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Abstract. Currently applied process automation solutions rely on pre-
defined control recipes with preprogrammed material transfer routes in
the subjacent control software. Thus, the flexibility is limited with regard
to dynamic environment conditions such as a change of production job
priorities or a modification of the system layout. In this context, agent
technology is seen as a promising approach for providing such flexibility.
This paper presents a multi-agent system for batch process automation,
which introduces the concept of phase agents for controlling the physi-
cal equipment. The phase agents incorporate control software based on
the standard IEC 61131 for PLC programming in consideration of com-
pliance to the standard IEC 61512 Batch Control. In the context of
material transfers, a route finding algorithm is introduced for dynami-
cally calculating suitable routes. Moreover, demonstration applications
are presented to show the feasibility of the approach.

Keywords: Agent technology, batch process, flexible automation, dy-
namic routing.

1 Introduction

Current process automation solutions possess a limited capability concerning
agile adaptation to internal and external disturbances. The applied traditional
scheduling approaches with their rigid and centralized control structures suffer
from the lack of flexibility and configuration abilities especially if unexpected
events occur, such as the unavailability of resources or sudden changes in task
priorities [1,2]. The lack of adaptability can therefore result in deviations from
the initial working plans causing significant time and financial losses [3]. Con-
sidering the fact that resources have limited capacity over an observed time
period, the application of techniques for workload balancing is essential to avoid
workflow bottlenecks. The selection of a resource with the lowest workload for
the assignment of a new job from the list of unfinished jobs can maximize the
system throughput, while minimizing work in process and lowering the level of
operating expense [4].
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Furthermore, material transfers between destinations in a complex pipe sys-
tem have to be organized considering the current system state as the needed
transportation time could significantly influence the efficiency of the overall sys-
tem. Regarding the complexity of these systems and their dynamic nature (e.g.
a component breakdown can cause that parts of the systems are not available),
the process of choosing the best route at a specific moment can be difficult.
If a production system incorporates a high routing flexibility, then during the
breakdown, repair, or maintenance of a required resource, materials can be re-
routed dynamically to other appropriate resources for processing the particular
product [5]. However, the typical approach used in today’s factories is based on
a centralized global routing control with standardized path-planning algorithms
for constituting the routing paths in advance [6]. A piping and instrumentation
diagram (P&ID) of an existing winery’s storage tank system, which consists of
60 tanks, a set of pumps and numerous valves, is presented in [7]. The currently
used automation solution for the given use-case involves 1770 manually hard-
coded routes for each combination of source and destination tank. Evidently,
a modification of the tank system, e.g. the integration of an additional tank,
requires modifying the implemented set of routes in the programmable logic
controller (PLC). In a matrix of 60 tanks with 1770 routes, installing a new
tank requires 60 additional routes to be implemented and therefore 1830 routes
in total. Applying changes to the pipe layout between the tanks results in even
more complex and time consuming efforts as the already implemented programs
realizing the routes have to be reprogrammed accordingly.

To overcome the limitations of current automation solutions, the introduction
of artificial intelligence techniques is seen as a promising trend in the process
industry [8]. In this context, multi-agent technology is recognized as a powerful
tool for developing highly flexible, robust, and reconfigurable industrial control
solutions [6,9]. It offers a convenient way to cope with the dynamics in large com-
plex systems, making the control of the system decentralized, thereby reducing
the complexity, increasing flexibility, as well as enhancing fault tolerance [10].
Hence, agent technology is proposed for usage in the process domain according
to an analysis of its advantages and disadvantages as presented in [11].

For improving the performance of batch process systems, this paper intro-
duces a multi-agent system with dynamic scheduling and routing strategies.
The schedule is not calculated in advance, but determined due to the dynamic
negotiations between the agents. Considering the significance of route planning
for the batch process domain, a dynamic route finding algorithm is presented for
improving the flexibility of the system. Besides, the agent-based system is de-
signed to be compliant to the commonly applied industrial standards IEC 61131
[12] for programmable logic controllers (PLC) and IEC 61512-1 Batch Control
[13].

This paper is structured as follows. Section 2 briefly introduces the standard
IEC 61512. The agent system architecture is presented in Section 3 and the
dynamic route finding algorithm is detailed in Section 4. Section 5 is concerned
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with two implementation examples of the given approach. Finally the paper is
concluded in Section 6 with a summary and an outlook on further tasks.

2 IEC 61512 Batch Control

The standard IEC 61512-1 Batch Control—Part 1: Models and Terminology
(IEC 61512) [13], respectively its counterpart ISA S88.01 Batch Control, in-
troduces “a framework for the specification of requirements for batch process
control, and for their subsequent translation into application software” [14]. The
standard is widely accepted in the industry and currently applied batch man-
agement systems utilize it as the basis for their structural models to ensure a
certain grade of comparability and interoperability [15].

