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Preface

CRYPTO 2013, the 33rd Annual International Cryptology Conference, was held
August 18–22, 2013, on the campus of the University of California, Santa Bar-
bara. The event was sponsored by the International Association for Cryptologic
Research (IACR) in cooperation with the UCSB Computer Science Department
and the IEEE Computer Society’s Technical Committee on Security and Privacy.

The program represents the recent significant advances in all areas of cryptol-
ogy. Sixty-one papers were included in the program, a record number for IACR
flagship conferences. This two-volume proceedings contains the revised versions
of all the papers. One pair of papers shared a single presentation slot in the
program. There were also two invited talks. On Monday, Cindy Cohn from the
Electronic Frontier Foundation gave a talk entitled “Crypto Wars Part 2 Have
Begun.”On Wednesday, Adam Langley from Google spoke about “Why the Web
Still Runs on RC4,” in a joint session with CHES 2013. To accommodate the
increase in the number of papers, sessions were held throughout Tuesday and
Thursday afternoons. The rump session took place as usual on Tuesday evening,
and was chaired by Dan Bernstein and Tanja Lange.

For the Best Paper Award, the Program Committee (PC) unanimously se-
lected the paper“On the Function Field Sieve and the Impact of Higher Splitting
Probabilities”by Faruk Gologlu, Robert Granger, Gary McGuire and Jens Zum-
bragel.

This year we also awarded a Best Young-Author Paper Award. To be eligible
for the award, all authors of the paper had to either be full-time students or
have received their PhDs in 2011 or later. The award was given to the paper
“Counter-Cryptanalysis: Reconstructing Flame’s New Variant Collision Attack”
by Marc Stevens.

Faced with a large number of high-quality submissions, the PC decided to
significantly increase the number of papers in the program from last year’s 48
papers, at the price of making the program longer and keeping the paper presen-
tations short (20 minutes per paper, including questions and answers). Another
option that was seriously considered was to move to parallel sessions on some of
the days of the conference. This would have allowed for somewhat longer paper
presentations, and an early adjourn on Thursday. In the end, we opted to retain
the single-session format, with the hope of keeping the community more unified
by allowing participants to attend all talks.

The papers were reviewed by a PC consisting of 40 leading researchers in the
field, in addition to the two co-chairs. Each PC member was allowed to submit
one paper, plus an additional one if co-authored with a student. PC-authored
papers were held to higher standards during the review process. Papers were
reviewed in a double-blind fashion. Initially, each paper was assigned to three
reviewers (four for PC-authored papers). During the discussion phase, when
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necessary, extra reviews were solicited. As part of the paper discussion phase, we
held a two-day PC meeting on May 2 and 3, at the AT&T building in downtown
Manhattan.

We strived to ensure that all papers received a fair and objective evaluation
by experts as well as a broader group of PC members. The final decisions were
made based on the reviews and discussion, and taking other factors such as
balance of the program into account.

This year we initiated an early review and rebuttal process, where authors
received preliminary reviews on their submissions about midway through the
review period, and were given the option to comment on the reviews within a
window of several days. The authors’ comments were then taken into account in
the discussions within the PC and in the final reviews. This process was labor-
intensive; however, we feel it was worthwhile, as it resulted in a significantly
better understanding of many submissions.

We would like to sincerely thank the authors of all submissions—those whose
papers made it into the program and those whose papers did not. Our sincere
gratitude also goes out to the PC members, who have invested an incredible
amount of work in reviewing papers, interacting with the authors via the re-
buttal mechanism, and participating in so many discussions on papers, their
contribution, and the state of the art in their fields of expertise. We also sym-
pathize with the occasional frustration from seeing decisions go against personal
recommendations and preferences, in spite of the hard work invested.

We are also indebted to the many external reviewers, who significantly con-
tributed to the comprehensive evaluation of papers. A list of PC members and
external reviewers appears after this note. Despite all our efforts, the list of ex-
ternal reviewers may have errors or omissions; we apologize for that in advance.

We would like to thank Helena Handschuh, the General Chair, for working
closely with us throughout the whole process, providing the much-needed support
in every step, including creating and maintaining the website, and taking care
of all aspects of the conference’s logistics.

Special thanks are due to Shai Halevi, who provided us with unlimited sup-
port of his websubrev software, which we used for the whole conference planning,
paper evaluation, and interaction with PC members and authors. Josh Benaloh,
was our IACR point of contact, always providing timely and informative an-
swers to our questions. Alfred Hofmann and his colleagues at Springer provided
a meticulous service for the timely production of this volume.

Finally, we would like to thank Qualcomm, Microsoft, Google, Good Tech-
nologies, and Cryptography Research Inc. for their generous support.

August 2013 Ran Canetti
Juan A. Garay
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Benôıt Libert, Thomas Peters, Marc Joye, and Moti Yung

Man-in-the-Middle Secure Authentication Schemes from LPN and
Weak PRFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

Vadim Lyubashevsky and Daniel Masny

Session 16: Quantum Security

Achieving the Limits of the Noisy-Storage Model Using Entanglement
Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

Frédéric Dupuis, Omar Fawzi, and Stephanie Wehner

Quantum One-Time Programs (Extended Abstract) . . . . . . . . . . . . . . . . . . 344
Anne Broadbent, Gus Gutoski, and Douglas Stebila



Table of Contents – Part II XIII

Secure Signatures and Chosen Ciphertext Security in a Quantum
Computing World . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

Dan Boneh and Mark Zhandry

Everlasting Multi-party Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
Dominique Unruh

Session 17: New Primitives

Instantiating Random Oracles via UCEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
Mihir Bellare, Viet Tung Hoang, and Sriram Keelveedhi

Obfuscating Conjunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
Zvika Brakerski and Guy N. Rothblum

Session 18: Functional Encryption I

Fully, (Almost) Tightly Secure IBE and Dual System Groups . . . . . . . . . . 435
Jie Chen and Hoeteck Wee

Function-Private Identity-Based Encryption: Hiding the Function in
Functional Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461

Dan Boneh, Ananth Raghunathan, and Gil Segev

Attribute-Based Encryption for Circuits from Multilinear Maps . . . . . . . . 479
Sanjam Garg, Craig Gentry, Shai Halevi, Amit Sahai, and
Brent Waters

Session 19: Functional Encryption II

Functional Encryption: New Perspectives and Lower Bounds . . . . . . . . . . 500
Shweta Agrawal, Sergey Gorbunov, Vinod Vaikuntanathan, and
Hoeteck Wee

On the Achievability of Simulation-Based Security for Functional
Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519

Angelo De Caro, Vincenzo Iovino, Abhishek Jain, Adam O’Neill,
Omer Paneth, and Giuseppe Persiano

How to Run Turing Machines on Encrypted Data . . . . . . . . . . . . . . . . . . . . 536
Shafi Goldwasser, Yael Tauman Kalai, Raluca Ada Popa,
Vinod Vaikuntanathan, and Nickolai Zeldovich

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555



Table of Contents – Part I

Session 1: Lattices and FHE

Practical Bootstrapping in Quasilinear Time . . . . . . . . . . . . . . . . . . . . . . . . 1
Jacob Alperin-Sheriff and Chris Peikert

Hardness of SIS and LWE with Small Parameters . . . . . . . . . . . . . . . . . . . . 21
Daniele Micciancio and Chris Peikert

Lattice Signatures and Bimodal Gaussians . . . . . . . . . . . . . . . . . . . . . . . . . . 40
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Abstract. In the setting of secure two-party computation, two parties
wish to securely compute a joint function of their private inputs, while
revealing only the output. One of the primary techniques for achieving
efficient secure two-party computation is that of Yao’s garbled circuits
(FOCS 1986). In the semi-honest model, where just one garbled cir-
cuit is constructed and evaluated, Yao’s protocol has proven itself to be
very efficient. However, a malicious adversary who constructs the gar-
bled circuit may construct a garbling of a different circuit computing a
different function, and this cannot be detected (due to the garbling). In
order to solve this problem, many circuits are sent and some of them
are opened to check that they are correct while the others are evaluated.
This methodology, called cut-and-choose, introduces significant overhead,
both in computation and in communication, and is mainly due to the
number of circuits that must be used in order to prevent cheating.

In this paper, we present a cut-and-choose protocol for secure compu-
tation based on garbled circuits, with security in the presence of malicious
adversaries, that vastly improves on all previous protocols of this type.
Concretely, for a cheating probability of at most 2−40, the best previous
works send between 125 and 128 circuits. In contrast, in our protocol 40
circuits alone suffice (with some additional overhead). Asymptotically, we
achieve a cheating probability of 2−s where s is the number of garbled
circuits, in contrast to the previous best of 2−0.32s. We achieve this by
introducing a new cut-and-choose methodology with the property that
in order to cheat, all of the evaluated circuits must be incorrect, and not
just the majority as in previous works.

1 Introduction

Background. Protocols for secure two-party computation enable a pair of parties
P1 and P2 with private inputs x and y, respectively, to compute a function f
of their inputs while preserving a number of security properties. The most cen-
tral of these properties are privacy (meaning that the parties learn the output
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2 Y. Lindell

f(x, y) but nothing else), correctness (meaning that the output received is in-
deed f(x, y) and not something else), and independence of inputs (meaning that
neither party can choose its input as a function of the other party’s input). The
standard way of formalizing these security properties is to compare the output
of a real protocol execution to an “ideal execution” in which the parties send
their inputs to an incorruptible trusted party who computes the output for the
parties. Informally speaking, a protocol is then secure if no real adversary attack-
ing the real protocol can do more harm than an ideal adversary (or simulator)
who interacts in the ideal model [12,10,24,2,4,11]. An important parameter when
considering this problem relates to the power of the adversary. Three important
models are the semi-honest model (where the adversary follows the protocol
specification exactly but tries to learn more than it should by inspecting the
protocol transcript), the malicious model (where the adversary can follow any
arbitrary polynomial-time strategy), and the covert model (where the adversary
may behave maliciously but is guaranteed to be caught with probability ε if it
does [1]).

Efficient Secure Computation and Yao’s Garbled Circuits. The problem of
efficient secure computation has recently gained much interest. There are now
a wide variety of protocols, achieving great efficiency in a variety of settings.
These include protocols that require exponentiations for every gate in the cir-
cuit [28,16] (these can be reasonable for small circuits but not large ones with
tens or hundreds of thousands of gates), protocols that use the “cut and choose”
technique on garbled circuits [20,21,29,25], and more [27,14,15,6,18,3,26,7]. The
recent protocols of [26,7] have very fast online running time. However, for the
case of Boolean circuits and when counting the entire running time (and not
just the online time), the method of cut-and-choose on garbled circuits is still
the most efficient way of achieving security in the presence of covert and mali-
cious adversaries.

Protocols for cut-and-choose on garbled circuits [20,21,29,25] all work in the
following way. Party P1 constructs a large number of garbled circuits and sends
them to party P2. Party P2 then chooses a subset of the circuits which are opened
and checked. If all of these circuits are correct, then the remaining circuits are
evaluated as in Yao’s protocol [30], and P2 takes the majority output value as
the output. The cut-and-choose approach forces P1 to garble the correct circuit,
since otherwise it will be caught cheating. However, it is important to note
that even if all of the opened circuits are correct, it is not guaranteed that all
of the unopened circuits are correct. This is due to the fact that if there are
only a small number of incorrect circuits, then with reasonable probability these
may not be chosen to be opened. For this reason, it is critical that P2 outputs
the majority output, since the probability that a majority of unopened circuits
are incorrect when all opened circuits are correct is exponentially small in the
number of circuits. We stress that it is not possible for P2 to abort in case
it receives different outputs in different circuits, even though in such a case it
knows that P1 cheated, because this opens the door to the following attack. A
malicious P1 can construct a single incorrect circuit that computes the following
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function: if the first bit of P2’s input equals 0 then output random garbage; else
compute the correct function. Now, if this circuit is not opened (which happens
with probability 1/2) and if the first bit of P2’s input equals 0, then P2 will
receive a different output in this circuit and in the others. In contrast, if the first
bit of P2’s input equals 1 then it always receives the same output in all circuits.
Thus, if the protocol instructs P2 to abort if it receives different outputs, then
P1 will learn the first bit of P2’s input (based on whether or not P2 aborts). By
having P2 take the majority value as output, P1 can only cheat if the majority
of the unopened circuits are incorrect, while all the opened ones are correct.
In [21] it was shown that when s circuits are sent and half of them are opened,
the probability that P1 can cheat is at most 2−0.311s. Thus, concretely, in order
to obtain an error probability of 2−40, it is necessary to set s = 128 and so use
128 circuits, which means that the approximate cost of achieving security in the
presence of malicious adversaries is 128 times the cost of achieving security in
the presence of semi-honest adversaries. In [29], it was shown that by opening
and checking 60% of the circuits instead of 50%, then the error becomes 2−0.32s

which means that it suffices to send 125 circuits in order to obtain a concrete
error of 2−40. It was claimed in [29] that these parameters are “optimal for the
cut-and-choose method” and that they establish “a close characterization of the
limit of the cut-and-choose method”. We show that these protocols are actually
far from the “limit” of this method.

Our Results. In this paper, we present a novel twist on the cut-and-choose
strategy used in [20,21,29,25] that enables us to achieve an error of just 2−s with
s circuits (and some small additional overhead). Concretely, this means that
just 40 circuits are needed for error 2−40. Our protocol is therefore much more
efficient than previous protocols (there is some small additional overhead but
this is greatly outweighed by the savings in the garbled circuits themselves unless
the circuit being computed is small). We stress that the bottleneck in protocols
of this type is the computation and communication of the s garbled circuits.
This has been demonstrated in implementations. In [9], the cost of the circuit
communication and computation for secure AES computation is approximately
80% of the work. Likewise in [17, Table 7] regarding secure AES computation,
the bandwidth due to the circuits was 83% of all bandwidth and the time was
over 50% of the time. On large circuits, as in the edit distance, this is even
more significant with the circuit generation and evaluation taking 99.999% of
the time [17, Table 9]. Thus, the reduction of this portion of the computation to
a third of the cost is of great significance.

We present a high-level outline of our new technique in Section 2. For now, we
remark that the cut-and-choose technique on Yao’s garbled circuits introduces
a number of challenges. For example, since the parties evaluate numerous cir-
cuits, it is necessary to enforce that the parties use the same input in all circuit
computations. In addition, a selective input attack whereby P1 provides correct
garbled inputs only for a subset of the possible inputs of P2 must be prevented
(since otherwise P2 will abort if its input is not in the subset because it cannot
compute any circuit in this case, and thus P1 will learn something about P2’s
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input based on whether or not it aborts). There are a number of different so-
lutions to these problems that have been presented in [20,21,29,25,9]. The full
protocol that we present here is based on the protocol of [21]. However, these
solutions are rather “modular” (although this is meant in an informal sense),
and can also be applied to our new technique; this is discussed at the end of
Section 2. Understanding which technique is best will require implementation
since they introduce tradeoffs that are not easily comparable. We leave this for
future work, and focus on the main point of this work which is that it is possi-
ble to achieve error 2−s with just s circuits. In Section 3.1 we present an exact
efficiency count of our protocol.

Covert Adversaries. Although not always explicitly proven, the known protocols
for cut-and-choose on garbled circuits achieve covert security where the deterrent
probability ε that the adversary is caught cheating equals 1 minus the statistical
error of the protocol. That is, the protocol of [21] yields covert security of ε =
1−2−0.311s (actually, a little better), and the protocol of [29] yields covert security
with ε = 1−2−0.32s. Our protocol achieves covert security with deterrent ε = 1−
2−s+1 (i.e., the error is 2−s+1) which is far more efficient than all previous work.
Specifically, in order to obtain ε = 0.99, the number of circuits needed in [21] is
24. In contrast, with our protocol, it suffices to use 8 circuits. Furthermore, with
just 11 circuits, we achieve ε = 0.999, which is a high deterrent.

2 The New Technique and Protocol Outline

The idea behind our new cut-and-choose strategy is to design a protocol with
the property that the party who constructs the circuits (P1) can cheat if and
only if all of the checked circuits are correct and all of the evaluated circuits
are incorrect. Recall that in previous protocols, if the circuit evaluator (P2)
aborts if the evaluated circuits don’t all give the same output, then this can
reveal information about P2’s input to P1. This results in an absurd situation:
P2 knows that P1 is cheating but cannot do anything about it. In our protocol,
we run an additional small secure computation after the cut-and-choose phase
so that if P2 catches P1 cheating (namely, if P2 receives inconsistent outputs)
then in the second secure computation it learns P1’s full input x. This enables
P2 to locally compute the correct output f(x, y) once again. Thus, it is no longer
necessary for P2 to take the majority output. Details follow.

Phase 1 – first cut-and-choose:

– Parties P1 (with input x) and P2 (with input y) essentially run a protocol
based on cut-and-choose of garbled circuits, that is secure for malicious ad-
versaries (like [21] or [29]). P1 constructs just s circuits (for error 2−s) and
the strategy for choosing check or evaluation circuits is such that each circuit
is independently chosen as a check or evaluation circuit with probability 1/2
(unlike all previous protocols where a fixed number of circuits are checked).

– If all of the circuits successfully evaluated by P2 give the same output z,
then P2 locally stores z. Otherwise, P2 stores a “proof” that it received two
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inconsistent output values in two different circuits. Such a proof could be
having a garbled value associated with 0 on an output wire in one circuit,
and a garbled value associated with 1 on the same output wire in a different
circuit. (This is a proof since if P2 obtains a single consistent output then
the garbled values it receives on an output wire in different circuits are all
associated with the same bit.)

Phase 2 – Secure Evaluation of Cheating: P1 and P2 run a protocol that
is secure for malicious adversaries with error 2−s (e.g., they use the protocol
of [21,29] with approximately 3s circuits), in order to compute the following:

– P1 inputs the same input x as in the computation of phase 1 (and proves
this).

– P2 inputs random values if it received a single output z in phase 1, and
inputs the proof of inconsistent output values otherwise.

– If P2’s input is a valid proof of inconsistent output values, then P2 receives
P1’s input x; otherwise, it receives nothing.

If this secure computation terminates with abort, then the parties abort.

Phase 3 – Output Determination: If P2 received a single output z in phase 1
then it outputs z and halts. Otherwise, if it received inconsistent outputs then
it received x in phase 2. P2 locally computes z = f(x, y) and outputs it. We
stress that P2 does not provide any indication as to whether z was received from
phase 1 or locally computed.

Security. The argument for the security of the protocol is as follows. Consider
first the case that P1 is corrupted and so may not construct the garbled circuits
correctly. If all of the check circuits are correct and all of the evaluation circuits
are incorrect, then P2 may receive the same incorrect output in phase 1 and will
therefore output it. However, this can only happen if each incorrect circuit is an
evaluation circuit and each correct circuit is a check circuit. Since each circuit
is an evaluation or check circuit with probability exactly 1/2 this happens with
probability exactly 2−s. Next, if all of the evaluation circuits (that yield valid
output) are correct, then the correct output will be obtained by P2. This leaves
the case that there are two different evaluation circuits that give two different
outputs. However, in such a case, P2 will obtain the required “proof of cheating”
and so will learn x in the 2nd phase, thereby enabling it to still output the
correct value. Since P1 cannot determine which case yielded output for P2, this
can be easily simulated.

Next consider the case that P2 is corrupted. In this case, the only way that
P2 can cheat is if it can provide output in the second phase that enables it to
receive x. However, since P1 constructs the circuits correctly, P2 will not obtain
inconsistent outputs and so will not be able to provide such a “proof”. (We
remark that the number of circuits s sent is used for the case that P1 is corrupted;
for the case that P2 is corrupted a single circuit would actually suffice. Thus,
there is no need to justify the use of fewer circuits than in previous protocols for
this corruption case.)
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Implementing Phase 2. The main challenge in designing the protocol is phase 2.
As we have hinted, we will use the knowledge of two different garbled values for a
single output wire as a “proof” that P2 received inconsistent outputs. However,
it is also necessary to make sure that P1 uses the same input in phase 1 and in
phase 2; otherwise it could use x or x′, respectively, and then learn whether P2

received output via phase 1 or 2. The important observation is that all known
protocols already have a mechanism for ensuring that P1 uses the same input in
all computed circuits, and this mechanism can be used for the circuits in phase 1
and 2, since it does not depend on the circuits being computed being the same.

Another issue that arises is the efficiency of the computation in phase 2. In
order to make the circuit for phase 2 small, it is necessary to construct all of the
output wires in all the circuits of phase 1 so that they have the same garbled
values on the output wires. This in turn makes it necessary to open and check
the circuits only after phase 2 (since opening a circuit to check it reveals both
garbled values on an output wire which means that this knowledge can no longer
be a proof that P1 cheated). Thus, the structure of the actual protocol is more
complex than previous protocols; however, this relates only to its description
and not efficiency.

We remark that we use the method of [21] in order to prove the consistency of
P1’s input in the different circuits and between phase 1 and phase 2. However,
we believe that the methods used in [29,25], for example, would also work, but
have not proven this.

3 The Protocol

Preliminaries – Modified Batch Single-Choice Cut-and-Choose OT. The cut-
and-choose OT primitive was introduced in [21]. Intuitively, a cut-and-choose
OT is a series of 1-out-of-2 oblivious transfers with the special property that in
some of the transfers the receiver obtains a single value (as in regular oblivious
transfer), while in the others the receiver obtains both values. For cut-and-choose
on Yao’s garbled circuits, the functionality is used for the receiver to obtain all
garbled input values in the circuits that it wishes to open and check, and to
obtain only the garbled input values associated with its input on the circuits to
be evaluated.

In [21], the functionality defined is such that the receiver obtains both values
in exactly half of the transfers; this is because in [21] exactly half of the circuits
are opened. In this work, we modify the functionality so that the receiver can
choose at its own will in which transfers it receives just one value and in which it
receives both. We do this since we want P2 to check each circuit with probability
exactly 1/2, independently of all other circuits. This yields an error of 2−s instead

of
(

s
s/2

)−1

, which is smaller (this is especially significant in the setting of covert

adversaries).
This modification introduces a problem since at a later stage in the protocol

the receiver needs to prove to the sender for which transfers it received both
values and for which it received only one. If it is known that the receiver obtains
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both values in exactly half of the transfers, or for any other known number, then
the receiver can just send both values in these transfers (assuming that they are
otherwise unknown, as is the case in the Yao circuit use of the functionality),
and the sender knows that the receiver did not obtain both values in all others;
this is what is done in [21]. However, here the receiver can obtain both values in
an unknown number of transfers, as it desires. We therefore need to introduce a
mechanism enabling the receiver to prove to the sender in which transfers it did
not receive both values, in a way that it cannot cheat. We solve this by having
the sender input s random “check” values, and having the receiver obtain such
a value in every transfer for which it receives a single value only. Thus, at a later
time, the receiver can send the appropriate check values, and this constitutes a
proof that it did not receive both values in these transfers. See Figure 1 for the
formal functionality definition.

FIGURE 1 (Modified Batch Single-Choice Cut-and-Choose OT Fccot)

Inputs:

– S inputs � vectors of pairs xi of length s, for i = 1, . . . , �. (Every vector
consists of s pairs; i.e., xi = 〈(xi,1

0 , xi,1
1 ), (xi,2

0 , xi,2
1 ), . . . , (xi,s

0 , xi,s
1 )〉. There

are � such vectors.) In addition, S inputs s “check values” χ1, . . . , χs. All
values are in {0, 1}n.

– R inputs σ1, . . . σ� ∈ {0, 1} and a set of indices J ⊆ [s].

Output: The sender receives no output. The receiver obtains the following:

– For every i = 1, . . . , � and for every j ∈ J , the receiver R obtains the jth
pair in vector xi. (I.e., for every i = 1, . . . , � and every j ∈ J , R obtains
(xi,j

0 , xi,j
1 ).)

– For every i = 1, . . . , �, the receiver R obtains the σi value in every pair of
the vector xi. (I.e., for every i = 1, . . . , �, R obtains 〈xi,1

σi
, xi,2

σi
, . . . , xi,s

σi
〉.)

– For every k /∈ J , the receiver R obtains χk.

A protocol for securely computing the Fccot functionality, that is based on
the protocol in [21], is provided in the full version of this paper [22]. The com-
putational complexity of the protocol is as follows:

Operation Exact Cost Approximate Cost
Regular exponentiations 1.5s�+ 18.5s+ 25 1.5s�
Fixed-base exponentiations 9s�+ �+ 2s+ 1 9s�
Bandwidth (group elements) 5s�+ �+ 11s+ 15 5s�

Encoded Translation Tables. We modify the output translation tables typically
used in Yao’s garbled circuits as follows. Let k0i , k

1
i be the garbled values on wire

i, which is an output wire, and let H be a collision-resistant hash function. Then,
the encoded output translation table for this wire is simply

[
H(k0i ), H(k1i )

]
. We

require that k0i �= k1i and if this doesn’t hold (which will be evident since then
H(k0i ) = H(k1i )), P2 will automatically abort. Observe that given a garbled value
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k, it is possible to determine whether k is the 0 or 1 key (or possibly neither)
by just computing H(k) and seeing if it equals the first or second value in the
pair, or neither. However, given the encoded translation table, it is not feasible
to find the actual garbled values, since this is equivalent to inverting the one-way
function. This is needed in our protocol, as we will see below. We remark that
both k0i , k

1
i are revealed by the end of the protocol, and only need to remain

secret until Step 7 has concluded (see the protocol below). Thus, they can be
relatively short values.

PROTOCOL 2 (Computing f(x, y))

Inputs: P1 has input x ∈ {0, 1}� and P2 has input y ∈ {0, 1}�.
Auxiliary input: a statistical security parameter s, the description of a cir-
cuit C such that C(x, y) = f(x, y), and (G, q, g) where G is a cyclic group with
generator g and prime order q, and q is of length n. In addition, they hold a
hash function H that is a suitable randomness extractor; see [8].
Specified output: Party P2 receives f(x, y) and party P1 receives no output;
denote the length of the output of f(x, y) by m.

