelberg (2012)

3. Bose, P., Damian, M., Doüıeb, K., O’Rourke, J., Seamone, B., Smid, M., Wuhrer,
S.: π/2-angle Yao graphs are spanners. International Journal of Computational
Geometry & Applications 22(1), 61–82 (2012)

4. Bose, P., De Carufel, J.-L., Morin, P., van Renssen, A., Verdonschot, S.: Optimal
bounds on theta-graphs: More is not always better. In: Proceedings of CCCG, pp.
305–310 (2012)

5. Bose, P., Morin, P., van Renssen, A., Verdonschot, S.: The θ5-graph is a spanner.
To appear in the proceedings of WG 2013 (2013)

6. Bose, P., van Renssen, A., Verdonschot, S.: On the spanning ratio of theta-graphs.
In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS, vol. 8037, pp.
182–194. Springer, Heidelberg (2013)

7. Clarkson, K.: Approximation algorithms for shortest path motion planning. In:
Proceedings of STOC, pp. 56–65 (1987)

8. El Molla, N.M.: Yao spanners for wireless ad hoc networks. Master’s thesis, Vil-
lanova University (2009)

9. Keil, J.: Approximating the complete Euclidean graph. In: Karlsson, R., Lingas,
A. (eds.) SWAT 1988. LNCS, vol. 318, pp. 208–213. Springer, Heidelberg (1988)

10. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University
Press (2007)

11. Ruppert, J., Seidel, R.: Approximating the d-dimensional complete Euclidean
graph. In: Proceedings of CCCG, pp. 207–210 (1991)



Better Space Bounds

for Parameterized Range Majority and Minority

Djamal Belazzougui1, Travis Gagie1,2, and Gonzalo Navarro3

1 Department of Computer Science, University of Helsinki
2 Helsinki Institute for Information Technology

3 Department of Computer Science, University of Chile

Abstract. Karpinski and Nekrich (2008) introduced the problem of pa-
rameterized range majority, which asks to preprocess a string of length
n such that, given the endpoints of a range, one can quickly find all the
distinct elements whose relative frequencies in that range are more than
a threshold τ . Subsequent authors have reduced their time and space
bounds such that, when τ is given at preprocessing time, we need either
O(n lg(1/τ )) space and optimal O(1/τ ) query time or linear space and
O((1/τ ) lg lg σ) query time, where σ is the alphabet size. In this paper we
give the first linear-space solution with optimal O(1/τ ) query time. For
the case when τ is given at query time, we significantly improve previous
bounds, achieving either O(n lg lg σ) space and optimal O(1/τ ) query

time or compressed space and O
(
(1/τ ) lg lg(1/τ)

lg lgn

)
query time. Along the

way, we consider the complementary problem of parameterized range mi-
nority that was recently introduced by Chan et al. (2012), who achieved
linear space and O(1/τ ) query time even for variable τ . We improve their
solution to use either nearly optimally compressed space with no slow-
down, or optimally compressed space with nearly no slowdown. Some of
our intermediate results, such as density-sensitive query time for one-
dimensional range counting, may be of independent interest.

1 Introduction

Finding frequent elements in a dataset is a fundamental operation in data mining.
Finding the most frequent elements can be challenging when all the distinct
elements have nearly equal frequencies and we do not have the resources to
compute all their frequencies exactly. In some cases, however, we are interested
in the most frequent elements only if they really are frequent. For example, Misra
and Gries [20] showed how, given a string and a threshold τ with 0 < τ ≤ 1,
with two passes and O(1/τ) words of space we can find all the distinct elements
in a string whose relative frequencies are at least τ . These elements are called
the τ -majorities of the string. Misra and Gries’ algorithm was rediscovered by
Demaine, López-Ortiz and Munro [9], who noted it can be made to run in O(1)
time per element on a word RAM with Ω(lg n)-bit words, where n is the length
of the string, which is the model we use; it was then rediscovered again by Karp,

F. Dehne, R. Solis-Oba, and J.-R. Sack (Eds.): WADS 2013, LNCS 8037, pp. 121–132, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



122 D. Belazzougui, T. Gagie, and G. Navarro

Shenker and Papadimitriou [16]. As Cormode and Muthukrishnan [8] put it,
“papers on frequent items are a frequent item!”

Krizanc, Morin and Smid [18] introduced the problem of preprocessing the
string such that later, given the endpoints of a range, we can quickly return the
mode of that range (i.e., the most frequent element). They gave two solutions, one
of which takesO

(
n2−2ε

)
space for any fixed positive ε ≤ 1/2, and answers queries

in O(nε lg lg n) time; the other takesO
(
n2 lg lgn/ lgn

)
space and answers queries

in O(1) time. Petersen [22] reduced Krizanc et al.’s first time bound to O(nε)
for any fixed non-negative ε < 1/2, and Petersen and Grabowski [23] reduced
the second space bound to O

(
n2 lg lgn/ lg2 n

)
. Chan et al. [6] recently gave a

linear-space solution that answers queries in O
(√

n/ lgn
)

time. They also gave

evidence suggesting we cannot easily achieve query time substantially smaller
than

√
n using linear space; however, the best known lower bound, by Greve et

al. [15], says only that we cannot achieve query time o
(

lg(n)/ lg(sw/n)
)

using s
words of w bits each. Because of the difficulty of supporting range mode queries,
Bose et al. [5] and Greve et al. [15] considered the problem of approximate range
mode, for which we are asked to return an element whose frequency is at least
a constant fraction of the mode’s frequency.

Karpinski and Nekrich [17] took a different direction, analogous to Misra and
Gries’ approach, when they introduced the problem of preprocessing the string such
that later, given the endpoints of a range, we can quickly return the τ -majorities
of that range. We refer to this problem as parameterized range majority. Assum-
ing τ is given when we are preprocessing the string, they showed how we can store
the string inO(n(1/τ)) space and answer queries inO

(
(1/τ)(lg lgn)2

)
time. They

also gave bounds for dynamic and higher-dimensional versions. Durocher et al. [10]
independently posed the same problem and showed how we can store the string in
O(n lg(1/τ + 1)) space and answer queries in O(1/τ) time. Notice that, because
there can be up to 1/τ distinct elements to return, this time bound is worst-case
optimal. Gagie et al. [14] showed how to store the string in compressed space —
i.e., O(n(H + 1)) bits, where H is the entropy of the distribution of elements in
the string — such that we can answer queries in O((1/τ) lg lgn) time. They also
showed how to drop the assumption that τ is fixed and simultaneously achieve op-
timal query time, at the cost of increasing the space bound by a (lg n)-factor. That
is, they gave a data structure that stores the string inO(n(H + 1)) space such that
later, given the endpoints of a range and τ , we can return the τ -majorities of that
range in O(1/τ) time. Chan et al. [7] recently gave another solution for variable
τ , which also has O(1/τ) query time but uses O(n lg n) space. As far as we know,
these are all the relevant bounds for Karpinski and Nekrich’s original exact, static,
one-dimensional problem, both for fixed and variable τ ; they are summarized in
Table 1 together with our own results. Related work includes Elmasry et al.’s [11]
solution for the dynamic version and Lai, Poon and Shi’s [19] and Wei and Yi’s [26]
approximate solutions for the dynamic version.

In this paper we first consider the complementary problem of parameterized
range minority, which was recently introduced by Chan et al. [7]. For this problem
we are asked to preprocess the string such that later, given the endpoints of a



Better Space Bounds for Parameterized Range Majority and Minority 123

Table 1. Results for the problem of parameterized range majority on a string of length
n over an alphabet of size σ in which the distribution of the elements has entropy H

source space time variable τ

Karpinski and Nekrich [17] O(n(1/τ )) words O
(
(1/τ )(lg lgn)2

)
no

Durocher et al. [10] O(n lg(1/τ )) words O(1/τ ) no

Gagie et al. [14] O(n(H + 1)) bits O((1/τ ) lg lg σ) no

Theorem 3 O(n) words O(1/τ ) no

Gagie et al. [14] O(n(H + 1)) words O(1/τ ) yes

Chan et al. [7] O(n lg n) words O(1/τ ) yes

Theorem 4 O(n lg lg σ) words O(1/τ ) yes

Theorem 5 nH + o(n lg σ) bits O((1/τ ) lg lg σ) yes

Theorem 7 (1 + ε)nH + o(n lg σ) bits O
(
(1/τ ) lg lg(1/τ)

lg lg n

)
yes

range, we can return (if one exists) a distinct element that occurs in that range
but is not one of its τ -majorities. Such an element is called a τ -minority for the
range. At first, finding a τ -minority might seem harder than finding a τ -majority
because, e.g., we are less likely to find a τ -minority by sampling. Nevertheless,
Chan et al. gave a linear-space solution with O(1/τ) query time even when τ
is given at query time. In Section 3 we give two results, also for the case of
variable τ :

1. for any positive constant ε, a solution with O(1/τ) query time that takes
(1 + ε)nH +O(n) bits;

2. for any function f(n) = ω(1), a solution with O((1/τ) f(n)) query time that
takes nH +O(n) + o(nH) bits.

In the full version of this paper we will reduce the space bound in point 2 above
to nH+o(n(H+1)) bits. That is, we improve Chan et al.’s solution to use either
nearly optimally compressed space with no slowdown, or optimally compressed
space with nearly no slowdown. We reuse ideas from this section in our solutions
for parameterized range majority.

In Section 4 we return to Karpinski and Nekrich’s original problem of param-
eterized range majority with fixed τ and give the first linear-space solution with
worst-case optimal O(1/τ) query time. In Section 5 we adapt this solution to
the more challenging case of variable τ and give three results:

1. a solution with O(1/τ) query time that takes O(n lg lg σ) space, where σ is
the size of the alphabet;

2. a solution with O((1/τ) lg lg σ) query time that takes nH + o(n lg σ) bits;

3. for any positive constant ε, a solution with O
(

(1/τ) lg lg(1/τ)
lg lgn

)
query time

that takes (1 + ε)nH + o(n lg σ) bits.

With (2), we can support O(1)-time access to the string and O(lg lg σ)-time rank
and select (see definitions in Section 2.1); with (3), select also takes O(1) time.



124 D. Belazzougui, T. Gagie, and G. Navarro

In the full version of this paper we will reduce the space bounds in (2) and (3)
to nH + o(n(H + 1)) and (1 + ε)nH +O(n) bits, respectively. While proving (3)
we introduce a compressed data structure with density-sensitive query time for
one-dimensional range counting, which may be of independent interest; due to
space constraints, however, we leave the description of this data structure to the
full version of this paper. We will also show in the full version how to use our
data structures for (2) or (3) to find a range mode quickly when it is actually
reasonably frequent. We leave as an open problem reducing the space bound in
(1) or the time bound in (2) or (3), to obtain linear or compressed space with
optimal query time.

2 Preliminaries

2.1 Access, Select and (Partial) Rank

Let S[1..n] be a string over an alphabet of size σ and let H be the entropy
of the distribution of elements in S. An access query on S takes a position k
and returns S[k]; a rank query takes a distinct element a and a position k and
returns the number of occurrences of a in S[1..k]; a select query takes a distinct
element a and a rank r and returns the position of the rth occurrence of a in S.
A partial rank query is a rank query with the restriction that the given distinct
element must occur in the given position; i.e., S[k] = a. These are among the
most well-studied operations on strings, so we state here only the results most
relevant to this paper.

For σ = 2 and any constant c, Pǎtraşcu [24] showed how we can store S in

nH +O(n/ lgc n) bits. For σ = lgO(1) n, Ferragina et al. [12] showed how we can
store S in nH + o(n) bits and support access, rank and select in O(1) time. For
σ < n, Barbay et al. [1] showed how, for any positive constant ε, we can store S
in (1 + ε)nH + o(n) bits and support access and select in O(1) time and rank in
O(lg lg σ) time. Belazzougui and Navarro [3] showed how to support O(1)-time
partial rank using O(n(lgH + 1)) bits; in the full version of their paper [2] they
reduced that space bound to o(n)(H + 1) bits. In another paper, Belazzougui
and Navarro [4] showed how, for any function f(n) = ω(1), we can store S in
nH+o(n(H+1) bits and support access in O(1) time, select in O(f(n)) time and
rank in O(lg lg σ) time. They also proved, via a reduction from the predecessor
problem, that we cannot support general rank queries in o(lg(lg σ/ lg lgn)) time

while using n lgO(1) n space.

2.2 Coloured Range Listing

Motivated by the problem of document listing, Muthukrishnan [21] showed how
we can store S[1..n] such that, given the endpoints of a range, we can quickly list
the distinct elements in that range and the positions of their leftmost occurrences
therein. This is the special case of one-dimensional coloured range listing in which
the points’ coordinates are the integers from 1 to n. Let C[1..n] be the array in



Better Space Bounds for Parameterized Range Majority and Minority 125

which C[k] is the position of the last occurrence of the distinct element S[k] in
S[1..k− 1] — i.e., the last occurrence before S[k] itself — or 0 if there is no such
occurrence. Notice S[k] is the first occurrence of that distinct element in a range
S[i..j] if and only if i ≤ k ≤ j and C[k] < i. We store C, implicitly or explicitly,
and a data structure supporting O(1)-time range-minimum queries on C that
return the position of the leftmost occurrence of the minimum in the range.

To list the distinct elements in a range S[i..j] given i and j, we find the
position m of the leftmost occurrence of the minimum in the range C[i..j]; check
whether C[m] < i; and, if so, output S[m] and m and recurse on C[i..m − 1]
and C[m+ 1..j]. This procedure is online — i.e., we can stop it early if we want
only a certain number of distinct elements — and the time it takes per distinct
element is O(1) plus the time to access C.

Suppose we already have data structures supporting access, select and partial
rank queries on S, all inO(t) time. Notice C[k] = S.selectS[k]

(
S.rankS[k](k)− 1

)
,

so we can also support access to C in O(t) time. Sadakane [25] and Fischer [13]
gave O(n)-bit data structures supporting O(1)-time range-minimum queries.
Therefore, we can implement Muthukrishnan’s solution using O(n) extra bits
such that it takes O(t) time per distinct element listed.

3 Parameterized Range Minority

Recall from Section 1 that a τ -minority for a range is a distinct element that
occurs in that range but is not one of its τ -majorities. The problem of parameter-
ized range minority is to preprocess a string such that later, given the endpoints
of a range and τ , we can quickly return a τ -minority for that range if one exists.
Chan et al. gave a linear-space solution with O(1/τ) query time even for the
case of variable τ . They first build a list of �1/τ� + 1 distinct elements that
occur in the given range (or as many as there are, if fewer) and then check those
elements’ frequencies to see which are τ -minorities. There cannot be more than
�1/τ� τ -majorities so, if there exists a τ -minority for that range, then at least
one must be in the list. In this section we show how to implement this idea using
compressed space.

To support parameterized range minority on S[1..n] in O(1/τ) time, we store
data structures supporting O(1)-time access, select and partial rank queries on
S and a data structure supporting O(1)-time range-minimum queries on C.
For any positive constant ε, we can store these data structures in a total of
(1 + ε)nH + O(n) bits. Given τ and endpoints i and j, in O(1/τ) time we use
Muthukrishnan’s algorithm to build a list of �1/τ� + 1 distinct elements that
occur in S[i..j] (or as many as there are, if fewer) and the positions of their
leftmost occurrences therein. We check whether these distinct elements are τ -
minorities using the following lemma:

Lemma 1. Suppose we know the position of the leftmost occurrence of a distinct
element in a range. We can check whether that distinct element is a τ-minority
or a τ-majority using a partial rank query and a select query on S.



126 D. Belazzougui, T. Gagie, and G. Navarro

Proof. Let k be the position of the first occurrence of a in S[i..j]. If S[k] is the
rth occurrence of a in S, then a is a τ -minority for S[i..j] if and only if the
(r + �τ(j − i + 1)� − 1)th occurrence of a in S is strictly after S[j]; otherwise
a is a τ -majority. That is, we can check whether a is a τ -minority for S[i..j] by
checking whether

S.selecta

(
S.ranka(k) + �τ(j − i + 1)� − 1

)
> j ;

since S[k] = a, computing S.ranka(k) is only a partial rank query. 
�

This gives us the following theorem, which improves Chan et al.’s solution to
use nearly optimally compressed space with no slowdown.

Theorem 1. For any positive constant ε, we can store S in (1+ε)nH+O(n) bits
such that later, given the endpoints of a range and τ , we can return a τ-minority
for that range (if one exists) in O(1/τ) time.

Alternatively, for any function f(n) = ω(1), we can store our data structures for
access, select and partial rank on S and range-minimum queries on C in a total
of nH +O(n) + o(nH) at the cost of select queries taking O(f(n)) time.

Theorem 2. For any function f(n) = ω(1), we can store S in nH + O(n) +
o(nH) bits such that later, given the endpoints of a range and τ , we can return
a τ-minority for that range (if one exists) in O((1/τ) f(n)) time.

In the full version of this paper we will reduce the space bound of Theorem 2
to nH + o(n(H + 1)) bits. That is, we improve Chan et al.’s solution to use
optimally compressed space with nearly no slowdown.

4 Parameterized Range Majority with Fixed τ

The standard approach to finding τ -majorities, going back to Misra and Gries’
work, is to build a list of O(1/τ) candidate elements and then verify them.
For parameterized range majority, an obvious way to verify candidates is to
use rank queries. The problem with this approach is that, as noted in Subsec-
tion 2.1, we cannot support general rank queries in o(lg(lg σ/ lg lgn)) time while

using n lgO(1) n space; e.g., with only linear space, we cannot support general
rank queries in O(1) time when the alphabet is super-polylogarithmic. If we can
find the position of candidates’ first occurrences in the range, however, then by
Lemma 1 we can check them using only partial rank and select queries.

Suppose we want to support parameterized range majority on S[1..n] for a
fixed threshold τ . We first store data structures that support access, select and
partial rank on S in O(1) time, which takes O(n) space. For 0 ≤ b ≤ �lgn�, let
Fb[1..n] be the binary string in which Fb[k] = 1 if the distinct element S[k] occurs
at least τ2b times in S[k..k+ 2b+1− 1]; and let Sb and Cb be the subsequences of
S and C, respectively, consisting of those elements flagged by 1s in Fb. We store



Better Space Bounds for Parameterized Range Majority and Minority 127

Fb in O(n) bits such that we can support access, rank and select queries on Fb in
O(1) time. Notice we can implement an access query on Sb or Cb as a select query
on Fb and access queries on S or C, respectively. As described in Subsection 2.2,
we can implement an access query to C as access, select and partial rank queries
on S. We also store an O(1)-time range-minimum data structure for Cb, which
takes O(|Sb|) bits.

With these data structures, given endpoints i and j with �lg(j−i+1)� = b, we
use Muthukrishnan’s algorithm to list the distinct elements in Sb[Fb.rank1(i)..
Fb.rank1(j)] and the positions of their leftmost occurrences therein; we then use
select queries on Fb to find the positions of those elements in S. That is, we list
the distinct elements in S[i..j] that are flagged by 1s in Fb and the positions
of their leftmost flagged occurrences therein. We then apply Lemma 1 to each
of these elements, treating the positions of their leftmost flagged occurrences as
the positions of their leftmost occurrences. Since each distinct element in S[i..j]
that is flagged in Fb occurs at least τ2b times in S[i..j+2b+1−1] ⊂ S[i..i+2b+2],
there are O(1/τ) of them and we use a total of O(1/τ) time.

Notice that the leftmost flagged occurrences of a distinct element a in S[i..j]
may not necessarily be the leftmost occurrence therein. However, if a is a τ -
majority in S[i..j] then, by definition, a occurs at least τ(j − i + 1) ≥ τ2b times
in S[i..j] ⊂ S[i..i+ 2b+1− 1], so a’s leftmost occurrence in S[i..j] is flagged by a
1 in Fb and, therefore, we apply Lemma 1 to it. It follows that we return each
τ -majority in S[i..j].

We store only one set of data structures supporting access, select and partial
rank on S. Summing over b from 0 to �lgn�, the data structures for access,
select, partial rank and range-minimum queries take a total of O(n lgn) bits,
which is O(n) words. Therefore, we have the first linear-space data structure
with worst-case optimal O(1/τ) query time for Karpinski and Nekrich’s original
problem of parameterized range majority with fixed τ .

Theorem 3. Given a threshold τ , we can store a string in linear space and
support parameterized range majority in O(1/τ) time.

5 Parameterized Range Majority with Variable τ

5.1 Nearly Linear Space with Optimal Query Time

Suppose we have an instance of the data structure from Theorem 3 for each
threshold 1, 1/2, 1/4, . . . , 1/2
lgn�, which takes a total of O(n lg n) space. Given
endpoints i and j and a threshold τ , we can use the instance for threshold
1/2
lg(1/τ)� to build a list of O(1/τ) candidate elements and then check them
with Lemma 1; this takes a total of O(1/τ) time and returns all the τ -majorities
in S[i..j]. Gagie et al. used a variant of this idea to obtain the first data structure
for variable τ . We can easily reduce our space bound to O(n lg σ) because, if
1/τ ≥ σ, then we can simply use Muthukrishnan’s algorithm with S and C to
list in O(σ) = O(1/τ) time all the distinct elements in S[i..j] and the positions
of their leftmost occurrences therein, then check them with Lemma 1.



128 D. Belazzougui, T. Gagie, and G. Navarro

Notice that we need store only one set of data structures supporting access,
select and partial rank on S. Also, if S[k] is a (1/2t)-majority in a range, then
it is also a (1/2t

′
)-majority for all t′ ≥ t. It follows that if, instead of querying

only the instance for the threshold 1/2
lg(1/2)�, we query the instances for all the

thresholds 1, 1/2, 1/4, . . . , 1/2
lg(1/τ)� — which still takes O
(∑2�lg(1/τ)�

t=0 2t
)

=

O(1/τ) time — then we can modify the instances to reduce the total number
of 1s in their binary strings. Specifically, for 0 ≤ t ≤ �lg σ�, let F t

b be the
binary string Fb in the instance for threshold 1/2t; we modify F t

b such that
F t
b [k] = 1 if and only if the number of occurrences of the distinct element S[k]

in S[k..k + 2b+1 − 1] is at least 2b−t times but less than 2b−t+1.
For 0 ≤ b ≤ �lg n� and 1 ≤ k ≤ n, we have F t

b [k] = 1 for at most one value of
t. Therefore, all the binary strings contain a total of at most n(�lg n�+ 1) copies
of 1, so all the range-minimum data structures take a total of O(n lgn) bits.
Since the binary strings have total length n�lgn��lg σ�, we can use Pǎtraşcu’s
data structure to store them in a total of O(n lg(n) lg lg σ) bits. A slightly neater

approach is to represent all the binary strings F 0
b , . . . , F


lg σ�
b as a single string

Tb[1..n] in which Tb[k] = t if F t
b [k] = 1, and∞ if there is no such value t. We can

implement access, rank and select queries on F 0
b , . . . , F


lg σ�
b by access, rank and

select queries on Tb. Since Tb is an alphabet of size O(lg σ), we can use Ferragina
et al.’s data structure to store it in O(n lg lg σ) bits and support access, rank
and select queries in O(1) time. Either way, in total we use O(n lg lg σ) space.

Theorem 4. We can store S in O(n lg lg σ) space such that later, given the
endpoints of a range and τ , we can return the τ-majorities for that range in
O(1/τ) time.

5.2 Optimally Compressed Space with Nearly Optimal Query Time

To be able to apply Lemma 1, we must be able to find the leftmost occurrence
of each τ -majority in a range. For this reason, we may flag many occurrences of
the same distinct element even when they appear in close succession, because
we cannot know in advance where the query range will start. As discussed in
Section 4, however, if we have a data structure that supports rank queries on
S, then it is sufficient for us to build a list of O(1/τ) candidate elements that
includes all the τ -majorities — without any information about positions — and
then verify them using rank queries. This lets us flag fewer elements and so
reduce our space bound, at the cost of using slightly suboptimal query time.

We store an instance of Belazzougui and Navarro’s data structure supporting
access on S in O(1) and rank and select on S in O(lg lg σ) time, which takes
nH + o(n(H + 1)) bits. For 0 ≤ t ≤ �lg σ� and �lg(2t lg lg σ)� ≤ b ≤ �lg n�, we
divide S into blocks of length 2b−1 and store data structures supporting access,
rank and select on the binary string Gt

b[1..n] in which Gt
b[k] = 1 if, first, the

distinct element S[k] occurs at least 2b−t times in S[k − 2b+1..k + 2b+1] and,
second, S[k] is the leftmost or rightmost occurrence of that distinct element in
its block. We also store an O(1)-time range-minimum data structure for the
subsequence of C consisting of elements flagged by 1s in Gt

b.



Better Space Bounds for Parameterized Range Majority and Minority 129

The number of distinct elements that occur at least 2b−t times in a range of
size O

(
2b
)

is O(2t), so there are O(2t) elements in each block flagged by 1s in Gt
b.

It follows that we can store an instance of Pǎtraşcu’s data structure supporting
O(1)-time access, rank and select on Gt

b in O
(
n2t−b(b − t) + n/ lg3 n

)
bits; we

need O(2t) bits for the corresponding range-minimum data structure. Summing
over t from 0 to �lg σ� and over b from �lg(2t lg lg σ)� to �lg n�, calculation

shows we use a total of O
(

n lg σ lg lg lg σ
lg lg σ + n

lgn

)
= o(n lg σ) bits for the binary

strings and range-minimum data structures. Therefore, including the instance
of Belazzougui and Navarro’s data structure for S, we use nH + o(n lg σ) bits
altogether.

Given endpoints i and j and a threshold τ , if

�lg(j − i + 1)� <
⌊
lg

(
2
lg(1/τ)� lg lg σ

)⌋
,

then we simply run Misra and Gries’ algorithm on S[i..j] in O(j − i) =
O((1/τ) lg lg σ) time. Otherwise, we use Muthukrishnan’s algorithm to list the
distinct elements flagged by 1s in Gt

b, where t = �lg(1/τ)� and b = �lg(j−i+1)� ≥
�lg(2t lg lg σ)�, and use rank queries on S to check whether each of them is a
τ -majority in S[i..j]. Since S[i..j] overlaps at most 5 blocks of length 2b−1, it
contains O(1/τ) distinct elements flagged by 1s in Gt

b; therefore, Muthukrish-
nan’s algorithm takes O(1/τ) time and we use a total of O((1/τ) lg lg σ) time
for all the rank queries on S.

Since S[i..j] cannot be completely contained in a block of length 2b−1, if S[i..j]
overlaps a block then it includes one of that block’s endpoints. Therefore, if S[i..j]
contains an occurrence of a distinct element a, then it includes the leftmost or
rightmost occurrence of a in some block. Suppose a is a τ -majority in S[i..j].
For i ≤ k ≤ j, a occurs at least 2b−t times in S[k − 2b+1..k + 2b+1], so some
occurrence of a in S[i..j] is flagged by a 1 in Gt

b. Therefore, we return a.

Theorem 5. We can store S in nH + o(n lg σ) bits such that later, given the
endpoints of a range and τ , we can return the τ-majorities for that range in
O((1/τ) lg lg σ) time.

Since our solution includes an instance of Belazzougui and Navarro’s data struc-
ture, we can also support O(1)-time access to S and O(lg lg σ)-time rank and
select. In the full version of this paper we will reduce the space bound of Theo-
rem 5 to nH + o(n(H + 1)) bits.

5.3 Nearly Optimally Compressed Space with Very Nearly Optimal
Query Time

Recall from Subsection 5.1 that, if 1/τ ≥ σ, then we can simply use Muthukrish-
nan’s algorithm to list all the distinct elements in a range and then check them
with Lemma 1; therefore, we can assume 1/τ < σ. In this subsection we use a new
data structure with density-sensitive query time for one-dimensional range count-
ing, which may be of independent interest, to obtain a nearly optimally com-

pressed data structure for parameterized range majority with O
(

(1/τ) lg lg(1/τ)
lg lgn

)



130 D. Belazzougui, T. Gagie, and G. Navarro

query time. Due to space constraints, however, we leave the description of our
range-counting data structure to the full version of this paper and merely state
our result here:

Theorem 6. For any positive constant ε, we can store S in (1 + ε)nH +O(n)
bits such that later, given endpoints i and j and a distinct element a, we can

return occ(a, S[i..j]) in O
(

lg
lg

j−i+1
occ(a,S[i..j])

lg lgn

)
time. We can also support access

and select in O(1) time and rank in O(lg lg σ) time.

To obtain a compressed data structure for parameterized range majority with

O
(

(1/τ) lg lg(1/τ)
lg lgn

)
query time, we combine our solution from Theorem 5 with

Theorem 6. Instead of using O(lg lg σ)-time rank queries to check each of the
O(1/τ) candidate elements returned by Muthukrishnan’s algorithm, we use
range-counting queries. We can make all O(1/τ) range-counting queries each

take O
(

lg lg(1/τ)
lg lgn

)
time because, if one starts taking too much time, then the

distinct element we are checking cannot be a τ -majority and we can stop the
query early. (In fact, as we will show in the full version of this paper, our data
structure from Theorem 6 does not need such intervention.) This gives us our
final result:

Theorem 7. We can store S in (1 + ε)nH + o(n lg σ) bits such that later, given
the endpoints of a range and τ , we can return the τ-majorities for that range in

O
(

(1/τ) lg lg(1/τ)
lg lgn

)
time.

Notice our solution in Theorem 7 takes optimal O(1/τ) time when 1/τ =

lgO(1) n. Again, we can also support access and select in O(1) time and rank
in O(lg lg σ) time. In the full version of this paper we will reduce the space
bound in Theorem 7 to (1 + ε)nH + O(n) bits, and show how to use our data
structures from Theorems 5 and 7 to find a range mode quickly when it is actu-
ally reasonably frequent.

6 Conclusions

We have given the first linear-space data structure for parameterized range ma-
jority with query time O(1/τ), which is worst-case optimal in terms of n and τ .
Moreover, we have improved the space bounds for parameterized range major-
ity and minority in the important case of variable τ . For parameterized range
majority with variable τ , we have achieved nearly linear space and worst-case
optimal query time, or compressed space with a slight slowdown. For parame-
terized range minority, we have improved Chan et al.’s solution to use nearly
compressed space with no slowdown or compressed space with nearly no slow-
down. In the full version of this paper we will also reduce the lower-order terms
in our compressed space bounds to o(n(H + 1)) with the same slowdowns. We
leave as an open problem achieving linear or compressed space with O(1/τ)
query time for variable τ , or showing that this is impossible.



Better Space Bounds for Parameterized Range Majority and Minority 131

Acknowledgments. Many thanks to Patrick Nicholson for helpful comments.

References

1. Barbay, J., Claude, F., Gagie, T., Navarro, G., Nekrich, Y.: Efficient fully-
compressed sequence representations. Algorithmica (to appear)

2. Belazzougui, D., Navarro, G.: Alphabet-independent compressed text indexing.
ACM Transactions on Algorithms (to appear)

3. Belazzougui, D., Navarro, G.: Alphabet-independent compressed text indexing. In:
Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 748–759.
Springer, Heidelberg (2011)

4. Belazzougui, D., Navarro, G.: New lower and upper bounds for representing se-
quences. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp.
181–192. Springer, Heidelberg (2012)

5. Bose, P., Kranakis, E., Morin, P., Tang, Y.: Approximate range mode and range
median queries. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404,
pp. 377–388. Springer, Heidelberg (2005)

6. Chan, T.M., Durocher, S., Larsen, K.G., Morrison, J., Wilkinson, B.T.: Linear-
space data structures for range mode query in arrays. In: Proceedings of the 29th
Symposium on Theoretical Aspects of Computer Science (STACS), pp. 290–301
(2012)

7. Chan, T.M., Durocher, S., Skala, M., Wilkinson, B.T.: Linear-space data structures
for range minority query in arrays. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012.
LNCS, vol. 7357, pp. 295–306. Springer, Heidelberg (2012)

8. Cormode, G., Muthukrishnan, S.: Data stream methods. Lecture 3 of Rutger’s
198:671 Seminar on Processing Massive Data Sets (2003),
http://www.cs.rutgers.edu/~muthu/198-3.pdf

9. Demaine, E.D., López-Ortiz, A., Munro, J.I.: Frequency estimation of internet
packet streams with limited space. In: Möhring, R.H., Raman, R. (eds.) ESA 2002.
LNCS, vol. 2461, pp. 348–360. Springer, Heidelberg (2002)

10. Durocher, S., He, M., Munro, J.I., Nicholson, P.K., Skala, M.: Range majority in
constant time and linear space. Information and Computation 222, 169–179 (2013)

11. Elmasry, A., He, M., Munro, J.I., Nicholson, P.K.: Dynamic range majority data
structures. In: Asano, T., Nakano, S.-I., Okamoto, Y., Watanabe, O. (eds.) ISAAC
2011. LNCS, vol. 7074, pp. 150–159. Springer, Heidelberg (2011)

12. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed representations
of sequences and full-text indexes. ACM Transactions on Algorithms 3(2) (2007)

13. Fischer, J.: Optimal succinctness for range minimum queries. In: López-Ortiz, A.
(ed.) LATIN 2010. LNCS, vol. 6034, pp. 158–169. Springer, Heidelberg (2010)

14. Gagie, T., He, M., Munro, J.I., Nicholson, P.K.: Finding frequent elements in com-
pressed 2D arrays and strings. In: Grossi, R., Sebastiani, F., Silvestri, F. (eds.)
SPIRE 2011. LNCS, vol. 7024, pp. 295–300. Springer, Heidelberg (2011)

15. Greve, M., Jørgensen, A.G., Larsen, K.D., Truelsen, J.: Cell probe lower bounds
and approximations for range mode. In: Abramsky, S., Gavoille, C., Kirchner, C.,
Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp.
605–616. Springer, Heidelberg (2010)

16. Karp, R.M., Shenker, S., Papadimitriou, C.H.: A simple algorithm for finding
frequent elements in streams and bags. ACM Transactions on Database Sys-
tems 28(1), 51–55 (2003)

http://www.cs.rutgers.edu/~muthu/198-3.pdf


132 D. Belazzougui, T. Gagie, and G. Navarro

17. Karpinski, M., Nekrich, Y.: Searching for frequent colors in rectangles. In: Pro-
ceedings of the 20th Canadian Conference on Computational Geometry (CCCG),
pp. 11–14 (2008)

18. Krizanc, D., Morin, P., Smid, M.H.M.: Range mode and range median queries on
lists and trees. Nordic Journal of Computing 12(1), 1–17 (2005)

19. Lai, Y.K., Poon, C.K., Shi, B.: Approximate colored range and point enclosure
queries. Journal of Discrete Algorithms 6(3), 420–432 (2008)

20. Misra, J., Gries, D.: Finding repeated elements. Science of Computer Program-
ming 2(2), 143–152 (1982)

21. Muthukrishnan, S.: Efficient algorithms for document retrieval problems. In: Pro-
ceedings of the 13th Symposium on Discrete Algorithms (SODA), pp. 657–666
(2002)

22. Petersen, H.: Improved bounds for range mode and range median queries. In: Gef-
fert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M. (eds.)
SOFSEM 2008. LNCS, vol. 4910, pp. 418–423. Springer, Heidelberg (2008)

23. Petersen, H., Grabowski, S.: Range mode and range median queries in constant
time and sub-quadratic space. Information Processing Letter 109(4), 225–228
(2009)

24. Pǎtraşcu, M.: Succincter. In: Proceedings of the 49th Symposium on Foundations
of Computer Science (FOCS), pp. 305–313 (2008)

25. Sadakane, K.: Succinct data structures for flexible text retrieval systems. Journal
of Discrete Algorithms 5(1), 12–22 (2007)

26. Wei, Z., Yi, K.: Beyond simple aggregates: indexing for summary queries. In: Pro-
ceedings of the 30th Symposium on Principles of Database Systems (PODS), pp.
117–128 (2011)



Online Control Message Aggregation
in Chain Networks�

Marcin Bienkowski1, Jaroslaw Byrka1, Marek Chrobak2, Łukasz Jeż1,3,
Jiří Sgall4, and Grzegorz Stachowiak1

1 Institute of Computer Science, University of Wroclaw, Poland
2 Department of Computer Science, University of California at Riverside, USA

3 Dept. of Computer, Control, and Management Engineering,
Sapienza University of Rome, Italy

4 Computer Science Institute, Faculty of Mathematics and Physics, Charles
University, Czech Republic

Abstract. In the Control Message Aggregation (CMA) problem, control
packets are generated over time at the nodes of a tree T and need to
be transmitted to the root of T . To optimize the overall cost, these
transmissions can be delayed and different packets can be aggregated,
that is a single transmission can include all packets from a subtree rooted
at the root of T . The cost of this transmission is then equal to the total
edge length of this subtree, independently of the number of packets that
are sent. A sequence of transmissions that transmits all packets is called
a schedule. The objective is to compute a schedule with minimum cost,
where the cost of a schedule is the sum of all the transmission costs and
delay costs of all packets. The problem is known to be NP-hard, even for
trees of depth 2. In the online scenario, it is an open problem whether
a constant-competitive algorithm exists.

We address the special case of the problem when T is a chain network.
For the online case, we present a 5-competitive algorithm and give a
lower bound of 2 + φ ≈ 3.618, improving the previous bounds of 8 and 2,
respectively. Furthermore, for the offline version, we give a polynomial-
time algorithm that computes the optimum solution.

1 Introduction

In the Control Message Aggregation (CMA) problem, introduced in [6], we are
given a tree T whose edges have positive lengths. Over time, packets are gener-
ated at the nodes of T . Each packet is specified by a pair (t, v), where t is the
injection time of this packet and v ∈ T the vertex where the packet is injected.
All packets must be transmitted to the root of T , although not necessarily im-
mediately; to reduce cost, packets can be delayed and different packets can be
aggregated into a single transmission. A transmission is defined as a subtree
� Research partially supported by NSF grants CCF-1217314 and OISE-1157129,

MNiSW grant no. N N206 368839, 2010-2013, EU ERC project 259515 PAAl, CE-ITI
(project P202/12/G061 of GA ČR), and grant IAA100190902 of GA AV ČR.

F. Dehne, R. Solis-Oba, and J.-R. Sack (Eds.): WADS 2013, LNCS 8037, pp. 133–145, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



134 M. Bienkowski et al.

rooted at the root of T that transports all the packets currently contained in its
nodes. The cost of this transmission is then equal to the total edge length of this
subtree, independently of the number of packets that are sent. Delaying a trans-
mission of a packet incurs cost equal to the time it waits for the transmission.
A schedule is specified by a sequence of transmissions that transmit all packets
to the root. The cost of a schedule is the sum of its transmission costs and the
waiting costs of all packets. The objective is to find a schedule of minimum cost.

In reality, what we refer to as packets in the paper are abstractions of control
messages acknowledging the receipt of some network packets from a communi-
cation stream. This motivates the assumptions of our cost model, in particular
the fact that the transmission cost does not depend on the number of pack-
ets involved. The reason is that in practice acknowledgement messages are very
small, so the cost of including them in the transmission is negligibly small in
comparison to the overhead of sending it. More generally, the CMA problem can
model transportation problems where large quantities of small items need to be
shipped to a common destination, incurring both the transportation and delay
costs.

While it is possible to consider the problem in the offline scenario, where the
algorithm knows the whole input sequence in advance, the online model more
accurately reflects the constraints that arise in practice. In the online model,
packets arrive as time passes, with each packet (t, v) arriving at time t, and at
each time step the algorithm needs to decide whether and what to transmit.
In the online model, one can further distinguish two versions: distributed al-
gorithms, where the nodes make local decisions independently, and centralized,
full information algorithms [2], that have complete knowledge about the input
sequence so far and the current state.

Previous Work. Khanna et al. [6] defined the CMA problem and gave an
O(log α)-competitive online algorithm, where α is the sum of all edge lengths.
(Their algorithm works under an additional technical assumption that each
packet has to wait at least one time unit.) The CMA problem on a single-edge
tree is equivalent to the prominent TCP acknowledgement problem. The online
version of TCP acknowledgement has been essentially solved: the optimal com-
petitive ratios for deterministic and randomized algorithms are, respectively, 2
and e/(e − 1) ≈ 1.582 [4,5].

While finding better bounds on the competitive ratio remains an open prob-
lem, O(1)-competitive online algorithms were presented for some special classes
of trees. For flat trees, where the tree has depth two and the root has only
one child, the problem becomes equivalent to the Joint Replenishment Prob-
lem (JRP) with linear penalties, well studied in Operations Research. For this
version, Brito et al. [2] gave a 5-competitive algorithm. The ratio was later im-
proved to 3 by Buchbinder et al. [3], who also presented a lower bound of 2.64.
These results apply in fact to arbitrary trees of depth two, as such trees can be
decomposed into flat trees that are processed independently. In the offline case,
Arkin et al. [1] proved that JRP is NP-hard and a 1.8-approximation algorithm
was given by Levi et al. [7,8,9].



Online Control Message Aggregation in Chain Networks 135

Another previously studied case is that of chain networks, where each non-
leaf node has exactly one child. This version was introduced by Brito et al. [2],
who presented an 8-competitive online algorithm. No online algorithm can be
better than 2-competitive in this case, due to the lower bound for the TCP-
acknowledgement problem [4].
Our Contributions. Following the work in [2], we study online and offline
algorithms for Control Message Aggregation on chain networks. Three results are
provided. In the online case, we focus on centralized algorithms. For this model
we give a 5-competitive algorithm and we prove a lower bound of 2 + φ ≈ 3.618
(where φ = (1 +

√
5)/2 is the golden ratio). Both results improve the previously

known bounds, described above. As we show, the analysis of our online algorithm
is tight. For the offline case, we provide an algorithm that computes an optimal
schedule in polynomial time.

2 Preliminaries

Throughout the paper, we think of a chain network as a half-line R+, consisting
of all non-negative real numbers. Slightly abusing the terminology, we will refer
to it as the line. Any x ∈ R+ represents a node of the network at distance x from
the origin. Packets arrive over time and need to be transmitted to the destination
at point 0. A transmission from x at time t sends all packets from the interval
(0, x], and the cost of this transmission is x. (Without loss of generality, we
may assume that no packet ever arrives at point 0 as they might be transmitted
immediately at zero cost.) We consider continuous time, that is packets can be
injected and transmitted at arbitrary real-valued times. We also allow packets
to have non-negative weights. The penalty function for waiting is assumed to
be linear, that is a packet of weight w injected at time a and transmitted at
time t pays the cost w(t − a) for waiting. The weights do not affect the cost of
transmissions. Thus, for the purpose of computing cost, w unit-weight packets
arriving at the same time are equivalent to one packet of weight w. Note that
our lower bounds use only integer weights, and thus can be trivially simulated
using non-weighted packets.

3 An Online 5-Competitive Algorithm

In this section, we present our 5-competitive algorithm for Control Message
Aggregation on chain networks.

For any x ∈ R+ and time t, denote by twct[x] the total waiting cost of the
packets currently at x, starting at their arrival until time t. We generalize this
notation to intervals: for example twct(x, y] is the total waiting cost in the inter-
val (x, y], that includes y but not x, etc. We will drop subscript t if its value is
clear from the context or not relevant. The length of a transmission from point x
is equal to x. For any time t, trl(t) denotes the length of a transmission at time
t; we let trl(t) = 0 if there is no transmission at t. For the analysis, we define an
analogous notion of trlADV(t) for adversarial transmissions.



136 M. Bienkowski et al.

time
t0t1t2t3t4tk=t5

2b

tADV

2b-1

2b-2

2j

lo
ca
tio
n

Fig. 1. An example for the analysis of Balance’s cost at time t0. The line (the vertical
axis) is shown in the logarithmic scale. The algorithm’s transmissions end with empty
triangles. The adversary’s transmissions end with circles. The algorithm’s cost at t0
is charged to the waiting cost of packets within the shaded area and the 2b−1-to-2b−2

segment of the adversarial transmission (marked with thick line) at tADV.

Algorithm Balance. At every time t, transmit from the maximum point 2j

such that twct(0, 2j] = 2j−2, if such j exists; otherwise stay idle. (Note that
every packet will eventually be transmitted.)

Theorem 1. Balance is 5-competitive.

Proof. Assume that Balance transmits from 2j at time t0. Then, it pays 2j for
the transmission and it has paid twc(0, 2j] = 2j−2 for waiting of the packets it
has just transmitted. Altogether, these terms contribute 5 ·2j−2 to the total cost
of Balance. We show that it is possible to charge this cost to adversary’s actions
(waiting or transmitting), whose cost is at least 2j−2, assuring that no action
will be charged more than once. This implies that Balance is 5-competitive.

To this end, we choose the sequence of Balance’s transmissions at times
t1, t2, . . . , tk, going back in time, with k largest possible, where t1 is the last
transmission time before t0, each other ti has a transmission longer than the one
at ti−1, and the transmission at tk has length at least 2j. (To avoid boundary
cases, we assume that there is an artificial transmission at time −1 of infinite
length and zero cost, so tk is always well defined.) Formally, we find a sequence
of transmission times tk < tk−1 < . . . < t2 < t1 < t0, such that

1. trl(tk) ≥ 2j ,
2. trl(ti+1) > trl(ti) for 1 ≤ i ≤ k − 1,
3. trl(t) ≤ trl(ti) for 0 ≤ i ≤ k−1 and t ∈ (ti+1, ti), and trl(t) = 0 for t ∈ (t1, t0).

We call these transmissions the cover sequence for t0, cf. Fig. 1.
Then, we consider adversarial transmissions occurring within the time interval

(tk, t0]. An adversarial transmission occurring at time t ∈ (t�+1, t�] is called
unobstructed if its length is at least trl(t�). Let tADV ∈ (tk, t0] be the time of
the longest unobstructed adversary’s transmission (with ties broken in favor of



Online Control Message Aggregation in Chain Networks 137

later transmissions), and let A = trlADV(tADV); if there was no unobstructed
adversary’s transmission in (tk, t0], then let tADV = t0 and A = 0. Finally, let
b = min{j, �log2 A� + 1}, where b = −∞ if A = 0. Thus, for A ∈ (0, 2j), it holds
that 2b−1 ≤ A < 2b.

Now we focus on packets at points from (2b, 2j ] that are transmitted at t0;
their waiting periods are contained in the shaded area in Fig. 1. Let us denote
these packets by W (t0). Note that the waiting cost of W (t0) is twct0 (2b, 2j ],
and that, by the definition of tADV, the adversary pays for the waiting of these
packets at least as much as Balance does.

We will charge Balance’s cost of 5 · 2j−2 to two actions of the adversary: its
waiting of the packets in W (t0) and the movement of packets from 2b−1 to 2b−2

during the transmission at tADV (if there was any). In other words, we charge to
the segment [2b−2, 2b−1] of the adversary’s transmission at tADV. As mentioned
at the beginning of the proof, it is sufficient to show two properties: (i) the total
cost of these two actions is at least 2j−2 and (ii) none of these actions is charged
again when we analyze another transmission of algorithm Balance.

For property (i), we claim that twct0 (2b, 2j ] ≥ 2j−2 − 2b−2. Clearly, this is
the case for b = j or b = −∞. For b < j, recall that twct0(0, 2j ] = 2j−2

and furthermore, twct0 (0, 2b] ≤ 2b−2 as otherwise the algorithm would have
transmitted from 2b earlier. The adversary cost of transmitting across the seg-
ment [2b−1, 2b−2] at time tADV is 2b−2. Together, these costs add up to at least
2j−2 − 2b−2 + 2b−2 = 2j−2, as claimed in (i).

To show property (ii), consider a transmission of Balance at some time
t′
0 > t0 with trl(t′

0) = 2j′ . We also consider the corresponding cover sequence for
t′
0, the time t′

ADV of the longest unobstructed adversarial transmission within
that cover sequence, and the corresponding values of A′ = trlADV(t′

ADV) and b′.
W (t0) and W (t′

0) are disjoint sets of packets since Balance transmits them at
distinct times t0 and t′

0. Thus, it suffices to prove that transmissions at t0 and t′
0

charge their costs to different parts of the adversarial transmissions. Clearly, it
is the case when they are charged to different transmissions, so in the following
we assume that t′

ADV = tADV (and hence A = A′). Note that tADV ≤ t0 < t′
0.

Then j < j′, as otherwise the cover sequence for t′
0 would end at some time point

after t0. Furthermore, the adversarial transmission at tADV is unobstructed in
the cover sequence for t′

0, which means that A ≥ 2j, and hence b = j. But then,
as j′ > j, by the definition of b′, we have b′ > j. This means that b′ 
= b, i.e.,
the transmissions at t0 and t′

0 are charged to different parts of the adversarial
transmission at t′

ADV = tADV. ��
The analysis of our algorithm can be shown to be tight. In fact, we can prove
(the proof will be given in the full version) an even stronger tightness result,
namely the following: Every deterministic algorithm that transmits only from
integer powers of 2 has competitive ratio at least 5.



138 M. Bienkowski et al.

4 A Lower Bound of 2 + φ ≈ 3.618

To prove the lower bound of 2 + φ, it is sufficient to show that for any R < 2 + φ
there is a strategy for the adversary that forces any deterministic algorithm Alg
to pay at least R times the cost of an optimal solution Opt.

In the next section we show how to construct an adversarial strategy for a
slightly modified version of the problem, called the single-phase game. In such a
game, the adversary injects (weighted) packets only at time 0, at points b1 < b2 <
. . . < bm that will be specified later. Additionally, the adversary has the capabil-
ity to end the game at an arbitrary time τ . As an algorithm may finish with non-
transmitted packets, the definition of cost associated with such a packet q has to be
adapted: it is simply the waiting time of q from time 0 till time τ . We define phase
ratio as the Alg-to-Opt cost ratio with the waiting costs modified as described
above. Our single-phase construction has two additional properties, namely that
there exist absolute lower and upper bounds on the duration of a game, and there
exists an absolute lower bound on the cost of Alg in a single phase.

While the actual adversarial construction of a single-phase game and its anal-
ysis are given in the subsequent subsections, here we argue that if the adversary
can force the phase ratio to be at least R, then R is a lower bound on the com-
petitive ratio for CMA on chain networks. To this end, the adversary chooses
a large integer �, and the actual input sequence consist of � + 1 phases, num-
bered 0, 1, . . . , �. In a phase p, the adversary plays the single-phase game, but
with the weights of the packets multiplied by �p·� and all the time values used
in his strategy divided by �p·�. Intuitively, increased weights cause waiting costs
to accumulate faster, but we compensate for it by “shrinking" the time. With
this rescaling, the adversarial single-phase strategy will also force ratio R in the
single-phase game played in phase p. Clearly, the cost of Alg in the whole CMA
instance is at least the sum of its costs in the individual single-phase games.
(It could be larger if some packets are not transmitted in the phase when they
are issued.) On the other hand, since the time intervals of consecutive phases
decrease so fast, if a packet is injected at the beginning of phase p, and is not
transmitted by the adversary within phase p, then its remaining waiting cost,
in phases p + 1, p + 2, . . . , �, is negligible. Finally, all the packets not sent by the
adversary by the end of phase � can be sent at that time at the cost of at most
bm, and this cost’s contribution is also negligible in comparison to the total cost.
Thus, except for a negligible low-order term, the adversary’s cost is also the sum
of his costs in the individual single-phase games. Therefore the overall cost of
Alg is at least R times the adversary’s cost, minus a low-order term. (A similar
reduction to a single-phase game was used in [3].)

The rest of this section is organized in the following way. In Section 4.1, we
present the strategy of the adversary for a single phase. For the construction,
the adversary has to carefully choose the number of injected packets m, their
injection points b1 < b2 < . . . < bm, and some waiting thresholds w1, ..., wm. We
list the desired properties of these sequences and show that if these properties
are satisfied, then the phase ratio is at least R. Finally, in Section 4.2, we prove
the existence of such sequences.



Online Control Message Aggregation in Chain Networks 139

4.1 Construction of a Single Phase

For the construction, we define the infinite sequences of reals {bi} and {wi},
where b0 = w0 = 0 and b1 = 1. Using notation Bj =

∑j
i=1 bi and Wj =

∑j
i=1 wi

(thus, B0 = W0 = 0), the two sequences are defined by:

wj =
1

R − 1
· (Wj−1 + Bj − Rbj−1) for j ≥ 1 , (1)

bj = R · bj−1 + bj−2 − Bj−1 − Wj−2 for j ≥ 2 . (2)

From (2),
Wj−1 = Rbj + bj−1 − Bj+1 for j ≥ 1 . (3)

Plugging this into (1) and rearranging, we obtain the following useful identity:

(R − 1)wj = −bj+1 + Rbj − (R − 1)bj−1 for j ≥ 1 (4)

The crux of our construction lies in the algebraic property that, for R ∈ (2, 2+φ),
the sequence {bi} stops increasing at some point. In particular, in Section 4.2,
we show the following crucial lemma.

Lemma 1. For R ∈ (2, 2 + φ) and the sequences {bj}, {Bj}, {wj}, {Wj} defined
by equations (1) and (2), there exists an integer m ≥ 1, such that the following
properties hold.

(i) 1 = b1 < b2 < . . . < bm and bm+1 ≤ bm.
(ii) wj ≥ 0 for all 0 ≤ j ≤ m.

Note that it may happen that bm+1 < 0, but this does not affect the validity
of our proof, since we do not use bm+1 as a packet injection point in the lower
bound strategy; in the argument below we only need that bm+1 ≤ bm.

The adversary chooses m, whose existence is guaranteed by Lemma 1 and a
very large integer K. At time 0 the adversary injects a packet of weight Km−j

at point bj , for j = 1, 2, . . . , m. K is chosen to be at least maxj(wj+1/wj), which
guarantees that the time when the waiting cost for the packet in bj reaches
wj is an increasing function of j. Given that no further packets are injected
within the phase, within this phase Alg will execute a sequence of transmissions
from increasing points. Suppose that k is the largest integer such that Alg
transmitted from bk and k < m. Then Alg pays for the waiting cost of the
packets at bk+1, ..., bm. We will not charge Alg for the waiting cost of packets at
bk+2, ..., bm. In fact, in the calculations we will also not charge the adversary for
the waiting cost of these packets. This decreases the adversary cost, but since
the waiting cost of packets at bk+2, ..., bm is negligible, this decrease is negligible
as well. (A rigorous limit argument will appear in the full version of the paper.)
The Adversarial Strategy. We can assume that Alg transmits each packet
if the phase is long enough, for otherwise the cost of Alg would be unbounded.
With this assumption, the adversarial strategy is this: Suppose that the last
transmission from Alg was from bj−1 and let ω be the waiting cost of the



140 M. Bienkowski et al.

packets in bj when Alg makes the next transmission, from some bj′ (where
j′ ≥ j). Then, if j′ = j < m and ω ≥ wj , the adversary continues the phase.
Otherwise, the phase ends.

The intuition is that the adversary tries to force Alg to transmit from points
b1, b2, ..., one by one. Suppose that the adversary ends the game at step j. The
algorithm paid both the waiting cost and the transmission cost of the packets at
b1, ..., bj−1, while the adversary can perform significantly better by transmitting
from bj−1 at the beginning of the phase and not paying their waiting cost at all.
If Alg skips bj and transmits from bj′ , for j′ > j, then it pays extra transmission
cost. On the other hand, if it transmits from bj before the threshold wj , the phase
will be short, so the adversary can save cost by not transmitting from bj . The
formal argument follows the theorem below.

Theorem 2. Every deterministic algorithm has competitive ratio at least 2 + φ.

Proof. As explained at the beginning of Section 4, it is sufficient to show that
for any R ∈ (2, 2 + φ), the phase ratio is at least R. The adversary uses the
strategy described above.

Suppose that the phase ends at step j. Then, up to this step, Alg made separate
transmissions from b1, b2, ..., bj−1, and for each of these bi the waiting cost of the
packet at bi was at least wi. So the cost of Alg so far is at least Wj−1 + Bj−1,
plus the cost associated with the packet at bj. For determining the phase ratio,
we consider three possibilities of finishing the phase. Notice that, by Lemma 1, in
each case both the enumerator and the denominator are positive. Recall also that,
as explained earlier, we can ignore the waiting costs for packets at bj+1,...,bm.
Case 1: j′ > j. Note that this implies j < m. Alg’s cost is Wj−1 +Bj−1 +ω+bj′ .
We consider two options for the adversary: he can transmit from bj−1 at time 0
and pay ω for waiting, or he can transmit from bj. So the ratio is

Wj−1 + Bj−1 + ω + bj′

min(bj−1 + ω, bj)
≥ Wj−1 + Bj−1 + ω + bj+1

min(bj−1 + ω, bj)

≥ 1
bj

(
Wj−1 + Bj−1 + bj − bj−1 + bj+1

)
= 1

bj

(
Wj−1 + Bj+1 − bj−1

)
= 1

bj

(
bj+1 − bj−1 + Bj + Wj−1

)
= R,

where the last equality follows from (2).
Case 2: j′ = j and ω < wj . Alg’s cost is at least Wj−1 + Bj + ω. The adversary
will transmit from bj−1 at time 0 and pay the cost of waiting at bj, paying
bj−1 + ω. So the ratio is

Wj−1 + Bj + ω

bj−1 + ω
≥ Wj−1 + Bj + wj

bj−1 + wj
= R,

where the last equality follows from (1).



Online Control Message Aggregation in Chain Networks 141

Case 3: j′ = j = m and ω ≥ wj . The cost of Alg is Wm−1 + Bm + ω. The
adversary will transmit from bm at time 0, paying bm. Note that, by the choice
of m we have bm+1 ≤ bm. By (4), (R − 1)wm = −bm+1 + Rbm − (R − 1)bm−1 ≥
(R − 1)(bm − bm−1), that is wm ≥ bm − bm−1. So the ratio is

Wm−1 + Bm + ω

bm
≥ Wm−1 + Bm + wm

bm−1 + wm
= R,

where the last equality again follows from (1). ��

4.2 Proof of Lemma 1

Proof of Part (i). We first derive a single recurrence for the sequence {bj}.
Assuming j ≥ 1, plugging (3) into (2) and simplifying, we obtain the recurrence

(R − 1)bj+2 − (R2 − R + 1)bj+1 + (R2 − R + 1)bj = 0 for j ≥ 1. (5)

with b0 = 0, b1 = 1 and b2 = R − 1. (Note that an initial condition for j = 2 is
not covered by (5).) The characteristic equation of (5) is (R − 1)x2 − (R2 − R +
1)x + (R2 − R + 1) = 0 with discriminant Δ = (R2 − R + 1)(R2 − 5R + 5). In
the interval (2, 2 + φ) the value of Δ is negative, so the characteristic equation
has two imaginary conjugate roots

β1,2 = R2 − R + 1 ± √
Δ

2(R − 1)
,

and consequently
bj = α1 · βj

1 + α2 · βj
2 , j ≥ 1, (6)

for some complex numbers α1, α2 
= 0. From the theory of recurrence equations
of order 2 (the case of conjugate imaginary roots), the sequence of {bj} cannot
increase infinitely (cf. Appendix A), which proves Part (i) of Lemma 1.

Proof of Part (ii). It is sufficient to show that the right hand side of (4) is
non-negative, i.e., that

−bj+1 + Rbj − (R − 1)bj−1 ≥ 0 for j ≥ 1. (7)

For j = 1, the left-hand-side of (7) is −b2 + Rb1 − (R − 1)b0 = −(R − 1) + R ·
1 − (R − 1) · 0 = 1 ≥ 0. Suppose j ≥ 2 and that the claim holds for j − 1. After
multiplying the left-hand side of (7) by R − 1 and rearranging it, we get

(R − 1)[ −bj+1 + Rbj − (R − 1)bj−1 ]
= [ −(R − 1)bj+1 + (R2 − R + 1)bj − (R2 − R + 1)bj−1 ]

+ [ −bj + Rbj−1 − (R − 1)bj−2 ] + (R − 1)bj−2 ≥ 0,

The last inequality follows because the first term is 0 by (5), the second one is
non-negative by the inductive assumption, and the third one is positive by the
choice of m.



142 M. Bienkowski et al.

5 Polynomial-Time Offline Solution

The input is a sequence of packets numbered 1, 2, ..., n, where packet j is specified
as a triple (tj , xj , wj). In this triple, tj is the injection time, xj is the point
of injection, and wj is the weight of packet j. For simplicity, we assume that
t1 < t2 < ... < tn and that all xj are different. Any instance can be modified to
have this form by infinitesimal perturbations on the time and space axes.

Without loss of generality, we can assume that in an optimal solution each
transmission occurs at some time tk and it includes the packet injected at this
time, that is, it transmits from some point xj where xj ≥ xk. We can fur-
ther assume that j ≤ k, since otherwise xj itself does not yet have a packet.
We call a transmission from xj at time tk satisfying these conditions a (j, k)-
transmission.

For i < k and any j we define a sub-instance Ii,j,k that consists of the triples
(ta, xa, wa) such that i < a < k and xa < xj . We consider the quantity Fi,j,k that
represents the minimum cost of sub-instance Ii,j,k accrued in the time window
(ti, tk). To define it formally, we relax the rules to allow some packets in Ii,j,k not
to be transmitted. The cost of transmissions is defined as before. The waiting
cost of each packet is either the cost of waiting until its transmission, if it gets
transmitted, or until time tk, if it’s not. Then Fi,j,k is the minimum cost of Ii,j,k

under these rules.
We now derive the recurrence equation for the Fi,j,k’s. For k = i+1, Ii,j,k = ∅,

so we have Fi,j,k = 0. Let k > i + 1. For any h, let Gh
i,j,k be the waiting time for

packets from Ii,j,k that are beyond xh, assuming that they are not transmitted
before tk, cf. Figure 2. Thus

Gh
i,j,k =

∑
i<�<k

xh<x�<xj

w�(tk − t�).

Slightly abusing notation, we will allow h = 0 in the above formula, with x0
understood to be 0. Thus G0

i,j,k is the total waiting cost of packets in Ii,j,k if
there are no transmissions. We then claim that

Fi,j,k = min

⎧⎪⎨
⎪⎩

G0
i,j,k

min
i<h≤g<k
xg≤xh<xj

{
Fi,h,g + xh + wh(tg − th) + Fg,h,k + Gh

i,j,k

}

The recurrence is illustrated in Fig. 2. To show correctness, we argue as fol-
lows. Consider the optimum schedule for Ii,j,k. If no transmissions occur in this
schedule, then Fi,j,k = G0

i,j,k. If there is at least one transmission, choose the
(h, g)-transmission with maximum xh. Then all packets � in Ii,j,k above xh pay
the waiting cost for the interval [t�, tk]. The total of these waiting costs is Gh

i,j,k,
the last term in the formula. The cost of the (h, g)-transmission is xh and we
need to pay for the waiting cost of xh, which is equal wh(tg − th). These are
the second and third terms in the formula. We then need to add the cost of
serving the packets of Ii,j,k that are below xh. These packets constitute two



Online Control Message Aggregation in Chain Networks 143

k

i

g

h

j

h

Fi,h,g

lo
ca
tio
n

time

Gi,j,k

Fg,h,k

Fig. 2. The idea behind the recurrence for Fi,j,k

sub-instances, Ii,h,g and Ig,h,k, with respective costs Fi,h,g and Fg,h,k, which are
the first and the forth terms in the formula.

It remains to show how to use the recurrence to compute the solution of the
whole instance. To this end, we modify the instance by adding two new packets of
weight 0, injected first and last. Denoting by n the number of packets in this new
instance, the original instance will consist of packets injected into x2, ..., xn−1 at
times t2, ..., tn−1. We set t1 < t2, tn > tn−1 with the difference tn − tn−1 large
enough, so that in the optimum solution no packets from the original instance
will wait until time tn. Also, x1 < xn are both larger than all x2, ..., xn−1. Then,
F1,n,n is the same as the cost of the optimum solution of the original instance.

Summarizing, we proved the following result:

Theorem 3. The optimum solution for message aggregation on chain networks
can be computed in time O(n5).

6 Final Comments

For the online Control Message Aggregation problem on chain networks we
proved that the optimal competitive ratio is between 3.681 and 5. Closing or
tightening this gap remains an open problem, although we showed that to im-
prove the upper bound a new approach is needed. We have not addressed the
case of randomized algorithms and we leave it for future work. It is intuitively
clear that randomization should help to reduce the upper bound. In fact, there
are at least two ways to take advantage of randomization: one, by choosing the
cutoff points (a sequence other than the powers of 2) randomly, and two, by
choosing the transmissions at random.

References

1. Arkin, E., Joneja, D., Roundy, R.: Computational complexity of uncapacitated
multi-echelon production planning problems. Operations Research Letters 8(2),
61–66 (1989)



144 M. Bienkowski et al.

2. Brito, C., Koutsoupias, E., Vaya, S.: Competitive analysis of organization networks
or multicast acknowledgement: How much to wait? Algorithmica 64(4), 584–605
(2012)

3. Buchbinder, N., Kimbrel, T., Levi, R., Makarychev, K., Sviridenko, M.: Online
make-to-order joint replenishment model: primal dual competitive algorithms. In:
Proc. of the 19th ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 952–961
(2008)

4. Dooly, D.R., Goldman, S.A., Scott, S.D.: On-line analysis of the TCP acknowledg-
ment delay problem. Journal of the ACM 48(2), 243–273 (2001)

5. Karlin, A.R., Kenyon, C., Randall, D.: Dynamic TCP acknowledgement and other
stories about e/(e - 1). Algorithmica 36(3), 209–224 (2003)

6. Khanna, S., Naor, J(S.), Raz, D.: Control message aggregation in group communi-
cation protocols. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eiden-
benz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 135–146. Springer,
Heidelberg (2002)

7. Levi, R., Roundy, R., Shmoys, D.B.: A constant approximation algorithm for the
one-warehouse multi-retailer problem. In: Proc. of the 16th ACM-SIAM Symp. on
Discrete Algorithms (SODA), pp. 365–374 (2005)

8. Levi, R., Roundy, R., Shmoys, D.B., Sviridenko, M.: A constant approximation
algorithm for the one-warehouse multiretailer problem. Management Science 54(4),
763–776 (2008)

9. Levi, R., Sviridenko, M.: Improved approximation algorithm for the one-warehouse
multi-retailer problem. In: Díaz, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.)
APPROX and RANDOM 2006. LNCS, vol. 4110, pp. 188–199. Springer, Heidelberg
(2006)

A Order 2 Recurrence Equations with Non-Real Base
Solutions

For completeness, we prove here that for every real-valued sequence {bi} defined
by a recurrence equation of order 2 with non-real base solutions, there exists
n > 1 such that bn ≤ 0. Note that for the sequence from our lower bound
construction, this trivially implies the existence of m.

Let α1, α2, β1, β2 be as defined in (6), and let us assume for convenience
that (6) holds for j = 0 as well. Since β1 and β2 are non-real roots of a quadratic
equation, it follows that β2 = β1, i.e., they are complex conjugates.

In the following, we reason about the imaginary part of (6), which is 0 for all
j ∈ N by our assumption. Laying j = 0, we have

�(α1) + �(α2) = 0 , (8)

and laying j = 1, we have

�(α1) · �(β1) + �(α1) · �(β1) + �(α2) · �(β2) + �(α2) · �(β2) = 0 . (9)

As β2 = β1, we have �(β1) = �(β2). Together with (8) this implies �(α1) ·
�(β1) + �(α2) · �(β2) = 0, which subtracted from (9) yields

�(α1) · �(β1) + �(α2) · �(β2) = 0 .



Online Control Message Aggregation in Chain Networks 145

As �(β1) + �(β2) = 0, this implies �(α1) = �(α2), which together with (8)
means that α2 = α1.

Thus to get bn ≤ 0, it suffices to pick n such that arg(α1 · βn
1 ) ∈ [π/2, 3π/2],

which is equivalent to arg(α1) + n · arg(β1) ∈ [π/2 + 2kπ, 3π/2 + 2kπ] for some
k ∈ N. This is possible, since β1 /∈ R means that arg(β1) is not an integer
multiple of π.



Fingerprints in Compressed Strings

Philip Bille1, Patrick Hagge Cording1, Inge Li Gørtz1,�, Benjamin Sach2,
Hjalte Wedel Vildhøj1, and Søren Vind1,��

1 Technical University of Denmark, DTU Compute
{phbi,phaco,inge,hwvi,sovi}@dtu.dk

2 University of Warwick, Department of Computer Science
sach@dcs.warwick.ac.uk

Abstract. The Karp-Rabin fingerprint of a string is a type of hash
value that due to its strong properties has been used in many string
algorithms. In this paper we show how to construct a data structure
for a string S of size N compressed by a context-free grammar of size
n that answers fingerprint queries. That is, given indices i and j, the
answer to a query is the fingerprint of the substring S[i, j]. We present the
first O(n) space data structures that answer fingerprint queries without
decompressing any characters. For Straight Line Programs (SLP) we
get O(logN) query time, and for Linear SLPs (an SLP derivative that
captures LZ78 compression and its variations) we get O(log logN) query
time. Hence, our data structures has the same time and space complexity
as for random access in SLPs. We utilize the fingerprint data structures to
solve the longest common extension problem in query time O(logN log �)
and O(log � log log �+ log logN) for SLPs and Linear SLPs, respectively.
Here, � denotes the length of the LCE.

1 Introduction

Given a string S of size N and a Karp-Rabin fingerprint function φ, the answer
to a Fingerprint(i, j) query is the fingerprint φ(S[i, j]) of the substring S[i, j].
We consider the problem of constructing a data structure that efficiently answers
fingerprint queries when the string is compressed by a context-free grammar of
size n.

The fingerprint of a string is an alternative representation that is much shorter
than the string itself. By choosing the fingerprint function randomly at runtime
it exhibits strong guarantees for the probability of two different strings having
different fingerprints. Fingerprints were introduced by Karp and Rabin [20] and
used to design a randomized string matching algorithm. Since then, they have
been used as a central tool to design algorithms for a wide range of problems
(see e.g., [2, 3, 11–13,15, 16, 19, 22]).

� Supported by a grant from the Danish Council for Independent Research | Natural
Sciences.

�� Supported by a grant from the Danish National Advanced Technology Foundation.

F. Dehne, R. Solis-Oba, and J.-R. Sack (Eds.): WADS 2013, LNCS 8037, pp. 146–157, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Fingerprints in Compressed Strings 147

A fingerprint requires constant space and it has the useful property that given
the fingerprints φ(S[1, i−1]) and φ(S[1, j]), the fingerprint φ(S[i, j]) can be com-
puted in constant time. By storing the fingerprints φ(S[1, i]) for i = 1 . . .N a
query can be answered in O(1) time. However, this data structure uses O(N)
space which can be exponential in n. Another approach is to use the data struc-
ture of Ga̧sieniec et al. [17] which supports linear time decompression of a prefix
or suffix of the string generated by a node. To answer a query we find the deep-
est node that generates a string containing S[i] and S[j] and decompress the
appropriate suffix of its left child and prefix of its right child. Consequently, the
space usage is O(n) and the query time is O(h + j − i), where h is the height
of the grammar. The O(h) time to find the correct node can be improved to
O(logN) using the data structure by Bille et al. [8] giving O(logN + j− i) time
for a Fingerprint(i, j) query. Note that the query time depends on the length
of the decompressed string which can be large.

We present the first data structures that answers fingerprint queries on gram-
mar compressed strings without decompressing any characters, and improve all
of the above time-space trade-offs. Assume without loss of generality that the
compressed string is given as a Straight Line Program (SLP). An SLP is a gram-
mar in Chomsky normal form, i.e., each nonterminal has exactly two children. A
Linear SLP is an SLP where the root is allowed to have more than two children,
and for all other internal nodes, the right child must be a leaf. Linear SLPs cap-
ture the LZ78 compression scheme [27] and its variations. Our data structures
give the following theorem.

Theorem 1. Let S be a string of length N compressed into an SLP G of size n.
We can construct data structures that support Fingerprint queries in:

(i) O(n) space and query time O(logN)
(ii) O(n) space and query time O(log logN) if G is a Linear SLP

Hence, we show a data structure for fingerprint queries that has the same time
and space complexity as for random access in SLPs.

Our fingerprint data structures are based on the idea that a random access
query for i produces a path from the root to a leaf labelled S[i]. The concate-
nation of the substrings produced by the left children of the nodes on this path
produce the prefix S[1, i]. We store the fingerprints of the strings produced by
each node and concatenate these to get the fingerprint of the prefix instead.
For Theorem 1(i), we combine this with the fast random access data structure
by Bille et al. [8]. For Linear SLPs we use the fact that the production rules
form a tree to do large jumps in the SLP in constant time using a level ancestor
data structure. Then a random access query is dominated by finding the node
that produces S[i] among the children of the root, which can be modelled as the
predecessor problem.

Furthermore, we show how to obtain faster query time in Linear SLPs using
finger searching techniques. Specifically, a finger for position i in a Linear SLP
is a pointer to the child of the root that produces S[i].



148 P. Bille et al.

Theorem 2. Let S be a string of length N compressed into an SLP G of size n.
We can construct an O(n) space data structure such that given a finger f for
position i or j, we can answer a Fingerprint(i, j) query in time O(log logD)
where D = |i− j|.

Along the way we give a new and simple reduction for solving the finger prede-
cessor problem on integers using any predecessor data structure as a black box.

In compliance with all related work on grammar compressed strings, we as-
sume that the model of computation is the RAM model with a word size of logN
bits.

Longest Common Extension in Compressed Strings. As an applica-
tion we show how to efficiently solve the longest common extension problem
(LCE). Given two indices i, j in a string S, the answer to the LCE(i, j) query
is the length � of the maximum substring such that S[i, i + �] = S[j, j + �].
The compressed LCE problem is to preprocess a compressed string to support
LCE queries. On uncompressed strings this is solvable in O(N) preprocessing
time, O(N) space, and O(1) query time with a nearest common ancestor data
structure on the suffix tree for S [18]. Other trade-offs are obtained by doing
an exponential search over the fingerprints of strings starting in i and j [7]. Us-
ing the exponential search in combination with the previously mentioned meth-
ods for obtaining fingerprints without decompressing the entire string we get
O((h + �) log �) or O((logN + �) log �) time using O(n) space for an LCE query.
Using our new (finger) fingerprint data structures and the exponential search we
obtain Theorem 3.

Theorem 3. Let G be an SLP of size n that produces a string S of length N .
The SLP G can be preprocessed in O(N) time into a Monte Carlo data structure
of size O(n) that supports LCE queries on S in

(i) O(log � logN) time
(ii) O(log � log log � + log logN) time if G is a Linear SLP.

Here � denotes the LCE value and queries are answered correctly with high prob-
ability. Moreover, a Las Vegas version of both data structures that always an-
swers queries correctly can be obtained with O(N2/n logN) preprocessing time
with high probability.

We furthermore show how to reduce the Las Vegas preprocessing time to O(N log
N log logN) when all the internal nodes in the Linear SLP are children of the
root (which is the case in LZ78).

The following corollary follows immediately because an LZ77 compression [26]
consisting of n phrases can be transformed to an SLP with O(n log N

n ) production
rules [9, 23].

Corollary 1. We can solve the LCE problem in O(n log N
n ) space and query

time O(log � logN) for LZ77 compression.



Fingerprints in Compressed Strings 149

Finally, the LZ78 compression can be modelled by a Linear SLP GL with con-
stant overhead. Consider an LZ78 compression with n phrases, denoted r1, . . . , rn.
A terminal phrase corresponds to a leaf in GL, and each phrase rj = (ri, a), i < j,
corresponds to a node v ∈ GL with ri corresponding to the left child of v and the
right child of v being the leaf corresponding to a. Therefore, we get the following
corollary.

Corollary 2. We can solve the LCE problem in O(n) space and query time
O(log � log log � + log logN) for LZ78 compression.

2 Preliminaries

Let S = S[1, |S|] be a string of length |S|. Denote by S[i] the character in S at
index i and let S[i, j] be the substring of S of length j − i + 1 from index i ≥ 1
to |S| ≥ j ≥ i, both indices included.

A Straight Line Program (SLP) G is a context-free grammar in Chomsky
normal form that we represent as a node-labeled and ordered directed acyclic
graph. Each leaf in G is labelled with a character, and corresponds to a terminal
grammar production rule. Each internal node in G is labeled with a nonterminal
rule from the grammar. The unique string S(v) of length size(v) = |S(v)| is
produced by a depth-first left-to-right traversal of v ∈ G and consist of the
characters on the leafs in the order they are visited. We let root(G) denote the
root of G, and left(v) and right(v) denote the left and right child of an internal
node v ∈ G, respectively.

A Linear SLP GL is an SLP where we allow root(GL) to have more than
two children. All other internal nodes v ∈ GL have a leaf as right(v). Although
similar, this is not the same definition as given for the Relaxed SLP by Claude
and Navarro [10]. The Linear SLP is more restricted since the right child of any
node (except the root) must be a leaf. Any Linear SLP can be transformed into
an SLP of at most double size by adding a new rule for each child of the root.

We extend the classic heavy path decomposition of Harel and Tarjan [18] to
SLPs as in [8]. For each node v ∈ G, we select one edge from v to a child with
maximum size and call it the heavy edge. The remaining edges are light edges.
Observe that size(u) ≤ size(v)/2 if v is a parent of u and the edge connecting
them is light. Thus, the number of light edges on any path from the root to
a leaf is at most O(logN). A heavy path is a path where all edges are heavy.
The heavy path of a node v, denoted H(v), is the unique path of heavy edges
starting at v. Since all nodes only have a single outgoing heavy edge, the heavy
path H(v) and its leaf leaf (H(v)), is well-defined for each node v ∈ G.

A predecessor data structure supports predecessor and successor queries on
a set R ⊆ U = {0, . . . , N − 1} of n integers from a universe U of size N . The
answer to a predecessor query pred(q) is the largest integer r− ∈ R such that
r− ≤ q, while the answer to a successor query succ(q) is the smallest integer
r+ ∈ R such that r+ ≥ q. There exist predecessor data structures achieving a
query time of O(log logN) using space O(n) [21, 24, 25].



150 P. Bille et al.

Given a rooted tree T with n vertices, we let depth(v) denote the length of the
path from the root of T to a node v ∈ T . A level ancestor data structure on T
supports level ancestor queries LA(v, i), asking for the ancestor u of v ∈ T such
that depth(u) = depth(v)− i. There is a level ancestor data structure answering
queries in O(1) time using O(n) space [14] (see also [1, 5, 6]).

Fingerprinting. The Karp-Rabin fingerprint [20] of a string x is defined as

φ(x) =
∑|x|

i=1 x[i] · ci mod p, where c is a randomly chosen positive integer, and
2N c+4 ≤ p ≤ 4N c+4 is a prime. Karp-Rabin fingerprints guarantee that given
two strings x and y, if x = y then φ(x) = φ(y). Furthermore, if x 	= y, then with
high probability φ(x) 	= φ(y). Fingerprints can be composed and subtracted as
follows.

Lemma 1. Let x = yz be a string decomposable into a prefix y and suffix z. Let
N be the maximum length of x, c be a random integer and 2N c+4 ≤ p ≤ 4N c+4

be a prime. Given any two of the Karp-Rabin fingerprints φ(x), φ(y) and φ(z),
it is possible to calculate the remaining fingerprint in constant time as follows:

φ(x) = φ(y) ⊕ φ(z) = φ(y) + c|y| · φ(z) mod p

φ(y) = φ(x) �s φ(z) = φ(x)− c|x|

c|z|
· φ(z) mod p

φ(z) = φ(x) �p φ(y) =
φ(x) − φ(y)

c|y|
mod p

In order to calculate the fingerprints of Lemma 1 in constant time, each finger-
print for a string x must also store the associated exponent c|x| mod p, and we
will assume this is always the case. Observe that a fingerprint for any substring
φ(S[i, j]) of a string can be calculated by subtracting the two fingerprints for
the prefixes φ(S[1, i − 1]) and φ(S[1, j]). Hence, we will only show how to find
fingerprints for prefixes in this paper.

3 Basic Fingerprint Queries in SLPs

We now describe a simple data structure for answering Fingerprint(1, i) queries
for a string S compressed into a SLP G in time O(h), where h is the height of
the parse tree for S. This method does not unpack the string to obtain the
fingerprint, instead the fingerprint is generated by traversing G.

The data structure stores size(v) and the fingerprint φ(S(v)) of the string
produced by each node v ∈ G. To compose the fingerprint f = φ(S[1, i]) we
start from the root of G and do the following. Let v′ denote the currently visited
node, and let p = 0 be a variable denoting the size the concatenation of strings
produced by left children of visited nodes. We follow an edge to the right child
of v′ if p+ size(left(v′)) < i, and follow a left edge otherwise. If following a right
edge, update f = f ⊕ φ(S(left(v′))) such that the fingerprint of the full string
generated by the left child of v′ is added to f , and set p = p + size(left(v′)).



Fingerprints in Compressed Strings 151

When following a left edge, f and p remains unchanged. When a leaf is reached,
let f = f ⊕ φ(S(v′)) to include the fingerprint of the terminal character. Aside
from the concatenation of fingerprints for substrings, this procedure resembles a
random access query for the character in position i of S.

The procedure correctly composes f = φ(S[1, i]) because the order in which
the fingerprints for the substrings are added to f is identical to the order in
which the substrings are decompressed when decompressing S[1, i].

Since the fingerprint composition takes constant time per addition, the time
spent generating a fingerprint using this method is bounded by the height of the
parse tree for S[i], denoted O(h). Only constant additional space is spent for
each node in G, so the space usage is O(n).

4 Faster Fingerprints in SLPs

Using the data structure of Bille et al. [8] to perform random access queries
allows for a faster way to answer Fingerprint(1, i) queries.

Lemma 2 ([8]). Let S be a string of length N compressed into a SLP G of size
n. Given a node v ∈ G, we can support random access in S(v) in O(log(size(v)))
time, at the same time reporting the sequence of heavy paths and their entry- and
exit points in the corresponding depth-first traversal of G(v).

The main idea is to compose the final fingerprint from substring fingerprints by
performing a constant number of fingerprint additions per heavy path visited.

In order to describe the data structure, we will use the following notation.
Let V (v) be the left children of the nodes in H(v) where the heavy path was
extended to the right child, ordered by increasing depth. The order of nodes in
V (v) is equal to the sequence in which they occur when decompressing S(v),
so the concatenation of the strings produced by nodes in V (v) yields the prefix
P (v) = S(v)[1, L(v)], where L(v) =

∑
u∈V (v) size(u). Observe that P (u) is a

suffix of P (v) if u ∈ H(v). See Figure 1 for the relationship between u, v and
the defined strings.

Let each node v ∈ G store its unique outgoing heavy path H(v), the length
L(v), size(v), and the fingerprints φ(P (v)) and φ(S(v)). By forming heavy path
trees of total size O(n) as in [8], we can store H(v) as a pointer to a node in a
heavy path tree (instead of each node storing the full sequence).

The fingerprint f = φ(S[1, i]) is composed from the sequence of heavy paths
visited when performing a single random access query for S[i] using Lemma 2.
Instead of adding all left-children of the path towards S[i] to f individually,
we show how to add all left-children hanging from each visited heavy path in
constant time per heavy path. Thus, the time taken to compose f is O(logN).

More precisely, for the pair of entry- and exit-nodes v, u on each heavy path
H traversed from the root to S[i], we set f = f ⊕ (φ(P (v)) �s φ(P (u)) (which
is allowed because P (u) is a suffix of P (v)). If we leave u by following a right-
pointer, we additionally set f = f ⊕ φ(S(left(u))). If u is a leaf, set f = f ⊕
φ(S(u)) to include the fingerprint of the terminal character.



152 P. Bille et al.

S(u) S(a2) S(b1)

S(v) S(a1) S(a2) S(b1) S(b2)

P (v) S(a1) S(a2)

P (u) S(a2)

a1

a2

a3

b2

b1

v

u

V (v) = {a1, a2, a3} leaf (H(v))

Fig. 1. Figure showing how S(v) and its prefix P (v) is composed of substrings gen-
erated by the left children a1, a2, a3 and right children b1, b2 of the heavy path H(v).
Also illustrates how this relates to S(u) and P (u) for a node u ∈ H(v).

Remember that P (v) is exactly the string generated from v along H , produced
by the left children of nodes on H where the heavy path was extended to the
right child. Thus, this method corresponds exactly to adding the fingerprint for
the substrings generated by all left children of nodes on H between the entry-
and exit-nodes in depth-first order, and the argument for correctness from the
slower fingerprint generation also applies here.

Since the fingerprint composition takes constant time per addition, the time
spent generating a fingerprint using this method is bounded by the number
of heavy paths traversed, which is O(logN). Only constant additional space is
spent for each node in G, so the space usage is O(n). This concludes the proof
of Theorem 1(i).

5 Faster Fingerprints in Linear SLPs

In this section we show how to quickly answer Fingerprint(1, i) queries on a
Linear SLP GL. In the following we denote the sequence of k children of root(GL)



Fingerprints in Compressed Strings 153

r1 r2 r3 r4 r5 r6

a a ab b b

(a) Linear SLP.

r1 r2

r3r4

r5 r6

a b

b

a

a

b

(b) Dictionary tree.

Fig. 2. A Linear SLP compressing the string abbaabbaabab and the dictionary tree
obtained from the Linear SLP

from left to right by r1, . . . , rk. Also, let R(j) =
∑j

m=1 size(rm) for j = 0, . . . , k.
That is, R(j) is the length of the prefix of S produced by GL including rj (and
R(0) is the empty prefix).

We also define the dictionary tree F over GL as follows. Each node v ∈ GL

corresponds to a single vertex vF ∈ F . There is an edge (uF , vF ) labeled c if
u = left(v) and c = S(right(v)). If v is a leaf, there is an edge (root(F ), vF )
labeled S(v). That is, a left child edge of v ∈ GL is converted to a parent edge
of vF ∈ F labeled like the right child leaf of v. Note that for any node v ∈ GL

except the root, producing S(v) is equivalent to following edges and reporting
edge labels on the path from root(F ) to vF . Thus, the prefix of length a of S(v)
may be produced by reporting the edge labels on the path from root(F ) until
reaching the ancestor of vF at depth a.

The data structure stores a predecessor data structure over the prefix lengths
R(j) and the associated node rj and fingerprint φ(S[1, R(j)]) for j = 0, . . . , k.
We also have a doubly linked list of all rj ’s with bidirectional pointers to the
predecessor data structure and GL. We store the dictionary tree F over GL,
augment it with a level ancestor data structure, and add bidirectional pointers
between v ∈ GL and vF ∈ F . Finally, for each node v ∈ GL, we store the
fingerprint of the string it produces, φ(S(v)).

A query Fingerprint(1, i) is answered as follows. Let R(m) be the predeces-
sor of i among R(0), R(1), . . . , R(k). Compose the answer to Fingerprint(1, i)
from the two fingerprints φ(S[1, R(m)]) ⊕ φ(S[R(m) + 1, i]). The first finger-
print φ(S[1, R(m)]) is stored in the data structure and the second fingerprint
φ(S[R(m) + 1, i]) can be found as follows. Observe that S[R(m) + 1, i] is fully
generated by rm+1 and hence a prefix of S(rm+1) of length i − R(m). We can
get rm+1 in constant time from rm using the doubly linked list. We use a level
ancestor query uF = LA(rFm+1, i−R(m)) to determine the ancestor of rFm+1 at
depth i − R(m), corresponding to a prefix of rm+1 of the correct length. From
uF we can find φ(S(u)) = φ(S[R(m) + 1, i]).

It takes constant time to find φ(S[R(m) + 1, i]) using a single level ancestor
query and following pointers. Thus, the time to answer a query is bounded by
the time spent determining φ(S[1, R(m)]), which requires a predecessor query



154 P. Bille et al.

among k elements (i.e. the number of children of root(GL)) from a universe of
size N . The data structure uses O(n) space, as there is a bijection between nodes
in GL and vertices in F , and we only spend constant additional space per node
in GL and vertex in F . This concludes the proof of Theorem 1(ii).

6 Finger Fingerprints in Linear SLPs

The O(log logN) running time of a Fingerprint(1, i) query is dominated by
having to find the predecessor R(m) of i among R(0), R(1), . . . , R(k). Given
R(m) the rest of the query takes constant time. In the following, we show how to
improve the running time of a Fingerprint(1, i) query to O(log log |j−i|) given
a finger for position j. Recall that a finger f for a position j is a pointer to the
node rm producing S[j]. To achieve this, we present a simple linear space finger
predecessor data structure that is interchangeable with any other predecessor
data structure.

Finger Predecessor. Let R ⊆ U = {0, . . . , N − 1} be a set of n integers from
a universe U of size N . Given a finger f ∈ R and a query point q ∈ U , the finger
predecessor problem is to answer finger predecessor or successor queries in time
depending on the universe distance D = |f−q| from the finger to the query point.
Belazzougui et al. [4] present a succinct solution for solving the finger predecessor
problem relying on a modification of z-fast tries. Here, we use a simple reduction
for solving the finger predecessor problem using any predecessor data structure
as a black box. The proof is omitted due to lack of space.

Lemma 3. Let R ⊆ U = {0, . . . , N − 1} be a set of n integers from a universe
U of size N . Given a predecessor data structure with query time t(N,n) using
s(N,n) space, we can solve the finger predecessor problem in time O(t(D,n))
using space O(s(N, n

logN ) logN).

Using the van Emde Boas predecessor data structure [21, 24, 25] with t(N,n) =
O(log logN) query time using s(N,n) = O(n) space, we obtain the following
corollary.

Corollary 3. Let R ⊆ U = {0, . . . , N−1} be a set of n integers from a universe
U of size N . Given a finger f ∈ R and a query point q ∈ U , we can solve the
finger predecessor problem in time O(log log |f − q|) and space O(n).

Finger Fingerprints. We can now prove Theorem 2. Assume wlog that we
have a finger for i, i.e., we are given a finger f to the node rm generating S[i].
From this we can in constant time get a pointer to rm+1 in the doubly linked
list and from this a pointer to R(m + 1) in the predecessor data structure. If
R(m+1) > j then R(m) is the predecessor of j. Otherwise, using Corollary 3 we
can in time O(log log |R(m+1)−j|) find the predecessor of j. Since R(m+1) ≥ i
and the rest of the query takes constant time, the total time for the query is
O(log log |i− j|).



Fingerprints in Compressed Strings 155

7 Longest Common Extensions in Compressed Strings

Given an SLP G, the longest common extension (LCE) problem is to build a
data structure for G that supports longest common extension queries LCE(i, j).
In this section we show how to use our fingerprint data structures as a tool for
doing LCE queries and hereby obtain Theorem 3.

7.1 Computing Longest Common Extensions with Fingerprints

We start by showing the following general lemma that establishes the connection
between LCE and fingerprint queries.

Lemma 4. For any string S and any partition S = s1s2 · · · st of S into k
non-empty substrings called phrases, � = LCE(i, j) can be found by comparing
O(log �) pairs of substrings of S for equality. Furthermore, all substring compar-
isons x = y are of one of the following two types:

Type 1 Both x and y are fully contained in (possibly different) phrase sub-
strings.

Type 2 |x| = |y| = 2p for some p = 0, . . . , log(�)+1 and for x or y it holds that
(a) The start position is also the start position of a phrase substring, or
(b) The end position is also the end position of a phrase substring.

Proof. Let a position of S be a start (end) position if a phrase starts (ends) at
that position. Moreover, let a comparison of two substrings be of type 1 (type
2 ) if it satisfies the first (second) property in the lemma. We now describe how
to find � = LCE(i, j) by using O(log �) type 1 or 2 comparisons.

If i or j is not a start position, we first check if S[i, i+k] = S[j, j+k] (type 1),
where k ≥ 0 is the minimum integer such that i+k or j+k is an end position. If
the comparison fails, we have restricted the search for � to two phrase substrings,
and we can find the exact value using O(log �) type 1 comparisons.

Otherwise, LCE(i, j) = k + LCE(i + k + 1, j + k + 1) and either i + k + 1 or
j + k + 1 is a start position. This leaves us with the task of describing how to
answer LCE(i, j), assuming that either i or j is a start position.

We first use p = O(log �) type 2 comparisons to determine the biggest integer
p such that S[i, i + 2p] = S[j, j + 2p]. It follows that � ∈ [2p, 2p+1]. Now let
q < 2p denote the length of the longest common prefix of the substrings x =
S[i+ 2p + 1, i+ 2p+1] and y = S[j + 2p + 1, j + 2p+1], both of length 2p. Clearly,
� = 2p + q. By comparing the first half x′ of x to the first half y′ of y, we can
determine if q ∈ [0, 2p−1] or q ∈ [2p−1 + 1, 2p − 1]. By recursing we obtain the
exact value of q after log 2p = O(log �) comparisons.

However, comparing x′ = S[a1, b1] and y′ = S[a2, b2] directly is not guaranteed
to be of type 1 or 2. To fix this, we compare them indirectly using a type 1 and
type 2 comparison as follows. Let k < 2p be the minimum integer such that
b1 − k or b2 − k is a start position. If there is no such k then we can compare
x′ and y′ directly as a type 1 comparison. Otherwise, it holds that x′ = y′ if
and only if S[b1 − k, b1] = S[b2 − k, b2] (type 1) and S[a1 − k − 1, b1 − k − 1] =
S[a2 − k − 1, b2 − k − 1] (type 2). 
�



156 P. Bille et al.

Theorem 3 follows by using fingerprints to perform the substring comparisons.
In particular, we obtain a Monte Carlo data structure that can answer a LCE
query in O(log � logN) time for SLPs and in O(log � log logN) time for Linear
SLPs. In the latter case, we can use Theorem 2 to reduce the query time to
O(log � log log � + log logN) by observing that for all but the first fingerprint
query, we have a finger into the data structure.

7.2 Verifying the Fingerprint Function

Since the data structure is Monte Carlo, there may be collisions among the
fingerprints used to determine the LCE, and consequently the answer to a query
may be incorrect. We describe how to obtain a Las Vegas data structure that
always answers LCE queries correctly by efficiently verifying that the fingerprint
function φ is collision-free on all substrings compared in the computation of
LCE(i, j). We give two verification algorithms. One that works for LCE queries
in SLPs, and a faster one that works for Linear SLPs where all internal nodes
are children of the root (e.g. LZ78). Due to lack of space, the details of the
algorithms are omitted. They will appear in a full version of this paper.

The verification algorithm for SLPs has running time O(N2/n logN) and
uses O(n) space. It uses the fingerprints of substrings of size 2p−1 to verify
fingerprints of substrings of size 2p similarly to the verification algorithm in [7].
For Linear SLPs where all internal nodes are children of the root, the running
time is reduced to O(N logN log logN) while using O(n) space.

References

1. Alstrup, S., Holm, J.: Improved algorithms for finding level ancestors in dynamic
trees. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS,
vol. 1853, pp. 73–84. Springer, Heidelberg (2000)

2. Amir, A., Farach, M., Matias, Y.: Efficient randomized dictionary matching al-
gorithms. In: Apostolico, A., Galil, Z., Manber, U., Crochemore, M. (eds.) CPM
1992. LNCS, vol. 644, pp. 262–275. Springer, Heidelberg (1992)

3. Andoni, A., Indyk, P.: Efficient algorithms for substring near neighbor problem.
In: Proc. 17th SODA, pp. 1203–1212 (2006)

4. Belazzougui, D., Boldi, P., Vigna, S.: Predecessor search with distance-sensitive
query time. arXiv:1209.5441 (2012)

5. Bender, M., Farach-Colton, M.: The level ancestor problem simplified. Theoret.
Comput. Sci. 321, 5–12 (2004)

6. Berkman, O., Vishkin, U.: Finding level-ancestors in trees. J. Comput. System
Sci. 48(2), 214–230 (1994)

7. Bille, P., Gørtz, I.L., Sach, B., Vildhøj, H.W.: Time-space trade-offs for longest
common extensions. In: Kärkkäinen, J., Stoye, J. (eds.) CPM 2012. LNCS,
vol. 7354, pp. 293–305. Springer, Heidelberg (2012)

8. Bille, P., Landau, G., Raman, R., Sadakane, K., Satti, S., Weimann, O.: Random
access to grammar-compressed strings. In: Proc. 22nd SODA, pp. 373–389 (2011)

9. Charikar, M., Lehman, E., Liu, D., Panigrahy, R., Prabhakaran, M., Sahai, A.,
Shelat, A.: The smallest grammar problem. IEEE Trans. Inf. Theory 51(7),
2554–2576 (2005)



Fingerprints in Compressed Strings 157

10. Claude, F., Navarro, G.: Self-indexed grammar-based compression. Fundamenta
Informaticae 111(3), 313–337 (2011)

11. Cole, R., Hariharan, R.: Faster suffix tree construction with missing suffix links.
SIAM J. Comput. 33(1), 26–42 (2003)

12. Cormode, G., Muthukrishnan, S.: Substring compression problems. In: Proc. 16th
SODA, pp. 321–330 (2005)

13. Cormode, G., Muthukrishnan, S.: The string edit distance matching problem with
moves. ACM Trans. Algorithms 3(1), 2 (2007)

14. Dietz, P.F.: Finding level-ancestors in dynamic trees. In: Dehne, F., Sack, J.-R.,
Santoro, N. (eds.) WADS 1991. LNCS, vol. 519, pp. 32–40. Springer, Heidelberg
(1991)

15. Farach, M., Thorup, M.: String matching in Lempel–Ziv compressed strings. Al-
gorithmica 20(4), 388–404 (1998)

16. Ga̧sieniec, L., Karpinski, M., Plandowski, W., Rytter, W.: Randomized efficient
algorithms for compressed strings: The finger-print approach. In: Hirschberg, D.S.,
Meyers, G. (eds.) CPM 1996. LNCS, vol. 1075, pp. 39–49. Springer, Heidelberg
(1996)

17. Ga̧sieniec, L., Kolpakov, R., Potapov, I., Sant, P.: Real-time traversal in grammar-
based compressed files. In: Proc. 15th DCC, p. 458 (2005)

18. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors.
SIAM J. Comput. 13(2), 338–355 (1984)

19. Kalai, A.: Efficient pattern-matching with don’t cares. In: Proc. 13th SODA, pp.
655–656 (2002)

20. Karp, R.M., Rabin, M.O.: Efficient randomized pattern-matching algorithms. IBM
J. Res. Dev. 31(2), 249–260 (1987)

21. Mehlhorn, K., Näher, S.: Bounded ordered dictionaries in O(log logN) time and
O(n) space. Inform. Process. Lett. 35(4), 183–189 (1990)

22. Porat, B., Porat, E.: Exact and approximate pattern matching in the streaming
model. In: Proc. 50th FOCS, pp. 315–323 (2009)

23. Rytter, W.: Application of Lempel–Ziv factorization to the approximation of
grammar-based compression. Theoret. Comput. Sci. 302(1), 211–222 (2003)

24. van Emde Boas, P., Kaas, R., Zijlstra, E.: Design and implementation of an efficient
priority queue. Theory Comput. Syst. 10(1), 99–127 (1976)

25. Willard, D.: Log-logarithmic worst-case range queries are possible in space Θ(N).
Inform. Process. Lett. 17(2), 81–84 (1983)

26. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Trans. Inf. Theory 23(3), 337–343 (1977)

27. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding.
IEEE Trans. Inf. Theory 24(5), 530–536 (1978)



Beacon-Based Algorithms

for Geometric Routing�

Michael Biro��, Justin Iwerks��,
Irina Kostitsyna���, and Joseph S.B. Mitchell��

Stony Brook University

Abstract. We consider beacons, an analog of geographical greedy rout-
ing, motivated by sensor network applications. A beacon b is a point
object that can be activated to create a ‘magnetic pull’ towards itself ev-
erywhere in a polygonal domain P . We explore the properties of beacons
and their effect on points in polygons, as well as demonstrate polynomial-
time algorithms to compute a variety of structures defined by the action
of beacons on P . We establish a polynomial-time algorithm for routing
from a point s to a point t using a discrete set of candidate beacons,
as well as a 2-approximation and a PTAS for routing between beacons
placed without restriction in P .

1 Introduction

We consider a model of beacon-based routing that generalizes geographical greedy
routing in sensor networks. In geographical routing [1, 2], each node is given
a Euclidean coordinate and a message is transmitted to the neighbor whose
Euclidean distance to the destination is a minimum. When the distribution of
sensors is very dense, i.e. close to infinity, the route a message takes under
geographical routing will follow a straight line towards the destination, or, when
the message hits the network boundary, may follow a boundary edge to greedily
minimize the distance to the destination. This is precisely the model of beacon-
based routing in this paper (see also [3–6]), where the destination is a beacon. In
this context, we demonstrate algorithms to compute all nodes that can transmit
a message to a given beacon, to compute all nodes that a given node can transmit
to, as well as algorithms to compute an optimal, or nearly-optimal, sequence of
beacon locations to transmit messages between two given nodes in the network.

Other routing schemes in sensor networks that are related to beacons include
a family of routing methods that use landmarks, as in Fang et al., Fonseca
et al., and Nguyen et al., [7–9]. In this type of routing, a collection of nodes,
called landmarks, first transmit throughout the entire network so that each node

� This research was partially supported by the National Science Foundation (CCF-
1018388) and the US-Israel Binational Science Foundation (project 2010074).

�� Department of Applied Mathematics and Statistics, Stony Brook University,
{mbiro,jiwerks,jsbm}@ams.stonybrook.edu

��� Department of Computer Science, Stony Brook University,
ikost@cs.stonybrook.edu

F. Dehne, R. Solis-Oba, and J.-R. Sack (Eds.): WADS 2013, LNCS 8037, pp. 158–169, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Beacon-Based Algorithms for Geometric Routing 159

can record its distance to each landmark. Then, in order to route towards a
destination, a function based on the distance vector to the landmarks is used
for selecting the neighbor to which to transmit the message next. The paper
containing a model most similar to ours is the one adopted in Nguyen et al., [9].
In their paper, the message is routed directly towards a single landmark until the
current node is at an equal distance away from the landmark as the destination.
At that point another landmark is selected. The paper shows that by choosing
the landmarks carefully, the message path’s length is within a constant factor of
the shortest path.

In our model, a beacon can occupy a point location on the interior or the
boundary of P , ∂P . When a beacon is activated, we imagine that an object
starting at a point p ∈ P moves along a straight line toward b until it either
reaches b or makes contact with ∂P . If contact is made with ∂P , the object will
follow along ∂P as long as its straight-line distance to b decreases monotonically.
Following the path determined by the beacon, the object may alternate between
moving in a straight-line path toward b on the interior of P and following along
∂P . If there is no infinitesimal movement that an object at p can make so that
its distance to b (strictly) decreases, we say that the object is ‘stuck’ and has
reached a local minimum or dead point on ∂P (see Figure 3). If an object starting
at p eventually reaches b we say that b attracts p. Two points are routed if there
is a sequence of beacons that can be activated and then deactivated, one at a
time and in order, so that an object beginning at a starting point s would visit
each beacon in the sequence after it is activated and terminate at a destination
point t, which we will always require to be a beacon itself.

2 Properties of Beacons

We examine the effect of beacons among obstacles in the plane. Our terminology
describes the attracted components to be moving objects, however, autonomous
robots, message delivery, or geographic routing interpretations are equally valid.
We begin with some definitions describing the structures and behavioral prop-
erties of beacons in polygons.

We define a beacon b as an transmitter-like object that is placed at a point
in a polygon P and can be activated to effect a pull on objects in P . When b is
activated, objects in P move to greedily minimize their Euclidean distance to b,
while being constrained to remain interior to P . A beacon b attracts a point p if,
under the action of b, an object starting at p moves so that its Euclidean distance
to b eventually decreases to 0. In this case, we also say that p is attracted to b.

Using these definitions, we may want to determine the set of points that are
attracted to a beacon b, called the attraction region of b, A(b) or determine the
set of beacons that attract a point p, called the inverse attraction region of p,
IA(p) (See Figure 1). If a beacon b is activated, objects at the points that are
attracted to b will reach b, but objects at the points not attracted to b will reach
a local minimum with respect to distance to b in P and remain there under the
influence of b. We are interested in determining the classification of the points of



160 M. Biro et al.

Fig. 1. (Left) The attraction region of a beacon b. (Right) The inverse attraction region
of a point p.

P based on the final position of the points under the action of b. These questions
motivate the following definitions.

We say a point d in P is a dead point with respect to a beacon b if d is not b,
and an object at d remains stationary under the influence of the beacon b. That
is, d is a point such that the Euclidean distance from b to d is a non-zero local
minimum inside of P . For a given beacon b in a polygon P , let D(b) be the set
of dead points with respect to b in P .

Then, for each dead point of a beacon b in a polygon P , d ∈ D(b), define the
dead region of d with respect to b, DRb(d), to be the set of points of P that
reach d if the beacon at b is activated. Since d is at a local minimum with respect
to Euclidean distance to b, if a point reaches d it can never leave d under the
action of b.

We can bound the number of dead points a given beacon may have in a
polygon P .

Theorem 1. Let P be a simple polygon on n vertices. If D(b) is the set of dead
points with respect to b, then 0 ≤ |D(b)| ≤ n − 3. Similarly, let P be a polygon
with n vertices and h holes. If D(b) is the set of dead points with respect to b,
then 0 ≤ |D(b)| ≤ n− h− 3. Furthermore, these bounds are tight.

Proof. For simple P : If P is convex, then there are no dead points, satisfying
the lower bound. Since b ∈ P , at least 3 edges of P must have a point visible
to b, which implies that these three edges cannot have any dead points. Since
no edge can have more than 1 dead point, this implies that the upper bound of
n − 3 cannot be exceeded. An example achieving the upper bound is shown in
Figure 2.

For arbitrary P : If P is convex and the holes are triangles oriented so they lack
dead points, then there are no dead points, satisfying the lower bound. Let H be



Beacon-Based Algorithms for Geometric Routing 161

the set of holes, and let ni be the number of vertices of the ith hole. First, examine
the polygon, P − H , with all the holes removed. Polygon P − H has at most
n−

∑
i ni vertices, and since b ∈ P , P −H can have at most n−

∑
i ni− 3 dead

points. Now examine a hole i ∈ H , with ni vertices. Take a planar arrangement
consisting of only b and i and note that at least one edge of i must be visible to b,
so it does not contribute a dead point. Therefore, i can contribute at most ni−1
dead points, and all holes together contribute at most

∑
i(ni−1) = (

∑
i ni)−h.

Adding the two contributions yields n−
∑

i ni− 3 +
∑

i ni− h = n− h− 3 dead
points. An example achieving the upper bound is shown in Figure 2. 
�

b b

Fig. 2. (Left) A simple polygon with n = 8 vertices and n−3 = 5 dead points. (Right)
A polygon with n = 14 vertices, h = 2 holes and n − h − 3 = 14 − 2 − 3 = 9 dead
points. The four additional dead points are shown.

Lemma 1. The set of dead regions, D(b), along with the attraction region of b,
A(b), forms a partition of the polygon P .

Proof. We see that every point must eventually either reach b or be forced to
stop at a dead point, so these sets cover P . We remove any ambiguity about the
movement of a point on a reflex vertex (having internal angle greater than π)

by assuming it always falls to the left of
−→
bp. Then, every point follows a unique

path induced by the beacon b, as the rules for all possible positions are fixed.
Therefore a point cannot end up at two different dead points d1 and d2, and
so the dead regions and attraction region subdivide the polygon into disjoint
regions. Since each point is in a region, this is a partition of the polygon P . 
�

Using local criteria (see [6] for details), we can determine special cut vertices,
split vertices, and split edges that are vital in determining the boundary edges of
the partition of a polygon under the action of a beacon. Cut vertices are reflex
vertices of the polygon such that the ray emanating from the vertex oriented
away from b lies interior to the polygon. There are three classes of cut vertices,
depicted in Figure 4, corresponding to the different ways the ray may lie in the
polygon. Furthermore, we examine the different cut vertices for situations where
the vertex acts as a separator, i.e., where the edges are angled so that points on
the left of the ray from b slide away from points on the right of the ray and vice



162 M. Biro et al.

b
y

x

Fig. 3. The partition of P with respect to b. Highlighted is the attraction region A(b)
of beacon b; x and y are dead points with respect to b.

versa. These special vertices are the split vertices, and the line segment from
them to the first intersection of the ray with the polygon is called the split edge
of that split vertex. The far vertex of a split edge is called the ray vertex of
that split edge (split vertex, respectively). Using these special classes of vertices,
we may classify the boundary of the partition of a simple polygon P into an
attraction region and dead regions.

b b b

pi+1

pi
pi-1

pi+1

pipi-1 pi+1pi

pi-1

Class I Class II Class III

Fig. 4. Three classes of cut vertices

Theorem 2. If P is a simple polygon, and e = piqi is a split edge of b, then e
is the boundary between two regions of the partition of P with respect to b. If P
has holes, then e may lie entirely interior to a region of the partition, but cannot
intersect more than one region of the partition due to b.



Beacon-Based Algorithms for Geometric Routing 163

Proof. In the case where P is simple, e is a diagonal of the polygon P + qi
and therefore splits it into two pieces, PL and PR. The convention mentioned
in Lemma 1 means that the points on e move to the left and so are part of PL.
Since e is parallel to bpi, the direct unconstrained action of b can never pull a
point from PL to PR or vice versa. Therefore, the only possible way for a point
to move from one side of e to the other is to move unconstrained until reaching
∂P and then slide along an edge. In order to slide along an edge across e, it must
pass pi, and therefore must slide along pipi+1, or pi−1pi, depending on whether
it started in PL or PR. Since pi is a split vertex, then regardless of which class
cut vertex it is, due to the angles defined for a split vertex, a point on edge pipi+1

or pi−1pi is pulled away from pi, and can never reach it. Therefore, since the
polygon is simple, the points on one side of e cannot end in the same location as
the points on the right side and so are in different regions. Furthermore, e is the
boundary of at most two regions as the unconstrained points all travel parallel
to their ray from b and end at the same point, meaning that a given ray lies in
the same region. Therefore, they are in different regions and e is their boundary.

If P has holes, then the same argument holds, except for the fact that some
split edges may have points arbitrarily close on either side that end up in the
same location due to points sliding around holes. This corresponds to the split
edge lying entirely inside a given region. 
�
Conversely, we can classify the boundary edges of the partition of P with respect
to b.

Theorem 3. If a curve is a boundary edge of a region in the partition of a
polygon P defined by a beacon b then it is either a part of the boundary of P or
a split edge of b.

Proof. Take a boundary component c of a region that is not part of an edge of
P . If some length of c is not parallel to the ray from b, then the unconstrained
attraction from b will pull points across c, implying that the two sides share a
dead region. Therefore, c must be a straight segment parallel to the ray from b.
Now, c must intersect the polygon at two locations, say s1 and s2, with s1 closer
to b. All points on c slide down c to s1 under the influence of b. If s1 is on the
interior of an edge, there are two cases. If s1 is a dead point, then points on both
sides of the edge of s1 slide to s1, implying that c is in the interior of the dead
region of s1, contradiction. If s1 is not a dead point, then it will slide along the
edge, either left or right. In both cases, points from both sides of c end at the
same dead point, so c is not on a boundary. Therefore, s1 is a vertex. We see
that the conditions that force all points from one side of c to a different region
than all points on the other side of c are exactly the conditions that make c a
split vertex.

Therefore the boundary edges of regions in the attraction arrangement are
exactly the edges of P , dead edges, or edges of the form (pk, qi) or (qi, qj) for
some pair of adjacent ray vertices qi, qj . 
�
These theorems form the idea for the attraction-region algorithms for points
given in the next section. We first find the split vertices of the polygon with



164 M. Biro et al.

respect to the beacon b, then propagate the split edges to find the ray vertices. In
simple polygons, this immediately gives the attraction partition of the polygon P
with respect to a point beacon b. For polygons with holes, some of the split edges
may not be relevant, so we then walk along the boundary of each region, deleting
edges seen twice, as they are interior edges. Then, the attraction arrangement
is exactly a decomposition of P into polygons each of which either contains a
single dead point or, in the case of the attraction region, b. The arrangement
therefore consists of the dead regions and the attraction region.

In the following, we give some additional global properties of the attraction
region of a point in a polygon P . Specifically, properties of connectedness, convex-
ity, simplicity, and complexity are given for both simple polygons and polygons
with holes.

Proposition 1. Given a beacon b, b ∈ A(b). Furthermore, the visibility polygon
of b, V (b), is a subset of A(b).

Proof. Each point in the visibility polygon moves to greedily minimize its Eu-
clidean distance to b. Since the straight line path connecting them to b lies in
the polygon, that is the path they take, and they are attracted to b. There are
also examples where equality is achieved. 
�

Proposition 2. The attraction region of a beacon b in a polygon P is connected.

Proof. Take two arbitrary points in A(b), say p1 and p2. Then, b attracts both
p1 and p2, as well as the entirety of the paths each take under the action of b.
The concatenation of these two paths gives a path from p1 to b to p2, showing
that A(b) is connected. 
�

Theorem 4. The attraction region of a beacon b in a simple polygon P is convex
with respect to P . This is not necessarily the case if P has holes.

Proof. A subset R of a polygon P is convex with respect to P if, for any two
points p1 and p2 in R, either p1 is not visible to p2, or the line segment p1p2
lies entirely in R. See Figure 5. Take a line segment that does not intersect ∂P
with endpoints p1 and p2 that are both attracted to b. Suppose there exists a
point on the segment, p3, that is not attracted to b. Since p3 is not attracted to
b, p3 lies outside A(b) and so there exists a split edge that separates p3 from b.
Since the line segment is convex, that split edge must also separate one of p1 or
p2 from b, and that is a contradiction, as both p1 and p2 are attracted to b. In
polygons with holes, the line segment may be intersected by many split edges,
instead of at most 2 as in simple polygons. Therefore, there can be points on the
line segment that are not attracted to b. 
�

Corollary 1. The attraction region of a beacon b in a simple polygon P is sim-
ple, i.e. it has no holes.

Theorem 5. The partition of a polygon P with respect to a beacon b has bound-
ary complexity O(n). Specifically, A(b) has complexity O(n). Furthermore, there
are cases with Ω(n) complexity. See Figure 2.



Beacon-Based Algorithms for Geometric Routing 165

b b

p1
p2

p1
p2p3p3

Fig. 5. A beacon’s attraction region is convex with respect to a simple polygon and is
not necessarily convex with respect to a polygon with holes

Proof. P has n vertices and there are at most n−3 additional ray vertices added
to make P ′. Split edges cannot cross, and so there are at most 2n − 3 vertices
in the partition of P . Therefore, the partition has complexity O(n). Since A(b)
is a subset of the partition, it must also have at most O(n) complexity. 
�

3 Algorithms for Computing Attraction Regions

Recall the definition of the attraction region of a point: The attraction region,
A(b), of a beacon b in a polygon P is defined as the set of points p in P that are
attracted by b.

We can compute the attraction region, A(b), by various methods; details can
be found in [6]. One method is based on a simple rotational sweep, taking time
O(n log n), and space O(n), in simple polygons and polygons with holes. An-
other method is based on preprocessing P for ray-shooting queries, resulting
in time O(n logn) in a simple polygon and O(

√
hn logn) in a polygon with h

holes. Alternatively, the ray shooting approach can be done in time O(n) in a
simple polygon and O(nh) in a polygon with h holes by using a triangulation to
propagate only the split edges relevant to the attraction region, exploiting the
connectedness and convexity properties of the attraction region.

Our overall most efficient method of computing A(b) yields a running-time
bound of O(T (n) + n), where T (n) is the time to triangulate the given polygon
(O(n) in simple polygons, and O(n+h log1+ε h), respectively for simple polygons
and polygons with holes [10,11]). This is (nearly) optimal time, yet the difficulty
of implementation may make the prior algorithms more suitable for practical
use.

This algorithm computes the necessary split edges by finding a radial trape-
zoidization of the polygon P emanating from the beacon b. This trapezoidization
may be computed from a triangulation of P in linear time, by a modification of
the result on parallel trapezoidization by Fournier and Montuna [12]. See also



166 M. Biro et al.

the thesis of Mouawad [13] for a description of the modification from parallel
to radial trapezoidization. Once the trapezoidization is found, the split edges
with respect to b may be found quickly, and after a linear amount of additional
work as described above, we compute the full partition of P with respect to b in
O(T (n) + n) time and O(n) space.

Theorem 6. The partition of a polygon P with respect to a beacon b can be
computed in O(n) time and space if P is simple, and O(n + h log1+ε h) time,
O(n) space if P has holes.

4 Algorithms for Computing Inverse Attraction Regions

Recall the definition of the inverse attraction region of a point or region: The
inverse attraction region, IA(p), of a point p in a polygon P is defined as the set
of beacon locations b in P that attract p. Similarly, the inverse attraction region
of a subset R, IA(R), in a polygon P is defined as the set of points p in P such
that a beacon b at p attracts at least one point of R.

In this section we discuss the computation of the inverse attraction region of
a point p in a polygon P , as well as the inverse attraction region of a subset
of P . Note that inverse attraction regions, unlike attraction regions, may have
Ω(n) connected components (Ω(n2) components in polygons with holes) and the
components may be free-floating in the interior of the polygon, with boundary
edges defined by non-local conditions. This makes their computation more diffi-
cult, and we resort to a decomposition approach that determines an arrangement
that contains the inverse attraction, then test each face of the arrangement for
attraction, using the algorithms in the preceding section. (see [6] for details).

4.1 Algorithm for the Inverse Attraction Region of a Point

The algorithm begins by constructing an arrangement Ap made from taking the
arrangement of lines defined by each edge of the polygon and the lines through
each reflex vertex that are perpendicular to the edges incident on the reflex
vertex. Then, using the properties of split vertices, we can prove the following
results.

Lemma 2. If b1 and b2 are two points in a face F of the arrangement Ap and
pi is a split vertex relative to b1, then pi is a split vertex relative to b2.

This allows us to show that the faces of the arrangement are constant with
respect to attracting p.

Theorem 7. If b1 and b2 are two points in a face F of the arrangement Ap and
p ∈ A(b1), then p ∈ A(b2).

Therefore, we can test a candidate point from each face of the constructed ar-
rangement, using the algorithms discussed in the previous section, and determine
which faces make up the inverse attraction region. Walking through the arrange-
ment allows us to update the attraction regions quickly, so this algorithm runs
in O(n2) time.



Beacon-Based Algorithms for Geometric Routing 167

Theorem 8. The inverse attraction region of a point p in a polygon P can be
computed in O(n2) time.

4.2 Algorithm for the Inverse Attraction Region of a Region R

The following algorithm is a modification of the preceding algorithm, and works
to compute the inverse attraction region of a polygonal region R with |R| = m. It
uses the same decomposition idea, but with a slightly more refined arrangement,
AR, made of the lines defined by each edge of the polygon, the lines through
each reflex vertex perpendicular to the edges incident to the reflex vertex, and
the lines from each vertex of R through each reflex vertex of P .

This allows us to show that the faces of the arrangement AR are constant
with respect to attracting a point from R.

Theorem 9. If b1 and b2 are two points in a face F of the arrangement AR

and R ∩ A(b1) 	= ∅, then R ∩ A(b2) 	= ∅.
Therefore, we can test a candidate point from each face of the constructed ar-
rangement, using the attraction region algorithms from the previous section, and
determine which faces make up the attraction region of R. Walking through the
arrangement allows us to update the attraction regions quickly, so this algorithm
runs in O(m2n2) time.

Theorem 10. The inverse attraction region of a region R with |R| = m, in a
polygon P , can be computed in O(m2n2) time.

Later, we will use this algorithm for computing the inverse attraction region of
a triangle, which takes O(n2) time.

Corollary 2. The inverse attraction region of a triangle in a polygon P can be
computed in O(n2) time.

5 Beacon Routing

We are interested in finding a minimum beacon path between two points s, t,
in a polygon P . A minimum beacon path from s to t is the smallest possible
collection of points b1, b2, . . . , bk in P with the property that b1 attracts s, bi+1

attracts bi for i = 1, . . . , k − 1, and t attracts bk. Specifically, in this section, we
solve the minimum beacon path problem for a special case where we are given
a set of m candidate beacon locations, and we also approximate the solution in
the general case.

5.1 Algorithm for Minimum Beacon Routing with Candidate
Beacons

If we are given a collection of m candidate beacon locations, the minimum beacon
path algorithm constructs a digraph G whose vertices are the candidate locations

and which has the edge
−−−→
(u, v) if u ∈ A(v). The minimum beacon path is then

given by the shortest s− t path in G.



168 M. Biro et al.

Theorem 11. A minimum beacon path from s to t, chosen from a set of m
candidate locations in a polygon P , can be found in time O(mn+m2) for simple
polygons, and O(m(n + h log1+ε h + m log h)) for polygons with holes.

Proof. Correctness follows from the one-to-one correspondence between s − t
beacon paths and s− t paths in the graph G.

For simple polygons, the main contributor to the running-time is constructing
G, where for each of the m + 2 point in C, we spend O(n) computing the
attraction region, and spend O(n + m) determining which edges to include in
G. This yields a total running-time of O(m(n+m)) = O(nm+m2). Computing
the triangulation, the point location, and the shortest-path algorithm are all
dominated by this running-time, so the total running-time is O(nm + m2).

For polygons with holes, the running time is increased, as for each of the
m+ 2 points in C, we spend O(n+h log1+ε h) computing the attraction regions,
and then spend O(n + m log h) to locate the candidates in the triangles. Again,
the triangulation, point-location, and shortest-path algorithms are dominated
by this running-time, so the total is O(m(n + h log1+ε h + m logh)) 
�

5.2 Approximation Algorithm for Minimum Beacon Routing

We also approximate the minimum beacon path by finding the inverse attraction
regions of the set of triangles in a triangulation, then building a digraph G whose

vertices correspond to triangles (along with s and t) and which has edge
−−−→
(u, v)

if u ∩ IA(v) 	= ∅. Then, a minimum s, t path in G corresponds to a sequence of
triangles where a point in each triangle is attracted by a point in its successor
triangle in the path. These points may not be the same, but a single additional
beacon per triangle allows us to link the sequence of points together to yield a
2-approximation to the minimum beacon path.

Theorem 12. A 2-approximation for the minimum beacons path from s to t can
be found in time O(n3). This procedure can be iterated to achieve a polynomial-
time approximation scheme for minimum beacon paths.

Proof. Since the minimum beacon s− t path is at least as long as the minimum
path in G, and we use at most two beacons in our beacon path for each beacon
in the minimum path in G, we have at most twice as many beacons as necessary.
The running time is dominated by the computing of the inverse attraction region
of triangles. By Corollary 2, this takes O(n2) per triangle, so O(n3) total. We can
then find the attracted/attracting points by walking through the path starting
from t, computing attraction regions for the points already determined. The
minimum beacon path has length at most O(n), [3], and so we spend at most
O(n2), or O(n2 + nh log1+ε h), to do so.

By increasing the number of iterations, (i.e IA(IA(. . . (IA(a)))) = IAk(a))
we modify the above algorithm to find a beacon path that has at most k + 1
beacons for every k beacons in the minimum beacon path, yielding a PTAS. 
�



Beacon-Based Algorithms for Geometric Routing 169

References

1. Bose, P., Morin, P., Stojmenović, I., Urrutia, J.: Routing with guaranteed delivery
in ad hoc wireless networks. Wireless Networks 7(6), 609–616 (2001)

2. Karp, B., Kung, H.: GPSR: Greedy perimeter stateless routing for wireless net-
works. In: Proceedings of the 6th Annual International Conference on Mobile Com-
puting and Networking, pp. 243–254. ACM (2000)

3. Biro, M., Gao, J., Iwerks, J., Kostitsyna, I., Mitchell, J.: Beacon-based routing and
coverage. In: 21st Fall Workshop on Computational Geometry (2011)

4. Biro, M., Gao, J., Iwerks, J., Kostitsyna, I., Mitchell, J.: Beacon-based structures
in polygonal domains. In: CG:YRF 2012, Abstracts of the 1st Computational Ge-
ometry: Young Researchers Forum (2012)

5. Iwerks, J.: Combinatorics and complexity in geometric visibility problems. Disser-
tation, Stony Brook University (2012)

6. Biro, M.: Beacon-based routing and guarding. Dissertation, Stony Brook University
(2013)

7. Fang, Q., Gao, J., Guibas, L., de Silva, V., Zhang, L.: GLIDER: Gradient landmark-
based distributed routing for sensor networks. In: Proceedings of the IEEE 24th
Annual Joint Conference of the IEEE Computer and Communications Societies,
INFOCOM 2005, vol. 1, pp. 339–350. IEEE (2005)

8. Fonseca, R., Ratnasamy, S., Zhao, J., Ee, C., Culler, D., Shenker, S., Stoica, I.:
Beacon vector routing: Scalable point-to-point routing in wireless sensornets. In:
Proceedings of the 2nd Conference on Symposium on Networked Systems Design
& Implementation, vol. 2, pp. 329–342. USENIX Association (2005)

9. Nguyen, A., Milosavljevic, N., Fang, Q., Gao, J., Guibas, L.: Landmark selection
and greedy landmark-descent routing for sensor networks. In: 26th IEEE Interna-
tional Conference on Computer Communications, INFOCOM 2007, pp. 661–669.
IEEE (2007)

10. Chazelle, B.: Triangulating a simple polygon in linear time. Discrete & Computa-
tional Geometry 6(1), 485–524 (1991)

11. Bar-Yehuda, R., Chazelle, B.: Triangulating disjoint jordan chains. International
Journal of Computational Geometry and Applications 4(4), 475–481 (1994)

12. Fournier, A., Montuno, D.Y.: Triangulating simple polygons and equivalent prob-
lems. ACM Transactions on Graphics (TOG) 3(2), 153–174 (1984)

13. Mouawad, N.: Minimal obscuring sets. Master’s thesis, McGill University (1990)



Interval Selection

with Machine-Dependent Intervals

Kateřina Böhmová1, Yann Disser2, Matúš Mihalák1, and Peter Widmayer1

1 Institute of Theoretical Computer Science, ETH Zürich, Zürich, Switzerland
{katerina.boehmova,matus.mihalak,widmayer}@inf.ethz.ch

2 Department of Mathematics, TU Berlin, Berlin, Germany
disser@math.tu-berlin.de

Abstract. We study an offline interval scheduling problem where every
job has exactly one associated interval on every machine. To schedule a
set of jobs, exactly one of the intervals associated with each job must
be selected, and the intervals selected on the same machine must not
intersect. We show that deciding whether all jobs can be scheduled is NP-
complete already in various simple cases. In particular, by showing the
NP-completeness for the case when all the intervals associated with the
same job end at the same point in time (also known as just-in-time jobs),
we solve an open problem posed by Sung and Vlach (J. Sched., 2005). We
also study the related problem of maximizing the number of scheduled
jobs. We prove that the problem is NP-hard even for two machines and
unit-length intervals. We present a 2/3-approximation algorithm for two
machines (and intervals of arbitrary lengths).

Keywords: Intervals, Scheduling, Complexity, Approximation.

1 Introduction

We consider an interval scheduling problem with m machines and n jobs. A job
consists of m open intervals—each associated with exactly one machine. In other
words, each job has exactly one interval on each machine. To schedule a job,
exactly one of its intervals must be selected. To schedule several jobs, no two
selected intervals on the same machine may intersect. The goal is to schedule the
maximum number of jobs. We will refer to this problem as IntervalSelection.

The presented problem (much like general interval scheduling problems) is
motivated by several applications, see, e.g., [2,5,6]. Our motivation comes from
the area of car-sharing where a set of users (jobs) wish to reserve a car (machine)
for a certain amount of time (interval), sufficiently large to drive to an appoint-
ment location (specific to each user) and back. The distance of the parking place
of each car to the destination may vary, and this results, for each user, in various
time intervals for the cars.

In the special case of a single machine, our problem becomes the classical
interval scheduling problem which is solvable in polynomial time by a simple
greedy algorithm that considers the intervals in increasing order of their right

F. Dehne, R. Solis-Oba, and J.-R. Sack (Eds.): WADS 2013, LNCS 8037, pp. 170–181, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Interval Selection with Machine-Dependent Intervals 171

end-points. For the case of two machines, it can be decided in polynomial time
whether all jobs can be scheduled (by a reduction to 2-Sat). In contrast to this,
in the present paper we show that the same question is NP-complete for the
case of three machines. Moreover, we show that the problem of maximizing the
number of scheduled jobs is NP-hard already for two machines. Both results hold
even if all the intervals have unit length.

We also consider variants of IntervalSelection where all intervals of the
same job, when seen on the real line, have a non-empty intersection (e.g., this
would be the time around the user’s appointment in the mentioned car-sharing
application). We call such a non-empty intersection a core of a job. We refer to
IntervalSelection where each job has a core as IntervalSelection with
cores. A special case of such a variant is when all intervals of a job have the
same end-point (so called just-in-time jobs [16]). We show that, in this setting,
the problem of deciding whether all jobs can be scheduled is NP-complete. This
solves an open problem posed by Sung and Vlach [14,16]. If the cores do not have
to be at the right-end of the intervals, we show that deciding whether all jobs
can be scheduled is NP-complete already when all intervals have unit length.

Our problem can be seen as a special case of the job interval selection problem,
denoted as JISPk, where each job has k associated intervals on the real line. To
see the relation, consider the machines of an instance of IntervalSelection

in any order, and just concatenate the intervals for the machines along the real
line, thus creating an instance of JISPm. JISPk is APX-hard for any k ≥ 2, and
only a deterministic 1/2-approximation algorithm is known (in fact, a simple
greedy algorithm) [15], and a randomized ≈ e−1

e -approximation algorithm [5]
that gives a 3/4-approximation for JISP2. We present a simple deterministic
2/3-approximation algorithm for IntervalSelection with two machines. Thus,
our algorithm is the first deterministic algorithm for a non-trivial special case of
JISP2 that beats the barrier of 2.

Table 1 provides an overview of the known (white background) and new (grey
background) complexity results for IntervalSelection and related problems.
The columns distinguish three basic computational goals: scheduling all jobs,
the maximum number of jobs, or jobs of maximum weight. Each row, from top
to bottom, is a generalization of the problem in the previous row, starting with
IntervalSelection on a single machine, and ending with JISPk. As can be
seen from the table, the (general) IntervalSelection, denoted as “no core
required” in the table, is closely related to well-known and studied problems:
it offers a natural generalization of the setting “with cores” [14,16], and it is
an interesting special case of JISPk [5,6,15]. Previous work left a gap in the
understanding of the complexity of the problems (the grey areas in the table),
which we address and completely close in this paper. To achieve tight hardness
results for the boundary cases of 2 and 3 machines (for the decision variant), or
1 and 2 machines (for the maximization objective), we devise gadgets that we
plug together using known results on a specific graph coloring problem (solvable
in polynomial time), which might be of independent interest. Notably, where
meaningful, the hardness results hold even if all intervals are of unit length.



172 K. Böhmová et al.

Table 1. Summary of the complexity of IntervalSelection problems with n jobs,
and m machines. The cells in gray indicate our contribution.

Schedule all jobs Max # jobs Max
∑

weights

single machine O(n log n) O(n log n) O(n log n)

identical intervals per job O(n log n) O(n log n) O(n2 log n)

with cores, any m NP-complete † § NP-hard † § NP-hard † §
O(mnm+1) O(mnm+1) O(mnm+1)

no core required NP-complete † NP-hard † NP-hard †
2 machines O(n2) NP-hard † NP-hard †

≥ 3 machines NP-complete † NP-hard † NP-hard †
JISPk (single machine)

2 intervals per job O(n2) NP-hard† NP-hard†
≥ 3 intervals per job NP-complete† NP-hard† NP-hard†
§ even if † even if all intervals have unit length

– all cores at the end, or
– all cores in the middle

Related Work. The general interest in interval scheduling problems dates back
to the 1950s. The classical variant, in which each job has associated an interval
and can be scheduled on any of the machines (i.e., in our setting, each job has
exactly the same interval on every machine) and the goal is to decide whether all
the jobs can be scheduled, is polynomially solvable [1]. The maximization version
is polynomially solvable as well, even if the jobs are weighted [4]. However, Arkin
and Silverberg [1] showed that if each job can only be scheduled on a subset of
the m machines, the problem becomes NP-hard (even in the unweighted case).
They also gave a O(nm+1)-time algorithm (i.e., polynomial for a constant m).

The special case of our problem with just-in-time jobs (i.e., where all inter-
vals of a job have the same right end point) has been studied by Sung and
Vlach [16]. They showed that the weighted version is NP-hard and presented a
dynamic programming algorithm that solves the problem in time O(m · nm+1).
Settling the complexity of the problem with unit-weight jobs was posed as an
open problem [16]; this open problem has also been stated in a recent survey on
just-in-time job scheduling [14].

As outlined beforehand, our problem is a special class of JISPk (job interval
scheduling problem on a single machine with k intervals per job). Nakajima and
Hakimi [11] showed that the decision version of JISP3 is NP-complete. Keil [8]
showed that this is the case even if the intervals have the same length, while
the general decision version of JISP2 can be solved in polynomial time. The
maximization version has been studied as outlined earlier by Spieksma [15] and
Chuzhoy [5]. Erlebach and Spieksma [6] consider the weighted JISPk with more
than one machine (every job has the same set of k intervals on every machine)
and they study myopic (single-pass) greedy algorithms.

JISPk is, in some sense, a discrete variant of the throughput-maximization
problem (also known as the time-constrained scheduling problem, or the real-
time scheduling problem), in which each job has a length, a release time, and a
deadline, and a job is associated with the (infinite) set of intervals of given length



Interval Selection with Machine-Dependent Intervals 173

lying between the job’s release time and the deadline. Bar-Noy et al. [2] study
this problem and give the currently best approximation algorithms for most of
the existing variants of the problem.

There are many other, for the scope of the paper less relevant variants of
scheduling where intervals “come into play”. We refer to the survey by Kolen et
al. [9] for more information on the topic. We also stress that online variants of
the presented problems have been studied as well, see e.g., the recent paper of
Sgall [13] on online throughput maximization.

2 Approximation of Interval Selection on Two Machines

In this section we present a 2/3-approximation algorithm for IntervalSelec-

tion with two machines. We stress that by interval we understand a time interval
associated with both a job, and a machine. Recall that IntervalSelection on
one machine is solvable by a simple greedy algorithm that considers all intervals
on the machine sorted by the right end-points in the ascending order and selects
each considered interval if it does not intersect any of the previously selected in-
tervals. We denote this algorithm by A1. We can also apply the greedy algorithm
in the setting with two machines MA and MB. More formally, let A2(MA,MB)
be the algorithm that first runs A1 on machine MA, removes from MB the inter-
vals for jobs whose intervals were selected on machine MA, and runs A1 on MB.
This algorithm gives a 1/2-approximation [15], which is tight for the algorithm.

Obviously, we can run the greedy algorithm in the other direction, i.e., first
on MB and then on MA (denoted by A2(MB,MA)), which again gives a 1/2-
approximation. Perhaps surprisingly, the algorithm that chooses the better solu-
tion of the two provided by A2(MA,MB) and A2(MB,MA) is a 2/3-
approximation. Even though the algorithm, let us call it A3, is extremely simple,
the analysis thereof is more interesting.

Consider an optimum solution O where OA denotes the intervals selected on
MA and OB the intervals selected on MB. Consider A2(MA,MB) and let SA be
the intervals selected by A2(MA,MB) on MA. Obviously, A2(MA,MB) selects
on MA at least |OA| intervals (which follows from the fact that A1 finds an
optimum on a single machine). The only reason that A2 selects less than |OB |
intervals on MB is that it cannot select intervals that correspond to jobs already
scheduled on MA (see Figure 1 for illustration). In fact, every job scheduled on
machine MA prevents selecting one interval on MB (the one that corresponds
to the same job) and each such selected interval on MA can cause that we can
select one interval less on MB. We introduce the following definition to measure
how a selection SA on MA reduces the size of the solution on MB with respect
to O. We say that a set I of intervals reduces the selection on MB by k if after
selecting the intervals I on MA the algorithm A1 selects |OB | − k intervals on
MB. Note that a set I can never reduce the selection by more than |I| intervals;
in particular, a single interval can reduce the selection by at most one.

In Figure 1, the interval for job β1 on MA reduces the selection on MB by
one, but the interval for job α1 on MA reduces the selection on MB by one



174 K. Böhmová et al.

MA MBα1 β1α2 β2α3 β3

β1
β2

β3 α1
α2

α3

Fig. 1. Instance where A3 returns exactly 2/3 · |O| jobs: O contains all jobs αi and
βi for i = 1, 2, 3 (in grey), but both A2(MA,MB) and A2(MB,MA) schedule only the
jobs α1, α2, β1, β2.

only with the help of β2 on MA. That is, sometimes we need more than one
interval to reduce the selection by one. Accordingly, we will further distinguish
the intervals in SA as follows. SO

A are the intervals that are both in SA and in
OA. Observe that every interval iO ∈ OA \SA has an interval iA ∈ SA such that
its right end-point intersects iO. For each such iO we place the leftmost such
interval iA in the set S∩

A. We define S∅
A to be the remaining intervals of SA. Note

that, by definition, |SO
A ∪S∩

A| = |OA|. Similarly, we define SB to be the intervals
scheduled by the “reverse” algorithm A2(MB,MA) on MB, and we analogically
define the sets SO

B , S∩
B, S∅

B.
Intuitively, if S∩

A or S∩
B is small, then the choice of A2(MA,MB) or A2(MB,

MA) on the first machine reduces the selection on the second machine only a
little (and thus it schedules many jobs). On the other hand, if both S∩

A and S∩
B

are large, we need to select twice as many jobs to reduce the selection. We will
show that the trade-off between these constraints lies at |S∩

A| = 1/3 · |O|. To
make this formal, we analyze how much the selection SA reduces the selection
on MB.

Lemma 1. Assume that A2(MA,MB) selects r intervals on MA corresponding
to jobs from SO

B , s intervals corresponding to jobs from S∩
B, and t intervals

corresponding to jobs from OB \ SO
B . Then the selection on MB is reduced by at

most r + min{s, t}.

Proof. Observe that OB and SO
B ∪ S∩

B are two selections of size |OB| having
exactly SO

B in common. Now, it is enough to realize that, after removing the
intervals corresponding to jobs in SA, we can select |OB | − r − t intervals from
OB, and we can select |OB | − r − s intervals from SO

B ∪ S∩
B. 
�

Theorem 1. A3 is a 2/3-approximation algorithm. This bound is tight for the
algorithm.

Proof. Without loss of generality, we assume that |S∩
A| ≤ |S∩

B|. We distinguish
two cases. First, assume that |S∩

A| ≤ 1/3 · |O|. Since SO
A are the intervals from

O, they correspond to different jobs than the jobs to which the intervals in OB

correspond. Thus, on MA, at most |S∩
A| + |S∅

A| intervals corresponding to jobs
in OB are selected, and the selection on MB is reduced by at most this amount.
Therefore, among the intervals in OB, algorithm A2(MA,MB) selects at least
|OB| − |S∩

A| − |S∅
A| intervals. In total, algorithm A2(MA,MB) selects at least

|SO
A |+ |S∩

A|+ |S∅
A|+ |OB| − |S∅

A| − 1/3 · |O| = 2/3 · |O| jobs.
Now, assume that |S∩

B| ≥ |S∩
A| > 1/3 · |O|. We analyze how much the intervals

SA can reduce the selection on MB. At most |SO
B | intervals corresponding to



Interval Selection with Machine-Dependent Intervals 175

jobs in SO
B can be selected on MA. By Lemma 1, the selection on MB is reduced

at the maximum possible way if in SA there is the same number of intervals
corresponding to jobs in S∩

B as the number of intervals corresponding to jobs in
OB \ SO

B . Thus, the selection on MB will be reduced the most, if |SO
B | intervals

in SA correspond to jobs in SO
B , and the rest of SA is split evenly between S∩

B

and OB \ SO
B . The selection on MB can thus be reduced by at most

|SO
B |+ |SA| − |SO

B |
2

=
|S∅

A|+ |OA|+ |SO
B |

2
=

|S∅
A|+ |O| − |S∩

B |
2

≤ |S∅
A|+ 2/3 · |O|

2
.

Thus, also in this case, algorithm A2(MA,MB) schedules at least |SO
A |+ |S∩

A|+
|S∅

A|+ |OB | − |O|
3
− |S∅

A|
2
≥ |OA|+ |OB| − |O|

3
= 2

3
|O| jobs.

Therefore, in every case, the algorithm A3 schedules at least 2/3 · |O| jobs.
The analysis is tight, as the example from Figure 1 shows. 
�

As an obvious future work, we want to analyze the natural generalization of the
algorithm to m ≥ 3 machines.

3 Hardness Results

In this section we study the complexity of IntervalSelection and show that
most of the natural variants are NP-complete or NP-hard. We first describe
generic gadgets that we will use as building blocks in our hardness proofs. In the
subsequent sections we give the actual hardness proofs. Some of the proofs, as
well as the parts discussing the correctness of the reductions, are omitted due to
space constraints. They can be found in full version in technical report [3].

Recall that by an interval we understand a time interval associated with
both a job and a machine. In the following, we will also use time intervals not
associated with a job or a machine. To avoid confusion, we use the following
terminology. When we consider a time interval with respect to a single machine,
but independently of the jobs, we call it a slot. And when considering a time
interval independently of machines and jobs, we call it a window.

We will also use the notion of blocking. We say that an interval i blocks a slot s
if i intersects s and both are associated with the same machine. We say that a
set of intervals I blocks window w on a set of machines M if for each machine
M inM there is an interval in I that blocks the slot corresponding to w on M .
We say that a set of intervals I completely blocks a window w if each slot that
intersects the window w is blocked by some interval in I.

We call a schedule in which all jobs are scheduled a complete schedule.
Our hardness results are shown by a reduction from variants of the NP-

complete satisfiability problem (Sat). Sat is the problem of finding, for a given
a set of r clauses C = {c1, c2, . . . , cr} over a set of Boolean variables X =
{x1, x2, . . . , xs}, a truth assignment such that every clause is satisfied, i.e., at
least one literal in every clause evaluates to TRUE (see, e.g., [7] for an exact def-
inition of the problem). Sat is NP-complete, even if every clause is restricted
to have at most three literals (denoted as 3-Sat) [7], and even, if each clause



176 K. Böhmová et al.

window w

M1

M2

M3

j0j1j2
j0j1j2
j0j1j2

+slot

+slot

−slot

w

M0

M1

M2

Q+ = {M0,M1}
Q− = {M2}

j0
j1

j1
j2

j2
j0

+slot

−slot

+slot

w

M0

M1

M2

Q+ = {M0,M2}
Q− = {M1}

j0
j1

j1
j2

j2
j0

−slot

+slot

+slot

w

M0

M1

M2

Q+ = {M1,M2}
Q− = {M0}

j0
j1

j1
j2

j2
j0

Fig. 2. The first drawing illustrates how we depict a blocking gadget for a window w.
The last three drawings illustrate decision gadgets on three machines M0, M1, and M2.
Each of the decision gadgets has two positive slots on machines in Q+ and one negative
slot on the machine in Q−. The crucial intervals constituting the gadget are depicted
by the shaded boxes (always one interval spans the respective box). The associated
jobs of the intervals are indicated on the sides. The remaining intervals of the jobs are
blocked by a blocking gadget, and thus never selected. These intervals and the blocking
gadget are for simplicity not displayed. The two different shades in the boxes depict
the only two possibilities how to select the intervals in the decision gadget.

contains at most three literals and each variable appears in the formula at most
three times, once as a negative literal and at most twice as a positive literal
(denoted as (≤3,3)-Sat) [7]. The problem of finding a truth assignment that
maximizes the number of satisfied clauses is NP-hard, even if each clause con-
tains two literals and each variable appears at most three times in the formula
(denoted as (2,3)-MaxSat) [12].

Building Blocks for Hardness Proofs. In order to simplify the explanation
of the hardness proofs, we define the following two gadgets (specific sets of jobs)
and use them as building blocks in our reductions.

The purpose of the blocking gadget is to completely block a certain window w,
i.e., to make sure that in any complete schedule no interval that intersects w is
ever scheduled, with the exception of the intervals of the jobs that constitute
the gadget itself. Let w be a window (that we want to completely block). The
gadget consists of m jobs, each having w as their interval on every machine. We
visually depict a blocking gadget as in Figure 2.

Lemma 2. In any complete schedule for IntervalSelection that contains the
blocking gadget B for window w, no selected interval outside B intersects w.

The purpose of the decision gadget is to mimic a truth assignment to a vari-
able in a boolean formula of 3-Sat. This is done by blocking a certain window
either on one set of machines or on another disjoint set. Given a window w and
two disjoint subsets Q−, Q+ of machines, we will call the window w on the ma-
chines in Q+ the positive slots and w on Q− the negative slots of the gadget (cf.
Figure 2). With our gadget we want to achieve that in any complete schedule
either all the positive slots of the gadget are free and all the negative slots are
blocked by the schedule, or vice versa. Let us refer to the former situation as
the positive decision of the gadget and to the latter as the negative decision.
Intuitively, we achieve this effect by using jobs with intervals placed so that we



Interval Selection with Machine-Dependent Intervals 177

have exactly two ways how to schedule all jobs. To ensure that there is no other
way to schedule the jobs of the gadget, we may need to block some intervals of
these jobs. For this purpose we use a blocking gadget.

