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1 Introduction

In traditional public key encryption a sender will encrypt a message to a targeted
individual recipient using the recipient’s public key. However, in many applica-
tions one may want to have a more general way of expressing who should be
able to view encrypted data. Sahai and Waters [SW05] introduced the notion of
Attribute-Based Encryption (ABE). There are two variants of ABE: Key-Policy
ABE and Ciphertext-Policy ABE [GPSW06]. (We will consider both these vari-
ants in this work.) In a Key-Policy ABE system, a ciphertext encrypting a mes-
sage M is associated with an assignment x of boolean variables. A secret key
SK is issued by an authority and is associated with a boolean function f chosen
from some class of allowable functions F . A user with a secret key for f can
decrypt a ciphertext associated with x, if and only if f(x) = 1.

Since the introduction of ABE there have been advances in multiple direc-
tions. These include: new proof techniques to achieve adaptive security [LOS+10,
OT10, LW12], decentralizing trust among multiple authorities [Cha07, CC09,
LW11], and applications to outsourcing computation [PRV12].

However, the central challenge of expanding the class of allowable boolean
functions F has been very resistant to attack. Viewed in terms of circuit classes,
the work of Goyal et al [GPSW06] achieved the best result until now; their
construction achieved security essentially for circuits in the complexity class
NC1. This is the class of circuits with depth logn, or equivalently, the class of
functions representable by polynomial-size boolean formulas. Achieving ABE for
general circuits is arguably the central open direction in this area1.

Difficulties in Achieving Circuit ABE and the Backtracking Attack. To
understand why achieving ABE for general circuits has remained a difficult prob-
lem, it is instructive to examine the mechanisms of existing constructions based
on bilinear maps. Intuitively, a bilinear map allows one to decrypt using group
elements as keys (or key components) as opposed to exponents. By handing out
a secret key that consists of group elements, an authority is able to computa-
tionally hide some secrets embedded in that key from the key holder herself. In
contrast, if a secret key consists of exponents in Zp for a prime order group p, as
in say an ElGamal type system, then the key holder or collusion of key holders
can solve for these secrets using algebra. This computational hiding in bilinear
map based systems allows an authority to personalize keys to a user and prevent
collusion attacks, which are the central threat.

Using GPSW [GPSW06] as a canonical example we illustrate some of the
main principles of decryption. In their system, private keys consist of bilinear
group elements for a group of prime order p and are associated with random
values ry ∈ Zp for each leaf node y in the boolean formula f . A ciphertext

1 We note that if collusions between secret key holders are bounded by a publicly
known polynomially-bounded number in advance, then even stronger results are
known [SS10, GVW12]. However, throughout this paper we will deal only with the
original setting of ABE where unbounded collusions are allowed between adversarial
users.
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encrypted to descriptor x has randomness s ∈ Zp. The decryption algorithm
begins by applying a pairing operation to each “satisfied” leaf node and obtains
e(g, g)rys for each satisfied node y. From this point onward decryption consists
solely of finding if there is a linear combination (in the exponent) of the ry values
that can lead to computing e(g, g)αs, which will be the “blinding factor” hiding
the message M . (The variable e(g, g)α is defined in the public parameters.) The
decryption algorithm should be able to find such a linear combination only if
f(x) = 1. Of particular note is that once the e(g, g)rys values are computed the
pairing operation plays no further role in decryption. Indeed, it cannot since it
is intuitively “used up” on the initial step.

Let’s now take a closer look at how GPSW structures a private key for a
given boolean formula. Suppose inside a particular boolean formula there exists
an OR gate T that received inputs from gates A and B. Then the authority will
associate gate T with a value rT and gates A,B with values rA = rB = rT to
match the OR functionality. Now suppose that on a certain input assignment x
that gate A evaluates to 1, but gate B evaluates to 0. The decryptor will then
learn the “decryption value” e(g, g)srA for gate A and can interpolate up by
simply by noting that e(g, g)srT = e(g, g)srA . While this structure reflects an
OR gate, it also has a critical side effect. The decryption algorithm also learns
the decryption value e(g, g)srB for gate B even though gate B evaluates to 0 on
input x. We call such a discovery a backtracking attack.

Boolean formulas are circuits with fanout one. If the fanout is one, then the
backtracking attack produces no ill effect since an attacker has nowhere else to
go with this information that he has learned. However, suppose we wanted to
extend this structure with circuits of fanout of two or more, and that gate B also
fed into an AND gate R. In this case the backtracking attack would allow an
attacker to act like B was satisfied in the formula even though it was not. This
misrepresentation can then be propagated up a different path in the circuit due
to the larger fanout. (Interestingly, this form of attack does not involve collusion
with a second user.)

We believe that such backtracking attacks are the principle reason that the
functionality of existing ABE systems has been limited to circuits of fanout one.
Furthermore, we conjecture that since the pairing operation is used up in the
initial step, that there is no black-box way of realizing general ABE for circuits
from bilinear maps.

Our Results. We present a new methodology for constructing Attribute-Based
Encryption systems for circuits of arbitrary fanout. Our method is described
using multilinear maps. Cryptography with multilinear maps was first postulated
by Boneh and Silverberg [BS02] where they discussed potential applications
such as one round, n-way Diffie-Hellman key exchange. However, they also gave
evidence that it might be difficult or not possible to find useful multilinear forms
within the realm of algebraic geometry. For this reason there has existed a general
reluctance among cryptographers to explore multilinear map constructions even
though in some constructions such as the Boneh-Goh-Nissim [BGN05] slightly
homomorphic encryption system, or the Boneh-Sahai-Waters [BSW06] Traitor
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Tracing scheme, there appears to exist direct generalizations of bilinear map
solutions.

