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Abstract. In recent researches, image classification of objects and scenes has 
attracted much attention, but the accuracy of some schemes may drop when 
dealing with complicated datasets. In this paper, we propose an image classifi-
cation scheme based on image sparse representation and multiple kernel learn-
ing (MKL) for the sake of better classification performance. As the fundamental 
part of our scheme, sparse coding method is adopted to generate precise repre-
sentation of images. Besides, feature fusion is utilized and a new MKL method 
is proposed to fit the multi-feature case. Experiments demonstrate that our 
scheme remarkably improves the classification accuracy, leading to state-of-art 
performance on several benchmarks, including some rather complicated data-
sets such as Caltech-101 and Caltech-256. 
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1 Introduction 

Nowadays, image classification has captured a lot of interest in computer vision. The 
common classification schemes mainly consist of two parts: image representation and 
classification. 

With regard to image representation models, Bag of Words (BoW) model with fol-
lowing three modules has been widely used and shows good performance: (i) Region 
selection and representation; (ii) Codebook generation and feature quantization; (iii) 
Frequency histogram based image representation. Specifically, the codebook consist-
ing of entries of visual words is used to reconstruct the input local features. The 
process to generate the codebook and quantize features governs the quality of image 
representation. But the frequently used k-means method may lead to severe informa-
tion loss since it assigns each feature to only one visual word in the codebook. 
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After the image is represented as a histogram of visual words, a classifier will be 
required to make the decision that which category the histogram belongs to. Kernel 
based classifiers such as support vector machine (SVM) are now widely used by 
many researchers for their wonderful performance. For SVM, the input histograms are 
mapped to a higher dimensional space by kernel function, in which they can be easily 
classified in a linear way. However, the sensitiveness of kernel function to categories 
will increase the fluctuation in accuracy, resulting in a relatively unsatisfying overall 
performance. 

Many works have been done to improve the classification performance. Yang et al. 
[1] applied sparse coding instead of k-means since it can learn the optimal codebook 
and reduce the information loss. Zhang et al. [2] proposed a framework by leveraging 
an improved sparse coding method, low-rank and sparse matrix decomposition tech-
niques. Linear SVM classifier is used for classification. Gao et al. [3] proposed a 
robust Laplacian sparse coding algorithm for feature quantization which generated 
more discriminative sparse codes. Naveen et al. [4] presented a new framework which 
was built upon a way of feature extraction that generates largely affine-invariant fea-
tures and an AdaBoost based classifier. From the perspective of classifier, multiple 
kernel learning (MKL) can increase the stability of overall performance by learning a 
linear combination of a series of kernel functions. Bosch et al. [5] combined different 
features by using a weighted linear combination of kernels, where the weights were 
learnt on a validation set. Lampert et al. [6] proposed a method to combine the effi-
ciency of single class localization with a subsequent decision process that worked 
jointly for all given object classes. 

In this paper, we devise a novel image classification scheme by adopting sparse 
coding and multi-feature MKL, which can ameliorate the image representation and 
classification phase respectively. The improved multi-feature MKL is proposed based 
on original MKL, in order to adapt to multi-feature case. Specifically, SIFT and 
SURF descriptors are extracted and then converted into sparse vectors precisely by 
the trained dictionaries. The images can be represented by these vectors using max-
pooling method which is proved to be more robust than others. After that, the two 
descriptors are combined into a single vector. Finally, multi-feature MKL approach is 
implemented to train and test those histograms, generating stable results due to the 
auto adjustment of the linear combination of kernel functions for each feature. 

2 Proposed Scheme 

As two main parts in image classification scheme, image representation and classifi-
cation can substantially affect the classification performance. On one hand, a good 
kernel method for classification is necessary, for it provides an intuitive and prin-
cipled tool for learning from high-dimensional vectors that represent images. On the 
other hand, the performance of kernel method strongly depends on the data represen-
tation of images, which means an accurate image representation algorithm is  
indispensable. Our paper is to enhance the image classification accuracy through the 
amelioration of both parts. 
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Fig. 1. Framework of proposed scheme (ScMMKL) 

Fig. 1 is the framework of the proposed scheme which mainly consists of sparse 
coding and multi-feature MKL (ScMMKL). The extended multi-feature MKL is de-
fined theoretically for feature fusion method. 

