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Abstract. We present an ongoing effort in developing efficient agent-
based algorithms for solving the vehicle routing problem with time win-
dows. An abstract algorithm based on a generic agent decomposition of
the problem is introduced featuring a clear separation between the local
planning performed by the individual vehicles and the global coordina-
tion achieved by negotiation. The semantics of the underlying negotiation
process is discussed as well as the alternative local planning strategies
used by the individual vehicles. Finally a parallel version of the algorithm
is presented based on efficient search diversification and intensification
strategies. The presented effort is relevant namely for (i) yielding results
significantly improving on all previous agent-based studies, (ii) the in-
clusion of relevant widely-used benchmarks missing from these studies
and (iii) the breadth and depth of the provided evidence and analysis
including relevant comparison to the state-of-the-art centralized solvers.
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1 Introduction

The vehicle routing problem with time windows (VRPTW) is one of the most
widely studied problems in the the area of operation research (OR), featuring
in many real-world logistics or supply chain management applications. It is a
problem of finding a minimal set of routes starting and ending at a single depot
serving a set of geographically scattered customers, each within a specific time-
window and with a specific demand of goods. The VRPTW has been extensively
studied for nearly thirty years. Due to the high complexity of the problem itself
as well as it’s numerous applications the emphasis has been put in developing
efficient heuristic algorithms providing good quality solutions in reasonable time,
with most successful algorithms being centralized and monolithic e.g. [10,12].

The multi-agent based solving approaches, on the other hand, have not re-
ceived much attention by the OR community. However, the multi-agent systems
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are an emerging prominent architecture with respect to modeling new-generation
systems based on smart actors and their intelligent coordination, promoting the
autonomy of the actors and the clear separation of local decision making and
the global cooperation that is beneficial in many real world scenarios. With the
shift seen all over the industry towards the internet of things, smart objects
and decentralized control systems, this work represents an effort to provide a
sound alternative to the classical, centralized algorithms. Central to the pre-
sented effort is the focus on performance, analysis and relevant comparison to
the state-of-the-art classical algorithms missing from previous similar studies.

2 Problem Statement and Notations

Let {1..N} represent the set of customers with the depot denoted as 0. For
each customer ci let (ei, li, si, di) denote the earliest/latest service start times
(time window), service time and the demand. Let a sequence of customers
〈c0, c1, ..cm, cm+1〉 denote a single route with c0 and cm+1 denoting the depot.
Let D denote the vehicle capacity.

The objective of the VRPTW is finding a minimal set of routes serving all
customers. For each route 〈c0, c1, ..cm, cm+1〉 the sum of corresponding cus-
tomers’ demands must be lower than the capacity of the vehicle serving the
route

∑m
1 di ≤ D (capacity constraint) while the service at each customer ci

must begin within the interval given by (ei, li) (time-windows constraints).

3 Related Work

As mentioned, the VRPTW has been extensively studied for many years. We
refer the reader to the excellent surveys of the classical methods [2,3,14] — both
exact and approximate — and focus mainly on relevant agent-based studies.
The performance of individual algorithms is evaluated using the well known
cumulative number of vehicles (CVN) metric, corresponding to the total number
of routes across all problem instances over the corresponding benchmark.

3.1 Classical Algorithms

For the smaller Solomon’s benchmark (100 customers) the best-known overall
result was presented by [10] with a CVN of 405. The algorithm is based on the
ejection pools principle, performing very good potentially unfeasible insertions
of customers to individual routes and subsequently recovering the feasibility by
ejecting some other customers from the unfeasible routes. The insertion-ejection
phase is interleaved with a local search procedure dynamically improving the
solution throughout the solving process.

An improved algorithm presented in [12] is based on similar concepts. An
ejection-pools mechanism is used accompanied by a powerful insertionmethod de-
noted as squeeze aswell as a search diversification perturb procedure. The squeeze
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method also employs a specific adaptive local search procedure used to repair
potentially unfeasible intermediate solution using heuristic carried over from the
previously mentioned work. The algorithm achieves a CVN of 10290 over the ex-
tended Homberger’s benchmark (200–1000 customers).