Very recently, Garg, Gentry, and Halvei [GGH13a] (see [GGH12b] for full
version) announced a surprising result. Using ideal lattices they produced a can-
didate mechanism that would approximate or be the moral equivalent of multi-
linear maps for many applications. Speculative applications include translations
of existing bilinear map constructions and direct generalizations as well as fu-
ture applications. While the development and cryptanalysis of their tools is at
a nascent stage, we believe that their result opens an exciting opportunity to
study new constructions using a multilinear map abstraction. The promise of
these results is that such constructions can be brought over to their framework
or a related future one. We believe that building ABE for circuits is one of the
most exciting of these problems due to the challenges discussed above and that
existing bilinear map constructions do not have a direct generalization.

Our circuit ABE construction and its proof of security directly translate to
the framework of [GGH12b].

We construct an ABE system of the Key-Policy variety where ciphertext de-
scriptors are an n-tuple x of boolean variables and keys are associated with
boolean circuits of a max depth �, where both � and n are polynomially bounded
and determined at the time of system setup. Our main construction exposition
is for circuits that are layered (where gates at depth j get inputs from gates at
depth j−1) and monotonic (consisting only of AND plus OR gates). Neither one
of these impacts our general result as a generic circuit can be transformed into a
layered one for the same function with a small amount of overhead. In addition,
using De Morgan’s law one can build a general circuit from a monotone circuit
with negation only appearing at the input wires. We sketch this in Section 2.
We finally note that using universal circuits we can realize “Ciphertext-Policy”
style ABE systems for circuits.

We use a framework of leveled multilinear maps is that a party can call a group
generator G(1λ, k) to obtain a sequence of groups G = (G1, . . . ,Gk) each of large
prime2 order p > 2λ where each comes with a canonical generator g = g1, . . . , gk.
Slightly abusing notation, if i+ j ≤ k we can compute a bilinear map operation
on gai ∈ Gi, g

b
j ∈ Gj as e(g

a
i , g

b
j) = gabi+j . These maps can be seen as implementing

multilinear maps3. It is the need to commit to a certain k value which will require
the setup algorithm of our construction to commit to a maximum depth � = k−1.
We will prove security under a generalization of the decision BDH assumption
that we call the decision k-multilinear assumption. Roughly, it states that given

g, gs, gc1 , . . . , gck it is hard to distinguish T = g
s
∏

j∈[1,k] ck

k from a random element
of Gk.

2 We stress that our techniques do not rely on the groups being of prime order; we
only need that certain randomization properties hold in a statistical sense (which
hold perfectly over groups of prime order). Therefore, our techniques generalize to
other algebraic settings.

3 We technically consider the existence of a set of bilinear maps {ei,j : Gi × Gj →
Gi+j | i, j ≥ 1; i+ j ≤ k}, but will often abuse notation for ease of exposition.
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Our Techniques. As discussed there is no apparent generalization of the
GPSW methods for achieving ABE for general circuits. We develop new tech-
niques with a focus on preventing the backtracking attacks we described above.
Intuitively, we describe our techniques as “move forward and shift”; this replaces
and subsumes the linear interpolation method of GPSW decryption. In particu-
lar, our schemes do not rely on any sophisticated linear secret sharing schemes,
as was done by GPSW.

Consider a private key for a given monotonic4 circuit f with max depth � that
works over a group sequence (G1, . . . ,Gk). Each wire w in f is associated by the
authority with a random value rw ∈ Zp. A ciphertext for descriptor x will be
associated with randomness s ∈ Zp. A user should with secret key for f should
be able to decrypt if and only if f(x) = 1.

The decryption algorithm works by computing gsrwj+1 for each wire w in the
circuit that evaluates to 1 on input x. If the wire is 0, the decryptor should not
be able to obtain this value. Decryption works from the bottom up. For each
input wire w at depth 1, we compute gsrw2 using a very similar mechanism to
GPSW.

We now turn our attention to OR gates to illustrate how we prevent back-
tracking attacks. Suppose wire w is the output of an OR gate with input wires
A(w), B(w) at depth j. Furthermore, suppose on a given input x the wire A(w)
evaluates to true and B(w) to false so that the decryptor has g

srA(w)

j , but not

g
srB(w)

j . The private key components associated with wire w are:

gaw , gbw , g
rw−aw·rA(w)

j , g
rw−bw·rB(w)

j

for random aw, bw. To move decryption onward the algorithm first computes

e
(
gaw , g

srA(w)

j

)
= g

sawrA(w)

j+1 .

This is the move forward step. Then it computes

e
(
gs, g

rw−aw·rA(w)

j

)
= g

s(rw−awrA(w))

j+1 .

This is the shift step. Multiplying these together gives the desired term gsrwj+1.
Let’s examine backtracking attacks in this context. Recall that the attacker’s

goal is to compute g
srB(w)

j even though wire B(w) is 0, and propagate this for-
ward. From the output term and the fourth key component the attacker can

actually inverse the shift process on the B side and obtain g
sbwrB(w)

j+1 . However,
since the map e works only in the “forward” direction, it is not possible to invert
the move forward step and complete the attack. The crux of our security lies in
this idea.

The AND gate mechanism has a similar shift and move forward structure,
but requires both inputs for decryption. If this process is applied iteratively to

4 Recall that assuming that the circuit is monotonic is without loss of generality. Our
method also applies to general circuits that involve negations. See Section 2.
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an output gate w̃, then one obtains gsrw̃k . A final header portion of the key and
decryption mechanism is used to obtain the message. This portion is similar to
prior work.

1.1 Other Related Work

Other recent functionality in a similar vain to ABE includes spatial encryp-
tion [Ham11] and regular language functionality [Wat12]. Neither of these seem
to point to a path for achieving the general case of circuits. Indeed, [Wat12]
argues that backtracking attacks are the reason that the constructions can only
support Deterministic Finitie Automata and not Nondeterministic Finite Au-
tomata.