The process of our algorithm is as follows:  

1. 128-dimentional D-SIFT and 64-dimensional D-SURF descriptors are extracted 
from the images. 

2. Dictionaries are learned based on those features using sparse coding method. 
This step is of most importance in image sparse representation phase because a better 
dictionary yields more accurate image representation. 

3. Each feature point is denoted as a sparse vector based on the dictionaries trained 
previously. 

4. Represent the image as a single vector using spatial pooling method. Thus an 
image can be represented as a 128-dimentional (SIFT) or 64-dimentional (SURF) 
vector after the pooling. Then the two vectors are combined together. 

5. The last step of our algorithm is the multi-feature MKL. Kernel combinations 
are determined for each feature and the final decision can be generated.  

2.1 Implementation of Sparse Representation 

Comparing with k-means, sparse coding method represents images more precisely, 
for it describes each feature as a linear combination of basic vectors with minor  
 

 

Fig. 2. Visually explanation of sparse representation 
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quantization loss. Besides, the high dimensional space used to represent features can 
lead to an easier classification. Fig. 2 is the visually explanation of this procedure. 

There are two main steps to apply sparse coding to image representation: dictio-
nary learning and sparse representation. These two steps are similar to codebook  
generation and vector quantization in traditional BoW model using k-means. 

In the phase of dictionary learning, a small set of images should be selected from 
the whole image dataset randomly. For each image, D-SIFT and D-SURF features are 
extracted. Then the set of SIFT or SURF descriptors , , … ,  is used to 
optimize an empirical cost function to train the dictionary: 
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Where R  is a dictionary and ℓ ,  is a loss function of which smaller 
values yield better dictionaries. The loss function can be defined as the optimal value 
of the ℓ  sparse coding problem: 
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Where  is a regularization parameter. Here, we base our algorithm on [7] which is 
one of the most efficient dictionary learning algorithms. 

Given the trained dictionary, the image can be denoted by the pooling of all de-
scriptors which are sparsely represented. In detail, every descriptor can be represented 
as a sparse vector using: 

i i
x Dα≈   (3)

Where R  is the dictionary, and R  is the sparse representation of de-
scriptor xi. Least Angle Regression (LARS) algorithm [8] is used to solve this prob-
lem.  

In order to represent an image with a single vector P, a pooling method needs to be 
applied. Among the commonly used pooling methods such as average pooling, max 
pooling and square root pooling, the max pooling procedure is well established by 
biophysical evidence in visual cortex [9] and is empirically justified by many algo-
rithms applied to image categorization. So in our case, we also use max pooling de-
noted as follows: 

1 2max{| |, | |, ..., | |}j j j kjp α α α=   (4)

Where  is the j-th element in vector P and  is the j-th element in the i-th de-
scriptor . Thus, vector P is the sparse representation of the image. 

2.2 Multi-feature MKL 

As a typical kernel method, the performance of SVM is sensitive to feature type and 
kernel parameters, while MKL could generate the optimal result through combination 
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of different kernels. In our scheme, two features are involved and a new MKL method 
(multi-feature MKL) should be developed to achieve multi-feature classification. 

For the original MKL, the objective is to optimize jointly over a linear combination 
of kernels: 

*
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Where F is the number of kernels and 0, ∑ 1. The objective function 
can be denoted as follows [10]: 
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Where , max 0, 1  denotes the Hinge loss, C is the misclassification 
penalty, parameters R  and R are of an SVM. The decision function is like 
this: 
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Where  is the kernel response of the m-th kernel for a given sample x and T is the transposition of the vector . 
However, the original MKL could only be used in single feature classification. For 

our scheme, different kernel combinations will be learned for each feature and: 
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Where MF is the kernel combination for multiple features, n is the number of fea-
tures,  is the coefficient for each kernel combination and  is the kernel combina-
tion for feature i. The multi-feature MKL function can be defined based on (5): 
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Where mi is the number of kernels combined for feature i, kij is the j-th kernel in fea-
ture i and  is the coefficient for kij. In order to obtain the best performance, we 
need to consider the weight of both features and kernels. So the constraint for kernel 
coefficients should be changed to ∑ ∑ 1. Take (9) into (7) and we can 

get the final MKL decision function for our algorithm: 
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Through the above definition, this extended multi-feature MKL can be directly used 
for any multi-feature problem. 
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3 Experimental Result 