The protocol:

1. Input key choice and circuit preparation:

(a) P1 chooses random values a0
1, a

1
1, . . . , a

0
� , a

1
� ; r1, . . . , rs ∈R Zq and

b01, b
1
1, . . . , b

0
m, b1m ∈R {0, 1}n.

(b) Let w1, . . . , w� be the input wires corresponding to P1’s input in C,
and denote by wi,j the instance of wire wi in the jth garbled circuit,
and by kb

i,j the key associated with bit b on wire wi,j . P1 sets the keys
for its input wires to:

k0
i,j = H(ga

0
i ·rj ) and k1

i,j = H(ga
1
i ·rj ).

(c) Let w′
1, . . . , w

′
m be the output wires in C. Then, the keys for wire w′

i in
all garbled circuits are b0i and b1i (unlike all other wires in the circuit,
the same values are used for the output wires in all circuits).

(d) P1 constructs s independent copies of a garbled circuit of C, denoted
GC1, . . . , GCs, using random keys except for wires w1, . . . , w� (P1’s
input wires) and w′

1, . . . , w
′
m (the output wires) which are as above.

2. Oblivious transfers: P1 and P2 run a modified batch single-choice cut-
and-choose oblivious transfer, with parameters � (the number of parallel
executions) and s (the number of pairs in each execution):
(a) P1 defines vectors z1, . . .z� so that zi contains the s pairs of random

symmetric keys associated with P2’s ith input bit yi in all garbled
circuits GC1, . . . , GCs. P1 also chooses random values χ1, . . . , χs ∈R

{0, 1}n. P1 inputs these vectors and the χ1, . . . , χs values.
(b) P2 chooses a random subset J ⊂ [s] where every j ∈ J with prob-

ability exactly 1/2, under the constraint that J �= [s]. P2 inputs the
set J and bits σ1, . . . , σ� ∈ {0, 1}, where σi = yi for every i.

(c) P2 receives all the keys associated with its input wires in all circuits
GCj for j ∈ J , and receives the keys associated with its input y on
its input wires in all other circuits.

(d) P2 receives χj for every j /∈ J .
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PROTOCOL 3 (PROTOCOL 2 – continued)

3. Send circuits and commitments: P1 sends P2 the garbled circuits (i.e.,
the garbled gates). In addition, P1 sends P2 the “seed” for the random-
ness extractor H , and the following displayed values (which constitute a
“commitment” to the garbled values associated with P1’s input wires):{

(i, 0, ga
0
i ), (i, 1, ga

1
i )
}�

i=1
and

{
(j, grj )

}s

j=1

In addition, P1 sends P2 the encoded output translation tables, as follows:[(
H(b01),H(b11)

)
, . . . ,

(
H(b0m),H(b1m)

)]
.

If H(b0i ) = H(b1i ) for any 1 ≤ i ≤ m, then P2 aborts.
4. Send cut-and-choose challenge: P2 sends P1 the set J along with

the values χj for every j /∈ J . If the values received by P1 are incorrect,
it outputs ⊥ and aborts. Circuits GCj for j ∈ J are called check-circuits,
and for j /∈ J are called evaluation-circuits.

5. P1 sends its garbled input values in the evaluation-circuits: P1

sends the keys associated with its inputs in the evaluation circuits: For
every j /∈ J and every wire i = 1, . . . , �, party P1 sends the value k′

i,j =

ga
xi
i ·rj ; P2 sets ki,j = H(k′

i,j).
6. Circuit evaluation: P2 uses the keys associated with P1’s input ob-

tained in Step 5 and the keys associated with its own input obtained in
Step 2c to evaluate the circuits GCj for every j /∈ J . If P2 receives only
one valid output value per output wire (i.e., one of b0i , b

1
i , verified against

the encoded output translation tables) and it does not abort in the next
step, then this will be its output. If P2 receives two valid outputs on one
output wire (i.e., both b0i and b1i for output wire w′

i) then it uses these in
the next step. If there exists an output wire for which P2 did not receive
a valid value in any evaluation circuit (neither b0i nor b1i ), then P2 aborts.

7. Run secure computation to detect cheating:

(a) P1 defines a circuit with the values b01, b
1
1, . . . , b

0
m, b1m hardcoded. The

circuit computes the following function:
i. P1’s input is a string x ∈ {0, 1}�, and it has no output.
ii. P2’s input is a pair of values b0, b1.
iii. If there exists a value i (1 ≤ i ≤ m) such that b0 = b0i and b1 = b1i ,

then P2’s output is x; otherwise it receives no output.
(b) P1 and P2 run the protocol of [21] on this circuit (except for the proof

of P1’s input values), as follows:
i. P1 inputs its input x; If P2 received b0i , b

i
1 for some 1 ≤ i ≤ m,

then it inputs the pair b0i , b
1
i ; otherwise it inputs garbage.

ii. The garbled circuit constructed by P1 uses the same a0
i , a

1
i values

as above (i.e., the same triples (i, 0, ga
0
i ), (i, 1, ga

1
i )), but indepen-

dent rj values. In addition, regular translation tables are used,
and not encoded translation tables. Finally, the parties use 3s
copies of the circuit (and not s).

iii. P2 takes the majority output from the evaluation circuits, as
in [21]. If any of the checked circuits are invalid, then P2 aborts.
We stress that this check includes the check that the circuit has
the correct b01, b

1
1, . . . , b

0
m, b1m values hardcoded; P2 checks this rel-

ative to the encoded translation tables that it received.
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PROTOCOL 2 – continued

7. Run secure computation to detect cheating (cont.): If this compu-
tation results in an abort, then both parties halt at this point and output
⊥. (Note that in the protocol of [21] both parties must know the circuit.
However, the oblivious transfers that determine P2’s input are run before
the circuit is sent and checked. Thus, P1 can send the b01, b

1
1, . . . , b

0
m, b1m

values to P2 after the oblivious transfers are concluded; P2 can check
these values against the encoded translation tables and can then check
that these are the values that are hardwired into the circuit.)

8. Check circuits for computing f(x, y):
(a) Send all input garbled values in check-circuits: For every

check-circuit GCj , party P1 sends the value rj to P2, and P2 checks
that these are consistent with the pairs {(j, grj )}j∈J received in
Step 3. If not, P2 aborts outputting ⊥.

(b) Correctness of check circuits: For every j ∈ J , P2 uses the

ga
0
i , ga

1
i values it received in Step 3, and the rj values it received

in Step 8a, to compute the values k0
i,j = H(ga

0
i ·rj ), k1

i,j = H(ga
1
i ·rj )

associated with P1’s input in GCj . In addition it sets the garbled
values associated with its own input in GCj to be as obtained in
the cut-and-choose OT. Given all the garbled values for all input
wires in GCj , party P2 decrypts the circuit and verifies that it is
a garbled version of C, using the encoded translation tables for the
output values. If there exists a circuit for which this does not hold,
then P2 aborts and outputs ⊥.

9. Verify consistency of P1’s input: Let Ĵ be the set of check circuits
in the computation in Step 7, and let r̂j be the value used to generate the
keys associated with P1’s input in the jth circuit, just like rj in Step 1a

(i.e., H(ga
0
i ·r̂j ) is the 0-key on the ith input wire of P1 in the jth garbled

circuit used in Step 7). Let k̂i,j be the analogous value of k′
i,j in Step 5

received by P2 in the computation in Step 7.
For every input wire i = 1, . . . , �, party P1 proves a zero-knowledge proof
of knowledge that there exists a σi ∈ {0, 1} such that for every j /∈ J and

every j′ /∈ J ′, k′
i,j = ga

σi
i ·rj AND k̂i,j = ga

σi
i ·r̂j (note that P2 has grj and

gr̂j for every j, and ga
0
i , ga

1
i for every i; thus this is just a Diffie-Hellman

tuple proof). If any of the proofs fail, then P2 aborts and outputs ⊥.
10. Output evaluation: If P2 received no inconsistent outputs from the

evaluation circuits GCi (i /∈ J ), then it decodes the outputs it received
using the encoded translation tables, and outputs the string received. If
P2 received inconsistent output, then let x be the output that P2 received
from the second computation in Step 7. Then, P2 computes f(x, y) and
outputs it.
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The Circuit for Step 7. A naive circuit for computing the function in Step 7
can be quite large. Specifically, to compare two n bit strings requires 2n XORs
followed by 2n ORs; if the output is 0 then the strings are equal. This has to be
repeated m times, once for every i, and then the results have to be ORed. Thus,
there are 2mn+m non-XOR gates. Assuming n is of size 80 (e.g., which suffices
for the output values) and m is of size 128, this requires 20, 480 non-XOR gates,
which is very large. An alternative is therefore to compute the following garbled
circuit:

1. For every i = 1, . . . ,m,
(a) Compare b0‖b1 to b0i ‖b1i (where ‘‖’ denotes concatenation) by XORing

bit-by-bit, and take the NOT of each bit. This is done as in a regular
garbled circuit; by combining the NOT together with the XOR this has
the same cost as a single XOR gate.

(b) Compute the 2n-wise AND of the bits from above. Instead of using 2n−1
Boolean AND gates, this can be achieved by encrypting the 1-key on the
output wire under all n keys (together with redundancy so that the
circuit evaluator can know if it received the correct value). Furthermore,
this encryption can be a “one-time pad” and thus is just the XOR of all
of the 1-keys on the input wires together with the 1-key on the output
way. The 0-key for the output can be given in the clear, since it provides
no additional information, but is not needed so can just not be given
(note that P2 knows exactly which case it is in). Note that the result of
this operation is 1 if and only if b0‖b1 = b0i ‖b1i and so P2 had both keys
on the ith output wire.

2. Compute the OR of the m bits resulting from the above loop. Instead of
using m− 1 Boolean OR gates, this can be achieved by simply setting the 1-
key on all of the output wires from the n-wise ANDs above to be the 1-key on
the output wire of the OR. This ensures that as soon as the 1-key is received
from an n-wise AND, the 1-key is received from the OR, as required. (This
reveals for which i the result of the n-wise AND was 1. However, this is fine
here since P2 knows exactly where equality should be obtained in any case.)

3. Compute the AND of the output from the previous step with all of the input
bits of P1. This requires � Boolean AND gates.

4. The output wires include the output of the OR (so that P2 can know if it
received x or nothing), together with the output of all of the ANDs with the
input bits of P1.

The original and optimized circuits are depicted in the full version [22]. The
number of non-XOR operations required to securely compute this circuit is just
� binary AND gates. Assuming � = 128 (e.g., as in the secure AES example),
we have that there are only 128 non-XOR gates. When using 128 circuits as in
our instantiation of Step 7 via [21], this comes to 16,384 garbled gates overall,
which is significant but not too large. We stress that the size of this circuit is
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independent of the size of the circuit for the function f to be computed. Thus,
this becomes less significant as the circuit becomes larger. On the other hand, for
very small circuits or when the input size is large relative to the overall circuit
size, our approach will not be competitive. To be exact, assume a garbled circuit
approach that requires 3s circuits. If 3s|C| < s|C|+3s · � then our protocol will
be slower (since the cost of our protocol is s|C| for the main computation plus
3s� for the circuit of Step 7, in contrast to 3s|C| for the other protocol). This
implies that our protocol will be faster as long as |C| > 3�

2 . Concretely, if � = 128
and s = 40, it follows that our protocol will be faster as long as |C| > 192. Thus,
our protocol is much faster, except for the case of very small circuits.

Additional Optimizations. Observe that although the above circuit is very small,
P2’s input size is 2n and this is quite large. Since the input size has a significant
effect on the cost of the protocol (especially when using cut-and-choose oblivious
transfer), it would be desirable to reduce this. This can be achieved by first
having P2 input b0 ⊕ b1 instead of b0‖b1, reducing the input length to n (this
is sound since if P2 does not have both keys on any output wire then it cannot
know their XOR). Furthermore, in order to obtain a cheating probability of 2−40

it suffices for the circuit to check only the first 40 bits of b0 ⊕ b1. (Note that bi0
and bi1 have to be longer since H(b0i ), H(b1i ) are published; nevertheless, only 40
bits need to be included in the circuit. When using this optimization, the length
of bi0, b

i
1 can be 128 bits and not 80, which is preferable.) Finally, by choosing

all of the b0i , b
1
i values so that they have the same fixed XOR (i.e., for some Δ it

holds that for all i, b0i ⊕ b1i = Δ, as in the free XOR technique), the size of the
circuit is further reduced. This significantly reduces the bandwidth; a diagram
of this circuit appears in the full version [22].

Security. In the full version of this paper [22], we prove the following theorem:

Theorem 4. Assume that the Decisional Diffie-Hellman assumption holds in
(G, g, q), and that H is a collision-resistant hash function. Then, Protocol 2
securely computes f in the presence of malicious adversaries (with error 2−s +
μ(n) where μ(·) is some negligible function).

3.1 A Detailed Efficiency Count and Comparison

In this sectionwe provide an exact efficiency count of our protocol. This will enable
an exact comparison of our protocol to previous and future works, as long as they
also provide an exact efficiency count. We count exponentiations, symmetric en-
cryptions and bandwidth. We let n denote the length of a symmetric encryption,
and an arbitrary string of length of the security parameter (e.g., χj).
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Step
Fixed-base
exponent.

Regular
exponent.

Symmetric
Encryptions

Group
elms sent

Symmetric
comm

1 2s� 0 4s|C|
2 9s� 1.5s� 5s�
3 �+ s 0 2�+ s 4ns|C|
4 s

2
· n

5 nm
6 s

2
· |C|

7 9s�+ 5040s 480s 19.5� 21s� 12sn�
8 s/2 + s� s

2
· 4|C| s

2
· n

9 2s�+ 18� 10 2s�n

TOTAL 21s� + 5040s
3.5s� + 18�

+480s

6.5s|C|+
19.5s� 26s� 4ns|C|+ 14s�n

The number of symmetric encryptions is counted as follows: each circuit re-
quires 4|C| symmetric encryptions to construct, 4|C| symmetric encryption to
check, and |C| encryptions to evaluate (we assume a single encryption per entry;
if standard double-encryption is used then this should be doubled). Since ap-
proximately half of the circuits are check and half are evaluation, the garbling,
checking and evaluation of the main garbled circuit accounts for approximately
s · 4|C|+ s

2 · 4|C|+ s
2 · |C| = 6.5s|C| symmetric encryptions. The garbled circuit

used in Step 7 has � non-XOR gates and so the same analysis applies on this
size. However, the number of circuits sent in this step is 3s and thus we obtain
an additional 3× 6.5 · s · � = 19.5s�.

The bandwidth count for Step 7 is computed based on the counts provided
in [21], using 3s circuits. The cost of the exponentiations is based on the fact
that in [21], if P1 has input of length �1 and P2 has input of length �2, and s′

circuits are used, then there are 3.5s′�1+10.5s′�2 fixed-base exponentiations and
s′�2 regular exponentiations. However, 0.5s′�1 of the fixed-base exponentiations
are for the proof of consistency and these are counted in Step 9 instead. Now,
in Step 7, P1’s input length is � (it is the same x as for the entire protocol) and
P2’s input is comprised of two garbled values for the output wires. Since these
must remain secret for only a short amount of time, it is possible to take 80-bit
values only and so P2’s input length is 160 bits (this is irrespective of P2’s input
length to the function f). Taking s′ = 3s and plugging these lengths this into
the above, we obtain the count appearing in the table.

The proof of consistency of P1’s input is carried out � times (once for each
bit of P1’s input) and over s+3s = 4s circuits (since there are s circuits for the
main computation of C, plus another 3s circuits for the computation in Step 7).
By the count in [21], this proof therefore costs 4s�

2 + 18� exponentiations, and
bandwidth of 10 group elements and another 8s� short strings (this can therefore
be counted as 2s�n.

A Comparison to [21]. In order to to get a concrete understanding of the ef-
ficiency improvement, we will compare the cost to [21] for the AES circuit of
size 6,800 gates [31], and input and output sizes of 128. Now, as we have men-
tioned, the overall cost of the protocol of [21] is 3.5s′�1 + 10.5s�2 fixed-base
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Protocol Fixed-base exp. Regular exp. Symmetric encryptions Bandwidth

[21] 224,000 16,000 5,525,000 449,640,000
Here 309,120 37,120 1,874,800 177,725,440

Fig. 1. Comparison of protocols for secure computation of AES

exponentiations, s′�2 regular exponentiations and 6.5s′|C| symmetric encryp-
tions. In this case, �1 = �2 = 128, s′ = 125 (s′ = 125 was shown to suffice for
2−40 security in [17]), and so we have that the cost is 224,000 fixed-base expo-
nentiations, 16,000 regular exponentiations, and 812.5|C| =5,525,000 symmetric
encryptions. In contrast, taking � = 128 and s = 40 we obtain here 309,120 fixed-
base exponentiations, 37, 120 regular exponentiations, and 1,874,800 symmetric
encryptions. In addition, the bandwidth of [21] is approximately 112, 000 group
elements and 3,400,000 symmetric ciphertexts. At the minimal cost of 220 bits
per group element (e.g., using point compression) and 128 bits per ciphertext,
we have that this would come to approximately 449,640,000 bits, or close to half
a gigabyte (in practice, it would be significantly larger due to communication
overheads). In contrast, the bandwidth of our protocol for this circuit would be
133,120 group elements and 1,159,680 ciphertexts. With the same parameters
as above, this would be approximately 177,725,440 bits, which is under 40% of
the cost of [21]. This is very significant since bandwidth is turning out to be the
bottleneck in many cases.

We stress that in larger circuits the difference would be even more striking.

4 Variants – Universal Composability and Covert
Adversaries

Universal Composability [5]. As in [21], by instantiating the cut-and-choose
oblivious transfer and the zero-knowledge proofs with variants that universally
composable, the result is that Protocol 2 is universally composable.

Covert Adversaries [1]. Observe that in the case that P2 is corrupted, the pro-
tocol is fully secure irrespective of the value of s used. In contrast, when P1 is
corrupted, then the cheating probability is 2−s + μ(n). However, this cheating
probability is independent of the input used by the P2 (as shown in the proof of
Theorem 4). Thus, Protocol 2 is suitable for the model of security in the presence
of covert adversaries. Intuitively, since the adversary can cheat with probability
only 2−s and otherwise it is caught cheating, the protocol achieves covert secu-
rity with deterrent ε = 1− 2−s. However, on closer inspection, this is incorrect.
Specifically, as we have discussed above, if P2 catches P1 cheating due to the
fact that two different circuits yield two different outputs, then it is not allowed
to reveal this fact to P1. Thus, P2 cannot declare that P1 is a cheat in this case,
as is required in the model of covert adversaries. However, if P2 detects even a
single bad circuit in the check phase, then it can declare that P1 is cheating, and
this happens with probability at least 1/2 (even if only a single circuit is bad).
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We can use this to show that for every s, Protocol 2 securely computes f in the
presence of covert adversaries with deterrent ε = 1− 2−s+1. In actuality, we
need to make a slight change to Protocol 2, in order to achieve this. See the full
version of this paper for details [22].

As discussed in the introduction, this yields a huge efficiency improvement
over previous results, especially for small values of s. For example, 100 circuits
are needed to obtain ε = 0.99 in [1], 24 circuits are needed to obtain ε = 0.99
in [21], and here 8 circuits alone suffice to obtain ε = 0.99. Observe that when
covert security is desired, the number of circuits sent in Step 7 needs to match
the level of covert security. For example, in order to obtain ε = 0.99, 8 circuits
are used in our main protocol and 24 circuits are used in Step 7.

We remark that our protocol would be a little simpler if P2 always asked to
open exactly half the circuits (especially in the cut-and-choose oblivious trans-

fer). In this case, the error would be
(

s
s/2

)−1

instead of 2−s. In order to achieve

an error of 2−40 this would require 44 circuits which is a 10% increase in complex-
ity, and reason enough to use our strategy of opening each circuit independently
with probability 1/2. However, when considering covert security, the difference is

huge. For example, with s = 8 we have that
(
8
4

)−1

= 1/70 whereas 2−8 = 1/256.

This is a very big difference.

Acknowledgements. We thank Benny Pinkas and Ben Riva for helpful
discussions.
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Abstract. Beginning with the work of Lindell and Pinkas, researchers
have proposed several protocols for secure two-party computation based
on the cut-and-choose paradigm. In current instantiations of this ap-
proach, one party generates κ garbled circuits; some fraction of those are
“checked” by the other party, and the remaining fraction are evaluated.

We introduce here the idea of symmetric cut-and-choose protocols, in
which both parties generate κ circuits to be checked by the other party.
The main advantage of our technique is that κ can be reduced by a factor
of 3 while attaining the same statistical security level as in prior work.
Since the number of garbled circuits dominates the costs of the protocol,
especially as larger circuits are evaluated, our protocol is expected to
run up to 3 times faster than existing schemes. Preliminary experiments
validate this claim.

1 Introduction

Secure two-party computation was shown to be feasible in the late 1980s [35,8].
But it is only in the past 10 years that the research community has devoted
significant efforts toward making such protocols practical. Work in this direc-
tion was spurred by the Fairplay paper [25], which implemented Yao’s protocol
for two-party computation with security in the semi-honest setting. More re-
cent work [10,12,11] has shown that Yao’s protocol (in combination with other
techniques) can be surprisingly efficient when semi-honest security is sufficient.

More desirable, of course, is to achieve security against malicious adversaries.
While this is known to be feasible, in principle, using generic zero knowledge [8],
a generic approach of this sort does not currently seem likely to result in efficient
protocols even if specialized zero-knowledge proofs (as suggested in [15]) are used.
The first technique to be explored for making efficient two-party computation
protocols secure against malicious adversaries was the cut-and-choose paradigm.
In that approach, roughly speaking, one party generates κ garbled circuits (where
κ is a statistical security parameter); some fraction of those are “checked” by
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the other party—who aborts if any misbehavior is detected—and the remaining
fraction are evaluated with the results being used to derive the final output
(we return to the exact mechanism for doing so in the next section). Cut-and-
choose was used in a relatively naive way in [25] to give inverse-polynomial
security. (In fact, the approach taken was later shown to be flawed [26,16].) A
rigorous analysis of the cut-and-choose paradigm was first given by Lindell and
Pinkas [21], and their work was followed by numerous others exploring variations
of this technique and their application to (ever more) efficient secure two-party
computation [34,24,30,32,23,33,18].

In parallel with the above, other efficient approaches to achieving “full” ma-
licious security in the two-party setting have also been explored. Approaches
based on the IPS compiler [14] appear to have good asymptotic complexity [20],
but seem challenging to implement (indeed, we are not aware of any implementa-
tions); other approaches [29,5,4] have round complexity proportional to the depth
of the circuit being evaluated. Another direction is to explore weaker security
guarantees [1,26,13], still against arbitrary malicious behavior. In the remainder
of this paper we restrict our attention to protocols achieving the strongest notion
of malicious security.

The critical question regarding the cut-and-choose approach is: how many
garbled-circuit copies (namely, κ) are needed to ensure some desired security
level? The value of κ has the greatest impact on the efficiency of cut-and-
choose protocols, especially as larger circuits C are evaluated. The computa-
tional/communication complexity of such protocols is O(κ ·k · |C|)+poly(n, k, s),
where k is a cryptographic security parameter and n is the input length. Since
|C| � k, n (typical values are k ≈ 128 and n < 1000, while |C| ≈ 109 in [18]),
the importance of minimizing κ is clear.

1.1 Prior Work

In previous applications of the cut-and-choose paradigm, one party (say, P1) acts
as the garbled-circuit generator and the other (P2) acts as the garbled-circuit
evaluator; assume for simplicity that only P2 gets output. If the oblivious-transfer
(OT) protocol used is secure against malicious adversaries, the main issue is to
ensure correctness of P2’s output. (Note, however, that correctness is closely
connected with privacy, since P1 can potentially carry out a selective failure
attack in which the output of P2 is correlated with P2’s input, in a way which
would not be possible in an ideal evaluation of the function.) Toward that end, P2

checks some number c of the κ circuits generated by P1 to make sure they were
constructed correctly. Assuming they were, the remaining κ− c garbled circuits
are evaluated by P2, who then outputs the majority value of those circuits’
results on each output wire. (This informal description omits various details,
since we wish to focus on the cut-and-choose aspect of the protocols.)

From the above we see that a malicious P1 can successfully cheat if they
generate b “bad” garbled circuits and (1) none of those bad garbled circuits is
among the c garbled circuits checked by P1, and (2) of the remaining κ − c
garbled circuits being evaluated, half or more are bad. Doing the analysis, prior
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work [21,23] culminating in the work of Shelat and Shen [33] shows that using
κ garbled circuits yields security level 2−0.32κ. Moreover, this bound was shown
to be the best possible for a certain class of cut-and-choose approaches [33].

1.2 Our Contribution

We recast the cut-and-choose approach in a symmetric setting, where each party
generates κ garbled circuits to be checked by the other party. In doing so, we
are motivated by work of Mohassel and Franklin [26] (see also [13]) who show
how symmetric creation/evaluation of garbled circuits (but without any cut-and-
choose) can be used to achieve security with only one bit of “disallowed” leakage
against malicious adversaries. Here we show how to extend their approach to
achieve the standard (i.e., “full”) notion of malicious security.