Formally, we construct the decision gadget as follows. We denote by Q the
union of Q−, Q+, by k the size of Q, and by M0,M1, . . . ,Mk−1 the machines
in Q. Without loss of generality, we assume that w has unit length. We use k
jobs j0, j1, . . . , jk−1, one job per machine in Q. The intervals for all these jobs
have unit length |w|. There is a blocking gadget B such that all intervals of the
decision gadget except for intervals of ji on Mi,Mi−1 intersect B (we write Mi−1

instead of Mi−1 mod k for simplicity). The exact placement of ji and ji+1 on Mi

depends on whether the window w is supposed to be a positive or a negative slot
on Mi. In particular, if Mi is in Q− (w is a negative slot on Mi), the interval
for ji is placed directly to the right of w and the interval for ji+1 is placed so
that its left end is at the center of w. Otherwise, if Mi is in Q+, the left end of
the interval for ji is at the center of w and the interval for ji+1 is directly to the
right of w. Note that the intervals constituting the gadget occupy a window of
length 2 (excluding the intervals that are blocked by the blocking gadget).

Lemma 3. In any complete schedule for an instance of IntervalSelection

that contains the decision gadget D for window w and subsets Q−, Q+ of ma-
chines, either D blocks w on all machines in Q− and leaves it free on all machines
in Q+, or vice versa.

Corollary 1. Given a window w and subsets Q−, Q+ of machines, in any com-
plete schedule, the intervals of the decision gadget as constructed above enforce
the following. Either on all the positive slots of the gadget intervals can be sched-
uled and all the negative slots are blocked, or vice versa.

3.1 Interval Selection with Shared Cores

In this section we analyze the complexity of IntervalSelection with cores.
We study two variants. First, we consider the case when every job has a core at
the end, i.e., all intervals of a job end at the same point in time. We show that
deciding whether there is a complete schedule for this variant is NP-complete. By
this we resolve an open problem posed by Sung and Vlach [14,16]. Afterwards,
we consider the case where every job has a core at an arbitrary position and
show that this variant is NP-complete even if all intervals have unit length. We
note that both variants are solvable in time O(m ·nm+1), and thus in polynomial
time if m is constant [16].

Theorem 2. The problem of deciding whether there exists a complete schedule
in IntervalSelection with cores at the end is NP-complete.

Proof. The problem is in NP, since the completeness of a given schedule can be
checked in linear time. To show the hardness, we present a reduction from 3-Sat.



178 K. Böhmová et al.

αx1
αx2
αx3
αx4

βc1 βc2

βc3

βc4

Mx1,+

w0 w1 w2 w3 w4

αx1
αx2
αx3
αx4

βc1 βc2 βc3 βc4

Mx1,−

w0 w1 w2 w3 w4

αx1
αx2
αx3
αx4

βc1

βc2 βc3 βc4

Mx2,+

w0 w1 w2 w3 w4

αx1
αx2
αx3
αx4

βc1 βc2

βc3

βc4

Mx2,−

w0 w1 w2 w3 w4

Fig. 3. Example of the construction of IntervalSelection with cores at the end
for an instance Φ of the 3-Sat problem (each figure shows the intervals on a single
machine, the figures of the machines Mx3,+, Mx3,−, Mx4,+, Mx4,− are not displayed),
where Φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x3 ∨ x4)

Let us consider an arbitrary instance Φ of 3-Sat given by a set of clauses C =
{c1, c2, . . . , cr} over a set of Boolean variables X = {x1, x2, . . . , xs}. We construct
the following instance S of the IntervalSelection problem (cf. Figure 3 along
with the construction). We use two machines for each variable xi, denoted by
Mxi,+ and Mxi,−. The machine Mxi,+ corresponds to the positive literal of xi,
whereas Mxi,− corresponds to the negative literal of xi. On the machines we
consider a window of r + 1 units and we denote the unit windows constituting
it by w0, w1, w2, . . . , wr. We place a blocking gadget over all machines on the
window w0. Next, for each variable xi we add a job αxi with two possible ways
of scheduling it (in any complete schedule). This mimics a truth assignment to
the variable xi. We call these jobs the variable jobs. We place the intervals of
a variable job αxi as follows. On Mxi,+ and Mxi,− we place an interval such
that it covers w1, w2, . . . , wr , and on every other machine we place an interval
such that it covers w0, w1, w2, . . . , wr. Note that the blocking gadget ensures
that in any complete schedule each job αxi is scheduled on one of the machines
Mxi,+, Mxi,−, and no other job is scheduled on that machine on any window
w1, w2, . . . , wr. Intuitively, by scheduling αxi , one of the two literals of xi is
selected and thus set to FALSE, implicitly setting a truth assignment for variable
xi. Lastly, we add r jobs linked to the clauses so that the actual scheduling of
these jobs is related to the way how the clauses of Φ are satisfied. For each clause
cj we have one clause job denoted by βcj . We place the intervals for the job βcj

on window wj on those machines that correspond to literals that appear in the
clause cj , and on the windows w0, w1, . . . , wj on the other machines. In other
words, in any complete schedule, a job βcj can only be scheduled on a machine
that corresponds to a literal that appears in clause cj , since on all other machines
the intervals for βcj intersect the blocking gadget. Moreover, if the same literal
appears in clauses cj and cj′ , j 	= j′, then the intervals for jobs βcj and βcj′ do
not intersect on the machine that corresponds to this literal.

Note that the constructed instance of IntervalSelection has the property
that all the intervals corresponding to one job have at their end a unit window in
common. Obviously, the above construction can be done in polynomial time. 
�

The presented hardness implies the hardness of other variants of IntervalSe-

lection, such as that of cores at arbitrary positions, or with no required core at
all. Similarly, the presented hardness implies the hardness of the maximization



Interval Selection with Machine-Dependent Intervals 179

versions of these variants. Moreover, using the gadgets described before, we can
construct a reduction from (≤3,3)-Sat to prove the following theorem concerning
IntervalSelection with arbitrary cores and unit length intervals.

Theorem 3. The problem of deciding whether there exists a complete schedule
in IntervalSelection with cores is NP-complete even if all intervals have unit
length.

3.2 Interval Selection with Restricted Number of Machines

In this section we consider the complexity of non-restricted IntervalSelec-

tion. We show that, in contrast to IntervalSelection with cores, the problem
is NP-hard even if the number of machines is constant. In particular, we prove
that deciding whether there is a complete schedule is NP-complete already for
three machines. In contrast, the problem is polynomially solvable for two ma-
chines [8]. We show that the problem of maximizing the number of scheduled
intervals, on the other hand, is NP-hard already for two machines (while polyno-
mially solvable for one machine). Moreover, all these hardness results hold even
when all intervals have the same length.

We believe that the techniques used in the proofs may be of independent
interest. The decision gadgets capture the relation between a schedule and an
assignment. However, we also use properties of edge coloring that provide us
with a mapping that lets us put the pieces together and finalize the construction
of a scheduling problem under the required, rather restrictive conditions.

Unit Interval Selection with Three Machines. We consider IntervalSe-

lection with three machines and unit length intervals, with the objective of
deciding whether there is a complete schedule. We will present a reduction from
(≤3,3)-Sat. We will use the following lemma in the subsequent hardness result.

Lemma 4. Let Φ be an instance of (≤3,3)-Sat, given by a set of clauses C
over a set of Boolean variables X. Then, there exists a mapping p from E =
{(x, c) ∈ X × C | x ∈ c} to the set {M1,M2,M3}, such that p(x, c) 	= p(x, c′)
for c 	= c′ and p(x, c) 	= p(x′, c) for x 	= x′. Moreover, such a mapping p can be
found in polynomial time.

Proof. We prove the statement by edge-coloring the bipartite graph G = (X ∪
C,E). The structure of (≤3,3)-Sat implies that all vertices of the constructed
graph G have a degree at most 3. A bipartite graph is Δ-edge-colorable in poly-
nomial time, where Δ is the maximum degree [10]. Therefore, the graph G is
3-edge-colorable, with colors from {M1,M2,M3}. This coloring gives us the de-
sired mapping from E to {M1,M2,M3}. 
�

Theorem 4. The problem of deciding whether there exists a complete schedule
in IntervalSelection is NP-complete even for three machines and unit length
intervals.



180 K. Böhmová et al.

βc1

βc2

βc3

βc2

βc1

βc3

βc1 βc2

M1

M2

M3

w0 w1,1 w1,2 w2,1 w2,2 w3,1 w3,2 w4,1 w4,2

Fig. 4. Instance Φ = (x1∨x2∨x3)∧(x1∨x2∨x4)∧(x1∨x3) of (≤3,3)-Sat and the cor-
responding instance of IntervalSelection with three machines. Intervals intersecting
the blocking gadget are not shown in the figure.

Proof. The problem is obviously in NP. To show the hardness, we reduce (≤3,3)-
Sat to it. Let Φ be an instance of (≤3,3)-Sat, given by a set of clauses C =
{c1, c2, . . . , cr} over a set of Boolean variables X = {x1, x2, . . . , xs}. We construct
from Φ the following instance S of the IntervalSelection problem (cf. Figure 4
along with the construction), using three machines M1,M2,M3. We use a window
of 2s + 1 units, and denote the unit windows constituting it by w0, w1,1, w1,2,
w2,1, w2,2, . . . , ws,1, ws,2. We introduce jobs with unit length intervals as follows.
We place a blocking gadget on window w0 over all machines. For each variable xi

we place a decision gadget Dxi on the machines such that it has two positive and
one negative slot on window wi,1, in an arrangement that we will specify later.
The gadget Dxi occupies windows wi,1 and wi,2 and uses internally the blocking
gadget on w0. The positive/negative decision of gadget Dxi corresponds to the
truth assignment of the variable xi and the decision of Dxi is independent of
the other decision gadgets. We introduce a clause job βcj for each clause cj . To
place the intervals for βcj , we look at the literals that appear in cj . For each
appearance of a positive literal of some variable xi in cj we place an interval for
βcj on a positive slot of Dxi , and for each appearance of a negative literal of xi′

in cj we place an interval for βcj on the negative slot of Dxi′ . If cj contains only
two literals, we place one interval for βcj on the window w0 so that it intersects
the blocking gadget and cannot be selected in any complete schedule.

To obtain a valid construction, we need to ensure that all the intervals for
each clause job βcj are placed on different machines, and at the same time, we
require that each positive/negative slot of the decision gadgets is occupied by at
most one interval. We now explain the exact placement of the positive/negative
slots, as well as the distribution of the clause jobs over the slots that achieve
this. We have three machines and we need to place each decision gadget so that
it has its negative slot on some machine and its positive slots on the other two
machines. Finding a way to arrange the decision gadgets and distribute their
slots is equivalent to finding a mapping from a set of pairs (variable x, clause
c containing x) to the set {M1,M2,M3} that assigns different machines to the
variables in each clause and different machines to the clauses containing a fixed
variable. Such a mapping can be efficiently constructed due to Lemma 4. 
�

Unit Interval Selection with Two Machines. The maximization variant of
IntervalSelection turns to be NP-hard already for two machines. The proof
is similar to that of Theorem 4, but uses a reduction from (2,3)-MaxSat.



Interval Selection with Machine-Dependent Intervals 181

Theorem 5. Maximizing the number of scheduled intervals in IntervalSelec-

tion is NP-hard, even for two machines and unit length intervals.

Acknowledgements. This work was partially supported by the EU FP7/2007-
2013 (DG CONNECT.H5-Smart Cities and Sustainability), under grant agree-
ment no. 288094 (project eCOMPASS). Kateřina Böhmová is a recipient of the
Google Europe Fellowship in Optimization Algorithms, and this research is sup-
ported in part by this Google Fellowship. We would like to thank Thomas Graffa-
gnino from Swiss Federal Railways (SBB) and Rastislav Šrámek for pointing out
optimization problems with applications in car sharing. The first author would
like to thank Petr Škovroň for feedback on preliminary versions of the paper.

References

1. Arkin, E.M., Silverberg, E.B.: Scheduling jobs with fixed start and end times.
Discrete Applied Mathematics 18(1), 1–8 (1987)

2. Bar-Noy, A., Guha, S., Naor, J., Schieber, B.: Approximating the throughput of
multiple machines in real-time scheduling. SIAM J. Comput. 31(2), 331–352 (2001)

3. Böhmová, K., Disser, Y., Mihalák, M., Widmayer, P.: Interval selection with
machine-dependent intervals. Tech. Rep. 786, Institute of Theoretical Computer
Science, ETH Zurich (2013)

4. Bouzina, K.I., Emmons, H.: Interval scheduling on identical machines. Journal of
Global Optimization 9, 379–393 (1996)

5. Chuzhoy, J., Ostrovsky, R., Rabani, Y.: Approximation algorithms for the job
interval selection problem and related scheduling problems. In: Proc. of the 42nd
IEEE Symp. on Foundations of Computer Science (FOCS), pp. 348–356 (2001)

6. Erlebach, T., Spieksma, F.C.R.: Interval selection: applications, algorithms, and
lower bounds. Journal of Algorithms 46(1), 27–53 (2003)

7. Garey, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory
of NP-completeness. W. H. Freeman & Co., New York (1979)

8. Keil, J.M.: On the complexity of scheduling tasks with discrete starting times.
Operations Research Letters 12(5), 293–295 (1992)

9. Kolen, A.W.J., Lenstra, J.K., Papadimitriou, C.H., Spieksma, F.C.R.: Interval
scheduling: a survey. Naval Research Logistics (NRL) 54(5), 530–543 (2007)

10. König, D.: Über Graphen und ihre Anwendung auf Determinantentheorie und Men-
genlehre. Mathematische Annalen 77, 453–465 (1916)

11. Nakajima, K., Hakimi, S.L.: Complexity results for scheduling tasks with discrete
starting times. Journal of Algorithms 3(4), 344–361 (1982)

12. Raman, V., Ravikumar, B., Rao, S.S.: A simplified NP-complete MAXSAT prob-
lem. Information Processing Letters 65(1), 1–6 (1998)

13. Sgall, J.: Open problems in throughput scheduling. In: Epstein, L., Ferragina, P.
(eds.) ESA 2012. LNCS, vol. 7501, pp. 2–11. Springer, Heidelberg (2012)

14. Shabtay, D., Steiner, G.: Scheduling to maximize the number of just-in-time jobs:
a survey. In: Just-in-Time Systems. Springer Optimization and Its Applications,
vol. 60, pp. 3–20. Springer, New York (2012)

15. Spieksma, F.C.R.: On the approximability of an interval scheduling problem. Jour-
nal of Scheduling 2(5), 215–227 (1999)

16. Sung, S.C., Vlach, M.: Maximizing weighted number of just-in-time jobs on unre-
lated parallel machines. Journal of Scheduling 8, 453–460 (2005)



On the Spanning Ratio of Theta-Graphs�

Prosenjit Bose, André van Renssen, and Sander Verdonschot

School of Computer Science, Carleton University, Ottawa, Canada
jit@scs.carleton.ca, {andre,sander}@cg.scs.carleton.ca

Abstract. We present improved upper bounds on the spanning ratio of
a large family of θ-graphs. A θ-graph partitions the plane around each
vertex into m disjoint cones, each having aperture θ = 2π/m. We show
that for any integer k ≥ 1, θ-graphs with 4k + 4 cones have spanning
ratio at most 1 + 2 sin(θ/2)/(cos(θ/2) − sin(θ/2)). We also show that
θ-graphs with 4k + 3 and 4k + 5 cones have spanning ratio at most
cos(θ/4)/(cos(θ/2)− sin(3θ/4)). This is a significant improvement on all
families of θ-graphs for which exact bounds are not known. For example,
the spanning ratio of the θ-graph with 7 cones is decreased from at
most 7.5625 to at most 3.5132. We also improve the upper bounds on
the competitiveness of the θ-routing algorithm for these graphs to 1 +
2 sin(θ/2)/(cos(θ/2) − sin(θ/2)) on θ-graphs with 4k + 4 cones and to
1 + 2 sin(θ/2) · cos(θ/4)/(cos(θ/2) − sin(3θ/4)) on θ-graphs with 4k + 3
and 4k + 5 cones. For example, the routing ratio of the θ-graph with 7
cones is decreased from at most 7.5625 to at most 4.0490.

Keywords: computational geometry, spanners, θ-graphs, spanning ratio.

1 Introduction

In a weighted graph G, let the distance δG(u, v) between two vertices u and v
be the length of the shortest path between u and v in G. A subgraph H of G is
a t-spanner of G if for all pairs of vertices u and v, δH(u, v) ≤ t · δG(u, v), t ≥ 1.
The spanning ratio of H is the smallest t for which H is a t-spanner. The graph
G is referred to as the underlying graph [7]. A routing strategy is said to be
c-competitive with respect to G if the length of the path returned by the routing
strategy is not more than c times the length of the shortest path in G [3].

We consider the situation where the underlying graph G is a straightline
embedding of Kn, the complete graph on a set of n points in the plane. The
weight of each edge (u, v) is the Euclidean distance |uv| between u and v. A
spanner of such a graph is called a geometric spanner. We look at a specific type
of geometric spanner: θ-graphs.

Introduced independently by Clarkson [5] and Keil [6], θ-graphs are con-
structed as follows (a more precise definition follows in the next section): for
each vertex u, we partition the plane into m disjoint cones with apex u, each
having aperture θ = 2π/m. When m cones are used, we denote the resulting

� Research supported in part by NSERC.

F. Dehne, R. Solis-Oba, and J.-R. Sack (Eds.): WADS 2013, LNCS 8037, pp. 182–194, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



On the Spanning Ratio of Theta-Graphs 183

θ-graph as θm. The θ-graph is constructed by, for each cone with apex u, con-
necting u to the vertex v whose projection along the bisector of the cone is
closest. Ruppert and Seidel [8] showed that the spanning ratio of these graphs is
at most 1/(1−2 sin(θ/2)), when θ < π/3, i.e. there are at least seven cones. This
proof also showed that the θ-routing algorithm (defined in the next section) is
1/(1− 2 sin(θ/2))-competitive on these graphs.

Bonichon et al. [1] showed that the θ6-graph has spanning ratio 2. This was
done by dividing the cones into two sets, positive and negative cones, such that
each positive cone is adjacent to two negative cones and vice versa. It was shown
that when edges are added only in the positive cones, in which case the graph is
called the half-θ6-graph, the resulting graph is equivalent to the TD-Delaunay
triangulation (the Delaunay triangulation where the empty region is an equi-
lateral triangle) whose spanning ratio is 2, as shown by Chew [4]. An alterna-
tive, inductive proof of the spanning ratio of the half-θ6-graph was presented by
Bose et al. [3] along with an optimal local competitive routing algorithm on the
half-θ6-graph. Recently, Bose et al. [2] generalized this inductive proof to show
that the θ(4k+2)-graph has spanning ratio 1 + 2 sin(θ/2), where k is an integer
and at least 1. This spanning ratio is exact, i.e. there is a matching lower bound.

In this paper, we generalize the results from Bose et al. [2]. We look at the
three remaining families of θ-graphs: the θ(4k+3)-graph, the θ(4k+4)-graph, and
the θ(4k+5)-graph, where k is an integer and at least 1. We show that the θ(4k+4)-
graph has a spanning ratio of at most 1 + 2 sin(θ/2)/(cos(θ/2) − sin(θ/2)). We
also show that the θ(4k+3)-graph and the θ(4k+5)-graph have spanning ratio at
most cos(θ/4)/(cos(θ/2) − sin(3θ/4)). We also improve the competitiveness of
θ-routing on these graphs. The θ-routing algorithm is the standard routing al-
gorithm on all θ-graphs having at least seven cones. For both the spanning ratio
and the routing ratio, the best known bound was 1/(1− 2 sin(θ/2)) by Ruppert
and Seidel [8].

Table 1. An overview of current and previous spanning and routing ratios

Current Spanning Current Routing Previous Spanning/Routing

θ(4k+2)-graph 1 + 2 sin(θ/2) [2] 1
1−2 sin(θ/2)

[8]
1

1−2 sin(θ/2)
[8]

θ(4k+3)-graph
cos(θ/4)

cos(θ/2)−sin(3θ/4)
1+ 2 sin(θ/2) cos(θ/4)

cos(θ/2)−sin(θ/2)

1
1−2 sin(θ/2)

[8]

θ(4k+4)-graph 1 + 2 sin(θ/2)
cos(θ/2)−sin(θ/2)

1 + 2 sin(θ/2)
cos(θ/2)−sin(θ/2)

1
1−2 sin(θ/2)

[8]

θ(4k+5)-graph
cos(θ/4)

cos(θ/2)−sin(3θ/4)
1+ 2 sin(θ/2) cos(θ/4)

cos(θ/2)−sin(θ/2)

1
1−2 sin(θ/2)

[8]

2 Preliminaries

Let a cone C be the region in the plane between two rays originating from the
same point (referred to as the apex of the cone). For ease of exposition, we only



184 P. Bose, A. van Renssen, and S. Verdonschot

consider point sets in general position: no two vertices lie on a line parallel to one
of the rays that define the cones and no two vertices lie on a line perpendicular
to the bisector of one of the cones.

When constructing a θm-graph, for each vertex u of Kn consider the rays
originating from u with the angle between consecutive rays being θ = 2π/m.
Each pair of consecutive rays defines a cone. The cones are oriented such that
the bisector of some cone coincides with the vertical halfline through u that
lies above u. Let this cone be C0 of u and number the cones in clockwise order
around u. The cones around the other vertices have the same orientation as the
ones around u. We write Cu

i to indicate the i-th cone of a vertex u.
The θm-graph is constructed as follows: for each cone C of each vertex u, add

an edge from u to the closest vertex in that cone, where distance is measured
along the bisector of the cone. More formally, we add an edge between two
vertices u and v if v ∈ C and for all vertices w ∈ C (v 	= w), |uv′| ≤ |uw′|, where
v′ and w′ denote the orthogonal projection of v and w on the bisector of C. Note
that our general position assumption implies that each vertex adds at most one
edge per cone to the graph.

Given a vertex w in cone C of vertex u, we define the canonical triangle Tuw as
the triangle defined by the borders of C and the line through w perpendicular to
the bisector of C. We use m to denote the midpoint of the side of Tuw opposite u
and α to denote the smaller unsigned angle between uw and um (see Figure 1).
Note that for any pair of vertices u and w, there exist two canonical triangles:
Tuw and Twu.

w

u

m

α

Fig. 1. The canonical triangle Tuw

a

b

c

d

Fig. 2. Four points a, b, c, d on a circle

Using the structure of the θm-graph, θ-routing is defined as follows. From
the current vertex u, follow the edge to the closest vertex in Tut, where t is the
destination. This step is repeated until the destination is reached.

Next, we prove a few geometric lemmas that will be useful when bounding the
spanning ratios of the graphs. We use � xyz to denote the smaller angle between
line segments xy and yz.



On the Spanning Ratio of Theta-Graphs 185

Lemma 1. Let a, b, c, and d be four points on a circle such that � cad ≤ � bad ≤
� adc. It holds that |ac|+ |cd| ≤ |ab|+ |bd| and |cd| ≤ |bd|.

Proof. Since b and c lie on the same circle and � abd and � acd are the angle
opposite to the same chord ad, the inscribed angle theorem implies that � abd =
� acd (see Figure 2). First, we show that |ac|+ |cd| ≤ |ab|+ |bd|.

We look at the function sinα+sin(π−γ−α), where γ is a fixed constant and
γ + α ≤ π. Using elementary calculus, it can be shown that this function has a
maximum at α = (π− γ)/2 and is strictly unimodal for α ∈ (0, π− γ). Next, we
note that |ac|+ |cd| ≤ |ab|+ |bd| can be rewritten as 2 · r · (sin � adc+ sin � cad) ≤
2 · r · (sin � adb + sin � bad), where r is the radius of the circle. Since we can
express � adc and � adb as π − � acd− � cad and π − � abd− � bad, both sides of
the inequality have the form sinα+sin(π−γ−α), with γ = � abd = � acd. Hence,
since � cad ≤ � bad ≤ π− � acd− � cad = � adc, we have that |ac|+|cd| ≤ |ab|+|bd|
and |cd| ≤ |bd|. 
�

Lemma 2. Let u, v and w be three vertices in the θ(4k+x)-graph, x ∈ {3, 4, 5},
such that w ∈ Cu

0 and v ∈ Tuw, to the left of uw. Let a be the intersection of the
side of Tuw opposite u and the left boundary of Cv

0 . Let Cv
i denote the cone of v

that contains w and let c and d be the upper and lower corner of Tvw. If 1 ≤ i ≤
k− 1, or i = k and |cw| ≤ |dw|, then max {|vc|+ |cw|, |vd|+ |dw|} ≤ |va|+ |aw|
and max {|cw|, |dw|} ≤ |aw|.

Proof. This situation is illustrated in Figure 3. We perform case distinction on
max {|cw|, |dw|}.

u

wa

v

c

dCv
i

Fig. 3. The situation where we apply Lemma 1

Case 1: If |cw| > |dw|, we need to show that when 1 ≤ i ≤ k− 1, |vc|+ |cw| ≤
|va|+|aw| and |cw| ≤ |aw|. Since angles � vaw and � vcw are both angles between



186 P. Bose, A. van Renssen, and S. Verdonschot

the boundary of a cone and the line perpendicular to its bisector, � vaw = � vcw.
Thus, c lies on the circle through a, v, and w. Therefore, if we can show that
� cvw ≤ � avw ≤ � vwc, Lemma 1 proves this case.

We show � cvw ≤ � avw ≤ � vwc in two steps. Since w ∈ Cv
i and i ≥ 1, we

have that � avc = i · θ ≥ θ. Hence, since � avw = � avc + � cvw, � cvw ≤ � avw.
It remains to show that � avw ≤ � vwc. We note that � avw ≤ (i + 1) · θ and
(π−θ)/2 ≤ � vwc, since |cw| > |dw|. Using that θ = 2π/(4k+x) and x ∈ {3, 4, 5},
we compute the maximum value of i for which � avw ≤ � vwc:

� avw ≤ � vwc

(i + 1) · θ ≤ π − θ

2

i ≤ π

2θ
− 3

2

i ≤ π · (4k + x)

4π
− 3

2

i ≤ k +
x

4
− 3

2
i ≤ k − 1

Hence, � avw ≤ � vwc when i ≤ k − 1.
Case 2: If |cw| ≤ |dw|, we need to show that when 1 ≤ i ≤ k, |vd| + |dw| ≤

|va|+|aw| and |dw| ≤ |aw|. Since angles � vaw and � vdw are both angles between
the boundary of a cone and the line perpendicular to its bisector, � vaw = � vcw.
Thus, when we reflect d around vw, the resulting point d′ lies on the circle
through a, v, and w. Therefore, if we can show that � d′vw ≤ � avw ≤ � vwd′,
Lemma 1 proves this case.

We show � d′vw ≤ � avw ≤ � vwd′ in two steps. Since w ∈ Cv
i and i ≥ 1, we

have that � avw ≥ � avc = i · θ ≥ θ. Hence, since � d′vw ≤ θ, � d′vw ≤ � avw.
It remains to show that � avw ≤ � vwd′. We note that � vwd′ = � dwv = π −
(π − θ)/2 − � dvw and � avw = � avd − � dvw = (i + 1) · θ − � dvw. Using that
θ = 2π/(4k+x) and x ∈ {3, 4, 5}, we compute the maximum value of i for which
� avw ≤ � vwd′:

� avw ≤ � vwd′

(i + 1) · θ − � dvw ≤ π + θ

2
− � dvw

i ≤ π

2θ
− 1

2

i ≤ π · (4k + x)

4π
− 1

2

i ≤ k +
x

4
− 1

2
i ≤ k

Hence, � avw ≤ � vwd′ when i ≤ k. 
�



On the Spanning Ratio of Theta-Graphs 187

Lemma 3. Let u, v and w be three vertices in the θ(4k+x)-graph, such that
w ∈ Cu

0 , v ∈ Tuw to the left of uw, and w 	∈ Cv
0 . Let a be the intersection of

the side of Tuw opposite u and the line through v parallel to the left boundary
of Tuw. Let y and z be the corners of Tvw opposite to v. Let β = � awv and let
γ be the unsigned angle between vw and the bisector of Tvw. Let c be a positive
constant. If

c ≥ cos γ − sinβ

cos
(
θ
2
− β

)
− sin

(
θ
2

+ γ
) ,

then
|vp|+ c · |pw| ≤ |va|+ c · |aw|,

where p is y if |yw| ≥ |zw| and z if |yw| < |zw|.

Proof. Using that the angle between the bisector of a cone and its boundary is
θ/2, we first express the four line segments in terms of β and γ (see Figure 4):

|vp| = |vw| · cos γ/ cos(θ/2)

|pw| = |vw| · (sin γ + cos γ · tan(θ/2))

|va| = |vw| · sinβ/ cos(θ/2)

|aw| = |vw| · (cosβ + sinβ · tan(θ/2))

w

v

z

a

y

γ

β

Fig. 4. Finding a constant c such that |vz|+ c · |zw| ≤ |va|+ c · |aw|

To compute for which values of c the inequality |vp| + c · |pw| ≤ |va| + c · |aw|
holds, we first multiply both sides by cos(θ/2)/|vw| and rewrite as follows:

cos(θ/2)

|vw| · (|vp|+ |pw| · c) = cos γ + c · (sin γ · cos(θ/2) + cos γ · sin(θ/2))

= cos γ + c · sin(θ/2 + γ)

cos(θ/2)

|vw| · (|va|+ |aw| · c) = sinβ + c · (cosβ · cos(θ/2) + sinβ · sin(θ/2))

= sinβ + c · cos(θ/2− β)



188 P. Bose, A. van Renssen, and S. Verdonschot

We can now calculate for which values of c the inequality holds:

cos γ + c · sin(θ/2 + γ) ≤ sinβ + c · cos(θ/2− β)

cos γ − sinβ ≤ c · (cos(θ/2− β)− sin(θ/2 + γ))

c ≥ cos γ − sinβ

cos(θ/2− β)− sin(θ/2 + γ)

It remains to show that c > 0. Since w 	∈ Cv
0 , we have that β ∈ (0, (π − θ)/2),

and by definition γ ∈ [0, θ/2). This implies that sin(π/2 + γ) > sinβ or equiva-
lently cos γ−sinβ > 0. Thus, we need to show that cos(θ/2−β)−sin(θ/2+γ) > 0
or equivalently sin(π/2 + θ/2 − β) > sin(θ/2 + γ). It suffices to show that
θ/2 + γ < π/2 + θ/2 − β < π − θ/2 − γ. This follows from β ∈ (0, (π − θ)/2),
γ ∈ [0, θ/2), and the fact that θ ≤ 2π/7. 
�

3 Generic Framework for the Spanning Proof

Using the lemmas from the previous section, we provide a generic framework
for the spanning proof for the three families of θ-graphs. After providing this
framework, we fill in the blanks for the individual families.

Theorem 1. Let u and w be two vertices in the plane. Let m be the midpoint of
the side of Tuw opposite u and let α be the unsigned angle between uw and um.
There exists a path connecting u and w in the θ(4k+x)-graph of length at most(

cosα

cos
(
θ
2

) +

(
cosα · tan

(
θ

2

)
+ sinα

)
· c

)
· |uw|,

where c ≥ 1 is a constant that depends on x ∈ {3, 4, 5}. For the θ(4k+4)-graph,
c equals 1/(cos(θ/2) − sin(θ/2)) and for the θ(4k+3)-graph and θ(4k+5)-graph, c
equals cos(θ/4)/(cos(θ/2)− sin(3θ/4)).

Proof. We assume without loss of generality that w ∈ Cu
0 . We prove the theorem

by induction on the area of Tuw (formally, induction on the rank, when ordered
by area, of the canonical triangles for all pairs of vertices). Let a and b be the
upper left and right corners of Tuw. Our inductive hypothesis is the following,
where δ(u,w) denotes the length of the shortest path from u to w in the θ(4k+x)-
graph: δ(u,w) ≤ max{|ua|+ |aw| · c, |ub|+ |bw| · c}.

We first show that this induction hypothesis implies the theorem. Basic
trigonometry gives us the following equalities: |um| = |uw| · cosα, |mw| =
|uw| · sinα, |am| = |bm| = |uw| · cosα · tan(θ/2), and |ua| = |ub| = |uw| ·
cosα/ cos(θ/2). Thus the induction hypothesis gives that δ(u,w) is at most
|ua|+ (|am|+ |mw|) · c = |uw| · (cosα/ cos(θ/2) + (cosα · tan(θ/2) + sinα) · c).



On the Spanning Ratio of Theta-Graphs 189

Base Case: Tuw has rank 1. Since the triangle is a smallest triangle, w is the
closest vertex to u in that cone. Hence the edge (u,w) is part of the θ(4k+x)-
graph, and δ(u,w) = |uw|. From the triangle inequality and the fact that c ≥ 1,
we have |uw| ≤ max{|ua|+ |aw| · c, |ub|+ |bw| · c}, so the induction hypothesis
holds.

Induction Step: We assume that the induction hypothesis holds for all pairs
of vertices with canonical triangles of rank up to j. Let Tuw be a canonical
triangle of rank j + 1.

If (u,w) is an edge in the θ(4k+x)-graph, the induction hypothesis follows by
the same argument as in the base case. If there is no edge between u and w, let
v be the vertex closest to u in Tuw, and let a′ and b′ be the upper left and right
corners of Tuv (see Figure 5). By definition, δ(u,w) ≤ |uv|+ δ(v, w), and by the
triangle inequality, |uv| ≤ min{|ua′|+ |a′v|, |ub′|+ |b′v|}.

(a) (b) (c)

w

u

a b

va′ b′

c d w

u

a b

va′

c

d

a′′

u

a b

a′
d

c

a′′ w

v

(d)

u

a b

a′

d

ca′′ w

v

Fig. 5. The four cases based on the cone of v that contains w, in this case for the
θ12-graph

Without loss of generality, we assume that v lies to the left of w. We perform a
case analysis based on the cone of v that contains w, where c and d are the left and
right corners of Tvw, opposite to v: (a) w ∈ Cv

0 , (b) w ∈ Cv
i where 1 ≤ i ≤ k− 1,

or i = k and |cw| ≤ |dw|, (c) w ∈ Cv
k and |cw| > |dw|, (d) w ∈ Cv

k+1.
Case (a): Vertex w lies in Cv

0 (see Figure 5a). Since Tvw has smaller area
than Tuw, we apply the inductive hypothesis to Tvw. Hence we have δ(v, w) ≤
max{|vc|+ |cw| · c, |vd|+ |dw| · c}. Since v lies to the left of w, the maximum of
the left hand side is attained by its second argument |vc|+ |cw| ·c. Since vertices
v, c, a, and a′ form a parallelogram and c ≥ 1, we have that:



190 P. Bose, A. van Renssen, and S. Verdonschot

δ(u,w) ≤ |uv|+ δ(v, w)

≤ |ua′|+ |a′v|+ |vc|+ |cw| · c
≤ |ua|+ |aw| · c
≤ max{|ua|+ |aw| · c, |ub|+ |bw| · c},

which proves the induction hypothesis.
Case (b): Vertex w lies in Cv

i , where 1 ≤ i ≤ k− 1, or i = k and |cw| ≤ |dw|.
Let a′′ be the intersection of the side of Tuw opposite u and the left bound-
ary of Cv

0 . Since Tvw is smaller than Tuw, by induction we have δ(v, w) ≤
max{|vc| + |cw| · c, |vd| + |dw| · c} (see Figure 5b). Since w ∈ Cv

i where 1 ≤
i ≤ k − 1, or i = k and |cw| ≤ |dw|, we can apply Lemma 2. Note that
point a in Lemma 2 corresponds to point a′′ in this proof. Hence, we get that
max {|vc|+ |cw|, |vd| + |dw|} ≤ |va′′|+|a′′w| and max {|cw|, |dw|} ≤ |a′′w|. Since
c ≥ 1, this implies that max {|vc|+ |cw| · c, |vd|+ |dw| · c} ≤ |va′′| + |a′′w| · c.
Since |uv| ≤ |ua′|+ |a′v| and v, a′′, a, and a′ form a parallelogram, we have that
δ(u,w) ≤ |ua|+ |aw| · c, proving the induction hypothesis for Tuw.

Case (c) and (d) Vertex w lies in Cv
k and |cw| > |dw|, or w lies in Cv

k+1.
Let a′′ be the intersection of the side of Tuw opposite u and the left boundary
of Cv

0 (see Figures 5c and d). Since Tvw is smaller than Tuw, we can apply
induction on it. The precise application of the induction hypothesis varies for
the three families of θ-graphs and, using Lemma 3, determines the value of c.
Hence, these cases are discussed in the spanning proofs of the three families. 
�

4 The θ(4k+4)-Graph

In this section, we give improved upper bounds on the spanning ratio of the
θ(4k+4)-graph, for any integer k ≥ 1.

Theorem 2. Let u and w be two vertices in the plane. Let m be the midpoint of
the side of Tuw opposite u and let α be the unsigned angle between uw and um.
There exists a path connecting u and w in the θ(4k+4)-graph of length at most(

cosα

cos
(
θ
2

) +
cosα · tan

(
θ
2

)
+ sinα

cos
(
θ
2

)
− sin

(
θ
2

) )
· |uw|.

Proof. We apply Theorem 1 using c = 1/(cos(θ/2) − sin(θ/2)). It remains to
handle Case (c), where w ∈ Cv

k and |cw| > |dw|, and Case (d), where w ∈ Cv
k+1.

Recall that c and d are the left and right corners of Tvw, opposite to v, and
a′′ is the intersection of aw and the line through v, parallel to ua. Let β be
� a′′wv and let γ be the angle between vw and the bisector of Tvw. Since Tvw

is smaller than Tuw, the induction hypothesis gives a bound on δ(v, w). Since
|uv| ≤ |ua′| + |a′v| and v, a′′, a, and a′ form a parallelogram, we need to show
that δ(v, w) ≤ |va′′|+ |a′′w| · c for both cases in order to complete the proof.

Case (c): When w lies in Cv
k and |cw| > |dw|, the induction hypothesis for Tvw

gives δ(v, w) ≤ |vc|+ |cw| ·c. We note that γ = θ−β. Hence Lemma 3 gives that



On the Spanning Ratio of Theta-Graphs 191

the inequality holds when c ≥ (cos(θ−β)− sinβ)/(cos(θ/2−β)− sin(3θ/2−β)).
As this function is decreasing in β for θ/2 ≤ β ≤ θ, it is maximized when β
equals θ/2. Hence c needs to be at least (cos(θ/2)− sin(θ/2))/(1− sin θ), which
can be rewritten to 1/(cos(θ/2)− sin(θ/2)).

Case (d): When w lies in Cv
k+1, w lies above the bisector of Tvw and the induc-

tion hypothesis for Tvw gives δ(v, w) ≤ |wd|+ |dv| ·c. We note that γ = β. Hence
Lemma 3 gives that the inequality holds when c ≥ (cosβ−sinβ)/(cos(θ/2−β)−
sin(θ/2+β)). As this function is decreasing in β for 0 ≤ β ≤ θ/2, it is maximized
when β equals 0. Hence c needs to be at least 1/(cos(θ/2)− sin(θ/2)). 
�

Since cosα/ cos(θ/2)+(cosα·tan(θ/2)+sinα)/(cos(θ/2)−sin(θ/2)) is increasing
for α ∈ [0, θ/2], for θ ≤ π/4, it is maximized when α = θ/2, and we obtain the
following corollary:

Corollary 1. The θ(4k+4)-graph is a

(
1 +

2·sin( θ
2 )

cos( θ
2 )−sin( θ

2 )

)
-spanner of Kn.

Furthermore, we observe that the proof of Theorem 2 follows the same path as
the θ-routing algorithm follows: if the direct edge to the destination is part of
the graph, it follows this edge, and if it is not, it follows the edge to the closest
vertex in the cone that contains the destination.

Corollary 2. The θ-routing algorithm is

(
1 +

2·sin( θ
2 )

cos( θ
2 )−sin( θ

2 )

)
-competitive on

the θ(4k+4)-graph.

5 The θ(4k+3)-Graph and the θ(4k+5)-Graph

In this section, we give improved upper bounds on the spanning ratio of the
θ(4k+3)-graph and the θ(4k+5)-graph, for any integer k ≥ 1.

Theorem 3. Let u and w be two vertices in the plane. Let m be the midpoint of
the side of Tuw opposite u and let α be the unsigned angle between uw and um.
There exists a path connecting u and w in the θ(4k+3)-graph of length at most(

cosα

cos
(
θ
2

) +

(
cosα · tan

(
θ
2

)
+ sinα

)
· cos

(
θ
4

)
cos

(
θ
2

)
− sin

(
3θ
4

) )
· |uw|.

Proof. We apply Theorem 1 using c = cos(θ/4)/(cos(θ/2) − sin(3θ/4)). It re-
mains to handle Case (c), where w ∈ Cv

k and |cw| > |dw|, and Case (d), where
w ∈ Cv

k+1.
Recall that c and d are the left and right corners of Tvw, opposite to v, and

a′′ is the intersection of aw and the line through v, parallel to ua. Let β be
� a′′wv and let γ be the angle between vw and the bisector of Tvw. Since Tvw

is smaller than Tuw, the induction hypothesis gives a bound on δ(v, w). Since
|uv| ≤ |ua′| + |a′v| and v, a′′, a, and a′ form a parallelogram, we need to show
that δ(v, w) ≤ |va′′|+ |a′′w| · c for both cases in order to complete the proof.



192 P. Bose, A. van Renssen, and S. Verdonschot

Case (c): When w lies in Cv
k and |cw| > |dw|, the induction hypothesis for

Tvw gives δ(v, w) ≤ |vc|+ |cw| · c. We note that γ = 3θ/4− β. Hence Lemma 3
gives that the inequality holds when c ≥ (cos(3θ/4−β)− sinβ)/(cos(θ/2−β)−
sin(5θ/4 − β)). As this function is decreasing in β for θ/4 ≤ β ≤ 3θ/4, it is
maximized when β equals θ/4. Hence c needs to be at least c ≥ (cos(θ/2) −
sin(θ/4))/(cos(θ/4)− sin θ), which is equal to cos(θ/4)/(cos(θ/2)− sin(3θ/4)).

Case (d): When w lies in Cv
k+1, w lies above the bisector of Tvw and the

induction hypothesis for Tvw gives δ(v, w) ≤ |wd| + |dv| · c. We note that γ =
θ/4 + β. Hence Lemma 3 gives that the inequality holds when c ≥ (cos(θ/4 +
β)− sinβ)/(cos(θ/2−β)− sin(3θ/4+β)), which is equal to cos(θ/4)/(cos(θ/2)−
sin(3θ/4)). 
�

Theorem 4. Let u and w be two vertices in the plane. Let m be the midpoint of
the side of Tuw opposite u and let α be the unsigned angle between uw and um.
There exists a path connecting u and w in the θ(4k+5)-graph of length at most(

cosα

cos
(
θ
2

) +

(
cosα · tan

(
θ
2

)
+ sinα

)
· cos

(
θ
4

)
cos

(
θ
2

)
− sin

(
3θ
4

) )
· |uw|.

Proof. We apply Theorem 1 using c = cos(θ/4)/(cos(θ/2) − sin(3θ/4)). It re-
mains to handle Case (c), where w ∈ Cv

k and |cw| > |dw|, and Case (d), where
w ∈ Cv

k+1.
Recall that c and d are the left and right corners of Tvw, opposite to v, and

a′′ is the intersection of aw and the line through v, parallel to ua. Let β be
� a′′wv and let γ be the angle between vw and the bisector of Tvw. Since Tvw

is smaller than Tuw, the induction hypothesis gives a bound on δ(v, w). Since
|uv| ≤ |ua′| + |a′v| and v, a′′, a, and a′ form a parallelogram, we need to show
that δ(v, w) ≤ |va′′|+ |a′′w| · c for both cases in order to complete the proof.

Case (c): When w lies in Cv
k and |cw| > |dw|, the induction hypothesis for

Tvw gives δ(v, w) ≤ |vc|+ |cw| · c. We note that γ = 5θ/4− β. Hence Lemma 3
gives that the inequality holds when c ≥ (cos(5θ/4−β)− sinβ)/(cos(θ/2−β)−
sin(5θ/4 − β)). As this function is decreasing in β for 3θ/4 ≤ β ≤ 5θ/4, it is
maximized when β equals 3θ/4. Hence c needs to be at least c ≥ (cos(θ/2) −
sin(3θ/4))/(cos(θ/4)− sin θ), which is less than cos(θ/4)/(cos(θ/2)− sin(3θ/4)).

Case (d): When w lies in Cv
k+1, the induction hypothesis for Tvw gives

δ(v, w) ≤ max{|vc| + |cw| · c, |vd| + |dw| · c}. If δ(v, w) ≤ |vc| + |cw| · c, we
note that γ = θ/4 − β. Hence Lemma 3 gives that the inequality holds when
c ≥ (cos(θ/4 − β) − sinβ)/(cos(θ/2 − β) − sin(3θ/4 − β)). As this function is
decreasing in β for 0 ≤ β ≤ θ/4, it is maximized when β equals 0. Hence c needs
to be at least c ≥ cos(θ/4)/(cos(θ/2)− sin(3θ/4)).

If δ(v, w) ≤ |vd|+|dw|·c, we note that γ = θ/4+β. Hence Lemma 3 gives that
the inequality holds when c ≥ (cos(β−θ/4)−sinβ)/(cos(θ/2−β)−sin(θ/4+β)),
which is equal to cos(θ/4)/(cos(θ/2)− sin(3θ/4)). 
�

When looking at two vertices u and w in the θ(4k+3)-graph and the θ(4k+5)-
graph, we notice that when the angle between uw and the bisector of Tuw is α,



On the Spanning Ratio of Theta-Graphs 193

the angle between wu and the bisector of Twu is θ/2− α. Hence the worst case
spanning ratio becomes the minimum of the spanning ratio when looking at Tuw

and the spanning ratio when looking at Twu.

Theorem 5. The θ(4k+3)-graph and θ(4k+5)-graph are
cos( θ

4 )
cos( θ

2 )−sin( 3θ
4 )

-spanners

of Kn.

Proof. The spanning ratio of the θ(4k+3)-graph and the θ(4k+5)-graph is at most:

min

⎧⎪⎨⎪⎩
cosα

cos( θ
2 )

+
(cosα·tan( θ

2 )+sinα)·cos( θ
4 )

cos( θ
2 )−sin( 3θ

4 )
,

cos( θ
2−α)

cos( θ
2 )

+
(cos( θ

2−α)·tan( θ
2 )+sin( θ

2−α))·cos( θ
4 )

cos( θ
2 )−sin( 3θ

4 )

⎫⎪⎬⎪⎭
Since cosα/ cos(θ/2)+(cosα ·tan(θ/2)+sinα) ·c is increasing for α ∈ [0, θ/2],

for θ ≤ 2π/7, the minimum of these two functions is maximized when the two
functions are equal, i.e. when α = θ/4. Thus the θ(4k+3)-graph and the θ(4k+5)-
graph has spanning ratio at most:

cos
(
θ
4

)
cos

(
θ
2

) +

(
cos

(
θ
4

)
· tan

(
θ
2

)
+ sin

(
θ
4

))
· cos

(
θ
4

)
cos

(
θ
2

)
− sin

(
3θ
4

) =
cos

(
θ
4

)
· cos

(
θ
2

)
cos

(
θ
2

)
·
(
cos

(
θ
2

)
− sin

(
3θ
4

))

�

Furthermore, we observe that the proofs of Theorem 3 and Theorem 4 follow
the same path as the θ-routing algorithm follows.

Theorem 6. The θ-routing algorithm is 1 +
2·sin( θ

2 )·cos( θ
4 )

cos( θ
2 )−sin( 3θ

4 )
-competitive on the

θ(4k+3)-graph and the θ(4k+5)-graph.

References

1. Bonichon, N., Gavoille, C., Hanusse, N., Ilcinkas, D.: Connections between theta-
graphs, Delaunay triangulations, and orthogonal surfaces. In: Thilikos, D.M. (ed.)
WG 2010. LNCS, vol. 6410, pp. 266–278. Springer, Heidelberg (2010)

2. Bose, P., De Carufel, J.L., Morin, P., van Renssen, A., Verdonschot, S.: Optimal
bounds on theta-graphs: More is not always better. In: CCCG, pp. 305–310 (2012)

3. Bose, P., Fagerberg, R., van Renssen, A., Verdonschot, S.: Competitive routing in
the half-θ6-graph. In: SODA 2012, pp. 1319–1328 (2012)

4. Chew, P.: There are planar graphs almost as good as the complete graph. Journal
of Computer and System Sciences 39(2), 205–219 (1989)

5. Clarkson, K.: Approximation algorithms for shortest path motion planning. In:
STOC, pp. 56–65 (1987)

6. Keil, J.: Approximating the complete Euclidean graph. In: Karlsson, R., Lingas, A.
(eds.) SWAT 1988. LNCS, vol. 318, pp. 208–213. Springer, Heidelberg (1988)

7. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University
Press (2007)

8. Ruppert, J., Seidel, R.: Approximating the d-dimensional complete Euclidean graph.
In: CCCG, pp. 207–210 (1991)



194 P. Bose, A. van Renssen, and S. Verdonschot

A Approximate Values

The following table shows approximate values of our improved spanning and
routing ratios, compared to the existing spanning ratios by Ruppert and Sei-
del [8] (for the θ(4k+3)-graph, the θ(4k+4)-graph, and the θ(4k+5)-graph) and
Bose et al. [2] (for the θ(4k+2)-graph) and the existing routing ratios by Ruppert
and Seidel [8].

Table 2. Approximate spanning and routing ratios

m New Spanning Previous Spanning New Routing Previous Routing

7 3.5136 7.5625 4.0490 7.5625
8 2.4143 4.2620 2.4143 4.2620
9 2.2398 3.1650 2.5321 3.1650
10 - 1.6181 - 2.6181
11 1.8193 2.2908 2.0251 2.2908
12 1.7321 2.0732 1.7321 2.0732
13 1.6107 1.9181 1.7710 1.9181
14 - 1.4451 - 1.8020
15 1.4863 1.7119 1.6181 1.7119
16 1.4967 1.6399 1.4967 1.6399
17 1.4039 1.5811 1.5159 1.5811
18 - 1.3473 - 1.5321
19 1.3452 1.4908 1.4429 1.4908
20 1.3764 1.4554 1.3764 1.4554
21 1.3014 1.4247 1.3879 1.4247
22 - 1.2847 - 1.3979
23 1.2674 1.3743 1.3452 1.3743
24 1.3033 1.3533 1.3033 1.3533
25 1.2402 1.3346 1.3109 1.3346



Relative Interval Analysis of Paging Algorithms

on Access Graphs�

Joan Boyar, Sushmita Gupta, and Kim S. Larsen

University of Southern Denmark, Odense, Denmark
{joan,sgupta,kslarsen}@imada.sdu.dk

Abstract. Access graphs, which have been used previously in connec-
tion with competitive analysis and relative worst order analysis to model
locality of reference in paging, are considered in connection with relative
interval analysis. The algorithms LRU, FIFO, FWF, and FAR are com-
pared using the path, star, and cycle access graphs. In this model, some
of the expected results are obtained. However, although LRU is found to
be strictly better than FIFO on paths, it has worse performance on stars,
cycles, and complete graphs, in this model. We solve an open question
from [Dorrigiv, López-Ortiz, Munro, 2009], obtaining tight bounds on
the relationship between LRU and FIFO with relative interval analysis.

1 Introduction

The paging problem is the problem of maintaining a subset of a potentially very
large set of pages from memory in a significantly smaller cache. When a page
is requested, it may already be in cache (called a “hit”), or it must be brought
into cache (called a “fault”). The algorithmic problem is the one of choosing an
eviction strategy, i.e., which page to evict from cache in the case of a fault, with
the objective of minimizing the total number of faults.

Many different paging algorithms have been considered in the literature, many
of which can be found in [3,13]. Among the best known are LRU (least-recently-
used), which always evicts the least recently used page, and FIFO (first-in-first-
out), which evicts pages in the order they entered the cache. We also consider a
known bad algorithm, FWF (flush-when-full), which is often used for reference,
since quality measures ought to be able to determine at the very least that it is
worse than the other algorithms. If FWF encounters a fault with a full cache,
it empties its cache, and brings the new page in. Finally, we consider a more
involved algorithm, FAR, which works with respect to a known access graph.
Whenever a page is requested, it is marked. When it is necessary to evict a page,
it always evicts an unmarked page. If all pages are marked in such a situation,
FAR first unmarks all pages. The unmarked page it chooses to evict is the one

� Supported in part by the Danish Council for Independent Research. Part of this
work was carried out while the first and third authors were visiting the University
of Waterloo, Ontario, Canada.

F. Dehne, R. Solis-Oba, and J.-R. Sack (Eds.): WADS 2013, LNCS 8037, pp. 195–206, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



196 J. Boyar, S. Gupta, and K.S. Larsen

farthest from any marked page in the access graph. For breaking possible ties,
we assume the LRU strategy in this paper.

Understanding differences in paging algorithms’ behavior under various cir-
cumstances has been a topic for much research. The most standard measure of
quality of an online algorithm, competitive analysis [18,15], cannot directly dis-
tinguish between most of them. It deems LRU, FIFO, and FWF equivalent, with
a competitive ratio of k, where k denotes the size of the cache. Other measures,
such as relative worst order analysis [5,6], can be used to obtain more separa-
tions, including that LRU and FIFO are better than FWF and that look-ahead
helps. No techniques have been able to separate LRU and FIFO, without adding
some modelling of locality of reference.

Although LRU performs better than FIFO in some practical situations [19],
if one considers all sequences of length n for any n, bijective/average analysis
shows that their average number of faults on these sequences is identical [2],
which basically follows from LRU and FIFO being demand paging algorithms.
Thus, it is not surprising that some assumptions involving locality of reference
are necessary to separate them.

A separation between FIFO and LRU was established quite early using access
graphs for modelling locality of reference [10], showing that under competitive
analysis, no matter which access graph one restricts to, LRU always does at least
as well as FIFO. This proved a conjecture in [4], where the access graph model
was introduced. Another way to restrict the input sequences was investigated
in [1]. Using Denning’s working set model [11,12] as an inspiration, sequences
were limited with regards to the number of distinct pages in a sliding window
of size k. This also favors LRU, as does bijective analysis [2], using the same
locality of reference definition as [1]. There has also been work in the direction
of probabilistic models, including the diffuse adversary model [17] and Markov
chain based models [16].

The earlier successes and the generality of access graphs, together with the
possibilities the model offers with regards to investigating specific access pat-
terns, makes it an interesting object for further studies. In the light of the recent
focus on development of new performance measures, together with the compar-
ative studies initiated in [9], exploring access graphs results in the context of
new performance measures seems like a promising direction for expanding our
understanding of performance measures as well as concrete algorithms.

One step in that direction was carried out in [7], where more nuanced results
were demonstrated, showing that restricting input sequences using the access
graph model, while applying relative worst order analysis, LRU is strictly better
than FIFO on paths and cycles. The question as to whether or not LRU is at
least as good as FIFO on all finite graphs was left as an open problem, but it was
shown that there exists a family of graphs which grows with the length of the
corresponding request sequence, where LRU and FIFO are incomparable. Since
LRU is optimal on paths, it is not surprising that both competitive analysis
and relative worst order analysis find that LRU is better than FIFO on paths.
Any “reasonable” analysis technique should give this result. Under competitive



Relative Interval Analysis of Paging Algorithms on Access Graphs 197

analysis, LRU and FIFO are equivalent on cycles. The separation by relative
worst order analysis occurs because cycles contain paths, LRU is better on paths,
and relative worst order analysis can reflect this. The fact that there exists an
infinite family of graphs which grows with the length of the sequence where
LRU and FIFO are incomparable may or may not be interesting. There are
many sequences were FIFO is better than LRU; they just seem to occur less
often in real applications.

Comparing two algorithms under almost any analysis technique is generally
equivalent to considering them with the complete graph as an access graph, since
the complete graph does not restrict the request sequence in any way. Thus, LRU
and FIFO are equivalent on complete graphs under both competitive analysis
and relative worst order analysis, since they are equivalent without considering
access graphs.

In this paper, we consider relative interval analysis [14]. In some ways
relative interval analysis is between competitive analysis and relative worst or-
der analysis. As with relative worst order analysis, two algorithms are com-
pared directly to each other, rather than compared to OPT. This gives the
advantage that, when one algorithm dominates another in the sense that it is
at least as good as the other on every request sequence and better on some,
the analysis will reflect this. However, it is similar to competitive analysis in
that the two algorithms are always compared on exactly the same sequence.
To compare two algorithms, LRU and FIFO for example, one considers the dif-
ference between LRU’s and FIFO’s performance on any sequence, divided by
the length of that sequence. The range that these ratios can take is the “in-
terval” for that pair of algorithms. For FIFO and LRU, [14] found two fami-

lies of sequences In and Jn such that limn→∞
FIFO(In)−LRU(In)

n = −1 + 1
k and

limn→∞
FIFO(Jn)−LRU(Jn)

n = 1
2
− 1

4k−2
. They left it as an open problem to deter-

mine if worse sequences exist, making the interval even larger. In their notation,
they proved: [−1 + 1

k ,
1
2
− 1

4k−2
] ⊆ I(FIFO,LRU). We start by proving that this

is tight: I(FIFO,LRU) = [−1 + 1
k ,

1
2
− 1

4k−2
]. These results would be interpreted

as saying that FIFO has better performance than LRU, since the absolute value
of the minimum value in the interval is larger than the maximum, but also that
they have different strengths, since zero is contained in the interior of the in-
terval. We obtain more nuanced results by considering various types of access
graphs: complete graphs (KN ), paths (PN ), stars (SN ), and cycles (CN ). This
splits the interval of [−1+ 1

k ,
1
2
− 1

4k−2
] into subintervals for the respective graph

classes. Table 1 shows our results.
Comparing these results with the results from competitive analysis and rela-

tive worst order analysis, both with respect to access graphs, it becomes clear
that different measures highlight different aspects of the algorithms. Both mea-
sures show that LRU is strictly better than FIFO on paths, which is not sur-
prising since it is in fact optimal on paths and FIFO is not. On the other access
graphs considered here, relative interval analysis gives results which can be in-
terpreted as incomparability, but leaning towards deeming FIFO the better al-
gorithm. Relative worst order analysis, on the other hand, shows that on cycles,



198 J. Boyar, S. Gupta, and K.S. Larsen

Table 1. Summary of Results: A ∈ {FAR,LRU}, B ∈ {FAR,FIFO,LRU}, N = k+ r,
with 1 ≤ r ≤ k − 1, Xr = r(x− 1) +

⌈
N
2x

⌉
with x =

⌊
log N

r

⌋
, and N̂ denotes N if N is

even, and N − 1 otherwise.

Lower Bound Relative Interval Upper Bound Theorem

IKN [FIFO,LRU] =
[
−1 + 1

k
, 1

2
− 1

4k−2

]
1

IKN [FWF,A] =
[
0, 1− 1

k

]
2[

0, 1− k+1
k2

]
⊆ IKN [FWF,FIFO] ⊆

[
0, 1− 1

k

]
3

IPN [FIFO,A] =
[
0, 1

2
− 1

2k

]
4

IPN [FWF,A] =
[
0, 1− 1

k

]
2[

0, 1− k+1
k2

]
⊆ IPN [FWF,FIFO] ⊆

[
0, 1− 1

k

]
3[

− 1
2
+Θ( 1

k
), 1

4
+Θ( 1

k
)
]
⊆ ISN [FIFO,A] ⊆

[
− 1

2
+Θ( 1

k
), 1

4
+Θ( 1

k
)
]

5

ISN [FWF,B] =
[
0, 1

2

]
6[

−1 + r
k
, 1

2
− 1

4k−2

]
⊆ ICN [FIFO,LRU] ⊆

[
−1 + 1

k
, 1

2
− 1

4k−2

]
7

ICN [FWF,LRU] =
[
0, 1− 1

k

]
8[

−
r
(⌊

log N̂
r

⌋
−1

)
N−1

, 1− Xr
k

]
⊆ ICN [LRU,FAR] ⊆

[
−Xr−1

k
, 1− 1

k

]
9[

−Xr−r
k

, 1− Xr
k

]
⊆ ICN [FIFO,FAR] ⊆

[
−Xr−1

k
, 1− 1

k

]
9[

0, 1− Xr
k

]
⊆ ICN [FWF,FAR] ⊆

[
0, 1− 1

k

]
9[

0, 1− k+1
k2

]
⊆ ICN [FWF,FIFO] ⊆

[
0, 1− 1

k

]
3

LRU is strictly better than FIFO, and on complete graphs, they are equivalent.
It has not yet been studied on stars, but an incomparability result for LRU and
FIFO has been found for a family of graphs growing with the length of the input.

2 Preliminaries

We have defined the paging algorithms in the introduction. If more detail is
desired, the algorithms are described in [3].

An access graph for paging models the access patterns, i.e., which pages can
be requested after a given page. Thus, the vertices are pages, and after a page
p has been requested, the next request is to p or one of its neighbors in the
access graph. We let N denote the number of vertices of the access graph under
consideration at a given time. This is the same as the number of different pages
we consider. We will always assume that N > k, since otherwise the problem
is trivial, and let r = N − k. A requests sequence is a sequence of pages and
the sequence respects a given access graph if any two consecutive requests are
either identical or neighbors in the access graph. We let L(G) denote the set of
all request sequences respecting G.

We use the definition of k-phases from [3]:

Definition 1. A request sequence can be divided recursively into a number of
k-phases as follows: Phase 0 is the empty sequence. For every i ≥ 1, Phase i is a
maximal sequence following Phase i− 1 containing at most k distinct requests.



Relative Interval Analysis of Paging Algorithms on Access Graphs 199

Thus, Phase i begins on the (k + 1)st distinct page requested since the start of
Phase i − 1, and the last phase may contain fewer than k different pages. We
generally want to ignore Phase 0, and refer to Phase 1 as the first phase.

Similarly, we can define x-blocks, for some integer x, focusing on when a given
algorithm A has faulted x times.

Definition 2. A request sequence can be divided recursively into a number of
x-blocks with respect to an algorithm A as follows: The 0th x-block is the empty
sequence. For every i ≥ 1, the ith x-block is a maximal sequence following the
(i− 1)st x-block for which A faults at most x times.

The complete blocks are defined to be the ones with x faults, i.e., excluding
the 0th block and possibly the last.

There are some well-known and important classifications of paging algorithms,
which are used here and in most other papers on paging [3]: A paging algo-
rithm is called conservative if it incurs at most k page faults on any consecutive
subsequence of the input containing k or fewer distinct page references. LRU
and FIFO belong to this class. Similarly, a paging algorithm is called a marking
algorithm if for any k-phase, once a page has been requested in that phase, it is
not evicted for the duration of that phase. LRU, FAR, and FWF are marking
algorithms.

If A is a paging algorithm, we let A(I) denote A’s cost (number of faults) on
the input (request) sequence I. We adapt relative interval analysis from [14] to
access graphs. Let A and B be two algorithms. We define the following notation:

MinG(A,B) = lim
n→∞

inf
min|I|=n,I∈L(G){A(I)− B(I)}

n
and

MaxG(A,B) = lim
n→∞

sup
max|I|=n,I∈L(G){A(I)− B(I)}

n

Definition 3. The relative interval of two algorithms A and B with respect to
the access graph, G, is

IG(A,B) = [MinG(A,B),MaxG(A,B)]

B has better performance than A if MaxG(A,B) > |MinG(A,B)|. B dominates
A if IG(A,B) = [0, β] for some β > 0. Note that MaxG(A,B) = −MinG(B,A).

This definition generalizes the one from [14] in that the original definition is the
special case where G is the complete graph, which is the same as saying that
there are no restrictions on the sequences.

Note that if B dominates A, this means that A does not outperform B on any
sequence (asymptotically), while there are sequences on which B outperforms A.
Also, when MaxG(A,B) is close to 0, this indicates that A’s performance is not
much worse than that of B’s.

Due to space limitations, most proofs and the statements of most lemmas
have been omitted. Refer to [8] for all the details.



200 J. Boyar, S. Gupta, and K.S. Larsen

3 Complete Graphs

As remarked earlier, if the access graph is complete, it incurs no restrictions, so
the result of this section is in the same model as [14]. In [14], it is shown that
[−k−1

k , k−1
2k−1

] ⊆ I(FIFO,LRU). Below, we answer an open question from [14],
proving that this is tight. The full version of the paper [8] contains a more
detailed proof.

Lemma 1. For any access graph G,

−1 +
1

k
≤ MinG(FIFO,LRU) and MaxG(FIFO,LRU) ≤ 1

2
− 1

4k − 2
.

Proof. We first consider the Min value. Suppose that a sequence I has b com-
plete k-phases. Since LRU is conservative and a complete k-phase contains k
distinct pages, it cannot fault more than bk + k − 1 times [3]. With b complete
k-phases, FIFO(I) ≥ k + b − 1, so FIFO(I) − LRU(I) ≥ k + b − 1 − (bk + k −
1) = −b(k − 1). Each k-phase must have length at least k, so |I| ≥ bk. Thus,

MinG(FIFO,LRU) ≥ − b(k−1)

bk = −1 + 1
k .

We now consider the Max value. Given a request sequence I, we let Bi denote
the ith k-block for FIFO. Assume that there are b complete k-blocks. FIFO
faults k times per complete k-block and up to k − 1 times for the possible final
k-block. Thus, FIFO(I) ≤ bk + (k− 1). Assume that LRU faults αi times in Bi.
With b complete k-blocks, which are at least as long as k-phases, LRU faults at
least b + k − 1 times. Thus, Σb

i=1αi ≥ b + k − 1.
We now compute a lower bound on the length of the request sequence I based

on the number of complete k-blocks in it and the algorithms’ behavior on it.
As a first step, with every request on which FIFO faults and LRU has a hit,

we associate a distinct request where FIFO has a hit. Let r be such a request
to a page p in Bi. Since it is a hit for LRU, p must have been requested in the
maximal subsequence of requests I ′ consisting of k distinct pages and ending just
before r. Consider the first such request, r′, in I ′. If it were a fault for FIFO,
FIFO could not have faulted again on r. Thus, r′ was a hit for FIFO and we
associate r′ with r.

To establish that the association is distinct, assume that r′ also gets associated
with a request r′′. Without loss of generality, assume that r′′ is later than r. For
FIFO to fault on both r and r′′, there must be at least k distinct pages different
from p in between r and r′′. However, since we are assuming that LRU has a
hit on r′′, by the property of LRU, the page requested by r′′ must have been
requested during the same k distinct pages. Thus, by the construction above,
the page that gets associated with r′′ (and r) will be later than r, which is a
contradiction.

Thus, if LRU faults αi times in Bi, by the procedure above, we identify at least
k − αi distinct requests. In total, there are at least Σb

i=1(k − αi) = bk −Σb
i=1αi



Relative Interval Analysis of Paging Algorithms on Access Graphs 201

distinct hits for FIFO in I and, since there are b complete k-blocks, at least bk
faults. Thus, the length of I is at least 2bk −Σb

i=1αi, and

FIFO(I)− LRU(I)

|I| ≤ bk + k − 1−Σb
i=1αi

2bk −Σb
i=1αi

.

By the lower bound on Σb
i=1αi above, and the arithmetic observation that

u−y
v−y < u−x

v−x , if u < v and x < y < v, we have that

bk + k − 1−Σb
i=1αi

2bk −Σb
i=1αi

≤ bk + k − 1− (b + k − 1)

2bk − (b + k − 1)
=

b(k − 1)

b(2k − 1)− k + 1
.

Clearly, max|I|=n,I∈L(G){FIFO(I) − LRU(I))} is unbounded as a function of

n. Since limb→∞
b(k−1)

b(2k−1)−k+1
= k−1

2k−1
, we have MaxG(FIFO,LRU) ≤ k−1

2k−1
=

1
2
− 1

4k−2
. 
�

From [14] and Lemma 1, we have the following:

Theorem 1. I(FIFO,LRU) = [−1 + 1
k ,

1
2
− 1

4k−2
].

3.1 FWF

FWF performs very badly compared to the other algorithms considered here,
LRU, FAR, and FIFO. The following is folklore:

Lemma 2. For any sequence I and any conservative or marking algorithm A,
we have A(I) ≤ FWF(I).

Thus, for any graph G, MinG[FWF,A] = 0, where A is either FAR, LRU, or
FIFO. Hence, LRU, FIFO, and FAR all dominate FWF.

Theorem 2. For the path access graph PN , where N ≥ k+1 (for LRU, for any
graph containing Pk+1), IPN [FWF,A] =

[
0, 1− 1

k

]
, where A ∈ {LRU,FAR}.

For FWF versus FIFO, a result almost as tight holds:

Theorem 3. For any graph G containing a path with k + 1 vertices, if k is

odd, then IG[FWF,FIFO] =
[
0, 1− 1

k

]
, and if k is even, then [0, k

2−k−1
k2 ] ⊆

IG[FWF,FIFO] ⊆
[
0, k−1

k

]
.

4 Path Graphs

Lemma 3. For the path access graph PN , we have MaxPN (FIFO,LRU)
≤ 1

2
− 1

2k .



202 J. Boyar, S. Gupta, and K.S. Larsen

Proof. Consider any request sequence I. We divide the sequence up into phases
as described now (these are not k-phases). Initially, define a direction by where
LRU makes its kth fault compared with its cache content. Without loss of gen-
erality, we assume this happens going to the right on the path.

We start the first phase with the first request and later explain how subsequent
phases are started. In all the phases, we start to the left (relatively). In all phases,
except the first, LRU has the first k − 1 distinct pages that will be requested
during that phase in cache. In all phases, the first fault by LRU in the phase,
after having processed the first k− 1 distinct pages, is to the right. We maintain
this as an invariant that holds at the start of any phase, though the direction
can change, as we will get back to at the end of the proof. The exception in the
first phase, adding an extra k − 1 faults to the cost of LRU as compared with
the analysis below, will not influence the result in the the limit for the length of
the request sequence going towards infinity.

We want to analyze a phase where LRU faults to the right before it faults to
the left again. These faults to the right may not appear consecutively. There may
be some faults in a row, but then there may be hits and then faults again, etc.
Thus, assume that there are m maximal subsequences of requests to the right
where LRU faults—all of this before LRU faults going to the left again. Assume
further that these maximal subsequences of requests give rise to s1, s2, . . . , sm
faults, respectively, where, by definition, m ≥ 1, and let s = Σm

i=1si.
For now, we assume that for all i, si < k. Thus, LRU moves left and right at

least m times; maybe more times where it does not give rise to faults. Since it
does not fault going to the left during these turns, the faults are to pages further
and further to the right. Let Eright denote the extreme rightmost position it
reaches during these faults to the right.

When LRU faults again to the left after having processed Eright, we consider
the leftmost node Eleft, where LRU faults after the s faults described above,
but before it faults to the right again. We end the phase with the first request
to Eleft after the s faults. We define subsequent phases inductively in the same
way, starting with the first request not included in the previous phase, possibly
leaving an incomplete phase at the end.

We now consider the costs of the algorithms and the length of the sequence
per phase. LRU faults s times going to the right during the m turns in the phase.
Additionally, LRU must fault at least t times going from Eright to Eleft, where
t is defined by there being k + t nodes between Eleft and Eright, including both
endpoints. This sums up to s + t faults.

For FIFO, we postpone the discussion of the first s1 distinct pages seen in
a phase. Just to avoid any confusion, note that these pages are immediately to
the right of Eleft (the endpoint of the previous phase) and thus not the pages
that LRU faults on. After that, consider the maximal subsequence of at most k
distinct pages. This subsequence starts with the (s1 + 1)st distinct request (the
last request to it before the s2 faults) and continues up to, but not including the
first request that LRU has one of its s2 faults on. We know that there are at



Relative Interval Analysis of Paging Algorithms on Access Graphs 203

most k pages there, because LRU only faults s1 times there. Assume that FIFO
faults f1 times on this subsequence. Since FIFO is conservative, f1 ≤ k.

We define more such subsequences repeatedly, the (m − 1)st of these ending
just before LRU’s first fault of the sm faults, and the mth including the sm faults
and k of the k+ t nodes before we reach Eleft. Finally, we return to the question
of the first s1 distinct pages seen in the phase. These overlap with the “t pages”
from the previous phase; otherwise we would not have started the phase where
we did. If FIFO faults on one of these pages when going through the t pages in
the previous phase, it will not fault on them again in this phase. Thus, we only
have to count them in one phase, and choose to do this in the previous phase.
In total, FIFO faults at most (Σm

i=1fi) + t times, and for all i, fi ≤ k.
The difference between the cost of FIFO and LRU is then at most (Σm

i=1fi) +
t− (s + t) = (Σm

i=1fi)− s = (Σm
i=1(fi − 1))− (s−m).

From the analysis of FIFO above, knowing that on a subsequence of length at
most k, FIFO can fault at most once on any given page, if it faults fi times, the
subsequence has at least fi distinct pages. Given that the subsequence starts at
the left end of the “si pages” and ends at the right end of the “si pages”, all
pages that FIFO faults on, except possibly the leftmost, must be requested at
least twice, giving at least 2fi − 1 requests. So, the length of the sequence is at
least (Σm

i=1(2fi−1))+t. We now sum up over all phases, equipping each variable
with a superscript denoting the phase number.

First, the total length, L, is at least

L ≥ Σj(Σ
mj

i=1(2f j
i − 1)) + tj = Σj(Σ

mj

i=12f j
i )−mj + tj .

Since s expresses how far we move to the right and t how far we move to the left,
and the whole path has a bounded number of nodes N , we have that Σjt

j ≥
Σjs

j −N . Thus, L ≥ (Σj(Σ
mj

i=12f j
i )−mj + sj)−N .

I has a number of complete phases and then some extra requests in addition
to that. There must exist a fixed constant c independent of I such that the cost
of FIFO on the extra part of any sequence is bounded by c. This follows since
there is a limit of N on how far requests can move to the right. So if requests
never again come so far to the left that LRU faults, all requests thereafter are
to only k pages. This added constant can also take care of the initial extra cost
of k − 1. Since we are just using a lower bound on the sequence length, we can
ignore the length of a possibly incomplete phase at the end. Thus,

FIFO(I)− LRU(I)

|I| ≤ c + ΣjΣ
mj

i=1(f j
i − 1)− (sj −mj)

−N + Σj(Σmj

i=12f j
i )−mj + sj

≤ c + ΣjΣ
mj

i=1(f j
i − 1)

−N + ΣjΣmj

i=12f j
i

≤ c + Σjm
j(k − 1)

−N + Σjmj2k
=

c + (k − 1)Σjm
j

−N + 2kΣjmj

The second inequality follows since sj ≥ mj , and the third inequality follows

because
fj
i −1

2fj
i

≤ 1
2

and k ≥ fi implies that
fj
i −1

2fj
i

≤ k−1
2k .



204 J. Boyar, S. Gupta, and K.S. Larsen

For sequences where the number of phases does not approach infinity, as ar-
gued above, FIFO’s cost will be bounded. For the number of phases approaching

infinity, limj→∞
c+(k−1)Σjm

j

−N+2kΣjmj = k−1
2k = 1

2
− 1

2k , which implies the result.

Now, for this proof, we assumed that si < k. If si ≥ k, we simply terminate
the phase after the processing of the si requests that LRU faults on, and continue
to define phases inductively from there. All the bounds from above hold with
t = 0 and the observation that FIFO will not fault on the first s1 requests in the
next phase. The direction of the construction is now reversed. In this process,
whenever we reverse the direction as above, we also rename the variable s to t
and t to s, such that s continues to keep track of movement to the right and t
of movement to the left, and the inequality Σjt

j ≥ Σjs
j −N still holds. 
�

Theorem 4. IPN [FIFO,LRU] =
[
0, 1

2
− 1

2k

]
, and LRU dominates FIFO on

paths.

Note that FAR and LRU perform identically on paths, so FAR also dominates
FIFO with the same interval.

5 Star Graphs

We let SN denote a star graph with N vertices. A star graph has a central vertex,
s, which is directly connected to N − 1 other vertices, none of which are directly
connected. Thus, we could also see a star graph as a tree with root s and N − 1
leaves, all located at a distance one from the root. The algorithms FAR and LRU
behave identically on star graphs. Neither of them ever evicts the central vertex.

Theorem 5. For A ∈ {LRU,FAR}, we have[
− 1

2
+ 1

2(k−1)
, 1
4

+ 1
8k−12

]
⊆ ISN [FIFO,A]

⊆
[
− 1

2
+ 1

2(k−1)
+ 1

2k(k−1)
, 1
4

+ 1
8k−12

]
In [14], it was shown that MaxG(FIFO,LRU) ≥ k−1

2k−1
= 1

2
− 1

4k−2
. The above

result shows that for star access graphs, that bound can be decreased by a factor
of approximately two.

Since LRU and FAR perform identically on stars, MinSN (FAR,LRU) =
MaxSN (FAR,LRU) = 0.

Theorem 6. For A ∈ {LRU,FAR,FIFO}, we have ISN [FWF,A] =
[
0, 1

2

]
.

6 Cycle Graphs

We consider graphs consisting of exactly one cycle, containing N ≥ k+1 vertices,
and define r = N − k. We will concentrate on the case where r < k, since
otherwise the cycle is so large that for the algorithms considered here, it works
as if it were an infinite path. Thus, for example, there are sequences where FIFO



Relative Interval Analysis of Paging Algorithms on Access Graphs 205

performs worse than LRU, but on worst case sequences, simply going around
the cycle, the algorithms perform identically.

In the following statements of theorems, we use N = k+r with 1 ≤ r ≤ k−1,
and Xr = r(x− 1) +

⌈
N
2x

⌉
, where x =

⌊
log N

r

⌋
, and N̂ to denote N if N is even

and N − 1 otherwise.

Theorem 7. For the cycle access graph CN ,[
−1 +

r

k
,

1

2
− 1

4k − 2

]
⊆ ICN [FIFO,LRU] ⊆

[
−1 +

1

k
,

1

2
− 1

4k − 2

]
Theorem 8. For the cycle access graph CN ,

ICN [FWF,LRU] =

[
0, 1− 1

k

]
Theorem 9. For the cycle access graph CN ,[

−Xr − r

k
, 1− Xr

k

]
⊆ ICN [FIFO,FAR] ⊆

[
−Xr − 1

k
, 1− 1

k

]
,

⎡⎣−r
(⌊

log N̂
r

⌋
− 1

)
N − 1

, 1− Xr

k

⎤⎦ ⊆ ICN [LRU,FAR] ⊆
[
−Xr − 1

k
, 1− 1

k

]
, and

[
0, 1− Xr

k

]
⊆ ICN [FWF,FAR] ⊆

[
0, 1− 1

k

]
.

7 Concluding Remarks

Relative interval analysis has the advantage that it can separate algorithms
properly when one algorithm is at least as good as another on every sequence
and is better on some. This was reflected in the results concerning FWF which is
dominated by the other algorithms considered for all access graphs. It was also
reflected by the result showing that LRU and FAR have better performance than
FIFO on paths. The analysis also found the expected result that FAR, which is
designed to perform well on access graphs, performs better than both LRU and
FIFO on cycles.

However, it is disappointing that the relative interval analysis of LRU and
FIFO on stars and cycles found that FIFO had the better performance, confirm-
ing the original results by [14] on complete graphs. Clearly, access graphs cannot
automatically be used with arbitrary quality measures for online algorithms to
show that LRU is better than FIFO. To try to understand other quality mea-
sures for online algorithms better, it would be interesting to determine on which
such measures access graphs are useful for separating LRU and FIFO, and on
which they are not.



206 J. Boyar, S. Gupta, and K.S. Larsen

References

1. Albers, S., Favrholdt, L.M., Giel, O.: On paging with locality of reference. Journal
of Computer and System Sciences 70(2), 145–175 (2005)

2. Angelopoulos, S., Dorrigiv, R., López-Ortiz, A.: On the separation and equivalence
of paging strategies. In: SODA 2007, pp. 229–237 (2007)

3. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis.
Cambridge University Press (1998)

4. Borodin, A., Irani, S., Raghavan, P., Schieber, B.: Competitive paging with locality
of reference. Journal of Computer and System Sciences 50(2), 244–258 (1995)

5. Boyar, J., Favrholdt, L.M.: The relative worst order ratio for on-line algorithms.
ACM Transactions on Algorithms 3(2), article No. 22 (2007)

6. Boyar, J., Favrholdt, L.M., Larsen, K.S.: The relative worst order ratio applied to
paging. Journal of Computer and System Sciences 73(5), 818–843 (2007)

7. Boyar, J., Gupta, S., Larsen, K.S.: Access graphs results for LRU versus FIFO
under relative worst order analysis. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012.
LNCS, vol. 7357, pp. 328–339. Springer, Heidelberg (2012)

8. Boyar, J., Gupta, S., Larsen, K.S.: Relative interval analysis of paging algorithms
on access graphs, arXiv:1305.0669 (cs.DS) (2013)

9. Boyar, J., Irani, S., Larsen, K.S.: A comparison of performance measures for online
algorithms. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS
2009. LNCS, vol. 5664, pp. 119–130. Springer, Heidelberg (2009)

10. Chrobak, M., Noga, J.: LRU is better than FIFO. Algorithmica 23(2), 180–185
(1999)

11. Denning, P.J.: The working set model for program behaviour. Communications of
the ACM 11(5), 323–333 (1968)

12. Denning, P.J.: Working sets past and present. IEEE Transactions on Software
Engineering 6(1), 64–84 (1980)

13. Dorrigiv, R., López-Ortiz, A.: A survey of performance measures for on-line algo-
rithms. SIGACT News 36(3), 67–81 (2005)

14. Dorrigiv, R., López-Ortiz, A., Munro, J.I.: On the relative dominance of paging
algorithms. Theoretical Computer Science 410, 3694–3701 (2009)

15. Karlin, A.R., Manasse, M.S., Rudolph, L., Sleator, D.D.: Competitive snoopy
caching. Algorithmica 3, 79–119 (1988)

16. Karlin, A.R., Phillips, S.J., Raghavan, P.: Markov paging. SIAM Journal on Com-
puting 30(3), 906–922 (2000)

17. Koutsoupias, E., Papadimitriou, C.H.: Beyond competitive analysis. SIAM Journal
on Computing 30(1), 300–317 (2000)

18. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Communications of the ACM 28(2), 202–208 (1985)

19. Young, N.: The k-server dual and loose competitiveness for paging. Algorith-
mica 11, 525–541 (1994)



On Explaining Integer Vectors

by Few Homogenous Segments

Robert Bredereck1,�, Jiehua Chen1,��, Sepp Hartung1, Christian Komusiewicz1,
Rolf Niedermeier1, and Ondřej Suchý2,���

1 Institut für Softwaretechnik und Theoretische Informatik, TU Berlin
{robert.bredereck,jiehua.chen,sepp.hartung,christian.komusiewicz,

rolf.niedermeier}@tu-berlin.de
2 Faculty of Information Technology, Czech Technical University in Prague

ondrej.suchy@fit.cvut.cz

Abstract. We extend previous studies on NP-hard problems dealing
with the decomposition of nonnegative integer vectors into sums of few
homogeneous segments. These problems are motivated by radiation ther-
apy and database applications. If the segments may have only positive
integer entries, then the problem is called Vector Explanation

+. If ar-
bitrary integer entries are allowed in the decomposition, then the problem
is called Vector Explanation. Considering several natural parameter-
izations (including maximum vector entry, maximum difference between
consecutive vector entries, maximum segment length), we obtain a re-
fined picture of the computational (in-)tractability of these problems. In
particular, we show that in relevant cases Vector Explanation

+ is
algorithmically harder than Vector Explanation.

1 Introduction

We study two variants of a “mathematically fundamental” [4], NP-hard combina-
torial problem occurring in cancer radiation therapy planning [10] and database
and data warehousing applications [1, 18]:

Vector Explanation (Vector Explanation
+
)

Input: A vector A ∈ Nn with A[1] > 0 and A[n] > 0 and an integer k.
Question: Can A be explained by at most k (positive) segments?

Herein, a segment is a 0/a-vector, a ∈ Z \ {0}, with n entries where all a-entries
occur consecutively, and it is positive if a is positive. An explanation is a set
of segments that sum up to the input vector. For instance, in case of Vector

Explanation (VE for short) the vector (4, 3, 3, 4) can be explained by the
segments (4, 4, 4, 4) and (0,−1,−1, 0), and in case of Vector Explanation

+

(VE
+ for short) it can be explained by (3, 3, 3, 3), (1, 0, 0, 0), and (0, 0, 0, 1).

� Supported by the DFG, research project PAWS, NI 369/10.
�� Supported by the Studienstiftung des Deutschen Volkes.

��� The main work was done while O. Suchý was at TU Berlin, supported by the DFG,
research project AREG, NI 369/9.

F. Dehne, R. Solis-Oba, and J.-R. Sack (Eds.): WADS 2013, LNCS 8037, pp. 207–218, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



208 R. Bredereck et al.

Table 1. An overview of previous and new results

Parameters Vector Explanation Vector Explanation
+

max. value γ

fpt (Thm. 2(2))

2O(
√
γ) · γn [6]

no poly. kernel (Thm. 3)

max. difference δ of
O(nδ+1 · eπ

√
2δ/3) (Thm. 2(3))

two consecutive entries

(# of peaks p, δ) fpt (Thm. 2(1))

number k of segments
kO(k) + nO(1) (Thm. 4)

(2k − 1)-entry kernel (Thm. 4)

k′ = 2k − n
k′O(k′) + nO(1) (Thm. 5(3)) kO(k′) + nO(1) (Thm. 5(1))

3k′-entry kernel (Thm. 5(3)) W[1]-hard (Thm. 5(2))

n− k NP-hard for (n− k) = 1 (Thm. 6(2))

max. segment length l
l ≥ 3 : NP-hard (Thm. 6(1))

l ≤ 2 : O(n2) (Thm. 6(2))

max. number o of o = 1: trivial

overlapping segments o = 2 (and l = 3 and n− k = 1): NP-hard (Thm. 6(1))

VE occurs in the database context and VE
+ occurs in the radiation therapy

context. Motivated by previous work providing polynomial-time solvable special
cases [1, 4], polynomial-time approximation [5, 19] and fixed-parameter tractabil-
ity results [6, 8] (approximation and fixed-parameter algorithms both exploit
problem-specific structural parameters), we head on a systematic parameterized
and multivariate complexity analysis [13, 21] of both problems; see Table 1 for
a survey of parameterized complexity results.

Previous Work. Agarwal et al. [1] studied a polynomial-time solvable variant
(“tree-ordered”) of VE relevant in data warehousing. Karloff et al. [18] initi-
ated a study of (special cases of) the two-dimensional (“matrix”) case of VE

and provided NP-hardness results as well as polynomial-time constant-factor ap-
proximations. Parameterized complexity aspects of VE and its two-dimensional
variant seem unstudied so far.

The literature on VE
+ is richer. For a general account on the motivation

from radiation therapy refer to the survey by Ehrgott et al. [10]. Concerning
computational complexity, VE

+ is known to be strongly NP-hard [3] and APX-
hard [4]. A significant amount of work has been done to achieve approxima-
tion algorithms for minimizing the number of segments which improve on the
straightforward factor of two [4] (also see Biedl et al. [5]). Improving a previous
fixed-parameter tractability result for the parameter “maximum value γ of a vec-
tor entry” by Cambazard et al. [8], Biedl et al. [6] developed a fixed-parameter
algorithm solving VE

+ in polynomial time when γ = O((log n)2) with n be-
ing the number of entries in the input vector. Moreover, the parameter “maxi-
mum difference between two consecutive vector entries” has been exploited for



On Explaining Integer Vectors by Few Homogenous Segments 209

developing polynomial-time approximation algorithms [5, 19]. Finally, we remark
that most of the previous studies also looked at the two-dimensional (“matrix”)
case, whereas we focus on the one-dimensional (“vector”) case.

Our Contributions. We observe that the combinatorial structure of the consid-
ered problems is extremely rich, opening the way to a more thorough study of the
computational complexity landscape under the perspective of problem parame-
terization. We take a closer look at these parameterization aspects that help in
better understanding and exploiting problem-specific properties. To start with,
note that previous work [6, 8], motivated by the application in radiation ther-
apy, studied the parameterization by the maximum vector entry γ. They showed
fixed-parameter tractability for VE

+ parameterized by γ, which we complement
by showing the non-existence (assuming a standard complexity-theoretic assump-
tion) of a corresponding polynomial-size problem kernel. Using an integer linear
program (ILP) formulation, we also show fixed-parameter tractability for VE

parameterized by γ. Moreover, for the perhaps most obvious parameter, the
number k of explaining segments, we show fixed-parameter tractability for both
problems. In addition, we study the following parameters:

Definition 1. For an input vector A ∈ Nn where, for notational convenience,
additionally A[0] = A[n + 1] = 0 define:

– the maximum difference δ between two consecutive vector entries
(δ = max1≤i≤n+1 |A[i]−A[i − 1]|);

– the number p of peaks (a position 1 ≤ i ≤ n is a peak if A[i − 1] < A[i] >
A[i + 1]);

– the maximum segment length l (number of a-entries);
– the maximum number o of segments having a non-zero entry at a particular

vector entry;
– “distance from triviality”-parameter n− k;
– “distance from triviality”-parameter k′ := 2k − n.

Concerning the parameters n− k and k′, a brief discussion is appropriate. As to
n−k, note that the problems have trivial solutions if k = n: just take n segments
with one non-zero entry each. In this sense, n − k is a parameterization by
“distance from triviality” [16, 21]. We show that, somewhat surprisingly, both
problems are already NP-hard for k = n − 1. As to k′, note that by a simple
preprocessing which will be explained later on, we can achieve that for every
resulting instance which is not already classified as no-instance, we have that
n ≤ 2k− 1.1 Moreover, if k = �n/2�+ 1, then the instances are polynomial-time
solvable, motivating the “distance from triviality-parameter” k′. Interestingly,
while we show that VE

+ is W[1]-hard for parameter k′, we show that VE is
fixed-parameter tractable for k′. Finally, we show NP-hardness for l = 3 and
o = 2.

Table 1 summarizes our and previous results. Our work is organized as follows.
In Section 2, we present a number of useful combinatorial properties of vector

1 The definition of k′ refers to the number n of entries in the instance after the
preprocessing.



210 R. Bredereck et al.

explanation problems which may be of independent interest and which are used
throughout our work. In Section 3, we study the “smoothness of input vector”
parameters γ, δ, and p. In Section 4, we present results for further parameters
as discussed above, and we conclude with some challenges for future research.
Due to the lack of space most proofs and details are deferred to a full version.

Parameterized Complexity Preliminaries. A parameterized problem is
fixed-parameter tractable (fpt) if all instances (I, k) consisting of the “classi-
cal” problem instance I and the parameter k can be solved in f(k) · |I|O(1)

time for any function f solely depending on k. A kernelization algorithm is a
polynomial-time algorithm that transforms each instance (I, k) for a problem L
into an instance (I ′, k′) for L such that (I, k) ∈ L ⇔ (I ′, k′) ∈ L (equivalence)
and k′, |I ′| ≤ g(k) for some function g. The instance (I ′, k′) is called a (prob-
lem) kernel of size g(k). A kernelization algorithm is often described by a set
of data reduction rules whose exhaustive application leads to a problem kernel.
An instance is called reduced with respect to a data reduction rule if a further
application would have no effect on the instance.

A problem that is shown to be W[1]-hard by means of a parameterized reduc-
tion from a W[1]-hard problem is not fpt, unless FPT = W[1]. A parameterized
reduction maps an instance (I, k) in f(k) · |I|O(1) time to an equivalent instance
(I ′, k′) with k′ ≤ g(k) for some functions f and g. See [20] for a more detailed in-
troduction to parameterized algorithmics. We assume the unit-cost RAM model
where arithmetic operations on numbers count as a single computation step.

2 Combinatorial Properties

Formally, for an input vector A ∈ Nn a segment I is a pair written as [l, r]
with l, r ∈ {1, 2, . . . , n + 1} and l < r. We say I starts at position l and ends
at positions r. A segment [l, r] covers position i whenever l ≤ i < r. A set
of segments I, together with a weight function w : I → Z \ {0}, forms an
explanation for A ∈ Nn if

∀1 ≤ i ≤ n : A[i] =
∑

I∈I covers i

w(I),

where A[i] denotes the ith entry in A. We also say (I, w) explains A. In case of
VE

+, we only allow positive weights, that is, w : I → N \{0}. We refer to |I| as
solution size. Segments with positive weight are called positive segments, those
with negative weight are called negative segments.

Definition 2. A position 1 ≤ i ≤ n + 1 with respect to a vector A ∈ Nn, is
called an uptick if A[i − 1] < A[i] and called downtick if A[i − 1] > A[i]. The
size of an uptick (resp. downtick) i equals |A[i]−A[i− 1]|.

By the following known data reduction rule [4], we may assume that each position
is either an uptick or a downtick.

Rule 1. If vector A has two consecutive equal entries, then remove one of them.



On Explaining Integer Vectors by Few Homogenous Segments 211

Rule 1 can be applied exhaustively in O(n) time. Afterwards, each position in A
is either an uptick or a downtick. By the following lemma, we can assume that
in solutions for VE

+ the segments start in upticks and end in downticks.

Lemma 1 ([4, Lemma 1]). Let (A, k) be an instance of VE
+. There is a

minimum-size explanation for vector A in which each segment starts at an uptick
and ends at a downtick.

For VE, we can generalize Lemma 1 to hold for negative and positive segments.
Actually, one can even “reorder” all consecutive up- and downticks. This implies
that for VE actually only the sizes of the upticks and downticks matter, not
their order. To formalize this, we introduce the notion of single-peakedness.

Definition 3. A vector is single-peaked if it contains only one peak. A single-
peaked instance is an instance with a single-peaked vector.

The following theorem summarizes combinatorial properties of VE and VE
+

which are used throughout the paper and which may be of independent interest.

Theorem 1. Let (A, k) be an instance of VE. Then, the following holds.

1. There is a minimum-size explanation for (A, k) in which each positive seg-
ment starts at an uptick and ends at a downtick, and each negative segment
starts at a downtick and ends at an uptick.

2. For any position 1 ≤ i ≤ n setting A[i]← A[i− 1] +A[i+ 1]−A[i] results in
an equivalent instance.

3. If (A, k) is single-peaked, then (A, k) is an equivalent VE
+ instance.

4. The instance (A, k) can be reduced in O(n+k2) time to an equivalent single-
peaked instance (A′, k) such that the maximum difference between consecutive
entries is the same in A and A′.

5. There is an equivalent instance (A′, k) with A′ ∈ {0, . . . , 2δ− 1}n where δ is
the maximum difference between consecutive entries of A.

Further, the following holds for VE
+ and for single-peaked VE instances.

6. There is a minimum-size explanation such that
(a) there is only one segment, starting at an uptick, that covers the last entry

and
(b) there is only one segment, ending at a downtick, that covers the first entry.

7. If an instance (A, k) is a yes-instance, then A contains at most k upticks
and at most k downticks.

3 Parameterization by Input Smoothness

In this section, we examine how the computational complexity of VE and VE
+

is influenced by parameters that measure how “smooth” the input vector A ∈ Nn

is. We assume that A is reduced with respect to Rule 1 and thus all consecu-
tive positions in A have different values. We consider the following three mea-
surements: the maximum difference δ between two consecutive values in A, the



212 R. Bredereck et al.

number p of peaks, that is, the number of positions 1 ≤ i ≤ n in A such
that A[i − 1] < A[i] > A[i + 1], and the maximum value γ occurring in A. Our
main results are fixed-parameter algorithms for the combined parameter (p, δ) in
the case of VE

+ and for the parameter δ in the case of VE. For the parameter
maximum value γ, we show that VE

+ does not admit a polynomial-size problem
kernel unless NP ⊆ coNP/poly.

Theorem 2. 1. VE
+ parameterized by the combined parameter number p of

peaks and maximum difference δ is fixed-parameter tractable.
2. VE parameterized by the maximum difference δ or the maximum value γ is

fixed-parameter tractable.

3. VE
+ is solvable in O(nδ+1 · eπ

√
2δ/3) time.

Proof. We only prove the correctness of Theorem 2(1). This also implies
Theorem 2(2): By Theorem 1(3) and Theorem 1(4), we can transform input in-
stances of VE into single-peaked ones of VE

+ without increasing the maximum
difference δ. Furthermore, δ ≤ γ. Together with the above transformation this
implies fixed-parameter tractability for δ and for γ. The proof of Theorem 2(3)
is based on a dynamic programming algorithm, omitted from this extended
abstract.

To show Theorem 2(1), we provide an integer linear program (ILP) formu-
lation for VE

+ where the number of variables is a function of p and δ. This
ILP determines whether there is a size-k solution with the properties given
by Lemma 1, that is, a solution in which each segment starts at an uptick and
ends at a downtick. In such a solution, the multiset of weights of segments that
start at an uptick sum up to the uptick size. This analogously holds for seg-
ments ending at a downtick. Motivated by this fact, we introduce the following
notion: For a positive integer x, we say that a multiset X = {x1, x2, . . . , xr} of
positive integers partitions x if x =

∑r
i=1 xi. Similarly, we say that X partitions

an uptick (downtick) i of size x if X partitions x. Let P(x) denote the set of all
multisets that partition x.

In the ILP formulation, we describe a solution by “fixing” for each i ∈
{1, . . . , n} a multiset Xi of positive integers which partitions the uptick (downtick)
at i. The crucial observation for our ILP is that if a set of consecutive upticks
contains more than one uptick of size x, it is sufficient to fix how many of these
upticks were partitioned in which way. In other words, one does not need to
know the partition for each position; instead one can distribute freely the parti-
tions of x onto the upticks of size x. This also holds for consecutive downticks.
Since each peak is preceded by consecutive upticks and succeeded by consecutive
downticks, and since we introduce variables in the ILP formulation to “model”
how many upticks (downticks) exist between two consecutive peaks, the number
of variables in the formulation is bounded by a function of p and δ. We now give
the details of the formulation. Herein, we assume that the peaks are ordered
from left to right; we refer to the i-th peak in this order as peak i.

For an integer x ∈ {1, . . . , δ}, let occ(x, i) denote the number of upticks of
size x that directly precede peak i, that is, the number of upticks succeeding



On Explaining Integer Vectors by Few Homogenous Segments 213

peak i − 1 and preceding peak i. Similarly, let occ(−x, i) denote the number of
downticks of size x that directly succeed i. For two positive integers y and x
with y ≤ x and a multiset P ∈ P(x) let mult(y, P ) denote how often y appears
in P . We use mult(y, P ) to “model” how many segments of weight y start (end)
at some uptick (downtick) that is partitioned by P .

To formulate the ILP, we introduce for each peak i, each x ∈ {1, . . . , δ}, and
each P ∈ P(x) two nonnegative variables varx,P,i and var−x,P,i. The variables
correspond to the number of upticks directly preceding peak i and downticks
directly succeeding peak i of size x that are partitioned by P in a possible
explanation of A. To enforce that a particular assignment to these variables
corresponds to a valid explanation, we introduce the following constraints.

First, for each peak i and each 1 ≤ x ≤ δ we ensure that the number of directly
proceeding size-x upticks (succeeding size-x downticks) that are partitioned by
some P ∈ P(x) is equal to the number of directly proceeding size-x upticks
(succeeding size-x downticks):

∀i ∈ {1, . . . , p}, ∀x ∈ {−δ, . . . , δ} \ {0} :
∑

P∈P(x)

varx,P,i = occ(x, i). (1)

Second, we ensure that for each peak i and each value y ∈ {1, . . . , δ} the number
of segments of weight y that end directly after peak i is at most the number of
segments of weight y that start at positions (not necessarily directly) preceding
peak i minus the number of segments of weight y that end at positions succeeding
some peak j < i. Informally, this means that we only “use” the available number
of segments of weight y. To enforce this property, for each peak 1 ≤ i ≤ p and
each possible segment weight 1 ≤ y ≤ δ we add:

i∑
j=1

δ∑
x=y

∑
P∈P(x)

( mult(y, P ) · varx,P,j︸ ︷︷ ︸
# of opened weight-y segments

− mult(y, P ) · var−x,P,j︸ ︷︷ ︸
# of closed weight-y segments

) ≥ 0 (2)

Finally, we ensure that the total number of segments is at most k:

p∑
i=1

δ∑
x=1

∑
P∈P(x)

x∑
y=1

mult(y, P ) · varx,P,i ≤ k. (3)

Correctness: The equivalence of the ILP instance and (A, k) can be seen as fol-
lows. Assume that there is a size-at-most-k explanation S for (A, k). Recall that
by definition of P(x), for any uptick i of size x there is a partition in P(x) that
corresponds to the weights of the segments starting in i. For each peak i, for
any value 1 ≤ x ≤ δ and each P ∈ P(x), count how many upticks of size x
that directly precede peak i are explained by segments in S (segments that start
in this uptick) whose weights correspond to P(x) and set varx,P,i to this value.
Symmetrically, do the same for the downticks succeeding the peak i and set
var−x,P,i accordingly. It is straightforward to verify that eqs. (1) to (3) hold.

Reversely, assume that there is an assignment to the variables such that
eqs. (1) to (3) are fulfilled. We form a set of segments S as follows: For any



214 R. Bredereck et al.

peak i and any value 1 ≤ x ≤ δ with occ(x, i) > 0 let Pi,x be the multiset of par-
titions of P(x) that contains each P ∈ P(x) exactly varx,P,i times. By eq. (1),
|Pi,x| = occ(x, i). For an arbitrary ordering of Pi,x and the upticks of size x
directly preceding peak i, add to S for the jth element Pj of Pi,x exactly |Pj |
segments with weight corresponding to Pj and let them start at the jth uptick
with size x that directly precedes peak i. By eq. (3) we added at most k segments.
It remains to specify the end of the segments. Symmetrically to the upticks, for
each downtick directly succeeding peak i of size x let Pi,x be the multiset of ele-
ments from P(x) containing each P ∈ P(x) exactly var−x,P,i times. For the jth
element Pj of Pi,x and the jth downtick directly succeeding peak i (again both
with respect to any ordering) and for each α ∈ Pj pick any weight-α segment
from S (so far without end) and let it end directly one position behind the jth
downtick. Observe that the existence of this segment is ensured by eq. (2). Fi-
nally, it remains to argue that the of end of each segment in S is determined. This
follows from the fact that eqs. (1) and (2) together imply for each 1 ≤ y ≤ δ that

p∑
i=1

δ∑
x=y

∑
P∈P(x)

(mult(y, P ) · varx,P,i−mult(y, P ) · var−x,P,i) = 0,

and thus the total number of opened weight-y segments is equal to the number
of closed weight-y segments.

Running time: The ILP can be solved within the following time bound. The
number of variables in the constructed ILP instance is

p ·
∑

x∈{−δ,...,δ}\{0}
|P(|x|)| = 2p

δ∑
x=1

|P(x)| ≤ 2δp · |P(δ)| ≤ 2δp · eπ
√

2
3 δ =: f(δ, p),

where the last inequality is due to de Azevedo Pribitkin [2]. Thus, due to a deep
result in combinatorial optimization the feasibility of the ILP can decided in
O(f(δ, p)2.5f(δ,p)+o(f(δ,p)) · |L|) time, where |L| is the size of the instance [14, 17].

Moreover, as we have O(δp) inequalities, we also have |L| = O(δ2p2 ·eπ
√

2
3 δ). 
�

For the parameter maximum value γ, VE
+ is known to be fixed-parameter

tractable [6]. We complement this result by showing a lower bound on the prob-
lem kernel size, and thus demonstrate limitations on the power of preprocessing.

Theorem 3. Unless NP ⊆ coNP/poly, there is no polynomial-size problem ker-
nel for VE

+ parameterized by the maximum value γ.

Proof. We provide a so-called AND-cross-composition [7, 9] from the 3-Par-

tition problem. Given a multiset S = {a1, . . . , a3m} of positive integers and

an integer bound B with m · B =
∑3m

i=1 ai and B/4 < ai < B/2 for every
i ∈ {1, . . . , 3m}, 3-Partition asks whether the set S can be partitioned into m
subsets P1, . . . , Pm with |Pj | = 3 and

∑
ai∈Pj

ai = B for every j ∈ {1, . . . ,m}. 3-
Partition is NP-hard even if B (and thus all ai’s) is bounded by a polynomial in
m [15]. We show that this variant of 3-Partition AND-cross-composes to VE

+



On Explaining Integer Vectors by Few Homogenous Segments 215

parameterized by the maximum value γ. Then, results of Bodlaender et al. [7]
and Drucker [9] imply that VE

+ does not have a polynomial-size problem kernel
with respect to parameter γ, unless NP ⊆ coNP/poly.

First, let (S,B) be a single instance of 3-Partition. We show that it reduces
to an instance (A′, 3m) of VE

+. This reduction is very similar to a previous
NP-hardness reduction for VE

+ [4]. We define A′ as length-(4m− 1) vector:(
a1, a1 + a2, . . . ,

j∑
i=1

ai, . . . ,

3m∑
i=1

ai = mB, (m− 1)B, (m− 2)B, . . . , B

)
.

On the one hand, if a partition P1, . . . , Pm of S forms a solution, then the set
of segments {[i, 3m + j] | ai ∈ Pj} each with weight w([i, 3m + j]) = ai is an
explanation for the vector A′. On the other hand, let (I, w) be an explanation for
(A′, 3m). By Lemma 1 we may assume that every segment starts at an uptick and
ends at a downtick. Therefore, I contains 3m segments and the segment starting
at position i has weight ai. Since B/4 < ai < B/2 for each integer ai ∈ S, exactly
three segments end at a downtick whose size is exactly B. Thus, grouping the
segments according to the position they end at, we get the desired partition of S,
solving the instance of 3-Partition.

Now let (S1, B1), . . . , (St, Bt) be instances of 3-Partition such that Sr =
{ar1, . . . , ar3mr

} and Br ≤ mr
c for every r ∈ {1, . . . , t} and some constant c. We

build an instance (A, k) of VE
+ by first using the above reduction for each

(Sr, Br) separately to produce a vector A′
r, and then concatenating the vec-

tors A′
r one after another, leaving a single position of value 0 in between. The

total length of the vector A is 4(
∑t

r=1mr)− 1 and we set k := 3
∑t

r=1mr.
Due to the argumentation for the single instance case, on the one hand, if

each of the instances is a yes-instance, then there is an explanation using 3mr

segments per instance (Sr, Br), that is 3
∑t

r=1mr segments in total. On the other
hand, we need at least 3mr segments to explain A′

r and there is an explanation
with 3mr segments if and only if (Sr, Br) is a yes-instance. Since all segments
are positive and the subvectors A′

r’s are separated by a position with value
zero, no segment can span over two subvectors. In other words, no segment
can be used to explain more than one of the A′

r’s. Therefore, an explanation
for A with 3

∑t
r=1mr segments implies that (Sr, Br) is a yes-instance for every

r ∈ {1, . . . , t}.
Finally, observe that the maximum value γ in the vector A is equal to

maxt
r=1 mrBr ≤ maxt

r=1 mr
c+1. Since in each input 3-Partition instance the

maximum value mrBr is polynomially bounded in the instance size |Sr|, this
value is thus polynomially bounded in maxt

r=1 |Sr|. Hence, 3-Partition AND-
cross-composes to VE

+ parameterized by the maximum value γ, and there is no
polynomial-size problem kernel for this problem unless NP ⊆ coNP/poly. 
�

4 Further Parameterizations

We now provide fixed-parameter tractability and (parameterized) hardness re-
sults for further natural parameters. Specifically, we consider the number k of



216 R. Bredereck et al.

segments in the solution, so-called “above-guarantee” and “below-guarantee” pa-
rameterizations (which are smaller than k), the maximum segment length l, and
the maximum number of segments covering a position.

For the parameter k we obtain fixed-parameter tractability by using Rule 1,
Theorem 1(6), and Theorem 1(7) to develop search tree algorithms for VE

+ and
VE. The depth and the branching degree of the search tree are bounded by the
solution size k. The second part of Theorem 4 follows directly from exhaustively
applying Rule 1.

Theorem 4. VE
+ and VE can be solved in O(k! · k + n) time. Any instance

of VE
+ or VE can be reduced in O(n) time to an equivalent one with at most

(2k − 1) entries.

The second part of Theorem 4 implies that for a reduced instance every explana-
tion needs at least �n/2�+1 segments. Furthermore, instances with k = �n/2�+1
are solvable in polynomial time (below, we will state a generalization of this fact).
Hence, it is interesting to study parameters that measure how far we have to
exceed this lower bound for the solution size; notably, such above-guarantee
parameters can be significantly smaller than k. For this reason, we study a pa-
rameter that measures k − �n/2� − 1. For ease of presentation, we define this
parameter as k′ := 2k−n. The concepts of “clean” and “messy” positions, which
are defined as follows, are crucial for the design of our algorithms.

Definition 4. Let (A, k) be an instance of VE or VE
+ and let I be an ex-

plaining segment set for vector A. A segment I = [i, j] ∈ I is clean if all other
segments start and end at positions different from i and j. A position i is clean
with respect to I if it is the start or endpoint of a clean segment in I. A position
or segment that is not clean is called messy.

We show that clean positions can always be covered by clean segments of “min-
imum length“: Iterate from left to right over all clean positions and for each
position i (still clean) find the first clean position j > i with −(A[i]−A[i−1]) =
A[j]−A[j + 1] and add a segment of weight A[i]−A[i− 1] from i to j + 1.

For every yes-instance of VE, the number of messy positions is at most 3k′

and the number of messy segments used by an explanation is at most 2k′ with
k′ = 2k − n. Furthermore, if there are an uptick and a downtick of same size in
a single-peaked instance, then we may assume that the corresponding segment
is contained in the solution.

As the following theorem shows, using the properties concerning clean and
messy positions, we can replace the exponent k in the running time of Theorem 4
by the smaller k′. This also implies that VE

+ is polynomial-time solvable for con-
stant k′. Unless W[1]=FPT, this result cannot be improved to fixed-parameter
tractability since we can give a parameterized reduction from the W[1]-hard Sub-

set Sum problem [11] to VE
+. In contrast, VE

+ for single-peaked instances as
well as VE in general are fixed-parameter tractable with respect to k′ and can
be efficiently reduced to equivalent instances with at most 3k′ positions.

Theorem 5. 1. VE
+ can be solved in O((2k)3k

′ · (k2 + (2k′)! · k′) + n) time.



On Explaining Integer Vectors by Few Homogenous Segments 217

2. VE
+ is W[1]-hard with respect to k′.

3. Any single-peaked instance of VE
+ and any instance of VE can be reduced

in O(k2+n) time to an equivalent one with most 3k′ entries. Moreover, VE
+

and VE are solvable in O((2k′)! · k′ + k2 + n) time.

The previous parameter k′ measures how far the solution exceeds the lower
bound �n/2�+ 1. Another bound on the solution size is n: If k = n, then any in-
stance of VE

+ or VE is a trivial yes-instance. Hence, it is interesting to consider
the parameter n − k. Furthermore, it is natural to consider explanations with
restricted segment length l or the maximum number o of segments overlapping
at some position. The following theorem shows that VE

+ and VE are already
NP-hard even if k = n−1, l ≥ 3, and o = 2. To this end, we reduce from the NP-
hard Partition problem [15]. In terms of parameterized complexity this implies
that, unless P=NP, VE

+ is not fixed-parameter tractable with respect to the
“maximum segment length l”, the “maximum number o of segments overlapping
at some position”, and the “below guarantee parameter” n− k.

We also show that, in contrast to the NP-hardness for l ≥ 3, VE
+ and VE

are polynomial-time solvable for l ≤ 2.

Theorem 6. 1. VE
+ and VE are NP-hard even if k = n − 1 and every yes-

instance has an explanation of at most k segments where each position is
covered by at most two segments and each segment has length at most three.

2. Both VE
+ and VE can be solved in O(n2) time for maximum segment

length l = 2.

5 Conclusion

It would be interesting to significantly improve on several of the running time
upper bounds of our (theoretical) tractability results (cf. Table 1 for an overview).
Moreover, we also left open a number of concrete problems. We conclude with
three of them:

– Is VE
+ fixed-parameter tractable with respect to the maximum difference δ?

– Does VE parameterized by δ or parameterized by γ admit a polynomial-size
problem kernel?

– Is VE or VE
+ fixed-parameter tractable with respect to the parameter “num-

ber of different values in the input vector A”? This parameter would be a
natural version of “parameterization by the number of numbers” [12].

Acknowledgement. We are very grateful for the very detailed and constructive
feedback provided by the WADS reviewers.

References

[1] Agarwal, D., Barman, D., Gunopulos, D., Young, N., Korn, F., Srivastava, D.:
Efficient and effective explanation of change in hierarchical summaries. In: Proc.
13th KDD, pp. 6–15. ACM (2007)



218 R. Bredereck et al.

[2] de Azevedo Pribitkin, W.: Simple upper bounds for partition functions. The Ra-
manujan Journal 18, 113–119 (2009)

[3] Baatar, D., Hamacher, H.W., Ehrgott, M., Woeginger, G.J.: Decomposition
of integer matrices and multileaf collimator sequencing. Discrete Appl. Math.
152(1-3), 6–34 (2005)

[4] Bansal, N., Chen, D.Z., Coppersmith, D., Hu, X.S., Luan, S., Misiolek, E.,
Schieber, B., Wang, C.: Shape rectangularization problems in intensity-modulated
radiation therapy. Algorithmica 60(2), 421–450 (2011)

[5] Biedl, T.C., Durocher, S., Hoos, H.H., Luan, S., Saia, J., Young, M.: A note on
improving the performance of approximation algorithms for radiation therapy. Inf.
Process. Lett. 111(7), 326–333 (2011)

[6] Biedl, T.C., Durocher, S., Engelbeen, C., Fiorini, S., Young, M.: Faster optimal
algorithms for segment minimization with small maximal value. Discrete Appl.
Math. 161(3), 317–329 (2013)

[7] Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Cross-composition: A new tech-
nique for kernelization lower bounds. In: Proc. 28th STACS. LIPIcs, vol. 9, pp.
165–176. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2011)

[8] Cambazard, H., O’Mahony, E., O’Sullivan, B.: A shortest path-based approach to
the multileaf collimator sequencing problem. Discrete Appl. Math. 160(1-2), 81–99
(2012)

[9] Drucker, A.: New limits to classical and quantum instance compression. In: Proc.
53rd IEEE FOCS, pp. 609–618. IEEE Computer Society (2012)

[10] Ehrgott, M., Güler, C., Hamacher, H., Shao, L.: Mathematical optimization in
intensity modulated radiation therapy. Ann. Oper. Res. 175, 309–365 (2010)

[11] Fellows, M.R., Koblitz, N.: Fixed-parameter complexity and cryptography. In:
Moreno, O., Cohen, G., Mora, T. (eds.) AAECC 1993. LNCS, vol. 673, pp.
121–131. Springer, Heidelberg (1993)

[12] Fellows, M.R., Gaspers, S., Rosamond, F.A.: Parameterizing by the number of
numbers. Theory Comput. Syst. 50(4), 675–693 (2012)

[13] Fellows, M.R., Jansen, B.M.P., Rosamond, F.A.: Towards fully multivariate algo-
rithmics: Parameter ecology and the deconstruction of computational complexity.
European J. Combin. 34(3), 541–566 (2013)

[14] Frank, A., Tardos, É.: An application of simultaneous diophantine approximation
in combinatorial optimization. Combinatorica 7(1), 49–65 (1987)

[15] Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman (1979)

[16] Guo, J., Hüffner, F., Niedermeier, R.: A structural view on parameterizing prob-
lems: Distance from triviality. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.)
IWPEC 2004. LNCS, vol. 3162, pp. 162–173. Springer, Heidelberg (2004)

[17] Kannan, R.: Minkowski’s convex body theorem and integer programming. Math.
Oper. Res. 12, 415–440 (1987)

[18] Karloff, H., Korn, F., Makarychev, K., Rabani, Y.: On parsimonious explanations
for 2-d tree- and linearly-ordered data. In: Proc. 28th STACS. LIPIcs, vol. 9, pp.
332–343. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2011)

[19] Luan, S., Saia, J., Young, M.: Approximation algorithms for minimizing segments
in radiation therapy. Inf. Process. Lett. 101(6), 239–244 (2007)

[20] Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press (2006)

[21] Niedermeier, R.: Reflections on multivariate algorithmics and problem parameteri-
zation. In: Proc. 27th STACS. LIPIcs, vol. 5, pp. 17–32. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik (2010)



Trajectory Grouping Structure�

Kevin Buchin1, Maike Buchin1, Marc van Kreveld2,
Bettina Speckmann1, and Frank Staals2

1 Dep. of Mathematics and Computer Science, TU Eindhoven
2 Dep. of Information and Computing Sciences, Utrecht University

Abstract. The collective motion of a set of moving entities like peo-
ple, birds, or other animals, is characterized by groups arising, merging,
splitting, and ending. Given the trajectories of these entities, we define
and model a structure that captures all of such changes using the Reeb
graph, a concept from topology. The trajectory grouping structure has
three natural parameters, namely group size, group duration, and entity
inter-distance. These parameters allow us to obtain detailed or global
views of the data. We prove complexity bounds on the maximum number
of maximal groups that can be present, and give algorithms to compute
the grouping structure efficiently. Furthermore, we showcase the results
of experiments using data generated by the NetLogo flocking model and
from the Starkey project. Although there is no ground truth for the
groups in this data, the experiments show that the trajectory group-
ing structure is plausible and has the desired effects when changing the
essential parameters. Our research provides the first complete study of
trajectory group evolvement, including combinatorial, algorithmic, and
experimental results.

1 Introduction

In recent years there has been an increase in location-aware devices and wireless
communication networks. This has led to a large amount of trajectory data cap-
turing the movement of animals, vehicles, and people. The increase in trajectory
data goes hand in hand with an increasing demand for techniques and tools to
analyze them, for example, in sports, ecology, transport, and social services.

An important task is the analysis of movement patterns. In particular, given
a set of moving entities we wish to determine when and which subsets of entities
travel together. When a sufficiently large set of entities travels together for a
sufficiently long time, we call such a set a group (we give a more formal definition
later). Groups may start, end, split and merge with other groups. Apart from
the question what the current groups are, we also want to know which splits and
merges led to the current groups, when they happened, and which groups they
involved. We wish to capture this group change information in a model that we
call the trajectory grouping structure.

� MB, BS & FS are supported by the Netherlands Organisation for Scientific Research
(NWO) under project no. 612.001.106, 639.022.707 & 612.001.022, respectively.

F. Dehne, R. Solis-Oba, and J.-R. Sack (Eds.): WADS 2013, LNCS 8037, pp. 219–230, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



220 K. Buchin et al.

The informal definition above suggests that three parameters are needed to
define groups: (i) a spatial parameter for the distance between entities; (ii) a
temporal parameter for the duration of a group; (iii) a count for the number of
entities in a group. We will design our grouping structure definition to incor-
porate these parameters so that we can study grouping at different scales. We
use the three parameters as follows: a small spatial parameter implies we are
interested only in spatially close groups, a large temporal parameter implies we
are interested only in long-lasting groups, and a large count implies we are inter-
ested only in large groups. By adjusting the parameters suitably, we can obtain
more detailed or more generalized views of the trajectory grouping structure.

The use of scale parameters and the fact that the grouping structure changes
at discrete events suggest the use of computational topology [6]. In particular,
we use Reeb graphs to capture the grouping structure. Reeb graphs have been
used extensively in shape analysis and the visualization of scientific data (see
e.g. [2,5,8]). A Reeb graph captures the structure of a two- or higher-dimensional
scalar function, by considering the evolution of the connected components of the
level sets. The computation of Reeb graphs has received considerable attention
in computational geometry and topology; an overview is given in [4]. Recently,
a deterministic O(n log n) time algorithm was presented for constructing the
Reeb graph of a 2-skeleton of size n [16]. Edelsbrunner et al. [5] discuss time-
varying Reeb graphs for continuous space-time data. Although we also analyze
continuous space-time data (2D-space in our case), our Reeb graphs are not
time-varying, but time is the parameter that defines the Reeb graph.

Our research is motivated by and related to previous research on flocks
[1,9,10,19], herds [11], convoys [12], moving clusters [13], mobile groups [20] and
swarms [14]. These concepts differ from each other in the way in which space and
time are used to test if entities form a group: do the entities stay in a single disc
or are they density-connected [7], should they stay together during consecutive
time steps or not, can the group members change over time, etc. Only the herds
concept [11] includes the splitting and merging of groups.

Contributions. We present the first complete study of trajectory group evolve-
ment, including combinatorial, algorithmic, and experimental results. Our re-
search differs from and improves on previous research in the following ways.
Firstly, our model is simpler than herds and thus more intuitive. Secondly, we
consider the grouping structure at continuous times instead of at discrete steps
(which was done only for flocks). Thirdly, we analyze the algorithmic and com-
binatorial aspects of groups and their changes. Fourthly, we implemented our
algorithms and provide evidence that our model captures the grouping struc-
ture well and can be computed efficiently. We created videos based on our
implementation showing the maximal groups we found in simulated NetLogo
flocking data [21] and in real-world data from the Starkey project [15], see
www.staff.science.uu.nl/~staal006/grouping.

A Definition for a Group. Let X be a set of entities of which we have locations
over time. The ε-disc of an entity x (at time t) is a disc of radius ε centered at x at
time t. Two entities are directly connected at time t if their ε-discs overlap. Two

www.staff.science.uu.nl/~staal006/grouping


Trajectory Grouping Structure 221

entities x and y are ε-connected at time t if there is a sequence x = x0, .., xk = y
of entities such that for all i, xi and xi+1 are directly connected.

A subset S ⊆ X of entities is ε-connected at time t if all entities in S are
pairwise ε-connected at time t. This means that the union of the ε-discs of
entities in S forms a single connected region. The set S forms a component at
time t if and only if S is ε-connected, and S is maximal with respect to this
property. The set of components C(t) at time t forms a partition of the entities
in X at time t.

Let the spatial parameter of a group be ε, the temporal parameter δ, and the
size parameter m. A set G of k entities forms a group during time interval I if
and only if the following three conditions hold: (i) G contains at least m entities,
so k ≥ m, (ii) the interval I has length at least δ, and (iii) at all times t ∈ I,
there is a component C ∈ C(t) such that G ⊆ C.

x1

x2

x3

x4

x5

t0

t1 t2

t3x6
t4 t5

Fig. 1. For m = 2 and δ > t4−t3 there are four
maximal groups: {x1, x2}, {x3, x4}, {x5, x6},
and {x1, .., x4}

We denote the interval I =
[ts, te] of group G with IG. Group
H covers group G if G ⊆ H and
IG ⊆ IH . If there are no groups
that cover G, we say G is maximal
(on IG). In Fig. 1, groups {x1, x2},
G̃ = {x3, x4}, Ĝ = {x5, x6}, and G
= {x1, .., x4} are maximal: G̃ and
Ĝ on [t0, t5], G on [t1, t2]. Group
{x1, x3} is covered by G and hence
not maximal.

Note that entities can be in multiple maximal groups at the same time. For
example, entities {y1, y2, y3} can travel together for a while, then y4, y5 may
become ε-connected, and shortly thereafter y1, y4, y5 separate and travel together
for a while. Then y1 may be in two otherwise disjoint maximal groups for a
short time. An entity can also be in two maximal groups where one is a subset
of the other. In that case the group with fewer entities must last longer. That
an entity is in more groups simultaneously may seem counterintuitive at first,
but it is necessary to capture all grouping information. We will show that the
total number of maximal groups is O(τn3), where n is the number of entities in
X and τ is the number of edges of each input trajectory. This bound is tight in
the worst case.

Our maximal group definition uses three parameters, which all allow a more
global view of the grouping structure. In particular, we observe that there is
monotonicity in the group size and the duration: If G is a group during interval
I, and we decrease the minimum required group size m or decrease the minimum
required duration δ, then G is still a group on time interval I. Also, if G is a
maximal group on I, then it is also a maximal group for a smaller m or smaller
δ. For the spatial parameter ε we observe monotonicity in a slightly different
manner: if G is a group for a given ε, then for a larger value of ε there exists a
group G′ ⊇ G. The monotonicity property is important when we want to have a



222 K. Buchin et al.

more detailed view of the data: we do not lose maximal groups in a more detailed
view. The group may however be extended in size and/or duration.

We capture the grouping structure using a Reeb graph of the ε-connected
components together with the set of all maximal groups. Parts of the Reeb graph
that do not support a maximal group can be omitted. The grouping structure
can help us in answering various questions. For example:

– What is the largest/longest maximal group at time t?
– How many entities are currently (not) in any maximal group?
– What is the first maximal group that starts/ends after time t?
– What is the total time that an entity was part of any maximal group?
– Which entity has shared maximal groups with the most other entities?

Furthermore, the grouping structure can be used to partition the trajectories in
independent data sets, to visualize grouping aspects of the trajectories, and to
compare grouping across different data sets.

Results and Organization. We discuss how to represent the grouping struc-
ture in Section 2, and prove that there are always O(τn3) maximal groups, which
is tight in the worst case. Here n is the number of trajectories (entities) and τ
the number of edges in each trajectory. We present an algorithm to compute the
trajectory grouping structure and all maximal groups in Section 3. This algo-
rithm runs in O(τn3 + N) time, where N is the total output size. In Section 4
we discuss robustness briefly; all details can be found in the full version of the
paper [3]. In Section 5 we evaluate our methods on synthetic and real-world
data.

2 Representing the Grouping Structure

Let X be a set of n entities, where each entity travels along a path of τ edges.
To compute the grouping structure we consider a manifold M in R3, where the
z-axis corresponds to time. The manifold M is the union of n “tubes”. Each
tube consists of τ skewed cylinders with horizontal radius ε that we obtain by
tracing the ε-disc of an entity x over its trajectory.

Let Ht denote the horizontal plane at height t, then the set M∩ Ht is the
level set of t. The connected components in the level set of t correspond to the
components (maximal sets of ε-connected entities) at time t. We will assume
that all trajectories have their known positions at the same times t0, .., tτ and
that no three entities become ε-(dis)connected at the same time. Our theory does
not depend on these assumptions and we could remove them, but they make the
descriptions considerably more clear.

2.1 The Reeb Graph

We start out with a possibly disconnected solid that is the union of a collection
of tube-like regions: a 3-manifold with boundary. Note that this manifold is
not explicitly defined. We are interested in horizontal cross-sections, and the



Trajectory Grouping Structure 223

evolution of the connected components of these cross-sections defines the Reeb
graph. Note that this is different from the usual Reeb graph that is obtained from
the 2-manifold that is the boundary of our 3-manifold, using the level sets of the
height function (the function whose level sets we follow is the height function
above a horizontal plane below the manifold), see [6] for more on this topic.

To describe how the components change over time, we consider the Reeb graph
R ofM. The Reeb graph has a vertex v at every time tv where the components
change. The vertex times are usually not at any of the given times t0, .., tτ , but
in between two consecutive time steps. The vertices of the Reeb graph can be
classified in four groups. There is a start vertex for every component at t0 and
an end vertex at tτ . A start vertex has in-degree zero and out-degree one, and
an end vertex has in-degree one and out-degree zero. The remaining vertices are
either merge vertices or split vertices. Since we assume that no three entities
become ε-(dis)connected at exactly the same time there are no simultaneous
splits and merges. This means merge vertices have in-degree two and out-degree
one, and split vertices have in-degree one and out-degree two. A directed edge
e = (u, v) connecting vertices u and v, with tu < tv, corresponds to a set Ce of
entities that form a component at any time t ∈ Ie = [tu, tv]. The Reeb graph is
this directed graph. Note that the Reeb graph depends on the spatial parameter
ε, but not on the other two parameters of maximal groups.

Theorem 1. Given a set X of n entities, in which each entity travels along a
trajectory of τ edges, the Reeb graph R = (V,E) has O(τn2) vertices and edges.
These bounds are tight in the worst case.

Proof. Lemma 1 in the full paper [3] gives a simple construction that shows that
the Reeb graph may have Ω(τn2) vertices and edges in the worst case. For the
upper bound, consider a trajectory edge (vi, vi+1) of entity x ∈ X . An other
entity y ∈ X is directly connected to x during at most one interval I ⊆ [ti, ti+1].
This interval yields at most two vertices in R. The trajectory of x consists of τ
edges, hence a pair x, y produces O(τ) vertices in R. This gives a total of O(τn2)
vertices, each with constant degree, so there are O(τn2) edges. 
�

The trajectories of entities are associated with the edges of the Reeb graph in a
natural way. Each entity follows a directed path in the Reeb graph from a start
vertex to an end vertex. Similarly, (maximal) groups follow a directed path from
a start or merge vertex to a split or end vertex. If m > 0 or δ > 0, there may be
edges in the Reeb graph with which no group is associated. These edges do not
contribute to the grouping structure, so we can discard them. The remainder of
the Reeb graph we call the reduced Reeb graph, which, together with all maximal
groups associated with its edges, forms the trajectory grouping structure.

2.2 Bounding the Number of Maximal Groups

To bound the total number of maximal groups, we study the case where m = 1
and δ = 0, because larger values can only reduce the number of maximal groups.
It may seem as if each vertex in the Reeb graph simply creates as many maximal



224 K. Buchin et al.

groups as it has outgoing edges. However, consider for example Fig. 2. Split
vertex v creates not only the maximal groups {1, 3, 5, 7} and {2, 4, 6, 8}, but also
{1, 3}, {5, 7}, {2, 4}, and {6, 8}. These last four groups are all maximal on [t2, t],
for t > t4.

t1t1t0 t2 t3 t4

{3}
{3, 4}

{1..4}
{1..8}

1
2
3
4
5
6
7
8

1, 3, 5, 7

2, 4, 6, 8v

{1, 3}, {1, 3, 5, 7}

Fig. 2. The maximal groups containing
entity 3 (green). Vertex v creates six new
groups, including {1, 3} and {1, 3, 5, 7}.

Notice that all six newly discov-
ered groups start strictly before tv,
but only at tv do we realize that
these groups are maximal, which
is the meaning that should be un-
derstood with “creating maximal
groups”. This example can be ex-
tended to arbitrary size. Hence a
vertex v may create many new max-
imal groups, some of which start
before tv. We can show that each
vertex creates at most n new maxi-
mal groups, which leads to a total of
O(τn3) maximal groups. The proof
of the following theorem is given in the full paper [3].

Theorem 2. Let X be a set of n entities, in which each entity travels along a
trajectory of τ edges. There are at most O(τn3) maximal groups, and this is tight
in the worst case.

3 Computing the Grouping Structure

To compute the grouping structure we need to compute the reduced Reeb graph
and the maximal groups. We now show how to do this efficiently. Removing the
edges of the Reeb graph that are not used is an easy post-processing step which
we do not discuss further.

3.1 Computing the Reeb Graph

We can compute the Reeb graph R = (V,E) as follows. We first compute all
times where two entities x and y are at distance 2ε from each other. We dis-
tinguish two types of events, connect events at which x and y become directly
connected, and disconnect events at which x and y stop being directly connected.

We now process the events on increasing time while maintaining the current
components. We do this by maintaining a graph G = (X , Z) representing the
directly-connected relation, and the connected components in this graph. The set
of vertices in G is the set of entities. The graph G changes over time: at connect
events we insert new edges into G, and at disconnect events we remove edges.
At any given time t, G contains an edge (x, y) if and only if x and y are directly
connected at time t. Hence the components at t (the maximal sets of ε-connected
entities) correspond to the connected components in G at time t. Since we know



Trajectory Grouping Structure 225

all times at which G changes in advance, we can use the same approach as in
[16] to maintain the connected components: we assign a weight to each edge in G
and we represent the connected components using a maximum weight spanning
forest. The weight of edge (x, y) is equal to the time at which we remove it from
G, that is, the time at which x and y become directly disconnected. We store the
maximum weight spanning forest F as an ST-tree [17], which allows connectivity
queries, inserts, and deletes, in O(log n) time.

We spend O(n2) time to initialize the graph G at t0 in a brute-force manner.
For each component we create a start vertex in R. We also initialize a one-to-one
mapping M from the current components in G to the corresponding vertices in
R. When we handle a connect event of entities x and y at time t, we query F
to get the components Cx and Cy containing x and y, respectively. Using M we
locate the corresponding vertices vx and vy in R. If Cx 	= Cy we create a new
merge vertex v in R with time tv = t, add edges (vx, v) and (vy, v) to R labeled
Cx and Cy, respectively. If Cx = Cy we do not change R. Finally, we add the
edge (x, y) to G (which may cause an update to F ), and update M .

At a disconnect event we first query F to find the component C currently
containing x and y. Using M we locate the vertex u corresponding to C. Next,
we delete the edge (x, y) from G, and again query F . Let Cx and Cy denote the
components containing x and y, respectively. If Cx = Cy we are done, meaning
x and y are still ε-connected. Otherwise we add a new split vertex v to R with
time tv = t, and an edge e = (u, v) with Ce = C as its component. We update
M accordingly.

Finally, we add an end vertex v for each component C in F with tv = tτ . We
connect the vertex u = M(C) to v by an edge e = (u, v) and let Ce = C be its
component.

Analysis. We need O(τn2 logn) time to compute all O(τn2) events and sort
them according to increasing time. To handle an event we query F a constant
number of times, and we insert or delete an edge in F . These operations all take
O(log n) time. So the total time required for building R is O(τn2 logn).

Theorem 3. Given a set X of n entities, in which each entity travels along a
trajectory of τ edges, the Reeb graph R = (V,E) has O(τn2) vertices and edges,
and can be computed in O(τn2 logn) time.

3.2 Computing the Maximal Groups

We now show how to compute all maximal groups using the Reeb graph R =
(V,E). We will ignore the requirements that each maximal group should contain
at least m entities and have a minimal duration of δ. That is, we assume m = 1
and δ = 0. It is easy to adapt the algorithm for larger values.

Labeling the Edges. Our algorithm labels each edge e = (u, v) in the Reeb
graph with a set of maximal groups Ge. The groups G ∈ Ge are those groups
for which we have discovered that G is a maximal group at a time t ≤ tu. Each
maximal group G becomes maximal at a vertex, either because a merge vertex
created G as a new group that is maximal, or because G is now a maximal set



226 K. Buchin et al.

of entities that is still together after a split vertex. This means we can compute
all maximal groups as follows.

We traverse the set of vertices of R in topological order. For every vertex v
we compute the maximal groups on its outgoing edge(s) using the information
on its incoming edge(s).

If v is a start vertex it has one outgoing edge e = (v, u). We set Ge to {(Ce, tv)}
where tv = t0. If v is a merge vertex it has two incoming edges, e1 and e2. We
propagate the maximal groups from e1 and e2 on to the outgoing edge e, and
we discover (Ce, tv) as a new maximal group. Hence Ge = Ge1 ∪ Ge2 ∪ {(Ce, tv)}.

v

Ce1

u

Ce2

s

e1

e e2

G1

G2
G3

G4

Fig. 3. After split vertex v, Ge1 contains the
groups Ce1 = G1∪G2 (with starting time ts),
G1, and G2. Maximal groups Ce2 = G3 ∪G4

(with starting time tu), G3, and G4 go to e2.
The maximal groups Ce and G1 ∪ G2 ∪ G3

end at v.

If v is a split vertex it has one
incoming edge e, and two outgoing
edges e1 and e2. A maximal group
G on e may end at v, continue on
e1 or e2, or spawn a new maximal
group G′ ⊂ G on either e1 or e2. In
particular, for any group G′ in Gei ,
there is a group G in Ge such that
G′ = G ∩ Ci 	= ∅. The starting time
of G′ is t′ = min{t | (G, t) ∈ Ge ∧
G′ ⊆ G}. Thus, t′ is the first time G′

was part of a maximal group on e.
Stated differently, t′ is the first time
G′ was in a component on a path to v. Fig. 3 illustrates this case. If v is an end
vertex it has no outgoing edges. So there is nothing to be done.

Storing the Maximal Groups. We need a way to store the maximal groups
Ge on an edge e = (u, v) in such a way that we can efficiently compute the set(s)
of maximal groups on the outgoing edge(s) of a vertex v. We now show that we
can use a tree Te to represent Ge, with which we can handle a merge vertex in
O(1) time, and a split vertex in O(k) time, where k is the number of entities
involved. The tree uses O(k) storage.

We say a group G is a subgroup of a group H if and only if G ⊆ H and
IH ⊆ IG. For example, in Fig. 1 {x1, x2} is a subgroup of {x1, .., x4}. Note that
both G and H could be maximal. The proof of the following lemma is given in
the full paper [3].

Lemma 1. Let e be an edge of R, and let S and T be maximal groups in Ge with
starting times tS and tT , respectively. There is also a maximal group G ⊇ S ∪ T
on e with starting time tG ≥ max(tS , tT ), and if S ∩ T 	= ∅ then S is a subgroup
of T or vice versa.

We represent the groups Ge on an edge e ∈ E by a tree Te. We call this the
grouping tree. Each node v ∈ Te represents a group Gv ∈ Ge. The children of a
node v are the largest subgroups of Gv. From Lemma 1 it follows that any two
children of v are disjoint. Hence an entity x ∈ Gv occurs in only one child of v.
Furthermore, note that the starting times are monotonically decreasing on the
path from the root to a leaf: smaller groups started earlier. A leaf corresponds to



Trajectory Grouping Structure 227

a smallest maximal group on e: a singleton set with an entity x ∈ Ce. It follows
that Te has O(n) leaves, and therefore has size O(n). Note, however, that the
summed sizes of all maximal groups can be quadratic.

Analysis. We analyze the time required to label each edge e with a tree Te for
a given Reeb graph R = (V,E). Topologically sorting the vertices takes linear
time. So the running time is determined by the processing time in each vertex,
that is, computing the tree(s) Te on the outgoing edge(s) e of each vertex. Start,
end, and merge vertices can be handled in O(1) time: start and end vertices
are trivial, and at a merge vertex v the tree Te is simply a new root node with
time tv and as children the (roots of the) trees of the incoming edges. At a split
vertex we have to split the tree T = T(u,v) of the incoming edge (u, v) into two
trees for the outgoing edges of v. For this, we traverse T in a bottom-up fashion,
and for each node, check whether it induces a vertex in one or both of the trees
after splitting. This algorithm runs in O(|T |) time. Since |T | = O(n) the total
running time of our algorithm is O(n|V |) = O(τn3).

Reporting the Groups. We can augment our algorithm to report all maximal
groups at split and end vertices. The main observation is that a maximal group
ending at a split vertex v, corresponds exactly to a node in the tree T(u,v) (before
the split) that has entities in leaves below it that separate at v. The procedures
for handling split and end vertices can easily be extended to report the maximal
groups of size at least m and duration at least δ by simply checking this for each
maximal group. Although the number of maximal groups is O(τn3) (Theorem 2),
the summed size of all maximal groups can be Θ(τn4). The running time of our
algorithm is O(τn3 + N), where N is the total output size.

Theorem 4. Given a set X of n entities, in which each entity travels along a
trajectory of τ edges, we can compute all maximal groups in O(τn3 + N) time,
where N is the output size.

4 Robustness

The grouping structure definition we have given and analyzed has a number of
good properties. It fulfills monotonicity, and in the previous sections we showed
that there are only polynomially many maximal groups, which can be computed
in polynomial time as well. In this section we study the property of robustness,
which our definition of grouping structure does not have yet. Intuitively, a robust
grouping structure ignores short interruptions of groups, as these interruptions
may be insignificant at the temporal scale at which we are studying the data.
For example, if we are interested in groups that have a duration of one hour or
more, we may want to consider interruptions of a minute or less insignificant.

We introduce a new temporal parameter α. Interruptions of duration at most
α may be ignored, and the precise moment of events is not relevant beyond a
value of α. We can incorporate α in our definition of the grouping structure and
obtain (details and proofs are in the full paper [3]):



228 K. Buchin et al.

ε = 10 ε = 20
δ = 2 δ = 5

m
=

2
m

=
3

m
=

5

δ = 2 δ = 5

Group size:

δ = 3.5 δ = 3.5

32 4 5 6 7 8

Fig. 4. The maximal groups for varying parameter values. The time associated with
each trajectory vertex is proportional to its x-coordinate.

Theorem 5. Given a set X of n entities, in which each entity travels along a
trajectory of τ edges, we can compute all robust maximal groups in O(τn3 logn+
N) time, where N is the output size.

5 Evaluation

To see if our model of the grouping structure is practical and indeed captures the
grouping behavior of entities we implemented and evaluated our algorithms. We
would like to visually inspect the maximal groups identified by our algorithm,
and compare this to our intuition of groups. In restricted cases we can show this
in a figure, see for example Fig. 4, but for a larger number of trajectories the
resulting figures become too cluttered to analyze. So instead we generated short
videos.1

We use two types of data sets to evaluate our method: a synthetic data set
generated using a slightly modified version of the NetLogo Flocking model [21],
and a real-world data set consisting of deer, elk, and cattle [15].

NetLogo. We generated several data sets using an adapted version of the Net-
Logo Flocking model [21]. In our adapted model the entities no longer wrap
around the world border, but instead start to turn when they approach the bor-
der. Furthermore, we allow small random direction changes for the entities. The
data set that we consider here contains 400 trajectories, each with 818 edges.
Our videos show all maximal groups for varying parameter values.

The videos show that our model indeed captures the crucial properties of
grouping behavior well. We observe that the choice of parameter values is im-
portant. In particular, if we make ε too large we see that the entities are loosely
coupled, and too many groups are found. Similarly, for large values of m virtually
no groups are found. However, for reasonable parameter settings, for example
ε = 5.25, m = 4, and δ = 100, we can clearly see that our algorithm identifies

1 See www.staff.science.uu.nl/~staal006/grouping

www.staff.science.uu.nl/~staal006/grouping


Trajectory Grouping Structure 229

virtually all sets of entities that travel together. Furthermore, if we see a set of
entities traveling together that is not identified as group, we indeed see that they
disperse quickly after they have come together. The coloring of the line-segments
also nicely shows how smaller groups merge into larger ones, and how the larger
groups break up into smaller subgroups. This is further evidence that our model
captures the grouping behavior well.

Starkey. We also ran our algorithms on a real-world data set, namely on tracking
data obtained in the Starkey project [15]. We chose a period of 30 days for which
we have the locations of most of the animals. This yields a data set containing
126 trajectories with 1264 vertices each. In the Starkey video we can see that
a large group of entities quickly forms in the center, and then slowly splits into
multiple smaller groups. We notice that some entities (groups) move closely
together, whereas others often stay stationary, or travel separately.

Running Times. Since we are mainly interested in how well our model captures
the grouping behavior, we do not extensively evaluate the running times of our
algorithms. On our desktop system with a AMD Phenom II X2 CPU running at
3.2Ghz our algorithm, implemented in Haskell, computes the grouping structure
for our data sets in a few seconds. Even for 160 trajectories with roughly 20
thousand vertices each we can compute and report all maximal groups in three
minutes. Most of the time is spent on computing the Reeb graph, in particular
on computing the connect/disconnect events.

6 Concluding Remarks

We introduced a trajectory grouping structure which uses Reeb graphs and a no-
tion of persistence for robustness. We showed how to characterize and efficiently
compute the maximal groups and group changes in a set of trajectories, and
bounded their maximal number. Our paper demonstrates that computational
topology provides a mathematically sound way to define grouping of moving
entities. The complexity bounds, algorithms and implementation together form
the first comprehensive study of grouping. Our videos show that our methods
produce results that correspond to human intuition.

Further work includes more extensive experiments together with domain spe-
cialists, such as behavioral biologists, to ensure further that the grouping struc-
ture captures groups and events in a natural way, and changes in the parameters
have the desired effect. Further, our research may be linked to behavioral models
of collective motion [18] and provide a (quantifiable) comparison of these.

We expect that for realistic inputs the size of the grouping structure is much
smaller than the worst-case bound that we proved. In almost all our initial
experiments the number of maximal groups was less than τ . We plan to do
further experiments to get a better estimate of this number, and to provide
faster algorithms under realistic input models. We will also work on improving
the visualization of the maximal groups and the grouping structure, based on
the reduced Reeb graph.