3.1 Experimental Setup 

We evaluate the proposed approach ScMMKL on three public dataset: Scene-15, 
Caltech-101 and Caltech-256. In the phase of sparse coding, the dictionaries trained 
for SIFT and SURF are R  and R  respectively. The outputs of sparse 
coding are a series of sparse codes, each representing one image.  

For multi-feature MKL, we base our algorithm on SimpleMKL [10] and extended 
original MKL to a multi-feature one. Certain parts of sparse codes are combined with 
labels (1 for positive and -1 for negative) to generate the training matrix and some 
other sparse codes without labels are used for testing. For detailed parameters, ref. 
[11] proposed that high values of C in (6) turned out to work better and C = 100 is 
found to perform the best in our case. Moreover, some iteration processes with cor-
responding stop criterion should be utilized to gain optimal parameters. Through  
experiments with small sample size, the duality gap with parameter of 0.01 is more 
suitable for our scheme. 

3.2 Kernel Selection Experiment 

The following experiment is designed to determine which kernel combination works 
best for our scheme. As Gaussian and polynomial kernels are most commonly used,  
seven kernel combinations are taken into consideration: 3P, 5G, 10G, 5G+1P, 5G+2P, 
5G+3P and 10G+3P, where G and P denote Gaussian and polynomial kernel respec-
tively. 

Fig. 3 shows the result for SIFT and SURF features on Scene-15 and Caltech-101. 
It can be seen that after eliminating polynomial kernels, the accuracy becomes slightly 
better for Scene-15, while the performance for Caltach-101 is extremely poor. Take 
SIFT feature for instance, the results for Scene-15 and Caltech-101 are 88.1% and  
 

  
 

    (a) SIFT                           (b)SURF 

Fig. 3. Result of different combination of kernels 
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Fig. 4. Classification accuracy on Scene-15 dataset 

 
Mountain (98.2%)              Forest (97.6%) 

 
                      Industrial (78.4%)              Highway (73.8%) 

Fig. 5. Sample images in Scene-15 dataset 

82.1% using 3 polynomial kernels. With only Gaussian kernels, though the accuracy 
rises up to 91.5% for Scene-15, the data for Caltech-101 are unacceptable with 68.3% 
accuracy and 5.75% standard deviation. This happens to SURF feature as well. In 
consideration of stronger practicability, the combination of 3 polynomial kernels is 
selected for both features. 

3.3 Scene-15 Dataset 

The Scene-15 dataset has 4,485 images in 15 categories. Experimental process is 
repeated for 10 times with randomly selecting training and testing images to obtain 
reliable results. Each category is treated as the test database in turn, and one versus 
rest scheme is employed. According to common practice, both of the chosen training 
set and testing set include 100 images. The final results are reported by the mean and 
standard deviation of classification rates per category which are recorded in each run. 

Fig. 4 is the result of single vs. multi feature and SVM vs. MKL comparison on 
Scene-15. It’s obvious that feature fusion and multi-feature MKL are better design 
choices.  

Fig. 5 shows some sample images from classes with highest and lowest classifica-
tion accuracies in Scene-15 dataset. Our scheme performs better for categories like 
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mountain and coast because the meaningful part takes a large percentage of the whole 
image, while the complicated background objects in industrial and highway may lead 
to misjudgments. 

Table 1 gives the performance comparison of our approach and some other me-
thods proposed in [1] [2] [3] [12]. The first 3 algorithms are based on sparse coding 
and SVM with the same experimental parameters comparing with ours. Ref. [12] is an 
improved BoW model using k-means and SVM.  