After checking each other’s garbled circuits, each party in our protocol eval-
uates the remaining garbled circuits of the other party, and then the results of
both parties’ evaluations are securely “combined” to yield the final output. In-
formally, a party outputs a value v for some output wire of the circuit if and only
if at least one of their own garbled circuits, and at least one of the garbled circuits
generated by the other party, evaluate to v on that wire. Since an honest party al-
ways generates correct garbled circuits, our analysis shows that correctness holds
as long as at least one of the evaluated circuits provided by the other party is
correct. (This is in contrast to one-sided cut-and-choose, where a majority of
the evaluated circuits must be correct.) Thus, a malicious party can successfully
cheat only if they generate exactly κ−c “bad” garbled circuits, and none of those
is checked by the other party. Setting c = κ/2 (which minimizes the cheating

probability), the probability of successful cheating is
(

κ
κ/2

)−1
= 2−κ+O(log κ). We

can therefore achieve the same security level as previous work while reducing1 κ
by roughly a factor of 3.

As an added advantage, our protocol naturally supports having both parties
receive output (an explicit concern of [33]), with no performance penalty if only
one party should learn the output.

In concurrent work, Lindell [19] shows a different approach that achieves 2−κ

security using κ circuits generated by only one of the parties.

1.3 Outline of the Paper

In Section 2 we review the cryptographic building blocks used in our protocol.
We provide an overview of the protocol in Section 3 along with some intuition
for why it is secure. In Section 4 we provide a formal description of our protocol,
and we prove security in Section 5. In Appendix A we give some preliminary
experimental results showing that we outperform the recent work of [18].

1 To be clear: in our protocol each party generates κ garbled circuits and so the total
number of garbled circuits is 2κ. However, since this work is done in parallel by the
two parties—in addition to whatever parallel processing is available on each user’s
own machine—and since the communication is symmetric, the “wall-clock time” of
our protocol is expected to improve on previous protocols by up to a factor of 3.
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2 Notation and Building Blocks

For simplicity, we describe our protocol using concrete (rather than asymptotic)
notation. Nevertheless, it should be clear that our protocol can be cast in an
asymptotic setting without difficulty.

Let G be a group of prime order q with generator g. We assume the com-
putational Diffie-Hellman (CDH) problem is hard in G. We let H be a hash
function that will be treated in the analysis as a random oracle. We let Com be
a commitment scheme.

We use the standard definitions of secure two-party computation [7].

2.1 Naor-Pinkas Oblivious Transfer

In our protocol we do not use oblivious transfer as a “black box,” but instead
rely on specific details of the OT protocol used. Although several candidate OT
protocols could be used, for concreteness and efficiency we use an OT protocol
due to Naor and Pinkas [27] which we now describe.

Say we have a sender holding inputs x0, x1 ∈ {0, 1}∗, and a receiver holding
input b ∈ {0, 1}. In the first round, the sender chooses random C ← G and sends
C to the other party. The receiver picks k ← Zq, defines h

0 = gk and h1 = C/gk,
and sends h = hb to the sender. In turn, the sender chooses r ← Zq and sends
gr, H(hr) ⊕ x0, H((C/h)r) ⊕ x1 to the other party. The receiver recovers xb

by computing (gr)k and using the appropriate component of the sender’s final
message. Note that several independent OTs can share the same first message C.

This OT protocol is simulatable for a malicious receiver under the CDH as-
sumption in the random oracle model. It achieves privacy (but is not known to
be simulatable) against a malicious sender, and this suffices for our purposes. A
variant of this protocol requires the receiver to give a (standard) perfect witness-
indistinguishable proof of knowledge of logg h or logg(C/h) after sending h. We
use this variant in our analysis since it simplifies the proof.

2.2 Garbled Circuits

We use a modification of standard garbled circuits [35]. Fix a function f :
{0, 1}n × {0, 1}n → {0, 1}n. We abstract the construction/evaluation of a gar-
bled circuit for f via algorithms GenGC,EvalGC with the following properties.
GenGC is a randomized algorithm that takes as input 2n input-wire labels
v01 , v

1
1 , . . . , v

0
n, v

1
n ∈ G (corresponding to the first input of f), 2n input-wire la-

bels v0n+1, v
1
n+1, . . . , v

0
2n, v

1
2n ∈ {0, 1}n (corresponding to the second input of f),

and 2n output-wire labels w0
1 , w

1
1 , . . . , w

0
n, w

1
n ∈ Zq. It outputs a garbled cir-

cuit GC. Deterministic algorithm EvalGC takes as input GC and 2n input-wire
labels v1, . . . , v2n; it outputs n values b1‖w1, . . . , bn‖wn, with b1, . . . , bn ∈ {0, 1}.
Note that EvalGC explicitly outputs wire labels in addition to bits.

Correctness requires that for any set of input/output-wire labels, any garbled
circuit GC output by GenGC

(
{v0i , v1i }2ni=1, {w0

i , w
1
i }ni=1

)
, and any x, y ∈ {0, 1}n
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with z = f(x, y), we have

EvalGC
(
GC, {vxi

i }ni=1, {v
yi

i }2ni=n+1

)
= z1‖wz1

1 , . . . , zn‖wzn
n .

Security requires a simulator SimGC such that for all x, y with z = f(x, y),
any vx1

1 , . . . , vxn
n ∈ G, vy1

n+1, . . . , v
yn

2n ∈ {0, 1}n, and w0
1 , w

1
1 , . . . , w

0
n, w

1
n ∈ Zq, the

distribution⎧⎨⎩
v1−x1
1 , . . . , v1−xn

n ← G;

v1−y1

n+1 , . . . , v1−yn

2n ← {0, 1}n;
GC ← GenGC

(
{v0i , v1i }2ni=1, {w0

i , w
1
i }ni=1

) :
(
GC, {vxi

i }ni=1, {v
yi

n+i}ni=1

)⎫⎬⎭
is computationally indistinguishable from{
GC ← SimGC

(
x, z, {vxi

i }ni=1, {v
yi

n+i}ni=1, {wzi
i }ni=1

)
:
(
GC, {vxi

i }ni=1, {v
yi

n+i}ni=1

)}
.

In particular, this means (informally) that (1) given GC, {vxi

i }ni=1, and {vyn+i

i }ni=1,
no information is leaked about {w1−zi

i }ni=1 where z = f(x, y), and (2) this holds
regardless of how the {vxi

i }ni=1, {v
yi

n+i}ni=1 are chosen (as long as the other input-
wire labels are random). These properties are not standard, but are easily seen
to hold by modifying the construction/proof from [22].

Note: We always let input wires 1, . . . , n denote the inputs of the party generat-
ing the circuit. Thus, technically, P1 generates garbled circuits for the function f ,

and P2 generates garbled circuits for the function f ′(y, x)
def
= f(x, y).

2.3 Verifiable Secret Sharing

We use a notion of (non-interactive) verifiable secret sharing (VSS) that is weaker
than the usual one in the literature. For our purposes, a t-out-of-κ VSS scheme
comprises three algorithms Share,Vrfy,Rec with the following functionality:

– Share takes input s ∈ Zq and outputs κ shares w1, . . . , wκ ∈ Zq and
additional information pub.

– Vrfy takes as input the information pub, an index i, and a candidate share wi∈
Zq. It outputs a bit, with 1 denoting validity.

– Rec takes as input pub and t indices/shares {(ij , wij )}tj=1. It outputs a
value s ∈ Zq.

We require that for any s ∈ Zq, any w1, . . . , wκ, pub output by Share(s), and any
i1, . . . , it ⊂ [κ], we have Vrfy(pub, i, wi) = 1 and Rec(pub, {(ij, wij )}tj=1) = s.

We define a secrecy requirement for an honest dealer, and a verifiability re-
quirement for honest receivers. Secrecy requires hardness of recovering a random
secret s given pub and at most t − 1 shares. Formally, the following should be
small for all efficient algorithms A and any i1, . . . , it−1:

Pr[s ← Zq; (pub, w1, . . . , wκ) ← Share(s) : A(pub, wi1 , . . . , wit−1 ) = s].
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Verifiability requires that the dealer cannot generate pub and two different sets
of valid shares that reconstruct to different secrets. Formally, the following is
small for all efficient algorithms A:

Pr

⎡⎣(pub, {(ij, wj)}tj=1, {(i′j, w′
j)}tj=1

)
← A

:
∀j : Vrfy(pub, ij, wj) = 1∧
∀j : Vrfy(pub, i′j , w′

j) = 1∧
Rec(pub, {(ij , wj)}tj=1) �= Rec(pub, {(i′j , w′

j)}tj=1)

⎤⎦ .
Feldman VSS [6] satisfies the above properties under the discrete-logarithm
assumption.

3 High-Level Description of the Protocol

At a high level, the protocol proceeds in the following stages:

1. Generate garbled circuits: Each party generates κ garbled circuits along
with their corresponding input-wire labels.

2. Oblivious transfer: Each party uses the Naor-Pinkas OT protocol
(cf. Section 2.1) to obtain its input-wire labels for the garbled circuits con-
structed by the other party. This is done in such a way that a party must
use the same effective input across all circuits.

3. “Cut-and-choose”: Each party sends the garbled circuits they constructed
to the other party. Using coin tossing, parties choose half of each of their
circuits for checking. Then:
(a) For each of its check circuits, each party (1) sends all the input-wire

labels for that circuit (to prove that the check circuit was constructed
correctly) and (2) reveals all the values it used as the OT sender in step 2
(to prove that it used the correct input-wire labels in the OT execution
corresponding to the check circuit).

(b) For each of its remaining circuits (the evaluation circuits), each party
sends the input-wire labels corresponding to its own input.

4. Output determination: Each party evaluates the garbled circuits they
received from the other party, using the input-wire labels obtained in steps 2
and 3(b). For each output wire i of the circuit, each party decides on output
zi ∈ {0, 1} iff at least one of the circuits they evaluated (that the other party
constructed) gave output zi and at least one of the circuits the other party
evaluated (that they constructed) gave output zi.

We defer the details of step 4, and for now just assume it can be done. We
also assume that if a party successfully passes the cut-and-choose step, then
for at least one of that party’s evaluation circuits (1) the evaluation circuit is
constructed correctly and (2) the correct input-wire labels were used in the cor-

responding OT; this assumption holds except with probability at most
(

κ
κ/2

)−1
.
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The main issue to address is to ensure that a malicious party uses the same
(effective) input in step 2 (when it obtains input-wire labels for its own input
from the other party using OT) and for all the input-wire labels it sends in
step 3(b) (for the garbled circuits that it generated). We achieve this by noting
that when an honest receiver obtains the input-wire labels for its ith input wire
during the OT step, it sends a message hi for which (1) it knows logg hi when
its effective input (on the ith wire) is 0, and (2) it knows logg(C/hi) when its
effective input (on the ith wire) is 1. We require the parties to use this same
“template” for the input-wire labels corresponding to their own input in the
garbled circuits they prepare. That is, for each garbled circuit and each input
wire i corresponding to an input of the circuit generator, the input-wire label v0i
corresponding to 0 is chosen such that logg v

0
i is known, and the input-wire

label v1i corresponding to 1 is chosen such that logg(C/v1i ) is known. Moreover,
this property is verified to hold (for the check circuits) during the cut-and-choose
step. When sending its ith input-wire label vi in step 3(b), each party must then
also prove2 that it knows logg(vi/hi). This is reminiscent of a similar technique
used by Shelat and Shen [33] to enforce input consistency among input-wire
labels sent by the circuit generator; here, we extend it to enforce consistency
also to the input-wire labels received as a circuit evaluator.

Given this—and still assuming step 4 can be carried out—one can informally
verify that the protocol is secure. Assume for concreteness that P2 is honest.
Privacy of P2’s input is easy to see. As for correctness, P2 constructed all its
garbled circuits correctly and sent input-wire labels for its own input y in all its
evaluation circuits. In step 2, P1 obtained input-wire labels for its own (effective)
input x in all of P2’s evaluation circuits. So all of P2’s garbled circuits that

were evaluated by P1 yield output z
def
= f(x, y). In the other direction, with

high probability at least one of P1’s evaluation circuits GC∗ was constructed
correctly, and moreover the correct input-wire labels (for P2’s input) were used
in the corresponding OT; thus, P2 obtained the correct input-wire labels for its
input y in GC∗. Furthermore, from the previous paragraph we know that the
input-wire labels for P1’s input in GC∗ correspond to the same input x it used
before. Thus, evaluation of GC∗ by P2 also yields z = f(x, y), and thus z will be
the final output of P2 in the protocol.

The missing piece is to show how to implement step 4, and this is the most
involved part of our protocol. The basic idea is for each party to choose a secret
value sbi for each output wire i of the circuit and each possible value b ∈ {0, 1}
that wire can take. Each secret is then split into κ shares wb

1,i, . . . , w
b
κ,i using

a (κ/2 + 1)-out-of-κ secret-sharing scheme. Share wb
j,i is then used as the label

corresponding to b on the ith output wire of the jth garbled circuit. The net
result is that for each output wire i and bit b, the other party can reconstruct sbi
if and only if it learns κ/2 + 1 of the shares corresponding to that wire and bit.

Note that κ/2 shares of every wire and bit will be revealed as part of the cut-
and-choose phase. Assuming again that P2 is honest, we thus have the following:

2 Actually, as in [33], the party can simply reveal logg(vi/hi).
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– As noted earlier, all of the garbled circuits that P2 constructed will evaluate
to the same value z = f(x, y). This means that P1 only learns shares corre-
sponding to the secrets sz11 , . . . , sznn , and learns nothing about the remaining
secrets s1−z1

1 , . . . , s1−zn
n . This gives P2 a way to “test” whether the circuits

it constructed (that were evaluated by P1) resulted in output z by checking
which of each pair of secrets P1 knows (e.g., using a secure equality test).

– In the opposite direction, as long as one of the garbled circuits constructed
by P1 (and evaluated by P2) yields z, this will give P2 one additional share
of each of s̃z11 , . . . , s̃znn (where we use s̃ here to denote that these secrets are
chosen by P1) and hence P2 will be able to reconstruct each of those secrets.
Note that it does not matter which garbled circuit evaluates to z, as any
correctly constructed circuit that evaluates to z reveals the requisite share.

One point omitted from the above discussion is that now it must be possible
to check during the cut-and-choose phase that correct shares were used when
constructing the garbled circuits. For this reason, we use verifiable secret sharing
(see Section 2.3). We defer to the next section additional technical details of the
protocol needed for the proof of security.

4 Formal Specification of the Protocol

Fix a function f : {0, 1}n × {0, 1}n → {0, 1}n that parties P1 and P2 wish to
compute over their respective inputs x, y ∈ {0, 1}n. We assume both parties
learn the output, but it is easy to modify the protocol so that only one party
learns the output. The protocol proceeds as follows.

1. P1 chooses C ← G and sends it to P2. Symmetrically, P2 chooses C̃ ← G
and sends it to P1.

2. P1 generates 4n input-wire labels for each of κ garbled circuits in the follow-
ing way. For j = 1, . . . , κ, it chooses a0j,1, a

1
j,1, . . . , a

0
j,n, a

1
j,n ← Zq and sets

the first 2n input-wire labels of circuit j to be of the form {v0j,i = ga
0
j,i}ni=1

and {v1j,i = C̃/ga
1
j,i}ni=1. It chooses the next 2n input-wire labels of circuit j

uniformly as v0j,n+1, v
1
j,n+1, . . . , v

0
j,2n, v

1
j,2n ← {0, 1}n.

Symmetrically,3 P2 generates 4n input-wire labels ṽ0j,1, ṽ
1
j,1, . . . , ṽ

0
j,2n, ṽ

1
j,2n

for j = 1, . . . , κ.
Each party then uses Naor-Pinkas OT to obtain the input-wire labels corre-
sponding to its own input in the circuits generated by the other party. I.e.,
for i = 1, . . . , n party P1 chooses ki ← Zq, generates (h

0
i , h

1
i ) = (gki , C̃/gki),

and sends hi
def
= hxi

i to P2. Then P2 generates κ independent responses as
in the Naor-Pinkas protocol, using inputs (ṽ0j,n+i, ṽ

1
j,n+i) in the jth such in-

stance where, recall, ṽbj,n+i denotes the label corresponding to bit b on the
(n+ i)th input wire in the jth garbled circuit. P1 recovers ṽxi

1,n+i, . . . , ṽ
xi

κ,n+i.
P2 acts symmetrically to obtain vyi

1,n+i, . . . , v
yi

κ,n+i for i = 1, . . . , n.

3 Recall that the first n input wires always denote the inputs of the party generating
the circuit.
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3. For i ∈ {1, . . . , n} and b ∈ {0, 1}, party P1 chooses sbi ← Zq and generates

a (κ/2+ 1)-out-of-κ secret sharing (pubbi , w
b
1,i, . . . , w

b
κ,i) ← Share(sbi). It uses

wb
j,i as the label for bit b on the ith output wire in the jth circuit, i.e., for

j = 1, . . . , κ it computes the garbled circuit

GCj = GenGC
(
{v0j,i, v1j,i}2ni=1, {w0

j,i, w
1
j,i}ni=1

)
.

It sends {GCj}κj=1 and {pub0i , pub1i }ni=1 to P2.

P2 acts symmetrically to obtain s̃bi and (p̃ub
b

i , w̃
b
1,i, . . . , w̃

b
κ,i) and to generate

G̃Cj ; it sends {G̃Cj}κj=1 and {p̃ub
0

i , p̃ub
1

i }ni=1 to P1.
4. For j = 1, . . . , κ and i = 1, . . . , n, party P1 commits to the input-wire labels

v0j,i and v1j,i corresponding to its own input, in random permuted order. Let
ComSetj,i denote the resulting pair of commitments. P2 acts symmetrically.

5. The parties run secure coin-tossing protocols to generate strings J , J̃ ∈
{0, 1}κ that are each uniform among strings containing exactly κ/2 ones.4

These are interpreted in the natural way as subsets of {1, . . . , κ} of size κ/2.

J̃ is used to check the garbled circuits constructed by P1. Specifically, for
j = 1, . . . , κ:

(a) If j ∈ J̃ the jth circuit is a check circuit. Then P1 sends {a0j,i, a1j,i}ni=1,

{v0j,i, v1j,i}2ni=n+1, {w0
j,i, w

1
j,i}ni=1, and the randomness it used to gener-

ate GCj . It also reveals the sender-randomness it used in all the OTs cor-
responding to the jth circuit, and opens both commitments in ComSetj,i
for i = 1, . . . , n.

P2 sets v0j,i = ga
0
j,i and v1j,i = C̃/ga

1
j,i for i = 1, . . . , n. It re-generates

the jth garbled circuit and verifies that it matches GCj . It verifies that
{v0j,i, v1j,i}2ni=n+1 were used in the OTs for the jth circuit, and that the

commitments in ComSetj,i open to {v0j,i, v1j,i} in some order. Finally, it

checks that Vrfy(pubbi , j, w
b
j,i) = 1 for i = 1, . . . , n and b ∈ {0, 1}. It

aborts if any of these fail.
(b) If j �∈ J̃ the jth circuit is an evaluation circuit. In this case, P1 sends

(vj,1, . . . , vj,n)
def
= (vx1

j,1, . . . , v
xn

j,n) (i.e., the wire labels corresponding to
P1’s input in the jth circuit) to P2. It also opens the commitment in
ComSetj,i that corresponds to vj,i. Finally, it sends logg(vj,1/h1), . . . ,
logg(vj,n/hn). (Recall that h1, . . . , hn are the values used by P1 when
acting as receiver in the Naor-Pinkas OT protocol.)
P2 checks that one of the commitments in ComSetj,i opens to vj,i, and
verifies the discrete logarithms sent by P1. It aborts if any inconsistencies
are found.

Symmetrically, the parties use J to check the garbled circuits constructed
by P2.

4 This can be implemented easily by using a standard coin-tossing protocol to generate
polynomially many uniform bits, and then using those bits as the random coins for
applying a Knuth shuffle to the string 0κ/21κ/2.
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6. For each evaluation circuit j of P2, party P1 evaluates G̃Cj using the input-
wire labels it obtained in steps 2 and 5. By doing so, it learns n values
b̃j,1‖w̃j,1, . . . , b̃j,n‖w̃j,n.
For i = 1, . . . , n and b ∈ {0, 1}, party P1 tries to recover5 s̃bi . To do so, it finds

an evaluation circuit j for which b̃j,i = b and w̃j,i is a valid share of s̃bi (i.e.,

Vrfy(p̃ub
b̃j,i

i , j, w̃j,i) = 1). If no such j exists, it chooses tbi ← Zq. Otherwise,

it computes tbi by running Rec using p̃ub
b̃j,i

i , the κ/2 shares {(k, w̃b̃j,i
k,i )}k∈J

it learned in step 5, and the additional share (j, w̃j,i).
P2 acts symmetrically to compute t̃0i , t̃

1
i for i = 1, . . . , n.

7. For i = 1, . . . , n, the parties do the following: Run a secure equality test,
with P1 using input s0i ‖t0i and P2 using input t̃0i ‖s̃0i . If the result is 1, each
party sets zi = 0 and goes to the next i. Otherwise, the parties run a second
equality test with P1 using input s1i ‖t1i and P2 using input t̃1i ‖s̃1i . If the result
is 1, each party sets zi = 1 and goes to the next i. If neither equality test
succeeds for some i then cheating is detected and the parties abort.
Assuming no abort has occurred, each party then outputs z = z1 · · · zn.

4.1 Optimizations

For simplicity in our proof of security in the following section, we analyze the
protocol as presented above. However, we observe that the following optimiza-
tions can be applied to the protocol (and the reader can verify that the proof
can be suitably modified for each of these).

Naor-Pinkas OT. We assume a variant of Naor-Pinkas OT is used in which
the receiver gives a witness-indistinguishable (WI) proof of knowledge that its
message was computed correctly (see Section 2.1). This is used in our proof to
extract the receiver’s input. In fact, as shown in [27], such WI proofs are not
necessary and extraction can be done using the random-oracle queries of the
receiver. The same is true in our setting, though it complicates the presentation
of the proof.

Secure Coin Tossing. In the (programmable) random-oracle model, very
efficient coin tossing is possible since it is trivial to construct an equivocal and
extractable commitment scheme.

Secure Equality Testing. In our proof, we assume a hybrid world in which
the parties have access to an ideal functionality for equality testing; equivalently
(relying on standard composition theorems [3]), we assume that the equality test
is done using a fully secure protocols for this task.

In fact, using a fully secure equality test is overkill for our purposes. Instead,
we can use a different approach that is very efficient in the random-oracle model.
First, assume the VSS scheme has the stronger property of indistinguishability,
i.e., given pub and t − 1 shares of a uniform secret s ∈ {0, 1}n, it is hard to

5 In an honest execution, only one of s̃0i or s̃1i will be recovered.
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distinguish s from an independent uniform value s′ ∈ {0, 1}n. (Any VSS scheme
satisfying the unpredictability requirement from Section 2.3 can be modified to
achieve this stronger notion in the random-oracle model by simply hashing the
secret.) Then, rather than performing an equality test using values s0i ‖t0i and
t̃0i ‖s̃0i (resp., s1i ‖t1i and t̃1i ‖s̃1i ) as before, the parties now carry out an equality
test on values s0i ⊕ t0i and t̃0i ⊕ s̃0i (resp., s1i ⊕ t1i and t̃1i ⊕ s̃1i ). At this point,
we observe that a full-fledged equality test is not needed since (1) the honest
party’s input to the equality test is either known to the malicious party or is
(indistinguishable from) uniform, and (2) in either case, it is ok if the honest
party’s input to the equality test is leaked to the other party after equality is
checked. Thus, it suffices to use a “cheap” equality test in which P1 (resp., P2)
commits to, e.g., s0i ⊕ t0i (resp., to t̃0i ⊕ s̃0i ) using an extractable and equivocal
commitment scheme (which is easily constructed in the random-oracle model),
and then each party decommits and checks equality of the decommitted results
in the clear.

Saving Bandwidth. Following an observation in [9], we can modify the way we
do cut-and-choose as follows: Parties construct their jth garbled circuit by choos-
ing a random seed seedj and using that seed to generate certain (pseudo)random
choices they need for constructing that circuit. (In our case, this would mean us-
ing seedj to generate {a0j,i, a1j,i}ni=1, {v0j,i, v1j,i}2ni=n+1, and the randomness used to
generate GCj .) Then, in step 3, the parties send the hash hGCj = H(GCj) in place
of GCj . If j is a check circuit then seedj is sent; the other party re-generates GCj

and verifies that H(GCj) = hGCj . If j is an evaluation circuit then GCj is sent
and the other party checks that H(GCj) = hGCj . Since |seedj |+ |hGCj | � |GCj |,
this has the effect of reducing the bandwidth in steps 3 and 5 (which dominate
the bandwidth of the entire protocol) by roughly half.

Batch Verification. We can use batch verification [2] when simultaneously
verifying validity of shares in step 5(a) (assuming Feldman VSS is used) and the
discrete logarithms in step 5(b).

Efficient Garbled Circuits. Our protocol is fully compatible with existing
optimizations for garbled circuits such as garbled-row reduction [28] and the
free-XOR technique [17].6

5 Proof of Security

Theorem 1. Under the assumptions outlined in Section 2, and modeling H as
a random oracle, the protocol in the previous section securely computes f in the
presence of malicious adversaries.

6 We cannot apply the free-XOR optimization at first-level gates because of the way
the circuit generator chooses the input-wire labels. However, the free-XOR method
can be used at all lower levels of the circuit.
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Since we are not in an asymptotic setting, technically speaking “secure” is
not well-defined. In the proof below, all steps introduce a computational secu-
rity factor (which can be set as small as desired by setting the cryptographic
security parameter large enough) except for one step which introduces a statis-

tical security factor of
(

κ
κ/2

)−1
= 2−κ+O(log κ).

All our assumptions are standard, and can be based on the CDH assumption
in G. We remark that the only place the random oracle is used is for the Naor-
Pinkas OT. It would be possible to remove the random oracle by switching, e.g.,
to the OT protocol of [31] (and modifying the rest of the protocol accordingly).
Although this would impact the efficiency, the effect would be proportional to
the input length and not the size of the circuit being computed.