230 K. Buchin et al.

References

1. Benkert, M., Gudmundsson, J., Hübner, F., Wolle, T.: Reporting flock patterns.
Computational Geometry 41(3), 111–125 (2008)

2. Biasotti, S., Giorgi, D., Spagnuolo, M., Falcidieno, B.: Reeb graphs for shape anal-
ysis and applications. Theor. Comput. Sci. 392(1-3), 5–22 (2008)

3. Buchin, K., Buchin, M., van Kreveld, M.J., Speckmann, B., Staals, F.: Trajectory
grouping structures. CoRR, abs/1303.6127 (2013)

4. Dey, T.K., Wang, Y.: Reeb graphs: approximation and persistence. In: Proc. 27th
ACM Symp. on Computational Geometry, pp. 226–235 (2011)

5. Edelsbrunner, H., Harer, J., Mascarenhas, A., Pascucci, V., Snoeyink, J.: Time-
varying Reeb graphs for continuous space-time data. Computational Geome-
try 41(3), 149–166 (2008)

6. Edelsbrunner, H., Harer, J.L.: Computational Topology – an introduction. Amer-
ican Mathematical Society (2010)

7. Ester, M., Kriegel, H., Sander, J., Xu, X.: A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In: Proc. 2nd International
Conference Knowledge Discovery and Data Mining, vol. 1996, pp. 226–231. AAAI
Press (1996)

8. Fomenko, A., Kunii, T. (eds.): Topological Methods for Visualization. Springer,
Tokyo (1997)

9. Gudmundsson, J., van Kreveld, M.: Computing longest duration flocks in trajectory
data. In: Proc. 14th ACM International Symposium on Advances in Geographic
Information Systems, GIS 2006, pp. 35–42. ACM (2006)

10. Gudmundsson, J., van Kreveld, M., Speckmann, B.: Efficient detection of patterns
in 2D trajectories of moving points. GeoInformatica 11, 195–215 (2007)

11. Huang, Y., Chen, C., Dong, P.: Modeling herds and their evolvements from tra-
jectory data. In: Cova, T.J., Miller, H.J., Beard, K., Frank, A.U., Goodchild, M.F.
(eds.) GIScience 2008. LNCS, vol. 5266, pp. 90–105. Springer, Heidelberg (2008)

12. Jeung, H., Yiu, M.L., Zhou, X., Jensen, C.S., Shen, H.T.: Discovery of convoys in
trajectory databases. PVLDB 1, 1068–1080 (2008)

13. Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-
temporal data. In: Medeiros, C.B., Egenhofer, M., Bertino, E. (eds.) SSTD 2005.
LNCS, vol. 3633, pp. 364–381. Springer, Heidelberg (2005)

14. Li, Z., Ding, B., Han, J., Kays, R.: Swarm: Mining relaxed temporal moving object
clusters. PVLDB 3(1), 723–734 (2010)

15. Oregon Department of Fish andWildlife and the USDAForest Service. The Starkey
project (2004)

16. Parsa, S.: A deterministic O(m logm) time algorithm for the Reeb graph. In: Proc.
28th ACM Symp. on Computational Geometry, pp. 269–276 (2012)

17. Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. Journal of Com-
puter and System Sciences 26(3), 362–391 (1983)

18. Sumpter, D.: Collective Animal Behavior. Princeton University Press (2010)
19. Vieira, M.R., Bakalov, P., Tsotras, V.J.: On-line discovery of flock patterns in

spatio-temporal data. In: Proc. 17th ACM International Conference on Advances
in Geographic Information Systems, GIS 2009, pp. 286–295. ACM (2009)

20. Wang, Y., Lim, E.-P., Hwang, S.-Y.: Efficient algorithms for mining maximal valid
groups. The VLDB Journal 17(3), 515–535 (2008)

21. Wilensky, U.: NetLogo flocking model. Center for Connected Learning and
Computer-Based Modeling. Northwestern University, Evanston, IL (1998)



The Art of Shaving Logs

Timothy M. Chan

Cheriton School of Computer Science, University of Waterloo,
Waterloo, Ontario N2L 3G1, Canada

tmchan@uwaterloo.ca

There have been many instances in the literature where an algorithm with run-
ning time of the form O(na) is improved to an algorithm with running time
O(na/ logb n) for some constants a and b. The “four Russians” algorithm for
Boolean matrix multiplication is perhaps one of the most well known examples.

In this talk, we will look at a few selected recent examples of this phenomenon,
including the 3-SUM problem, the problem of detecting affine degeneracy in a
point set, Klee’s measure problem, and the all-pairs shortest paths problem.
(The selection is not comprehensive but is biased towards the speaker’s own
expertise.) Bit tricks, table lookups, and constructions of small decision trees
are used to achieve many of these polylogarithmic-factor speedups, but often
the applications of these techniques require interesting ideas.

Some of these results hold for integer input, and some hold for arbitrary
real-valued input. Most of these results work in a standard word RAM model
(and some work even in a pointer machine). None of the results is obtained
through “cheating”, as the speaker will try to argue. Many open problems will
be mentioned.

F. Dehne, R. Solis-Oba, and J.-R. Sack (Eds.): WADS 2013, LNCS 8037, p. 231, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



TREEWIDTH and PATHWIDTH Parameterized
by the Vertex Cover Number�

Mathieu Chapelle1, Mathieu Liedloff2, Ioan Todinca2, and Yngve Villanger3

1 IGM-LabInfo, Universit Paris-Est Marne-la-Vallée, 5 Bd Descartes - Champs sur Marne
77454 Marne la Vallée cedex 2, France
mathieu.chapelle@univ-mlv.fr

2 LIFO, Université d’Orléans, BP 6759, F-45067 Orléans Cedex 2, France
(mathieu.liedloff,ioan.todinca)@univ-orleans.fr

3 Department of Informatics, University of Bergen, N-5020 Bergen, Norway
yngve.villanger@uib.no

Abstract. After the number of vertices, Vertex Cover Number is the largest of
the classical graph parameters and has more and more frequently been used as
a separate parameter in parameterized problems, including problems that are not
directly related to the Vertex Cover Number. Here we consider the TREEWIDTH

and PATHWIDTH problems parameterized by k, the size of a minimum vertex
cover of the input graph. We show that the PATHWIDTH and TREEWIDTH can be
computed in O∗(3k) time. This complements recent polynomial kernel results
for TREEWIDTH and PATHWIDTH parameterized by the Vertex Cover Number.

1 Introduction

Parameterized algorithms are typically used in the setting where the provided problem is
NP-hard and we want to bound the exponential part of the running time to a function of
some specific parameter. This parameter can be any property related to the input, the out-
put, or the problem itself. A classical parameter is n, the size of the input or the number
of vertices in the input graph. Algorithms of this type are usually refered to as moder-
ately exponential time algorithms [13], and in many cases it is non trivial to improve the
exponential dependence on n to something better than the naive brute force bound.

The number of vertices is not the only natural graph parameter; there are also pa-
rameters like treewidth, feedback vertex set, and vertex cover number. For every graph,
there is an increasing order on these parameters: treewidth is the smallest, and then feed-
back vertex set, vertex cover number and eventually n. We refer to Bodlaender et al. [5]
for more parameters and the relation between them. Many moderately exponential time
algorithms have an exponential dependence on n that is of the form cn for some con-
stant c < 2. When the exponential part of the running time is bounded by one of the
other graph parameters, we typically see a much faster growing function than we do for
parameter n. Thus, we have reached a situation where tradeoffs can be made between
the size the parameter we choose and the exponential dependence on this parameter.

We use a modified big-Oh notation that suppresses all other (polynomially bounded)
terms. Thus for functions f and g we write f(n, k) = O∗(g(n, k)) if f(n, k) =

� Partially supported by the ANR project AGAPE.

F. Dehne, R. Solis-Oba, and J.-R. Sack (Eds.): WADS 2013, LNCS 8037, pp. 232–243, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



TREEWIDTH and PATHWIDTH Parameterized by the Vertex Cover Number 233

O(g(n, k) · nO(1)). Consider the problems of computing the TREEWIDTH or the PATH-
WIDTH of a given graph G. For parameter n both these values can be computed in
O∗(2n) time by a dynamic programming approach proposed by Held and Karp [16].
Currently the best moderately exponential time algorithms for these problems have run-
ning times O(1.735n) [12] and O(1.89n) [17] respectively. On the other hand if we go
to the smaller parameters treewidth and pathwidth the best known running times are of
the from O∗(2O(k3)) [2]. Thus, it is preferable to use the O∗(2O(k3)) algorithm parame-
terized by treewidth if the treewidth is O(n1/3), and the algorithms parameterized by n
otherwise. In this paper we are considering vertex cover number as a parameter for the
TREEWIDTH or the PATHWIDTH problems. Our goal is to find the most efficient algo-
rithm for these problems where the exponential part of the running time only depends
on the vertex cover number, i.e. the minimum size of a vertex cover of the graph.

Using the vertex cover number as a parameter when analyzing algorithms and solv-
ing problems is not a new idea. Some examples from the literature are an O∗(2k) al-
gorithm for CUTWIDTH parameterized by the vertex cover number [9], and different
variants of graph layout problems [11] with the same parameter. Let us also mention an
O∗(2k) algorithm for CHORDAL GRAPH sandwich parameterized by the vertex cover
number of an edge set [15].

Another direction in the area of parameterized complexity is kernelization or instance
compression. Recently it was shown [10] that we can not expect that the TREEWIDTH

and PATHWIDTH problems have a polynomial kernel unless NP ⊆ coNP/poly when
parameterized by treewidth or pathwidth, but on the other hand they do have a kernel
of size O(k3) when parameterized by the vertex cover number [5,6]. Existence of a
polynomial size kernel does not necessarily imply the existence of an algorithm that
has a slow growing exponential function in the size of the parameter. Indeed if we first
kernelize and then use the best moderately exponential time algorithm of [12] on the
kernel, we still obtain an O∗(2O(k3)) algorithm for TREEWIDTH parameterized by the
vertex cover number. Hence dependence in the parameter is still similar to the algorithm
parameterized by treewidth [2].

Our Results. We provide an O∗(3k) time algorithm for PATHWIDTH and TREEWIDTH

when parameterized by vc, the vertex cover number. It means that this algorithm will
be preferable for graphs where the treewidth is Ω(vc1/3) and the vertex cover number
is at most 0.5n and 0.58n for the TREEWIDTH and PATHWIDTH problems respectively.
Another consequence is that the TREEWIDTH and PATHWIDTH of a bipartite graph can
be computed in O∗(3n/2) or O∗(1.733n) time, which is better than the running time
provided by the corresponding moderate exponential time algorithms (O∗(1.735n) [12]
and O∗(1.89n) [17] respectively). Due to space restrictions, we only present here an
O∗(4k) algorithm for TREEWIDTH, based on dynamic programming. The algorithm is
then modified to obtain a running time of O∗(3k), and for this purpose we use the subset
convolution technique introduced in [1]. This result is detailed in the full version of the
paper [7].

In addition to this we also show in the full version that the PATHWIDTH can be
computed in O∗(2k

′
) time where k′ is the vertex cover number of the complement of

the graph. This matches the result of [4] for TREEWIDTH parameterized by the vertex
cover number of the complement of the graph.



234 M. Chapelle et al.

2 Preliminaries

All graphs considered in this article are simple and undirected. For a graph G = (V,E)
we denote by n = |V | the number of vertices and by m = |E| the number of edges.
The neighborhood of a vertex v is defined as N(v) = {u ∈ V : {u, v} ∈ E}, and
the closed neighborhood is defined as N [v] = N(v) ∪ {v}. For a vertex set W , we
define its neighborhood as N(W ) =

⋃
v∈W N(v) \W , and its closed neighborhood as

N [W ] = N(W ) ∪W . A vertex set C ⊆ V in a graph G = (V,E) is called a vertex
cover if for every edge uv ∈ E(G) we have that vertex u or v is in C. The minimum
size of a vertex cover of G is called the vertex cover number of G. Vertex set X is called
a clique of G if for each pair u, v ∈ X we have that uv ∈ E.

Proposition 1 ([8]). The minimum vertex cover problem can be solved in O∗(1.28k)
time, where k is the vertex cover number of the input graph.

We now define tree and path decompositions. A tree decomposition of a graph G =
(V,E) is a pair (T,X ) where T = (I, F ) is a tree and X = {Xi | i ∈ I} is a family of
subsets of V , called bags, where

– V =
⋃

i∈I Xi,
– for each edge uv ∈ E there exists an i ∈ I such that u, v ∈ Xi, and
– for each vertex v ∈ V the nodes {i ∈ I | v ∈ Xi} form a connected subtree of T .

The width of the tree decomposition (T,X ) is maxi∈I |Xi| − 1 (the maximum size of
a bag, minus one) and the treewidth of G is the minimum width over all tree decompo-
sitions of G.

A path decomposition of G is a tree decomposition (T,X ) such that the tree T is
actually a path. The pathwidth of G is the minimum width over all path decomposition
of G.

The following result is a straightforward consequence of Helly’s property for a fam-
ily of subtrees of a tree.

Proposition 2. Let (T,X ) be a tree decomposition of graph G = (V,E). Let H =
(V, F ) be the graph such that xy ∈ F if and only if there exists a bag of the decompo-
sition containing both x and y. A set W ⊆ V of vertices induces a clique in H if and
only if there is a bag Xi ∈ X such that W ⊆ Xi.

It is well-known that the graph H constructed above is a chordal graph (or an interval
graph if we replace tree decomposition by path decomposition), but we will not use
this here. See e.g. [14] for more details on these graphs and a proof of the previous
proposition.

Let i be a node of an arbitrarily rooted tree decomposition (T,X ). Let Ti be the
subtree of T rooted in i. We denote by Vi the union of bags of the subtree Ti. We let
Li = Vi \Xi (L like “lower”) and Ri = V \ Vi (R like “rest”). Clearly, (Li, Xi, Ri) is
a partition of V .

Proposition 3 ([3]). Let (T,X ) be a tree decomposition of graph G = (V,E). The
bag Xi separates, in graph G, any two vertices a ∈ Li and b ∈ Ri, i.e. a and b are in
different components of G[V \Xi].



TREEWIDTH and PATHWIDTH Parameterized by the Vertex Cover Number 235

For our purpose, it is very convenient to use nice tree and path decompositions (see
e.g. [3]). In a nice tree decomposition (T,X ), the tree is rooted, and has only four types
of nodes :

1. Leaf nodes i, in which case |Xi| = 1.
2. Introduce nodes i, having a unique child j s.t. Xi = Xj∪{u} for some u ∈ V \Xj .
3. Forget nodes i, having a unique child j s.t. Xi = Xj \ {u} for some u ∈ Xj .
4. Join nodes i, having exactly two children j and k, s.t. Xi = Xj = Xk.

Moreover, we can assume that the root node corresponds to a bag of size 1.
Let us associate an operation τi to each node of a nice tree decomposition. If we

are in the second case of the definition (introduce node i), we associate operation τi =
introduce(u), where u is the vertex introduced in bag Xi. If we are in the third case
(forget node i), we associate operation τi = forget(u), where u is the forgotten vertex.
In the fourth case (join node), we associate operation τi = join(Xi;Lj, Lk). For a
leaf node i with Xi = {u}, we also associate operation τi = introduce(u). Nice path
decompositions are defined in a similar way, but of course they do not have join nodes.

It is well known [3] that any tree or path decomposition can be refined into a nice
one in linear time, without increasing the width.

Proposition 4 ([3]). Let (T,X ) be a tree decomposition of G. There exists a nice tree
decomposition (T ′,X ′), such that

– each bag of X ′ is a subset of a bag in X
– for each node i of T , there is a node i′ of T ′ such that the corresponding partitions

(Li, Xi, Ri) (induced by i in (T,X )) and (L′
i′ , X

′
i′ , R

′
i′) (induced by i′ in (T ′,X ′))

are equal.

Traces and Valid Partitions. Let C be a vertex cover of minimum size of our input
graph G, and let S = V \C be the remaining independent set. We denote k = |C|. Our
objective is to describe, in a first step, an O∗(4k) algorithm for treewidth and an O∗(3k)
algorithm for pathwidth. Very informally, if we fix a nice tree or path decomposition
of G[C], then there is an optimal way of adding the vertices of S to this tree or path
decomposition. Trying all nice decompositions of G[C] by brute force would be too
costly. Therefore we introduce the notion of traces and valid partitions of C.

Definition 1. Consider a node i of a tree decomposition (T,X ) of G. The trace of node
i on C is the three-partition (LC

i , X
C
i , RC

i ) of C such that LC
i = Li∩C, XC

i = Xi∩C
and RC

i = Ri ∩ C.
A partition (LC , XC , RC) of C is called a valid triple or valid partition if it is the

trace of some node of a tree decomposition. We say that a tree decomposition respects
the valid partition (LC , XC , RC) if some node of the tree decomposition produces this
trace on C.

The following lemma gives an easy characterization of valid partitions of C. It also
proves that a partition is the trace of a node of some tree decomposition, this also holds
for some path decomposition. Therefore we do not need to distinguish between par-
titions that would be valid for tree decompositions or valid for path decompositions.



236 M. Chapelle et al.

Lemma 1. A three-partition (LC , XC , RC) is the trace of some tree decomposition (or
path decomposition) if and only if XC separates LC from RC in the graph G[C].

Proof. “⇒:” Consider a node i of a tree decomposition (T,X ) of G such that the trace
of node i on C is (LC , XC , RC). By Proposition 3, bag Xi separates Li from Ri in G.
Therefore Xi ∩ C = XC separates Li ∩ C = LC from Ri ∩ C = RC in G[C].

‘⇐:” Conversely, since XC separates LC from RC in G[C] and S = V \ C is an
independent set of G, note that the three bags XC ∪LC ∪S,XC ∪S and XC ∪RC ∪S
form a path decomposition of G. The trace of the middle bag is (LC , XC , RC). 
�

By Proposition 4, for any valid partition (LC , XC , RC), there exists a nice tree or path
decomposition respecting it. Our algorithms will proceed by dynamic programming
over valid three-partitions (LC , XC , RC) of this type, for a given vertex coverC. There
is a natural partial ordering on such three-partitions.

Definition 2. We say that a valid three-partition (LC
j , X

C
j , RC

j ) precedes the three-
partition (LC

i , X
C
i , RC

i ) if they are different and they are the respective traces of two
nodes j and i of a same nice tree decomposition (T,X ), where i is the father of j in T .

Observe that if (LC
j , X

C
j , RC

j ) precedes (LC
i , X

C
i , RC

i ) we have that LC
j � LC

i (if i
is a join or forget node) or LC

j = LC
i and XC

j � XC
i (if i is an introduce node).

In particular, we can order the three-partitions according to a linear extension of the
precedence relation. Our algorithms will proceed by dynamic programming over three-
partitions of C, according to this order.

It is convenient for us to have a unique maximal three-partition w.r.t. the precedence
order. Therefore, starting from graph G, we create a new graph G′ by adding a uni-
versal vertex univ (i.e. adjacent to all other vertices of G). Clearly, C ∪ {univ} is a
vertex cover of G′, of size k + 1. Note that the treewidth (resp. pathwidth) of G′ equals
the treewidth (resp. pathwidth) of G, plus one. Moreover, G has an optimal nice tree
(resp. path) decomposition whose root bag only contains vertex univ. Therefore, it is
sufficient to compute the treewidth (pathwidth) for graph G′. From now on we assume
that the input graph is G′, i.e. it contains a special universal vertex univ, and we only
use nice tree (path) decompositions whose root bag is {univ}. If C denotes the vertex
cover of the input graph, then the trace of the root is always (C \ {univ}, {univ}, ∅).

3 TREEWIDTH Parameterized by the Vertex Cover Number

Recall that the nice tree decompositions are rooted, thus we can speak of lower and
upper nodes of the decomposition tree.

Lemma 2. Let (LC , XC , RC) be a three-partition of C. Let (T,X ) be a nice tree-
decomposition and consider the set of nodes of T whose trace on C is (LC , XC , RC).
If LC 	= ∅, then these nodes of T induce a directed subpath in T , from a lower node
imin to an upper node imax.

Proof. Consider two nodes i and j leaving this same trace (LC , XC , RC) on C. We
claim that one of them is ancestor of the other in the tree. By contradiction, assume



TREEWIDTH and PATHWIDTH Parameterized by the Vertex Cover Number 237

there is a lowest common ancestor k of i and j, different from i, j. Let x ∈ LC (note
that here we use the condition LC 	= ∅). Observe that x appears in bags of both subtrees
Ti and Tj of T , hence by definition of a tree decomposition it must belong to bag Xk.
Since x is in Xk and in the subtree Ti, we must also have x ∈ Xi. But Xi ∩ C = XC ,
implying that x is in both XC and LC — contradicting the fact that the latter sets do
not intersect. It follows that one of i, j must be ancestor of the other.

Let imin (resp. imax) be the lowest (resp. highest) node whose trace on C is the three-
partition (LC , XC , RC). It remains to prove that any node on the path from imin to imax

in T leaves the same trace. Let i be a node on this path. Recall that Li denotes the set
of vertices of G that appear only in bags strictly below i, and Ri denotes the vertices
that do not appear in bags below i. Since i is between imin and imax, cleary XC ⊆ Xi.
If Xi contains some vertex x ∈ C \ XC , then either x ∈ LC and thus x must also
appear in bag Ximin , or x ∈ RC and it must appear in bag Ximax . In both cases, this
contradicts the trace of imin and imax on C. We thus have LC ⊆ Li ∩ C. If Li ∩ C
also contains some node x ∈ RC , as before we have that x must be in bag Ximax —
a contradiction. Eventually, observe that RC ⊆ Ri ∩ C, and that if Ri ∩ C contained
some vertex x ∈ LC , this vertex must appear in bag imin — a contradiction. 
�
In order to “glue” a valid three-partition (LC , XC , RC) with the previous and next
ones, into a nice tree decomposition of G[C], we need to control the operation right
below and right above the subpath of nodes leaving this trace. Therefore we introduce
the following notion of valid quintuples.

Definition 3. Let (LC , XC , RC) be a valid partition of C, with LC 	= ∅. Let τ+ and τ−
be operations of type introduce, forget or join. We say that (τ−, L

C , XC , RC , τ+)
is a valid quintuple if there is a nice tree decomposition (T,X ) of G respecting the
three-partition (LC , XC , RC), with imin and imax being the lower and upper node
corresponding to this trace, such that τ− = τimin and τ+ = τimax+1, where imax +
1 is the father of imax. In the particular case when imax is the root we assume for
convenience that τimax+1 is the forget operation on the unique vertex of the root bag.

We also say that this nice tree decomposition (T,X ) respects the valid quintuple
(τ−, L

C , XC , RC , τ+).

The following result is needed for the enumeration of valid quintuples. Its (rather
straightforward) proof is given in the full version of the article [7].

Lemma 3. Given a quintuple Q = (τ−, L
C , XC , RC , τ+), there is a linear time algo-

rithm checking if Q is valid.

To be able to start our dynamic programming, we introduce a new category of valid
quintuples, called degenerate, corresponding to valid partitions of type (∅, XC , RC).
Roughly, they will correspond to the leaves of our optimal tree decomposition. We
point out that for degenerate quintuples, parameter τ− is irrelevant.

Definition 4. Let (∅, XC, RC) be a valid partition of C. Let τ+ be an operation of type
forget(u), with u ∈ XC such that NG(u) ⊆ XC . We say that (τ−, ∅, XC , RC , τ+)
is a degenerate valid quintuple and a tree decomposition respects this quintuple if it
has a node imax whose trace on C is (∅, XC , RC), and whose father corresponds to
operation forget(u).



238 M. Chapelle et al.

Let us fix a valid quintuple Q = (τ−, L
C , XC , RC , τ+). We want to construct a tree

decomposition (T,X ) respecting Q, of minimum width. Recall that S = V \C denotes
the independent set of the graph obtained by removing the vertices of the vertex cover
C. We must understand how to place the vertices of S in the bags of (T,X ). For this
purpose we define some special subsets of S w.r.t. Q, and the next lemmata describe
how these subsets are forced to be in some bags on the subpath of T from imin to imax

(cf. Lemma 2).

Notation 1. Let Q = (τ−, L
C , XC , RC , τ+) be a valid quintuple.

– We denote XTRS(Q) = {x ∈ S | N(x) ∩ LC 	= ∅ and N(x) ∩RC 	= ∅}.
– • If τ− is of type introduce(u), then we denote XLS(Q) = {x ∈ S | N(x) ⊆

LC ∪XC and u ∈ N(x) and N(x) ∩ LC 	= ∅}.
• If τ− is of type join(XC ;L1C , L2C), then XLS(Q) = {x ∈ S | N(x) ∩
L1C 	= ∅ and N(x) ∩ L2C 	= ∅ and N(x) ∩ RC = ∅}. In particular, the last
condition ensures that XLS(Q) does not intersect XTRS(Q).
• If τ− is a forget operation or if the quintuple is degenerate, then we let
XLS(Q) = ∅.

– Suppose that τ+ is of type forget(v). Then we let XRS(Q) = {x ∈ S | N(x) ⊆
RC ∪ XC and v ∈ N(x) and N(x) ∩ RC 	= ∅}. If τ+ is a introduce or join
operation, then XRS = ∅.

Lemma 4. Let Q = (τ−, L
C , XC , RC , τ+) be a valid quintuple and let (T,X ) be

a nice tree decomposition respecting Q. Denote by [imin, imax] the directed subpath
of nodes whose trace on C is (LC , XC , RC) (in the case where LC = ∅, we take
imin = imax). Then

– For any i in the subpath [imin, imax], Xi contains XC ∪XTRS(Q).
– Ximin contains XC ∪XTRS(Q) ∪XLS(Q).
– Ximax contains XC ∪XTRS(Q) ∪XRS(Q).

Proof. Let x ∈ XTRS(Q). By definition of XTRS, vertex x has a neighbor a ∈ LC

and a neighbor b ∈ RC . Since a ∈ LC , it only appears in the bags of T strictly below
imin. Since x is adjacent to a, it must also appear on one of these bags. Since b ∈ RC ,
vertex b appears in no bag below imax (included). Therefore, x must appear in some
bag which is not below imax. Consequently, x appears in every bag of the [imin, imax]
subpath.

Assume that XLS(Q) is not empty. If τ− = τimin = introduce(u), then every
vertex x ∈ XLS(Q) must appear in some bag strictly below imin (because it has a
neighbor in LC) and in some bag containing u (because it sees u). This latter bag cannot
be strictly below imin. Thus x ∈ Ximin and XLS(Q) is contained in Ximin . When imin

is a join node, LC 	= ∅ and we must show that Ximin contains XLS(Q). But then
each vertex x ∈ XLS(Q) has a neighbor which only appears in the left subtree of imin,
strictly below imin, and one in the right subtree of imin, strictly below imin. Thus x must
appear in the bag of imin.

If XRS(Q) is not empty, then τ+ = forget(v) and v is a neighbor of each x ∈
XRS(Q). Hence x must appear in a bag below imax (included). But x also has neigh-
bors in RC , thus it must appear in some bag which is not below imax. Consequently,
XRS(Q) is contained in Ximax . 
�



TREEWIDTH and PATHWIDTH Parameterized by the Vertex Cover Number 239

We consider now vertices of S whose neighborhood is a subset of XC .

Notation 2. Let Q = (τ−, L
C , XC , RC , τ+) be a valid quintuple. Denote by XFS(Q)

the set of vertices x ∈ S such that N(x) ⊆ XC .
Let ε(Q) be set to 1 if there is some x ∈ XFS(Q) such that N(x) = XC , set to 0

otherwise.

Lemma 5. Let Q = (τ−, L
C , XC , RC , τ+) be a valid quintuple and let (T,X ) be a

tree decomposition respecting it. Then (T,X ) has a bag of size at least |XC |+ ε(Q).

Proof. If ε(Q) = 0 the claim is trivial. If ε(Q) = 1, let x ∈ S such that N(x) =
XC . By Helly’s property (see Proposition 2), there must be a bag of (T,X ) containing
x and XC . 
�

Notation 3. Let Q = (τ−, L
C , XC , RC , τ+) be a valid quintuple. We define the local

treewidth of Q as

loctw(Q) = |XC |+ max{|XTRS|+ |XLS|, |XTRS|+ |XRS|, ε(Q)} − 1.

The−1 used above plays the same role as in the definition of treewidth. By Lemmata 4
and 5 we deduce.

Corollary 1. Any nice tree decomposition of G respecting a valid quintuple Q is of
width at least loctw(Q).

We now define the partial treewidth of a valid quintuple. Intuitively, the partial treewidth
of a quintuple Q is the minimum value t such that there is a nice tree decomposition of
G[C], respecting Q, with all valid quintuples below Q having local treewidth at most
t. We shall prove in Lemma 6 and Theorem 5 that actually the partial treewidth of Q
is at most t if and only if there exists a nice tree decomposition of the whole graph G,
respecting Q, such that all bags below imax have size at most t + 1.

Notation 4. Given a valid quintuple Q = (τ−, L
C , XC , RC , τ+), we define the partial

treewidth of Q, denoted ptw(Q), as follows.

– If Q = (τ−, ∅, XC , RC , forget(u)) is a degenerate valid quintuple then

ptw(Q) = loctw(Q).

– If τ− = introduce(u),

ptw(Q) = max

{
loctw(τ−, L

C , XC , RC , τ+), min
valid quintuple Q−

ptw(Q−)

}
where the minimum is taken over all valid quintuples Q− of type (η, LC , XC \
{u}, RC ∪ {u}), introduce(u)).

– If τ− = forget(u),

ptw(Q) = max

{
loctw(τ−, L

C , XC , RC , τ+), min
valid quintuple Q−

ptw(Q−)

}
where the minimum is taken over all valid quintuplesQ− of type (η, LC\{u}, XC∪
{u}, RC), forget(u)).



240 M. Chapelle et al.

– If τ− = join(XC ;L1C, L2C),

ptw(Q) = max (loctw(τ−, L
C , XC , RC , τ+),

min
valid quintuple Q1−

ptw(Q1−),

min
valid quintuple Q2−

ptw(Q2−))

where the minima are taken over all valid quintuples Q1− of type (η1, L1C , XC ,
RC ∪L2C), join(XC ;L1C , L2C)) and all quintuples Q2− of type (η2, L2C , XC ,
RC ∪ L1C), join(XC ;L1C , L2C)).

Lemma 6. Any nice tree decomposition of G respecting a valid quintuple Q is of width
at least ptw(Q).

Proof. We order the three-partitions (LC , XC , RC) of C according to the precedence
relation (Definition 2). We prove the lemma for each valid quintupleQ = (τ−, L

C , XC ,
RC , τ+), by induction (according to this order) on (LC , XC , RC).

For quintuples such that LC = ∅, the property follows directly from Corollary 1 and
the base case of Notation 4.

Now take Q = (τ−, L
C , XC , RC , τ+) with LC 	= ∅. Let imin the lowest node of the

tree decomposition respecting Q, whose trace is (LC , XC , RC). If imin is a join node,
it has two sons with traces (L1C , XC , RC ∪L2C) and (L2C , XC , RC ∪L1C) and the
proof follows from the join case of Notation 4 and the induction hypothesis on the
valid quintuples preceding Q. Note that both L1C and L2C are non empty, otherwise
imin would not be the lowest node with trace (LC , XC , RC). Similarily, if imin is an
introduce(u) node, then we apply Corollary 1 and the introduce case of Notation 4 to
the quintuple preceding Q in the tree decomposition. The same holds if imin is of type
forget(u) (using the forget case of Notation 4). We point out that, if τ− = forget(u)
and LC = {u}, the quintuple Q− of Notation 4 corresponds to the base case of our
induction. 
�

Theorem 5. The treewidth of G is

tw(G) = min
Qlast

ptw(Qlast)

over all valid quintuples Qlast of the form (τ−, C \ {univ}, {univ}, ∅, forget(univ)).

Proof. First note that tw(G) ≥ minQlast ptw(Qlast). Indeed, an optimal tree decompo-
sition will contain a root whose bag corresponds to a single vertex univ, and this root
will leave a trace on C of type (C \ {univ}, {univ}, ∅). The inequality follows from
Lemma 6.

Conversely, let Qlast = (τ−, C\{univ}, {univ}, ∅, forget(univ)) be the valid quin-
tuple of minimum ptw, among all quintuples of this type; denote by t this minimum
value. The computation of ptw(Qlast) naturally provides a tree TC of quintuples, the
root being Qlast, and such that for the node corresponding to quintuple Q its sons are
the preceding quintuples realizing the minimum value for ptw(Q) in Notation 4. The
leaves of this tree correspond to the base case of Notation 4, hence to degenerate valid



TREEWIDTH and PATHWIDTH Parameterized by the Vertex Cover Number 241

quintuples. By definition of ptw, all these selected quintuples have loctw at most t. We
construct a tree decomposition of G with bags of size at most t + 1.

Let Qi = (τ−i, L
C
i , X

C
i , RC

i , τ+i) be the quintuple associated to node i in TC . Let
(TC ,XC) be the tree-decomposition of G[C] obtained by associating to each node i
of TC the bag XC . Each node i, except for the leaves, corresponds to an introduce,
forget or join operation τ−i.

Let T be the tree obtained from TC by replacing each node i with a path of three
nodes, denoted imin, imid and imax (from the bottom towards the top). Initially, we
associate to the three nodes imin, imid, imax the same bag XC

i . Now, for each i,

1. add XTRS(Qi) to all bags in the subpath [imin, imax] of T ;
2. add XLS(Qi) to bag number imin;
3. add XRS(Qi) to bag number imax;
4. For each vertex x ∈ XFS(Qi), which has not yet been added to some bag of T ,

create a new node of T adjacent only to imid and associate to this node the bag
N [x]. These nodes are called pending nodes.

We claim that in this way we have obtained a tree decomposition (T,X ) of G. Clearly
all bags created at step i are of size at most loctw(Qi) + 1, hence at most t + 1. It
remains to prove that these bags satisfy the conditions of a tree decomposition.

Recall that (TC ,XC) is a tree decomposition of G[C]. By construction of (T,X ),
for each vertex y ∈ C, the bags of (T,X ) containing it will form a subtree of T . Also,
for each edge yz of G[C], some bag of (T,X ) shall contain both y and z. It remains
to verify the same type of conditions for vertices of S and edges incident to them. This
part of the proof is detailed in the full version of the paper [7]. 
�

Theorem 6. The TREEWIDTH problem can be solved in O∗(4k) time, where k is the
size of the minimum vertex cover of the input graph.

Proof. Given an arbitrary graph G, we compute a minimum vertex cover in O∗(1.28k)
(Proposition 1). Then G is transformed into a graph G′ by adding a universal vertex
univ. Let C be the vertex cover of G′ obtained by adding univ to the minimum vertex
cover of G (hence |C| = k + 1). The treewidth of G′ is computed as follows.
Step 1. Compute all valid partitions (LC , XC , RC), by enumerating all three-partitions
of C and keeping only the valid ones (Lemma 1). This can be done in time O∗(3k). The
number of valid partitions is at most 3k+1.
Step 2. Compute all valid quintuplesQ using Lemma 3. ForQ = (τ−, L

C , XC , RC , τ+)
where τ+ is a join node, the parameters of this join are not relevant for loctw(Q) and
ptw(Q). Therefore, we do not need to memorize the parameters of the join. With this
simplification, we only need to store O∗(4k) valid (simplified) quintuples, and their
computation can be performed in time O∗(4k). The 4k comes from quintuples of the
type (join(XC ;L1C , L2C), LC , XC , RC , τ+), since L1C , L2C , XC and RC form a
partition of C into four parts. The quintuples are then sorted by the precedence relation
on the corresponding valid three-partitions. This can be done within the same running
time, the triples (LC , XC , RC) being sorted by increasing size of LC , and in case of
tie-breaks by increasing size of XC (see Definition 2 and following remarks).
Step 3. For each valid quintuple Q = (τ−, L

C , XC , RC , τ+), according to the order-
ing above, compute by dynamic programming loctw(Q) (Notation 3) and then ptw(Q)



242 M. Chapelle et al.

(Notation 4). In order to process efficiently the quintuples Q− of Notation 4, let us ob-
serve the value minQ− ptw(Q−) over all Q− of a given type can be updated online, as
soon as we compute ptw(Q−). Indeed, for all the Q− of a same type, the first parameter
η will differ, but the four others are equal. So it is actually a minimum over all η. The
same holds for the minimum over all Q1− and over all Q2−. Hence, when we process
quintuple Q, we have these minima at hand and the value ptw(Q) is computable in
polynomial time. This step can be performed in polynomial for each Q, so the overall
running time is still O∗(4k).
Step 4. Compute the treewidth of G′ using Theorem 5, and return tw(G) = tw(G′)−1.
This step takes polynomial running time.

Altogether, the algorithm takes O∗(4k) running time and space. This achieves the
proof of the theorem. The algorithm can also be adapted to return, within the same time
bounds, an optimal tree decomposition of the input graph.

With a careful analysis, the most costly part of the algorithm is Step 2, running in
O(k4km) time, where the O(k4k) part represents the number of quintuples that are
enumerated, and O(m) is the time required to check whether a quintuple is valid. 
�

The algorithm for pathwidth, described in the full version of the paper [7], is quite
similar, with a slight difference in the definition of local pathwidth. Due to the fact
that it only uses introduce and forget operations, the number of valid quintuples is
O∗(3k), and so is the running time of the pathwidth algorithm. More efforts are required
to transform the O∗(4k) algorithm for treewidth into an algorithm with O∗(3k) running
time. For valid quintuples Q = (τ−, L

C , XC , RC , τ+) where τ− is a join node, we do
not explicitely store all possible parameters of the join. Instead, we use the powerful
subset convolution technique [1] to compute the best parameters of the join, optimizing
ptw(Q). This can be done in O∗(3k) time [7].

Theorem 7 (see [7]). The TREEWIDTH and PATHWIDTH problems can be solved in
O∗(3k) time, where k is the vertex cover number of the input graph.

4 Concluding Remarks

We have shown that it is possible to obtain O∗(3k) time algorithms for computing
TREEWIDTH and PATHWIDTH where parameter k is the vertex cover number of the
graph. This puts the vertex cover number in the same class as parameter n as both allows
an O∗(ck) time algorithm for the considered problems. It is an interesting question
whether an O∗(ck) time algorithm exists when using the feedback vertex set of the
graph as the parameter k.

References

1. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets Möbius: fast subset con-
volution. In: Johnson, D.S., Feige, U. (eds.) STOC, pp. 67–74. ACM (2007)

2. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)



TREEWIDTH and PATHWIDTH Parameterized by the Vertex Cover Number 243

3. Bodlaender, H.L.: Treewidth: Algorithmic techniques and results. In: Privara, I., Ružička, P.
(eds.) MFCS 1997. LNCS, vol. 1295, pp. 19–36. Springer, Heidelberg (1997)

4. Bodlaender, H.L., Fomin, F.V., Koster, A.M.C.A., Kratsch, D., Thilikos, D.M.: On exact
algorithms for treewidth. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp.
672–683. Springer, Heidelberg (2006)

5. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Preprocessing for treewidth: A combinatorial
analysis through kernelization. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011,
Part I. LNCS, vol. 6755, pp. 437–448. Springer, Heidelberg (2011)

6. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernel Bounds for Structural Parameteri-
zations of Pathwidth. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357, pp.
352–363. Springer, Heidelberg (2012)

7. Chapelle, M., Liedloff, M., Todinca, I., Villanger, Y.: Treewidth and pathwidth parameterized
by vertex cover. arXiv:1305.0433 (2013)

8. Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theor. Comput.
Sci. 411(40-42), 3736–3756 (2010)

9. Cygan, M., Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: On cutwidth param-
eterized by vertex cover. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112,
pp. 246–258. Springer, Heidelberg (2012)

10. Drucker, A.: New limits to classical and quantum instance compression. In: FOCS, pp.
609–618. IEEE Computer Society (2012)

11. Fellows, M.R., Lokshtanov, D., Misra, N., Rosamond, F.A., Saurabh, S.: Graph layout prob-
lems parameterized by vertex cover. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.)
ISAAC 2008. LNCS, vol. 5369, pp. 294–305. Springer, Heidelberg (2008)

12. Fomin, F.V., Villanger, Y.: Finding induced subgraphs via minimal triangulations. In: Marion,
J.-Y., Schwentick, T. (eds.) STACS. LIPIcs, vol. 5, pp. 383–394. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2010)

13. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Texts in Theoretical Computer Sci-
ence. An EATCS Series. Springer (2010)

14. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York
(1980)

15. Heggernes, P., Mancini, F., Nederlof, J., Villanger, Y.: A parameterized algorithm for
CHORDAL SANDWICH. In: Calamoneri, T., Diaz, J. (eds.) CIAC 2010. LNCS, vol. 6078,
pp. 120–130. Springer, Heidelberg (2010)

16. Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems. Journal
of the Society for Industrial and Applied Mathematics 10(1), 196–210 (1962)

17. Kitsunai, K., Kobayashi, Y., Komuro, K., Tamaki, H., Tano, T.: Computing directed path-
width in O(1.89n) time. In: Thilikos, D.M., Woeginger, G.J. (eds.) IPEC 2012. LNCS,
vol. 7535, pp. 182–193. Springer, Heidelberg (2012)



Visibility and Ray Shooting Queries

in Polygonal Domains

Danny Z. Chen1,� and Haitao Wang2,��

1 Department of Computer Science and Engineering
University of Notre Dame, Notre Dame, IN 46556, USA

dchen@cse.nd.edu
2 Department of Computer Science

Utah State University, Logan, UT 84322, USA
haitao.wang@usu.edu

Abstract. Given a polygonal domain (or polygon with holes) in the
plane, we study the problem of computing the visibility polygon of any
query point. As a special case of visibility problems, we also study the
ray-shooting problem of finding the first point on the polygon bound-
aries that is hit by any query ray. These are fundamental problems in
computational geometry and have been studied extensively. We present
new algorithms and data structures that improve the previous results.

1 Introduction

Given a set P = {P1, P2, . . . , Ph} of h pairwise-disjoint polygonal obstacles of
totally n vertices in the plane, the space minus the interior of all obstacles is
called the free space. Two points are visible to each other if the open line segment
connecting them lies entirely in the free space. For any point q in the free space,
the visibility polygon of q, denoted by Vis(q), is the set of points in the plane visi-
ble to q. The visibility query problem seeks an efficient data structure that allows
fast computation of Vis(q) for any query point q. Let |Vis(q)| denote the number
of vertices of Vis(q). We present two new visibility query data structures. The
first one uses O(n2) space and is constructed in O(n2 logn) time; for any query
point q, Vis(q) can be computed in O(log2 n + min{h, |Vis(q)|} logn + |Vis(q)|)
time. Our second data structure is of size O(n + h2), and its preprocessing time
and query time are O(n + h2 log h) and O(|Vis(q)| logn), respectively. Note that
in some cases the value h can be substantially smaller than n.

We also study the ray-shooting query, a special case of visibility problems:
Given any query ray σ(q) with its origin point q in the free space, find the first
point on the obstacle boundaries or in infinity that is hit by σ(q). We construct
a data structure of size O(n + h2) in O(n + h2 · poly(log h)) time that answers
any query in O(log n) time, where poly(log h) is a polynomial function of logh.

� Chen’s research was supported in part by NSF under Grants CCF-0916606 and
CCF-1217906.

�� Corresponding author.

F. Dehne, R. Solis-Oba, and J.-R. Sack (Eds.): WADS 2013, LNCS 8037, pp. 244–255, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Visibility and Ray Shooting Queries in Polygonal Domains 245

Table 1. Summary of ray-shooting data structures in polygonal domains

Data Structure Preprocessing Time Size Query Time

[5,10] O(n
√
h+ n log n+ h3/2 log h) O(n) O(

√
h log n)

[17] O(n2) O(n2) O(log n)
[1] O((n log n+ h2) log h) O((n+ h2) log h) O(log2 n log2 h)
Our Result O(n+ h2 · poly(log h)) O(n+ h2) O(log n)

Throughout this paper, we always let k denote |Vis(q)| for any query point q.
We say the complexity of a data structure is O(f1(·), f2(·), f3(·)) if its preprocess-
ing time, size, and query time are O(f1(·)), O(f2(·)), and O(f3(·)), respectively.

Previous Work. For the ray-shooting query problem, Table 1 gives a summary.
Our new data structure improves the previous work for small h. For simple
polygons, ray-shooting data structures of O(n, n, logn) complexity have been
proposed [5,6,9,10].

For the visibility query problem, previous work has been done on both
the single simple polygon case and the polygonal domain case. For a sin-
gle simple polygon, Bose et al. [4] proposed a data structure of com-
plexity O(n3 logn, n3, k + logn). Aronov et al. [2] gave a smaller-size data
structure with a little larger query time, with complexity O(n2 logn, n2, k +
log2 n). As indicated in [2], by using a ray-shooting data structure [5,10], a vis-
ibility query data structure of complexity O(n, n, k logn) is possible. For the
polygonal domain case, Zarei and Ghodsi [21] gave a data structure of complex-
ity O(n3 logn, n3, k + min{h, k} logn), and Inkulu and Kapoor [12] obtained a
data structure of complexity O(n2 logn, n2, k + h + min{h, k} log2 n). Another
data structure in [12] has complexity related to the size of the visibility graph
of the polygonal domain, which is O(n2); in the worst case, its complexity is
O(n2h3, n2h2, k logn). Nouri and Ghodsi [16] gave a data structure of complex-
ity O(n4 logn, n4, k + logn), and Lu et al. [15] presented a data structure of
complexity O(n2 logn, n2, k + log2 n + h log(n/h)). Table 2 summarizes these
results for the polygonal domain case.

Comparing with the result in [21], our first data structure is O(n) smaller in
space and preprocessing time, but with an additive O(log2 n) query time, which
seems difficult to improve unless the query time of the data structure for the
simple polygon case [2] can be reduced (because it has the same preprocessing
time and space as our data structure). Comparing with the results in [12,15],
our first data structure has the same processing time and space but with smaller
query time. Our second data structure, comparing with the second one in [12],
has the same query time but uses much less preprocessing time and space.

In addition, our results for visibility queries can be extended to cone visibility
queries where, in addition to a query point q, a query also includes a cone with
q as the apex that delimits the visibility of q. Our first visibility query data
structure can be extended to this case with the same performances; for our



246 D.Z. Chen and H. Wang

Table 2. Summary of visibility query data structures in polygonal domains. The value
k is the output size of the visibility polygon of the query point.

Data Structure Preprocessing Time Size Query Time

[21] O(n3 log n) O(n3) O(k +min{h, k} log n)
[12] O(n2 log n) O(n2) O(k + h+min{h, k} log2 n)
[12] O(n2h3) O(n2h2) O(k log n)
[15] O(n2 log n) O(n2) O(k + log2 n+ h log(n/h))
Our Result 1 O(n2 log n) O(n2) O(k + log2 n+min{h, k} log n)
Our Result 2 O(n+ h2 log h) O(n+ h2) O(k log n)

second one, the extended version has the same performances as before except
that the preprocessing time becomes O(n + h2poly(log h)).

Our Approaches. A corridor structure of polygonal domains has been used
for solving shortest path problems [7,11,13], and later some new concepts like
“bays”, “canals”, and “ocean” were introduced [8], which we refer to as the
“extended corridor structure”. In this paper, we also use the extended corridor
structure [8], which partitions the free space into an oceanM, bays, and canals.
Each bay or canal is a simple polygon. The oceanM is multiply connected and
its boundary consists of O(h) convex chains. The extended data structure was
used in [8] for computing the visibility polygon from a single line segment in
polygonal domains. Unfortunately, the algorithm in [8] does not work for visi-
bility queries. The techniques given in this paper focus on visibility queries. We
process each bay/canal using data structures for simple polygons, and process
M using data structures for convex obstacles. For example, for the visibility
query problem, we build the data structure [2] for each bay/canal; for M, we
utilize the visibility complex [19,20]. For any query point q, Vis(q) is obtained
by consulting the data structures for M and for bays/canals.

Note that the corridor structure [13] was also used by the visibility query
data structures in [12,15]; but, their approaches are quite different from ours.
For example, they do not use the extended corridor structure (i.e., they do not
use the ocean, bays, and canals). As shown later, our techniques not only yields
better results but also makes the solutions quite simple.

In Section 2, we review the geometric structures of P . We present our ray-
shooting data structure in Section 3. In Section 4, we give our data structures for
the visibility query problems. Due to the space limit, some proofs are omitted
and can be found in the full version of this paper. For ease of exposition, we
assume that no three obstacle vertices of P are collinear.

2 Preliminaries

For completeness of this paper, we briefly review the extended corridor structure
[8]. Further, the rest of this paper relies heavily on the notation related to the



Visibility and Ray Shooting Queries in Polygonal Domains 247

Fig. 1. Illustrating a triangulation of the
free space among two obstacles and the
corridors (with red solid curves). There
are two junction triangles indicated by
the large dots inside them, connected by
three solid (red) curves. Removing the
two junction triangles results in three
corridors.

x

e

f

a

y

b e

f

a

Pj

Pjc

d
z

d

bay(cd)

canal(x,y)

b

Pi

Pi

Fig. 2. Illustrating an open hourglass (left)
and a closed hourglass (right) with a corridor
path connecting the apices x and y of the two
funnels. The dashed segments are diagonals.
The paths π(a, b) and π(e, f) are marked by
thick solid curves. A bay bay(cd) with gate
cd (left) and a canal canal(x, y) with gates
xd and yz (right) are also shown.

structure. For simplicity, we assume all obstacles in P are contained in a rectangle
R (see Fig. 1), and we also view R as an obstacle in P .

Let F denote the free space in R, and Tri(F) denote a triangulation of F . Let
G(F) be the (planar) dual graph of Tri(F). The degree of each node in G(F)
is at most three. Using G(F), we compute a planar 3-regular graph, denoted
by G3 (the degree of each node in G3 is three), possibly with loops and multi-
edges, as follows. First, we remove every degree-one node from G(F) together
with its incident edge; repeat this process until no degree-one node remains in
the graph. Second, remove every degree-two node from G(F) and replace its
two incident edges by a single edge; repeat this process until no degree-two node
remains. The resulting graph is G3 (see Fig. 1), which has O(h) faces, nodes, and
edges [13]. Each node of G3 corresponds to a triangle in Tri(F), which is called
a junction triangle (see Fig. 1). The removal of all junction triangles results in
O(h) corridors (defined below), each of which corresponds to one edge of G3.

The boundary of a corridor C consists of four parts (see Fig. 2): (1) A bound-
ary portion of an obstacle Pi ∈ P , from a point a to a point b; (2) a diagonal of
a junction triangle from b to a boundary point e on an obstacle Pj ∈ P (Pi = Pj

is possible); (3) a boundary portion of the obstacle Pj from e to a point f ; (4)
a diagonal of a junction triangle from f to a. The corridor C is a simple poly-
gon. Let π(a, b) (resp., π(e, f)) be the shortest path from a to b (resp., e to f)
inside C. The region HC bounded by π(a, b), π(e, f), and the two diagonals be
and fa is called an hourglass, which is open if π(a, b) ∩ π(e, f) = ∅ and closed
otherwise (see Fig. 2). If HC is open, then both π(a, b) and π(e, f) are convex
chains and are called the sides of HC ; otherwise, HC consists of two “funnels”
[14] and a path πC = π(a, b) ∩ π(e, f) joining the two apices of the two funnels,
called the corridor path of C. Each funnel side is also a convex chain. We com-
pute the hourglass of each corridor. The triangulation Tri(F) can be computed



248 D.Z. Chen and H. Wang

in O(n log n) time or O(n + h log1+ε h) time for any constant ε > 0 [3]. After
Tri(F) is produced, computing all hourglasses takes O(n) time.

Let M be the union of all O(h) junction triangles, open hourglasses, and
funnels. We call the space M the ocean. Note that M ⊆ F . Since the sides of
open hourglasses and funnels are all convex, the boundary ∂M of M consists
of O(h) convex chains with totally O(n) vertices; further, ∂M has O(h) reflex
vertices (with respect to R \M). Thus, R\M can be partitioned into a set P ′

of O(h) pairwise interior-disjoint convex polygons of totally O(n) vertices [13]
(e.g., by extending an angle-bisecting segment inward from each reflex vertex).
If we view the convex polygons in P ′ as obstacles, then the oceanM is the free
space with respect to P ′. The set P ′ can be obtained easily in O(n + h log h)
time. It should be pointed out that our algorithms given later can be applied
to M directly without explicitly computing the convex polygons in P ′. But for
ease of exposition, we always discuss our algorithms on P ′ instead of on M.

2.1 Bays and Canals

Recall that M ⊆ F . We examine the free space of F not in M, i.e., F \M,
which consists of two types of regions: bays and canals, as defined below.

Consider the hourglass HC of a corridor C. We first discuss the case when HC

is open (see Fig. 2). HC has two sides. Let S1(HC) be an arbitrary side of HC .
The obstacle vertices on S1(HC) all lie on the same obstacle, say P ∈ P . Let c
and d be any two consecutive vertices on S1(HC) such that the line segment cd
is not an edge of P (see the left figure in Fig. 2, with P = Pj). The free region
enclosed by cd and a boundary portion of P between c and d is called the bay
of cd and P , denoted by bay(cd), which is a simple polygon. We call cd the bay
gate of bay(cd), which is a common edge of bay(cd) and M.

If the hourglass HC is closed, then let x and y be the two apices of its two
funnels. Consider two consecutive vertices c and d on a side of a funnel such
that cd is not an obstacle edge. If neither c nor d is a funnel apex, then c and d
must lie on the same obstacle and the segment cd also defines a bay with that
obstacle. However, if c or d is a funnel apex, say, c = x, then c and d may lie
on different obstacles. If they lie on the same obstacle, then they also define a
bay; otherwise, we call xd the canal gate at x = c (see Fig. 2). Similarly, there
is also a canal gate at the other funnel apex y, say yz. Let Pi and Pj be the two
obstacles bounding the hourglass HC . The free region enclosed by Pi, Pj , and
the two canal gates xd and yz that contains the corridor path of HC is the canal
of HC , denoted by canal(x, y), which is also a simple polygon.

Clearly, all bays and canals together constitute the space F \M.
The fact that each bay has only one gate allows us to process a bay eas-

ily. Intuitively, an observer outside a bay cannot see any point outside the bay
“through” its gate. But, each canal has two gates, which could cause trouble.
The next lemma, proved in [8], gives an important property that an observer
outside a canal cannot see any point outside the canal through the canal (and
its two gates); we call it the opaque property of canals.



Visibility and Ray Shooting Queries in Polygonal Domains 249

Lemma 1. [8] (The Opaque Property) For any canal, suppose a line segment
pq is in F (i.e., p is visible to q) such that neither p nor q is in the canal. Then
pq cannot contain any point of the canal that is not on its two gates.

3 The Ray-shooting Queries

We present our ray-shooting data structure in this section. We assume that we
have already computed the ocean M, and all bays and canals. We also assume
the convex obstacle set P ′ is given. Recall that M is the free space among P ′.
The preprocessing for these takes O(n + h log1+ε h) time.

Consider a ray σ(q) with its origin q ∈ F . Let q∗ be the outcome of the ray-
shooting query of σ(q), i.e., q∗ is the point on the input obstacles of P or on the
boundary of R (denoted by ∂R) that is hit first by σ(q). We first show how to
find q∗, and then discuss the preprocessing of our data structure. For simplicity
of discussion, we assume the line containing the ray σ(q) does not contain any
obstacle vertex. Note that the origin q can be in M, a bay, or a canal.

We first consider the case of q ∈ M. If σ(q) does not hit any obstacle of P ′

before it hits ∂R, then the portion of σ(q) inside R lies entirely in M and thus
q∗ is on ∂R. Below, we assume σ(q) hits an obstacle of P ′. Let p be the first
point on the obstacles of P ′ hit by σ(q). Based on our discussion in Section 2,
each edge of any obstacle of P ′ is either an edge of an input obstacle of P or
a bay/canal gate. If p is not on a gate of any bay/canal, then p is on an input
obstacle of P , and hence q∗ = p. Otherwise, p is on a gate of a bay or a canal. If
p is on the gate of a bay B, then since B has only one gate, q∗ must be on the
boundary of B (and thus on the boundary of an input obstacle of P). If p is on
a gate of a canal C, then although C has two gates, due to the opaque property
of Lemma 1, q∗ must be on the boundary of C that lies on an input obstacle.

If the origin q is in a bay/canal, then we find the first point p on the boundary
of the bay/canal hit by σ(q). If p is not on a gate, then q∗ = p; otherwise, the
ray σ(q) goes out of the bay/canal and entersM through that gate, and we use
a procedure as for the case of q ∈M to compute q∗.

The discussion above shows that to compute q∗, we only need to conduct at
most three ray-shooting queries each of which is either on a bay/canal or on
the convex obstacle set P ′. We perform the preprocessing accordingly. For a
bay/canal, because it is a simple polygon, we build a data structure for simple
polygons [5,10] for it. Since the total number of vertices of all bays and canals
is O(n), preprocessing all bays and canals takes O(n) time and space, and each
query inside a bay/canal takes O(log n) time.

For the convex obstacle set P ′, Pocchiola and Vegter [18] showed that by
using the visibility complex, a data structure of O(n + k′) size can be built
in O(n + k′ · poly(log h)) time that allows to answer each ray-shooting query
in O(log n) time, where k′ = O(h2) is the number of common tangents of the
convex obstacles in P ′ that lie in the free space of P ′ (i.e., M).

In summary, we have the following result.



250 D.Z. Chen and H. Wang

Theorem 1. For an input polygonal domain P, we can build a data structure
of size O(n + h2) in O(n + h2 · poly(log h)) preprocessing time that allows to
answer each ray-shooting query in O(log n) time.

4 The Visibility Queries

In this section, we present our two visibility query data structures. We assume
that the oceanM, and all bays and canals have been computed, and the convex
obstacle set P ′ is given. The needed preprocessing takes O(n + h log1+ε h) time.
We begin with the first data structure, described in Sections 4.1, 4.2, and 4.3.
The second data structure is shown in Section 4.4, which uses some ingredients
of the first data structure.

For a query point q, we seek to compute the visibility polygon Vis(q). For
simplicity of discussion, assume q is not collinear with any two obstacle vertices.

To provide some intuition, in Section 4.1, we sketch an algorithmic procedure
for computing Vis(q) without any preprocessing, and argue its correctness. Our
query algorithm (with preprocessing) given later will follow this procedure. In
Section 4.2, we present the preprocessing of our first data structure. Its query
algorithm and time analysis are shown in Section 4.3.

4.1 The Algorithm for Computing Vis(q)

The query point q may be in M, a bay, or a canal. We start with the case of
q ∈M. For any subset S of the free space F , let Vis(q, S) denote the intersection
of Vis(q) and S. For example, Vis(q,M) is the subpolygon of Vis(q) in the ocean
M, and Vis(q,F) is Vis(q).

We first compute Vis(q,M). Because the space F \M consists of all bays and
canals, the region Vis(q) \ Vis(q,M) is the union of the visibility subpolygons of
Vis(q) in all bays and canals. Next, we show how to compute Vis(q) \ Vis(q,M).

Observation 1. For q ∈ M, if a bay/canal does not have any gate that inter-
sects with the boundary of Vis(q,M), then no point in that bay/canal is visible
to q.

Proof. Consider any point p in a bay bay(cd). Suppose p is visible to q. Since
q ∈ M, pq must intersect the gate cd, say at a point p′. Hence, p′ is visible to
q. Because cd is on ∂M, p′ is on the boundary of Vis(q,M). Thus cd intersects
the boundary of Vis(q,M). The case for canals can be proved similarly.

Suppose for a bay bay(cd) with gate cd, we want to compute Vis(q, bay(cd)). If
its gate cd does not intersect the boundary ∂Vis(q,M) of Vis(q,M), then by
Observation 1, Vis(q, bay(cd)) = ∅. If cd has a single sub-segment on ∂Vis(q,M),
then q can see part of bay(cd) through the cone delimited by this sub-segment and
with q as the apex, and we compute Vis(q, bay(cd)) “seeing through” this cone.
The general case is when multiple disjoint sub-segments of cd are on ∂Vis(q,M)
(e.g., see Fig. 3). In this case, some interior points of bay(cd) are visible to q



Visibility and Ray Shooting Queries in Polygonal Domains 251

q

bay(cd)

d

c

obstacle

Fig. 3. Three sub-segments (the thick ones) of cd are visible to the point q

through multiple cones. We compute the visible region of q in bay(cd) for each
such cone. It is easy to see that the visible regions for these cones are mutually
disjoint. Therefore, Vis(q, bay(cd)) is the union of them.

Next, suppose for a canal canal(x, y) with two gates xd and yz (as in Fig. 2),
we want to compute Vis(q, canal(x, y)). Similarly, if its two gates do not intersect
∂Vis(q,M), then Vis(q, canal(x, y)) = ∅. Otherwise, let Vis(xd) denote the region
of canal(x, y) visible to q through the gate xd and Vis(yz) denote the region
of canal(x, y) visible to q through the gate yz. Clearly, Vis(q, canal(x, y)) =
Vis(xd) ∪ Vis(yz). We compute Vis(xd) and Vis(yz) separately using our above
approach for the bay case. Note that x = y is possible, in which case the two
gates share a common vertex x but we view x as belonging only to xd (i.e., yz
is viewed as a half-open segment). In this way, the two gates never intersect.
Lemma 2 below shows that Vis(xd) and Vis(yz) are mutually disjoint. Thus,
once Vis(xd) and Vis(yz) are available, computing Vis(xd) ∪ Vis(yz) is trivial.
The proof of Lemma 2 is omitted.

Lemma 2. For q ∈M, the visibility polygons Vis(xd) and Vis(yz) in canal(x, y)
do not intersect with each other.

Based on the above, after we obtain Vis(q,M), to compute Vis(q)\Vis(q,M), we
can simply check the boundary ∂Vis(q,M). For each sub-segment of a bay/canal
gate on ∂Vis(q,M), we compute the region in the bay/canal visible to q through
that sub-segment. All these regions are pairwise disjoint and Vis(q) \ Vis(q,M)
is a trivial union of them. We hence finish the discussion of our procedure for
computing Vis(q) in the case of q ∈M.

Next, we consider the case when the query point q is in a bay, say bay(cd).
In this case, we first compute the visibility polygon of q in bay(cd), i.e., Vis
(q, bay(cd)). If the gate cd does not intersect the boundary of Vis(q, bay(cd)),
then Vis(q) = Vis(q, bay(cd)) because q is not visible to any point outside bay(cd).
Otherwise, there must be a single (maximal) sub-segment of cd on the boundary
of Vis(q, bay(cd)) through which q can see the outside of bay(cd) (in the cone
delimited by that sub-segment). In other words, Vis(q) \ Vis(q, bay(cd)) is the
visible region in the space F \ bay(cd) visible to q through the cone. To compute
Vis(q)\Vis(q, bay(cd)), we use a procedure similar to that for the case of q ∈M.
The difference is that here the visibility is through a cone.



252 D.Z. Chen and H. Wang

The remaining case is when the query point q is in a canal. This case is very
similar to the bay case above. The difference is that we consider the two canal
gates separately, using the procedure for the bay case. We omit the details.

4.2 The Preprocessing

We discuss the preprocessing for our algorithm in Section 4.1, in which we need
to compute the visibility polygons of q in M or in a bay/canal.

We first discuss the preprocessing for computing Vis(q,M) when q ∈ M.
Recall that we have a set P ′ of O(h) convex obstacles of totally O(n) vertices
and its free space is the ocean M. By using the visibility complex [19,20], we
have the following lemma with proof omitted.

Lemma 3. We can build a data structure of size O(n + h2) in O(n + h2 log h)
time that allows to compute Vis(q,M) in O(|Vis(q,M)|+ h′ logn) time for any
query point q ∈M, where h′ is the number of obstacles in P ′ visible to q.

Further, recall that in our algorithm discussed in Section 4.1, when the query
point q is in a bay (or canal), Vis(q,M) is the visible region of q in M through
a cone (or a sub-segment of the bay gate). Therefore, we need to deal with the
cone visibility in M. For this, we extend the result in Lemma 3.

Corollary 1. We can build a data structure of size O(n+h2) in O(n+h2 log h)
time that allows to compute Vis(q,M) in O(|Vis(q,M)|+ h′ logn) time for any
query point q in a bay or canal within its visibility cone, where h′ is the number
of obstacles in P ′ visible to q.

Next, we discuss the preprocessing for bays and canals. Recall that there are
two types of query situations on a bay/canal. The first type is that the query
point q is inside a bay/canal and we need to compute the visibility polygon of q
in that bay/canal. The second type is that q is outside a bay/canal along with
a sub-segment of a gate of that bay/canal and we need to compute the visibility
polygon of q in the bay/canal through that sub-segment.

For the first type, we simply use the data structure by Aronov et al. [2] for
simple polygons. Since all bays and canals have totally at most n vertices, the
preprocessing time and space for all bays and canals are O(n2 logn) and O(n2),
respectively. After that, for any query point q in a bay/canal, the visibility
polygon P of q in the bay/canal can be computed in O(log2 n + |P |) time.

For the second type, we do the following preprocessing. Consider a convex
obstacle P ∈ P ′. Let BayCanal(P ) (or BC(P )) denote the set of bays and
canals each of which has a gate lying on the boundary of P . For any query point
q 	∈ P , let Cq be a cone with apex q. Denote by Vis(q, BC(P )) the union of
the visibility polygons of q in all bays and canals of BC(P ), and here all other
obstacles in P ′ are ignored (i.e., we assume they are transparent and do not block
the view of q). Let Vis(Cq, BC(P )) = Cq ∩ Vis(q, BC(P )), i.e., Vis(Cq, BC(P )) is
the union of the visibility polygons of q in all bays and canals of BC(P ) through
the cone Cq. Using the techniques in [2], we have Lemma 4, with proof omitted.



Visibility and Ray Shooting Queries in Polygonal Domains 253

Lemma 4. For a convex obstacle P , suppose the total number of vertices in all
bays and canals of BC(P ) is m. We can build a data structure of size O(m2)
in O(m2 logm) time such that for any query point q 	∈ P , in O(logm) time, we
can obtain (a pointer to) a data structure storing Vis(q, BC(P )), and if needed,
report Vis(q, BC(P )) explicitly in additional O(|Vis(q, BC(P ))|) time. Further,
given any cone Cq with apex q, from the above data structure, we can obtain
Vis(Cq, BC(P )) in additional O(logm + |Vis(Cq, BC(P ))|) time.

We compute the data structure for Lemma 4 for each convex obstacle in P ′.
Since all bays and canals have O(n) vertices, the total preprocessing time is
O(n2 logn) and the space is O(n2).

In summary, our preprocessing includes: (1) preprocessing M (or P ′) using
Lemma 3 and Corollary 1, (2) preprocessing all bays and canals for the first
type query situation using the data structure in [2], and (3) preprocessing all
bays and canals for the second type query situation using Lemma 4. The overall
preprocessing time is O(n2 logn) and the space is O(n2).

4.3 The Query Algorithm

Consider a query point q. Our query algorithm for computing Vis(q) follows the
same procedure as given in Section 4.1. We first discuss the case of q ∈ M.

In Step (1), we compute Vis(q,M) using the data structure for Lemma 3,
which takes O(|Vis(q,M)|+ h′ logn) time. In Step (2), for each obstacle P ∈ P ′

visible to q, by Lemma 4, we obtain the data structure for storing Vis(q, BC(P )),
in O(log n) time. In Step (3), we check the boundary of Vis(q,M); for every ob-
stacle P visible to q, if q’s view of P is blocked partially by some other obstacles
of P ′, i.e., there are some cones through which q is visible to one or more portions
of P , then for each such cone Cq, by Lemma 4, we compute Vis(Cq, BC(P )) in
additional O(log n+ |Vis(Cq, BC(P ))|) time. Then, Vis(q) is obtained and is rep-
resented as a cyclically ordered list of visible edges and vertices. The correctness
of the algorithm follows from our discussion in Section 4.1.

To analyze the query time, let k = |Vis(q)|. First, |Vis(q,M)| plus the sum of
all |Vis(Cq, BC(P ))|’s is O(k). Second, the number of cones in Step (3) is O(h′)
because only h′ obstacles of P ′ are visible to q. Therefore, the overall time of
the query algorithm is O(k + h′ logn). Clearly, h′ ≤ h and h′ ≤ k.

Next, we discuss the case when q is in a bay, say bay(cd). In Step (1), we
compute the visibility polygon Vis(q, bay(cd)) in bay(cd), in O(log2 n + |Vis(q,
bay(cd))|) time using the data structure in [2]. If cd has a sub-segment c′d′ on the
boundary of Vis(q, bay(cd)), then in Step (2), we compute the visibility polygon
of q outside bay(cd) seeing through the cone with apex q and delimited by c′d′.
This step and the rest of the algorithm are basically the same as the former
case of q ∈ M. One difference is that we use Corollary 1 instead of Lemma 3
to compute Vis(q,M). Similarly to the analysis above, the overall query time is
O(log2 n + k + min{k, h} logn). Note that we have an additive O(log2 n) time
due to using the data structure for simple polygons [2].



254 D.Z. Chen and H. Wang

The remaining case when q is in a canal is the same as the bay case except
that we process the two canal gates separately. The time of each query is also
O(log2 n + k + min{k, h} logn). In summary, we have the following result.

Theorem 2. For a polygonal domain P, we can build a data structure of size
O(n2) in O(n2 logn) preprocessing time that can answer each visibility query in
O(log2 n + k + min{k, h} logn) time.

4.4 The Second Data Structure

The main difference between our second data structure and the first one is that
for bays and canals, we do not preprocess them using the data structures in [2]
and Lemma 4. Instead, we build a ray-shooting data structure in simple polygons
[5,10] for each bay and canal, which takes totally O(n) preprocessing time and
space. But, we still keep the data structures for Lemma 3 and Corollary 1. The
overall preprocessing time and space then become O(n+h2 log h) and O(n+h2),
respectively. Below, we discuss the query algorithm.

Consider a query point q. We first discuss the case of q ∈ M. In the first
step, we still compute Vis(q,M) by Lemma 3. In the second step, we check
the boundary of Vis(q,M). If a sub-segment of a bay/canal gate appears on
∂Vis(q,M), then we use the ray-shooting approach [2] to compute the visibility
polygon of q in the bay/canal through that sub-segment, which takes O(k′ logn)
time, where k′ is the output size of this visibility polygon. For the query time,
the first step takes O(|Vis(q,M)| + h′ logn) time. Again, h′ = O(k). For the
second step, clearly, the sum of all such k′ terms is O(k). Therefore, the query
time is O(k logn). The other cases when q is in a bay or canal are very similar
and we omit the discussions of them. In summary, we have the following result.

Theorem 3. For a polygonal domain P, we can build a data structure of size
O(n + h2) in O(n + h2 log h) preprocessing time that can answer each visibility
query in O(k logn) time.

5 Conclusions

In this paper we propose new data structures for ray-shooting queries and com-
puting visibility polygons for query points in polygonal domains, which bene-
fit in a large part from the extended corridor structure [8]. It would be inter-
esting to see whether further improvements are possible. In addition, the cur-
rent best visibility query data structures on simply polygons have complexities
O(n3 logn, n3, k + logn) and O(n2 logn, n2, k + log2 n), respectively; improving
these results would also be interesting, and in particular, an open question is
whether O(n2 logn, n2, k + logn) complexity data structures exist.

Acknowledgments. The authors would like to thank Tiancong Chen for help-
ful discussions in early phases of this work.



Visibility and Ray Shooting Queries in Polygonal Domains 255

References

1. Agarwal, P., Sharir, M.: Ray shooting amidst convex polygons in 2D. Journal of
Algorithms 21(3), 508–519 (1996)

2. Aronov, B., Guibas, L., Teichmann, M., Zhang, L.: Visibility queries and mainte-
nance in simple polygons. Discrete and Computational Geometry 27(4), 461–483
(2002)

3. Bar-Yehuda, R., Chazelle, B.: Triangulating disjoint Jordan chains. International
Journal of Computational Geometry and Applications 4(4), 475–481 (1994)

4. Bose, P., Lubiw, A., Munro, J.: Efficient visibility queries in simple polygons. Com-
putational Geometry: Theory and Applications 23(3), 313–335 (2002)

5. Chazelle, B., Edelsbrunner, H., Grigni, M., Gribas, L., Hershberger, J., Sharir, M.,
Snoeyink, J.: Ray shooting in polygons using geodesic triangulations. Algorith-
mica 12(1), 54–68 (1994)

6. Chazelle, B., Guibas, L.: Visibility and intersection problems in plane geometry.
Discrete and Computational Geometry 4, 551–589 (1989)

7. Chen, D.Z., Wang, H.: A nearly optimal algorithm for finding L1 shortest paths
among polygonal obstacles in the plane. In: Demetrescu, C., Halldórsson, M.M.
(eds.) ESA 2011. LNCS, vol. 6942, pp. 481–492. Springer, Heidelberg (2011)

8. Chen, D.Z., Wang, H.: Computing the visibility polygon of an island in a polygonal
domain. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP
2012, Part I. LNCS, vol. 7391, pp. 218–229. Springer, Heidelberg (2012)

9. Guibas, L., Hershberger, J., Leven, D., Sharir, M., Tarjan, R.: Linear-time algo-
rithms for visibility and shortest path problems inside triangulated simple poly-
gons. Algorithmica 2(1-4), 209–233 (1987)

10. Hershberger, J., Suri, S.: A pedestrian approach to ray shooting: Shoot a ray, take
a walk. Journal of Algorithms 18(3), 403–431 (1995)

11. Inkulu, R., Kapoor, S.: Planar rectilinear shortest path computation using corri-
dors. Computational Geometry: Theory and Applications 42(9), 873–884 (2009)

12. Inkulu, R., Kapoor, S.: Visibility queries in a polygonal region. Computational
Geometry: Theory and Applications 42(9), 852–864 (2009)

13. Kapoor, S., Maheshwari, S., Mitchell, J.: An efficient algorithm for Euclidean short-
est paths among polygonal obstacles in the plane. Discrete and Computational
Geometry 18(4), 377–383 (1997)

14. Lee, D., Preparata, F.: Euclidean shortest paths in the presence of rectilinear bar-
riers. Networks 14(3), 393–410 (1984)

15. Lu, L., Yang, C., Wang, J.: Point visibility computing in polygons with holes.
Journal of Information and Computational Science 8(16), 4165–4173 (2011)

16. Nouri, M., Ghodsi, M.: Space–query-time tradeoff for computing the visibility poly-
gon. In: Deng, X., Hopcroft, J.E., Xue, J. (eds.) FAW 2009. LNCS, vol. 5598, pp.
120–131. Springer, Heidelberg (2009)

17. Pocchiola, M.: Graphics in flatland revisited. In: Gilbert, J.R., Karlsson, R. (eds.)
SWAT 1990. LNCS, vol. 447, pp. 85–96. Springer, Heidelberg (1990)

18. Pocchiola, M., Vegter, G.: Pseudo-triangulations: Theory and applications. In: Proc.
of the 12th Annual Symposium on Computational Geometry, pp. 291–300 (1996)

19. Pocchiola, M., Vegter, G.: Topologically sweeping visibility complexes via pseudo-
triangulations. Discrete and Computational Geometry 16(4), 419–453 (1996)

20. Pocchiola, M., Vegter, G.: The visibility complex. International Journal of Com-
putational Geometry and Applications 6(3), 279–308 (1996)

21. Zarei, A., Ghodsi, M.: Query point visibility computation in polygons with holes.
Computational Geometry: Theory and Applications 39(2), 78–90 (2008)



Lift-and-Project Methods for Set Cover

and Knapsack�

Eden Chlamtáč1, Zachary Friggstad2, and Konstantinos Georgiou2

1 Ben Gurion University, Department of Computer Science, Beer Sheva, Israel
chlamtac@cs.bgu.ac.il

2 University of Waterloo, Department of Combinatorics and Optimization,
Waterloo, ON, Canada

{zfriggstad,k2georgiou}@math.uwaterloo.ca

Abstract. We study the applicability of lift-and-project methods to the
Set Cover and Knapsack problems. Inspired by recent work of Kar-
lin, Mathieu, and Nguyen [IPCO 2011], who examined this connection for
Knapsack, we consider the applicability and limitations of these meth-
ods for Set Cover, as well as extending extending the existing results
for Knapsack.

For the Set Cover problem, Cygan, Kowalik, and Wykurz [IPL 2009]
gave sub-exponential-time approximation algorithms with approxima-
tion ratios better than lnn. We present a very simple combinatorial al-
gorithm which has nearly the same time-approximation tradeoff as the
algorithm of Cygan et al. We then adapt this to an LP-based algorithm
using the LP hierarchy of Lovász and Schrijver. However, our approach
involves the trick of “lifting the objective function”. We show that this
trick is essential, by demonstrating an integrality gap of (1 − ε) lnn at
level Ω(n) of the stronger LP hierarchy of Sherali and Adams (when the
objective function is not lifted).

Finally, we show that the SDP hierarchy of Lovász and Schrijver (LS+)
reduces the integrality gap for Knapsack to (1 + ε) at level O(1). This
stands in contrast to Set Cover (where the work of Aleknovich, Arora,
and Tourlakis [STOC 2005] rules out any improvement using LS+), and
extends the work of Karlin et al., who demonstrated such an improve-
ment only for the more powerful SDP hierarchy of Lasserre. Our LS+

based rounding and analysis are quite different from theirs (in particu-
lar, not relying on the decomposition theorem they prove for the Lasserre
hierarchy), and to the best of our knowledge represents the first explicit
demonstration of such a reduction in the integrality gap of LS+ relax-
ations after a constant number of rounds.

Keywords: Set Cover, Sub-exponential Algorithms, Approximation
Algorithms, Lift-and-Project Methods, Knapsack.

� Full version available as arXiv:1204.5489. The first author’s work is partially sup-
ported by the Lynn and William Frankel Center for Computer Science.

F. Dehne, R. Solis-Oba, and J.-R. Sack (Eds.): WADS 2013, LNCS 8037, pp. 256–267, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Lift-and-Project Methods for Set Cover and Knapsack 257

1 Introduction

The Set Cover problem and the Knapsack problem are two of the most
fundamental and well-studied problems in approximation algorithms, and both
appeared on Karp’s original list of 21 NP-complete problems [12]. We consider
the minimum cost (or weighted) version of Set Cover: given a set X of n
items and a collection S ⊆ 2X of m subsets of X called “cover-sets”, where each
cover set has an associated non-negative cost c(S), the Set Cover problem
on instance (X,S) is the problem of finding a collection C of cover-sets in S of
minimum total cost, such that X =

⋃
S∈C S. In the Knapsack problem, we are

given n items which we identify with the integers [n], and each item i ∈ [n] has
some associated (nonnegative) reward ri and cost (or size) ci, and the goal is to
choose a set of items which fit in the knapsack, i.e. whose total cost does not
exceed some bound C, so as to maximize the total reward.

As is well known, the Set Cover problem can be approximated within a
logarithmic factor. Specifically, Johnson [10] showed that for uniform costs, a
simple greedy algorithm gives an Hn-approximation (where Hn = lnn+O(1) is

the n’th harmonic number
∑	n


k=1 1/k), and this was extended to the weighted
case by Chvátal [4]. Moreover, the cost of the solution found by the greedy al-
gorithm is at most an Hn-factor larger than the optimum value of the natural
linear programming (LP) relaxation [14,4]. As shown by Feige [6], this approxi-
mation is tight in the sense that a (1− ε) lnn-approximation in polynomial time
would imply that all problems in NP can be solved deterministically in time
nO(log logn).

Recently, Cygan, Kowalik, and Wykurz [5] showed that Set Cover can be
approximated within (1−ε)·lnn+O(1) in time 2nε+O(logm). Note that this time-
approximation tradeoff is essentially optimal assuming Moshkovitz’s Projection
Games Conjecture [16] and the Exponential Time Hypothesis (ETH) [9].

The Knapsack problem, on the other hand, is famously easy to approximate.
In particular, it has a well-known FPTAS [8].

1.1 Hierarchies of Convex Relaxations

One of the most powerful and ubiquitous tools in approximation algorithms has
been the use of mathematical programming relaxations, such as linear program-
ming (LP) and semidefinite programming (SDP). The common approach is as
follows: solve a convex (LP or SDP) relaxation for the 0-1 program, and “round”
the relaxed solution to give a (possibly suboptimal) feasible 0-1 solution. Since
the approximation ratio is usually analyzed by comparing the value of the re-
laxed solution to the value of the output (note that the 0-1 optimum is always
sandwiched between these two), a natural obstacle is the worst case ratio between
the relaxed optimum and the 0-1 optimum, known as the integrality gap.

While for many problems, this approach gives optimal approximations (see,
e.g., Raghavendra [17]), there are still many cases where natural LP and SDP re-
laxations have large integrality gaps not matched by any hardness of approxima-
tion results. This limitation can be circumvented by considering more powerful



258 E. Chlamtáč, Z. Friggstad, and K. Georgiou

relaxations. In particular, Sherali and Adams [19] Lovász and Schrijver [15], and
Lasserre [13] each have devised different systems, collectively known as hierar-
chies or lift-and-project methods, by which a simple relaxation can be strength-
ened until the polytope (or the convex body) it defines converges to the convex
hull of feasible 0-1 solutions. It is known that, for each of these hierarchies, if the
original relaxation has n variables and nO(1) constraints, then the relaxation at
level t of the hierarchy can be solved optimally in time nO(t). Thus, to achieve
improved approximations for a problem in polynomial (resp. sub-exponential
time), we would like to know if we can beat the integrality gap of the natural re-
laxation by using a relaxation at level O(1) (resp. o(n/ logn)) of some hierarchy.
For a survey on both algorithms using hierarchies and integrality gap results,
see [3].

While we often apply lift-and-project to the constraints, and optimise the
original objective function over the lifted feasible region, another approach is
“lifting the objective function”. In this variant, we guess some bound on the
objective function, add this bound as a constraint, and then apply lift-and-
project to the amended set of constraints. In this approach, we want the optimum
bound (on the objective function) for which the lifted relaxation is feasible.

One important way to evaluate the usefulness of LP and SDP hierarchies for
approximation algorithms is to study how their application affects the integrality
gap of natural relaxations for well-understood problems. This was done recently
by Karlin et al. [11] for Knapsack. They showed that, while the Sherali-Adams
LP hierarchy requires Ω(n) levels to bring the integrality gap below 2 − o(1),
level k of the Lasserre SDP hierarchy brings the integrality gap down to 1 +
O(1/k). While we would like to emulate the success of their lift-and-project-based
approach (and give an alternative sub-exponential algorithm for Set Cover),
as we shall see, in the case of Set Cover, this requires “lifting the objective
function”.

1.2 Our Results

To facilitate our lift-and-project based approach, we start by giving in Sec-
tion 3.1 a simple new sub-exponential time combinatorial algorithm for Set

Cover which nearly matches the time-approximation tradeoff guarantee in [5].

Theorem 1. For any instance of Set Cover with n items and m cover-
sets and for any (not necessarily constant) 1 ≤ d ≤ n, there is an Hn/d-

approximation algorithm running in time poly(n,m) ·mO(d).

The algorithm is combinatorial and does not rely on linear programming tech-
niques. By choosing d = nε, we get a sub-exponential time algorithm whose
approximation guarantee is better than lnn by a constant factor. While this the-
orem is slightly weaker than the previous best known guarantee, our algorithm
is remarkably simple, and will be instrumental in designing a similar lift-and-
project based Set Cover approximation, which is summarised in the following
theorem, which we prove in Section 3.2.



Lift-and-Project Methods for Set Cover and Knapsack 259

Theorem 2. For any 1 ≤ d ≤ n, the integrality gap of LP relaxation obtained
by taking the standard LP, and applying d rounds of the LS hierarchy while lifting
the objective function, is at most Hn/d.

On the other hand, without the trick of “lifting the objective function”, we show
in Section 4 that even the stronger LP hierarchy of Sherali-Adams [19] has an
integrality gap of at least (1 − ε) lnn at level Ω(n). Specifically, we show the
following

Theorem 3. For every 0 < ε, γ ≤ 1
2

, and for sufficiently large values of n, there
are instances of Set Cover on n cover-sets (over a universe of n items) for

which the integrality gap of the level-�γ(ε−ε2)
1+γ n� Sherali-Adams LP relaxation is

at least 1−ε
1+γ lnn.

For SDPs, it seems that lifting the objective function is necessary as well, due to
the work of Alekhnovich et al. [1] which gives a similar integrality gap for LS+

(note that the LS+ hierarchy and the Sherali-Adams hierarchy are incomparable).
As we will show, this stands in contrast to the Knapsack problem. For this
problem, we show that even without lifting the objective function, we can obtain
a PTAS using LS+ (reducing the integrality gap from 2 for the standard LP
relaxation).

Theorem 4. The integrality gap of level k of the LS+ relaxation for Knapsack

is at most 1 + O(k−1/3).

This extends the work of Karlin et al. [11], who showed a similar result, but only
for the much stronger Lasserre hierarchy. Both our rounding algorithm (for LS+)
and analysis deviate significantly from theirs. Indeed, the algorithm of Karlin et
al. [11] relied a powerful decomposition theorem for the Lasserre hierarchy which
does not seem to be applicable to LS+. Instead, our analysis introduces a novel
approach of bounding the number of rounds of LS+ needed via an upper bound
on the integrality gap of the standard LP relaxation.

In what follows, and before we start the exposition of our results, we present
in Section 2 the Lovász-Schrijver system along with some well-known facts that
we will need later on. We end with a discussion of future directions in Section 6.

2 Preliminaries on the Lovász-Schrijver System

For any polytope P , this system begins by introducing a nonnegative auxil-
iary variable x0, so that in every constraint of P , constants are multiplied by
x0. This yields the cone K0(P ) := {(x0, x0x) | x0 ≥ 0 & x ∈ P}. For an n-
dimensional polytope P , the Lovász-Schrijver system finds a hierarchy of nested
cones K0(P ) ⊇ K1(P ) ⊇ . . . ⊇ Kn(P ) (in the SDP variant, we will write
K+

t (P )), defined recursively, and which enjoy remarkable algorithmic proper-
ties. In what follows, let Pk denote the space of vectors indexed by subsets of
[n] of size at most k, and for any y ∈ Pk, define the moment matrix Y [y] to be
the square matrix with rows and columns indexed by sets of size at most �k/2�,



260 E. Chlamtáč, Z. Friggstad, and K. Georgiou

where the entry at row A and column B is yA∪B. Also we denote by e0, e1, . . . , en
the standard orthonormal basis of dimension n + 1, such that Y [y]ei is the i-th
column of the moment matrix.

Definition 1 (The Lovász-Schrijver (LS) and Lovász-Schrijver SDP (LS+)
systems). Consider the conified polytope K0(P ) defined earlier (let us also
write K+

0 (P ) = K0(P )). The level-t Lovász-Schrijver cone (relaxation or tight-
ening) Kt(P ) (resp. K+

t (P )) of LS (resp. LS+) is recursively defined as all
n + 1 dimensional vectors (x0, x0x) for which there exist y ∈ P2 such that
Y [y]ei, Y

[y] (e0 − ei) ∈ Kt−1(P ) (resp. K+
t−1(P )) and (x0, x0x) = Y [y]e0. The

level-t Lovász-Schrijver SDP tightening of LS+ asks in addition that Y [y] is a
positive-semidefinite matrix.

In the original work of Lovász and Schrijver [15] it is shown that the cone Kn(P )
(even in the LS system) projected on x0 = 1 is exactly the integral hull of the
original LP relaxation, while one can optimize over Kt(P ) in time nO(t), given
that the original relaxation admits a (weak) polytime separation oracle. The
algorithm in this section, as well as the one in Section 5, both rely heavily on
the following facts, which follow easily from the above definition:

Fact 5. For any vector x ∈ [0, 1]n such that (1,x) ∈ Kt(P ), and corresponding
moment vector y ∈ P2, and for any i ∈ [n] such that xi > 0, the rescaled column
vector 1

xi
Y [y]ei is in Kt−1(P ) ∩ {(1,x′) | x′ ∈ [0, 1]n}.

Fact 6. For any vector x ∈ [0, 1]n such that (1,x) ∈ Kt(P ), and any coordinate
j such that xj in integral, and any vector x′ such that (1,x′) ∈ Kt−1(P ) derived
from x as in Fact 5, we have x′

j = xj.

3 Sub-Exponential Algorithms for Set Cover

In this section, we present a simple combinatorial sub-exponential algorithm for
Set Cover, and then adapt it to a lift-and-project based algorithm. In what
follows, we let (X,S) denote a Set Cover instance with items X and cover-sets
S where each S ∈ S has cost c(S). We use n to denote the number of items in
X and m to denote the number of cover-sets in S.

3.1 Sketch of our Combinatorial Set Cover Algorithm

Recall that the standard greedy algorithm for approximating Set Cover iter-
atively selects the cover-set S of minimum density c(S)/|S \

⋃
T∈C T | where C

is the collection of cover-sets already chosen. The approximation guarantee of
this algorithm is Hb, where b is the size of the largest cover-set. Our algorithm
builds on this result simply by guessing up to d cover-sets in the optimal solution
before running the greedy algorithm.

However, some of the cover-sets in S that were not guessed (and might still
contain uncovered items) are discarded before running the greedy algorithm.



Lift-and-Project Methods for Set Cover and Knapsack 261

Specifically, we discard the cover-sets that contain more than n
d uncovered items

after initially guessing the d sets. While it may seem counter-intuitive to discard
sets that cover many items, we do this to exploit the stronger approximation
guarantee of the greedy algorithm when the sizes of the cover-sets are bounded.

To that end, we show that for some choice of d sets in the optimal solution,
no remaining set in the optimum solution covers more than n

d uncovered items.
Thus, running the greedy algorithm on the remaining sets is actually an Hn/d-
approximation. The full description of the algorithm along with all details of the
proof of Theorem 1 are in the full version of the paper.

3.2 Proof Based on the Lovász-Schrijver System

In this section we prove Theorem 2, giving an alternative LP-based approxima-
tion algorithm for Set Cover with the same performance as in Section 3.1.
Specifically, we adapt our combinatorial algorithm to give a rounding algorithm
for an LP obtained by applying lift-and-project and “lifting the objective func-
tion”. Consider the standard LP relaxation for Set Cover on instance (X,S):

minimize
∑
S∈S

c(s)xS

subject to
∑
S�i

xS ≥ 1 ∀ i ∈ X (1)

0 ≤ xS ≤ 1 ∀ S ∈ S (2)

Now, consider the corresponding feasibility LP where instead of explicitly mini-
mizing the objective function, we add the following bound on the objective func-
tion as a constraint (we will later guess the optimal value q by binary search):∑

S∈S
c(S)xS ≤ q. (3)

We will work with the feasibility LP consisting only of constraints (1), (2), and (3)
(and no objective function). Denote the corresponding polytope of feasible solu-
tions by Pq.

In what follows we strengthen polytope Pq using the Lovász-Schrijver lift-and-
project system. Next we show that the level-d Lovász-Schrijver relaxation Kd(Pq)
can give a Hn

d
-factor approximation algorithm. We note here that applying the

Lovász-Schrijver system to the feasibility Pq (which includes the objective func-
tion as a constraint) and not on the standard LP relaxation of Set Cover is
crucial, since by Alekhnovich et al. [1] the latter LP has a very bad integrality
gap even when strengthened by Ω(n) rounds of LS+ (which is even stronger than
LS).

To that end, let q be the smallest value such that Kd(Pq) is not empty (note
that q ≤ OPT). The value q can be found through binary search (note that
in each stage of the binary search we check Kd(Pq′) for emptyness for some q′,
which takes time mO(d)). Our goal is to show that for this q we can find a Set

Cover of cost at most q ·Hn
d

.



262 E. Chlamtáč, Z. Friggstad, and K. Georgiou

Let x(0) be such that (1,x(0)) ∈ Kd(Pq). For any coordinate i in the support
of x(0) we can invoke Fact 5 and get a vector x(1) such that (1,x(1)) ∈ Kd−1(Pq)

and x
(1)

i = 1. By Fact 6, by iterating this step, we eventually obtain a vector
x(d) ∈ Pq which is integral in at least d coordinates. Note that by constraint (3),
this solution has cost at most q. We refer to this subroutine as the Conditioning
Phase, which is realised in d inductive steps.

If at some step 0 ≤ i ≤ d, the sets whose coordinates in x(i) are set to 1
cover all universe elements X , we have solved the Set Cover instance with
cost

∑
S:x

(i)
S =1

c(S) ≤ q ≤ OPT. Otherwise, we need to solve a smaller instance

of Set Cover defined by all elements Y ⊆ X not already covered, using cover-

sets T = {S ∩ Y | x(d)
S > 0}. We introduce some structure in the resulting

instance (Y, T ) of Set Cover by choosing the indices we condition on greedily
(the reader can see more details in the full version of the paper).

Lemma 1. If at each step of the Conditioning Phase we condition on a set S in
the support of the current solution x(d′) containing the most uncovered elements
in X, then for all T ∈ T we have |T | ≤ n

d .

Proof. For 1 ≤ i ≤ d let Si denote the cover-set chosen at step i of the Condi-
tioning Phase. Note that, by Fact 6, the support of x(i′) contains the support
of x(i) for all i′ < i, and all the coordinates corresponding to the sets Si have
value 1 in x(d). Therefore, all d sets S1, . . . , Sd are in the support of all vectors
x(0), . . . ,x(d).

Since at step i we chose the largest (with respect to the uncovered items)
cover-set Si in the support of x(i−1) we have |Sj \

⋃
i′<j Si′ | ≤ |Sj \

⋃
i′<i Si′ | ≤

|Si \
⋃

i′<i Si′ | for every j > i. Thus, letting αi := |Si \
⋃

i′<i Si′ | for 1 ≤ i ≤ d,
we have α1 ≥ α2 ≥ . . . ≥ αd. Since these represent cardinalities of disjoint sets,
we have d · αd ≤

∑d
i=1 αi = |

⋃d
i=1 Si| ≤ n, and so αd ≤ n

d .

Again, by our choice of Sd and the fact that the support of x(d) is contained
in the support of x(d−1), it follows that for every set S ∈ S \ {S1, . . . , Sd} which

is in the support of x(d), we have |S \
⋃d

i=1 Si| ≤ |S \
⋃d−1

i=1 Si| ≤ αd ≤ n
d . Thus,

the instance (Y, T ) has |T | ≤ n
d for any T ∈ T .

Let D be the collection of cover-sets chosen as in Lemma 1. Observe that the vec-
tor x(d) projected on the cover-sets S\D that were not chosen in the Conditioning
Phase is feasible for the LP relaxation of the instance (Y, T ). In particular, the
cost of the LP is at most q−

∑
S∈D c(S), and by Lemma 1 all cover-sets have size

at most n
d . The greedy algorithm will then find a solution for (Y, T ) of cost at

most Hn
d
·
(
q −

∑
S∈D c(S)

)
. Altogether, this gives a feasible solution for (X,S)

of cost Hn
d
·
(
q −

∑
S∈D c(S)

)
+

∑
S∈D c(S) ≤ Hn

d
· q ≤ Hn

d
·OPT.

4 Linear Sherali-Adams Integrality Gap for Set Cover

The level-� Sherali-Adams relaxation is a tightened LP that can be derived sys-
tematically starting with any 0-1 LP relaxation. While in this work we are in-



Lift-and-Project Methods for Set Cover and Knapsack 263

terested in tightening the Set Cover polytope, the process we describe below
is applicable to any other relaxation.

Definition 2 (The Sherali-Adams system). Consider a polytope over the
variables y1, . . . , yn defined by finitely many constraints (including the box-
constraints 0 ≤ yi ≤ 1). The level-� Sherali-Adams relaxation is an LP over the
variables {yA} where A is any subset of {1, 2, . . . , n} of size at most � + 1, and
where y∅ = 1. For every constraint

∑n
i=1 aiyi ≥ b of the original polytope and for

every disjoint P,E ⊆ {1, . . . , n} with |P |+ |E| ≤ �, the following is a constraint
of the level-� Sherali-Adams relaxation

∑n
i=1 ai

∑
∅⊆T⊆E(−1)|T |yP∪T∪{i} ≥

b
∑

∅⊆T⊆E(−1)|T |yP∪T .

We will prove Theorem 3 in this section. For this we will need two ingredients: (a)
appropriate instances, and (b) a solution of the Sherali-Adams LP as described
in Definition 2. Our hard instances are described in the following lemma, which
is due to Alekhnovich et al. [1].

Lemma 2 (Set Cover instances with no small feasible solutions).
For every ε > η > 0, and for all sufficiently large n, there exist Set Cover

instances over a universe of n elements and n cover-sets, such that:
(i) Every element of the universe appears in exactly (ε− η)n cover-sets, and
(ii) There is no feasible solution that uses less than log1+ε n cover-sets.

In order to prove Theorem 3 we will invoke Lemma 2 with appropriate parame-
ters. Then we will define a vector solution for the level-� Sherali-Adams relaxation
as described. The proof of Lemma 3 below involves a number of extensive cal-
culations which we give in the full version of the paper.

Lemma 3. Consider a Set Cover instance on n cover-sets as described in
Lemma 2. Let f denote the number of cover-sets covering every element of the
universe. For f ≥ 3�, the vector y indexed by subsets of {1, . . . , n} of size at

most �+ 1 defined as yA := (f−�−1)!

(f−�−1+|A|)! , ∀A ⊆ {1, . . . , n}, |A| ≤ �+ 1, satisfies

the level-� Sherali-Adams LP relaxation of the Set Cover polytope.

Assuming the lemma, we are ready to prove Theorem 3.

Proof (Proof of Theorem 3). Fix ε > 0 and invoke Lemma 2 with η = ε2 to
obtain a Set Cover instance on n universe elements and n cover-sets for which
(i) every universe element is covered by exactly (ε − ε2)n cover-sets, and (ii)
no feasible solution exists of cost less than log1+ε n. Note that in particular
(i) implies that in the Set Cover LP relaxation, every constraint has support
exactly f = (ε− ε2)n.

Set � = γ(ε−ε2)
1+γ n and note that f/� ≥ 3, since γ ≤ 1

2
. This means we can

define a feasible level-� Sherali-Adams solution as described in Lemma 3. The
values of the singleton variables are set to y{i} = 1

(ε−ε2)n−� = 1+γ
(ε−ε2)n . But then,

the integrality gap is at least OPT∑
n
i=1 y{i}

≥ ε−ε2

1+γ · log1+ε n = ε−ε2

(1+γ) ln(1+ε) lnn. The

lemma follows once we observe that ln(1 + ε) = ε− 1
2
ε2 + Θ(ε3).



264 E. Chlamtáč, Z. Friggstad, and K. Georgiou

5 An LS+-Based PTAS for Knapsack

Consider an instance of the Knapsack problem with rewards r1 . . . , rn and costs
(or sizes) c1, . . . , cn and total capacity C. In what follows we will use the natural
LP relaxation for Knapsack:

maximize
∑n

i=1 rixi

subject to
∑n

i=1 cixi ≤ C

0 ≤ xi ≤ 1 ∀ i ∈ [n]

Denote the polytope corresponding to the above constraints by P . We will
consider the SDP derived by applying sufficiently many levels of LS+ (as defined
in Section 3.2) to the above LP. That is, for some � > 0, we consider the SDP

maximize
n∑

i=1

rixi

subject to (1,x) ∈ K+
� (P ).

(note that we do not lift the objective function).
There is a well-known simple greedy algorithm for Knapsack: Sort the items

by decreasing order of ri/ci, and add them to the knapsack one at a time until
the current item does not fit. The following lemma (which is folklore) relates the
performance of the greedy algorithm to the value of the LP relaxation P :

Lemma 4. Let x be a solution to P , and RG be the reward given by the greedy
algorithm. Then

∑
i rixi ≤ RG + maxi ri.

This gives a trivial bound of 2 on the integrality gap, assuming that ci ≤ C for
all i (that is, that each item can be a solution on its own), since we then have
RG + maxi ri ≤ 2OPT.1 We note that the above assumption is not needed when
using lift-and-project methods since they will place a weight of 0 on any item
i with ci > C. Lemma 4 has the following easy corollary: Consider the above
greedy algorithm, with the modification that we first add all items which have
xi = 1 and discard all items which have xi = 0. Then the following holds:

Corollary 1. Let x be a solution to P , and let R′
G be the total reward given by

the above modified greedy algorithm. Then
∑

i rixi ≤ R′
G + maxi:0<xi<1 ri.

We will show that, for any constant ε > 0, there is a constant Lε such that
the SDP relaxation for Knapsack arising from level Lε of LS+ has integrality
gap at most 1 + O(ε). For the Lasserre hierarchy, this has been shown for level
1/ε [11]. We will show this for level Lε = 1/ε3 in the case of LS+.

Our rounding algorithm will take as input the values of the Knapsack in-
stance (ri)i, (ci)i, and C, an optimal solution x s.t. (1,x) ∈ K+

� (P ) (for some
level � > 0, initially � = Lε), and parameters ε and ρ. The parameter ρ is

1 Here, as before, OPT denotes the optimal 0-1 solution.



Lift-and-Project Methods for Set Cover and Knapsack 265

intended to be the threshold ε · OPT in the set SεOPT = {i | ri > ε · OPT}.
Rather than guessing a value for OPT, though, we will simply try all values of
ρ ∈ {ri | i ∈ [n]} ∪ {0} and note that for exactly one of those values, the set
SεOPT coincides with the set {i | ri > ρ} (also note that ρ is a parameter of the
rounding, and not involved at all in the SDP relaxation).

The intuition behind our rounding algorithm is as follows: As we did for Set

Cover, we would like to repeatedly “condition” on setting some variable to
1, by using Fact 5. If we condition only on (variables corresponding to) items
in SεOPT, then after at most 1/ε iterations, the SDP solution will be integral
on that set, and then by Corollary 1 the modified greedy algorithm will give
a 1 + O(εOPT) approximation relative to the value of the objective function
(since items outside SεOPT have reward at most εOPT). The problem with this
approach (and the reason why LP hierarchies do not work), is the same problem
as for Set Cover: the conditioning step does not preserve the value of the
objective function. While the optimum value of any relaxation is at least OPT
by definition, after conditioning, the value of the new solution may be much
smaller than OPT, which then makes the use of Corollary 1 meaningless. The
key observation is that we can avoid this scenario by using SDPs:

Lemma 5. Let (1,x) be a solution to K+
� (P ) for some � ≥ 1, with the corre-

sponding moment vector y. Then the solution satisfies

n∑
i=1

ri

n∑
j=1

rjy{i,j} ≥
( n∑

i=1

rixi

)2(
=

n∑
i=1

ri

n∑
j=1

xirjxj

)
.

Indeed, this ensures that we can choose some item i to condition on without
any decrease in the new objective function

∑
j rj(yi,j/xi).

2 Unfortunately, there
may not necessarily be such an item specifically in SεOPT. However, if all items in
SεOPT cause the objective function to decrease after conditioning, then the above
lemma guarantees that some item outside SεOPT will cause the objective function
to increase after conditioning. Counter-intuitively, we will actually condition on
such an item in this case. We bound the number of times this can occur via
the following evidently new idea: if x(0) is an optimal solution to K+

� (P ) (for
some �), then it has objective value at least OPT; If by a series of conditioning
steps we obtain a sequence of solutions x(1), . . . ,x(d) with sufficient increase in
the objective value such that the value of x(d) is more than twice the value of
x(0), then this contradicts the fact that the integrality gap (even of the standard
LP) is always bounded by 2. Our rounding algorithm KS-Round is described in
Algorithm 1. We defer the performance analysis to the full version of the paper.

2 Note that this is crucial for a maximization problem like Knapsack, while for a
minimization problem like Set Cover it does not seem helpful (and indeed, by the
integrality gap of Alekhnovich et al. [1], we know it does not help).



266 E. Chlamtáč, Z. Friggstad, and K. Georgiou

Algorithm 1. KS-Round((ri)i, (ci)i, C,x, ε, ρ)

1: Let y ∈ P2 be the moment vector associated with (1,x).
2: Let Sρ ← {i | ri > ρ}, and let Sb ← {i | xi = b} for b = 0, 1.
3: if Sρ ⊆ S0 ∪ S1 then
4: Run the modified greedy algorithm.

5: else if
∑

i∈Sρ\S1

rixi < ε ·
n∑

i=1

rixi then

6: Run the modified greedy algorithm on items in ([n] \ Sρ) ∪ S1.

7: else if there is some i ∈ Sρ \ (S0 ∪S1) s.t.

n∑
j=1

rjy{i,j} ≥ (1− ε2)xi ·
n∑

j=1

rjxj then

8: Run KS-Round((ri)i, (ci)i, C,
1
xi
Y [y]ei, ε, ρ). � See Fact 5

9: else

10: Choose i ∈ [n] \ (Sρ ∪ S0) s.t.

n∑
j=1

rjy{i,j} > (1 + ε3)xi ·
n∑

j=1

rjxj

11: Run KS-Round((ri)i, (ci)i, C,
1
xi
Y [y]ei, ε, ρ). � See Fact 5

12: end if

6 Conclusion

As we have seen, lift-and-project methods can give rise to LP and SDP relaxations
which match the guarantee of combinatorial algorithms in cases where the stan-
dard relaxations have a large integrality gap. For packing problems, such asKnap-

sack, it seems like (even relatively weak) SDP hierarchies can accomplish this by
keeping the value of the objective relatively stable, while for covering problems,
such as Set Cover, lifting the objective function explicitly becomes necessary.

Note that our LS+-based algorithm for Knapsack shows that in some in-
stances reduced integrality gaps which rely heavily on properties of the Lasserre
hierarchy can be achieved using the weaker LS+ hierarchy. This raises the ques-
tion of whether the problems discussed in the recent series of Lasserre-based
approximation algorithms [2,7,18] also admit similar results using LS+. On the
flip side, it would also be interesting to see whether any such problems have
strong integrality gap lower bounds for LS+, which would show a separation
between the two hierarchies.

Acknowledgements. We would like to thank Dana Moshkovitz for pointing
out the blowup in her Set Cover reduction. We would also like to thank Mo-
hammad R. Salavatipour for preliminary discussions on sub-exponential time
approximation algorithms in general. Finally, we would like to thank Claire
Mathieu for insightful past discussions of the Knapsack-related results in [11].

References

1. Alekhnovich, M., Arora, S., Tourlakis, I.: Towards strong nonapproximability re-
sults in the Lovász-Schrijver hierarchy. In: Proceedings of ACM Symposium on
Theory of Computing, pp. 294–303 (2005)



Lift-and-Project Methods for Set Cover and Knapsack 267

2. Barak, B., Raghavendra, P., Steurer, D.: Rounding semidefinite programming hier-
archies via global correlation. In: Proceedings of IEEE Symposium on Foundations
of Computer Science, pp. 472–481 (2011)

3. Chlamtáč, E., Tulsiani, M.: Convex relaxations and integrality gaps. In: Anjos,
M.F., Lasserre, J.B. (eds.) Handbook on Semidefinite, Conic and Polynomial Op-
timization. International Series in Operations Research & Management Science,
vol. 166, pp. 139–169. Springer, Heidelberg (2012)

4. Chvátal, V.: A greedy heuristic for the set-covering problem. Mathematics of Op-
erations Research 4(3), 233–235 (1979), doi:10.2307/3689577

5. Cygan, M., Kowalik, L., Wykurz, M.: Exponential-time approximation of weighted
set cover. Inf. Process. Lett. 109(16), 957–961 (2009)

6. Feige, U.: A threshold of lnn for approximating set cover. J. ACM 45(4), 634–652
(1998)

7. Guruswami, V., Sinop, A.K.: Lasserre hierarchy, higher eigenvalues, and approx-
imation schemes for graph partitioning and quadratic integer programming with
PSD objectives. In: Proceedings of IEEE Symposium on Foundations of Computer
Science, pp. 482–491 (October 2011)

8. Ibarra, O.H., Kim, C.E.: Fast approximation algorithms for the knapsack and sum
of subset problems. J. ACM 22(4), 463–468 (1975)

9. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst.
Sci. 62(2), 367–375 (2001)

10. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput.
Syst. Sci. 9(3), 256–278 (1974)

11. Karlin, A.R., Mathieu, C., Nguyen, C.T.: Integrality gaps of linear and semi-
definite programming relaxations for knapsack. In: Günlük, O., Woeginger, G.J.
(eds.) IPCO 2011. LNCS, vol. 6655, pp. 301–314. Springer, Heidelberg (2011)

12. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Com-
puter Computations, pp. 85–103 (1972)

13. Lasserre, J.B.: An explicit equivalent positive semidefinite program for nonlinear
0-1 programs. SIAM Journal on Optimization 12(3), 756–769 (2002)

14. Lovász, L.: On the ratio of optimal integral and fractional covers. Discrete Math-
ematics 13(4), 383–390 (1975)

15. Lovász, L., Schrijver, A.: Cones of matrices and set-functions and 0-1 optimization.
SIAM J. Optim. 1(2), 166–190 (1991)

16. Moshkovitz, D.: The projection games conjecture and the NP-hardness of lnn-
approximating set-cover. In: Gupta, A., Jansen, K., Rolim, J., Servedio, R. (eds.)
APPROX 2012 and RANDOM 2012. LNCS, vol. 7408, pp. 276–287. Springer,
Heidelberg (2012)

17. Raghavendra, P.: Optimal algorithms and inapproximability results for every csp?
In: Proceedings of ACM Symposium on Theory of Computing, pp. 245–254 (2008)

18. Raghavendra, P., Tan, N.: Approximating csps with global cardinality constraints
using sdp hierarchies. In: Proceedings of ACM-SIAM Symposium on Discrete Al-
gorithms, pp. 373–387. SIAM (2012)

19. Sherali, H.D., Adams, W.P.: A hierarchy of relaxations between the continuous and
convex hull representations for zero-one programming problems. SIAM Journal on
Discrete Mathematics 3(3), 411–430 (1990)



Optimal Time-Convex Hull under the Lp

Metrics�

Bang-Sin Dai3, Mong-Jen Kao1, and D.T. Lee1,2,3

1 Research Center for Infor. Tech. Innovation, Academia Sinica, Taiwan
2 Dep. of Computer Sci. and Engineering, National Chung-Hsing Uni., Taiwan
3 Dep. of Computer Sci. and Infor. Engineering, National Taiwan Uni., Taiwan

f94922074@ntu.edu.tw, mong@citi.sinica.edu.tw, dtlee@ieee.org

Abstract. We consider the problem of computing the time-convex hull
of a point set under the general Lp metric in the presence of a straight-line
highway in the plane. The traveling speed along the highway is assumed
to be faster than that off the highway, and the shortest time-path between
a distant pair may involve traveling along the highway. The time-convex
hull TCH(P ) of a point set P is the smallest set containing both P and
all shortest time-paths between any two points in TCH(P ). In this paper
we give an algorithm that computes the time-convex hull under the Lp

metric in optimal O(n log n) time for a given set of n points and a real
number p with 1 ≤ p ≤ ∞.

1 Introduction

Path planning, in particular, shortest time-path planning, in complex trans-
portation networks has become an important yet challenging issue in recent
years. With the usage of heterogeneous moving speeds provided by different
means of transportation, the time-distance between two points, i.e., the amount
of time it takes to go from one point to the other, is often more important than
their straight-line distance. With the reinterpretation of distances by the time-
based concept, fundamental geometric problems such as convex hull, Voronoi
diagrams, facility location, etc. have been reconsidered recently in depth and
with insights [1, 4, 6].

From the theoretical point of view, straight-line highways which provide faster
moving speed and which we can enter and exit at any point is one of the simplest
transportation models to explore. The speed at which one can move along the
highway is assumed to be v > 1, while the speed off the highway is 1. General-
ization of convex hulls in the presence of highways was introduced by Hurtado
et al. [8], who suggested that the notion of convexity be defined by the inclusion
of shortest time paths, instead of straight-line segments, i.e., a set S is said to be
convex if it contains the shortest time-path between any two points of S. Using

� This work was supported in part by National Science Council (NSC), Taiwan, under
grants NSC-101-2221-E-005-026 and NSC-101-2221-E-005-019.

F. Dehne, R. Solis-Oba, and J.-R. Sack (Eds.): WADS 2013, LNCS 8037, pp. 268–279, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Optimal Time-Convex Hull under the Lp Metrics 269

this new definition, the time-convex hull TCH(P ) for a set P is the closure of P
with respect to the inclusion of shortest time-paths.

In following work, Palop [10] studied the structure of TCH(P ) in the pres-
ence of a highway and showed that it is composed of convex clusters possibly
together with segments of the highway connecting all the clusters. A particularly
interesting fact implied by the hull-structure is that, the shortest time-path be-
tween each pair of inter-cluster points must contain a piece of traversal along the
highway, while similar assertions do not hold for intra-cluster pairs of points: A
distant pair of points (p, q) whose shortest time-path contains a segment of the
highway could still belong to the same cluster, for there may exist other points
from the same cluster whose shortest time-path to either p or q does not use
the highway at all. This suggests that, the structure of TCH(P ) in some sense
indicates the degree of convenience provided by the underlying transportation
network. We are content with clusters of higher densities, i.e., any cluster with
a large ratio between the number of points of P it contains and the area of that
cluster. For sparse clusters, we may want to break them and benefit distant pairs
they contain by enhancing the transportation infrastructure.

The approach suggested by Palop [10] for the presence of a highway involves
enumeration of shortest time-paths between all pairs of points and hence requires
Θ
(
n2

)
time, where n is the number of points. This problem was later studied by

Yu and Lee [11], who proposed an approach based on incremental point insertions
in a highway-parallel monotonic order. However, the proposed algorithm does not
return the correct hull in all circumstances as particular cases were overlooked.
The first sub-quadratic algorithm was given by Aloupis et al. [3], who proposed
an O

(
n log2 n

)
algorithm for the L2 metric and an O(n logn) algorithm for

the L1 metric, following the incremental approach suggested by [11] with careful
case analysis. To the best of our knowledge, no previous results regarding metrics
other than L1 and L2 were presented.

Our Focus and Contribution. In this paper we address the problem of computing
the time-convex hull of a point set in the presence of a straight-line highway under
the Lp metric for a given real number p with 1 ≤ p ≤ ∞. First, we adopt the
concept of wavefront propagation, a notion commonly used for path planning [2,
6], and derive basic properties required for depicting the hull structure under the
general Lp metric. When the shortest path between two points is not uniquely
defined, e.g., in L1 and L∞ metrics, we propose a re-evaluation on the existing
definition of convexity. Previous works concerning convex hulls under metrics
other than L2, e.g., Ottmann et al. [9] and Aloupis et al. [3], assume a particular
path to be taken when multiple choices are available. However, this assumption
allows the boundary of a convex set to contain reflex angles, which in some sense
deviates from the intuition of a set being convex.

In this work we adopt the definition that requires a convex set to include
every shortest path between any two points it contains. Although this definition
fundamentally simplifies the shapes of convex sets for L1 and L∞ metrics, we
show that the nature of the problem is not altered when time-based concepts
are considered. In particular, the problem of deciding whether any pair of the



270 B.-S. Dai, M.-J. Kao, and D.T. Lee

given points belong to the same cluster under the Lp metric requires Ω(n logn)
time under the algebraic computation model [5], for all 1 ≤ p ≤ ∞.

Second, we provide an optimal O(n logn) algorithm for computing the time-
convex hull for a given set of points. The known algorithm due to Aloupis et
al. [3] stems from a scenario in the cluster-merging step where we have to check
for the existence of intersections between a line segment and a set of convex
curves composed of parabolae and line segments, which leads to theirO

(
n log2 n

)
algorithm. In our paper, we tackle this situation by making an observation on the
duality of cluster-merging conditions and reduce the problem to the geometric
query of deciding if any of the given points lies above a line segment of an
arbitrary slope. This approach greatly simplifies the algorithm structure and
can be easily generalized to other Lp-metrics for 1 ≤ p ≤ ∞. For this particular
geometric problem, we use a data structure due to Guibas et al [7] to answer this
query in logarithmic time. All together this yields our O(n logn) algorithm. We
remark that, although our adopted definition of convexity simplifies the shape of
convex sets under the L1 and the L∞ metrics, the algorithm we propose does not
take advantage of this specific property and also works for the original notion
for which only a particular path is to be included.

2 Preliminaries

In this section, we give precise definitions of the notions as well as sketches of
previously known properties that are essential to present our work. We begin
with the general Lp distance metric and basic time-based concepts.

Definition 1 (Distance in the Lp-metrics). For any real number p ≥ 1 and
any two points qi, qj ∈ Rn with coordinates (i1, i2, . . . , in) and (j1, j2, . . . , jn),
the distance between qi and qj under the Lp-metric is defined to be dp(qi, qj) =

(
∑n

k=1 |ik − jk|p)
1
p .

Note that when p tends to infinity, dp(qi, qj) converges to max1≤k≤n |ik − jk|.
This gives the definition of the distance function in the L∞-metric, which is
d∞(qi, qj) = max1≤k≤n |ik − jk|. For the rest of this paper, we use the subscript
p to indicate the specific Lp-metric, and the subscript p will be omitted when
there is no ambiguity.

A transportation highway H in Rn is a hyperplane in which the moving speed
in H is vH, where 1 < vH ≤ ∞, while the moving speed off H is assumed to
be unit. Given the moving speed in the space, we can define the time-distance
between any two points in Rn.

Definition 2. For any qi, qj ∈ Rn, a continuous curve C connecting qi and qj is
said to be a shortest time-path if the traveling time required along C is minimum
among all possible curves connecting qi and qj. The traveling time required along

C is referred to as the time-distance between qi and qj, denoted d̂(qi, qj).



Optimal Time-Convex Hull under the Lp Metrics 271

For any two points qi and qj , let STP(qi, qj) denote the set of shortest time-paths
between qi and qj . For any C ∈ STP(qi, qj), we say that C enters the highway H
if C ∩H 	= ∅. The walking-region of a point q ∈ Rn, denoted WR(q), is defined to
be the set of points whose set of shortest time-paths to q contains a time-path
that does not enter the highway H. For any C ∈ STP(qi, qj), we say that C uses
the highway H if C ∩H contains a piece with non-zero length, i.e., at some point
C enters the highway H and walks along it.

Convexity and Time-Convex Hulls. In classical definitions, a set of points is said
to be convex if it contains every line segment joining each pair of points in the
set, and the convex hull of a set of points Q ⊆ Rn is the minimal convex set
containing Q. When time-distance is considered, the concept of convexity as well
as convex hulls with respect to time-paths is defined analogously. A set of points
is said to be convex with respect to time, or, time-convex, if it contains every
shortest time-path joining each pair of points in the set.

Definition 3 (Time-convex hull). The time-convex hull, of a set of points
Q ⊆ Rn, denoted TCH(Q), is the minimal time-convex set containing Q.

Although the aforementioned concepts are defined in Rn space, in this paper we
work in R2 plane with an axis-parallel highway placed on the x-axis as higher
dimensional space does not give further insights: When considering the shortest
time-paths between two points in higher dimensional space, it suffices to consider
the specific plane that is orthogonal to H and that contains the two points.

Time-Convex Hull under the L1 and the L2 Metrics. The structure of time-
convex hulls under the L1 and the L2 metrics has been studied in a series of
work [3, 10, 11]. Below we review important properties. See also Fig. 1 for an
illustration.

Proposition 1 ( [10, 11]). For the L2-metric and any point q = (xq, yq) with
yq ≥ 0, we have the following properties.
1. If a shortest time-path starting from q uses the highway H, then it must enter

the highway with an incidence angle α = arcsin 1/vH toward the direction of
the destination.

2. The walking region of a point q ∈ R2 is characterized by the following two
parabolae: (a) right discriminating parabola, which is the curve satisfying{
x ≥ xq + yq tanα, and√

(x− xq)
2 + (y − yq)

2 = yq secα+ y secα+ 1
vH ((x− y tanα)− (xq + yq tanα)).

H

�

α

�

α

q1 q2

H

�

α

q

H

�

q

Fig. 1. (a) The only two possible paths for being a shortest time-path between q1 and
q2 in L2. (b)(c) The walking regions of a point q ∈ R2 under L2 and L1, respectively.



272 B.-S. Dai, M.-J. Kao, and D.T. Lee

(b) The left discriminating parabola is symmetric to the right discriminating
parabola with respect to the line x = xq.

Proposition 2 ( [3]). For the L1-metric, the walking region of a point q =
(xq, yq) with yq ≥ 0 is formed by the intersection of the following regions: (a)
the vertical strip xq − yq/β ≤ x ≤ xq − yq/β, and (b) y ≥ ±β(x− xq), where

β = 1
2

(
1− 1

vH

)
.

3 Hull-Structure under the General Lp-Metrics

In this section, we derive necessary properties to describe the structure of time-
convex hulls under the general Lp metrics. First, we adopt the notion of wavefront
propagation [2, 6], which is a well-established model used in path planning, and
derive the behavior of a shortest time-path between any two points. Then we
show how the corresponding walking regions are formed, followed by a descrip-
tion of the desired structural properties.

Wavefronts and Shortest Time-Paths. For any q ∈ R2, t ≥ 0, and p ≥ 1, the
wavefront with source q and radius t under the Lp-metric is defined as

Wp(q, t) =
{
s : s ∈ R2, d̂p(q, s) = t

}
.

Literally, Wp(q, t) is the set of points whose time-distances to q are exactly t.
Fig. 2 (a) shows the wavefronts, i.e., the “unit-circles” under the Lp metric, or,
the p-circles, for different p with 0 < p ≤ ∞ when the highway is not used. The
shortest time-path between q and any point q′ ∈ Wp(q, t) is the trace on which
q′ moves as t changes smoothly to zero, which is a straight-line joining q and q′.

When the highway H is present and the time-distance changes, deriving the
behavior of a shortest time-path that uses H becomes tricky. Let q1, q2 ∈ R2,
q1 	= q2, be two points in the plane, and let t̂1/2(q1, q2) ≥ 0 be the smallest real
number such that

Bisect(q1, q2) ≡Wp

(
q1, t̂1/2(q1, q2)

)
∩Wp

(
q2, t̂1/2(q1, q2)

)
	= ∅.

In other words, Bisect(q1, q2) is the set of points at which Wp(q1, t) and Wp(q2, t)
meet for the first time. The following lemma shows that Bisect(q1, q2) charac-
terizes the set of “middle points” of all shortest time-paths between q1 and q2.

Lemma 1. For each C ∈ STP(q1, q2), we have C ∩Bisect(q1, q2) 	= ∅. Moreover,
for each q ∈ Bisect(q1, q2), there exists C′ ∈ STP(q1, q2) such that q ∈ C′.

Given the set Bisect(q1, q2), a shortest time-path between q1 and q2 can be
obtained by joining C1 and C2, where C1 ∈ STP(q1, q) and C2 ∈ STP(q, q2) for
some q ∈ Bisect(q1, q2). By expanding the process in a recursive manner we
get a set of middle points. Although the cardinality of the set we identified is
countable while any continuous curve in the plane contains uncountably infinite



Optimal Time-Convex Hull under the Lp Metrics 273

� �

q x̂t

α

Fanp(q, t)

RTp(q, t)LTp(q, t)

�

q

RTp(t)LTp(t)

Fig. 2. (a) p-circles for different values of p: bold rhombus for p = 1, bold circle for
p = 2, and bold square for p = ∞. (b) Wp(q, t) for a point q ∈ H, vH < ∞, and p > 1,
where the angle α satisfies sinα = x̂t√

x̂2
t+yp(x̂t)2

. (c) Wp(q, t) for vH < ∞ and p = 1.

points, it is not difficult to see that, the set of points we locate is dense1 in the
underlying curve, and therefore can serve as a representative.

To describe the shape of a wavefront when the highway may be used, we need
the following lemma regarding the propagation of wavefronts.

Lemma 2. Let C◦p(q, t) denote the p-circle with center q and radius t. Then
Wp(q, t) is formed by the boundary of

C◦p(q, t) ∪
⋃

s : s∈R2,d̂p(q,s)<dp(q,s)≤t

Wp

(
s, t− d̂p(q, s)

)
.

In the following we discuss the case when 1 < p < ∞ and leave the discussion
of shortest time-paths in L∞ to the appendix for further reference. Let H be
the highway placed on the x-axis with moving speed vH > 1. For any t ≥ 0,

any 0 ≤ x ≤ t, and any 1 < p < ∞, we use yp(x, t) = (tp − |x|p)
1/p

to denote
the y-coordinate of the specific point on the p-circle with x-coordinate x. Let

x̂t = t · v1/(1−p)
H . We have the following lemma regarding Wp(q, t). Also refer to

Fig. 2 (b) for an illustration.

Lemma 3. For 1 < p < ∞, vH < ∞, and a point q ∈ H which we assume to
be (0, 0) for the ease of presentation, the upper-part of Wp(q, t) that lies above
H consists of the following three pieces:
– Fanp(q, t): the circular-sector of the p-circle with radius t, ranging from

(−x̂t, yp(−x̂t, t)) to (x̂t, yp(x̂t, t)).
– LTp(q, t), RTp(q, t): two line segments joining (−vH · t, 0), (−x̂t, yp(−x̂t, t)),

and (x̂t, yp(x̂t, t)), (vH · t, 0), respectively. Moreover, LTp(q, t) and RTp(q, t)
are tangent to Fanp(q, t).

The lower-part that lies below H follows symmetrically. For vH =∞, the upper-
part of Wp(q, t) consists of a horizontal line y = t.

1 Dense is a concept used in classical analysis to indicate that any element of one set
can be approximated to any degree by elements of a subset being dense within.



274 B.-S. Dai, M.-J. Kao, and D.T. Lee

For each 1 ≤ p < ∞ and 1 < vH ≤ ∞, we define the real number α(p, vH)
as follows. If p = 1 or vH = ∞, then α(p, vH) is defined to be zero. Otherwise,
α(p, vH) is defined to be

arcsin
v
1/(1−p)
H√

v
2/(1−p)
H +

(
1− v

p/(1−p)
H

)2/p
.

Note that, when p = 2, this is exactly arcsin(1/vH). For brevity, we simply use
α when there is no ambiguity. The behavior of a shortest time-path that takes
the advantage of traversal along the highway is characterized by the following
lemma.

Lemma 4. For any point q = (xq, yq), 1 ≤ p < ∞, and 1 < vH ≤ ∞, if a
shortest time-path starting from q uses the highway H, then it must enter the
highway with an incidence angle α.

Walking Regions. For any point q = (xq , yq) ∈ R2 with yq ≥ 0, let q+H and
q−H be two points located at (xq ± yq tanα, 0), respectively. By Lemma 4, we
know that, q+H and q−H are exactly the points at which any shortest time-path
from q will enter the highway if needed. This gives the walking region for any
point. Let α = π/4 when p =∞. The following lemma is an updated version of
Proposition 1 for general p with 1 ≤ p ≤ ∞.

Lemma 5. For any p with 1 ≤ p ≤ ∞ and any point q = (xq, yq) with yq ≥ 0,
WRp(q) is characterized by the following two curves: (a) right discriminating
curve, which is the curve q′ = (x′, y′) satisfying x′ ≥ xq + yq tanα and∣∣qq′∣∣

p
=

∣∣∣qq+H∣∣∣
p

+
∣∣∣q′q′−H ∣∣∣

p
+

1

vH

∣∣∣q+Hq′−H

∣∣∣
p
.

(b) The left discriminating curve is symmetric with respect to the line x = xq.

For any point q, let WR�(q) and WRr(q) denote the left- and right- discrimi-
nating curves of WR(q), respectively. We have the following dominance property
of the walking regions.

Lemma 6. Let q1 = (x1, y1) and q2 = (x2, y2) be two points such that x1 ≤ x2.
If y1 ≥ y2, then WR�(q2) lies to the right of WR�(q1). Similarly, if y1 ≤ y2, then
WRr(q1) lies to the left of WRr(q2).

�

q
′

�

q

e

ê

q̂

�

�

q̂
′

Fig. 3. The left
boundary of the
walking region
for the edge
e = (q′, q)

Lemma 6 suggests that, to de-
scribe the leftmost and the right-
most boundaries of the walking-
regions for a set of points, it
suffices to consider the extreme
points. Let e = q1q2 be a line seg-
ment between two points q1 and q2, where q1 lies to the left of q2. If e has non-
positive slope, then the left-boundary of the walking region for e is dominated by
WR�(q1). Otherwise, we have to consider

⋃
q∈e WR�(q). By parameterizing each

point of e, it is not difficult to see that the left-boundary consists of WR�(q1),
WR�(q2), and their common tangent line. See also Fig. 3 for an illustration.



Optimal Time-Convex Hull under the Lp Metrics 275

Closure and Time-Convex Hull of a Point Set. By Lemma 1, to obtain the
union of possible shortest time-paths, it suffices to consider the set of all possible
bisecting sets that arise inside the recursion. We begin with the closure between
pairs of points.

Lemma 7. Let q1, q2 ∈ R2 be two points. When the highway is not used, the set
of all shortest time-paths between q1 and q2 is:
– The smallest bounding rectangle of {q1, q2}, when p = 1.
– The straight line segment q1q2 joining q1 and q2, when 1 < p <∞.
– The smallest bounding parallelogram whose slopes of the four sides are ±1,

i.e., a rectangle rotated by 45◦, that contains q1 and q2.

Lemma 7 suggests that when the highway is not used and when 1 < p < ∞,
the closure, or, convex hull, of a point set S with respect to the Lp-metric is
identical to that in L2, while in L1 and L∞ the convex hulls are given by the
bounding rectangles and bounding square-parallelograms.

H

�

�

�

� �

�

�

�

�

�

�

�

�

�

Fig. 4. Time-convex hull for a set of points
under the Lp metric where 1 < p < ∞

When the highway may be used, the
structure of the time-convex hull un-
der the general Lp-metric consists
of a set of clusters arranged in a
way such that the following holds:
(1) Any shortest time-path between
intra-cluster pair of points must use
the highway. (2) If any shortest
time-path between two points does

not use the highway, then the two points must belong to the same cluster. Fig. 4
and Fig. 5 illustrate examples of the time-convex hull for the Lp metrics with
1 < p <∞ and p =∞, respectively. Note that, the shape of the closure for each
cluster does depend on p and vH, as they determine the incidence angle α.

4 Constructing the Time-Convex Hull

In this section, we present our algorithmic results for this problem. First, we
show that, although our definition of convexity simplifies the structures of the
resulting convex hulls, e.g., in L1 and L∞, the problem of deciding if any given
pair of points belongs to the same cluster already requires Ω(n logn) time. Then
we present our optimal O(n logn) algorithm.

H

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�H

Fig. 5. (a) The closure of each cluster under the L∞ metric when the highway H is
not considered. (b) The closure, i.e., the time-convex hull, for the L∞ metric.



276 B.-S. Dai, M.-J. Kao, and D.T. Lee

4.1 Problem Complexity

We make a reduction from the minimum gap problem, which is a classical prob-
lem known to have the problem complexity of Θ(n logn). Given n real numbers
a1, a2, . . . , an and a target gap ε > 0, the minimum gap problem is to decide if
there exist some i, j, 1 ≤ i, j ≤ n, such that |ai − aj | ≤ ε.

For any y ≥ 0, consider the point q(y) = (0, y). Let Cq(y) :
(
x, fq(y)(x)

)
denote

the right discriminating curve of WRp(q(y)). For any ε > 0, let y0(p, ε) denote
the specific real number such that fq(y0(p,ε))(ε) = y0(p, ε). Our reduction is done
as follows. Given a real number p ≥ 1 and an instance I of minimum gap, we
create a set S consisting of n points q1, q2, . . . , qn, where qi = (ai, y0(p, ε)) for
1 ≤ i ≤ n. The following lemma shows the correctness of this reduction and
establishes the Ω(n logn) lower bound.

Lemma 8. y0(p, ε) is well-defined for all p with 1 ≤ p ≤ ∞ and all ε > 0.
Furthermore, the answer to the minimum gap problem on I is “yes” if and only
if the number of clusters in the time-convex hull of S is less than n.

Corollary 1. Given a set of points S in the plane, a real number p with 1 ≤
p ≤ ∞, and a highway H placed on the x-axis, the problem of deciding if any
given pair of points belongs to the same cluster requires Ω(n logn) time.

4.2 An Optimal Algorithm

In this section, we present our algorithm for constructing the time-convex hull
for a given point set S under a given metric Lp with p ≥ 1. The main approach
is to insert the points incrementally into the partially-constructed clusters in
ascending order of their x-coordinates. In order to prevent a situation that leads
to an undesirably complicated query encountered in the previous work by Aloupis
et al. [3], we exploit the symmetric property of cluster-merging conditions and
reduce the sub-problem to the following geometric query.

Definition 4 (One-Sided Segment Sweeping Query). Given a set of points
S in the plane, for any line segment L of finite slope, the one-sided segment
sweeping query, denoted Q(L), asks if S ∩ L+ is empty, where L+ is the inter-
section of the half-plane above L and the vertical strip defined by the end-points
of L. That is, we ask if there exists any point p ∈ S such that p lies above L.

In the following, we first describe the algorithm and our idea in more detail,
assuming the one-sided segment sweeping query is available. Then we show how
this query can be answered efficiently.

The given set S of points is partitioned into two subsets, one containing those
points lying above H and the other containing the remaining. We compute the
time-convex hull for the two subsets separately, followed by using a linear scan
on the clusters created on both sides to obtain the closure for the entire point
set. Below we describe how the time-convex hull for each of the two subsets can
be computed.



Optimal Time-Convex Hull under the Lp Metrics 277

Let q1, q2, . . . , qn be the set of points sorted in ascending order of their x-
coordinates with ties broken by their y-coordinates. During the execution of
the algorithm, we maintain the set of clusters the algorithm has created so far,
which we further denote by C = {C1, C2, . . . , Ck}. For ease of presentation, we
denote the left- and right-boundary of the walking region of Ci by WR�(Ci) and
WRr(Ci), respectively. Furthermore, we use q ∈ WR�(Ci) or q ∈ WRr(Ci) to
indicate that point q lies to the right of WR�(Ci) or to the left of WRr(Ci),
respectively.

In iteration i, 1 ≤ i ≤ n, the algorithm inserts qi into C and checks if a new
cluster has to be created or if existing clusters have to be merged. This is done
in the following two steps.
(a) Point inclusion test. In this step, we check if there exists any j, 1 ≤ j ≤ k,

such that qi ∈ WRr(Cj). If not, then a new cluster Ck+1 consisting of the
point qi is created and we enter the next iteration. Otherwise, the smallest
index j such that qi ∈ WRr(Cj) is located. The clusters Cj , Cj+1, . . . , Ck

and the point qi are merged into one cluster, which will in turn replace
Cj , Cj+1, . . . , Ck. Let E be the set of newly created edges on the upper-hull
of this cluster whose slopes are positive. Then we proceed to step (b).

(b) Edge inclusion test. Let k be the number of clusters, and x0 be the x-
coordinate of the leftmost point in Ck. Pick an arbitrary edge e ∈ E, let ê
denote the line segment appeared on WR�(e) to which e corresponds, and
let ê(x0) be the intersection of ê with the half-plane x ≤ x0. Then we invoke
the one-sided segment sweeping query Q(ê(x0)). If no point lies above ê(x0),
then e is removed from E. Otherwise, Ck is merged with Ck−1. Let e′ be the
newly created bridge edge between Ck and Ck−1. If e′ has positive slope,
then it is added to the set E. This procedure is repeated until the set E
becomes empty.

An approach has been proposed to resolve the point inclusion test efficiently,
e.g., Yu and Lee [11], and Aloupis et al. [3]. Below we state the lemma directly
and leave the technical details to the appendix for further reference.

Lemma 9 ( [3,11]). For each iteration, say i, the smallest index j, 1 ≤ j ≤ k,
such that qi ∈WRr(Cj) can be located in amortized constant time.

To see that our algorithm gives the correct clustering, it suffices to argue the
following two conditions: (1) Each cluster-merge our algorithm performs is valid.
(2) At the end of each iteration, no more clusters have to be merged.

Apparently these conditions hold at the end of the first iteration, when q1 is
processed. For each of the succeeding iterations, say i, if no clusters are merged
in step (a), then the conditions hold trivially. Otherwise, the validity of the
cluster-merging operations is guaranteed by Lemma 9 and the fact that if any
point lies above ê, then it belongs to the walking region of e, meaning that the
last cluster, Ck, has to be merged again. See also Fig. 6 for an illustration.



278 B.-S. Dai, M.-J. Kao, and D.T. Lee

�

q
′

�

q

e

ê

q̂

�

�

q̂
′

Cq′
Cq

Fig. 6. When two clusters Cq′ and Cq are merged
and new hull edge e is created, it suffices to check
the new walking region e corresponds to, i.e., the
dark-gray area

To see that the second condi-
tion holds, let e = (q′, q) ∈
E be a newly created hull
edge, and let Cq′ and Cq be
the two corresponding clus-
ters that were merged. By our
assumption that the clusters
are correctly created before
qi arrives, we know that the
walking-regions of Cq′ and Cq

contain only points that do
belong to them, i.e., the light-

gray area in the left-hand side of Fig. 6 contains only points from Cq′ or Cq.
Therefore, when Cq′ and Cq are merged and e is created, it suffices to check for
the existence of points other than Ck inside the new walking region e corresponds
to, which is exactly the dark-gray area in Fig. 6. Furthermore, by the dominance
property stated in Lemma 6, it suffices to check those edges with positive slopes.
This shows that at the end of each iteration when E becomes empty, no more
clusters need to be merged. We have the following theorem.

Theorem 1. Provided that the one-sided segment sweeping query can be an-
swered in Q(n) time using P (n) preprocessing time and S(n) storage, the time-
convex hull for a given set S of n points under the given Lp-metric can be com-
puted in O(n logn + nQ(n) + P (n)) time using O(n + S(n)) space.

Regarding the One-Sided Segment Sweeping Query. Below we sketch
how this query can be answered efficiently in logarithmic time. Let S be the set
of points, L be the line segment of interest, and IL be the vertical strip defined
by the two end-points of L. We have the following observation, which relates the
query Q(L) to the problem of computing the upper-hull of S ∩ IL.

Lemma 10. Let I be an interval, C : I → R be a convex function, i.e., we
have C

(
1
2
(x1 + x2)

)
≥ 1

2
(C(x1) + C(x2)) ∀x1, x2 ∈ I, that is differentiable almost

everywhere, L be a segment with slope θL, −∞ < θL < ∞, and q = (xq, C(xq))
be a point on the curve C such that

lim
x→x−

q

dC(x)

dx
≥ θL ≥ lim

x→x+
q

dC(x)

dx
.

If q lies under
←→
L , then the curve C never intersects L.

To help compute the upper-hull of S∩IL, we use a data structure due to Guibas
et al [7]. For a given simple path P of n points with an x-sorted ordering of
the points, with O(n log logn) preprocessing time and space, the upper-hull of
any subpath p ∈ P can be assembled efficiently in O(logn) time, represented by
a balanced search tree that allows binary search on the hull edges. Note that,
q1, q2, . . . , qn is exactly a simple path by definition. The subpath to which IL



Optimal Time-Convex Hull under the Lp Metrics 279

corresponds can be located in O(logn) time. In O(log n) time we can obtain
the corresponding upper-hull and test the condition specified in Lemma 10. We
conclude with the following lemma.

Lemma 11. The one-sided segment sweeping query can be answered in O(log n)
time, where n is the number of points, using O(n log n) preprocessing time and
O(n log logn) space.

5 Conclusion

We conclude with a brief discussion as well as an overview on future work. In
this paper, we give an optimal algorithm for the time-convex hull in the pres-
ence of a straight-line highway under the general Lp-metric where 1 ≤ p ≤ ∞.
The structural properties we provide involve non-trivial geometric arguments.
We believe that our algorithm and the approach we use can serve as a base to
the scenarios for which we have a more complicated transportation infrastruc-
ture, e.g., modern city-metros represented by line-segments of different moving
speeds. Furthermore, we believe that approaches supporting dynamic settings to
a certain degree, e.g., point insertions/deletions, or, dynamic speed transitions,
are also a nice direction to explore.

References

1. Abellanas, M., Hurtado, F., Sacristán, V., Icking, C., Ma, L., Klein, R., Langetepe,
E., Palop, B.: Voronoi diagram for services neighboring a highway. Inf. Process.
Lett. 86(5), 283–288 (2003)

2. Aichholzer, O., Aurenhammer, F., Palop, B.: Quickest paths, straight skeletons,
and the city Voronoi diagram. In: Proceedings of SCG 2002, pp. 151–159 (2002)

3. Aloupis, G., Cardinal, J., Collette, S., Hurtado, F., Langerman, S., O’Rourke, J.,
Palop, B.: Highway hull revisited. Comput. Geom. Theo. Appl. 43(2), 115–130
(2010)

4. Bae, S.W., Kim, J.-H., Chwa, K.-Y.: Optimal construction of the city voronoi
diagram. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 183–192. Springer,
Heidelberg (2006)

5. Ben-Or, M.: Lower bounds for algebraic computation trees. In: Proceedings of
STOC 1983, pp. 80–86 (1983)

6. Gemsa, A., Lee, D.T., Liu, C.-H., Wagner, D.: Higher order city voronoi diagrams.
In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357, pp. 59–70. Springer,
Heidelberg (2012)

7. Guibas, L., Hershberger, J., Snoeyink, J.: Compact interval trees: a data structure
for convex hulls. In: Proceedings of SODA 1990, pp. 169–178 (1990)

8. Hurtado, F., Palop, B., Sacristán, V.: Diagramas de Voronoi con distancias tempo-
rales. In: Actas de los VIII Encuentros de Geometra Computacional, pp. 279–288
(1999) (in Spanish)

9. Ottmann, T., Soisalon-Soininen, E., Wood, D.: On the definition and computation
of rectilinear convex hulls. Information Sciences 33(3), 157–171 (1984)

10. Palop, B.: Algorithmic Problems on Proximity and Location under Metric Con-
straints. Ph.D thesis, Universitat Politécnica de Catalunya (2003)

11. Yu, T.-K., Lee, D.T.: Time convex hull with a highway. In: Proceedings of ISVD
2007, pp. 240–250 (2007)



Blame Trees

Erik D. Demaine1, Pavel Panchekha1, David A. Wilson1, and Edward Z. Yang2

1 Massachusetts Institute of Technology, Cambridge, Massachusetts
{edemaine,pavpan,dwilson}@mit.edu

2 Stanford University, Stanford, California
ezyang@cs.stanford.edu

Abstract. We consider the problem of merging individual text docu-
ments, motivated by the single-file merge algorithms of document-based
version control systems. Abstracting away the merging of conflicting ed-
its to an external conflict resolution function (possibly implemented by a
human), we consider the efficient identification of conflicting regions. We
show how to implement tree-based document representation to quickly
answer a data structure inspired by the “blame” query of some version
control systems. A “blame” query associates every line of a document
with the revision in which it was last edited. Our tree uses this idea to
quickly identify conflicting edits. We show how to perform a merge op-
eration in time proportional to the sum of the logarithms of the shared
regions of the documents, plus the cost of conflict resolution. Our data
structure is functional and therefore confluently persistent, allowing ar-
bitrary version DAGs as in real version-control systems. Our results rely
on concurrent traversal of two trees with short circuiting when shared
subtrees are encountered.

1 Introduction

The document-level merge operation is a fundamental primitive in version con-
trol systems. However, most current implementations of this operation take lin-
ear time in the size of the document, and rely on the ability to identify the least
common ancestor of the two revisions to be merged. For large documents, we
can improve on this näıve bound by not spending time on non-conflicting por-
tions of the document. More abstractly, the lowest common ancestor may not
be unique, or even exist, in a fully confluent setting. In this paper, we describe
the practical motivation for this problem, our model of the theoretical problem,
and our solution.

Document Merge. Single-document merging forms the core of many modern ver-
sion control systems, as it is critical for reconciling multiple, concurrent branches
of development.

Single-document merging has been implemented in a variety of different ways
by different version control systems. The most basic merge strategy is the three-
way merge, as implemented by Git, Mercurial, and many other version con-
trol systems. In a three-way merge, three revisions of the file are specified: the

F. Dehne, R. Solis-Oba, and J.-R. Sack (Eds.): WADS 2013, LNCS 8037, pp. 280–290, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Blame Trees 281

“source” version, the “target” version, and the “base” version, which is the least
common ancestor of the source and target. Any intermediate history is thrown
out, and the result of the merge relies on the diffs between the base and source
and between the base and target. These diffs are split into changed and un-
changed segments, which are then used to build the new document.

There are a few elaborations on the basic three-way merge. In the case of mul-
tiple least common ancestors, Git will recursively merge the common ancestors
together, and use those as the base version.1 Additionally, there is some question
of whether two chunks that have applied an identical change (as opposed to con-
flicting ones) should silently merge together: most systems opt for not reporting
a conflict. This behavior has lead to some highly publicized edge cases in the
merge algorithm [3].