3.2 Agent-Based Algorithms

As mentioned above, none of the previous agent-based studies were particularly
successful. The common pitfalls were the lack of relevant comparison to the
state-of-the-art algorithms and a generally weak performance.

The algorithm presented in [5] builds on the concepts of a Shipping Com-
pany and a Shipping Company Truck. The planning is based on the well known
contract net protocol (CNP) accompanied by a simulated trading improvement
strategy based on [1]. No relevant performance assessment is provided.

The algorithm presented by [9] is based on agents representing the customers,
individual routes and a central planner agent. A sequential insertion procedure
based on Solomon’s I1 heuristic is followed by an improvement phase in which
the agents propose moves gathered in a ”move pool” with the most advantageous
move being performed. Also a route elimination routine is periodically invoked
which is not well described in the text. The algorithm achieves a CVN of 436
over the Solomon’s benchmark. No relevant runtime information is provided.

In [4] an algorithm is introduced based on Order Agent — Scheduling Agent
— Vehicle Agent hierarchy. The algorithm is based on a modified CNP insertion
procedure limiting the negotiation to agents whose routes are in proximity of the
task being allocated, focusing on the efficiency of the negotiation process rather
than solution quality. No relevant performance information is provided.

4 Algorithm for VRPTW Based on Agent Negotiation

This work thus represents a rigorous effort aimed at developing competitive
agent-based VRPTW algorithms. An abstract negotiation framework is pre-
sented featuring the clear separation between the local planning of individual
vehicles and the global coordination achieved by negotiation. The alternative
negotiation semantics are discussed as well as the alternative local planning
strategies. Finally a parallel algorithm is presented. Only brief overview is pro-
vided, referring the reader to our previous works for further details [7,8].

4.1 Abstract Algorithm

Underlying the negotiation based solving process is a fitting agent-based de-
composition of the solved problem, featuring a top layer represented by a Task
Agent, middle layer represented by an Allocation Agent and a fleet of Vehicle
Agents present at the bottom level of the architecture.

Task Agent acts as an interface between the algorithm’s computational core
and the surrounding infrastructure. It is responsible for registering the tasks
and submitting them to the underlying Allocation Agent.
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Input: Ordered set of customers C, Fleet of empty vehicles — initial solution σ
Output: Solution σ — complete or partial based on success of the process

Procedure negotiate(C,σ)
1: Init reallocate counters r[c] := 0 for all c ∈ C;
2: while (exists(c ∈ C), r[c] ≤ reallocationLimit)
3: dynamicImprove(σ);
4: Select first t ∈ {c ∈ C, r[c] minimal};
5: I := {c ∈ σ, costCommit(c, v) is minimal};
6: if (I �= ∅) then
7: Randomly select v ∈ I ;
8: commit(c, v);
9: remove c from C;

10: else
11: r[c] := r[c] + 1;
12: endif
13: endwhile
14: finalImprove(σ);
15: return σ;

Fig. 1. The Abstract Global Coordination Process

Allocation Agent instruments the actual solving process by negotiating with
the Vehicle Agents. The negotiation is conducted based upon task commit-
ment and decommitment cost estimates provided by the Vehicle Agents.

Vehicle Agent represents an individual vehicle serving a route. It provides the
Allocation Agent with the above mentioned inputs. These are computed
based on local (private) Vehicle Agent’s plan processing.

Figure 1 illustrates the abstract global coordination negotiation process instru-
mented by the Allocation Agent. In essence it corresponds to a series of negotia-
tion interactions between the Allocation Agent and the vehicles represented by
the Vehicle Agents. The customers are allocated to individual vehicles based on
the commitment cost estimates provided by the vehicles (lines 5–10) computed
based upon the particular local planning strategy being used.

Within the dynamic or the final improvement phases (lines 3, 14) the partial
solution being constructed can also be modified in a series of further interac-
tions between the agents in order to e.g. escape local minima, address secondary
optimization criteria etc. Thus a particular negotiation semantics is given by
specifying the exact semantics for the dynamic and final improvement phases.