An interesting challenge going forward is whether new techniques can be ap-
plied to the general case of functional encryption [SW08, BSW11]. In this setting
we would like to hide the input x as well as the message. So far the strongest
functionality in this setting has been the inner product functionality of Katz,
Sahai, and Waters [KSW08] and different variants of this [OT12].

There have been different lattice based constructions of IBE, HIBE, Fuzzy
IBE, and ABE [CHKP10, ABB10, ABV+12, Boy13]. While the high level proof
structures of these systems follow the earlier bilinear map counterparts closely,
the analogies seem to break down at lower level mechanisms. For example, there
is more asymmetry in the construction of keys and ciphertexts — in bilinear
maps they were both bilinear group elements. Rothblum [Rot12] considers the
problem of circular security from bit encryption systems from �-multilinear maps.
He considers a different form than us where � group elements of different types
are input at once to a multilinear map function. The assumption used is a variant
of XDH.

Parno, Raykova and Vaikuntanathan [PRV12] note that delegation from ABE
can be achieved from a system that is not collusion resistant, however, they were
not able to leverage this to go beyond the boolean formulas of [GPSW06]. The
fact that the backtracking attacks described above do not use collusion attacks,
but are attacks within a key might help explain this. In our construction the
size of group elements and computational cost of group operations grows with
the sequence number k and thus the depth of the circuit. Using our system
combined with the PRV techniques one can achieve delegated computation where
the delegator’s work grows only with the depth of the circuit and not the size of
the circuit. Since the number of multilinear levels must be bounded at setup, it
is not clear if our techniques can be used to improve ABE-type applications in
the uniform setting [Wat12].

Concurrent Work. Concurrent to and independent of our work Gorbunov,
Vaikuntanathan, and Wee [GVW13] achieve ABE for circuits5. One nice feature

5 Historical note: The present paper which merges [GGH12a] and [SW12] contains
only a technical scheme and analysis already present in these works, with some addi-
tional elaboration. Thus the scheme and analysis presented here remains independent
of [GVW13], and was developed concurrently to it.
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of their result is that they reduce security to the Learning with Errors (LWE)
problem [Reg05]. Both our result and theirs has “succinct” ciphertexts in that
the ciphertext size grows with the maximum depth of the circuits and not the
size. Goldwasser, Kalai, Popa, Vaikuntanathan, and Zeldovich [GKP+13] show
how to combine such an ABE with fully homomorphic encryption into a succinct
single use functional encryption scheme. This in turn implies results for reusable
Yao garbled circuits and other applications.

Subsequent Work. Subsequent to our work Garg, Gentry, Sahai, and Wa-
ters [GGSW13] showed that a general primitive they termed witness encryption
implies circuit ABE if we have witness indistinguishable proofs. Their techniques
of moving from witness encryption to ABE are quite different from our direct
construction. A drawback of using witness encryption is that current GGSW
constructions rely on a different assumption for each NP instance.

1.2 Roadmap

We start by providing preliminary definition in Section 2. We give our construc-
tion based on (ideal) multilinear maps in Section 3 which is then translated to
the GGH framework [GGH12b] in Section 4. We refer the reader to the full
version [GGH+13b] for the proofs of security.

2 Preliminaries

In this section we provide some preliminaries. These include definition of ABE
for circuits, discussion of monotone versus general circuits, our multilinear map
convention and assumptions, and our circuit notation.

2.1 Definitions for ABE for Circuits

We now give a formal definition of our Attribute-Based Encryption for circuits.
Our security definition essentially follows [GPSW06] with the exception that
access structures are circuits. Our definition is fit for bounded circuits.

Setup(1λ, n, �). The setup algorithm takes as input the security parameter, the
length n of input descriptors from the ciphertext and a bound � on the circuit
depth. It outputs the public parameters PP and a master key MSK.

Encrypt(PP, x ∈ {0, 1}n,M). The encryption algorithm takes as input the
public parameters PP, a bit string x ∈ {0, 1}n representing the assignment of
boolean variables, and a message m. It outputs a ciphertext CT.

Key Generation(MSK, f = (n, q, A,B, GateType)). The key generation algo-
rithm takes as input the master key MSK and a description of a circuit f , where
the depth of f is at most �. The algorithm outputs a private key SK.

Decrypt(SK,CT). The decryption algorithm takes as input a secret key SK
and ciphertext CT. The algorithm attempts to decrypt and outputs a message
M if successful; otherwise, it outputs a special symbol ⊥.
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Correctness. Consider all messages M , strings x ∈ {0, 1}n, and depth � cir-
cuits f where f(x) = 1. If Encrypt(PP, x,M) → CT and KeyGen(MSK, f) →
SK where PP,MSK were generated from a call to the setup algorithm, then
Decrypt(SK,CT) = M .

Security Model for ABE for Circuits. We now briefly describe our security
model of selective security for ABE for general circuits. We refer the reader
to [GGH+13b] for a formal treatment. The selective security definition requires
that the attacker first specifies the string x∗ and later queries on multiple secret
keys, but not ones that can trivially be used to decrypt a ciphertext encrypted
under x∗. In particular the adversary can ask secret keys corresponding to any
circuit f of his choice, such that f(x∗) = 0. The goal of the adversary is then to
break semantic security of a challenge ciphertext encrypted under the string x∗.

2.2 General Circuits vs. Monotone Circuits

We begin by observing that there is a folklore transformation that uses De Mor-
gan’s rule to transform any general Boolean circuit into an equivalent monotone
Boolean circuit, with negation gates only allowed at the inputs. For complete-
ness, we sketch the construction here.

Given a Boolean circuit C, consider the Boolean circuit C̃ that computes the
negation of C. Note that such a circuit can be generated by simply recursively
applying De Morgan’s rule to each gate of C starting at the output gate. The cru-
cial property of this transformation is that in this circuit C̃ each wire computes
the negation of the corresponding original wire in C.