A more sophisticated merging algorithm is implemented by Darcs. It uses
whether two patches commute as the test for whether a merge conflict should
be generated; and it performs the merge patch by patch. Because Darcs uses the
intermediate history, this often results in a higher quality merge, but requires
time at least linear in the number of patches, and can result in exponential
behavior in some cases.

An interesting but largely obsolete representation for an entire history which
was implemented by the SCCS and BitKeeper systems is the “Weave” [9], where
every document in the repository contains all lines of text present in any revision
of the document, with metadata indicating what revisions they correspond to.
Merging on this representation takes time proportional to the size of the entire
history.

Prior Work. Demaine, Langerman, and Price [4] considered the problem of
efficient merge at the directory/file level, using confluently persistent data struc-
tures. They cite the document-level merge problem as “relatively easy to handle”,
assuming that the merge may take linear time. The goal of this work is to beat
this bound.

In the algorithms community, merging usually refers to the combination of
two sorted arrays into one sorted array. This problem can be viewed as similar,
particularly if we imagine that equal-key items get combined by some auxiliary
function. The standard solution to this problem (as in, e.g., mergesort) takes
linear time in the input arrays. Adaptive merging algorithms [2,5,10,11] achieve

the optimal bound of Θ(
∑k

i=1 lg gi) if the solution consists of g1 items from the
first set, then g2 items from the second set, then g3 items from the first set, etc.
Our result is essentially a confluent data structure built around a dynamic form
of this one-shot algorithm.

In this paper, we will refer repeatedly to the well-known results of the func-
tional programming community [12], in particular confluence via purely func-
tional data structures with path copying as the primary technique. The idea of

1 This situation is rare enough in practice that very few other VCSes implement this
behavior, although this strategy is reported to reduce conflicts in merges on the
Linux kernel.



282 E.D. Demaine et al.

parametrizing an algorithm on a human-driven component is a basic technique
of human-based computation; however, we do not refer to any of the results in
that literature.

Theoretical Model. A natural model of a text document in a version control
system is a confluently persistent sequence of characters. Persistent data struc-
tures [7, 8] preserve old versions of a document as modifications are made to
a document. While a fully persistent data structure permits both queries and
modifications to old versions of document, a confluently persistent structure ad-
ditionally supports a merge operation. Any two documents can be merged, which
means that the version dependencies can form a directed acyclic graph (DAG).
Our paper presents an implementation of this data structure which admits an
efficient implementation of this merge operation.

For the purposes of our treatment, we consider a more expressive model of
text documents as confluently persistent sorted associative maps (dictionaries),
whose values are arrays of characters, and whose keys are an ordered data type
supporting constant-time comparison and a split operation with the property
a < split(a, b) < b. (Data structures for maintaining order in this way are well
known [1,6], and also common in maintaining full persistence [7].) The user can
decide to divide the document into one entry (key/value pair) per character, or
one entry per line, or some other level of granularity. The supported operations
are then insertion, deletion, and modification of entries in the map, which cor-
respond to equivalent operations on characters, lines, etc., of the document.2

These operations take one (unchanged) version as input and produce a new ver-
sion (with the requested change) as output. In addition, the merge operation
takes two maps (versions) and a conflict-resolution function, which takes two
conflicting submaps ranging between keys i and j and combines them into a
single submap ranging between keys i and j. In order to amortize some costs of
our approach, we assume that conflict resolution requires at least Θ(|M |+ |N |)
time, where |M | and |N | are the number of entries in the input submaps (our
bounds do not hold for a Θ(1) resolution function); in practice, the cost of con-
flict resolution is likely to be Θ(k(|M | + |N |)), where k is the average length of
the sequences of characters inside the submaps.

Entries of these maps have one extra piece of metadata: a unique ID iden-
tifying the revision that this entry was last updated. We also assume that we
have a source of unique IDs (occupying O(1) space each), which can be used to
allocate new revision numbers for marking nodes. In practice, cryptographically
secure hash functions are used to generate these IDs.

Sharing. The performance of our document merge operation depends on the
underlying structure of our documents; if common and conflicting regions are
interleaved Θ(n) times, then we cannot hope to do any better than a linear-time
merge. Thus, we define the disjoint shared regions S of our sorted maps to be

2 It is worth emphasizing that the keys do not correspond to character-indexes or
line-numbers; aside from order, they are completely arbitrary.



Blame Trees 283

the set of maximal disjoint ranges which have the same contents (matching keys,
values, and revision ID): these can be thought as the non-conflicting regions of
two documents. Note that, if two independent editors make the same revision to
a document, the resulting two entries are considered in conflict, as the revision
IDs will differ.

It will also be useful to refer to the non-shared entries N of two documents,
which is defined to be the set of all entries in either document that are contained
in no S ∈ S.

Let f(|N |) denote the cost of conflict resolution among the |N | non-shared
entries, which we assume to be Ω(|N |). In our analyses, we will often charge the
cost of traversing conflicting entries to the execution of the conflict resolution
function, when considering the overall cost of a merge.

Main Result. Our main result is a functional (and thus confluently persistent)
data structure supporting insert, delete, modifying, and indexing on a map of
size n in O(log n) time per operation; and merging two (versions of) maps in
O(f(|N |)+

∑
S∈S log |S|) time. For example, for a constant number of non-shared

nodes, the merge cost is logarithmic; or more generally, for a constant number
of shared regions, the merge cost is logarithmic plus the conflict resolution cost.
We expect that this adaptive running time will be substantially smaller than the
standard linear-time merge in most practical scenarios.

2 Blame Trees, Version 1

4E

2E

1E 3D

6C

5B 7A

Fig. 1. An example blame tree, where the latest update was revision E made to key 1.
The values on the leaves are omitted for clarity.

Blame trees represent a text document as a balanced binary search tree con-
taining strings, augmented with length annotations, to facilitate efficient index-
ing into arbitrary locations of the document. (Because these annotations are not
relevant for merges, we omit them from our presentation.) Blame trees are fur-
ther augmented with a revision rev annotation, which tracks the latest revision



284 E.D. Demaine et al.

Tree is either:

1: Node(rev, key, val, left, right)
2: Leaf

Fig. 2. Our trees are classic binary search trees annotated with an extra revision field,
indicating the last edit which affected a node or any node in its subtree

to the data structure which affected this node. Updates generate a fresh revision
for the edit and record it on all nodes they touch.

For binary trees, disjoint shared regions correspond directly to disjoint shared
subtrees, e.g., the set of maximum-sized disjoint subtrees which exist identically
(matching keys, values and annotations) in both trees. Any shared region S
can be represented by O(log |S|) shared subtrees. To simplify analysis, we will
instead consider disjoint shared subtrees S̃, and then translate our bounds back
into disjoint shared regions. A useful fact which we will refer to repeatedly is
that |S̃| ≤ 2

∑
S∈S log |S|.

As any modifications to a node must modify all of its parent nodes, the def-
inition of two shared subtrees in Figure 3 is equivalent (e.g., we only need to
check roots of shared subtrees for equality).

1: function Shared(a, b)
2: return a.key = b.key ∧ a.rev = b.rev
3: end function

Fig. 3. The definition of two shared subtrees

When the trees in question have identical structure, merging two blame trees is
trivial: traverse both structures in-order and simultaneously. Because the struc-
tures are identical, traversals will be in lock-step, and we can immediately iden-
tify a shared subtree when we first encounter it, and skipping it entirely. We pay
only the cost of visiting the root of every shared subtree, so the cost of traversal
is O(|N |+ |S̃|), which in particular is O(|N |+

∑
S∈S log |S|). The overall cost is

O(f(|N |) +
∑

S∈S log |S|), with the cost of traversing conflicting nodes charged
to the conflict resolution function f .

This näıve traversal doesn’t work, however, when the two tree have differ-
ing structures. Additionally, the conflict resolution may return a new subtree
to be spliced in, and thus we need to manage rebalancing the resulting trees.
Consequently, our general strategy for merging balanced search trees of differ-
ent shapes will be to identify the disjoint shared subtrees of the two trees, split
the trees into conflicting and shared regions, resolve the conflicting regions, and
concatenate the trees back together. The core of our algorithm is this:

Lemma 1. It is possible to determine the disjoint shared subtrees S̃ of two bal-
anced blame trees in time O(|N | +

∑
S∈S̃ log |S|) ⊆ O(|N | +

∑
S∈S log2 |S|).



Blame Trees 285

1: function InOrder(a)
2: if a is Node then
3: InOrder(a.left)
4: skip ← yield a � Suspend the coroutine to visit the node
5: if skip 
= Skip then
6: InOrder(a.right)
7: end if
8: end if
9: end function

Fig. 4. In-order traversal as a coroutine. Execution of this function proceeds normally
until the yield a statement is reached; at this point, execution of the function is
suspended and the value a is returned to the caller of the coroutine. When the coroutine
is initially invoked, it returns a resumption continuation, which the caller can use to
resume the execution of the coroutine. In our case, the resumption continuation requires
the caller to provide a value skip, which indicates whether or not to skip traversal of
the right subtree.

1: function Traverse(a, b)
2: na, ka ← InOrder(a)
3: nb, kb ← InOrder(b)
4: while na, nb not Null do
5: if Shared(na, nb) then � na = nb

6: yield na � Add na to list of shared subtrees
7: na ← ka(Skip) � Skip the right subtree
8: nb ← kb(Skip)
9: else if na.key ≤ nb.key then
10: na ← ka(NoSkip)
11: else if na.key > nb.key then
12: nb ← kb(NoSkip)
13: end if
14: end while
15: end function

Fig. 5. Concurrent in-order traversal of two trees which reports shared subtrees. The
algorithm begins by initiating in-order traversal on a and b, retrieving the left-most
nodes na and nb and the resumption continuations of the traversals ka and kb. The
algorithm then repeatedly checks for shared subtrees, advancing the traversal with the
lowest key, skipping right subtrees when a shared subtree is found.

Proof. Perform an in-order traversal concurrently on both trees, advancing the
traversal on the tree with the lower key. This traversal can easily be expressed as
a pair of coroutines, as seen in Figure 4 and Figure 5 and illustrated in Figure 6.
If the two nodes being traversed are roots of shared subtrees, record the node
as a shared subtree and skip traversal of the right child of both trees; continue
traversal from the parent.



286 E.D. Demaine et al.

1

2

3

4

5

1

2

4

5

6

8

6

8

Fig. 6. An illustration of concurrent in-order traversal, where the dashed portion of
the tree is shared. Both traversals start at 1 and progressively increase (the left tree
stepping twice at key 3) until node 5 is reached: at this point, we discover the tree is
shared. At this point, we walk back up the tree (5, 6, 8); each node is shared, so the
right subtrees are skipped.

The resulting list r of shared subtrees will contain “runs” of shared nodes
where r[i] = r[i + 1].left (that is, the parent of the shared subtree was also
shared). Discard all shared subtrees except the final subtree of each run (as any
such tree i is strictly contained in i + 1), and return the resulting list.

Because in-order traversal returns nodes with monotonically increasing keys,
it is easy to see that, without short circuiting, this traversal will discover all
shared subtrees. Furthermore, because we only skip subtrees of shared subtrees
(which must also be shared), it is easy to see that no shared subtrees are skipped.

An ordinary in-order traversal will take O(n) time, so we need to show that
with our short-circuiting we spend only O(log |S|) per shared subtree S. Suppose
that we have accessed the leftmost node of a shared subtree, with cost O(log |S|);
this must occur before any other nodes of the shared subtree are traversed, as we
are doing in-order traversal. This node is itself a shared subtree (though not the
maximal node), and we will short circuit to the parent. This will occur repeatedly
for the entire path contained within the maximal shared subtree, so after another
O(log |S|) steps, we reach the shared node rooting the maximal shared subtree,
and continue traversal of the rest of the tree. Clearly only O(log |S|) total is
spent through a shared subtree, for O(

∑
S∈S logS).

To translate this bound from shared subtrees into shared regions, we ob-
serve that for any shared region S, the shared subtrees S̃ have the following
property O(

∑
s∈S̃ log |s|) ⊆ O(log2 |S|) (recalling that only O(log |S|) subtrees

are necessary to encode a region S, each with maximum size |S|). The bound
O(|N | +

∑
S∈S log2 |S|) follows. 
�

From here, it is easy to implement merge in general:

Theorem 1. Given the ability to split and concatenate a sequence M of blame
trees in O(

∑
M log |M |) time, it is possible to merge two balanced blame trees

with shared disjoint regions S in time O(f(|N |) +
∑

S∈S log2 |S|).



Blame Trees 287

Proof. We need to show that the cost of traversal and conflict resolution domi-
nates the cost of splitting and concatenating trees; that is, that O(

∑
M log |M |) ⊆

O(f(|N |) +
∑

S∈S̃ log |S|). We split this bound into shared regions S and un-
shared regions U . For S, the cost contributed by each shared subtree |S| is a
log |S| factor better than the cost of traversal as stated in the lemma. For U , we
observe

∑
U∈U log |U | ≤ |N |, so the cost of splitting and concatenating unshared

nodes can be charged to conflict resolution. 
�

3 Faster Traversal

We now show how to achieve a logarithmic speedup when considering a specific
type of balanced binary tree, namely red-black trees. Our traversal time improves
from O(|N | +

∑
S∈S log2 |S|) to O(|N | +

∑
S∈S log |S|). This method relies on

level-order traversal. We first describe the algorithm for perfect binary trees,
and then sketch how to apply this to red-black trees, which are not perfectly
balanced, but are perfectly balanced on black nodes.

Lemma 2. It is possible to determine the shared subtrees S̃ of two perfect bi-
nary trees annotated with precise max-depth in time O(|N |+ |S̃|), e.g. O(|N |+∑

S∈S log |S|)).

Proof. We maintain two queues, one for tree A and one for tree B. Each queue
starts containing the root node of its respective tree. Without loss of generality,
assume the max-depth of the two trees are equal (if they are not, recursively
deconstruct the tree until you have a forest of correct depth; the nodes removed
by the deconstruction are guaranteed not to be shared, because they have the
wrong height.)

Claim. The list of elements extracted from each queue consists of the nodes of
depth d whose parents were non-shared and had depth d + 1, sorted in order of
their key.

If the claim is true, we can perform a merge of sorted lists in linear time, and
for any matching keys we check if the nodes are shared subtrees. (This is suf-
ficient, as nodes with different max-depths or non-equal keys cannot be shared
subtrees.) Finally, for all non-shared nodes add their children to their corre-
sponding queue in order of the lists and repeat. The full algorithm is presented
in Figure 8 and illustrated in Figure 7.

We first show that our claim is true by induction on d. The base case is trivial.
Suppose that the algorithm has fulfilled the claim up until the current round d.
We consider the possible sources of nodes of depth d; by the properties of a
perfect binary tree, the parent of a node with max-depth d must have max-
depth d + 1. Furthermore, the node would not have been added if the parent
were shared, as desired.

Observing that only non-shared nodes, or the roots of maximal shared subtrees
ever enter the queue, if queue pop and push operations take O(1), then time



288 E.D. Demaine et al.

1 2 3 4 2 3 4 5

1 2 3 4 2 3 4 5

1 2 3 4 5merged:

Fig. 7. An illustration of level-order traversal. Given the two trees shown above, this
diagram shows the state of the two queues (in brackets) after finishing traversing the
second level of the tree, and the resulting merged list of trees. Subsequent traversals will
only traverse over subtrees 1 and 5. (As an optimization, we can note when subtrees
are disjoint and immediately mark them as conflicts.)

1: function PushChildrenPop(Q)
2: x ← Pop(Q)
3: Push(Q,x.left)
4: Push(Q,x.right)
5: end function
6: function LevelTraverse(a, b)
7: Qa, Qb ← Singleton(a), Singleton(b)
8: while ¬(Empty(Qa) ∨ Empty(Qb)) do
9: na, nb ← Peek(Qa), Peek(Qb)
10: if Shared(na, nb) then
11: yield na

12: Pop(Qa)
13: Pop(Qb)
14: else if na.depth > nb.depth then
15: PushChildrenPop(Qa)
16: else if na.depth < nb.depth then
17: PushChildrenPop(Qb)
18: else if na.key ≤ nb.key then
19: PushChildrenPop(Qa)
20: else if na.key > nb.key then
21: PushChildrenPop(Qb)
22: end if
23: end while
24: end function

Fig. 8. Level-order traversal of two perfect trees



Blame Trees 289

bound O(|N | + |S̃|) follows easily; the alternate formulation of the bound falls
easily out of the fact that any S ∈ S can only contribute log |S| roots of shared
subtrees. 
�

In general, most practical self-balancing binary search trees will not be perfect.
However, in the case of red-black trees, the number of black nodes down any path
of the tree is constant. So we can adapt the algorithm for perfect trees to only
count black nodes towards depth: when we would add a red node into the queue,
we instead push its two black children. This means that we do not ever check red
nodes to see if they are shared subtrees, but this only adds a constant factor extra
time on the analysis. Note that this technique does not work if the tree is not
perfectly balanced in some fashion: without perfect balance, we will encounter
nodes whose max-depths are much lower than the current max-depth which still
must be queued. Switching our queue to a priority queue to accommodate these
nodes would result in a logarithmic slowdown, destroying our bound.

Our final result follows easily:

Theorem 2. It is possible to merge two red-black blame trees with shared dis-
joint regions S in time O(f(|N |) +

∑
S∈S log |S|).

Proof. The analysis proceeds identically as our previous Theorem 1, except that
the cost of splitting and concatenating the red-black trees is the same as the
traversal in the case of shared regions S. 
�

Acknowledgments. This work began during an open-problem solving session
for MIT’s Advanced Data Structures class (6.851) in Spring 2012. Thanks to
Anders Kaseorg, Andrea Lincoln, and any unnamed participants of the ses-
sion for contributing to this solution. This research is partially funded by the
DARPA Clean-Slate Design of Resilient, Adaptive, Secure Hosts (CRASH) pro-
gram, BAA-10-70, under contract #N66001-10-2-4088 (Bridging the Security
Gap with Decentralized Information Flow Control), and by MADALGO — Cen-
ter for Massive Data Algorithmics — a Center of the Danish National Research
Foundation.

References

1. Bender, M.A., Cole, R., Demaine, E.D., Farach-Colton, M., Zito, J.: Two simplified
algorithms for maintaining order in a list. In: Möhring, R.H., Raman, R. (eds.) ESA
2002. LNCS, vol. 2461, pp. 152–164. Springer, Heidelberg (2002)

2. Carlsson, S., Levcopoulos, C., Petersson, O.: Sublinear merging and natural merge-
sort. Algorithmica 9, 629–648 (1993)

3. Cohen, B.: Git can’t be made consistent (April 2011),
http://bramcohen.livejournal.com/74462.html

4. Demaine, E.D., Langerman, S., Price, E.: Confluently persistent tries for efficient
version control. Algorithmica 57(3), 462–483 (2010)

5. Demaine, E.D., López-Ortiz, A., Munro, J.I.: Adaptive set intersections, unions,
and differences. In: Proceedings of the 11th Annual ACM-SIAM Symposium on
Discrete Algorithms, San Francisco, California, pp. 743–752 (January 2000)

http://bramcohen.livejournal.com/74462.html


290 E.D. Demaine et al.

6. Dietz, P.F., Sleator, D.D.: Two algorithms for maintaining order in a list. In: Pro-
ceedings of the 19th Annual ACM Symposium on Theory of Computing, New York
City, pp. 365–372 (May 1987)

7. Driscoll, J.R., Sarnak, N., Sleator, D.D., Tarjan, R.E.: Making data structures
persistent. Journal of Computer and System Sciences 38(1), 86–124 (1989)

8. Fiat, A., Kaplan, H.: Making data structures confluently persistent. In: Proceed-
ings of the 12th Annual Symposium on Discrete Algorithms, Washington, DC, pp.
537–546 (January 2001)

9. Hudson, G.: Notes on keeping version histories of files (October 2002),
http://web.mit.edu/ghudson/thoughts/file-versioning

10. Mehlhorn, K.: Data Structures and Algorithms. Sorting and Searching, vol. 1, pp.
240–241. Springer (1984)

11. Moffat, A., Petersson, O., Wormald, N.C.: A tree-based Mergesort. Acta Informat-
ica 35(9), 775–793 (1998)

12. Okasaki, C.: Purely functional data structures. Cambridge University Press, New
York (1998)

http://web.mit.edu/ghudson/thoughts/file-versioning


Plane 3-trees: Embeddability and Approximation

(Extended Abstract)

Stephane Durocher� and Debajyoti Mondal��

Department of Computer Science, University of Manitoba
{durocher,jyoti}@cs.umanitoba.ca

Abstract. We give an O(n log3 n)-time linear-space algorithm that,
given a plane 3-tree G with n vertices and a set S of n points in the
plane, determines whether G has a point-set embedding on S (i.e., a pla-
nar straight-line drawing of G where each vertex is mapped to a distinct
point of S), improving the O(n4/3+ε)-time O(n4/3)-space algorithm of
Moosa and Rahman. Given an arbitrary plane graph G and a point set
S, Di Giacomo and Liotta gave an algorithm to compute 2-bend point-
set embeddings of G on S using O(W 3) area, where W is the length of
the longest edge of the bounding box of S. Their algorithm uses O(W 3)
area even when the input graphs are restricted to plane 3-trees. We in-
troduce new techniques for computing 2-bend point-set embeddings of
plane 3-trees that takes only O(W 2) area. We also give approximation
algorithms for point-set embeddings of plane 3-trees. Our results on 2-
bend point-set embeddings and approximate point-set embeddings hold
for partial plane 3-trees (e.g., series-parallel graphs and Halin graphs).

1 Introduction

A planar drawing of a graph G is an embedding (i.e., a mapping) of G onto the
Euclidean plane R2, where each vertex in G is assigned a unique point in R2 and
each edge in G is a simple curve in R2 joining the points corresponding to its
endvertices such that no two curves intersect except possibly at their endpoints.
A graph is planar if it has a planar drawing. A straight-line drawing of a planar
graph is a planar drawing, where each edge is drawn as a straight line segment.
The straight-line drawing style is popular since it naturally produces drawings
that are easier to read and to display on smaller screens [1,2]. To meet the
requirements of different practical applications, researchers have examined the
straight-line drawing problem under various constraints, e.g., when the vertices
are constrained to be placed on a set of pre-specified locations [3,4]. If the pre-
specified locations for placing the vertices of the input graph are points on the
Euclidean plane, then we call the problem a point-set embedding problem. Such

� Work of the author is supported in part by the Natural Sciences and Engineering
Research Council of Canada (NSERC).

�� Work of the author is supported in part by a University of Manitoba Graduate
Fellowship.

F. Dehne, R. Solis-Oba, and J.-R. Sack (Eds.): WADS 2013, LNCS 8037, pp. 291–303, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



292 S. Durocher and D. Mondal

problems have applications in VLSI circuit layout, where different circuits need
to be mapped onto a fixed printed circuit board, simultaneous display of different
social and biological networks, and construction of a desired network among a
set of fixed locations. Formally, a point-set embedding of a plane graph G (i.e.,
a fixed combinatorial planar embedding of G) with n vertices on a set S of n
points is a straight-line drawing of G, where the vertices are placed on distinct
points of S.

Point-Set Embeddings. In 1994, Ikebe et al. [5] gave an O(n2)-time algorithm
to embed any tree with n vertices on any set of n points in general position, i.e.,
no three points are collinear. Later, Bose et al. [6] devised a divide and conquer
algorithm that runs in O(n log n) time. In 1996, Castañeda and Urrutia [7] gave
an O(n2)-time algorithm to construct point-set embeddings of maximal outer-
planar graphs. Later, Bose [3] improved the running time of their algorithm to
O(n log3 n) using a dynamic convex hull data structure. In the same paper Bose
posed an open problem that asks to determine the time complexity of testing
the point-set embeddability for planar graphs. In 2006, Cabello [4] proved the
problem to be NP-complete for graphs that are 2-connected and 2-outerplanar.
The problem remains NP-complete for 3-connected planar graphs [8], even when
the treewidth is constant [9].

In the last few years researchers have examined the point-set embeddability
problem restricted to plane 3-trees (also known as stacked polytopes, Apollonian
networks, and maximal planar graphs with treewidth three) because of their
wide range of applications in many theoretical and applied fields [10]. Nishat et
al. [11] first gave an O(n2)-time algorithm for deciding point-set embeddability
of plane 3-trees, and proved an Ω(n logn)-time lower bound. Later, Durocher et
al. [12] and Moosa and Rahman [13] independently improved the running time
to O(n4/3+ε), for any ε > 0. Since Ω(n4/3) is a lower bound on the worst-case
time complexity for solving various geometric problems [14], it may be natural to
accept the possibility that the O(n4/3+ε)-time algorithm could be asymptotically
optimal. In fact, Moosa and Rahman mention that an o(n4/3)-time algorithm
seems unlikely using currently known techniques. However, in this paper we
prove that the Ω(n log n) lower bound is nearly tight, giving an O(n log3 n)-time
algorithm for deciding point-set embeddability of plane 3-trees.

Universal Point Set. Observe that a planar graph may not always admit point-
set embedding on a given point set. Attempts have been made at constructing
a set S of k ≥ n points such that every planar graph with n vertices admits
a point-set embedding on a subset of S [15,16]. Such a point set that supports
all planar graphs with n vertices is called a universal point set for n. A long
standing open question in graph drawing asks to design a set of O(n) points
that is universal for all planar graphs with n vertices [15]. Recently, Everett et
al. [16] have designed a 1-bend universal point set Sn for planar graphs with n
vertices, i.e., every planar graph with n vertices admits a straight-line drawing
on Sn such that each vertex is mapped to a distinct point and each edge is drawn
as a chain of at most two straight line segments.



Plane 3-trees: Embeddability and Approximation 293

The point-set embeddability problem seems to have close relation with the
universal point set problem. Castañeda and Urrutia [7] proved that any set of n
points in general position is universal for all outerplanar graphs with n vertices.
Later, Kaufmann and Wiese [17] proved that any set S of n points is 2-bend
universal for n (i.e., every planar graph with n vertices admits a straight-line
drawing on S such that each vertex is mapped to a distinct point and each edge
is drawn as a chain of at most three straight line segments). However, the area
required for the drawing could be exponential in W , where W is the length of
the side of the smallest axis-parallel square that encloses S. Di Giacomo and
Liotta [18, Theorem 7] showed that using the concept of monotone topological
book embeddingone can reduce the area requirement to O(W 3). Even when
restricted to simpler classes of graphs (e.g., series parallel graphs or plane 3-
trees), the technique of Di Giacomo and Liotta is the best known, which still
requires O(W 3) area. In this paper, we contribute a new technique that uses only
O(W 2) area to compute 2-bend point set embeddings of plane 3-trees, and hence
also for partial plane 3-trees (e.g., series-parallel graphs and Halin graphs).

Approximate Point-Set Embeddings. Although any set of n points in gen-
eral position is universal for n-vertex outerplanar graphs [7], a plane 3-tree with
n vertices may not admit a point-set embedding on a given set of n points [11].
On the other hand, while allowing two bends per edge, any set of n points in
general position is 2-bend universal for plane 3-trees. Due to this apparent dif-
ficulty of defining algorithms that simultaneously minimize area, the number of
bends, and running time, we consider algorithms that provide approximate solu-
tions, that is, at least a fraction ρ of the vertices of the input graph are mapped
to distinct points of the given point set. Specifically, if the input points are in
general position, then we prove that the point-set embeddability of plane 3-trees
is approximable with factor Ω(1/

√
n).

2 Faster Point-Set Embeddings of Plane 3-Trees

In this section we give an O(n log3 n)-time algorithm for deciding point-set em-
beddability of plane 3-trees. Before going into details, we review a few definitions.

A plane 3-tree G with n ≥ 3 vertices is a triangulated plane graph such that
if n > 3, then G contains a vertex whose deletion yields a plane 3-tree with
n− 1 vertices. Let r, s, t be a cycle of three vertices in G. By Grst we denote the
subgraph induced by r, s, t and the vertices that lie interior to the cycle. Every
plane 3-tree G with n > 3 vertices contains a vertex that is the common neighbor
of all the three outer vertices of G. We call this vertex the representative vertex
of G. Let p be the representative vertex of G and let a, b, c be the three outer
vertices of G in clockwise order. Then each of the subgraphs Gabp, Gbcp and Gcap

is a plane 3-tree. Let S be a set of n points in the plane. Let p, q and r be three
points that do not necessarily belong to S. Then S(pqr) consists of the points
of S that lie either on the boundary or in the interior of the triangle pqr.



294 S. Durocher and D. Mondal

Overview of Known Algorithms. Let G be a plane 3-tree with n vertices,
and let a, b, c and p be the three outer vertices and the representative vertex of
G, respectively. Nishat et al. [11]’s algorithm is as follows.

Step 1. If the number of points on the boundary of the convex hull C of
S is not exactly three, then G does not admit a point-set embedding on S.
Otherwise, let x, y, z be the points on C.
Step 2. For each of the possible six different mappings of the outer vertices
a, b, c to the points x, y, z, execute Step 3.
Step 3. Let n1, n2 and n3 be the number of vertices of Gabp, Gbcp and Gcap,
respectively. Without loss of generality assume that the current mapping of
a, b and c is to x, y and z, respectively. Find the unique mapping of the rep-
resentative vertex p of G to a point w ∈ S such that the triangles xyw, yzw
and zxw properly contain exactly n1, n2 and n3 points, respectively. If no such
mapping of p exists, then G does not admit a point-set embedding on S for
the current mapping of a, b, c; hence go to Step 2 for the next mapping. Oth-
erwise, recursively compute point-set embeddings of Gabp, Gbcp and Gcap on
S(xyw), S(yzw) and S(zxw), respectively. See Figures 1(a)–(d).

Observe that the recurrence relation for the time taken in Step 3 is T (n) =
T (n1) +T (n2) +T (n3) +T , where T denotes the time required to find the map-
ping of the representative vertex. The algorithm of Nishat et al. [11] preprocesses
the set S in O(n2) time so that the computation for the mapping of a represen-
tative vertex takes O(n) time. Hence T = O(n) and the overall time complexity
becomes O(n2). Moosa and Rahman [13] used a binary search technique with
the help of a triangular range search data structure of Chazelle et al. [19] to
obtain T = min{n1, n2, n3} · n1/3+ε and T (n) = O(n4/3+ε). Durocher et al. [12]
use the same idea, but instead of a binary search they use a randomized search.

Embedding Plane 3-Trees in O(n log3 n) time. We speed up the mapping
of the representative vertex as follows. We first select O(min{n1, n2, n3}) points
interior to the triangle xyz in O(min{n1 + n2, n2 + n3, n1 + n3} log2 n) time
using a dynamic convex hull data structure. We prove that these are the only
candidates for the mapping of the representative vertex. We then make some
non-trivial observations to test and compute a mapping for the representative

(b)

n 2 1

1n 1

1

r

s

x

y

z

u

v
1n 3

1n 3

(c)

c

e
f

h

d
p

a

b

(a)

cp
h

ed
f

a

b

(d) (e)

x

y

u

v
n 3

z

Fig. 1. (a) A plane 3-tree G. (b) A point set S. (c) A valid mapping of the represen-
tative vertex of G, and the recursive computation of the three subproblems. (d)–(e)
Illustration for the lines uy, vy, xr and zs. The region of interest is shown in gray.



Plane 3-trees: Embeddability and Approximation 295

vertex in O(min{n1, n2, n3}) time. Hence we obtain T = O(min{n1 + n2, n2 +
n3, n1 + n3} log2 n) and a running time of T (n) = O(n log3 n), which dominates
the O(n log2 n) time for building the initial dynamic convex hull data structure.

In the following we use three lemmas to obtain our main result. Lemma 1 se-
lects a region R containing the candidate points inside the triangle xyz. Lemma 2
reduces the problem of finding a mapping inside the triangle xyz to the problem
of finding a point satisfying specific criteria inside R. Lemma 3 gives an efficient
technique to find such a point. Finally, we use these lemmas to obtain a mapping
for the representative vertex in O(min{n1 + n2, n2 + n3, n1 + n3} log2 n) time.

Without loss of generality assume that n3 ≤ n2 ≤ n1. Observe that n1 +n2 +
n3 − 5 = n. Let S be a set of n points in general position such that the convex
hull of S contains exactly three points x, y, z on its boundary. Without loss of
generality assume that the vertices outer vertices a, b, c are mapped to the points
x, y, z, respectively.

Let u and v be two points on the straight line segment xz such that |S(uxy)| =
n1 − 1 and |S(vzy)| = n2 − 1, as shown in Figure 1(d). It is straightforward to
verify that if a valid mapping for the representative vertex exists (i.e, there exists
a point w ∈ S such that |S(wxy)| = n1, |S(wyz)| = n2 and |S(wzx)| = n3), then
the corresponding point (i.e., the point w) must lie inside S(uvy). Let r and s
be two points on the straight line segments uy and vy, respectively, such that
|S(rux)| = |S(svz)| = n3 − 1. We call the region defined by the simple polygon
x, u, v, z, s, y, r, x the region of interest. An example is shown in Figures 1(e). We
will use the following lemma whose proof is omitted due to space constraints.

Lemma 1. If there exists a point w ∈ S that corresponds to a valid mapping for
the representative vertex of G, then the straight line segments wx,wy and wz lie
inside the region of interest R. Moreover, the number of points in R that belong
to S is O(n3), and the following properties hold.
(a) If the points s, y, z (respectively, points r, x, y) are distinct, then |S(syz)| =
n2 − n3 + 2 (respectively, |S(rxy)| = n1 − n3 + 2).
(b) Otherwise, point s (respectively, point r) coincides with y (respectively, y)
and |S(syz)| = 2 (respectively, |S(rxy)| = 2).

Let S′ ⊆ S be the set that consists of the points lying on the boundary of R and
the points lying in the proper interior of R. We call S′ the set of interest. By
Lemma 1, |S′|=O(n3). We reduce the problem of finding a valid mapping in S
to the problem of finding a point with certain properties in S′, as shown in the
following lemma. We omit its proof due to space constraints.

Lemma 2. There exists a valid mapping for the representative vertex of G in S
if and only if there exists a point w′ ∈ S′ such that |S′(w′yz)| = n2−|S(yzs)|+3,
|S′(w′xy)| = n1 − |S(xyr)| + 3 and |S′(w′xz)| = n3.

Since a valid mapping for the representative vertex is unique, w′ must be unique.
We call the point w′ the principal point of S′. Observe that this principal point
corresponds to the valid mapping of the representative vertex of G in S.



296 S. Durocher and D. Mondal

x

y

z

m

m m

(b)

x

y

z

m

(c)

x

y

z

mw

(a) (d)

x

y

z

m

w

Fig. 2. Illustration for the proof of Lemma 3, where {m,m′}∩S=Ø and {x, y, z, w}⊂S

Lemma 3. Let S be a set of t ≥ 4 points in general position such that the
convex hull of S is a triangle xyz. Let i, j, k be three non-negative integers, where
i ≥ 3, j ≥ 3 and k = t+5− i− j. Then we can decide in O(t) time whether there
exists a point w ∈ S such that |S(wxy)| = i, |S(wyz)| = j and |S(wxz)| = k,
and compute such a point if it exists.

Proof. Consider first a variation of the problem, where we want to construct a
point m 	∈ S interior to xyz such that |S(mxy)| = i + 1, |S(myz)| = j − 1 and
|S(mxz)| = k−1. Steiger and Streinu [20] proved the existence of m and gave an
O(t)-time algorithm to find m. If there exists a point w ∈ S such that |S(wxy)| =
i, |S(wyz)| = j and |S(wxz)| = k, then it is straightforward to observe that there
exists a point m 	∈ S interior to xyz such that |S(mxy)| = i+1, |S(myz)| = j−1
and |S(mxz)| = k − 1. We now prove that the existence of m implies a unique
partition of S. Hence we can efficiently test whether w exists.

We claim that if there exists a point m′ 	= m, where m′ 	∈ S, such that
|S(m′xy)| = i + 1, |S(m′yz)| = j − 1 and |S(m′xz)| = k − 1, then the sets
S(m′xy), S(m′yz) and S(m′xz) must coincide with the sets S(mxy), S(myz) and
S(mxz). To verify the claim assume without loss of generality that m′ ∈ S(myz).
Since the triangle m′yz lies interior to the triangle myz, the sets S(m′yz) and
S(myz) must be identical. On the other hand, either the triangle mxz lies interior
to the triangle m′xz, or the triangle mxy lies interior to the triangle m′xy, as
shown in Figures 2(a)–(b). Therefore, either the sets S(mxz) and S(m′xz), or
the sets S(mxy) and S(m′xy) must be identical. Consequently, the remaining
pair of sets must also be identical.

Observe that if the point w ∈ S we are looking for exists, then w must lie
interior to S(mxy), as shown in Figure 2(c). Otherwise, if w ∈ S(myz) (respec-
tively, w ∈ S(mxz)), then |S(myz)| ≥ |S(wyz)| = j (respectively, |S(mxz)| ≥
|S(wxz)| = k), which contradicts our initial assumption that |S(myz)| = j − 1
(respectively, |S(mxz)| = k−1). Figure 2(d) depicts such a scenario. If w exists,
then the convex hull of S(mxy) must be a triangle xym′′, where m′′ ∈ S(mxy).
If |S(m′′xy)| = i, |S(m′′yz)| = j and |S(m′′xz)| = k, then m′′ is the required
point w. Otherwise, no such w exists.

We can test whether the convex hull of S(mxy) is a triangle in O(t) time (e.g.,
find the leftmost point a, the rightmost point b and the point c with the largest
perpendicular distance to the line determined by the line segment ab, and then
test whether triangle abc contains all the points). It is also straightforward to
compute the values |S(m′′xy)|, |S(m′′yz)| and |S(m′′xz)| in O(t) time. 
�



Plane 3-trees: Embeddability and Approximation 297

Given the set of interest S′ ⊆ S, we use Lemmas 2 and 3 to find the principal
point w′ ∈ S′ in O(n3) time. Observe that this principal point corresponds to
the valid mapping of the representative vertex of G in S. We now show how to
compute the set S′ in O((n2 +n3) log2 n) time using the dynamic planar convex
hull data structure of Overmars and van Leeuwen [21], which supports a single
update (i.e., a single insertion or deletion) in O(log2 n) time.

Step A. Assume that the points of S are placed in a dynamic convex hull
data structure D. We recursively delete the neighbor of y on the boundary
of the convex hull of S starting from z in anticlockwise order. After deleting
n2 − 2 points, we insert all the deleted points into a new dynamic convex
hull data structure D′. We then insert a copy of y into D′. Recall u and v
from Figure 1(e). Observe that all the points of S(vyz) are placed in D′. In a
similar way we construct another dynamic convex hull data structure D′′ that
maintains all the points of S(uvy). Consequently, D now only maintains the
points of S(uxy). Since a single insertion or deletion takes O(log2 n) time, all
the above O(n2 +n3) insertions and deletions take O((n2 +n3) log2 n) time in
total.

Step B. We now construct two other dynamic convex hull data structures
D1 and D2 using D and D′ such that they maintain the points of S(rux) and
S(svz), respectively. Since |S(rux)|+ |S(svz)| = O(n3), this takes O(n3 log2 n)
time.

Step C. We construct the point set S′ using the points maintained in D′′,D1

and D2, which also takes O(n3 log2 n) time. In similar way we can restore the
original point set S and the initial data structure D in O((n2 + n3) log2 n)
time.

The time for the construction of S′ using Steps A–C is O((n2 + n3) log2 n),
which dominates the time required for the computation of the valid mapping
of the representative vertex p. Let w be the point that corresponds to the valid
mapping. We now need to construct the point sets S(wxy), S(wyz) and S(wzx)
for recursively testing the point-set embeddability of Gabp, Gbcp and Gcap, respec-
tively. We can construct S(wxy), S(wyz) and S(wzx) and their corresponding
dynamic convex hull data structures in O((n2 + n3) log2 n) time as follows. Let
l be the point of intersection of the straight lines determined by the line seg-
ments wy and xz. First construct the set S(lyz) and then modify it to obtain
the sets S(wyz) and S(lwz), which takes O((n2 + n3) log2 n) time. Now modify
the set S(lxy) to construct the set S(lwx), and then use the sets S(lwx) and
S(lwz) to construct S(wxz), which takes O(n3 log2 n) time. Observe that after
the modification of the set S(lxy), we are left with the set S(wxy).

We now show that the total time taken is T (n) ≤ dn log3 n, for some constant
d, as follows. There exists c > 0 such that for all d ≥ c,



298 S. Durocher and D. Mondal

T (n) = T (n1) + T (n2) + T (n3) +O((n2 + n3) log
2 n)

≤ dn1 log
3 n1 + dn2 log

3 n2 + dn3 log
3 n3 + c(n2 + n3) log

2 n

≤ dn1 log
3 n+ dn2 log

2 n log n
2
+ dn3 log

2 n log n
2
+ c(n2 + n3) log

2 n

= dn1 log
3 n+ dn2 log

2 n(log n− 1) + dn3 log
2 n(log n− 1) + c(n2 + n3) log

2 n

= d(n1 + n2 + n3) log
3 n− (d− c)(n2 + n3) log

2 n

≤ dn log3 n.

Observe that the construction of the initial data structure D takes O(n log2 n)
time, which is dominated by T (n). The dynamic planar convex hull of Brodal
and Jacob [22] takes amortized O(log n) time per update. Therefore, using their
data structure instead of Overmars and van Leeuwen’s data structure [21] we
can improve the expected running time of our algorithm. Since the algorithms
of [21,20] take linear space, the space complexity of our algorithm is O(n).

Theorem 1. Given a plane 3-tree G with n vertices and a set S of n points in
general position in R2, we can decide the point-set embeddability of G on S in
O(n log3 n) time and O(n) space, and compute such an embedding if it exists.

Under the assumption that the algorithms of Overmars and van Leeuwen [21]
and Steiger and Streinu [20] can handle degenerate cases, it is straightforward
to modify our algorithm for the case when the input points are not necessarily
in general position.

3 Universal Point Set for Plane 3-Trees

In this section we give an algorithm to compute 2-bend point-set embeddings of
plane 3-trees on a set of n points in general position in O(W 2) area, where W
is the length of the side of the smallest axis-parallel square that encloses S.

We describe an outline of the algorithm. Given a plane 3-tree G and a set of
points S in general position, we first construct a straight-line drawing Γ of G
such that every point of S other than a pair of points on the convex hull of S lies
in the proper interior of some distinct inner face in Γ , as shown in Figure 3(b).
While constructing Γ , we compute a bijective function φ from the vertices of
Γ to the points of S. We then extend each edge (u, v) in Γ using two bends to
place the vertices u and v onto the points φ(u) and φ(v), respectively, as shown
in Figure 3(c). We prove that Γ and φ maintain certain properties so that the
resulting drawing Γ ′ remains planar.

In the following we describe the algorithm in detail. Let H be the convex hull
of S. Construct a triangle xyz with O(W 2) area such that xyz encloses H and
the side yz passes through a pair of consecutive points y′, z′ on the boundary
of H . Assume that y′ is closer to y than z′. Set φ(y) = y′ and φ(z) = z′. Set
φ(x) = x′, where x′ is the point on the convex hull of S(xyz) for which the angle



Plane 3-trees: Embeddability and Approximation 299

y

z(  )= z

x(  )= x
w

w

w

w

a

b

c

p

d e

(b)

f

p
b

c

a

d ef

(c)

x

y

z

(  )=

(a)

y

w

y

x

w

(d)
z

x

w

(e)
zy

Fig. 3. (a) Illustration for the triangle xyz. (b) Γ and φ, where φ is illustrated with
dashed lines. (c) A 2-bend point-set embedding of G on S. (d)–(e) Construction of w
and φ(w), where φ(w) = w′ is shown in white and the convex hull of S(xyz) in gray.

∠xyx′ is smallest. Figure 3(a) illustrates the triangle xyz and the function φ.
We call the straight line segments xφ(x), yφ(y), zφ(z) the wings of xyz. Observe
that only xφ(x) among the three wings of xyz lie in the proper interior of xyz.
We use this invariant throughout the algorithm, i.e., every face f in the drawing
will contain at most one wing that is in the proper interior of f . We call such a
wing the major wing of f .

Let a, b, c be the outer vertices of G in anticlockwise order and let p be the
representative vertex of G. Map the vertices a, b, c to the points x, y, z. Let
S \ {x′, y′, z′} be the point set S′. Let n1, n2 and n3 be the number of inner
vertices of Gabp, Gbcp and Gcap, respectively. Since the major wing of xyz is
incident to x, we construct a point w 	∈ S such that S′(wxy) = n1, S

′(wyz) =
n2 + 1 and S′(wxz) = n3, as shown in Figure 3(a). Steiger and Streinu [20]
proved that such a point always exists and gave an O(|S′|)-time algorithm to
find w. Since the angle ∠xyφ(x) is the smallest, if wy or wz intersects xφ(x),
then by continuity there must exist another point w̄ on the line wz such that
S′(w̄xy) = n1, S

′(w̄yz) = n2 + 1, S′(w̄xz) = n3 holds, and we choose w̄ as the
point w. Figures 3(d)–(e) depict such scenarios. Set φ(w) = w′, where w′ is the
point on the convex hull of S′(wyz) for which the angle ∠wyw′ is smallest. Since
wyz does not contain xφ(x), the mapping we compute maintains the invariant
that every face contains at most one major wing.

We now recursively construct the drawings of Gabp, Gbcp and Gcap with the
point sets S′(xyw), S′(yzw)\w′ and S′(zxw), respectively. Note that while recur-
sively constructing a point w for the representative vertex inside some triangle
xyz, then the triangle may not have any major wing. Also in this case, it suffices
to compute w such that S′(wxy) = n1, S

′(wyz) = n2 + 1 and S′(wxz) = n3

holds. Once we complete the recursive computation, we obtain a straight-line
drawing Γ of G, and a bijective function φ from the vertices of Γ to the points
of S. We now extend each edge (u, v) in Γ using two bends to place the vertices
u and v onto the points φ(u) and φ(v), respectively. We use φ and the property
that every face in Γ contains at most one major wing, to maintain planarity. We
omit the details due to space constraints.

Theorem 2. Given a plane 3-tree G with n vertices and a point set S of n
points in general position, we can compute a 2-bend point-set embedding of G



300 S. Durocher and D. Mondal

in O(n log3 n) time with O(W 2) area, where W is the length of the side of the
smallest axis-parallel square that encloses S.

4 Approximate Point-Set Embeddings

Let Γ be a straight-line drawing of G. Then S(Γ ) denotes the number of vertices
in Γ that are mapped to distinct points of S. The optimal point-set embedding
of G is a straight-line drawing Γ ∗ such that S(Γ ∗) ≥ S(Γ ′) for any straight-line
drawing Γ ′ of G. A ρ-approximation point-set embedding algorithm computes
a straight-line drawing Γ of G such that S(Γ )/S(Γ ∗) ≥ ρ. In this section we
show that given a plane 3-tree G with n vertices, we can construct a straight-line
drawing Γ of G such that S(Γ ) = Ω(

√
n), and hence point-set embeddability is

approximable with factor Ω(1/
√
n) for plane 3-trees.

Let G be a plane 3-tree with the outer vertices a, b, c and representative vertex
p, and let the number of vertices of G be n. Then the representative tree Tn−3

of G satisfies the following conditions [11].

(a) If n = 3, then Tn−3 is empty.
(b) If n = 4, then Tn−3 consists of a single vertex.
(c) If n > 4, then the root p of Tn−3 is the representative vertex of G and the

subtrees rooted at the three counter-clockwise ordered children p1, p2 and p3
of p in Tn−3 are the representative trees of Gabp, Gbcp and Gcap, respectively.

Since a rooted tree with n nodes is a partially ordered set under the ‘successor’
relation, by Dilworth’s theorem [23], either the height or the number of leaves
in the tree is at least

√
n. Let G be the input plane 3-tree with n vertices and

let T be its representative tree with n− 3 vertices [11].
If T has Ω(

√
n) leaves, then it is straightforward to construct a drawing Γ of

G using the algorithm of Steiger and Streinu [20] such that exactly the leaves
are mapped to the points of S, i.e., S(Γ ) = Ω(

√
n). Otherwise, the height of T is

Ω(
√
n). In this case we prove that G has a ‘canonical ordering tree’(also, called

Schnyder’s realizer [2]) with height Ω(
√
n), as shown in Lemma 4. There exists

a simple algorithm (one can also modify de Fraysseix et al.’s algorithm [1]) to
obtain a straight-line drawing Γ of G such that S(Γ ) = Ω(

√
n). We omit the

details due to space constraints.

Lemma 4. Let G be a plane 3-tree and let T be its representative tree. If the
height of the representative tree is Ω(

√
n), then G has a canonical ordering tree

with height Ω(
√
n).

Proof. Let P = (v1, v2, . . . , vk), k = Ω(
√
n), be the longest path from the root

v1 of T to some leaf vk. Without loss of generality assume that k is even. By Gi

we denote the plane 3-tree induced by the outer vertices of G and the vertices
v1, v2, . . . , vk. We now incrementally construct Gk. First construct a triangle xyz,
place the vertex v1 interior to xyz and add the segments v1x, v1y, v1z. Since v2
is a child of v1, v2 must be placed interior to one of the triangles incident to



Plane 3-trees: Embeddability and Approximation 301

v1
v2

v2 v1

v1

v2 v1

v2
v1

v2

v1 v3
v4

v2
v3

v4

v1
v1

v4 v2
v3v2

v3

v4

(a)

x

y

z

(b) (c)

A A B

y zx y

zx AB

A A
yx zB

A

(d)

Fig. 4. (a) Illustration for G2, where Tx, Ty and Tz are shown in red, green and blue.
(b) Illustration for the connectors, shown in gray. (c)–(d) Example of a connection of
A,A,B with B,A,A, respectively.

v1. Since vi+1, where i + 1 ≤ k, is a child of vi, this condition holds throughout
the construction. Let Tx, Ty, Tz be the trees of the Schnyder’s realizer rooted at
x, y, z, respectively. Figure 4(a) illustrates the realizer of G2, where the height
of Tx, Ty and Tz is two, two and three, respectively. By A and B we denote
the rooted trees isomorphic to Tx and Tz of G2, respectively. The nodes of
Tw, w ∈ {x, y, z}, where the realizer grows while adding vi+1 to Gi, i ≥ 2, are
called the connectors of Tw in Gi. See Figure 4(b).

Consider now the steps when we obtain the graphs G2, G4, . . . , Gk. Observe
that each time some tree of the form A (or B) gets connected with some Tw, w ∈
{x, y, z}, of Gi, the connectors of A (or B) become the only connectors of Tw in
Gi+2. Figures 4(c)–(d) illustrate such a scenario. Consequently, each time some
tree of the form B gets connected with some Tw, w ∈ {x, y, z}, of Gi, the height
of Tw increases by one in Gi+2. Since we need to encounter k/2 steps before we
obtain Gk, one of Tx, Ty or Tz must have height at least k/6 = Ω(

√
n). Since

each tree of the Schnyder’s realizer of Gk is a subtree of a distinct tree of the
Schnyder’s realizer of G, the proof is complete. 
�

Theorem 3. Given a plane 3-tree G with n vertices and a point set S of n
points in general position in R2, we can compute a straight-line drawing Γ of
G in polynomial time such that the number of vertices in Γ that are mapped
to distinct points of S is Ω(1/

√
n) times to the optimal. Hence the point-set

embeddability of plane 3-trees is approximable with factor Ω(1/
√
n).

5 Conclusion

Using techniques that are completely different from those used in the previ-
ously best known approaches for testing point-set embeddability of plane 3-trees
(achieving O(n4/3+ε) time and O(n4/3) space), in Section 2 we described an
algorithm that solves the problem for a given plane 3-tree in O(n log3 n) time
using O(n) space. As suggested by an anonymous reviewer, one possibility for
potentially reducing the running time further might be to apply the algorithm
of Moosa and Rahman [13], where an orthogonal range search would be used
instead of a triangular range search. Specifically, given points x and y and an
integer k, a triangle wxy that contains k points can be found by encoding each



302 S. Durocher and D. Mondal

point w using two values: the slopes of wx and wy. The triangle wxy is then
mapped to a two-sided axis-aligned orthogonal range query. It is not obvious,
however, how this technique would be applied in recursive levels. One possibility
might be to use a dynamic orthogonal range counting data structure. Another
interesting issue is to examine the amount of scale up required to ensure that
the vertices and bend points of the drawings produced in Section 3 lie on integer
coordinates, i.e., the area requirement under minimum resolution assumption.
In Section 4 we gave an Ω(1/

√
n)-approximation algorithm for plane 3-trees.

Hence a natural question is to examine whether a constant factor approxima-
tion algorithm exists.

Acknowledgement. We thank Valentin Polishchuk and the other anonymous
reviewers for many constructive and helpful comments.

References

1. de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid.
Combinatorica 10(1), 41–51 (1990)

2. Schnyder, W.: Embedding planar graphs on the grid. In: SODA, pp. 138–148. ACM
(1990)

3. Bose, P.: On embedding an outer-planar graph in a point set. Computational Ge-
ometry: Theory and Applications 23(3), 303–312 (2002)

4. Cabello, S.: Planar embeddability of the vertices of a graph using a fixed point set
is NP-hard. Journal of Graph Algorithms and Applications 10(2), 353–363 (2006)

5. Ikebe, Y., Perles, M.A., Tamura, A., Tokunaga, S.: The rooted tree embedding
problem into points in the plane. Discrete & Comp. Geometry 11(1), 51–63 (1994)

6. Bose, P., McAllister, M., Snoeyink, J.: Optimal algorithms to embed trees in a
point set. Journal of Graph Algorithms and Applications 1(2), 1–15 (1997)

7. Castañeda, N., Urrutia, J.: Straight line embeddings of planar graphs on point sets.
In: CCCG, pp. 312–318 (1996)

8. Durocher, S., Mondal, D.: On the hardness of point-set embeddability. In: Rahman,
M.S., Nakano, S.-I. (eds.) WALCOM 2012. LNCS, vol. 7157, pp. 148–159. Springer,
Heidelberg (2012)

9. Biedl, T., Vatshelle, M.: The point-set embeddability problem for plane graphs. In:
SoCG, pp. 41–50. ACM (2012)

10. Andrade Jr., J.S., Herrmann, H.J., Andrade, R.F.S., da Silva, L.R.: Apollonian
networks: Simultaneously scale-free, small world, euclidean, space filling, and with
matching graphs. Physical Review Letters 94 (2005)

11. Nishat, R.I., Mondal, D., Rahman, M.S.: Point-set embeddings of plane 3-trees.
Computational Geometry: Theory and Applications 45(3), 88–98 (2012)

12. Durocher, S., Mondal, D., Nishat, R.I., Rahman, M.S., Whitesides, S.: Embedding
plane 3-trees in R2 and R3. In: Speckmann, B. (ed.) GD 2011. LNCS, vol. 7034,
pp. 39–51. Springer, Heidelberg (2011)

13. Moosa, T.M., Sohel Rahman, M.: Improved algorithms for the point-set embed-
dability problem for plane 3-trees. In: Fu, B., Du, D.-Z. (eds.) COCOON 2011.
LNCS, vol. 6842, pp. 204–212. Springer, Heidelberg (2011)

14. Erickson, J.: On the relative complexities of some geometric problems. In: CCCG,
pp. 85–90 (1995)



Plane 3-trees: Embeddability and Approximation 303

15. Brandenburg, F.J., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Liotta, G.,
Mutzel, P.: Selected open problems in graph drawing. In: Liotta, G. (ed.) GD
2003. LNCS, vol. 2912, pp. 515–539. Springer, Heidelberg (2004)

16. Everett, H., Lazard, S., Liotta, G., Wismath, S.K.: Universal sets of n points for
one-bend drawings of planar graphs with n vertices. Discrete & Computational
Geometry 43(2), 272–288 (2010)

17. Kaufmann, M., Wiese, R.: Embedding vertices at points: Few bends suffice for
planar graphs. J. of Graph Algorithms and Applications 6(1), 115–129 (2002)

18. Di Giacomo, E., Liotta, G.: The Hamiltonian augmentation problem and its ap-
plications to graph drawing. In: Rahman, M. S., Fujita, S. (eds.) WALCOM 2010.
LNCS, vol. 5942, pp. 35–46. Springer, Heidelberg (2010)

19. Chazelle, B., Sharir, M., Welzl, E.: Quasi-optimal upper bounds for simplex range
searching and new zone theorems. Algorithmica 8(5&6), 407–429 (1992)

20. Steiger, W.L., Streinu, I.: Illumination by floodlights. Computational Geometry:
Theory and Applications 10(1), 57–70 (1998)

21. Overmars, M.H., van Leeuwen, J.: Maintenance of configurations in the plane.
Journal of Computer and System Sciences 23(2), 166–204 (1981)

22. Brodal, G.S., Jacob, R.: Dynamic planar convex hull. In: FOCS, pp. 617–626. IEEE
(2002)

23. Dilworth, R.P.: A decomposition theorem for partially ordered sets. Annals of
Mathematics 51(1), 161–166 (1950)



A Dynamic Data Structure for Counting

Subgraphs in Sparse Graphs

Zdeněk Dvořák and Vojtěch Tůma�

Computer Science Institute, Charles University
Prague, Czech Republic

{rakdver,voyta}@iuuk.mff.cuni.cz

Abstract. We present a dynamic data structure representing a graph
G, which allows addition and removal of edges from G and can determine
the number of appearances of a graph of a bounded size as an induced
subgraph of G. The queries are answered in constant time. When the
data structure is used to represent graphs from a class with bounded
expansion (which includes planar graphs and more generally all proper
classes closed on topological minors, as well as many other natural classes
of graphs with bounded average degree), the amortized time complexity
of updates is polylogarithmic.

Keywords: sparse graphs, subgraphs, data structure.

1 Introduction

In this paper, we deal with the problem of determining whether a fixed graph H
is an induced subgraph of another graph G. We consider a dynamic setting, that
is, we construct a data structure representing a graph, supporting efficient edge
additions and removals, and keeping track of whether H appears in the current
graph as an induced subgraph.

An exemplar application of such a data structure is an algorithm for finding
5-coloring of a graph on torus, based on the result of Thomassen [21]. Here,
the algorithm performs various reductions of the considered graph, and after
each reduction, it needs to test whether the reduced graph contains some of four
specific subgraphs. Rather than running a subgraph testing algorithm each time,
it makes more sense to update the information about subgraphs dynamically.

We actually deal with the counting version of the problem, i.e., determining
how many times does a fixed graph H appear as an induced subgraph in the
represented graph. This generalisation has applications in Bioinformatics and
Social Networking research – for instance, see [13] and [20].

� The work leading to this invention has received funding from the European Research
Council under the European Union’s Seventh Framework Programme (FP7/2007-
2013)/ERC grant agreement no. 259385. The second author received support un-
der project GAUK/592412 of Grant agency of Charles University, KONTAKT II
LH12095 and SVV 267313.

F. Dehne, R. Solis-Oba, and J.-R. Sack (Eds.): WADS 2013, LNCS 8037, pp. 304–315, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



A Dynamic Data Structure for Counting Subgraphs in Sparse Graphs 305

The problem of determining whether a graph H is an (induced) subgraph of
another graph G is W[1]-complete when parameterized by H , see [3]. Further-
more, as observed in [6], this result still holds when G is restricted to belong
to a hereditary class of graphs, as long as this class is not nowhere-dense. Con-
sequently, unless W[1] = FPT, the discussed data structure cannot have both
subpolynomial update and query times when used to represent general graphs
(or even graphs from a hereditary class that is not nowhere-dense).

The time complexity of queries in our data structure is constant depend-
ing only on H . The time complexity of the updates is subpolynomial when the
represented graph is restricted to belong to a nowhere-dense class of graphs.
Furthermore, if the class has bounded expansion, the complexity becomes poly-
logarithmic. Let us recall that the concepts of nowhere-denseness and bounded
expansion were introduced by Nešetřil and Ossona de Mendez [15,17]; we give
the definitions below. Here, let us just note that every class with bounded ex-
pansion is nowhere-dense, and that many natural classes of graphs with bounded
average degree (e.g., proper minor-closed classes of graphs, classes of graphs with
bounded maximum degree, classes of graphs excluding a subdivision of a fixed
graph, classes of graphs that can be embedded in a fixed surface with bounded
number of crossings per each edge, see [18]) have bounded expansion.

Let us now state the main result of this paper precisely.

Theorem 1. Let H be a fixed graph and let G be a class of graphs.
There exists a data structure ISubH(G) representing a graph G ∈ G which

supports the following operations.

– Determine the number of induced subgraphs of G isomorphic to H.
– Add an edge e, i.e., transform ISubH(G) to ISubH(G + e), under the as-

sumption that G + e is in G.
– Delete an edge e, i.e., transform ISubH(G) to ISubH(G − e), under the as-

sumption that G− e is in G.

If G has bounded expansion, then the time complexity of query and edge removal
is O(1), while the amortized time complexity of edge addition is O(logh |V (G)|),
where h =

(|V (H)|
2

)
− 1. The structure can be initialized in O(|V (G)|) and the

space complexity for the structure is O(|V (G)|). If G is nowhere-dense, then
the time complexity of query is O(1), the amortized time complexity of edge
addition or removal is O(|V (G)|ε), the time complexity of the initialization is
O(|V (G)|1+ε) and the space complexity is O(|V (G)|1+ε), for every ε > 0.

Using this data structure, we can also count graph inclusions other than induced
subgraphs (e.g., subgraphs and homomorphisms), as these counts only depend
on which and how many small induced subgraphs appear in G. Furthermore, it
is easy to modify the data structure to apply to objects other than undirected
graphs, e.g., to directed graphs with colors on vertices and edges.

The problem of dynamic subgraph counting was introduced by Eppstein et
al. in [10] and later extended in [9]. Using a different approach, they obtain
a data structure parametrized by the number of vertices of G of large degree



306 Z. Dvořák and V. Tůma

(which is usually worse than parametrization by expansion that we use) , and
determines only the number of all induced subgraphs with at most four vertices.
As a trade-off, it has substantially better time complexity per operation.

Our result extends, in a certain sense, the result of Dvořák, Král’ and Thomas
[5], who provided a data structure for first-order testing. For a fixed first-order
formula φ and a class of graphs C with bounded expansion, this data struc-
ture represents a graph G ∈ C and can be initialized in time O(|V (G)|). The
data structure enables testing whether the graph satisfies φ in constant time.
However, the data structure is only semi-dynamic – the graph can be modified
by adding and removing edges in constant time, but the edge additions are re-
stricted: we can only add edges that were removed before. On the other hand,
the data structure from [5] handles general FO properties, whereas the data
structure developed in this paper deals only with the case of induced subgraph
testing – formally, this amounts to deciding existential FO properties for classes
of relational structures with bounded expansion (or nowhere-dense).

Finally, let us briefly mention some results for the non-dynamic setting, that is,
when the graph G is only tested once. Eppstein [8] gave a linear-time algorithm
for this problem for planar graphs. This was subsequently generalized by Frick
and Grohe [11] to FO property testing in graphs with locally bounded tree-width,
by Nešetřil and Ossona de Mendez [14] to subgraph testing in nowhere-dense
graphs, and by Dvořák, Král’ and Thomas [5] to FO property testing in graphs
with locally bounded expansion (the question whether FO property testing is
fixed-parameter tractable in nowhere-dense classes of graphs is still open).

When there is no restriction on G, the situation is far worse. As we men-
tioned before, the subgraph problem is W [1]-hard when parameterized by
H [3], and consequently it is unlikely to admit an algorithm with time com-
plexity f(|H |)|V (G)|O(1) for any function f . The best known general algo-
rithms are based on matrix multiplication; Nešetřil and Poljak [19] gave an
O(|V (G)|ω|V (H)|/3)-time algorithm, where ω is the exponent in the complexity
of matrix multiplication. This was subsequently refined in [12,7].

The rest of the paper is organized as follows. In Section 2, we describe a
basic idea of the data structure for induced subgraphs. In Section 3, we give
some definitions and auxiliary results needed in the rest of the paper. Section 4
contains a more detailed description of the key parts of the data structure.

2 Basic Idea

For concreteness, in this section we consider the class of planar graphs, rather
than an arbitrary class with bounded expansion. Suppose that we want to keep
track of triangles in a planar graph G. A simple way to do this is as follows.
Orient the edges of G so that every vertex has in-degree at most 6, which is
possible by 5-degeneracy of planar graphs. For an edge xy of G, we write x→ y
if the edge is oriented towards y. For each vertex u ∈ V (G), we maintain

– the number n1(u) of pairs of vertices v, w ∈ V (G) such that u → v, v → w
and u→ w;



A Dynamic Data Structure for Counting Subgraphs in Sparse Graphs 307

– the number n2(u) of pairs of vertices v, w ∈ V (G) such that u → v, v → w
and w → u.

We also maintain the sums N1 =
∑

u∈V (G) n1(u) and N2 =
∑

u∈V (G) n2(u).

Consider a triangle T ⊆ G with vertex set {x, y, z}. By symmetry, we can assume
that x→ y and y → z. If x → z, then T contributes 1 to n1(x). If z → x, then
T contributes 1 to each of n2(x), n2(y) and n2(z). Therefore, the number of
triangles in G is N1 + N2/3.

Let us add an edge xy to G and choose its orientation, say x → y. Assume
for now that in the resulting orientation, the in-degree of y is still at most 6.
Which of the numbers that we maintain are affected? Clearly, if n1(u) or n2(u)
changes, then either u is incident with the edge xy, or u is an in-neighbor of x.
Thus, we only need to update information for at most 8 vertices of G.

Updating an in-neighbor u of x in constant time is easy, as we just need to
check whether the path u→ x→ y contributes to n1(u) and n2(u) or not. For y,
the number n1(y) is unchanged, while the number n2(y) increases by the number
of vertices v such that y → v → x. We can enumerate such vertices in a constant
time, as they are in-neighbors of x. Similarly, we can update n2(x) in a constant
time, as the path x → y → z only contributes to n2(x) if z is an in-neighbor
of x.

There are two ways n1(x) can be affected by the addition of x→ y. It could be
that there exists v ∈ V (G) with x → v → y. All these vertices are in-neighbors
of y, and they can be enumerated in constant time. The most complicated case
is that there exists a vertex z with x → z and y → z. Here, we cannot easily
enumerate all possibilities for z, as we do not have any bound on out-degrees
of vertices. Therefore, we need one more piece of information. For each pair of
distinct vertices u, v ∈ V (G), let n3(u, v) be the number of vertices w ∈ V (G)
with u→ w and v → w. In a hash table, we store

– the number n3(u, v) for all pairs u, v ∈ V (G) such that n3(u, v) 	= 0.

Hence, in the last case of the update of n1(x), we just need to add n3(x, y).
Let us note that since each vertex has at most 6 in-neighbors, the number

n3(u, v) is non-zero for at most
(
6
2

)
|V (G)| pairs u, v ∈ V (G), and thus n3 can

be stored in linear space. We need to consider how the addition of x→ y affects
n3. If n3(u, v) changes, then by symmetry we can assume that u = x and v → y.
Consequently, v is an in-neighbor of y, and thus we can enumerate in constant
time all (at most 5) pairs u, v ∈ V (G) such that n3(u, v) increases.

This finishes the description of the update in the case of edge addition. Edge
removal is handled similarly. One problem that we skipped is what to do when
the addition of an edge would violate the constraint on the maximum in-degree.
However, Brodal and Fagerberg [1] provided an algorithm for maintaining an
orientation with bounded maximum in-degree, which only needs to change ori-
entation of O(log |V (G)|) edges per update (amortized). In our data structure,
the edge reorientations can be handled similarly to edge additions.

Therefore, we have described a data structure for counting the number of
triangles in a planar graph (or indeed, any graph with bounded degeneracy),



308 Z. Dvořák and V. Tůma

with logarithmic time complexity per update. For a general subgraph H , there
appear additional complications. The idea of maintaining for each vertex v the
number of copies in H in the subgraph reachable by short paths from v (a
similar idea appears already in Chrobak and Eppstein [2]) only works for the
orientations of H that contain a directed Hamiltonian path. As a first step, we
extend this to the case that H contains a spanning outbranching without cross
edges, at the expense of only counting homomorphisms from H to G instead
of subgraphs. This is not a big problem, as counting subgraphs is equivalent to
counting homomorphisms through a standard inclusion-exclusion argument.

However, how to deal with the orientations that do not admit such an out-
branching? For this, we use the idea of fraternal augmentations of Nešetřil and
Ossona de Mendez [15]. Essentially, we add new edges to H and G, obtaining
new graphs H ′ and G′, in such a way that we can recover the original num-
ber of homomorphisms, but H ′ contains a spanning outbranching without cross
edges. The results of [15] and the assumption of bounded expansion or nowhere-
dense class of graphs ensure that G′ has bounded degeneracy. This is the most
technically complicated part of the argument, formalized in Lemmas 1 and 2.

3 Definitions and Auxiliary Results

The graphs considered in this paper are simple, without loops or parallel edges,
unless specified otherwise. For directed graphs, we also do not allow edges joining
a single pair of vertices in opposite directions.

A graph H is said to be a minor of depth r of a graph G, if it can be obtained
from a subgraph of G by contracting vertex-disjoint subgraphs of radius at most r
into single vertices, with arising parallel edges and loops suppressed. The Greatest
Reduced Average Density at depth r of graph G then denotes the value

∇r(G) = max{|E(H)|/|V (H)| : H is a minor of depth r of G}.

A graph G has expansion bounded by f , if f is a function from N to R+ and
∇r(G) ≤ f(r) for every r. A class of graphs G has bounded expansion, if there
is a function f such that every graph in G has expansion bounded by f . Let us
note that the average degree of a graph G is at most 2∇0(G); hence, graphs in
any class of graphs with expansion bounded by f have average degree bounded
by a constant 2f(0). Similarly, we conclude that every G ∈ G has an orientation
(even acyclic one) with in-degree at most D = 2f(0).

The nowhere dense classes introduced in [17] that generalize classes with
bounded expansion can be defined in a similar manner – here, let us just re-
mark that unlike the case of bounded expansion, the average degree does not
have to be bounded by a constant, but is no(1), i.e., for any nowhere-dense class G
and for every ε > 0 there exists a function g(n) = O(nε) such that every graph
G ∈ G has average degree at most g(|V (G)|). These two concepts of sparsity
turned out to be very powerful. We refer the reader to surveys [4,16] for more
information.



A Dynamic Data Structure for Counting Subgraphs in Sparse Graphs 309

Suppose that G is a directed graph. Vertices u, v ∈ V (G) form a fork if u and
v are distinct and non-adjacent and there exists w ∈ V (G) with u → w, v →
w ∈ E(G). Let G′ be a graph obtained from G by adding the edge u → v
or v → u for every pair of vertices u and v forming a fork. Then G′ is called
a fraternal augmentation of G. Let us remark that a directed graph can have
several different fraternal augmentations, depending on the choices of directions
of newly added edges. If G has no fork, then G is called elder graph. For an
undirected graph G, a k-th augmentation of G is a directed graph G′ obtained
from an orientation of G by iterating fraternal augmentation (for all forks) k

times. Note that (
(|V (G)|

2

)
− 2)-th augmentation of G is an elder graph, because

any graph with at most 1 edge is already elder and fraternal augmentation of a
non-elder graph adds at least one edge.

The following result of Nešetřil and Ossona de Mendez [15] shows that frater-
nal augmentation preserve bounded expansion and nowhere-denseness.

Theorem 2. There exist polynomials f0, f1, f2, . . . with the following property.
Let G be a graph with expansion bounded by a function g and let G1 be an
orientation of G with in-degree at most D. If G′ is the underlying undirected
graph of a fraternal augmentation of G1, then G′ has expansion bounded by the
function g′(r) = fr(g(2r + 1), D).

The fraternal augmentations are a basic tool for deriving properties of graphs
with bounded expansion, e.g., existence of low tree-depth colorings (see [14] for a
definition). Once such a coloring is found, the subgraph problem can be reduced
to graphs with bounded tree-width, where it can be easily solved in linear time by
dynamic programing. However, we do not know how to maintain a low tree-depth
coloring dynamically (indeed, not even an efficient data structure for maintaining
say a proper 1000-coloring of a planar graph during edge additions and deletions
is known). The main contribution of this paper is showing that we can count
subgraphs using just the fraternal augmentations, which are easier to update.

To maintain orientations of a graph, we use the following result by Brodal
and Fagerberg [1]:

Theorem 3. There exists a data structure that, for a graph G with ∇0(G) ≤ d,
maintains an orientation with maximum in-degree at most 4d within the follow-
ing bounds:

– an edge can be added to G (provided that the resulting graph G′ still satisfies
∇0(G′) ≤ d) in amortized O(log n) time, and

– an edge can be removed in O(1) time, without affecting the orientation of
any other edges.

The data structure can be initialized in time O(|V (G)| + |E(G)|). During the
updates, the edges whose orientation has changed can be reported in the same
time bounds. The orientation is maintained explicitly, i.e., each vertex stores a
list of in- and out-neighbors.

Let us remark that the multiplicative constants of the O-notation in Theorem 3
do not depend on d, although the implementation of the data structure as de-
scribed in the paper of Brodal and Fagerberg requires the knowledge of d.



310 Z. Dvořák and V. Tůma

Using Theorem 2, we obtain the following modification of the Theorem 3.

Theorem 4. For every k ≥ 0, there exists an integer k′ and a polynomial
g with the following property. Let G be a class of graphs and h(n, r) a com-
putable function such that the expansion of every graph G ∈ G is bounded by
f(r) = h(|V (G)|, r). There exists a data structure representing a k-th augmen-
tation G̃k of a graph G ∈ G with n vertices within the following bounds, where
D = g(h(n, k′)):

– the maximum in-degree of G̃k is at most D,
– an edge can be added to G (provided that the resulting graph still belongs to
G) in an amortized O(D logk+1 n) time, and

– an edge can be removed in O(D) time, without affecting the orientation of
any other edges.

The data structure can be initialized in time O(Dn+ t), where t is the time nec-
essary to compute D. The orientation is maintained explicitly, i.e., each vertex
stores a list of in- and out-neighbors.

Let G and H be undirected graphs, a mapping φ : V (H)→ V (G) is a homomor-
phism if for every edge uv ∈ E(H), we have that φ(u)φ(v) is an edge of G (in
particular, φ(u) 	= φ(v)). A homomorphism is a subgraph if it is injective. It is
an induced subgraph if it is injective and φ(u)φ(v) ∈ E(G) implies uv ∈ E(H),
for every u, v ∈ V (H). Let hom(H,G), sub(H,G) and isub(H,G) denote the
number of homomorphisms, subgraphs and induced subgraphs, respectively, of
H in G. Let us note that the definitions of subgraph and induced subgraph
distinguish the vertices, i.e., sub(H,H) = isub(H,H) is equal to the number of
automorphisms of H .

Similarly, if H and G are directed graphs, a mapping φ : V (H) → V (G) is a
homomorphism if u→ v ∈ E(H) implies that φ(u)→ φ(v) is an edge of G, and
hom(H,G) denotes the number of homomorphisms from H to G.

4 Dynamic Data Structure for Induced Subgraphs

In this section, we aim to design the data structure ISub as described in the
introduction.

To implement the data structure ISubH(G), we first perform several standard
transformations using principle of inclusion and exclusion, reducing the problem
to counting homomorphisms from connected graphs (for the straightforward
argument, see the full version of the paper). That is, we only need to design
a data structure HomH′(G) for a connected graph H ′, which counts the number
hom(H ′, G) of homomorphisms from H ′ to G, and allows additions and removals
of edges in G.

4.1 Reduction to Elder Augmentations

In order to implement the data structure HomH(G), we use fraternal augmen-
tations. Essentially, we would like to find a bijection between homomorphisms



A Dynamic Data Structure for Counting Subgraphs in Sparse Graphs 311

from H to G and between homomorphisms from all possible h-th augmentations
of H to an h-th augmentation of G, where h =

(|V (H)|
2

)
−2. These augmentations

of H are elder graphs, whose structure we exploit in the design of the data struc-
ture. The results are presented in a slightly simplifed form and without proofs,
for the details we refer to the appendix.

However, the situation is more complicated, as taking augmentations of H
does not suffice. The problem is that a homomorphism of H can map two non-
adjacent vertices u, v of H to a single vertex of G, but in all augmentations of H
there is an edge between u and v, thus there is no corresponding homomorphism.
Therefore we consider the set He, which contains augmentations of H and some
other elder graphs, which are formed basically by identifying some vertices of H
and whose number is bounded by a function of size of H . Additionally, one has
to work with colored edges.

Lemma 1. Let H and G be graphs and let h =
(|V (H)|

2

)
− 2. If G′ is an h-th

augmentation of G, then

hom(H,G) =
∑

H′∈He

hom(H ′, G′).

All graphs in the set He are elder, which implies good connectivity properties,
as formalized bellow. A directed tree T with all edges directed away from the
root is called an outbranching. The root of T is denoted by r(T ). Let H be a
supergraph of an outbranching T with V (H) = V (T ), such that for every edge
t1 → t2 ∈ E(H), there exists a directed path in T either from t1 to t2 or from
t2 to t1. We call such a pair (H,T ) a vineyard.

Lemma 2. If H is a connected elder graph, then there exists an outbranching
T ⊆ H such that (H,T ) is a vineyard.

In the following subsection, we design a data structure AHom(H′,T ′),D(G′) for
an elder vineyard (H ′, T ′) and a directed graph G′ of maximum in-degree at
most D. The data structure AHom(H′,T ′),D counts the number hom(H ′, G′) of
homomorphisms from H ′ to G′ and allows additions, removals and reorientations
of edges in G′.

The data structure HomH(G) then basically consists of a collection of such
AHom structures – one for every H ′ ∈ He, with D derived from the Theorem 4
and T ′ obtained from Lemma 2. Edge additions and removals propagate to all
these AHom structures, and a query is answered by summing respective queries
– as hinted at by the Lemma 1. Similarly, the data structure ISubH(G) is realised
via HomH(G) structures, whose number is bounded by a function of the size H .

4.2 Homomorphisms of Elder Graphs

Consider a directed graph and a set S of its vertices. Let N+
d (S) denote the

set of vertices that are reachable from S by a directed path of length at most
d, and let N+

∞(S) we denote the set of vertices reachable from S by a directed



312 Z. Dvořák and V. Tůma

path of any length. Similarly, N−
d (S) and N−

∞(S) denote the sets of vertices from
that S can be reached by a directed path of length at most d and by a directed
path of any length, respectively. We also use N+

d (v), N+
∞(v), N−

d (v), N−
∞(v) as

shorthands for N+
d ({v}), N+

∞({v}), N−
d ({v}), N−

∞({v}), respectively.
Let (H,T ) be an elder vineyard. A clan is a subset C of vertices of H such

that N+
1 (C) = C and the subgraph T ′ of T induced by C is an outbranching.

Let r(C) denote the root of this outbranching T ′. The ghosts of a clan C are the
vertices N−

1 (C) \ C.

Lemma 3. Let (H,T ) be an elder vineyard.

1. For every v ∈ V (H), the set N+
∞(v) is a clan.

2. The ghosts of a clan C are exactly the vertices in N−
1 (r(C)) \C.

3. All ghosts of a clan C are on the path from r(H) to r(C) in T .

Proof. Let us prove the claims separately:

1. Let C = N+
∞(v). Clearly, N+

1 (C) = C. Note that the subgraph H [C] of H
induced by C is connected. If the subgraph of T induced by C is not an
outbranching, then it contains two components T1 and T2 joined by an edge
of H [C]. Observe that no directed path in T contains a vertex both in T1

and T2. This contradicts the assumption that (H,T ) is a vineyard.
2. Suppose that v is a ghost of C, i.e., v 	∈ C and there exists an edge v → w ∈

E(H) for some w ∈ C. Let w be such a vertex whose distance from r(C) in
T is minimal. If w 	= r(C), then consider the in-neighbor z of w in T . Since
H is an elder graph, v and z are adjacent in H . Since v does not belong to
C, we have z → v 	∈ E(H), and thus v → z ∈ E(H). However, the distance
from r(C) to z in T is smaller than the distance from r(C) to w, which is a
contradiction. Therefore, we have w = r(C) as required.

3. This follows from the definition of vineyard.

The extended clan C∗ for a clan C is obtained from the subgraph of H induced
by C and its ghosts by removing the edges joining pairs of ghosts. We want
to count homomorphisms from clans of H to G, but we need to control the
behaviour of ghosts of the clan – let be ghosts g1, . . . , gm of a clan C listed in
the increasing order by their distance from r(C) in T and let v and w1, . . . , wm be
(not necessarily distinct) vertices of G. Note that g1 is the in-neighbor of r(C) in
T . By hom(H,T )(C, v, w1, . . . , wm, G) we denote the number of homomorphisms
from C∗ to G such that r(C) maps to v and g1, . . . , gm map to w1, . . . , wm in
order, and by hom((H,T ), G, v) we denote the number of homomorphisms from
H to G such that r(T ) maps to v.

Theorem 5. Let (H,T ) be an elder vineyard and let D be an integer. There ex-
ists a data structure AHom(H,T ),D(G) representing a directed graph G and max-

imum in-degree at most D supporting the following operations in O(D|V (H)|2)
time.

1. Addition of an edge e to G such that the maximum in-degree of G + e is at
most D.



A Dynamic Data Structure for Counting Subgraphs in Sparse Graphs 313

2. Reorientation of an edge in G such that the maximum in-degree of the re-
sulting graph is at most D.

3. Removal of an edge.

The data structure can be used to determine hom((H,T ), G, v) for a vertex v ∈
V (G), as well as hom(H,G), in O(1). The data structure can be built in time

O(D|V (H)|2+1|V (G)|) and has space complexity O(D|V (H)||V (G)|).

Proof. We store the following information:

– For each clan C 	= V (H) with m ghosts and each m-tuple of vertices
w1, . . . , wm of G we record the number

S(C,w1, . . . , wm) =
∑

v∈N+
1 (w1)

hom(H,T )(C, v, w1, . . . , wm),

that is the number of homomorphisms of C∗ to G such that the ghosts of C
map to w1, . . . , wm and r(C) maps to some outneighbor v of w1.

– For each v ∈ V (G), the number hom((H,T ), G, v).
– The sum hom(H,G) of these numbers over all vertices of G.

The number S(C,w1, . . . , wm) is only stored for those combinations of C and
w1, . . . , wm for that it is non-zero. The values are stored in a hash table, so that
they can be accessed in constant time. By Lemma 3, if hom(H,T )(C, v, w1, . . . , wm)
is non-zero, then w1, . . . , wm are in-neighbors of v in G. Since the maximum
in-degree of G is at most D, each vertex v contributes at most D|V (H)| non-zero
values (and each of the numbers is smaller or equal to |V (G)||V (H)|), thus the
space necessary for the storage is O(D|V (H)||V (G)|). Queries can be performed
in constant time by returning the stored information.

The addition of an edge x→ y to G is implemented as follows. We process the
clans of (H,T ) in the decreasing order of size, i.e., when we use the information
stored for the smaller clans, it still refers to the graph G without the new edge.
Let us consider a clan C 	= V (H) with ghosts g1, . . . , gm. For each non-empty
set X of edges of C∗, we are going to find all vertices v and w1, . . . , wm such that
there exists a homomorphism of C∗ mapping r(C) to v and the ghosts of C to
w1, . . . , wm which maps precisely the edges of X to x→ y. We will also determine
the numbers of such homomorphisms, and decrease the number S(C,w1, . . . , wm)
by this amount. Note that the number of choices of X is constant (bounded by
a function of H).

Consider now a fixed set X . Let M be the set of vertices z ∈ V (C∗) such
that there exists a directed path in C∗ from z to the head of an edge of X .
Note that r(C) and all ghosts of C belong to M . Let C1, . . . , Ct be the vertex
sets of connected components of C∗−M , and observe that they are clans. Now,
let F be the set of all homomorphisms from the subgraph of C∗ induced by
M to G + (x → y) such that exactly the edges of X are mapped to x → y.
Note that if z is an image of a vertex of M in such a homomorphism, then
G contains a directed path from z to y of length at most |V (H)|, thus there



314 Z. Dvořák and V. Tůma

are only O(D|V (H)|) vertices of G to that M can map, and consequently only

O(D|V (H)|2) choices for the homomorphisms. Each such choice fixes the image
of r(C) as well as all the ghosts.

Consider φ ∈ F . We need to determine in how many ways φ extends to a
homomorphism of C∗ that maps no further edges to x → y (this number is
then added to the value S(C, φ(g1), . . . , φ(gm))). Note that for 1 ≤ i ≤ t, the
ghosts of Ci are contained in M , and thus their images are fixed by the choice
of φ. Therefore, if gi1, . . . , g

i
mi

are the ghosts of Ci, then the number of the
homomorphisms extending φ is

t∏
i=1

S(Ci, φ(gi1), . . . , φ(gimi
)).

Here, we use the fact that the values S(Ci, . . .) were not updated yet, and thus
in the homomorphisms that we count, no other edge maps to x → y. These
products can be determined in a constant time.

The values hom((H,T ), G, v) are updated similarly, before the values S(C, . . .)
are updated. The changes in the values of hom((H,T ), G, v) are also propagated
to the stored value of hom(H,G). The complexity of the update is given by the

number of choices of partial homomorphisms F , i.e., O(D|V (H)|2).
Edge removal works in the same manner, except that the information is sub-

tracted in the end, and that the clans are processed in the opposite direction,
i.e. starting from the inclusion-wise smallest clans, so that the values for the
graph without the edge are used in the computations. Change of the orientation
of an edge can be implemented as subsequent deletion and addition. The data
structure can be initialized by adding edges one by one, starting with the data
structure for an empty graph G whose initialization is trivial.

5 Concluding Remarks

A natural question is whether one can design a fully dynamic data structure
to decide properties expressible in First Order Logic on graphs with bounded
expansion. For this purpose, it would be convenient to be able to maintain low
tree-depth colorings of [14], which however appears to be difficult.

Possibly a much easier problem is the following. We have described a dynamic
data structure for counting the number of appearances of H as an induced
subgraph of G, for graphs from a class with bounded expansion. If this number
is non-zero, can we find such an appearance? Getting this from our data structure
is not entirely trivial, due to the use of the principle of inclusion and exclusion.

By a famous result of Courcelle, any property expressible in Monadic Second
Order Logic can be tested for graphs of bounded tree-width in linear time. Can
one design a dynamic data structure for this problem? It is not even clear how
to maintain a tree decomposition of bounded width dynamically.



A Dynamic Data Structure for Counting Subgraphs in Sparse Graphs 315

References

1. Brodal, G.S., Fagerberg, R.: Dynamic representations of sparse graphs. In: Dehne,
F., Gupta, A., Sack, J.-R., Tamassia, R. (eds.) WADS 1999. LNCS, vol. 1663, pp.
342–351. Springer, Heidelberg (1999)

2. Chrobak, M., Eppstein, D.: Planar orientations with low out-degree and com-
paction of adjacency matrices. Theoretical Computer Science 86(2), 243–266 (1991)

3. Downey, R., Fellows, M.: Fixed-parameter tractability and completeness. II. On
completeness for W[1]. Theoretical Computer Science 141, 109–131 (1995)

4. Dvořák, Z., Král’, D.: Algorithms for classes of graphs with bounded expansion.
In: Paul, C., Habib, M. (eds.) WG 2009. LNCS, vol. 5911, pp. 17–32. Springer,
Heidelberg (2010)

5. Dvořák, Z., Král’, D., Thomas, R.: Deciding first-order properties for sparse graphs.
In: FOCS, pp. 133–142. IEEE Computer Society (2010)

6. Dvořák, Z., Král’, D., Thomas, R.: Testing first-order properties for subclasses of
sparse graphs. ArXiv e-prints, 1109.5036 (January 2013)

7. Eisenbrand, F., Grandoni, F.: On the complexity of fixed parameter clique and
dominating set. Theoretical Computer Science 326, 57–67 (2004)

8. Eppstein, D.: Subgraph isomorphism in planar graphs and related problems. J.
Graph Algorithms Appl. 3, 1–27 (1999)

9. Eppstein, D., Goodrich, M.T., Strash, D., Trott, L.: Extended dynamic subgraph
statistics using h-index parameterized data structures. In: Wu, W., Daescu, O.
(eds.) COCOA 2010, Part I. LNCS, vol. 6508, pp. 128–141. Springer, Heidelberg
(2010)

10. Eppstein, D., Spiro, E.S.: The h-index of a graph and its application to dynamic
subgraph statistics. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.)
WADS 2009. LNCS, vol. 5664, pp. 278–289. Springer, Heidelberg (2009)

11. Frick, M., Grohe, M.: Deciding first-order properties of locally tree-decomposable
structures. J. ACM 48, 1184–1206 (2001)

12. Kloks, T., Kratsch, D., Müller, H.: Finding and counting small induced subgraphs
efficiently. Information Processing Letters 74, 115–121 (2000)

13. Milenkoviæ, T., Pržulj, N.: Uncovering biological network function via graphlet
degree signatures. Cancer Informatics 6, 257 (2008)

14. Nešetřil, J., Ossona de Mendez, P.: Linear time low tree-width partitions and al-
gorithmic consequences. In: Proceedings of the Thirty-Eighth Annual ACM Sym-
posium on Theory of Computing, STOC 2006, pp. 391–400. ACM (2006)

15. Nešetřil, J., Ossona de Mendez, P.: Grad and classes with bounded expansion I.
Decomposition. European J. Combin. 29, 760–776 (2008)

16. Nešetřil, J., Ossona de Mendez, P.: Structural properties of sparse graphs. Bolyai
Society Mathematical Studies 19, 369–426 (2008)

17. Nešetřil, J., Ossona de Mendez, P.: First order properties on nowhere dense struc-
tures. J. Symbolic Logic 75, 868–887 (2010)

18. Nešetřil, J., Ossona de Mendez, P., Wood, D.: Characterisations and examples of
graph classes with bounded expansion. Eur. J. Comb. 33, 350–373 (2012)

19. Nešetřil, J., Poljak, S.: Complexity of the subgraph problem. Comment. Math.
Univ. Carol. 26, 415–420 (1985)

20. Robins, G., Morris, M.: Advances in exponential random graph (p∗) models. Social
Networks 29(2), 169–172 (2007)

21. Thomassen, C.: Five-coloring graphs on the torus. J. Combin. Theory, Ser. B 62,
11–33 (1994)



Combinatorial Pair Testing:

Distinguishing Workers from Slackers

David Eppstein, Michael T. Goodrich, and Daniel S. Hirschberg

Dept. of Computer Science, University of California, Irvine, CA 92697 USA

Abstract. We formalize a problem we call combinatorial pair testing
(CPT), which has applications to the identification of uncooperative or
unproductive participants in pair programming, massively distributed
computing, and crowdsourcing environments. We give efficient adaptive
and nonadaptive CPT algorithms and we show that our methods use an
optimal number of testing rounds to within constant factors. We also
provide an empirical evaluation of some of our methods.

1 Introduction

Pair programming [19] is a software development paradigm where programmers
are teamed in pairs and write software together using a single workstation.
This paradigm is said to produce fewer software bugs and shorter programs
than when programmers work alone [20]. Consequently, it is often used to teach
software design in introductory programming courses [15], including courses at
the authors’ institution [13], the University of California, Irvine. This design
paradigm presents an additional challenge, however, for evaluative purposes.
Namely, if programmers are always working in pairs, how can a manager or
instructor evaluate the performance of programmers as individuals?

For instance, suppose 100 students enroll in an introductory programming
course, among whom 80 are conscientious and 20 are lazy. We will call the
conscientious students workers and the lazy ones slackers. In order to assign
final grades to these students, the instructor would like to distinguish the workers
from the slackers, but whenever she pairs a worker and a slacker on a project,
the worker will do the assignment individually and the project will be completed
successfully in spite of the slacker’s laziness. Based on their performances, the
instructor can only detect slackers when two slackers are paired together. There-
fore, it would be useful for her to have systematic and effective strategies for
pairing the students in order to distinguish workers from slackers.

Motivated by this evaluation problem, we are interested in this paper in the
design of efficient algorithms for generating testing schemes that can distinguish
workers from slackers. We formulate such problems in a general framework, which
we call combinatorial pair testing (CPT), and we consider a number of different
assessment settings, such as whether all tests must be specified in advance or
whether tests may be determined adaptively. This approach allows us to focus
on natural performance characteristics of such problems and provides a general
framework that unifies other diagnosis problems under the CPT heading.

F. Dehne, R. Solis-Oba, and J.-R. Sack (Eds.): WADS 2013, LNCS 8037, pp. 316–327, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Combinatorial Pair Testing: Distinguishing Workers from Slackers 317

Combinatorial Pair Testing. Suppose we are given a set X of n individuals,
εn of whom are slackers and (1− ε)n of whom are workers, where ε may or may
not be known in advance. A pairwise test is a function T (x, y) that takes as its
arguments two members x and y of X , and produces as output a Boolean value,
the result of a test performed for x and y based solely on the worker/slacker
status of x and y. Naturally, although this framework allows for T to be any
Boolean function, some Boolean functions will be more interesting than others.
In this paper, we are particularly interested in the following type of test:

– Performance-based testing: In a performance-based test, we pair two indi-
viduals, x and y, and evaluate their output performance as a team. Thus,
if both x and y are slackers, then T (x, y) = false, indicating that the two
slackers, x and y, have been paired together and didn’t complete the assigned
project. If, on the other hand, x, y, or both, are workers, then T (x, y) = true,
indicating that the project was completed.

Performance-based testing is symmetric, so T (x, y) = T (y, x), and, indeed, this
test is equivalent to a Boolean OR of x and y, where a slacker corresponds to a
0 and a worker corresponds to a 1. Moreover, by De Morgan’s laws, any CPT
algorithm that uses OR for T (x, y) can be easily modified to produce a CPT
algorithm that uses AND for T (x, y).

In combinatorial pair testing (CPT), only pairwise tests are allowed. The
tests are organized in a sequence of rounds, in which each member of X may be
tested at most once, so up to �n/2� pairwise tests can be performed in a single
round. The choices made by CPT algorithms can be determined adaptively or
non-adaptively and may be based on decisions that are either deterministic or
randomized. In some cases we will also require some prior knowledge of the
relative numbers of slackers and workers; for instance, using only performance-
based tests, it is not possible to distinguish the case of there being only one
slacker in X from that of there being none. Moreover, the efficiency of a given
testing scheme may depend on assumptions about the number of slackers.

Because our intended applications may involve sensitive information about
individual misbehavior, we may also desire CPT algorithms to have additional
security or privacy guarantees. For instance, we may want our algorithms to be
implementable in a way that allows an instructor to outsource the evaluation of
the tests without revealing the input data [1]. Such an approach is common in
privacy-preserving computations (e.g., see [21]).

One additional security condition that we study in this paper, which appears
to be novel, is that of a detection algorithm that is participant oblivious. A de-
tection algorithm is participant oblivious if an individual cannot detect whether
he has been identified by the evaluator as a worker or slacker based only on the
pairings to which he has been assigned (without knowing the status of his or
her partners or the outcome of their tests). A nonadaptive algorithm must be
participant oblivious, but we show that some adaptive algorithms can also be
participant oblivious. The advantage of a participant-oblivious algorithm is that
it allows the evaluator to impose penalties to slackers or rewards to workers after



318 D. Eppstein, M.T. Goodrich, and D.S. Hirschberg

the completion of the tests without tipping off a participant during the testing
process that the evaluator might already know his or her status.

Prior Related Work. Combinatorial pair testing is related to combinatorial
group testing [6]. In combinatorial group testing, we are given a set, S, of n
items, at most d of which are “defective.” A test consists of selecting a subset,
T , and determining whether T contains any defective items. Thus, combinatorial
pair testing with performance-based testing is a restricted type of combinatorial
group test in which every subset is a pair. There are many known results and
applications for algorithmic problems in combinatorial group testing (e.g., see [6,
9,11]), but we are not aware of any results for the case where every subset must
be a pair and in which tests are issued in groups of O(n) independent tests. The
closest previous analysis is by Hwang [12], who analyzes random size-k tests
that are issued independently (that is, not in groups). Instead, insisting that
every test to be a pair and that the pairs are issued in groups, as is required in
combinatorial pair testing, goes against a standard approach in combinatorial
group testing, according to which one performs tests to limit the defective items
to a subset of size at most O(d log n) and then tests each such item individually.

Combinatorial pair testing is also a generalization of processor fault diagnosis.
In this problem, we are given a set of n processors, each of which can be either
faulty or good. One processor can check another, but the result of this check
can only be trusted if the processor doing the testing is good. Often, in fact,
one assumes that faulty processors deliberately misidentify the ones they are
testing [5, 17]. Beigel et al. [2–4] show that if the number of faulty processors
is sufficiently far below n/2, then O(n) tests can be organized into a sequence
of O(1) parallel testing rounds, where each processor tests at most one other in
each round, so as to identify all faulty processors. Thus, processor fault diagnosis
forms a type of combinatorial pair testing problem where the tests are based on
queries and, in the case when faulty processors deliberately misidentify the ones
they are testing, the Boolean function that determines the outcome of a test is
the exclusive-or function.

In addition, combinatorial pair testing can be applied to cheater detection in
massively distributed computations [10], such as SETI@home and distributed.net.
These systems break very large computations into independent tasks, which
are then sent out to be executed to participants of the system (typically by
using the idle time of individual personal computers). The problem is that
some participants cheat: instead of performing the requested tasks, they rig
their computers to return false or partial results, often merely for the sake of
appearing on a leader board of top participants. To deal with this problem, these
distributed systems often will send out the same task to two participants at the
same time, and if they both return the same answer, then the output is accepted
and the participants are labeled as being honest (e.g., see [7]). One challenge is
that when two answers don’t agree, the system doesn’t immediately know which
participant(s) cheated. The problem of identifying all the honest participants
(and, hence, all the cheaters) in a distributed computing environment can be
formulated using the approach of this paper, and solved, using combinatorial pair



Combinatorial Pair Testing: Distinguishing Workers from Slackers 319

testing with performance-based tests based on the AND function. Previous work
on cheater-detection in distributed computations does not take this approach,
however, and is instead based on ad hoc solutions or reductions to processor
fault diagnosis (e.g., see [7, 8, 10]).

Along these same lines, combinatorial pair testing also has applications to
crowdsourcing, where complex, independent tasks, such as labeling images, is
farmed out to a large set of individuals to perform. One challenge in this case is
that the group of individuals contains both “experts,” who are competent and
diligent with their work, and “spammers,” whose performance is no better than
a random oracle [14]. Combinatorial pair testing can be applied in this context to
weed out the spammers, much in the same way as it applies to cheater detection
for massively distributed computations.

Our Results. Given a set, X , of n individuals such that εn of them are slackers,
we formalize the combinatorial pair testing (CPT) problem, and we present and
analyze several efficient CPT algorithms for identifying the slackers in X . For
the adaptive case, we give an algorithm that uses O(1/ε) testing rounds, and we
show this to be optimal to within constant factors. Moreover, we show that our
algorithm is participant oblivious and we extend our algorithm to work in O(1/ε)
testing rounds even if we don’t know the value of ε in advance. We also give both
deterministic and randomized nonadaptive CPT algorithms, and we show that
the performance of these algorithms is optimal to within constant factors. For
example, our randomized nonadaptive CPT algorithm uses O((1/ε) log n) testing
rounds and succeeds in identifying all slackers with high probability. Our analysis
of this algorithm is based on an extension to the coupon collectors problem, which
we call the coupon packet collectors problem. In addition, we give an empirical
study of our randomized CPT algorithm that provides experimental bounds for
the number of tests needed to identify various percentages of the slackers in X .

2 Adaptive Algorithms

In this section, we describe an adaptive participant-oblivious algorithm for iden-
tifying all the slackers in a performance-based testing problem.

The Two-Phase Algorithm. Assume that we know there are εn slackers.
In phase one, we perform the following computation:

– Phase One: We group the individuals into �εn/2� “bins” of size at most
�2/ε� each. We then do �2/ε� “round-robin” rounds of testing to compare
all pairs of items in the same bin as each other, across all bins in parallel.

This completes phase one, and gives us the following.

Lemma 1. After phase one completes, we will have identified all the slackers
in each bin that has at least 2 slackers.



320 D. Eppstein, M.T. Goodrich, and D.S. Hirschberg

Proof: If a bin contains 0 or 1 slackers, then each pairing of two individuals
in that bin will contain a worker. Thus, every test for that bin has the same
outcome (true). If, on the other hand, a bin contains 2 or more slackers, then
each slacker in that bin will eventually be paired with another slacker; hence, we
discover each slacker in that bin.

More importantly, we also have the following.

Lemma 2. After phase one completes, we will have identified at least �εn/2�
slackers.

Proof: By the previous lemma, a slacker can go undiscovered only if he is the
sole slacker assigned to a given bin. Since there are �εn/2� bins, then, by a
generalized pigeonhole argument, there has to be at least εn− �εn/2� = �εn/2�
slackers that are assigned to bins that each contain at least two slackers.

Given that we now have identified at least �εn/2� slackers, in phase two we
perform the following computation.

– Phase Two: We choose �εn/2� known slackers and assign one of them to each
bin randomly. We assign the remaining individuals to bins, while keeping
the bins to be of size at most �2/ε�. Moreover, we choose these assignments
uniformly at random, subject to the rule that each bin contains a slacker and
that no two individuals who were paired in round one are assigned to the
same bin as each other. We then do �2/ε� “round-robin” rounds of testing
to compare all pairs of items in the same bin as each other, across all bins
in parallel.

This completes phase two.
From the perspective of any individual, their bin assignment is done at ran-

dom, with every bin being equally likely, and the people they are paired with
are equally likely to come from any other bin from phase one. Moreover, the
only nonadaptive step is the assignment of known slackers to bins in phase two,
which is done via a random permutation, similar to how elements not known to
be slackers are assigned. Thus, so long as individuals in our group do not collude,
this algorithm is participant oblivious. Note, in addition, that any bin that now
contains a previously undiscovered slacker, will necessarily contain at least two
slackers. Thus, by Lemma 1, we will discover this (and all other) remaining
slackers in phase two.

Theorem 1. Given a set, X, of n workers and slackers, such that εn of the
individuals in X are known to be slackers, we can identify all the slackers in X
in O(1/ε) rounds of disjoint pairwise tests, in a participant-oblivious adaptive
fashion.

This bound is optimal, to within constant factors, as the following theorem
establishes.



Combinatorial Pair Testing: Distinguishing Workers from Slackers 321

Theorem 2. Given a set, X, of n workers and slackers, such that εn of the
individuals in X are slackers, then identifying all the slackers in X (either
deterministically in the worst case or randomly with success probability ≥ 1/2)
requires at least Ω(1/ε) rounds of disjoint pairwise tests.

Proof: We consider the randomized case first, and we assume a randomized
input distribution in which all permutations of workers and slackers are equally
likely. Let x be a random variable whose value is one of the slackers in the input,
chosen uniformly at random among the slackers. In the first 1/(2ε) rounds of
testing, at most n/2 of the members of X may become identified. In any given
round of testing in which x has not already been identified as a slacker, at
most εn − 1 of the unidentified members of X can be paired with (identified
or unidentified) slackers other than x, and x is equally likely to be any one of
the ≥ n/2 unidentified members, so the probability that x becomes identified
by being paired with a slacker is at most (εn − 1)/(n/2) < ε/2. By the union
bound, after 1/(4ε) = Ω(1/ε) rounds, x will remain unidentified with proba-
bility greater than 1/2, so the probability that all slackers are identified is less
than 1/2.

Since this randomized input distribution fools even a randomized algorithm
with probability at least 1/2, after Ω(1/ε) rounds, it follows that for every
deterministic algorithm there exists an input in this distribution that is certain
to fool the algorithm with the same number of rounds.

Estimating Epsilon. Suppose now that there are εn slackers, but we do not
know the value of ε. Instead, let us assume we have an estimate, ε′, and our
goal is to use O(1/ε′) rounds, and either find all εn slackers, with ε′ ≤ 2ε, or
determine that ε′ > ε.

Consider again the above two-phase algorithm, but now assume that it is
calibrated for ε′ instead of ε. One possible outcome of phase one, is that we
discover at least �ε′n/2� slackers, which then allows us to discover all the slackers
in phase two. In this case,

εn ≥ ε′n/2,

hence, ε′ ≤ 2ε.
Alternatively, phase one may discover fewer than �ε′n/2� slackers. Since a bin

that appears to hold no slackers can hold at most one, this implies that

ε < ε′/2 + ε′/2 = ε′.

Thus, our two-phase algorithm achieves our goal.
We can therefore now use our two-phase algorithm in an iterative fashion. We

start with ε′ = 1/2, and use the two-phase algorithm with this estimate for ε.
If we discover all the slackers, then we are done. Otherwise, we determine that
ε < ε′. In this case, we set ε′ ← ε′/2 and we repeat the process with this estimate.
Eventually, we will reach a point where we discover all the slackers, with ε′ ≤ 2ε.
Moreover, since the previous iteration, if there is one, would have failed, we also



322 D. Eppstein, M.T. Goodrich, and D.S. Hirschberg

know that ε < 2ε′, that is, ε′ > ε/2. The number of testing rounds is therefore
proportional to

2 + 4 + 8 + · · ·+ 1/ε′ ≤ 2 + 4 + 8 + · · ·+ 2/ε ≤ 4/ε.

Therefore, even without knowing the value of ε, the number of rounds is O(1/ε),
which implies the following.

Theorem 3. Given a set, X, of n workers and slackers, such that εn of the
individuals in X are slackers, we can identify all the slackers in X in O(1/ε)
rounds of O(n) pairwise tests per round, in a participant-oblivious adaptive
algorithm, without knowing ε in advance.

In the full version of this paper, we explore optimizations to the constant fac-
tors in the above bounds, in adaptive CPT algorithms for the case when δ =
1 − ε ≤ 1/2, that is, when at least half of the individuals are slackers. Such
instances of the combinatorial pair testing problem arise naturally in massively
distributed and crowdsourcing applications, for example, where the roles of slack-
ers and workers are reversed and the testing function, T , is Boolean AND instead
of OR.

3 Nonadaptive Pair Testing

In this section, we study nonadaptive algorithms for combinatorial pair testing,
to identify εn slackers in a group of n individuals. In this case, if we assume that
we do not know the value of ε, then the only valid algorithm is the trivial brute-
force algorithm that compares every pair of individuals, since a nonadaptive
algorithm must specify all its tests in advance and it is possible that ε = 2/n.
Therefore, we assume that we know in advance that there are εn slackers.

Deterministic Nonadaptive Pair Testing. Unfortunately, nonadaptive de-
terministic pair testing is not very interesting, because it requires a linear number
of rounds. The argument is simple: suppose a deterministic nonadaptive pair
testing algorithm could use at most (1 − ε)n/2 rounds. Then, in the graph of
pairs that are tested by the algorithm, each vertex would have at most (1−ε)n/2
neighbors. An adversary could choose one edge of the graph, make one of its two
endpoints a slacker and the other endpoint a worker, set all neighbors of these
two vertices to be workers, and fill out the rest of the graph arbitrarily to fit
whatever number of slackers and workers is desired. From the set of tests that
are performed, there is no way to distinguish which of the two endpoints of
the chosen edge is the slacker and which is the worker. Therefore, there must
be at least Ω((1 − ε)n) rounds in a deterministic nonadaptive CPT algorithm,
which, for any fixed ε < 1, is asymptotically not any better than the brute-force
algorithm that tests every pair.

This bound can be achieved as an upper bound, as well, using an algorithm
that pairs each individual, x, with at least (1− ε)n+1 other distinct individuals,
using O((1 − ε)n) rounds. For this algorithm, at least one of the individuals
paired with each such x must be a slacker.



Combinatorial Pair Testing: Distinguishing Workers from Slackers 323

Randomized Nonadaptive Pair Testing. Despite the nonexistence of effi-
cient deterministic nonadaptive pair testing algorithms, there is a simple ran-
domized algorithm for nonadaptive randomized testing, which succeeds with high
probability using many fewer tests than the deterministic nonadaptive solution.
In particular, let us repeatedly choose a random matching of all the members
of the set, X , for some value, k, number of rounds. Each matching corresponds
to a round of testing. For instance, for k = (c/ε) logn, for a sufficiently large
constant, c ≥ 1, then this scheme uses O((1/ε) logn) rounds and O((n/ε) log n)
tests in total.

Relation to the Coupon Collector’s Problem. The expected performance
of the nonadaptive randomized algorithm described above can be analyzed pre-
cisely using a variant of the classical coupon collector’s problem.

In the coupon collector’s problem, a collector wishes to collect a set of n
trading cards, by randomly acquiring one card at a time, and the problem is
to calculate the number of steps that are required until, with high probability,
all cards have been collected. Now consider a slight variation, which we call
the coupon packet collector’s problem: instead of buying one card at a time, the
collector buys the cards in packets of m cards [18]. Each packet of trading cards
is guaranteed to have no duplicates, and is uniformly random among all m-card
samples of the whole set of cards. How does this affect the total time required for
the collector? If m is much smaller than n, the difference between this problem
and the standard coupon collector’s problem is very small: a random sample of
m cards, each independently and uniformly randomly sampled, is very likely to
be duplicate-free. But if m is a constant fraction of n, then the avoidance of
duplicates in each packet is very likely to cause the number of packets that the
collector needs to collect to be smaller by a constant fraction than the number
that a one-at-a-time collector would need. But what is the fraction?

In the coupon packet collector’s problem, the probability that a card remains
uncollected after k rounds is (1 −m/n)k. So, after k rounds, by the linearity of
expectation, the expected number of uncollected cards is n(1−m/n)k. Thus, for
k = (1 + α) log1/(1−m/n) n rounds, the expected number of uncollected cards is
1/nα; hence, by Markov’s inequality, with very high probability, 1 − 1/nα, all
the cards are collected.

In the pair testing problem, observe that a slacker’s status is identified when-
ever the slacker is paired with another slacker, and a student’s status is iden-
tified whenever that student is paired with a known slacker. If we allow these
identifications to be made retroactively (i.e., once we find a known slacker we
use that identity to confirm as workers all the other students the slacker has
already been paired with) then there is a very simple criterion for whether we
have identified everybody: we have done so if and only if all students have been
paired at least once with a slacker. More weakly, we have identified all slackers
whenever the slackers have all been paired with another slacker in some round of
testing. Suppose that there are m slackers and n total students. In each round,
exactly m students will be paired with slackers, so it is very much like the coupon



324 D. Eppstein, M.T. Goodrich, and D.S. Hirschberg

packet collector’s problem, where the trading cards in a packet correspond to the
students that are paired with slackers. There is a small complication, however:
in the pair testing problem the sets of students that are identified are not quite
uniformly random over all m-element subsets of students. In particular, the
slackers are slightly less likely to be paired with other slackers than the workers,
because there are fewer other slackers for them to be paired with.

To be precise, in the case that there are an even number of students, a slacker
has probability exactly (n−m)/(n−1) of remaining unidentified after one round,
because there are n− 1 students the slacker could be paired with, each of which
is equally likely, and n−m of which (the workers) fail to identify the slacker. The
probability that a specific student is identified in any one round is independent
of the same probability for the same student in a different round, so after

k = (1 + α) log n−1
n−m

m

rounds, the probability that an individual slacker remains unidentified is 1/m1+α.
Similarly, a worker has probability exactly (n−m−1)/(n−1) of not having been
paired with a slacker after one round, and probability 1/(n − m)1+α of never
having been paired with a slacker after

k = (1 + α) log n−1
n−m−1

(n−m)

rounds. Different students have probabilities that are not independent of each
other, but by linearity of expectation after

k = (1 + α) max
{

log n−1
n−m

m, log n−1
n−m−1

(n−m))
}

rounds the expected number of students who have not been paired with a slacker
is min{1/mα, 1/(n−m)α}, so by Markov’s inequality, with high probability all
students will be identified. In the case that there are an odd number of students,
there are n alternatives for each student in each round rather than n− 1, so the
number of rounds needed is instead

k = (1 + α)(log n
n−m+1

m + log n
n−m

(n−m)).

In either case, for m = εn slackers, if we extend the above two bounds so that
the number of rounds is increased to

k = (1 + α) log1/(1−ε) n,

then the expected number of unclassified students is 1/nα. Thus, by Markov’s
inequality, there are no unclassified students with high probability, 1 − 1/nα.
Choosing α ≥ 1 to be a fixed constant, and using the inequality, x < − ln(1−x),
for 0 < x < 1, we get the following result.

Theorem 4. Given a set, X, of n individuals, such that εn ≥ 2 of them are
slackers and the rest are workers, we can distinguish the workers and slackers
using O((1/ε) log n) rounds of random performance-based tests, with O(n) tests
per round, with high probability, 1−1/nc, in a nonadaptive fashion, for any fixed
constant c ≥ 1.



Combinatorial Pair Testing: Distinguishing Workers from Slackers 325

0

5

10

15

20

25

30

35

0 20 40 60 80 100

Ite
ra

tio
ns

% of students who are Slackers

Avg iterations to identify 80% of slackers, n=100
Avg iterations to identify 80% of slackers, n=300

Avg iterations to identify 80% of slackers, n=1000
Avg iterations to identify 80% of slackers, n=3000

Avg iterations to identify 80% of slackers, n=10000
Avg iterations to identify 50% of slackers, n=100
Avg iterations to identify 50% of slackers, n=300

Avg iterations to identify 50% of slackers, n=1000
Avg iterations to identify 50% of slackers, n=3000

Avg iterations to identify 50% of slackers, n=10000

0

20

40

60

80

100

120

140

0 20 40 60 80 100

Ite
ra

tio
ns

% of students who are Slackers

Avg iterations to identify all slackers, n=100
Avg iterations to identify all slackers, n=300

Avg iterations to identify all slackers, n=1000
Avg iterations to identify all slackers, n=3000

Avg iterations to identify all slackers, n=10000
Avg iterations to identify 90% of slackers, n=100
Avg iterations to identify 90% of slackers, n=300

Avg iterations to identify 90% of slackers, n=1000
Avg iterations to identify 90% of slackers, n=3000

Avg iterations to identify 90% of slackers, n=10000

Fig. 1. Results for number of random tests needed to identify various percentages of
slackers, for various values of the set size, n, and slacker percentage, ε



326 D. Eppstein, M.T. Goodrich, and D.S. Hirschberg

In a nonadaptive randomized strategy, the most information is gathered by
randomly matching of the members of X and testing each matched pair. Thus,
for any slacker, s, the probability s is not paired with another slacker is at least
(1− ε). So, after k independent rounds of testing, the probability s has not been
discovered to be a slacker is at least (1− ε)k, which we can bound as

(1 − ε)k ≥
(

1− ε

e

)εk

,

by an inequality due to Niculescu and Vernescu [16]. Thus, we have the following.

Theorem 5. For 2/n ≤ ε ≤ 1/2, we require Ω((1/ε) logn) rounds of testing for
each slacker to be identified, with probability at least 1 − 1/n, in a nonadaptive
randomized testing scheme for a set of n members having εn slackers.

Therefore, the above analysis is tight to within constant factors.

Experimental Results. To get a better handle on the expected number of tests
needed to identify various percentages of slackers, we performed an experimental
study of the above nonadaptive randomized CPT algorithm. We performed tests
for values of n ranging from 100 to 10000, with percentage of slackers ranging
from 5% to 90%. We then performed tests to determine the average number of
tests required in order to identify 50%, 80%, 90%, and 100% of the slackers. We
show the results in Figure 1.

4 Conclusion

In this paper, we have given efficient algorithms for solving combinatorial pair
testing problems, along with lower bounds showing that our algorithms are
optimal to within constant factors. All of our algorithms assume we are using
performance-based tests. Therefore, one possible direction for future work would
be to explore CPT algorithms and applications for other kinds of tests (other
than the exclusive-or tests used in processor fault diagnosis [2–5, 17]). Another
direction would be to enlarge the size of tested groups beyond two and explore
the effect of different group sizes on the numbers of rounds needed for testing.

Acknowledgments. This research was supported in part by the National
Science Foundation under grants 1011840, 1217322, and 1228639, and by the
Office of Naval Research under MURI grant N00014-08-1-1015.

References

1. Atallah, M.J., Frikken, K.B., Blanton, M., Cho, Y.: Private combinatorial group
testing. In: ACM Symp on Information, Computer and Communications Security
(ASIACCS), pp. 312–320 (2008)



Combinatorial Pair Testing: Distinguishing Workers from Slackers 327

2. Beigel, R., Hurwood, W., Kahale, N.: Fault diagnosis in a flash. In: Proc. IEEE
Foundations of Computer Science (FOCS), pp. 571–580 (October 1995)

3. Beigel, R., Kosaraju, S.R., Sullican, G.F.: Locating faults in a constant number of
parallel testing rounds. In: ACM Symp. on Parallel Algorithms and Architectures
(SPAA), pp. 189–198 (1989)

4. Beigel, R., Margulis, G., Spielman, D.A.: Fault diagnosis in a small constant
number of parallel testing rounds. In: ACM Symp. on Parallel Algorithms and
Architectures (SPAA), pp. 21–29 (1993)

5. Blecher, P.M.: On a logical problem. Discrete Mathematics 43(1), 107–110 (1983)
6. Du, D.-Z., Hwang, F.: Combinatorial Group Testing and Its Applications. Series

on Applied Mathematics. World Scientific (2000)
7. Du, W., Goodrich, M.T.: Searching for high-value rare events with uncheatable grid

computing. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS,
vol. 3531, pp. 122–137. Springer, Heidelberg (2005)

8. Du, W., Jia, J., Mangal, M., Murugesan, M.: Uncheatable grid computing. In: 24th
Int. Conf. on Distributed Computing Systems (ICDCS), pp. 4–11 (2004)

9. Eppstein, D., Goodrich, M.T., Hirschberg, D.S.: Improved combinatorial group
testing algorithms for real-world problem sizes. SIAM J. Comput. 36(5), 1360–
1375 (2006)

10. Goodrich, M.T.: Pipelined algorithms to detect cheating in long-term grid compu-
tations. Theoretical Computer Science 408(2/3), 199–207 (2008)

11. Goodrich, M.T., Atallah, M.J., Tamassia, R.: Indexing information for data foren-
sics. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531,
pp. 206–221. Springer, Heidelberg (2005)

12. Hwang, F.K.: Random k-set pool designs with distinct columns. Probab. Eng. Inf.
Sci. 14(1), 49–56 (2000)

13. Jacobson, N., Schaefer, S.K.: Pair programming in CS1: overcoming objections to
its adoption. SIGCSE Bull. 40(2), 93–96 (2008)

14. Liu, Q., Peng, J., Ihler, A.: Variational inference for crowdsourcing. In: Bartlett,
P., Pereira, F.C.N., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances
in Neural Information Processing Systems (NIPS), pp. 701–709 (2012)

15. Nagappan, N., Williams, L., Ferzli, M., Wiebe, E., Yang, K., Miller, C., Balik,
S.: Improving the CS1 experience with pair programming. In: Proc. 34th SIGCSE
Technical Symp. on Computer Science Education (SIGCSE 2003). SIGCSE Bul-
letin, vol. 35(1), pp. 359–362 (2003)

16. Niculescu, C.P., Vernescu, A.: A two-sided estimate of ex − (1 + x/n)n. Journal of
Inequalities in Pure and Applied Mathematics 5(3) (2004)

17. Pelc, A., Upfal, E.: Reliable fault diagnosis with few tests. Comb. Probab. Com-
put. 7(3), 323–333 (1998)

18. Stadje, W.: The collector’s problem with group drawings. Advances in Applied
Probability 22(4), 866–882 (1990)

19. Williams, L., Kessler, R.R.: Pair Programming Illuminated. Addison-Wesley (2003)
20. Williams, L., Kessler, R.R., Cunningham, W., Jeffries, R.: Strengthening the case

for pair programming. IEEE Software 17(4), 19–25 (2000)
21. Yao, A.C.: How to generate and exchange secrets. In: Proceedings of the 27th

Annual Symposium on Foundations of Computer Science, pp. 162–167. IEEE
Computer Society, Washington, DC (1986)



Approximation Algorithms for B1-EPG Graphs

Dror Epstein1,2, Martin Charles Golumbic1,2, and Gila Morgenstern2

1 Department of Computer Science, University of Haifa
2 Caesarea Rothschild Institute (CRI), University of Haifa

Abstract. The edge intersection graphs of paths on a grid (or EPG
graphs) are graphs whose vertices can be represented as simple paths on
a rectangular grid such that two vertices are adjacent if and only if the
corresponding paths share at least one edge of the grid. We consider the
case of single-bend paths, namely, the class known as B1-EPG graphs.
The motivation for studying these graphs comes from the context of
circuit layout problems. It is known that recognizing B1-EPG graphs is
NP-complete, nevertheless, optimization problems when given a set of
paths in the grid are of considerable practical interest.

In this paper, we show that the coloring problem and the maximum
independent set problem are both NP-complete for B1-EPG graphs,
even when the EPG representation is given. We then provide efficient
4-approximation algorithms for both of these problems, assuming the
EPG representation is given. We conclude by noting that the maximum
clique problem can be optimally solved in polynomial time for B1-EPG
graphs, even when the EPG representation is not given.

1 Introduction

Edge intersection graphs of paths on a grid (or for short EPG graphs) were first
introduced by Golumbic, Lipshteyn and Stern in [9]. This is the class of graphs
whose vertices can be represented as simple paths on a rectangular grid so that
two vertices are adjacent if and only if the corresponding paths share at least
one edge of the grid.

EPG graphs have a practical use, e.g., in the context of circuit layout setting,
which may be modeled as paths (wires) on a grid. In the knock-knee layout
model, two wires may either cross or bend (turn) at a common grid point, but
are not allowed to share a grid edge; that is, overlap of wires is not allowed. In
this context, some of the classical optimization graph problems are relevant, e.g.,
maximum independent set and coloring. More precisely, the layout of a circuit
may have multiple layers, each of which contains no overlapping paths. Referring
to a corresponding EPG graph, then each layer is an Independent Set and a valid
partitioning into layers corresponds to a proper coloring.

In [9], the authors show that every graph is an EPG graph. That is, for every
graph G = (V,E) there exists an EPG representation 〈P ,G〉 where P = {Pv :
v ∈ V } is a collection of paths on a grid G, corresponding to the vertices of V
and satisfying: paths Pv, Pu ∈ P share a grid edge of G if and only if (v, u) ∈ E.

F. Dehne, R. Solis-Oba, and J.-R. Sack (Eds.): WADS 2013, LNCS 8037, pp. 328–340, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Approximation Algorithms for B1-EPG Graphs 329

Moreover, they showed that if G has n vertices and m edges, then there exists
an EPG representation 〈P ,G〉 of G in which G is a grid of size n × (n + m)
and the paths in P are monotonic. As such, much of the current research today
focuses on subclasses of EPG graphs, and, in particular, limiting the type of
paths allowed.

A turn of a path at a grid point is called a bend and a graph is called a k-bend
EPG graph (denoted Bk-EPG) if it has an EPG representation in which each
path has at most k bends. It is both interesting mathematically, and justified by
the circuit layout application described above, to consider subclasses of graphs,
e.g., by bounding the number of bends allowed in each path.

A number of mathematical results on Bk-EPG graphs have been shown re-
cently. In [2], the authors show that for any k, only a small fraction of all labeled
graphs on n vertices are Bk-EPG. Improving a result of [3], it was shown in [12]
that every planar graph is a B4-EPG graph. It is still open whether k = 4 is
best possible. So far it is only known that there are planar graphs that are B3-
EPG graphs and not B2-EPG graphs. The authors in [12] also show that all
outerplanar graphs are B2-EPG graphs thus proving a conjecture of [3]. For the
case of B1-EPG graphs, Golumbic, Lipshteyn and Stern [9] showed that every
tree is a B1-EPG graph, and Asinowski and Ries [1] showed that every B1-EPG
graph on n vertices contains either a clique or a stable set of size at least n1/3.
In [1], the authors also give a characterization of the B1-EPG graphs among some
subclasses of chordal graphs, namely, chordal bull-free graphs, chordal claw-free
graphs, chordal diamond-free graphs, and special cases of split graphs. In [5], a
characterization of the subfamily of cographs that are B1-EPG graphs is given
by a complete family of minimal forbidden induced subgraphs.

The simplest case, B0-EPG graphs, where all paths a straight line segments,
are exactly the well studied class of interval graphs (the intersection graphs of
intervals on a line), and it is well-known that these can be colored optimally with
the exact minimum number of colors χ(G) in polynomial time (see [8]). This is
no longer the case when k > 0.

In this paper, we consider approximation algorithms for B1-EPG which are
the edge intersection graphs of (at most) single bend paths on a rectangular
grid. Heldt et al. [11] have proved that the recognition problem for B1-EPG is
NP-complete. Moreover, Cameron, Chaplick and Hoang [4] proved that even the
recognition of a subclass of B1-EPG know as ⌞-EPG is NP-complete; we define
this subclass in Section 2 below. Thus, for all of the algorithms that we will later
present, an EPG representation 〈P ,G〉 of G is assumed to be given as part of
the input.

Maximum Independent Set, Minimum Coloring, and Maximum Clique

are fundamental optimization problems in graph-theory. These problems arises
naturally in many scenarios involving resource allocation in the presence of inter-
ference. The graph coloring problem deals with assigning colors to the vertices of
a graph such that no two adjacent vertices share the same color, and the number
of colors used is minimized. A coloring using at most c colors is called a (proper)
c-coloring. The smallest number of colors needed to color a graph G is called its



330 D. Epstein, M.C. Golumbic, and G. Morgenstern

chromatic number, and is denoted χ(G). The graph coloring problem is known
to be NP-hard. The current best known approximation ratio for the graph col-

oring problem is O(n (log logn)2

(logn)3 ), where n is the number of vertices in the graph;

see [10]. In graph theory, an Independent Set (Stable Set) is a set of vertices in
a graph, where no two of which are adjacent. This corresponds to a Clique in
the graphs complement. The size of a maximum independent set of a graph G
is denoted by α(G), and the size of a maximum clique is denoted by ω(G). The
problem of finding a largest independent set for a given graph G is called the
Maximum Independent Set Problem (MIS) which is NP-hard. Even for graphs
whose maximum degree is bounded by b, the current best known approximation
ratio for the MIS problem are a fraction of b, see references in [13].

The paper is organized as follows. We begin with preliminary definitions in
Section 2. In Section 3, we first prove that coloring B1-EPG graphs is NP-
complete, and then we present a 4-approximation algorithm for coloring B1-
EPG graphs in polynomial time. Similarly, in Section 4, we prove that finding a
maximum independent set in B1-EPG graphs is NP-complete, and then present
a 4-approximation algorithm for the problem. Conclusions and open problems
are given in Section 5 where we note that the maximum clique problem can be
optimally solved in polynomial time for B1-EPG graphs.

2 Preliminaries

Let 〈P ,G〉 be a B1-EPG representation of a graph G = (V,E). We say that
paths Pv and Pu are adjacent paths if v and u are adjacent vertices in G, i.e.,
Pv and Pu share a common grid edge of G. We also say that G = EPG(〈P ,G〉).
In B1-EPG graphs, each vertex corresponds to a path of one of the following
shapes: ⌞, ⌜, ⌟ or ⌝, allowing horizontal or vertical segments as well. We refer to
a path of shape τ ∈ {⌞,⌜,⌝,⌟, |,−} as an τ -path. We denote by P⌞the collection
of ⌞-paths in P , and similarly we use the notations P⌟, P⌜and P⌝. For no-bend
paths we complete the definition by referring them as ⌞-paths. Sometimes, it is of
interest to consider even finer, more restrictive subclasses of B1-EPG by limiting
the type of bends that are allowed, namely, the subclasses formed by the subsets
of the four single bend shapes (i.e., {⌞}, {⌟,⌞}, {⌞,⌝}, {⌞,⌜,⌝}, where all other
subsets are isomorphic to these up to 90◦ rotation), allowing paths with no-bend
as well. We denote these classes by ⌞-EPG, ⌟⌞-EPG, ⌞⌝-EPG and ⌞ ⌜ ⌝-EPG
respectively.

Let G be a ⌟⌞-EPG with grid representation 〈P ,G〉. We define the lexico-
graphic (LEX) order ≺ on the paths in P as follows; see Figure 1. For path
Pv ∈ P we denote by ∂Pv the bottommost-leftmost grid point that is contained
in Pv, that is, ∂Pv = miny {minx {(x, y) ∈ Pv}}. We say that Pv≺Pu if ∂Pv lies
below ∂Pu or they both lie in the same row and ∂Pv is left of ∂Pu. We complete
≺ to a total order by arbitrarily breaking ties.



Approximation Algorithms for B1-EPG Graphs 331

h

b

gf

edc

a

Fig. 1. The LEX ordering of a ⌟⌞-EPG representation: a≺b≺c≺d≺e≺f≺g≺h

3 Coloring B1-EPG Graphs

3.1 Hardness Result for Coloring B1-EPG Graphs

In this section, we prove that coloring problem on B1-EPG graphs is NP-
complete by a reduction from the problem of coloring circle graphs which was
shown to be NP-complete in [7].

We start by defining circle graphs. A circle graph is the intersection graph
of a set of chords of a circle. That is, it is an undirected graph whose vertices
can be associated with chords of a circle such that two vertices are adjacent if
and only if the corresponding chords cross each other. We may assume without
loss of generality that no two chords in the diagram of chords of the circle share
a common endpoint. Coloring circle graphs remains NP-complete even if the
graph is given by its chord model [7].

Theorem 1. Let G be a B1-EPG graph. Coloring G with the exact number of
colors χ(G) is NP-complete.

Proof. Let G be a circle graph. We construct a B1-EPG representation for
a graph G′ so that G is c-colorable if and only if G′ is. The construction is
as follows; see Figures 2 and 3 for an illustration. We slide all the endpoints of
the chords to the upper right quadrant of the circle, while preserving their order
on the circle (thus, intersections are not changed under these transformations).
Now, we replace each chord by an ⌞-shape bend path, where every vertex v in
G corresponds to a path Pv with the same endpoints on the circle. Note that
since we assumed that all endpoints are distinct, the horizontal segment of each
path lies on a unique horizontal line, and the vertical segment lies on a unique
vertical line. Moreover, the intersection points of pairs of paths are in one-to-one
correspondence with the edges of the graph.

Consider an intersection point between two paths Pv and Pu in the represen-
tation, where the horizontal section of Pv intersects with the vertical segment of
Pu. We split Pv at the intersection point into two disjoint parts; the left part is
a ⌞-path, and the right one is a −-path. We complete the latter to a ⌞-path by
joining it to a vertical segment that overlaps only Pu. We also add (c− 1) short



332 D. Epstein, M.C. Golumbic, and G. Morgenstern

a

a

b

b

c

c

d

d

(a)

a

b

d
c

c

d a
b

(b)

Fig. 2. (a) A circle diagram. (b) Each chord is replaced by a single-bend path on the
grid.

−-paths overlapping only these two segments of the former path Pv. Perform this
transformation for every intersection point, and let G′ be the B1-EPG-graph of
this transformed representation. This, of course, may have split Pv into sev-
eral segments, Pv1 , Pv2 , . . . , Pvk , with consecutive segments Pvi and Pvi+1 being
joined by such a set of (c − 1) short horizontal paths: a (c − 1)-clique in G′

overlapping only Pvi and Pvi+1 . See Figure 3 for an illustration.

Pv Pu

(a)

Pvi+1
Pvi

(c-1) clique

Pu

(b)

Fig. 3. (a) Intersecting paths. (b) The horizontal is “split” and “glued” using a (c−1)-
clique.

It is clear from the transformation that the obtained graph G′ is indeed a B1-
EPG graph. Moreover, the transformation can be performed in polynomial time
and the size of G′ is polynomial in the size of G, since |V (G′)| = n+ce ≤ n+n3,
where G has n vertices and e edges.

We now claim that G is c-colorable if and only if G′ is c-colorable. Let ϕ :
V �→ {1, · · · , c} be a valid assignment of colors for G. Then to color G′ it suffices
to (1) color each vertex from G′ that came from an original path Pv (including
its vertical segment and all of its horizontal split segments Pv1 , . . . , Pvk) with the
color used in G, and (2) for each newly added (c− 1)-clique (the short segments



Approximation Algorithms for B1-EPG Graphs 333

overlapping only Pvi and Pvi+1 which have the same color in the construction),
we can use the (c− 1) remaining colors. This clearly colors G′ in c colors.

We now show that if G′ is c-colorable then G is c-colorable. Assume we have
a c-coloring of the graph G′. Since the (c−1)-clique connecting any Pvi and Pvi+1

requires (c− 1) colors, consequently, Pvi and Pvi+1 have the same remaining cth

color. Moreover, let Pu be the path that intersects Pv in G and whose intersection
point with Pv is the split point between Pvi and Pvi+1 , then Pu and Pvi+1 are
adjacent in G′, thus get distinct colors. Since the coloring of G′ is proper, it also
gives a proper coloring of G: color the path representing v in G with the same
(common) color of its split segments Pv1 , . . . , Pvk in G′. This concludes the proof
of the theorem. 
�

Observe that by our construction, the paths in G′ are either ⌞-paths or −-paths,
we thus conclude:

Corollary 2. Let G be a ⌞-EPG graph. Coloring G with the exact number of
colors χ(G) is NP-complete.

3.2 A 4-Approximation Algorithm for Coloring B1-EPG Graphs

We start by presenting a “subroutine” in Algorithm 3.1 that computes an ap-
proximation solution for a ⌟⌞-EPG representation. We then apply it more gen-
erally to an arbitrary B1-EPG representation. It is a greedy First-Fit algorithm
using the LEX ordering ≺, defined in Section 2 so clearly, it produces a proper
coloring. Lemma 1 will show that when used for a ⌟⌞-EPG graph, Algorithm 3.1
achieves a 2-approximation. We will use the notation c(v) for the color assigned
to vertex v.

Algorithm 3.1 Greedy-⌟⌞-EPG-Coloring (Input: P = P⌟ ∪ P⌞)
1: for each Pv ∈ P (in increasing order ≺) do
2: c(v) ← least color not in use among v’s neighbors
3: return total number k of distinct colors used and the coloring

Applying Algorithm 3.1 to the representation in Figure 1 gives the coloring:
c(a) = c(c) = c(f) = 1; c(b) = c(e) = c(g) = 2; c(d) = c(h) = 3.

For every path Pv ∈ P we denote by Γ̃ (Pv) the collection of paths adjacent
to Pv that have been colored by Algorithm 3.1 prior to Pv. When convenient,
we refer to Γ̃ (Pv) as a set of vertices. The color assigned to Pv by Algorithm 3.1

is dependent only on the colors assigned to paths in Γ̃ (Pv), thus we have Obser-
vation 3.

Observation 3. Let 〈P ,G〉 be a ⌟⌞-EPG representation of a graph G = (V,E),
and let Pv and Pu be adjacent paths. If Pu≺Pv, then Pv and Pu share at least
one of two grid edges e1 and e2 as follows:



334 D. Epstein, M.C. Golumbic, and G. Morgenstern

– If Pv is a ⌞-path, then e1 and e2 are respectively the horizontal and vertical
grid edges contained in Pv and attached to its bend point.

– If Pv is a ⌟-path, then e1 is the left-most horizontal grid edge contained in
Pv and e2 is the vertical grid edge attached to its bend point.

– If Pv is a |-path, then e1 is the bottom-most vertical grid edge contained in
Pv (e2 in this case is undefined).

– If Pv is a −-path, then e1 is the left-most horizontal grid edge contained in
Pv (e2 in this case is undefined).

Lemma 1. Let G be a ⌟⌞-EPG graph, then Algorithm 3.1 uses at most 2χ(G)
colors.

Proof. Let k be the maximum color used by Algorithm 3.1, we show that k ≤
2χ(G). Indeed, put G = (V,E) and let v ∈ V be a vertex for which c(v) =
k. Notice that whenever Algorithm 3.1 colors a vertex, the assigned color is
determined by its previous-colored neighbors Γ̃ (Pv). Notice that if Algorithm 3.1
colored v with color k, then k is the least color that not in use for any vertex
u ∈ Γ̃ (Pv), thus k ≤ Γ̃ (Pv) + 1. Moreover, by Observation 3, we have that each

path in Γ̃ (Pv) shares at least one of two specified grid edges contained in Pv

(denoted e1 and e2). We conclude that at least half of the paths in Γ̃ (Pv) contain
one of those edges and without loss of generality, we assume it is e1. Now, observe
that any collection of paths containing a common edge corresponds to a clique
in G, in particular, those paths in Γ̃ (Pv) that contain e1 together with v itself,

form a clique. We get 1
2
Γ̃ (v) + 1 ≤ ω(G) ≤ χ(G), thus k ≤ Γ̃ (Pv)+1 < 2ω(G) ≤

2χ(G), which completes the proof. 
�

Remark 1. Clearly, by rotating a representation by 180◦, Algorithm 3.1 can be
“turned” from Greedy-⌟⌞-EPG-Coloring into Greedy-⌝⌜-EPG-Coloring.

We now use Algorithm 3.1 as a building block in Algorithm 3.2 in order to colors
B1-EPG graphs.

Algorithm 3.2 B1-EPG Coloring 4-Approximation (Input: G =
EPG(〈P ,G〉))
1: Let P = P⌞ ∪ P⌟ ∪ P⌝ ∪ P⌜
2: k1 ←Greedy-⌟⌞-EPG-Coloring(P⌞ ∪ P⌟)
3: k2 ←Greedy-⌝⌜-EPG-Coloring(P⌜ ∪ P⌝) // using different color

names //
4: return total number of distinct colors used and the coloring

Algorithm 3.2 partitions the paths in P into two subsets P⌞∪P⌟and P⌜∪P⌝,
each induces a subgraph of G, which is a ⌟⌞-EPG graph (denoted G1 and G2

respectively). Then, it colors each of these two graphs G1 and G2 using Algo-
rithm 3.1, with distinct “palettes” of colors. Clearly, the coloring produced by



Approximation Algorithms for B1-EPG Graphs 335

Algorithm 3.2 is proper. Notice that in order to color a graph G, one needs at
least the maximum of χ(G1), χ(G2) colors. By Lemma 1, Algorithm 3.2 uses at
most 2χ(G1) + 2χ(G2) ≤ 4χ(G) colors, we thus have Theorem 4 below.

Theorem 4. Let G be a B1-EPG graph, then Algorithm 3.2 uses at most 4χ(G)
colors.

4 Maximum Independent Set on B1-EPG Graphs

4.1 Hardness Result for Finding Maximum Independent Set on
B1-EPG Graphs

In this section, we show that the Maximum Independent Set on B1-EPG
graphs is NP-complete. We use a reduction from Maximum Independent

Set on planar graphs with maximum degree four, which is known to be NP-
complete [6]; our proof is inspired by [14].

Theorem 5. Maximum Independent Set on B1-EPG graphs is NP-complete.

Proof. Let G = (V,E) be a planar graph with maximum degree four; Maxi-

mum Independent Set on planar graph with maximum degree four is NP-
complete [6]. We construct a B1-EPG representation of a graph G′ = (V ′, E′) so
that a maximum independent set in G′ corresponds to a maximum independent
set in G and vice versa.

Fix an embedding of G in a grid G such that edges of G are piecewise linear
curves following the grid lines (such an embedding in a linear sized grid always
exists and is constructible in polynomial time [16]). Each edge e ∈ E is thus
corresponds to a path πe in the grid G, and denote by ke the number of seg-
ments (links) πe consists of. Note further, that these paths intersect only at their
endpoints, namely, in the vertices of G since the embedding is planar.

Let G′ be a graph obtained from G by subdividing every edge e with 2
⌈
ke+1

2

⌉
new vertices; we denote the set of new vertices corresponding to an edge e by Ue

and by U the set of all such new vertices, we thus have V ′ = V ∪U . Notice that
since |Ue| is even for each edge e of G, a maximum independent set in G′ contains
exactly half of the vertices in Ue, and at most one of the vertices corresponding
to the “original” endpoints of e. We thus have

α(G′) = α(G) +
∑
e∈E

⌈
ke + 1

2

⌉

and thus to complete the proof it suffices to show that G′ is B1-EPG graph.
Having the grid embedding of G, we construct a B1-EPG representation 〈P ,G〉

of G′ as follows; see Figure 4 for an illustration. We start by placing the vertices
in U into G. Let e be an edge of G, by definition πe has ke − 1 bend points. At
each such grid point we place one vertex from Ue, we also place one vertex from
Ue in the interiors of the first and last links of πe. Finally, we place the remaining



336 D. Epstein, M.C. Golumbic, and G. Morgenstern

vertices of Ue arbitrarily along πe (the order in which the vertices are located
along πe preserves adjacencies). When convenient we may refer to vertices of G′

as the grid points they are embedded to. We now associate each vertex v of G′

with a path Pv (which is either a single-bend path or a segment) so that Pv and
Pu share an edge of G if and only if v and u are adjacent in G′.

(a) (b)

Fig. 4. (a) A rectilinear grid embedding of some graph G′; vertices of V are grayed.
(b) A B1-EPG representation of G′.

For every v ∈ V , set Pv to be a short vertical segment around v. Let u ∈ U ,
then u has exactly two neighbors, and consider first the case where both are
from U . We set Pu to be a path consisting of the two segments connecting u
with each of its neighbors. If u is embedded to a bend point of some πe, then
Pu is a single-bend path, otherwise it is just a segment. Finally, let u ∈ U be
a vertex with neighbors u′ ∈ U and v ∈ V (notice that by construction no vertex
in G′ has more than one neighbor from V ) in this case, u, u′, and v are embedded
to the same grid row/column and we set Pu as follows, distinguishing between
two subcases, according to whether all three vertices are embedded to the same
column or row of G. (i) u, u′, and v are on the same column: We set Pu to be
a vertical segment that begins at u′ and almost reaches v (in such a way that
it ends close enough to share a grid edge with Pv). (ii) u, u′, and v are on the
same row: We set Pu to be a ⌟-path or a ⌜-path that starts at u′ and bends at
v, sharing its vertical edge with Pv, avoiding other possible neighbors of v.

It is easy to see that indeed for every u, v ∈ V ′ the paths Pu and Pv share
a grid edge if and only if u and v are adjacent in G′, thus the desired result
follows. 
�

Remark 2. The proof of Theorem 5 can be modified so that it uses only two bend
shapes; thus Maximum Independent Set is NP-complete already on ⌟⌞-EPG
and on ⌞⌝-EPG graphs.

4.2 A 4-Approximation Algorithm for Maximum Independent Set
on B1-EPG Graphs

In this section we present a constant-factor approximation algorithm for Maxi-

mum Independent Set (Algorithm 4.2 below). In a similar way to Section 3.2,



Approximation Algorithms for B1-EPG Graphs 337

we start by presenting a “subroutine” that computes an approximated solution
for a subgraph, and then use the subroutine in order to compute an approxi-
mated solution for the whole graph. This subroutine is described in Algorithm 4.1
below, which uses a standard greedy Independent Set algorithm (thus clearly,
produces an Independent Set). Note that the order in which it examines the
vertices is the reversed order of that used in Algorithm 3.1, namely, according
to the decreasing order of ≺. Lemma 2 claims that when used for a ⌟⌞-EPG
graph, Algorithm 4.1 computes a 2-approximation.

Algorithm 4.1 Greedy-⌟⌞-EPG-Independent-Set (Input: P = P⌟ ∪ P⌞)
1: S ← ∅
2: for each Pu ∈ P (in decreasing order by ≺) do
3: add u to S and remove Pu from P
4: remove all paths corresponding to u’s neighbors from P
5: return S

Applying Algorithm 4.1 to the representation in Figure 1 gives the indepen-
dent set: {h, g, d}.

Lemma 2. Let G be a ⌟⌞-EPG graph, then Algorithm 4.1 finds a maximal
independent set of size at least 1

2
α(G).

Proof. Let 〈P ,G〉 be a ⌟⌞-EPG representation of a graph G = (V,E). Let OPT
be a maximum independent set in G and let S be the maximal Independent Set
returned by Algorithm 4.1. We claim that |OPT | ≤ 2|S|.

Notice that for every v ∈ V the path Pv is removed from P at some point
(in lines 3 or 4). Moreover, if a path Pv is removed from P in line 4, then its
deletion must occur when the algorithm added to S some vertex u with v≺u.
Equivalently, whenever the algorithm adds a vertex u to S, it removes from P
paths Pv adjacent to Pu where v≺u (in this case, any other vertex v′ adjacent
to u with u≺v′ has been already removed from S in an earlier stage, necessarily
in line 4).