Both the underlying architecture and the negotiation based coordination pro-
cess are abstract. On the other hand the particular local planning strategies used
by the individual vehicles may reflect the potentially rich semantics of the solved
real-world problem e.g. heterogeneity of the fleet, loading constraints, complex
optimization objectives etc. We argue that due to the clear separation between
the abstract global coordination achieved by negotiation and the local planning
strategies used by the individual vehicles the agent-based problem decomposition
presents some key advantages for modeling specific real-world environments.
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Upon termination, in case there are still some unserved customers (solution
σ is not complete), the process can be restarted with a different fleet size or an
additional vehicle can be added. Determining a fitting fleet size for the initial
solution σ is thus a significant factor affecting the algorithm’s efficiency, as is
the ordering of the customers within the set C. These two attributes are subject
to meta-optimization within the parallel algorithm discussed later in the text.

4.2 Negotiation Semantics

One of the core research objectives behind the presented effort is to explore the
possible semantics of the negotiation process and the alternative local planning
strategies in an effort to provide an efficient algorithm for the VRPTW.

We considered three general algorithm settings with respect to the used ne-
gotiation semantics: (i) Algorithm-B baseline setting with neither dynamic nor
final improvement phases being employed, (ii) Algorithm-FI with only the fi-
nal improvement being employed and finally (iii) the full fledged Algorithm-DI
featuring both improvement phases.

Three alternative improvement methods were considered with respect to the
dynamic and final improvement phases, described in detail in [7]. The basic
semantics in all three cases is that each vehicle identifies some subset of its
customers and each of these customers is then allocated in an auction process to
the vehicle with the cheapest commitment cost estimate. We refer to this action
as a reallocation of a single customer. Thus the three methods differ in the choice
of the particular subset of customers to be reallocated within each route.

4.3 Local Planning Strategies

Two particular local planning strategies were considered described in [7]. Both
are based on the well known cheapest insertion heuristic principle. The travel
time savings (TTS) heuristic is notoriously known to the OR community. The
commitment cost estimates correspond the the increase in travel time caused by
the insertion of the corresponding customer to the route. The TTS heuristic thus
leverages the spatial aspects of the problem, preferring customers in proximity
of the corresponding agent’s route irrespective of their time-windows properties.
It has been shown [15,11] however, that a strategy exploiting also the temporal
relations of the individual deliveries can yield significantly better results.

Thus the slackness savings heuristic (SLS) introduces elements to the cost
structure based on the constraining effects the insertion of a customer has on the
corresponding route schedule. Consider a route with customers having wide time-
windows spaced within the route in such a way that the service at each customer
starts at the beginning of the corresponding time-window. Then possibly a detour
can be made prior to serving any of the customers with the resulting shift in the
route schedule not resulting in the unfeasibility of the route. Now imagine adding
a customer to the end of the route with a very short time-window. The considered
potential detours are no longer feasible. This corresponds to a reduction of the
route slackness — a situations the SLS heuristics effectively helps to avoid.
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4.4 Algorithm Complexity

Given a problem with N customers, the abstract algorithm complexity is

Ovn +Oord +N × (
Odyn +Oalloc

)
+Ofin (1)

where Ovn is the complexity of estimating the initial fleet size, Oord being the
complexity of reordering the set of customers C prior to the solving process.
The Odyn and Ofin correspond to the complexities of the dynamic and final
improvement phases while Oalloc represents the complexity of the auction process
of finding the agent with the best commitment cost estimate.

The complexity of the algorithm thus corresponds to the particular negotia-
tion semantic and local planning strategy being used. In the full Algorithm-DI
setting the resulting algorithm worst case complexity is O(N3) in case of the
TTS heuristic and O(N4) for the SLS heuristic [7].

5 Parallel Algorithm with Diversification and
Intensification Strategies

As already mentioned, the important factors contributing to the efficiency of
the algorithm are (i) the improvement methods to be used within the abstract
negotiation process, (ii) the used local planning strategy and (iii) the used initial
ordering of the set of customers C.

By analyzing the three discussed general algorithm settings, we discovered
that the algorithm is sensitive to the choice of the initial customer ordering in all
three cases. The sensitivity was most pronounced with the simpler Algorithm-B
and Algorithm-FI settings and less so with the full Algorithm-DI setting. In-
terestingly, none of the orderings was dominant across all problem instances.
To the contrary, each ordering performed well on a different subset of problems
instances, suggesting that the instances differ in their nature favoring some par-
ticular orderings. Given a specific problem instance we thus found that (i) some
orderings perform well for both the simple and the complex algorithm settings,
(ii) the best results are most consistently found by the more complex settings
over these orderings and (iii) that using these orderings even the simpler settings
often return very good results.