Now, we can construct a monotone circuit M by combining C and C̃ as
follows: take each negation gate inside C, eliminate it, and replace the output
of the negation gate by the corresponding wire in C̃. Do the same for negation
gates in C̃, using the wires from C. In the end, this will yield a monotone circuit
M with negation gates remaining only at the input level, as desired. The size of
M will be no more than twice the original size of C, and the depth of M will be
identical to the depth of C, where depth is computed ignoring negation gates.
The correctness of this transformation follows trivially from De Morgan’s rule.

As a result, we can focus our attention onmonotone circuits. Note that inputs to
the circuit correspond to boolean variablesxi, andwe can simply introduce explicit
separate attributes corresponding to xi = 0 and xi = 1. Honest encryptors are
instructed to only set one of these two attributes for each variable xi.

Because of this simple transformation, in the sequel we will only consider ABE
for monotone circuits.

2.3 Multilinear Maps

We assume the existence of a group generator G, which takes as input a security
parameter n and a positive integer k to indicate the number of allowed pairing
operations. G(1λ, k) outputs a sequence of groups G = (G1, . . . ,Gk) each of large
prime order p > 2λ. In addition, we let gi be a canonical generator of Gi (and is
known from the group’s description). We let g = g1.
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We assume the existence of a set of bilinear maps {ei,j : Gi×Gj → Gi+j | i, j ≥
1; i+ j ≤ k}. The map ei,j satisfies the following relation:

ei,j
(
gai , g

b
j

)
= gabi+j : ∀a, b ∈ Zp.

We observe that one consequence of this is that ei,j(gi, gj) = gi+j for each valid
i, j.

When the context is obvious, we will sometimes abuse notation drop the
subscripts i, j, For example, we may simply write:

e
(
gai , g

b
j

)
= gabi+j .

We define the k-Multilinear Decisional Diffie-Hellman (k-MDDH) assumption as
follows:

Assumption 1 (k-Multilinear Decisional Diffie-Hellman: k-MDDH).
The k-Multilinear Decisional Diffie-Hellman (k-MDDH) problem states the fol-
lowing: A challenger runs G(1λ, k) to generate groups and generators of order p.
Then it picks random s, c1, . . . , ck ∈ Zp.

The assumption then states that given g = g1, g
s, gc1, . . . , gck it is hard to

distinguish T = g
s
∏

j∈[1,k] cj

k from a random group element in Gk, with better
than negligible advantage (in security parameter λ).

2.4 Circuit Notation

We now define our notation for circuits that adapts the model and notation
of Bellare, Hoang, and Rogaway [BHR12] (Section 2.3). For our application we
restrict our consideration to certain classes of boolean circuits. First, our circuits
will have a single output gate. Next, we will consider layered circuits. In a layered
circuit a gate at depth j will receive both of its inputs from wires at depth j− 1.
Finally, we will restrict ourselves to monotonic circuits where gates are either
AND or OR gates of two inputs. 6

Our circuits will be a five-tuple f = (n, q, A,B, GateType). We let n be the
number of inputs and q be the number of gates. We define inputs = {1, . . . , n},
Wires = {1, . . . , n + q}, and Gates = {n + 1, . . . , n + q}. The wire n + q is
the designated output wire. A : Gates →Wires/outputwire is a function where
A(w) identifies w’s first incoming wire and B : Gates → Wires/outputwire is
a function where B(w) identifies w’s second incoming wire. Finally, GateType :
Gates → {AND,OR} is a function that identifies a gate as either an AND or
OR gate.

We require that w > B(w) > A(w). We also define a function depth(w) where
if w ∈ inputs depth(w) = 1 and in general depth(w) of wire w is equal to the
shortest path to an input wire plus 1. Since our circuit is layered we require that
for all w ∈ Gates that if depth(w) = j then depth(A(w)) = depth(B(w)) = j−1.
6 These restrictions are mostly useful for exposition and do not impact functionality.
General circuits can be built from non-monotonic circuits. In addition, given a circuit
an equivalent layered exists that is larger by at most a polynomial factor.
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We will abuse notation and let f(x) be the evaluation of the circuit f on input
x ∈ {0, 1}n. In addition, we let fw(x) be the value of wire w of the circuit on
input x.

3 Our Construction: Multilinear maps

We now describe our construction. Our main construction is of the Key-Policy
form where a key generation algorithm takes in the description of a circuit f
and encryption takes in an input x and message M . A user with secret key for f
can decrypt if and only if f(x) = 1. The system is of the “public index” variety
in that only the message M is hidden, while x can be efficiently discovered from
the ciphertext, as is standard for ABE. We will also discuss how our KP-ABE
scheme yields a Ciphertext-Policy ABE scheme for bounded-size circuits.

The setup algorithm will take as inputs a maximum depth � of all the circuits
as well as the input size n for all ciphertexts. All circuits f in our system will
be of depth � (have the output gate at depth �) and be layered as discussed in
Section 2.4. Using layered circuits and having all circuits be of the same depth
is primarily for ease of exposition, as we believe that our construction could
directly be adapted to the general case. The fact that setup defines a maximum
depth � is more fundamental as the algorithm defines a k = �+1 group sequence
a k pairings.

We also use the convention here that (multi-bit) messages are be encoded
as group elements. In Section 4 we will translate this construction to the GGH
setting.

Setup(1λ, n, �). The setup algorithm takes as input a security parameter λ, the
maximum depth � of a circuit, and the number of boolean inputs n.

It then runs G(1λ, k = �+1) that produces groups G = (G1, . . . ,Gk) of prime
order p, with canonical generators g1, . . . , gk. We let g = g1. Next, it chooses
random α ∈ Zp and h1, . . . , hn ∈ G1.

The public parameters, PP, consist of the group sequence description plus:

gαk , h1, . . . , hn.