Proof. We analyze the protocol in a hybrid world in which the parties have
access to ideal functionalities for coin tossing and equality testing. Using stan-
dard composition theorems [3], this implies security when those sub-routines are
instantiated using secure protocols for those tasks.

Since the protocol is symmetric, we assume without loss of generality that P1

is malicious. Let y denote the input of P2. We define a sequence of experiments,
beginning with the real execution of the protocol between P1 and P2 (in the
hybrid world discussed above) and ending with an ideal execution involving a
simulator S playing the role of the first party and interacting with a trusted
party computing f . We show that each experiment is indistinguishable from the
one before it, taking into account both the view/output of the malicious party
and the output of P2.

Experiment 0. This is the real execution of the protocol (in the hybrid world
discussed above) between P1 and the honest P2 holding input y.

Experiment 1. Here we change the way P2 behaves when acting as OT sender
in step 2 and when sending commitments in step 4. First of all, we now pick J
at the outset of the experiment. This defines the check circuits and evaluation
circuits for P2. Next, in each instance i in which P1 acts as OT receiver in step 2
and sends message hi, we extract (using the WI proof of knowledge) either logg hi

or logg(C̃/hi). In the former case we set xi = 0 and in the latter case we set
xi = 1. Then, when computing the κ responses for the ith OT, in each response
that corresponds to an evaluation circuit j of P2 we continue to use ṽxi

j,n+i but we

replace ṽ1−xi

j,n+i with the all-0 string. (Responses that correspond to check circuits
of P2 are treated exactly as before.)

In addition, for each evaluation circuit j of P2 and i = 1, . . . , n, we now set
ComSetj,i = {Com(ṽyi

j,i),Com(g)}, in random permuted order.
Indistinguishability of Experiments 0 and 1 follows easily from the security of

Naor-Pinkas OT (based on the CDH assumption in the random-oracle model)
and computational hiding of Com.

Experiment 2. Now we generate all the evaluation circuits of P2 using the
garbled-circuit simulator SimGC. In more detail: after extracting P1’s effective
input x as in the previous experiment, we compute z = f(x, y). In step 3, once
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the {w̃b
j,i} have been determined we compute for every evaluation circuit j the

simulated garbled circuit7 G̃Cj ← SimGC
(
x, z, {ṽyi

j,i}ni=1, {ṽxi

j,n+i}ni=1, {w̃zi
j,i}ni=1

)
.

The remainder of the experiment is exactly as in Experiment 1.
Indistinguishability of Experiments 1 and 2 follows from security of the

garbled-circuit simulation algorithm as defined in Section 2.2.
Note that in Experiment 2, we no longer use {ṽ1−yi

j,i }ni=1, {ṽ1−xi

j,n+i}ni=1, or

{w̃1−zi
j,i }ni=1 for any evaluation circuit j of P2.

Experiment 3. This is the same as the previous experiment, except that now
when performing the ith pair of equality tests we proceed as follows: if zi = 1,
we return 0 to both parties in the first equality test; if zi = 0, we return 0 to
both parties in the second equality test (if run).

Indistinguishability of this experiment from Experiment 2 follows from secrecy

of VSS. Specifically, for i = 1, . . . , n only p̃ub
1−zi

i and κ/2 shares of the secret
s̃1−zi
i are used throughout the entire experiment before the equality tests. Thus,
the probability (in Experiment 2) that P1 can make any of the equality tests
corresponding to 1− zi return 1 is negligible.

Experiment 4. If P1 successfully responds to the “challenge” J̃ chosen during
the cut-and-choose step, we repeatedly rewind P1 in an attempt to find a J̃ ′ �=
J̃ for which P1 also responds correctly.8 If no such J̃ ′ is found, output fail.
Otherwise, re-send the original challenge J̃ and continue as in the previous
experiment.

The only difference between this experiment and the previous one occurs in
case P1 responds correctly to only a single challenge J̃ and that challenge hap-
pens to be the one chosen during the experiment. This can occur with probability
at most 1/

(
κ

κ/2

)
.

Experiment 5. We now change how we compute t̃zii for all i. (Recall that t̃zii
represents P2’s guess for P1’s secret szii .) Assuming P1 answers two different

challenges J̃ , J̃ ′ correctly, there is some j∗ ∈ {1, . . . , κ} such that j∗ is an

evaluation circuit with respect to J̃ but a check circuit with respect to J̃ ′. For
any such j∗, we reconstruct szii using the share wzi

j∗,i sent by P1 when answering

challenge J̃ ′, along with the κ/2 other shares of szii that were sent by P1 when

answering challenge J̃ . We then set t̃zii = szii and use that value in the relevant
equality test later.

We claim that this experiment is indistinguishable from the previous one;
this is the crux of the proof. To prove this, we show that the shares {wzi

j∗,i}ni=1

computed in Experiment 5 are, except with negligible probability, the same

7 Recall that the first n input wires always denote the inputs of the party generating
the circuit, so in this case correspond to input y.

8 We use standard techniques in order to ensure that the experiment runs in expected
polynomial time. Specifically, in parallel with rewinding P1 and sending a random
challenge J̃ ′ �= J̃ we also enumerate over all possible J̃ ′; we output fail if we find
that J̃ is the only challenge to which P1 responds correctly.
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shares that P2 obtains by evaluating circuit GCj∗ in Experiment 4. Verifiability
of the secret-sharing scheme then implies that, except with negligible probability,
the same values {t̃zii }ni=1 are computed in both experiments (namely, even if in
Experiment 4 a valid share from an evaluation circuit other than j∗ is used by
P2 to reconstruct some szii ).

Fix i. To see that the same share wzi
j∗,i is computed in each experiment,

observe that in Experiment 4 the share wzi
j∗,i is computed by evaluating garbled

circuit GCj∗ using input-wire labels for P2’s input that P2 obtains from the
OTs corresponding to circuit j∗, and input-wire labels for P1’s input that were
sent by P1 in step 5. Because P1 responds correctly to challenge J̃ ′, in which
j∗ is a check circuit, we know that: (1) GCj∗ is correctly constructed; (2) the
input-wire labels that P2 obtained from the OTs are correct labels for GCj∗

that correspond to P2’s input y; (3) the input-wire labels for its own input
that P1 sends must be correct labels for GCj∗ (this follows from binding of the
commitments in {ComSetj∗,i}ni=1) and moreover must correspond to the same
effective input x defined by P1’s execution as OT receiver (otherwise we obtain a

discrete logarithm of the random group element C̃). Since GCj∗ , when evaluated
on input-wire labels corresponding to x and y, yields the share wzi

j∗,i on the ith
output wire, we are done.

In Experiment 5 none of P1’s evaluation circuits need to be evaluated by P2.
Moreover, P2 no longer needs to compute its output in any of the OTs in which
it acts as receiver.

Experiment 6. In the previous experiment, when P2 acts as OT receiver it
sends h̃i with either logg h̃i or logg(C/h̃i) known (depending on yi). The input-
wire labels {ṽyi

j,i}ni=1 (when j is an evaluation circuit) are chosen in a similar way.

In this experiment, for i = 1, . . . , n we choose h̃i uniform with logg h̃i known so
that we are simply running the OT execution honestly using input 0. Similarly,
choose ṽyi

j,i uniform with logg ṽ
yi

j,i known for every evaluation circuit j. (Note that

this allows P2 to reveal logg(ṽj,i/h̃i) in step 5 for every evaluation circuit j.)
This experiment is distributed identically to the previous experiment, since

gk and C/gk (where k is uniform in each case) have the same distribution. (P2

also gives a WI proof of knowledge of either logg h̃i or logg(C/h̃i), but we assume
a perfect WI proof is used.)

To conclude, we observe that Experiment 6 can equivalently be described in
terms of an ideal-world execution in which the honest P2 and a simulator S
(playing the role of the first party, and running P1 as a subroutine) interact with
a trusted party computing f . Namely, S works as follows:

1. Choose J in advance; this defines the check circuits and the evaluation
circuits for the simulated P2. Choose C̃ ← G and send it to P1. Receive in
return C ∈ G.

2. For each check circuit j, generate input-wire labels as in the real protocol.
For each evaluation circuit j, choose ãj,1, . . . , ãj,n ← Zq and set ṽj,i = gãj,i

for i = 1, . . . , n. Also choose ṽj,n+i ← {0, 1}n for i = 1, . . . , n.
When P2 acts as OT receiver, run the OT protocol honestly using input 0.



32 Y. Huang, J. Katz, and D. Evans

In each instance i in which P2 acts as OT sender, extract from P1 (by

rewinding the WI proof of knowledge) either logg hi or logg(C̃/hi). In the
former case set xi = 0 and in the latter case set xi = 1. Then, for check
circuits send the final OT message exactly as in the real protocol, and for
any evaluation circuit j send the final OT message using ṽj,n+i as the xi-
input, and the 0-string as the (1− xi)-input.

3. Send x to the trusted party, and receive in return an output z.

Generate {p̃ub
b

i , w̃
b
j,i} as in the real protocol. Then for each evaluation cir-

cuit j, compute G̃Cj ← SimGC
(
x, z, {ṽj,i}2ni=1, {w̃zi

j,i}ni=1

)
; for each check

circuit j, compute G̃Cj as in the real protocol. Send {G̃Cj}κj=1 and

{p̃ub
0

i , p̃ub
1

i }ni=1 to P1.

Receive in return {GCj}κj=1 and {pub0i , pub1i }ni=1 from P1.

4. For each check circuit j, compute {C̃omSetj,i}ni=1 as in the real protocol. For

each evaluation circuit j, set C̃omSetj,i = {Com(ṽj,i),Com(g)} in random
permuted order. Send all these pairs of commitments to P1, and receive in
return all the pairs of commitments from P1.

5. Give P1 the value J as the output of the appropriate coin-tossing proto-
col. Respond for all check circuits as in the real protocol. For each eval-
uation circuit j, send {ṽj,i}ni=1, open the appropriate commitment from

{C̃omSetj,i}ni=1, and send {logg(ṽj,i/h̃i)}ni=1, where h̃i is the message sent
by P2 in the ith OT when P2 is receiver.

Choose J̃ at random as in the real protocol, and give it to P1. If P1 responds
correctly, then repeatedly rewind to find J̃ ′ �= J̃ for which P1 responds
correctly. (If none is found, S aborts with output fail.) Rewind again and

continue the interaction using J̃ .

6. Let j∗ be a circuit which is an evaluation circuit in J̃ , but a check circuit
in J̃ ′. For i = 1, . . . , n, use the κ/2 shares of szii from P1’s check circuits
(with respect to J ) plus the additional share of szii from circuit j∗ (that was

a check circuit with respect to J̃ ′) to reconstruct szii . Set t̃zii = szii .

7. For i = 1, . . . , n, do the following.

– If zi = 0, obtain P1’s input s0i ‖t0i to the first equality test. If s0i ‖t0i =
t̃0i ‖s̃0i , return 1; else return 0. Return 0 to the second equality test (if
run).

– If zi = 1, return 0 to the first equality test. Then obtain P1’s input s
1
i ‖t1i

to the second equality test. If s1i ‖t1i = t̃1i ‖s̃1i , return 1; else return 0.

If for some i both equality tests return 0, abort. If an abort occurred, send
abort to the trusted party; otherwise, send continue.

This completes the proof.
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A Experimental Results

We describe some preliminary experimentals indicating that our protocol signif-
icantly outperforms the recent work of [18].

We implemented our protocol in Java using all the optimizations of Sec-
tion 4.1. We evaluated the protocol at the 80-bit security level, which means
in particular that (1) each party generates 84 garbled circuits, 42 of which are
checked; (2) the length of all wire labels is 80 bits; and (3) we use an order-q
subgroup of Z∗

p where |p| = 1024, |q| = 160. We ran experiments over a LAN
using two laptops with Intel Core i7 2.4GHz processors. Note that 80-bit security
was also used in the experiments of [18].

In typical settings where the number of gates in the underlying circuit is
much larger than the number of inputs/outputs, the dominant overall cost of
the protocol is the generation, sending, and checking of the garbled circuits.
When each side uses only a single core, our protocol evaluates circuits at the
rate of 1.4 ms/gate. By comparison, the implementation of Kreuter et al. [18]
evaluates circuits at the rate of about 8 ms/gate when a single thread is used.

When each side utilizes two cores, our protocol evaluates circuits at the rate of
0.8 ms/gate; by comparison, the two-threaded execution in [18] achieved a rate
of roughly 4 ms/gate. We do not gain a factor of 2 in performance by leveraging a
second core in part because the parties are sometimes idle, and in part because
of inter-thread interference (e.g., due to cache contention and dependence on
shared hardware and I/O).

Our measured performance gains relative to [18] exceed the expected factor
of 3. This may be due to differences in hardware or implementation, or the
complexity of managing multiple threads in the implementation of [18] regardless
of how many cores are being used.

The number of public-key operations used in our protocol scales linearly with
the lengths of the inputs and outputs, though we stress again that in typical
scenarios the number of gates is much larger than the number of inputs/outputs
and so the overall performance impact of these public-key operations is small.
Nevertheless, we measured performance of this aspect of our protocol as well.
When each side uses a single core, our protocol processes inputs at the rate
of 0.7 s/bit (our experiments assume the lengths of the parties’ inputs are the
same). Output is computed at the rate of 0.1 s/bit.
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Abstract. Applying cut-and-choose techniques to Yao’s garbled circuit
protocol has been a promising approach for designing efficient Two-Party
Computation (2PC) with malicious and covert security, as is evident from
various optimizations and software implementations in the recent years.
We revisit the security and efficiency properties of this popular approach
and propose alternative constructions and a new definition that are more
suitable for use in practice.

– We design an efficient fully-secure 2PC protocol for two-output func-
tions that only requiresO(t|C|) symmetric-key operations (with small
constant factors, and ignoring factors that are independent of the cir-
cuit in use) in the Random Oracle Model, where |C| is the circuit
size and t is a statistical security parameter. This is essentially the
optimal complexity for protocols based on cut-and-choose, resolving
a main question left open by the previous work on the subject.
Our protocol utilizes novel techniques for enforcing garbler’s input
consistency and handling two-output functions that are more effi-
cient than all prior solutions.

– Motivated by the goal of eliminating the all-or-nothing nature of
2PC with covert security (that privacy and correctness are fully com-
promised if the adversary is not caught in the challenge phase), we
propose a new security definition for 2PC that strengthens the guar-
antees provided by the standard covert model, and offers a smoother
security vs. efficiency tradeoff to protocol designers in choosing the
right deterrence factor. In our new notion, correctness is always guar-
anteed, privacy is fully guaranteed with probability (1−ε), and with
probability ε (i.e. the event of undetected cheating), privacy is only
“partially compromised” with at most a single bit of information
leaked, in case of an abort.
We present two efficient 2PC constructions achieving our new no-
tion. Both protocols are competitive with the previous covert 2PC
protocols based on cut-and-choose.

A distinct feature of the techniques we use in all our constructions is
to check consistency of inputs and outputs using new gadgets that are
themselves garbled circuits, and to verify validity of these gadgets using
multi-stage cut-and-choose openings.
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1 Introduction

Informally, a secure two-party protocol for a known function f(·, ·) is a protocol
between Alice and Bob with private inputs x and y that satisfies the following
two requirements: (1) Correctness: If at least one of the players is honest then
the result should be the correct output of f(x, y); (2) Privacy: No player learns
any information about the other player’s input, except for the function output.

Security is defined with respect to an adversary, who is semi-honest if the
corrupted players always follow the protocol, is malicious if the players can
arbitrarily deviate, and is covert in case a cheating player has an incentive not
to be caught (or more specifically, any deviation can be detected with a constant
probability).

A classical solution for the case of semi-honest players (i.e., players who do not
deviate from the protocol) is to use a garbled circuit and oblivious transfer [21,12]:
The resulting protocol is fairly efficient since computing each gate requires a
constant number of symmetric-key encryptions. Furthermore, recent results show
how to improve both the computation and communication cost of the garbling
process (e.g., getting XOR gates for free [9], reducing communication [4,18], and
designing tailored circuits [5]).

The case of malicious players is more complicated and less efficient. A classical
solution is to use zero-knowledge proofs to verify that the players follow the
protocol. However, the proofs in this case are rather inefficient. [8,16] show how
to garble a circuit in such a way that these proofs can be instantiated more
efficiently. Still, these constructions require a constant number of exponentiations
per gate, making them inefficient for large circuits.

The Cut-and-Choose Approach. A slightly more explored direction is based on
using the cut-and-choose method for checking the garbled circuit. (E.g., see im-
plementations by [18,19,10].) Instead of sending only one (and possibly not prop-
erly constructed) garbled circuit, Alice sends t garbled circuits. Then, Bob asks
her to open a constant fraction of them. For those circuits, Alice sends all the ran-
domness she used in the garbling process. Bob can check that the opened circuits
were indeed correctly garbled. If that is not the case, Bob knows that Alice has
cheated and aborts. Otherwise, Bob evaluates the remaining garbled circuits and
computes the majority output. It is shown in [13,19] that with high probability
the majority of the evaluated garbled circuits are properly constructed.

However, the above cut-and-choose of the circuits is not sufficient to obtain a
fully-secure 2PC. There are three well-known issues to resolve: (1) Garbler’s in-
put consistency: Since Bob evaluates many circuits, he needs assurance that Alice
uses the same input in all of them. (2) Evaluator’s input consistency: Alice can
use different input labels in the oblivious transfers and in creation of the garbled
circuits, in such a way that reveals Bob’s input. (E.g., she can use invalid labels
for the input bit 0 in the oblivious transfer, but valid ones for 1, causing Bob to
abort if his input bit is 0.) (3) Two-output functions: There are cases in which the
players want to securely compute two different functions f1, f2 where each party
only learns his own output and is assured he has obtained the correct result.
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When addressing these issues, the deciding efficiency factors are both the
number and the type of additional cryptographic operations required. By ex-
pensive operations, we refer to cryptographic primitives that require exponen-
tiations (e.g. oblivious transfer, or public-key encryption), and by inexpensive
operations we mean the use of primitives that do not require exponentiations
(e.g. symmetric-key encryption, commitments, or hashing). To simplify the ex-
position, from now on we omit small constants and complexities that are inde-
pendent of the computation size or input length, unless said otherwise.

To address the first issue, i.e. how to make sure Alice is using the same input
in all circuits, [14,11] present two methods that require O(t2 · n1) inexpensive
cryptographic operations (commitments), where n1 is the length of Alice’s input,
and t is the number of circuits we use in the cut-and-choose. ([20] shows how
to reduce this asymptotic overhead, but with large constants even for small
security parameters.) [14,13,19] show alternative methods that require O(t · n1)
expensive cryptographic operations (i.e. exponentiations). These consistency-
checking mechanisms can lead to significant overhead. Recall that garbling of
a single gate requires a constant number of symmetric encryptions, where the
constant is 4 in most implementations. Thus, e.g. for t = 130, the price of
checking consistency for a single input bit is roughly equivalent to the price of
garbling several tens of additional gates in each circuit in the first method, and
even more in the second. Moreover, the first method has a large communication
overhead (e.g., for input size n1 = 500 and t = 130, it requires several millions of
commitments, with a total communication overhead of hundreds of megabytes).

To address the second issue, i.e. making sure Alice is using the same labels in
her OT answers and the garbled circuits, [11] presents a method that requires
O(t · max(4n2, 8t)) expensive cryptographic operations (specifically, oblivious
transfers), where n2 is the length of Bob’s input. [13,19] introduce alternative
methods that require O(t · n2) expensive cryptographic operations.

To address the last issue, of verifying the computation output, [11] proposes
to apply a one time MAC to the output and XOR the result with a random input
to hide the outcome (both are done as part of the circuit). However, this solution
increases Alice’s input with additional q1+2t input bits and increases the circuit
size by O(t · q1) gates, where q1 is Alice’s output length (i.e. overall overhead of
O(t2 · q1) inexpensive operations). [19] suggests a solution that requires the use
of digital signatures and a witness-indistinguishable proof, resulting in a total
overhead of O(t · q1) expensive operations.

In the covert setting [1] the techniques are similar, although the issue of the
garbler’s input consistency is not always relevant [4,1].

All-or-Nothing Security vs. Security with Input-Dependent Abort. All the cut-
and-choose protocols discussed above provide an all-or-nothing guarantee, which
means that both correctness and privacy are preserved with the same probabil-
ity (the probability of getting caught in case of cheating), and are completely
compromised if cheating is not detected. For example, in case of a protocol with
covert security and deterrence factor of 1/2, there is a 50% chance that the pro-
tocol reveals the honest party’s input and provides him with an incorrect output.



Garbled Circuits Checking Garbled Circuits 39

This can become an obstacle to using covert security, in some practical scenarios.
For example, the participants of an MPC protocol may not be able to afford the
lack of correctness or privacy (even if only with a constant probability), due to
the high financial/legal cost, or the loss of reputation.

[14] suggests an alternative to the all-or-nothing approach and designs a secure
two-party protocol that always guarantees correctness but may leak one bit of
information to a malicious party. While this security guarantee is weaker than the
standard definition of security against covert/malicious adversaries, it ensures
correctness and ”partial privacy” even in case of successful cheating, making it
a reasonable relaxation in some scenarios.

The idea behind the protocols of [14] is as follows: Alice garbles a circuit gc1
and sends it to Bob, along with the labels of Alice’s input-wires. They execute
a fully-secure oblivious transfer protocol in which Bob learns the labels for his
input-wires. Then, they run the same steps in the other direction, where Bob
garbles gc2 and Alice is the receiver. Next, each player evaluates the garbled
circuit he or she received, resulting in output-wire label outi (we require that
the output-wire labels are the actual outputs concatenated with random labels).
Last, each player computes the supposed to be concatenation out1 ◦ out2. (Alice
gets out1 from her evaluation, and can determine the value of out2 by herself.
Bob does the same.) Now they run a protocol for securely testing whether their
values out1 ◦ out2 are the same. If they are indeed the same, they output b.
Otherwise, they abort.

The resulting protocol is highly efficient, requiring only two garbled circuits
and the associated oblivious transfers. (See [6] for an optimized variant of the
protocol and its performance.) Since one of the players is honest, the result from
his garbled circuit will be correct. Thus, if the honest party does not abort, the
output is indeed correct. On the other hand, if one of the players is malicious, he
can always learn one bit of information by observing whether the honest party
aborts or not in the final equality test. We call this scenario Input-Dependent
Abort (IDA) (following [7]).

1.1 Our Contributions

Given the discussion above, we put forth and answer the following two ques-
tions: (1) Can we improve on the efficiency of the existing solutions for checking
input-consistency and handling two-output functions, to the extent that they are
no longer considered a major computation/communication overhead? (2) Can
we design cut-and-choose protocols that do not suffer from the all-or-nothing
limitation of standard constructions but that provide better security guarantees
than those of 2PC with input-dependent abort?

In the process of answering these questions, we introduce a set of new
techniques to enforce consistency of inputs and outputs in garbled circuits. Inter-
estingly, these techniques themselves employ specially-designed garbled circuits
(gadgets) correctness of which is checked as part of a modified cut-and-choose
process containing multiple opening stages.
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Fully-Secure 2PC Based on Cut-and-Choose with Small Overheads.
Towards answering the first question, we propose new and efficient solutions
for the three problems of (1) Garbler’s input consistency (2) Evaluator’s input
consistency and (3) Handling two-output functions, that asymptotically and
concretely improve on all previous solutions.

First, we show how to use garbled XOR-gates to efficiently enforce the gar-
bler’s input consistency, while requiring only O(t · n1) inexpensive operations.
This approach asymptotically improves the solutions in [14,11], and only requires
inexpensive operations in contrast to the solution of [19]. Second, we observe that
the solution of [11] to the evaluator’s input consistency issue can be improved by
combining it with the OT extension of [15] and the Free-XOR technique of [9].
The resulting protocol requires only O(t ·max(4n2, 8t)) inexpensive operations.
Third, we show how to use garbled identity-gates to efficiently solve the two-
output function problem, while requiring only O(t · q1) inexpensive operations,
where q1 is the garbler’s output length, improving on the recent construction
of [19] which requires the same number of expensive operations. The resulting
2PC protocol is constant round and asymptotically better than all previous con-
structions based on the cut-and-choose method [14,11,13,19] (except for [20],
which is impractical due to large constants). In Table 1, we compare the pro-
tocol’s complexity with previous constructions. We stress that the efficiency of
our protocol relies on the efficient OT extension of [15], which allows one to
efficiently extend a small number of OTs to n OTs with the price of only O(n)
invocations of a hash function. The protocol of [15] is in the Random Oracle
Model (ROM) and our construction inherits the same weakness. (Besides using
ROM for the OT-extension of [15], in some of our techniques we show two alter-
natives: A more efficient instantiation in the ROM, and one without the ROM
requirement, which still is more efficient than current techniques.)

We remark that our proposed solutions can be modified to work with any of
the existing garbled-circuit optimization techniques of [9,4,18,5,10].

Furthermore, in the full version of this paper we describe how to use our
techniques to construct a fully-secure 2PC protocol for the case where y is not
private, using only a single garbled circuit. This scenario which we call authen-
ticated computation with private inputs naturally arises in applications such as
anonymous credentials or targeted advertising.

Table 1. Comparison of different fully secure 2PC protocols. ni is the length of Pi’s
input, q1 is the length of P1’s output, and t is a statistical security parameter (where
t garbled circuits are used in the cut-and-choose). The number of base OTs in the OT
extension is omitted as it is independent of the circuit and input sizes.

P1’s input P2’s input Two-output Overhead

[11] inexpensive(t2n1)
expensive(max(4n2, 8t))+

inexpensive(t ·max(4n2, 8t))
inexpensive(t2q1)

[13,19] expensive(tn1) expensive(tn2) expensive(tq1)
Our protocol inexpensive(tn1) inexpensive(t ·max(4n2, 8t)) inexpensive(tq1)
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Our main contributions are the new techniques we use for solving the Garbler’s
input consistency issue and handling two-output functions. Next, to give a flavor
of our techniques, we present the ideas behind our solutions.