Let the term particular algorithm denote an algorithm with a specific nego-
tiation semantic and local planning strategy. Given a set of customer orderings
Ω and a set of particular algorithms Δ the tuple [O ∈ Ω,A ∈ Δ] corresponds to
a single executable algorithm instance within the algorithm configuration space
Ω×Δ. The introduced parallel algorithm is thus based on traversing the diversi-
fied algorithm configuration space Ω′×Δ′. In order to exploit the characteristics
of the agent-based algorithm discussed above a specific search diversification and
search intensification strategies were introduced. A diversified set of particular
algorithms Δ′ was tailored based on extensive experimentation and tuning of
parameters using all three discussed algorithm settings. Likewise a diversified
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Table 1. Solution quality comparison to the state-of-the-art algorithms

Size Classical [10,12] Agents [9] Algorithm-DI Parallel

100 405 +31 (7.7%) +24 (5.9%) +16 (4.0%)

200 694 – +21 (3.0%) +12 (1.7%)

400 1380 – +38 (2.8%) +29 (2.1%)

600 2065 – +56 (2.7%) +43 (2.1%)

800 2734 – +89 (3.3%) +71 (2.6%)

1000 3417 – +115 (3.4%) +83 (2.4%)

All 10695 – +343 (3.2%) +254 (2.4%)

set of orderings Ω′ was generated from a set of canonical analytically sound
orderings using two specific ordering diversification operators introduced in [8].

The parallel algorithm traverses the set Δ′ starting with the simplest settings
and moves towards the most complex ones. For each particular algorithmAi ∈ Δ′

the whole set Ω′ is traversed with all the corresponding algorithm instances be-
ing executed in parallel. Then, prior to processing the next particular algorithm
Ai+1 ∈ Δ′, the set Ω′ is pruned and some orderings are discarded based on the
specific ordering pruning strategy being used. Three alternative pruning strate-
gies were introduced — the BP (Basic Pruning) strategy, the CSP (Minimal
Covering Set) strategy and the hybrid CSP+BP strategy discussed in [8].

Also importantly, the parallel algorithm also efficiently mitigates the pre-
viously identified performance penalty resulting from restarting the negotiation
process with an increased fleet size when the resulting solution σ is not complete,
having a multiplicative effect on the resulting complexity [7]. This is achieved
by (i) executing individual algorithm instances with the initial fleet size always
targeting a new best found solution and (ii) terminating them prematurely in
case they are not likely to yield such an improvement.

Thus the parallel algorithm uses an efficient search diversification strategy
based on traversing the diversified configuration space Ω′ ×Δ′ generated using
two specific ordering diversification operators and by using alternative negotia-
tion semantics within the abstract algorithm negotiation process. The inherent
complexity increase is partially offset by an efficient search intensification strat-
egy consisting of ordering pruning, improved restarts strategy and terminating
the not promising algorithm instances. For further details refer to [8].

6 Experimental Validation

The experimental evaluation is based on the two widely used benchmarks of
Homberger and Solomon [6,15]. Together these benchmarks provide a total of
356 problem instances of 6 different sizes of 100 – 1000 customers featuring 6
instance types differentiated by topology and time windows properties.
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Table 2. Runtime comparison to the state-of-the-art algorithms

Nagata[12] Lim[10] Parallel

Size Avg. RT Avg. RT Avg. RT Anytime RT

200 1 min 10 min 10 s 57 ms

400 1 min 20 min 2 min 300 ms

600 1 min 30 min 8 min 2 s

800 1 min 40 min 24 min 7 s

1000 1 min 50 min 54 min 14 s

6.1 Overall Solution Quality Analysis

The comparison to the state-of-the-art algorithms in terms of the primary op-
timization criteria is presented by Table 1. The results are listed for individ-
ual problem instance sizes. The Classical [10,12] and the Agents [9] columns
correspond to the state-of-the-art classical and agent-based algorithms. The
Algorithm-DI column corresponds to the full Algorithm-DI setting combined
with the SSL local planning strategy as presented in [7]. The last column cor-
responds to the parallel algorithm with the CSP+BP pruning strategy from
[8]. The results correspond to the cumulative number of vehicles (CVN) for the
second column and the respective absolute and relative error for the remaining
columns.