The master secret key MSK is (gk−1)
α.

Encrypt(PP, x ∈ {0, 1}n,M ∈ Gk). The encryption algorithm takes in the
public parameters, an descriptor input x ∈ {0, 1}n, and a message bit M ∈ Gk.
We use the convention that M is a group element.

The encryption algorithm chooses a random s ∈ Zp. It then sets CM = M ·
(gαk )

s. We let S be the set of i such that xi = 1.
The ciphertext is created as

CT = (CM , gs, ∀i ∈ S Ci = hs
i ).

KeyGen(MSK, f = (n, q, A,B, GateType)). The algorithm takes in the master
secret key and a description f of a circuit. Recall that the circuit has n+ q wires
with n input wires, q gates and the wire n+ q designated as the output wire.
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The key generation algorithm chooses random r1, . . . , rn+q ∈ Zp, where we
think of randomness rw as being associated with wire w. The algorithm produces
a “header” component

KH = (gk−1)
α−rn+q .

Next, the algorithm generates key components for every wire w. The structure
of the key components depends upon whether w is an input wire, an OR gate,
or an AND gate. We describe how it generates components for each case.

– Input wire
By our convention if w ∈ [1, n] then it corresponds to the w-th input. The
key generation algorithm chooses random zw ∈ Zp.
The key components are:

Kw,1 = grwhzw
w , Kw,2 = g−zw .

– OR gate
Suppose that wire w ∈ Gates and that GateType(w) = OR. In addition, let
j = depth(w) be the depth of wire w. The algorithm will choose random
aw, bw ∈ Zp. Then the algorithm creates key components:

Kw,1 = gaw , Kw,2 = gbw , Kw,3 = g
rw−aw·rA(w)

j , Kw,4 = g
rw−bw·rB(w)

j .

– AND gate
Suppose that wire w ∈ Gates and that GateType(w) = AND. In addition,
let j = depth(w) be the depth of wire w. The algorithm will choose random
aw, bw ∈ Zp. The components are:

Kw,1 = gaw , Kw,2 = gbw , Kw,3 = g
rw−aw·rA(w)−bw·rB(w)

j .

We will sometimes refer to the Kw,3,Kw,4 of the AND and OR gates as the
“shift” components. This terminology will take on more meaning when we see
how they are used during decryption.

The secret key SK output consists of the description of f , the header compo-
nent KH and the key components for each wire w.

Decrypt(SK,CT). Suppose that we are evaluating decryption for a secret key
associated with a circuit f = (n, q, A,B, GateType) and a cipherext with input
x. We will be able to decrypt if f(x) = 1.

We begin by observing that the goal of decryption should be to compute gαsk .
One can then recover M by computing M = CM/gαsk . First, there is a header

computation where we compute E′ = e(KH), gs) = e(g
α−rn+q

k−1 , gs) = gαsk g
−rn+q·s
k

Our goal is now reduced to computing g
rn+q·s
k .

Next, we will evaluate the circuit from the bottom up. Consider wire w at
depth j; if fw(x) = 1 then, our algorithm will compute Ew = (gj+1)

srw . (If
fw(x) = 0 nothing needs to be computed for that wire.) Our decryption algo-
rithm proceeds iteratively starting with computing E1 and proceeds in order to
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finally compute En+q. Computing these values in order ensures that the compu-
tation on a depth j−1 wire (that evaluates to 1) will be defined before computing
for a depth j wire. We show how to compute Ew for all w where fw(x) = 1,
again breaking the cases according to whether the wire is an input, AND or OR
gate.

– Input wire
By our convention if w ∈ [1, n] then it corresponds to the w-th input. Suppose
that xw = fw(x) = 1. The algorithm computes:

Ew = e(Kw,1, g
s) · e(Kw,2, Cw) = e(grwhzw

w , gs) · e(g−zw , hs
w) = gsrw2 .

We observe that this mechanism is similar to many existing ABE schemes.
– OR gate

Consider a wire w ∈ Gates and that GateType(w) = OR. In addition, let
j = depth(w) be the depth of wire w. Suppose that fw(x) = 1. If fA(w)(x) =
1 (the first input evaluated to 1) then we compute:

Ew=e(EA(w),Kw,1) ·e(Kw,3, g
s)=e(g

srA(w)

j , gaw) ·e(grw−aw·rA(w)

j , gs)=(gj+1)
srw .

Alternatively, if fA(w)(x) = 0, but fB(w)(x) = 1, then we compute:

Ew=e(EB(w),Kw,2) · e(Kw,4, g
s)=e(g

srB(w)

j , gbw ) · e(grw−bw ·rB(w)

j , gs)=(gj+1)
srw .

Let’s examine this mechanism for the case where the first input is 1
(fA(w)(x) = 1). In this case the algorithm “moves” the value EA(w) from
group Gj to group Gj+1 when pairing it with Kw,1. It then multiplies it by
e(Kw,3, g

s) which “shifts” that result to Ew.
Suppose that fA(w)(x) = 1, but fB(w)(x) = 0. A critical feature of the

mechanism is that an attacker cannot perform a “backtracking” attack to
compute EB(w). The reason is that the pairing operation cannot be reverse
to go from group Gj+1 to group Gj . If this were not the case, it would be
debilitating for security as gate B(w) might have fanout greater than 1. This
type of backtracking attacking is why existing ABE constructions are limited
to circuits with fanout of 1.

– AND gate
Consider a wire w ∈ Gates and that GateType(w) = AND. In addition,
let j = depth(w) be the depth of wire w. Suppose that fw(x) = 1. Then
fA(w)(x) = fB(w)(x) = 1 and we compute:

Ew = e(EA(w),Kw,1) · e(EB(w),Kw,2) · e(Kw,3, g
s)

= e(g
srA(w)

j , gaw) · e(gsrB(w)

j , gbw) · e(grw−aw·rA(w)−cw·rB(w)

j , gs) = (gj+1)
srw .
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If the f(x) = fn+q(x) = 1, then the algorithm will compute En+q = g
rn+q·s
k . It

finally computes E′ ·En+q = gαsk and tests if this equals CM , outputting M = 1
if so and M = 0 otherwise. Correctness holds with high probability.