IEC 61512 provides reference models and structures as well as definitions con-
cerning processes (process model), physical equipment (physical model) and con-
trol software (procedural control model) in the domain of process automation.
Generally, the introduced hierarchical models comprise four significant layers,
such as procedure, unit procedure, operation and phase in the case of the pro-
cedural control model. In this context, actual process functionality is achieved
by mapping elements of the procedural control model onto those of the physical
model.

Concerning the equipment entities and procedural elements, a general concept
for their operational modes and states is presented. The momentary operational
mode of an entity (automatic, semi-automatic or manual mode) constitutes its
execution behavior especially regarding the extrinsic influence on changing its
operational state. Concerning the operational state, the standard provides a
model of a state machine containing a set of states and according commands to
trigger transitions between the states (see Fig. 1). If an entity is in a quiescent
or final state, it performs currently no operation and waits for the next com-
mand. On the contrary, during a transient state the entity makes use of sensors
and actuators to provide some kind of process functionality. In such a state a
transition is triggered either by an extrinsic command as well or by the entity
itself after fulfilling specific conditions (e.g. reaching a safe state of the process
in the state stopping or completing a process task in the state running).

The general strategy for the execution of a process is described within the
concept of recipes. Control recipes, which are stored and managed using a PC-
like batch server, constitute in a hard-coded manner the physical equipment to
be used and are linked with the according control software hosted on controllers
such as PLCs. Theoretically, the standard allows this connection on any of the
four described layers of the structural models, but commonly the industrially
applied batch control systems apply the linkage of control recipe and control
software on the phase layer of the procedural control model with corresponding
equipment modules of the physical model [14]. A so-called phase logic interface is
employed for performing the actual connection. The process steps of the control
recipe, which determine the execution sequence of the production process, are
converted into commands for the linked phases and their state machines in the
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Fig. 1. State machine model of the standard IEC 61512 [13]

PLCs. Furthermore, status information is thereby sent from the PLCs about the
current status of the phases back to the batch server.

3 Agent System Architecture

Process automation represents a complex domain whose functions are composed
of a mixture of physical and non-physical components. In this context, a process
automation system can be arranged in a “hierarchical” set of layers as it is
commonly done in current industrial solutions. Figure 2a depicts the layers of
a recently introduced industrial batch management system in the framework of
the zenon software developed by COPA-DATA. To facilitate its acceptance in
the industry, this system is generally compliant to the standard IEC 61512 (see
Section 2).

Using the equipment editor, the user specifies the physical components and
PLCs with the provided phases for their usage in the batch management system.
The recipe editor of the zenon editor is employed for creating master recipes,
which incorporate the basic process steps for producing specific products without
referring to any distinct equipment or control units. The zenon runtime is then
used for deriving the control recipe from the master recipe by linking the recipe
phases with the corresponding equipment phases. Finally, the control recipe is
executed with the recipe execution system of the zenon runtime, which actually
produces a batch.

Based on the analysis of the industrial batch management system, four layers
can be specified: management, planning, scheduling and executive layer (see
Figure 2b). Accordingly, different types of agents are employed for realizing the
functionality of these layers (see Figure 2c).

The management layer is responsible for keeping track of the entire function-
ality of the system and provides a communication interface with the external
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Fig. 2. Structure of an industrial batch management system (a), specified layers (b),
and architecture of the MAS (c)

environment. The Directory Facilitator Agent (DFA) manages a list of the pro-
cess functionalities, which are provided by the Phase Agents (PA) controlling
the physical equipment. The Order Agent (OA) represents an interface to hu-
man operators, which can be used for generating product orders. In this case the
OA looks up the according recipe and creates a job comprising product type,
amount and job ID. Subsequently, the job is delegated to a Task Agent (TA),
which is in charge of the recipe execution for producing the batch.

The planning layer is reponsible for determining the appropriate phases and
thereby the equipment and resources, which can be employed for the recipe exe-
cution. The Task Agent chooses the phases for the recipe execution by searching
for PAs providing suitable services in the list of the DFA. As soon as the ap-
propriate phases are identified, the tasks for the first operation of the recipe are
created and sequentially delegated to a Work Agent (WA). Such an operation
involves the actual production tasks (such as heating up material in a reactor
tank) as well as transfer tasks between tanks and reactors with a given amount
of material to be transported. Upon completion of all tasks of an operation, the
tasks for the following operation are created and delegated. After finishing all
operations and thereby the production of the batch, the TA informs the OA.