Multi-Stage Cut-and-Choose and Handling Two-Output Functions. From now
on we denote by P1 the garbler (Alice), and by P2 the evaluator (Bob). Note
that the main difficulty here is to convince the garbler, P1, that the output he
receives is correct. (Privacy of the output is easily achieved by xoring the output
with a random string.)

A common method for authenticating the output of a garbled circuit is to send
the random labels resulted from the evaluation of the garbled circuit. However,
when we use the cut-and-choose method, many circuits are being evaluated, and
sending the labels for all the garbled circuits can leak secret information (e.g.,
P1 can create a single bad circuit that simply outputs P2’s input, and not get
caught with high probability). We can fix this issue by using the same output-
wire labels in all the garbled circuits, but then we would lose our authenticity
guarantee since P2 learns all the output-wire labels from the opened circuits and
can use that information to tamper with the output of the evaluated circuits.

We propose aworkaround that allows us to simultaneously use the same output-
wire labels in all circuits, andpreserve the authenticity guarantee, in cut-and-choose
2PC. We separate the “cut” step from the “opening” step (this is a recurring idea
in all our constructions). After P1 sends the t garbled circuits, P2 picks a random
subset S which he wants to check and sends it to P1. Then, instead of opening the
garbled circuits in S, they proceed to the evaluation of the rest of the garbled cir-
cuits. I.e.,P1 sends the labels of his input-wires for the garbled circuits not in S; P2

evaluates all of them and takes the majority; he then commits to the output along
with the corresponding output-wire labels. (Note that since the opening step is not
performed yet,P2 cannot guess the unknown output-wire labels and commit to the
wrong output). Now, they complete the cut-and-choose and do the opening step:
P1 sends the randomness he used for all the garbled circuits in S, and P2 verifies
that everything was done correctly. If so, P2 decommits the output and reveals to
P1 the actual output and its output-wire labels. To summarize, since P1 learns the
output only after P2 has verified the garbled circuits, he cannot cheat in this new
cut-and-choose strategy, any differently than he could in regular cut-and-choose.
On the other hand, since P2 is committed to his output before the opening, he can-
not change the output after he sees the opened circuits.1

1 We note that the above solution is not enough. First, the commitment in use must
be non-malleable with respect to the garbled circuits being opened. E.g., consider a
garbling scheme that outputs also commitments of the possible output-wire labels; P2

could use one of those commitments as his commitment and later use the information
he learned from the opening to decommit successfully. Second, the commitment has to
be equivocal to allowus to later simulateP2 ’smessage.Both requirements can be solved
in the plain model by using trapdoor commitments [3] and efficient Zero-Knowledge
Proof of Knowledge (ZKPoK), or in the RandomOracle Model, by committing using a
hash function. The first solution requires O(q1) expensive operations while the second
requires only one call to the hash function.
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The above solution can be applied to most previous 2PC protocols based
on cut-and-choose to obtain their two-output variants. But, since the circuit
checking is done after the circuit evaluation, the above solution falls short when
combined with circuit streaming or parallelized garbling techniques [5,10]. In the
full version of this paper we describe a second variant of this protocol that is
compatible with those techniques. The cost of this variant is only additional t ·q1
commitments.

XOR-Gadgets and Garbler’s Input Consistency. Here, our goal is to make sure
P1 uses the same input in all (or at least most of) the evaluated garbled circuits.
Observe that we do not have the same issue with P2’s input since for each
specific input bit, P2 learns the t corresponding input-wire labels using a single
OT. But, since P1 does not use OT to learn the labels for his input-wires, the
same approach does not work here.

First, we augment the circuit C being computed with a small circuit we call
an XOR-gadget. Say we want to compute the circuit C(x, y) where x is P1’s
input, and y is P2’s. Instead of working with C, the players work with a circuit
that computes C1(x, y, r) = (C(x, y), x ⊕ r), where r is a random input string
of length |x| generated by P1. Note that x is kept private from P2 if r is chosen
randomly. Denote P1’s inputs to the t garbled circuits of C1 by x1

1, x
1
2, . . . , x

1
t

and r11 , r
1
2 , . . . , r

1
t . If P1 is honest, the r1i -s are chosen independently at random

while all the x1
i -s are equal to x.

Let C2(x, r) = x⊕ r, where x and r are P1’s inputs of the same length. (Note
that y is not an input here.) In addition to P1’s garbled circuits, P2 also generates
t XOR-gadgets, which are garbled circuits of C2. These garbled XOR-gadgets
will be evaluated by P1 and on his own inputs. (For simplicity, we assume for
now that P2 is semi-honest.) Denote P1’s inputs to these t garbled circuits by
x2
1, x

2
2, . . . , x

2
t and r21 , r

2
2, . . . , r

2
t . If P1 is honest, then r1i = r2i for all i, and all

the x2
i -s are equal to P1’s actual input x.

We enforce that x1
i -s are the same in the majority of the evaluated circuits,

using a combination of three different checks : (1) Check that P1 uses the same
value x′ for all x2

i -s. We can easily enforce this since P1 learns the input-wire
label for each bit using a single OT. (E.g., if the first bit of x′ is zero, P1 will
learn t concatenated labels that correspond to the bit zero in the t XOR-gadgets
P2 prepared.) (2) Check that (x2

i + r2i ) = (x1
i + r1i ) in all the evaluated circuits.

We enforce this by evaluating the two XOR-gadgets corresponding to the i-th
garbled circuit (one created by P1 and one created by P2), and checking the
equality of their outputs (see Section 3 for subtleties that need to be addressed
when doing so). (3) Check that r1i = r2i in the majority of the evaluated circuits.
We enforce this as part of the cut-and-choose:When P1 sends his garbled circuits,
he also sends the labels that correspond to all r1i -s. After P1 learns the labels
for r2i -s (from the OTs), they do the opening phase and P1 opens the subset
of garbled circuits. In addition, for each opened circuit, P1 reveals the labels of
the r2i -s he learned, and P2 verifies that r1i = r2i . (Note that once P1 sends the
labels of r1i and the garbled circuit, he cannot change r1i . On the other hand, P1

cannot fake a valid label for r2i that is different from the one he learned in the
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Fig. 1. Example of garbling the simple AND circuit on the left that computes the
AND between P1’s bit x and P2’s bit y. P1 garbles the upper circuits and P2 the lower
ones. Specifically, P1 garbles two AND circuits (i.e., t = 2) and two XOR-gates, and P2

garbles two XOR-gates. P2’s input is the same for all garbled circuits because of the
OT (the top dashed line). Recall that the first input P1 learns in all of P2’s XOR-gates
is the same since P1 learns the corresponding input-wire labels from the OT (the lower
dashed line). Also, that the equality of r1i and r2i , i = 1, 2, is checked in the cut-and-
choose (e.g., by P1 revealing the labels of r11 and r21 if P2 picked to check the first set)
and hence holds with high probability. Combining these two observations with the fact
that P2 compares the outputs of the XOR-gates, P2 gets the assurance that x1

1 = x1
2.

OTs.) As a result, P2 knows that with high probability (in terms of t) r1i = r2i
in the majority of the evaluated circuits.

It is easy to see that the above three checks imply (with high probability) that
x1
i -s are the same in the majority of the evaluated circuits. Since P2 outputs the

majority result, this is sufficient for our needs.
Figure 1 shows an example of the above technique for the circuit that computes

AND and t = 2. We stress that the above is only part of our techniques, and in
particular, does not guarantee protection against a malicious P2.

Security with Input-Dependent Abort in Presence of Covert
Adversaries. We propose a new security notion that naturally combines se-
curity with input-dependent abort of [7] (alternatively, security with limited
leakage of [14,6]), with security against covert adversaries [1]. The resulting secu-
rity guarantee, denoted by ε-CovIDA, is a strict strengthening of covert security:
In covert security, with probability ε both correctness and privacy are gone! Our
definition always guarantees correctness, and with probability ε, privacy is only
“slightly compromised”, i.e. only a single bit of information may be leaked in
case of an abort.

We stress that simply combining the protocols of [14,6] with the cut-and-
choose method is not secure under our definition. Say that instead of garbling
a single circuit, each player Pi garbles t circuits gci1, . . . , gc

i
t and sends them to

the other player. Players pick a random value e ∈ [t], open all the circuits gcij �=e

(i.e., reveal the randomness used to generate them), and verify that they were
constructed properly. This assures that with probability 1 − 1/t, the remaining
two circuits (one circuit from each player) is properly constructed. Parties then
engage in the dual-execution protocol discussed above using these two garbled
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circuits. Although this protocol guarantees correctness similar to [14,6], it does
not satisfy our security definition. One problem is that a malicious player can use
different inputs for the two evaluated circuits, and learn whether their outputs
are the same or not based on the final outcome. This attack is successful even if
all the circuits are constructed correctly.

We show two constructions that do achieve our definition. Both constructions
require a constant number of rounds. In our first construction, each player garbles
only 1

ε circuits and n+2q
ε additional XOR gates, where n is the length of the input

and q is the length of the output. We emphasize that compared to the protocols of
[14,6], where the adversary can always learn one bit of information, our protocol
leaks one bit only with probability ε.

The first construction is sufficient for large values of ε but fails to scale for the
smaller ones. For example, if one aims for a probability of leakage of less than
2−10, the first protocol would require the exchange of a thousand garbled circuits.
A more desirable goal is a protocol with a cost that grows only logarithmically
in 1

ε . We achieve this in our second protocol.
The costs of both constructions are roughly the costs of running their

covert counterparts in both directions. E.g. the second protocol requires
O(2 log(1ε )(|C| + n + q)) inexpensive operations and O(log(1ε )(n + q)) expen-
sive ones, while the covert protocol of [13] requires O(log(1ε )|C|) inexpensive
operations and O(log(1ε )n) expensive ones.

2 Preliminaries

Throughout this work we denote by t a statistical security parameter and by
s a computational security parameter. For a fixed circuit in use, we denote
by INPi the set of indexes of Pi’s input-wires to the circuit, by INP the set
INP1 ∪ INP2, by OUTi the set of indexes of Pi’s output-wires, and by OUT the
set OUT1∪OUT2. For shortening, we sometimes refer to |INPi| by ni, to |OUTi|
by qi, and set n = n1 + n2 and q = q1 + q2.

Denote by Enc(sk,m) the encryption of message m under secret key sk, by
PRG(s, l) the l-bit string generated by a pseudo-random generator with seed
s, and by Com(m, r) the commitment on message m using randomness r. The
decommitment of Com(m, r) is m and r. (In some cases we use the abbreviations
PRG(s) and Com(m).)

We also use the following notation for the next cryptographic primitives and
functionalities.

Yao’s Garbling. For the sake of simplicity and generality, we do not go into the
details of the garbling mechanism and only introduce the notations we need to
describe our protocols. We refer the reader to [12,2] for different approaches to
creating the garbled circuits.

Given a garbled circuit gc, we denote by label(gc, j, b) the label of wire j
corresponding to bit value b. Also, we denote by Garb(C, r) the (deterministic)
garbling of circuit C using randomness r. (In practice, r would be a short seed
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for a pseudo-random function). For simplicity, we assume that the labels of the
circuit’s output-wires include also the actual output bits (thus, allowing the
evaluator to learn the output).

We require the garbling scheme to be private and authenticated, meaning that
given a garbled circuit and input labels of a specific input, nothing is revealed
except for the output of the circuit, and, that the output-wire labels authenticate
the actual output (thus, the actual output cannot be forged). Also, we require
that given a garbled circuit and an input label, one can verify whether the input
label is a valid input label.

Batch Committing Oblivious Transfer (BCOT). Here, sender S has n sets, each
of m pairs of inputs, {(xj,z

0 , xj,z
1 )}j=1...n,z=1...m, and receiver R has a vector of

input bits b̄ = (b1, · · · , bn). The receiver R learns the outputs according to his
input bits, xj,z

bj
for all j and z. In addition, R learns commitments on all the

sender’s inputs.
[19] shows an implementation of BCOT with a cost of O(mn) expensive oper-

ations. Combining their protocol with the OT-extension of [15] in the Random
Oracle Model results in an alternative protocol that requires only O(s) expensive
operations and O(nm) inexpensive ones. However, in the latter construction, the
commitments on the sender’s inputs cannot be opened separately and one needs
to decommit all the inputs at once (we use both instantiations in our protocols).
See the full version for more details.We denote the first protocol by BCOT1 and
the second by BCOT2.

Two-Stage Equality Testing. In this protocol, player P1 has input x1 and player
P2 has input x2. They want to test whether x1 = x2. The functionality is split
into two stages in order to emulate a commitment on the inputs before revealing
the result (we will use this property in one of our constructions). I.e., in the first
stage players submit their inputs and learn nothing, and in the second stage,
only if they both ask for the output, they receive the result. This functionality
can be realized using ElGamal encryption and ZKPoKs.

3 An Efficient 2PC for Two-Output Functions with Full
Security

In this section, we review the main ideas behind our efficient 2PC protocol with
full security against malicious adversaries, considering the case where only P2

needs to learn the output. In the full version we show how to extend the ideas
in order to handle two-output functions. A detailed description of the protocol
and the proof of security appear in full version as well.

Consistency of the evaluator’s input is taken care of by combining the tech-
nique of [11] with the OT-extension of [15] and the Free-XOR technique [9].
In a nutshell, P2’s input is encoded using max(4n2, 8t) bits in a way that any
leakage of less than t of the bits does not reveal meaningful information about
P2’s input. During the cut-and-choose, P2 asks P1 to reveal all his inputs to
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the OTs. If some of the inputs are not consistent with the one P2 has learned
from the OTs, P2 aborts. This abort leaks information only in case P1 guessed
successfully more than t bits in P2’s encoded input. However, this can happen
with only a negligible probability by the way the encoding is done.

As we discussed in Section 1.1, consistency of the garbler’s input is addressed
using the XOR-gadgets. In the following we describe the main steps of that part.

Garbling stage and the XOR-gadgets. Say the players want to compute
C(x, y), where x is P1’s input and y is P2’s input. Based on C, we define the
following two circuits: (1) C1(x, y, r), which computes (C(x, y), x⊕ r) where r is
a random input string of length |x| selected by P1; (2) C2(x, r), which computes
x⊕ r, where x and r are P1’s inputs and are of the same length. In both circuits
we assume the indexes of the input-wires are the same as in C and we define the
function α(k) to be the function that given k ∈ INP1 returns the index of the
input-wire of the random bit that is xored with input-wire k. (For simplicity, we
assume the same function is applicable for both C1 and C2.)

P1 picks a random string zi and generates a garbled circuit gci = Garb(C1, zi),
for i = 1 . . . t. In addition, P2 picks a random string z′i and generates a garbled
circuit xgi = Garb(C2, z

′
i), for i = 1 . . . t. Both players send the garbled circuits

they created to each other. Next, P1 picks rj at random for j ∈ [t] and sends to
P2 the labels that correspond to rj in gcj.

OTs for Input Labels. Parties execute OTs and BCOTs in order for each
to learn the input-wire labels for his inputs in the circuits/gadgets created by
his counterpart. More specifically, first they run any simulatable OT protocol
with the OT-extension of [15], where P1 acts as the sender and P2 acts as the
receiver. They use the technique of [11] for protecting against inconsistent inputs
as described earlier. P1’s inputs are the labels of P2’s input-wires in all gcj (i.e.,
the inputs are label(gcj , k, 0) and label(gcj , k, 1) for k ∈ INP2 and j ∈ [t]). P2’s
input is his actual input. (We ignore here the details of encoding P2’s input.)
Second, they execute BCOT2 twice where P2 acts as the sender and P1 acts as
the receiver: (1) P2’s inputs are the labels of the input-wires in his XOR-gadgets
xgj , and P1’s inputs are his random input and actual input to the gadget (i.e.,
P2 inputs are label(xgj , k, 0) and label(xgj , k, 1) while P1’s inputs are his actual
input bits, and (2) P2’s inputs are label(xgj , α(k), 0) and label(xgj , α(k), 1) while
P1’s inputs are the bits of rj . Note that in the first BCOT2, P1 inputs a single
bit for each input bit and receives t input-wire labels. That restricts him to use
the same input in all the XOR-gadgets.).

(In the detailed protocol, the players execute the OTs before sending the
garbled circuits. Still, the intuition is similar.)

We stress that P1 is yet to send the labels for his input wires in the circuits
he garbled himself, i.e. gci-s.

Cut-and-Choose (first stage). After the OTs/BCOTs, P1 opens a constant
fraction of his garbled circuits/gadgets. In particular, P1 opens the garbled cir-
cuit gcj for all j /∈ E, where E is chosen randomly using a joint coin-tossing
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protocol. (A joint coin-tossing protocol is needed for the simulation to work.)
Moreover, P1 reveals the random strings rj-s he used in the opened circuits (by
showing the labels he learned from BCOT2), and all his inputs to the OTs for
the opened circuits. P2 checks the correctness of the opened circuits and verifies
that the same rj was used in both gcj and xgj for all j /∈ E. (He also verifies
that the values he has received in the OTs for his inputs are consistent with
what P1 revealed, following the technique of [11].)

Cut-and-Choose (second stage). P1 evaluates all the XOR-gadgets he
received from P2, and sends a commitment on all the output-wire labels he ob-
tained to P2. P2 answers with opening all the XOR-gadgets xgj for j ∈ E, and by
decommitting all his inputs to BCOT2. P1 checks that all the XOR-gadgets he
received were properly constructed, and that the labels are consistent with the
decommitments. If so, P1 decommits the output-wire labels of the XOR-gadgets
to P2.

In general, the last step is not sound for all commitments since P1 can send
a commitment for which he does not know the corresponding message and later
be able to decommit once P2 opens the XOR-gadgets (see Footnote 1). There
are several ways to overcome this issue. One option is to require P1 to prove that
he knows how to construct this commitment, or more formally, P1 commits on
the output labels with Com(labels, r) and proves using a ZKPoK that he knows
labels and r. This step can be implemented efficiently for Pedersen’s commitment
[17], requiring only a small constant number of exponentiations. (When labels is
longer than the commitment input length, P1 picks a random seed seed, sends
Com(seed, r),PRG(seed)⊕labels and ZKPoK that he knows seed and r.) A more
efficient option is to implement Com(labels, r) in the Random Oracle model using
H(key ◦ labels ◦ r), where the commitment key key is chosen at random by the
receiver (i.e., P2 in our case). The complexity in this case is only a single call to
the random oracle.

Circuit Evaluation. P1 sends to P2 the labels of his inputs for the remaining
garbled circuits and XOR-gadgets. P2 uses them to evaluate all his remaining
circuits and gadgets. He checks that the output-wires of the XOR-gadgets are
the same as the values P1 sent him. If so, he takes the majority of the outputs
to be his output.

Summary. Note that now, with high probability, not only do we know that
the majority of the circuits being evaluated are correct, but also that P1 used
the same rj-s in the XOR-gadget pairs (Check 3 from introduction). Also, recall
that in the BCOT for XOR-gadgets created by P2, P1 can learn the labels for
exactly one possible value of x. Thus, his x is the same for all the t XOR-gadgets
P2 generated (Check 1). Combined with the fact that P2 checks equality of the
output of the XOR-gadget pairs (Check 2), he is ensured that the same input
bits are being used in majority of the gcj-s. See Figure 1 for a diagram explaining
the above intuition.
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4 Security with Input-Dependent Abort in the Presence
of Covert Adversaries

4.1 The Model

Following [11,1,6], we use the ideal/real paradigm for our security definition.

Real-Model Execution. The real-model execution of protocol Π takes place
between players (P1, P2), at most one of whom is corrupted by a probabilistic
polynomial-time machine adversary A. At the beginning of the execution, each
party Pi receives its input xi. The adversary A receives an auxiliary information
aux and an index that indicates which party it corrupts. For that party, A
receives its input and sends messages on its behalf. Honest parties follow the
protocol.

Let realΠ,A(aux)(x1, x2) be the output vector of the honest party and the
adversary A from the real execution of Π , where aux is an auxiliary information
and xi is player Pi’s input.

Ideal-Model Execution. Let f : ({0, 1}∗)2 → {0, 1}∗ be a two-party function-
ality. In the ideal-model execution, all the parties interact with a trusted party
that evaluates f . As in the real-model execution, the ideal execution begins with
each party Pi receiving its input xi, and A receives the auxiliary information
aux. The ideal execution proceeds as follows:

Send inputs to trusted party: Each party P1, P2 sends x′
i to the trusted

party, where x′
i = xi if Pi is honest and x′

i is an arbitrary value if Pi is
controlled by A.

Abort option: If any x′
i = abort, then the trusted party returns abort to all

parties and halts.
Attempted cheat option: If Pi sends cheati(ε

′), then:
– If ε′ > ε, the trusted party sends corruptedi to all parties and the

adversary A, and halts.
– Else, with probability 1 − ε′ the trusted party sends corruptedi to all

parties and the adversary A and halts.
– With probability ε′,

• The trusted party sends undetected and f(x′
1, x

′
2) to the adversary

A.
• A responds with an arbitrary boolean function g.
• The trusted party computes g(x′

1, x
′
2). If the result is 0 then the

trusted party sends abort to all parties and the adversary A and
halts. (i.e. A can learn g(x′

1, x
′
2) by observing whether the trusted

party aborts or not.)
Otherwise, the trusted party sends f(x′

1, x
′
2) to the adversary.

Second abort option: The adversary sends either abort or continue. In the
first case, the trusted party sends abort to all parties. Else, it sends f(x′

1, x
′
2).

Outputs: The honest parties output whatever they are sent by the trusted
party. A outputs an arbitrary function of its view.
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Let idealεf,A(aux)(x1, x2) be the output vector of the honest party and the ad-
versary A from the execution in the ideal model.

Definition 1. A two-party protocol Π is secure with input-dependent abort in
the presence of covert adversaries with ε-deterrent (ε-CovIDA) if for any proba-
bilistic polynomial-time adversary A in the real model, there exists a probabilistic
polynomial time adversary S in the ideal model such that

{
realΠ,A(aux)(x1, x2)

}
x1,x2,aux∈{0,1}∗

c≈
{
ideal

ε
f,S(aux)(x1, x2)

}
x1,x2,aux∈{0,1}∗

for all |x1| = |x2| and aux.

Comparison with Covert Security. When we let ε = 1/t for any constant t,
the above definition is strictly stronger than the standard definition of secu-
rity against covert adversaries. In covert security, in case of undetected cheating
which happens with probability ε, the adversary learns all the honest parties’
private inputs and is able to change the outcome of computation to whatever
value it wishes (i.e. no privacy or correctness guarantee). In our definition, how-
ever, the adversary can learn at most a single bit of information (from the abort),
and under no condition is able to change the output (full correctness).

In the above definition, in contrast to the standard covert security, the adver-
sary can choose the exact probability he gets caught (i.e. 1− ε′) as long as this
probability is larger than 1− ε (where ε is the deterrence factor). Note that this
is not a relaxation in security since the adversary can only increase the probabil-
ity of itself getting caught. We believe that this variant of the definition where
the adversary can choose ε′ > ε with which it can get caught is of independent
interest. Specifically, it yields an alternative definition for covert security that is
more convenient to use in simulation-based proofs. (To obtain this alternative
definition for covert security, replace the steps that are done with probability
ε′ with the following: (1) The trusted party sends x′

1, x
′
2 to A; (2) A sends the

value y to the trusted party, and the trusted party sends it to all parties as their
output.)

A Remark on Adaptiveness of Leakage Function. In the above definition, the
leakage function g can be chosen adaptively after seeing f(x′

1, x
′
2). Somewhat

surprisingly, this does not give any extra power to the adversary compared to
the non-adaptive case since even in the non-adaptive case, g can be chosen to
be a function that computes f(x′

1, x
′
2), emulates the adversary’s computation

given that value and evaluates the leakage function he would have chosen in the
adaptive case.

4.2 An Efficient Protocol with 2
ε
Circuits

In this section, we review the main steps of our ε-CovIDA protocol and highlight
the new techniques. A detailed description of the protocol and how to reduce the
number of circuits (from linear in 1

ε to logarithmic) appear in the full version.
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As discussed in the introduction, in the dual-execution protocol of [14,6] par-
ties engage in two different executions of the semi-honest Yao’s garbled circuit
protocol, and then run an equality testing protocol to confirm that the outputs
of the two executions are the same before revealing the actual output values. We
show how to extend this protocol to work in the presence of covert adversaries
using the ideas presented in Section 3. For simplicity of the description, from
now on we work with t = 1

ε (a statistical security parameter) instead of ε since
t would be the number of circuits each party garbles.

Dual-Execution & Cut-and-Choose. Our first step is to combine the dual-
execution protocol with a standard cut-and-choose protocol for covert players.
Each player Pi garbles t circuits gc

i
1, . . . , gc

i
t and sends them to the other player.

Parties pick a random value e ∈ [t], open all the circuits gcij �=e and verify that
they were constructed properly. This assures that with probability 1 − 1/t, the
remaining circuit-pair (gc1j , gc

2
j) is properly constructed. As before, they send the

garbler’s input-wire labels for the e-th circuit, execute OTs for the respective
evaluators to learn their input-wire labels, evaluate the circuits, call the Equality
Testing functionality and output accordingly.

The above protocol would guarantee correctness similar to the dual-execution
protocol, and it would ensure that the evaluated circuits are correct with prob-
ability 1 − 1/t. However, the protocol does not satisfy our security definition.
One issue is that a malicious player learns the output of the computation even
if the other player catches him cheating (as a result of the equality test). We
show how this can be avoided by masking the output of the computation with
random strings, chosen by the two players, and revealing them at the end of the
computation in order to unmask the actual output.