By eliminating vertices in OPT ∩ S we may assume that OPT ∩ S = ∅.
We therefore assume that the paths corresponding to vertices in OPT were all
eliminated from P in line 4. We define a correspondence ϕ : OPT → S as follows:

ϕ(v) = u where Pv was removed from P in line 4 as a consequence of adding u to S

In particular, if ϕ(v) = u then u and v are adjacent and v≺u. We claim that
for every u ∈ S there exist at most two distinct vertices v1, v2 ∈ OPT with
ϕ(v1) = ϕ(v2) = u and conclude that |OPT | ≤ 2|S|. Indeed, assume to the
contrary that for some u ∈ S, there exist three vertices v1, v2, v3 ∈ OPT with
ϕ(vi) = u (i = 1, 2, 3). At least two of the three paths share with Pu a grid
edge on the same direction; w.l.o.g., assume that Pv1 and Pv2 share a horizontal
edge with Pu. We thus have that Pvi is adjacent to Pu and vi≺u (i = 1, 2), and



338 D. Epstein, M.C. Golumbic, and G. Morgenstern

in particular Pu, Pv1 and Pv2 share a common edge (the leftmost-bottommost
grid-edge contained in Pu). However, as v1 and v2 are both in OPT , they are
nonadjacent. – A contradiction. 
�

We now use Algorithm 4.1 as a building block in Algorithm 4.2 in order to find
a maximal Independent Set in B1-EPG graphs. Here too, as in Remark 1, by ro-
tating a representation by 180◦, Algorithm 4.1 can be “turned” from Greedy-⌟⌞-
EPG-Independent-Set into Greedy-⌝⌜-EPG-Independent-Set. Theorem 6 claims
that when used on a B1-EPG graph, Algorithm 4.2 achieves a 4-approximation.

Algorithm 4.2 B1-EPG Independent Set 4-Approximation(G = 〈P ,G〉)
1: let P = P⌞ ∪ P⌟ ∪ P⌝ ∪ P⌜
2: S1 ←Greedy-⌟⌞-EPG-Independent-Set(P⌞ ∪ P⌟)
3: S2 ←Greedy-⌝⌜-EPG-Independent-Set(P⌜ ∪ P⌝)
4: return the largest amongst S1, S2

Theorem 6. Let G be a B1-EPG graph, then Algorithm 4.2 finds a maximal
Independent Set of size at least 1

4
α(G).

Proof. Let 〈P ,G〉 be a B1-EPG representation of G. Put P = P⌞ ∪P⌟ ∪P⌝ ∪P⌜
and let G1 and G2 be the ⌟⌞-EPG graphs with representations 〈P⌞ ∪ P⌟,G〉 and
〈P⌜ ∪ P⌝,G〉, respectively. Clearly, α(G) ≤ α(G1) + α(G2).

Let S1 and S2 be the sets computed in lines 2 and 3 of the algorithm. By
Lemma 2, we get

α(G) ≤ α(G1) + α(G2) ≤ 2|S1|+ 2|S2| ≤ 4 max{|S1|, |S2|}

which completes the proof. 
�

5 Concluding Remarks

We observe that Maximum Clique in B1-EPG graphs can be optimally solved
in polynomial time using a brute-force algorithm. In [9] the authors show that
each clique in the graph has one of two forms in the B1-EPG representation,
referred to as “edge clique” and “claw clique”. An edge clique consists of all
paths containing a given grid edge; a claw clique consists of all paths sharing
two-out-of-three edges of a given claw centered at a given grid point (there are 4
different claws at each grid point.) Consequently, given a grid representation of
a B1-EPG graph G, one can simply examine each grid edge and count the number
of paths containing that edge, and for each grid point and four corresponding
claws, count the number of path containing two out of three edges of that claw.
This can be done in time polynomial in the size of G, which may be assumed to
be of size at most 2n× 2n for a B1-EPG representation. This implies an O(n3)
time algorithm for Maximum Clique given a B1-EPG representation.



Approximation Algorithms for B1-EPG Graphs 339

A somewhat different approach can solve Maximum Clique for a B1-EPG
graph without being given representation based on the fact that the neighbor-
hood of a vertex in B1-EPG graph is weakly-chordal [1]. It is well known that
Maximum Clique in weakly-chordal graphs can be found in O(n4) time [15].
Since a maximum clique is contained in a closed neighborhood of each of its
vertices, then this yields a O(n5) time algorithm for Maximum Clique given
just the B1-EPG graph and not the representation.

In Algorithms 3.2 and 4.2 we used, respectively, Algorithms 3.1 and 4.1 with
subgraphs induced by P⌞ ∪ P⌟ and P⌜ ∪ P⌝. Taking into consideration also the
two other options (i.e., P⌟ ∪ P⌝ and P⌜ ∪ P⌞) has no effect on the asymptotic
quality of the solutions. However, as a heuristic, one might wish to apply the
algorithm to both and take the better of the two.

Algorithm 3.2 and Algorithm 4.2 are greedy. Both have ”bad” instances for
which the factors mentioned here are tight. It is possible, of course, that a dif-
ferent approach may lead to better approximation factors.

As open problems, we suggest that it would be interesting to find approxi-
mation algorithms to find a minimum dominating set or a maximum weighted
independent set for B1-EPG graphs.

References

1. Asinowski, A., Ries, B.: Some properties of edge intersection graphs of single bend
paths on a grid. Discrete Mathematics 312, 427–440 (2012)

2. Asinowski, A., Suk, A.: Edge intersection graphs of systems of grid paths with
bounded number of bends. Discrete Applied Mathematics 157, 3174–3180 (2009)

3. Biedl, T., Stern, M.: On edge intersection graphs of k-bend paths in grids. Discrete
Mathematics & Theoretical Computer Science (DMTCS) 12, 1–12 (2010)

4. Cameron, K., Chaplick, S., Hoang, C.T.: Recognizing Edge Intersection Graphs of
⌞-Shaped Grid Paths. In: LAGOS 2013 (to appear, 2013)

5. Cohen, E., Golumbic, M.C., Ries, B.: Characterizations of cographs as intersection
graphs of paths on a grid (submitted)

6. Garey, M.R., Johnson, D.S.: Computers and Intractability: a Guide to the Theory
of NP-completeness. Freeman, San Francisco (1979)

7. Garey, M.R., Johnson, D.S., Miller, G.L., Papadimitriou, C.: The complexity of
coloring circular arcs and chords. SIAM. J. on Algebraic and Discrete Methods 1,
216–227 (1980)

8. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press,
New York (1980); Annals of Discrete Mathematics, 2nd edn., vol. 57. Elsevier,
Amsterdam (2004)

9. Golumbic, M.C., Lipshteyn, M., Stern, M.: Edge intersection graphs of single bend
paths on a grid. Networks 54, 130–138 (2009)

10. Halldórsson, M.M.: A still better performance guarantee for approximate graph
coloring. Information Processing Letters 45, 19–23 (1993)

11. Heldt, D., Knauer, K., Ueckerdt, T.: Edge-intersection graphs of grid paths: the
bend-number, Arxiv preprint arXiv:1009.2861, arxiv.org (September 2010)

12. Heldt, D., Knauer, K., Ueckerdt, T.: On the bend-number of planar and outerplanar
graphs. In: Fernández-Baca, D. (ed.) LATIN 2012. LNCS, vol. 7256, pp. 458–469.
Springer, Heidelberg (2012)



340 D. Epstein, M.C. Golumbic, and G. Morgenstern

13. Kako, A., Ono, T., Hirata, T., Halldórsson, M.M.: Approximation algorithms for
the weighted independent set problem in sparse graphs. Discrete Applied Mathe-
matics 157, 617–626 (2009)

14. Kratochv́ıl, J., Nešetřil, J.: Independent set and clique problems in intersection-
defined classes of graphs. Commentationes Mathematicae Universitatis Caroli-
nae 31, 85–93 (1990)

15. Spinrad, J.P., Sritharan, R.: Algorithms for weakly triangulated graphs. Discrete
Appl. Math. 59, 181–191 (1995)

16. Valiant, L.G.: Universality considerations in VLSI circuits. IEEE Trans. Com-
put. 30, 135–140 (1981)



Universal Point Sets for Planar Three-Trees

Radoslav Fulek1,� and Csaba D. Tóth2,��

1 Charles University, Prague, Czech Republic
radoslav.fulek@gmail.com

2 California State University, Northridge, CA, USA and University of Calgary, AB, Canada
cdtoth@acm.org

Abstract. For every n ∈ N, we present a set Sn of O(n5/3) points in the plane
such that every planar 3-tree with n vertices has a straight-line embedding in
the plane in which the vertices are mapped to a subset of Sn. This is the first
subquadratic upper bound on the size of universal point sets for planar 3-trees, as
well as for the class of 2-trees and serial parallel graphs.

Keywords: planar 3-tree, universal point set, straight-line embedding.

1 Introduction

Every planar graph has a straight-line embedding in the plane [17] where the vertices
are mapped to distinct points and the edges to pairwise noncrossing straight line seg-
ments between the corresponding vertices. A set S ⊂ R2 of points in the plane is called
n-universal if every n-vertex planar graph has a straight-line embedding in R2 such that
the vertices are mapped into a subset of S. Similarly, S ⊂ R2 is n-universal for a fam-
ily G of planar graphs if every n-vertex planar graph in G has a straight-line embedding
in R2 such that the vertices are mapped into a subset of S. It is a longstanding open
problem to determine the minimum size f(n) of an n-universal point set for all n ∈ N.
Our main result is that there is an n-universal point set of size O(n5/3) for the class of
planar graphs of treewidth at most three.

Theorem 1. For every n ∈ N, there is an n-universal point set of size O(n5/3) for
planar 3-trees.

A graph is called a k-tree, for some k ∈ N, if it can be constructed by the following
iterative process: start with a k-vertex clique and successively add new vertices such
that each new vertex has exactly k neighbors that form a clique in the current graph.
For example, 1-trees are the same as trees; 2-trees are maximal series-parallel graphs,
and include also all outerplanar graphs. In general, k-trees are the maximal graphs with
treewidth k. A planar 3-tree is a 3-tree that is planar. Theorem 1 is the first subquadratic
upper bound on the size of n-universal point sets for planar 3-trees, for 2-trees, and for
series-parallel graphs.

� The author gratefully acknowledge support from the Swiss National Science Foundation Grant
No. 200021-125287/1 and ESF Eurogiga project GraDR as GAČR GIG/11/E023.

�� Supported in part by NSERC (RGPIN 35586) and NSF (CCF-0830734).

F. Dehne, R. Solis-Oba, and J.-R. Sack (Eds.): WADS 2013, LNCS 8037, pp. 341–352, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



342 R. Fulek and C.D. Tóth

Related Previous Work. In a pivotal paper, de Fraysseix, Pach and Pollack [10] showed
that an n-universal set must have at least n + (1 − o(1))

√
n points. Chrobak and

Karloff [8] improved the lower bound to 1.098n and later Kurowski [23] to (1.235 −
o(1))n. This is the currently known best lower bound for n-universal sets in general.
De Fraysseix et al. [10] and Schnyder [25] independently showed that there are n-
universal sets of size O(n2). In fact, an (n− 2)× (n− 2) section of the integer lattice
is n-universal [9,25] for every n ≥ 4. Alternatively, an 4

3
n× 2

3
n section of the integer

lattice is also n-universal [5]. The quadratic upper bound is the best possible if the point
set is restricted to sections of the integer lattice: Frati and Patrignani [20] showed (based
on earlier work by Dolev et al. [12]) that if a rectangular section of the integer lattice is
n-universal, then it must contain at least n2/9 + Ω(n) points.

Grid drawings have been studied intensively due to their versatile applications. It is
known that sections of the integer lattice with o(n2) points are n-universal for certain
classes of graphs. For example, Di Battista and Frati [11] proved that an O(n1.48) size
integer grid is n-universal for outerplanar graphs. Frati [19] showed that 2-trees on
n vertices require a grid of size at least Ω(n2

√
logn). Biedl [2] observed that the grid

embedding of all n-vertex 2-trees requires an Ω(n)×Ω(n) section of the integer lattice
if the combinatorial embedding (i.e., all vertex-edge and edge-face incidences) is given.
On the other hand, Zhou et al. [26] showed recently that every n-vertex series-parallel
graph, and thus, every 2-tree, has a straight-line embedding in a 2

3
n × 2

3
n section of

the integer lattice and a section of the integer lattice of area 0.3941n2. Researchers
have studied classes of planar graphs that admit n-universal point sets of size o(n2).
A classical result in this direction, due to Gritzmann et al. [22] (see also [4]), is that
every set of n points in general position is n-universal for outerplanar graphs. Recently,
Angelini et al. [1] generalized this result and showed that there exists an n-universal
point set of size O(n(log n/ log logn)2) for so-called simply nested planar graphs. A
planar graph is simply nested if it can be reduced to an outerplanar graph by successively
deleting chordless cycles from the boundary of the outer face. Theorem 1 provides a new
broad class of planar graphs that admit subquadratic n-universal sets.

Algorithmic questions pertaining to the straight-line embedding of planar graphs
have also been studied. The point set embeddability problem asks whether a given pla-
nar graph G has a straight-line embedding such that the vertices are mapped to a given
point set S ⊂ R2. The problem is known to be NP-hard [7], and remains NP-hard
even for 3-connected planar graphs [14], triangulations and 2-connected outerplanar
graphs [3]. However, it has a polynomial-time solution for 3-trees [15,24]. In a polyline
embedding of a plane graph, the edges are represented by pairwise noncrossing polyg-
onal paths. Biedl [2] proved that every 2-tree with n vertices has a polyline embedding
where the vertices are mapped to an O(n) × O(

√
n) section of the integer lattice, and

each edge is a polyline with at most two bends. Everett et al. [16] showed that there is a
set Sn of n points in the plane, for every n ∈ N, such that every n-vertex planar graph
has a polyline embedding with at most one bend per edge on S. Dujmović et al. [13]
constructed a point set S′

n of size O(n2/ logn) for all n ∈ N such that every n-vertex
planar graph has a polyline embedding with at most one bend per edge in which the
vertices as well as all bend points of the edges are mapped to S′

n.



Universal Point Sets for Planar Three-Trees 343

Organization. We briefly review some structural properties of planar 3-trees (Sec-
tion 2), then construct a point set Sn ⊂ R2 for every n ∈ N (Section 3), and show
that Sn is n-universal for planar 3-trees (Section 4).

2 Basic Properties of Planar Three-Trees

A graphG is a planar 3-tree if it can be constructed by the following iterative procedure.
Initially, let G = K3, the complete graph with three vertices. Successively augment G
by adding one new vertex u and three new edges that join u to three vertices of a triangle
such that no two vertices are connected to all the vertices of the same triangle. A planar
3-tree can be embedded in the plane consistently with the iterative process: the initial
triangle forms the outer-face and each new vertex u is inserted in the interior of the face
corresponding to the triangle it is attached to.

The iterative augmentation process that produces a 3-tree G can be represented by a
rooted tree T = T (G) as follows (this is called a face-representative tree in [18]). Refer
to Fig. 1. The nodes of T correspond to the triangles of G. For convenience we denote
a vertex of T by its corresponding triangle in G. The root of T corresponds to the initial
triangle of G. When G is augmented by a new vertex u connected to the vertices of the
triangle Δ = v1v2v3, we attach three new leaves to Δ corresponding to the triangles
v1v2u, v1uv3 and uv2v3.

For a node Δ of T , let TΔ denote the subtree of T rooted at Δ. Let VΔ denote the
set of vertices of G embedded in the interior of Δ.

T1bc
T

V1bc

G(T )
1

a b

abc

ab1

a12 21ca2c

1bc

c

2 3 13b 13c
4

134 14c 43c

a1c

3bc

Fig. 1. Left: a 3-tree, constructed from the initial triangle abc by successively adding new vertices
1, . . . , 4. Right: The corresponding tree T = T (G). The gray region indicates subtree T1bc rooted
at 1bc, and its corresponding vertex set V1bc ⊆ V (G).

In Section 4, we embed the vertices of a planar 3-tree on a point set by traversing
the tree T from the root. The initial triangle abc will be the outer face in the embedding
such that edge ab is a horizonal line segment, and vertex c is the top vertex (i.e., it has
maximal y-coordinate). We then successively insert the remaining n− 3 vertices of G,
each of which subdivides a triangular face into three triangles. We label the vertices of
each triangle of G as left, right and top vertex, respectively. These labels are assigned
(without knowing the specifics of our embedding algorithm) as follows. Label the three
vertices of the initial triangle in G arbitrarily as left, right and top, respectively. If G is
augmented by a new vertex u and edges uv1, uv2, and uv3, where v1 is the left, v2 is the
right, and v3 is the top vertex of an existing triangle v1v2v3, then v1, v2, and v3 keeps
their labels left, right, and top, respectively, in the new triangles v1v2u, uv2v3 and v1uv3.



344 R. Fulek and C.D. Tóth

Furthermore, the vertex u becomes the top vertex of v1v2u, the left vertex of uv2v3, and
the right vertex of v1uv3. The triangles v1v2u, v1uv3 and uv2v3, respectively, will be
called the bottom, left and right triangles within v1v2v3. In the tree T = T (G), the three
children of a node corresponding to a vertex can be labeled as bottom, left, and right
child, analogously.

3 Construction of a Point Set

We construct a point set Sn ⊂ R2 of size O(n5/3) for every n ∈ N. Assume in the
sequel that n1/3 is an integer, otherwise let Sn = S
n1/3�3 .

The point set Sn is constructed in two easy steps: we first choose a “sparse” set Bn

of O(n5/3) points from a 14n×14n section of the integer lattice, and then “stretch” the
points by the transformation (x, y)→ (x, (28n)y), as described below.

Sparse Grid. Let An = {(i, j) ∈ Z2 : 0 ≤ i, j ≤ 14n} be an 14n× 14n section of the
integer lattice. Let Bn ⊂ An be the set of points in An with at least one of the following
four properties (see Fig. 2, left):

(a) (i, j) such that i ≡ 0 mod n1/3 (full columns);
(b) (i, j) such that j ≡ 0 mod n1/3 (full rows);
(c) (i+k, j+k) such that i, j ≡ 0 mod n1/3 and 0 ≤ k < n1/3 (forward diagonals);
(d) (i+k, j−k) such that i, j ≡ 0 mod n1/3 and 0 ≤ k < n1/3 (backward diagonals).

p1

p3

p2

Fig. 2. Left: A schematic picture of a sparse grid: every point is in a full row, a full column, a
forward diagonal or a backward diagonal. Right: A grid and three points p1 = (a1, b1), p2 =
(a2, b2) and p3 = (a3, b3) with a1 < a2 < a3 and b1 < b2 < b3. The Jordan arcs between
the points represent straight-line segments between the stretched points τ (a1, b1), τ (a2, b2) and
τ (a3, b3).

Stretched Grid. We deform the plane by the following transformation.

τ : R2 → R2, (x, y)→ (x, (28n)y).

For an integer point (i, j) ∈ Z2, we use the shorthand notation τ(i, j) = τ((i, j)). If
A ⊂ R2 is a rectangular section of the integer lattice (a grid), then we call the point set
τ(A) = {τ(p) : p ∈ A} a stretched grid. Note that τ translates every point vertically,
and it translates points of the same y-coordinate by the same vector. The purpose of
transformation τ is to establish the following property for the stretched grid τ(An).



Universal Point Sets for Planar Three-Trees 345

Observation 2. Let (a1, b1), (a2, b2), (a3, b3) ∈ An such that (a2, b2) lies in the in-
terior of the axis-aligned rectangle spanned by (a1, b1) and (a3, b3) (formally, a1 <
a2 < a3 and either b1 < b2 < b3 or b3 < b2 < b1). Then τ(a2, b2) lies below the line
segment between τ(a1, b1) and τ(a3, b3). (See Fig. 2, right. See the full version [21] for
a proof.)

Universal Point Set for 3-Trees. We are now in a position to define Sn. Let Sn =
τ(Bn). Intuitively, Sn is a sparse 14n×14n grid with diagonals inside each “hole,” and
stretched vertically by τ .

Similarly to [6], our illustrations show the “unstretched” point set Bn = τ−1(Sn)
instead of Sn. The transformation τ−1 maps line segments between points in Sn to
Jordan arcs between grid points in Bn. In our figures, line segments are drawn as Jordan
arcs that correctly represent the above-below relationship between segments and points
(Fig. 2, right).

Remark 3. The grid-embedding algorithm by de Fraysseix et al. [10] embeds every
n-vertex planar graph on an (2n − 4) × (n − 2) section of the integer lattice. Their
algorithms also works on the stretched grid in place of the integer grid. Specifically, we
use their result in the following form. Suppose that G is a planar graph with n ∈ N
vertices and endowed with a given combinatorial embedding in which u, v and z are
the vertices of the outer face. Let X,Y ⊂ N be two sets of cardinality |X | ≥ 2n
and |Y | ≥ n. Then G has a straight-line embedding such that the vertices are mapped
to the stretched cross product τ(X × Y ) of size at least 2n2; the two endpoints of
edge uv are mapped to τ(minX,minY ) and τ(maxX,minY ), respectively; and z is
mapped to a point in the top row τ(X ×maxY ). By Observation 2, we can shift u or
v vertically down to another point of the stretched grid (while keeping all other vertices
fixed) without introducing any edge crossings.

4 Embedding Algorithm

Let G be a planar 3-tree with n vertices. We construct a straight-line embedding of
G such that the vertices are mapped into Sn. Our embedding algorithm is guided by
the tree T = T (G), which represents an incremental process that constructs G from
a single triangle. Recall that TΔ denotes the subtree of T rooted at a node Δ; and VΔ

denotes the set of vertices of G that correspond to nodes in TΔ.
Let the weight of a node Δ of T be weight(Δ) = |VΔ|. A node Δ is heavy (resp.,

light) in T if its weight is at least (resp., less than) n1/3. We say that a node Δ of T
is a big-split if it is not the root of T , and n1/3 ≤ weight(Δ) ≤ weight(Δ′) − n1/3,
where Δ′ is the parent of Δ. The tree T is a partition tree. For every node Δ, weight(Δ)
equals one plus the total weight of the children of Δ.

We show that T has at most 2n2/3 big-split nodes. Consider the subtree T ′ of T
induced by the nodes of weight at least n1/3. Let T ′′ denote the tree obtained from T ′

by adding a leaf to all nonroot vertices of degree two in T ′. Observe that every big-split
node of T is in T ′′, and its parent in T ′′ is either the root or a node of degree at least
three in T ′′. The tree T ′′ has at most n2/3 leaves, since every leaf of T ′′ accounts for at



346 R. Fulek and C.D. Tóth

least n1/3 vertices of G. Therefore, T ′′ has at most n2/3 − 1 nonroot vertices of degree
at least three. Thus, there are at most 2n2/3 big-split nodes in T .

Overview. We embed the vertices of G while traversing the tree T from its root. For
every node Δ with sufficiently large weight, we choose an axis-aligned rectangle R(Δ)
such that the vertices in VΔ will be mapped to points in Sn∩R(Δ). Intuitively,R(Δ) is a
region “allocated” for the vertices in VΔ. See Fig. 5 for an illustration. For convenience,
we describe the dimensions of all rectangles RΔ in terms of the unstretched grid Bn =
τ−1(Sn).

When the breadth-first traversal of T reaches a nodeΔ with sufficiently small weight,
we use Remark 3 to embed VΔ into the point set Sn ∩ R(Δ). We can use Remark 3
if Sn ∩ R(Δ) contains a cross product X × Y where |X | ≥ 2 · weight(Δ) and
|Y | ≥ weight(Δ). The cross product X × Y will contain either full rows or full
columns in Sn ∩ R(Δ). Since every n1/3-th row and every n1/3-th column of Sn is
full, R(Δ) must intersect either at least 2weight(Δ) full columns and weight(Δ) arbi-
trary rows; or at least 2weight(Δ) arbitrary columns and weight(Δ) full rows. Hence,
R(Δ) must intersect either at least 2weight(Δ)n1/3 columns and weight(Δ) rows; or
at least 2weight(Δ) columns and weight(Δ)n1/3 rows of Sn.

Let u denote the vertex of G connected to all three vertices of Δ ∈ V (T ), if such
a vertex exists. Let Δ1, Δ2 and Δ3 denote the children of Δ. The main difficulty of
our strategy lies in the fact that at each step of the algorithm we need to allocate three
internally disjoint rectangles R(Δ1), R(Δ2) and R(Δ3) such that they intersect in a
single point of Sn ∩ R(Δ). Intuitively, we would like to choose rectangles R(Δ1),
R(Δ2) and R(Δ3) so that their areas are proportional to their weights. This would
be possible (up to integer rounding) if all points of τ(An) ∩ R(Δ) were available for
embedding u. However, we have to place u at a point of the sparse set τ(Bn) ∩ R(Δ),
and so some distortion is unavoidable. A simple way to achieve that R(Δ1), R(Δ2) and
R(Δ3) intersect in a single point of Sn is to “snap” their corners to an intersection point
of a full row and a full column of Sn. Each such snapping can “waste” up to O(n1/3)
units in both horizontal and vertical directions, and hence, we apply it only to O(n2/3)
big-split nodes of T .

In order to avoid wasting too many points of Sn, we maintain an invariant for heavy
nodes Δ that requires the lower-left and lower-right corners of R(Δ) to be on a forward
and, respectively, backward diagonal of Sn (invariant I3 below). This will allow for
allocating the rectangles R(Δ1), R(Δ2) and R(Δ3) economically in the case that Δ1,
Δ2 or Δ3 is light.

Snapping. To every big-split node Δ, we would like to assign a rectangle R(Δ) whose
bottom corners are in the intersection of full rows and full columns of Sn. Our algorithm
(described below) achieves this property in two steps (refer to Fig. 3a-3c): It first selects
a rectangle R0(Δ) which may not have this property, and then applies a repair step
(called “snapping”) to establish the required property. Suppose that Δ is a big-split
node, and not all corners of the rectangle R0(Δ) are at full rows or full columns of the
grid Bn. The repair step increases the width and height of R0(Δ) by 2n1/3 to obtain
a larger rectangle R′

0(Δ); and then snaps the corners of R0(Δ) to points lying on full
rows and full columns within R′

0(Δ) (thereby decreasing the width and height ofR′
0(Δ)

by at most n1/3) as follows.



Universal Point Sets for Planar Three-Trees 347

R0(Δ)

�x

�y
�y

R′0(Δ)

R0(Δ)

�x

�y

R′0(Δ)

R(Δ)

�x

R0(Δ)

Fig. 3. Left: A rectangle R0(Δ) that intersects a vertical line �x and a horizontal line �y. Middle:
Shift every corner on the left and right of �x by n1/3 to the left and right, resp., and every corner
above and below �y by n1/3 up and down, resp.. Right: Let R(Δ) ⊆ R′

0(Δ) be the maximal
axis-aligned rectangle whose corners are on full rows and full columns.

Let �x (resp., �y) be a vertical (resp., horizontal) line passing through R0(Δ). For all
rectangles R(Δ′), shift every corner lying on the left (right) of �x to the left (right) by
n1/3. Similarly, for all the already allocated rectangles R(Δ′), shift every corner above
(below) �y up (down) by n1/3. (Shifting is meant in terms of the unstretched grid: for
example a point τ(i, j) right of �x and above �y is shifted to τ(i+n1/3, j+n1/3).) This
operation maps R0(Δ) to a rectangle R′

0(Δ). Note that the operation does not decrease
the width and height of any rectangle. Finally, let R(Δ) ⊆ R′

0(Δ) be the maximal
axis-aligned rectangle whose corners are on full rows and full columns of Bn.

Since there are at most 2n2/3 big-split nodes in T , we perform at most 2n2/3 snap-
ping operations, one for each big-split node. Altogether, the snapping operations in-
crease the width and the height of the bounding box by 2n2/3 · 2n1/3 = 4n. The point
set Bn is a 14n× 14n section of the sparse grid. If we choose the initial rectangle (as-
signed to the root of T ) as the middle 10n× 10n portion of Bn with margins of 2n all
around, then all rectangles remain within the point set Bn after snapping.

Each snapping operation changes the width and height of rectangles allocated to sev-
eral nodes of T . A snapping for a rectangle R(Δ) affects the dimension of all ancestors
of Δ as well as of any other rectangle that intersect �x or �y. In the analysis of our
algorithm, we do not attempt to maintain the true dimensions of the rectangles. We are
satisfied with lower bounds on their widths and heights. Since the snapping operations
can only increase the dimensions of the rectangles, we can afford to ignore their effect
completely, and we still retain a lower bound for the true dimensions. We define the
width (resp., height) of an axis-aligned rectangle R with respect to the unstretched grid,
and denote them by w(R) and h(R), respectively. Hence a rectangle R intersects at
least w(R) (not necessarily full) columns and h(R) (not necessarily full) rows.

Invariants. By traversing the tree T from the root, we assign a rectangle R(Δ) to every
node Δ up to the depth where Remark 3 becomes applicable, that is, [w(R(Δ)) ≥
2weight(Δ) and h(R(Δ)) ≥ 20n1/3weight(Δ)] or [h(R(Δ)) ≥ weight(Δ) and
w(R(Δ)) ≥ 20n1/3weight(Δ)]. The constant factor of 20 is used merely to simplify
the analysis of the algorithm. We call the set of nodes of T where these conditions are
first satisfied the fringe of T . For a fringe node Δ, we can embed the vertices in VΔ

using Remark 3, and so there is no need to assign rectangles to its descendants.



348 R. Fulek and C.D. Tóth

For all nodes Δ at or above the fringe of T , we maintain the following invariants.

I1 If TΔ ⊆ TΔ′ then R(Δ) ⊆ R(Δ′); otherwise R(Δ) and R(Δ′) are interior-
disjoint.

I2 For every node Δ, the the horizontal extent of R(Δ) lies in the horizontal extent of
the triangle Δ; every vertex u ∈ VΔ is embedded in the interior of R(Δ).

I3 If weight(Δ) ≥ n1/3, the lower-left and lower-right corners of R(Δ) are in Sn;
specifically, the lower-left corner is in a forward diagonal, and the lower-right cor-
ner is in a backward diagonal of Sn.

I4 If weight(Δ) ≥ n1/3, then w(R(Δ)) · h(R(Δ)) ≥ 100nweight(Δ).
I5 If weight(Δ) < n1/3, then

[w(R(Δ)) ≥ 2weight(Δ) and h(R(Δ)) ≥ 20n1/3weight(Δ)] or
[h(R(Δ)) ≥ weight(Δ) and w(R(Δ)) ≥ 20n1/3weight(Δ)].

Note that invariants I1, I2 and I5 ensure that all light nodes Δ (i.e., nodes with
weight(Δ) < n1/3) are on or below the fringe. We now recursively allocate rectangles
R(Δ) for all nodes Δ of T on or above the fringe of T , maintaining invariants I1–I5.

a b

c

3
1

4

2

T
abc

ab1

a12 21ca2c

1bc

13b 13c

134 14c 43c

a1c

3bc

Fig. 4. The embedding of a 3-tree G from Fig. 1 on a sparse grid

Initialization. Denote by abc the initial triangle of G, with a labeled left, b labeled
right and c labeled top. Then we have T = Tabc. Let R(abc) be the bounding box of
a 10n × 10n section of Sn. Embed a and b to the lower-left and lower-right corners
of R(abc), respectively. Embed c in the upper-right corner of R(abc) (see Fig. 4). It is
clear that invariants I1–I5 are satisfied for abc.

By construction, every nonleaf node of T has three children: a left, a right and a top
child. For a node Δ′ the rectangle R(Δ′) is obtained from its parental rectangle R(Δ)
by the following procedure.

Assume that the vertices of triangle Δ have already been embedded and we have a
rectangle R(Δ) satisfying invariants I1–I5. If Δ is on the fringe of T , then the embed-
ding of the vertices VΔ is completed by Remark 3 and invariant I5. Otherwise, denote
the bottom, left and right child of Δ, respectively, by Δ1, Δ2 and Δ3. Suppose that
R(Δ) = τ([a, b]× [c, d]). We distinguish between two cases depending on the number
of heavy children of Δ.

The Node Δ has More Than One Heavy Child. In this case, we partition the area of
rectangle R(Δ) among its three children proportionally to their weights; and establish
invariant I3 by snapping operations for the heavy children. Note that all heavy children
of Δ are big-split nodes. Refer to Fig. 5a.



Universal Point Sets for Planar Three-Trees 349

We choose rectangles R(Δ1), R(Δ2) and R(Δ3) ⊂ R(Δ) for the children of Δ;
and place the vertex of G corresponding to Δ at a point in R(Δ) ∩ Sn such that its
x-coordinate corresponds to the right side of R(Δ2) and the left side of R(Δ3), and its
y-coordinate lies (not strictly) below both rectangles and above rectangle R(Δ1).

Note that weight(Δ) = weight(Δ1)+weight(Δ2)+weight(Δ3)+1. We distribute
the height of R(Δ) between R0(Δ1) and R0(Δ2) ∪ R0(Δ3) proportionally to their
weights. Then we distribute the width of R0(Δ) between R0(Δ2) and R0(Δ3) propor-
tionally to their weights. Finally, the rectangles of heavy children amongR(Δ1), R(Δ2)
and R(Δ3) are obtained by snapping the corners of R0(Δ1), R0(Δ2) and R0(Δ3), re-
spectively, to full rows and full columns as described above. The rectangles R(Δi) for
light children Δi are equal to R0(Δi). Due to snapping, the lower-left (resp., lower-
right) corner of R(Δi), for a heavy Δi, is on a forward (resp., backward) diagonal of
Sn. Hence, we maintain invariant I3.

The height of the rectangle R(Δ1) is at least weight(Δ1)

weight(Δ)
· h(R(Δ)).

The height of the rectangle R(Δ2) (R(Δ3) is treated analogously) is at least
weight(Δ2)+weight(Δ3)

weight(Δ)
· h(R(Δ)).

The width of the rectangle R(Δ2) (R(Δ3) is treated analogously) is as least
weight(Δ2)

weight(Δ2)+weight(Δ3)
· w(R(Δ)).

R(Δ1)

R(Δ)

R(Δ2) R(Δ3)

R(Δ1)

R(Δ)

R(Δ2) R(Δ3)

R(Δ1)

R(Δ)

R(Δ2)

R(Δ3)

Fig. 5. (a) A step where all three children of Δ are heavy. The corners of all rectangles R(Δi)
were snapped to the intersection of full rows and columns. (b) A step where only the bottom child
of Δ is heavy. No snapping is necessary. (c) A step where only the right child of Δ is possibly
heavy. No snapping is necessary.

The Node u Has at Most One Heavy Child. In this case, we do not use snapping: we
choose the height (or the width) of each light child to be at least their weight (or twice
their weight); and we establish invariant I3 using the forward and backward diagonals.
Refer to Figs. 5b and 5c.

Let us distinguish between two subcases depending on whether the bottom child is
heavy or not.

If the heavy child of Δ happens to be the bottom one, that is Δ1, then let rΔ =
max{weight(Δ2),weight(Δ3)} be the weight of a largest top child. We assign

R(Δ1) := τ([a, b]× [c, d− rΔ])



350 R. Fulek and C.D. Tóth

and we distribute the width of the remaining part of R(Δ) evenly between R(Δ2) and
R(Δ3) so that we can map the vertex of G corresponding to Δ to a point in R(Δ)∩Sn

such that its x-coordinate corresponds to the right side of R(Δ2) and the left side of
R(Δ3) and its y-coordinate is d− 2rΔ.

Otherwise, if, say, the left childΔ2 is light, let rΔ = max{weight(Δ1),weight(Δ2)}.
We assign

R(Δ3) := τ([a + 2rΔ, b− 2rΔ]× [c + 2rΔ, d])

and place the vertex of G corresponding to Δ at the point τ([a + 2rΔ, c + 2rΔ]) on
a forward diagonal. Then we assign R(Δ1) = τ([a, b] × [c, c + 2rΔ]) and R(Δ2) =
τ([a, a + 2rΔ] × [c + 2rΔ, d]). The lower-left (resp., lower-right) corner of R(Δ3) is
on a forward (resp., backward) diagonal of Sn. Thus, we maintain invariant I3.

If the right child Δ1 is light, the embedding is done analogously, placing the vertex
of G corresponding to Δ on a backward diagonal. This concludes the description of the
embedding algorithm.

Maintenance of Invariants. The invariants I1–I5 trivially hold when Δ is the root of
T . By construction, the invariants I1, I2, and I3 are maintained for subtrees in each step
of our algorithm. It remains to verify that invariants I4 and I5 are maintained.

To verify invariant I4, consider a node Δ of T corresponding to a heavy triangle.
Let Δ1, Δ2, . . . , Δk be the vertices on the path in T from the root Δ1 to Δk = Δ
corresponding to triangles. Suppose that invariant I4 holds for Δi, 1 ≤ i < k. Assume
that the rectangles R(Δ1) ⊇ . . . ⊇ R(Δk) form a nested sequence by invariant I1. The
heights and widths of the rectangles R(Δi) may decrease in three essentially different
ways:

(a) w(R(Δi+1)) ≥ w(R(Δi)) and h(R(Δi+1)) ≥ h(R(Δi))
weight(Δi+1)

weight(Δi)
;

(b) w(R(Δi+1)) ≥ w(R(Δi))
weight(Δi+1)

ci+1
and h(R(Δi+1)) ≥ h(R(Δi))

ci+1

weight(Δi)

where ci+1 is a parameter with ci+1 ≥ weight(Δi+1);
(c) w(R(Δi+1)) ≥ w(R(Δi)) − 4r and h(R(Δi+1)) ≥ h(R(Δi)) − 2r where r =

weight(Δi)− weight(Δi+1).

Recall that in the analysis we ignore snapping. Case (a) occurs when R(Δi+1) is a
bottom rectangle. Indeed, if Δi+1 is the bottom child of Δi, then w(R(Δi+1)) =
w(R(Δi)) by construction; and the height of Δi+1 is a proportional fraction of the
height of Δi, if Δi has several heavy children. If Δi+1 is the only heavy child by invari-
ant I4 we have h(R(Δi)) ≥ 10weight(Δi), since w(R(Δi)) ≤ 10n. Thus, the height
of Δi+1 is more than a proportional fraction in this case.

Case (b) occurs when R(Δi+1) is a left or right rectangle, and both the left and right
child of Δi are heavy. Case (c) occurs when R(Δi+1) is a left or right rectangle, and
Δi+1 is the only heavy child of Δi.

In cases (a) and (b), the width or the height decreases at most proportionally with the
weight, and in case (c) the width and the height decrease by the at most 4 times and 2
times, respectively, the actual decrease in weight. We show that in all three cases, the
area of the rectangle decreases proportionally to the weight, that is,

w(R(Δi+1))h(R(Δi+1))

w(R(Δi))h(R(Δi))
≥ weight(Δi+1)

weight(Δi)
. (1)



Universal Point Sets for Planar Three-Trees 351

This is obvious in cases (a) and (b). In case (c), we have:

w(R(Δi+1))

w(R(Δi))
· h(R(Δi+1))

h(R(Δi))
=

(w(R(Δi))− 4r)(h(R(Δi))− 2r)

w(R(Δi)) · h(R(Δi))

≥ 100nweight(Δi)− 6r · 10n

100nweight(Δi)
≥ weight(Δi+1)

weight(Δi)

where we used that w(R(Δi)) ≤ 10n and h(R(Δi)) ≤ 10n since we ignore snapping,
and we have w(R(Δi)) · h(R(Δi)) ≥ 100nweight(Δi) by invariant I4. It follows that
(1) holds for i = 1, . . . , k − 1. Therefore we have

w(R(Δk)) · h(R(Δk)) ≥ 10n · 10weight(Δ1)
weight(Δ2)

weight(Δ1)
· . . . · weight(Δk)

weight(Δk−1)

≥ 100nweight(Δk).

This confirms invariant I4 and similarly we can prove that invariant I5 is also maintained
(see the full version [21] for a complete proof).

5 Conclusion

We have presented a set Sn of O(n5/3) points in the plane such that every n-vertex
planar 3-tree has a straight-line embedding where the vertices are mapped into Sn. We
do not know what is the minimum size of an n-universal point set for planar 3-trees.

The bottleneck of our method is the snapping operation. Recall that snapping is in-
voked at most 2n2/3 times, once for each big-split node, and each snapping operation
extends the width and the height of the outer face by 2n1/3. If not for invariant I3, we
could abandon the snapping operations and we could define a sparse grid with resolu-
tion
√
n instead of n1/3, yielding a point set of size O(n3/2).

The point set Sn, n ∈ N, defined in Section 3 is n-universal for planar 3-trees.
It certainly admits some other n-vertex planar graphs, as well. It remains to be seen
whether Sn is n-universal for all n-vertex planar graphs.

Acknowledgements. We are grateful to Vida Dujmović and David Wood for their en-
couragement and for repeatedly posing the universal point set problem for 2-trees and
planar 3-trees.

References

1. Angelini, P., Di Battista, G., Kaufmann, M., Mchedlidze, T., Roselli, V., Squarcella, C.:
Small point sets for simply-nested planar graphs. In: Speckmann, B. (ed.) GD 2011. LNCS,
vol. 7034, pp. 75–85. Springer, Heidelberg (2011)

2. Biedl, T.: Small drawings of outerplanar graphs, series-parallel graphs, and other planar
graphs. Discrete Computational Geometry 45, 141–160 (2011)

3. Biedl, T., Vatshelle, M.: The point-set embeddability problem for plane graphs, in. In: Proc.
Symposuim on Computational Geometry, pp. 41–50. ACM Press (2011)

4. Bose, P.: On embedding an outer-planar graph in a point set. Computational Geometry: The-
ory and Applications 23(3), 303–312 (2002)



352 R. Fulek and C.D. Tóth

5. Brandenburg, F.-J.: Drawing planar graphs on 8
9
n2 area. Electronic Notes in Discrete Math-

ematics 31, 37–40 (2008)
6. Bukh, B., Matoušek, J., Nivasch, G.: Lower bounds for weak epsilon-nets and stair-convexity.

Israel Journal of Mathematics 182, 199–228 (2011)
7. Cabello, S.: Planar embeddability of the vertices of a graph using a fixed point set is NP-hard.

Journal of Graph Algorithms and Applications 10(2), 353–363 (2006)
8. Chrobak, M., Karloff, H.J.: A lower bound on the size of universal sets for planar graphs.

SIGACT News 20(4), 83–86 (1989)
9. Chrobak, M., Payne, T.: A linear time algorithm for drawing a planar graph on a grid. Infor-

mation Processing Letters 54, 241–246 (1995)
10. de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinator-

ica 10(1), 41–51 (1990)
11. Di Battista, G., Frati, F.: Small area drawings of outerplanar graphs. Algorithmica 54(1),

25–53 (2009)
12. Dolev, D., Leighton, F.T., Trickey, H.: Planar embedding of planar graphs. In: Preparata, F.

(ed.) Advances in Computing Research, vol. 2. JAI Press Inc., London (1984)
13. Dujmović, V., Evans, W., Lazard, S., Lenhart, W., Liotta, G., Rappaport, D., Wismath, S.:

On point-sets that support planar graphs. Computational Geometry: Theory and Applica-
tions 46(1), 29–50 (2013)

14. Durocher, S., Mondal, D.: On the hardness of point-set embeddability. In: Rahman, M.S.,
Nakano, S.-I. (eds.) WALCOM 2012. LNCS, vol. 7157, pp. 148–159. Springer, Heidelberg
(2012)

15. Durocher, S., Mondal, D., Nishat, R.I., Rahman, M.S., Whitesides, S.: Embedding plane 3-
trees in R2 and R3. In: Speckmann, B. (ed.) GD 2011. LNCS, vol. 7034, pp. 39–51. Springer,
Heidelberg (2011)

16. Everett, H., Lazard, S., Liotta, G., Wismath, S.: Universal sets of n points for one-bend
drawings of planar graphs with n vertices. Discrete and Computational Geometry 43(2),
272–288 (2010)

17. Fáry, I.: On straight lines representation of plane graphs. Acta Scientiarum Mathematicarum
(Szeged) 11, 229–233 (1948)

18. Hossain, M. I., Mondal, D., Rahman, M. S., Salma, S.A.: Universal line-sets for drawing
planar 3-trees. In: Rahman, M.S., Nakano, S.-I. (eds.) WALCOM 2012. LNCS, vol. 7157,
pp. 136–147. Springer, Heidelberg (2012)

19. Frati, F.: Lower bounds on the area requirements of series-parallel graphs. Discrete Mathe-
matics and Theoretical Computer Science 12(5), 139–174 (2010)

20. Frati, F., Patrignani, M.: A note on minimum-area straight-line drawings of planar graphs.
In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 339–344.
Springer, Heidelberg (2008)

21. Fulek, R., Tóth, C.D.: Universal point sets for planar three-tree,
http://arxiv.org/abs/1212.6148

22. Gritzmann, P., Mohar, B., Pach, J., Pollack, R.: Embedding a planar triangulation with ver-
tices at specified positions. American Mathematic Monthly 98, 165–166 (1991)

23. Kurowski, M.: A 1.235 lower bound on the number of points needed to draw all n-vertex
planar graphs. Information Processing Letters 92, 95–98 (2004)

24. Nishat, R., Mondal, D., Rahman, M.S.: Point-set embeddings of plane 3-trees. Computational
Geometry: Theory and Applications 45(3), 88–98 (2012)

25. Schnyder, W.: Embedding planar graphs in the grid, in. In: Proc. 1st Symposium on Discrete
Algorithms, pp. 138–147. ACM Press (1990)

26. Zhou, X., Hikino, T., Nishizeki, T.: Small grid drawings of planar graphs with balanced
partition. Journal of Combinatorial Optimization 24(2), 99–115 (2012)

http://arxiv.org/abs/1212.6148


Planar Packing of Binary Trees

Markus Geyer1, Michael Hoffmann2,�, Michael Kaufmann1,
Vincent Kusters2,∗, and Csaba D. Tóth3

1 Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, Germany
{geyer,mk}@informatik.uni-tuebingen.de

2 Institute of Theoretical Computer Science, ETH Zürich, Switzerland
{hoffmann,vincent.kusters}@inf.ethz.ch

3 California State University Northridge and University of Calgary
cdtoth@acm.org

Abstract. In the graph packing problem we are given several graphs
and have to map them into a single host graph G such that each edge of
G is used at most once. Much research has been devoted to the packing
of trees, especially to the case where the host graph must be planar. More
formally, the problem is: Given any two trees T1 and T2 on n vertices,
we want a simple planar graph G on n vertices such that the edges of G
can be colored with two colors and the subgraph induced by the edges
colored i is isomorphic to Ti, for i ∈ {1, 2}.

A clear exception that must be made is the star tree which cannot
be packed together with any other tree. But a popular hypothesis states
that this is the only exception, and all other pairs of trees admit a planar
packing. Previous proof attempts lead to very limited results only, which
include a tree and a spider tree, a tree and a caterpillar, two trees of
diameter four and two isomorphic trees.

We make a step forward and prove the hypothesis for any two bi-
nary trees. The proof is algorithmic and yields a linear time algorithm
to compute a plane packing, that is, a suitable two-edge-colored host
graph along with a planar embedding for it. In addition we can also
guarantee several nice geometric properties for the embedding: vertices
are embedded equidistantly on the x-axis and edges are embedded as
semi-circles.

c′ a′e′ h′f ′ g′ b′d′i′
a bc de f ghi=

a′

b′

c′ d′

e′ f ′ g′

h′ i′

+
a

b

c d

e f g
h

i

� Partially supported by the ESF EUROCORES programme EuroGIGA, CRP GraDR
and the Swiss National Science Foundation, SNF Project 20GG21-134306.

F. Dehne, R. Solis-Oba, and J.-R. Sack (Eds.): WADS 2013, LNCS 8037, pp. 353–364, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



354 M. Geyer et al.

1 Introduction

Finding subgraphs with specific properties within a given graph or more gener-
ally determining relationships between a graph and its subgraphs is one of the
most studied topics in graph theory. The subgraph isomorphism problem [21,11,5]
asks to find a subgraph H in a graph G. The graph thickness problem [16] asks
for the minimum number of planar subgraphs which the edges of a graph can
be partitioned into. The arboricity problem [4] asks to determine the minimum
number of forests which a graph can be partitioned into. Another related clas-
sical combinatorial problem is the k edge-disjoint spanning trees problem which
dates back at least to Tutte [20] and Nash-Williams [17], who gave necessary
and sufficient conditions for the existence of k edge-disjoint spanning trees in
a graph. Every (maximal) planar graph can be partitioned into at most three
edge-disjoint trees or into three forests, respectively, also known as Schnyder
woods [19]. Finally, Gonçalves [13] proved that every planar graph can be parti-
tioned in two edge-disjoint outerplanar graphs.

Of course, the study of relationships between a graph and its subgraphs can
also be done the other way round. Instead of asking for specific types of subgraphs
of a given graph, one can ask for a graph G that encompasses a given set of graphs
G1, . . . , Gk and satisfies certain properties in addition. This topic occurs with
different flavors in the computational geometry and graph drawing literature.
It is motivated by visualization aims, such as the display of networks evolving
over time and the simultaneous visualization of relationships involving the same
entities. In the simultaneous embedding problem [2,12,7] the graph G =

⋃
Gi is

given and the goal is to draw it so that the drawing of each Gi is plane. The
simultaneous embedding without mapping problem [2] is to find a graph G on
n vertices such that: (i) G contains all the Gi as subgraphs, and (ii) G can be
drawn with straight-line edges so that the drawing of each Gi is plane.

The packing problem is to find a graph G on n vertices that contains a given
collection G1, . . . , Gk of graphs on n vertices each as edge-disjoint subgraphs.
This problem has been studied in a wide variety of scenarios (see, e.g., [1], [6],
[3]). Much attention has been devoted to the packing of trees. Hedetniemi [14]
showed that any two non-star trees can be packed into a subgraph of Kn. A star
is a tree with exactly one vertex of degree greater than one. Maheo et al. [15]
gave a characterization of the triples of trees that can be packed into Kn.

In the planar packing problem the graph G is required to be planar. Garćıa
et al. [10] conjectured that there exists a planar packing for any two non-star
trees, that is, for any two trees with diameter greater than two. Notice that the
hypothesis that none of the trees is a star is necessary, since a star uses all edges
incident to one vertex and so there is no edge left to connect that vertex in the
other tree. Garćıa et al. proved their conjecture for the cases that the trees are
isomorphic and that one of the trees is a path. Oda and Ota [18] addressed the
case that one of the trees is a caterpillar or that one of the trees is a spider
of diameter at most four. A caterpillar is a tree that becomes a path when all
leaves are deleted and a spider is a tree with at most one vertex of degree greater
than two. Frati et al. [9] gave an algorithm to construct a planar packing of any



Planar Packing of Binary Trees 355

spider with any tree. Finally, Frati [8] proved the conjecture for the case that
both trees have diameter at most four. In this paper we will prove the following:

Theorem 1. Any two non-star binary trees admit a planar packing.

Binary trees are a major step in the study of planar tree packing, because they
offer far more variety than the path-like sub-structures in spiders or the sub-
trees of constant depth in caterpillars and—more generally—trees of bounded
diameter. We believe that the techniques used here shed some new light on the
structure and complexity of the problem that might also help to attack the
general case.

2 Definitions and Overview

A binary tree is a tree in which no vertex has more than three neighbors. All
trees considered in the following are binary. A rooted tree is a directed tree with
exactly one sink (vertex of out-degree zero). In a rooted tree, every vertex v
other than the root has exactly one outgoing edge vp. The target p(v) = p is
the parent of v, and conversely v is a child of p. In figures we denote the root of
a tree by an outgoing vertical arrow. For a vertex v of a rooted tree T , denote
by t(v) the subtree rooted at v, that is, the subtree of T induced by the vertices
from which v can be reached on a directed path. Furthermore, denote by |v| the
size (number of vertices) of t(v). The path on n vertices is denoted by Pn. A
tree in which all vertices—except for at most one that is called the center—have
degree one is called a star and the star on n vertices is denoted by Sn. A two
page book embedding (2PBE) of a graph G = (V,E) is a plane embedding of
G, such that the vertices of G are aligned on a horizontal line and the set of
edges can be partitioned into two sets, one of which is embedded in the closed
halfplane above the line and the other is embedded in the closed halfplane below
the line. Similarly, a one page book embedding (1PBE) uses only one of the closed
halfplanes. We embed vertices equidistantly along the positive x-axis and refer
to them by their x-coordinate, that is, P = {1, . . . , n}. An interval [i, j] in P
is a sequence of the form i, i + 1, . . . , j, for 1 ≤ i ≤ j ≤ n, or i, i − 1, . . . , j, for
1 ≤ j ≤ i ≤ n. Observe that we consider an interval [i, j] as oriented and so we
can have i > j. Denote the length of an interval [i, j] by |[i, j]| = |i − j|+ 1.

Overview. We explicitly construct a plane drawing of two trees T1 = (V1, E1)
and T2 = (V2, E2) on the point set P = {(i, 0) : 1 ≤ i ≤ n}. For the most
part we will actually work with a 2PBE where the trees give the partition of the
edges. In certain situations, however, we will also embed an edge of a tree “on
the other side” of the x-axis. So while the final embedding is a 2PBE, in general
the partition of the edges is not just according to the trees T1 and T2.

Every edge {p, q} ∈
(
P
2

)
is embedded as an upper or lower semicircle with

diameter pq. A joint embedding for T1 and T2 is then determined by a map π
that assigns to each vertex in V = V1∪V2 a distinct point from P and determines



356 M. Geyer et al.

for each edge e ∈ E = E1 ∪ E2 whether e is embedded above or below the x-
axis. If π is a 2PBE, then it is plane, if the following holds: for any two edges
{u, v}, {w, x} that are embedded on the same page, π(u) < π(w) < π(v) implies
π(u) ≤ π(x) ≤ π(v).

As a first step we construct an embedding π1 for T1 onto P , using only the
halfplane above P to route the edges. The embedding is guided by specific rules
which are discussed in Section 3.

Next we recursively construct an embedding for T2 to pair up with π1(T1). In
principle we follow the same strategy as for T1, except for the first step, which
introduces a “shift”. Also, we sometimes have to deviate from this strategy and
in some cases even π1 has to be adjusted locally in order to obtain the final
embedding π.

Although neither of the two trees T1 and T2 we start with is a star, it is
possible—in fact, unavoidable—that stars appear as subtrees during the recur-
sion. Given that we deal with binary trees, these stars can have at most four
vertices, though. We have to deal with these stars explicitly whenever they arise,
because the general recursive step works for non-stars only. Mostly this can be
done simply by gathering all the information on the embedding of T1 and then
computing the proper intervals into which to embed, but at some points subtle
changes of the general plan are required. For instance, we occasionally “flip”
the embedding of some subtree of T1: when flipping a subtree A of π(T1) that
is embedded on an interval [i, j], we reflect the embedded tree at the vertical
line x = i+j

2
through the midpoint of [i, j]. The recursion ends with explicit

constructions for subtrees of size at most four.
Each step of the algorithm fixes the embedding for at least one vertex and

looks at and works with a constant number of vertices and edges only. As the
vertex degree in our graphs is constant, it is straightforward to represent the
trees and the host graph so that we can test for the presence of an edge and add
or remove an edge in constant time. The sizes of the subtrees in the rooted trees
T1 and T2 can be precomputed in linear time. Therefore we obtain a linear time
algorithm overall.

3 Embedding of T1

We begin by defining a preliminary 1PBE π1 for T1. Throughout the paper,
whenever we embed a tree T on an interval [i, j], we assume w.l.o.g. that i < j.
Since we are free to choose a root r1 for T1, let r1 be any leaf of T1. We start
the recursive procedure by embedding T1 rooted at r1 onto [1, n].

In every recursive step, we are given a tree T rooted at a vertex r and an
interval [i, j] of length |r|. We place r at position i and embed its one or two
children according to two rules. The larger-subtree-first rule dictates that in the
embedding of T on [i, j], the larger subtree of r is embedded on an interval
bordering the position of r. The one-side rule dictates that all neighbors of a
vertex v mapped to k ∈ [i, j] are mapped to either [i, k− 1] or to [k + 1, j]. Note
that these rules imply that every subtree T ⊆ T1 is embedded onto an interval



Planar Packing of Binary Trees 357

[i, j] ⊆ [1, n], using the edge {i, j}. Together with the placement of the root of T1

at position 1, these two rules completely define the embedding algorithm below.
For an example see Fig. 1.

a
b

c d

e f g
h

i a bc de f ghi

Fig. 1. Example for the embedding of T1

Algorithm 1. Embed(T, I)

Input: A rooted binary tree T = (V,E) and a directed interval I with
I ⊆ [1, n].

Output: A map π1 : V → I.
Let r be the root of T and let [i, j] = I (w.l.o.g. i < j).
π1(r)← i
if r has degree one in T then

Let r′ be the child of r in t.
Embed(t(r′), [j, i + 1])

else if r has degree two in T then
Let r1, r2 be the two children of r, such that |r1| ≥ |r2|.
Embed(t(r1), [i + |r1|, i + 1])
Embed(t(r2), [j, i + |r1|+ 1])

Observe that π1(T1) satisfies the following property:

Proposition 1. The edge {n− 1, n} is not used by π1, for n ≥ 5.

This edge will be used to start the embedding of T2. Consider the embedding
π1 of a tree T1 onto [1, n]. When restricting the focus to some subinterval
[i, j] ⊆ [1, n], we see the embedding π1(F ) of a forest F := π−1

1 ([i, j]) ⊆ T1.
Given that a specific embedding is used for T1, we should also be able to derive
some properties of π1(F ). The following lemma describes some embeddings that
cannot be produced by Algorithm 1. We will use this during the embedding
of T2.

Lemma 1. Consider a tree T ⊆ T1 such that T = π−1
1 ([i, j]), for some interval

[i, j] ⊆ [1, n], and suppose that π1(T ) uses the edges {i, k} and {�, j}, for some
i < k < � < j. Then at least one of the following two conditions holds:

a > b + c ∧ c > b (1)

c > a + b ∧ a > b , (2)

where a = |[i, k]|, b = |[k + 1, �− 1]|, and c = |[�, j]|.



358 M. Geyer et al.

Proof. Note that the second equation is obtained from the first by exchanging
the roles of a and c. Hence, we may assume w.l.o.g. that p(j) = i.

Suppose that b = 0. Since i has children k and j, vertex i has no incoming
edges besides {i, k} and {i, j}. The larger-subtree-first rule for i implies a− 1 ≥
b + c, which together with the trivial c > 0 yields (1).

It remains to consider the case b > 0. Since i already has indegree two and j
already has one child in �, the vertices at [k + 1, �− 1] must form a tree B with
root rB and p(rB) = j. The larger-subtree-first rule for j implies c− 1 ≥ b and
the one for i implies a− 1 ≥ b + c, which together gives (1). 
�

Corollary 1. Consider a tree T ⊆ T1 such that T = π−1
1 ([i, j]), for some in-

terval [i, j] ⊆ [1, n], and suppose that π1(T ) uses the edges {i, k} and {�, j}, for
some i < k < � < j. Then k − i 	= j − �.

Proof. If k − i = j − �, then we have a = c in Lemma 1. At least one of the
two conditions must hold, but both imply a > b + a, which is impossible for
a, b ≥ 0. 
�

4 Embedding of T2

In this section we describe how to obtain an embedding for T2 that is compatible
with the already constructed embedding of T1. We will do this in a recursive way
similar to the embedding of T1. The difference is that we have to take the edges
used by T1 into account and adapt our strategy accordingly. Sometimes it is
also necessary to change the embedding of T1. When doing so, we have to be
very careful in order to not destroy the properties of the embedding that were
discussed in the preceding section and that play a crucial role in driving the
embedding algorithm for T2.

Small subtrees of size at most four may be stars and so lead to unsolvable
subproblems in the recursion. We resolve this by giving explicit solutions for these
cases. These therefore serve as base cases for the recursive embedding of T2. In
the recursion we will keep as an invariant—we call it the placement invariant—
that whenever the recursive embedding for a subtree t(v) on an interval I = [i, j]
is invoked, the placement of v on i is valid in the sense that the edge from i to
the point where p(v) is embedded is not used by T1 (and so it is available for
T2). Sometimes this invariant does not only apply to the parent of v but also to
another child that has already been embedded. Generally speaking, whenever we
call the algorithm recursively for some tree T to be embedded on some interval
I, we have to ensure that placing the root r of T on i does not induce any edge
with the already embedded neighbors of r outside of I that is already used by
T1. This invariant allows us to work with the current interval locally, without
having to care about where vertices are placed outside of this interval.

Whenever we would like to map r to a position different from i, we have to be
careful, because there may be edges that we do not see when only considering the
situation on I locally: A vertex a of T1 mapped into I may have edges to vertices
outside of I, in particular, to a vertex that is mapped to the same position as the



Planar Packing of Binary Trees 359

parent of r in T2. In such a case, we say that r and a are in conflict. Obviously
we must not map two vertices that are in conflict to the same position. Note
that vertices of T other than r do not have conflicts and hence can be placed
safely, as long as we ensure that no edge on I is used on both sides.

Stars occur not only in the base cases of the recursion, but they may also occur
as subtrees of a large tree. So whenever we are at a subtree T ⊂ T2 with root r
in the recursion and one of the subtrees of r has strictly fewer than five vertices,
we cannot use the recursive procedure for that subtree but have to handle that
situation explicitly.

The remainder of this section details our recursive embedding algorithm. We
start by handling the base cases of the recursion, which consist of certain trees
on at most nine vertices (“A small tree.”). It follows a description of the general
step, which consists of two parts: “the first step” of the recursive procedure
selects the starting vertex (root) for the recursion and then the general case
handles “a large tree”, in which at least one subtree of the root has five or
more vertices. Due to space limitations many proofs have to be omitted in this
extended abstract.

A small tree. We begin with the case where |b| ≤ 4. Let w.l.o.g. I = [1, |b|]. Note
that there are stars of size at most four, so it will not always be possible to find
an embedding. We will describe precisely when an embedding is possible. For
|b| = 1 an embedding is trivially possible. For |b| = 2 an embedding is possible
if and only if {1, 2} is not used (in which case we are embedding against a star).
For |b| = 3 there are two rooted versions of P3 that we denote by P 1

3 (rooted at
a leaf) and P 2

3 (rooted at the interior vertex of degree two).

Lemma 2. Given a forest A ⊆ T1 embedded on an interval I = [i, i+ 2] ⊆ [1, n]
using π1, we can pack any rooted tree B of size 3 together with A onto I, assuming
the placement invariant holds (the root b of B can be placed at i), unless:

– A = P3; or
– B = P 2

3 , π1(A) uses the edge {i, i + 1}, and b has a conflict at i + 2.

Proof. Suppose that A 	= P3. Then π1(A) uses at most one edge on I, which is
either {i, i + 1} or {i + 1, i + 2}. If π1(A) uses {i, i + 1}, then B = P 1

3 can be
embedded by placing b on i and using the edges {i, i+2} and {i+1, i+2}. Using
the same edges also B = P 2

3 can be embedded by placing b on i + 2, unless it
has a conflict there. If π1(A) uses {i + 1, i + 2}, then B = P 2

3 can be embedded
by placing b on i and using the edges {i, i + 1} and {i, i + 2}. Using the same
edges also B = P 1

3 can be embedded by placing b on i + 2. If b has a conflict at
i+ 2, flip the edge {i+ 1, i+ 2} in π(A) to match b with the leaf i+ 1 of T1. 
�

For |b| = 4, there are three possible trees that we want to embed. We will give
explicit embeddings for each of these. We distinguish the following cases in Fig. 2,
from left to right. If edge {1, 4} is used, then we are embedding against one of
the three possible trees of size 4. The star never works, which leaves us with
two options (case 1 and 2). If {1, 4} is not used, then {1, 3} might be used. In



360 M. Geyer et al.

this case, {3, 4} is certainly not used, and [1, 3] may contain an embedding of
P 2
3 (case 3) or P 1

3 (case 4). The case where {2, 4} is used instead of {1, 3} is
symmetric (we can use symmetry here since in this particular case, we never use
the placement invariant). If none of the edges {1, 4} or {1, 3} or {2, 4} are used,
then the only remaining possible edges are between consecutive vertices (cases 5
to 8). Finally, if no edges are used, then any embedding will work. Observe that,
in particular, all cases where we embed a non-star tree with a tree work, which
settles the theorem for n ≤ 4.

not
possible

not
possible

not
possible

Fig. 2. The embeddings of all trees of size 4 with all possible embeddings of π1, except
the case where a star of size 4 was embedded by π1

The implications of this table are summarized in the following lemma:

Lemma 3. Given a forest A ⊆ T1 embedded on an interval I = [i, i+ 3] ⊆ [1, n]
using π1, we can pack any rooted tree B of size 4 together with A onto I, assuming
the placement invariant holds (the root b of B can be placed at i), unless:

– a star is embedded at [i, i + 3]; or

– B is a star, and either a non-star tree is embedded at [i, i + 3], or {i, i + 1}
and {i + 2, i + 3} are both used.

The situation changes for n ≥ 5, because there is no binary star on more
than four vertices. The following lemma—whose proof is omitted due to space
limitations—shows that an embedding is always possible for certain small trees,
in particular, for all trees on five vertices.

Lemma 4. Consider a forest A ⊆ T1 embedded on an interval I = [i, i + k] ⊆
[1, n] using π1, for some k ≥ 4, and a tree B on k + 1 vertices rooted at a vertex
b with degB(b) ≤ 2 and such that |c| ≤ 4, for every child c of b. Then we can
pack B together with A onto I, assuming the placement invariant holds (b can
be placed at i).



Planar Packing of Binary Trees 361

The general step. We have to embed a non-star subtree B ⊂ T2 with root b,
|b| ≥ 6, onto I = [i, j] with |I| = |b|. W.l.o.g. assume that i < j. On the other
side, there is a forest A ⊂ T1 that consists of trees A1, . . . , Ak that have been
embedded in this order onto I using π1. Each Ai has a single vertex, its root,
that is connected to vertices outside of I.

We have to be careful when pairing b with a root of some Ai because there
are edges that we do not see when only considering the situation on I locally.
More precisely, we must not map two vertices that are in conflict to the same
position. Recall that non-root vertices do not have conflicts and hence can be
placed safely, as long as we ensure that no edge on I is used on both sides.

From the placement invariant we know that b can be safely mapped to i, that
is, b is not in conflict with whichever vertex of A is mapped to i. Whenever
we want to map b to a point different from i, it has to be ensured that there
is no conflict with the corresponding vertex of A. Moreover, knowing that b is
connected to some vertex outside of I, we have to ensure that such edges can be
drawn without crossing any of the edges used for the embedding of B. As long
as b is mapped to i, which is an endpoint of I, this is clearly true. But when
mapping b to a point y ∈ I \ {i}, there must not be any edge {x, z} in B for
which y ∈ [π(x), π(z)]. A similar care has to be taken for the roots of A. In fact,
to ensure this invariant, we argue locally only: In the algorithm we map b to a
point different from i only if then b is paired with a vertex of A on the other
side that does not have any edge to a vertex outside of the current interval.

Also, sometimes we have to change the embedding of T1, which in principle
might destroy the carefully derived properties of the embdding π1. Indeed, in
the final embedding these properties do not necessarily hold. However, we ensure
that they do hold for any interval that we invoke the recursive algorithm on.
That is, whenever the recursive procedure is invoked on some interval, then the
subforest of T1 embedded on it looks “as-if” it came from an embedding of type
π1 (in particular, it satisfies the one-side rule and the larger-subtree-first rule).

The first step. This paragraph describes the first step of the recursive procedure
that serves only to select a suitable starting vertex. Choose a leaf b of T2 as a
root and let b′ denote the child of b in T2. Map b to n and recursively embed
t(b′) onto [n − 1, 1]. For n = 6 this can be done by Lemma 4. For n ≥ 7, we
apply the general recursive step, as described in the remainder. Observe that the
placement invariant for the recursive step is guaranteed by Proposition 1.

A large tree. The root b may have degree one or two in B. We consider these
two cases separately.

A large tree with a degree one root. So suppose that degB(b) = 1. Let b1 denote
the child of b in B and let B1 = t(b1). Note that |b1| ≥ 5 and so, in particular,
B1 is not a star and we can embed it recursively. We would like to embed b on
i and B1 recursively onto [j, i + 1] (Fig. 3a). In case the edge {i, j} is used by
π1(A) already, we change this plan and embed B1 onto [i+1, j] instead (Fig. 3b).
If also the edge {i, i + 1} is used by π1(A) already, we rearrange the embedding



362 M. Geyer et al.

for A by exchanging the mappings to i and i + 1 (Fig. 3c). (Note that by the
one-side rule i + 1 is a leaf of π1(A) and, therefore, such a rearrangement does
not introduce a crossing.) After this change we can resort to the original plan
and embed B1 onto [j, i + 1] (Fig. 3d).

. . . ji

(a) Default.

. . . ji

(b) {i, j} used.

. . . ji

(c) Both {i, j} and
{i, i+ 1} used.

. . . ji

(d) Flipped.

Fig. 3. Cases for a large tree with a degree one root

A large tree with a degree two root. Consider now the case degB(b) = 2. Denote
the children of b by b1 and b2 so that w.l.o.g. |b1| ≥ |b2|, and let B1 = t(b1) and
B2 = t(b2). By Lemma 4 we may assume that |b1| ≥ 5. Let B+

1 be B1 extended
with b as a root of degree one. As B+

1 has at least six vertices, it can be handled
recursively. The general plan is the following: embed B2 onto [j, i+ |b1|+ 1] and
then embed B+

1 onto [i, i + |b1|]. We distinguish subcases depending on the size
of B2. Due to space limitations, we discuss the cases |b2| ≥ 5 and |b2| ≤ 2 only.

Case L1: |b2| ≥ 5. Then neither B1 nor B2 is a star. If π1(A) does not use
{i, j}, we can just follow the plan mentioned. Similarly, if π1(A) does not use
{i, i + |b1| + 1}, then we can adjust the plan to embed B2 onto [i + |b1| + 1, j]
instead. So suppose that π1(A) uses both {i, j} and {i, i + |b1|+ 1}. Due to the
presence of {i, i+|b1|+1} we know that there is no conflict for b at i+|b1| and that
{i+|b1|, j} is not used by π1(A). We first embed B2 onto [j, i+|b1|+1] recursively,
treating i + |b1| + 1 as a conflict in case that π1(A) uses {i + |b1|, i + |b1| + 1}.
Then B+

1 can be embedded onto [i + |b1|, i] recursively. Note that b may have a
conflict at i, if the embedding for B2 chose to map b2 to a neighbor of i in π(A)
(which is no problem).

Case L2: |b2| = 1. Suppose that π1(A) uses {i, j}. Then by Corollary 1 π1(A)
does not use both {i, i+1} and {j−1, j}. Since {i, j} is used, none of the vertices
i + 1, . . . , j − 1 are in conflict with b. Therefore we can recursively embed B+

1

onto [i + 1, j] (if {i, i + 1} is not used) or [j − 1, i] (if {j − 1, j} is not used) and
then map b2 to i or j, respectively.

Alternatively, suppose that π1(A) does not use {i, j}. By the placement in-
variant, it is safe to embed b on i, so we can embed b2 on j and B+

1 onto [i, j−1].
Case L3: |b2| = 2. If π1(A) does not use either of {i, j} or {j − 1, j}, then

we can embed B2 onto [j, j − 1] and B+
1 onto [i, j − 2]. So we may suppose that

π1(A) uses one of these edges.
Case L3.1: π1(A) uses {i, j}. Then by Corollary 1 π1(A) does not use both

{i, i+ 1} and {j− 1, j}. If π1(A) does not use {j− 1, j}, then we embed B2 onto



Planar Packing of Binary Trees 363

[j − 1, j] and B+
1 onto [i, j − 2]—unless π1(A) uses {i, j − 1}. In that case we

embed B2 onto [j, j − 1] and B+
1 onto [j − 2, i] instead.

Hence we may suppose that π1(A) uses {j − 1, j} but does not use {i, i + 1}.
By the larger-subtree-first rule j cannot be the root of π1(A) (the leaf at j− 1 is
right next to it), and so b does not have a conflict at j and π1(A) does not use
{i + 1, j}. Therefore we can embed B2 onto [i + 1, i] and B+

1 onto [j, i + 2].
Case L3.2: π1(A) does not use {i, j} but it uses {j − 1, j}. Our plan is to

embed B2 onto [j − 2, j − 1], as this edge is not used by π1(A) according to the
one-side rule. For this we would like to map b �→ j and B1 onto [i, j − 3]. This
works fine, unless {j − 2, j} is used by π1(A) or b has a conflict at j.

Case L3.2.1 π1(A) uses {j−2, j}. Consider the subtree S of π1(A) on [j−2, j].
We will argue below that regardless of whether the parent of S is at j − 2 or at
j, we can flip S by exchanging the mapping for j − 2 and j and then embed B2

onto [j−1, j] and B+
1 onto [i, j−2]. Note that after the flip {j−1, j} is not used

by π(A) anymore and the neither before nor after the flip π(A) uses {i, j − 1}.
It remains to argue about the validity of the flip. If the parent of S lies to the

right, it is in a different interval and so it does not know about the details of
S, anyway. If the parent lies to the left and within [i, j − 3], then the (already
embedded) subtree B2 is outside of the interval [i, j − 2] for B+

1 , effectively
shrinking a subtree on three vertices to a subtree on one vertex. But as this
subtree is certainly the one furthest from its parent in the current interval of
interest, decreasing its size does not affect the larger-subtree-first rule.

Case L3.2.2 π1(A) does not use {j − 2, j} but b has a conflict at j. Due to
the conflict, the root of {j−1, j} is at j and so b does not have a conflict at j−1.
Just as in the previous case, we can flip the edge by exchanging the mapping for
j − 1 and j and then embed B2 onto [j − 2, j − 1] (not used by π(A), because
it corresponds to {j − 2, j} before the flip), map b on j (no conflict, because
it corresponds to j − 1 before the flip), and finally embed B1 onto [i, j − 3]
recursively ({i, j} is not used by π(A), because it corresponds to {i, j−1} before
the flip and j − 1 was a leaf connected to j in π1(A)).

5 Conclusion

In this paper, we gave a proof of the well-known planar packing conjecture for
the case of binary non-star trees. The major open problem is the proof of the
hypothesis for general non-star trees. We strongly suspect this to be true and
we hope that the techniques developed for the binary case here can also be used
to attack the general problem.

Of course, the inclusion of more than two trees should be considered. Since a
tight packing into a planar graph of n vertices is not possible, the question there
would be to minimize the size of the planar graph which comprises the union of
the trees. For example a planar packing of three n-vertex paths on n+1 vertices
can be obtained, while appropriate generalizations to more general graph classes
and/or a larger number of subgraphs have not been obtained as far as we know.



364 M. Geyer et al.

References

1. Akiyama, J., Chvátal, V.: Packing paths perfectly. Discrete Mathematics 85(3),
247–255 (1990)

2. Braß, P., Cenek, E., Duncan, C.A., Efrat, A., Erten, C., Ismailescu, D., Kobourov,
S.G., Lubiw, A., Mitchell, J.S.B.: On simultaneous planar graph embeddings. Com-
put. Geom. 36(2), 117–130 (2007)

3. Caro, Y., Yuster, R.: Packing graphs: The packing problem solved. Electr. J.
Comb. 4(1) (1997)

4. Eppstein, D.: Arboricity and bipartite subgraph listing algorithms. Information
Processing Letters 51(4), 207–211 (1994)

5. Eppstein, D.: Subgraph isomorphism in planar graphs and related problems. J.
Graph Algorithms & Applications 3(3), 1–27 (1999)

6. Frank, A., Szigeti, Z.: A note on packing paths in planar graphs. Math. Pro-
gram. 70(2), 201–209 (1995)

7. Frati, F.: Embedding graphs simultaneously with fixed edges. In: Kaufmann, M.,
Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 108–113. Springer, Heidelberg
(2007)

8. Frati, F.: Planar packing of diameter-four trees. In: 21st Canadian Conference on
Computational Geometry (CCCG 2009), pp. 95–98 (2009)

9. Frati, F., Geyer, M., Kaufmann, M.: Planar packings of trees and spider trees.
Information Processing Letters 109(6), 301–307 (2009)

10. Garćıa, A., Hernando, C., Hurtado, F., Noy, M., Tejel, J.: Packing trees into planar
graphs. J. Graph Theory, 172–181 (2002)

11. M. R. Garey and D. S. Johnson. Computers and Intractability, A Guide to the
Theory of NP-Completeness. W.H. Freeman and Company, New York, 1979.

12. Geyer, M., Kaufmann, M., Vrt’o, I.: Two trees which are self–intersecting when
drawn simultaneously. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843,
pp. 201–210. Springer, Heidelberg (2006)

13. Gonçalves, D.: Edge partition of planar graphs into two outerplanar graphs. In:
Proc. 37th Annu. ACM Sympos. Theory Comput., pp. 504–512 (2005)

14. Hedetniemi, S.M., Hedetniemi, S.T., Slater, P.J.: A note on packing two trees into
KN . Ars Combin. 11, 149–153 (1981)

15. Maheo, M., Saclé, J.-F., Woźniak, M.: Edge-disjoint placement of three trees. Eu-
ropean J. Combin. 17(6), 543–563 (1996)

16. Mutzel, P., Odenthal, T., Scharbrodt, M.: The thickness of graphs: A survey.
Graphs and Combinatorics 14(1), 59–73 (1998)

17. Nash-Williams, C.S.J.A.: Edge-Disjoint Spanning Trees of Finite Graphs. Journal
of the London Mathematical Society-second Series s1-36, 445–450 (1961)

18. Oda, Y., Ota, K.: Tight planar packings of two trees. In: European Workshop on
Computational Geometry, pp. 215–216 (2006)

19. Schnyder, W.: Planar graphs and poset dimension. Order 5, 323–343 (1989)
20. Tutte, W.T.: On the problem of decomposing a graph into n connected factors.

Journal of the London Mathematical Society s1-36(1), 221–230 (1961)
21. Ullmann, J.R.: An algorithm for subgraph isomorphism. J. ACM 23(1), 31–42

(1976)



Hierarchies of Predominantly Connected Communities

Michael Hamann, Tanja Hartmann, and Dorothea Wagner

Department of Informatics, Karlsruhe Institute of Technology (KIT)
michael@content-space.de, {t.hartmann,dorothea.wagner}@kit.edu

Abstract. We consider communities whose vertices are predominantly con-
nected, i.e., the vertices in each community are stronger connected to other com-
munity members of the same community than to vertices outside the community.
Flake et al. introduced a hierarchical clustering algorithm that finds predomi-
nantly connected communities of different coarseness depending on an input pa-
rameter. We present a simple and efficient method for constructing a clustering
hierarchy according to Flake et al. that supersedes the necessity of choosing feasi-
ble parameter values and guarantees the completeness of the resulting hierarchy,
i.e., the hierarchy contains all clusterings that can be constructed by the original
algorithm for any parameter value. However, predominantly connected commu-
nities are not organized in a single hierarchy. Thus, we further develop a frame-
work that, after precomputing at most 2(n− 1) maximum flows, admits a linear
time construction of a clustering Ω(S) of predominantly connected communities
that contains a given community S and is maximum in the sense that any fur-
ther clustering of predominantly connected communities that also contains S is
hierarchically nested in Ω(S). We further generalize this construction yielding a
clustering with similar properties for k given communities in O(kn) time. This
admits the analysis of a network’s structure with respect to various communities
in different hierarchies.

1 Introduction

There exist many different approaches to find communities in networks, many of which
are inspired by graph clustering techniques originally developed for special applica-
tions in fields like physics and biology. Graph clustering is based on the assumption
that the given network is a compound of dense subgraphs, so called clusters or com-
munities, that are only sparsely connected among each other, and aims at finding a
clustering that represents these subgraphs. However, evaluating the quality of a found
clustering is often difficult, since there are no generally applicable criteria for good clus-
terings and clustering properties that are well interpretable in the network’s context are
rarely guaranteed. In this work we thus focus on predominantly connected communities
in undirected edge-weighted graphs. Predominant connectivity is easy to interpret and
guarantees that only vertices whose membership to a community is clearly indicated by
the networks’s structure are assigned to a community. The latter is in particular desired
if the analysis of the community structure is meant to support costly or risky decisions.

Contribution and Outline. We discuss different types of predominantly connected
communities (cp. Table 1 for an overview) in Section 2 and argue that considering

F. Dehne, R. Solis-Oba, and J.-R. Sack (Eds.): WADS 2013, LNCS 8037, pp. 365–377, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



366 M. Hamann, T. Hartmann, and D. Wagner

Table 1. Overview of different types of predominantly connected communities. The columns to
the right describe the relations between the types in terms of inclusion.

A subgraph S ⊆ V is a WC ES SC

WC ∀u ∈ S c({u}, S \ {u}) � c({u}, V \ S) x x

ES ∀U ⊂ S c(U, S \ U) � c(U, V \ S) x

SC ∃s ∈ S : ∀U ⊂ S, s /∈ U c(U, S \ U) � c(U, V \ S) x x

source communities (SCs) in networks is reasonable. We further give a characterization
of SCs and introduce basic nesting properties. In Section 3, we review the cut clustering
algorithm by Flake et al. [2], which takes an input parameter α and decomposes a given
network into SCs, each of which providing an intra-cluster density of at least α and
an inter-cluster sparsity of at most α. At the same time, α controls the coarseness of
the resulting clustering such that for varying values the algorithm returns a clustering
hierarchy. Flake at al. refer to Gallo et al. [3] for the question how to choose α such
that all possible hierarchy levels are found. However, they give no further description
how to extend the approach of Gallo et al., which finds all breakpoints of α for a single
parametric flow, to a fast construction of a complete hierarchy. They just propose a
binary-search approach to find good values for α. We introduce a parametric-search
approach that guarantees the completeness of the resulting hierarchy and exceeds the
running time of abinary search-based approach, whose running time strongly depends
on the discretization of the parameter range.

Experimental evaluations further showed that the cut clustering algorithm finds
meaningful clusters in real-world instances [2], but yet, it often happens that even in
a complete hierarchy non-singleton clusters are only found for a subgraph of the initial
network, while the remaining vertices stay unclustered even on the coarsest non-trivial
hierarchy level [2,6]. Motivated by this observation, in Section 4, we develop a frame-
work that is based on a set M(G) of n ≤ |M(G)| ≤ 2(n − 1) maximal SCs in the
graph G, i.e., each further SC is nested in a SC in M(G), and is represented by a spe-
cial cut tree, which can be constructed by at most 2(n − 1) max-flow computations.
After computing M(G) in a preprocessing step, the framework efficiently answers the
following queries: (i) Given an arbitrary SC S, what does a clustering Ω(S) look like
that consists of S and further SCs such that any SC not intersecting with S is nested
in a cluster of Ω(S)? In particular, Ω(S) is maximum in the sense that any cluster-
ing of SCs that contains S is hierarchically nested in Ω(S). We show that Ω(S) can
be determined in linear time. (ii) Given k disjoint SCs, which is the maximal cluster-
ing Ω(S1, . . . , Sk) that contains the given SCs, is nested in each Ω(Si), i = 1, . . . , k,
and guarantees that any clustering of SCs that also contains the given ones is nested in
Ω(S1, . . . , Sk)? Computing Ω(S1, . . . , Sk) takes O(kn) time. These queries allow to
further examine the community structure of a given network, beyond the complete clus-
tering hierarchy according to Flake et al. We exemplarily apply both queries to a small
real world network, thereby finding a new clustering beyond the hierarchy that contains
all non-singleton clusters of the best clustering in the hierarchy but far less singletons.
Proofs omitted due to space constraints can be found in the full version [7].



Hierarchies of Predominantly Connected Communities 367

Preliminaries. Throughout this work we consider an undirected, weighted graph G =
(V,E, c) with vertices V , edges E and a positive edge cost function c, writing c(u, v)
as a shorthand for c({u, v}) with {u, v} ∈ E. Whenever we consider the degree deg(v)
of v ∈ V , we implicitly mean the sum of all edge costs incident to v. A cut in G
is a partition of V into two cut sides S and V \ S. The cost c(S, V \ S) of a cut
is the sum of the costs of all edges crossing the cut, i.e., edges {u, v} with u ∈ S,
v ∈ V \ S. For two disjoint sets A,B ⊆ V we define the cost c(A,B) analogously.
Two cuts are non-crossing if their cut sides are pairwise nested or disjoint. Two sets
S, T ⊂ V are separated by a cut if they lie on different cut sides. A minimum S-T -cut
is a cut that separates S and T and is the cheapest cut among all cuts separating these
sets. We call a cut a minimum separating cut if there exists an arbitrary pair {S, T } for
which it is a minimum S-T -cut. We identify singleton sets with the contained vertex
without further notice. We further denote the connectivity of {S, T } ⊆ 2V by λ(S, T ),
describing the cost of a minimum S-T -cut. A clustering Ω of G is a partition of V into
subsets C1, . . . , Ck, which define vertex-induced subgraphs, called clusters. A cluster
is trivial if it corresponds to a connected component. A vertex that forms a singleton
cluster although it is no singleton in G, is unclustered. A clustering is trivial if it consists
of trivial clusters or if k = n. A hierarchy of clusterings is a sequence Ω1 ≤ · · · ≤ Ωr

such that Ωi ≤ Ωj implies that each cluster in Ωi is a subset of a cluster in Ωj . We
say Ωi ≤ Ωj are hierarchically nested. A clustering Ω is maximal with respect to a
property P if there is no other clustering Ω′ with property P and Ω ≤ Ω′.

2 Predominantly Connected Communities

In the context of large web-based graphs, Flake et al. [1] introduce web communities
(WCs) in terms of predominant connectivity of single vertices: A set S ⊆ V is a web
community if c({u}, S \ {u}) � c({u}, V \S) for all u ∈ S. Web communities are not
necessarily connected (cp. Fig. 1) and decomposing a graph into k web communities
is NP-complete [2]. Extending the predominant connectivity from vertices to arbitrary

Fig. 1. Unconnected
web community (left)

subsets yields extreme sets (ESs), which satisfy a stricter prop-
erty that guarantees connectivity and gives a good intuition why
the vertices in ESs belong together: A set S ⊆ V is an extreme
set if c(U, S\U) � c(U, V \S) for all U � S. The extreme sets
in a graph can be computed in O(nm+n2 logn) time with the
help of maximum adjacency orderings [10]. They form a subset
of the maximal components of a graph, which subsume vertices that are not separated
by cuts cheaper than a certain lower bound. Maximal components are either nested or
disjoint and can be deduced from a cut tree, whose construction needs n− 1 maximum
flow computations [4]. They are used in the context of image segmentation by Wu and
Leahy [12].

In, for example, social networks, we are also interested in communities that sur-
round a designated vertex, for instance a central person. Complying with this view,
source communities (SCs) describe vertex sets where each subset that does not contain
a designated vertex is predominantly connected to the remainder of the group: A set
S ⊆ V is a SC with source s ∈ S if c(U, S \ U) � c(U, V \ S) for all U � S \ {s}.



368 M. Hamann, T. Hartmann, and D. Wagner

s1 s2
U

(a) Case (1)

s1

T2

U

S1 S2

(b) Case (2i)

T1

s1 s2

T2

S1 S2

(c) Case (2ii)

s1 s2

t2 t1

(d) Case (3)

Fig. 3. Situation in Lemma 3

The members of a SC can be interpreted as followers of the source in that sense that
each subgroup feels more attracted by the source (and other group members) than by
the vertices outside the group. The predominant connectivity of SCs implements a close
relation to minimum separating cuts. In fact, SCs are characterized as follows.

Lemma 1. A set S ⊂ V is a SC of s ∈ S iff there is T ⊆ V \S such that (S, V \S) is the
minimum s-T -cut in G that minimizes the number of vertices on the side containing s.

S

S′

Fig. 2. Indecisive
vertices (white)

Based on this characterization, we introduce some further nota-
tions and two basic lemmas on nesting properties of SCs, which
we will mainly use in Section 4. Note that a minimum s-T -cut
in G must not be unique, however, the minimum s-T -cut that min-
imizes the number of vertices on the side containing s is unique.
We call such a cut, which induces a SC S, a community cut, S
the SC of s with respect to T and T the opponent of s. Hence,
SC : V × 2V → 2V , SC(s, T ) �→ {the SC of s with respect to T }
is well defined providing SC(s, T ) as future notation. The corre-
sponding maximum flow between s and T also induces an opposite
SC S′ := SC(T, s), if we consider T as a compound node. If the community cut is the
only minimum s-T -cut, it is S′ = V \ S. Otherwise, X := V \ (S ∪ S′) 	= ∅ and the
vertices in X are neither predominantly connected within S∪X nor within S′∪X , i.e.,
c(U, S∪X) ≤ c(U, V \(S∪X)) for all U ⊆ X (analogously for S′). In, for example, a
social network this can be interpreted as follows. Whenever s and the group T become
rivals, the network decomposes into followers of s (in S), followers of T (in S′) and
possibly some indecisive individuals in V \ (S ∪ S′). Figure 2 exemplarily shows two
indecisive vertices in the (unweighted1) karate club network gathered by Zachary [13].
Note that a SC can have several sources, and a vertex can have different SCs w.r.t. dif-
ferent opponents. The SCs of a vertex are partially nested as stated in Lemma 2, which
is a special case of (2i) of Lemma 3 summarizing the intersection behavior of arbitrary
SCs. See Figure 3 for illustration and an example of neither nested nor disjoint SCs.

Lemma 2. Let S denote a SC of s and T ∩ S = ∅. Then S ⊆ SC(s, T ).

As a consequence, each SC S 	= V is nested in a SC S′ that is a SC w.r.t. a single
vertex t, while any SC S̄ with S′ � S̄ contains t. In this sense, SCs w.r.t. single vertices
are maximal. We denote the set of maximal SCs in G by M(G).

1 Zachary considers the weighted network and therein the minimum cut that separates the two
central vertices of highest degree (black). In the weighted network this cut is unique.



Hierarchies of Predominantly Connected Communities 369

Lemma 3. Consider S1 := SC(s1, T1) and S2 := SC(s2, T2).
(1) If {s1, s2} ∩ (S1 ∩ S2) = ∅, then S1 ∩ S2 = ∅.
(2) If T2 ∩ S1 = ∅ and s1 ∈ S2, then S1 ⊆ S2 (i). If further T1 ∩ S2 = ∅ and s2 ∈ S1,

then S1 = S2 (ii).
(3) Otherwise, S1 and S2 are neither nested nor disjoint.

3 Complete Hierarchical Cut Clustering

The clustering algorithm of Flake et al. [2] exploits the properties of minimum separat-
ing cuts together with a parameter α in order to get clusterings where the clusters are
SCs with the following additional property: For each cluster C ∈ Ω and each U � C it
holds

c(C, V \ C)

|V \ C| ≤ α ≤ c(U,C \ U)

min{|U |, |C \ U |} (1)

According to the left side of this inequality separating a cluster C from the rest of the
graph costs at most α|V \C| which guarantees a certain inter-cluster sparsity. The right
side further guarantees a good intra-cluster density in terms of expansion, a measure
introduced by [8], saying that splitting a cluster C into U and C \ U costs at least
αmin{|U |, |C \ U |}. Hence, the vertex sets representing valid candidates for clusters
must be very tight—in addition to the predominant connectivity they must also provide
an expansion that exceeds a given bound.

Algorithm 1. CUTC

Input: Graph Gα = (Vα, Eα, cα)
1 Ω ← ∅
2 while ∃ u ∈ Vα \ {t} do
3 Cu ← SC(u, t) in Gα

4 r(Cu)← u
5 forall the Ci ∈ Ω do
6 if r(Ci) ∈ Cu then

Ω ← Ω \ {Ci}
7 Ω ← Ω ∪ {Cu} ;

Vα ← Vα \ Cu

8 return C

Flake et al. develop their parametric
cut clustering algorithm step by step start-
ing from an idea involving cut trees [4].
The final approach, however, just uses
community-cuts in a modified graph in or-
der to identify clusters that satisfy con-
dition (1). We refer to this approach by
CutC. Here we give a more direct de-
scription of this method. Given a graph
G = (V,E, c) and a parameter α > 0,
as a preprocessing step, augment G by in-
serting an artificial vertex t and connect-
ing t to each vertex in G by an edge of
cost α. Denote the resulting graph by Gα = (Vα, Eα, cα). Then apply CutC (Alg. 1) by
iterating V and computing SC(u, t) for each vertex u not yet contained in a previously
computed community. The source u becomes the representative of the newly computed
SC (line 4). Since SCs with respect to a common vertex t are either disjoint or nested
(Lemma 3(1),(2i)), we finally get a set Ω of SCs in Gα, which together decompose V .
Since the vertices in Gα are additionally connected to t, each SC in Gα with respect
to t is also a SC in G. However it is not necessarily a maximal SC in M(G).

Applying CutC iteratively with decreasing α yields a hierarchy of at most n different
clusterings (cp. Figure 4). This is due to a special nesting property for different param-
eter values. Let C1 denote the SC of u in Gα1 and C2 the SC of u in Gα2 . Then it is



370 M. Hamann, T. Hartmann, and D. Wagner

C1 ⊆ C2 if α1 ≥ α2. The hierarchy is bounded by two trivial clusterings, which we al-
ready know in advance. The clustering at the top consists of the connected components
of G and is returned by CutC for αmax = 0, the clustering at the bottom consists of
singletons and comes up if we choose α0 equal to the maximum edge cost in G.

Simple Parametric Search Approach. The crucial point with the construction of such
a hierarchy, however, is the choice of α. If we choose the next value too close to a
previous one, we get a clustering we already know, which implies unnecessary effort.
If we choose the next value too far from any previous, we possibly miss a clustering.
Flake et al. propose a binary search for the choice of α. However, this necessitates a
discretization of the parameter range—an issue where again limiting the risk of missing
interesting values by small steps is opposed to improving the running time by wide
steps. In practice the choice of a good coarseness of the discretization requires previous
knowledge on the graph structure, which we usually do not have. Thus, we introduce a
simple parametric search approach for constructing a complete2 hierarchy that does not
require any previous knowledge.

α1

αmax

>
>

α0

Ω1

Ω0

Ωmax

<
<

<>

..
.

..
.

Fig. 4. Clustering hierarchy by CutC. Note,
αmax < α0 whereas Ωmax > Ω0.

For two consecutive hierarchy levels
Ωi < Ωi+1 we call α′ the breakpoint if
CutC returns Ωi for α′ and Ωi+1 for α′−ε
with ε → 0. The simple idea of our ap-
proach is to compute good candidates for
breakpoints during a recursive search with
the help of cut-cost functions of the clus-
ters, such that each candidate that is no
breakpoint yields a new clustering instead.
In this way, we apply CutC at most twice
per level in the final hierarchy. Beginning with the trivial clusterings Ω0 < Ωmax

(α0 > αmax), the following theorem directly implies an efficient algorithm.

Theorem 1. Let Ωi < Ωj denote two different clusterings with parameter values αi >
αj . In time O(|Ωi|) a parameter value αm with 1) αj < αm ≤ αi can be computed
such that 2) Ωi ≤ Ωm < Ωj , and 3) Ωm = Ωi implies that αm is the breakpoint
between Ωi and Ωj .

Sketch of proof. We use cut-cost functions that represent, depending on α, the cost
ωS(α) of a cut (S, Vα \ S) in Gα based on the cost of the cut (S, V \ S) in G and the
size of S.

ωS : R+
0 −→ [c(S, V \ S),∞) ⊂ R+

0

ωS(α) := c(S, V \ S) + |S| α

The main idea is the following. Let Ωi < Ωj denote two hierarchically nested cluster-
ings. We call a cluster C′ ∈ Ωi that is nested in C ∈ Ωj a child of C and C the parent
of C′. If there exists another level Ω′ between Ωi and Ωj , at least two clusters in Ωi

must be merged yielding a larger cluster in Ω′. The maximal parameter value where this
happens is a value α∗ where a child C′ in Ωi becomes more expensive than its parent C

2 The completeness refers to all clusterings that can be obtained by CutC for a value α.



Hierarchies of Predominantly Connected Communities 371

inΩj , and thus, is dominated by C in the sense that it will not become a cluster in any hi-
erarchy level above α∗ (i.e., where α < α∗). For two nested clusters C′ ⊆ C this point
is marked by the intersection point of the cut-cost functions ωC′ and ωC (Figure 5).
Thus, this intersection point is a good candidate for a breakpoint between Ωi and Ω′.
We choose αm := minC∈Ωj λC with λC := maxC′∈Ωi:C′⊂C{α | ωC(α) = ωC′(α)}
and prove that Claim 1) to 3) as stated in Theorem 1 hold with this choice of αm. The
proofs are rather technical, which is why we only provide them in the full version [7].

For the running time, observe that αm is well-defined as each parent function inter-
sects with at least one child function. In practice we construct αm by iterating the list
of representatives stored for Ωi. These representatives are assigned to a cluster in Ωj ,
thus, matching children to their parents can be done in time O(|Ωi|). The computation
of the intersection points takes only constant time, given that the sizes and costs of the
clusters are stored with the representatives by CutC. In total, the time for computingαm

is thus in O(|Ωi|). 
�

ωC ′

ωC

α∗ α

ω(α)

0

Fig. 5. Intersecting cut-
cost functions

Running Time. The parametric search approach calls CutC
twice per level in the final hierarchy, once when computing a
level the first time and again right before detecting that the level
already exists and a breakpoint is reached. The trivial levels
Ωmax and Ω0 are calculated in advance without using CutC.
Nevertheless, Ω0 is recalculated once when the breakpoint to
the lowest non-trivial level is found. This yields 2(h − 2) + 1
applications of CutC, with h the number of levels. We denote
the running time of CutC by T (n) without further analysis. For a more detailed dis-
cussion on the running time of CutC see [2]. Since common min-cut algorithms run
in O(n2

√
m) time, a single min-cut computation already dominates the costs for de-

termining αm and further linear overhead. The running time of our simple parametric
approach thus is in O(2hT (n)), where h ≤ n−1. This obviously improves the running
time of a binary search, which is in O(h log(d)T (n)), with d the number of discretiza-
tion steps—in particular since we may assume d , n in order to minimize the risk of
missing levels. We also tested the practicability of our simple approach by a brief ex-
periment. The results confirm the improved theoretical running time. We provide them
in the full version [7] as bonus.

4 Framework for Analyzing SC Structures

In general, clusterings in which all clusters are SCs are only partially hierarchically
ordered. Hence, hierarchical algorithms like the cut clustering algorithm of Flake et
al. [2] provide only a limited view on the whole SC structure of a network. In this
section we develop a framework for efficiently analyzing different hierarchies in the
SC structure after precomputing at most 2(n − 1) maximum flows. The basis of our
framework is the set M(G) of maximal SCs in G. This can be represented by a cut tree
of special community cuts, together with some additionally stored SCs, as we will show
in the following.



372 M. Hamann, T. Hartmann, and D. Wagner

A (general) cut tree is a weighted tree T (G) = (V,ET , cT ) on the vertices of an
undirected, weighted graph G = (V,E, c) (with edges not necessarily in G) such that
each {s, t} ∈ ET induces a minimum s-t-cut in G (by decomposing T (G) into two
connected components) and such that cT ({s, t}) is equal to the cost of the induced
cut. The cut tree algorithm, which was first introduced by Gomory and Hu [4] in their
pioneering work on cut trees and later simplified by Gusfield [5], applies n−1 cut com-
putations. For a detailed description of this algorithm see [4,5] or the full version [7].
The main idea of the cut tree algorithm is to iteratively choose vertices s and t that are
not yet separated by a previous cut, and separating them by a minimum s-t-cut, which
is represented by a new tree edge {s, t}. Depending on the shape of the found cut it
might be necessary to reconnect previous edges in the intermediate tree. Gomory and
Hu showed that a reconnected edge also represents a minimum s′-t′-cut for the new ver-
tices s′ and t′ incident to the edge after the reconnection. Furthermore, the constructed
cuts need to be non-crossing in order to be representable by a tree. While Gomory and
Hu prevent crossings with the help of contractions, Gusfield shows that a crossing of an
arbitrary minimum s-t-cut with another minimum separating cut can be easily resolved,
if the latter does not separate s and t. Hence, the cut tree algorithm basically admits the
use of arbitrary minimum cuts.

For our special cut tree we choose the following community cuts: for a vertex pair
{s, t} let (S, V \S) denote the community cut inducing S := SC(s, t) and let (T, V \T )
denote the community cut inducing T := SC(t, s). If |S| ≤ |T |, we choose (S, V \ S),
and (T, V \ T ) otherwise. Furthermore, we direct the corresponding tree edge to the
chosen SC, and we associate the opposite SC, which was not chosen, also with the
edge, storing it elsewhere for further use. In the full version [7] we show that the so
chosen ”smallest” community cuts are already non-crossing, hence a transformation
according to Gusfield is not necessary. This guarantees that the cuts represented in the
final tree are the same community cuts as chosen for the construction. We further show
that after reconnecting an edge, the corresponding cut still induces a ”smallest” SC for
the vertex the edge points to. Altogether, this proves the following.

Theorem 2. For an undirected, weighted graph G = (V,E, c) there exists a rooted cut
tree T (G) = (V,ET , cT ) with edges directed to the leaves such that each edge (t, s) ∈
ET represents SC(s, t), and |SC(s, t)| ≤ |SC(t, s)|. Such a tree can be constructed by
n− 1 maximum flow3 computations.

At the price of O(n2) additional space, the opposite SCs resulting from the cut tree
construction can be naively stored in an (n − 1) × n matrix, which admits to check
the membership of a vertex to an opposite SC in constant time. In many cases we even
need only k ≤ (n − 1) rows in the matrix, since some edges share the same SC, and
we can deduce these edges during the cut tree construction. However, for few edges the
determined opposite SC might become invalid again, due to a special situation while
reconnecting the edge. For these edges we need to recalculate the opposite SCs in a
second step. Hence, the construction of T (G) together with the opposite SCs associated
with the edges in T (G) can be done by at most 2(n − 1) max-flow computations.

3 Max-flows are necessary in order to determine a smallest SC. For general cut trees preflows
(after the first phase of common max-flow-push-relabel algorithms) suffice.



Hierarchies of Predominantly Connected Communities 373

We now show that each SC in M(G) is either given by an edge or is an opposite SC
associated with an edge in T (G).

Theorem 3. For an undirected weighted graph G = (V,E, c) it is n ≤ |M(G)| ≤
2(n− 1). Constructing M(G) needs at most 2(n− 1) max-flow computations.

Sketch of proof. For the full proof see [7]. Recall that the maximal SCs in M(G) are the
SCs with respect to single vertices. We consider a path π(u, v) from u to v in T (G) as
the set of edges or the set of vertices on it, as convenient, ignoring the direction. The cut
tree structure of T (G) induces that for two (also non-adjacent) vertices u and v in T (G)
a minimum u-v-cut is given by the cheapest edge on π(u, v). Together with the direction
of the edges and the fact that T (G) represents ”smallest” community cuts, it follows
that if q is a successor of p, SC(q, p) is given by the cheapest edge on π(p, q) that is
closest to q. In the full proof we further show that SC(p, q) is the opposite SC associated
with the cheapest edge on π(p, q) that is closest to p. This implies at least n different
SCs in M(G)—one per successor in T (G) and an additional one for the root in T (G).
If u and v are vertices in disjoint subtrees with r the nearest common predecessor, we
prove that SC(u, v) equals SC(u, r) if no edge on π(r, v) is cheaper than the cheapest
edge on π(r, u), and that it equals SC(r, v), otherwise. Hence, each SC in M(G) either
corresponds to an edge or an opposite SC associated with an edge in T (G), which
yields the upper bound. 
�
After precomputing M(G), which includes the construction of T (G) (we denote this
by M(G) ⊃ T (G)), the following tools allow to efficiently analyze the SC structure
of G with respect to different SCs that are already known, for example, from the cut
clustering algorithm of Flake et al. or the set M(G). The key is Lemma 4. It limits the
shape of arbitrary SCs to subtrees in T (G), which admits an efficient enumeration of
disjoint SCs by a depth-first search (DFS), as we will see in the following.

Lemma 4. The subgraph T [T ] induced by a SC T in T (G) is connected.

Maximal SC Clustering for one SC. Given an arbitrary SC S, the first tool returns
a clustering Ω(S) of G that contains S, consists of SCs and is maximum in the sense
that each clustering that also consists of S and further SCs is hierarchically nested in
Ω(S). This implies that Ω(S) is the unique maximal clustering among all clusterings
consisting of S and further SCs. We call Ω(S) the maximal SC clustering for S.

Theorem 4. Let S denote a SC in G. The unique maximal SC clustering for S can be
determined in O(n) time after preprocessing M(G) ⊃ T (G).

Proof. The maximal SC clustering for S =: S0 can be determined by the follow-
ing construction, which directly implies a simple algorithm. Let r denote the root of
T (G) =: T0 and T [S0] the subtree induced by S0 in T0 (Lemma 4). Deleting T [S0]
decomposes T0 into connected components, each of which representing a SC, apart
from the one containing r if r /∈ S0. If r ∈ S0, we are done. Otherwise, let T1 de-
note the component containing r and r0 the root of T [S0]. Obviously is p0 ∈ T1 for
(p0, r0) ∈ ET and SC(p0, r0) =: S1 induces a subtree T [S1] in T1. Thus, S1 and T1
adopt the roles of S0 and T0.



374 M. Hamann, T. Hartmann, and D. Wagner

Continuing in this way, we finally end up with a SC Sk containing r, such that delet-
ing T [Sk] yields only SCs. The resulting clustering Ω(S) consists of S = S0, Si,
i = 1, . . . , k, and the remaining SCs resulting from the decompositions of T0, . . . , Tk.

The proof of the maximality of Ω(S) is based on the following lemma.

Lemma 5. Each SC in Ω(S) \ {S} is a SC with respect to the source of S.

Let Q denote an arbitrary SC with source q that does not intersect S, let s denote the
source of S, and let C denote the SC in Ω(S) \ {S} with q ∈ C. Since C is a SC with
respect to s /∈ Q (Lemma 5) and q ∈ Q ∩ C, it is Q ⊆ C, according to Lemma 3(2i).
Thus, each SC not intersecting S is nested in a cluster in Ω(S).

For the running time we assume that S is given in a structure that allows to check the
membership of a vertex in time O(1). Then identifying all clusters in Ω(S) (which are
subtrees) by applying a DFS4 starting from the first vertex found in each cluster can be
done in O(n) time, since checking if a visited vertex is still in Si takes constant time for
i = 1, . . . , k (recall, that we store the opposite SCs in a matrix). The remaining subtrees
share their leaves with T (G). 
�

Overlay Clustering for k Disjoint SCs. Given k disjoint arbitrary SCs S1, . . . , Sk,
the second tool returns a clustering Ω(S1, . . . , Sk) of G that contains S1, . . . Sk, is
nested in each maximal SC clustering Ω(S1), . . . , Ω(Sk) and is maximum in the sense
that each clustering that consists of SCs and also contains S1, . . . , Sk is hierarchi-
cally nested in Ω(S1, . . . , Sk). Basically, according to the construction described below,
Ω(S1, . . . , Sk) is the unique maximal clustering among all clusterings that are nested
in the maximal SC clusterings Ω(S1), . . . , Ω(Sk). The further properties result from
the maximality of the SC clusterings, as for each Ω(Sj) and each arbitrary SC S that
does not intersect S1, . . . , Sk (or equals a given SC) there exists a cluster C ∈ Ω(Sj)
with S ⊆ C. Note that the clusters in Ω(S1, . . . Sk) \ {S1, . . . , Sk} are not necessarily
SCs. We call Ω(S1, . . . , Sk) the overlay clustering for S1, . . . Sk.

Theorem 5. Let S1, . . . , Sk denote disjoint SCs in G. The unique overlay clustering
for S1, . . . , Sk can be determined in O(kn) time after preprocessing M ⊃ T (G).

Proof. The overlay clustering for S1, . . . , Sk can be determined by the following in-
ductive construction, which directly implies a simple algorithm. We first compute the
maximal SC clustering Ω(S1) and color the vertices in each cluster, using different
colors for different clusters. Now consider the overlay clustering Ω(S1, . . . , Si) for
the first i maximal SC clusterings and color the vertices in Si+1, which is nested in a
cluster of Ω(S1, . . . , Si), with a new color. During the computation of Ω(Si+1), we
then construct the intersections of each newly found cluster C with the clusters in
Ω(S1, . . . , Si). To this end we exploit that the intersection of two subtrees in a tree
is again a subtree. Hence, the clusters in Ω(S1, . . . , Si, Si+1) will be subtrees in T (G),
since the clusters in Ω(S1), . . . , Ω(Si) and Ω(Si+1) are subtrees in T (G) by Lemma 4.

Let r′ denote the first vertex found in C during the computation of Ω(Si+1). We
mark r′ as root of a new cluster in Ω(S1, . . . , Si, Si+1) and choose a new color x for r′,

4 This induces a rooted subtree independent from the orientation in T (G).



Hierarchies of Predominantly Connected Communities 375

besides the color it already has in Ω(S1, . . . , Si). When constructing C (by applying
a DFS), we assign the current color x to all vertices visited by the DFS as long as
the underlying color in Ω(S1, . . . , Si) does not change. Whenever the DFS visits a
vertex r′′ (still in C) with a new underlying color, we chose a new color y for r′′ and
mark r′′ as root of a subtree of a new cluster in Ω(S1, . . . , Si, Si+1). When the DFS
passes r′′ on the way back to the parent5 p of r′′, the color of p in Ω(S1, . . . , Si, Si+1)
becomes the current color again. Continuing in this way yields a coloring that indicates
the intersections of C with Ω(S1, . . . , Si). Repeating this procedure for all clusters in
Ω(Si+1) finally yields Ω(S1, . . . , Si+1). The running time is in O(kn), since we just
apply k computations of maximal SC clusterings. 
�

Example. We extract two of the many faces of the SC structure of the weighted co-
appearance network (called ”lesmis”) of the characters in the novel Les Miserables [9].
Figure 6(a) shows the cut tree T (”lesmis”), the root r is depicted as filled square.
Figure 6(b) shows the maximal SC clustering Ω(R1) for the SC R1 (filled vertices
in squared box). The subtree T [R1] induced by R1 in T (”lesmis”) is indicated by
filled vertices in Figure 6(a). Since r ∈ R1, deleting T [R1] immediately decomposes
T (”lesmis”) into the unframed singleton SCs and the round framed SCs shown in Fig-
ure 6(b). The SC R1 is the larger of the only two non-singleton clusters in the best cut
clustering (with respect to modularity [11]) found by the cut clustering algorithm of
Flake et al. On the other hand, R1 is the smallest reasonable SC that was found by the
cut clustering algorithm containing r. The next smaller SC in the hierarchy that con-
tains r consists of only three vertices. The second non-singleton cluster besides R1 in
the best cut clustering is also in Ω(R1), namely A. Nevertheless, Ω(R1) is not nested in
any clustering of the hierarchy. This is, we found a new clustering that contains all non-
singleton clusters of the best cut clustering but far less unclustered vertices. Due to the
maximality of Ω(R1), there is also no SC clustering with less singletons containing R1.

Figure 6(c) shows the overlay clustering Ω(S1, . . . , S6, R2) with S1, . . . , S6 defined
by the non-singleton subtrees of r in T (”lesmis”). The SC R2 (filled vertices in squared
box) has been computed additionally. It equals SC(r, T ) with T :=

⋃6

i=1 Si. If we con-
sider the filled vertices in Figure 6(c) as one cluster F := V \ T , then S1, . . . , S6 to-
gether with F represent the overlay clustering Ω(S1, . . . , S6). However,Ω(S1, . . . , S6)
does not only consist of SCs since F is no SC: Observe that for the two vertices
v1, v2 ∈ F \ R2 there exists a vertex u ∈ T (unfilled square) such that SC(vi, u) ⊆ F
(i = 1, 2) is a singleton. Hence, according to Lemma 3(2i), any SC in F , apart from
{v1} and {v2}, must be in R2. This is, in contrast to Ω(S1, . . . , S6), the overlay clus-
tering Ω(S1, . . . , S6, R2) consists of SCs and any clustering that also consists of SCs
and contains S1, . . . , S6 is nested in Ω(S1, . . . , S6, R2).

5 Conclusion

Based on minimum separating cuts and maximum flows, respectively, we characterized
SCs, a special type of predominantly connected communities. We introduced a method

5 The predecessor adjacent to r′′ in the rooted subtree induced by the DFS.



376 M. Hamann, T. Hartmann, and D. Wagner

A

B
C

(a) Basic cut tree T (G)

A

B

C

R1

(b) Maximal SC clustering

B
C

A

R2

(c) Overlay clustering

Fig. 6. Exemplary clusterings of the lesmis-network; A,B,C appear in both clusterings

for efficiently computing a complete hierarchy of clusterings consisting of SCs accord-
ing to Flake et al. [2]. Furthermore, we exploited the structure of cut trees [4] in order to
develop a framework that admits the efficient construction of maximal SC clusterings
and overlay clusterings for given SCs, after precomputing at most 2(n − 1) maximum
flows. In most cases, however, we expect only around n − 1 maximum flows for the
preprocessing, since the cases that cause the additional flow computations (when the
opposite SC becomes invalid during the construction of the cut tree) are rare in prac-
tice. For the ”lesmis” network in the previous example we needed only n+3 maximum
flows with n = 77. We remark that a single maximal SC clustering for S can be also
constructed directly by iteratively computing maximal SCs of the vertices not in S with
respect to the source of S. However, in the worst case, this needs |V \ S| flow compu-
tations, if the SCs are singletons or if they are considered in an order that causes many
unnecessary computations of nested SCs. In contrast, due to its short query times, our
framework efficiently supports the detailed analysis of a networks’s SC structure with
respect to many different maximal SC clusterings and overlay clusterings.

References

1. Flake, G.W., Lawrence, S., Giles, C.L̃., Coetzee, F.M.: Self-Organization and Identification
of Web Communities. IEEE Computer 35(3), 66–71 (2002)

2. Flake, G.W., Tarjan, R.E., Tsioutsiouliklis, K.: Graph Clustering and Minimum Cut Trees.
Internet Mathematics 1(4), 385–408 (2004)

3. Gallo, G., Grigoriadis, M.D., Tarjan, R.E.: A fast parametric maximum flow algorithm and
applications. SIAM Journal on Computing 18(1), 30–55 (1989)

4. Gomory, R.E., Hu, T.C.: Multi-terminal network flows. Journal of the Society for Industrial
and Applied Mathematics 9(4), 551–570 (1961)

5. Gusfield, D.: Very simple methods for all pairs network flow analysis. SIAM Journal on
Computing 19(1), 143–155 (1990)

6. Hamann, M., Hartmann, T., Wagner, D.: Complete Hierarchical Cut-Clustering: A Case
Study on Expansion and Modularity. In: Bader, D.A., Meyerhenke, H., Sanders, P., Wagner,
D. (eds.) Graph Partitioning and Graph Clustering: Tenth DIMACS Implementation Chal-
lenge. DIMACS Book, vol. 588, American Mathematical Society (to appear, 2013)



Hierarchies of Predominantly Connected Communities 377

7. Hamann, M., Hartmann, T., Wagner, D.: Hierarchies of predominantly connected communi-
ties. arXiv e-print (2013), http://arxiv.org/abs/1305.0757

8. Kannan, R., Vempala, S., Vetta, A.: On Clusterings - Good, Bad and Spectral. In: Proceedings
of the 41st Annual IEEE Symposium on Foundations of Computer Science (FOCS 2000), pp.
367–378 (2000)

9. Knuth, D.E.: The Stanford GraphBase: a platform for combinatorial computing. Addison-
Wesley (1993)

10. Nagamochi, H.: Graph Algorithms for Network Connectivity Problems. Journal of the Op-
erations Research Society of Japan 47(4), 199–223 (2004)

11. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks.
Physical Review E 69(026113), 1–16 (2004)

12. Wu, Z., Leahy, R.: An Optimal Graph Theoretic Approach to Data Clustering: Theory and
its Application to Image Segmentation. IEEE Transactions on Pattern Analysis and Machine
Intelligence 15(11), 1101–1113 (1993)

13. Zachary, W.W.: An Information Flow Model for Conflict and Fission in Small Groups. Jour-
nal of Anthropological Research 33, 452–473 (1977)

http://arxiv.org/abs/1305.0757


Joint Cache Partition and Job Assignment

on Multi-core Processors

Avinatan Hassidim1,�, Haim Kaplan2,��, and Omry Tuval2,��

1 Dept. of Computer Science, Bar Ilan University
avinatan@cs.biu.ac.il

2 Dept. of Computer Science, Tel-Aviv University
{haimk,omrytuva}@tau.ac.il

Abstract. Multicore shared cache processors pose a challenge for de-
signers of embedded systems who try to achieve minimal and predictable
execution time of workloads consisting of several jobs. To address this
challenge the cache is statically partitioned among the cores and the jobs
are assigned to the cores so as to minimize the makespan. Several heuris-
tic algorithms have been proposed that jointly decide how to partition
the cache among the cores and assign the jobs. We initiate a theoretical
study of this problem which we call the joint cache partition and job
assignment problem.

By a careful analysis of the possible cache partitions we obtain a
constant approximation algorithm for this problem. For some practical
special cases we obtain a 2-approximation algorithm, and show how to
improve the approximation factor even further by allowing the algorithm
to use additional cache. We also study possible improvements that can
be obtained by allowing dynamic cache partitions and dynamic job as-
signments.

We define a natural restriction of the well known scheduling problem
on unrelated machines in which machines are ordered by “strength”. We
call this restriction the ordered unrelated machines scheduling problem.
We show that our joint cache partition and job assignment problem is
harder than this scheduling problem. The ordered unrelated machines
scheduling problem is of independent interest and we give a polynomial
time algorithm for certain natural workloads.

Keywords: cache partition, job assignment.

1 Introduction

We study the problem of assigning n jobs to c cores on a multi-core processor,
and simultanously partitioning a shared cache of size K among the cores. Each

� This work was partially supported under ISF grant 1241/12 and under GIF young.
�� This work was partially supported by the ISF grant no. 822-10. Israeli Centers of

Research Excellence (I-CORE) program (Center No. 4/11). Google Inter-university
center for Electronic Markets and Auctions.

F. Dehne, R. Solis-Oba, and J.-R. Sack (Eds.): WADS 2013, LNCS 8037, pp. 378–389, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Joint Cache Partition and Job Assignment 379

job j is given by a non-increasing function Tj(x) indicating the running time of
job j on a core with cache of size x. A solution is a cache partition p, assign-
ing p(i) cache to each core i, and a job assignment S assigning each job j to
core S(j). The total cache allocated to the cores in the solution is K, that is
c∑

i=1

p(i) = K. The makespan of a cache partition p and a job assignment S is

maxi

∑
j|S(j)=i Tj(p(i)). Our goal is to find a cache partition and a job assign-

ment that minimize the makespan.
Multi-core processors are the prevalent computational architecture used to-

day in PCs, mobile devices and high performance computing. Having multiple
cores running jobs concurrently, while sharing the same level 2 and/or level 3
cache, results in complex interactions between the jobs, thereby posing a signif-
icant challenge in determining the makespan of a set of jobs. Cache partitioning
has emerged as a technique to increase run time predictability and increase per-
formance on multi-core processors [1,2]. Theoretic research on online multi-core
caching shows that the cache partition (which may be dynamic) has more influ-
ence on the performance than the eviction policy [3,4]. To obtain effective cache
partitions, methods have been developed to estimate the running time of a job
as a function of allocated cache, that is the function Tj(x) (see for example the
cache locking technique of [5]).

Recent empirical research [6] suggests that jointly solving for the cache parti-
tion and for the job assignment leads to significant improvements over combining
separate algorithms for the two problems. Liu et al. [6] suggest and test heuristic
algorithms for the joint cache partition and job assignment problem. Our work
initiates the theoretic study of this problem.

We study this problem in the context of multi-core caching, but our formu-
lation and results are applicable in a more general setting, where the running
time of a job depends on the availability of some shared resource (cache, CPU,
RAM, budget, etc.) that is allocated to the machines. This setting is applica-
ble, for example, for users of a public cloud infrastructure like Amazon’s Elastic
Cloud. When a user decides on her public cloud setup, there is usually a limited
resource (e.g. budget), that can be spent on different machines in the cloud. The
more budget is spent on a machine, it runs jobs faster and the user is interested
in minimizing the makespan of her set of jobs, while staying within the given
budget.

Our Results
We show that the joint cache partition and job assignment problem is related to
an interesting special case of scheduling on unrelated machines that we call the
ordered unrelated machines scheduling problem. In this problem there is a total
order on the machines which captures their relative strength. Each job has a dif-
ferent running time on each machine and these running times are non-increasing
with the strength of the machine. In Section 2 we give an approximation pre-
serving reduction from scheduling on ordered unrelated machines to the joint
cache partition and job assignment problem. In the full version [7] we consider a
special case of the ordered unrelated machines problem in which each job j runs



380 A. Hassidim, H. Kaplan, and O. Tuval

in time lj on machines 1, . . . xj−1 and in time hj > lj on machines xj , . . . , c and
there is a constant number of different lj ’s and hj ’s. We present a polynomial
time dynamic program that finds an assignment of minimal makespan.

We present, in Section 3, for any constant 0 < ε < 1
2
, an 18-approximation

algorithm for the joint cache partition and job assignment problem that uses
(1 + 5

2
ε)K cache by showing that it suffices to consider a subset of the cache

partitions of size polynomial in c. We obtain a 36-approximation algorithm that
uses at most K cache, by considering a subset of the cache partitions that is of
size K times a polynomial in c.

We obtain better approximation guarantees for special cases of the joint
cache partition and job assignment problem. When each job has a fixed run-
ning time aj and a minimal cache demand xj , we present, in Section 4, a 2-
approximation algorithm, a 3

2
-approximation algorithm that uses 2K cache and

a 4
3
-approximation algorithm that uses 3K cache. We call this special case the

single load minimal cache demand problem. Our 4
3
-approximation algorithm is

based on an algorithm that finds a dominant perfect matching in a threshold
graph that has a perfect matching, presented in Section 4.4. This algorithm and
the existence of such a matching in such a threshold graph are of independent
interest. We present a polynomial time approximation scheme for the single load
minimal cache demand problem, in the case where the jobs’ loads and cache
demands are correlative, that is aj ≤ aj′ iff xj ≤ xj′ (Section 4.5).

In Section 5 we generalize the joint cache partition and job assignment prob-
lem and consider dynamic cache partitions and dynamic job schedules. We show
upper and lower bounds on the makespan improvement that can be gained by
using dynamic partitions and dynamic assignments.

All omitted proofs in this paper can be found in the full version [7].

2 The Ordered Unrelated Machines Problem

The ordered unrelated machines scheduling problem is defined as follows. There
are c machines and a set J of jobs. The input is a matrix T (i, j) giving the
running time of job j on machine i, such that for any two machines i1 < i2 and
any job j, T (i1, j) ≥ T (i2, j). The goal is to assign the jobs to the machines such
that the makespan is minimized.

The ordered unrelated machines scheduling problem is a special case of schedul-
ing on unrelated machines in which there is a total order on the machines that
captures their relative strengths. This special case is natural since in many prac-
tical scenarios the machines have some underlying notion of strength and jobs run
faster on a stronger machine. For example a newer computer typically dominates
an older one in all parameters, or a more experienced employee does any job faster
than a new recruit.

Lenstra et al [8] gave a 2 approximation algorithm for scheduling on unrelated
machines based on rounding an optimal fractional solution of a linear program,
and proved that it is NP-hard to approximate the problem to within a factor
better than 3

2
. It is currently an open question if there are better approximation



Joint Cache Partition and Job Assignment 381

algorithms for ordered unrelated machines than the more general algorithms
that approximate unrelated machines.

Another well-studied scheduling problem is scheduling on uniformly related
machines. In this problem, the time it takes for machine i to run job j is

lj
si

where lj is the load of job j and si is the speed of machine i. A polynomial
time approximation scheme for related machines is described in [9]. It is easy to
see that the problem of scheduling on related machines is a special case of the
problem of scheduling on ordered unrelated machines, and therefore the ordered
unrelated machines problem is NP-hard.

The ordered unrelated machines problem is closely related to the joint cache
partition and job assignment problem. Consider an instance of the joint cache
partition and job assignment problem with c cores, K cache and a set of jobs
J such that Tj(x) is the load function of job j. If we fix the cache partition to
be some arbitrary partition p, and we index the cores in non-decreasing order of
their cache allocation, then we get an instance of the ordered unrelated machines
problem, where T (i, j) = Tj(p(i)). Our constant approximation algorithm for the
joint cache partition and job assignment problem, described in Section 3, uses
this observation as well as Lenstra’s 2-approximation algorithm for unrelated
machines. In the rest of this section we prove that the joint cache partition and
job assignment problem is at least as hard as the ordered unrelated machines
scheduling problem.

We reduce the ordered unrelated machines problem to the joint cache parti-
tion and job assignment problem. Consider the decision version of the ordered
unrelated machines scheduling problem, with c machines and n = |J | jobs, where
job j takes T (i, j) time to run on machine i. We want to decide if it is possible
to schedule the jobs on the machines with makespan at most M .

Define the following instance of the joint cache partition and job assignment
problem. This instance has c cores, a total cache K = c(c + 1)/2 and n′ = n + c
jobs. The first n jobs (1 ≤ j ≤ n) correspond to the jobs in the original ordered
unrelated machines problem, and c jobs are new jobs (n + 1 ≤ j ≤ n + c). The
load function Tj(x) of job j, where 1 ≤ j ≤ n, equals T (x, j) if x ≤ c and equals
T (c, j) if x > c. The load function Tj(x) of job j, where n+1 ≤ j ≤ n+c, equals
M + δ if x ≥ j−n for some δ > 0 and equals∞ if x < j−n. Our load functions
Tj(x) are non-increasing because the original T (i, j)’s are non-increasing in the
machine index i.

Lemma 1. The makespan of the joint cache partition and job assignment in-
stance defined above is at most 2M+δ if and only if the makespan of the original
ordered unrelated machines scheduling problem is at most M .

Proof. Assume there is an assignment S′ of the jobs in the original ordered
unrelated machines instance of makespan at most M . We show a cache partition
p and job assignment S for the joint cache partition and job assignment instance
with makespan at most 2M + δ.

The cache partition p is defined such that p(i) = i for each core i. The partition
p uses exactly K = c(c + 1)/2 cache. The job assignment S is defined such that
for a job j > n, S(j) = j − n and for a job j ≤ n, S(j) = S′(j). The partition p



382 A. Hassidim, H. Kaplan, and O. Tuval

assigns i cache to core i, which is exactly enough for job n+ i, which is assigned
to core i by S, to run in time M + δ. It is easy to verify that p, S is a solution
to the joint cache partition and job assignment instance with makespan at most
2M + δ.

Assume there is a solution p, S for the joint cache partition and job assignment
instance, with makespan at most 2M + δ. Job j, such that n < j ≤ n + c, must
run on a core with cache at least j − n, or else the makespan would be infinite.
Moreover, no two jobs j1 > n and j2 > n are assigned by S the same core, as
this would give a makespan of at least 2M + 2δ. Combining these observations
with the fact that the total available cache is K = c(c + 1)/2, we get that the
cache partition must be p(i) = i for each core i. Furthermore, each job j > n is
assigned by S to core j−n and all the other jobs assigned by S to core j−n are
jobs corresponding to original jobs in the ordered unrelated machines instance.
Therefore, the total load of original jobs assigned by S to core i is at most M .

We define S′, a job assignment for the original ordered unrelated machines
instance, by setting S′(j) = S(j) for each j ≤ n. Since S assigns original jobs
of total load at most M on each core, it follows that the makespaen of S′ is at
most M . 
�

The following theorem follows immediately from Lemma 1.

Theorem 1. There is a polynomial-time reduction from the ordered unrelated
machines scheduling problem to the joint cache partition and job assignment
problem.

The reduction in the proof of Lemma 1 does not preserve approximation guar-
antees. However by choosing δ carefully we can get the following result.

Theorem 2. Given an algorithm A for the joint cache partition and job assign-
ment problem that approximates the optimal makespan up to a factor of 1 + ε,
for 0 < ε < 1, we can construct an algorithm for the ordered unrelated machines
scheduling problem that approximates the optimal makespan up to a factor of

1 + 2ε + 2ε2

1−ε−χ for any χ > 0.

This approximation preserving reduction is given not as a practical means to
obtain approximation algorithms for the ordered unrelated machines scheduling
problem but rather as a testament to the hardness of the joint cache partition
and job assignment problem.

3 Joint Cache Partition and Job Assignment

We first obtain, for any constant 0 < ε < 1
2
, an 18-approximation algorithm for

the joint cache partition and job assignment problem that uses (1 + 5
2
ε)K cache

by showing that it suffices to consider only a subset of the cache partitions of
size polynomial in c. We then show another algorithm that uses K cache and
approximates the makespan up to a factor of 36 and considers a subset of the
cache partitions that is of size K times a polynomial in c.



Joint Cache Partition and Job Assignment 383

Our first algorithm, denoted by A, enumerates over a subset of cache par-
titions, denoted by P (K, c, ε). For each partition in this set A approximates
the makespan of the corresponding scheduling problem, using Lenstra’s algo-
rithm, and returns the partition and associated job assignment with the smallest
makespan.

Let K ′ = (1 + ε)
log1+ε(K)�, the smallest integral power of (1 + ε) which is at
least K. The set P (K, c, ε) contains cache partitions in which the cache allocated
to each core is an integral power of (1 + ε) and the number of different integral
powers used by the partition is at most log2(c). We denote by b the number of

different cache sizes in a partition. Each core is allocated K′

(1+ε)lj
cache, where

lj ∈ N and 1 ≤ j ≤ b. The smallest possible cache allocated to any core is the
smallest integral power of (1 + ε) which is at least Kε

c and the largest possible
cache allocated to a core is K ′. We denote by σ̂j the number of cores with cache

at least K′

(1+ε)lj
. It follows that there are (σ̂j − σ̂j−1) cores with K′

(1+ε)lj
cache.

We require that σ̂j is an integral power of 2 and that the total cache used is at
most

(
1 + 5

2
ε
)
K. Formally,

P (K, c, ε) = {(l =< l1, . . . , lb >, σ̂ =< σ̂0, . . . , σ̂b >) | b ∈ N, 1 ≤ b ≤ log2 c (1)

∀j, lj ∈ N, 0 ≤ lj ≤ log1+ε

(c
ε

)
+ 1, ∀j, lj+1 > lj (2)

∀j ∃uj ∈ N s.t. σ̂j = 2uj , σ̂0 = 0, σ̂b ≤ c, ∀j σ̂j+1 > σ̂j (3)

b∑
j=1

(σ̂j − σ̂j−1)
K ′

(1 + ε)lj
≤

(
1 +

5

2
ε

)
K} (4)

When the parameters are clear from the context, we use P to denote P (K, c, ε).
Let M(p, S) denote the makespan of cache partition p and job assignment S.
The following theorem specifies the main property of P .

Theorem 3. Let p, S be any cache partition and job assignment. A cache par-
tition p̂ and a job assignment Ŝ exist such that p̂ ∈ P and M(p̂, Ŝ) ≤ 9M(p, S).

An immediate corollary of Theorem 3 is that algorithm A described above finds a
cache partition and job assignment with makespan at most 18 times the optimal
makespan.

Lemma 2 shows that A is a polynomial time algorithm.

Lemma 2. The size of P is polynomial in c.

In the remainder of this section we give the outline of the proof of Theorem 3. Let
(p, S) be a cache partition and a job assignment that use c cores, K cache and
have a makespan M(p, S). Define a cache partition p1 such that for each core i,
if p(i) < Kε

c then p1(i) = Kε
c and if p(i) ≥ Kε

c then p1(i) = p(i). For each core i,

p1(i) ≤ p(i)+ Kε
c and hence the total amount of cache allocated by p1 is bounded

by (1 + ε)K. For each core i, p1(i) ≥ p(i) and therefore M(p1, S) ≤M(p, S).
Let p2 be a cache partition such that for each core i, p2(i) = (1+ε)
log1+ε(p1(i))�,

the smallest integral power of (1+ε) that is at least p1(i). For each i, p2(i) ≥ p1(i)



384 A. Hassidim, H. Kaplan, and O. Tuval

and thus M(p2, S) ≤ M(p1, S) ≤ M(p, S). We increased the total cache allo-
cated by at most a multiplicative factor of (1 + ε) and therefore the total cache
used by p2 is at most (1 + ε)2K ≤ (1 + 5

2
ε)K since ε < 1

2
.

Let ϕ be any cache partition that allocates to each core an integral power of
(1 + ε) cache. We define the notion of cache levels. We say that core i is of cache

level l in ϕ if ϕ(i) = K′
(1+ε)l

. Let cl(ϕ) denote the number of cores in cache level

l in ϕ. The vector of cl’s, which we call the cache levels vector of ϕ, defines the
partition ϕ completely since any two partitions that have the same cache level
vector are identical up to a renaming of the cores.

Let σ(ϕ) be the vector of prefix sums of the cache levels vector of ϕ. Formally,

σl(ϕ) =
l∑

i=0

ci(ϕ). Note that σl(ϕ) is the number of cores in cache partition ϕ

with at least K′
(1+ε)l

cache and that for each l, σl(ϕ) ≤ c.

For each such cache partition ϕ, we define the significant cache levels li(ϕ)
recursively as follows. The first significant cache level l1(ϕ) is the first cache level
l such that cl(ϕ) > 0. Assume we already defined the i− 1 first significant cache
levels and let l′ = li−1(ϕ) then li(ϕ) is the smallest cache level l > l′ such that
σl(ϕ) ≥ 2σl′(ϕ).

Lemma 3. Let lj and lj+1 be two consecutive significant cache levels of ϕ, then
the total number of cores in cache levels in between lj and lj+1 is at most σlj (ϕ).
Let lb be the last significant cache level of ϕ then the total number of cores in
cache levels larger than lb is at most σlb(ϕ).

For each core i, Kε
c ≤ p2(i) ≤ K ′, so we get that if l is a cache level in p2 such

that cl(p2) 	= 0 then 0 ≤ l ≤ log1+ε(
c
ε ) + 1.

Let b be the number of significant cache levels in p2. We adjust p2 and S to
create a new cache partition p3 and a new job assignment S3. Cache partition p3
has cores only in the significant cache levels l1(p2), . . . , lb(p2). We obtain p3 from
p2 as follows. Let f be a non-significant cache level in p2. If there is a j such that
lj−1(p2) < f < lj(p2) then we take the cf (p2) cores in cache level f in p2 and
reduce their cache so they are now in cache level lj(p2) in p3. If f > lb(p2) then
we remove the cf (p2) cores at level f from our solution. It is easy to check that
the significant cache levels of p3 are the same as of p2, that is lj(p2) = lj(p3) for
1 ≤ j ≤ b. To simplify notation, we denote lj = lj(p2) = lj(p3) for any 1 ≤ j ≤ b.
Since we only reduce the cache allocated to some cores, the new cache partition
p3 uses no more cache than p2 which is at most (1 + 5

2
ε)K.

We construct S3 by changing the assignment of the jobs assigned by S to cores
in non-significant cache levels in p2. As before, let f be a nonsignificant cache
level and let lj−1 be the maximal significant cache level such that lj−1 < f . For
each core i in cache level f in p2 we move all the jobs assigned by S to core i,
to a target core in cache level lj−1 in p3. Lemma 4 specifies the key property of
this job-reassignment.

Lemma 4. We can construct S3 such that each core in a significant level of p3
is the target of the jobs from at most two cores in a nonsignificant level of p2.



Joint Cache Partition and Job Assignment 385

Corollary 1. M(p3, S3) ≤ 3M(p, S)

We now define another cache partition p̂ based on p3. Let uj = �log2(σlj (p3))�.
The partition p̂ has 2u1 cores in cache level l1, and 2uj − 2uj−1 cores in cache
level lj for 1 < j ≤ b. The significant cache levels of p̂ and p3 are the same,
that is lj(p̂) = lj(p3) = lj for 1 ≤ j ≤ b. Furthermore, p̂ has cores only in its
significant cache levels.

Lemma 5. 3clj (p̂) ≥ clj (p3)

Lemma 5 shows that cache partition p̂ has in each cache level lj at least a third
of the cores that p3 has at cache level lj . Therefore, there exists a job assignment

Ŝ that assigns to each core of cache level lj the jobs that S3 assigns to at most
3 cores in cache level lj . We only moved jobs within the same cache level and
thus their load remains the same and the makespan M(p̂, ŝ) ≤ 3M(p3, S3) ≤
9M(p, s).

Lemma 6. Cache partition p̂ is in the set P (K, c, ε).

This concludes the proof of Theorem 3, and establishes that our algorithm A is
an 18-approximation algorithm for the problem, using (1 + 5

2
ε)K cache.

We provide a variation of algorithm A that uses at most K cache, finds a
36-approximation for the optimal makespan and considers a subset of all cache
partitions of size that is K times a polynomial in c. Algorithm B enumerates on
r, 1 ≤ r ≤ K, the amount of cache allocated to the first core. It then enumerates
over the set of partitions P = P (K−r

2
, c− 1, 2

5
). For each partition in P it adds

another core with r cache and applies Lenstra’s approximation algorithm on the
resulting instance of the unrelated machines scheduling problem, to assign all
the jobs in J to the c cores. Algorithm B returns the partition and assignment
with the minimal makespan it encounters.

Theorem 4. If there is a solution of makespan M that uses at most K cache
and at most c cores then algorithm B returns a solution of makespan 36M that
uses at most K cache and at most c cores.

4 Single Load and Minimal Cache Demand

We consider a special case of the general joint cache partition and job assignment
problem where each job has a minimal cache demand xj and single load value
aj . Job j must run on a core with at least xj cache and it contributes a load of
aj to the core. We want to decide if the jobs can be assigned to c cores, using K
cache, such that the makespan is at most M? W.l.o.g. we assume M = 1.

In Section 4.1 we describe a 2-approximate decision algorithm that if the
given instance has a solution of makespan at most 1, returns a solution with
makespan at most 2 and otherwise may fail. In Sections 4.2 and 4.3 we improve
the approximation guarantee to 3

2
and 4

3
at the expense of using 2K and 3K

cache, respectively. These approximate decision algorithms can be transformed
into approximate optimization algorithms by using a standard binary search
technique [8,7].



386 A. Hassidim, H. Kaplan, and O. Tuval

4.1 2-Approximation

We present a 2-approximate decision algorithm, denoted by A2. Algorithm A2

sorts the jobs in a non-increasing order of their cache demand. It then assigns
the jobs to the cores in this order. It keeps assigning jobs to a core until the
load on the core exceeds 1. Then, A2 starts assigning jobs to the next core. Note
that among the jobs assigned to a specific core the first one is the most cache
demanding and it determines the cache allocated to this core by A2. Algorithm
A2 fails if the generated solution uses more than c cores or more than K cache.
Otherwise, A2 returns the generated cache partition and job assignment.

Theorem 5. If there is a cache partition and job assignment of makespan at
most 1 that use c cores and K cache then algorithm A2 finds a cache partition
and job assignment of makespan at most 2 that use at most c cores and at most
K cache.

4.2 3
2
-Approximation with 2K Cache

We define a job to be large if aj > 1
2

and small otherwise. Our algorithm A 3
2

assigns one large job to each core. Let si be the load on core i after the large
jobs are assigned. Let ri = 1 − si. We process the small jobs by non-increasing
order of their cache demand xj , and assign them to the cores in non-increasing
order of the cores’ ri’s. We stop assigning jobs to a core when its load exceeds 1
and start loading the next core. Algorithm A 3

2
allocates to each core the cache

demand of its most demanding job. Algorithm A 3
2

fails if the resulting solution
uses more than c cores or more than 2K cache.

Theorem 6. If there is a cache partition and job assignment of makespan at
most 1 that use c cores and K cache then A 3

2
finds a cache partition and job

assignment that use at most 2K cache, at most c cores and have a makespan of
at most 3

2
.

4.3 4
3
-Approximation with 3K Cache, Using Dominant Matching

We present a 4
3

approximate decision algorithm, A 4
3
, that uses at most 3K cache.

The main challenge is assigning the large jobs, which here are defined as jobs of
load greater than 1

3
.

There are at most 2c large jobs in our instance, because we assume there is a
solution of makespan at most 1 that uses c cores. Algorithm A 4

3
matches these

large jobs into pairs, and assigns each pair to a different core. In order to perform
the matching, we construct a graph G where each vertex represents a large job
j of weight aj >

1
3
. If needed, we add artificial vertices of weight zero to have a

total of exactly 2c vertices in the graph. Each two vertices have an edge between
them if the sum of their weights is at most 1. The weight of an edge is the sum of
the weights of its endpoints. A perfect matching in a graph is a subset of edges
such that every vertex in the graph is incident to exactly one edge in the subset.



Joint Cache Partition and Job Assignment 387

We note that there is a natural bijection between perfect matchings in the graph
G and assignments of makespan at most 1 of the large jobs to the cores.

A dominant perfect matching in G is a perfect matching Q such that for
every i, the i heaviest edges in Q are a maximum weight matching in G of i
edges. The graph G is a threshold graph [10], and in Section 4.4 we provide
a polynomial time algorithm that finds a dominant perfect matching in any
threshold graph that has a perfect matching. If there is a solution for the given
instance of makespan at most 1 then the assignment of the large jobs in that
solution correspond to a perfect matching in G and thus algorithm A 4

3
can find

a dominant perfect matching, Q, in G.
Algorithm A 4

3
then assigns the small jobs (load ≤ 1

3
) similarly to algorithms

A2 and A 3
2

described in Sections 4.1 and 4.2, respectively. It greedily assigns jobs
to a core, until the core’s load exceeds 1. Jobs are assigned in a non-increasing
order of their cache demand and the algorithm goes through the cores in a non-
decreasing order of the sum of loads of the large jobs on each core. Once all the
jobs are assigned, the algorithm allocates cache to the cores according to the
cache demand of the most demanding job on each core. Algorithm A 4

3
fails if it

does not find a dominant perfect matching in G or if the resulting solution uses
more than c cores or more than 3K cache.

Theorem 7. If there is a solution that assigns the jobs to c cores with makespan
at most 1 and uses K cache then algorithm A 4

3
assigns the jobs to c cores with

makespan at most 4
3

and uses at most 3K cache.

4.4 Dominant Perfect Matching in Threshold Graphs

Let G = (V,E) be an undirected graph with 2c vertices where each vertex x ∈ V
has a weight w(x) ≥ 0. The edges in the graph are defined by a threshold t > 0 to
be E = {(x, y) | w(x)+w(y) ≤ t, x 	= y}. Such a graph G is known as a threshold
graph [11,10]. We say that the weight of an edge (x, y) is w(x, y) = w(x) +w(y).

A perfect matching A in G is a subset of the edges such that every vertex in
V is incident to exactly one edge in A. Let Ai denote the i-th heaviest edge in
A. We assume, w.l.o.g, that there is some arbitrary predefined order of the edges
in E that is used, as a secondary sort criteria, to break ties in case several edges
have the same weight. In particular, this implies that Ai is uniquely defined. A
perfect matching A dominates a perfect matching B if for every x ∈ {1, . . . , c}
x∑

i=1

w(Ai) ≥
x∑

i=1

w(Bi). A perfect matching A is a dominant perfect matching if

A dominates any other perfect matching B.
Let A and B be two perfect matchings in G. We say that A and B share a

prefix of length l if Ai = Bi for i ∈ {1, . . . , l}. The following greedy algorithm
finds a dominant perfect matching in a threshold graph G that has a perfect
matching. We start with G0 = G. At step i, the algorithm selects the edge (x, y)
with maximum weight in the graph Gi. If there are several edges of maximum
weight, then (x, y) is the first by the predefined order on E. The graph Gi+1 is
obtained from Gi by removing vertices x, y and all edges incident to x or y.



388 A. Hassidim, H. Kaplan, and O. Tuval

Theorem 8. If G is a threshold graph with 2c vertices that has a perfect match-
ing, then the greedy algorithm described above finds a dominant perfect matching.

4.5 PTAS for Jobs with Correlative Single Load and Minimal
Cache Demand

We define an instance of the single load minimal cache demand problem to be
correlative if for any two jobs j, j′ such that xj and xj′ are non-zero, aj ≤
aj′ ⇐⇒ xj ≤ xj′ .

Theorem 9. There is a polynomial time approximation scheme for the joint
cache partition and job assignment problem for jobs with correlative single load
and minimal cache demands.