In overall the parallel algorithm achieved a CVN of 10949 over all the bench-
mark instances, corresponding to a 2.4% relative error with respect to the state-
of-the-art centralized algorithms, equalling the best known results for 64% of the
problem instances. This represents a significant improvement over all previously
presented agent based algorithms.

6.2 Runtime and Convergence Analysis

The comparison in terms of runtime with the state-of-the-art algorithms is pre-
sented by Table 2. The listed values correspond to the average runtime for indi-
vidual instance sizes. The last two columns correspond to the average composite
runtime — the sum of runtimes of all algorithm instances — and the average
anytime runtime — the time when the best solution was first found considering
a parallel execution of the competing instances within the parallel algorithm.

The results illustrate exceptional anytime convergence of the parallel algo-
rithm, with the time before the best solution is found outperforming even the
state-of-the-art solvers. The composite runtime is also competitive. We must
note, however, that: (i) compared algorithms outperform presented algorithm in
terms of CVN and (ii) are not computationally bound.

6.3 Negotiation Semantics Analysis

The abstract algorithm enables for a number of alternative particular algo-
rithms to be tailored based on the particular negotiation semantics and the local
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Table 3. Alternative particular algorithms comparison

Algorithm Setting Slackness Savings Travel Time Savings

Algorithm-B 7.6% 23.1%

Algorithm-FI 5.5% 11.1%

Algorithm-DI 3.0% 5.2%

planning strategy being used. To provide an insight into the influence of the used
configuration to the resulting solution quality we assessed six relevant particular
algorithms based on the three general algorithm settings and the two introduced
local planning strategies. The results — corresponding to the relative error in
terms of CVN over the 200 customer instances — are listed in Table 3.

With the Algorithm-B setting there is no possibility to recover from a poten-
tially bad customer allocations taking place in the early stages of the solving
process. For example, an early allocation may render some of the subsequent
allocations unfeasible due to the time window or capacity constraints, effectively
preventing some parts of the search space from being traversed. The Algorithm-
FI setting extends the Algorithm-B setting by allowing some customer reallo-
cations during the final stage of the allocation process. At this stage, however,
the partial solution σ is already tightly constrained and the chance of reallocat-
ing a customer within σ is correspondingly small. The full Algorithm-DI setting
significantly outperforms the Algorithm-FI setting. Arguably this is due to the
fact that the improvements are performed dynamically throughout the allocation
process on smaller and therefore less constrained partial solutions.

In overall, our experiments proved that the number of successful reallocations
within the dynamic and the final improvement phases is actually very limited,
with the success ratio dropping significantly towards the end of the solving pro-
cess. This further highlights the fact that it is very difficult to escape local
minima once the solution σ gets denser. We argue that this could be effectively
addressed by introducing extensions to the negotiation semantics allowing for
more complex trading moves than simple task reallocations. Our preliminary
experiments — not part of this study — suggest that introducing a semantics
enabling the vehicles to bid even for such customers that don’t fit into the cor-
responding routes (due to capacity or time-window constraints) but at prices
reflecting also the necessary ejection of some other customers from the route
might yield interesting opportunities.

6.4 Local Planning Strategies Analysis

Table 3 also illustrates the relative success of the two proposed local planning
strategies. The results show that the SLS strategy outperforms the TTS strategy
in all examined algorithm settings. The SLS strategy is based on estimating the
negative effects of the insertions in terms of reduction to the slackness of the cor-
responding routes possibly preventing future advantageous detours. Especially
when applied iteratively throughout the solving process — within the dynamic
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Fig. 2. Illustration of the impact of the introduced intensification strategies

improvement phase in the Algorithm-DI setting — the SLS heuristics efficiently
prevents the algorithm from being trapped in local minima by modifying the
emerging partial solution σ in a way as to increase the overall slackness of the
routes and thus increase the chance of further successful allocations.