A more subtle attack to address is that a malicious player can learn one bit
of information about an honest party’s input with probability greater than 1/t
(in fact with probability 1): a malicious player can use different inputs in each of
the two evaluated circuits, and learn whether their outputs are the same or not
based on the final outcome. This attack is successful even if all the circuits are
constructed correctly. We prevent this attack using the XOR-gadget techniques
discussed earlier, along with some enhancements. We discuss the details next:

XOR-Gadgets. Define C(x ◦m1, y ◦m2) to be the circuit that receives inputs
x, y and two masks m1,m2 and computes f(x, y)⊕m1⊕m2. Based on C, let P1’s
input x′ be x ◦m1 and P2’s input y

′ be y ◦m2, where mi is a random string of
length q (f ’s output length) selected by Pi. We define the following four circuits:

(1) C1(x
′, y′, r1) = (C(x′, y′), x′ ⊕ r1), where r1 is a random input string of

length |x′| selected by P1; (2) C2(x
′, y′, r2) = (C(x′, y′), y′ ⊕ r2) where r2 is a

random input string of length |y′| selected by P2; (3) C
′
1(y

′, r2) = y′⊕r2 evaluated
by P2 on his own inputs; (4) C′

2(x
′, r1) = x′ ⊕ r1 evaluated by P1 on his own

inputs; In all circuits we assume the indexes of the input-wires are the same as
in C and we define the function α(k) to be the function that given k ∈ INP
returns the index of the input-wire of the random bit input-wire that is xored
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with input-wire k. (For simplicity, we assume the same function is applicable for
all Ci-s and C′

i-s.)
Instead of garbling C, each player Pi generates and sends t garbled circuits

for Ci: gc
i
1, . . . , gc

i
t and t garbled circuits of C′

i: xg
i
1, . . . , xg

i
t. After sending the

sets of garbled circuits, for each j ∈ [t], player Pi picks at random a string rij
and sends the input-wire labels that correspond to rij in gcij.

OTs for Input Labels. Then, they execute BCOTs in order to learn the input-
wire labels for both their actual inputs and the rij-s in their counterpart’s circuits.
More specifically, first they use BCOT1 where P1 acts as the sender and P2 acts
as the receiver. P1’s inputs are the input-wire labels of P2’s input-wire k in all
gc1j -s and xg1j -s (i.e., the input pairs are

(
label(gc1j , k, 0), label(gc

1
j , k, 1)

)
j∈[t]

and

label(xg11 , k, 0) ◦ · · · ◦ label(xg1t , k, 0), label(xg11 , k, 1) ◦ · · · ◦ label(xg1t , k, 1) for k ∈
INP2). P2’s input is his actual input. Second, they use BCOT2 with the labels
for the rest of the input-wires of xg1j (i.e., label(xg1j , α(k), 0),label(xg

1
j , α(k), 1)

for k ∈ INP2 and j ∈ [t], where P2’s inputs are the bits of r2j ). The players run
the same protocols in the opposite direction (switching roles). At the end, each
player learns the labels for his input-wires of gc3−i

j and of xg3−i
j . But we note

that Pi is yet to send the labels for his input wires in the circuits he garbled
himself, i.e. gcij and xgij .

Cut-and-Choose Phase (first opening). Next, as before, parties agree on
a random e ∈ [t] (using a joint coin-tossing protocol), and open the rest of the
garbled circuits. In particular, they open the garbled circuit-pairs (gc1j , gc

2
j) and

the XOR-gadgets (xg1j , xg
2
j ) for all j �= e. Moreover, for j �= e, they reveal to

each other the random strings rij-s they used in the opened circuits (by showing
the labels they learned in BCOT2), and then they decommit all the inputs
they used as senders in BCOT1 for the opened circuits. The players check the
correctness of the circuits and verify that the same rij -s were used in both gcij and

xg3−i
j . (Note that at the end of the opening phase, the players know that with

1−1/t probability the remaining circuit-pair (gc1e, gc
2
e) and the XOR gadget-pair

(xg1e , xg
2
e) are properly constructed, and, that the inputs rie used by the players

in both gcie, and xg3−i
e are the same.)

Evaluation. Each party sends to his counterpart the input-wire labels for his in-
puts in the unopened circuit-pair. Parties then evaluate the circuit-pair (gc1e, gc

2
e)

and the XOR-gadgets (xg1e , xg
2
e). (i.e., Pi evaluates gc

3−i
e , and xg3−i

e .) Pi sends
a commitment (along with a ZKPoK, as in Section 3) on the concatenation of
the output labels he obtained after evaluating xg3−i

e to P3−i.

Cut-and-Choose Phase (second opening). P3−i now opens the remaining
XOR-gadget xg3−i

e , and decommits all his inputs as a sender to the BCOTs of
the XOR-gates (i.e., label(xg3−i

1 , k, 0) ◦ · · · ◦ label(xg3−i
t , k, 0), label(xg3−i

1 , k, 1) ◦
· · ·◦ label(xg3−i

t , k, 1) in BCOT1, and label(xg3−i
e , α(k), 0), label(xg3−i

e , α(k), 1) in
BCOT2, both for k ∈ INPi). (We stress that only the XOR-gates of wires INPi
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are opened, and that those were generated using random labels independently
of the garbled circuits. The XOR-gadgets of wires INP3−i are checked as part of
the previous phase.) Pi verifies that these XOR-gates were generated properly
and that the BCOTs inputs were consistent with the XOR-gates. If everything
is correct he decommits his commitment, otherwise he outputs ⊥ and aborts.
(Note that Pi reveals his output only after he verified that all the XOR-gates
P3−i generated were properly constructed. Since the only secrets in these gates
are Pi’s inputs, revealing them does not help Pi learn any new information.) P3−i

verifies that the decommitted values are valid output-wire labels, and compares
the actual output with their output he obtains from evaluation of xgie. If either
check fails, P3−i outputs ⊥.

Equality-test. If there is no abort, players call the Equality Testing functional-
ity as before. Note that now, with probability 1−1/t, not only we know that the
circuits being evaluated are correct, but also that the players use the same rie-s
in the final XOR gadget-pair. Combined with the fact that the players check
equality of the output of the final XOR gadget-pair, they are ensured (with
probability 1 − 1/t) that the same input strings are being used in gc1e and gc2e
or else, x⊕ rie would be different.

Output Unmasking. If the Equality Testing functionality returns False, the
players abort. Otherwise, they unmask the output. (Recall that at this stage,
each player knows the value of C(x′, y′) = f(x, y) ⊕m1 ⊕m2.) Player Pi sends
the value of mi along with labels that correspond to mi in gc3−i

e . These labels
prove that mi is indeed the value that Pi have used in the protocol.

Putting things together, correctness is always guaranteed due to the dual
execution; full-privacy is guaranteed with probability 1−1/t due to the discussion
above; and privacy with 1-bit leakage is guaranteed in the case that a cheating
adversary is not caught, which only happens with probability 1/t.
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Abstract. We propose an optimization and generalization of OT ex-
tension of Ishai et al. of Crypto 2003. For computational security pa-
rameter k, our OT extension for short secrets offers O(log k) factor
performance improvement in communication and computation, com-
pared to prior work. In concrete terms, for today’s security parameters,
this means approx. factor 2-3 improvement.

This results in corresponding improvements in applications relying
on such OT. In particular, for two-party semi-honest SFE, this results
in O(log k) factor improvement in communication over state of the art
Yao Garbled Circuit, and has the same asymptotic complexity as the
recent multi-round construction of Kolesnikov and Kumaresan of SCN
2012. For multi-party semi-honest SFE, where their construction is in-
applicable, our construction implies O(log k) factor communication and
computation improvement over best previous constructions. As with our
OT extension, for today’s security parameters, this means approximately
factor 2 improvement in semi-honest multi-party SFE.

Our building block of independent interest is a novel IKNP-based
framework for 1-out-of-n OT extension, which offers O(log n) factor per-
formance improvement over previous work (for n ≤ k), and concrete fac-
tor improvement of up to 5 for today’s security parameters (n=k=128).

Our protocol is the first practical OT with communication/
computation cost sublinear in the security parameter (prior sublinear
constructions Ishai et al. [15,16] are not efficient in concrete terms).

Keywords: OT extension, 1-out-of-2 OT, 1-out-of-n OT.

1 Introduction

Our main contribution is an asymptotic and concrete efficiency improvement of
Oblivious Transfer (OT) extension of Ishai et al. [14]. Our improvement applies to
OT transfers of short secrets. In this Introduction we first motivate the problem,
and then give intuition behind our approach.

Oblivious Transfer (OT) is a fundamental cryptographic primitive that is used
as a building block in a variety of cryptographic protocols. It is a critical piece in
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general secure computation [29,10,18], as well as in a number of tailored solutions
to specific problems of interest, such as contract signing [7]. OT performance
improvement directly translates into that of secure function evaluation (SFE). In
turn, SFE performance is the subject of major research effort in cryptography
[14,22,20,6,12,25]. Our work can be plugged into several existing candidate
solutions, resulting in factor 2-3 performance improvement, which is a major
step forward in the state of the art of secure computation.

1.1 Secure Computation

SFE allows two (or more) parties to evaluate any function on their respective
inputs x and y, while maintaining privacy of both x and y. SFE is justifiably
a subject of an immense amount of research. Efficient SFE algorithms enable a
variety of electronic transactions, previously impossible due to mutual mistrust
of participants. Examples include auctions, contract signing, set intersection,
etc. As computation and communication resources have increased, SFE of many
useful functions has become practical for common use. Still, SFE of many of to-
day’s functions of interest carries costs sufficient to deter would-be adopters, who
instead choose stronger trust models, entice users to give up their privacy with
incentives, or use similar crypto-workarounds. We believe that truly practical
efficiency is required for SFE to see use in real-life applications.

The current state of the art of SFE research is quite sophisticated. Particu-
larly in the semi-honest model, there have been very few asymptotic/qualitative
improvements since the original protocols of Yao [29] and Goldreich et al. [9].
Possibly the most important development in the area of SFE since the 1980’s
was the very efficient OT extension technique of Ishai et al. [14], which allowed
to evaluate an arbitrarily large number of OTs by executing a small (security
parameter) number of (possibly inefficient) “bootstrapping” OT instances, and
a number of symmetric key primitives. This possibility of cheap OTs made a
dramatic difference for securely computing functions with large inputs relative
to the size of the function, as well as for GMW-like approaches, where OTs are
performed in each level of the circiut.

As secure computation moves from theory to practice, even “small” improve-
ments can have a significant effect. Today, even small factor performance im-
provements to state-of-the-art algorithms are quite hard to achieve, and are most
welcome. This is especially true about the semi-honest model protocols, where
the space for improvement appears to be much smaller than in the malicious
model.

In this work, we propose an improvement to OT extension of Ishai et al. [14],
for the case of OT of short secrets. As we will describe below, this will result in a
new multi-party SFE protocol, which is approximately factor 2 (asymptotically
factor O(log k)) more efficient than state of the art. Our constructions also im-
prove on standard two-party garbled circuit protocols in asymptotic (O(log k))
and concrete terms, and offer performance in line with the recent work of [19].
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1.2 Secure Computation and OT Efficiency Considerations

The efficiency of OT plays a critical role in the overall efficiency of secure com-
putation. It is so to the point that OT performance determines which is the
most efficient approach. Until recently, in the semi-honest model, Yao’s Garbled
Circuit was a clear winner. With the work of [19], which can be seen as a hy-
brid between GMW and Yao, and our improved OT extension technique, the
GMW approach will outperform Yao with a factor of ≈ 2 for today’s security
parameters. Asymptotically, the performance improvement is logarithmic in the
security parameter, as compared to GC-based SFE.

On the Cost of SFE Rounds. One common consideration in SFE protocol
design is the number of rounds. Indeed, in some scenarios the latency associated
with the communication rounds can more than double the total execution time.
This holds, e.g., when the evaluated circuit is small; with the GMW evaluation,
where we need a round of communication per layer of the circuit, the latency
may be costly for deep and narrow circuits. This may cause somewhat increased
latency of an individual computation – a possible inconvenience to the user of
interactive applications.

At the same time, many SFE protocols allow for significant precomputation
and streaming, where message transmission may begin (and even a response may
be received) before the sender completes the computation and transmission of the
message. Thus, round-related latency will usually not be a wasted time and will
not cause extra delays. Most importantly, with the speed of the CPU advancing
faster than that of communication, the true bottleneck for SFE already is the
channel transmission capacity, even for high-speed gigabit LAN.

Thus, we argue that in many scenarios, the number of communication rounds
in SFE often plays an insignificant role in practice, and round-related latency
either has no impact on performance, or it can be tolerated in exchange of
achieving higher throughput.

1.3 Our Contributions

Our main contribution is an asymptotic and concrete efficiency improvement of
Oblivious Transfer (OT) extension of Ishai et al. [14]. Our improvement applies
to OT transfers of short secrets.

1-out of-2 OT Extension. For a security parameter k, our O(log k) asymptotic
improvement results in concrete efficiency improvement of about factor up to
2 for today’s security parameters. This yields corresponding asymptotic and
concrete improvements in multi-party computation in the semi-honest setting,
when applied to state of the art solutions based on GMW protocols.

Our new 1-out of-n OT extension protocol offers O(log n) factor perfor-
mance improvement over previous work (for n < k and constant secret length),
and concrete factor improvement of up to 5 for today’s security parameters.

Further, our protocol is the first OT sublinear in the security parameter other
than the non-black-box construction of Ishai et al. [15], and is the only practical
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OT with this property. Our resulting secure computation protocols can also
be viewed as a significant improvement of the technique of [19], which offered
logarithmic in k improvement over state-of-the-art Yao’s GC, but, in particular,
did not extend to multiparty setting. We work in the (non-programmable) RO
model, but, like in [14], we can also use a variant of correlation-robust hash
functions.

We also present a new simple trick for OT extension (compatible with ours as
well as with[14]), which, in particular, allows to futher cut in half the cost of OT
of 1-bit secrets and reduce by 25% the cost OT of k-bit secrets. This optimization
is described in Section 6 and Appendix A. To clearly state the performance
improvement of our main OT extension protocol, the numbers elsewhere do not
reflect this optimization.

Applications and Practical Performance Impact. As noted above, our 1-
out of-2 OT construction immediately offers approximately factor 2 improvement
in nearly all multi-party protocols – GMW and its variants.

In two-party computation, a similar, but more limited in scope, improvement
was recently achieved [19]. In particular, [19] didn’t work well on very shallow
circuits, such as inner product computation. For such circuits, we have O(log k)
improvement over 2PC state of the art, including [19].

More importantly, there is growing evidence that new GMW optimizations
will often allow (multiround) GMW-based SFE protocols to outperform (con-
stant round) Yao GC based SFE in practice, despite the round-related laten-
cies. For example, a recent work of Schneider and Zohner [28] introduces and
implements several optimizations to mitigate latency impact. It demonstrates
performance improvement of factor up to 100 of GMW over a recent Yao-based
implementation of secure face matching even in high-latency (100ms round-trip,
intercontinental) network. We expect that future SFE research and CPU-vs-
network evolution will further improve GMW relative to Yao.

In sum, our work improves state of the art of 2PC computation for a significant
class of problems where GMW protocols outperform Yao.

As noted, our 1-out of-n OT gives logarithmic performance improvement in
transferring one in n random secret keys. However, in some cases, where the
OT of specific secrets is required, the improvement factor may be smaller due to
the fact that all n secrets encrypted with the n keys need to be transferred. In
this case, logarithmic improvement applies only to the offline phase, where the
secrets are not available.

Another application which immediately benefits from this work is string-
selection OT (SOT), a variant of 1-out of-n OT and a building block of [19]. In
SOT, the receiver selects one of the sender’s two secrets based on his logn-bit
selection string.

1.4 Related Work

OT is a critical and heavily used component in much of cryptography, and in
particular in secure computation protocols. Naturally, a lot of effort went into
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optimizing its performance. Unfortunately, there are fundamental limits to OT
efficiency. Impagliazzo and Rudich [13] showed that a black-box reduction from
oblivious transfer to a one-way function or a one-way permutation would imply
P �= NP. It is further not known whether such non-black-box reductions exist.

Beaver [3] was the first to propose OT extension, a non-black-box scheme
where a large number of OTs can be obtained from a small number of OTs
(possibly executed by using public-key primitives) and one-way functions. Lindell
and Zarosim [21] recently showed that one-way functions are in fact needed for
OT extension.

Ishai, Kilian, Nissim, and Petrank [14], in their breakthrough work showed
a truly practical black-box OT extension. Its cost, in addition to the security
parameter number of base OTs, is only two random oracle (RO) evaluations and
output transfers. By dramatically changing the cost structure of two-party SFE,
especially in the semi-honest model, this work enabled greatly improved SFE for
functions with large inputs, previously considered too costly due to the need of a
large number of public key operations. It also started a rise in the study of GMW-
based SFE protocols, where an OT is needed per multiplicative node. Indeed,
recent (yet unoptimized) GMW-based and multiple-round protocols began to
outperform traditional GC protocols. In particular, [25] outperforms state-of-the-
art GC protocols in the malicious model, and [19] outperforms state-of-the-art
GC protocols in the semi-honest model. In addition to considering the semi-
honest model, [14] presents a construction secure against malicious participants.
In a few follow-up works [24,11,17], the performance of the malicious setting of
the IKNP OT extension was substantially improved. We present the high-level
idea of the basic IKNP construction in Section 3.2.

By employing a more efficient pseudorandom generator in Beaver’s non-
black-box OT extension protocol, Ishai, Kushilevitz, Ostrovsky, and Sahai [15]
obtained an asymptotically more efficient (but expensive in concrete terms)
construction for oblivious transfer extension, and consequently for secure com-
putation. In fact, their protocol enjoys a constant computational/communication
overhead over an insecure evaluation of the function to be evaluated. In order to
obtain these strong efficiency results, Ishai et al. [15] make strong complexity-
theoretic assumptions on pseudorandom generators. Specifically, they assume
that there exists an (arbitrary stretch) pseudorandom generator in NC0 [2,1].

In this work, we show logarithmic in the security parameter improvement for
black-box OT extension transfer of short secrets. In other words, we improve ef-
ficiency of the black-box OT extension protocol of Ishai et al. [14] asymptotically
by a log(k/�) factor when the length of the transferred secrets is �. This has im-
portant practical applications for secure computation solutions in the semihonest
model, such as GMW, that require precisely 1-out-of-2 OT of 1-bit secrets. We
calculate both asymptotic and concrete performance of the resulting protocols.
Our constructions are presented in the semi-honest model.

We stress that in contrast to the non-black-box techniques of Ishai et al. [15],
our extension protocol makes only black-box use of a (non-programmable)
random oracle. Also, unlike [15] who mainly focus on asymptotic complexity,
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we calculate also the concrete efficiency of our construction, and demonstrate a
factor of approximately 2 improvement over state-of-the-art protocols [14,6].

Finally, we mention PIR work (e.g., [16]) that construct communication effi-
cient 1-out of-n OT protocols but perform O(n) computationally intensive (e.g.,
public-key operations) per instance. In contrast, we perform a fixed number of
public-key operations independent of the number of OT instances.

2 Overview of Our Approach

We give a high-level overview of our solution prior to presenting its technical
details in Section 4. We aim that the reader somewhat familiar with the IKNP
construction [14] should understand the main idea of our construction from this
overview.

Consider the random m × k matrix designed by [14], which is transferred
column-wise via k 1-out-of-2 base OTs from the receiver R to the sender S.
In [14], each row of this matrix is used to implement a 1-out-of-2 OT, as it has
the randomness from which a random OT can be constructed.

Our main observation is that, for the same communication cost, each row
of this matrix can be instead used to perform a 1-out-of-n OT, but of shorter
secrets. Further, a 1-out-of-n OT of logn-bit long secrets can be trivially used
to construct logn instances of 1-out-of-2 1-bit OTs, which is precisely the kind
of OT needed in the GMW protocol and its variants. Thus, effectively, we trade
the length of the OT-transferred secrets for the number of OTs, which results
in significant gain for MPC applications.

The intuition for our 1-out-of-n OT is as follows. First, recall that in IKNP,
for each column of the m× k matrix, S randomly selects (via OT), whether he
receives the random column, or the random column XORed with the m-bit long
input of R. Viewed row-wise, this effectively means that for each row j, S either
receives (via OT) the j-th row of the randomly chosen m× k matrix (if R’s j-th
selection bit is 0), or that row XORed with his k-bit selection vector to the OT
(if R’s j-th selection bit is 1). Then S masks each of his two j-th input secrets
with (RO hashes of) vector received as output from OT and the same vector
XORed with its k-bit selection vector respectively and sends both to R, who is
able to take the mask off exactly one of the two messages. The other masked
message remains hidden since R does not learn the selection vector provided
by S.

In the following, let C denote a binary code, and let rj denote the input of
R to the j-th instance of 1-out-of-n OT. In our 1-out-of-n OT, we modify the
scheme presented above such that for each row j, S receives (via OT) the actual
j-th row of the m × k matrix XORed with a vector that is the result of the
rj-th codeword in C bitwise-ANDed with the k-bit selection vector. This allows
S to generate n random pads from each row of the matrix—the i-th such pad
being the j-th row it received (via OT) XORed with a vector that is the result
of the i-th codeword in C bitwise-ANDed with the k-bit selection vector. These
n random pads may then be used by S to carry out a 1-out-of-n OT with R.
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The security of this construction naturally depends on the underlying code. The
exact property that we need is that C must contain at least n codewords, each
of length at most k, such that the codewords in C are spaced as far apart as
possible from each other. This, combined with the fact that R does not learn
the selection vector provided by S, will ensure that R can efficiently recover only
one of the n pads used by S. The above is presented in detail in Section 4.

Using Walsh-Hadamard code for C gives a 1-out-of-n OT for n equal to the
security parameter k. This OT is suitable for generation of logn instances of 1-
out-of-2 OTs (Section 5.1). Using a higher-rate code with high distance results
in 1-out-of-n OT for any n polynomial in k (Section 5.3).

3 Preliminaries and Notation

3.1 Notation

We use the notation OTm
� to denote m instances of 1-out-of-2 string-OT where

the string is � bits long. Let S denote the sender, and let R denote the receiver.
In 1-out-of-2 OT, the sender’s input is {(xj,0, xj,1)}j∈[m], i.e., m pairs of strings,
each of length �, and the receiver holds input {rj}j∈[m], where each rj is an inte-
ger which is either 0 or 1. Note that if S provides input {(xj,0, xj,1)}j∈[m] to OTm

� ,
and if R provides input {rj}j∈[m] to OTm

� , then R receives back {xj,rj}j∈[m],
while S receives nothing.

In Section 4, we construct protocols for 1-out-of-n OT, which is a straightfor-
ward generalization of 1-out-of-2 OT. We explain this further. We use the nota-
tion

(
n
1

)
-OTm

� to denote m instances of 1-out-of-n string-OT where the string is
� bits long. In 1-out-of-n OT, the sender’s input is {(xj,0, . . . , xj,n−1)}j∈[m], and
the receiver holds input {rj}j∈[m], where each rj is an integer which between 0

and n − 1. Note that if S provides input {(xj,0, . . . , xj,n−1)}j∈[m] to
(
n
1

)
-OTm

� ,

and if R provides input {rj}j∈[m] to
(
n
1

)
-OTm

� , then R receives back {xj,rj}j∈[m],
while S receives nothing.

Following the convention in IKNP, we denote vectors in bold, and matrices in
capitals. For a matrix A, we let aj denote the j-th row of A, and ai denote the
i-th column of A. If a = a1‖ · · · ‖ap and b = b1‖ · · · ‖bp are two vectors, then we
define ⊕ and � operations as follows. We use the notation a⊕b to denote the
vector (a1⊕b1)‖ · · · ‖(ap⊕bp). Similarly, the notation a � b denotes the vector
(a1 · b1)‖ · · · ‖(ap · bp). Finally, suppose c ∈ {0, 1}, then c · a denotes the vector
(c · a1)‖ · · · ‖(c · ap).

Our constructions assume the existence of a random oracle H . We denote the
security parameter by k, and assume (without loss of generality) that it is a
power of 2.

3.2 IKNP OT Extension

In this section, we present the OT extension protocol of Ishai, Kilian, Nissim, and
Petrank [14]. The protocol will reduce OTm

� to OTk
m. This implies a reduction
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(via use of a PRG) to OTk
k with some additional cost. The security of the protocol

holds as long as the receiver is semi-honest. (Note: the sender may be malicious.)
We now describe the protocol that realizes OTm

� given ideal access to OTk
m.

Input of S: m pairs (xj,0, xj,1) of �-bit strings, 1 ≤ j ≤ m.
Input of R: m selection bits r = (r1, . . . , rm).
Common Input: a security parameter k.
Oracle: a random oracle H : [m]× {0, 1}k → {0, 1}�.
Cryptographic Primitive: an ideal OTk

m primitive.

1. S chooses s ← {0, 1}k at random. Let si denote the i-th bit of s.

2. R forms m× k matrices T0, T1 in the following way:

– Choose tj,0, tj,1 ← {0, 1}k at random such that tj,0⊕tj,1 = (rj‖ · · · ‖rj).
Let ti0, t

i
1 denote the i-th column of matrices T0, T1 respectively.

3. S and R interact with OTk
m in the following way:

– S acts as receiver with input {si}i∈[k].

– R acts as sender with input {ti0, ti1}i∈[k].

– S receives output {qi}i∈[k].

S formsm×k matrixQ such that the i-th column of Q is the vector qi. (Note
qi = tisi .) Let qj denote the j-th row of Q. (Note qj = ((tj,0⊕tj,1)� s)⊕tj,0.
Simplifying, qj⊕tj,0 = rj · s.)