A Few Remarks. Our OR and AND key components respectively have one
and two “shift” components. It is conceivable to have a construction with one
shift component for the OR and none for the AND. However, we designed it
this way since it made the exposition of our proof provided in the full veri-
son [GGH+13b](in particular the distribution of private keys) easier.

Finally, our construction uses a layered circuit, where a wire at depth j gets
its inputs from depth j′ = j − 1. We could imagine a small modification to our
construction which allowed j′ to be of any depth less than j. Suppose this were
the case for the first input. Then instead of Kw,1 = gaw

1 we might more generally
let Kw,1 = (gj−j′ )

aw . However, we stick to describing and proving the layered
case for simplicity.

4 Our Construction: Based on GGH Graded Algebras

We now describe how to modify our construction to use the GGH [GGH12b]
graded algebras analogue of multilinear maps. The translation of our scheme
above is straightforward to the GGH setting. We start by providing background
on Garg et al.’s lattice-based “approximate” multilinear maps (a.k.a. “graded
encoding systems”) [GGH12b].

4.1 Graded Encoding Systems: Definition

Garg, Gentry and Halevi (GGH) [GGH12b] defined an “approximate” version
of a multilinear group family, which they call a graded encoding system. As a
starting point, they view gαi in a multilinear group family as simply an encoding
of α at “level-i”. This encoding permits basic functionalities, such as equality
testing (it is easy to check that two level-i encodings encode the same exponent),
additive homomorphism (via the group operation in Gi), and bounded multi-
plicative homomorphism (via the multilinear map e). They retain the notion of a
somewhat homomorphic encoding with equality testing, but they use probabilis-
tic encodings, and replace the multilinear group family with “less structured”
sets of encodings related to lattices.

Abstractly, their n-graded encoding system for a ring R includes a system of

sets S = {S(α)
i ⊂ {0, 1}∗ : i ∈ [0, n], α ∈ R} such that, for every fixed i ∈ [0, n],

the sets {S(α)
i : α ∈ R} are disjoint (and thus form a partition of Si

def
=

⋃
α S

(α)
i ).

The set S
(α)
i consists of the “level-i encodings of α”. Moreover, the system comes

equipped with efficient procedures, as follows:7

7 Since GGH’s realization of a graded encoding system uses “noisy” encodings over
ideal lattices, the procedures incorporate information about the magnitude of the
noise.
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Instance Generation. The randomized InstGen(1λ, 1n) takes as input the se-
curity parameter λ and integer n. The procedure outputs (params,pzt),
where params is a description of an n-graded encoding system as above,
and pzt is a level-n “zero-test parameter”.

Ring Sampler. The randomized samp(params) outputs a “level-zero encoding”

a ∈ S0, such that the induced distribution on α such that a ∈ S
(α)
0 is

statistically uniform.
Encoding. The (possibly randomized) enc(params, i, a) takes i ∈ [n] and a level-

zero encoding a ∈ S
(α)
0 for some α ∈ R, and outputs a level-i encoding

u ∈ S
(α)
i for the same α.

Re-Randomization. The randomized reRand(params, i, u) re-randomizes en-
codings to the same level, as long as the initial encoding is under a given

noise bound. Specifically, for a level i ∈ [n] and encoding u ∈ S
(α)
i , it out-

puts another encoding u′ ∈ S
(α)
i . Moreover for any two encodings u1, u2 ∈

S
(α)
i whose noise bound is at most some b, the output distributions of

reRand(params, i, u1) and reRand(params, i, u2) are statistically the same.
Addition and negation. Given params and two encodings at the same level,

u1 ∈ S
(α1)
i and u2 ∈ S

(α2)
i , we have add(params, u1, u2) ∈ S

(α1+α2)
i , and

neg(params, u1) ∈ S
(−α1)
i , subject to bounds on the noise.

Multiplication. For u1 ∈ S
(α1)
i1

, u2 ∈ S
(α2)
i2

, we have mult(params, u1, u2) ∈
S
(α1·α2)
i1+i2

.

Zero-test. The procedure isZero(params,pzt, u) outputs 1 if u ∈ S
(0)
n and 0

otherwise. Note that in conjunction with the procedure for subtracting en-
codings, this gives us an equality test.

Extraction. This procedure extracts a “canonical” and “random” representa-
tion of ring elements from their level-n encoding. Namely ext(params,pzt, u)
outputs (say) K ∈ {0, 1}λ, such that:
(a) With overwhelming probability over the choice of α ∈ R, for any two

u1, u2 ∈ S
(α)
n , ext(params,pzt, u1) = ext(params,pzt, u2),

(b) The distribution {ext(params,pzt, u) : α ∈ R, u ∈ S
(α)
n } is statistically

uniform over {0, 1}λ.

We can extend add and mult to handle more than two encodings as inputs, by ap-
plying the binary versions of add and mult iteratively. Also, we use the canonical-
izing encoding algorithm (as defined in Remark 2 of [GGH12b]) cenc�(params, i, a)
which takes as input encoding of a and generates another encoding according
to a “nice” distribution. This parameter � essentially captures the noise present
in the encodings. In our scheme the maximum value � takes will be a small
constant.

Recall that the k-multilinear assumption for the graded encodings as follows:

Assumption 2 (k-GMDDH Assumption). The k-Graded Multilinear Deci-
sional Diffie-Hellman (k-GMDDH) assumption states the following: Given cenc1(
params, 1, s), cenc1(params, 1, c1), . . . , cenc1(params, 1, ck), it is hard to distinguish
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T = cenc1(params, k, s
∏

j∈[1,k] cj) from T = cenc1(params, k, samp(params)),

with better than negligible advantage (in security parameter λ), where (params,pzt

)← InstGen(1λ, 1k). and s, c1, . . . , ck ← samp(params).