The scheduling layer is responsible for negotiating with the resources and for
the according task allocation. Work Agents govern the execution of production
and transfer tasks. In the case of the latter, this involves the dynamic calculation



42 W. Lepuschitz et al.

Fig. 3. Example communication between work agent and phase agent

of a route through the system by employing a route finding algorithm, which is
described in Section 4. For issuing the execution of a task, commands are sent to
the corresponding PA(s) to induce the activation of its (their) provided services
(see Figure 3). In the case of a transfer task, the calculated route is also sent
to the PA(s) in charge of the transfer equipment (i.e. pumps and valves). Upon
completion of the task, the WA notifies the TA for receiving the next task.

The execution layer is in direct control of the production system’s equipment.
On this layer, the production tasks are executed and if a failure or disruption
is diagnosed, the superjacent layers are informed. Each Phase Agent controls
a set of physical components for providing the functionality of a phase, such
as heating up material in a designated reactor tank to a certain temperature.
Regarding the provided phases with their functionality hard-coded in the PLCs,
each PA represents a wrapper around a distinct phase acting thereby as an
interface between the according IEC 61131 program and the agent framework.
Hence, also existing industrial solutions based on phases could be integrated
into an agent-based production system. Compared to these phases realizing the
actual production tasks, the PAs in charge of transfer equipment are able to
open the valves and activate a distinct pump dynamically according to the route
received from a WA in the case of a transfer task.
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While current industrial solutions constitute the used equipment hard-coded
in the control recipes, the presented agent system architecture allows the dy-
namical allocation of jobs to the process cells.

4 Route Finding Algorithm

For dynamically calculating the route from one component of the system to an-
other one, a route finding algorithm based on Dijkstra’s algorithm [16] is invoked.
An ontology containing the revelant information about the system components
and the way they are connected to each other is used in an Extensible Markup
Language (XML) format as a representation of the physical equipment. Since
Dijkstra’s algorithm relies on nodes and directed weighted edges, it is necessary
to map tanks, valves, pumps, pipes and other components to an according graph
data structure (see Figure 4).

Pipe segments with a positive length number are directly used as edges. Weld-
ing points generally represent the pure crossing of pipe segments while connection
points are commonly applied for the linkage of pipes with components such as
pumps and valves. A direction information can also be applied to the connection
points, which is essential for defining allowed flow directions through a pump or
the exit and entry points of tanks. Furthermore, it is possible to define complex
components denoted as topology, which themselves consist of sub-components
(e.g. a crossing valve for three or more pipe segments modelled by using a set
of basic valves). Path restrictions in the form of a white list (allowed paths) or
black list (forbidden paths) may also be defined for these topologies. Finally a
media-media compatibility matrix and a material-media compatibility matrix
constitute if liquids (media) are compatible with each other concerning consec-
utive liquid transfers and if they might be transferred through pipes made of
specific materials.

The components are linked to a type specific set of variables, which are re-
quired for incorporating the following route finding criteria:

– Avoid current transfers: Components that are currently in use by another
active transfer may not be considered.

– Avoid reserved routes: Components that have been marked as reserved for
a later transfer may not be considered.

– Use functional state: Components that are physically in a disallowed state
may not be considered.

– Use service state: Components that are marked as blocked for maintenance
may not be considered.

– Use medium-medium compatibility matrix: Uncleaned components, which
have been in contact with a medium incompatible to the requested transfer
medium may not be considered.

– Use material-medium compatibility matrix: Components that are made
of a material incompatible to the requested transfer medium may not be
considered.
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Fig. 4. Class diagram of the ontology defining the representation of the physical system
components

As the route finding algorithm calculates the route from node to node, these
criteria act likewise to a filter reducing the set of neighbours of each node, which
can be considered for calculating the next route segment. Moreover, the appli-
cation of backtracking allows more complex route finding behaviors such as the
criterion of having to use a pump for the transfer. In this case, the calculated
route must contain one pump component, while taking into account that the
parts of the route before but also after the pump have to be determined in
regard to the total transport costs.

5 Implementation of the Approach

The following sections reveal details about the demonstration applications, which
prove the feasibility of the approach.
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Fig. 5. The laboratory process plant (a) and a screenshot of the graphical user interface
provided by the order agent (b)

5.1 Implementation on the Laboratory Process Plant

A laboratory process plant is used as the target system for implementing the
approach (see Figure 5a). It encompasses common industrial components for pro-
viding training possibilities in regard to open-loop as well as closed-loop control
technologies. Even though the complexity of the recipes to be executed on this
laboratory process plant is rather limited, it is suitable for the implementation
of a demonstration application.