4. For j ∈ [m], S sends yj,0 = xj,0⊕H(j,qj) and yj,1 = xj,1⊕H(j,qj⊕s).

5. For j ∈ [m], R recovers zj = yj,rj⊕H(j, tj,0).

Efficiency. The protocol makes a single call to OTk
m. The cost of OTk

m is the
cost of OTk

k (which is independent of m) plus a generation of 2k pseudorandom
strings each of length m. Other than this call to OTk

m, each party evaluates at
most 2m times (an implementation of) a random oracle. It is easy to see that the
total communication cost of OTm

� is the communication cost of implementing
OTk

m plus 2m� bits transferred between S and R in Step 4. Thus we conclude
that the communication cost of OTm

� is 2mk + 2m� bits. Note that the total
computational cost of the protocol is proportional to its communication cost.

3.3 Walsh-Hadamard (WH) Codes

For α ∈ {0, 1}q, let WH(α) = (〈α, x〉)x∈{0,1}q , where the inner product between
the two vectors is taken modulo 2. That is, WH(α), also known as the Walsh-
Hadamard encoding of α, is the 2q-bit string consisting of inner products of each
q-bit string with α. For each k, Walsh-Hadamard codes, denoted by Ck

WH, are
simply defined as the set {WH(α)}α∈{0,1}log k . Note that Ck

WHcontains k strings
(or, codewords) each of length k bits. In our constructions, we will use the well-
known fact that the relative distance of Ck

WH is 1/2 when k is a power of 2.



62 V. Kolesnikov and R. Kumaresan

4 Extending 1-out-of-n OT

Recall, k is a security parameter. We present a natural generalization of 1-out-
of-2 OT extension protocol given in [14]. We consider 1-out-of-n OT for any
n ≤ k.1 First, recall that it is easy to construct a 1-out-of-n OT protocol from
O(log n) instances of a 1-out-of-2 OT protocol in the semi-honest setting. The
communication cost of m instances of 1-out-of-n OT on �-bit strings would be
the cost of OTmlogn

k plus the cost required to transmit at most mn masked
secrets each of length �. Thus, the communication cost of obtaining m instances
of 1-out-of-n OT on �-bit strings is at most O(m(klog n+ n�)) bits. Further, its
computational cost is proportional to the communication cost.

Our main contribution, formally presented in this section, is showing how to
generalize IKNP’s technique to directly obtain (i.e., without going via a construc-
tion for 1-out-of-2 OT) an extension protocol for 1-out-of-n OT when n ≤ k.
For the same security parameter and the same size of setup matrix at IKNP, the
concrete security of our construction corresponds to that provided by security
parameter kIKNP ≈ k/2 . If exactly same concrete security as IKNP is desired,
this can be achieved by setting our security parameter k ≈ 2kIKNP, which results
in a multiplicative factor 2 overhead compared to IKNP. However, because we
do 1-out-of-n OT at this cost, our construction will still result in asymptotic and
concrete performance improvement of 1-out-of-n OT.

Let
(
n
1

)
-OTm

� denote m instances of 1-out-of-n OT on �-bit strings. As in [14],

we will reduce
(
n
1

)
-OTm

� to OTk
m(which can be trivially efficiently reduced to

OTk
k). As the [14] basic protocol, our protocol is secure against a malicious

sender and semi-honest receiver. Our protocol will use Walsh-Hadamard codes,
denoted by Ck

WH = (c0, . . . , ck−1).
We now describe our protocol that realizes

(
n
1

)
-OTm

� given ideal access to

OTk
m.

Construction 1 (1-out-of-n OT Extension)
Input of S: m tuples (xj,0, . . . , xj,n−1) of �-bit strings, 1 ≤ j ≤ m.
Input of R: m selection integers r = (r1, . . . , rm) such that 0 ≤ rj < n for
1 ≤ j ≤ m.
Common Input: a security parameter k such that k ≥ n, and Walsh-Hadamard
codes Ck

WH = (c0, . . . , ck−1).
Oracle: a random oracle H : [m]× {0, 1}k → {0, 1}�.
Cryptographic Primitive: an ideal OTk

m primitive.

1. S chooses s ← {0, 1}k at random. Let si denote the i-th bit of s.
2. R forms m× k matrices T0, T1 in the following way:

– Choose tj,0, tj,1 ← {0, 1}k at random such that tj,0⊕tj,1 = crj .
Let ti0, t

i
1 denote the i-th column of matrices T0, T1 respectively.

3. S and R interact with OTk
m in the following way:

– S acts as receiver with input {si}i∈[k].

1 We discuss how to extend 1-out-of-n OT for n = poly(k) in Section 5.3.
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– R acts as sender with input {ti0, ti1}i∈[k].

– S receives output {qi}i∈[k].

S forms m×k matrix Q such that the i-th column of Q is the vector qi. (Note
qi = tisi .) Let qj denote the j-th row of Q. (Note qj = ((tj,0⊕tj,1)�s)⊕tj,0.
Simplifying, qj⊕tj,0 = crj � s.)

4. For j ∈ [m] and for every 0 ≤ r < n, S sends yj,r = xj,r⊕H(j,qj⊕(cr � s)).

5. For j ∈ [m], R recovers zj = yj,rj⊕H(j, tj,0).

This concludes the description of the protocol. It is easy to verify that the proto-
col’s outputs are correct (i.e., zj = xj,rj ) when both parties follow the protocol.

Efficiency. The protocol makes a single call to OTk
m. The cost of OTk

m is the
cost of OTk

k (which is independent of m) plus a generation of 2k pseudorandom
strings each of length m. Other than this call to OTk

m, each party evaluates at
most mn times (an implementation of) a random oracle. It is easy to see that the
total communication cost of OTm

� is the communication cost of implementing
OTk

m plus mn� bits transferred between S and R in Step 4. Thus we conclude
that the communication cost of OTm

� is O(m(k + n�)) bits. Note that the total
computational cost of the protocol is proportional to its communication cost.
Recall that n ≤ k, and thus when � = 1, the asymptotic cost of our

(
n
1

)
-OTm

�

protocol is O(mk) which is the same as the asymptotic cost of Ishai et al.’s
OTm

� protocol described in Section 3.2. In terms of concrete performance, as
mentioned above, we need to use a security parameter k ≈ 2kIKNP, resulting
in a factor 2 overhead compared to IKNP’s OTm

� execution. Because we are
performing the more powerful

(
n
1

)
-OTm

� , this corresponds to asymptotic (and
concrete!) performance improvement.

Theorem 1. Construction 1 is a secure protocol for evaluating
(
n
1

)
-OTm

� in the
semi-honest model.

The proof of security of Theorem 1 appears in the full version.

Remarks. In Construction 1, one can replace Ck
WH with an encoding map

enc : {0, 1}logn → {0, 1}k that has the property that for r, r′ ∈ {0, 1}logn with
r �= r′, the Hamming distance between enc(r) and enc(r′) is at least Ω(k). It
is instructive to see that when n = 2 and when enc is the k-bit repetition en-
coding of the input bit, i.e., enc(r) = (r, . . . , r) ∈ {0, 1}k, then we get exactly
the IKNP construction. Note that for r �= r′, the Hamming distance between
enc(r) and enc(r′) is exactly k. As we saw in Construction 1, using the encoding
map enc(r) = cr , where cr is the r-th Walsh-Hadamard codeword, gives us an
log k efficiency improvement. Since the Walsh-Hadamard code is a low-rate code,
the maximum value of n is restricted to be less than or equal to k. A natural
question that arises is whether a code with a better rate enables us to remove
this restriction. Indeed, in Section 5.3, by using more sophisticated codes (cf.
Claim 5.3) we show an improvement in the (offline) communication complexity
of 1-out-of-n OT extension for arbitrary n = poly(k).
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5 Resulting Efficiency Improvements

We evaluate performance improvements of Construction 1, and corresponding
two- and multi-party SFE improvements. Recall that in the semi-honest model,
a single instance of 1-out-of-n OT may be used to generate logn instances of 1-
out-of-2 OT over slightly shorter strings with no additional cost. More precisely,

the cost of OTm
� is exactly equal to the cost of

(
n
1

)
-OT

m/log n
�logn . This observation

will allow us to leverage our efficient construction of
(
n
1

)
-OTm

� to obtain improved
efficiency for 1-out-of-2 OT, and consequently for secure computation.

5.1 Efficiency Improvements for 1-out-of-2 OT

In this section, we demonstrate a log k asymptotic improvement in the efficiency
of 1-out-of-2 OT when sender’s secrets are just bits (i.e., length of sender’s
secrets, � = 1). As observed previously, we do this by constructing 1-out-of-2
OTs via 1-out-of-n OTs.

Recall that the cost of our
(
n
1

)
-OTm

� protocol described in Section 4 is
O(m(k + n�)). Using the fact that the cost of OTm

� is exactly equal to the

cost of
(
n
1

)
-OT

m/logn
�logn , we conclude that OTm

� may be reduced to OTk
k while

incurring an additional cost at most O((m/log n) · (k + n�logn)). By choosing
n such that nlogn = k/�, we see that this additional cost is asymptotically
O(mk/ log(k/�)). In summary, we have shown a reduction from OTm

� to OTk
k

with cost O(mk/ log(k/�)).
Contrast our result above with the result of [14], where the cost of the re-

duction from OTm
� to OTk

k was O(m(k + �)). Observe that for the important
case when � = 1, our construction offers a logarithmic factor improvement in the
efficiency of the reduction.

As noted in Section 4, to achieve concrete security equal to that of IKNP, we
need a security parameter approximately twice theirs, which results in a factor 2
overhead of our protocol. Even with this efficiency loss we have both asymptotic
and concrete performance advantage over IKNP.

Concrete Efficiency. We begin with a concrete cost analysis of
(
n
1

)
-OTm

� . Recall

that the exact cost of reduction from OTk
m to OTk

k involves sending 2mk bits.
Then, in Step 4 of Construction 1, S transmitsmn� bits to R. Thus, the concrete
cost of

(
n
1

)
-OTm

� is m(2k+n�). Using the fact that the cost of our OTm
� is exactly

equal to the cost of
(
n
1

)
-OT

m/logn
�logn , we conclude that OTm

� may be reduced to

OTk
k with cost (m/logn) · (2k + n�logn) bits. The minimum cost can then be

obtained by choosing a suitable value of n.
In contrast, the concrete communication cost of IKNP’s construction of OTm

�

is 2m(k + �) bits. As described earlier, there’s a small gap between the security
guarantees between our consruction and IKNP’s. We take that into account in
our cost calculation, and present the results in Table 1.
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Table 1. Comparison of (amortized) communication cost (measured in bits) of 1-out-
of-2 bit OT for a given security level. The costs are computed assuming parties are semi-
honest. The performance improvement ratio betwen our work and IKNP represents the
resulting improvement factor for MPC protocols based on the GMW approach.

level of security our cost IKNP cost

50 74 102
112 130 226
238 227 478

5.2 Efficiency Improvements for Secure Computation

In this section, we will discuss applications of our OTm
� protocol to secure two-

party and multi-party computation. As pointed out in the Introduction, efficient
OT forms a criticial component of secure computation protocols, and improve-
ments in the efficiency of OT translates to an improvement in the efficiency of
secure computation protocols built on top of OT.

In the previous section, we saw how our construction asymptotically outper-
forms the extension protocol of [14] by a factor of O(log(k/�)). Clearly, this
improvement factor is maximized when � = 1, i.e., for 1-bit OT. Thus, our
construction has maximum benefit for secure computation protocols that exten-
sively rely on 1-bit OTs. One such example is the well known GMW protocol [9]
where each AND gate of the circuit is evaluated using (two invocations of) 1-bit
OTs (and negligible additional cost). Until now, efficient implementations of the
GMW protocol in the semi-honest setting (e.g., [6]) relied on the OT extension
protocol of [14]. Because OT costs dominate the protocol costs, simply by us-
ing our extension protocol (instead of [14]), the semi-honest GMW protocol will
enjoy an asymptotic log k efficiency improvement (and improvement in concrete
terms as well).

Secure Two-Party Computation. As discussed in Section 1.3, a large class of
2PC problems is solved more efficiently with GMW than Yao. For problems in
this class, our OT extension improvement results in corresponding 2PC improve-
ment. For other problems, where Yao is faster, the relative performance of the
approaches is discussed next.

The concrete improvements for the specific case of two-party computation are
shown in Table 2. From the table, it is evident that our protocol begins to out-
perform state-of-the-art constant round protocols (e.g., [26]) for reasonable levels
of security. However, for practical values of the security parameter, it performs
worse, in concrete terms, when compared to the best-case performance of [19],
a non-constant round protocol that generalizes both Yao garbled circuits and
GMW. (We note that the communication cost of our protocol is asymptotically
the same as the communication cost of [19].) In more detail, the performance
of [19] is highly sensitive to the topology of the circuit. Their best performance,
as noted in Table 2, is for the case of constant width circuits. In contrast, our
improvements are independent of the topology of the circuit being evaluated. We
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point out that the approach of [19] can be viewed as somewhat related to ours
(but more narrow; in particular, it is not applicable to multiparty comptuation).
Furthermore, our OT extension protocol can improve the performance of [19] for
circuits with low depth.

Table 2. Comparison of (amortized) communication cost (measured in bits) per gate of
the circuit for various semi-honest secure two-party protocols. We note that protocols
of [19] do not extend to multi-party setting, while ours do.

level of security our cost per gate [26] cost per gate [19] cost per gate

50 148 100 66
112 260 224 112
238 454 476 196

Secure Multi-Party Computation. Today, practical protocols for secure multi-
party computation are based on the GMW approach (e.g., [25,6]).2 GMW-based
secure computation protocols for t parties, in the semi-honest setting, operate in
almost the same way as in the two-party case except that now parties compute
pairwise OTs (more precisely, a total of 2t2 OTs) to securely evaluate each
AND gate. That is, for each AND gate of the circuit parties evaluate a total of
2t2 1-bit OTs (with negligible additional cost). Therefore, simply by using our
extension protocol (instead of [14]), we will improve the asymptotic complexity
by a log k factor. Concrete improvements in this setting are the same as those
found in Table 1. Specifically, for “50-bit security” we obtain an improvement of
102/74 = 1.378 in the communication cost. Similarly, we obtain an improvement
factor of > 2 for “238-bit security”.

5.3 Efficiency Improvements for 1-out-of-n OT

Recall that the cost of extending 1-out-of-n OT from [14] is O(m(k logn+ n�))
bits. Our main construction of 1-out-of-n OT described in Section 4 reduces the
cost of 1-out-of-n OT extension to m(2k + n�) bits. As described in Section 4,
for the same guarantee as in IKNP, our security parameter should be set as
k ≈ 2kIKNP. Previous solutions [23,14] cost (4mkIKNP logn+mn�) bits. Hence
for kIKNP = 128, with n = k and � = 1, our solution improves upon existing
solutions by a factor ≈ 5.39.

Note that the above improvement holds only when n ≤ k. In this section, we
show how to modify Construction 1 to support n = poly(k). In the resulting
protocol, the (offline) communication cost of the generating 1-out-of-n OT cor-
relations will be O(mk) bits, i.e., completely independent of n. This improves
over the best known offline communication complexity (which was O(mk logn)
bits).

2 Yao GC-based approach does not seem to map naturally into the multiparty setting.
This is true even for the three party semi-honest setting. A more complicated solution
is possible [4], but much less practical than GMW-based approaches [6].
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The total complexity (i.e., both online and offline) of our construction will
asymptotically outperform existing constructions only for n ≤ ck where c is
an arbitrary constant. For n = ω(k), the online cost of our protocol O(mn�)
dominates the total cost, but is still as efficient as existing constructions.

The main idea of our construction is to replace Ck
WH with a code from a family

of linear error correcting codes with the following special properties. (Our claim
below is taken verbatim from [16].)

Claim ([16,5,8]). There exists a finite field F of characteristic 2 and an efficiently
constructible family of linear error-correcting codes CK : FK → FNK with the
following properties: (1)NK = O(K); (2) The dual distance of CK is δK = Ω(K);
(3) The linear code C′

K spanned by all pointwise-products of pairs of codewords
in CK has minimal distance ΔK = Ω(K) and supports efficient decoding of up
to μK = Ω(K) errors. (The pointwise product of (c1, . . . , cN ) and (c′1, . . . , c

′
N)

is (c1c
′
1, . . . , cNc′N ).)

The last property implies that CK also has minimal distance dK = Ω(K).
Setting NK = k and K ≥ logn is enough to provide the desired improve-

ments stated above. The security level provided by this construction will be
log(2dK/n2) = Ω(k) for n polynomial in k.

6 Optimizing the Reduction from
(
n

1

)
-OTm

� to OTk
k

In our OT extension protocol, the OTk
m primitive is reduced to OTk

k. Further,
the roles of R and S are reversed in our application of the reduction in our
protocol. We provide an optimization that exploits this fact. This optimization
was independently discovered by us and by Schneider and Zohner [27].

The main idea of the optimization is that inside the OT extension protocol of
IKNP (as well as our protocol) 1-out of-2 OT of very long (m-bit long) random-
looking correlated strings is executed. We cut the communication almost in half
by OT-sending a PRG seed used to generate the strings. In other words, we
obtain efficiency improvements by employing pseudorandom additive sharing
instead of a completely random additive sharing. Because the strings need to be
correlated in a specific way, a “correction” string needs to be sent so that exactly
the right secret is recovered.

Note that this technique can also be applied to the IKNP construction. Such
an application would reduce the IKNP cost of OTm

� fromm(2k+2�) to m(k+2�).
Observe that the reduced costs also have an impact on the oblivious key transfer
phase (by constant factor 4/3) of Yao-based constructions where � = k.

For the case of 1-out-of-2 1-bit OT extension with 160-bit security, we get
an improvement factor of ≈ 3.15 over the protocol of [14], and an improvement
factor of ≈ 1.5 over the optimized IKNP protocol. See Appendix A for a detailed
description of the protocol. We stress that Tables 1 and 2 do not take into account
the optimizations described in this section.
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A Optimizing the Reduction from
(n
1

)
-OTm

� to OTk
k

Construction 2 (Optimized 1-out-of-n OT Extension)
Input of S: m tuples (xj,0, . . . , xj,n−1) of �-bit strings, 1 ≤ j ≤ m.
Input of R: m selection integers r = (r1, . . . , rm) such that 0 ≤ rj < n for
1 ≤ j ≤ m.
Common Input: a security parameter k such that k ≥ n, and Walsh-Hadamard
codes Ck

WH = (c0, . . . , ck−1).
Oracle: random oracles H : [m]×{0, 1}k → {0, 1}�, and G : {0, 1}k → {0, 1}m.
Cryptographic Primitive: an ideal OTk

m primitive.

1. S chooses s ← {0, 1}k at random. Let si denote the i-th bit of s.
2. R forms a (m × k) matrix D by setting dj = crj . R then forms m × k

matrices T0, T1 in the following way:
– Set ti1 = G(vi) for a randomly chosen vi ← {0, 1}k.
– Set ti0 = di⊕ti1.

In the above, ti0, t
i
1 denotes the i-th column of matrices T0, T1 respectively.

(Note that T0, T1 form a pseudorandom sharing of the matrix D.)
3. S and R interact with OTk

k in the following way:
– S acts as receiver with input {si}i∈[k].
– R acts as sender with inputs {ui, vi}i∈[k], where each ui is chosen uni-

formly at random from {0, 1}k. (Note vi was already chosen by R in
Step 2.)

– S receives output {ai}i∈[k].
S forms k × k matrix A such that the i-th column of A is the vector ai.

4. For each i ∈ [k], R sends wi = G(ui)⊕ti0.
5. S forms m× k matrix Q such that

– if si = 0, then qi = wi⊕G(ai),
– else if si = 1, then qi = G(ai).

Let qj denote the j-th row of Q. (Note qi = tisi . Note qj = ((tj,0⊕tj,1) �
s)⊕tj,0. Simplifying, qj⊕tj,0 = crj � s.)

6. For j ∈ [m] and for every 0 ≤ r < n, S sends yj,r = xj,r⊕H(j,qj⊕(cr � s)).
7. For j ∈ [m], R recovers zj = yj,rj⊕H(j, tj,0).

The amortized cost per instance of the
(
n
1

)
-OTm

� protocol above is (k + n�).
This yields a OTm

� protocol whose amortized concrete cost per instance is n�+
(k/ logn) bits.
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Abstract. Several research teams have recently been working toward the devel-
opment of practical general-purpose protocols for verifiable computation. These
protocols enable a computationally weak verifier to offload computations to a
powerful but untrusted prover, while providing the verifier with a guarantee that
the prover performed the requested computations correctly. Despite substantial
progress, existing implementations require further improvements before they be-
come practical for most settings. The main bottleneck is typically the extra effort
required by the prover to return an answer with a guarantee of correctness, com-
pared to returning an answer with no guarantee.

We describe a refinement of a powerful interactive proof protocol due to Gold-
wasser, Kalai, and Rothblum [20]. Cormode, Mitzenmacher, and Thaler [14]
show how to implement the prover in this protocol in time O(S logS), where S
is the size of an arithmetic circuit computing the function of interest. Our re-
finements apply to circuits with sufficiently “regular” wiring patterns; for these
circuits, we bring the runtime of the prover down to O(S). That is, our prover can
evaluate the circuit with a guarantee of correctness, with only a constant-factor
blowup in work compared to evaluating the circuit with no guarantee.

We argue that our refinements capture a large class of circuits, and we comple-
ment our theoretical results with experiments on problems such as matrix multi-
plication and determining the number of distinct elements in a data stream. Ex-
perimentally, our refinements yield a 200x speedup for the prover over the imple-
mentation of Cormode et al., and our prover is less than 10x slower than a C++
program that simply evaluates the circuit. Along the way, we describe a special-
purpose protocol for matrix multiplication that is of interest in its own right.

Our final contribution is the design of an interactive proof protocol targeted
at general data parallel computation. Compared to prior work, this protocol can
more efficiently verify complicated computations as long as that computation is
applied independently to many different pieces of data.

1 Introduction

Protocols for verifiable computation enable a computationally weak verifier V to of-
fload computations to a powerful but untrusted prover P . These protocols aim to pro-
vide the verifier with a guarantee that the prover performed the requested computations
correctly, without requiring V to perform the computations herself.

Surprisingly powerful protocols for verifiable computation were discovered within
the computer science theory community several decades ago, in the form of interac-
tive proofs (IPs) and their brethren, interactive arguments (IAs) and probabilistically

� Supported by an NSF Graduate Research Fellowship and NSF grants CNS-1011840 and
CCF-0915922.

R. Canetti and J.A. Garay (Eds.): CRYPTO 2013, Part II, LNCS 8043, pp. 71–89, 2013.
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checkable proofs (PCPs). In these protocols, the prover P solves a problem using her
(possibly vast) computational resources, and tells V the answer. P and V then engage
in a randomized protocol involving the exchange of one or more messages. During this
exchange, P’s goal is to convince V that the answer is correct.

Results quantifying the power of IPs, IAs, and PCPs are some of the most celebrated
in all of computational complexity theory, but until recently they were mainly of theo-
retical interest, far too inefficient for actual deployment. In fact, the main applications
of these results have traditionally been in negative applications – showing that many
problems are just as hard to approximate as they are to solve exactly.

However, the surging popularity of cloud computing has brought renewed interest
in positive applications of protocols for verifiable computation. A typical motivating
scenario is as follows. A business processes billions or trillions of transactions a day.
The volume is sufficiently high that the business cannot or will not store and process
the transactions on its own. Instead, it offloads the processing to a commercial cloud
computing service. The offloading of any computation raises issues of trust: the busi-
ness may be concerned about relatively benign events like dropped transactions, buggy
algorithms, or uncorrected hardware faults, or the business may be more paranoid and
fear that the cloud operator is deliberately deceptive or has been externally compro-
mised. Either way, each time the business poses a query to the cloud, the business may
demand that the cloud also provide a guarantee that the returned answer is correct.

This is precisely what protocols for verifiable computation accomplish, with the
cloud acting as the prover in the protocol, and the business acting as the verifier. In
this paper, we describe a refinement of an existing general-purpose protocol originally
due to Goldwasser, Kalai, and Rothblum [14, 20]. When they are applicable, our tech-
niques achieve asymptotically optimal runtime for the prover, and we demonstrate that
they yield protocols that are significantly closer to practicality than prior work.

We also make progress toward addressing another issue of existing interactive proof
implementations: their applicability. The protocol of Goldwasser et al. (henceforth the
GKR protocol) applies in principle to any problem computed by a small-depth arith-
metic circuit, but this is not the case when more fine-grained considerations of prover
and verifier efficiency are taken into account. In brief, existing implementations of inter-
active proof protocols for circuit evaluation require that the circuit have a highly regular
wiring pattern [14, 37]. If this is not the case, then these implementations require the
verifier to perform an expensive (though data-independent) preprocessing phase to pull
out information about the wiring of the circuit, and they require a substantial factor
blowup (logarithmic in the circuit size) in runtime for the prover relative to evaluating
the circuit without a guarantee of correctness. Developing a protocol that avoids these
pitfalls and applies to more general computations remains an important open question.

Our approach is the following. We do not have a magic bullet for dealing with ir-
regular wiring patterns: if we want to avoid an expensive pre-processing phase for the
verifier and minimize the blowup in runtime for the prover, we do need to make an
assumption about the structure of the circuit we are verifying. Acknowledging this, we
ask whether there is some general structure in real-world computations that we can
leverage for efficiency gains.
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To this end, we design a protocol that is highly efficient for data parallel computation.
By data parallel computation, we mean any setting in which one applies the same com-
putation independently to many pieces of data. Many outsourced computations are data
parallel, with Amazon Elastic MapReduce1 being one prominent example of a cloud
computing service targeted specifically at data parallel computations. Crucially, we do
not want to make significant assumptions on the sub-computation that is being applied,
and in particular we want to handle sub-computations computed by circuits with highly
irregular wiring patterns.