4.2 Graded Encoding Systems: Realization

Concretely, GGH’s n-graded encoding system works as follows. (This is a whirl-
wind overview; see [GGH12b] for details.) The system uses three rings. First, it
uses the ring of integers O of the m-th cyclotomic field. This ring is typically
represented as the ring of polynomials O = Z[x]/(Φm(x)), where Φm(x) is the
m-th cyclotomic polynomial, which has degree N = φ(m). Second, for some
suitable integer modulus q, it uses the quotient ring O/(q) = Zq[x]/(Φm(x)),
similar to the NTRU encryption scheme [HPS98]. The encodings live in O/(q).
Finally, it uses the quotient ring R = O/I, where I = 〈g〉 is a principal ideal of
O that is generated by g and where |O/I| is a large prime. This is the ring “R”
referred to above; elements of R are what is encoded.

What does a GGH encoding look like? For a fixed random z ∈ O/(q), an
element of S

(α)
i – that is, a level-i encoding of α ∈ R – has the form e/zi ∈ O/(q),

where e ∈ O is a “small” representative of the coset α+I (it has coefficients that

are very small compared to q). To add encodings e1/z
i ∈ S

(α1)
i and e2/z

i ∈ S
(α2)
i ,

just add them in O/(q) to obtain (e1 + e2)/z
i, which is in S

(α1+α2)
i if e1 + e2

is “small”. To mult encodings e1/z
i1 ∈ S

(α1)
i1

and e2/z
i2 ∈ S

(α2)
i2

, just multiply

them in O/(q) to obtain e1 · e2/zi1+i2 , which is in S
(α1·α2)
i1+i2

if e1 · e2 is “small”.
This smallness condition limits the GGH encoding system to degree polynomial
in the security parameter. Intuitively, dividing encodings does not “work”, since
the resulting denominator has a nontrivial term that is not z.

The GGH params allow everyone to generate encodings of random (known)
values. The params include a level-1 encoding of 1 (from which one can generate
encodings of 1 at other levels), and (for each i ∈ [n]) a sufficient number of
level-i encodings of 0 to enable re-randomization. To encode (say at level-1), run
samp(params) to sample a small element a from O, e.g. according to a discrete
Gaussian distribution. For a Gaussian with appropriate deviation, this will in-
duce a statistically uniform distribution over the cosets of I. Then, multiply a
with the level-1 encoding of 1 to get a level-1 encoding u of a ∈ R. Finally, run
reRand(params, 1, u), which involves adding a random Gaussian linear combina-
tion of the level-1 encodings of 0, whose noisiness (i.e., numerator size) “drowns
out” the initial encoding. The parameters for the GGH scheme can be instanti-
ated such that the re-randomization procedure can be used for any pre-specified
polynomial number of times.

To permit testing of whether a level-n encoding u = e/zn ∈ Sn encodes 0,
GGH publishes a level-n zero-test parameter pzt = hzn/g, where h is “somewhat
small”8 and g is the generator of I. The procedure isZero(params,pzt, u) simply

8 Its coefficients are on the order of (say) q2/3, while other terms – such as a numerator
e or the principal ideal generator g – are much, much smaller.
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computes pzt ·u and tests whether its coefficients are small modulo q. If u encodes
0, then e ∈ I and equals g · c for some (small) c, and thus pzt · u = h · c has no
denominator and is small modulo q. If u encodes something nonzero, pzt ·u has g
in the denominator and is not small modulo q. The ext(params,pzt, u) procedure
works by applying a strong extractor to the most significant bits of pzt · u. For
any two u1, u2 ∈ S

(α)
n , we have (subject to noise issues) u1 − u2 ∈ S

(0)
n , which

implies pzt(u1− u2) is small, and hence pzt · u1 and pzt · u2 have the same most
significant bits (for an overwhelming fraction of α’s).

4.3 Our Construction

Now we provide our construction in GGH’s n-graded encoding system. For ease
of notation on the reader, we suppress repeated params arguments
that are provided to every algorithm.. Thus, for instance, we will write
α ← samp() instead of α ← samp(params). Note that in our scheme, there will
only ever be a single uniquely chosen value for params throughout the scheme,
so there is no cause for confusion.

Setup(1λ, n, �). The setup algorithm takes as input, a security parameter λ,
the maximum depth � of a circuit, and the number of boolean inputs n.

It then runs (pzt) ← InstGen(1λ, 1k=�+1). Recall that params will be im-
plicitly given as input to all GGH-related algorithms below. Next, it samples
α, ĥ1, . . . , ĥn ← samp().

The public parameters, PP, consist of pzt, plus:

H = cenc2(k, α), h1 = cenc2(1, ĥ1), . . . , hn = cenc2(1, ĥn).

The master secret key MSK is α.

Encrypt(PP, x ∈ {0, 1}n,M ∈ {0, 1}). The encryption algorithm takes in the
public parameters, an descriptor input x ∈ {0, 1}n, and a message bitM ∈ {0, 1}.

The encryption algorithm chooses a random s← samp(). If M = 0 it sets CM

to be a random value:

CM = cenc3(k, samp())

otherwise it lets

CM = cenc3(k,H · s).
Next, let S be the set of i such that xi = 1.

The ciphertext is created as

CT = (CM , s̃ = cenc1(1, s), ∀i ∈ S Ci = cenc3(1, hi · s)).