5 Joint Dynamic Cache Partition and Job Scheduling

We consider a generalization of the joint cache partition and job assignment
problem in which the cache partition and the job assignment are dynamic. We
define the generalized problem as follows. As before, J denotes the set of jobs,
there are c cores and a total cache of size K. Each job j ∈ J is described by a
non-increasing function Tj(x).

A dynamic cache partition p = p(t, i) indicates the amount of cache allocated

to core i at time unit t.1 For each time unit t,
c∑

i=1

p(t, i) ≤ K. A dynamic

assignment S = S(t, i) indicates for each core i and time unit t, the index of
the job that runs on core i at time t. If no job runs on core i at time t then
S(t, i) = −1. If S(t, i) = j 	= −1 then for any other core i2 	= i, S(t, i2) 	= j.
Each job has to perform 1 work unit. If job j runs for α time units on a core
with x cache, then it completes α

Tj(x)
work. A partition and schedule p, S are

valid if all jobs complete their work. Formally, p, S are valid if for each job j,∑
<t,i>∈S−1(j)

1
Tj(p(t,i))

= 1. The load of core i is defined as the maximum t such

that S(t, i) 	= −1. The makespan of (p, S) is defined as the maximum load on
any core. The goal is to find a valid dynamic cache partition and dynamic job
assignment with a minimal makespan.

It is easy to verify that dynamic cache partition and dynamic job assignment,
as defined above, generalize the static partition and static job assignment. The
partition is static if for every fixed core i, p(t, i) is constant with respect to t.
The schedule is a static assignment if for every job j, there are times t1 < t2 and
a core i such that S−1(j) = {< t, i >| t1 ≤ t ≤ t2}.

We consider four variants of the joint cache partition and job assignment
problem. The static partition and static assignment variant studied so far, the
variant in which the cache partition is dynamic and the job assignment is static,
the variant in which the job assignment is dynamic and the cache partition is
static and the variant in which both are dynamic.

1 To simplify the presentation we assume that time is discrete.



Joint Cache Partition and Job Assignment 389

Theorem 10. Allowing a dynamic partition and a dynamic assignment can im-
prove the makespan by a factor of at most c, the number of cores, and there is an
instance where by using a dynamic partition and a static assignment we achieve
an improvement factor arbitrarily close to c. Allowing a dynamic assignment of
the jobs, while keeping the cache partition static, improves the makespan by at
most a factor of 2, and there is an instance where an improvement of 2 − 2

c is
achieved, for c ≥ 2.

References

1. Lin, J., Lu, Q., Ding, X., Zhang, Z., Zhang, X., Sadayappan, P.: Gaining insights
into multicore cache partitioning: Bridging the gap between simulation and real
systems. In: HPCA, pp. 367–378 (2008)

2. Molnos, A.M., Cotofana, S.D., Heijligers, M.J.M., van Eijndhoven, J.T.J.:
Throughput optimization via cache partitioning for embedded multiprocessors. In:
ICSAMOS, pp. 185–192 (2006)

3. Hassidim, A.: Cache replacement policies for multicore processors. In: ICS, pp.
501–509 (2010)

4. López-Ortiz, A., Salinger, A.: Paging for multi-core shared caches. In: ITCS, pp.
113–127. ACM (2012)

5. Liu, T., Li, M., Xue, C.J.: Instruction cache locking for multi-task real-time em-
bedded systems. Real-Time Systems 48, 166–197 (2012)

6. Liu, T., Zhao, Y., Li, M., Xue, C.J.: Joint task assignment and cache partition-
ing with cache locking for WCET minimization on MPSoC. J. Parallel Distrib.
Comput. 71, 1473–1483 (2011)

7. Hassidim, A., Kaplan, H., Tuval, O.: Joint cache partition and job assignment on
multi-core processors. CoRR abs/1210.4053 (2012)

8. Lenstra, J.K., Shmoys, D.B., Tardos, É.: Approximation algorithms for scheduling
unrelated parallel machines. Math. Program. 46, 259–271 (1990)

9. Hochbaum, D.S., Shmoys, D.B.: A polynomial approximation scheme for schedul-
ing on uniform processors: Using the dual approximation approach. SIAM J. Com-
put. 17, 539–551 (1988)

10. Mahadev, N.V.R., Peled, U.N.: Threshold graphs and related topics. Annals of
Discrete Mathematics, vol. 56. Elsevier (1995)

11. Chvátal, V., Hammer, P.L.: Set-packing problems and threshold graphs. Technical
Report CORR 73-21, Dep. of Combinatorics and Optimization, Waterloo, Ontario
(1973)



Finding the Minimum-Weight k-Path

Avinatan Hassidim�, Orgad Keller, Moshe Lewenstein��, and Liam Roditty

Department of Computer Science, Bar-Ilan University, Ramat-Gan, Israel
{avinatan,kellero,moshe,liamr}@cs.biu.ac.il

Abstract. Given a weighted n-vertex graph G with integer edge-weights
taken from a range [−M,M ], we show that the minimum-weight sim-
ple path visiting k vertices can be found in time Õ(2kpoly(k)Mnω) =
O∗(2kM). If the weights are reals in [1,M ], we provide a (1 + ε)-
approximation which has a running time of Õ(2kpoly(k)nω(log logM +
1/ε)). For the more general problem of k-tree, in which we wish to find
a minimum-weight copy of a k-node tree T in a given weighted graph G,
under the same restrictions on edge weights respectively, we give an exact
solution of running time Õ(2kpoly(k)Mn3) and a (1+ε)-approximate so-
lution of running time Õ(2kpoly(k)n3(log logM+1/ε)). All of the above
algorithms are randomized with a polynomially-small error probability.

1 Introduction

Given an n-vertex graph G = (V,E) and a parameter k, in the k-path problem
we wish to find a path in G consisting of k vertices, if such exists. The k-path
problem can be easily shown to be NP-complete: when k = n, it is exactly
the Hamiltonian path problem. While a trivial O∗(nk) solution1 is to try all(
n
k

)
combinations of k vertices, better can be obtained; Monien was the first to

show an improvement [11], with an O∗(k!) algorithm. In their seminal result,
Alon, Yuster, and Zwick [2] introduced the color-coding technique. They used
it to present a randomized O∗((2e)k) algorithm for this problem, which can be
derandomized, replacing the 2e term with a large constant. Their result thus
shows that the logpath problem of determining whether a graph contains a
path of length logn can be solved in polynomial time. Later, two independent
results [8,5] presented randomized O∗(4k) algorithms, again with larger constants
when derandomized, having running times of O∗(16k) [8] and O∗(12.5k) [5].

While these results were combinatorial in nature, the next improvements used
algebraic techniques: Koutis [9] presented an algorithm solving the problem in
O∗(2.83k) time. His method was perfected by Williams [12], reducing the running
time to O∗(2k). This had somewhat closed the gap between the k-path problem

� Research supported by ISF grant 1241/12 and by GIF Young.
�� Research supported by BSF grant 2010437, a Google Research Award and GIF grant

1147/2011.
1 Here and throughout, the O∗ notation discards all factors that are polynomial in
n, k, and logM from the running time. Similarly, the Õ expressions discard poly-
logarithmic factors.

F. Dehne, R. Solis-Oba, and J.-R. Sack (Eds.): WADS 2013, LNCS 8037, pp. 390–401, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Finding the Minimum-Weight k-Path 391

and the best method known for the specific case of finding a Hamiltonian path
in a directed graph, which is O∗(2n) (though the latter is combinatorial in na-
ture). For undirected graphs, recent results presented O∗(1.657n) [3] and later
O∗(1.657k) [4,1] running times for Hamiltonian path and k-path, respectively.

It is worthwhile to focus on Koutis’ and Williams’ techniques, as they are
the basis to this paper. They reduce k-path and other problems to the problem
of determining whether a given n-variable polynomial contains a k-multilinear-
monomial (that is, a term which is the multiplication of k distinct variables) in its
sum-product expansion. The problem is then solved by (roughly) evaluating this
polynomial over random values taken from an adequate choice of an algebraic
structure. In a later result [10] they both show that, in the evaluation framework
they use, their technique for finding a k-multilinear-monomial is essentially opti-
mal, as any choice of an algebraic structure for the polynomial evaluation would
require that the elements in this structure have an Ω(2k/k)-sized representation.

One of the most natural generalizations coming to mind, is the minimum-
weight k-path problem: in this scenario, the graph edges are weighted and we
wish to find a k-path having minimum weight in the graph. In [12] this was
referred to as the short cheap tour problem and mentioned that while the O∗(4k)
methods can be easily extended to accommodate for this version, the algebraic
methods do not seem to support such extension, and left this as an open problem.
We solve this problem for the specific case in which the edge weights are integers
in the range [−M,M ], incurring a running time which also has a superlinear
dependency on M . If the weights are reals in [1,M ] (or can be normalized to
this range, as is the case if they are in the range [�, h] for 0 < � < h), we provide
a (1+ε)-approximation which reduces this dependency to log logM . Notice that
by this we conform to the important line of research in recent years, of discussing
variants of distance problems in which edge-weights are integers taken from a
bounded range, see e.g., [14,6].

Another problem that generalizes k-path is presented in [10]: in the k-tree
problem, given an n-vertex graph G and a k-node tree T , find a copy of T in G.
For a similar generalization of this problem to minimum-weight k-tree, and under
similar restrictions on the edge weights, we show similar exact and approximate
results.

Paper Organization. In Section 3, we first present an Õ(2kpoly(k)Mnω) al-
gorithm for computing the weight of the minimum-weight k-path when edge
weights are integers in [−M,M ], where ω < 2.3727 stands for the matrix mul-
tiplication exponent [13]. In Section 4, we show how to find the path itself,
incurring an O(k · poly logn) multiplicative overhead for the above algorithm.
Finally, in Section 5, for the case of real edge-weights in [1,M ], we provide a
(1+ε)-approximation algorithm that reduces the dependency on M to log logM ,
by using a technique of careful adaptive scaling of the edge weights. The overall
running time of this algorithm is Õ(2kpoly(k)nω(log logM + 1/ε)).

In Section 6 we turn to the k-tree problem, and show similar results: we
present an Õ(2kpoly(k)Mn3) algorithm for finding the minimum-weight k-tree
when edge weights are integers in [−M,M ], and for the case the edge-weights



392 A. Hassidim et al.

are reals in [1,M ], provide a (1 + ε)-approximation algorithm having running
time Õ(2kpoly(k)n3(log logM + 1/ε)).

2 Preliminaries

We follow Williams’ notation [12]. Let F be a field and G be a multiplicative
group. The group algebra F[G] is defined over the set of elements of the form∑

g∈G

agg (1)

where ag ∈ F for all g ∈ G, i.e., on the set of sums of elements from G with
coefficients from F. Addition is computed component-wise as∑

g∈G

agg +
∑
g∈G

bgg =
∑
g∈G

(ag + bg)g , (2)

multiplication is defined in the form of a convolution:⎛⎝∑
g∈G

agg

⎞⎠⎛⎝∑
g∈G

bgg

⎞⎠ =
∑

g,h∈G

agbhgh =
∑
g∈G

(∑
h∈G

ahbh−1g

)
g , (3)

(since G is a multiplicative group, the expression h−1g here replaces the expres-
sion of the type g − h which is usually found in a convolution definition) and
multiplication by a scalar c ∈ F as

c

⎛⎝∑
g∈G

agg

⎞⎠ =
∑
g∈G

cagg . (4)

Let 0F, 1F be the addition and multiplication identities of F, respectively. Let 1G
be the identity of G. It is easy to verify that F[G] is a ring where the addition
identity element 0F[G] =

∑
g∈G 0F · g is the element having all coefficients taken

as 0F, and the multiplication identity element 1F[G] = 1F · 1G = 1G. For ease of
notation, hereafter 0 and 1 will denote 0F[G] and 1F[G], respectively.

Let z be a symbolic variable. Our computations are done on the set (F[G])[z]
of univariate polynomials on z with coefficients in F[G]. Notice that the set of
polynomials with coefficients in a ring is a ring by itself.

For our algorithm, we follow Williams and choose G to be Zk
2 (i.e., the set

of binary vectors of dimension k) with multiplication between elements of Zk
2

defined as entry-wise addition modulo 2. It follows that 1G is the k-dimensional
all-zeros vector. Notice that for all u, v ∈ Zk

2 , u ·v = 1G iff u = v. We also choose
F = GF(2�) for � = log k + 3. Notice that since F = GF(2�) has characteristic
2, it holds that for all c ∈ F, c + c = 0F, and therefore that for all v ∈ F[G],
v + v = 0.



Finding the Minimum-Weight k-Path 393

3 Method

Given a weighted, directed or undirected graph H = (V,E,w) on the vertex-
set V = {1, . . . , n}, with integer edge-weights in [−M,M ], we first show how
to compute the weight of the minimum-weight k-path with high probability.
We can assume the edge weights are actually in [0,M ], otherwise we re-define
w(i, j) ← w(i, j) + M for each (i, j) ∈ E and then M ← 2M : as this process
incurs a penalty of (k− 1)M for each k-path, it maintains the order relation on
k-path weights. Define a k-walk to be a walk in the graph comprised of k (not
necessarily distinct) vertices, and let I = 〈i1, . . . , ik〉 be some arbitrary k-walk
in H . With a slight abuse of notation, we will also use I to denote the set of
edges participating in the walk.

We define a collection {Bc}k−1
c=1 of polynomial matrices Bc as follows:

Bc[i, j] =

{
yi,j,c · xi · zw(i,j) if (i, j) ∈ E,

0 if (i, j) /∈ E;
(5)

where each variable yi,j,c shall be assigned with a randomly selected value from
F and each xi will be assigned with a value chosen from F[G] by a method to
be described shortly. Notice that each xi corresponds to vertex i. Assume the
values {yi,j,c}i,j,c have already been chosen. Recall that z is a symbolic variable.
We define the polynomial P as follows: P (x1, . . . , xn, z) = 1 · B1 · · ·Bk−1 · x,
where 1 is the n-dimensional all-ones vector and x is the vector (x1, . . . , xn).
Re-writing P as its sum-product expansion we get:

P (x1, . . . , xn, z) =
∑
I

I=〈i1,...,ik〉 is a walk in H

(
k−1∏
c=1

Bc[ic, ic+1]

)
xik , (6)

that is, P is an aggregate sum over all k-walks in H , where each walk I =
〈i1, . . . , ik〉 is represented by the product of its corresponding components in
B1, . . . , Bk−1, finally multiplied by xik which corresponds to the final vertex of
the walk. By substituting the Bc[ic, ic+1]’s for their values, and re-arranging the
walk’s product such that the yi,j,c terms appear first, then the xi terms, and
finally the z term, it follows that

P (x1, . . . , xn, z) =
∑
I

I=〈i1,...,ik〉 is a walk in H

yI · xI · zw(I) , (7)

where yI =
∏k−1

c=1 yic,ic+1,c, x
I = xi1 · · ·xik , and w(I) =

∑
e∈I w(e) is the weight

of walk I.

3.1 Algorithm

Given H , randomly choose all values yi,j,c ∈ F, and randomly pick n vec-
tors v1, . . . , vn from G = Zk

2 . Now compute the polynomial P ′(z) = P (1G +



394 A. Hassidim et al.

v1, . . . , 1G + vn, z). Let coeffd
zP

′(z) be the d-th degree term coefficient of P ′(z),
and let d′ = min{d | coeffd

zP
′(z) is not 0} (if such exists). If d′ exists, return it.

Otherwise output “no k-path exists in H”.

3.2 Proof of Correctness

Let I be the minimum-weight k-simple-path in H , and notice that w(I) is rep-
resented in P by the term zw(I) in the product corresponding to I. Notice that
while no degrees d < w(I) occur in P , it might be that the w(I)-th degree term
of P was eliminated when (partially) evaluating P . Our goal is to show that this
happens with low probability. For a walk I, notice that if I is simple, i.e., it visits
every node at most once, then xI is multilinear, or equivalently, square-free, since
each variable xi appears in it at most once. On the other hand, if I is non-simple,
then xI must contain some square x2

j . Therefore, in order to prove the algorithm
correct, we need to show that w.h.p., (a) products corresponding to non-simple
paths vanish, (b) products corresponding to simple-k-paths do not vanish by
their evaluation, and that (c) products corresponding to simple-k-paths are not
eliminated when they are summed with other (same-degree) products.

These notions are captured by the following propositions, which are similar
to the ones in [12]. Due to lack of space we defer the proofs to the full version
of the paper.

Proposition 1. If xI is non-multilinear, it vanishes.

Let J =
∑

v∈G v be the sum of all vectors from G = Zk
2 (addition here is the

addition of F[G]).

Proposition 2. Let I = 〈i1, . . . , ik〉 be a k-walk. If xI is multilinear (i.e., I is
a k-path), then if the vectors vi1 , . . . , vik ∈ Zk

2 are linearly independent w.r.t.
entry-wise addition modulo 2, then xI = J .

Corollary 1. Let I = 〈i1, . . . , ik〉 be a k-walk. If xI is multilinear (i.e., I is a
k-path), then with probability at least 0.28 it does not vanish.

We have shown that with at least constant probability, multilinear terms do
not vanish when they are assigned values as described. However, it still might
happen that such multilinear terms will get eliminated when they are summed
up with other multilinear terms. The next two propositions show that this can
happen with at most constant probability.

Proposition 3. Let I = 〈i1, . . . , ik〉 be a k-walk. If the variables vi1 , . . . , vik ∈
Zk
2 are linearly dependent w.r.t. entry-wise addition modulo 2, then xI vanishes.

Recall that P (x1, . . . , xn, z) is a polynomial in z and therefore can be viewed as

P (x1, . . . , xn, z) =
kM∑
d=0

∑
I

I=〈i1,...,ik〉 is a walk in H
w(I)=d

yI · xI · zd . (8)



Finding the Minimum-Weight k-Path 395

It is therefore easy to see that the minimum-degree term in P corresponds to
minimum-weight k-paths in H . Let d′ be the minimum degree of P and let

coeffd′
z P (x1, . . . , xn, z) =

∑
I

I is a walk in H
w(I)=d′

yI · xI (9)

be its corresponding coefficient. Our goal is to show that with at least constant

probability, coeffd′
z P does not vanish when it is evaluated.

Proposition 4. coeffd′
z P ′(z) does not vanish with probability at least 1/5.

3.3 Running Time Analysis

The running time of the algorithm is dominated by k matrix multiplications,
where the basic arithmetic operations are done over the polynomial ring (F[G])[z].
Therefore, we need to account for the the cost of each such operation. Notice
that for any arithmetic operation in (F[G])[z] performed by our algorithm, the
maximum degree of the operand polynomials and resulting polynomial, is at
most kM . We can therefore focus on the set R of polynomials in (F[G])[z] with
degree at most kM . By treating the polynomials in R as periodic with period
kM (since there will be no carry or overflow to greater degrees), R continues
to be a ring. Let T be the upper-bound on the time required for an arithmetic
operation in R; trivially, T = Ω(2k · kM log|F|). It follows that the algorithm
requires O(knωT ) time, and it remains to compute T .

Addition. Addition of two polynomials can be easily done component-wise in
time O(kM · 2k · log|F|) = O(2kpoly(k)M).

Multiplication. Multiplication is trickier and is done by employing a multidimen-
sional fast Fourier transform-type approach.2 We now describe the multiplication
process in more detail.

The multiplication process will be easier to describe on the ring F[Zk
2 ×

[kM ]] which is isomorphic to R, as will be shown immediately. Given a vec-
tor v = (v1, . . . , vk) ∈ Zk

2 and an integer d ∈ [kM ], let (v; d) denote the vector
(v1, . . . , vk, d) ∈ Zk

2 × [kM ]. A polynomial p ∈ R can be uniquely described as a
sum

∑
v,d a(v;d) · (v; d) of at most N = 2kkM summands, where each a(v;d) ∈ F

is the coefficient of v appearing in coeffd
zp (i.e., if coeffd

zp =
∑

v∈G bvv, then

a(v;d) = bv). Our definition of multiplication over G = Zk
2 can be naturally ex-

tended to Zk
2× [kM ]: multiplication still corresponds to entry-wise addition, only

that now addition is done modulo 2 for dimensions 1, . . . , k and modulo kM for
dimension k + 1. With that in mind, our definitions of addition, multiplication,

2 Here, as opposed to Williams [12], the Walsh-Hadamard transform is not an adequate
choice anymore due to the existence of the variable z which can have a degree up to
kM .



396 A. Hassidim et al.

and identity elements for R are extended appropriately, thus forming the ring
F[Zk

2 × [kM ]]. The bottom line is that now any p ∈ R can be viewed as a sum of
elements with coefficients taken from a multidimensional array indexed by values
from Zk

2 × [kM ] and that multiplication is still a convolution, an important fact
to be used later.

Moving to F = GF(2�), being a finite field, all elements in F can be represented
in the usual manner as a degree-� polynomials with coefficients in Z2 = GF(2)
and operations that are done modulo some predefined irreducible polynomial of
degree � (this irreducible polynomial can even be found näıvely as � = log k +
3). For the purpose of using FFT, we treat polynomials in Z2[x] as if they
were actually in C[x], i.e., the set of univariate polynomials over the complex
numbers. At the end of the multiplication process, we will appropriately convert
polynomials in C[x] back to GF(2�) as will be described shortly.

By the above arguments, given two polynomials p, q ∈ R to be multiplied,
they can be taken as the sums

∑
v,d p(v;d) · (v; d) and

∑
v,d q(v;d) · (v; d), respec-

tively, where p(v;d), q(v;d) ∈ C[x] for each v ∈ Zk
2 and d ∈ [kM ]. As the multipli-

cation corresponds to a convolution, by the convolution theorem, it holds that
p∗q = DFT−1(DFT(p)·DFT(q)), where ∗ denotes a convolution, · denotes point-
wise multiplication, and DFT denotes the (k + 1)-dimensional discrete Fourier
transform for values indexed by vectors of type (v1, . . . , vk, d) ∈ Zk

2 × [kM ]. Let
D(�) denote the time required for an arithmetic operation on degree-� polyno-
mials in C[x]—including converting them back to GF(2�) by division by an irre-
ducible polynomial—and notice that D(�) = O(�2) = O(poly log k) as multipli-
cation and division here are quadratic by nature. Then the above DFT operations
can be computed efficiently in time O(N logN ·D(�)) = Õ(2kk2M) by using the
multidimensional FFT algorithm. Once we have computed DFT(p) and DFT(q),
thus obtaining for each of them N values in C[x] (indexed as well by vectors in
Zk
2×[kM ]), we point-wise multiply them, obtaining a sum w = DFT(p)·DFT(q),

and compute DFT−1(w), again by using FFT on multidimensional coefficients
in C[x]. Finally, we reduce C[x] terms (which are actually in Z[x], as convolution
over integer values returns integer values) by dividing them by the irreducible
polynomial used before and the appropriate modulo operations.

We conclude that multiplication of polynomials in R can be performed in time
Õ(2kpoly(k)M), and therefore T = Õ(2kpoly(k)M).

4 Finding the Actual Path

Let G = (V,E,w) be a weighted graph with integer edge-weights in [−M,M ].
Given the algorithm from the previous section, we show that it is possible to
find the minimum-weight k-path itself with only O(kpoly logn) multiplicative
overhead w.r.t. the previous algorithm and with a polynomially small error prob-
ability. We denote by A the algorithm from the previous section, amplified by
running O(log n) iterations of it and choosing the minimal result, such that its
error probability is bounded by 1/nc′ for some constant c′. The algorithm for
finding the actual path uses A as a sub-routine. Its pseudo-code is provided as
Algorithm 1. Full analysis is deferred to the full version of the paper.



Finding the Minimum-Weight k-Path 397

Algorithm 1. Finding the minimum-weight k-path.

1 d ← A(G, k)
2 while |V (G)| > 10k do
3 for Θ(log n) times do
4 G′ ← a copy of G in which each vertex is removed with probability 1/k
5 if at least Ω(|V (G)|/k) were removed and A(G′, k) = d then
6 G ← G′

7 Go to the while loop

8 return “Fail”

9 foreach remaining vertex v ∈ V (G) and until |V (G)| = k do
10 G′ ← G \ v /* G \ v is G with v and its incident edges removed */

11 if A(G′, k) = d then G ← G′

12 return E(G)

5 Approximation

The main drawback of the previous algorithm is that its running time has a
superlinear dependency in M , the bound on an edge weight. If the weights are in
[1,M ] (or can be normalized to this range), we show that if we settle for a (1+ε)-
approximation algorithm to the problem, this dependency can be brought down
to log logM , by using a technique of careful adaptive scaling of the edge weights,
thus bringing the overall running time to Õ(2kpoly(k)nω(log logM + 1/ε)). Our
techniques are in the spirit of the FPTAS of Ergün et al. [7] for the restricted
shortest path problem. We start with the following proposition:

Proposition 5. Given a graph G with integer edge-weights in [0,M ], a param-
eter k, and a value B, it is possible to find an exact solution to the minimum-
weight k-path problem of weight at most B, if such exists, or to return that no
such solution exists, in time Õ(2kpoly(k)Bnω) = O∗(2kB) and polynomially-
small error probability.3

Proof. The algorithm is identical to the previous one, except that as a first step,
edges of weight greater than B are deleted from the graph, and that when mul-
tiplying two polynomials in (F[G])[z] of degree at most B, we truncate from
the resulting polynomial any term of degree greater than B, thus keeping all
polynomials throughout the algorithm at degree of at most B. As every poly-
nomial multiplication now takes Õ(2kpoly(k)B) time, the running time analysis
follows. 
�

We denote with B the algorithm that finds an exact solution to the k-path
problem of weight at most B, if such exists, or to returns that no such solution
exists. We will use it as a sub-routine in our approximation algorithm.

Define k′ = k − 1 (the number of edges in a k-path), and let OPT be the
minimum-weight k-path. Our approximation algorithm starts by defining an

3 B does not have to be an integer, but the effect in this case is as if �B� is used.



398 A. Hassidim et al.

upper and a lower bound, U and L, respectively, to the weight of OPT . At first,
U = k′M and L = k′. It then iteratively fine-tunes U and L to the point where
the ratio U/L is less than or equal to 2, while maintaining the invariant that
L ≤ w(OPT ) ≤ U . This fine tuning is done as follows.

At each iteration we let the value X =
√
LU be the geometric mean of L

and U , and define the value δ = (L/U)1/3−
√
L/U which will serve as a scaling

coefficient. Notice that δ > 0 as U > L. We then scale-down the edge weights

by a factor of δU/k′, thus defining a new weight w′(i, j) =
⌊
w(i,j)
δU/k′

⌋
for each

edge (i, j), and let G′ = (V,E,w′) be the graph with the new weights. Ideally,
we would like to test whether the weight of the optimal solution is less than
or greater than X by calling B(G′, k, X

δU/k′ ); here notice that the value X
δU/k′ is

the scaled-down equivalent of X in G′. However, while the scaling guarantees
that this test can be done without incurring a high running time cost, it also
introduces a loss of precision due to the floor function in the scaling: define
weff(i, j) = (δU/k′)w′(i, j) as the effective weight w′(i, j) simulates, then we have
that weff(i, j) ≤ w(i, j) ≤ weff(i, j)+δU/k′, and therefore for a k-path P , we have
that weff(P ) ≤ w(P ) ≤ weff(P )+δU . Therefore, in the case w′(OPT ) > X

δU/k′ we

have that w(OPT ) ≥ weff(OPT ) > X , but if w′(OPT ) ≤ X
δU/k′ (and therefore

weff(OPT ) ≤ X) then all we can assert is that w(OPT ) ≤ X+δU . Therefore, a k-
path returned by a call to B(G′, k, X

δU/k′ ) has weight at most X+δU (and not X)

w.r.t. the original graph. According to the outcome of the call to B(G′, k, X
δU/k′ ),

we redefine U and L: if B(G′, k, X
δU/k′ ) returned a result, we set U ← X + δU ;

otherwise we set L← X .
When the main loop is done (convergence is shown to exist below), we again

redefine a new weight function: w′(i, j) =
⌊
w(i,j)
εL/k′

⌋
for each edge (i, j), the graph

G′ = (V,E,w′), and return the result of a call to B(G′, k, U
εL/k′ ). The full algo-

rithm pseudo-code is given as Algorithm 2.

Running-Time. We first show that the main loop performs O(log logM) itera-
tions. Let Li, Ui be the respective values of L,U at the start of iteration i; we
will show that Ui+1/Li+1 ≤ (Ui/Li)

2/3. At the end of each iteration i, we have
that either Li+1 ← Li and Ui+1 ← X + δUi, or that Li+1 ← X and Ui+1 ← Ui,

where X =
√
LiUi and δ = (Li/Ui)

1/3 −
√
Li/Ui. In the former case we have

that

Ui+1

Li+1
=

X + δUi

Li
=

√
LiUi +

((
Li
Ui

)1/3

−
√

Li
Ui

)
Ui

Li
=

(
Li
Ui

)1/3

Ui

Li
=

(
Ui

Li

)2/3

,

(10)

and in the latter

Ui+1

Li+1

=
Ui

X
=

Ui√
LiUi

=

√
Ui

Li
≤

(
Ui

Li

)2/3

. (11)



Finding the Minimum-Weight k-Path 399

Algorithm 2. Approximation algorithm.

1 k′ ← k − 1
2 L ← k′

3 U ← k′M
4 while U > 2L do

5 X ←
√
LU

6 δ ← (L/U)1/3 −
√

L/U

7 Define w′ : E → N such that w′(i, j) =
⌊

w(i,j)
δU/k′

⌋
8 G′ ← (V,E,w′)
9 if B(G′, k, X

δU/k′ ) returns a result then

10 U ← X + δU
11 else
12 L ← X

13 Define w′ : E → N such that w′(i, j) =
⌊

w(i,j)
εL/k′

⌋
14 G′ ← (V,E,w′)
15 return B(G′, k, U

εL/k′ )

In both cases we have that Ui+1/Li+1 ≤ (Ui/Li)
2/3. Therefore it converges

to a constant after O(log logM) iterations. Notice that an invocation of
B(G′, k, X

δU/k′ ) costs Õ(2kpoly(k)nω) by Proposition 5, with the bound B =
X

δU/k′ which is O(k), as δU = Ω(X). We conclude that the overall cost of the

main loop is Õ(2kpoly(k)nω log logM).
As for the final call to B(G′, k, U

εL/k′ ), we have that its running time is

Õ(2kpoly(k)nω/ε) by Proposition 5, with the bound B = U
εL/k′ which is O(k/ε)

since at this stage U ≤ 2L. We conclude that the overall running time of the
approximation algorithm is Õ(2kpoly(k)nω(log logM + 1/ε)).

Correctness. Throughout the execution, the algorithm maintains the invariant
that L < X < X + δU < U . That can be easily seen by substituting X and
δ for their values and observing that L <

√
LU < L1/3U2/3 < U . Assume

there exist a k-path in G, and let OPT be the minimum-weight k-path. By
the scaling arguments, and the fact that we have brought the loss of precision
due to scaling into consideration when redefining U and L, we have that the
invariant L ≤ w(OPT ) ≤ U always holds. Due to the running-time argument,
when the main loop is done we have U/L ≤ 2. Let P ∗ be the result of the call to
B(G′, k, U

εL/k′ ) at line 15 of the pseudo-code, and notice the the weights defined

at line 13 incur an εL/k′ loss of precision per edge, or equivalently εL per k-
path. By the call to the exact algorithm, we have that w′(P ∗) ≤ w′(OPT ) and
therefore also weff(P ∗) ≤ weff(OPT ). Accounting for the loss of precision, we
have that w(P ∗) ≤ weff(P ∗) + εL ≤ weff(OPT ) + εL ≤ (1 + ε)w(OPT ).



400 A. Hassidim et al.

6 k-Tree

In [10], they provide a solution to the k-tree problem: given an n-vertex graph G
and a k-node tree T , is there a (not necessarily induced) copy of T in G. Again
their solution is based on a reduction to the question of is there a k-multilinear-
monomial in the sum-product expansion of a given polynomial. We show how to
handle the minimum-weight k-tree problem—in which we are given a weighted
graph G, and wish to find a minimum-weight copy of T in it, across all copies
of T in it—again, when the weights are integers in a given range [−M,M ].

Theorem 1. Given a graph G, if the edge-weights are integers in [−M,M ],
the minimum-weight k-tree can be found in Õ(2kpoly(k)Mn3) time. If the edge-
weights are reals in [1,M ], the problem can be approximated within (1 + ε) in
Õ(2kpoly(k)n3(log logM + 1/ε)) time.

Let NG(i) be the neighbor-set of vertex i in G, and let X = {x1, . . . , xn} be
a variable-set corresponding to V (G). We use the following polynomial on X ,
implemented as an arithmetic circuit:

Let V (G) = [n] and V (T ) = [k]. The polynomial CT,i,j(x1, . . . , xn) is defined
as follows. If |V (T )| = 1, then CT,i,j = xj . Otherwise, CT,i,j is defined recur-
sively: let {Ti,� | � ∈ NT (i)} be the subtrees of T created by removing node i
from T , where Ti,� is the subtree containing �. Then

CT,i,j =
∏

�∈NT (i)

⎛⎝ ∑
j′∈NG(j)

y(i,�),(j,j′) · zw(j,j′)CTi,�,�,j′

⎞⎠ , (12)

where as before, z is a symbolic variable, and the values {ye,e′ | e ∈ E(T ), e′ ∈
E(G)} are random values drawn from F.4 Finally, define the polynomial Q =∑

j∈V (G)CT,1,j . Each CT,1,j is a circuit containing at most |E(T )| · |E(G)| addi-

tion and multiplication gates and therefore Q contains n·|E(T )|·|E(G)| = O(n3k)
such gates. Q is a sum over all homomorphisms from T to subgraphs of G of
size at most k: specifically CT,i,j aggregates over all homomorphisms that map
i ∈ V (T ) to j ∈ V (G) (proof can be found in [10]5). Therefore, a monomial
xj1 · · ·xjk appears in the sum-product expansion of Q if an only if there is a
homomorphism mapping V (T ) to {j1, . . . , jk} such that if (i, �) ∈ E(T ), then
(ji, j�) ∈ E(G). If such a monomial is multilinear, it corresponds to such a ho-
momorphism in which j1, . . . , jk are distinct vertices, i.e., a vertex in G was not
used more than once for the sake of a single mapping. From this point, the same
algorithms given before follow (only this time, evaluating Q over (F[G])[z]), and
propositions similar to Propositions 1–4 apply. Full proofs are deferred to the
full version of the paper. We obtain that the minimum-weight k-tree problem

4 In [10], the y-values are implicit and come from the multiplication of the output of
each multiplication gate with a random value taken from F.

5 Their arithmetic circuit is defined as Q =
∑

i∈V (T ),j∈V (G) CT,i,j , however, it seems
to contain redundancy.



Finding the Minimum-Weight k-Path 401

with integer edge-weights in [−M,M ] can be solved in Õ(2kpoly(k)Mn3) time
and that if the edge-weights are reals in [1,M ], it can be approximated within
(1 + ε) in Õ(2kpoly(k)n3(log logM + 1/ε)) time.

Acknowledgments. We would like to thank Ryan Williams and Danny Raz
for helpful comments.

References

1. Abasi, H., Bshouty, N.H.: A simple algorithm for undirected hamiltonicity. Elec-
tronic Colloquium on Computational Complexity (ECCC) 20, 12 (2013)

2. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)
3. Björklund, A.: Determinant sums for undirected hamiltonicity. In: FOCS, pp.

173–182. IEEE Computer Society (2010)
4. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Narrow sieves for parameter-

ized paths and packings. CoRR, abs/1007.1161 (2010)
5. Chen, J., Lu, S., Sze, S.-H., Zhang, F.: Improved algorithms for path, matching, and

packing problems. In: Bansal, N., Pruhs, K., Stein, C. (eds.) SODA, pp. 298–307.
SIAM (2007)

6. Cygan, M., Gabow, H.N., Sankowski, P.: Algorithmic applications of baur-
strassen’s theorem: Shortest cycles, diameter and matchings. In: FOCS, pp.
531–540. IEEE Computer Society (2012)

7. Ergün, F., Sinha, R.K., Zhang, L.: An improved fptas for restricted shortest path.
Inf. Process. Lett. 83(5), 287–291 (2002)

8. Kneis, J., Mölle, D., Richter, S., Rossmanith, P.: Divide-and-color. In: Fomin, F.V.
(ed.) WG 2006. LNCS, vol. 4271, pp. 58–67. Springer, Heidelberg (2006)

9. Koutis, I.: Faster algebraic algorithms for path and packing problems. In: Aceto, L.,
Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz,
I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 575–586. Springer, Heidelberg
(2008)

10. Koutis, I., Williams, R.: Limits and applications of group algebras for parameter-
ized problems. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas,
S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 653–664. Springer,
Heidelberg (2009)

11. Monien, B.: How to find long paths efficiently. Annals of Discrete Mathematics 25,
239–254 (1985)

12. Williams, R.: Finding paths of length k in o*(2k) time. Inf. Process. Lett. 109(6),
315–318 (2009)

13. Williams, V.V.: Multiplying matrices faster than coppersmith-winograd. In:
Karloff, H.J., Pitassi, T. (eds.) STOC, pp. 887–898. ACM (2012)

14. Zwick, U.: All pairs shortest paths using bridging sets and rectangular matrix
multiplication. J. ACM 49(3), 289–317 (2002)



Compressed Persistent Index for Efficient

Rank/Select Queries

Wing-Kai Hon1,�, Lap-Kei Lee2,��, Kunihiko Sadakane3,���,
and Konstantinos Tsakalidis4

1 Department of Computer Science, National Tsing Hua University, Taiwan
2 HKU-BGI Bioinformatics Algorithms & Core Technology Research Laboratory,

University of Hong Kong, Hong Kong
3 National Institute of Informatics, 2-1-2 Hitotsubashi, Tokyo 101-8430, Japan

4 Department of Computer Science & Engineering, HKUST, Hong Kong

Abstract. We design compressed persistent indices that store a bit vec-
tor of size n and support a sequence of k bit-flip update operations, such
that rank and select queries at any version can be supported efficiently.
In particular, we present partially and fully persistent compressed indices
for offline and online updates that support all operations in time polylog-
arithmic in n and k. This improves upon the space or time complexities
of straightforward approaches, when k = O( n

log n
), which is common in

biological applications. We also prove that any partially persistent index
that occupies O((n + k) log(nk)) bits requires ω(1) time to support the
rank query at a given version.

1 Introduction

In this paper we consider the problem of maintaining persistently a compressed
bit vector under (online and offline) bit-flip updates, such that rank and select
queries (and even updates) can be supported at any version of the bit vector.
We consider the word-RAM model of computation. Although many persistent
implementations have been devised for specific data structures, such as deques,
dictionaries, etc. [8], this is the first study of making a compressed data structure
persistent. A potential application of our data structures can be found in tempo-
ral indexing of similar DNA sequences. Many existing index implementations are
for a single DNA sequence and rely on rank/select queries over compressed bit
vectors to support pattern searching queries, e.g., FM-index [5], wavelet tree [6].
By interpreting differences between sequences as offline updates and temporal
modifications of the sequences as online updates, our structures provide the extra
capability of temporal rank/select queries over any version of the sequences.

Specifically, let B[1..n] be a bit vector of length n. For a bit c∈{0, 1} and
an integer i∈[1, n], the query operation rankc(B, i) returns the number of oc-
currences of c in the prefix B[1..i] of B, and the query operation selectc(B, i)

� W.K. Hon was supported by Taiwan NSC Grant 99-2221-E-007-123.
�� L.K. Lee was supported by Hong Kong Research Grant Council HKU 713512E.

��� K. Sadakane was supported by JSPS KAKENHI 23240002.

F. Dehne, R. Solis-Oba, and J.-R. Sack (Eds.): WADS 2013, LNCS 8037, pp. 402–414, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Compressed Persistent Index for Efficient Rank/Select Queries 403

returns the position of the i-th occurrence of c in B. In the dynamic case, the
index also supports the bit-flip(B, i) update operation that flips the bit B[i] from
1 to 0, or from 0 to 1. Yet such an index is ephemeral, meaning that an update
operation creates a new version of B without maintaining previous versions.

In this paper, we are interested in maintaining a persistent index that more-
over remembers all versions of B when updates are performed to it. In particular,
we consider two notions of persistence: A partially persistent index allows only
updates to the latest version of B and the other versions are read-only; the ver-
sions of B form a list called version list. A fully persistent index allows updates
and queries to any version of B; the versions form a tree called version tree.

The ephemeral static and dynamic data structures proposed for this problem
are all succinct (see [13,14] and references therein), namely their space usage is
as close as possible to the information-theoretic lower bound. Following the liter-
ature, for a bit vector B of length n that stores m occurrences of 1-bits, this is n
times the empirical zero-order entropy H0(B) = m

n log n
m + n−m

n log n
n−m . How-

ever, a complication arises when independent update operations are maintained
persistently, since after k updates at least log k+logn bits are required in order to
store respectively both the version number and the position of the bit flip of each
update. Therefore, we define a persistent index to be compressed when it uses
nH0(B0)+o(n)+O(k· log(kn)) bits of space, where B0 is the initial version of the
bit vector of length n. In other words, the initial bit vector is to be represented
by a succinct data structure using space close to the information-theoretic lower
bound, while we simultaneously maintain the information of each update us-
ing only O(log(kn))=O(log k+ logn) bits. Notice that after k=ω( n

logn ) updates,

the O(k log(kn)) term dominates the space complexity and thus the structure
occupies ω(n) bits. Then, we can straightforwardly modify a regular persistent
binary tree [4] to support the operations in O(log n) time, using O(n) words.

Therefore we focus on “small” sequences of k=O( n
log n ) updates wherein the

structure occupies O(n) bits. This is a typical scenario in biological applications:
We want to store a set of related DNA strings together, so that pattern searching
queries can be supported efficiently. We may think of one string as a modification
of the other. Here, the number k of DNA mutations is much smaller than the
length of a DNA string. For example, for a human genome k is in the order
of millions, while its length is around 3 billion nucleotides [15]. We study the
problem under two types of updates, namely offline and online updates. For
offline updates, all the k updates (and thus all the k versions of B) are known in
advance. For online updates, the updates to B arrive in an online fashion such
that an update must be performed before the next update arrives.

Previous Results. In the word-RAM model, Raman et al. [13] present a static
succinct data structure that supports rank and select queries in O(1) time.
Sadakane and Navarro [14] present the range min-max tree, a dynamic suc-
cinct data structure that supports all operations in O( log n

log logn ) time. If we utilize
this structure and store every version explicitly, the space usage will degrade to
O(n) words after only k=O(log n) updates. On the other hand, if we maintain
only the information relevant to an update operation and reproduce a queried



404 W.-K. Hon et al.

Table 1. Asymptotic time bounds for persistent rank, select and bit-flip operations,
where n is the size of bit vector B, k is the number of updates/versions and ε is any
positive constant. The fully persistent index for online updates occupies nH0(B0) +
o(n) +O(k log n log(kn)) bits, while the other indices are compressed. † is amortized.

Offline updates Online updates

Partially log k
log log k

, log n( log k
log log k

) , − ( log k
log log k

)2 , log n( log k
log log k

)2 , log4+ε k
persistent

Fully log2 k
log log k

, log n( log2 k
log log k

) , − log3 n , log3 n , log2 n log log n†
persistent

version by the sequence of updates that created it, then the query time has a
linear dependence on k in the worst case.

There exist generic techniques to render a data structure persistent in the
pointer machine [4], word-RAM [3,9] and external memory [1] models. It is nat-
ural to consider applying these techniques to the range min-max tree [14]. The
node splitting technique of Driscoll et al. [4] is applicable to pointer-based struc-
tures of constant-size nodes, which is not the case for the range min-max tree.
Alternatively, we can store the tree in arrays and make them persistent using
techniques in [3,9]. However, the arrays are not succinct and the update time is
only efficient in expectation.

Our Contributions. This paper presents partially and fully persistent com-
pressed indices for bit vectors that support efficient rank and select queries under
sequences of offline and online bit-flip updates (see Table 1). They improve the
space usage of straightforward approaches, as long as the number of bit flips k is
O( n

logn ), where n is the bit vector size. These are the first compressed persistent
indices that support all operations in time polylogarithmic in n and k.

In Section 2 we present the partially persistent indices for offline and online
updates. They are obtained by storing the initial bit vector in a static structure
for rank and select queries [13], and maintaining the information relevant to ev-
ery update operation in a static (respectively dynamic) structure that supports
planar orthogonal range counting queries [7,11]. Then we show how to obtain the
answers of rank and select queries to a particular version without reconstructing
the queried version, but instead by interpreting them as range counting queries
appropriately. We follow a similar approach in the case of the fully persistent
index for offline updates (Section 3), where we moreover apply centroid path
decomposition (see, e.g., [2]) to the version tree in order to efficiently determine
the updates that have created a queried version. To obtain the fully persistent
index for online updates (Section 4), we first present the range sum tree, a simpli-
fication of the range min-max tree [14] that is succinct and supports rank, select
and bit-flip in O(log n) time. Then we parametrize the I/O-efficient technique
for full persistence of [1] such that it can handle nodes of non-constant size in
the word-RAM model, and we apply it to the range sum tree.

Finally, in Section 5 we prove a superconstant lower bound on the rank query
time of any partially persistent index that supports offline bit-flip updates and



Compressed Persistent Index for Efficient Rank/Select Queries 405

uses O((n+k) log(nk)) bits of space. This is in contrast to the non-persistent
setting, where there exist succinct representations of the bit vector that support
rank queries in O(1) time [13].

2 Compressed Partially Persistent Index

In this section, we present two compressed partially persistent indices for offline
and online updates, respectively. Let k be the number of updates and let n be
the size of the bit vector B. The main results are stated below.

Theorem 1. There is a compressed partially persistent index for offline updates
that occupies nH0(B0)+o(n)+O(k log(kn)) bits, and supports at any version,
rank queries in O( log k

log log k ) time and select queries in O( log n log k
log log k ) time.

Theorem 2. There is a compressed partially persistent index for online up-
dates that occupies nH0(B0)+o(n)+O(k log(kn)) bits, and supports at any ver-
sion, rank queries in O(( log k

log log k )2) time, select queries in O(log n( log k
log log k )2) time

and accessing a bit in O(( log k
log log k )2) time. An update at the latest version takes

O(log4+ε k) time, for any constant ε>0.

2.1 Data Structure and Algorithm for Offline Updates

We now show Theorem 1. The compressed partially persistent index consists of
two components. The first component is a succinct data structure for the initial
bit vector B0. We use the data structure of Raman et al. [13] that occupies
nH0(B0)+o(n) bits and supports rank and select queries on B0 in O(1) time.

Lemma 1. [13] A bit vector B0[1..n] can be stored using nH0(B0) +O(n lg lgn
lgn )

bits to support in O(1) time the queries rankc(B0, i) and selectc(B0, i), for any
1≤i≤n and c∈{0, 1}.

The second component stores the information of the update for each version.
We reduce the rank and select query to the problem of planar range counting
which, given Z points on a N×N grid, asks for the number of points in a given
range [x1, x2]×[y1, y2]. We employ the data structure of JáJá et al. [7].

Lemma 2. [7] Let Z points lie on an N×N grid. Planar range counting queries
can be supported in O( logZ

log logZ ) time, using O(Z logN) bits.

We define two grids G0 and G1 of size max(k, n)×max(k, n), such that an update
on bit i of version Bt−1 from 1 to 0, which creates the new version Bt, corresponds
to the point (t, i) on grid G0 (similarly, on G1 for bit-flips from 0 to 1).1 We
maintain two data structures of Lemma 2 for the grids G0 and G1, respectively.
They occupy in total 2·O(k log(max(k, n))) = O(k log(kn)) bits. Thus, the total
space of both components is the space stated in Theorem 1.

1 For offline updates, we can determine if the bit is flipped from 0 or 1 at no cost.



406 W.-K. Hon et al.

Query Algorithm. We can answer the queries rankc(Bt, i) and selectc(Bt, i),
for any version t, position 1≤i≤n and bit c∈{0, 1}, as follows. Let countc(t , i)
be the number of points in the range [0, t]×[0, i] of Gc.

– rankc(Bt, i): First, we obtain rankc(B0, i) from the succinct data struc-
ture for B0. Then, we make two range counting queries on the data struc-
tures for grids Gc and G1−c to obtain countc(t , i) and count1−c(t , i). Then
rankc(Bt, i) = rankc(B0, i) + countc(t , i) − count1−c(t , i).

– selectc(Bt, i): selectc(Bt, i) is the smallest j∈[1, n] such that
rankc(Bt, j) = i. We find such a j, by a binary search on rankc(Bt, j).

Lemma 3. For any version t, bit position 1≤i≤n and bit c∈{0, 1}, the above
query algorithms correctly answer rankc(Bt, i) and selectc(Bt, i) in O( log k

log log k )

time and O( log n log k
log log k ) time, respectively.

Proof. We prove the correctness of answering rankc(Bt, i) by induction on
the version t. When t=0, since countc(0 , i)=count1−c(0 , i)=0 , we have
rankc(Bt, i) = rankc(B0, i)+countc(0 , i)−count1−c(0 , i) = rankc(B0 , i). As-
sume that for some version t≥1, rankc(Bt−1, i) can be correctly answered, i.e.,
rankc(Bt−1, i) = rankc(B0, i)+countc(t−1 , i)−count1−c(t−1 , i). Recall that for
a partially persistent index, an update on Bt−1 (i.e., version t−1 of B) is a single
bit-flip on Bt−1, which creates the bit vector Bt. There are three cases: (1) If
a bit in position [i+1, n] is flipped, rankc does not change. Since countc and
count1−c remain the same, rankc(Bt, i) = rankc(Bt−1, i). (2) If a bit in posi-
tion [1, i] is flipped from 1−c to c, then rankc is increased by 1. We have the
point (t, i) in grid Gc, so countc(t , i) = countc(t−1 , i)+1 , while count1−c is
unchanged. Thus, rankc(Bt, i) = rankc(Bt−1, i)+1. (3) If a bit in position [1, i]
is flipped from c to 1−c, then rankc is decreased by 1. The point (t, i) is in grid
G1−c, so count1−c(t , i) = count1−c(t−1 , i)+1 while countc is unchanged. Thus,
rankc(Bt, i) = rankc(Bt−1, i)−1. Therefore, rankc(Bt, i) is correctly answered
for all version t. It takes O(1) time to obtain rankc(B0, i) and O( log k

log log k ) time

to obtain both countc(t , i) and count1−c(t , i). The total time is O( log k
log log k ).

The correctness of selectc(Bt, i) follows from its definition. The binary search
makes at most O(log n) queries on rankc(Bt, j) for j∈[1, n], and each takes
O( log k

log log k ) time, which implies the stated time complexity. 
�

2.2 Data Structure and Algorithm for Online Updates

We now consider online updates and show Theorem 2. For online updates, we will
define a new query access(Bt, i) that returns bit i in Bt. Similarly to Section 2.1,
we divide the compressed partially persistent index into two components. The
first component is the succinct data structure for the initial bit vector B0 given
in Lemma 1. The second component stores the update for each version, utilizing
a dynamic data structure for the planar range counting problem.

Specifically, for an online update on bit i of Bt−1 that creates Bt, we need to
add the point (t, i) to one of the grids G0 and G1 in an online fashion. Nekrich [11]



Compressed Persistent Index for Efficient Rank/Select Queries 407

has presented data structures for the dynamic planar range counting problem,
where points can be added to or removed from the grid dynamically.

Lemma 4. [11] Let Z points lie on an N×N grid. Planar range counting queries
can be supported in O(( logZ

log logZ )2) time, and updates in O(log4+ε Z) time, for any

constant ε>0, using O(Z logN) bits.

In the case of online updates, the maximum version number, denoted by K, is
not fixed. We can set K to some constant and double it, whenever the current
version number k is equal to K. In this way, K is always at most 2k, and thus a
version number can be represented in O(log k) bits. Similarly to Section 2.1, we
define two grids G0 and G1 of size max(K,n)×max(K,n), such that an update
on bit i of Bt−1 from 1 to 0 (that gives Bt) corresponds to the point (t, i) on
grid G0 (similarly, on G1 for 0-to-1 bit-flips). Here, to determine if an update is
a bit-flip from 0 to 1 or vice versa, we need to call access(Bt−1, i).

We maintain two data structures of Lemma 4 for the grids G0 and G1, respec-
tively, which occupy 2·O(k log(max(K,n))) = O(k log(kn)) bits of space in total.
Thus, the total space of both components is the space stated in Theorem 2.

Query Algorithm. For any version t, position 1≤i≤n and bit c∈{0, 1}, we an-
swer rankc(Bt, i) and selectc(Bt, i) in the same way as in Section 2.1. We answer
access(Bt, i), as follows. First, we obtain access(B0, i), which is the value of B0[i],
from the succinct data structure for B0. We make four planar range counting
queries on grids G0 and G1 to obtain count0 (t , i−1 ), count0 (t , i), count1 (t , i−1 )
and count1 (t , i). Then we report access(Bt, i) to be

access(B0, i) + (count1 (t , i)−count1 (t , i−1 )) − (count0 (t , i)−count0 (t , i−1 )) .

The correctness of the rank and select queries follows directly from Lemma 3.
Their time complexities are blown up by a factor of O( log k

log log k ), because we use
the data structure of Lemma 4, instead of that of Lemma 2. Thus, the following
lemma suffices to complete the proof of Theorem 2.

Lemma 5. For any version t and bit position 1≤i≤n, the above query algorithm
correctly answers access(Bt, i) in O(( log k

log log k )2) time. Furthermore, an update at

the latest version takes O(log4+ε k) time, for any constant ε>0.

Proof. Note that count1 (t , i)−count1 (t , i−1 ) is the number of times bit i is
flipped from 0 to 1 up to version t, while count0 (t , i)−count0 (t , i−1 ) is the
number of times bit i is flipped from 1 to 0 up to version t. Therefore, their
difference is equal to the change of bit i from B0 to Bt, and the correctness of
access(Bt, i) follows. The access query involves a call to access(B0, i) that takes
O(1) time, and four planar range counting queries that take O(( log k

log log k )2) time,
which implies the time complexity stated in Theorem 2.

For an online update on bit i of Bt−1 that creates Bt, we need a query on
access(Bt−1, i) to determine which of grid G0 or G1 to add the point (t, i) to.
This takes O(( log k

log log k )2) time. By Lemma 4, adding the point (t, i) to a grid

takes O(log4+ε k) time. Thus, each update takes O(log4+ε k) time in total. 
�



408 W.-K. Hon et al.

3 Compressed Fully Persistent Index for Offline Updates

This section considers offline updates and presents a compressed fully persistent
index. Let k be the number of updates and let n be the size of the bit vector B.

Theorem 3. There is a compressed fully persistent index for offline updates
that occupies nH0(B0)+o(n)+O(k log(kn)) bits, and supports at any version,

rank queries in O( log2 k
log log k ) time and select queries in O( log n log2 k

log log k ) time.

The fully persistent index allows updates to any version. A version Bt is created
by flipping a single bit in Bp for some p<t. Let T be the version tree.

Centroid Path Decomposition. We decompose the version tree T using cen-
troid path decomposition (see, e.g., [2]), as follows. For any internal node u, let v
be the child of u with the largest number of leaves in its subtree (ties are broken
arbitrarily). We refer to edge uv as a core edge, and to non-core edges as side
edges. A centroid path C is a maximal path connecting consecutive core edges.
The root of C, denoted by r(C), is the top-most node of C. We denote by Δ(T ),
the set of all centroid paths in T . The following property is well-known.

Property 1. Let T be a tree of k nodes with a centroid path decomposition. The
path from the root of T to any node v traverses at most log k centroid paths.

Data Structure and Algorithm. The compressed fully persistent index con-
sists of three components. The first component is the succinct data structure for
the initial bit vector B0 given in Lemma 1. The second component stores the
version tree T and three pieces of auxiliary information for each node in T . In
particular, for each version v, we maintain the version number p(v) of its parent.
We also assign a node label �(v) from 1 to k to each node v in ascending order
of their depth, such that the node labels are strictly increasing along the path
from the root of T to any node v of T . Finally, every node v is in some centroid
path C, and we define f(v) to be the root r(C) of C. We can store p(v), �(v) and
f(v) in three arrays of size k, which allows O(1) time access, given the version
number v. In total, the second component takes O(k log(kn)) bits of space.

The third component stores the information of the update for each version,
using the data structure for the planar range counting problem of Lemma 2,
as follows. For each centroid path C, we define two grids G0(C) and G1(C)
of size max(k, n)×max(k, n). Consider each update on a version p that creates
a version t>p, where t∈C. If the update flips bit i of Bp from 1 to 0, there
is a point (�(t), i) on grid G0(C) (similarly, on G1(C) for 0-to-1 bit-flips). For
each centroid path C, we maintain two structures of Lemma 2 for the grids
G0(C) and G1(C), respectively. These data structures are associated with the
node r(C). For all centroid paths, this takes 2·

∑
C∈Δ(T ) O(|C| log(max(k, n))) =

2·O(k log(max(k, n))) = O(k log(kn)) bits of space. Thus, the total space of all
components is the space stated in Theorem 3.

Query Algorithm. Consider any version t, position 1≤i≤n and bit c∈{0, 1}.
We answer the query on selectc(Bt, i) by using rankc in the same way as in



Compressed Persistent Index for Efficient Rank/Select Queries 409

Section 2.1. We now give the query algorithm for answering rankc(Bt, i). Let
countc(C , t , i) be the number of points in the range [0, t]×[0, i] of Gc(C).

– rankc(Bt, i): First, we obtain rankc(B0, i) from the succinct data structure
for B0. Then, we consider all updates along the path from the root of T to
version t. Let U = (u0=0, u1, u2, . . ., ux−1, ux=t) be the path that contains x
versions. Suppose U traverses y centroid paths in the order of C1, C2, . . ., Cy.
The roots of all these y centroid paths must be in U ; we denote them by
uz(1), uz(2), . . ., uz(y). Note that uz(1) = u0 = 0.

Let count ′c =
∑y−1

j=1 countc(Cj , �(uz(j+1 )−1 ), i)+countc(Cy , �(t), i), and let

count ′1−c =
∑y−1

j=1 count1−c(Cj , �(uz(j+1 )−1 ), i)+count1−c(Cy , �(t), i). We
compute them as follows. Since t=ux is in Cy, the root of Cy is uz(y)=f(t).
Since uz(y)−1 is in Cy−1, the root of Cy−1 is uz(y−1)=f(uz(y)−1). We repeat
the above to identify the roots of all the y centroid paths, and make 2y range
counting queries on grids Gc(Cj) and G1−c(Cj) for 1≤j≤y, respectively, to
compute the counts. Finally, rankc(Bt, i) = rankc(B0, i)+count ′c−count ′1−c.

To establish Theorem 3, it suffices to prove the correctness and time complexity
for the rank query, since for select they follow similarly to Lemma 3.

Lemma 6. For any version t, position 1≤i≤n and c∈{0, 1}, the above query

algorithm correctly answers rankc(Bt, i) in O( log2 k
log log k ) time.

Proof. It suffices to prove that counter count ′c (resp. count ′1−c) counts correctly
the updates along the path U that flip the bits in position [1, i] from 1−c to c
(resp. from c to 1−c). Since each such flip contributes 1 (resp. -1) to rankc(Bt, i),
rankc(Bt, i) = rankc(B0, i)+count ′c−count ′1−c will follow.

Recall that count ′c =
∑y−1

j=1 countc(Cj , �(uz(j+1 )−1 ), i)+countc(Cy , �(t), i).
For convenience, we set z(y+1) = t+1. We focus on the path Uj = (uz(j), uz(j)+1,
. . . , uz(j+1)−1) for some 1≤j≤y. Then Uj⊆Cj . By the definition of node la-
bels, we have that �(uz(j))<�(uz(j)+1)<· · ·<�(uz(j+1)−1) and all other nodes
in Cj have a node label larger than �(uz(j+1)−1). Thus, on the grid Gc(Cj),
countc(Cj , �(uz(j+1 )−1 ), i) correctly counts the updates along the path Uj that
flip bits in position [1, i] from 1−c to c. Summing over all j, it follows that
count ′c =

∑y
j=1 countc(Cj , �(uz(j+1 )−1 ), i) correctly counts such bit flips made

by the updates along the path U . The correctness of count ′1−c follows similarly.
Regarding time complexity, it takes y·O(1) = O(y) time to identify the roots

of the y centroid paths. By Lemma 2, it takes 2y·O( log k
log log k ) = O(y· log k

log log k ) time
for the 2y range counting queries. By Property 1, the number of centroid paths

in U is y=O(log k). Therefore, the total time complexity is O( log2 k
log log k ). 
�

4 Compressed Fully Persistent Index for Online Updates

This section considers online updates and presents a compressed fully persistent
index. Let k be the number of updates and let n be the size of the bit vector B.



410 W.-K. Hon et al.

Theorem 4. There is a compressed fully persistent index for online updates that
occupies nH0(B0)+o(n)+O(k logn log(kn)) bits, and supports at any version,
rank, select and access queries in O(log3 n) worst case time. An update at any
version takes O(log2 n log log n) amortized time.

Overview. To show Theorem 4, we first present the range sum tree, a simpli-
fication of the range min-max tree of Sadakane and Navarro [14], that supports
rank, select and bit-flip in O(log n) time. Then we make it fully persistent us-
ing a generic method from [1], which is designed for the I/O model and can be
applied to the word-RAM model with a modest blow-up on time.

Range Sum Tree. The range sum tree is a balanced binary tree T , where each
node corresponds to a range [i, j] of B and it stores i, j and a value e(i, j) that
represents the number of 1’s in B[i, j]. We divide the bit vector B into segments
of length L= log2 n and each leaf of T corresponds to the range of a segment.
Let [iz, jz] be the range of a node z. An internal node z with left child u and
right child v has the range [iu, jv] and e(iz, jz) = e(iu, ju)+e(iv, jv). Therefore,
the number of nodes in T is O( n

log2 n
) and each node needs O(log n) bits, which

sums up to O( n
logn ) bits of space.

Each leaf node also stores the bits in B[i, j] for the query, as follows. We further
divide the length-L segment into 2 logn sub-segments of length t= log n

2
. A leaf

node has 2 logn extra fields, each representing a sub-segment succintly [13]: Each
sub-segment with x bits belongs to a class x of t-bitmaps. E.g., if t=2, class 0 is
{00}, class 1 is {01, 10} and class 2 is {11}. As class x contains

(
t
x

)
elements, we

can use �log
(
t
x

)
� bits and �log(t+1)� bits respectively to represent its element

index within the class and the class identifier. As shown in [13], all sub-segments
take at most nH0(B)+O( n

logn ) bits of space.
Let Px,y be the length-t sub-segment represented by element y of class x. We

maintain three universal tables Urank , Uselect,0 and Uselect,1 for each class, such
that given class x, element index y and an integer 0≤i≤t, Urank (Px,y, i) returns
the number of 1’s in Px,y[1, i]; and Uselect,0(Px,y, i) (resp. Uselect,1(Px,y, i)) re-
turns the smallest index j such that Px,y[1, j] contains i 1’s (resp. i 0’s). These
tables need 3·O(2t·t· log t) = O(

√
n logn log logn) = o(n) bits. Thus, the range

sum tree takes nH0(B)+2·O( n
log n )+o(n) = nH0(B)+o(n) bits in total.

Query Algorithm. We traverse T to answer a query on any bit position 1≤i≤n.
Initially, we set z to be the root of T . Note that [iz, jz]=[1, n]. We traverse T
depending on whether z is an internal node or leaf node as follows.

– rank1(B, i): We count the number of 1’s in [1, i] using a counter count1
initiated to 0. (1) z is an internal node with left child u and right child v: If
i∈[iv, jv], we add e(iu, ju) (i.e., the number of 1’s in [iu, ju]) to count1 , and set
z=v. If i∈[iu, ju], we set z=u. Then we repeat this procedure. (2) z is a leaf
node: Let (S1, S2, . . ., S2 logn) be the sub-segments of z. Suppose position i
is in Sj . We make j queries to the universal tables Urank to determine the
number of 1’s in S1, S2, . . ., Sj−1 and Sj up to position i and add them to
count1 . Finally, we return count1 that is clearly the number of 1’s in [1, i].



Compressed Persistent Index for Efficient Rank/Select Queries 411

– select1(B, i): We find the i-th 1-bit using a variable j (initiated to i) as
follows. (1) z is an internal node with left child u and right child v: If
j>e(iu, ju), the i-th 1-bit is not in [iu, ju]. We decrease j by e(iu, ju) and set
z=v. If j≤e(iu, ju), the i-th 1-bit is in [iu, ju] and we set z=u. Then we repeat
this procedure. (2) z is a leaf node: If j>e(iz, jz), the i-th 1-bit does not exist
and we simply return select1(B, i)=0. Otherwise, let (S1, S2, . . ., S2 logn) be
the sub-segments of z. We make at most 2 logn queries to the universal
table Urank (S�, t), where t= logn

2
, from �=1, 2, . . ., until we find an x, such

that
∑x

�=1 Urank (S�, t)≥j.2 Then the i-th 1-bit is in Sx. We make a query

on Uselect,1(Sx, j−
∑x−1

�=1 Urank (S�, t)) to obtain the position of B’s i-th 1-

bit in Sx. We return select1(B, i) = iz+(x−1)·( log n
2

)−1+Uselect,1(Sx, j −∑x−1

�=1 Urank (S�, t)).

Note that the number of 0’s in a range [i, j] is equal to (j−i+1)−e(i, j). Thus, we
can answer rank0(B, i) and select0(B, i) in a similar way, where for select0(B, i)
we query Uselect,0 instead of Uselect,1. To answer access(B, i), we traverse the path
from the root to the leaf z containing B[i], and identify the sub-segment Sx in z
that contains B[i], as described for rank1(B, i). Let B[i] be bit j of Sx. We obtain
B[i] = Urank (Sx, j)−Urank (Sx, j−1) with two queries on Urank .

Regarding query time, each query takes O(1) time for an internal node, and
O(log n) time for a leaf node, since we make O(logn) queries on universal ta-
bles, where each takes O(1) time. Since a path contains O(log( n

log2 n
))=O(log n)

internal nodes and a leaf node, a query takes O(log n·1+ log n) = O(log n) time.

Updating Bit i. To update bit i, we first make a query on access(B, i) to locate
the leaf node z that contains B[i]. We update the sub-segment with B[i] to a
new sub-segment in O(log n) time, since the sub-segment is of length t = log n

2
.

Then, we update each node u on the path from the root to z, as follows. If the
update flips B[i] from 0 to 1, we increase e(iu, ju) by 1; otherwise, we decrease
it by 1. The update time is O(log( n

log2 n
)) = O(log n).

Lemma 7. The range sum tree for a length-n bit vector B is a balanced search
tree, where each internal node contains O(1) fields and each leaf node contains
O(log n) fields. It occupies nH0(B)+o(n) bits and supports access, rank and se-
lect queries and updating a bit of B in O(log n) time by accessing O(log n) in-
ternal nodes and a leaf node (and for update, modifying a field in each of them).

Fully Persistent Range Sum Tree. We apply on the range sum tree T the
following result of [1] for the I/O model with disk block size of B words.

Lemma 8. [1] Let T be a pointer-based ephemeral data structure that supports
queries in O(q) worst case I/Os and where updates make O(u) modifications to T
in the worst case. Given that every node of T occupies at most O(1) blocks and
has O(1) maximum in-degree, T can be made fully persistent such that a query to
a particular version is supported in O(q) worst case I/Os, and an update to any

2 Such an x exists, because j≤e(iz, jz)=
∑2 log n

�=1 Urank(S�, t).



412 W.-K. Hon et al.

version is supported in O(u logB) amortized I/Os. After performing a sequence
of k updates, the fully persistent structure occupies O(u· kB ) blocks of space.

In the scheme of [1] for the above lemma, each I/O can be simulated by
O(B) RAM operations, so that the time complexity in the word-RAM model
is O(B) times that in the I/O model. We set the block size B= logn, such that
a block contains log n words and each (internal or leaf) node of T occupies
O(1) blocks. Since all algorithms are implemented only by top-down traversals
of T , the tree can be implemented such that each node has in-degree 1. We set
q=O(log n), since accessing an internal node takes O(1) time and a leaf node
takes O(log n) time. By Lemma 7, the rank, select and access queries access
O(log n) nodes and thus take O(log n·q·B)=O(log3 n) time. We set u=O(log n),
since by Lemma 7, an update makes O(log n) modifications to T . Thus, the up-
date time is O(u·B· logB) = O(log2 n log log n) amortized. The fully persistent
structure occupies O(log n· kB ) blocks = O(log n·k) words = O(log n·k· log(kn))
bits, since the word size is O(log(kn)). This gives Theorem 4.

5 Lower Bound

In this section, we show that even for offline updates, a partially persistent index
for a length-n bit vector B that occupies O((n+k) log(kn)) bits, where k is the
number of updates, must answer the rank query at any version in ω(1) time.

Our proof is based on a reduction of the problem of planar dominance count-
ing, which is defined as follows: on a grid [1, N ]×[1, N ] with N points, a dom-
inance counting query (x, y) asks for the number of points in a given range
[0, x]×[0, y]. Pǎtraşcu [12] has shown that any static data structure of size O(N)
words must take Ω( lgN

lg lgN ) time to answer a dominance counting query.

Theorem 5. Let B be a length-n bit vector, where k offline bit-flip updates have
been performed. A partially persistent index for B that occupies O((n+k) log(kn))
bits of space must answer the rank query at any version in ω(1) time.

Proof. Suppose for the sake of contradiction, the partially persistent index, de-
noted by I, can answer the rank query at any version in O(1) time. We show how
to use I in combination with y-fast tries [16] to answer a dominance counting
query on a grid G=[1, n]×[1, n] with n points in O(log log n) time, using only
O(n) words of space. This contradicts the lower bound of Ω( lgn

lg lgn ) time for

dominance counting queries [12] and thus proves the theorem.
Based on the n points on G, we construct a bit vector B[1..n] and n offline

bit-flip updates, as follows. All n bits in B are initially 0, which is the initial
version B0 of B. For each point (i, j) on G, suppose that among all the n points, i
is the p-th smallest x-coordinate and j is the q-th smallest y-coordinate, where
ties are broken arbitrarily. We construct an update operation that flips the p-bit
of Bq−1 from 0 to 1 to create version Bq.

We maintain the partially persistent index I for B that uses O(2n logn2) =
O(n log n) bits, i.e., O(n) words. In addition, we maintain a y-fast trie for all the



Compressed Persistent Index for Efficient Rank/Select Queries 413

distinct x-coordinatesX and another y-fast trie for all the distinct y-coordinatesY .
These two y-fast tries occupyO(|X |+|Y |)=O(2n)=O(n) words and allow us, given
a dominance counting query (a, b), to determine in O(log logn) time the predeces-
sor predX(a) of a in X (i.e., the largest element c∈X such that c≤a) and the pre-
decessor predY (b) of b in Y . For each element c∈X (resp. c∈Y ), we also store the
number rX(c) (resp. rY (c)) of points on G whose x- (resp. y-) coordinates are at
most c. This requires O(n) words.

To answer the dominance counting query (a, b), it is not hard to see that we
can ask I for the rank of rX(predX(a)) in version rY (predY (b)) of B. The query
time is O(log log n) and the space is O(n) words, completing the proof. 
�

6 Conclusion

In this paper we presented the first efficient compressed persistent indices for
bit vectors that support temporal rank/select queries and independent bit-flip
updates. Extending our results to handle general alphabets and/or correlated
updates (that exhibit a smaller information-theoretic space lower bound) may
find important applications in computational biology [10] and other fields. We
leave as open the problem of designing a compressed fully persistent index for
online updates. The rest of our structures can be improved by use of succinct
(static or dynamic) data structures for planar range counting.

References

1. Brodal, G.S., Sioutas, S., Tsakalidis, K., Tsichlas, K.: Fully persistent B-trees. In:
Proc. SODA, pp. 602–614 (2012)

2. Cole, R., Gottlieb, L.A., Lewenstein, M.: Dictionary matching and indexing with
errors and don’t cares. In: Proc. STOC, pp. 91–100 (2004)

3. Dietz, P.F.: Fully Persistent arrays. In: Dehne, F., Santoro, N., Sack, J.-R. (eds.)
WADS 1989. LNCS, vol. 382, pp. 67–74. Springer, Heidelberg (1989)

4. Driscoll, J.R., Sarnak, N., Sleator, D.D., Tarjan, R.E.: Making data structures
persistent. J. Comput. Syst. Sci. 38(1), 86–124 (1989)

5. Ferragina, P., Manzini, G.: Opportunistic data structures with applications. In:
Proc. FOCS, pp. 390–398 (2000)

6. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes.
In: Proc. SODA, pp. 841–850 (2003)

7. JáJá, J., Mortensen, C.W., Shi, Q.: Space-efficient and fast algorithms for multidi-
mensional dominance reporting and counting. In: Fleischer, R., Trippen, G. (eds.)
ISAAC 2004. LNCS, vol. 3341, pp. 558–568. Springer, Heidelberg (2004)

8. Kaplan, H.: Persistent data structures. In: Handbook on Data Structures and Ap-
plications, ch. 31, pp. 31-1–31-26. CRC Press (2004)

9. Kopelowitz, T.: On-line indexing for general alphabets via predecessor queries on
subsets of an ordered list. In: Proc. FOCS, pp. 283–292 (2012)

10. Mäkinen, V., Navarro, G., Sirén, J., Välimäki, N.: Storage and retrieval of highly
repetitive sequence collections. J. Comp. Biology 17(3), 281–308 (2010)

11. Nekrich, Y.: Orthogonal range searching in linear and almost-linear space. Comput.
Geom. 42(4), 342–351 (2009)



414 W.-K. Hon et al.

12. Pǎtraşcu, M.: Lower bounds for 2-dimensional range counting. In: Proc. STOC,
pp. 40–46 (2007)

13. Raman, R., Raman, V., Satti, S.R.: Succinct indexable dictionaries with applica-
tions to encoding k-ary trees, prefix sums and multisets. ACM Transactions on
Algorithms 3(4), 43 (2007)

14. Sadakane, K., Navarro, G.: Fully-functional succinct trees. In: Proc. SODA, pp.
134–149 (2010)

15. The 1000 Genomes Project Consortium. A map of human genome variation from
population-scale sequencing. Nature 467(7319), 1061–1073 (2010)

16. Willard, D.E.: Log-logarithmic worst-case range queries are possible in space Θ(n).
Information Processing Letters 17(2), 81–84 (1983)



Tight Bounds for Low Dimensional Star Stencils
in the External Memory Model

Philipp Hupp and Riko Jacob

Institute of Theoretical Computer Science, ETH Zürich, Zürich, Switzerland
philipp.hupp@inf.ethz.ch, rjacob@inf.ethz.ch

Abstract. Stencil computations on low dimensional grids are kernels of
many scientific applications including finite difference methods used to
solve partial differential equations. On typical modern computer archi-
tectures such stencil computations are limited by the performance of the
memory subsystem, namely by the bandwidth between main memory
and the cache. This work considers the computation of star stencils, like
the 5-point and 7-point stencil, in the external memory model. The anal-
ysis focuses on the constant of the leading term of the non-compulsory
I/Os. Optimizing stencil computations is an active field of research, but
so far, there has been a significant gap between the lower bounds and the
performance of the algorithms. In two dimensions, matching constants
for lower and upper bounds are provided closing a gap of 4. In three di-
mensions, the bounds match up to a factor of

√
2 improving the known

results by a factor of 2
√

3
√

B, where B is the block (cache line) size
of the external memory model. For higher dimensions n, the presented
lower bounds improve the previously known by a factor between 4 and
6 leaving a gap of n−1√n! ≈ n

e
.

Keywords: Hierarchical Memories, Lower Bounds, High Performance
Computing, Isoperimetric Inequalities, Non-compulsory I/Os, Capacity
Cache Misses.

1 Introduction

Solving Partial Differential Equations (PDEs) is one of the most common tasks
in scientific computing. A standard way to discretize low dimensional Euclidean
spaces for these computations are regular grids. Applying a finite difference
method on this discretization turns a differential operator into a linear function
of a grid point and its neighbors. Such a linear function is also called stencil and
results in a very regular sparse system of linear equations. To make use of the
sparsity, such systems are typically solved with iterative solvers like the Jacobi
or Gauss-Seidel method. The kernel of these methods is the evaluation of the
underlying stencil, making it the most performance critical component of the
computation.

Stencil operations are performed on grids for which each vertex possesses a
value. The task is to recompute the values at the vertices of the grid according to

F. Dehne, R. Solis-Oba, and J.-R. Sack (Eds.): WADS 2013, LNCS 8037, pp. 415–426, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



416 P. Hupp and R. Jacob

the stencil. Hereby the stencil states which neighboring vertices of a grid point
are necessary to update the grid point. To clarify how stencils are used to solve
PDEs we give a simple example. Consider the one-dimensional heat equation
which describes the variation of temperature on a pole over time. For a function
u(t, x) describing the temperature of the pole at time t and position x, this
problem can formally be written as the PDE ∂u

∂t = ∂2u
∂x2 . We approximate the

pole by a one-dimensional grid and use an explicit finite difference method to
calculate the temperature of the grid points at time t + 1 given the temperature
at time t. In this setting, the PDE can be approximated by u(t+1, x)−u(t,x)

Δt =
u(t, x−1)−2u(t, x)+u(t, x+1)

(Δx)2 . Abbreviating c := Δt
(Δx)2 , this solves to u(t + 1, x) =

c · u(t, x − 1) + (1 − 2c) · u(t, x) + c · u(t, x + 1) which in turn gives rise to
the one-dimensional 1-star stencil. Another well known example is the linear
approximation of the Laplacian on a regular two dimensional grid as given by
Δu(x, y) =̇ 1

h2

[
u((x−h), y)+u((x+h), y)+u(x, y −h)+u(x, y +h)−4u(x, y)

]
.

This defines the so called 5-point or 1-star stencil.
Stencil operations are not only easy in the sense that the floating point oper-

ations are predetermined. The majority of the I/O operations is already needed
for reading the input and writing the output. In fact, many simple algorithms
for the 5-point stencil are within a factor of 5 of this lower bound and the classi-
cal asymptotic analysis is too coarse to give interesting insights. I/O operations
related to the initial read of the input and the final write of the output are called
compulsory I/Os or cold cache misses. All other I/Os are called non-compulsory
I/Os or capacity misses (because they are unnecessary for sufficiently large main
memory M). The analysis of stencil operations carried out in this paper gives al-
most matching bounds in the sense that it focuses on the constant of the leading
term in the asymptotics of the non-compulsory I/Os.

1.1 Problem Definition

The computational model we consider is an I/O Model similar to [11] and [1].
There are two levels of memory, an external memory of infinite size on which
all data is stored initially, and an internal memory of size M to which the data
has to be loaded to perform computations. The external memory is organized
in blocks of size B. An I/O operation is the transfer of one block of data from
external to internal memory (read) or from internal to external memory (write).
We classify the I/Os into compulsory I/Os (cold misses), which account for the
first access to a block and writing the final output, and non-compulsory I/Os
(capacity misses). Non-compulsory I/Os are due to the limited size of the internal
memory.

We further assume that all I/Os are simple, i.e. data elements are moved
instead of copied between internal and external memory. While this facilitates
the derivation of our bounds, this assumption is not crucial and matching bounds
assuming simple I/Os translate to matching bounds using non-simple I/Os as
we discuss in Sect. 1.4.



Star Stencils in the External Memory Model 417

Let [k] abbreviate {0, . . . , k−1} and [k1]× . . . ×[kn] denote the n-dimensional
grid and Zk1 × . . . × Zkn the n-dimensional torus of side lengths ki. Denote
by || · ||1 the �1-norm which is defined as usual for the grid and for an element
v ∈ Zk1 × . . . ×Zkn of the torus it is given by ||v||1 =

∑n
i=1 min{ (−vi mod ki),

(vi mod ki)} (assuming (vi mod ki) ∈ {0, . . . , ki − 1}).
The problem of evaluating a stencil on the grid (torus) is formally defined as

follows: Denote by V the vertices of the grid (torus), by Vin := V × {in } the
input layer and by Vout := V ×{out } the output layer of the stencil computation.
The input of the computation are values f(vin) for all vertices vin ∈ Vin of the
grid (torus). The function which maps the values of Vin to Vout is described by
a stencil. The task is to evaluate the stencil for all points of the output layer,
i.e. to compute all values of the output grid (torus) and to write these results to
external memory. We consider so called star stencils. Denote by vin ∈ Vin and
vout ∈ Vout corresponding vertices of the input and output layer, i.e. the first n
coordinates of these vertices of the n-dimensional grid (torus) are identical. The
s-star stencil Ss for a vertex vout ∈ Vout is defined as all vertices within distance
s from vin, Ss(vout) := {w ∈ Vin : ||w − vin||1 ≤ s}. We connect the input layer
to the output layer by adding edges (w, vout) for all vertices w ∈ Ss(vout). Doing
this for all vertices in vout ∈ Vout gives the edge set of the computation graph,
E := {(w, vout) ∈ Vin × Vout : ||w − vin||1 ≤ s}. The computation graph is then
(Vin ∪̇ Vout, E).

We consider computing the value for one grid point vout ∈ Vout as an atomic
operation, i.e. all input required to compute f(vout), namely Ss(vout), needs
to reside in internal memory to do the calculation and partial computations are
not allowed. When we later argue about the stencil computations, the distinction
between input and output layer is less strict. We say to evaluate a vertex v of
the grid (torus) V when we compute the stencil for vout and have the input
Ss(vout) ⊂ Vin in internal memory.

The 1-star stencils are the most common stencils. Since upper (lower) com-
plexity bounds for the s-star stencil in the I/O model induce upper (lower)
bounds for all stencils which are subsets (supersets) of the s-star stencil mean-
ingful choices also include s = 2 and s = 3. So, for the asymptotic notation, we
assume throughout the paper that s is a small constant.

1.2 Results

This work examines the leading term of the non-compulsory I/Os of the s-point
stencil. In two dimensions, matching lower and upper bounds are given closing a
multiplicative gap of 4. In three dimensions the provided bounds match up to a
factor of

√
2 improving the known results by a factor of 2

√
3
√

B. For dimensions
n bigger than three, the lower bounds are improved between a factor of 4 and 6
leaving a gap of n−1

√
n! ≈ n

e for higher dimensions n.
We assume that the grid sides are ordered, k1 ≥ . . . ≥ kn, and significantly

larger than the internal memory, namely k1, k2 ≥ 2nM +M +1 and ki ≥ 2nM +1
for i ∈ {3, . . . , n}. The asymptotics are considered for ki → ∞, M → ∞ and
B → ∞ while assuming kn

M → ∞ and M
B → ∞. Denote by Cs(k1, . . . , kn) the



418 P. Hupp and R. Jacob

number of simple I/Os to evaluate the s-point stencil on [k1] × . . . × [kn]. Then
the following holds (assuming n and s are constant):

Cs(k1, k2) =

⎛
⎜⎝2 + 4 s2

M
·

⎧⎪⎨
⎪⎩

1 + O
(

B
M + M

k1

)
1 − O

(
1

M + M
k2

)
⎫⎪⎬
⎪⎭
⎞
⎟⎠ · k1k2

B

Cs(k1, k2, k3) =

⎛
⎜⎝2 + 8√

3
· s3/2

√
M

·

⎧⎪⎨
⎪⎩

√
2 + O

(√
B
M

)
1 − O

(
1√
M

+
√

M
k3

)
⎫⎪⎬
⎪⎭
⎞
⎟⎠ · k1k2k3

B

Cs(k1, . . . , kn) =

=

⎛
⎜⎝2+4 · 21/(n−1) ·(n − 1)· n−1

√
sn

M
·

⎧⎪⎨
⎪⎩

1 + O
(

n−1
√

B
M

)
1

n−1√n! − O
(

1
n−1√M

+
n−1√

M
kn

)
⎫⎪⎬
⎪⎭
⎞
⎟⎠·

∏n
i=1 ki

B
.

The bounds consist of three parts. The first part is the constant 2 accounting for
the compulsory I/Os. The second part is the leading term of the non-compulsory
I/Os on which this work focuses. The third part characterizes lower order terms
that we do not explore further.

Both lower bounds and algorithms can be transferred to parallel external
memory (PEM) as introduced in [2], as long as the number P of processors is
smaller than 1

M

∏n−1
i=1 ki. In this case, the complexities are reduced by a factor

of P . Unlike with classical computational complexity (i.e. on a PRAM), there
cannot be a general simulation of a parallel algorithm on a single processor that is
only P times slower (it is possible to make use of the combined internal memory
of size P · M). Still, the lower bounds in this paper work in the parallel setting
just as well: One round of the parallel computations, as defined by a certain
number of non-compulsory I/Os, cannot evaluate more stencils than its serial
counterpart. Regarding the algorithms, as the external memory is assumed to be
large enough so that we do not need to work in-place, all evaluations of stencils
are independent from each other and could in principle be done in parallel.
For moderate P we use the proposed serial algorithms and merely split the
computation into P contiguous parts. The only additional non-compulsory I/Os
are used to initially fill the local memory. Assuming P ≤ 1

M

∏n−1
i=1 ki, this is a

lower order term, namely the one that we analyze as the difference between the
torus and the grid.

1.3 Related Work

The external memory or I/O model was introduced by Hong and Kung [11] for
B = 1. Using essentially an isoperimetric argument they apply it to problems like
the Fast-Fourier-Transform (FFT), matrix-matrix multiplication and products
of graphs. The latter yields the first bounds for the number of I/Os for directed
grid graphs: Θ

(
1

n−1√
M

· ∏n
i=1 ki

)
. Being directed, these graphs and the notion of



Star Stencils in the External Memory Model 419

Table 1. Comparison of the bounds for the leading term of the non-compulsory I/Os
for the 1-star stencil. All to be multiplied with the number of grid points

∏n

i=1 ki .

Presented Result Frumkin and Wijngaart Leopold

Lower Bound 2D 4
BM

8
9

1
BM

2
BM

Lower Bound 3D 8√
3

1
B

√
M

2√
3

1
B

√
M

2
B

√
M

Low. Bnd. Arbitrary D 4·21/(n−1)·(n−1)
n−1√

n!
1

B
n−1√

M

( 2
3

) n
n−1 n

n−1√(n−1)!
1

B
n−1√

M
n.a.

Upper Bound 2D 4
BM

O
( 1

M

) 8
BM

Upper Bound 3D 8
√

2√
3

1
B

√
M

O
(

1√
M

)
4

√
6√

B
√

M

Upp. Bnd. Arbitrary D 4 · 2
1

n−1 (n − 1) 1
B

n−1√
M

O
(

1
n−1√

M

)
n.a.

boundary on them differs significantly from our setup. Aggarwal and Vitter [1]
generalized Hong and Kungs model to arbitrary B. Irony et al. [13] extend
Hong and Kungs lower bound for matrix-matrix multiplication to a distributed
memory setup and Ballard et al. [3] generalize these results to various linear
algebra algorithms like factorization and eigenvalue algorithms. They also derive
lower bounds for Strassen like algorithms [4] by relating the I/O complexity to
expansion properties of the computation graphs.

The I/O complexity of the 1-star stencil has been discussed further indepen-
dently by Frumkin and Wijngaart [10] and Leopold [15,14,16]. The different
results for the leading term of the non-compulsory I/Os are given in Table 1 and
have to be multiplied by the number of vertices

∏n
i=1 ki. Frumkin and Wijn-

gaart consider arbitrary dimensions but focus on the asymptotic behavior of the
non-compulsory I/Os. The lower bound uses an isoperimetric argument similar
to the one presented in this article but does not exploit its full strength. We
improve these results by a factor between 4 and 6. The upper bound focuses
on the asymptotic behavior and is an existence results. Leopold focuses on the
two and three dimensional cases. Her lower bounds exploit a weak isoperimetric
result [15,16] which we improve by a factor of 2 and 4√

3 for two respective three
dimensions. The upper bounds discuss row and column layouts. By using a data
layout suited for our algorithms we decrease the upper bounds by 1

2 and 2
3

√
B

for
two and three dimensions. Leopold also discusses two spatial and one temporal
dimension [14], which is out of the scope of this paper (also see Sect. 1.4).

There is vast ongoing research about optimizing stencil computations, mostly
in two and three dimensions, on modern computer architectures. This research
focuses on improving the I/O behavior of the algorithms. When implementing
one may need to be careful about the tradeoff between a more complicated
data layout making a sophisticated padding scheme necessary and (theoretically)
optimal I/O behavior. Addressing these problems is out of the scope of this work.
However, diagonal hyperspace cuts, similar to the ones proven optimal in this
work, are often employed in empirical work to select suitable substructures for



420 P. Hupp and R. Jacob

computation. The literature includes work on compiler optimization [17]. In the
cache oblivious model asymptotic upper bounds are derived [8] which are then
shown to be achieved [9,18]. A recent survey of the field is [7].

1.4 Discussion: Upper Bounds and Real World Programs

This paper focuses on the lower bounds and their derivation. The details of
the upper bounds can be found in the full version of this article [12], and are
here merely stated to show that the bounds are tight in the two dimensional
case, differ by a factor of

√
2 for three dimensions and n−1

√
n! ≈ n

e for higher
dimensions.

All the upper bounds have in common that a sweep shape is moved through
the grid in unit shifts in a sweep order resulting in working bands (see [12] for
the details). To achieve good results two things are important: First, the data
layout has to reproduce the shape of the sweep shapes. Second, to evaluate all
vertices of the grid, the working bands have to overlap, dividing the working band
into core and wing bands. For optimal asymptotic behavior, vertices in different
bands have to be saved in separate blocks. In two dimensions, for example, the
lower bound suggests to work in adjacent �1 balls where neighboring balls form
a diagonal working band. For B = 1 or a data layout supporting such a data
access, the diagonal sweep through the data provides a matching upper bound,
but it is not optimal for many other data layouts.

Although memory access is very important for high performance code, it is not
the only factor influencing the runtime. It needs to be determined in a progress
of algorithms engineering if and to which extent the benefits from on optimized
data layout and access lead to faster code. Other options that may influence
runtime include the more complicated index computations, optimizing for several
layers of the memory hierarchy, vectorization and loop unrolling enabling scalar
replacement. In particular in the parallel setting modifications to the algorithm
may prove useful to optimize the communication and synchronization required
between different processes.

As we want to give precise bounds we need a theoretical model that provides
enough details to prove these bounds. The theoretical model chosen restricts the
results to atomic stencil operations, simple I/Os and allows to work not-in-place.

Some implementations, for example, evaluate the stencil partially which re-
quires a more general lower bound while the upper bounds still apply. Although
we do not present a proof, we think the assumption that stencil operations are
atomic can be dropped without weakening the lower bounds. Given a set of ver-
tices which we want to evaluate in one round of the algorithm, the isoperimetric
inequalities yield how many grid points need to be transferred to (or have al-
ready been transferred from) other rounds. This does not assume that the stencil
is indivisible but only states that neighboring values are needed to evaluate the
stencil. Reducing the number of vertices that need to be transferred from one
round to another would mean to compress the data which has to be disallowed
for the I/O model to make sense.



Star Stencils in the External Memory Model 421

Also, the assumption that all I/Os are simple, i.e. data elements are moved in-
stead of copied between external and internal memory, is not crucial and match-
ing bounds assuming simple I/Os translate to matching bounds using non-simple
I/Os. The key observation is that for simple I/Os a non-compulsory read of an
item corresponds to exactly one non-compulsory write (writing the same item
back to external memory beforehand). Hence, dropping the assumption that
I/Os are simple reduces the number of non-compulsory I/Os by a factor of 2 for
both the lower and the upper bounds.

Having to work in in-place, however, requires a modification of the upper
bounds in the parallel and serial case. Vertices belonging to wing bands shared
by several core bands need to be buffered to be available at a later time. This
buffering requires additional memory such that we would not work completely
in-place. As working in-place is more restrictive, the lower bounds carry over.

In this paper we do not consider a time step which introduces a directed di-
mension and hence changes the structure of the computation graph, the stencil
defining the neighborhood of a set and hence the isoperimetric sets and in-
equalities. However, in a setting with time step the number of computations is
multiplied by the number of time steps whereas the number of compulsory I/Os
solely depends on the spatial dimensions. This implies that an isoperimetric ar-
gument, as presented in this paper, would analyze the constant of the leading
instead of the second order term. Whereas it seems difficult to transfer the lower
bounds to a time step setting this should be easier for the upper bounds. The
structure of the two and three dimensional algorithms is compatible with the
setting of one temporal and one respectively two spatial dimensions. For higher
dimension the algorithms need to be altered to allow for parallelism.

For three and higher dimensions both lower and upper bounds do not seem
optimal and it remains open if the complexity can be pinpointed. It would also
be interesting to examine the I/O complexity of stencils different from the star
stencils given by �1 balls. Canonical candidates are stencils described by �∞ balls
and mixtures between �1 and �∞ stencils appearing in finite element methods.
Finally, the lower bounds have not been tuned to account for different data
layouts as this would also change the isoperimetric inequalities. However, while
this further restricts the theoretical model it may be a key aspect to get matching
lower and upper bounds for different layouts.

2 The Lower Bounds

The lower bound is derived by splitting an arbitrary algorithm into rounds of
an equal number of non-compulsory I/Os. The work which can be done in each
of these rounds is then bounded by an isoperimetric inequality. This yields the
minimum number of rounds which have to be performed by any algorithm. Mul-
tiplying this with the number of non-compulsory I/Os that define a round yields
the lower bound. The lower bound is first deduced assuming that an I/O oper-
ation accesses one element (B = 1) and is then generalized for arbitrary B.



422 P. Hupp and R. Jacob

2.1 The Isoperimetric Inequality

The isoperimetric inequality states how many vertices can be enclosed by a
fixed number of boundary vertices. The optimal sets in this sense are called
isoperimetric sets and, as proven by Bollobás and Leader [6], the isoperimetric
sets in Zn

k are (fractional) �1 balls.1 To state this result precisely we introduce
some notation, mainly from [6]:

A fractional system or simply system f is a function from Zn
k or Zn to the unit

interval [0, 1]. For f : Zn → [0, 1] the function can take non-zero values only for
a finite number of grid points. The weight w of a system f is w(f) =

∑
x∈Z

n
k

f(x)
or w(f) =

∑
x∈Zn f(x) according to the domain of f . A fractional system f on

Zn
k or Zn is therefore a generalization of a subset S of Zn

k or Zn respectively. If a
fractional systems f takes just the values 0 and 1, then f is naturally identified
with the set S = f−1(1) and the weight w(f) is the cardinality of S. We define
the inner core Δf of f by

Δf(x) =

{
0, f(x) < 1
min||x−y||1=1{f(y)}, f(x) = 1

and the inner-s-core by applying the operator repeatedly, Δsf = Δ . . . Δ︸ ︷︷ ︸
s times

f .

This is now used to define the inner-s-boundary by Γsf(x) = f(x) − Δsf(x) .
The fractional �1 ball b

(r, α)
y of radius r ∈ N0, 0 ≤ r ≤ k

2 , surplus α ∈ (0, 1) and
center y ∈ Zn

k is defined as

b(r, α)
y (x) :=

⎧⎪⎨
⎪⎩

1, ||x − y||1 ≤ r

α, ||x − y||1 = r + 1
0, ||x − y||1 > r + 1

.

For 0 ≤ v ≤ kn we also use the notation bv
y which describes the unique ball of

weight v and center y. For the isoperimetric inequalities the centers of the balls
are irrelevant and hence we omit the subscript y when it is not needed. Bollobás
and Leader [6] proved that balls have the smallest closure of all systems of the
same weight. We need a version of this result which allows us to bound the
number of interior vertices given the number of inner-boundary vertices.

Theorem 1 (The boundary bounds the core on Zn – [12]).
Let s ∈ N and f be a fractional system on Zn. For v ∈ R+

0 the following holds:

( w(Γ2sf) ≤ w(Γ2sbv) ) ⇒ ( w(Δsf) ≤ w(Δsbv) ) . (1)

We conclude this section by giving the asymptotic expansion for the number of
vertices of a ball and its inner-boundary with respect to the radius r in Zn. As
long as the sides of the torus or grid are big enough, k ≥ 2(r + 1), the formulas
1 It is known that the isoperimetric sets in the continuous domains Rn are �2 balls.



Star Stencils in the External Memory Model 423

apply there also. Note that all lower order terms have positive coefficients. The
formulas are derived in [12].

w
(
b(r,0)

)
=

2n

n! ·rn +O (
rn−1) and w

(
Γ1b(r,0)

)
=

2n

(n − 1)! ·rn−1 +O (
rn−2) . (2)

2.2 Pathwidth

We employ pathwidth [5] to ensure that we are working on the “inside” of the
torus and can treat it like the infinite grid which allows to use the isoperimetric
results. Please refer to [12] for the details as only the results used are stated.

– An algorithm evaluating the s-star stencil on G without non-compulsory
I/Os and internal memory of size M implies that pathwidth(G) ≤ M − 1.

– The two dimensional grid [k1]× [k2] has pathwidth min{k1, k2}. Hence there
have to be non-compulsory I/Os if we want to evaluate the s-star stencil on
a two dimensional grid or torus with min{k1, k2} ≥ M .

– If the subgraph H of a two dimensional grid or torus consists of p+1 complete
rows and complete columns, then pathwidth(H) ≥ p .

2.3 Splitting into Rounds and Deducing the Lower Bound

To derive the lower bounds assume an arbitrary algorithm evaluating the s-star
stencil on Zk1 × . . . × Zkn is given. When min{k1, k2} ≥ M the pathwidth of
Zk1 × . . . ×Zkn is at least M and hence the algorithm causes non-compulsory I/O
operations. We can count these operations and split the algorithm into rounds of
c non-compulsory I/Os. c denotes the round length and hence all rounds except
the last one cause c non-compulsory I/Os. This approach is similiar to the idea
presented by Hong and Kung [11] and therefore we call the rounds Hong-Kung
rounds.

To apply the isoperimetric inequality we need to establish a link between the
inner-core, the inner-boundary and the rounds. Choose one of the Hong-Kung
rounds and denote with S the set of vertices which are in internal memory at
some point of this round.

Let Transfer(S) be the transfer vertices of S, i.e. vertices which are also
present in internal memory during other rounds. Precisely, a vertex is a transfer
vertex if at least one of four cases applies:

– The vertex is transferred from the previous to the current round by residing
in internal memory at the beginning of the current round.

– The vertex has been written back to external memory in a preceding round
and is read again in the current round.

– The vertex is written from internal to external memory in the current round
to be read again in a subsequent round.

– The vertex is transferred from the current to the proceeding round by resid-
ing in internal memory at the end of the current round.



424 P. Hupp and R. Jacob

We denote further Eval(S) the evaluated vertices which are all vertices of S for
which the s-point stencil is evaluated in the current round. The following two
observations relate these sets to the inner-core and the inner-boundary:

Γ2s(S) ⊂ Transfer(S) and Eval(S) ⊂ Δs(S) . (3)

A vertex can only be evaluated in a round if all its neighbors within distance
s are in S as well. Δs(S) consists of exactly these vertices. Equivalently Γs(S)
are the vertices which cannot be evaluated in round S. Take any x ∈ Γs(S). All
vertices which are within distance s from x need to be in the round in which x is
evaluated. Hence they need to be transferred. The set of all vertices of S within
distance s from any of the vertices of Γs(S) is Γ2s(S). Therefore these vertices
are a subset of the transfer vertices.

Furthermore, we can give an upper bound for the number of transfer vertices
of a round. At the beginning and at the end of a round there are at most M
vertices in internal memory. Together these account for at most 2M transfer
vertices. The only other way a vertex can be a transfer vertex is that it has been
rewritten to external memory in a previous round and is reloaded in the current
round or rewritten to external memory in the current round to be reloaded in
a subsequent round. So either the reload or write of the vertex causes a non-
compulsory I/O. Since there are at most c non-compulsory I/Os per round, the
total number of transfer vertices is at most 2M + c,

w(Transfer(S)) ≤ 2M + c . (4)

By definition, the vertices of S \ Transfer(S) do not cause non-compulsory I/Os
and they are in internal memory only in one single round. Hence their s-star
stencil has to be computed in the current round and their pathwidth is limited
by

pathwidth (S \ Transfer(S)) ≤ M − 1 . (5)

Assuming k1, k2 ≥ 2M + c + (M + 1) and ki ≥ 2M + c + 1 for i ∈ {3, . . . , n},
we know by (4) that the vertices of (at least) M + 1 hyperplanes of normal x1,
M + 1 hyperplanes of normal x2 and one hyperplane of normal xi (3 ≤ i ≤ n)
do not belong to Transfer(S). These hyperplanes form a connected component
in Zk1 × · · · × Zkn . So they could either be a subset of S \ Transfer(S) or dis-
joint from S. Taking the union of all hyperplanes of normal x1 and normal
x2 and intersecting them with all other hyperplanes results in a subset of a
two dimensional torus of at least M + 1 complete rows and columns which has
pathwidth(S \ Transfer(S)) ≥ M by Sect. 2.2. By (5) such a set cannot be a
subset of S \ Transfer(S). Therefore, at least one hyperplane for each normal
direction xi (1 ≤ i ≤ n) is disjoint from S. Deleting these hyperplanes allows to
embed S in the infinite grid Zn.

Combining (3) and (4) we get w(Γ2sS) ≤ 2M + c. Denote with v0 the weight
such that w(Γ2sbv0) = 2M+c . Using the assumption that s is small and constant
we simplify this equation before solving. Denote (r0, α0) the radius and surplus
such that bv0 = b(r0, α0). Using (2), the asymptotic expansion of w(Γ2sbv0 ) is



Star Stencils in the External Memory Model 425

given by

w(Γ2sbv0 )=
2s−1∑
i=0

2n · (r0 − i)n−1

(n − 1)!
+O (

rn−2
0

)
= 2s · 2n

(n − 1)!
(r0 −2s)n−1+O (

rn−2
0

)
. (6)

Since all coefficients in the lower order terms are non-negative, dropping the
lower order terms before solving (6) increases r0 and v0, increases w(Δsbv0 ) and
hence weakens the lower bound as we will see in the lower bound formula (8).
Solving (6) without the lower order terms yields

r0 = n−1

√
(n − 1)!2M + c

2s · 2n
+ 2s . (7)

To determine r0 we fix the round length c such that it gives the best lower
bound. Combining a version of the isoperimetric inequality [12] and (3) bounds
the number of evaluable vertices of S by w(Eval(S)) ≤ w(Δsbv0) . Therefore, a
lower bound is given by

c

w(Δsbv0 )
·

n∏
i=1

ki . (8)

The best round length c is hence chosen by plugging (7) into (8) and maximizing
over c (setting the derivative to 0 and checking that the solution is a maximum).
Disregarding lower order terms it is approximately c = 2(n − 1) · M . Using this
round length in (7), we determine the upper bound r0 = n−1

√
n!
2n

M
s + 2s for the

radius of a ball to be handled in one round. Finally, by plugging this radius into
(8), the lower bound reads

2(n − 1)M
w

(
Δsb(r0, 0)

) ·
n∏

i=1
ki =

(
4(n − 1) n−1

√
2
n!

sn · 1
n−1√M

− O
(

1
n−1√

M2

))
·

n∏
i=1

ki .

This bound was derived on the torus Zk1 × · · · ×Zkn and we can apply it to the
grid [k1] × · · · × [kn] using a reduction.

Lemma 1. Any algorithm using internal memory of size M and evaluating the
s-point stencil on the grid [k1] × · · · × [kn] induces an algorithm, using internal
memory M and evaluating the s-point stencil, on the torus Zk1 ×· · ·×Zkn causing
at most O

(∏n−1
i=1 ki

)
additional I/Os.

Proof. When the algorithm for the grid is evaluated on the torus, only the ver-
tices close the boundary of the grid have to be treated differently. If a vertex is
within �1 distance s − 1 in a unit direction from a bounding hyperplane, at most
half of the points of the s-point stencil, corresponding to that unit direction,
have to be read and written additionally for this vertex. Altogether these are at
most b(s,0)

2 · 2n · s · ∏n−1
i=1 ki = O

(∏n−1
i=1 ki

)
I/Os.



426 P. Hupp and R. Jacob

Furthermore, the lower bound can be generalized to arbitrary B by the simple
observation that one I/O operation affects at most B elements. Hence for the
grid the total number of I/Os (including compulsory ones) is⎛

⎝2 +
4(n − 1) n−1

√
2
n! s

n

n−1
√

M
− O

(
1

n−1√
M2

+
1
kn

)⎞
⎠ ∏n

i=1 ki

B
.

References
1. Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related

problems. Commun. ACM 31(9), 1116–1127 (1988)
2. Arge, L., Goodrich, M.T., Nelson, M., Sitchinava, N.: Fundamental parallel al-

gorithms for private-cache chip multiprocessors. In: Proc. of SPAA 2008. ACM
(2008)

3. Ballard, G., Demmel, J., Holtz, O., Schwartz, O.: Minimizing communication in
numerical linear algebra. SIAM J. Matrix Analysis Appl. 32(3), 866–901 (2011)

4. Ballard, G., Demmel, J., Holtz, O., Schwartz, O.: Graph expansion and communi-
cation costs of fast matrix multiplication. J. ACM 59(6), 32 (2012)

5. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. J.
Algorithms, 1–16 (1998)

6. Bollobás, B., Leader, I.: An isoperimetric inequality on the discrete torus. SIAM
J. Discret. Math. 3, 32–37 (1990)

7. Datta, K., Kamil, S., Williams, S., Oliker, L., Shalf, J., Yelick, K.: Optimization
and performance modeling of stencil computations on modern microprocessors.
SIAM Rev. 51(1), 129–159 (2009)

8. Frigo, M., Strumpen, V.: Cache oblivious stencil computations. In: Proc. of 19th
Annual ICS 2005, ICS 2005, pp. 361–366. ACM (2005)

9. Frigo, M., Strumpen, V.: The memory behavior of cache oblivious stencil compu-
tations. J. Supercomput. 39(2), 93–112 (2007)

10. Frumkin, M.A., Van der Wijngaart, R.F.: Tight bounds on cache use for stencil
operations on rectangular grids. J. ACM 49, 434–453 (2002)

11. Hong, J.-W., Kung, H.T.: I/O complexity: The red-blue pebble game. In: Proceed-
ings of STOC 1981, pp. 326–333. ACM, New York (1981)

12. Hupp, P., Jacob, R.: Tight bounds for low dimensional star stencils in the external
memory model. CoRR, abs/1205.0606 (2012)

13. Irony, D., Toledo, S., Tiskin, A.: Communication lower bounds for distributed-
memory matrix multiplication. J. Parallel Distrib. Comput. 64(9), 1017–1026
(2004)

14. Leopold, C.: An analytical evaluation of tiling for stencil codes with time loop. In:
Proc. of the 16th IPDPS. IEEE Computer Society (2002)

15. Leopold, C.: On optimal locality of linear relaxation. In: Proc. Int. Symp. on Par-
allel and Distributed Computing and Network, IASTED, pp. 201–206 (2002)

16. Leopold, C.: Tight bounds on capacity misses for 3D stencil codes. In: Sloot,
P.M.A., Tan, C.J.K., Dongarra, J., Hoekstra, A.G. (eds.) ICCS-ComputSci 2002,
Part I. LNCS, vol. 2329, pp. 843–852. Springer, Heidelberg (2002)

17. Tang, Y., Chowdhury, R.A., Kuszmaul, B.C., Luk, C.-K., Leiserson, C.E.: The
pochoir stencil compiler. In: Proceedings of SPAA 2011, pp. 117–128. ACM (2011)

18. Zeiser, T., Wellein, G., Nitsure, A., Iglberger, K., Rüde, U., Hager, G.: Introducing
a parallel cache oblivious blocking approach for the lattice Boltzmann method.
Progress in Computational Fluid Dynamics 8(1-4), 179–188 (2008)



Neighborhood-Preserving Mapping
between Trees�

Jan Baumbach1,3, Jiong Guo2, and Rashid Ibragimov1

1 Max Planck Institute für Informatik, Saarbrücken 66123, Germany
ribragim@mpi-inf.mpg.de

2 Universität des Saarlandes, Campus E 1.7, Saarbrücken 66123, Germany
jguo@mmci.uni-saarland.de

3 University of Southern Denmark, Campusvej 5, 5230 Odense M, Denmark
jan.baumbach@imada.sdu.dk

Abstract. We introduce a variation of the graph isomorphism prob-
lem, where, given two graphs G1 = (V1, E1) and G2 = (V2, E2) and three
integers l, d, and k, we seek for a set D ⊆ V1 and a one-to-one map-
ping f : V1 → V2 such that |D| ≤ k and for every vertex v ∈ V1 \ D
and every vertex u ∈ N l

G1
(v) \D we have f(u) ∈ Nd

G2
(f(v)). Here, for a

graph G and a vertex v, we use N i
G(v) to denote the set of vertices which

have distance at most i to v in G. We call this problem Neighborhood-
Preserving Mapping (NPM). The main result of this paper is a com-
plete dichotomy of the classical complexity of NPM on trees with respect
to different values of l, d, k. Additionally, we present two dynamic pro-
gramming algorithms for the case that one of the input trees is a path.

Keywords: tree edit distance, graph algorithms, complexity, graph
matching.

1 Introduction

Applications of the graph isomorphism problem, which seeks for a one-to-one
mapping between the vertices of two graphs, given certain constrains, can be
found in many fields, for example bioinformatics, pattern recognition, computer
vision [1, 2, 3].

A class of graph isomorphism problems was formulated and studied on trees [4,
5, 6, 7]. The quality of the mapping between trees and general graphs usually can
be expressed by the minimal cost of edit operations (like deletions and insertions
of vertices or edges, needed to make one graph equal to the other).

Motivated by Protein-Protein Interaction Networks (PPINs) [1], we intro-
duce a new isomorphism problem, called Neighborhood-Preserving Map-

ping (NPM). Here, we ask if there is a mapping between two graphs, such that
the neighborhoods of the vertices of the first graph, except for few vertices, are
preserved in the second graph. More precisely, given two graphs G1 = (V1, E1)

� Partially supported by the DFG Cluster of Excellence MMCI and the International
Max Planck Research School.

F. Dehne, R. Solis-Oba, and J.-R. Sack (Eds.): WADS 2013, LNCS 8037, pp. 427–438, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



428 J. Baumbach, J. Guo, and R. Ibragimov

Table 1. Summary of the cases for NPM on trees with k = 0

d = 1 d = 2 d ≥ 3

l = 1 P (Thm. 4) NPC (Thm. 1) NPC (Thm. 1)
l = 2 P (Thm. 5) P (Thm. 6) NPC (Thm. 1)
l = 3 P (Thm. 5) P (Thm. 7) NPC (Thm. 2)
l ≥ 4 P (Thm. 5) P (Thm. 7) NPC (Thm. 3)

and G2 = (V2, E2) and three integers l, d, k, NPM asks for a set D ⊆ V1 and an
one-to-one mapping f : V1 → V2 such that |D| ≤ k and for every vertex v ∈ V1\D
and every vertex u ∈ N l

G1
(v) \D it holds f(u) ∈ Nd

G2
(f(v)). Hereby, N i

G(v) de-
notes the set of vertices which have distance at most i to v in the graph G. The
set D is called the isolation set.

Similar problem can be formulated for mappings between Protein-Protein
Interaction Networks (PPI network alignment). Building a neighborhood-
preserving mapping, in contrast to the classic subisomorphism problem, provides
more freedom by setting closeness constraints on the sought mapping. This free-
dom may help to deal with data incompleteness (missing edge or nodes) as well
as noise (erroneous edges or nodes), respecting at the same time topological
distance. Then, a mapping with the larger number of more important mapped
nodes is thought to be more biologically meaningful.

In the paper we focus on the classical complexity of NPM on trees, that is both
input graphs are trees. We first briefly introduce main definitions used in the pa-
per. Then we study NPM on trees with k = 0 and provide proofs for NP-hard and
polynomial-time solvable cases. Table 1 summarizes our findings. Next we inves-
tigate the problem when k > 0 and prove that NPM with k > 0 is NP-hard for all
values of l and d. We complete the paper with presenting two algorithms for NPM
on trees when one of the input trees is restricted to be a path.

Preliminaries. Throughout this paper, we consider only simple, undirected
graphs without self-loop. Given a graph G, we use V (G) and E(G) to denote
the vertex and edge sets of G, respectively. The direct neighborhood of a vertex
v in a graph G, denoted by NG(v), is the set of vertices which are adjacent to v.
The degree of v is |NG(v)|. We use NG[v] to denote NG(v) ∪ {v}. We call the
set of vertices, which have distance at most i to v, the i-neighborhood of v for
integer i > 1, denoted by N i

G(v).

2 NPM on Trees with k = 0

In this section, we provide a dichotomy of the classical complexity of
Neighborhood-Preserving Mapping on trees with k = 0, see Table 1 for
an overview.

2.1 NP-Hardness Results

First, we show that if k = 0 and 1 ≤ l < d, then NPM on trees is NP-hard.



Neighborhood-Preserving Mapping between Trees 429

Theorem 1. Neighborhood-Preserving Mapping on trees is NP-complete
with k = 0, d > 1, and l < d.

Proof. Clearly, NPM is in NP. To show the hardness of this case, we reduce from
the NP-hard 3-Partition problem [8]:

Input: An integer B and a set of 3n non-negative integers S = {a1, . . . , a3n}
Question: Can S be partitioned into n disjoint sets S1, S2, . . . , Sn such
that for every 1 ≤ i ≤ n we have |Si| = 3 and

∑
a∈Si

a = B?

3-Partition remains NP-hard even if B/4 < ai < B/2 for every 1 ≤ i ≤ 3n [8].
We first describe the reduction for NPM on trees with k = 0, d = 2, and l = 1
and then indicate how to extend the reduction for other cases with 1 ≤ l < d.

Given an instance (B,S) of 3-Partition, we construct an instance of NPM on
trees: the first tree T1 consists of 3n paths and a star of 2(n+1)B+n+2 vertices
(with the center c). Each path Pi one-to-one corresponds to an element ai of S
and contains ai vertices. One end-vertex of each path is made adjacent to a leaf
of the star, denoted by r, by adding an edge. In order to construct the second
tree T2, we first create a big star with 2(n+ 1)B+ 1 vertices, n small stars, each
having B + 1 vertices, and a special vertex r′. Then, we add edges to connect
the centers of all small stars to r′. Finally, we add an edge between r′ and an
arbitrary leaf, denoted by c′, of the big star.

To prove the equivalence between the instances, observe that the vertex c
in T1 has to be mapped to c′ in T2, since this is the only possible way to preserve
the 2(n+1)B+n+1 neighbors of c in T2. Thus, all vertices of the big star in T2,
except for c′, are mapped to the neighbors of c. The remaining n + 1 neighbors
of c, including r, have to be mapped to r′ and the centers of n small stars in T2.
Moreover, the vertex r has to be mapped to r′, since r is adjacent to the end-
vertices of all 3n paths in T1. This implies that the vertices of the 3n paths
have to be mapped to the leaves of the small stars in T2. Finally, to preserve the
neighborhoods of the vertices on these paths, we have to group the paths of T1

into n groups, each of which contains 3 paths with exactly B vertices in total,
corresponding to 3-partition of the integers.

By subdividing the edges of T1 and T2, we can extend the reduction for other
cases of d and l with l < d. 
�

For the case of k = 0 and l ≥ d ≥ 3 we proved the following theorems:

Theorem 2. Neighborhood-Preserving Mapping on trees is NP-complete
with k = 0 and l = d ≥ 3.

Theorem 3. Neighborhood-Preserving Mapping is NP-complete with k =
0 and l > d ≥ 3.

2.2 Polynomial-Time Solvable Cases

In this subsection we present polynomial-time solvable cases of NPM on trees
with k = 0. Obviously, with k = 0 and l = d = 1, Neighborhood-Preserving



430 J. Baumbach, J. Guo, and R. Ibragimov

Mapping (NPM) on trees is equivalent to the classical tree isomorphism problem
and it is well-known that the isomorphism problem of trees can be solved in
polynomial time [9].

Theorem 4. Neighborhood-Preserving Mapping on trees can be solved in
polynomial time for the case k = 0 and l = d = 1.

Theorem 5. Neighborhood-Preserving Mapping on trees can be solved in
polynomial time for the case k = 0 and l > d = 1.

Next we present an algorithm for the case of NPM on trees when l = 2, d = 2,
k = 0. We first present some conditions for vertices, under which a neighborhood-
preserving mapping can exist. Assume that |V1| = |V2| ≥ 3. We let leaves(T ) to
denote the set of leaves of the tree T .

In the following we consider only the case where the diameter of T2 is at least 4.
If T2 has a diameter of 2, then T2 is a star and thus, an arbitrary mapping from T1

to T2 is a solution. For the case that T2 has a diameter 3, there is a path in T2

with 4 vertices a, b, c, d. Clearly, all other vertices are leaves adjacent to b or c.
Observe that the diameter of T1 should be at least 3, since otherwise, the given
instance has no solution. Moreover, we cannot map two non-adjacent vertices u
and v to b and c, since, otherwise, the neighborhoods of the vertices on the path
between u and v cannot be preserved. Further, we cannot map a leaf u of T1 to b
or c, since otherwise, say mapping u to b, the whole T1 has to be mapped to the
star centered at b. Thus, if there exists a neighborhood-preserving mapping f ,
then we have two adjacent, non-leaf vertices v, u with f(v) = b and f(u) = c.
Clearly, there cannot be two neighbors of v such that one is mapped to a leaf
adjacent to b and one to a leaf adjacent to c. So they are either all mapped to
the leaves adjacent to b or all mapped to the leaves adjacent to c. Then, we
can simply compare the numbers of leaves adjacent to b and to c with |T1(u)|
and |T1(v)| to decide whether a neighborhood-preserving mapping exists. Here,
T1(u) and T1(v) denote the subtrees, that result by deleting (u, v) from T1 and
contain u and v, respectively. This is clearly doable in polynomial time.

Some observations. In the following we present some observations which are
crucial for the correctness of the algorithm.

Lemma 1. Let u, v ∈ V1 with (u, v) ∈ E1. Suppose that there is a neighborhood-
preserving mapping f with (f(u), f(v)) 	∈ E2. Let a be the vertex in T2

with (f(u), a) ∈ E2 and (f(v), a) ∈ E2. Then, it holds that for every ver-
tex z ∈ NT1(u) ∪NT1(v), f(z) ∈ NT2 [a].

Lemma 2. Let u, v ∈ V1 with (u, v) ∈ E1. Suppose that the diameter of T2 is
at least 4. Then, a neighborhood-preserving mapping f with (f(u), f(v)) 	∈ E2

exists, if and only if both f(u) and f(v) are in leaves(T2).

Lemma 3. Let v be a leaf of T1 with u being its only neighbor. Suppose that
the diameter of T2 is at least 4. If there is a neighborhood-preserving mapping f
with f(u) /∈ leaves(T2), then f(v) ∈ leaves(T2).



Neighborhood-Preserving Mapping between Trees 431

Lemma 4. Suppose that the diameter of T2 is at least 4. If a neighborhood-
preserving mapping f exists with f(u) 	∈ leaves(T2) for u ∈ V1, then for every x ∈
NT1(u), we have f(x) ∈ NT2(f(u)).

Lemma 5. For u, v ∈ V1 with (u, v) ∈ E1, let T1(v) denote the subtree which re-
sults by deleting (u, v) from T1 and contains v. Suppose that the diameter of T2 is
at least 4. If a neighborhood-preserving matching f exists with f(u) 	∈ leaves(T2)
and f(v) ∈ leaves(T2), then for every vertex x ∈ V (T1(v)), we have f(x) ∈
leaves(T2) and (f(u), f(x)) ∈ E2.

If there is a mapping f which fulfills the condition of Lemma 5, that is, f(u) /∈
leaves(T2) and f(v) ∈ leaves(T2) for two vertices u, v ∈ V1 with (u, v) ∈ E1, then
we say that the subtree T1(v) is absorbed at f(u). Clearly, subtree T1(v) cannot
be absorbed, if the number of leaves adjacent to f(u) is smaller than the number
of vertices in T1(v). The following lemma summarizes the above observations.

Lemma 6. Suppose T2 has a diameter at least 4. Let u, v ∈ T1 with (u, v) ∈ E1.
Let T1(u) and T1(v) be the subtrees resulting by deleting (u, v) from T1 and con-
taining u and v, respectively. Suppose that there exists a neighborhood-preserving
mapping f with (f(u), f(v)) ∈ E2. Let T2(f(u)) and T2(f(v)) be the subtrees
resulting by deleting (f(u), f(v)) from T2 and containing f(u) and f(v), respec-
tively. Then, it holds that

1. either one of f(u) and f(v) (say f(u)) is a leaf of T2 and for every ver-
tices x ∈ V (T1(u)), we have f(x) being a leaf adjacent to f(v),

2. or |V (T1(u))| = |V (T2(f(u)))|, |V (T1(v))| = |V (T2(f(v)))|, | leaves(T1(u))| ≤
| leaves(T2(f(u)))|, and | leaves(T1(v))| ≤ | leaves(T2(f(v)))|.

The Algorithm. To ease the presentation, we assume that both trees T1 and T2

are rooted at root(T1) and root(T2), respectively, and the mapping f sought for
satisfies f(root(T1)) = root(T2). Further we assume that root(T2) is not a leaf.
For a vertex v of a rooted tree T , we use T (v) to denote the subtree rooted at v.
The labels of a vertex v ∈ V2, denoted by labels(v), is a set of vertices from
V1 that can potentially be mapped to v. Clearly, labels(root(T2)) = {root(T1)}.
For U ′ ⊆ V1, we define labels(v, U ′) := labels(v) ∩ U ′. Discarding a label u ∈
labels(v) is denoted by labels(v) := labels(v) \ {u}. By labels(V ′) with V ′ ⊆ V2

we denote the set
⋃

v∈V ′ labels(v). The algorithm consists of two phases, the first
phase top-down preparing the labels of all vertices of T2 and the second phase
constructing the mapping from the labels in a bottom-up manner.

Phase 1. Starting at root(T2) with labels(root(T2)) = {root(T2)}, the algorithm
iterates over all non-leaf vertices in T2 according the breath-first order, and builds
label sets for the children of a vertex v ∈ V2 from the label set of v. Let ch(u)
denote the set of children of a vertex u in a rooted tree. For a vertex v ∈ V2 and
one of its labels u ∈ labels(v), we process the children of u and v depending on
their degrees as follows.
(Leaf children of u) We first consider the leaf children of u. By Lemma 3,
if v can be mapped to u, then all leaf children of u have to be mapped to the



432 J. Baumbach, J. Guo, and R. Ibragimov

leaf children of v. Let lu and lv be the numbers of the leaf children of u and v,
respectively. Thus, if lu > lv, then we discard u from labels(v); otherwise, we
select lu many v’s leaf children and store u’s leaf children one-to-one in the label
sets of the corresponding v’s leaf children. We denote these lu leaf children of v
byMv,u.
(Non-leaf children of v). For each non-leaf child v′ of v, we iterate over all
non-leaf children of u. If there is one non-leaf child u′ of u satisfying |V (T1(u′))| =
|V (T2(v′))| and | leaves(T1(u′))| ≤ | leaves(T2(v′))|, then we add u′ to labels(v′);
otherwise, we discard u from labels(v). This is correct due to Lemma 6.

Now, labels(v′) 	= ∅ for all non-leaf children v′ ∈ ch(v) and all leaf children
of u are in the label sets of the leaf children in Mv,u. The algorithm moves to
the next vertex according the breath-first order.

Phase 2. In this phase, the algorithm processes the non-leaf vertices of T2, in a
reversed order of the first phase. For a vertex v ∈ V2 and a label u from labels(v),
it computes a maximum matching on the bipartite graph consisting of the non-
leaf children of v and the non-leaf children of u. There is an edge between a
non-leaf child v′ of v and a non-leaf child u′ of u, if and only if u′ ∈ labels(v′).
If the matching is not perfect for the non-leaf children of v, then discard u
from labels(v); otherwise, consider the non-leaf children of u which are not in
the matching. By Lemma 5, all subtrees rooted at these non-leaf children of u
have to be absorbed, that is, mapped to the leaf children of v, excluding the leaf
children in Mv,u. Then, the algorithm compares the total size of the subtrees
rooted at these non-leaf children of u and the number of the leaf children of v
that are not in Mv,u. If they are not equal, then discard u from labels(v). If
afterwards labels(v) = ∅, then return “no”; otherwise move to the next vertex.

Finally, at the root of T2, if we have labels(root(T2)) = {root(T1)}, then we
can answer “yes”.

Theorem 6. Neighborhood-Preserving Mapping on trees can be solved
in O(n4+ω) time for the case k = 0 and l = d = 2, where n = |V1| = |V2|
and ω = 2.38.

By combining the ideas for proving Theorems 5 and 6, we can show that a
neighborhood-preserving mapping between trees exists for k = 0 and l > d = 2,
if and only if |V1| ≤ 3 or T2 is a star.

Theorem 7. Neighborhood-Preserving Mapping on trees can be solved in
polynomial time for the case k = 0 and l > d = 2.

3 NPM on Trees with k > 0

We show next that Neighborhood-Preserving Mapping on trees with k > 0
is NP-complete for all values of l and d. Then, we give two polynomial-time
algorithms solving the special case of NPM that k > 0, l = d = 1, and one input
tree is a path.



Neighborhood-Preserving Mapping between Trees 433

3.1 Two Input Trees

The NP-hardness results for NPM on trees with k = 0 can be easily generalized
for the case k > 0. In the following we focus on the cases where NPM on trees
with k = 0 can be solved in polynomial time.

Theorem 8. Neighborhood-Preserving Mapping on trees is NP-complete,
even if k = 1 and l = d = 1.

Theorem 9. Neighborhood-Preserving Mapping on trees is NP-hard for
the case k > 0 and l > d = 1.

Proof. We reduce again from 3-Partition. Suppose that the given 3-Partition

instance (B, S) satisfies that all elements of S are even.
The tree T1 contains only one vertex c with degree greater than 2; the degree

of c is equal to 3n + 2. Each neighbor of c is an end-vertex of a path with �l/2�
vertices. In one special path, to the other end-vertex t, if l is even, we add two
leaves as neighbors; if l is odd, we add one leaf as a neighbor to the only neighbor
of t. We call the so far resulting tree a “spider”.

To the end-vertices of the remaining paths, we attach the following 3n + 1
paths. One path is a long path consisting of 4B + 2B(l − 1) + 1 vertices. The
others correspond to the elements in S, i.e., the i-th path consisting of ai + (l−
1) · (ai/2− 1) vertices.

The tree T2 has only one vertex c′ with degree greater than 2; the degree of c′ is
equal to (3n+2)·�l/2�+2B(l−1)+

∑
ai∈S(l−1)·(ai/2−1)+p+1, where p = 1 if l

is even, and p = 0, otherwise. Among these neighbors of c′, n of them are the end-
vertices of n paths, each of length B−1; one neighbor is an end-vertex of a path
of length 1; two of the neighbors are the end-vertices of 2 paths, each with 2B
vertices. Finally, we set k := (3n+2)·�l/2�+2B(l−1)+

∑
ai∈S(l−1)·(ai/2−1)+p

with p = 1 if l even, and p = 0, otherwise.
For the equivalence, observe that, from a set of vertices in T1, that have

pairwise distance at most l, at most two vertices can be in V (T1)\D; otherwise,
we would need cycles in T2. Thus, at most two vertices of the spider can be “kept”,
i.e., not in the isolation set. Further, for a path with x + (l − 1) · x/2 vertices
with x being even, we need to delete at least (l− 1) · x/2 vertices to get a set of
vertices such that no three vertices in this set have pairwise distance at most l.
Then, we can conclude that, with k isolations allowed, if a mapping f exists,
then, after deleting the isolation vertices, the remaining vertices must “induce
with their l-neighborhoods” a set P of paths. Given a tree T and a set V ′ of
vertices in T , the graph induced by V ′ with their l-neighborhoods has V ′ as
its vertex set. There is an edge between u, v ∈ V ′, if and only if the distance
between u and v in T is at most l. In P , there is a path with 4B + 1 vertices
(remaining vertices of the long path), a length-1 path (two vertices kept in the
spider), and 3n element paths, where the i-th path contains ai vertices. Clearly,
the length-4B path has to be mapped to the two length-2B paths. The two
vertices kept in the spider are mapped the length-1 path attached to a neighbor
of c′. The element paths can be mapped to the n paths of length B − 1, if and
only if the given 3-Partition instance is a yes-instance. 
�



434 J. Baumbach, J. Guo, and R. Ibragimov

Theorem 10. Neighborhood-Preserving Mapping on trees is NP-
complete, if k > 0 and l ≥ d = 2.

3.2 l = d = 1, k > 0, and a Tree and a Path as Input

In contrast to the NP-hardness result of NPM on trees with l = d = 1 (Theo-
rem 8), we show that if one of the input trees is a path, then NPM is polynomial-
time solvable with l = d = 1.

The second tree is a path. To simplify the presentation, we reformulate NPM on
trees with l = d = 1 and the second tree being a path as the following problem:

Cutting Tree into Paths (CTP)
Input: A tree T , an integer k
Question: Can we transform T to a set P of paths by deleting at most k
vertices?

Lemma 7. Given the second tree being a path, NPM on trees with l = d = 1 is
equivalent to CTP.

Next, we give a dynamic programming based algorithm solving CTP. Assume
that T is rooted at an arbitrary vertex r, and let T (v) denote the subtree rooted
at a vertex v. Hereby, we distinguish at every vertex v ∈ V (T ) the following four
cases:

1. v is deleted,
2. v is an end-vertex of a path in P and all children of v are deleted,
3. v is on a path in P and exactly one end-vertex of this path is in V (T (v))\{v},
4. v is on a path in P and both end-vertices of this path are in V (T (v)) \ {v}.

We define further a function dv(c) for v with c ∈ {1, 2, 3, 4}, denoting one of
the previously defined cases. This function dv(c) stores the minimal number
of deletions needed in T (v) to derive a set of paths, where v follows Case c.
We recursively compute dv(c) for all vertices v ∈ V (T ) and all four cases in a
bottom-up way. Clearly, at the root r, if minc=1...4 dr(c) ≤ k, then we return
“yes”; otherwise, return “no”.

At a leaf vertex v, Cases 3 and 4 clearly cannot be applied. We can easily
set dv(1) := 1, dv(2) := 0, and dv(3) = d4(v) := ∞. The computation of dv(c)
for a non-leaf vertex v distinguishes again four cases:

1. dv(1) :=
∑

u∈ch(v) minc=1...4 du(c) + 1,
2. dv(2) :=

∑
u∈ch(v) du(1),

3. dv(3) := minu∈ch(v)(
∑

u′∈(ch(v)\{u}) du′(1) + minc=2,3 du(c)),
4. dv(4) := minu1,u2∈ch(v)(

∑
u∈(ch(v)\{u1,u2}) du(1) + minc=2,3 du1(c) +

minc=2,3 du2(c)).

Theorem 11. CTP can be solved in O(|V (T )|3) time.

Corollary 1. NPM on trees with the second tree being a path can be solve
in O(|V (P )|3) time for l = d = 1.



Neighborhood-Preserving Mapping between Trees 435

The First Tree Is a Path. Again, NPM on trees with l = d = 1 and the first tree
being a path can be reformulated as the following problem:

Fitting Path to Tree by Deletions (FPTD)
Input: A path P and a tree T with |V (P )| = |V (T )|, an integer k
Question: Can we delete at most k vertices from P such that there
exists a subgraph T ′ of T isomorphic to the resulting set P of paths?

With l = d = 1, the following lemma is easy to prove.

Lemma 8. If the first tree is a path, then NPM on trees with l = d = 1 is
equivalent to FPTD.

In the following, we give a polynomial-time algorithm solving FPTD. Again we
assume that T is rooted at an arbitrary vertex r and denote by T (v) the subtree
rooted at a vertex v. Let D denote the set of the vertices whose deletion from
P results in a set P of paths. We extend the isomorphic mapping f from V (P)
to V (T ′) to a mapping from V (P ) to V (T ), by assigning an arbitrary one-to-one
correspondence between D and V (T ) \ V (T ′). This is doable since |V (P )| =
|V (T )|. The algorithm processes the vertices in T in a bottom-up manner. At
each vertex v, it distinguishes the following 6 cases concerning the way how v is
mapped by the mapping f :

1. v is mapped to a vertex in D;
2. v is mapped to a path p ∈ P with |V (p)| = 1;
3. v is mapped to an end-vertex of a path in P , whose other end-vertex is

mapped to a vertex not in V (T (v));
4. v is mapped to an end-vertex of a path in P , whose other end-vertex is

mapped to a vertex in V (T (v)) \ {v};
5. v is mapped to a non-end vertex of a path in P , which has one end-vertex

mapped to a vertex in V (T (v)) \ {v} and another one mapped to a vertex
not in V (T (v));

6. v is mapped to a non-end vertex of a path in P , whose both end-vertices are
mapped to vertices in V (T (v)) \ {v}.

For each of the cases, the algorithm checks whether it is possible to delete some
vertices to create a set of paths, which can be mapped to T (v), given the mapping
of v following this case. If so, it stores the minimum possible number of deletions.
Notice that Case 1 causes additional caution in this check. On the one hand, the
subtree T (v) could be mapped to some set of paths, which however need to delete
a lot of vertices from P . These deleted vertices might be mapped to vertices of
Case 1, which are outside of T (v). On the other hand, we might have a lot of
vertices in T (v) with Case 1. However, the paths mapped to T (v) do not cause so
many vertex deletions. Thus, we introduce an additional parameter s to record
this information with −k ≤ s ≤ k. If we say that there are s “mappable” vertices
in T (v), we mean the following: If s < 0, there are |s| vertices which are deleted
to create the paths mapped to T (v) but are not mapped to the vertices with
Case 1 in T (v); otherwise, there are s vertices with Case 1 in T (v), which can be



436 J. Baumbach, J. Guo, and R. Ibragimov

mapped to vertices deleted to create paths mapped to vertices outside of T (v).
Thereupon, we define the dynamic programming table Fv at vertex v with two
parameters, one representing the 6 cases and the other being s. The entry Fv(c, s)
contains the minimal number of vertex deletions needed to create a set of paths
in P , which are mapped to T (v), under the conditions that v follows Case c and
there are s mappable vertices in T (v).

To ease the presentation, we say to “open” a path at v, if v is in Cases 2 and 3.
Notice that, once we open a path, we increase the number of vertex deletions by
one. However, since by deleting i vertices from P we can create i + 1 paths, we
check whether Fr(c,−1) ≤ k + 1 for some Case c at the root r. If so, we return
“yes”; otherwise, we return “no”.

It remains to describe the computation of Fv(c, s). At a leaf v, it is clear that
only Cases 1, 2, and 3 can be applied. Thus, all entries of Fv are set to∞, except
for three entries, where we set Fv(1, 1) := 0, Fv(2,−1) := 1, and Fv(3,−1) := 1.
The correctness here is obvious.

At a non-leaf vertex v, let ch(v) = {u1, . . . , ud}, where d is the number of
children of v. We define three additional tables:

– For −k ≤ s ≤ k and 1 ≤ i ≤ d, Av(s, i) stores the minimal number of
deletions needed to create a set of paths in P , which are mapped to the
subtrees rooted at u1, . . . , ui, under the conditions that u1, . . . , ui are of
Case 1, 2, 4 or 6, and there are s mappable vertices in these subtrees;

– For −k ≤ s ≤ k, 1 ≤ i ≤ d, and 1 ≤ j ≤ i, Bv(s, i, j) stores the minimal
number of deletions needed to create a set of paths in P , which are mapped to
the subtrees rooted at the vertices in {u1, . . . , ui}\{uj}, under the conditions
that all vertices in {u1, . . . , ui}\{uj} are of Case 1, 2, 4 or 6, and there are s
mappable vertices in these subtrees;

– For −k ≤ s ≤ k, 1 ≤ i ≤ d, and 1 ≤ j1, < j2 ≤ i, Cv(s, i, j1, j2) stores the
minimal number of deletions needed to create a set of paths in P , which
are mapped to the subtrees rooted at {u1, . . . , ui} \ {uj1 , uj2}, under the
conditions that all vertices in {u1, . . . , ui}\{uj1 , uj2} are of Case 1, 2, 4 or 6,
and there are s mappable vertices in these subtrees;

– For −k ≤ s ≤ k, 1 ≤ i ≤ d, and i < j ≤ d, Dv(s, i, j) stores the minimal
number of deletions needed to create a set of paths in P , which are mapped
to the subtrees rooted at ui and uj, under the conditions that ui and uj are
of Case 3 or 5, and there are s mappable vertices in these subtrees.

To compute the three tables, we apply the following recursions: initial-
ize Av(s, 0) := 0 for −k ≤ s ≤ k. For each i = 1, . . . , d and each s = −k, . . . , k,
set

Av(s, i) := min
−k≤q≤k

(Av(s− q, i− 1) + min
c∈{1,2,4,6}

Fui(c, q)) .

In order to fill in Bv(s, i, j), initialize Bv(s, i, i) := Av(s, i − 1) for every −k ≤
s ≤ k and 2 ≤ i ≤ d. For 1 ≤ j < i, the recursion for Bv is as follows:

Bv(s, i, j) := min
−k≤q≤k

(Bv(s− q, i− 1, j) + min
c∈{1,2,4,6}

Fui(c, q)) .



Neighborhood-Preserving Mapping between Trees 437

Then, initialize Cv(s, i, j, i) := Bv(s, i, j) for every −k ≤ s ≤ k, 2 ≤ i ≤ d,
and 1 ≤ j < i. For 1 ≤ j1 < j2 < i, the recursion for Cv is as follows:

Cv(s, i, j1, j2) := min
−k≤q≤k

(Cv(s− q, i− 1, j1, j2) + min
c∈{1,2,4,6}

Fui(c, q)) .

Finally, for each 1 ≤ i < j ≤ d and −k ≤ s ≤ k, we compute Dv as follows:

Dv(s, i, j) := min
−k≤q≤k

( min
c∈{3,5}

Fui(c, q) + min
c∈{3,5}

Fuj (c, s− q)) .

The correctness of the computation of the tables follows from the recursions. We
compute Fv for each of the 6 cases as follows:
Case 1. Here, v should be mapped to a deleted vertex. Then, the children of v
should be of Cases 1, 2, 4, and 6. We need only to sum up the deletions needed to
create the paths mapped to the subtrees rooted at the children. Notice that we
have one additional vertex v of Case 1 which is not mapped. We set Fv(1, s) :=
Av(s− 1, d).
Case 2. We have to open a new path p with |V (p)| = 1 mapped to v. This implies
that we need one more vertex deleted in T (v) than in the forest consisting of the
subtrees rooted at the children of v. The cases for the children are the same as
in Case 1. Thus, we set Fv(2, s) := Av(s + 1, d) + 1.
Case 3. As in Case 2, we open a new path p at v. Therefore, Fv(3, s) := Fv(2, s).
Case 4. One path should end at v and has its other end-vertex in V (T (v)) \ {v}.
Thus, at least one of v’s children has to be of Case 3 or 5, while the other are of
Cases 1, 2, 4, and 6. We set

Fv(4, s) := min
ui∈ch(v),−k≤q≤k

(Bv(s− q, d, i) + min
c∈{3,5}

Fui (c, q)) .

Case 5. The vertex v is mapped to a non-end vertex of a path with one end-
vertex mapped inside of T (v) and the other outside of T (v). Therefore, one child
of v must be of Case 3 or 5, while the others are of Cases 1, 2, 4, and 6. We have
the same situation as Case 4: Fv(5, s) := Fv(4, s).
Case 6. With both end-vertices mapped inside of T (v), two children of v must
be of Cases 3 and 5. Note that with two paths “merging” at v, we have in T (v)
one path less than in the forest consisting of the subtrees rooted at the children
of v. With Cv and Dv, we compute Fv(6, s) as follows:

Fv(6, s) := min
ui,uj∈ch(v),−k≤q≤k

(Cv(s + 1− q, d, i, j) + Dv(q, i, j))− 1 .

At the root r, if minc∈{1,2,4,6} Fr(c,−1) ≤ k+ 1, then we return “yes”; otherwise,
“no”.

Theorem 12. FPTD can be solved in O(|V (T )|4 · k2) time.

Corollary 2. NPM on trees with the first tree being a path can be solved
in O(|V (T )|4 · k2) time.



438 J. Baumbach, J. Guo, and R. Ibragimov

4 Conclusion

A variation of the graph isomorphism problem, called Neighborhood-

Preserving Mapping (NPM), has been introduced. We studied the compu-
tational complexity of NPM on trees and presented a complete dichotomy with
respect to l, d, and k. The result is that NPM on tress is polynomial-time solv-
able only for the cases when k = 0, l ≥ d, and d ≤ 2. Additionally, we considered
NPM on trees with one of the input trees restricted to be a path. For this two
polynomial-time algorithms were developed.

Future research directions could include development of effective heuristics
for input graph/trees with certain properties (tree-like graphs for example). The
next natural step is to apply the proposed or similar model to real (biological)
network data, and study the correlation with known graph measure. From the
theoretical point of view, it would be interestingly to study NPM on graphs with
bounded treewidth and to examine the connection between NPM and the graph
homomorphism problems.

References

1. Heath, A.P., Kavraki, L.E.: Computational challenges in systems biology. Computer
Science Review 3, 1–17 (2009)

2. Bunke, H., Riesen, K.: Recent advances in graph-based pattern recognition with
applications in document analysis. Pattern Recognition 44, 1057–1067 (2011)

3. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of
bipartite graph matching. Image and Vision Computing 27, 950–959 (2009)

4. Akutsu, T., Fukagawa, D., Halldórsson, M.M., Takasu, A., Tanaka, K.: Approxima-
tion and parameterized algorithms for common subtrees and edit distance between
unordered trees. Theor. Comput. Sci. 470, 10–22 (2013)

5. Akutsu, T., Fukagawa, D., Takasu, A., Tamura, T.: Exact algorithms for computing
the tree edit distance between unordered trees. Theor. Comput. Sci. 412, 352–364
(2011)

6. Bille, P.: A survey on tree edit distance and related problems. Theor. Comput.
Sci. 337, 217–239 (2005)

7. Lozano, A., Pinter, R.Y., Rokhlenko, O., Valiente, G., Ziv-Ukelson, M.: Seeded tree
alignment. IEEE/ACM Transactions on Computational Biology and Bioinformat-
ics 5, 503–513 (2008)

8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman (1979)

9. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer
Algorithms, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston (1974)



Bounding the Running Time of Algorithms
for Scheduling and Packing Problems∗

Klaus Jansen, Felix Land, and Kati Land

Institute of Computer Science, University of Kiel, 24118 Kiel, Germany
{kj,fku,kla}@informatik.uni-kiel.de

Abstract. We investigate the implications of the exponential time hy-
pothesis on algorithms for scheduling and packing problems. Our main
focus is to show tight lower bounds on the running time of these al-
gorithms. For exact algorithms we investigate the dependence of the
running time on the number n of items (for packing) or jobs (for schedul-
ing). We show that many of these problems, including SubsetSum,
Knapsack, BinPacking, 〈P2 | | Cmax〉, and 〈P2 | | ∑wjCj〉, have a
lower bound of 2o(n) × ‖I‖O(1). We also develop an algorithmic frame-
work that is able to solve a large number of scheduling and pack-
ing problems in time 2O(n) × ‖I‖O(1). Finally, we show that there is
no PTAS for MultipleKnapsack and 2d-Knapsack with running
time 2o( 1

ε ) × ‖I‖O(1) and no( 1
ε ) × ‖I‖O(1).

Keywords: scheduling, packing, exponential time hypothesis, exact
algorithms, lower bounds.

1 Introduction

The usual assumption P 
= NP allows us to rule out polynomial time algorithms
for many decision and optimization problems. Often the preferred way for dealing
with such NP-hard problems are heuristics and approximate algorithms. In recent
years however, the interest in super-polynomial exact algorithms has increased.
A big problem is that, under the assumption P 
= NP, we cannot know what
super-polynomial running times are possible for these problems.

A stronger assumption was introduced by Impagliazzo and Paturi, the Ex-
ponential Time Hypothesis (ETH). The subject of the ETH is the satisfiability
problem 3-Sat. In contrast to classical complexity theory the running time as-
sumed in the ETH not only depends on the length ‖ϕ‖ of the instance, but on
a special parameter of the instance, the number n of variables.

Conjecture 1 (Exponential Time Hypothesis [15]). There is positive real δ such
that 3-Sat cannot be decided in time 2δn × ‖ϕ‖O(1).