6.5 Search Diversification and Intensification Strategies Analysis

The highlighted results achieved by the parallel algorithm are based on em-
ploying the search diversification strategy based on traversing the diversified
configuration space Ω′ ×Δ′ generated using two specific ordering diversification
operators and by using alternative negotiation semantics. The inherent com-
plexity increase is partially offset by introducing a search intensification strategy
consisting of ordering pruning, improved restarts strategy and terminating algo-
rithm instances that are not likely to yield good solutions.

Table 1 shows the improvements in solution quality achieved by the intro-
duced search diversification techniques. Compared to the Algorithm-DI setting
the solutions were improved in 81 cases (23% of problem instances). Both the
introduced ordering diversification operators contributed to the improvements
in similar way. Our preliminary experiments proved, that the best orderings are
found within close neighborhoods of the successful analytically sound orderings,
while the orderings featuring greater level of randomization were much less suc-
cessful. The used operators were thus specifically designed to enable traversing
these neighborhoods. An interesting future research opportunity was identified
in comparing these operators with well known ordering crossover and mutation
operators used by the genetic ordering based algorithms [13].

The effect of the introduced intensification strategies is illustrated by Fig-
ure 2. The two charts capture the runtimes and relative errors of the individual
algorithm instances processed by the parallel algorithm over a subset of 16 in-
stances with 1000 customers each. The left chart corresponds to traversing the
full configuration space Ω′ ×Δ′ while the right chart corresponds to the inten-
sification strategies being fully employed with the CSP+BP ordering pruning
strategy being used. The results are grouped based on the used algorithm set-
ting with the terminated algorithm instances being denoted as P. Note that the
runtime is displayed in logarithmical scale. The results thus outline the dramatic
effect the intensification strategies have on the overall runtime of the improved
algorithm. The most significant improvements are achieved by (i) terminating
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instances not potentially yielding good solutions (the P group) and (ii) limit-
ing the number of executed complex algorithm instances by using an ordering
pruning strategy (the results missing on the right chart, especially in the most
complex Algorithm-DI setting group). In overall this attributes to over 6 times
reduction in the overall composite runtime without a significant drop in either
anytime convergence or overall quality.

7 Conclusion

This paper provides an insight into our ongoing effort aimed at developing effi-
cient algorithms for the VRPTW based on agent negotiation providing a sound
alternative to the classical centralized algorithms. Central to this effort is the
exploration of alternative negotiations semantics and local planning strategies
used within the agent-based solving process.

An abstract algorithm was introduced, based on a fitting agent decomposi-
tion of the solved problem. The abstract negotiation based solving process was
briefly outlined. The alternative negotiation semantics were discussed based on
three general algorithm settings and using three alternative improvement meth-
ods based on customer reallocations. Two particular local planning strategies
were introduced as well based on the state-of-the-art insertion heuristics. Finally
the full parallel algorithm was presented using a search diversification strategy
based on traversing the diversified configuration space Ω′ ×Δ′ and a search in-
tensification strategy based on ordering pruning, improved restarts strategy and
terminating algorithm instances that are not likely to yield good solutions.

The performance of the algorithm was evaluated using relevant widely used
benchmarks providing relevant comparison to the state-of-the-art algorithms
missing from previous studies, making this also the first agent-based algorithm
to be assessed using the extended Homberger’s benchmark. The parallel algo-
rithm was able to equal the contemporary best known solutions achieved by the
classical algorithms in 64% of the cases across both benchmarks with an aver-
age relative error of 2.4% in terms of the primary optimization criteria, while
boasting an excellent parallel anytime characteristics, outperforming even the
centralized algorithms in this respect. These results represent a significant im-
provement over all previously presented agent-based algorithms and suggest that
agent-based solving techniques are relevant with respect to efficiently solving the
VRPTW, supporting also the relevance of future research in this area.

In that respect, we argue that of particular relevance is the research of the pos-
sible semantics of the underlying negotiation process. For example the already
promising results could be further improved by introducing a more complex
negotiation semantics complementing the simple task reallocations, providing
means to modify even the tightly constrained partial solutions and thus effec-
tively escape local minima. Another opportunity was identified in assessing the
suitability of known ordering crossover and mutation operators.
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