KeyGen(MSK = α, f = (n, q, A,B, GateType)). The algorithm takes in the
master secret key and a description f of a circuit. Recall, that the circuit has
n + q wires with n input wires, q gates and the wire n + q designated as the
output wire.
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The key generation algorithm chooses random r1, . . . , rn+q ← samp(), where
we think of randomness rw as being associated with wire w. The algorithm
produces a “header” component

KH = cenc3(k − 1, α− rn+q).

Next, the algorithm generates key components for every wire w. The structure
of the key components depends upon if w is an input wire, an OR gate, or an
AND gate. We describe how it generates components for each case.

– Input wire
By our convention if w ∈ [1, n] then it corresponds to the w-th input. The
key generation algorithm chooses random zw ← samp().
The key components are:

Kw,1 = cenc3(1, enc(1, rw) + hw · zw), Kw,2 = cenc3(1,−zw).
– OR gate

Suppose that wire w ∈ Gates and that GateType(w) = OR. In addition, let
j = depth(w) be the depth of wire w. The algorithm will choose random
aw, bw ← samp(). Then the algorithm creates key components:

Kw,1 = cenc3(1, aw), Kw,2 = cenc3(1, bw),

Kw,3 = cenc3(j, rw − aw · rA(w)), Kw,4 = cenc3(j, rw − bw · rB(w)).

– AND gate
Suppose that wire w ∈ Gates and that GateType(w) = AND. In addition,
let j = depth(w) be the depth of wire w. The algorithm will choose random
aw, bw ← samp().

Kw,1 = cenc3(1, aw), Kw,2 = cenc3(1, bw),

Kw,3 = cenc3(j, rw − aw · rA(w) − bw · rB(w)).

We will sometimes refer to the Kw,3,Kw,4 of the AND and OR gates as the
“shift” components. This terminology will take on more meaning when we see
how they are used during decryption.

The secret key SK output consists of the description of f , the header compo-
nent KH and the key components for each wire w.

Decrypt(SK,CT). Suppose that we are evaluating decryption for a secret key
associated with a circuit f = (n, q, A,B, GateType) and a cipherext with input
x. We will be able to decrypt if f(x) = 1.

We begin by observing that the goal of decryption should be to compute a
level k encoding of α · s such that we can test if this is equal to CM . First, there
is a header computation where we compute E′ = KH · s̃. Note that E′ should
thus be a level k encoding of αs−rn+q · s. Our goal is now reduced to computing
a level k encoding of rn+q · s.
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Next, we will evaluate the circuit from the bottom up. Consider wire w at
depth j; if fw(x) = 1 then, our algorithm will compute Ew to be a level j + 1
encoding of srw. Note that if fw(x) = 0 nothing needs to be computed for
that wire, since we have a monotonic circuit. Our decryption algorithm proceeds
iteratively starting with computing E1 and proceeds in order to finally compute
En+q. Computing these values in order ensures that the computation on a depth
j − 1 wire (that evaluates to 1) will be defined before computing for a depth j
wire. We show how to compute Ew for all w where fw(x) = 1, again breaking
the cases according to whether the wire is an input, AND or OR gate.

– Input wire
By our convention if w ∈ [1, n] then it corresponds to the w-th input. Suppose
that xw = fw(x) = 1. The algorithm computes:

Ew = Kw,1 · s̃+Kw,2 · Cw.

Thus, Ew computes a level 2 encoding of (rw+ĥw ·zw)·s+(−zw)·ĥw ·s = srw.
– OR gate

Consider a wire w ∈ Gates and that GateType(w) = OR. In addition, let
j = depth(w) be the depth of wire w. Suppose that fw(x) = 1. If fA(w)(x) =
1 (the first input evaluated to 1) then we compute:

Ew = EA(w) ·Kw,1 +Kw,3 · s̃.

Thus, Ew computes a level j+1 encoding of srA(w)·aw+(rw − aw · rA(w))·s =
srw.

Alternatively, if fA(w)(x) = 0, but fB(w)(x) = 1, then we compute:

Ew = EB(w) ·Kw,2 +Kw,4 · s̃.

This similarly computes a level j+1 encoding of srB(w)·bw+(rw − bw · rB(w))·
s = srw.

Let’s examine this mechanism for the case where the first input is 1
(fA(w)(x) = 1). In this case the algorithm “moves” the value EA(w) from
level j to level j + 1 when multiplying it with Kw,1. It then adds it to
Kw,3 · s̃ which “shifts” that result to Ew.

Suppose that fA(w)(x) = 1, but fB(w)(x) = 0. A critical feature of the
mechanism is that an attacker cannot perform a “backtracking” attack to
compute EB(w). The reason is that the GGH encoding cannot be reversed
to go from level j+1 to level j. (See [GGH12b] for details on why this is the
case.) If this were not the case, it would be debilitating for security as gate
B(w) might have fanout greater than 1. This type of backtracking attacking
is why existing ABE constructions are limited to circuits with fanout of 1.
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– AND gate
Consider a wire w ∈ Gates and that GateType(w) = AND. In addition,
let j = depth(w) be the depth of wire w. Suppose that fw(x) = 1. Then
fA(w)(x) = fB(w)(x) = 1 and we compute:

Ew = EA(w) ·Kw,1 + EB(w) ·Kw,2 +Kw,3 · s̃.

Note that this computes a level j+1 encoding of srw in a manner analogous
to above.

If f(x) = fn+q(x) = 1, then the algorithm will compute En+q to be a level k
encoding of rn+q · s. It finally computes E′ + En+q which is a level k encoding
of αs and tests if this equals CM using isZero(pzt, E

′ +En+q −CM ), outputting
M = 1 if so and M = 0 otherwise. Correctness holds with high probability.

A Quick Remark about Message Length. Our encryption algorithm takes
as input a single bit message. We can extend this to longer messages using
the ext algorithm provided by the GGH encoding (see Section 4.1). We restrict
ourselves to single bit messages for clarity of the scheme and proof of security.
We postpone the proof itself to the full version [GGH+13b].
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