∗ A full version of this work is available as technical report [18]. Research supported
by German Research Foundation (DFG) projects JA 612/16-1 and JA 612/12-1.

F. Dehne, R. Solis-Oba, and J.-R. Sack (Eds.): WADS 2013, LNCS 8037, pp. 439–450, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



440 K. Jansen, F. Land, and K. Land

Another way to formulate the conjecture is that 3-Sat with parameter n has no
sub-exponential algorithm. Here, we follow the notation of Flum and Grohe [7]:
a function f is called sub-exponential if f(n) = o(n), where f = o(g) if there is
a non-decreasing, unbounded function μ such that g(n) ≤ f(n)

μ(n) .
The ETH can be used to show lower bounds on the running time of algorithms

for other problems by the use of strong reductions, i.e. reductions which increase
the parameter at most linearly [15]. Another important result is implied by
the Sparsification Lemma due to Impagliazzo, Paturi, and Zane [16]: Under
assumption of the ETH there is no algorithm that decides 3-Sat with m clauses
in time 2o(m) × ‖ϕ‖O(1). This allows us to parametrize by the number of clauses.

Our main focus in this paper are consequences of the ETH for scheduling and
packing problems. We investigate the dependence of the running time on the
number of jobs respectively the number of items, which we will denote by n. We
also develop algorithms that are able to solve a broad class of scheduling and
packing problems and whose running time matches the lower bound for many
problems. We will first concentrate on SubsetSum and related problems. These
will then be used to show bounds for other problems.

Notation. We use the notation f(S) =
∑

s∈s f(s) for any function f and any
subset S of the domain of f throughout the paper. For a minimization or
maximization problem and α > 1, an algorithm A is called α-approximate if
A(I) ≤ α OPT(I) or A(I) ≥ 1

α OPT(I) holds for each instance I, respectively.

Known Results. There is a large number of lower bounds based on the ETH,
mostly in the area of graph problems. For example it is known that Clique (and
the equivalent IndependentSet) cannot be decided in time 2o(n) ×‖I‖O(1) [16].
For a good survey of these results and useful techniques we refer to the work of
Lokshtanov, Marx, and Saurabh [24]. Only few lower bounds have been obtained
for scheduling and packing problems: Chen et al. [3] showed that precedence con-
strained scheduling on m machines cannot be decided in time f(m)‖I‖o(m) and
set packing cannot be decided in time f(k)‖I‖o(k), where k is the size of the
packing. Kulik and Shachnai [20] observed that sized subset sum, where k is the
size of set to be found, cannot be decided in time f(k)‖I‖o(√

k) and used this
result to show that there is no PTAS for the 2-dimensional vectorial knapsack
problem with running time f(ε)‖I‖o(

√
1
ε ). These results are actually based on

the assumption that not all problems in SNP are solvable in sub-exponential
time. Since 3-Sat ∈ SNP, this assumption in weaker than the ETH [28]. Pă-
traşcu and Williams [29] showed a lower bound of no(k) for sized subset sum,
even when the encoding length of the item sizes is bounded by O(d log n). Fi-
nally, Jansen et al. [19] proved that bin packing into m bins cannot be solved in
time f(m)‖I‖o(m/ log m) when the item sizes are encoded in unary.

Exact algorithms for 〈Pm | | Cmax〉 with 2 ≤ m ≤ 4 that have running
times

√
2n,

√
3n, and (1+

√
2)n were developed by Lenté et al [23]. BinPacking

can be solved in time nB2n [8] or nO(m)2O
(

m
√

‖I‖
)

[26], where m is the



Bounding the Running Time of Algorithms for Scheduling 441

number of bins. SubsetSum, Partition and Knapsack can all be solved in
time 2 n

2 × ‖I‖O(1) [14,8] and 2O
(√

‖I‖
)

[27,26].

New Results and Organization. In Sect. 2 we investigate exact algorithms for
SubsetSum and related problems, including Partition, BinPacking, and
MultiProcessorScheduling. We prove the lower bounds 2o(n) × ‖I‖O(1) and
2o
(√

‖I‖
)

for these problems. In Sect. 3 we give a lower bound of 2o(n) × ‖I‖O(1)

for different types of scheduling problems. We present an algorithmic framework
in Sect. 4 that is able to solve nearly all problems mentioned in Sects. 2 and 3
in time 2O(n) × ‖I‖O(1), showing that the corresponding bounds are tight. Fi-
nally, in Sect. 5 we consider approximation schemes for knapsack problems. We
prove that there are no PTAS for MultipleKnapsack and 2d-Knapsack with
running times 2o( 1

ε ) × ‖I‖O(1) and no( 1
ε ) × ‖I‖O(1), respectively.

2 The Subset Sum Family

In this section we will prove tight lower bounds on the running time of algorithms
for several problems related to SubsetSum and Partition, when parametrized
by the number n of items or the input size ‖I‖.

2.1 Lower Bounds for Subset Sum and Partition

Wegener [31] presented a chain of reductions from 3-Sat to Partition via the
subset sum problem. We will omit the proofs of correctness and only give a brief
description of the construction.

From 3-Sat to SubsetSum. Denote the variables by x1, . . . , xn and the clauses
by C1, . . . , Cm. For each variable xi we create two items ai and bi with sizes

s(ai) =
∑

j∈[m]
xi∈Cj

10n+j−1 + 10i−1 and s(bi) =
∑

j∈[m]
x̄i∈Cj

10n+j−1 + 10i−1. (1)

These numbers have at most n+m digits when encoded in base 10. Additionally we
create two dummy items cj and dj for each clause Cj with s(cj) = s(dj) = 10n+j−1.
The item set is A = {ai, bi | i ∈ [n]} ∪ {cj , dj | j ∈ [m]} The target value is

B =
m∑

j=1
3 × 10n+j−1 +

n∑
i=1

10i−1. (2)

In total the instance I = (A, B) has 2n+2m items, hence the reduction is strong.

From SubsetSum to Partition. Let (A, B) be an instance of SubsetSum.
First assume that s(A) ≥ B, otherwise we can output a trivial no-instance. We
introduce two new items p and q with s(p) = 2 s(A)−B and s(q) = s(A)+B. The
instance of Partition is A′ = A ∪ {p, q}. Note that s(p) ∈ IN because s(A) ≥ B.



442 K. Jansen, F. Land, and K. Land

Theorem 2. The problems Partition and SubsetSum cannot be decided in
time 2o(n) × ‖I‖O(1), unless the ETH fails.

The above bounds are asymptotically tight: A naïve enumeration algorithm
solves both problems by testing all 2n subsets of A in time 2n × ‖I‖O(1). The
fastest known algorithms have asymptotic running time 2 n

2 × ‖I‖O(1) [14].

2.2 Implications for Scheduling and Packing

Packing in One Bin. A generalization of SubsetSum is the well-known knap-
sack problem.

Theorem 3. There is no algorithm deciding 0-1-IntegerProgramming (even
for one constraint and only positive coefficients) or Knapsack in time 2o(n) ×
‖I‖O(1), unless the ETH fails.

These results are again asymptotically tight.

Bin Packing and Multiprocessor Scheduling. Another fundamental pack-
ing problem is BinPacking. The decision problem asks if the given items fit into
a given number of bins and is known to be strongly NP-hard [10]. Even the case
where the number m of bins is a fixed constant, called m-BinPacking, remains
weakly NP-hard [22]. This result originates from the hardness of Partition,
which is equivalent to 2-BinPacking with B = 1

2 s(A). Marx [25] observed that
the gap creation technique that is commonly used to show inapproximability can
be used in context of the ETH. In combination with Theorem 2 we obtain:

Theorem 4. For α < 2 there is no α-approximate algorithm for BinPacking
and no exact algorithm for 2-BinPacking with running time 2o(n) × ‖I‖O(1),
unless the ETH fails.

The simplest variant of scheduling is the multiprocessor scheduling problem
MPS. It asks if there is a schedule of the given jobs on m machines that finishes
within a given deadline D and is equivalent to BinPacking.

Theorem 5. There is no algorithm deciding MPS in time 2o(n) × ‖I‖O(1), un-
less the ETH fails. This also holds for a fixed number m ≥ 2 of machines.

We present algorithms for MPS and BinPacking with running time 2O(n) ×
‖I‖O(1) in Sect. 4, which closes the gap between upper and lower bounds.

2.3 Input Length as Complexity Measure

When the running time is measured in the encoding length of the input the fastest
known algorithms for SubsetSum, Partition, Knapsack and m-BinPacking
have running time 2O(

√
‖I‖) [27,26].

Theorem 6. SubsetSum, Partition, Knapsack and m-BinPacking with
m ≥ 2 cannot be decided in time 2o(

√
‖I‖), unless the ETH fails.



Bounding the Running Time of Algorithms for Scheduling 443

Proof. Consider an instance of SubsetSum as constructed by the reduction for
Theorem 2. It contains 2n + 2m numbers, and each can be encoded (in base
10) with at most n + m digits. Because we can assume that n = O(m) we know
that ‖I‖ = O

(
m2). If an algorithm for SubsetSum with running time 2o(

√
‖I‖)

existed, one could use it to solve 3-Sat in time 2o(m) × ‖ϕ‖O(1). The reduc-
tions to the other problems do not increase the encoding length of the instance
significantly.

2.4 Special Cases with Size Restrictions
If ϕ is some predicate on the instances of SubsetSum or Partition, we de-
note the problem restricted to instances for which the predicate is true by
SubsetSum-ϕ or Partition-ϕ, respectively.

We first restrict SubsetSum to instances (A, B) with the following property:
If a subset S ⊆ A with s(S) = B exists, then it contains exactly half of the
elements, or more formally the following predicate ϕ holds:

ϕ((A, B)) ⇐⇒ ∀S ⊆ A:
(

s(S) = B =⇒ |S| = |A|
2

)
. (3)

Lemma 7. There is no algorithm that decides SubsetSum-ϕ in time 2o(n) ×
‖I‖O(1), unless the ETH fails.
Proof (Sketch). We give a strong reduction from SubsetSum. Let (A, B) be
an instance of SubsetSum. For each item a ∈ A we construct two items a1
and a2 with s(a1) = 2n s(a) + 1 and s(a2) = 1, and let A′ = {a1, a2 | a ∈ A}
and B′ = 2nB + n. It remains to prove that (A′, B′) satisfies ϕ and (A, B) is
a yes-instance iff (A′, B′) is a yes-instance. For this, partition the elements of a
solution of (A′, B′) into the elements of form a1 and a2. The items a ∈ A for
which a1 is in the solution correspond to a solution of (A, B) and vice-versa.
We can transform the instances of SubsetSum-ϕ to Partition using the same
construction as for Theorem 2. Recall that we added two items p and q. In every
feasible partition the added items are in different sets of the partition. Thus the
constructed instance A′ has a property similar to the instances of SubsetSum-ϕ:
If a partition A = A1 ∪̇ A2 with s(A1) = s(A2) exists, then |A1| = |A2|, or more
formally they fulfill the predicate ϕ′ defined by

ϕ′(A) ⇐⇒ ∀A1, A2 ⊆ A:
(
A = A1 ∪̇ A2 ∧ s(A1) = s(A2) =⇒ |A1| = |A2|) .

(4)
Lemma 8. There is no algorithm that solves Partition-ϕ′ in time 2o(n) ×
‖A‖O(1), unless the ETH fails.
Interestingly, the restriction SubsetSum-ϕ is a special case of the so called
SizedSubsetSum, for which the cardinality of the set to be found is given as
part of the instance, and Partition-ϕ′ is a special case of BalancedPartition,
for which only partitions A = A1 ∪̇ A2 are feasible that satisfy |A1| = |A2|.
Corollary 9. SizedSubsetSum and BalancedPartition cannot be solved in
time 2o(n) × ‖I‖O(1), unless the ETH fails.



444 K. Jansen, F. Land, and K. Land

Table 1. Summary of obtained bounds. Parenthesis around job characteristics denote
that the bound holds with and without these. An asterisk (*) after the citation shows
that the reduction was modified. The polynomial terms ‖I‖O(1) in the bounds are omit-
ted. A value in the column Approx. denotes that the bound also holds for approximate
algorithms with a strictly better approximation ratio than the given number.

Problem Reduced from Source Bound Approx.

〈1 | r(j), d(j) | any〉 Partition [10] 2o(n)

〈1 | r(j) | ∑wjCj〉 SubsetSum [30] 2o(n)

〈P2 | | ∑wjCj〉 Partition [22] 2o(n)

〈P | prec, t(j) = 1 | Cmax〉 Clique [21] 2o(√
n) 3/2

〈R | t(j, k) ∈ {t(j), ∞}, (pmtn) | Cmax〉 3-Sat [6] 2o(n) 3/2

〈P2 | para, (pmtn) | Cmax〉 Partition [10] 2o(n)

〈P | para, (pmtn|migr) | Cmax〉 Partition [4] 2o(n) 3/2
〈P2 | mall, (pmtn) | Cmax〉 Partition [10]* 2o(n)

〈P | mall, (pmtn|migr) | Cmax〉 Partition [4]* 2o(n) 3/2

〈O3 | | Cmax〉 Monotone-NAE-Sat [32] 2o(n) 5/4
〈O2 | | ∑wjCj〉 4-Partition [1]* 2o(n)

〈O2 | pmtn | ∑Cj〉 BalancedPartition [5] 2o(n)

〈O | (pmtn) | ∑Cj〉 3-Sat [13]* 2o(n)

〈F3 | (pmtn) | Cmax〉 Partition [11] 2o(n)

〈F2 | | ∑wjCj〉 4-Partition [9] 2o(n)

〈F | (pmtn) | ∑Cj〉 3-Sat [13]* 2o(n)

〈J2 | (pmtn) | Cmax〉 Partition [11] 2o(n)

3 More Scheduling Problems

We conducted a review of existing reductions in the scheduling area. Our findings
are summarized in Table 1. We had to modify some of the existing reductions,
in particular those starting from 3-Partition, for which no strong reduction is
known. We have been able to tweak the reduction to 3d-Matching by Garey
and Johnson [10], and utilized it to obtain a lower bound of 2o(n) × ‖I‖O(1) for
4-Partition on 4n numbers. Most reductions from 3-Partition can be altered
to start from 4-Partition instead.

4 Exact Solution in 2O(n)

We now present an algorithmic framework that can optimally solve many schedul-
ing and packing problems in time 2O(n) × ‖I‖O(1). The algorithms optimize gen-
eral classes of objective functions that include the popular choices Cmax and∑

wjCj . Here, a schedule σ is a pair of functions σm : J → [m], σs : J → IN0
that assign to each job its machine and starting time, respectively.



Bounding the Running Time of Algorithms for Scheduling 445

4.1 Sequencing on a Constant Number of Machines

We start with an algorithm that can solve problems that involve precedence or ex-
clusion constraints (e.g. for open shop). We require that the objective function is
of the form f(σ) = Opj∈J gj(σm(j), σs(j)), where Op is one of

∑
, min, and max.

Assume that we want to minimize or maximize f and all functions gj(k, ·) are
non-decreasing or non-increasing, respectively. Then for any feasible schedule
there is an equivalent compact schedule, i.e a schedule in which all jobs start as
early as possible.

Our algorithm is loosely based on the dynamic programming approach of Held
and Karp [12] for sequencing jobs on one machine. In contrast to their setting,
we must allow idle time, because it may be beneficial (or even required) to wait
for a job to finish on another machine. For this, we create a set T containing
all possible starting and finishing times of jobs. A small addition also allows our
algorithm to deal with job-specific release times.

Lemma 10. We can compute a set T that contains the starting and finishing
times of jobs in all compact schedules in time 2O(n) × ‖I‖O(1) and |T | = 2O(n).

The basic idea of the algorithm is to examine possible outlines of schedules.
Consider a schedule σ for a subset S ⊆ J of jobs. For each machine k ∈ [m]
there is a job �k that is scheduled last, unless it has no jobs. The outline of σ
is the restriction σ|L of σ to the jobs L(σ) = {�k | k ∈ [m], machine k has jobs}.
We denote by �(σ) the job in L(σ) that starts last with respect to σ (ties may
be broken arbitrarily). An S-outline is a schedule τ for L ⊆ S that is its own
outline such that the placement of �(τ) is feasible and S contains no successor
of �(τ). Note that there may be S-outlines that are not the outline of any feasible
schedule for S. We denote by OS(τ) the set of (S \ {�(τ)})-outlines τ ′ such that
τ ′ agrees with τ on L(σ) \ {�(τ)}, the jobs in L(τ ′) \ L(τ) finish before τs(�(τ)),
and τ ′ only uses machines that are used by τ .

We use a dynamic program to calculate, for each set S ⊆ J and S-outline τ ,
the best objective value B[S, τ ] of a feasible schedule for S with outline τ . This
is possible because of the following theorem. For simplicity we assume that f =
Cmax. For a description of the general case we refer to the full version of the
paper.

Lemma 11. Let S ⊆ J be a nonempty set of jobs and τ be an S-outline. Then
the following recurrence equation holds:

B[S, τ ] = min
τ ′∈OS(τ)

max{B[S \ {�(τ)}, τ ′], Cτ }, (5)

where Cτ is the completion time of �(τ) according to τ .

There are at most |T |m × (|S| + 1)m = 2O(n) S-outlines and 2n subsets S ⊆ J ,
so our dynamic program runs in 2O(n) iterations. The makespan of an optimal
schedule for all jobs then is minτ J-outline B[J, τ ].

Our algorithm can solve a broad class of problems, including 〈Om | | f〉,
〈Jm | | f〉, 〈Fm | | f〉, and 〈Rm | prec, r(j), d(j) | f〉, in time 2O(n) × ‖I‖O(1).



446 K. Jansen, F. Land, and K. Land

It can also be extended for parallel and malleable tasks. For f ∈ {Cmax,
∑

wjCj},
the problems 〈O3 | | f〉, 〈J3 | | f〉, 〈F3 | | f〉, and 〈P2 | | f〉 cannot be solved asymp-
totically faster, unless the ETH fails (see Sect. 3).

4.2 Scheduling on an Arbitrary Number of Machines

We now describe an exact algorithm for scheduling on arbitrary many machines.
For a schedule σ and k ∈ [m] we denote by Jσ,k the set σ−1

m (k) of jobs to be
processed on machine k.

The main idea is again to use dynamic programming over subsets of jobs. For
each S ⊆ J and k ∈ [m] we denote by B[S, k] the best possible objective value
when scheduling the jobs S on the first k machines. For each machine k and
set S of jobs the algorithm finds and sequences the jobs S′ ⊆ S that should
be processed on machine k. It does not look back and modify the schedule
on the previously filled machines 1, . . . , k − 1. Thus we demand that there are
no constraints on the starting or finishing times of jobs on different machines
(e.g. precedence constraints). We must further assume that the objective function
of the whole schedule can be calculated iteratively when adding a new machine
with jobs to the current schedule, i.e. the objective function is of the form f(σ) =
Opk∈[m] gk

(
Jσ,k, σ(k)), where Op is one of

∑
, min, and max, and the functions gk

can be computed in time 2O(n) × ‖I‖O(1). If the functions gk are of the form as
in Sect. 4.1 we can also use the algorithm presented there to sequence the jobs
on each machine.

Again, we restrict ourselves to f = Cmax for the explanation. We use dynamic
programming to calculate the values B[S, k] by utilizing the recurrence equation

B[k, S] =

{∑
j∈S t(j, 1)

minS′⊆S max
{

B[k − 1, S \ S′],
∑

j∈S′ t(j, k)
}

otherwise,
(6)

where t(j, k) denotes the processing time of job j on machine k. After computing
all values the makespan of an optimal schedule can be read from B[m, J ]. The
dynamic program needs at most 4n × m iterations.

We have to be careful with the dependence of the running time on m. On
identical machines, i.e. when g1 = · · · = gm we can assume m ≤ n, because an
optimal schedule uses at most n machines. For different machines (e.g. scheduling
on uniform or unrelated machines) this does not work. However, the m functions
(or some parameters to distinguish them) then have to be encoded in the input,
so we have ‖I‖ = Ω(m). Thus, our algorithm has a total running time of 2O(n) ×
‖I‖O(1).

Our algorithm is able to solve the general problem 〈R | rj , dj | f〉. This
contains 〈1 | rj | ∑wjCj〉, 〈P2 | | ∑wjCj〉, 〈1 | rj, dj | f〉, and 〈P2 | | Cmax〉
as special cases. In Sect. 3 we have shown that none of them can be solved
asymptotically faster under assumption of the ETH. The algorithm can also be
adapted to packing problems with multiple containers, e.g. BinPacking and
MultipleKnapsack.



Bounding the Running Time of Algorithms for Scheduling 447

5 Approximation Schemes for Knapsack Problems

5.1 The Multiple Knapsack Problem

In contrast to the regular knapsack problem instances of MultipleKnapsack
(MKS) may contain multiple knapsacks with individual capacities.

Theorem 12. There is no approximation scheme for MultipleKnapsack with
running time 2o( 1

ε ) × ‖I‖O(1), unless ETH fails. This bound even holds for
m = 2 knapsacks of equal capacity and when either

(i) all items have the same profit, or
(ii) the profit of each item equals its size.

The case of condition (i) is a natural one: by scaling, we can assume that the
profit of each item is 1, i.e. we are maximizing the number of packed items. With
condition (ii) we maximize the size of the packed items, which is known as the
multiple subset sum problem. The fastest known PTAS for the general case has
a running time of 2O( 1

ε log4 1
ε ) + ‖I‖O(1) [17].

Also note that both problem restrictions contain Partition as special case.
Thus the lower bound 2o(n) × ‖I‖O(1) applies to exact algorithms. The running
time of the algorithm described in Sect. 4.2 matches this bound.

Instances with a Special Profit Structure. To prove Theorem 12 we embed
Partition into MKS. We then show that an approximation scheme for MKS
can be used to decide Partition.

Note that for an instance I = (A, B) of MKS, we can regard A as an instance
of Partition by ignoring the profits. For each set I of instances of MKS we
define IP = {A | (A, B) ∈ I} as the set of corresponding instances of Partition.

Lemma 13. Let I be a set of instances of MKS, and α ≥ 1 such that for every
instance I = (A, B) ∈ I there is a C ∈ IN with

(i) I has m = 2 knapsacks of capacity 1
2 s(A) (note that s(A) must be even)

(ii) |C| = ‖A‖O(1),
(iii) p(A) ≤ nαC, and
(iv) p(a) ≥ C for each item a ∈ A.

Unless each instance A ∈ IP can be decided in time 2o(n) × ‖A‖O(1), there is no
approximation scheme that approximates all instances I ∈ I within (1 + ε) of
the optimum in time 2o( 1

ε ) × ‖I‖O(1).

Proof. Assume there is an approximation scheme P that finds an (1 + ε)-
approximate solution for every instance I ∈ I in time 2o( 1

ε ) × ‖I‖O(1). Let an
arbitrary instance I = (A, B) ∈ I be given. First we point out that a packing that
packs all items into the two knapsacks exists if and only if A is a yes-instance of
Partition. Now let ε = 1

nα and solve I approximately using Pε.
Recall that p(A) ≤ nαC, thus 1

nα p(A) ≤ C. A short calculation shows that,
if all items can be packed, the packing found by Pε has profit at least p(A) − C.
Since the profit of all items is at least C, there is no unpacked item.



448 K. Jansen, F. Land, and K. Land

Therefore one can decide whether A admits a partition by testing if a (1 +
ε)-approximate packing packs all items. Because condition (ii) implies ‖I‖ =
‖A‖O(1), the required running time is 2o( 1

ε ) × ‖I‖O(1) = 2o(n) × ‖A‖O(1). A
contradiction, since not all instances in IP can be decided in this running time.

We can now prove the first part of Theorem 12. Let I be the set of all instances
of MultipleKnapsack that satisfy condition (i) and have items of the same
profit. Let I = (A, B) ∈ I and p ∈ IN such that the profit p(a) = p for each
item a ∈ A. Then conditions (ii) to (iv) hold for C = p and α = 1. Furthermore,
the set IP actually contains every instance of the Partition with even s(A).
However, this restriction does not simplify the problem because instances with
odd s(A) must always be no-instances. By Theorem 2 we can apply Theorem 13
to get the desired result.

The Multiple Subset Sum Problem. We have to find a set I of instances
of the multiple subset sum problem that satisfies the preconditions of Theo-
rem 13. First, we can restrict ourselves to instances that satisfy the knapsack
condition (i). Any set I of such instances is unambiguously determined by IP.
Therefore we only need to give the set IP and α. The conditions (ii) to (iv) can
be equivalently expressed as: For each instance A ∈ IP there is a C ∈ IN with

(ii) |C| = ‖A‖O(1),
(iii) s(A) ≤ nαC, and
(iv) s(a) ≥ C for each item a ∈ A.

By a linear reduction from Partition-ϕ′ (see Sect. 2.4), we will show that there
is such a set IP and not every instance A ∈ IP can be solved in time 2o(n) ×
‖A‖O(1) if the ETH holds true. For this, transform the instances of Partition-ϕ′

such that the sizes of all items are similar, i.e. every instance A fulfills the
predicate ψ(A):

ψ(A) ⇐⇒ ∃ C ∈ IN ∀ a ∈ A: C ≤ s(a) ≤ 3C. (7)

Lemma 14. There is no algorithm that decides Partition-ψ in time 2o(n) ×
‖A‖O(1), unless the ETH fails.

Proof (Sketch). Add a suitably large value C to the size of all items. Since a
solution contains exactly n

2 elements the target B must be increased by n
2 C.

We are now able to prove the second part of Theorem 12. Let IP be the set
of instances of Partition-ψ for which s(A) is even. Observe that ψ(A) im-
plies s(A) ≤ n3C for any instance A ∈ IP. The set I = {(A, BA) | A ∈ IP}
with BA =

( 1
2 s(A), 1

2 s(A)
)

will therefore satisfy the preconditions of Theorem 13
for α = 3. Combining Theorem 14 with Theorem 13 yields the desired result.

5.2 Multi-dimensional Knapsack

Theorem 15. There is no PTAS for 2d-Knapsack with running time no( 1
ε ) ×

‖I‖O(1), unless the ETH fails.



Bounding the Running Time of Algorithms for Scheduling 449

Proof (Sketch). Pătraşcu and Williams [29] showed that, under assumption of
the ETH, SizedSubsetSum with n items and solution size k cannot be decided
in time no(k). Combined with the reduction to 2d-Knapsack by Kulik and
Shachnai [20] this yields the proposed bound on the running time.

This bound asymptotically matches the running time nO( 1
ε ) × ‖I‖O(1) of known

approximation schemes [2].

6 Open Questions

Some questions regarding exact algorithms remain open, for example no strong
lower bound is known for 〈Om | | ∑Cj〉 and 〈Fm | (pmtn) | ∑Cj〉. More impor-
tantly no non-trivial upper bound for many problems with arbitrary many ma-
chines, e.g. 〈O | | Cmax〉, is known. Another open question is whether 〈P | | Cmax〉
admits an approximation scheme with running time 2o(1/ε) × ‖I‖O(1).

References

1. Achugbue, J.O., Chin, F.Y.: Scheduling the open shop to minimize mean flow time.
SIAM Journal on Computing 11(4), 709–720 (1982)

2. Caprara, A., Kellerer, H., Pferschy, U., Pisinger, D.: Approximation algorithms for
knapsack problems with cardinality constraints. European Journal of Operational
Research 123(2), 333–345 (2000)

3. Chen, J., Huang, X., Kanj, I., Xia, G.: On the computational hardness based on
linear FPT-reductions. Journal of Combinatorial Optimization 11, 231–247 (2006)

4. Drozdowski, M.: On The Complexity of Multiprocessor Task Scheduling. Bulletin
of the Polish Academy of Sciences. Technical Sciences 43(3), 381–392 (1995)

5. Du, J., Leung, J.Y.-T.: Minimizing Mean Flow Time in Two-Machine Open Shops
and Flow Shops. Journal of Algorithms 14(1), 24–44 (1993)

6. Ebenlendr, T., Krčál, M., Sgall, J.: Graph balancing: a special case of scheduling
unrelated parallel machines. In: Teng, S.-H. (ed.) Proceedings of the Nineteenth An-
nual ACM-SIAM Symposium on Discrete Algorithms, pp. 483–490. SIAM, Philadel-
phia (2008)

7. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)
8. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Springer (2010)
9. Garey, M.R., Johnson, D.S., Sethi, R.: The complexity of flowshop and jobshop

scheduling. Mathematical Operations Research 1, 117–129 (1976)
10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory

of NP-Completeness. W. H. Freeman & Co., New York (1979)
11. Gonzalez, T., Sahni, S.: Flowshop and jobshop schedules: complexity and approxi-

mation. Operations Research 26(1), 36–52 (1978)
12. Held, M., Karp, R.: A Dynamic Programming Approach to Sequencing Problems.

Journal of the Society for Industrial and Applied Mathematics 10(1), 196–210
(1962)

13. Hoogeveen, H., Schuurman, P., Woeginger, G.J.: Non-approximability results for
scheduling problems with minsum criteria. Journal on Computing 13(2), 157–168
(2001)



450 K. Jansen, F. Land, and K. Land

14. Horowitz, E., Sahni, S.: Computing Partitions with Applications to the Knapsack
Problem. Journal of the ACM 21(2), 277–292 (1974)

15. Impagliazzo, R., Paturi, R.: On the Complexity of k-Sat. Journal of Computer
and System Sciences 62(2), 367–375 (2001)

16. Impagliazzo, R., Paturi, R., Zane, F.: Which Problems Have Strongly Exponential
Complexity? Journal of Computer and System Sciences 63(4), 512–530 (2001)

17. Jansen, K.: A Fast Approximation Scheme for the Multiple Knapsack Problem.
In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.)
SOFSEM 2012. LNCS, vol. 7147, pp. 313–324. Springer, Heidelberg (2012)

18. Jansen, K., Land, K., Land, F.: Bounding the Running Time of Algorithms for
Scheduling and Packing Problems. Technical Report 1302. Institute of Computer
Science, University of Kiel, Germany (2013)

19. Jansen, K., Kratsch, S., Marx, D., Schlotter, I.: Bin packing with fixed number of
bins revisited. Journal of Computer and System Sciences 79(1), 39–49 (2013)

20. Kulik, A., Shachnai, H.: There is no EPTAS for two-dimensional knapsack. Infor-
mation Processing Letters 110 16, 707–710 (2010)

21. Lenstra, J.K., Rinnooy Kan, A.H.G.: Complexity of Scheduling under Precedence
Constraints. Operations Research 26(1), 22–35 (1978)

22. Lenstra, J.K., Rinnooy Kan, A.H.G., Brucker, P.: Complexity of Machine Schedul-
ing Problems. In: Hammer, P., Johnson, E., Korte, B., Nemhauser, G. (eds.) Stud-
ies in Integer Programming. Annals of Discrete Mathematics, vol. 1, pp. 343–362.
Elsevier (1977)

23. Lenté, C., Liedloff, M., Soukhal, A., T’kindt, V.: Exponential-time algorithms for
scheduling problems. In: 10th Workshop on Models and Algorithms for Planning
and Scheduling Problems (MAPSP 2011), Nymburk, Czech Republic (2011)

24. Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on the Exponential
Time Hypothesis. Bulletin of the EATCS 105, 41–72 (2011)

25. Marx, D.: Parameterized complexity and approximation algorithms. The Computer
Journal 51(1), 60–78 (2008)

26. O’Neil, T.E.: Sub-Exponential Algorithms for 0/1-Knapsack and Bin Packing. In:
Arabnia, H.R., Gravvanis, G.A., Solo, A.M.G. (eds.) Proceedings of the 2011 In-
ternational Conference on Foundations of Computer Science, pp. 209–214. CSREA
Press (2011)

27. O’Neil, T.E., Kerlin, S.: A simple 2O(√
x)-algorithm for Partition and Subset Sum.

In: Arabnia, H.R., Gravvanis, G.A., Solo, A.M.G. (eds.) Proceedings of the 2010
International Conference on Foundations of Computer Science, pp. 55–58. CSREA
Press (2010)

28. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complex-
ity classes. Journal of Computer and System Sciences 43(3), 425–440 (1991)

29. Pătraşcu, M., Williams, R.: On the possibility of faster Sat algorithms. In:
Charikar, M. (ed.) Proceedings of the Twenty-First Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pp. 1065–1075. SIAM, Philadelphia (2010)

30. Rinnooy Kan, A.H.G.: Machine scheduling problems: classification, complexity and
computations. Stenfert Kroese (1976)

31. Wegener, I.: Complexity Theory: Exploring the Limits of Efficient Algorithms.
Trans. from the German by R. J. Pruim. Springer (2003)

32. Williamson, D.P., Hall, L.A., Hoogeveen, J.A., Hurkens, C.A.J., Lenstra, J.K.,
Sevast’janov, S.V., Shmoys, D.B.: Short shop schedules. Operations Research 45(2),
288–294 (1997)



When Is Weighted Satisfiability FPT?

Iyad A. Kanj1 and Ge Xia2

1 School of Computing, DePaul University, Chicago, IL
ikanj@cs.depaul.edu

2 Dept. of Computer Science, Lafayette College, Easton, PA
xiag@lafayette.edu

Abstract. The weighted monotone and antimonotone satisfiability
problems on normalized circuits, abbreviated wsat

+[t] and wsat
−[t],

are canonical problems in the parameterized complexity theory. We study
the parameterized complexity of wsat

−[t] and wsat
+[t], where t ≥ 2,

with respect to the genus of the circuit. For wsat
−[t], we give a fixed-

parameter tractable (FPT) algorithm when the genus of the circuit is
no(1), where n is the number of the variables in the circuit. For wsat

+[2]
(i.e., weighted monotone cnf-sat) and wsat

+[3], which are both W [2]-
complete, we also give FPT algorithms when the genus is no(1). For
wsat

+[t] where t > 3, we give FPT algorithms when the genus is
O(

√
log n). We also show that both wsat

−[t] and wsat
+[t] on circuits

of genus nΩ(1) have the same W -hardness as the general wsat
+[t] and

wsat
−[t] problem (i.e., with no restriction on the genus), thus draw-

ing a precise map of the parameterized complexity of wsat
−[t], and of

wsat
+[t], for t = 2, 3, with respect to the genus of the underlying circuit.

As a byproduct of our results, we obtain, via standard parameter-
ized reductions, tight results on the parameterized complexity of several
problems with respect to the genus of the underlying graph.

1 Introduction

We consider the weighted satisfiability problems on monotone and antimonotone
normalized circuits of depth at most t ≥ 2. In the antimonotone weighted

satisfiability problem on normalized circuits of depth at most t ≥ 2, abbrevi-
ated wsat

−[t], we are given a circuit C of depth t in the normalized form [9,10]
(i.e., the output gate is an and-gate, and the gates alternate between and-gates
and or-gates) whose input literals are all negative, and an integer parameter
k ≥ 0, and we need to decide if C has a satisfying assignment of weight k (i.e.,
assigning k variables in C the value 1). In the monotone weighted satisfia-

bility on normalized circuits of depth at most t ≥ 2, abbreviated wsat
+[t], we

are given a circuit C of depth t in the normalized form whose input literals are
positive, and an integer parameter k ≥ 0, and we need to decide if C has a satis-
fying assignment of weight k. Our goal in this paper is to study the parameterized
complexity of wsat

−[t] and wsat
+[t] with respect to the genus of the circuit.

We define the genus of the circuit to be the genus of the underlying undirected
graph after the output gate is removed. The reason we exclude the output gate

F. Dehne, R. Solis-Oba, and J.-R. Sack (Eds.): WADS 2013, LNCS 8037, pp. 451–462, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



452 I.A. Kanj and G. Xia

of the circuit in the definition of the genus is two-fold. First, excluding the out-
put gate allows us to use standard fpt-reductions to model problems on graphs
satisfying a certain genus upper bound as wsat

−[t] and wsat
+[t] problems on

circuits that satisfy the same genus upper bound, whereas such modeling would
not be possible if the genus is defined to be that of the whole circuit. Second,
as it turns out, one obtains the same results obtained in the current paper if
the genus is defined to be that of the whole circuit. To see this, observe that all
positive results (i.e., FPT results) obtained in this paper carry over because an
upper bound on the genus of the whole circuit implies the same upper bound on
the genus of the circuit with the output gate removed; on the other hand, it is
straightforward to show that all the W -hardness results obtained in this paper
hold if the genus is defined to be that of the whole circuit. We mention that the
weighted circuit satisfiability problem on depth-t planar circuits with the
output gate included is solvable in polynomial time [4], whereas it can be easily
shown that wsat

−[t] and wsat
+[t] are NP-complete on planar circuits (and

hence on circuits of any genus) with the output gate removed.

1.1 Motivation and Related Work

The problems under consideration are of prime interest both theoretically
and practically. From the theoretical perspective, they naturally represent the
weighted satisfiability of (montone/antimontone) t-normalized propositional for-
mulas, i.e., products-of-sums-of-products... (see [9,10]), including the canoni-
cal problems weighted antimonotone/monotone cnf-sat. Recently, Marx [16]
proved that weighted monotone/antimonotone circuit satisfiability has no FPT
approximation algorithm with any approximation ratio function ρ, unless FPT =
W[1]. Moreover, the wsat

−[t] and the wsat
+[t] problems are the canonical com-

plete problems for the different levels of the parameterized complexity hierarchy
— the W -hierarchy, and the W -hierarchy can be defined based on them [9,10].
Therefore, determining the underlying structure that makes these problems (pa-
rameterized) tractable is important from the perspective of complexity theory.
Recently, Marx [16] proved that weighted monotone/antimonotone circuit sat-
isfiability has no FPT approximation algorithm with any approximation ratio
function ρ, unless FPT = W[1]. From a more practical perspective, wsat

−[t]
and wsat

+[t] can model several natural problems. Therefore, parameterized al-
gorithms for wsat

−[t] and wsat
+[t] can be used to obtain parameterized algo-

rithms for some natural problems via reductions to/from wsat
−[t] and wsat

+[t],
as we shall see in Section 6.

Algorithms for many natural problems on planar graphs and, more generally,
on graphs whose genus meets certain upper bounds were extensively researched
(see [2,5,6,7,11,12], among others). Moreover, research results on planar circuits,
and on satisfiability problems defined on certain structures that are planar or
that satisfy certain structural properties, are abundant. Planar Boolean circuits
were researched because they can be used to study VLSI chips (for example,
see [18]). Khanna and Motwani [15] studied the approximation of instances of
satisfiability problems (weighted and unweighted) whose underlying structure



When Is Weighted Satisfiability FPT? 453

is planar. Cai et al. [3] studied the parameterized complexity of the satisfiabil-
ity problems introduced by Khanna and Motwani [15], and showed that these
problems are W [1]-hard even when the underlying incidence graph is planar.
Researchers have also studied the parameterized complexity of cnf-sat with re-
spect to the treewidth of graphs defined based on the circuit (see the survey [19]).

1.2 Our Results

We obtain the following results regarding the wsat
−[t] (t ≥ 2), which is W [t]-

complete for odd t and W [t−1]-complete for even t [9,10] (below n is the number
of the variables in the circuit):

(i) Tight results: We give an FPT algorithm for wsat
−[t] when the genus

is no(1), and show that wsat
−[t] has the same W -hardness as the general

wsat
−[t] problem when the genus is nΩ(1).

(ii) Applications: We show that independent set on hypergraphs and the
red-blue nonblocker problems are FPT on (hyper)graphs of genus No(1)

and W [1]-complete on (hyper)graphs of genus NΩ(1) (N is the number of
red vertices in red-blue nonblocker and the total number of vertices in
independent set on hypergraphs).

We obtain the following results regarding the wsat
+[t] (t ≥ 2), which is known

to be W [t]-complete for even t and W [t− 1]-complete for odd t [9,10]:

(1) Tight results for t = 2, 3: We give FPT algorithms for wsat
+[2] (i.e.,

weighted monotone cnf-sat) and wsat
+[3] when the genus is no(1), and

show that they are W [2]-complete when the genus is nΩ(1).
(2) Results for t > 3: We give an FPT algorithm for wsat

+[t] when the genus is
O(
√

logn), and show that wsat
+[t] has the same W -hardness as the general

wsat
+[t] when the genus is nΩ(1).

(3) Applications: We show that red-blue dominating set, hitting set,
and set cover are FPT if the underlying graph/hypergraph has genus
No(1), and W [2]-complete if the underlying graph/hypergraph has genus
NΩ(1) (N is the number of red vertices in red-blue dominating set, the
cardinality of the vertex-set in hitting set, and the number of sets in set

cover).

Remark. None of the algorithms presented in the current paper needs to know
in advance, nor needs to decide, whether or not the minimum genus of the input
circuit satisfies the required upper bounds.

2 Preliminaries

We assume familiarity with the basic terminology and definitions in graph theory
and parameterized complexity, and refer the reader to [9,10,20].



454 I.A. Kanj and G. Xia

A hypergraph H = (V,E) consists of a vertex set V = V (H) and an edge set
E = E(H) so that e ⊆ V for every e ∈ E. If E is allowed to be a multiset we
call H a multihypergraph. We also call the edges in a hypergraph hyperedges.

A graph has genus g if it can be drawn on a surface of genus g (a sphere with
g handles) without intersections. We say a (multi)hypergraph H is embeddable
in a surface if the bipartite incidence graph obtained from H by replacing each
of its hyperedges by a vertex adjacent to all the vertices in the hyperedge is
embeddable in that surface. In particular, this definition allows us to speak of
(multi)hypergraph of genus g. We refer the reader to [13] for more information
on the genus of a graph.

A circuit is a directed acyclic graph. The vertices of indegree 0 are called the
(input) variables, and are labeled either by positive literals xi or by negative liter-
als xi. The vertices of indegree larger than 0 are called the gates and are labeled
with Boolean operators and or or. A special gate of outdegree 0 is designated as
the output gate. We do not allow not gates in the above circuit model, since by
De Morgan’s laws, a general circuit can be effectively converted into the above
circuit model. A circuit is said to be monotone (resp. antimonotone) if all its
input literals are positive (resp. negative). The depth of a circuit is the maximum
distance from an input variable to the output gate of the circuit. A circuit repre-
sents a Boolean function in a natural way. The size of a circuit C, denoted |C|, is
the size of the underlying graph (number of vertices and edges). An occurrence
of a literal in C is an edge from the literal to a gate in C. Therefore, the total
number of occurrences of the literals in C is the number of outgoing edges from
the literals in C to its gates. The genus of a circuit is the genus of the underlying
undirected graph after the output gate has been removed.

We consider circuits whose output gate is an and-gate and that are in the
normalized form (see [9,10]). In the normalized form every (nonvariable) gate has
outdegree at most 1, and above the output and-gate, the gates are structured
into alternating levels of ors-of-ands-of-ors... We denote a circuit that is in the
normalized form and that is of depth at most t ≥ 2 by a Πt circuit. We write Π+

t

to denote a monotone Πt circuit, and Π−
t to denote an antimonotone Πt circuit.

We do not assume that the literals appear at the same level of the circuit.
Throughout the paper, we implicitly assume that the following hold after

simplifications: every gate with outdegree 0 except the output gate is removed,
every gate has indegree at least 2, and no two gates of the same type such that
one is incoming to the other exist.

We say that a truth assignment τ to the variables of a circuit C satisfies a
gate g in C if τ makes the gate g have value 1, and that τ satisfies the circuit
C if τ satisfies the output gate of C. A circuit C is satisfiable if there is a
truth assignment to the input variables of C that satisfies C. The weight of an
assignment τ is the number of variables assigned value 1 by τ . An indegree-2 gate
is called a 2-literal gate if both its incoming edges are from literals. A critical
gate in a Πt circuit C is an or-gate that is connected to the output and-gate
of the circuit; clearly, any satisfying assignment to C must satisfy all critical
gates in C. If we remove the literals from C, we obtain a directed graph whose



When Is Weighted Satisfiability FPT? 455

underlying undirected graph is a tree TC . If we root TC at the output gate of
C, we can now use the terms child(ren), parent, grandparent of a gate in TC in a
natural way. Note that every literal in C is connected to some gates in TC . For
a gate g in TC , we denote by Tg the subtree of TC rooted at g. We may regard
an edge in TC between a child g′ of a gate g and g, or between a literal and gate
g, as an incoming edge to g.

A parameterized problem Q is a set of pairs (x, k), where x is the instance
and the non-negative integer k is the parameter. A parameterized problem Q is
fixed-parameter tractable [9], shortly FPT , if there is an algorithm that decides
whether or not an input (x, k) is a member of Q in time f(k)NO(1), where f(k)
is a computable function independent of N = |x|. Let FPT denote the class of
all fixed-parameter tractable parameterized problems. A parameterized problem
Q is fpt-reducible to a parameterized problem Q′ if there is an algorithm that
transforms each instance (x, k) of Q into an instance (x′, g(k)) (g is a function
of k only) of Q′ in time f(k)NO(1), where f and g are computable functions of
k and N = |x|, such that (x, k) ∈ Q if and only if (x′, g(k)) ∈ Q′. By fpt-time,
we denote time complexity of the form f(k)NO(1), where N is the input length,
k is the parameter, and f is a computable function of k. Based on the notion
of fpt-reducibility [9], a hierarchy of parameterized complexity, the W -hierarchy⋃

t≥0 W [t], where W [t] ⊆ W [t + 1] for all t ≥ 0, has been introduced, in which
the 0-th level W [0] is the class FPT .

For t ≥ 2, the weighted Πt-circuit satisfiability problem, abbrevi-
ated wsat[t] is for a given Πt-circuit C and a given parameter k, to decide
if C has a satisfying assignment of weight k. The weighted monotone Πt-

circuit satisfiability problem, abbreviated wsat
+[t], and the weighted

antimonotone Πt-circuit satisfiability problem, abbreviated wsat
−[t]

are the wsat[t] problems on monotone circuits and antimonotone circuits, re-
spectively. We denote by wsat

− the wsat
−[2] problem, and by wsat

+ the
wsat

+[2] problem (i.e., the weighted antimonotone/monotone cnf-sat prob-
lem). It is known that for each integer t ≥ 2: wsat

+[t] is W [t]-complete for even
t and W [t− 1]-complete for odd t, and wsat

−[t] is W [t]-complete for odd t and
W [t− 1]-complete for even t [9,10].

3 A Structural Result

The following result shows that any Πt circuits whose genus is at most linear can
be reduced to an equivalent one whose size is linear and in which the number of
occurrences of the literals is linear:

Proposition 1. Let C be a Πt circuit on n variables of genus g(n) ≤ n. In
polynomial time we can reduce C to an equivalent Πt circuit C′ of genus g(n)
on the same set of variables such that the number of occurrences of the literals
in C′ is O(n), and such that the size of C′ is O(n).

Proof. (Sketch) We start by applying simplification and reduction rules to re-
move logically-equivalent gates from the circuit. We then use counting arguments



456 I.A. Kanj and G. Xia

based on amortized analysis and Euler-type combinatorial results for graphs and
(multi)hypergraphs (see Lemmas 4.4–4.6 in [14]) to upper bound the number of
occurrences of the literals and subsequently the size by O(n). 
�

4 The Antimonotone Case

In this section we give tight results on the parameterized complexity of the
wsat

−[t] problem, where t ≥ 2 is an integer, with respect to the circuit genus.

Definition 1. Let C be a Π−
t circuit, and let xi be a variable in C. We say

that xi is a zero-variable for C if assigning xi = 1 causes C to evaluate to 0.
Therefore, any zero-variable for C must be assigned the Boolean value 0 in a
satisfying truth assignment for C. A nonzero-variable for C is a variable that is
not a zero-variable for C. A Π−

t circuit C has no zero-variables if all the variables
in C are nonzero-variables.

Proposition 2. Let (C, k) be an instance of wsat
−[t] (t ≥ 2) such that the

genus of C is g(n) = no(1). In fpt-time, we can reduce (C, k) to an equivalent
instance (C′, k) where C′ has genus at most g(n) and no zero-variables, and such
that the number of variables n′ in C′ satisfies g(n) ≤ n′ ≤ n.

The following theorem shows that a Π−
t circuit with no zero-variables and with a

linear number of (literal) occurrences can always be satisfied with an (increasing)
function of n variables assigned 1.

Theorem 1. Let C be Π−
t circuit with n variables such that C has no zero-

variables and the number of occurrences of the literals in C is O(n). C has a

satisfying assignment in which at least f(n) = log(d
t) n variables are assigned

1, where log(i) indicates the logarithm (base 2) applied i times, and d > 0 is an
integer constant.

Proof. (Sketch) The proof is by induction on t, the depth of the circuit. The base
case when t = 2 can be easily handled by reducing it to the independent set

problem on multigraphs of bounded degree, which has a solution of size Ω(n).
When t ≥ 3, we define an intricate recursive procedure in which each step either
assigns a variable 1, or reduces the degree of the variables by 1. The procedure
will end when either enough variables are assigned 1 (we are done), or when the
degree of the variables is at most 1. By a careful analysis, we can prove that
in the case when the degree of the variables is at most 1 there will be enough
variables left that can be assigned 1 in a satisfying assignment. 
�

Theorem 2. The wsat
−[t] (t ≥ 2) problem on circuits of genus g(n) = no(1)

(n is the number of variables) is FPT , and is W [t]-complete for odd t and
W [t− 1]-complete for even t if g(n) = nΩ(1).

Proof. Let g(n) = no(1) = n1/μ(n), where μ(n) is a complexity function1, and
let (C, k) be an instance of the wsat

−[t] (t ≥ 2) problem on circuits of genus

1 In this paper, complexity functions are assumed to be unbounded and nondecreasing.



When Is Weighted Satisfiability FPT? 457

g(n). By Proposition 2, we can assume that C has no zero-variables, and that
the number of variables n in C is least g(n). By Proposition 1, we may assume
that the number of occurrences of the literals in C is O(n); if this is not the
case then the genus of the circuit is not upper bounded by g(n), and we reject
the instance. By Theorem 1, C has a satisfying assignment in which at least
f(n) variables are assigned the value 1, where f(n) is the function given in the
lemma. Therefore, if k ≤ f(n) then we accept the instance (C, k); otherwise,
k > f(n) and in fpt-time we can decide the instance by a brute-force algorithm
that enumerates every weight-k assignment. The hardness result follows by a
simple padding argument. 
�

5 The Monotone Case

In this section we give tight results on the parameterized complexity of the
wsat

+[t] problem, where t ≥ 2 is an integer, with respect to the circuit genus.

Proposition 3. Let (C, k) be an instance of wsat
+[t] (t ≥ 2) such that C

has genus g(n) = no(1). There is an fpt-time algorithm that reduces (C, k) to
h(k)nO(1) many instances (C′, k′) of wsat

+[t], where h is a complexity function
and k′ ≤ k, such that (C, k) is a yes-instance if and only if at least one of the
instances (C′, k′) is, and such that each instance (C′, k′) satisfies that: (1) the
number of critical gates in C′ is at most 2k′, (2) every variable in C′ is incoming
to gates in at most two subtrees Tp, Tq of T ′

C rooted at critical gates p, q in C′,
and (3) the genus of C′ is at most g(n).

Proof. Let g(n) be a complexity function such that g(n) = no(1). Since g(n) =
no(1), g(n) ≤ n1/μ(n) for some complexity function μ(n).

Let (C, k) be an instance of wsat
+[t], where C is a Π+

t circuit with set of
variables X = {x1, . . . , xn}, and k is the parameter. If more than k variables are
incoming to the output gate of C, then clearly C has no satisfying assignment of
weight k, and we reject the instance (C, k). Otherwise, we can assign the value
1 to the variables incoming to the output-gate of C, remove these variables, and
update C and k accordingly. So we may assume, without loss of generality, that
C has no variables incoming to its output gates, and that all gates incoming to
the output gates are or-gates (by the simplification rules discussed in Section 2),
and hence are critical gates.

For each critical gate p in C, consider the subtree Tp of TC . In the case when
t = 2, this subtree is trivial, and consists of gate p. We form an auxiliary graph
B as follows. Starting at each critical gate p, we contract the edges in Tp to form
a single vertex p′ whose incoming variables are the variables that are incoming
to at least one gate in Tp. Note that if a variable is incoming to several gates
in Tp, then there will be multiple edges between p′ and this variable. Let G
be the set of vertices resulting from contracting each tree Tp corresponding to
a critical gate p in C. Let B = (G, X) be the underlying undirected bipartite
graph resulting from this contraction with the multiple edges removed. That is,
there is an (undirected) edge in B between a variable xi ∈ X and a gate p′ in



458 I.A. Kanj and G. Xia

G if and only if xi is incoming to some gate in Tp. Clearly, the genus of B is
at most g(n). Observe that since each critical gate p must be satisfied by every
assignment that satisfies C, for any vertex p′ in G, at least one variable incident
to p′ in B must be assigned 1 in any truth assignment satisfying C. Let ng = |G|.

We partition the variables in X into two sets: X≥3 that consists of each
variable in X whose degree in B is at least 3, and X≤2 consisting of each variable
in X whose degree in B is at most 2. Let n3 = |X≥3| and n2 = |X≤2|. By defining
a multihypergraph whose vertex-set is G, and whose hyperedges correspond to
the neighborhoods of the variables in X≥3, we obtain from Lemma 4.4 in [14]
that n3 ≤ 2ng + 4g(n); if the preceding upper bound on n3 does not hold, then
we reject the instance (this means that the genus of the circuit is not at most
g(n)). We use the following search-tree algorithm A that distinguishes two cases:

Case 1. ng ≤ n1/μ(n). In this case we have n3 ≤ 2ng + 4g(n) ≤ 6n1/μ(n).
The number of subsets of X≥3 of size at most k is at most Σk

i=0

(
n3

i

)
≤ knk

3 ≤
k ·(6n1/μ(n))k. We try each such subset of X≥3 as a candidate subset of variables
that will be assigned value 1 by a satisfying assignment of weight k. For each
such candidate subset S, we update the gates in C in a natural way according
to the partial assignment assigning the variables in S the value 1, and those in
X≥3 \ S the value 0. We remove all variables in X≥3 from C, and update C
and k appropriately. Since each remaining variable is in X≤2, each variable can
satisfy at most 2 critical gates, and hence if the number of critical gates in C
is more than 2k, then we can reject the resulting instance (C, k). Therefore, for
each instance resulting from the enumeration of such a subset S of X≥3, either
the number of remaining critical gates in C is more than 2k and we reject the
instance since k variables in X≤2 cannot satisfy all the critical gates of C, or
the number of critical gates in C is at most 2k. Since the number of candidate
subsets of X≥3 is at most k · (6n1/μ(n))k which can be enumerated in fpt-time,
the statement of the theorem follows.

Case 2. ng > n1/μ(n). Let G be the subgraph of B induced by the set of vertices
in G plus those in X≥3. Since n3 ≤ 2ng + 4g(n) ≤ 6ng, the number of vertices
in G is at most 7ng. Since the genus of G is at most g(n), by Euler’s formula
the number of edges in G is at most 21ng + 6g(n) ≤ 27ng. Let Y≥3 be the set of
variables in X≥3 of degree at least 27ng/ logn in G. Since the number of edges
in G is at most 27ng, it follows that |Y≥3| ≤ logn. In time (logn)k, which is
fpt-time, we can enumerate each subset of Y≥3 of size at most k as a candidate
subset of variables that are assigned value 1 by a satisfying assignment of weight
k. For each such nonempty candidate subset, C is updated appropriately (as
in Case 1 above) and k is decreased by at least the size of the subset, which
is nonzero, and we can repeat the execution of the whole algorithm A; this
algorithm will be repeated at most k times. If the candidate subset is empty,
then along this branch we reject the instance (C, k) since C cannot be satisfied by
an assignment of weight k. The preceding statement can be justified as follows. In
any satisfying assignment, the critical gates, whose number is ng > n1/μ(n), must
be satisfied. Since the chosen subset of Y≥3 is empty, we are working under the



When Is Weighted Satisfiability FPT? 459

assumption that no variable in Y≥3 is assigned 1 by any satisfying assignment.
Therefore, the variables assigned 1 by any satisfying assignment must be chosen
from X≥3 − Y≥3 or from X≤2. Each variable in X≥3 − Y≥3 can satisfy at most
27ng/ logn critical gates in C, and each variable in X≤2 can satisfy at most 2
critical gates. Therefore, k variables from (X≥3−Y≥3)∪X≤2 can satisfy at most
27kng/ logn < ng critical gates in C, and hence cannot satisfy C. We assumed
here that k < logn/27; otherwise, we can decide the instance in fpt-time.

It follows that the algorithm A outlined above runs in fpt-time, and either
solves the instance (C, k), or reduces it to h(k)nO(1) many instances (C′, k′) (k′ <
k), such that (C, k) is a yes-instance if and only if at least one of the instances
(C′, k′) is, and such that each of the instances (C′, k′) satisfies conditions (1),
(2), and (3) in the statement of the theorem. 
�

Theorem 3. The wsat
+ problem on circuits of genus g(n) is FPT if g(n) =

no(1), and is W [2]-complete if g(n) = nΩ(1).

Proof. By Proposition 3, in fpt-time we can reduce an instance (C, k) of wsat
+

on circuits of genus g(n) = no(1) to h(k)nO(1) many instances (C′, k′) of wsat
+,

such that each instance (C′, k′) satisfies the properties described in Proposition 3.
It suffices to show that we can decide each such instance (C′, k′) in fpt-time.
First, observe that since each subtree Tp rooted at a critical gate p consists of
a single critical gate of C′, each variable in C′ has outdegree at most 2; that is,
each variable in C′ is incoming to at most two gates in C′. For two variables
xi and xj in C′, if the set of gates that xi is incoming to is a subset of that of
xj , then we say that xj dominates xi. We perform the following reductions. If
more than k′ variables are incoming to the output gate of C′, then C′ has no
satisfying assignment of weight k′, and we reject (C′, k′). Otherwise, we assign
the value 1 to the variables incoming to the output gate of C′, remove them,
and update C′ and k′ accordingly. For any two 2-literal gates that have the same
pair of variables incoming to them, we remove one of the two gates from C′. So
assume, without loss of generality, that in the instance (C′, k′) the circuit C′

contains no variables incoming to its output gate, and that there are no two
2-literal gates in C′ with the same pair of variables incoming to them. For every
two variables xi and xj in C, if xi dominates xj then remove xj . After applying
the previous reductions, it is easy to see that the number of degree-1 variables

is at most 2k′, and the number of degree-2 variables is at most
(
2k′
2

)
. Therefore,

the resulting circuit has size O(k′2), and in fpt-time we can decide (C′, k′). The
proof of hardness result is a simple padding argument. 
�

The rest of this section handles the cases when t > 2. We follow the terminology
of [8]. Let G be a graph, and let V ′ ⊆ V (G) and E′ ⊆ E(G) be such that
every vertex in V ′ is an endpoint of some edge in E′. Let G− be the graph
obtained from G by removing the vertices in V ′ and the edges in E′. G is
said to be (V ′, E′)-embeddable (in the plane) if G− is embeddable in the plane.
The vertices in V ′ and the edges in E′ are called flying. The flying edges are
partitioned into: (1) bridges, those are the edges whose both endpoints are in G−;
(2) pillars, those are the edges with exactly one endpoint in G−; and (3) clouds,



460 I.A. Kanj and G. Xia

those are the edges whose both endpoints are not in G−. A partially triangulated
(r× r)-grid is a graph that contains the (r× r)-grid as a subgraph, and is itself a
subgraph of a triangulation of the (r×r)-grid. A graph G is an (r, �)-gridoid if it
is (V ′, E′)-embeddable for some V ′, E′ such that G− is a partially triangulated
(r′ × r′)-grid for some r′ ≥ r, and E′ contains at most � edges and no clouds.
The following result was proved in [8]:

Theorem 4 ([8]). If a graph G of genus g excludes all (λ− 12g, g)-gridoids as
contractions, for some λ ≥ 12g, then the branchwidth of G is at most 4λ(g + 1).

Lemma 1. Let (C, k) be an instance of wsat
+[t] such that C has genus g(n)

and at most 2k critical gates. Let C− be the circuit resulting from C after remov-
ing the output gate. The branchwidth of the underlying graph of C− is O(g2(n)).

Proof. We show that the underlying graph of C− excludes all (�
√
kg(n)�, g(n))-

gridoids as contractions. By setting λ = 12g(n) + �
√
kg(n)�, the result follows

from Theorem 4. (We assume that k < g(n); otherwise, the problem is FPT.)
Suppose, to get a contradiction, that the underlying graph of C− contains an

(r, g(n))-gridoid G as a contraction, for some integer r ≥ �
√
kg(n)�. Since the

depth of C is at most t, every literal and gate in C− is within distance (i.e.,
length of a shortest path) at most t from some critical gate of C. Let S be the
set of vertices in G, each of which either corresponds to a critical gate of C or
to a contraction of a critical gate of C, and note that |S| ≤ 2k. Clearly, every
vertex in G must be within distance at most t from one of the vertices in S.
Embed G in the plane, and let G−, E′ and V ′ be as in the definition of the
gridoid. Note that E′ contains at most g(n) edges, and each edge of E′ must be
incident to at least one vertex in G−. Call an endpoint of an edge in E′ that is
in G− an anchor vertex. Since |E′| ≤ g(n), it follows that the number of anchor
vertices is at most 2g(n). There is a path of length at most t from every vertex
v in the partially-triangulated grid G− to some vertex in S; fix such a path for
every vertex v in G−, and denote it by Pv. Since the number of grid vertices
at distance at most t from some grid vertex is O(t2), the number of paths Pv

that pass through a fixed anchor vertex is O(t2). Therefore, the number of grid
vertices v whose paths Pv go through anchor vertices is O(t2) · 2g(n) = O(g(n)).
For any other vertex v, its path Pv lies completely within G−, and hence the
number of such vertices v is O(t2) · |S| = O(k). Since for every vertex v in G−,
Pv either goes through an anchor vertex or lies completely within the grid, the
number of grid vertices is at most O(g(n)) + O(k) = O(g(n)) (we assumed that
k < g(n), otherwise, we solve the problem in fpt-time). Since the number of
vertices in G− is at least r2 = Ω(kg), this is a contradiction since k can be
chosen to be larger than any prespecified constant, and in such case there would
be grid vertices that are not within distance t from any vertex in S. 
�

Using the above lemma, and an intricate dynamic programming based on tree
decomposition, we can show the following:

Proposition 4. Let C be a Π+
t circuit, and let G = (V,E) be the undirected

underlying graph of C with the output gate removed. If a tree decomposition



When Is Weighted Satisfiability FPT? 461

for G of N nodes and treewidth ω is given, then a minimum weight satisfying
assignment of C can be computed in time 2O(ω)NO(1).

Theorem 5. The wsat
+[t] problem (t > 2) on circuits of genus g(n) =

O(
√

logn) is FPT , and is W [t]-complete for even t and W [t − 1]-complete for
odd t if g(n) = nΩ(1).

Proof. Let (C, k) be an instance of wsat
+[t] on circuits of genus g(n) ≤ c

√
logn,

for some fixed (known) constant c > 0. By Proposition 3, in fpt-time we can
reduce the instance (C, k) to h(k)nO(1) many instances (C′, k′) of wsat

+[t],
where h is a complexity function of k and k′ ≤ k, such that (C, k) is a yes-
instance if and only if at least one of the instances (C′, k′) is, and such that C′

has at most 2k′ critical gates. Therefore, we may assume that C has at most 2k
critical gates. By Lemma 1, the branchwidth of C is at most c1 logn, for some
fixed constant c1 > 0, and hence, by the results of Robertson and Seymour [17],
the treewidth of C is at most c2 logn for some fixed constant c2 > 0. Using the
algorithm of Amir [1], we can decide if the treewidth of C is at most c3 logn
for some fixed constant c3 > 0 (if not, the genus does not satisfy the given
upper bound and we reject the instance), and if so, the algorithm in [1] returns
a tree decomposition of C of width c4 logn, for some constant c4 > 0, in time
2O(logn)|C|O(1) = |C|O(1). By Proposition 4, we can decide (C, k) in fpt-time.
The proof of hardness result is a simple padding argument. 
�

The above approach can be extended to wsat
+[3]:

Theorem 6. The wsat
+
[3] problem on circuits of genus g(n) is FPT if g(n) =

no(1), and W [2]-complete if g(n) = nΩ(1).

6 Applications

We show applications of the above results to natural problems. The red-blue

nonblocker problem is: Given a bipartite graph with one partition colored red
and the other blue, decide whether or not there exists a set S of k red vertices
such that every blue vertex has a red neighbor not in S. The other problems
under consideration are red-blue dominating set, hitting set, set cover,
and independent set on hypergraphs; those are well-known problems, and
we refer the reader to [9,10] for their definition, and for some of the standard fpt-
reductions showing their W -hardness. We note that hitting set is the same as
the vertex cover problem on hypergraphs, and set cover is the same as the
edge cover problem on hypergraphs. Therefore, the underlying hypergraph
is naturally defined for hitting set and set cover, and the genus of the
hypergraph is by definition the genus of its bipartite incidence graph whose (in
this case) first partition corresponds to the set of elements (vertex-set), and its
second partition corresponds to the family of subsets (hyperedges).

Theorem 7. The parameterized red-blue dominating set, hitting set,
and set cover are FPT on graphs/hypergraphs of genus No(1) and W [2]-
complete on graphs/hypergraphs of genus NΩ(1), where N is the number of red



462 I.A. Kanj and G. Xia

vertices in red-blue dominating set, the cardinality of the vertex-set in hit-

ting set, and the number of (sets) hyperedges in set cover.

Theorem 8. The parameterized red-blue nonblocker and independent

set on hypergraphs problems are FPT on graphs/hypergraphs of genus No(1)

and W [1]-complete on (hyper)graphs of genus NΩ(1) (N is the number of red
vertices in red-blue nonblocker, and the total number of vertices in inde-

pendent set on hypergraphs).

References

1. Amir, E.: Efficient approximation for triangulation of minimum treewidth. In: Pro-
ceedings of UAI, pp. 7–15. Morgan Kaufmann (2001)

2. Bodlaender, H., Fomin, F., Lokshtanov, D., Penninkx, E., Saurabh, S., Thilikos,
D.: (Meta) kernelization. In: Proceedings of FOCS, pp. 629–638 (2009)

3. Cai, L., Fellows, M., Juedes, D., Rosamond, F.: The complexity of polynomial-time
approximation. Theory of Computing Systems 41(3), 459–477 (2007)

4. Chen, J., Huang, X., Kanj, I., Xia, G.: Polynomial time approximation schemes
and parameterized complexity. Discrete Appl. Math. 155(2), 180–193 (2007)

5. Chen, J., Kanj, I., Perkovic, L., Sedgwick, E., Xia, G.: Genus characterizes the
complexity of certain graph problems: Some tight results. Journal of Computer
and System Sciences 73(6), 892–907 (2007)

6. Demaine, E., Fomin, F., Hajiaghayi, M., Thilikos, D.: Subexponential parameter-
ized algorithms on bounded-genus graphs and H-minor-free graphs. J. ACM 52,
866–893 (2005)

7. Demaine, E., Hajiaghayi, M.: Bidimensionality: new connections between FPT
algorithms and PTASs. In: Proceedings of SODA, pp. 590–601 (2005)

8. Demaine, E., Hajiaghayi, M., Thilikos, D.: The bidimensional theory of bounded-
genus graphs. SIAM J. Discrete Math. 20(2), 357–371 (2006)

9. Downey, R., Fellows, M.: Parameterized Complexity. Springer, New York (1999)
10. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2010)
11. Fomin, F., Lokshtanov, D., Raman, V., Saurabh, S.: Bidimensionality and EPTAS.

In: Proceedings of SODA, pp. 748–759 (2011)
12. Fomin, F., Lokshtanov, D., Saurabh, S., Thilikos, D.: Bidimensionality and kernels.

In: Proceedings of SODA, pp. 503–510 (2010)
13. Gross, J., Tucker, T.: Topological graph theory. Wiley-Interscience, NY (1987)
14. Kanj, I., Pelsmajer, M., Schaefer, M., Xia, G.: On the induced matching problem.

Journal of Computers and System Sciences 77(6), 1058–1070 (2011)
15. Khanna, S., Motwani, R.: Towards a syntactic characterization of PTAS. In: Pro-

ceedings of STOC, pp. 468–477 (1996)
16. Marx, D.: Completely inapproximable monotone and antimonotone parameterized

problems. J. Comput. Syst. Sci. 79(1), 144–151 (2013)
17. Robertson, N., Seymour, P.D.: Graph minors X: Obstructions to tree-

decomposition. J. Comb. Theory, Ser. B 52(2), 153–190 (1991)
18. Savage, J.: Planar circuit complexity and the performance of VLSI algorithms.

Technical Report RR-0077, INRIA (May 1981)
19. Szeider, S.: On fixed-parameter tractable parameterizations of sat. In: Giunchiglia,

E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 188–202. Springer, Heidel-
berg (2004)

20. West, D.: Introduction to graph theory. Prentice Hall Inc., NJ (1996)



Two-Sided Boundary Labeling with Adjacent Sides�

Philipp Kindermann1, Benjamin Niedermann2, Ignaz Rutter2, Marcus Schaefer3,
André Schulz4, and Alexander Wolff1

1 Lehrstuhl für Informatik I, Universität Würzburg, Germany
http://www1.informatik.uni-wuerzburg.de/en/staff

2 Fakultät für Informatik, Karlsruher Institut für Technologie (KIT), Germany
{benjamin.niedermann,rutter}@kit.edu

3 College of Computing and Digital Media, DePaul University, Chicago, IL, USA
mschaefer@cs.depaul.edu

4 Institut für Mathematische Logik und Grundlagenforschung, Universität Münster, Germany
andre.schulz@uni-muenster.de

Abstract. In the Boundary Labeling problem, we are given a set of n points,
referred to as sites, inside an axis-parallel rectangle R, and a set of n pairwise
disjoint rectangular labels that are attached to R from the outside. The task is
to connect the sites to the labels by non-intersecting rectilinear paths, so-called
leaders, with at most one bend.

In this paper, we study the problem Two-Sided Boundary Labeling with Adja-
cent Sides, where labels lie on two adjacent sides of the enclosing rectangle. We
present a polynomial-time algorithm that computes a crossing-free leader layout
if one exists. So far, such an algorithm has only been known for the cases that la-
bels lie on one side or on two opposite sides of R (where a crossing-free solution
always exists). For the more difficult case where labels lie on adjacent sides, we
show how to compute crossing-free leader layouts that maximize the number of
labeled points or minimize the total leader length.

1 Introduction

Label placement is an important problem in cartography and, more generally, informa-
tion visualization. Features such as points, lines, and regions in maps, diagrams, and
technical drawings often have to be labeled so that users understand better what they
see. Even very restricted versions of the label-placement problem are NP-hard [14],
which explains why labeling a map manually is a tedious task that has been esti-
mated to take 50% of total map production time [15]. The ACM Computational
Geometry Impact Task Force report [6] identified label placement as an important re-
search area. The point-labeling problem in particular has received considerable atten-
tion, from practitioners and theoreticians alike. The latter have proposed approximation
algorithms for various objectives (label number versus label size), label shapes (such as
axis-parallel rectangles or disks), and label-placement models (so-called fixed-position
models versus slider models).
� This research was initiated during the GraDr Midterm meeting at the TU Berlin, which was

supported by an ESF networking grant. Ph. Kindermann acknowledges support by the ESF
EuroGIGA project GraDR (DFG grant Wo 758/5-1).

F. Dehne, R. Solis-Oba, and J.-R. Sack (Eds.): WADS 2013, LNCS 8037, pp. 463–474, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



464 P. Kindermann et al.

��������	
�	 ����������� �����
�
������

������
���

����
�����
���������
���������������

�����	�

��������
���

�������
�����
����
���������������

(a) original labeling of kinder-
gartens in Karlsruhe, Germany

���������������	
���
								
������


���	������ 
���	���
������	�����


���	�������


���	���������


���	��
����������������


���	�����


���	
����

(b) opo-labeling computed by
the algorithm of Bekos et al. [4]

���������������	
���
								
������


���	������ 
���	���
������	�����


���	�������


���	���������


���	��
����������������


���	�����


���	
����

(c) po-labeling using the same
ports as (b)

Fig. 1. A real-world example of boundary labeling with adjacent sides (taken from [4]). For better
readability, we have simplified the label texts.

The traditional label-placement models for point labeling insist that a label is placed
such that a point on its boundary coincides with the point to be labeled, the site. This
can make it impossible to label all sites with labels of sufficient size if some sites are
very close together. For this reason, Freeman et al. [8] and Zoraster [19] advocated the
use of leaders, (usually short) line segments that connect sites to labels. In order to
make sure that the background image or map remains visible even in the presence of
large labels, Bekos et al. [4] took a more radical approach. They introduced models and
algorithms for boundary labeling, where all labels are placed beyond the boundary of
the map and are connected to the sites by straight-line or rectilinear leaders (see Fig. 1).

Problem Statement. Following Bekos et al. [4], we define the BOUNDARY LABELING

problem as follows. We are given an axis-parallel rectangle R = [0,W ]× [0, H ], which
is called the enclosing rectangle, a set P ⊂ R of n points p1, . . . , pn, called sites, within
the rectangle R, and a set L of m ≤ n axis-parallel rectangles �1, . . . , �m, called labels,
that lie in the complement of R and touch the boundary of R. No two labels overlap. We
denote an instance of the problem by the triplet (R,L, P ). A solution to the problem
is a set of m curves c1, . . . , cm, called leaders, that connect sites to labels such that
the leaders a) produce a matching between the labels and (a subset of) the sites, b) are
contained inside R, and c) touch the associated labels on the boundary of R.

A solution is planar if the leaders do not intersect. We call an instance solvable if a
planar solution exists. Note that we do not prescribe which site connects to which label.
The endpoint of a curve at a label is called a port. We distinguish two versions of the
BOUNDARY LABELING problem: either the position of the ports on the boundary of R
is fixed and part of the input, or the ports slide, i.e., their exact location is not prescribed.

We restrict our solutions to po-leaders, that is, starting at a site, the first line segment
of a leader is parallel (p) to the side of R containing the label it leads to, and the second
line segment is orthogonal (o) to that side; see Fig. 1c. (Fig. 1b shows a labeling with
so-called opo-leaders, which were investigated by Bekos et al. [4]). Bekos et al. [3,
Fig. 12] observed that not every instance (with m = n) admits a planar solution with
po-leaders where all sites are labeled.



Two-Sided Boundary Labeling with Adjacent Sides 465

Previous and related work. For po-labeling, Bekos et al. [4] gave a simple quadratic-
time algorithm for the one-sided case that, in a first pass, produces a labeling of min-
imum total leader length by matching sites and ports from bottom to top. In a second
pass, their algorithm removes all intersections without increasing the total leader length.
This result was improved by Benkert et al. [5] who gave an O(n log n)-time algorithm
for the same objective function and an O(n3)-time algorithm for a very general class of
objective functions, including, for example, bend minimization. They extend the latter
result to the two-sided case (with labels on opposite sides of R), resulting in an O(n8)-
time algorithm. For the special two-sided case of leader-length minimization, Bekos et
al. [4] gave a simple dynamic program running in O(n2) time. All these algorithms
work both for fixed and sliding ports.

Leaders that contain a diagonal part have been studied by Benkert et al. [5] and by
Bekos et al. [2]. Recently, Nöllenburg et al. [16] have investigated a dynamic scenario
for the one-sided case, Gemsa et al. [9] have used multi-layer boundary labeling to label
panorama images, and Fink et al. [7] have boundary labeled focus regions, for example,
in interactive on-line maps.

Δ}
Fig. 2. Length-mini-
mal solutions may
have crossings

At its core, the boundary label problem asks for a non-
intersecting perfect (or maximum) matching on a bipartite graph.
Note that an instance may have a planar solution, although all of
its leader-length minimal matchings have crossings. In fact, the
ratio between a length-minimal solution and a length-minimal
crossing-free matching can be arbitrarily bad; see Fig. 2. When
connecting points and sites with straight-line segments, the
minimum Euclidean matching is necessarily crossing-free. For
this case an O(n2+ε)-time O(n1+ε)-space algorithm exists [1].
The minimum-length solution using rectilinear paths with an
unbounded number of bends in the presence of obstacles is
NP-hard, but there is a 2-approximation [18].

Boundary labeling can also be seen as a graph-drawing problem where the class of
graphs to be drawn is restricted to matchings. The restriction concerning the positions
of the graph vertices (that is, sites and ports) has been studied for less restricted graph
classes under the name point-set embeddability (PSE), usually following the straight-
line drawing convention for edges [10]. More recently, PSE has also been combined
with the ortho-geodesic drawing convention [12], which generalizes po-labeling by al-
lowing edges to make more than one bend. The case where the mapping between ports
and sites is given has been studied in VLSI layout [17].

Our Contribution. We investigate the problem TWO-SIDED BOUNDARY LABELING

WITH ADJACENT SIDES where all labels lie on two adjacent sides of R, for example,
on the top and right side. Note that point data often comes in a coordinate system; then
it is natural to have labels on adjacent sides (for example, opposite the coordinate axes).
We argue that this problem is more difficult than the case where labels lie on opposite
sides, which has been studied before: with labels on opposite sides, (a) there is always
a solution where all sites are labeled (if m = n) and (b) a feasible solution can be
obtained by considering two instances of the one-sided case.



466 P. Kindermann et al.

Our main result is an algorithm that, given an instance with n labels and n sites,
decides whether a planar solution exists where all sites are labeled and, if yes, computes
a layout of the leaders (see Section 3). Our algorithm uses dynamic programming to
“guess” a partition of the sites into the two sets that are connected to the leaders on the
top side and on the right side. The algorithm runs in O(n2) time and uses O(n) space.

Notation. We call the labels that lie on the right (top) side of R right (top) labels.
The type of a label refers to the side of R on which it is located. The type of a leader
(or a site) is simply the type of its label. We assume that no two sites lie on the same
horizontal or vertical line, and no site lies on a horizontal or vertical line through a port
or an edge of a label.

For a solutionL of a boundary labeling problem, we define several measures that will
be used to compare different solutions. We denote the total length of all leaders in L
by length(L). Moreover, we denote by |L|x the total length of all horizontal segments
of leaders that connect a right label to a site. Similarly, we denote by |L|y the total
length of the vertical segments of leaders that connect top labels to sites. Note that in
general, it is not true that |L|x + |L|y = length(L).

We denote the (uniquely defined) leader connecting a site p to a port t of a label �
by λ(p, t). We denote the bend of the leader λ(p, t) by bend(p, t). In the case of fixed
ports, we identify ports with labels and simply write λ(p, �) and bend(p, �), resp.

2 Structure of Planar Solutions

In this section, we attack our problem presenting a series of structural results of increas-
ing strength. For simplicity, we assume fixed ports. For sliding ports, we can simply fix
all ports to the bottom-left corner of their corresponding labels (see the full version of
this paper [13]). First we show that we can split a planar two-sided solution into two
one-sided solutions by constructing an xy-monotone, rectilinear curve from the top-
right to the bottom-left corner of R; see Fig. 4. Afterwards, we provide a necessary
and sufficient criterion to decide whether for a given separation there exists a planar
solution. This will form the basis of our dynamic programming algorithm, which we
present in Section 3.

Lemma 1. Consider a solution L for (R,L, P ) and let P ′ ⊆ P be sites of the same
type. Let L′ ⊆ L be the set of labels of the sites in P ′. Let K ⊆ R be a rectangle that
contains all bends of the leaders of P ′. If the leaders of P \P ′ do not intersect K , then
we can rewire P ′ andL′ such that the resulting solutionL′ has the following properties:
(i) all intersections in K are removed, (ii) there are no new intersections of leaders
outside of K , (iii) |L′|x = |L|x, |L′|y = |L|y , and (iv) length(L′) ≤ length(L).

Proof. Without loss of generality, we assume that P ′ contains top sites; the other cases
are symmetric. We first prove that, no matter how we change the assignment between P ′

and L′, new intersection points can arise only in K . Then we show how to establish the
claimed solution.

Claim. Let �, �′ ∈ L′ and p, p′ ∈ P ′ such that � labels p and �′ labels p′. Chang-
ing the matching by rerouting p to �′ and p′ to � does not introduce new intersections
outside of K .



Two-Sided Boundary Labeling with Adjacent Sides 467

p′

p

� �′

K ′

K

p′

p

� �′

K ′

K

(a) rerouting λ(p, �) and λ(p′, �′) to λ(p, �′) and
λ(p′, �) changes leaders only on the boundary of K′

p

p′

� �′

c

K ′
p′

� �′

c

K ′

p

(b) removing the highest crossing c does
not increase the total leader length

Fig. 3. Illustration of the proof of Lemma 1

Let K ′ ⊆ K be the rectangle spanned by bend(p, �) and bend(p′, �′). When rerouting,
we replace λ(p, �) ∪ λ(p′, �′) restricted to the boundary of K ′ by its complement with
respect to the boundary ofK ′; see Fig. 3a for an example. Thus, any changes concerning
the leaders occur only in K ′. The statement of the claim follows.

Since any rewiring can be seen as a sequence of pairwise reroutings, the above claim
shows that we can rewire L′ and P ′ arbitrarily without running the risk of creating new
conflicts outside of K . In order to resolve the conflicts inside K , we use the length-
minimization algorithm for one-sided boundary labeling by Benkert et al. [5], with the
sites and ports outside K projected onto the boundary of K . Thus, after finitely many
such steps, we find a solution L′ that satisfies properties (i)–(iv) in the statement of
the lemma. 
�

Definition 1. We call an xy-monotone, rectilinear curve connecting the top-right to the
bottom-left corner of R an xy-separating curve; see Fig. 4. We say that a planar solution
to TWO-SIDED BOUNDARY LABELING WITH ADJACENT SIDES is xy-separated if
and only if there exists an xy-separating curve C such that

a) the top sites and their leaders lie on or above C, and
b) the right sites and their leaders lie below C.

It is not hard to see that a planar solution is not xy-separated if there exists a site p that is
labeled to the right side and a site q that is labeled to the top side with x(p) < x(q) and
y(p) > y(q). There are exactly four patterns in a possible planar solution that satisfy
this condition; see Fig. 5. We claim that these patterns are the only ones that violate
xy-separability (for the proof, refer to the full version of the paper [13]).

Lemma 2. A planar solution is xy-separated if and only if it does not contain any of
the patterns P1–P4 in Fig. 5.

Observe that patterns P1 and P2 can be transformed into patterns P4 and P3, respec-
tively, by mirroring the instance diagonally. Next, we prove constructively that, by
rerouting pairs of leaders, any planar solution can be transformed into an xy-separated
planar solution.

Proposition 1. If there exists a planar solution L to TWO-SIDED BOUNDARY LA-
BELING WITH ADJACENT SIDES, then there exists an xy-separated planar solution L′
with length(L′) ≤ length(L), |L′|x ≤ |L|x, and |L′|y ≤ |L|y .



468 P. Kindermann et al.

C

R

r

p

C q

(P1)

p
r

qC

(P2)

C

q
r

p

(P3)

p
q

rC

(P4)

Fig. 4. An xy-separating
curve of a planar solution

Fig. 5. A planar solution that contains any of the above four pat-
terns P1–P4 is not xy-separated

Proof. Let L be a planar solution of minimum total leader length. We show that L is
xy-separated. Assume, for the sake of contradiction, that L is not xy-separated. Then,
by Lemma 2, L contains one of the patterns P1–P4. Without loss of generality, we can
assume that the pattern is of type P3 or P4. Otherwise, we mirror the instance diagonally.

Let p be a right site (with port r) and let q be a top site (with port t) such that (p, q)
forms a pattern of type P3 or P4. Among all such patterns, pick one where p is rightmost.
Among all these patterns, pick one where q is bottommost. Let A be the rectangle
spanned by p and t; see Fig. 6. Let A′ be the rectangle spanned by bend(q, t) and p.
Let B be the rectangle spanned by q and r. Let B′ be the rectangle spanned by q
and bend(p, r). Then we claim the following:

(i) Sites in the interiors of A and A′ are connected to the top.
(ii) Sites in the interiors of B and B′ are connected to the right.

Property (i) is due to the choice of p as the rightmost site involved in such a pattern.
Similarly, property (ii) is due to the choice of q as the bottommost site that forms a
pattern with p. This settles our claim.

Our goal is to change the labeling by rerouting p to t and q to r, which decreases
the total leader length, but may introduce crossings. We then use Lemma 1 to remove
the crossings without increasing the total leader length. Let L′′ be the labeling obtained
fromL by rerouting p to t and q to r. We have |L′′|y ≤ |L|y−(y(p)−y(q)) and |L′′|x =
|L|x− (x(q)−x(p)). Moreover, length(L′′) ≤ length(L)− 2(y(p)− y(q)), as at least
twice the vertical distance between p and q is saved; see Fig. 6. Since the original
labeling was planar, crossings may only arise on the horizontal segment of λ(p, t) and
on the vertical segment of λ(q, r).

By properties (i) and (ii), all leaders that cross the new leader λ(p, t) have their bends
inside A′, and all leaders that cross the new leader λ(q, r) have their bends inside B′.
Thus, we can apply Lemma 1 to the rectangles A′ and B′ to resolve all new cross-
ings. The resulting solution L′ is planar and has length less than length(L). This is a
contradiction to the choice of L. 
�

Since every solvable instance of TWO-SIDED BOUNDARY LABELING WITH ADJA-
CENT SIDES admits an xy-separated planar solution, it suffices to search for such a so-
lution. Moreover, an xy-separated planar solution that minimizes the total leader length
has minimum leader length among all planar solutions. In Lemma 3 we provide a nec-
essary and sufficient criterion to decide whether, for a given xy-monotone curve C,
there is a planar solution that is separated by C. We denote the region of R above C



Two-Sided Boundary Labeling with Adjacent Sides 469

p

r

t

q
B′
→ B→

A↑

A′ ↑

(a) pattern P3

q

B′

A↑

→ B→

p

t

r

A′↑

(b) pattern P4

C

h1

hk

Rp

p
hi

Sk

S1

h0
S0

Si

(a)

pi
pi−1

Rpi−1

C
hi

Si

Ci−1Ci

(b)
Fig. 6. Types (top = ↑ / right =→) of
the sites inside rectangles A, A′, B,
and B′. Fat edges: result after rerout-
ing.

Fig. 7. The strip condition. a) The horizontal segments
of C partition RT into the strips S0, S1, . . . , Sk. b) Con-
structing a planar labeling from a sequence of valid rect-
angles.

by RT and the region of R below C by RR. These regions are relatively open at C.
For each horizontal segment of C consider the horizontal line through the segment. We
denote the part of these lines within R by h1, . . . , hk, respectively. Further, let h0 be the
top edge of R. The line segments h1, . . . , hk partition RT into k strips, which we de-
note by S1, . . . , Sk from top to bottom, such that strip Si is bounded by hi from below
for i = 1, . . . , k; see Fig. 6a. Additionally, we define S0 to be the empty strip that coin-
cides with h0. Note that this strip cannot contain any site of P . For any point p on one
of the horizontal lines hi, we define the rectangle Rp, spanned by p and the top-right
corner of R. We define Rp such that it is closed but does not contain its top-left corner.
In particular, we consider the port of a top label as contained in Rp, except if it is the
upper left corner of Rp.

A rectangle Rp is valid if the number of sites of P above C that belong to Rp is at
least as large as the number of ports on the top side of Rp. The central idea is that the
sites of P inside a valid rectangle Rp can be connected to labels on the top side of the
valid rectangle by leaders that are completely contained inside the rectangle.

We now prove that, for a given xy-separating curve C, there exists a planar solution
in RT for the top labels if and only if C satisfies the following strip condition for
each strip S0, . . . , Sk in RT. The strip condition of strip Si is satisfied if there exists a
point p ∈ hi ∩RT such that Rp is valid. We call a region S ⊆ R balanced if it contains
the same numbers of sites and ports.

Lemma 3. Let C be an xy-separating curve and let PT = P ∩RT. There is a planar
solution that uses all top labels of R to label the sites in PT such that all leaders are
in RT if and only if S0, . . . , Sk satisfy the strip condition.

Proof. To show that the conditions are necessary, letL be a planar solution for which all
top leaders are aboveC. Consider strip Si, which is bounded from below by line hi, 0 ≤
i ≤ k. If there is no site of PT below hi, rectangle Rp is clearly valid, where p is
the intersection of hi with the left side of R , and thus the strip condition is satisfied.
Hence, assume that there is a site p ∈ PT that is labeled by a top label, and is in strip Sj

with j > i; see Fig. 6a. Then, the vertical segment of this leader crosses hi in RT.
Let p′ denote the rightmost such crossing of a leader of a site in PT with hi. We claim
that Rp′ is valid. To see this, observe that all sites of PT top-right of p′ are contained



470 P. Kindermann et al.

in Rp′ . Since no leader may cross the vertical segments defining p′, the number of sites
in Rp′ ∩RT is balanced, i.e., Rp′ is valid.

Conversely, we show that if the conditions are satisfied, then a corresponding planar
solution exists. Let Sk be the last strip that contains sites of PT. For i = 0, . . . , k, let p′i
denote the rightmost point of hi ∩ RT such that Rp′

i
is valid. We define pi to be the

point on hi ∩RT with x-coordinate minj≤i{x(p′j)}. Note that Rpi is a valid rectangle,
as, by definition, Rpi contains some valid rectangle Rp′

j
with x(p′j) = x(pi). Also by

definition, the sequence p0, p1, . . . , pk has decreasing x-coordinates, i.e., Rpk
⊆ · · · ⊆

Rp1 ⊆ Rp0 ; see Fig. 6b.
We prove inductively that, for i = 0, . . . , k, there is a planar labelingLi that matches

the labels on the top side of Rpi to points contained in Rpi such that there exists an xy-
monotone curve Ci from the top-left to the bottom-right corner of Rpi that separates
the labeled sites from the unlabeled sites without intersecting any leaders. Then Lk is
the claimed labeling.

For i = 0, L0 = ∅ is a planar solution. Consider a strip Si with 0 < i ≤ k; see
Fig. 6b. By the induction hypothesis, we have a curve Ci−1 and a planar labeling Li−1,
which matches the labels on the top side of Rpi−1 to the sites in Rpi−1 above Ci−1.
In order to extend Li−1 to a planar solution Li, we additionally need to match the
remaining labels on the top side of Rpi and construct a corresponding curve Ci. Let Pi

denote the set of unlabeled sites in Rpi . By the validity of Rpi , this number is at least as
large as the number of unused ports at the top side of Rpi . We match these ports from
top to bottom to the topmost sites of Pi; the result is the claimed planar labeling Li. The
ordering ensures that no two of the new leaders cross. Moreover, no leader crosses the
curveCi−1, and hence such leaders cannot cross leaders inLi−1. It remains to construct
the curve Ci. For this, we start at the top-left corner of Rpi and move down vertically,
until we have passed all labeled sites. We then move right until we either hit Ci−1 or the
right side of R. In the former case, we follow Ci−1 until we arrive at the right side of R.
Finally, we move down until we arrive at the bottom-right corner of Rpi . Note that all
labeled sites are above Ci, unlabeled sites are below Ci, and no leader is crossed by Ci.
This is true since we first move below the new leaders and then follow the previous
curve Ci−1. 
�

A symmetric strip condition (with vertical strips) can be obtained for the right
region RR of a partitioned instance. The characterization is completely symmetric.

3 The Algorithm

Now we describe how to find an xy-separating curveC that satisfies the strip conditions.
For that purpose we only consider xy-separating curves that lie on the dual of the grid
induced by the sites and ports of the given instance. When traversing this grid from
grid point to grid point, we either pass a site (site event) or a port (port event). By
passing a site, we decide if the site is connected to the top or to the right side. Clearly,
there is an exponential number of possible xy-monotone traversals through the grid.
In the following, we describe a dynamic program that finds an xy-separating curve
in O(n3) time.



Two-Sided Boundary Labeling with Adjacent Sides 471

Let there be mR ports on the right side of R and mT ports on the top side of R, then
the grid has size [n + mT + 1]× [n + mR + 1]. We define the grid points as G(x, y),
0 ≤ x ≤ n + mT + 1, 0 ≤ y ≤ n + mR + 1 with G(0, 0) being the bottom-left
and r := G(n + mT + 1, n + mR + 1) being the top-right corner of R. Further, we
define Gx(s) := x(G(s, 0)) and Gy(t) := y(G(0, t)).

t

rs

pC

p

C

s−1

Fig. 8. Possible step of the dy-
namic program, where p en-
ters the rectangle spanned by r
and G(s− 1, t)

An entry in the table of our dynamic program is de-
scribed by three values. The first two values are s and t,
which give the position of the current search for the
curve C. The interpretation is that the entry encodes the
possible xy-monotone curves from r to pC := G(s, t);
see Fig. 8. The remaining value u denotes the number of
sites above C in the rectangle spanned by r and pC . Note
that it suffices to store u, as the number of sites below
the curve C can directly be derived from u and all sites
that are contained in the rectangle spanned by r and pC .
We denote the first values describing the positions of the
curves by the vector c = (s, t). Our goal is to compute
a table T [c, u] such that T [c, u] = true if and only if
there exists an xy-separating curve C such that the fol-
lowing conditions hold. (i) Curve C starts at r and ends at pC . (ii) Inside the rectangle
spanned by r and pC , there are u sites of P above C. (iii) For each strip in the two
regions RT and RR defined by C the strip condition holds.

It follows from these conditions, Proposition 1 and Lemma 3 that the instance admits
a planar solution if and only if T [(0, 0), u]=true, for some u. Let us now proceed to
describe how to compute the table. Initially, we set c = (n + mT + 1, n + mR +
1). We initialize the first entry T [c, 0] = true. The remaining entries are initialized
with false.

Let c := (s, t) be the current grid point we checked as endpoint for C. Based on the
table T [c, ·] we then compute the entries T [c−Δc, ·] where the vector Δc = (Δs,Δt)
is either (0, 1) or (1, 0). We classify such steps, depending on whether we cross a site
or a port. We give a full description for Δc = (1, 0), i.e, we decrease s by 1. The other
case is completely symmetric. Assume T [c, u] = true. We distinguish two cases,
based on whether we cross a site or a port.

Case 1: Going from s to s− 1 is a site event, i.e., there is a site p with Gx(s) > x(p) >
Gx(s − 1). Note that by our assumption of general position and the definition of the
coordinates, the site p is unique. If y(p) > Gy(t), then p enters the rectangle spanned
byG(s−1, t) and r, and it is located aboveC; see Fig. 8. We thus set T [c−Δc, u+1] =
true. Otherwise we set T [c−Δc, u] = true. Note that the strip conditions remain
satisfied since we do not decrease the number of sites in any region.

Case 2: Going from s to s − 1 is a port event, i.e., there is a label � on the top side,
whose port is between Gx(s − 1) and Gx(s). Thus, the region above C contains one
more label. We therefore check the strip condition for the strip above the horizontal line
through G(s− 1, t). If it is satisfied, we set T [c−Δc, u] = true.



472 P. Kindermann et al.

If T [c, u] = false, there is no xy-separating curve that satisfies the conditions
given above, so the it suffices to only look at the true table entries. This immediately
gives us a polynomial-time algorithm for TWO-SIDED BOUNDARY LABELING WITH

ADJACENT SIDES. The running time crucially relies on the number of strip conditions
that need to be checked. We show that after a O(n2) preprocessing phase, such queries
can be answered in O(1) time.

To implement the test of the strip conditions, we use a table BT, which stores in
the position BT[s, t] how large a deficit of top sites to the right can be compensated
by sites above and to the left of G(s, t). That is, BT[s, t] is the maximum value k such
that there exists a rectangle KBT[s,t] with lower right corner G(s, t) whose top side
is bounded by the top side of R, and that contains k more sites in its interior, than it
has ports on its top side. To compute this matrix, we use a simple dynamic program,
which calculates the entries of BT by going from the left to the right side. Once we have
computed this matrix, it is possible to query the strip condition in the dynamic program
that computes T in O(1) time. The table can be clearly filled out in O(n2) time. A
similar matrix BR can be computed for the vertical strips. Altogether, this yields an
algorithm for TWO-SIDED BOUNDARY LABELING WITH ADJACENT SIDES that runs
in O(n3) time and uses O(n3) space. However, the entries of each row and column of T
depend only on the previous row and column, which allows us to reduce the storage
requirement to O(n2). Using Hirschberg’s algorithm [11], we can still backtrack the
dynamic program and find a solution corresponding to an entry in the last cell in the
same running time. The detailed approach on how to calculate and use the tables BT

and BR is given in the full version of the paper [13].

Theorem 1. TWO-SIDED BOUNDARY LABELING WITH ADJACENT SIDES can be
solved in O(n3) time using O(n2) space.

In order to increase the performance of our algorithm, we can reduce the number of
dimensions of the table T by 1. As a first step, we show that for any search position c,
the possible values of u, for which T [c, u] =true form an interval.

Lemma 4. Let T [c, u] = T [c, u′] = true with u ≤ u′. Then T [c, u′′] = true
for u ≤ u′′ ≤ u′.

Proof. Let C be the curve corresponding to the entry T [c, u]. That is C connects r
to pC such that u sites in the rectangle spanned by pC and r are above C, and the
strip conditions (both above and below C) are satisfied. Similarly, let C′ be the curve
corresponding to T [c, u′].

Since u and u′ differ, there is a rightmost site p, such that p is below C and above C′.
Let v and v′ be the grid points of C and C′ that are immediately to the left of p. Note
that v is above v′ since C is above p and C′ is below it. Consider the C′′, which starts
at r and follows C until v, then it moves down vertically to v′, and from their follows C′

to p. Obviously C′′ is an xy-separating curve, and it has above it the same sites as C′,
except for p, which is below it. Thus there are u′′ = u′ − 1 sites above C′′ in the
rectangle spanned by p and r. If all strips defined by C′′ satisfy the strip condition, then
this implies T [c, u′′] = true.



Two-Sided Boundary Labeling with Adjacent Sides 473

To see that the strip conditions are indeed satisfied, consider a horizontal strip S′′

defined by C′′. Let S be the lowest horizontal strip defined by C that is not below the
lower boundary of S′′. We know that S fulfills the strip condition, which is witnessed
by some valid rectangle K . We can enlarge this rectangle vertically such that it touches
the lower boundary of S′′. The enlarged rectangle contains at least as many sites above
C′′ as there were above C in K . Hence it is a valid rectangle and the strip condition for
S′′ holds. An analogous statement holds for the vertical strips since C′′ is above C′ at
every x-coordinate. 
�

Thus, we only need to store the boundaries of the u-interval. Further, we can compute
the tables BT and BR backwards, i.e., in the direction of the dynamic program, by
precomputing the entries of BT and BR on the top and right side, respectively. Using
Hirschberg’s algorithm, this reduces the running time to O(n2) and the space to O(n).
The detailed description is given in the full version of the paper [13].

Theorem 2. TWO-SIDED BOUNDARY LABELING WITH ADJACENT SIDES can be
solved in O(n2) time using O(n) space.

4 Conclusion

In this paper, we have studied the problem of testing whether an instance of TWO-
SIDED BOUNDARY LABELING WITH ADJACENT SIDES admits a planar solution. We
have given the first efficient algorithm for this problem, running in O(n2) time.

The presented algorithm can also be used to solve a variety of different extensions of
the problem. In the full version of the paper [13], we show how to generalize from fixed
to sliding ports without increasing the asymptotic running time. Further, we show how
to maximize the number of labeled sites such that the solution is planar in O(n3 logn)
time and we give an extension to the algorithm that minimizes the total leader length
in O(n8 logn) time.

With some additional work, the presented approach can also be used to solve THREE-
SIDED and FOUR-SIDED BOUNDARY LABELING in polynomial time. Namely, it can
be shown that if a solution to the four-sided problem exists, there exists one that has
a central point z such that xy-monotone curves from z to the four corners of the rect-
angle R partition the solution without intersecting any leaders. To compute such a par-
titioned solution, assume we are given, for each side s of the rectangle R, the leader
whose segment orthogonal to s is maximum among all leaders of side s. These ex-
tremal leaders essentially partition the instance into four smaller instances of ADJA-
CENT TWO-SIDED BOUNDARY LABELING, one for each corner. These instances can
be processed independently. There are O(n8) choices for these extremal leaders, try-
ing all of them thus yields a running time of O(n10) and space consumption O(n).
For THREE-SIDED BOUNDARY LABELING, the running time is O(n8), but can be
improved to O(n4) by guessing only the extremal leader of the middle side of the rect-
angle. Also, except for the length minimization, all presented extensions carry over. A
proof is given in the full version of the paper [13]. It remains open whether a minimum
length solution of THREE- and FOUR-SIDED BOUNDARY LABELING can be computed
in polynomial time.



474 P. Kindermann et al.

References

1. Agarwal, P.K., Efrat, A., Sharir, M.: Vertical decomposition of shallow levels in 3-
dimensional arrangements and its applications. SIAM J. Comput. 29(3), 912–953 (1999)

2. Bekos, M.A., Kaufmann, M., Nöllenburg, M., Symvonis, A.: Boundary labeling with octi-
linear leaders. Algorithmica 57(3), 436–461 (2010)

3. Bekos, M.A., Kaufmann, M., Potika, K., Symvonis, A.: Area-feature boundary labeling.
Comput. J. 53(6), 827–841 (2010)

4. Bekos, M.A., Kaufmann, M., Symvonis, A., Wolff, A.: Boundary labeling: Models and effi-
cient algorithms for rectangular maps. Comput. Geom. Theory Appl. 36(3), 215–236 (2007),
http://dx.doi.org/10.1016/j.comgeo.2006.05.003

5. Benkert, M., Haverkort, H.J., Kroll, M., Nöllenburg, M.: Algorithms for multi-criteria bound-
ary labeling. J. Graph. Algorithms Appl. 13(3), 289–317 (2009)

6. Chazelle, B.: 36 co-authors: The computational geometry impact task force report. In:
Chazelle, B., Goodman, J.E., Pollack, R. (eds.) Advances in Discrete and Computational
Geometry, vol. 223, pp. 407–463. American Mathematical Society, Providence (1999)

7. Fink, M., Haunert, J.H., Schulz, A., Spoerhase, J., Wolff, A.: Algorithms for labeling focus
regions. IEEE Trans. Visual. Comput. Graphics 18(12), 2583–2592 (2012),
http://dx.doi.org/10.1109/TVCG.2012.193

8. Freeman, H., Marrinan, S., Chitalia, H.: Automated labeling of soil survey maps. In: ASPRS-
ACSM Annual Convention, Baltimore, vol. 1, pp. 51–59 (1996)

9. Gemsa, A., Haunert, J.H., Nöllenburg, M.: Boundary-labeling algorithms for panorama im-
ages. In: 19th ACM SIGSPATIAL Int. Conf. Adv. Geogr. Inform. Syst., pp. 289–298 (2011)

10. Gritzmann, P., Mohar, B., Pach, J., Pollack, R.: Embedding a planar triangulation with ver-
tices at specified positions. Amer. Math. Mon. 98, 165–166 (1991)

11. Hirschberg, D.S.: A linear space algorithm for computing maximal common subsequences.
Comm. ACM 18(6), 341–343 (1975)

12. Katz, B., Krug, M., Rutter, I., Wolff, A.: Manhattan-geodesic embedding of planar graphs.
In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 207–218. Springer,
Heidelberg (2010)

13. Kindermann, P., Niedermann, B., Rutter, I., Schaefer, M., Schulz, A., Wolff, A.: Two-sided
boundary labeling with adjacent sides. Arxiv report (May 2013),
http://arxiv.org/abs/1305.0750

14. van Kreveld, M., Strijk, T., Wolff, A.: Point labeling with sliding labels. Comput. Geom.
Theory Appl. 13, 21–47 (1999),
http://dx.doi.org/10.1016/S0925-7721(99)00005-X

15. Morrison, J.L.: Computer technology and cartographic change. In: Taylor, D. (ed.) The Com-
puter in Contemporary Cartography. Johns Hopkins University Press (1980)

16. Nöllenburg, M., Polishchuk, V., Sysikaski, M.: Dynamic one-sided boundary labeling. In:
18th ACM SIGSPATIAL Int. Symp. Adv. Geogr. Inform. Syst., pp. 310–319 (2010)

17. Raghavan, R., Cohoon, J., Sahni, S.: Single bend wiring. J. Algorithms 7(2), 232–257 (1986)
18. Speckmann, B., Verbeek, K.: Homotopic rectilinear routing with few links and thick edges.

In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 468–479. Springer, Heidelberg
(2010)

19. Zoraster, S.: Practical results using simulated annealing for point feature label placement.
Cartography and GIS 24(4), 228–238 (1997)

http://dx.doi.org/10.1016/j.comgeo.2006.05.003
http://dx.doi.org/10.1109/TVCG.2012.193
http://arxiv.org/abs/1305.0750
http://dx.doi.org/10.1016/S0925-7721(99)00005-X


Optimal Batch Schedules for Parallel Machines

Frederic Koehler1,� and Samir Khuller2

1 Princeton Univ., Princeton NJ 08544, USA
f.koehler427@gmail.com

2 Dept. of Computer Science, Univ. of Maryland, College Park, MD 20742, USA
samir@cs.umd.edu

Abstract. We consider the problem of batch scheduling on parallel ma-
chines where jobs have release times, deadlines, and identical processing
times. The goal is to schedule these jobs in batches of size at most B
on m identical machines. Previous work on this problem primarily fo-
cused on finding feasible schedules. Motivated by the problem of min-
imizing energy, we consider problems where the number of batches is
significant. Minimizing the number of batches on a single processor pre-
viously required an impractical O(n8) dynamic programming algorithm.
We present a O(n3) algorithm for simultaneously minimizing the number
of batches and maximum completion time, and give improved guarantees
for variants with infinite size batches, agreeable release times, and batch
“budgets”. Finally, we give a pseudo-polynomial algorithm for general
batch-count-sensitive objective functions and correct errors in previous
results.

Keywords: Scheduling, Batching, Optimal Algorithms.

1 Introduction

Batch Scheduling refers to the scheduling of jobs when jobs can be processed
in batches of size at most B. The notion of parallel batch scheduling of jobs
was initially proposed to model deliveries by trucks of bounded capacity [9]. It
has, among other applications, been used to model the management of large
multimedia-on-demand systems [2] and “burn-in” operations in an oven where
a number of chips can be baked together at once [10]. We focus on the version
where all of the jobs in a batch are processed together and start at the same
time. In addition, for each job (Jα) the schedule must respect release times (rα)
and deadlines (dα), times at which jobs become available to process and must be
processed by, respectively. This can, for example, model the delivery of people
flying into an airport for a conference, where each person must be transported
by a given deadline using a fleet of limited capacity vehicles.

Many results in deterministic batch scheduling focus on the version where all
jobs have release times, deadlines, and uniform length of p [5,10,9,3,1], where

� The first author’s work was done as part of his high school research project at the
Univ. of Maryland, and later an NSF REU supplement to CCF 0937865. The work
of the second author is supported by NSF grants CCF 0728839 and CCF 0937865.

F. Dehne, R. Solis-Oba, and J.-R. Sack (Eds.): WADS 2013, LNCS 8037, pp. 475–486, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



476 F. Koehler and S. Khuller

the objective is to find a feasible schedule of batches each containing at most
B jobs. The start and end time of the batch must respect the release time and
deadline of each job in the batch. Using standard techniques these feasibility algo-
rithms can be used to minimize objectives such as maximum lateness (Lmax) and
maximum completion time (Cmax). Note that when jobs have different lengths,
deciding feasibility becomes an NP-complete problem, although approximation
algorithms exist, e.g. [2].

Motivated by issues of savings energy, recently Chang et al. [4] consider the
problem of minimizing the time the machine is being used, referred to as acti-
vation time. In this case of identical job lengths, this translates to scheduling
all of the jobs using the fewest number of batches. Chang et al. [4] develop a
O(n8) algorithm for this problem based on the work of Baptiste [1]; the space
complexity is also very high, and it is also designed for the single processor case
only. The paper also considers a variety of other cases of the activation prob-
lem — e.g. when the release times and deadlines are integral and p = 1 they
present a linear time algorithm. Even though batch scheduling has been studied
for over twenty-five years, these are the first algorithms which explicitly aim to
minimize batch count. However, we expect the number of batches used almost
always affects the energy cost (and thus profit) of the system.

The basic problem dealt with is that of creating a schedule of batches for m
identical machines. A batch (or batch instance) Bα in a schedule is associated
with three properties:

– The set of jobs contained in the batch. We let |Bα| denote the number of
jobs in a batch. In a feasible schedule, |Bα| ≤ B, where B is the given batch
size constraint.

– The start time s(Bα). ∀Jj ∈ Bα, the completion time Cj = s(Bα) + p. In a
feasible schedule, rj + p ≤ Cj ≤ dj .

– The machine m(Bα) that the batch is scheduled upon, occupying the time
interval [s(Bα), s(Bα) + p) on that machine. In a feasible schedule, the time
intervals of batches scheduled on the same machine must be disjoint.

Our results, briefly: we can find a batch-count and Cmax minimal schedule in
O(n3) time and improve that in variants of the problem; we produce a O(n)
algorithm for the agreeable problem (ra < rb → da ≤ db). We give a pseudo-
polynomial algorithm for a notion of batch-count-sensitive objective functions.

1.1 Related Work

Ikura and Gimple originally gave a O(n2) algorithm for scheduling agreeable
jobs on a single processsor with the objective of minimizing Cmax. Lee et al.
found a O(nB) algorithm for this same problem using dynamic programming
[10]. Baptiste[1] finally showed that the problem with arbitrary release times
was polynomial-time solvable for a broad class of sum-function objectives, such
as

∑
Cj . However his algorithms have extremely high (polynomial) complexity.

Recently, Condotta et al. [5] developed improved algorithms for the feasibility
problem for general release times and deadlines: for the single machine case



Optimal Batch Schedules for Parallel Machines 477

they provide an O(n2) time algorithm. They also study the previously ignored
multiple identical machine case and provide an O(n3 logn) time algorithm. These
algorithms are generalized forms of algorithms for the non-batching problem
(B = 1): the O(n2) algorithm is based on the “forbidden regions” method of
Garey et al. [7], and the O(n3 logn) algorithm for the multiprocessor case is
based on the “barriers” method of Simons [14].

The barriers and forbidden regions methods for a single processor are both
notable for choosing schedules with the property that each job, numbered from
the left (or the right), starts as soon as possible. Formally, the start time of
the ith job from the left in the generated schedule is a lower bound on the
start time of the ith job in any feasible schedule. These schedules are thus opti-
mal for the objectives

∑
Cj and Cmax. We shall say that these schedules have

unit-optimal structure. Recent algorithms using graph-theoretic techniques
find schedules with identical structure [6,12].

The Condotta et al. paper claims that each batch, counting from the left,
for their barriers algorithm has minimal start time (Lemma 4). This claim is
incorrect: consider a problem instance with large deadlines, two machines, B = 2
(or any even number), B jobs released at time 0 and B jobs released at time p.
The barriers algorithm will produce a schedule with two full batches, the second
at time p. However a feasible schedule exists where the first two batches are
started at time zero, each containing B/2 jobs. This disproves their claim and
invalidates their proof of correctness. However by correcting this claim it is still
possible to show their algorithm’s correctness. (Here is a sketch: Consider only
the classes of schedules where each batch, from the left, greedily takes as many
jobs as possible. The schedules generated by the barriers algorithm are those
which for any k, both process the minimum number of jobs in the first k batches
numbered from the left and starts each batch Bk no earlier than any nonempty
B′

k in any other schedule of this class. The processing of the minimum number
of jobs is crucial to proving the batch start times are minimized.)

They also claim that their algorithms immediately minimize
∑

Cj and Cmax

in the batching problem. We do not believe this to be the case. Consider the
single machine case: by delaying a job slightly, it may be possible to overlap it in
a batch with other jobs, drastically reducing its completion time by not blocking
on the processing of the first job. The barriers algorithm only creates barriers
when it encounters infeasibility, so if it never encounters infeasibility, no attempt
is made to delay jobs to batch them together with later released jobs. Similarly,
the forbidden regions algorithm will find no forbidden regions.

The following simple example will demonstrate our claims. Run the barriers
algorithm on jobs with rj , dj pairs {(1, 16), (2, 20), (6, 24))}, with the processing
length for jobs p = 8, with batch size B = 3, and one machine: a batch will be
created at time r1 = 1 and at r1+p = 9. An optimal schedule for Cmax uses only
a single batch starting at r3 = 6. Interestingly, an optimal schedule for

∑
Cj

uses one batch starting at r2 = 2 and another at r2 + p = 10.

Theorem 1. In the batching problem, there exist instances where minimizing∑
Cj and Cmax simultaneously is impossible.



478 F. Koehler and S. Khuller

On a different note, when scheduling unit jobs on multiple processors, Simons
[14] showed that w.l.o.g. one can only consider the cyclic schedules. We will make
exactly this assumption in our paper. The original proof of the following claim
comes from Simons for the non-batching case [14].

Lemma 1. For any feasible schedule, a solution identical except in machine
assignment exists which is cyclic, i.e. where ∀x, (Bx, Bx+m, . . .) are scheduled on
the same machine.

1.2 Our Approach

We generalize the notion of unit-optimality. We shall call our structure right-
heavy batch-optimality (rhbo). It comprises the following properties (note
the descending batch numbering scheme):

(1) Consider any feasible schedule S′ composed of batches B′
1 . . . B

′
u where B′

u

is the earliest starting batch (and B′
1 the latest) containing a job in schedule

S′. ∀i ≤ u,
∑i

b=1 |Bb| ≥
∑i

b=1 |B′
b| ; i.e. the number of jobs in

⋃i
b=1 Bi is an

upper bound for feasible schedules.
(2) For any Bi, the start time of batch Bi is a lower bound for feasible schedules;

i.e. for any B′
i in any feasible schedule S′, s(Bi) ≤ s(B′

i).

In the case that B = 1, the first property is trivial and the second property makes
the structure identical to unit-optimality. Note that unlike in the corrected
version of the barriers algorithm, our bounds hold for all feasible schedules. Any
schedule with these properties is optimal for many objectives:

1. Cmax because the start time of B1 is a lower bound. In fact the makespan
(availability time) mx = Bx of all of the machines is minimized; so e.g.

∑
mx

(average makespan) and a variety of other norms are also minimized.
2. K, the number of batches, by the first property.
3.

∑
Bx∈S s(Bx), the sum of batch start times, because a minimal number of

batches is used and the start time of each batch is a lower bound.

The first section of our paper gives a low polynomial time complexity algorithm
witnessing the existence of these structures. We also use this existence result
to produce an optimal recursive algorithm for the agreeable batch scheduling
problem [9]. The property of simultaneous makespan minimization on multiple
machines is crucial to the decomposition.

In general Condotta et al.’s algorithms [5] will use batches efficiently only if
that part of the schedule is highly constrained or many jobs share a release time.
When batch sizes are larger than e.g. B = 2, this becomes evident. By using
fewer batches, we also can improve our time complexity bound in the case that
a feasible schedule exists with K∗ batches (n/B ≤ K∗ ≤ n) as excess batches
increase algorithmic overhead. In the case of agreeable release times, we produce
an elegant algorithm which searches for rhbo schedules. It is both more general
and lower complexity than previous algorithms for this problem. This completes
our study of rhbo schedules.



Optimal Batch Schedules for Parallel Machines 479

Finally we design a pseudo-polynomial algorithm for optimizing a broad array of
batch-count-sensitive objectives, generalizing [1]. The lack of structure in this gen-
eral setting leads to very high complexity. This result, proofs of auxillary lemmas,
and pseudocode versions of the algorithms are omitted for space reasons; the full
version is at http://www.cs.umd.edu/~samir/grant/BatchScheduling.pdf

2 Scheduling Jobs on Multiple Batch Machines

For this section, we study the problem of scheduling all of the jobs in a given in-
stance. Thus when we refer to a feasible schedule, this schedule must successfully
process all n jobs. We will work through a series of tentative (infeasible) sched-
ules in our algorithms. Each tentative schedule will obey a rhbo structure: we
refer to the two properties of a rhbo schedule as Invariant (1) and Invariant (2),
matching the numbering in the definition. We say a job Jj is deadline-available
in a batch Bb if dj ≥ s(Bb)+p. Using this notion we will define a third invariant
which determines job selection within batches:

(3) ∀Bx∀Jj ∈ By such that x < y, if Jj is deadline-available in Bx then Bx is
full of jobs with no less strict release times (|Bx| = B, rj ≤ minJi∈Bxri).

This invariant can be viewed directly as expressing a relationship between a
single batch Bx, and a set of preceding jobs in higher-numbered (earlier) batches.
It equivalently states that each batch must prefer to pick latest-released jobs
from the set of jobs preceding the next-earliest batch. Note that increasing start
times can only reduce the set of deadline-available jobs, and thus only make this
invariant easier to satisfy.

We assume w.l.o.g. that ∀Jj , rj + p ≤ dj : jobs violating this constraint are
impossible to process. Initially let s(Bb)← −∞ for all Bb (including those earlier
than Bn which cannot actually be used), since −∞ is a trivial lower bound on
the start time of any batch.

Lemma 2. Invariants (2) and (3) imply Invariant (1).

Proof. Assume Invariant (1) is violated while the other two invariants hold. Let
B′

x be the latest batch in a feasible schedule S′ such that
∑x

b=1 |B′
b| >

∑x
b=1 |Bb|.

Because we chose the latest batch where the invariant is violated, the invariant
holds for Bx−1 . . . B1, and so B′

x must contain at least one additional job Jj which
is not in Bx. As Bx cannot be full, Invariant (3) implies that dj < s(Bx) + p. By
Invariant (2), s(Bx) ≤ s(B′

x) and so dj < s(B′
x) + p. The deadline for job Jj is

violated, so schedule S′ cannot be feasible.

Lemma 3. If the optimality invariants holds for a partial schedule Bx−1 . . . B1

then ∀Jl /∈
⋃x−1

b=1 Bb, for any feasible schedule S′ composed of B′
1, B

′
2, . . . it must be

true that rl ≤ s(B′
x).

Proof. Let Jl ∈ B′
y. If y ≥ x, then we have that rl ≤ s(B′

y) ≤ s(B′
x). Otherwise

(y < x): because Jl /∈
⋃x−1

b=1 Bb and Jl ∈
⋃x−1

b=1 B′
b, by Invariant (1) there exists

http://www.cs.umd.edu/~samir/grant/BatchScheduling.pdf


480 F. Koehler and S. Khuller

some job Jk ∈
⋃x−1

b=1 Bb such that Jk /∈
⋃x−1

b=1 B′
b. Also, by Invariant (2), dl ≥

s(B′
y) + p ≥ s(By) + p, so by Invariant (3), rl ≤ rk. Because Jk ∈ B′

z with z ≥ x,
as above s(B′

x) ≥ rk ≥ rl.

2.1 Scheduling with an Unbounded Number of Machines

Theorem 2. A feasible schedule obeying the optimality invariants can be
computed in O(n2) time if m =∞.

Proof. For the first (latest) batch, rmax is a lower bound on the start time —
thus setting s(B1) = rmax obeys Invariant (2). Invariant (3) determines that this
batch should be filled with the maximal number (up to B) of the latest-released
deadline-available jobs. For any other batch Bi, we can inductively assume that
the partial schedule of Bi−1, . . . , B1 obeys the invariants. Let U be the set of
unscheduled jobs. All jobs in U can only be scheduled in Bi and earlier batches.
Set s(Bi) to be the latest release time in U ; Lemma 3 guarantees that this satisfies
Invariant (2). Once again, Invariant (3) dictates that the maximal number of the
latest-released deadline-available jobs are chosen to fill the batch.

Every batch created contains at least one job. Thus there are at most n batches
and this construction takes O(n2) time.1

An example tentative schedule is shown in Figure 1, based on the input from
Table 1 with batches taking three units of time (p = 3) to process up to two
(B = 2) jobs at a time.

Table 1. Jobs for Example 2

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

rj 0 2 1 2 0 4 3 4 1 5 4 3 8 9 10 7

dj 5 11 6 12 8 13 8 10 7 8 9 9 16 13 14 12

2.2 Scheduling with a Bounded Number of Machines

Theorem 3. Given a tentative schedule containing all jobs with no more than
B jobs in any batch, and obeying the optimality invariants, in O(n3) time it
is possible to either show no feasible schedule exists or to find a feasible schedule
obeying the optimality invariants.

Proof. We show how to use invariant-preserving transformations to make this
schedule into a feasible one. We use two cooperative alternating passes: PushFor-
ward, which increases start times, and MoveBack, which moves jobs which are
provably in the wrong batch backward.2

1 Though O(n log n) is possible.
2 MoveBack tightens the bounds of Invariant (1) while PushForward tightens
Invariant (2).



Optimal Batch Schedules for Parallel Machines 481

r1
r5

d1

r2
r4

d2

r3
r9

d3 d4
d16

r6
r8
r11

d6
d14

r7
r12

d5
d7
d10

d8d9

r10

d11
d12

r13

d13

r14 r15

d15

r16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

5,1

9,3

4,2

12,7

6,8

10,11

13,16

15,14

Fig. 1. Schedule constructed by Theorem 2 on Example 2

PushForward is the pass that starts first. It processes batches left-to-right
(earliest-to-latest) consecutively; initially, it starts from Bi, the earliest non-
empty batch in the schedule. We describe its action. Let Bc be the current
batch. Let P be the set of batches which are earlier than Bc (higher indexed):
inductively assume that the batches in P (1) are in non-decreasing order of start
time (counting higher indexed batches first), (2) can be scheduled without over-
lap on m machines, and (3) contain jobs whose release times and (4) deadlines
are satisfied. To process Bc, let

s(Bc)← max [{s(Bc+m) + p, s(Bc), s(Bc+1)} ∪ {rl|Jl ∈ Bc}] .
As noted before, increasing start times always preserves Invariant (3); we now
show Invariant (2) is maintained as well. For any of the first three terms, it is
possible that they may reference an empty batch past the end of the schedule:
for all such batches their start time has been set to −∞, so the term reduces to
−∞ which is a correct lower bound. Otherwise (the normal case), the first term
is a valid lower bound because we have restricted ourselves to the class of cyclic
schedules, and there can be no overlap between batches run on the same machine.
This also satisfies inductive hypothesis (2). For the third term, by definition a
lower bound for the start time of Bc+1 extends to Bc. This satisfies inductive
hypothesis (1). The final set of release times are valid lower bounds by Lemma 3,
satisfying the inductive hypothesis (3).

After updating the start time, if there are any jobs in Bc which are no longer
deadline-available, pick one such Ji arbitrarily and move on to the next phase
MoveBack. If there are no such jobs, then the final hypothesis (4) is satisfied. If
Bc = B1 then terminate: supposing that all batches in our schedule obey the
batch size constraint (which we have not shown yet), then using our inductive
hypotheses the requirements for a feasible schedule are satisfied. Otherwise (Bc 	=
B1), continue on to the next batch (Bc−1).



482 F. Koehler and S. Khuller

We now describe MoveBack. This phase will not adjust start times so Invari-
ant (2) is preserved. We will study Invariant (3) separately for each batch and
its set of preceding jobs to show that it holds for all batches (when obvious, we
will leave implicit which batch the invariant is preserved with respect to). We
now describe the action of this phase. The first action this phase takes is to
remove Ji from Bc. If there do not exist preceding deadline-available jobs to Bc,
this does not affect Invariant (3) with respect to Bc. If there does exist at least
one such job, pick the one with latest release time and move it from its current
batch Ba into Bc. We say in this case that job Ja′ was brought forward from
Ba. This may violate Invariant (3) with respect to Ba; if so, we will show that
invariant is restored before the end of this phase. The removal of a job guaran-
tees that |Ba| < B. The rest of this phase moves right-to-left over consecutive
batches, starting with Bc+1. Call the current batch being processed Bz; also let
the current job, initially Ji, be called Jj . We now describe the action performed
for Bz; remember that when we say this phase continues, that means the next
batch examined is the preceding batch Bz+1.

Case 1 (|Bz | = B). Let Jj′ = argminJy∈Bz
ry.

Case 1.a (rj′ ≤ rj). Swap Jj into Bz, removing Jj′ . Continue MoveBack
with Jj′ .

Case 1.b (rj′ > rj). Continue MoveBack with Jj .
In either case a new, possibly deadline-available, job will now precede Bz

(either Jj or Jj′). Even if the job is deadline-available, its release time is no
bigger than the smallest in Bz so Invariant (3) is preserved.

Case 2 (|Bz | < B). Place Jj into Bz .
Case 2.a (Job Ja′ was brought forward from Ba) Suppose Bz 	= Ba.

Since Ja′ preceded Bz before its move (after the execution of the previous
phase) and |Bz| < B, by Invariant (3) Ja′ cannot have been deadline-
available in Bz. However, it is deadline-available in Bc, and by the action
of PushForward we know that this implies Ja′ is deadline-available in all
earlier (higher-numbered) batches. By contradiction Bz = Ba.
Since Jj came from some batch later than Bz but not later than Bc, and
Ja′ was deadline-available in this origin-batch, rj ≥ ra′ by Invariant (3).
Therefore the replacement of Ja by Jj cannot violate Invariant (3) with
respect to Ba.

Case 2.b (No job was brought forward) Adding an additional job to a
nonfull batch cannot violate Invariant (3), so it is preserved.

In either case, the transformations of this phase are complete. Only batches
between Ba and Bc inclusive have been modified. With respect to batches
Bf with f > a of f < c, this implies that Invariant (3) has been maintained.
Thus we have shown that for every batch, Invariant (3) holds with respect to
it at the end of this phase. Recall that Invariant (1) holds now by Lemma 2.
If z > n, declare the scheduling instance infeasible: by Invariant (1), only at
most n − 1 jobs can be scheduled in B1, . . . , Bn. Otherwise, continue on to
PushForward at Bz: because we have not modified any batches earlier than
Bz, the required inductive hypotheses hold for them.



Optimal Batch Schedules for Parallel Machines 483

This completes the description of the algorithm itself. As noted before, we still
must show that the batch size restriction is obeyed to show that the algorithm
is partially correct : if it terminates, it gives a correct answer. Recall we required
our initial schedule to obey the restriction. Only the MoveBack pass modifies the
assignment of jobs to batches, but it only adds a net job to a batch which has
at most B − 1 jobs. Therefore the batch size restriction is always obeyed.

We must now show that our algorithm terminates. We claim that there can
be at most O(n2) passes: for every MoveBack pass, Jj can never be placed in
Bc again, because start times only increase and jobs are brought forward only
if they are deadline-available; there are n jobs and at most n batches, so this
makes O(n2) possible passes. Both passes run in O(n) time, so a O(n3) time
bound follows.

A complete algorithm is formed by composing the previous two theorems: feasible
schedules for finite m are a subclass of those for unbounded m so the precondition
for Theorem 3 holds. See Figure 2 and Figure 3 where m = 2. However, as
Theorem 3 requires little from its initial schedule, far less intelligent schemes
would give the same time bounds.

r1
r5

d1

r2
r4

d2

r3
r9

d3 d4
d16

r6
r8
r11

d6
d14

r7
r12

d5
d7
d10

d8d9

r10

d11
d12

r13

d13

r14 r15

d15

r16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

5,1

9,3

4,2

12,7

8,6

10,11

13,16

15,14

Fig. 2. Operations performed by first (thick arrows) and third (thin) pass of MoveBack

We have not so far discussed how to efficiently represent the contents of a
batch. Let each batch’s contents be represented by two data structures: a binary
min-heap of the jobs ordered by deadlines, and an avl tree of the jobs’ release
times maintaining counts in each node for duplicate release times. Our efficiency
proofs are omitted for space reasons; they modify the algorithm’s internals very
slightly to improve its performance. If we are given a fixed batch budget K∗
(modifying the algorithm to exit after exceeding its budget of batches rather
than n batches), we can call this budget K∗ and the improved bounds will hold;
alternatively, if a feasible schedule exists with K∗ batches this bound also holds.



484 F. Koehler and S. Khuller

r1
r5

d1

r2
r4

d2

r3
r9

d3 d4
d16

r6
r8
r11

d6
d14

r7
r12

d5
d7
d10

d8d9

r10

d11
d12

r13

d13

r14 r15

d15

r16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

5,1

9,3

2,7

10,12

11,8

6,4

16,14

15,13M1

M2

Fig. 3. Final schedule produced for Example 2

Corollary 1. The batch-budgeted algorithm is O(min(n2K∗, nK
2
∗ logB)).

Corollary 2. The algorithm terminates in O(n2) time for agreeable release times.
The batch-budgeted algorithm is O(nK∗).

Corollary 3. The algorithm terminates in O(n2 logn) time for the unbounded
case (B =∞). The batch-budgeted algorithm is O(nK∗ logn).

Using the enhanced binary search approach outlined in Condotta et al. [5],
Lmax = maxCj − dj minimization can be performed with a O(n2 logn) prepro-
cessing phase and by calling a feasibility algorithm O(log n) times. In addition,
by following the approach outlined in Condotta et al. [5], we can easily respect
start-start precedence constraints. First, the schedule can be passed through
their O(n2) preprocessing phase, which guarantees that if job a precedes job b
then ra ≤ rb and da ≤ db. After generating a schedule, swapping will produce a
schedule which obeys the precedence constraints.

3 Scheduling Agreeable Jobs

We now design a faster algorithm to solve the problem with agreeable jobs,
where ri < rj ⇒ di ≤ dj . We assume the jobs are sorted by increasing deadline
(giving non-decreasing release time). Let us describe the structure of the solution
we search for. By our previous result, if there exists a feasible partial schedule,
there exists a rhbo partial schedule. By a simple swapping argument [10], which
does not violate our invariants, we also assume w.l.o.g. that each batch consists
of consecutively numbered jobs. Finally, we note that these schedules are “left-
shifted” (see e.g. [1]). This implies that given an assignment of jobs to batches,
the start time of a batch Bx is fully determined: it must be the maximum of rj
for all Jj ∈ Bx and of the time the previous batch on the machine completes
(machine assignments remain determined by cyclic scheduling).

We will need to maintain lists of machine availability times: to do this we
use purely functional queues [8,13]. We are given three functions: head(Q) re-
turns the front of the queue Q, tail(Q) returns Q with its front removed, and



Optimal Batch Schedules for Parallel Machines 485

snoc(X,Q) produces a new queue with X inserted into the back of Q. All of
these operations are O(1) and non-destructive. Availability time lists will be
maintained sorted ascending order, such that head(A) is the earliest availability
time in A. We define a new operation, U(q, t) = snoc(tail(q), t). This will be
used to update availability times: when a new batch is scheduled ending at time
t, by cyclic scheduling it runs on the same machine as Bm+1 in the resultant
schedule, formerly (in the previous partial schedule) Bm.

Now we can easily describe the actual algorithm. Let Li be defined (see be-
low) such that JLi+1 is the earliest job which can be batched together with Ji
in a feasible schedule. Consider the rhbo feasible schedule for i jobs: by Invari-
ant (1), the last batch must consist of jobs JLi+1, . . . , Ji. Upon removing this
final batch, observe that a rhbo feasible schedule is left for the first Li jobs.
Thus we inductively assume we have the rhbo schedules for each of the first
j < i (i ≤ n) jobs (from which we can compute L), and then find the only
possible rhbo schedule for i jobs (or fail if none exists). Note that L is a non-
decreasing function (Li−1 ≤ Li): this observation makes the tabulation more
efficient. Fi is the availability time list for a rhbo schedule of the first i jobs.
E(j, i) = max{ri, head(Fj)} + p is the left-shifted end time of the last batch
in the schedule for i jobs, where the schedule is composed of a batch of jobs
Jj+1, . . . , Ji appended to a rhbo schedule for the first j jobs. Formally:

L0 = 0, Li = min {j | max{Li−1, i−B} ≤ j < i, E(j, i) ≤ dj+1} ,
F0 = a persistent queue with m copies of 0, Fi = U(FLi , E(Li, i)).

If at any point Li is undefined because it minimizes over an empty set, there can
exist no rhbo schedule and thus no feasible schedule at all. E and U are not
tabulated in the dynamic program. Fn and Ln can be computed in O(n) time.
In the case of integer release times and deadlines, the binary search algorithm
for Lmax created by Lee et al. [10] can be combined with our algorithm to solve
the multiprocessor problem in O(n log(np)) time.

3.1 Agreeable Processing Times

The relaxation to agreeable processing times was first studied by Li and Lee [11].
Multiprocessor scheduling with no release times and a single deadline (dj = d),
which necessarily agrees with the processing times, is unary NP-Hard. However,
our algorithm adapts easily to the single processor case.

E(j, i) = max{ri, Fj}+ pi, L0 = F0 = 0, Fi = E(Li, i),

Li = min {j | max(Li−1, i−B) ≤ j < i, E(j, i) ≤ dj+1} .

4 Conclusions

The hardness of multi-processor batch scheduling for the objectives not satisfied
by rhbo structure remains an open problem: is a pseudo-polynomial algorithm
best possible? If so, what are the best approximation algorithms? Most of these
problems are open even when B = 1;

∑
Cj is a notable exception. Because of

Theorem 1, it may be difficult to efficiently minimize
∑

Cj .



486 F. Koehler and S. Khuller

References

1. Baptiste, P.: Batching identical jobs. Math. Meth. of O.R. 53, 355–367 (2000)
2. Bar-Noy, A., Guha, S., Katz, Y., Naor, J.(S.), Schieber, B., Shachnai, H.: Through-

put Maximization of Real-time Scheduling with Batching. In: Proc. of SODA, pp.
742–751 (2002)

3. Brucker, P.: Scheduling Algorithms. Springer (2007)
4. Chang, J., Gabow, H.N., Khuller, S.: A model for minimizing active processor

time. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 289–300.
Springer, Heidelberg (2012), full version at
http://www.cs.umd.edu/~samir/grant/active.pdf

5. Condotta, A., Knust, S., Shakhlevich, N.V.: Parallel batch scheduling of equal-
length jobs with release and due dates. J. of Scheduling 13, 463–477 (2010)

6. Dürr, C., Hurand, M.: Finding total unimodularity in optimization problems solved
by linear programs. Algorithmica 59, 256–268 (2011)

7. Garey, M.R., Johnson, D.S., Simons, B., Tarjan, R.E.: Scheduling Unit-Time Tasks
with Arbitrary Release Times and Deadlines. SIAM J. on Computing 10(2), 256–
269 (1981)

8. Hood, R., Melville, R.: Real-time queue operation in pure lisp. Information Pro-
cessing Letters 13(2), 50–54 (1981)

9. Ikura, Y., Gimple, M.: Efficient scheduling algorithms for a single batch processing
machine. Operations Research Letters 5, 61–65 (1986)

10. Lee, C.-Y., Uzsoy, R., Martin-Vega, L.A.: Efficient algorithms for scheduling semi-
conductor burn-in operations. Op. Research 40(4), 764–775 (1992)

11. Li, C.-L., Lee, C.-Y.: Scheduling with agreeable release times and due dates on
a batch processing machine. European J. of Operational Research 96(3), 564–569
(1997)

12. López-Ortiz, A., Quimper, C.-G.: A fast algorithm for multi-machine scheduling
problems with jobs of equal processing times. In: STACS, pp. 380–391 (2011)

13. Okasaki, C.: Simple and efficient purely functional queues and deques. Journal of
Functional Programming 5(04), 583–592 (1995)

14. Simons, B.: Multiprocessor scheduling of unit-time jobs with arbitrary release times
and deadlines. SIAM J. Comput. 12(2), 294–299 (1983)

http://www.cs.umd.edu/~samir/grant/active.pdf


Unions of Onions: Preprocessing Imprecise

Points for Fast Onion Layer Decomposition

Maarten Löffler1 and Wolfgang Mulzer2

1 Department of Information and Computing Sciences, Universiteit Utrecht,
The Netherlands
m.loffler@uu.nl

2 Institut für Informatik, Freie Universität Berlin, Germany
mulzer@inf.fu-berlin.de

Abstract. Let D be a set of n pairwise disjoint unit disks in the plane.
We describe how to build a data structure for D so that for any point
set P containing exactly one point from each disk, we can quickly find
the onion decomposition (convex layers) of P .

Our data structure can be built in O(n log n) time and has linear size.
Given P , we can find its onion decomposition in O(n log k) time, where
k is the number of layers. We also provide a matching lower bound.

Our solution is based on a recursive space decomposition, combined
with a fast algorithm to compute the union of two disjoint onion
decompositions.

1 Introduction

Let P be a planar n-point set. Take the convex hull of P and remove it; repeat
until P becomes empty. This process is called onion peeling, and the resulting
decomposition of P into convex polygons is the onion decomposition, or onion for
short, of P . It can be computed in O(n log n) time [6]. Onions provide a natural,
more robust, generalization of the convex hull, and they have applications in
pattern recognition, statistics, and planar halfspace range searching [7, 14, 22]

Recently, a new paradigm has emerged for modeling data imprecision. Suppose
we need to compute some interesting property of a planar point set. Suppose
further that we have some advance knowledge about the possible locations of the
points, e.g., from an imprecise sensor measurement. We would like to preprocess
this information, so that once the precise inputs are available, we can obtain
our structure faster. We will study the complexity of computing onions in this
framework.

1.1 Related Work

The notion of onion layer decompositions first appears in the computational
statistics literature [14], and several rather brute-force algorithms to compute it
have been suggested (see [9] and the references therein). In the computational
geometry community, Overmars and van Leeuwen [21] presented the first near-
linear time algorithm, requiring O(n log2 n) time. Chazelle [6] improved this

F. Dehne, R. Solis-Oba, and J.-R. Sack (Eds.): WADS 2013, LNCS 8037, pp. 487–498, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



488 M. Löffler and W. Mulzer

(a) (b)

Fig. 1. (a) Two disjoint onions. (b) Their union.

to an optimal O(n logn) time algorithm. Nielsen [20] gave an output-sensitive
algorithm to compute only the outermost k layers in O(n log hk) time, where hk

is the number of vertices participating on the outermost k layers. In R3, Chan [5]
described an O(n log6 n) expected time algorithm.

The framework for preprocessing regions that represent points was first intro-
duced by Held and Mitchell [12], who show how to store a set of disjoint unit
disks in a data structure such that any point set containing one point from each
disk can be triangulated in linear time. This result was later extended to arbi-
trary disjoint regions in the plane by van Kreveld et al. [16]. Löffler and Snoeyink
first showed that the Delaunay triangulation (or its dual, the Voronoi diagram)
can also be computed in linear time after preprocessing a set of disjoint unit
disks [17]. This result was later extended by Buchin et al. [4], and Devillers gives
a practical alternative [8]. Ezra and Mulzer [10] show how to preprocess a set of
lines in the plane such that the convex hull of a set of points with one point on
each line can be computed faster than n logn time.

These results also relate to the update complexity model. In this paradigm, the
input values or points come with some uncertainty, but it is assumed that during
the execution of the algorithm, the values or locations can be obtained exactly,
or with increased precision, at a certain cost. The goal is then to compute a
certain combinatorial property or structure of the precise set of points, while
minimising the cost of the updates made by the algorithm [3, 11, 13, 23].

1.2 Results

We begin by showing that the union of two disjoint onions can be computed in
O(n + k2 logn) time, where k is the number of layers in the resulting onion.

We apply this algorithm to obtain an efficient solution to the onion prepro-
cessing problem mentioned in the introduction. Given n pairwise disjoint unit
disks that model an imprecise point set, we build a data structure of size O(n)
such that the onion decomposition of an instance can be retrieved in O(n log k)
time, where k is the number of layers in the resulting onion. We present several
preprocessing algorithms. The first is very simple and achieves O(n logn) ex-
pected time. The second and third algorithm make this guarantee deterministic,
at the cost of worse constants and/or a more involved algorithm.



Unions of Onions: Preprocessing Imprecise Points 489

We also show that the dependence on k is necessary: in the worst case,
any comparison-based algorithm can be forced to take Ω(n log k) time on some
instances.

2 Preliminaries and Definitions

Let P be a set of n points in R2. The onion decomposition, or onion, of P , is
the sequence (P ) of nested convex polygons with vertices from P , constructed
recursively as follows: if P 	= ∅, we set (P ) := {ch(P )} ∪ (P \ ch(P )), where
ch(P ) is the convex hull of P ; if P = ∅, then (P ) := ∅ [6]. An element of (P ) is
called a layer of P . We represent the layers of (P ) as dynamic balanced binary
search trees, so that operations split and join can be performed in O(log n) time.

Let D be a set of disjoint unit disks in R2. We say a point set P is a sample
from D if every disk in D contains exactly one point from P . We write log for
the logarithm with base 2.

3 The Algorithm

Our algorithm requires several pieces, to be described in the following sections.

3.1 Unions of Onions

Suppose we have two point sets P and Q, together with their onions. We show
how to find (P ∪Q) quickly, given that (P ) and (Q) are disjoint. Deleting
points can only decrease the number of layers, so:

Observation 3.1 Let P,Q ⊆ R2. Then (P ) and (Q) cannot have more
layers than (P ∪Q). �

The following lemma constitutes the main ingredient of our onion-union
algorithm. A convex chain is any connected subset of a convex closed curve.

Lemma 3.2. Let A and B be two non-crossing convex chains. We can find
ch(A ∪B) in O(log n) time.

Proof. Since A and B do not cross, the pieces of A and B that appear on
ch(A ∪ B) are both connected: otherwise, ch(A ∪ B) would contain four points
belonging to A, B, A, and B, in that order. However, the points on A must be
connected inside ch(A ∪ B); as do the points on B. Thus, the chains A and B
cross, which is impossible. Since A and B are convex chains, we can compute
ch(A), ch(B) in O(log n) time. Furthermore, since A and B are disjoint, we can
also, in O(log n) time, make sure that ch(A) ∩ ch(B) = ∅, by removing parts
from A or B, if necessary. Now we can find the bitangents of ch(A) and ch(B)
in logarithmic time [15]. �



490 M. Löffler and W. Mulzer

(a) (b)

Fig. 2. (a) A half-eaten onion; (b) the restored onion

Lemma 3.3. Suppose (P ) has k layers. Let A be the outer layer of (P ),
and p, q be two vertices of A. Let A1 be the points on A between p and q, going
counter-clockwise. We can find (P \A1) in O(k logn) time.

Proof. The points p and q partition A into two pieces, A1 and A2. Let B be the
second layer of (P ). The outer layer of (P \A1) is the convex hull of P \A1,
i.e., the convex hull of A2 and B. By Lemma 3.2, we can find it in O(log n) time.
Let p′, q′ ∈ P be the points on B where the outer layer of (P \ A1) connects.
We remove the part between p′ and q′ from B, and use recursion to compute
the remaining layers of (P \A1) in O((k − 1) logn) time; see Figure 2. �

We conclude with the main theorem of this section:

Theorem 3.4. Let P and Q be two planar point sets of total size n. Suppose
that (P ) and (Q) are disjoint. We can find the onion (P ∪Q) in O(k2 logn)
time, where k is the resulting number of layers.

Proof. By Observation 3.1, (P ) and (Q) each have at most k layers. We use
Lemma 3.2 to find ch(P ∪Q) in O(log n) time. By Lemma 3.3, the remainders of

(P ) and (Q) can be restored to proper onions in O(k logn) time. The result
follows by induction. �

3.2 Space Decomposition Trees

We now describe how to preprocess the disks in D for fast divide-and-conquer.
A space decomposition tree (SDT) T is a rooted binary tree where each node
v is associated with a planar region Rv. The root corresponds to all of R2; for
each leaf v of T , the region Rv intersects only a constant number of disks in
D. Furthermore, each inner node v in T is associated with a directed line �v, so
that if u is the left child and w the right child of v, then Ru := Rv ∩ �+v and
Rw := Rv ∩ �−v . Here, �+v is the halfplane to the left of �v and �−v the halfplane
to the right of �v; see Figure 3

Let α, β ∈ (0, 1), and let T be an SDT. For a node v of T , let dv denote the
number of disks in D that intersect Rv. We call T an (α, β)-SDT for D if for



Unions of Onions: Preprocessing Imprecise Points 491

every inner node v we have that (i) the line �v intersects at most dβv disks in Rv;
and (ii) du, dw ≤ αdv, where u and w are the children of v.

Lemma 3.5. Let T be an (α, β)-SDT. The tree T has height O(log n) and O(n)
nodes. Furthermore,

∑
v∈T dv = O(n logn).

Proof. The fact that T has height O(log n) is immediate from property (ii) of
an (α, β)-SDT. For i = 0, . . . , logn, let Vi := {v ∈ T | dv ∈ [2i, 2i+1)}, the set
of nodes whose regions intersect between 2i and 2i+1 disks. Note that the sets
Vi constitute a partition of the nodes. Let Ṽi ⊆ Vi be the nodes in Vi whose
parent is not in Vi. By property (ii) again, the dv along any root-leaf path in T

are monotonically decreasing, so the nodes in Ṽi are unrelated (i.e., no node in

Ṽi is an ancestor or descendant of another node in Ṽi). Furthermore, the nodes

in Vi induce in T a forest Fi such that each tree in Fi has a root from Ṽi and
constant height (depending on α).