As can be seen from the table, our scheme with sparse coding and multi-feature MKL 
generates a satisfying performance in image classification. The ascendency of sparse 
coding to k-means is apparent comparing with [12], because it can represent images 
more precisely with less quantization loss. Besides, our scheme outperforms [1] by 10% 
due to the superiority of multi-feature MKL with combinations of kernels. Though the 
accuracies in [2] [3] are fairly high, our scheme still achieves 1% improvement. 

Table 1. Comparison on Scene-15 dataset 

Method Accuracy 
ScSPM[1] 80.28±0.93 

LScSPM[3] 89.75±0.50 
LR-Sc+SPM[2] 90.03±0.70 

Improved BoW[12] 79.0 
ScMMKL 90.83±1.01 

3.4 Caltech-101 Dataset 

The Caltech-101 dataset contains 102 classes with high intra-class appearance and 
shape variability. In this dataset, we randomly choose 15/30 images per category for 
training, another 15 and up to 30 images for testing. 

Table 2 gives the performance comparison of the method proposed in this paper 
and some other literatures [1] [2] [4]. [4] adopted an improved sparse coding method 
and an AdaBoost based classifier. As is shown in the table, our scheme outperforms 
the LR-Sc+SPM [2] by more than 11.5% for 15 training and 10% for 30 training. The 
superiority over [1] and [2] is reasonable because the accuracies in [1] and [2] fluc-
tuate due to the large volume of categories in Caltech-101 and the sensitiveness of 
single kernel function to categories, while the kernel combination in MKL can stabil-
ize the performance since it can adjust the weight of each kernel automatically to gain 
the optimal result. Our scheme also achieves a 3%-4% improvement compared with 
[4] whose classifier performs better than SVM. 

Table 2. Comparison on Caltech-101 dataset 

Method 15 training 30 training 
ScSPM[1] 67.00±0.45 73.20±0.54 

LR-Sc+SPM[2] 69.58±0.97 75.68±0.89 
Naveen et al.[4] 78.38 83.28 

ScMMKL 82.93±1.42 86.32±0.88 
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3.5 Caltech-256 Dataset 

The Caltech-256 dataset has 29,780 images of 257 classes. The intra-class variance 
including object location is much bigger than Caltech 101 and makes it a very chal-
lenging dataset so far for object recognition. The image number for training and test-
ing are set to 15, 30 and 45 as usual practice, and the experiment is repeated for 5 
times under each allocation. 

Table 3 gives the comparison results with [1] [2] [3] [4]. Significant improvement 
with 30%-40% gap can be seen from the table. With more categories in this compli-
cated dataset, the ascendency of MKL with strong adaptability is more pronounced. 

There is another reason for this advantage compared with [1] [2] [3] which use 
SPM kernel. It’s notable that the linear SPM kernel takes spatial information into 
consideration, but the high intra class variability and object location variability in 
Caltech-256 result in the totally different backgrounds of objects. The image is di-
vided into several patches by SPM, but some patches may have no correlation with 
target objects. Therefore, the consideration of background by SPM kernel may lead to 
misclassification and drag final accuracy down. 

It’s noteworthy that as the category number increases, the performance of our  
approach has a small fluctuation, providing a scheme with strong stability and  
practicability. 

Table 3. Comparison on Caltech-256 dataset 

Method 15 training 30 training 45 training 
ScSPM[1] 27.73±0.51 34.02±0.35 37.46±0.55 

LScSPM[3] 30.00±0.14 35.74±0.10 38.54±0.36 
LR-Sc+SPM[2] 35.31±0.70 N/A N/A 
Naveen et al.[4] 39.42 45.83 49.3 

ScMMKL 71.47±1.32 74.44±0.63 78.26±0.76 

4 Conclusion 

In this paper, we proposed an image classification scheme with sparse coding and 
multi-feature MKL techniques, which improves the image representation and classifi-
cation phases simultaneously. Furthermore, feature fusion scheme is used and the 
original MKL is redefined to adapt to multiple feature case, providing theoretical and 
experimental support to the extension of MKL. Experimental result shows that 
ScMMKL has a state-of-art performance on several public datasets with strong adap-
tability and stability. 
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