The agent system is hosted and executed on a PC within the Java Agent
Development Framework (Jade) [17] using its provided services such as the Di-
rectory Facilitator. The phases are provided on an industrial PLC of the type
CompactLogix by Rockwell Automation [18]. For enabling the PAs (with their
“agent”-part also residing in the PC) to issue state changes of their phases (see
Section 2) and receive status updates, a phase logic interface in the form of Java
functions is employed for writing and reading tags (i.e. variables) in the data ta-
ble of the PLC. Using a simple Graphical User Interface (GUI), the operator can
choose a recipe from a list of available recipes and specify the amount of liquid
to be processed (see Figure 5b). The GUI offers a set of buttons (start, pause,
continue, etc.) for changing the state of the momentarily processed recipe and
returns according information. Due to the size of the used laboratory process
plant, multiple recipes cannot be processed simultaneously. However, the equip-
ment components and phases to be used are determined dynamically based on
the operations specified in the recipe.

5.2 Evaluation of the Path Finding Algorithm on a Complex Pipe
Layout

Due to the fact that the presented laboratory process plant allows only very
limited routing cases and contains only basic components, the route finding
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Fig. 6. Visualization in zenon with transfer tasks in execution

algorithm is tested also on a more complex pipe layout for demonstrating its
benefits. An ontology representing the pipe layout is provided in an according
XML file. A visualization and simulation of this pipe layout is implemented using
the Supervisory Control and Data Acquisition (SCADA) software zenon [19].

As can be seen in Figure 6, the visualization incorporates a set of five tanks
and external sources (ES101-ES106) as well as external targets (ET101-ET103
and DR101). The rectangular blocks in the screenshot represent a specific type
of valves (realized as topologies with sub-components), which are employed to
connect the horizontal with the vertical pipe lines. Transfer tasks between the
tanks and the external sources and targets can be created taking also the criteria
presented in Section 4 into account.

The communication between zenon and the routing algorithm is realized on
the basis of an OPC Unified Architecture (OPC UA) interface [20] with a set
of variables on the OPC UA server to which both zenon and the route finding
algorithm have access. After pressing the button “propose route”, the route
information (i.e. source, destination, quantity, etc.) and the status variables of
the components (e.g. a component is already in use for a previously started
transfer task) are read by the route finding algorithm for starting the calculation.
Upon completion, the calculated route is written likewise on a corresponding set
of proposal variables for the components and thereby the visualization is able
to display the proposed route. Now the operator can start the transfer task at
which an underlying simulation modifies the amount of liquid in the shown tanks
accordingly and stops the process after transferring the desired amount of liquid.

Measurements show that a route calculation for the given pipe layout requires
in average 5 to 6 seconds on a Dual-Core PC with 2 GHz and 2 GB RAM with
no clear correlation to the chosen route criteria (see Figure 7). As process times



Phase Agents and Dynamic Routing for Batch Process Automation 47

Route T101 to ET101
1 2 3 4 5 Average

Avoid blocked (reserved) routes 5891 5500 5454 5469 5453 5553,4
Avoid current transfers 5500 5657 5407 5360 5422 5469,2
Use service state 5468 5593 5469 6141 5343 5602,8
Use functional state 5344 5328 5265 5312 5344 5318,6
Use a pump 5281 5407 5297 5297 5281 5312,6
Use medium/medium compatibility 5469 5485 5469 5406 5469 5459,6
Use material/medium compatibility 5437 5484 5734 5406 5360 5484,2
All criteria used 5672 5578 5563 5563 5562 5587,6

calculation time in milliseconds

Fig. 7. Required time for the route calculation with single criteria activated (first seven
rows) or all criteria activated (last row) in 5 performed runs (columns)

in the batch industry are commonly in the range of minutes, hours or days, the
calculation time is well within acceptable boundaries.

6 Conclusion

This paper presents a multi-agent system for batch process automation based
on phase agents for controlling the physical components. The phase agents are
wrapped around control software based on the standard IEC 61131 for pro-
gramming PLCs. Thus, the phases can be determined and executed dynamically
according to the executed production recipe. Moreover, a route finding algorithm
is introduced, which is capable of calculating routes for material transfers in con-
sideration of various criteria such as components used or reserved by previously
calculated routes. Both the agent system and the route finding algorithm are
versatile concerning as a system modification requires just adding or removing
the according PAs and a change of the ontology representing the system.

The feasibility of the multi-agent system is shown by its implementation on a
laboratory process plant. Due to its limited size, the route finding algorithm is
also evaluated on a more complex pipe layout in conjunction with an industrial
batch management system in the framework of the SCADA software zenon.

Future research efforts will be concerned with testing the presented approach
on an extended laboratory process plant, which allows the execution of more
complex recipes requiring also more extensive transfer tasks. Moreover, an XML
export wizard is currently in development, which allows the automatic generation
of the system ontology based on a given visualization in zenon.
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