Let Di :=
∑

v∈Ṽi
dv. We claim that for i = 0, . . . , logn, we have

Di ≤ n

logn∏
j=i

(
1 + c2j(β−1)

)
, (1)

for some large enough constant c. Indeed, consider a node v ∈ Ṽj . As noted
above, v is the root of a tree Fv of constant height in the forest induced by Vj .
By property (i), any node u in this subtree adds at most dβu < 2(j+1)β additional
disk intersections (i.e., da + db ≤ du + 2(j+1)β , where a, b are the children of
u). Since Fv has constant size, the total increase in disk intersections in Fv is
thus at most c′2(j+1)β , for some constant c′. Since dv ≥ 2j , it follows that the
number of disk intersections increases multiplicatively by a factor of at most
1 + c′2(j+1)β/2j ≤ 1 + c2j(β−1), for some constant c. The trees Fv partition T

and the root intersects n disks, so for the nodes in Ṽi, the total number of disk
intersections has increased by a factor of at most

∏log n
j=i

(
1 + c2j(β−1)

)
, giving

(1). The product in (1) is easily estimated:

Di ≤ n

logn∏
j=i

(1 + c2j(β−1)) ≤ ne
∑log n

j=i c2j(β−1)

= neO(1) = O(n),

since β < 1. Hence, each set Ṽi has at most O(n/2i) nodes for i = 1, . . . , logn.

The total size of all Ṽi is O(n). Since each v ∈ Vi lies in a constant size subtree

rooted at a w ∈ Ṽi, it follows that T has O(n) nodes. For the same reason, we
get that

∑
v∈T dv = O(n log n). �

Now there are several ways to obtain an (α, β)-SDT for D. A very simple con-
struction is based on the following lemma, which is an algorithmic version of a
result by Alon et al. [2, Theorem 1.2]. See Section 4 for alternative approaches.

Lemma 3.6. There exists a constant c ≥ 0, so that for any set D of m congruent
nonoverlapping disks in the plane, there is a line � with at least m/2−c

√
m logm

disks completely to each side of it. We can find � in O(m) expected time.



492 M. Löffler and W. Mulzer

Fig. 3. A space decomposition tree for 21 unit disks

Proof. Our proof closely follows Alon et al. [2, Section 2]. Set r := �
√
m/ logm�,

and pick a random integer z between 1 and r/2. Find a line � whose angle with
the x-axis is (z/r)π and that has �m/2� disk centers on each side. Given z,
we can find � in O(m) time by a median computation. The proof by Alon et al.
implies that with probability at least 1/2 over the choice of z, the line � intersects
at most c

√
m logm disks in D, for some constant c ≥ 0. Thus, we need two tries

in expectation to find a good line �. The expected running time is O(m). �

To obtain a (1/2 + ε, 1/2 + ε)-SDT T for D, we apply Lemma 3.6 recursively
until the region for each node intersects only a constant number of disks. Since
the expected running time per node is linear in the number of intersected disks,
Lemma 3.5 shows that the total expected running time is O(n log n).

By Lemma 3.5, the leaves of T induce a planar subdivision GT with O(n)
faces. We add a large enough bounding box to GT and triangulate the resulting
graph. Since GT is planar, the triangulation has complexity O(n) and can be
computed in the same time (no need for heavy machinery—all faces of GT are
convex). With each disk in D, we store the list of triangles that intersect it (recall
that each triangle intersects a constant number of disks). This again takes O(n)
time and space. We conclude with the main theorem of this section:

Theorem 3.7. Let D be a set of n disjoint unit disks in R2. In O(n log n)
expected time, we can construct an (1/2 + ε, 1/2 + ε) space partition tree T for
D. Furthermore, for each disk D ∈ D, we have a list of triangles TD that cover
the leaf regions of T that intersect D. 
�

3.3 Processing a Precise Input

Suppose we have an (α, β)-SDT together with a point location structure as
in Theorem 3.7. Let P be a sample from D. Suppose first that we know k,
the number of layers in (P ). For each input point pi, let Di ∈ D be the
corresponding disk. We check all triangles in TDi , until we find the one that



Unions of Onions: Preprocessing Imprecise Points 493

contains pi. Since there are O(n) triangles, this takes O(n) time. Afterwards, we
know for each point in P the leaf of T that contains it.

For each node v of T , let nv be the number of points in the subtree rooted
at v. We can compute the nv’s in total time O(n) by a postorder traversal of
T . The upper tree Tu of T consists of all nodes v with nv ≥ k2. Each leaf of
Tu corresponds to a subset of P with O(k2) points. For each such subset, we
use Chazelle’s algorithm [6] to find its onion decomposition in O(k2 log k) time.
Since the subsets are disjoint, this takes O(n log k) total time. Now, in order to
obtain (P ), we perform a postorder traversal of Tu, using Theorem 3.4 in each
node to unite the onions of its children. This gives (P ) at the root.

The time for the onion union at a node v is O(k2 lognv). We claim that for
i = 2 log k, . . . , logn, the upper tree Tu contains at most O(n/2i) nodes v with
nv ∈ [2i, 2i+1). Given the claim, the total work is proportional to

∑
v∈Tu

k2 lognv ≤
logn∑

i=2 log k

n

2i
k2(i + 1) = nk2

logn∑
i=2 log k

i + 1

2i
= O(n log k),

since the series
∑logn

i=2 log k(i + 1)/2i is dominated by the first term (log k)/k2.
It remains to prove the claim. Fix i ∈ {2 log k, . . . , logn} and let Vi be the
nodes in Tu with nv ∈ [2i, 2

i+1), whose parents have nv ≥ 2i+1. Since the
nodes in Vi represent disjoint subsets of P , we have |Vi| ≤ n/2i. Furthermore,
by property (i) of an (α, β)-SDT , both children w1, w2 for every node v ∈ Tu

have nw1 , nw2 ≤ αnv, so that after O(1) levels, all descendants w of v ∈ V have
nw < 2i. The claim follows.

So far, we have assumed that k is given. Using standard exponential search,
this requirement can be removed. More precisely, for i = 1, . . . , log log n, set
ki = 22

i

. Run the above algorithm for k = k0, k1, . . . . If the algorithm succeeds,
report the result. If not, abort as soon as it turns out that an intermediate onion
has more than ki layers and try ki+1. The total time is

log log k∑
i=0

O(n2i) = O(n log k),

as desired. This finally proves our main result.

Theorem 3.8. Let D be a set of n disjoint unit disks in R2. We can build a
data structure that stores D, of size O(n), in O(n log n) expected time, such that
given a sample P of D, we can compute (P ) in O(n log k) time, where k is the
number of layers in (P ). �

Remark. Using the same approach, without the exponential search, we can
also compute the outermost k layers of an onion with arbitrarily many layers in
O(n log k) time, for any k. In order to achieve this, we simply abort the union
algorithm whenever k layers have been found, and note that by Observation 3.1,
the points in P not on the outermost k layers of (P ) will never be part of the
outermost k layers of (Q) for any Q ⊃ P .



494 M. Löffler and W. Mulzer

4 Deterministic Preprocessing

We now present alternatives to Lemma 3.6. First, we describe a very simple
construction that gives a deterministic way to build an (9/10 + ε, 1/2 + ε)-SDT
in O(n logn) time.

Lemma 4.1. Let D be a set of m non-overlapping unit disks. Suppose that the
centers of D have been sorted in horizontal and vertical direction. Then we can
find in O(m) time a (vertical or horizontal) line �, such that � intersects O(

√
m)

disks and such that � has at least m/10 disks from D completely to each side.

Proof. Let Dl, Dr, Dt, Db be the m/10 left-, right-, top-, and bottommost disks
in D, respectively. We can find these disks in O(m) time, since we know the
horizontal and vertical order of their centers. We call Do := Dl ∪ Dr ∪ Dt ∪ Db

the outer disks, and Di := D \ Do the inner disks.
Let R be the smallest axis-aligned rectangle that contains all inner disks.

Again, R can be found in linear time. There are Ω(m) inner disks, and all disks
are disjoint, so the area of R must be Ω(m). Thus, R has width or height Ω(

√
m);

assume wlog that it has width Ω(
√
m). Let R′ ⊆ R be the rectangle obtained by

moving the left boundary of R to the right by two units, and the right boundary
of R to the left by two units. The rectangle R′ still has width Ω(

√
m), and it

intersects no disks from Dl ∪ Dr. There are Ω(
√
m) vertical lines that intersect

R′ and that are spaced at least one unit apart. Each such line has at least m/10
disks completely to each side, and each disk is intersected by at most one line.
Hence, there must be a line that intersects O(

√
m) disks, as claimed. We can

find such a line in O(m) time by sweeping the disks from left to right. �

The next lemma improves the constants of the previous construction. It allows
us to compute an (1/2 + ε, 5/6 + ε)-SDT tree in deterministic time O(n log2 n),
but it requires comparatively heavy machinery.

Lemma 4.2. Let D be a set of m congruent non-overlapping disks. In determin-
istic time O(m logm), we can find a line � such that there are at least m/2−cm5/6

disks completely to each side of �.

Proof. Let X be a planar n-point set, and let 1 ≤ r ≤ n be a parameter. A
simplicial r-partition of X is a sequence Δ1, . . . , Δa of a = Θ(r) triangles and
a partition X = X1∪̇ · · · ∪̇Xa of X into a pieces such that (i) for i = 1, . . . , a,
we have Xi ⊆ Δi and |Xi| ∈ {n/r, . . . , 2n/r}; and (ii) every line � intersects
O(
√
r) triangles Δi. Matoušek showed that a simplicial r-partition exists for

every planar n-point set and for every r. Furthermore, this partition can be found
in O(n log r) time (provided that r ≤ n1−δ, for some δ > 0) [18, Theorem 4.7].

Let γ, δ ∈ (0, 1) be two constants to be determined later. Set r := mγ . Let Q be
the set of centers of the disks in D. We compute a simplicial r-partition for Q in
O(m logm) time. Let Δ1, . . . , Δa be the resulting triangles and Q = Q1∪̇ · · · ∪̇Qa

the partition of Q. Set s := mδ, and for i = 1, . . . , s, let �′i be the line through
the origin that forms an angle (i/2s)π with the positive x-axis. Let Yi be the



Unions of Onions: Preprocessing Imprecise Points 495

projection of the triangles Δ1, . . . , Δa onto �′i. We interpret Yi as a set of weighted
intervals, where the weight of an interval is the size |Qj | of the associated point
set for the corresponding triangle. By the properties of the simplicial partition,
the interval set Yi has depth O(

√
r), i.e., every point on �′i is covered by at most

O(
√
r) intervals of Yi.

Note that the sets Yi can be determined in O(sr log r) = O(mγ+δ logm) =
O(m) total time, for γ, δ small enough. Now, for each Yi, we find a point ci on
�′i that has intervals of total weight m/2 − O(

√
r(m/r)) = m/2 − O(m1−γ/2)

completely to each side. Since the depth of Yi is O(
√
r), we can find such a point

in time O(log r) with binary search, for a total of O(s log r) = O(m) time (it
would even be permissible to spend time O(r) on each Yi). Let �i be the line
perpendicular to �′i through ci.

The analysis of Alon et al. shows that for each �i, there are at most O(s log s)
disks that intersect �i and at least one other line �j [2, Section 2]. Thus, it
suffices to focus on the disks in D that intersect at most one line �i. By simple
counting, there is a line �i that exclusively intersects at most m/s = m1−δ disks.
It remains to find such a line in O(m) time. For this, we compute the arrangement
A of the strips with width 2 centered around each �i, together with an efficient
point location structure. For each cell in the arrangement, we store whether it
is covered by 0, 1, or more strips. Using standard techniques, the construction
takes O(s2) = O(m2δ) time. We locate for each triangle Δi the cells of A that
contain the vertices of Δi. This needs O(r log s) = O(mγ logm) steps. Since
every line intersects at most O(

√
r) = O(mγ/2) triangles, we know that there

are at most O(smγ/2) = O(mδ+γ/2) triangles that intersect a cell boundary of
A. We call these triangles the bad triangles.

For all other triangles Δi, we know that the associated point set Qi lies com-
pletely in one cell of A. Let Di be the corresponding disks. By using the infor-
mation stored with the cells, we can now determine for each disk D ∈ Di in O(1)
time whether D intersects exactly one line �i. Thus, we can determine in total
time O(m) for each line �i the total number of disks that intersect only �i and
whose center is not associated with a bad triangle. Let � be the line for which
this number is minimum.

In total, it has taken us O(m logm) steps to find �. Let us bound the number of
disks that intersect �. First, we know that there are at most O(mδ+γ/2 ·m1−γ) =
O(m1+δ−γ/2) disks whose centers lie in bad triangles. Then, there are at most
O(mδ logm) disks that intersect � and at least one other line. Finally, there are
at most m1−δ disks with a center in a good triangle that intersect only �. Thus,
if we choose, say, δ = 1/6 and γ = 2/3, then � crosses at most O(m5/6) disks in
D. Furthermore, by construction, � has at least m/2−O(m2/3) disk centers on
each side. The result follows. �

Remark. Actually, we can use the approach from Lemma 4.2 to compute an
(1/2+ε, 5/6+ε)-SDT in total deterministic time O(m logm). The bottleneck lies
in finding the simplicial partition for Q. All other steps take O(m) time. However,
when applying Lemma 4.2 recursively, we do not need to compute a simplicial
partition from scratch. Instead, as in Matoušek’s paper, we can recursively refine



496 M. Löffler and W. Mulzer

�+5�−
5

Fig. 4. The lower bound construction consists of n/3 unit disks centered on a horizontal
line (5 in the figure), and two groups of n/3 points sufficiently far to the left and to
the right of the disks. Distances not to scale.

Fig. 5. n/k copies of the construction on a regular n/k-gon

the existing partitions in linear time [18, Corollary 3.5] (while duplicating the
triangles for the disks that are intersected by �). Thus, after spending O(m logm)
time on the simplicial partition for the root, we need only linear time per node
to find the dividing lines, for a total of O(m logm), by Lemma 3.5.

5 Lower Bounds

We now show that our algorithm is optimal in the decision tree model. We begin
with a lower bound of Ω(n logn) for k = Ω(n). Let n be a multiple of 3, and
consider the lines

�−n : y = −1/2− 6/n− x/n2; �+n : y = −1/2− 6/n + x/n2.

LetDn consist of n/3 disks centered on the x-axis at x-coordinates between−n/6
and n/6; a group of n/3 disks centered on �−n at x-coordinates between n2 and
n2 + n/3; and a symmetric group of n/3 disks centered on �+n at x-coordinates
between −n2 − n/3 and −n2. Figure 4 shows D15.

Lemma 5.1. Let π be a permutation on n/3 elements. There is a sample P of
Dn such that pi (the point for the ith disk from the left in the main group) lies
on layer π(i) of (P ).



Unions of Onions: Preprocessing Imprecise Points 497

Proof. Take P as the n/3 centers of the disks in D on �−n , the n/3 centers
of the disks in D on �+n , and for each disk Di ∈ D on the x-axis the point
pi = (i − n/6, π(i) · 3/n − 1/2). By construction, the outermost layer of (P )
contains at least the leftmost point on �+n , the rightmost point on �−n , and the
highest point (with y-coordinate 1/2). However, it does not contain any more
points: the line segments connecting these three points have slope at most 2/n2.
The second highest point lies 3/n lower, and at most n/3 further to the left or
the right. The lemma follows by induction. �

There are (n/3)! = 2Θ(n log n) permutations π; so any corresponding decision
tree has height Ω(n log n). We can strengthen the lower bound to Ω(n log k) by
taking n/k copies of Dk and placing them on the sides of a regular (n/k)-gon,
see Figure 5. By Lemma 5.1, we can choose independently for each side of the
(n/k)-gon one of (k/3)! permutations. The onion depth will be k/3, and the
number of permutations is ((k/3)!)n/k = 2Θ(n log k).

Theorem 5.2. Let k ∈ N and n ≥ k. There is a set D of n disjoint unit disks in
R2, such that any decision-based algorithm to compute (P ) for a sample P of
D, based only on prior knowledge of D, takes Ω(n log k) time in the worst case.

The lower bound still applies if the input points come from an appropriate
probability distribution (e.g., [1, Claim 2.2]). Thus, Yao’s minimax principle [19,
Chapter 2.2] yields a corresponding lower bound for any randomized algorithm.

6 Conclusion and Further Work

It would be interesting how much the parameter k can vary for a set of imprecise
bounds and how to estimate k efficiently. Further work includes considering more
general regions, such as overlapping disks, disks of different sizes, or fat regions.
It would also be interesting to consider the problem in 3D. Three-dimensional
onions are not well understood. The best general algorithm is due to Chan and
needs O(n log6 n) expected time [5], giving more room for improvement.

Acknowledgments. The authors would like to thank an anonymous reviewer
for comments that improved the paper. M.L. supported by the Netherlands
Organisation for Scientific Research (NWO) under grant 639.021.123.
W.M. supported in part by DFG project MU/3501/1.

References

[1] Ailon, N., Chazelle, B., Clarkson, K.L., Liu, D., Mulzer, W., Seshadhri, C.: Self-
improving algorithms. SIAM J. Comput. 40(2), 350–375 (2011)

[2] Alon, N., Katchalski, M., Pulleyblank, W.R.: Cutting disjoint disks by straight
lines. Discrete Comput. Geom. 4(3), 239–243 (1989)



498 M. Löffler and W. Mulzer

[3] Bruce, R., Hoffmann, M., Krizanc, D., Raman, R.: Efficient update strategies
for geometric computing with uncertainty. Theory of Computing Systems 38(4),
411–423 (2005)

[4] Buchin, K., Löffler, M., Morin, P., Mulzer, W.: Preprocessing imprecise points
for Delaunay triangulation: simplified and extended. Algorithmica 61(3), 675–693
(2011)

[5] Chan, T.M.: A dynamic data structure for 3-D convex hulls and 2-D nearest
neighbor queries. J. ACM 57(3), Art. 16, 15p. (2010)

[6] Chazelle, B.: On the convex layers of a planar set. IEEE Trans. Inform. The-
ory 31(4), 509–517 (1985)

[7] Chazelle, B., Guibas, L.J., Lee, D.T.: The power of geometric duality. BIT 25(1),
76–90 (1985)

[8] Devillers, O.: Delaunay triangulation of imprecise points: preprocess and actually
get a fast query time. J. Comput. Geom. 2(1), 30–45 (2011)

[9] Eddy, W.F.: Convex hull peeling. In: Proc. 5th Symp. Comp. Statistics (COMP-
STAT), pp. 42–47 (1982)

[10] Ezra, E., Mulzer, W.: Convex hull of points lying on lines in o(n log n) time after
preprocessing. Comput. Geom. 46(4), 417–434 (2013)

[11] Franciosa, P.G., Gaibisso, C., Gambosi, G., Talamo, M.: A convex hull algo-
rithm for points with approximately known positions. Internat. J. Comput. Geom.
Appl. 4(2), 153–163 (1994)

[12] Held, M., Mitchell, J.S.B.: Triangulating input-constrained planar point sets. In-
form. Process. Lett. 109(1), 54–56 (2008)

[13] Hoffmann, M., Erlebach, T., Krizanc, D., Mihalák, M., Raman, R.: Computing
minimum spanning trees with uncertainty. In: Proc. 25th Sympos. Theoret. As-
pects Comput. Sci. (STACS), pp. 277–288 (2008)

[14] Huber, P.J.: Robust statistics: A review. Ann. Math. Statist. 43, 1041–1067 (1972)
[15] Kirkpatrick, D., Snoeyink, J.: Computing common tangents without a separating

line. In: Sack, J.-R., Akl, S.G., Dehne, F., Santoro, N. (eds.) WADS 1995. LNCS,
vol. 955, pp. 183–193. Springer, Heidelberg (1995)

[16] van Kreveld, M., Löffler, M., Mitchell, J.S.B.: Preprocessing imprecise points and
splitting triangulations. SIAM J. Comput. 39(7), 2990–3000 (2010)

[17] Löffler, M., Snoeyink, J.: Delaunay triangulation of imprecise points in linear time
after preprocessing. Comput. Geom. 43(3), 234–242 (2010)

[18] Matoušek, J.: Efficient partition trees. Discrete Comput. Geom. 8(3), 315–334
(1992)

[19] Motwani, R., Raghavan, P.: Randomized algorithms. Cambridge University Press
(1995)

[20] Nielsen, F.: Output-sensitive peeling of convex and maximal layers. Inform. Pro-
cess. Lett. 59, 255–259 (1996)

[21] Overmars, M.H., van Leeuwen, J.: Maintenance of configurations in the plane. J.
Comput. System Sci. 23(2), 166–204 (1981)

[22] Suk, T., Flusser, J.: Convex layers: A new tool for recognition of projectively de-
formed point sets. In: Solina, F., Leonardis, A. (eds.) CAIP 1999. LNCS, vol. 1689,
pp. 454–461. Springer, Heidelberg (1999)

[23] Tseng, K.-C.R., Kirkpatrick, D.: Input-thrifty extrema testing. In: Asano, T.,
Nakano, S.-i., Okamoto, Y., Watanabe, O. (eds.) ISAAC 2011. LNCS, vol. 7074,
pp. 554–563. Springer, Heidelberg (2011)



Dynamic Planar Point Location

with Sub-logarithmic Local Updates

Maarten Löffler1, Joseph A. Simons2, and Darren Strash2

1 Dept. of Information and Computing Sciences, Utrecht University
2 Dept. of Computer Science, University of California, Irvine

Abstract. We study planar point location in a collection of disjoint fat
regions, and investigate the complexity of local updates: replacing any re-
gion by a different region that is “similar” to the original region. (i.e., the
size differs by at most a constant factor, and distance between the two re-
gions is a constant times that size). We show that it is possible to create a
linear size data structure that allows for insertions, deletions, and queries
in logarithmic time, and allows for local updates in sub-logarithmic time
on a pointer machine. We also give results parameterized by the fatness
and similarity of the objects considered.

1 Introduction

Planar point location lies at the heart of many geometric problems, and has been
a major research topic in computational geometry for the past 40 years. In the
static version of the problem, one aims to store a subdivision of the plane such
that given a query point q in the plane, the cell of the subdivision containing
q can be retrieved quickly [7,14]. In the dynamic version of the problem, one
also allows changes to the data set, typically adding or removing line segments
to the subdivision [3,10].

The best known dynamic data structures on a real RAM are due to Cheng
and Janardan [5], who achieve O(log2 n) queries and O(log n) updates, and Arge
et al. [2], who achieve O(log n) queries, O(log1+ε n) insertions, and O(log2+ε n)
deletions. A central open problem in this area is whether a linear-size data
structure exists that can support both queries and updates in logarithmic time,
although this is known to be possible in more specific settings such as monotone
or rectilinear subdivisions [10]. Husfeldt et al. [11] prove that even in the very
strong cell probe model, there are Ω(log n/ log logn) lower bounds on both queries
and updates.

Despite these theoretical results, practical evidence suggests that updating a
data structure should be fast. Intuitively, an update to a data set should not
need to depend on n at all, unless we need to find the place where the update
takes place (i.e., we need to do a point location query). Realistic input models
are intended for designing algorithms that are provably efficient in practice, and
the fat-and-disjoint model is ubiquitous (see e.g. [6]). In this paper, we study
point location data structures on a collection of disjoint fat objects in the plane

F. Dehne, R. Solis-Oba, and J.-R. Sack (Eds.): WADS 2013, LNCS 8037, pp. 499–511, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



500 M. Löffler, J.A. Simons, and D. Strash

that support local updates : replace any region by a different region that is similar
to the original. We show that the lower bounds on updates can be broken in this
setting, while still allowing O(log n) queries and using O(n) storage.

The idea of local updates is not new. For example, Nekrich [13] considers
(on a word-RAM) the local update operation insertΔ(x, y) which inserts a new
element x into a 1-dimensional sorted list, given a pointer to an existing element
y that satisfies |x − y| ≤ Δ for some distance parameter Δ. There is also a
related concept called finger updates, where the position of the update is known;
see e.g. Fleischer [9]. However, our results are the first in this area that work
in a geometric setting, and they can be implemented on a real-valued pointer
machine.

1.1 Problem Description

d1d2

d12

Fig. 1. ρ-similar

We define the problem in general dimension d, but restrict
our attention to d ∈ {1, 2} in the remainder of this paper.
Throughout this paper, we use |R| to denote the diameter
of a region R ⊂ Rd, that is, |R| = maxp,q∈R |pq|. We say
two fat1 regions R1, R2 ⊂ Rd are ρ-similar if |R1 ∪R2| ≤
ρmin{|R1|, |R2|}, see Figure 1.2

Problem 1. Given a set R of n disjoint fat regions in Rd, store them in a data
structure that allows:

– queries: given a point q ∈ Rd, return the region in R that contains q (if any)
in Q(n) time;

– local updates: given a region R ∈ R and a region R′ that is ρ-similar to R,
replace R by R′ in the data structure in U(n) time; and

– global updates: delete an existing region R from the data structure or insert
a new region R′ into the data structure in Q(n) + U(n) time

such that Q(n) = O(log n) but U(n) = o(log n). Note that a local update allows
for an arbitrary number of smaller regions to be “between” the old region R and
the new region R′.

1.2 Applications

A natural application of our data structure is to keep track of moving objects.
One may imagine a number of objects of different sizes moving unpredictably in
an environment at different speeds. A popular method for dealing with moving
objects is to discretize time and process the new locations of the objects at each
time step. The naive way to do this is to simply rebuild an entire data structure

1 We formally define fat regions in Section 4.
2 This definition captures two ideas at once: firstly, the sizes of R1 and R2 can differ
by at most a factor of ρ, and secondly, the distance between R1 and R2 can be at
most a factor ρ times the smaller of these sizes.



Dynamic Planar Point Location with Sub-logarithmic Local Updates 501

every time step. Our data structure can be used to process such changes more
efficiently.

A different reason for studying this problem comes from the desire to cope
with data imprecision. One way to model an imprecise point is to keep track
of a region of possible locations of the point. Although algorithms to deal with
static imprecise data are beginning to be well understood, little effort has been
devoted to dealing with dynamic imprecise points. However, imprecision is often
inherently dynamic (e.g. time-dependent or “stale” data), or explicitly made
dynamic (e.g. updates from new samples of the same point). Our data structure
can be used to store a set of dynamic imprecise points for quickly answering
identity queries (i.e., given a query point, is there a point in the data structure
that is potentially equal to the query point).

1.3 Results

We show that given constant similarity and fatness parameters:

– A set of n disjoint intervals in R1 can be maintained in an O(n) size data
structure that supports O(log n) worst-case time insertion, deletion, and
point location queries, and O(1) worst-case time local updates (Section 3).

– A set of n disjoint fat regions in R2 can be maintained in an O(n) size data
structure that supports O(log n) worst-case time insertion, deletion and point
location queries, and O(log logn) worst-case time local updates (Section 4).

– We also give bounds that can handle arbitrary similarity and fatness param-
eters in Theorem 1 and Theorem 2 for the R1 and R2 case respectively.

Our data structures can be implemented on a real-valued pointer machine. Be-
cause of space restrictions, many proofs and details are omitted. We also refer
the interested reader to a full, uncompressed version of this text [12].

2 Tools

Quadtrees. Let B be an axis-aligned square.3 A quadtree T on B is a hierarchical
decomposition of B into smaller axis-aligned squares called quadtree cells. Each
node v of T has an associated cell Cv ⊂ Rd, and v is either a leaf or has 2d equal-
sized children whose cells subdivide Cv [8]. We denote the parent of a node v by
v̄. A pair of cells are called neighbors if they are interior disjoint and meet at an
edge or corner. A leaf v is α-balanced if α|Cv| ≥ |Cu| for every larger neighbor
Cu of Cv. We say T is α-balanced if every leaf in T is α-balanced. If α is a small
constant, then we simply call the quadtree T balanced.

Let P ⊂ Rd be a set of n points contained in B. We say T is a valid quadtree
for P if every leaf of T contains at most 1 point of P . T may have unbounded

3 We use the term square to mean a d-dimensional hypercube, since our main focus is
on d = 2.



502 M. Löffler, J.A. Simons, and D. Strash

depth if P has unbounded spread,4 Given a constant a, an a-compressed quadtree
replaces some paths in T with compressed nodes. A compressed node v has only
one child ṽ with |Cṽ| ≤ |Cv|/a and such that Cv \Cṽ has no points from P .5 We
assume for convenience that ṽ is aligned with v, i.e. if we keep subdividing Cv

we will eventually create Cṽ.6

The compressed nodes of a quadtree T cut the tree into a number of compo-
nents that correspond to smaller regular (uncompressed) quadtrees. We say T
is α-balanced if all these smaller trees are α-balanced. It follows directly from
Bern et al. [4], that a balanced compressed quadtree of linear complexity exists
for any set of points P .

Static edge-oracle trees. Let T be an abstract tree with constant maximum
degree d. Suppose that the nodes of T are given unique labels, and suppose
that each edge e ∈ T has an oracle which for any node label x can answer the
following question: “If we removed e such that T is split into two components,
which component would contain the node labeled x?” The edge-oracle tree is
a search structure built over the edges of T which allows us to navigate from
any node u ∈ T to any other node v ∈ T in O(log |T |) time and examines
only O(log |T |) edges. We can construct an edge-oracle tree for T by recursively
locating an edge which divides T into two components of approximately equal
size.

Local updates. For a one-dimensional ordered list, data structures that can han-
dle local (finger) updates are well known. One of the simplest implementations
on a pointer machine is due to Fleischer [9].

Marked-ancestor problem. Suppose we have a tree in which nodes may be marked
or unmarked. Given a node x, we want to answer the query, “Which is the lowest
marked ancestor of x in the tree?”. This is known as the marked-ancestor problem.
We also want to support updates, in which nodes are marked or unmarked, and
insertions/deletions of nodes to/from the tree. Alstrup et al. [1] gave the following
results for the marked-ancestor problem on a word-RAM.

Lemma 1. We can maintain a data structure over any rooted tree T which
supports insertions and deletions of leaves in O(1) amortized time, marking and
unmarking nodes in O(log logn) worst-case time, and marked ancestor queries
in O(log n/ log logn) worst-case time.

4 The spread of a point set P is the ratio between the largest and the smallest distance
between any two distinct points in P .

5 Such nodes are also often called cluster -nodes in the literature [4].
6 While this assumption is realistic in practice, on a pure real-valued pointer machine
it is not possible to align compressed nodes of arbitrary size difference in constant
time. In the full version [12], we show how to adapt the results to unaligned com-
pressed nodes.



Dynamic Planar Point Location with Sub-logarithmic Local Updates 503

2.1 New Tools

Dynamic balanced quadtrees. A dynamic quadtree is a data structure that main-
tains a quadtree Q on a point set P under insertion and deletion of points. In
order to maintain a valid quadtree of linear size, we respond with split and merge
operations respectively. A split operation takes a leaf v of Q and adds 2d chil-
dren to it; a merge operation takes 2d leaves with a common parent and removes
them. Details are given in the full version [12].

Lemma 2. We can maintain 4-balance in a dynamic compressed quadtree in
O(1) worst-case time per update.

Dynamic edge-oracle trees. There have been several recent results which general-
ize classic one-dimensional dynamic structures to a multidimensional setting by
combining classic techniques with a quadtree-style space decomposition. How-
ever, surprisingly there are no multidimensional data structures which incorpo-
rate finger searching techniques, i.e. structures that are able to support both log-
arithmic queries and worst-case constant time local updates on a quadtree. We
show how to build a dynamic edge-oracle tree which combines tree-decomposition
and finger searching techniques with a quadtree to support O(log n) queries and
O(1) local updates. Details are given in the full version [12].

Lemma 3. Let P be a set of n points, and Q be a balanced and compressed
quadtree on P . We can maintain P and Q in a data structure that supports
O(log n) point location queries in Q, and local insertions and deletions of points
in P (i.e., when given the corresponding cells of Q) in O(1) time.

Marked-ancestor trees. We show how to answer marked-ancestor queries on a
pointer-machine. Details are given in the full version [12].

Lemma 4. We can maintain a data structure over any rooted tree T which sup-
ports insertions and deletions of leaves in O(1) amortized time, marking and un-
marking nodes in O(log logn) worst-case time, and queries for the lowest marked
ancestor in O(log n) worst-case time. All operations are supported on a pointer
machine.

3 One-Dimensional Case

Our 1D data structure illustrates the key ideas of our approach while being
significantly simpler than the 2D version. Note that in R1, our input set R
of geometric regions is a set of non-overlapping intervals. The difficulty of the
problem comes from the fact that a local update may replace any interval by
another interval of similar size at a distance related to that size; hence, it may
“jump” over an arbitrary number of smaller intervals. Our solution works on a
pure Real-valued pointer machine, and achieves constant time updates.



504 M. Löffler, J.A. Simons, and D. Strash

Fig. 2. A set of disjoint intervals and their center points (red); a 4-balanced compressed
quadtree on the center points (blue); and a search tree on the leaves (or parts of internal
cells not covered by children) of the quadtree (green).

3.1 Definition of the Data Structure

Our data structure consists of two trees. The first is designed to facilitate effi-
cient updates and the second is designed to facilitate efficient queries. The update
tree is a compressed quadtree on the center points of the intervals. The quadtree
stores a pointer to each interval in the leaf that contains its center point. We also
augment the tree with level-links, so that each cell has a pointer to its adjacent
cells of the same size (if they exist), and maintain balance in the quadtree as
described in Lemma 2. The leaves of the quadtree induce a linear size subdivi-
sion of the real line; the query tree is a search tree over this subdivision7 that
allows for fast point location and constant time local updates. We also maintain
pointers between the leaves of the two trees, so that when we perform a point
location query in the query tree, we also get a pointer to the corresponding cell
in the quadtree, and given any leaf in the quadtree, we have a pointer to the
corresponding leaf in the query tree. Figure 2 illustrates the data structure.

Details of the following results can be found in the full version [12].

Lemma 5. Let I ∈ R be an interval, and let I ′ be another interval that is
O(ρ)-similar to I. Suppose we are given a quadtree storing the midpoints of the
intervals in R and a pointer to the leaf containing the midpoint of I. Then we
can find the leaf which contains the midpoint of I ′ in O(log ρ) time.

Theorem 1. We can maintain a linear size data structure over a set of n non-
overlapping intervals such that we can perform point location queries and inser-
tion and deletion of intervals in O(log n) worst-case time and local updates in
O(log ρ) worst-case time.

4 Two-Dimensional Case r1
r2

Fig. 3. β-thick

We now focus our attention on disjoint fat regions in the
plane. Intuitively, a fat region should not have any long
skinny pieces. We consider two types of fat regions which

7 Although we could technically use a search tree directly on the original intervals, we
prefer to see it as a tree over the leaves of the quadtree tree in preparation for the
situation in R2.



Dynamic Planar Point Location with Sub-logarithmic Local Updates 505

precisely capture this intuition: thick convex regions and wide polygons. We say
R is β-thick if there exists a pair of concentric balls I, O with I ⊆ R ⊆ O and
|O| ≤ β|I|, see Figure 3.

Let δ ≥ 1. A δ-corridor is a isosceles trapezoid whose slanted edges are at
most δ times as long as its base. A simple polygon P is δ-wide if any isosceles
trapezoid T ⊂ P whose slanted edges lie on the boundary of P is a δ-corridor [15],
see Figure 4.8 Note that any δ-wide polygon R of constant complexity is also
β-thick, with β ∈ Θ(δ).

We will first solve the problem for convex thick regions, and then extend the
result to non-convex wide polygons. Analogously to the 1D case, we will store
for each region R ∈ R a representative point p that lies somehow “in the middle”
of R. When the regions are β-thick, we will use the center point of the two con-
centric disks from the thickness definition as representative point. We denote the
set of representative points of the regions in R by P . Let T be the quadtree built
over P . We distinguish between true cells, which are necessary in any valid com-
pressed quadtree over P , and B-cells, which may further subdivide a true cell
and are only added in order to maintain balance. We store each representative
point m in T according to the following rule: Let Cv be the smallest quadtree cell
containing m. If Cv is a true cell, then m is stored in v. If Cv is a B-cell, then m is
stored in u, the lowest (not necessarily proper) ancestor of v in T such that |Cu| ≥
|R|/(4β).

b

h

Fig. 4. δ-wide

Several new problems are introduced which were not
present in the 1D case. We briefly sketch how to address
each of these problems, and then present the complete
solution.

Linear distance. When performing a query in the one-
dimensional case, the location in the quadtree of any in-
tersecting region is at most a constant number of cells away. However, in the
two-dimensional case, the location of an intersecting region may be up to a lin-
ear number of cells away, as shown in Figure 5(a). We solve this problem with
some additional bookkeeping. Given a quadtree cell Cq, we use two different
strategies to locate regions intersecting Cq depending on their size. All regions
of size at least 2β|Cq| will be located using a marked-ancestor data structure: an
additional search structure which we explain in more detail below. All regions
of size less than 2β|Cq| which intersect Cq will register a bidirectional pointer
with Cq using the following tagging strategy.

Let d be the smallest diameter of a quadtree cell such that d ≥ |R|/(4β). Let
SR be the set of quadtree cells C which intersect R and are either a leaf or have
size |C| = d. All cells in SR will be tagged with a pointer to R. Since the quadtree
is balanced, given a pointer to any cell in SR, we can locate all cells in SR in

8 Many other notions of fatness exist in the literature. We chose to use thickness
because it is basic and implied by most other definitions, and wideness because it
will be convenient to use Theorem 3.



506 M. Löffler, J.A. Simons, and D. Strash

O(|SR|) time. By the following lemma, SR must contain the cell containing the
representative point of R.

Lemma 6. Let R be a β-thick region stored by our data structure. If C is the
quadtree cell which stores the representative point of R, then C has side length

at least |R|
4β .

Proof. If C is a B-cell, then the claim is true by construction. Suppose C is a
true cell. Let m be the representative point of R. By the definition of thickness,
there exists a disk I ⊆ R centered at m with |I| ≥ |R|/β. I contains no represen-
tative points of regions other than R. Let C be the cell containing m. Note that
if C contains m and is significantly smaller than |R|, then C must be completely
contained in I. However, C must be the largest quadtree cell completely con-
tained in I, since if the parent C̄ of C in the quadtree is completely contained
in R, then C̄ would not have been further subdivided because C̄ would contain
no other points. Therefore, C̄ must have some portion outside of I and must
have size larger than |I|/2. Thus the size of C is at least |I|/4 ≥ |R|/(4β). 
�

Moreover, by the following lemma |SR| = O(β), and therefore, given the cell
containing the representative point of R we can tag all cells in SR in O(β) time.

Lemma 7. Let R be a β-thick region stored in our data structure, and let C be
quadtree cell that stores the representative point of R. Then there are at most
O(β) quadtree cells of size |C| required to cover R.

Proof. Let I be the largest inscribed disk of R. The boundary of I touches the
boundary of R in two or three points. If two points, then these are diametral on
I, so R is contained in a strip of width |I|. If three points, take the diametral
points of these three points and take the strips of width |I| of these three pairs;
R is contained in the union of these three strips. Now, if R is beta-thick, the
portion of the strips it can be in is at most β|I| long. So, R can be covered by
O(β) disks the size of I. Each such disk can be covered by at most O(1) cells of
size |C|, by Lemma 6. Thus, O(β) cells are required to cover R. 
�

Linear overlap. In the one-dimensional case, we store only the center points of
our regions, and the number of regions that overlap any quadtree cell is at most
three. In two dimensions, it appears that we may have a large number of small
regions that intersect a quadtree cell. However, we show in the following lemma
that this is not the case.

Lemma 8. The number of β-thick convex regions intersecting any balanced
quadtree leaf is O(β).

Proof. Let RC be the set of thick convex regions that intersect the boundary
of leaf C, and let r be the radius of a large disk D containing all regions in
RC . For each region Rj ∈ RC there exists a disk Ij ⊆ Rj with center mj such
that |Ij | ≥ |Rj |/β. Moreover, since each region Rj is convex, it must contain a



Dynamic Planar Point Location with Sub-logarithmic Local Updates 507

(a)

|R1|/β

|R1|

|R2|/β|R2|

Ω(r/β)

Ω(r/β)

r

(b)

Fig. 5. (a) The intersecting region could be stored a linear distance from the query cell
(containing the blue point). (b) The number of regions which can intersect quadtree
leaf C is at most O(β), since each region blocks a Ω(1/β) fraction of a large circle
centered at C, by similar triangles.

triangle consisting of the diameter of Ij and some point pj ∈ Rj ∩ C. Each of
the four sides of C can “see” at most πr of the perimeter of D. However, by a
similar triangles argument each triangle must block the line of sight from one or
more sides to at least Θ(r/β) of the perimeter (see Figure 5(b)). Thus, since the
regions are convex and disjoint, the number of regions in RC is at most O(β). 
�

4.1 Definition of the Data Structure

At the core, our data structure is similar to the one-dimensional data structure
described above: we have a spacial tree, which allows for efficient updates, and
a search tree, which allows for efficient searching over the quadtree. However,
our data structure is augmented to address the problems introduced by the two-
dimensional case. We maintain a dynamic balanced quadtree Q over P , which we
augment to support mark and unmark operations and marked-ancestor queries,
and we maintain a dynamic edge-oracle tree on the edges of Q.

Li
C

m

W i
C

R I

O

C

Fig. 6. Illustrating
the claim

Marked-ancestor tree. Suppose we are given an angle φ
which divides 2π (i.e., kφ = 2π), and consider the set
of angular intervals Φi = [iφ, (i + 1)φ] (modulo 2π), for
integers 1 ≤ i ≤ k. For each quadtree cell C of Q with
center point c, we define the wedge W i

C centered at c and
with opening angle φ to be the union of all halflines from
c in a direction in Φi. Let WC = {W i

C | 1 ≤ i ≤ k}; note
that WC partitions R2 into k wedges.

For each 1 ≤ i ≤ k, let Ti be a marked-ancestor struc-
ture on Q. We mark a cell C in Ti if and only if there is a region R ∈ R of size
2β|C| ≤ |R| < 4β|C| that intersects C, and such that the center point of R lies
in W i

C .
When doing a query, we will only look at the first marked ancestor in each

Ti. Lemma 9 captures the essential property of the regions which enables this
strategy. First, we need the following claim.



508 M. Löffler, J.A. Simons, and D. Strash

Claim. Let β be given and set φ = 2π

13β� . Let C be a cell that is marked in Ti

by a β-thick region R. Let Li
C be the set of lines that start in C, and have a

direction in Φi. Then every line in Li
C intersects R.

Proof. Let m be the representative point of R. Since R is β-thick, there exist
disks I ⊆ R ⊆ O centered at m with |O|/|I| ≤ β. Since R caused C to be marked,
O, must intersect C, and m must lie in W i

C . See Figure 6.
Now, we need that I intersects all lines in Li

C . The distance from m to C is at

most 1
2
|O| ≤ β

2
|I|. Then, the distance from m to the far edge of W i

C is at most
β
2
|I| sinφ, and the distance to the far edge of Li

C is at most β
2
|I| sinφ+ 1

2
|C|. Since

|R| ≥ 2β|C|, we know that |C| ≤ 1
2
|I|. Using φ = 2π

13β implies β sinφ ≤ 2π
13

< 1
2
.

Combining these, we see that |I| ≥ β|I| sinφ + |C|, so, I blocks all lines in Li
C .


�

Lemma 9. Let C1 be a cell that is marked in Ti by a convex and β-thick region
R1, and let C2 be a descendant of C1 that is marked in Ti by a convex and β-thick
region R2. Then there cannot be a descendant C3 of C2 that intersects R1.

Proof. Let R2 and R1 be convex fat regions which mark cells C2 and C1 respec-
tively. Then there is a point p2 ∈ R2 ∩ C2. Suppose for contradiction that R1

intersects C3; that is, there exists a point p1 ∈ R1 ∩ C3. Let r and s be two
parallel rays from p1 and p2 in some direction φ ∈ Φi. Note that rays r and s are
both in Li

C2
. Therefore each ray must intersect both R1 and R2 by Claim 4.1.

Since each region R1 and R2 is convex, their intersection with each ray r (or s)
is a single line segment, denoted r1 and r2 (s1 and s2) respectively. Moreover,
since R1 and R2 are disjoint, the segments r1 and r2 (s1 and s2) are also disjoint
(see Figure 7).

Since p1 ∈ R1, r1 must come before r2 on the ray r. Similarly, s2 must come
before s1 on the ray s. Moreover, R1 is convex, and thus the convex quadrilateral
defined by r1, s1 is completely contained in R1, and likewise r2, s2 ⊆ R2. These
two quadrilaterals must intersect, which is a contradiction because R1 and R2

are disjoint. Therefore there is no point p1 ∈ R1 ∩ C3. 
�

C1 C2

C3
p2

p1

r2

s1
s2

r

s
r1

Fig. 7. Illustration of Lemma 9

Queries. Given a query point q, we want to
find out which region (if any) contains q. We
begin by performing a point location query for
q in the quadtree Q. By Lemma 3 we can find
the leaf cell C in the quadtree which contains
q in O(log n) time using the edge-oracle tree.

By Lemma 8, there can only be O(β) re-
gions which intersect C. All regions of size at
most 2β|C| will have tagged C with a pointer
to themselves, and are immediately available from C. Moreover, we can find all
regions of size at least 2β|C| in O(β logn) time by querying the marked-ancestor
structures. We compare each region to our query point, and determine which
region (if any) intersects the query point in O(β) time. Thus, we can answer the
query in total time O(β logn).



Dynamic Planar Point Location with Sub-logarithmic Local Updates 509

Updates. We only store the representative points of the regions in the quadtree.
Thus, when performing a local update, it is sufficient to find the new location for
the region’s representative point, and then update the quadtree, tags, marked-
ancestor trees, and edge-oracle trees accordingly.

Given a pointer to a region R, we replace it by another region R′ that is ρ-
similar to R for any arbitrary parameter ρ ≥ 1. Let p and p′ be the representative
points of R and R′, respectively. We find the leaf cell of Q containing p′ by going
up in the quadtreee until the size of the cell we are in is similar to the distance
to p′, then using level-links to find the ancestor of p′ of similar size, and then
going back down.

Lemma 10. The distance in Q between the leaf C containing p and the leaf C′

containing p′ is at most O(log(ρβ)).

Proof. Recall that by definition, |R ∪ R′| ≤ ρmin{|R|, |R′|}, and by Lemma 6,

each region is stored in a quadtree cell proportional to its size, i.e. |C| ≥ |R|
4β .

Thus, |C| ≥ |R∪R′|
4βρ , and likewise for |C|′. Hence, to find C′ from C, we move

up at most log(βρ) levels in the quadtree to find a cell of size Ω(|R ∪R′|), then
follow O(1) level-link pointers to find a large cell containing p′. Finally, we move
down at most log(βρ) levels to find C′. 
�

We must also update the quadtree to reflect the new position of the representative
point. By Lemma 2, we can delete p, insert p′, and perform the corresponding
rebalancing of the quadtree in O(1) worst case time.

A local update replaces an old region R by a new region R′ which is ρ-similar
to R, but may overlap different quadtree cells than R. Therefore we may require
updates to the marked-ancestor structure. Let C be the quadtree cell containing
R’s representative point. After the update, R′ must only intersect O(β) quadtree
cells which are similar in size to C by Lemma 7. For each of these cells, we test
the direction of the representative point of R′ and mark it in the corresponding
marked-ancestor tree. We also unmark cells which corresponded to the old region
R. These updates can be performed in O(log logn) time per marked-ancestor
structure. We must also remove tags from all cells in SR and add tags to cells in
SR′ . However, given C and C′, this takes O(β) time by Lemma 7. By Lemma 3
we can also update the edge-oracle tree in O(1) time.

Theorem 2. A set of n disjoint convex β-thick objects of constant combinatorial
complexity in R2 can be maintained in a O(βn) size data structure that supports
insertion, deletion and point location queries in O(β logn) time, and ρ-similar
updates in O(β log logn+log(βρ)) time. All time bounds are worst-case, and the
data structure can be implemented on a real-valued pointer machine.

We can extend the result to non-convex fat regions, by cutting them into con-
vex pieces. This approach only works for polygonal objects, since non-polygonal
objects cannot always be partitioned into a finite number of convex pieces. For
polygonal objects, we use a theorem by van Kreveld:



510 M. Löffler, J.A. Simons, and D. Strash

Theorem 3 (from [15]). A δ-wide simple polygon P with n vertices can be
partitioned in O(n log2 n) time into O(n) β-wide quadrilaterals and triangles,
where β = min{δ, 1− 1

2

√
3}.

We conclude:

Theorem 4. A set of n disjoint polygonal δ-wide objects of constant combina-
torial complexity in R2 can be maintained in a O(δn) size data structure that
supports insertion, deletion and point location queries in O(δ logn) time, and ρ-
similar updates in O(δ log logn + log(δρ)) time. All time bounds are worst-case,
and the data structure can be implemented on a real-valued pointer machine.

5 Discussion

We have shown that given a set of regions in R1 or R2 fitting some modest
assumptions, we can perform local updates in R1 in O(1) time and in R2 in
O(log logn) time respectively. The following are open problems for future re-
search. Can we also handle local updates in R2 in O(1) time? Can we relax our
assumption that the regions must not intersect each other? Can we adapt our
techniques to handle regions in R3 or higher dimensions?

Acknowledgments. Work on this paper has been partially supported by the Office
of Naval Research under MURI grant N00014-08-1-1015. M.L. is further supported by
the Netherlands Organisation for Scientific Research (NWO) under grant 639.021.123.

References

1. Alstrup, S., Husfeldt, T., Rauhe, T.: Marked ancestor problems. In: Proc. 39th
Symp. on Foundations of Computer Science, pp. 534–543 (1998)

2. Arge, L., Brodal, G.S., Georgiadis, L.: Improved dynamic planar point location. In:
Proc. 47th Symp. on Foundations of Computer Science, pp. 305–314 (2006)

3. Bentley, J.L.: Solutions to Klee’s rectangle problems. Technical report, Carnegie-
Mellon Univ., Pittsburgh, PA (1977)

4. Bern, M., Eppstein, D., Gilbert, J.: Provably good mesh generation. J. Comput.
Syst. Sci. 48(3), 384–409 (1994)

5. Cheng, S.W., Janardan, R.: New results on dynamic planar point location. SIAM
J. Comput. 21(5), 972–999 (1992)

6. Berg, M.d., Gray, C.: Vertical ray shooting and computing depth orders for fat
objects. In: SODA, pp. 494–503. ACM Press (2006)

7. Dobkin, D.P., Lipton, R.J.: Multidimensional searching problems. SIAM J. Com-
put. 5(2), 181–186 (1976)

8. Finkel, R.A., Bentley, J.L.: Quad trees: A data structure for retrieval on composite
keys. Acta Inform. 4, 1–9 (1974)

9. Fleischer, R.: A simple balanced search tree with o(1) worst-case update time. In:
Ng, K.W., Balasubramanian, N.V., Raghavan, P., Chin, F.Y.L. (eds.) ISAAC 1993.
LNCS, vol. 762, pp. 138–146. Springer, Heidelberg (1993)



Dynamic Planar Point Location with Sub-logarithmic Local Updates 511

10. Giora, Y., Kaplan, H.: Optimal dynamic vertical ray shooting in rectilinear planar
subdivisions. ACM Trans. Algorithms 5(3), 28:1–28:51 (2009)

11. Husfeldt, T., Rauhe, T.: Lower bounds for dynamic transitive closure, planar point
location, and parentheses matching. Nordic J. Computing 3 (1996)

12. Löffler, M., Simons, J.A., Strash, D.: Dynamic planar point location with sub-
logarithmic local updates. Arxiv report, arXiv:1204.4714 [cs.CG] (April 2012)

13. Nekrich, Y.: Data structures with local update operations. In: Gudmundsson, J.
(ed.) SWAT 2008. LNCS, vol. 5124, pp. 138–147. Springer, Heidelberg (2008)

14. Sarnak, N., Tarjan, R.E.: Planar point location using persistent search trees.
Commun. ACM 29, 669–679 (1986), http://doi.acm.org/10.1145/6138.6151,
doi:10.1145/6138.6151

15. van Kreveld, M.: On fat partitioning, fat covering, and the union size of polygons.
Comput. Geom. Theory Appl. 9(4), 197–210 (1998)

http://doi.acm.org/10.1145/6138.6151


Parameterized Enumeration of (Locally-) Optimal
Aggregations

Naomi Nishimura and Narges Simjour�

Cheriton School of Computer Science, University of Waterloo,
Waterloo, Ontario, Canada

{nishi,nsimjour}@uwaterloo.ca

Abstract. We present a parameterized enumeration algorithm for Ke-
meny Rank Aggregation, the problem of determining an optimal ag-
gregation, a total order that is at minimum total τ -distance (kt) from the
input multi-set of m total orders (votes) over a set of alternatives (can-
didates), where the τ -distance between two total orders is the number
of pairs of candidates ordered differently. Our O∗(4

kt
m )-time algorithm

constitutes a significant improvement over the previous O∗(36
kt
m ) upper

bound.
The analysis of our algorithm relies on the notion of locally-optimal

aggregations, total orders whose total τ -distances from the votes do not
decrease by any single swap of two candidates adjacent in the ordering.
As a consequence of our approach, we provide not only an upper bound
of 4

kt
m on the number of optimal aggregations, but also the first pa-

rameterized bound, 4
kt
m , on the number of locally-optimal aggregations,

and demonstrate that it is tight. Furthermore, since our results rely on
a known relation to Weighted Directed Feedback Arc Set, we
obtain new results for this problem along the way.

1 Introduction

In the general rank aggregation problem, the goal is to find a single preference list
that is as close as possible to a multi-set of preference lists, according to a chosen
distance measure. The problem dates back to the 18th century [9,11], when it
was raised in the context of fair voting protocols in France; since then it has
been applied to such areas as computational social choice, planning problems
in artificial intelligence [15], bioinformatics [18], and graph drawing [8]. Here
we study Kemeny Rank Aggregation [20], where the input preference lists
(votes) and the output preference list (optimal aggregation) are restricted to total
orders over the set of elements (candidates), the distance between two votes is
the number of pairs of candidates ordered differently in the two votes, and the
optimal aggregation is at minimum total distance from all votes.

� Supported by the Natural Sciences and Engineering Research Council of Canada
(NSERC).

F. Dehne, R. Solis-Oba, and J.-R. Sack (Eds.): WADS 2013, LNCS 8037, pp. 512–523, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Parameterized Enumeration of (Locally-) Optimal Aggregations 513

Kemeny Rank Aggregation is NP-hard for constant even numbers of
votes as small as four [3,8,14,17]; therefore, approximations have been stud-
ied [1,8,13,14,23]. Kemeny Rank Aggregation admits a polynomial-time ap-
proximation scheme, based on a reduction to the weighted-directed feedback arc
set problem (WDFAS) for special complete digraphs [21].

Since approximate solutions to Kemeny Rank Aggregation can violate
important properties [12], algorithms to find exact solutions have garnered signif-
icant interest. Betzler et al. developed fixed-parameter algorithms with running
times of O(2n ·n2m) [7], O(1.53kt +m2n) [7] and O((3km+1)! km log km ·mn) [6],
where n is the number of candidates, m is the number of votes, kt is the total
τ -distance of an optimal aggregation from the votes, and km is the maximum
pairwise τ -distance of the votes. The idea in the last-mentioned algorithm was
later extended to the average pairwise τ -distance of votes, denoted by ka, and
the maximum difference between the positions of a particular candidate in any
of the votes, denoted by rm, yielding bounds of O(16ka ·(k2a ·m+ka ·m2 logm ·n))
and O(32rm · (r2m ·m+ rm ·m2)) [7]. Simjour [22] considered kt

m as an average pa-
rameter tighter than ka, and obtained an O∗(5.823

kt
m )-time algorithm, based on

an algorithm for WDFAS in tournaments. Simjour [22] also obtained algorithms
of running times O∗(1.403kt) and O∗(4.829km). Later, a subexponential-time al-
gorithm developed by Alon et al. [2] for WDFAS for tournaments improved the

running times with respect to kt

m , ka, and km, to O(2O(

√
kt
m log

kt
m ) + nO(1)) [16].

At about the same time, Karpinski and Schudy [19] reduced Kemeny Rank

Aggregation to WDFAS for complete digraphs with arc-weights satisfying
the probability constraint (the weights of the arcs (a, b) and (b, a) add up to
one). Through an elegant analysis, they obtained an improved running time of

O(2O(

√
kt
m ) +nO(1)). Though most of the parameterized algorithms for Kemeny

Rank Aggregation have benefited from its connection to WDFAS [16,19,22],
details of the reductions differ.

Not much improvement (with respect to kt

m ) is expected, since an O(2o(
√

kt
m )+

nO(1))-time algorithm for Kemeny Rank Aggregation would cause the failure
of the Exponential Time Hypothesis [2]. On the other hand, Fernau et al. [16]
studied an above-guarantee parameterization of Kemeny Rank Aggregation.
The reduction to WDFAS results in an O(2O(kg log kg) + nO(1))-time algorithm,
where kg is an above-guarantee version of kt [10]. For an odd number of votes, the
algorithm of Karpinski and Schudy [19] runs in time O(2O(

√
kg) +nO(1)). Again,

an O(2o(
√

kg)+nO(1))-time algorithm for Kemeny Rank Aggregation results
in the failure of the Exponential Time Hypothesis [16], thus is very unlikely to
exist. In addition, Kemeny Rank Aggregation can be reduced to a kernel
that includes 2kt votes over at most 2kt candidates [7], and to a partial kernel
over at most 16ka

3
candidates [4,5].

There are few results on counting and enumeration of optimal aggregations,
including those obtainable by adjusting the O∗(2n)-time dynamic programming
of Betzler et al. [7] or the subexponential-time algorithm of Karpinski and



514 N. Nishimura and N. Simjour

Schudy [19] to count the number of optimal aggregations. The only known pa-
rameterized bound on the number of optimal aggregations is due to Simjour [22],
who gave an O∗(36

kt
m )-time enumeration algorithm.

Our contributions. Using a refined approach, we improve the running time
for enumeration from O∗(36

kt
m ) [22] to O∗(4

kt
m ), and show an 4

kt
m bound on the

number of optimal aggregations. We use the reduction to WDFAS for com-
plete digraphs, exploiting the observation that the arc-weights in all the re-
duced digraphs satisfy the triangle inequality [23]. Our search tree algorithm,
AggSearch, consumes a complete digraph whose arc-weights satisfy the prob-
ability and triangle inequality constraints and finds all minimum feedback arc
sets of the input graph (sets of arcs whose removal renders the graph acyclic).

The algorithm AggSearch guesses adjacent pairs of minimum feedback arc
sets, relying on the fact that all consecutively-ordered vertices in such sets corre-
spond to (≤ 1

2
)-weight arcs. Our algorithm does not use other properties of min-

imum feedback arc sets; it actually enumerates all locally-minimum feedback arc
sets (total orders that are only constrained to have their consecutively-ordered
vertices correspond to (≤ 1

2
)-weight arcs). Therefore, our parameterized bound

on their number (though restricted to special graph classes) is quite unexpected.
Analogously, the bound is carried over to the number of locally-optimal aggrega-
tions, defined in Section 2. We are not aware of any parameterized upper bounds
on the number of locally-optimal aggregations prior to this bound.

There are instances with 4k minimum feedback arc sets. Furthermore, all these
instances correspond to Kemeny Rank Aggregation instances. Consequently,
the upper bounds on the numbers of (locally-) minimum feedback arc sets and
(locally-) optimal aggregations are asymptotically tight.

2 Definitions

Complete or partial preference lists over a set of candidates U can be represented
as binary relations, namely sets of ordered pairs in U×U , where each ordered pair
(x, y) in the relation represents the preference of a candidate x over a candidate y.
As a benefit, set operations can be used; for instance, the number of preferences
common to two lists π1 and π2 can be represented as π1 ∩ π2. Since we reduce
our problem to a graph problem, we also treat graph arcs as ordered pairs and
sets of arcs as binary relations that consist of the corresponding ordered pairs.

For a binary relation ρ ⊆ U × U , we use x <ρ y to denote that (x, y) ∈ ρ,
that is, that x is preferred over y. The reverse of an ordered pair (x, y), denoted
rev((x, y)), is the ordered pair (y, x) formed by reversing the first and second
elements (the tail and head, respectively). The preferences opposite to those in a
binary relation ρ, its reverse, is rev(ρ) = {(y, x) : (x, y) ∈ ρ}. A binary relation
ρ is transitive if w <ρ x and x <ρ y imply w <ρ y; ρ+ is the transitive binary
relation of minimum cardinality that is a superset of ρ. A binary relation ρ is
acyclic if ρ ∩ rev(ρ+) = ∅, and a total order over a set U if it is transitive, for
any x <ρ y, x is not equal to y and y 	<ρ x, and for any x, y ∈ U , x 	= y, either
x <ρ y or y <ρ x. We use Tot(U) to denote the set of total orders over U .



Parameterized Enumeration of (Locally-) Optimal Aggregations 515

The problem of Kemeny Rank Aggregation is defined in terms of a dis-
tance measure that describes the degree to which preference lists differ from
each other. The τ-distance between π1 ∈ Tot(U) and π2 ∈ Tot(U), denoted by
τ(π1, π2), is the number of pairs in π1−π2, and by extension, the τ-distance be-
tween π1 and a multi-set I over Tot(U), denoted by τ(π1, I), is

∑
π2∈I τ(π1, π2).

Kemeny Rank Aggregation

Input: a multi-set I of m total orders (votes) in Tot(U) where U is a set of
n elements (candidates)

Output: an optimal aggregation of I (a total order λ ∈ Tot(U) that
minimizes τ(λ, I))

We use a well-known reduction to WDFAS on complete digraphs [21], where
a feedback arc set β for a graph G is a subset of the graph arcs whose removal
makes the graph acyclic, with weight wβ =

∑
e∈β we.

WDFAS

Input: an arc-weighted directed graph G
Output: a feedback arc set β for G of minimum weight

We use MF (V,w) to denote the set of all minimum feedback arc sets in a com-
plete digraph G on the vertex set V and with the arc-weight function w.

Feedback arc sets in a complete digraph must have many arcs; each must
include a total order. The total orders in Tot(V ), for a complete digraph over
vertex set V , are exactly the minimal feedback arc sets (sets for which the
removal of any arc will result in a cycle in the remaining graph); thus since
every minimum weight feedback arc set is minimal, MF (V,w) ⊆ Tot(V ).

An instance I of Kemeny Rank Aggregation is reduced to a complete
digraph with arc-weights between zero and one. We define I(a,b) as {π ∈ I :
a <π b}.
Observation 1. A total order λ ∈ Tot(U) is an optimal aggregation of I if and
only if rev(λ) ∈MF (U,w), where w is the weight function w(a,b) =

|I(a,b)|
m .

Proof. This is a consequence of the fact that the τ -distance between any total
order π ∈ Tot(U) and I is precisely m times the weight of rev(π) in the complete
digraph with vertex set U and the arc-weight function w(a,b) =

|I(a,b)|
m . 
�

The weight function satisfies two useful properties, which will be exploited in the
analysis of our algorithm (Section 4). a weight function w over U × U satisfies
the probability constraint if w(a,b) +w(b,a) = 1 for all pairs a, b ∈ U ; we are using
w(a,b) to denote the weight assigned to the pair (a, b) ∈ U × U .

Observation 2. [23] The weight function w(a,b) =
|I(a,b)|

m satisfies the probabil-
ity constraint and the triangle inequality.

We can use the arc-weight function to identify pairs of vertices that might be
adjacent in minimum feedback arc sets. An ordered pair (x, y) is π-adjacent (or



516 N. Nishimura and N. Simjour

adjacent when π is implicit) for a total order π ∈ Tot(U) if x <π y and there is
no w ∈ U such that x <π w <π y. We use adj(π) to denote the binary relation
consisting of all π-adjacent ordered pairs. For example, let U = {1, 2, 3, 4} and
λ ∈ Tot(U) satisfy 1 <λ 2 <λ 3 <λ 4. Then, the set of λ-adjacent pairs is
adj(λ) = {(1, 2), (2, 3), (3, 4)}.

For a weight function {w(a,b) : a, b ∈ V }, we define the binary relations w≤c

and w≥c as {(a, b) : w(a,b) ≤ c} and {(a, b) : w(a,b) ≥ c}, respectively. For any
λ ∈ MF (V,w), adj(λ) ⊆ w≤ 1

2
, since if adj(λ) includes an arc e /∈ w≤ 1

2
, then

(λ − e) ∪ rev(e) is a feedback arc set whose weight is smaller than λ’s weight,
contradicting λ ∈MF (V,w).

Our fixed-parameter algorithm in Section 4 is not merely an enumeration
algorithm for Kemeny Rank Aggregation; it enumerates all locally-optimal
total orders, defined as total orders whose total τ -distances do not decrease after
changing the order of an adjacent pair [14]. A closer look at total orders resulting
from such a change gives rise to the following equivalent definition [14], analogous
to which we define locally-minimum feedback arc sets in digraphs.

Definition 1. A total order λ ∈ Tot(U) is a locally-optimal aggregation for an
instance I of m total orders of Kemeny Rank Aggregation if adj(λ) ⊆ n≥m

2

for the weight function n(a,b) = |I(a,b)|.

Definition 2. A feedback arc set β is locally-minimum if it is minimal and
adj(β) ⊆ w≤ 1

2
.

A minimal feedback arc set is a locally-minimum feedback arc set if reversing a
single arc does not produce a feedback arc set of smaller weight. We use LF (V,w)
to denote the set of all locally-minimum feedback arc sets in the complete digraph
on the vertex set V and the arc-weight function w.

By the minimality condition, locally-minimum feedback arc sets are forced to
be total orders, making them comparable to locally-optimal aggregations.

Observation 3. A total order λ ∈ Tot(U) is a locally-optimal aggregation for
an instance I of m total orders of Kemeny Rank Aggregation if and only
if rev(λ) ∈ LF (U,w), for the weight function w(a,b) =

|I(a,b)|
m .

3 Ideas Used in the Algorithm

3.1 Branching Based on a Feedback Arc Set

A brute-force search for adjacent pairs of a γ ∈ LF (V,w) can be very inefficient.
We use a minimal feedback arc set β (equivalently, a β ∈ Tot(V )) to speed up the
search, and show in Theorem 1 that for any β, AggSearch(V,w, β, rev(β), ∅, ∅)
produces every γ ∈ LF (V,w) in the leaves of its search tree. The weight of β
affects only the running time: the search tree has at most 4wβ leaves and is
computed in times O(nμ · 4wβ), where μ denotes the exponent of matrix mul-
tiplication. As a result, |LF (V,w)| ≤ 4k, where k is the weight of a minimum
feedback arc set in G.



Parameterized Enumeration of (Locally-) Optimal Aggregations 517

v1 v2

v3v4

(v4, v1) ∈ adj(γ)?

. . . (v3, v1) ∈ adj(γ)?

v3 <γ v1 <γ v2 <γ v4 v1 <γ v2 <γ v3 <γ v4

Yes No

Yes No

Fig. 1. The first toy example and a decision tree based on adjacent pairs

v1 v2 v3 v4 v5 v6

Fig. 2. The second toy example

To give a sense of how branching on adjacent pairs prunes the search space, we
consider the graph shown in Fig. 1, along with the decision tree implicit in the
algorithm and resulting γ’s. For clarity, we have omitted arc weights and have
drawn only the arcs in w≤ 1

2
, which must include adj(γ) for any γ ∈ LF (V,w). If

(v4, v1) /∈ adj(γ), v4 must be ordered last in γ, as no other arc of the form (v4, ∗)
will remain to be placed in adj(γ). Then, either (v3, v1) ∈ adj(γ), or v1 must be
ordered first in γ, since no arc (∗, v1) will remain. Similar arguments are used to
determine the rest of the arcs in adj(γ).

The search for adjacent pairs not in β, α = adj(γ)−β, is easy if the weight of
β is small. The reverse arcs of w≤ 1

2
− β, each of which has a weight of at least

1
2
, are all in β. Since the weight of β is small, the number of such arcs must be

small, and hence the number of arcs in α, of which w≤ 1
2
− β is a superset.

Still, there are possibly many pairs in w≤ 1
2
∩ β from which to choose the

remaining arcs, i.e. adj(γ)∩β. In Section 3.2, we will show that all the arcs in γ
will be fixed once we figure out those located in a certain region which depends on
α. A brute-force search of the region is not very costly, as the triangle inequality
on the arc weights ensures that the size of the region is linear in the weight of
β. The combination of α and the set of arcs of γ in the region form a concise
representation of γ in terms of β, the β-representation of γ.

3.2 β-Representations

We use a small example to showcase the basic idea of our representation for a
γ ∈ LF (V,w) in Fig. 2: we choose a β ∈ Tot(V ), and draw the vertices from
left to right in the order of β (only the arcs in w≤ 1

2
are shown). When α = ∅,

adj(γ) contains no arcs outside β and hence must adhere to the order in β, that
is, γ = β.



518 N. Nishimura and N. Simjour

For α = {(v5, v2)}, we can be sure that v1 is ordered first and v6 is ordered
last in γ, but we do not know whether either v3 or v4 is ordered before v2 and
v5. The order will be fixed once we know whether v3 <γ v2 or v2 <γ v3, and
whether v4 <γ v2 or v2 <γ v4. For example, if both v3 <γ v2 and v4 <γ v2, then
v3 <γ v4 since otherwise (v4, v3) had to be in α = adj(γ)− β as well.

Fortunately, not many vertices can be in the same situation as v3 and v4. By
the triangle inequality, the weight of (v2, v3) plus the weight of (v3, v5), and in
general w(v2,x) +w(x,v5) for any vertex x satisfying v2 <β x <β v5, is at least the
weight of (v2, v5). On the other hand, (v2, v5) ∈ β and w(v2,v5) ≥ 1

2
since (v5, v2)

was initially assumed to be in α ⊆ w≤ 1
2
− β. Consequently, the weight of β is at

least
∑

v2<βx<βv5
(w(v2,x) + w(x,v5)) ≥

∑
v2<βx<βv5

w(v2,v5) ≥ |{x : v2 <β x <β

v5}| · 12 . Thus, the number of vertices whose relative orders in γ with respect to
v2 must be determined (like v3 and v4) is at most twice the weight of β. We will
see how the bounded number of decisions is generalized to arbitrary α’s.

The β-representation of γ ∈ LF (V,w) consists of two parts. The first part, α,
is the set adj(γ)− β. For a precise definition of the second part, we define a few
terms. An unordered pair {x, y} is a β-internal pair of (a, b) ∈ rev(β) if x = a or
x = b, and b <β y <β a. We use IPβ(e) to denote the set of β-internal pairs of
e ∈ rev(β), and by extension, we use IPβ(ρ) for a binary relation ρ ⊆ rev(β) to
denote

⋃
e∈ρ IPβ(e). A binary relation ρ ∈ Tot(U) restricted to a set of unordered

pairs P , denoted as ρ|P , is the new binary relation {(x, y) ∈ ρ : {x, y} ∈ P}.
Thus, for β ∈ Tot({v1, . . . , v5}) and v1 <β v2 <β v3 <β v4 <β v5,

IPβ((v5, v3)) = {{v3, v4}, {v5, v4}} and IPβ({(v5, v3), (v4, v1)}) = {{v3, v4},
{v5, v4}, {v1, v2}, {v4, v2}, {v1, v3}, {v4, v3}}. For v1 <γ v2 <γ v4 <γ v5 <γ v3,
the restriction of γ ∈ Tot({v1, . . . , v5}) to IPβ((v5, v3)) is γ|IPβ((v5, v3)) =
{(v4, v3), (v4, v5)}.

Definition 3. The β-representation of γ ∈ LF (V,w), for some β ∈ Tot(V ), is
(α, δ) where α = adj(γ)− β and δ = γ|IPβ(α).

A locally-minimum feedback arc set can be efficiently reconstructed from its
β-representation for an arbitrary β ∈ Tot(V ):

Lemma 1. If (α, δ) is the β-representation of γ ∈ LF (V,w) for a β ∈ Tot(V ),
then γ = β − rev((α ∪ δ)+) ∪ (α ∪ δ)+.

Proof. Since β − rev((α ∪ δ)+) ∪ (α ∪ δ)+ is a total order, it suffices to show
that its two subsets β − rev((α ∪ δ)+) and (α ∪ δ)+ are in γ. The latter is true
since α and δ are defined to be subsets of γ and γ is transitive. We prove the
former by showing that every (x, y) ∈ γ − β is in (α ∪ δ)+. Since γ and β are
total orders, β − γ is a subset of rev((α ∪ δ)+), and thus, β − rev((α ∪ δ)+) is
a subset of γ. The proof is by strong induction: assuming the claim is true for
every (x′, y′) ∈ γ − β with y <β y′, we prove the claim for (x, y).

Drawing the vertices in V on a horizontal line and ordered from left to right
consistent with their order of β, suppose that x = w1 <γ w2 <γ . . . <γ w� = y,
with � ≥ 2, and (wi, wi+1) ∈ adj(γ) for all 1 ≤ i < �. Fig. 3 demonstrates an
example where w7 <β w8 <β . . . <β w4 <β w2. In traversing the vertices in



Parameterized Enumeration of (Locally-) Optimal Aggregations 519

w7 w8 y w5 w6 x w3 w4 w2

Fig. 3. An example of the case x <γ y and y <β x, where the vertices are shown in
the order of β from left to right and the ordered pairs in adj(γ) are presented as arcs.

order from w1 to w� through the arcs in adj(γ), we use arcs in α = adj(γ) − β
when we go from right to left; w� must be to the left of w1, since y <β x. To
reach y = w� from x = w1, we must traverse at least one right-to-left arc ending
up at y or a vertex to the left of y ((w6, w7) in Fig. 3). Since (x, y) ∈ γ − β,
there must exist some 1 ≤ t < � such that (wt, wt+1) ∈ α with wt+1 ≤β y <β wt.
When wt+1 	= y, {y, wt+1} ∈ IPβ(α).

We now prove the induction step. If (wt, wt+1) = (x, y), then (x, y) ∈ α, and
hence (x, y) ∈ (α∪δ)+. Otherwise, we show that (wt+1, y) ∈ (α∪δ)+ if wt+1 	= y
and (x,wt) ∈ (α ∪ δ)+ if x 	= wt. Together with (wt, wt+1) ∈ α, these result in
(x, y) ∈ (α ∪ δ)+, as needed to complete the proof.

We first prove that (wt+1, y) ∈ (α ∪ δ)+ if wt+1 	= y. As mentioned above,
when wt+1 	= y, {y, wt+1} is in IPβ(α). Since γ orders wt+1 before y, (wt+1, y) ∈
γ|IPβ(α) = δ ⊆ (α ∪ δ)+.

Next, considering the relative orders of wt and x, we prove that (x,wt) ∈
(α ∪ δ)+ if x 	= wt. For the case in which wt <β x, since γ orders x before wt,
(x,wt) ∈ γ − β; therefore, (x,wt) ∈ (α ∪ δ)+ by the induction hypothesis. If
instead x <β wt, then, wt+1 < x < wt, and hence {x,wt} ∈ IPβ(α). Since γ
orders x before wt, (x,wt) ∈ γ|IPβ(α) = δ ⊆ (α ∪ δ)+. 
�

4 Our Results

Our search tree algorithm AggSearch, shown in Algorithm 1, uses an input
total order β to compute every γ ∈ LF (V,w) through recursive construction of
its β-representation (α, δ). The β-length of an arc (a, b) ∈ rev(β), used in the
algorithm, is the number of vertices in {y : b <β y <β a}. A binary relation ρ is
an ordering of a set of unordered pairs P if both ρ = ρ|P and |ρ| = |P |; thus, δ
is an ordering of IPβ(α).

Algorithm AggSearch uses an auxiliary parameter σ, initialized to rev(β),
which contains the subset of rev(β) for which inclusion in α has not yet been
decided. For α to be part of the β-representation of some γ ∈ LF (V,w), the arcs
in α must be in w≤ 1

2
, since α = adj(γ)− β is a subset of adj(γ) and adj(γ) must

be in w≤ 1
2
. Thus, no further arcs are added to α once σ ∩ w≤ 1

2
becomes empty

(lines 1-5). By that time, δ is an ordering of IPβ(α), since for each arc e inserted
in α, all possible orderings of IPβ(e) are added to δ. Hence, the algorithm stops
adding arcs to δ as well. Due to Lemma 1, if α and δ now form an β-representation
for a γ ∈ LF (V,w), γ must be equal to (β − rev((α ∪ δ)+)) ∪ (α ∪ δ)+. Thus,
the algorithm checks if this formula produces a locally-minimum feedback arc



520 N. Nishimura and N. Simjour

Algorithm 1: AggSearch

Require : vertex set V , weight function w, β ∈ Tot(V ), and σ, α, δ ⊆ V × V
1 if σ ∩ w≤ 1

2
= ∅ then

2 γ ← (β − rev((α ∪ δ)+)) ∪ (α ∪ δ)+;
3 if γ ∈ LF (V,w) then return {γ};
4 else return ∅;
5 end
6 else
7 Select (u, v) ∈ σ ∩ w≤ 1

2
of maximum β-length;

8 σ ← σ − {(u, v)};
9 LF ← AggSearch(V,w, β, σ, α, δ);

10 α ← α ∪ {(u, v)};
11 P ← {x : u <β x <β v};
12 σ ← σ −

⋃
x∈P{(u, x), (x, v)};

13 L ← {x ∈ P : x <δ u or x <δ v};
14 R ← {x ∈ P : u <δ x or v <δ x};
15 foreach L ⊆ A ⊆ P −R do
16 δ′ ← δ ∪

⋃
x∈A{(x, u), (x, v)} ∪

⋃
x∈P−A{(u, x), (v, x)};

17 LF ← LF ∪ AggSearch(V,w, β, σ, α, δ′);
18 end
19 return LF ;
20 end

set (line 3). If not, (α, δ) is neither a β-representation for any γ ∈ LF (V,w), nor
can it be made into one by adding arcs to α and δ.

For each arc (u, v) in σ ∩w≤ 1
2
, the algorithm branches on whether (u, v) ∈ α,

removing the arc from σ once the decision is made. In the branch in which
(u, v) ∈ α (lines 10-18), we can also remove all arcs in

⋃
x∈P {(u, x), (x, v)}, P =

{x : u <β x <β v} from σ: as (u, v) is in adj(γ) and in γ only one vertex is ordered
immediately after u and only one vertex is ordered immediately before v, none of
the arcs sharing a head or tail with (u, v) can be in adj(γ) ⊇ α. Further branching
occurs on the subset A = {x ∈ P : (x, u) ∈ γ} of vertices in P (lines 15-18).
The orderings of the vertices in P with respect to u and v, determined by A, are
essential in determining δ = γ|IPβ(α) in the β-representation of γ.

We do not want to branch over a pair more than once; one strategy is to
consider arcs in order of β-length. Without this selection criterion, if in Fig. 4
(with σ∩w≤ 1

2
including (u1, v1) and (u2, v1) such that v1 <β u1 <β u2) at line 7

the algorithm selected (u1, v1) ∈ σ ∩ w≤ 1
2

to be excluded from α, then further
down the search tree, the algorithm could select (u2, v1) ∈ σ∩w≤ 1

2
to be included

in α. This would result in branching twice on (u1, v1), once for membership in
α and once, at line 15, to decide whether u1 <δ v1 or v1 <δ u1.

Constraining A to include L and exclude R at line 15 avoids another dupli-
cate branching, as otherwise the algorithm could decide on relative orderings of
vertices in L and R with respect to u and v after the orderings were already



Parameterized Enumeration of (Locally-) Optimal Aggregations 521

v1 v2 u1 u2 v1 u1 u2

Fig. 4. Situations in which duplicate decisions could be made over a pair

fixed in δ. In Fig. 4 (where σ ∩ w≤ 1
2

includes (u1, v1) and (u2, v2) such that
v1 <β v2 <β u1 <β u2), if (u1, v1) ∈ σ is inserted in α at line 10, the algorithm
needs to decide whether to include v2 in A (a decision on the ordering of {u1, v2})
at line 15. Without the constraint on A, (u2, v2) ∈ σ could then be inserted in α,
necessitating a second decision on the ordering of {u1, v2} (whether to include
u1 in A).

Removal of the same-head and same-tail arcs from σ (line 12), ordering the
arcs in σ in their β-lengths (line 7), and constraining A to include L and exclude
R (line 15) all result in less branching.

Theorem 1. Given a complete digraph on a vertex set V and arc weights
{w(a,b) : a, b ∈ V } and β ∈ Tot(V ), AggSearch(V,w, β, rev(β), ∅, ∅) returns
LF (V,w) in time O(|V |μ ·4wβ ), where μ < 2.376 denotes the exponent of matrix
multiplication. Furthermore, |LF (V,w)| ≤ 4wβ .

Proof. Due to space limitations, we provide only a high-level idea of the proof.
We prove by strong induction on the cardinality of σ ∩ w≤ 1

2
that:

(1) For any ordering δ of IPβ(α), AggSearch(V,w, β, σ, α, δ) returns every γ
in LF(β,σ,α,δ) = {γ ∈ LF (V,w) : α ⊆ adj(γ)− β ⊆ α ∪ σ, and δ ⊆ γ}

(2) If σ ∪ δ includes an ordering of IPβ(σ ∩w≤ 1
2
), AggSearch(V,w, β, σ, α, δ)

produces a search tree with at most 4wrev(σ) leaves.

Making use of the fact that arcs in σ ∩ w≤ 1
2

are selected in order of their
β-lengths (line 7), we show that δ is an ordering of IPβ(α) and σ ∪ δ in-
cludes an ordering of IPβ(σ ∩ w≤ 1

2
) in all recursive calls originating from Ag-

gSearch(V,w, β, rev(β), ∅, ∅); from this we can show LF (V,w) = LF(β,rev(β),∅,∅)
is returned upon the production of at most 4wβ nodes.

We associate each node v in the search tree with the cost of steps 7-9 or 10-17
performed just before the creation of v plus the cost of steps 1-5 performed at the
execution of v. The dominant part is the computation of the transitive closure
(α ∪ δ)+ using matrix multiplication at line 2. The time for a node is thus in
O(|V |μ), yielding O(|V |μ · 4wβ ) time overall. 
�

By Observation 3, Kemeny Rank Aggregation instances have at most 4
kt
m

locally-optimal aggregations.

Corollary 1. Given a multi-set I of m total orders in Tot(U) and a total order
λ at τ-distance kλ of I, the set of all locally-optimal aggregations for I can be
found in time O(m · |U | + 4

kλ
m · |U |μ). Furthermore, I has at most 4

kt
m locally-

optimal aggregations, where kt denotes the minimum τ-distance from I.



522 N. Nishimura and N. Simjour

Although MF (V,w) is generally a (small) subset of LF (V,w), the two sets are
equal for certain instances, for which Theorem 1’s upper bound is tight:

Theorem 2. For any set V = {v1, v2, . . . , vn} of even cardinality, there exists
a weight function w over V × V that satisfies the triangle inequality and the
probability constraint such that |MF (V,w)| = 4k, where k denotes the weight of
a minimum feedback arc set in MF (V,w).

Proof. We consider the following weight function:

w(vi,vj) =

⎧⎨⎩
0 i + 1 < j or (i + 1 = j and i is even)
1
2

i + 1 = j and i is odd
1− w(vj ,vi) otherwise

It is not hard to see that any minimum feedback arc set must contain all weight-0
arcs. Therefore, elements of MF (V,w) differ only in the ordering of the remaining
pairs. All total orders of {{v1, v2}, {v3, v4}, . . . {vn−1, vn}} are of equal weight.
Since there are 2

n
2 such total orders, each of weight k = n

4
, the cardinality of

MF (V,w) is 22k = 4k for this instance. 
�

As there are Kemeny Rank Aggregation instances that reduce to the in-
stances in the proof of Theorem 2, the lower bound also applies to optimal
aggregations; the proof is omitted due to space limitations.

Theorem 3. For any even number m, there exists a multi-set I of m total
orders that has 4

kt
m optimal aggregations, where kt denotes the τ-distance of an

optimal aggregation from I.

5 Concluding Remarks

We gave a tight upper bound on the number of (locally-) optimal aggregations.
We emphasize that a f(kt

m )nO(1) upper bound on the number of locally-optimal
aggregations is surprising. One future direction for research is the search for a
new parameter that is more tuned to the complexity of enumerating all optimal
aggregations, rather than locally-optimal aggregations.

References

1. Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: Rank-
ing and clustering. J. ACM 55(5), 1–27 (2008)

2. Alon, N., Lokshtanov, D., Saurabh, S.: Fast fast. In: Albers, S., Marchetti-
Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part
I. LNCS, vol. 5555, pp. 49–58. Springer, Heidelberg (2009)

3. Bartholdi, J.J., Tovey, C.A., Trick, M.A.: The computational difficulty of manipu-
lating an election. Social Choice and Welfare 6(3), 227–241 (1989)

4. Betzler, N., Bredereck, R., Chen, J., Niedermeier, R.: Studies in computational
aspects of voting - a parameterized complexity perspective. In: Bodlaender, H.L.,
Downey, R., Fomin, F.V., Marx, D. (eds.) Fellows Festschrift 2012. LNCS, vol. 7370,
pp. 318–363. Springer, Heidelberg (2012)



Parameterized Enumeration of (Locally-) Optimal Aggregations 523

5. Betzler, N., Bredereck, R., Niedermeier, R.: Partial kernelization for rank aggre-
gation: Theory and experiments. In: Raman, V., Saurabh, S. (eds.) IPEC 2010.
LNCS, vol. 6478, pp. 26–37. Springer, Heidelberg (2010)

6. Betzler, N., Fellows, M.R., Guo, J., Niedermeier, R., Rosamond, F.A.: Fixed-
parameter algorithms for kemeny scores. In: Fleischer, R., Xu, J. (eds.) AAIM
2008. LNCS, vol. 5034, pp. 60–71. Springer, Heidelberg (2008)

7. Betzler, N., Fellows, M.R., Guo, J., Niedermeier, R., Rosamond, F.A.: Fixed-
parameter algorithms for Kemeny rankings. Theor. Comput. Sci. 410(45), 4554–
4570 (2009)

8. Biedl, T.C., Brandenburg, F., Deng, X.: On the complexity of crossings in permu-
tations. Discrete Mathematics 309(7), 1813–1823 (2009)

9. Borda, J.: Mémoire sur les élections au scrutin. Histoire de l’Académie Royale des
Sciences (1781)

10. Chen, J., Liu, Y., Lu, S., O’Sullivan, B., Razgon, I.: A fixed-parameter algorithm
for the directed feedback vertex set problem. J. ACM 55(5) (2008)

11. Condorcet, M.: Essai sur l’application de l’analyse à la probabilité des décisions
rendues à la pluralité des voix. L’imprimerie royale (1785)

12. Conitzer, V., Davenport, A., Kalagnanam, J.: Improved bounds for computing
Kemeny rankings. In: AAAI 2006: Proc. of the 21st Nat. Conf. on Artificial Intel-
ligence, vol. 1, pp. 620–626 (2006)

13. Coppersmith, D., Fleischer, L., Rudra, A.: Ordering by weighted number of wins
gives a good ranking for weighted tournaments. In: SODA 2006: Proc. of the 17th
Annual ACM-SIAM Symp. on Discrete Algorithms, pp. 776–782 (2006)

14. Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggregation methods for
the web. In: WWW 2001: Proc. of the 10th Int. Conf. on World Wide Web, pp.
613–622 (2001)

15. Ephrati, E., Rosenschein, J.S.: The Clarke tax as a consensus mechanism among
automated agents. In: AAAI 1991: Proc. of the 9th Nat. Conf. on Artificial Intel-
ligence, vol. 1, pp. 173–178 (1991)

16. Fernau, H., Fomin, F.V., Lokshtanov, D., Mnich, M., Philip, G., Saurabh, S.: Rank-
ing and drawing in subexponential time. In: Iliopoulos, C.S., Smyth, W.F. (eds.)
IWOCA 2010. LNCS, vol. 6460, pp. 337–348. Springer, Heidelberg (2011)

17. Hemaspaandra, E., Spakowski, H., Vogel, J.: The complexity of Kemeny elections.
Theor. Comput. Sci. 349(3), 382–391 (2005)

18. Jackson, B.N., Schnable, P.S., Aluru, S.: Consensus genetic maps as median orders
from inconsistent sources. IEEE/ACM Trans. Comput. Biol. Bioinformatics 5(2),
161–171 (2008)

19. Karpinski, M., Schudy, W.: Faster algorithms for feedback arc set tournament,
Kemeny rank aggregation and betweenness tournament. In: Cheong, O., Chwa,
K.-Y., Park, K. (eds.) ISAAC 2010, Part I. LNCS, vol. 6506, pp. 3–14. Springer,
Heidelberg (2010)

20. Kemeny, J.G.: Mathematics without numbers. Daedalus 88, 575–591 (1959)
21. Kenyon-Mathieu, C., Schudy, W.: How to rank with few errors. In: STOC 2007:

Proc. of the 39th Annual ACM Symp. on Theory of Computing, pp. 95–103 (2007)
22. Simjour, N.: Improved parameterized algorithms for the Kemeny aggregation prob-

lem. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 312–323.
Springer, Heidelberg (2009)

23. Van Zuylen, A., Williamson, D.P.: Deterministic pivoting algorithms for con-
strained ranking and clustering problems. Mathematics of Operations Re-
search 34(3), 594–620 (2009)



MapReduce Algorithmics

Sergei Vassilvitskii

Google
Mountain View, CA USA
sergeiv@google.com

Abstract. From automatically translating documents to analyzing elec-
toral voting patterns; from computing personalized movie recommenda-
tions to predicting flu epidemics: all of these tasks are possible due to
the success and proliferation of the MapReduce parallel programming
paradigm. Yet almost ten years after the system was introduced, we still
do not have a good understanding of what problems can and cannot be
efficiently computed in MapReduce.

In this talk I will give an overview of the MapReduce framework,
and explain its connections to both Valiant’s Bulk Synchronous Parallel
(BSP) model and the classical PRAM model of parallel computing. To
demonstrate the power of the MapReduce model I will present the Sample
and Prune approach that finds an approximate coreset of a manageable
size, thereby reducing the problem from the realm of ‘Big Data’ to that
of ‘Small Data.’

I will conclude by discussing other considerations that make a large
difference when working with MapReduce in practice, but have so far
resisted a careful theoretical analysis.

F. Dehne, R. Solis-Oba, and J.-R. Sack (Eds.): WADS 2013, LNCS 8037, p. 524, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

sergeiv@google.com


The Greedy Gray Code Algorithm

Aaron Williams

Department of Mathematics and Statistics, McGill University
haron@uvic.ca

Abstract. We reinterpret classic Gray codes for binary strings, permu-
tations, combinations, binary trees, and set partitions using a simple
greedy algorithm. The algorithm begins with an initial object and an
ordered list of operations, and then repeatedly creates a new object by
applying the first possible operation to the most recently created object.

1 Introduction

Let B(n) be the set of n-bit binary strings. The binary reflected Gray code
Gray(n) orders B(n) so that successive strings have Hamming distance one
(i.e., they differ in one bit). For example, the order for n = 3 appears below,
with overlines denoting the change that creates the next string

Gray(3) = 000, 001, 011, 010, 110, 111, 101, 100. (1)

The term reflected indicates how the order is created: Gray(n) prefixes 0 to
each string of Gray(n−1), and then prefixes 1 to the strings of Gray(n−1) in
reflected order. For example, the top and bottom rows below are 0 · Gray(3)
and 1 · reflect(Gray(3)), respectively, where · denotes concatenation

Gray(4) = 0000, 0001, 0011, 0010, 0110, 0111, 0101, 0100,

1100, 1101, 1111, 1110, 1010, 1011, 1001, 1000.

We can express the construction recursively as Gray(1) = 0, 1 and for n > 1,

Gray(n) = 0 ·Gray(n−1), 1 · reflect(Gray(n−1)), (2)

where the comma appends the two lists. The above definition uses global recur-
sion since it refers to the entire Gray(n−1) list as one unit. We can instead
define the order using local recursion by referring to the individual strings in
Gray(n−1). If Gray(n−1) = b1,b2, . . . ,bk−1,bk for k = 2n−1, then

Gray(n) = b1 · 0,b1 · 1,b2 · 1,b2 · 0, ...,bk−1 · 0,bk−1 · 1,bk · 1,bk · 0 (3)

where Gray(1) = 0, 1. In other words, Gray(n) can be created by alternately
suffixing 0 then 1, and 1 then 0, to successive strings in Gray(n−1).

Since Frank Gray was granted U.S. Patent 2,632,058 in 1953 [4], his order has
been used in numerous applications, with rotary encoders providing a promi-
nent example [12]. The term Gray code now refers to minimal change orders of

F. Dehne, R. Solis-Oba, and J.-R. Sack (Eds.): WADS 2013, LNCS 8037, pp. 525–536, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



526 A. Williams

combinatorial objects. Gray codes are related to efficient algorithms for exhaus-
tively generating combinatorial objects. Knuth recently surveyed combinatorial
generation in The Art of Computer Programming [6], and included separate sub-
sections on generating tuples, permutations, combinations, partitions, and trees.
Although the research area is quite diverse, it is fair to say that it has been dom-
inated by the ideas of recursion and reflection. To demonstrate, we next recount
a classic Gray code for combinations and a classic Gray code for permutations.

In the 1980s, Eades and McKay [3] followed Gray’s approach to order the
k-combinations of an n element set, which can be represented by B(n, k) the
n-bit binary strings with fixed weight (i.e., number of 1s) equal to k. The Eades-
McKay Gray code is defined using recursion and reflection as follows

EM(n, k) = EM(n−1, k) ·0, reflect(EM(n−2, k−1)) ·01, EM(n−2, k−2) ·11

with EM(n, 0) = 0n, EM(n, n) = 1n, and EM(n, 1) = 10n−1, 010n−2, . . . , 0n−11,
where exponentiation denotes repetition. For example,

EM(5, 3) = 11100,11010,10110,01110︸ ︷︷ ︸
EM(4,3)·0

, 01101,10101,11001︸ ︷︷ ︸
reflect(EM(3,2))·01

, 10011,01011,00111︸ ︷︷ ︸
EM(3,1)·11.

(4)
In this order, successive strings differ by a homogeneous transposition, meaning
that a 1 and 0 can only be interchanged if the intermediate symbols are all 0s. In
other words, substrings of the form 00 · · · 01 and 100 · · ·0 can be interchanged.
Thus, a single si changes when the elements of the combination are represented
as 1 ≤ s1 < s2 < · · · < sk ≤ n. For this reason, the order allows pianists to
practice all k-note chords while moving only a single finger between chords [3].

Let P(n) be the permutations of [n] = {1, 2, . . . , n} in one-line notation. For
example, P(3) = {123, 213, 213, 231, 312, 321}. In the 1960s, researchers consid-
ered permutation Gray codes using adjacent transpositions (or swaps), meaning
that two symbols can only be interchanged if they are next to each other. John-
son, Trotter, and Steinhaus all approached the problem using local recursion,
and they all rediscovered an order known in the 17th century as plain changes
[2]. To explain the order, let zig(p) be the list obtained from p by applying the

following swaps: (n n−1), (n−1 n−2), ..., (1 2). For example, zig(1234) = 12
←−
34,

1
←−
243,

←−
1423, 4123 where the arrow shows the movement of 4. Similarly, let zag(p)

apply the following swaps: (1 2), (2 3), ..., (n n−1). Notice that zigs and zags
only change the relative order of the last and first symbols, respectively. Thus,
we can define a Gray code as follows: If Plain(n− 1) = p1,p2, ...,p(n−1)!, then

Plain(n) = zig(p1 · n), zag(n · p2), ..., zig(p(n−1)!−1 · n), zag(n · p(n−1)!) (5)

where Plain(2) = 12, 21. For example, the following order is zig(12)·3, zag(21)·3

Plain(3) = 123, 132, 312, 321, 231, 231. (6)

In this article we propose an alternate method for understanding the aforemen-
tioned Gray codes and many others. To illustrate the idea, consider the following



The Greedy Gray Code Algorithm 527

method for building a list L of unique strings in B(n): Initialize L to contain
0n, then repeatedly extend L by complementing the rightmost possible bit in
its last string. For example, if the current list is L = 000, 001, 011, 010 then we
examine its last string 010. The rightmost bit cannot be complemented since
010 = 011 is already in L. Similarly, the middle bit cannot be complemented
since 010 = 000 ∈ L. However, the leftmost bit can be complemented since
010 = 110 /∈ L. Thus, 110 is added to the end of L. The complete list for n = 3
is in (1). More generally, we prove that the method always creates Gray(n).

As a second example, initialize L to contain 1k0n−k, then repeatedly extend
L by homogeneously transposing the leftmost possible 1 into the leftmost pos-
sible position. For example, if L = 11100, 11010, 10110, 01110 then we examine
01110. The leftmost 1 could be homogeneously transposed into the first position,
however 01110 = 10110 ∈ L. The middle 1 cannot be homogeneously transposed
since it is bordered by 1s. The rightmost 1 can be homogeneously transposed
into the last position and 01110 = 01101 /∈ L. Thus, 01101 is added to the end
of L. The complete list for n = 5 and k = 3 is in (4). More generally, we prove
that the method always creates B(n, k), and for odd k the order is EM(n, k).

As a third example, initialize L to contain 12···n, then extend L by swap-
ping the largest possible symbol once to the left or right. For example, if L =
123, 132, 312 then we examine 312. The 3 cannot swap left since it is in the left-

most position. Similarly, 3 cannot swap right since
←→
312 = 132 ∈ L. However, 2

can swap left since 3
←→
12 = 321 /∈ L. Thus, 321 is added to L. The complete list

for n = 3 is in (6). More generally, the method always creates Plain(n).
Our “greedy Gray code algorithm” is defined in Section 3 and reinterprets

many classic Gray codes. Section 4 discusses these results on binary strings:

1. The binary reflected Gray code complements the rightmost possible bit;

2. Lexicographic order complements the shortest possible suffix;

3. The de Bruijn sequence by Martin [8] shifts in the lowest possible bit.

Section 5 discusses these results for permutations:

4. The plain change order adjacently transposes the largest possible symbol;

5. The pancake flipping order by Zaks [13] reverses the shortest possible prefix;

6. Corbett’s rotator graph order [1] rotates the prefix with the first possible
length in n, 2, n−1, 3, ....

Section 6 discusses the following additional results:

7. The Eades-McKay order of combinations homogeneously transposes the left-
most possible 1 into the leftmost possible position when the weight is odd.

8. The Lucas, van Baronaigien and Ruskey order of binary trees [7] rotates the
edge with the largest inorder label.

9. Kaye’s set partition order [5] moves the largest possible symbol into the
leftmost possible subset.

In addition, Section 2 provides an application for our greedy reinterpretations.
We conclude the introduction with several clarifications.

• This greedy method is not entirely new. For example, the de Bruijn sequence
we discuss here was first defined greedily by Martin in 1934 [8]. However, the



528 A. Williams

term ‘greedy’ is not common in the literature, nor is it featured in Knuth’s
400 page treatise on combinatorial generation [6].

• The greedy method is not suitable for efficiently generating Gray codes since
it may have to ‘remember’ an exponential number of objects relative to their
size. However, it can provide a simpler description for previously created
Gray codes and a simpler method for discovering new Gray codes (see [9]).

• Recursive constructions are often general results. For example, any swap Gray
code of P(n−1) provides a swap Gray code of P(n) using (5). In contrast,
our greedy method gives only one order. However, this order may illuminate
a general recursive principle that leads to an efficient generation algorithm.

In general, the author views the greedy Gray code algorithm as a simple and
unified “first step” in understanding and discovering Gray codes.

2 Network Application

Gray codes give Hamilton paths and cycles in well-studied graphs, such as the
n-cube (binary reflected Gray code), the permutohedron (plain changes), the
rotator graph (Corbett’s order), and the pancake graph (Zaks’s order). These
graphs are used as network topologies, where vertices are computers and two
vertices can communicate if they are adjacent (see Siegel [10]). In this section, we
illustrate how our greedy algorithms can send messages through these networks.

The pancake graph has vertices P(n) and edges between pairs of vertices that
differ by a prefix-reversal. Figure 1 a) illustrates the graph for n = 4. In Section
5 we will see that a Hamilton path can be created in this graph from 1234 by
repeatedly reversing the shortest possible prefix that gives a new permutation.
The order of vertices visited on this Hamilton path is illustrated by Figure 1 b).

Suppose each vertex sets a flag if it has seen a particular message, and each
vertex can query the flags of its neighbors. Also assume that the neighbors of a
vertex are ‘prioritized’ by increasing prefix-reversal lengths. Given this scenario,
we claim that a message m will propagate from an initial vertex to all other
vertices in the pancake graph so long as each vertex runs the following algorithm:

When a vertex receives m, it sets its flag and passes m to its
highest-priority neighbor whose flag is not set.

For example, consider vertex 3214 in Figure 1 b), which is the sixth vertex
to receive the message. Once it receives the message, it cannot pass it to its

highest-priority neighbor
←→
2314 since this vertex has already seen the message,

and similarly it cannot pass it to
←→
1234. However, it can pass the message to its

lowest-priority neighbor
←−→
4123, and at this point its algorithm terminates.

To clarify an important point, we mention that the pancake graph is vertex-
transitive, and that our greedy prefix-reversal algorithm generates P(n) for any
initial permutation. Thus, our approach works regardless of where the message
originates. Furthermore, the same arguments apply for our greedy algorithms in
the n-cube, permutohedron, and rotator graph. In particular, this approach in
the rotator graph is much more efficient than the table approach in Corbett [1].



The Greedy Gray Code Algorithm 529

1234

3214

2314

1324

3124

2134

4132

3142

1342

4312

3412

1432

4213

1243

2143

4123

1423

2413
4231

3421

4321

2341

3241

2431

1

6

5

4

3

2

17

16

15

14

13

18

10

11

12

7

8

9
22

23

24

19

20

21

a) b)

Fig. 1. a) The pancake network for n = 4 in which thick, medium, and thin edges are
used for prefix-reversals of length two, three, and four, respectively. b) The Hamilton
path obtained by greedily reversing the shortest possible prefix starting from 1234,
where each partial edge shows a prefix-reversal leading to a previously visited vertex.

3 Greedy Gray Code Algorithm

The greedy Gray code algorithm takes as input an object x ∈ X and a prioritized
list of operations O = o1, o2, . . . , ok where oi : X → X for all 1 ≤ i ≤ k. The
algorithm outputs a greedy object list L of distinct objects in X. The list initially
contains x, and then is repeatedly extended by one object as follows: If x is the
last object in L, and i is the minimum value such that oi(x) is not already in L,
then oi(x) is added to the end of L. GreedyO(x) is successful if it generates X.
In other words, success occurs if every object of the same type as x is in L.

GreedyO(x)
1: Initialize list L to contain the single object x.
2: Let x be the last object in list L.
3: Let i be minimum such that oi(x) is not in L. If i does not exist, then return.
4: Add the new object oi(x) to the end of L.
5: Return to line 2.

Given a prioritized list of operations O = o1, o2, . . . and an index list I =
i1, i2, . . ., we generate a list of objects as follows. Let ApplyO(x1, I) be the list
x1,x2, . . . where xi+1 = oik(xi) for k = 1, 2, . . .. That is, the ikth operation
creates the (k + 1)st object from the kth object.

4 Binary Strings

In this section, we give greedy interpretations to three orders of binary strings.
Throughout this section we index the bits of a binary string from right-to-left.
Thus, if b ∈ B(n), then b = bnbn−1 · · · b1 are its individual bits. The ith bit of b



530 A. Williams

uses this right-to-left indexing, so the first bit is the rightmost. A draft of this
paper illustrates each order in Table 1 (see the author’s website).

4.1 Binary Reflected Gray Code

We first prove the greedy interpretation of the binary reflected Gray code us-
ing local recursion. Let biti be the operation that complements the ith bit of a
binary string. That is, biti(b) = bn · · · bi+1bibi−1 · · · b1. We prioritize the bit com-
plements from right-to-left in Bit↑n = bit1, bit2, . . . , bitn. (In general, we use low-
ercase for individual operations and uppercase for prioritized lists of operations,
with ↑ and ↓ for lists with increasing and decreasing subscripts, respectively.)

Theorem 1. The greedy Gray code algorithm that complements the rightmost
possible bit generates the reflected Gray code. That is, GreedyBit↑n(0n) = Gray(n).

Proof. The proof is by induction on n with GreedyBit↑1
(01) = 0, 1 = Gray(1) for

the base case. Inductively assume that

GreedyBit↑m−1
(0m−1) = b1,b2, . . . ,b2m−1 = Gray(m−1).

In particular, b1 = 0m−1 and b2 = 0m−21. The first four strings generated by
GreedyBit↑m(0m) are 0m, 0m−11, 0m−211, 0m−210 = b1 ·0,b1 ·1,b2 ·1,b2 ·0. More

generally, suppose GreedyBit↑m(0m) begins

b1 · 0,b1 · 1,b2 · 1,b2 · 0, . . . ,b2i−1 · 0,b2i−1 · 1,b2i · 1,b2i · 0 (7)

for some fixed 1 ≤ i < 2m−1. The algorithm cannot apply bitm to the last
string in (7) since b2i · 0 = b2i · 1 is the second-last string in (7). Therefore, the
algorithm can only apply bitj for some j < m. Thus, the next string (if any)
generated by the algorithm will end with 0. Observe that the strings ending with
0 in (7) are precisely b1 ·0,b2 ·0, . . . ,b2i ·0. Since GreedyBit↑m−1

(0m−1) begins by

generating b1,b2, . . . ,b2i,b2i+1, we know GreedyBit↑m(0m) behaves accordingly.

Thus, GreedyBit↑m(0m) follows b2i · 0 by generating b2i+1 · 0. Furthermore, the
string generated after b2i+1 · 0 is b2i+1 · 1 since bitm is the highest priority
operation. Therefore, (7) is true when i+1 replaces i. Hence, by repeating this
argument (7) is true for i = 2m−1. Therefore, GreedyBit↑m(0m) and Gray(m) share

the same recursive structure by (3) and (7), which completes the induction. 
�

4.2 Lexicographic Order

We next give a greedy interpretation to Lex(n), the lexicographic order of B(n)
in which successive strings have decimal value 0, 1, 2, . . . , 2n−1. For example,

Lex(3) = 000, 001, 010, 011, 100, 101, 110, 111.

Notice that each successive string is obtained by a suffix complement suffi which
complements the rightmost i bits. That is, suffi(b) = bnbn−1 · · · bi+1bibi−1 · · · b1



The Greedy Gray Code Algorithm 531

for b ∈ B(n). We prioritize by shortest suffix in Suff↑
n = suff1, suff2, . . . , suffn.

Lexicographic order has the same global recursive definition as the binary re-
flected Gray code, without the reflection. That is, Lex(1) = 0, 1 and for n > 1,

Lex(n) = 0 · Lex(n−1), 1 · Lex(n−1). (8)

For example, the order below is 0 · Lex(3) followed by 1 · Lex(3)

Lex(4) = 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111,

1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111.

Theorem 2. The greedy Gray code algorithm that complements the shortest
possible suffix generates lexicographic order. That is, GreedySuff↑

n
(0n) = Lex(n).

Proof. Our proof is by induction, with GreedySuff↑
1
(01) = 0, 1 = Lex(1) as the

base case. Inductively assume GreedySuff↑
m−1

(0m−1) = Lex(m−1). Now consider

GreedySuff↑
m

(0m). Since suffm is the lowest-priority operation, the algorithm will

begin by creating as many strings as possible using Suff↑
m−1. By induction, this

produces 0 · Lex(m−1), whose last string is 0 · 1m−1. The greedy algorithm
must then apply suffm to this string to create 0 · 1m−1 = 1 · 0m−1 since every
string beginning with 0 has already been generated. Now the algorithm again
proceeds by creating as many strings as possible using Suff↑

m−1 starting from
1 · 0m−1. By induction, this produces 1 · Lex(m−1). Thus, GreedySuff↑

m
(0m) =

0 · Lex(m−1), 1 · Lex(m−1), and so our result is true by (8). 
�

4.3 de Bruijn Sequences

A de Bruijn sequence is binary string of length 2n that contains every string in
B(n) exactly once as a circular substring of length n. Martin [8] showed that a
de Bruijn sequence dB(n) can be built one bit at a time by starting from 0n and
greedily suffixing the largest possible next bit 1 or 0, subject to the condition that
the resulting sequence does not contain any substring twice1. For example, if the
algorithm for n = 4 has currently built 00001111011, then Martin’s algorithm
will not append 1 since the resulting sequence of bits 000011110111 would contain
two copies of 0111. Thus, it would append 0. The result of Martin’s algorithm
for n = 4 is dB(4) = 0000111101100101. A de Bruijn sequence is decoded by
listing its successive substrings of length n. For example,

decode(dB(4)) = decode(0000111101100101)

= 0000, 0001, 0011, 0111, 1111, 1110, 1101, 1011,

0110, 1100, 1001, 0010, 0101, 1010, 0100, 1000

where the final three substrings “wrap around”. Successive decoded substrings
always differ by a 1-shift or a 0-shift, meaning that bnbn−1 · · · b1 is replaced by

1 Martin constructs a sequence of length 2n+n−1 starting from 0n−11 whose 2n non-
circular substrings are B(n). This sequence ends with 0n, so it is equivalent to dB(n).



532 A. Williams

bn−1bn−2 · · · b11 or bn−1bn−2 · · · b10, respectively. We denote these two operations
by shift1 and shift0, respectively, and prioritize them as Shift↓2 = shift1, shift0. This
allows us to reinterpret Martin’s result using the greedy Gray code algorithm.

Theorem 3 ([8]). The greedy Gray code algorithm that shifts in the largest
possible bit generates decoded strings in Martin’s de Bruijn sequence. That is,
GreedyShift↓2

(0n) = decode(dB(n)).

We mention that Theorem 2 depends on the initial string. For example, 000 and
001 are the only suitable choices for generating B(3) in this way.

5 Permutations

In this section, we give greedy interpretations to three permutation orders.
Throughout this section we index the symbols of a permutation from left-to-
right. Thus, if p ∈ P(n), then p = p1p2 · · · pn. A draft of this paper illustrates
each order in Table 2 (see the author’s website).

5.1 Plain Change Order

The transposition (i j) interchanges the values in positions i and j of a string.
A swap is a transposition of the form (i i+1). Swaps are also known as adjacent
transpositions. When considering permutations, we can indicate a specific swap
by indicating a value and a direction, instead of a pair of positions. Let swap−v

and swap+v be the operations that swap value v one position to the left, or

right, respectively. For example, swap−2(7654321) = 7654
←−
321 = 7654231 is a left

swap of 2, and swap+2(7654321) = 76543
−→
21 = 7654312 is a right swap of 2. If

p = p1p2 · · · pn ∈ P(n), then swap+pn
(p) = swap−p1

(p) = p. In other words, left
swapping the first value does not change a permutation, nor does right swapping
the last value. We prioritize our swaps by decreasing values, and right before left,

Swap↓n = swap+n,swap−n, . . . ,swap+2,swap−2,swap+1,swap−1.

Note: The relative priorities of swap+i and swap−i do not affect the proof of
Theorem 4, so we say that the swaps are prioritized by decreasing value.

Theorem 4. The greedy Gray code algorithm that swaps the largest possible
value generates the plain change order. That is, GreedySwap↓n(12 · · ·n) = Plain(n).

Proof. The proof is by induction on n with GreedySwap↓2
(12) =

←−
12, 21 = Plain(2)

as the base case. Inductively assume

GreedySwap↓m−1
(12 · · ·m−1) = p1, . . . ,p(m−1)! = Plain(m−1).

In particular, p1 = 12 · · ·m−1 and p2 = 12 · · ·m−3m−1m−2. The first m
strings generated by GreedySwap↓m(12 · · ·m) are

1 2···m−2
←−−−−
m−1m, 1 2···←−−−−m−2mm−1, ..., m 1 2···m−2m−1 = zig(p1 ·m)



The Greedy Gray Code Algorithm 533

by repeatedly applying swap−m. At this point, the algorithm cannot swap m so

it swaps m−1 to create m 1 2 · · ·←−−−−−−−m−2m−1 = m 1 2 · · ·m−3m−1m−2. This is
followed by repeatedly applying swap+m as below

−→
m 1 2···m–3m–1m–2, 1

−→
m 2···m–3m–1m–2, ..., 1 2···m–3m–1m–2m = zag(m·p2).

More generally, suppose GreedySwap↓m(12 · · ·m) begins

zig(p1 ·m), zag(m ·p2), zig(p3 ·m), zag(m ·p4), ..., zig(p2i−1 ·m), zag(m ·p2i) (9)

for some fixed 1 ≤ i < (m − 1)!. Notice that the last string in (9) is p2i · m.
The algorithm cannot apply swap+m to p2i · m since m is in the rightmost
position. Similarly, the algorithm cannot apply swap+m since that would result
in the second-last string in (9). Thus, the next string (if any) generated by
the algorithm will begin with m. Observe that the strings beginning with m
in (9) are precisely m · p1,m · p2, . . . ,m · p2i. Since GreedySwap↓m−1

(12 · · ·m −
1) begins by generating p1,p2, . . . ,p2i,p2i+1, we know GreedySwap↓m(12 · · ·m)

behaves accordingly. Thus, GreedySwap↓m(12 · · ·m) follows m ·p2i with m ·p2i+1.
At this point, m · p2i+1 is the first generated string in which the symbols of
[m−1] are in the relative order given by p2i+1. Thus, the algorithm continues
by generating zig(m · p2i+1) since swap+m is the highest priority operation.
This ends with p2i+1 ·m, and for similar reasons, the algorithm follows this by
zag(p2i+1 ·m). Therefore, (9) is true when i+1 replaces i. Hence, (9) is true for
i = (m − 1)!. Therefore, GreedySwap↓m(12 · · ·m) and Plain(m) share the same

recursive structure by (5) and (9), which completes the induction. 
�

5.2 Zaks’s Pancake Order

Let revi be the operation that reverses the first i symbols of a string. Thus,
if p = p1p2 · · · pn, then revi(p) = pipi−1 · · · p1pi+1pi+2 · · · pn. This operation is
known as a prefix-reversal or a flip. The term ‘flip’ comes from the pancake
problem: Given a stack of n pancakes of distinct sizes, what is the minimum
number of times a waiter must flip over some number of pancakes at the top of
the stack in order to sort the pancakes from smallest to largest?

Zaks [13] considered the problem of creating all possible stacks (or permuta-
tions) using flips. As he writes, “The poor waiter will be able to generate, in
n! such steps, all possible n! stacks”. Zaks used global recursion to create his

order. For example, Pan(3) =
←→
123,

←→
213,
←→
312,

←→
132,
←→
231, 321 and Pan(4) repeats

this four times below, with prefix-reversals of length three in between

←→
1234,

←→
2134,

←→
3124,

←→
1324,

←→
2314,

←−→
3214,

←→
4123,

←→
1423,

←→
2413,

←→
4213,

←→
1243,

←−→
2143,

←→
3412,

←→
4312,

←→
1342,

←→
3142,

←→
4132,

←−→
1432,

←→
2341,

←→
3241,

←→
4231,

←→
2431,

←→
3421, 4321.

Theorem 5. The greedy Gray code algorithm that reverses the shortest possible
prefix generates Zaks’s order. That is, GreedyRev↑n(12 · · ·n) = Pan(n).



534 A. Williams

A new pancake order Pan′(n) is generated by greedily reversing the longest
possible prefix, as prioritized by Rev↓n. The reader can refer to the recent article
by the author and Sawada [9] for these results.

Theorem 6 ([9]). The greedy Gray code algorithm that reverses the longest pos-
sible prefix generates all permutations. That is, GreedyRev↑n(12 · · ·n) = Pan′(n).

5.3 Corbett’s Rotator Order

It is easy to show that P(n) is not generated by greedily rotating the shortest
possible prefix, or the longest possible prefix, for n ≥ 4. However, we will see
that P(n) can be generated by prioritizing the rotations in a different way. In
fact, the Gray code will equal an order given by Corbett in the context of the
interconnection network known as the rotator graph (see Corbett [1]).

Corbett’s order Rotator(n) is generated with the help of an index sequence
Rotator′′(n). The index sequence is defined as follows: Rotator′′(2) = 2 and if
Rotator′′(n−1) = r1, r2, . . . , r(n−1)!−1 then Rotator′′(n) appears below

n, ..., n, n + 1− r1, n, ..., n, n + 1− r2, . . . , n, ..., n, n + 1− r(n−1)!−1, n, ..., n.

where each n, ..., n denotes n repeated n−1 times. For example, Rotator′′(3) =
3, 3, 2, 3, 3 and so Rotator′′(4) = 4,4,4,2,4,4,4,2,4,4,4,3,4,4,4,2,4,4,4,2,4,4,4. Cor-
bett’s order is obtained by applying the sequence as rotations starting from
nn−1 · · · 1 ∈ P(n). That is, Rotator(n) = ApplyRotator′′(n)(nn−1 · · · 1,Rot↑n),

where Rot↑n = rot1, rot2, . . . , rotn and rot1 is included for convenience. For exam-
ple, the orders for n = 3 and n = 4 appear below.

Rotator(3) Rotator(4)
−→
321,

−→
213,

−→
132,

−−→
4321,

−−→
3214,

−−→
2143,

−→
1432,

−−→
4132,

−−→
1324,

−−→
3241,

−→
2413,

−−→
4213,

−−→
2134,

−−→
1342,

−→
3421,

−→
312,

−→
123, 231

−−→
4231,

−−→
2314,

−−→
3142,

−→
1423,

−−→
4123,

−−→
1234,

−−→
2341,

−→
3412,

−−→
4312,

−−→
3124,

−−→
1243, 2431.

Understanding the correctness of Corbett’s construction is somewhat tricky,
and we refer the reader to [1] and Stevens and Williams [11]. On the other hand,
it has a relatively simple greedy interpretation. We prioritize the prefix rotations
by interleaving the longest and shortest as follows

Rot�n = rotn, rot2, rotn−1, rot3, . . . , rot�n+1
2 �.

Due to space restrictions, we omit the proof of Theorem 7.

Theorem 7. The greedy Gray code algorithm that rotates prefixes with inter-
leaved longest and shortest lengths generates Corbett’s order of permutations.
That is, Rotator(n) = Greedy

Rot
	
n
(12 · · ·n).



The Greedy Gray Code Algorithm 535

6 Additional Results

In this section, we describe greedy interpretations of additional Gray codes.
Formal proofs will appear in the full article. A draft of this paper illustrates
each order in Table 3 (see the author’s website).

A k-combination of [n] is a subset of size k, which we represent by its selected
elements 1 ≤ s1 < s2 < · · · < sn ≤ n, or by its incidence vector in B(n, k)
with bitwise indexing from left-to-right. A homogeneous transposition homoi,j
transposes the bits in positions i and j only if the bits have opposite values and
the intermediate symbols are all 0s. Thus, for a given b = b1b2 · · · bn ∈ B(n, k)

homoi,j(b) =

{
b1 · · · bi−1bibi+1 · · · bj−1bjbj+1 · · · bn if i < j

b1 · · · bj−1bjbj+1 · · · bi−1bibi+1 · · · bn if j < i

so long as {bi, bj} = {0, 1} and bi+1 · · · bj−1 = 0j−i−1; otherwise, homoi,j(b) = b.
In particular, homoi,i(b) = b. We prioritize the homogeneous transpositions for
a given combination with 1 ≤ s1 < s2 < · · · < sn ≤ n as follows

Homon = homos1,1, homos1,2, ..., homos1,s2−1, (10)

homos2,s1+1, homos1,s1+2, ..., homos1,s3−1, . . . ,

homosn,sn−1+1, homos1,sn−1+2, ..., homos1,n.

Theorem 8. The greedy Gray code algorithm that homogeneously transposes
the leftmost possible 1 into the leftmost possible position generates all combina-
tions. That is, GreedyHomon(1k0n−k) generates B(n, k). Furthermore, the order
is EM(n, k) when k is odd.

Let T(n) be the set of binary trees with n vertices, which is enumerated by
the nth Catalan number. When modifying a binary search tree, we can use
edge rotations to keep the tree in balance (see [6]). In the 1990s, Ruskey, van
Baronaigien and Lucas [7] showed how to recursively construct a Gray code of
T(n), in which successive trees differ by a single edge rotation. In their Gray
code Tree(n), they let the label of each vertex be its order during an inorder
traversal. To describe our greedy interpretation of their Gray code, we label an
edge between vertices with label u and label v as max(uv, vu). Given these labels,
let edgei,j denote the operation of rotating the edge with label ij, where edgei,j
has no effect if there is no such edge in the tree. We prioritize the edge rotations
by lexicographically largest label as follows

Edge↓n = edgen,n−1, edgen,n−2, ..., edgen,1,

edgen−1,n−2, edgen−1,n−3, ..., edgen−1,1, . . . ,

edge3,2, edge3,1
edge2,1.

Theorem 9. The greedy Gray code algorithm that rotates the edge with the
largest possible label generates the Ruskey, van Baronaigien, and Lucas Gray
code for binary trees. That is, GreedyEdge↓n(1n0n) = Tree(n), where 1n0n de-
notes the binary tree that is a left path from the root.



536 A. Williams

A set partition of [n] is a collection of disjoint non-empty subsets S1, S2, ...,
Sk ⊆ [n] with S1 ∪ S2 ∪ ··· ∪ Sk = [n]. The disjoint sets are numbered by
their minimum elements, so S1 is the set containing value 1, and S2 is the set
containing the minimum value that is not in S1, and so on. Let S(n) denote the
set partitions of [n], which is enumerated by the nth Bell number. For example,
the following is a set partition of [6] with three subsets S1 = {1, 2, 5}, S2 = {3, 6},
and S3 = {4}: ({1, 2, 5}, {3, 6}, {4}) ∈ S(6).

The operation movei,j moves the value i into the jth subset. If j is the only
value in its subset, then the operation removes the subset {i}, and if j is greater
than the number of subsets then the operation creates a new subset {i}. Kaye
[5] provided a Gray code for S(n) in which successive partitions differ by a single
move. We denote this Gray code by Kaye(n), and then show that it has a simple
greedy interpretation which prioritizes the operations as follows

Moven = moven,1, moven,2, ...,moven,n,

moven−1,1, moven−1,2, ...,moven−1,n, . . . ,

move1,1, move1,2, ...,move1,n.

Theorem 10. The greedy Gray code algorithm that moves the largest possible
value into the leftmost possible subset generates Kaye’s set partition Gray code.
That is, Kaye(n) = GreedyMoven({1, 2, . . . , n}).

References

1. Corbett, P.: Rotator graphs: An efficient topology for point-to-point multiprocessor
networks. IEEE Trans. on Parallel and Distributed Systems 3, 622–626 (1992)

2. Duckworth, R., Stedman, F.: Tintinnalogia (1668)
3. Eades, P., McKay, B.: An algorithm for generating subsets of fixed size with a

strong minimal change property. Inf. Proc. Letters 19, 131–133 (1984)
4. Gray, F.: Pulse code communication. U.S. Patent 2,632,058 (1947)
5. Kaye, R.: A Gray code for set partitions. Information Processing Letters 5(6),

171–173 (1976)
6. Knuth, D.E.: The Art of Computer Programming. Combinatorial Algorithms, Part

1, vol. 4. Addison-Wesley (2010)
7. Lucas, J.M., van Baronaigien, D.R., Ruskey, F.: On rotations and the generation

of binary trees. Journal of Algorithms 15, 343–366 (1993)
8. Martin, M.H.: A problem in arrangements. Bull. Amer. Math. Soc. 40, 859–864

(1934)
9. Sawada, J., Williams, A.: Greedy pancake flipping. In: Latin-American Algorithms,

Graphs and Optimization Symposium, LAGOS 2013 (accepted, 2013)
10. Siegel, J.: Interconnection Networks for Large-Scale Parallel Processing: Theory

and Case Studies. McGraw-Hill (1990)
11. Stevens, B., Williams, A.: Hamilton cycles in restricted rotator graphs. In: Il-

iopoulos, C.S., Smyth, W.F. (eds.) IWOCA 2011. LNCS, vol. 7056, pp. 324–336.
Springer, Heidelberg (2011)

12. Wikipedia. Rotary encoder, http://en.wikipedia.org/wiki/Rotary_encoder
13. Zaks, S.: A new algorithm for generation of permutations. BIT Numerical Mathe-

matics 24(2), 196–204 (1984)

http://en.wikipedia.org/wiki/Rotary_encoder


Author Index

Ahmed, Mahmuda 1
Ahn, Hee-Kap 13
Alamdari, Soroush 25
Alt, Helmut 13
Arge, Lars 37
Aronov, Boris 49
Asano, Tetsuo 61
Asinowski, Andrei 73
Askalidis, Georgios 85

Bae, Sang Won 13
Bannister, Michael J. 97
Barba, Luis 109
Baumbach, Jan 427
Belazzougui, Djamal 121
Biedl, Therese 25
Bienkowski, Marcin 133
Bille, Philip 146
Biro, Michael 158
Böhmová, Kateřina 170
Bose, Prosenjit 109, 182
Boyar, Joan 195
Bredereck, Robert 207
Buchin, Kevin 219
Buchin, Maike 219
Byrka, Jaroslaw 133

Cabello, Sergio 97
Cardinal, Jean 73
Chan, Timothy M. 25, 231
Chapelle, Mathieu 232
Chen, Danny Z. 244
Chen, Jiehua 207
Chlamtáč, Eden 256
Chowdhury, Iffat 1
Chrobak, Marek 133
Cohen, Nathann 73
Collette, Sébastien 73
Cording, Patrick Hagge 146

Dai, Bang-Sin 268
de Berg, Mark 49
De Carufel, Jean-Lou 109
Demaine, Erik D. 280
Disser, Yann 170

Durocher, Stephane 291
Dvořák, Zdeněk 304

Eppstein, David 97, 316
Epstein, Dror 328

Fischer, Johannes 37
Friggstad, Zachary 256
Fulek, Radoslav 341

Gagie, Travis 121
Georgiou, Konstantinos 256
Geyer, Markus 353
Gibson, Matt 1
Gørtz, Inge Li 146
Golumbic, Martin Charles 328
Goodrich, Michael T. 316
Grant, Elyot 25
Guo, Jiong 427
Gupta, Sushmita 195

Hackl, Thomas 73
Hamann, Michael 365
Hartmann, Tanja 365
Hartung, Sepp 207
Hassidim, Avinatan 378, 390
Hirschberg, Daniel S. 316
Hoffmann, Michael 73, 353
Hon, Wing-Kai 402
Hupp, Philipp 415

Ibragimov, Rashid 427
Immorlica, Nicole 85
Islam, Mohammad Shahedul 1
Iwerks, Justin 158

Jacob, Riko 415
Jampani, Krishnam Raju 25
Jansen, Klaus 439
Jeż, �Lukasz 133

Kanj, Iyad A. 451
Kao, Mong-Jen 268
Kaplan, Haim 378
Kaufmann, Michael 353
Keller, Orgad 390
Keshav, Srinivasan 25



538 Author Index

Khuller, Samir 475
Kindermann, Philipp 463
Kirkpatrick, David 61
Knauer, Kolja 73
Koehler, Frederic 475
Komusiewicz, Christian 207
Kostitsyna, Irina 158
Kusters, Vincent 353
Kwanashie, Augustine 85

Land, Felix 439
Land, Kati 439
Langerman, Stefan 73
Larsen, Kim S. 195
Lasoń, Micha�l 73
Lee, D.T. 268
Lee, Lap-Kei 402
Lewenstein, Moshe 390
Liedloff, Mathieu 232
Löffler, Maarten 487, 499
Lubiw, Anna 25

Manlove, David F. 85
Micek, Piotr 73
Mihalák, Matúš 170
Mitchell, Joseph S.B. 158
Mondal, Debajyoti 291
Morgenstern, Gila 328
Mulzer, Wolfgang 487

Navarro, Gonzalo 121
Niedermann, Benjamin 463
Niedermeier, Rolf 207
Nishimura, Naomi 512

Panchekha, Pavel 280
Park, Dongwoo 13
Pathak, Vinayak 25
Pountourakis, Emmanouil 85

Roditty, Liam 390
Roeloffzen, Marcel 49
Rote, Günter 73
Rutter, Ignaz 463

Sach, Benjamin 146
Sadakane, Kunihiko 402
Sanders, Peter 37
Schaefer, Marcus 463
Schulz, André 463
Sgall, Jǐŕı 133
Sherrette, Jessica 1
Simjour, Narges 512
Simons, Joseph A. 499
Sitchinava, Nodari 37
Speckmann, Bettina 49, 219
Staals, Frank 219
Stachowiak, Grzegorz 133
Strash, Darren 499
Suchý, Ondřej 207

Todinca, Ioan 232
Tóth, Csaba D. 341, 353
Tsakalidis, Konstantinos 402
Tůma, Vojtěch 304
Tuval, Omry 378

Ueckerdt, Torsten 73

van Kreveld, Marc 219
van Renssen, André 109, 182
Vassilvitskii, Sergei 524
Verdonschot, Sander 109, 182
Vildhøj, Hjalte Wedel 146
Villanger, Yngve 232
Vind, Søren 146

Wagner, Dorothea 365
Wang, Haitao 244
Widmayer, Peter 170
Williams, Aaron 525
Wilson, David A. 280
Wolff, Alexander 463

Xia, Ge 451

Yang, Edward Z. 280


	Preface
	Organization
	Table of Contents
	On Maximum Weight Objects Decomposable
into Based Rectilinear Convex Objects

	1 Introduction
	2 Algorithm for a Restricted 2-BRC Problem
	3 Extension to the c-BRC Problem

	References

	Bundling Three Convex Polygons to Minimize
Area or Perimeter

	1 Introduction
	2 Preliminaries
	3 The Configuration Space for Three Polygons
	3.1 Parametrization of Configurations
	3.2 Events and Event Curves
	3.3 Complexity of Event Curves

	4 Algorithms
	4.1 Computing the Arrangement

	References

	Smart-Grid Electricity Allocation
via Strip Packing with Slicing

	1 Introduction
	2 Basic Algorithms
	3 Approximation Schemes
	4 Algorithms with Few Slices
	5 Conclusions
	References

	On (Dynamic) Range Minimum Queries
in External Memory

	1 Introduction
	1.1 Our Contributions

	2 Different Scenarios for Dynamic RMQ
	3 Simple Dynamic Internal Memory Algorithms
	4 External Memory Solutions to the Geometric Version
	4.1 Batched Static RMQ
	4.2 Batched Dynamic RMQ

	5 Reductions between Dynamic Array, Linked List, and Geometric Versions in the EM Model
	5.1 Linked List to Geometric Reduction
	Lemma 2.
	5.2 Dynamic Array to Linked List Reduction
	5.3 Geometric to Dynamic Array Reduction

	6 Conclusions and Open Questions
	References

	Distance-Sensitive Planar Point Location

	1 Introduction
	2 Convex Polygons
	3 Arbitrary Polygons
	4 Conclusions
	References

	Time-Space Tradeoffs
for All-Nearest-Larger-Neighbors Problems

	1 Introduction
	2 The All-Nearest-Larger-Neighbor Problem
	2.1 Background
	2.2 A New Time-Space Tradeoff Using a Hierarchical

	3 The All-Nearest-Larger-Right-Neighbor Problem
	4 A Lower Bound via Interval-Acknowledgment
	5 Extracting Forest Structure from a Parenthesis String
	6 Triangulation of Monotone Polygons
	7 Concluding Remarks and Future Work
	References

	Coloring Hypergraphs Induced by Dynamic
Point Sets and Bottomless Rectangles

	1 Introduction
	2 Coloring Dynamic Point Sets
	3 Coloring Point Sets under Insertion
	4 Coloring Points with Respect to Bottomless Rectangles
	5 Lower Bound
	6 Increasing the Number of Colors
	References

	Socially Stable Matchings
in the Hospitals/Residents Problem

	1 Introduction
	2 Preliminary Definitions and Results
	3 Approximating MAX HRSS
	4 SomeSpecialCasesofHRSS
	4.1 HRSS with a Constant Number of Unacquainted Pairs
	4.2 HRSS with a Constant Number of Acquainted Pairs

	5 OpenProblems
	References

	Parameterized Complexity of 1-Planarity

	1 Introduction
	2 Vertex Cover Number
	3 Tree-Depth
	4 Cyclomatic Number
	References

	On the Stretch Factor of the Theta-4 Graph

	1 Introduction
	2 Existence of a Spanning Path
	3 LightPaths
	4 One Empty Quadrant
	5 Lower Bound
	References

	Better Space Bounds
for Parameterized Range Majority and Minority

	1 Introduction
	2 Preliminaries
	2.1 Access, Select and (Partial) Rank
	2.2 Coloured Range Listing

	3 Parameterized Range Minority
	4 Parameterized Range Majority with Fixed
	5 Parameterized Range Majority with Variable
	5.1 Nearly Linear Space with Optimal Query Time
	5.2 Optimally Compressed Space with Nearly Optimal Query Time
	5.3 Nearly Optimally Compressed Space with Very Nearly Optimal

	6 Conclusions
	References

	Online Control Message Aggregation
in Chain Networks

	1 Introduction
	2 Preliminaries
	3 An Online 5-Competitive Algorithm
	4 A Lower Bound of 2 + φ ≈ 3.618

	4.1 Construction of a Single Phase
	4.2 Proof of Lemma 1

	5 Polynomial-Time Offline Solution
	6 Final Comments
	References

	Fingerprints in Compressed Strings

	1 Introduction
	2 Preliminaries
	3 Basic Fingerprint Queries in SLPs
	4 Faster Fingerprints in SLPs
	5 Faster Fingerprints in Linear SLPs
	6 Finger Fingerprints in Linear SLPs
	7 Longest Common Extensions in Compressed Strings
	7.1 Computing Longest Common Extensions with Fingerprints
	7.2 Verifying the Fingerprint Function

	References

	Beacon-Based Algorithms
for Geometric Routing

	1 Introduction
	2 Properties of Beacons
	3 Algorithms for Computing Attraction Regions
	4 Algorithms for Computing Inverse Attraction Regions
	4.1 Algorithm for the Inverse Attraction Region of a Point
	4.2 Algorithm for the Inverse Attraction Region of a Region

	5 BeaconRouting
	5.1 Algorithm for Minimum Beacon Routing with Candidate Beacons
	5.2 Approximation Algorithm for Minimum Beacon Routing

	References

	Interval Selection
with Machine-Dependent Intervals

	1 Introduction
	2 Approximation of Interval Selection on Two Machines
	3 Hardness Results
	3.1 Interval Selection with Shared Cores
	3.2 Interval Selection with Restricted Number of Machines

	References

	On the Spanning Ratio of Theta-Graphs

	1 Introduction
	2 Preliminaries
	Lemma 1.
	Lemma 2.
	Lemma 3.

	3 Generic Framework for the Spanning Proof
	4 Theθ(4k+4)-Graph

	5 Theθ(4k+3)-Graph and the θ(4k+5)-Graph

	References

	Relative Interval Analysis of Paging Algorithms
on Access Graphs

	1 Introduction
	2 Preliminaries
	3 Complete Graphs
	3.1 FWF

	4 Path Graphs
	5 Star Graphs
	6 Cycle Graphs
	7 Concluding Remarks
	References

	On Explaining Integer Vectors
by Few Homogenous Segments

	1 Introduction
	2 Combinatorial Properties
	3 Parameterization by Input Smoothness
	4 Further Parameterizations
	5 Conclusion
	References

	Trajectory Grouping Structure

	1 Introduction
	2 Representing the Grouping Structure
	2.1 The Reeb Graph
	2.2 Bounding the Number of Maximal Groups

	3 Computing the Grouping Structure
	3.1 Computing the Reeb Graph
	3.2 Computing the Maximal Groups

	4 Robustness
	5 Evaluation
	6 Concluding Remarks
	References

	The Art of Shaving Logs

	TREEWIDTH and PATHWIDTH Parameterized
by the Vertex Cover Number

	1 Introduction
	2 Preliminaries
	3 TREEWIDTH Parameterized by the Vertex Cover Number
	4 Concluding Remarks
	References

	Visibility and Ray Shooting Queries
in Polygonal Domains

	1 Introduction
	2 Preliminaries
	2.1 Bays and Canals

	3 The Ray-shooting Queries
	4 The Visibility Queries
	4.1 The Algorithm for Computing
	4.2 The Preprocessing
	4.3 The Query Algorithm
	4.4 The Second Data Structure

	5 Conclusions
	References

	Lift-and-Project Methods for Set Cover
and Knapsack

	1 Introduction
	1.1 Hierarchies of Convex Relaxations
	1.2 Our Results

	2 Preliminaries on the Lov´asz-Schrijver System

	3 Sub-Exponential Algorithms for Set Cover
	3.1 Sketch of our Combinatorial Set Cover Algorithm
	3.2 Proof Based on the

	4 LinearSherali-Adams Integrality Gap for Set Cover

	5 -AnLS+Based PTAS for Knapsack
	6 Conclusion
	References

	Optimal Time-Convex Hull under the Lp
Metrics

	1 Introduction
	2 Preliminaries
	3 Hull-Structure under the General Lp-Metrics

	4 Constructing the Time-Convex Hull
	4.1 Problem Complexity
	4.2 An Optimal Algorithm

	5 Conclusion
	References

	Blame Trees
	1 Introduction
	2 Blame Trees, Version 1
	3 Faster Traversal
	References

	Plane 3-trees: Embeddability and Approximation

	1 Introduction
	2 Faster Point-Set Embeddings of Plane 3-Trees
	3 Universal Point Set for Plane 3-Trees
	4 Approximate Point-Set Embeddings
	5 Conclusion
	References

	A Dynamic Data Structure for Counting
Subgraphs in Sparse Graphs

	1 Introduction
	2 BasicIdea
	3 Definitions and Auxiliary Results
	4 Dynamic Data Structure for Induced Subgraphs
	4.1 Reduction to Elder Augmentations
	4.2 Homomorphisms of Elder Graphs

	5 Concluding Remarks
	References

	Combinatorial Pair Testing:
Distinguishing Workers from Slackers

	1 Introduction
	2 Adaptive Algorithms
	3 Nonadaptive Pair Testing
	4 Conclusion
	References

	Approximation Algorithms for B1-EPG Graphs

	1 Introduction
	2 Preliminaries
	3 Coloring
	EPG Graphs
	3.1 Hardness Result for Coloring
	3.2 A 4-Approximation Algorithm for Coloring

	4 Maximum Independent Set on
	EPG Graphs
	4.1 Hardness Result for Finding Maximum Independent Set on
	4.2 A 4-Approximation Algorithm for Maximum Independent Set

	5 Concluding Remarks
	References

	Universal Point Sets for Planar Three-Trees

	1 Introduction
	2 Basic Properties of Planar Three-Trees
	3 Construction of a Point Set
	4 Embedding Algorithm
	5 Conclusion
	References

	Planar Packing of Binary Trees

	1 Introduction
	2 Definitions and Overview
	3 Embedding of
	4 Embedding of
	5 Conclusion
	References

	Hierarchies of Predominantly Connected Communities

	1 Introduction
	2 Predominantly Connected Communities
	3 Complete Hierarchical Cut Clustering
	4 Framework for Analyzing SC Structures
	5 Conclusion
	References

	Joint Cache Partition and Job Assignment
on Multi-core Processors

	1 Introduction
	2 The Ordered Unrelated Machines Problem
	3 Joint Cache Partition and Job Assignment
	4 Single Load and Minimal Cache Demand
	4.1 2-Approximation
	4.2 3
2-Approximation with 2K Cache

	4.3 4
3-Approximation with 3K Cache, Using Dominant Matching�
	4.4 Dominant Perfect Matching in Threshold Graphs
	4.5 PTAS for Jobs with Correlative Single Load and Minimal

	5 Joint Dynamic Cache Partition and Job Scheduling
	References

	Finding the Minimum-Weight k-Path

	1 Introduction
	2 Preliminaries
	3 Method
	3.1 Algorithm
	3.2 Proof of Correctness
	3.3 Running Time Analysis

	4 Finding the Actual Path
	5 Approximation
	6 k-Tree

	References

	Compressed Persistent Index for Efficient
Rank/Select Queries

	1 Introduction
	2 Compressed Partially Persistent Index
	2.1 Data Structure and Algorithm for Offline Updates
	2.2 Data Structure and Algorithm for Online Updates

	3 Compressed Fully Persistent Index for Offline Updates
	4 Compressed Fully Persistent Index for Online Updates
	5 Lower Bound
	6 Conclusion
	References

	Tight Bounds for Low Dimensional Star Stencils
in the External Memory Model

	1 Introduction
	1.1 Problem Definition
	1.2 Results
	1.3 Related Work
	1.4 Discussion: Upper Bounds and Real World Programs

	2 The Lower Bounds
	2.1 The Isoperimetric Inequality
	2.2 Pathwidth
	2.3 Splitting into Rounds and Deducing the Lower Bound

	References

	Neighborhood-Preserving Mapping
between Trees

	1 Introduction
	2 NPM on Trees with k = 0
	2.1 NP-Hardness Results
	2.2 Polynomial-Time Solvable Cases

	3 NPM on Trees with k > 0
	3.1 Two Input Trees
	3.2 l = d = 1, k > 0, and a Tree and a Path as Input

	4 Conclusion
	References

	Bounding the Running Time of Algorithms
for Scheduling and Packing Problems

	1 Introduction
	2 The Subset Sum Family
	2.1 Lower Bounds for Subset Sum and Partition
	2.2 Implications for Scheduling and Packing
	2.3 Input Length as Complexity Measure
	2.4 Special Cases with Size Restrictions

	3 More Scheduling Problems
	4 Exact Solution in 2O(n)
	4.1 Sequencing on a Constant Number of Machines

	5 Approximation Schemes for Knapsack Problems
	5.1 The Multiple Knapsack Problem
	5.2 Multi-dimensional Knapsack

	6 Open Questions
	References

	When Is Weighted Satisfiability FPT?
	1 Introduction
	1.1 Motivation and Related Work
	1.2 Our Results

	2 Preliminaries
	3 A Structural Result
	4 The Antimonotone Case
	5 The Monotone Case
	6 Applications
	References

	Two-Sided Boundary Labeling with Adjacent Sides

	1 Introduction
	2 Structure of Planar Solutions
	3 The Algorithm
	4 Conclusion
	References

	Optimal Batch Schedules for Parallel Machines

	1 Introduction
	1.1 Related Work
	1.2 Our Approach

	2 Scheduling Jobs on Multiple Batch Machines
	2.1 Scheduling with an Unbounded Number of Machines
	2.2 Scheduling with a Bounded Number of Machines

	3 Scheduling Agreeable Jobs
	3.1 Agreeable Processing Times

	4 Conclusions
	References

	Unions of Onions: Preprocessing Imprecise
Points for Fast Onion Layer Decomposition

	1 Introduction
	1.1 Related Work
	1.2 Results

	2 Preliminaries and Definitions
	3 The Algorithm
	3.1 Unions of Onions
	3.2 Space Decomposition Trees
	3.3 Processing a Precise Input

	4 Deterministic Preprocessing
	5 Lower Bounds
	6 Conclusion and Further Work
	References

	Dynamic Planar Point Location
with Sub-logarithmic Local Updates

	1 Introduction
	1.1 Problem Description
	1.2 Applications
	1.3 Results

	2 Tools
	2.1 New Tools

	3 One-Dimensional Case
	3.1 Definition of the Data Structure

	4 Two-Dimensional Case
	4.1 Definition of the Data Structure

	5 Discussion
	References

	Parameterized Enumeration of (Locally-) Optimal
Aggregations

	1 Introduction
	2 Definitions
	3 Ideas Used in the Algorithm
	3.1 Branching Based on a Feedback Arc Set

	3.2 β-Representations

	4 OurResults
	5 Concluding Remarks
	References

	MapReduce Algorithmics
	The Greedy Gray Code Algorithm

	1 Introduction
	2 Network Application
	3 Greedy Gray Code Algorithm
	4 Binary Strings
	4.1 Binary Reflected Gray Code
	4.2 Lexicographic Order
	4.3 de Bruijn Sequences

	5 Permutations
	5.1 Plain Change Order
	5.2 Zaks’s Pancake Order
	5.3 Corbett’s Rotator Order

	6 Additional Results
	References

	Author Index