The verifier in our protocol still has to perform an offline phase to pull out informa-
tion about the wiring of the circuit, but the cost of this phase is proportional to the size
of a single instance of the sub-computation, avoiding any dependence on the number of
pieces of data to which the sub-computation is applied. Similarly, the blowup in runtime
suffered by the prover is the same as it would be if the prover had run the basic GKR
protocol on a single instance of the sub-computation.

Our final contribution is to describe a new protocol specific to matrix multiplication
that is of interest in its own right. It avoids circuit evaluation entirely, and reduces the
overhead of the prover (relative to running any unverifiable algorithm) to an additive
low-order term. A major message of our results is that the more structure that exists in
a computation, the more efficiently it can be verified, and that this structure exists in
many real-world computations.

1.1 Prior Work

Work on Interactive Proofs. Goldwasser, Kalai, and Rothblum described a powerful
general-purpose interactive proof protocol in [20]. This protocol is framed in the context
of circuit evaluation. Given a layered arithmetic circuit C of depth d, size S(n), and fan-
in 2, the GKR protocol allows a prover to evaluate C with a guarantee of correctness in
time poly(S(n)), while the verifier runs in time Õ(n+ d logS(n)), where n is the length
of the input and the Õ notation hides polylogarithmic factors in n.

Cormode, Mitzenmacher, and Thaler showed how to bring the runtime of the prover
in the GKR protocol down from poly(S(n)) to O(S(n) logS(n)) [14]. They also built a
full implementation of the protocol and ran it on benchmark problems. These results
demonstrated that the protocol does indeed save the verifier significant time in practice
(relative to evaluating the circuit locally); they also demonstrated surprising scalability
for the prover, although the prover’s runtime remained a major bottleneck. With the
implementation of [14] as a baseline, Thaler et al. [35] described a parallel implemen-
tation of the GKR protocol that achieved 40x-100x speedups for the prover and 100x
speedups for the (already fast) implementation of the verifier.

Vu, Setty, Blumberg, and Walfish [37] further refine and extend the implementation
of Cormode et al. [14]. In particular, they combine the GKR protocol with a compiler
from a high-level programming language so that programmers do not have to explicitly
express computation in the form of arithmetic circuits as was the case in the implemen-
tation of [14]. This substantially extends the reach of the implementation, but it should
be noted that their approach generates circuits with irregular wiring patterns, and hence

1 http://aws.amazon.com/elasticmapreduce/
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only works in a batching model, where the cost of a fairly expensive offline setup phase
is amortized by verifying many instances of a single computation in batch. They also
build a hybrid system that statically evaluates whether it is better to use the GKR proto-
col or a different, cryptography-based argument system called Zaatar (see Section 1.1),
and runs the more efficient of the two protocols in an automated fashion.

A growing line of work studies protocols for verifiable computation in the context of
data streaming. In this context, the goal is not just to save the verifier time (compared
to doing the computation without a prover), but also to save the verifier space. The
protocols developed in this line of work allow the client to make a single streaming
pass over the input (which can occur, for example, while the client is uploading data to
the cloud), keeping only a very small summary of the data set. The interactive version of
this model was introduced by Cormode, Thaler, and Yi [15], who observed that many
protocols from the interactive proofs literature, including the GKR protocol, can be
made to work in this restrictive setting. The observations of [15] imply that all of our
protocols also work with streaming verifiers. Non-interactive variants of the streaming
interactive proofs model have also been studied in detail [12, 13, 22, 25].

Work on Argument Systems. There has been a lot of work on the development of
efficient interactive arguments, which are essentially interactive proofs that are secure
only against dishonest provers that run in polynomial time. A substantial body of work
in this area has focused on the development of protocols targeted at specific problems
(e.g. [2, 5, 16]). Other works have focused on the development of general-purpose ar-
gument systems. Several papers in this direction (e.g. [8, 10, 11, 18]) have used fully
homomorphic encryption, which unfortunately remains impractical despite substantial
recent progress. Work in this category by Chung et al. [10] focuses on streaming set-
tings, and is therefore particularly relevant.

Several research teams have been pursuing the development of general-purpose argu-
ment systems that might be suitable for practical use. Theoretical work by Ben-Sasson
et al. [4] focuses on the development of short PCPs that might be suitable for use in prac-
tice – such PCPs can be compiled into efficient interactive arguments. As short PCPs
are often a bottleneck in the development of efficient argument systems, other works
have focused on avoiding their use [3, 6, 7, 19]. In particular, Gennaro et al. [19] and
Bitansky et al. [9] develop argument systems with a clear focus on implementation po-
tential. Very recent work by Parno et al. [28] describes a near-practical general-purpose
implementation, called Pinocchio, of an argument system based on [19]. Pinocchio is
additionally non-interactive and achieves public verifiability.

Another line of implementation work focusing on general-purpose interactive ar-
gument systems is due to Setty et al. [31–33]. This line of work begins with a base
argument system due to Ishai et al. [23], and substantially refines the theory to achieve
an implementation that approaches practicality. The most recent system in this line of
work is called Zaatar [33], and is also based on the work of Gennaro et al. [19]. An em-
pirical comparison of the GKR-based approach and Zaatar performed by Vu et al. [37]
finds the GKR approach to be significantly more efficient for quasi-straight-line compu-
tations (e.g. programs with relatively simple control flow), while Zaatar is appropriate
for programs with more complicated control flow.
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1.2 Our Contributions

Our primary contributions are three-fold. Our first contribution addresses one of the
biggest remaining obstacles to achieving a truly practical implementation of the GKR
protocol: the logarithmic factor overhead for the prover. That is, Cormode et al. show
how to implement the prover in time O(S(n) logS(n)), where S(n) is the size of the
arithmetic circuit to which the GKR protocol is applied, down from the Ω(S(n)3) time
required for a naive implementation. The hidden constant in the Big-Oh notation is
at least 3, and the logS(n) factor translates to well over an order of magnitude, even
for circuits with a few million gates. We remove this logarithmic factor, bringing P’s
runtime down to O(S(n)) for a large class of circuits. Informally, our results apply to
any circuit whose wiring pattern is sufficiently “regular”. We formalize the class of
circuits to which our results apply in Theorem 1.

We experimentally demonstrate the generality and effectiveness of Theorem 1 via
two case studies. Specifically, we apply an implementation of the protocol of Theo-
rem 1 to a circuit computing matrix multiplication (MATMULT), as well as to a circuit
computing the number of distinct items in a data stream (DISTINCT). Experimentally,
our refinements yield a 200x speedup for the prover over the state of the art implemen-
tation of Cormode et al. [14]. A serial implementation of our prover is less than 10x
slower than a C++ program that simply evaluates the circuit sequentially, a slowdown
that is likely tolerable in realistic outsourcing scenarios where cycles are plentiful for
the prover.

Our second contribution is to specify a highly efficient protocol for verifiably out-
sourcing arbitrary data parallel computation. Compared to prior work, this protocol can
more efficiently verify complicated computations, as long as that computation is ap-
plied independently to many different pieces of data. We formalize this protocol and its
efficiency guarantees in Theorem 2.

Our third contribution is to describe a new protocol specific to matrix multiplication
that we believe to be of interest in its own right. This protocol is formalized in Theorem
3. Given any unverifiable algorithm for n× n matrix multiplication that requires time
T (n) using space s(n), Theorem 3 allows the prover to run in time T (n)+O(n2) using
space s(n) + o(n2). Note that Theorem 3, which is specific to matrix multiplication,
is much less general than Theorem 1, which applies to any circuit with a sufficiently
regular wiring pattern. However, Theorem 3 achieves optimal runtime and space usage
for the prover up to leading constants, assuming there is no O(n2) time algorithm for
matrix multiplication. While these properties are also satisfied by a classic protocol due
to Freivalds [17], the protocol of Theorem 3 is significantly more amenable for use as a
primitive when verifying computations that repeatedly invoke matrix multiplication. We
complement Theorem 3 with experimental results demonstrating its extreme efficiency.

Do to space constraints, full proofs of are omitted from this extended abstract, and
can be found in the full version of the paper.
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2 Preliminaries

We begin by defining a valid interactive proof protocol for a function f .

Definition 1. Consider a prover P and verifier V who wish to compute a function f :
{0,1}n →R for some set R. After the input is observed, P and V exchange a sequence
of messages. Denote the output of V on input x, given prover P and V’s random bits
R, by out(V ,x,R,P). V can output ⊥ if V is not convinced that P’s claim is valid. We
say P is a valid prover with respect to V if for all inputs x, PrR[out(V ,x,R,P)= f (x)]=
1. The property that there is at least one valid prover P with respect to V is called
completeness. We say V is a valid verifier for f with soundness probability δ if there
is at least one valid prover P with respect to V , and for all provers P′ and inputs x,
Pr[out(V ,A,R,P′) /∈ { f (x),⊥}]≤ δ . A prover-verifier pair (P ,V) is a valid interactive
proof protocol for f if V is a valid verifier for f with soundness probability 1/3, and P
is a valid prover with respect to V . If P and V exchange r messages, we say the protocol
has �r/2� rounds.

Informally, the completeness property guarantees that an honest prover will convince
the verifier that the claimed answer is correct, while the soundness property ensures
that a dishonest prover will be caught with high probability. An interactive argument
is an interactive proof where the soundness property holds only against polynomial-
time provers P′. We remark that the constant 1/3 used for the soundness probability
in Definition 1 is chosen for consistency with the interactive proofs literature, where
1/3 is used by convention. In our actual implementation, the soundness probability will
always be less than 2−45.

Cost Model. Whenever we work over a finite field F, we assume that a single field
operation can be computed in a single machine operation. For example, when we say
that the prover P in our interactive protocols requires time O(S(n)), we mean that P
must perform O(S(n)) additions and multiplications within the finite field over which
the protocol is defined.

Input Representation. Following prior work [12, 14, 15], all of the protocols we con-
sider can handle inputs specified in a general data stream form. Each element of the
stream is a tuple (i,δ ), where i ∈ [n] and δ is an integer. The δ values may be negative,
thereby modeling deletions. The data stream implicitly defines a frequency vector a,
where ai is the sum of all δ values associated with i in the stream. When checking the
evaluation of a circuit C, we consider the inputs to C to be the entries of the frequency
vector a. We emphasize that in all of our protocols, V only needs to see the raw stream
and not the aggregated frequency vector a. Notice that we may interpret the frequency
vector a as an object other than a vector, such as a matrix or a string. For example, in
MATMULT, the data stream defines two matrices to be multiplied.

When we refer to a streaming verifier with space usage s(n), we mean that the verifier
can make a single pass over the stream of tuples defining the input, regardless of their
ordering, while storing at most s(n) elements in the finite field over which the protocol
is defined.

Problem Definitions. To focus our discussion, we give special attention to two prob-
lems also considered in prior work [14,28,31–33,35,37]. In the MATMULT problem, the
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input consists of two n× n matrices A,B ∈ Zn×n, and the goal is to compute the matrix
product A ·B. In the DISTINCT problem, the input is a data steam consisting of m tuples
(i,δ ) from a universe of size n. The stream defines a frequency vector a, and the goal is
to compute |{i : ai �= 0}|, the number of items with non-zero frequency.

Additional Notation. Let F be a field. For any d-variate polynomial p(x1, . . . ,xd) :
Fd → F, we use degi(p) to denote the degree of p in variable i. A d-variate polynomial
p is said to be multilinear if degi(p) = 1 for all i ∈ [d]. Given a function V : {0,1}d →
{0,1}whose domain is the d-dimensional Boolean hypercube, the multilinear extension
(MLE) of V over F, denoted Ṽ , is the unique multilinear polynomialFd → F that agrees
with V on all Boolean-valued inputs, i.e., Ṽ (x) =V (x) for all x ∈ {0,1}d.

3 Time-Optimal Protocols for Circuit Evaluation

3.1 Technical Background

Sum-Check Protocol. Our main technical tool is the well-known sum-check protocol
of Lund et al. [27], and we briefly describe this protocol and summarize the properties
that are most important in our analysis. Suppose we are given a v-variate polynomial g
defined over a finite field F, such that degi(g) = O(1) for all i ∈ {1, . . . ,v}. The purpose
of the sum-check protocol is to compute the sum:

H := ∑
b1∈{0,1}

∑
b2∈{0,1}

· · · ∑
bv∈{0,1}

g(b1, . . . ,bv).

The protocol proceeds in v rounds as follows. In the first round, the prover sends a
polynomial g1(X1), and claims that g1(X1) = ∑x2,...,xv∈{0,1}v−1 g(X1,x2, . . . ,xv). Observe
that if g1 is as claimed, then H = g1(0)+g1(1). Also observe that the polynomial g1(X1)
has degree deg1(g) = O(1). Hence g1 can be specified by sending the evaluation of g at
each point in the O(1)-sized set {0,1, . . . ,deg1(g)}.

Then, in round j > 1, V chooses a value r j−1 uniformly at random from F and sends
r j−1 to P . We refer to this step by saying that variable j− 1 gets bound to value r j−1.
In return, the prover sends a polynomial g j(Xj), and claims that

g j(Xj) = ∑
(x j+1,...,xv)∈{0,1}v− j

g(r1, . . . ,r j−1,Xj,x j+1, . . . ,xv). (1)

The verifier then checks that g j−1(r j−1) = g j(0)+ g j(1), rejecting otherwise.
In the final round, the prover has sent gv(Xv)which is claimed to be g(r1, . . . ,rv−1,Xv).

V now checks that gv(rv) = g(r1, . . . ,rv). Notice that in order to perform this check, the
verifier needs to be able to evaluate g(r1, . . . ,rv) without assistance from the prover. If
this test succeeds, and so do all previous tests, then the verifier accepts, and is convinced
that H = g1(0)+ g1(1).

Discussion of Costs. For our purposes, the key cost of the sum-check protocol is the
prover’s runtime. Notice that the number of terms defining the value g j(i) in Equation
(1) falls geometrically with j: in the jth message, there are only 2v− j terms. The total
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number of terms that must be evaluated over the course of the protocol is therefore

O
(

∑v
j=1 2v− j

)
= O(2v). Consequently, if P is given oracle access to (evaluations of)

the polynomial g, then P will require O(2v) time. Unfortunately, in our applications P
will not have oracle access to g. The key to our results is to show that in our applications
P can nonetheless evaluate g at the necessary points in O(2v) total time.

The GKR Protocol at a Glance. In the GKR protocol, P and V first agree on an
arithmetic circuit C of fan-in 2 over a finite field F computing the function of interest (C
may have multiple outputs). Each gate of C performs an addition or multiplication over
F. C is assumed to be in layered form, meaning that the circuit can be decomposed into
layers, and wires only connect gates in adjacent layers. Suppose the circuit has depth
d; we will number the layers from 1 to d with layer d referring to the input layer, and
layer 1 referring to the output layer.

In the first message, P tells V the (claimed) output of the circuit. The protocol then
works its way in iterations towards the input layer, with one iteration devoted to each
layer. The purpose of iteration i is to reduce a claim about the values of the gates at layer
i to a claim about the values of the gates at layer i+ 1, in the sense that it is safe for V
to assume that the first claim is true as long as the second claim is true. This reduction
is accomplished by applying the sum-check protocol to a certain polynomial f (i).

More concretely, the GKR protocol starts with a claim about the values of the output
gates of the circuit, but V cannot check this claim without evaluating the circuit herself,
which is precisely what we want to avoid. So the first iteration uses a sum-check pro-
tocol to reduce this claim about the outputs to a claim about the gate values at layer 2
(more specifically, to a claim about an evaluation of the multilinear extension (MLE) of
the gate values at layer 2). Once again, V cannot check this claim herself, so the second
iteration uses another sum-check protocol to reduce the latter claim to a claim about the
gate values at layer 3, and so on. Eventually, V is left with a claim about the inputs to
the circuit, and V can check this claim on her own.

In summary, the GKR protocol uses a sum-check protocol at each level of the circuit
to enable V to go from verifying a randomly chosen evaluation of the MLE of the gate
values at layer i to verifying a (different) evaluation of the MLE of the gate values at
layer i+1. Importantly, apart from the input layer and output layer, V does not ever see
all of the gate values at a layer. Instead, V relies on P to do the hard work of actually
evaluating the circuit, and uses the power of the sum-check protocol to force P to be
consistent and truthful over the course of the protocol.

Further Details. Suppose we are given a layered arithmetic circuit C of depth d and
fan-in two. Let Si denote the number of gates at layer i of the circuit C. Assume Si is a
power of 2 and let Si = 2si . To explain how each iteration of the GKR protocol proceeds,
we must introduce several functions, each of which encodes certain information about
the circuit. Number the gates at layer i from 0 to Si − 1, and let Vi : {0,1}si → F denote
the function that takes as input a binary gate label, and outputs the corresponding gate’s
value at layer i. The GKR protocol makes use of the multilinear extension Ṽi of the
function Vi.

The GKR protocol also makes use of the notion of a “wiring predicate” that encodes
which pairs of wires from layer i+ 1 are connected to a given gate at layer i in C. We
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define two functions, addi and multi mapping {0,1}si+2si+1 to {0,1}, which together
constitute the wiring predicate of layer i of C. Specifically, these functions take as input
three gate labels ( j1, j2, j3), and return 1 if gate j1 at layer i is the addition (respectively,
multiplication) of gates j2 and j3 at layer i+1, and return 0 otherwise. Let ˜addi and ˜multi
denote the multilinear extensions of addi and multi respectively. Finally, let βsi(z, p)
denote the function βsi(z, p) = ∏si

j=1 ((1− z j)(1− p j)+ z j p j) . It can be shown that for
any z ∈ Fsi ,

Ṽi(z) = ∑
(p,ω1,ω2)∈{0,1}si+2si+1

f (i)(p,ω1,ω2),where

f (i)(p,ω1,ω2) = βsi (z, p) ·
(

˜addi(p,ω1,ω2)(Ṽi+1(ω1)+ Ṽi+1(ω2))+ ˜multi(p,ω1,ω2)Ṽi+1(ω1) ·Ṽi+1(ω2)
)
.

Iteration i begins with a claim by P about the value of Ṽi(z) for some z ∈ Fsi . In order
to verify this claim, the sum-check protocol is applied to the polynomial f (i). However,
V can only execute her part of the sum-check protocol if she can evaluate the polyno-
mial f (i) at a random point f (i)(r1, . . . ,rsi+2si+1). In particular, this requires evaluating
Ṽi+1(ω∗

2 ), and Ṽi+1(ω∗
1 ), but V cannot perform these evaluations on her own without

evaluating the circuit. At a high level, V instead asks P to simply tell her these two val-
ues, and uses iteration i+ 1 to verify that these values are as claimed. The full version
of the paper spells out the remaining details.

3.2 Achieving Optimal Prover Runtime for Regular Circuits

In Theorem 1 below, we describe a protocol for circuit evaluation that brings P’s run-
time down to O(S(n)) for a large class of circuits, while maintaining the same verifier
runtime as in prior implementations of the GKR protocol. Informally, Theorem 1 ap-
plies to any circuit whose wiring pattern is sufficiently “regular”.

Our protocol follows the same outline as the GKR protocol, in that we proceed in
iterations from the output layer of the circuit to the input layer, using a sum-check
protocol at iteration i to reduce a claim about the gate values at layer i to a claim about
the gate values at layer i + 1. However, at each iteration i we apply the sum-check
protocol to a carefully chosen polynomial that differs from the ones used in prior work
[14, 20]. In each round j of the sum-check protocol, our choice of polynomial allows
P to reuse work from prior rounds in order to compute the prescribed message for
round j, allowing us to shave a logS(n) factor from the runtime of P relative to the
O(S(n) logS(n))-time implementation due to Cormode et al. [14].

Specifically, at iteration i, the polynomial f (i) that is used in the GKR protocol is
defined over logSi +2logSi+1 variables, where Si is the number of gates at layer i. The
“truth table” of f (i) is sparse on the Boolean hypercube, in the sense that f (i)(x) is non-
zero for at most Si of the Si ·S2

i+1 inputs x ∈ {0,1}logSi+2 logSi+1 . Cormode et al. leverage
this sparsity to bring the runtime of P in iteration i down to O(Si logSi) from a naive
bound of Ω(Si ·S2

i+1). However, this same sparsity prevents P from reusing work from
prior iterations as we seek to do.

In contrast, we use a polynomial g(i) defined over only logSi variables rather than
logSi + 2logSi+1 variables. Moreover, the truth table of g(i) is dense on the Boolean
hypercube, in the sense that g(i)(x) may be non-zero for all of the Si Boolean inputs
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x ∈ {0,1}logSi . This density allows P to reuse work from prior iterations in order to
speed up her computation in round i of the sum-check protocol.

In more detail, in each round j of the sum-check protocol, the prover’s prescribed
message is defined via a sum over a large number of terms, where the number of terms
falls geometrically fast with the round number j. Moreover, it can be shown that in
each round j, each gate at layer i+ 1 contributes to exactly one term of this sum [14].
Essentially, what we do is group the gates at layer i+1 by the term of the sum to which
they contribute. Each such group can be treated as a single unit, ensuring that in any
round of the sum-check protocol, the amount of work P needs to do is proportional to
the number of terms in the sum rather than the number of gates Si at layer i.

Formal Statement. Our protocol makes use of the following functions that capture the
wiring structure of an arithmetic circuit C.

Definition 2. Let C be a layered arithmetic circuit of depth d(n) and size S(n) over

finite field F. For every i ∈ {1, . . . ,d − 1}, let in(i)1 : {0,1}si → {0,1}si+1 and in(i)2 :
{0,1}si →{0,1}si+1 denote the functions that take as input the binary label p of a gate
at layer i of C, and output the binary label of the first and second in-neighbor of gate
p respectively. Similarly, let type(i) : {0,1}si → {0,1} denote the function that takes as
input the binary label p of a gate at layer i of C, and outputs 0 if p is an addition gate,
and 1 if p is a multiplication gate.

Intuitively, the following two definitions capture functions whose outputs are simple
bit-wise transformations of their inputs.

Definition 3. Let f be a function mapping {0,1}v to {0,1}v′ . Number the v input bits
from 1 to v, and the v′ output bits from 1 to v′. We say that f is regular if f can be
evaluated on any input in constant time, and there is a subset of input bits S ⊆ [v] with
|S|= O(1) such that:

1. Each input bit in [v] \ S affects O(1) of the output bits of f . Moreover, for any
j ∈ [v]\S, the set S j of output bits affected by the jth input bit can be enumerated
in constant time.

2. Each output bit of f depends on at most one input bit.

Definition 4. We say that in(i)1 and in(i)2 are similar if there is a set of output bits T ⊆
[si+1] with |T |= O(1) such that for all inputs x, the jth output bit of in(i)1 equals the jth

output bit of in(i)2 for all j ∈ [si+1]\T .

Theorem 1. Let C be an arithmetic circuit, and suppose that for all layers i of C,

in(i)1 , in(i)2 , and type(i) are regular. Suppose moreover that in(i)1 is similar to in(i)2 for
all but O(1) layers i of C. Then there is a valid interactive proof protocol (P ,V) for
the function computed by C, with the following costs. The total communication cost is
|O|+O(d(n) logS(n)) field elements, where |O| is the number of outputs of C. The time
cost to V is O(n logn+d(n) logS(n)), and V can make a single streaming pass over the
input, storing O(log(S(n))) field elements. The time cost to P is O(S(n)).
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The asymptotic costs of the protocol whose existence is guaranteed by Theorem 1 are
identical to those of the implementation of the GKR protocol due to Cormode et al.
in [14], except that in Theorem 1 P runs in time O(S(n)) rather than O(S(n) logS(n)).
While the conditions of Theorem 1 may appear unnatural, our techniques in fact capture
a large class of circuits. Theorem 1 applies for example to circuits computing naive
n× n matrix multiplication (MATMULT), computing the number of distinct items in a
data stream (DISTINCT), pattern matching (which is useful, e.g., for searching email
data stored in the cloud), and FFTs. To the best of our our knowledge Theorem 1 yields
the fastest known prover among all interactive proof protocols for DISTINCT and for
pattern matching with sublinear space and communication costs. More importantly, we
will leverage the techniques underlying Theorem 1 to achieve our improved protocol
for data parallel computation described in Theorem 2.

Experimental Results. We implemented the protocols implied by Theorem 1 as applied
to circuits computing MATMULT and DISTINCT. The circuits are over the field Fq with
q = 261 − 1. The soundness probability in all cases is less than 2−45 (this probability is
proportional to d(n) logS(n)

q ). These experiments serve as case studies to demonstrate the
feasibility of Theorem 1 in practice, and to quantify the improvements over prior imple-
mentations. While Section 5 describes a specialized protocol for MATMULT that is more
efficient than the protocol implied by Theorem 1, MATMULT serves as an important case
study for the costs of the more general protocol described in Theorem 1, and allows for
direct comparison with prior implementation work that also evaluated general-purpose
protocols via their performance on the MATMULT problem [14, 28, 32, 33, 35, 37].

The main takeaways of our experiments are as follows. When Theorem 1 is applica-
ble, the prover in the resulting protocol is 200x-250x faster than the previous state of
the art implementation of the GKR protocol, and is just 5x-10x times slower than a C++
program that simply evaluates the circuit with no correctness guarantee. The communi-
cation costs and the number of rounds required by our protocols are also 2x-3x smaller
than the previous state of the art. The verifier in our implementation takes essentially
the same amount of time as in prior implementations of the GKR protocol; this time is
much smaller than the time to perform the computation locally without a prover. See
Table 1 for detailed results – in this table, our comparison point is the implementation
of Cormode et al. [14], with some of the refinements of Vu et al. [37] included.

Most of the 200x speedup can be attributed directly to our improvements in pro-
tocol design over prior work: the circuit for 512x512 matrix multiplication is of size
228, and hence our logS(n) factor improvement the runtime of P likely accounts for at

Table 1. Experimental results for Theorem 1. For the MATMULT problem, the Total Communica-
tion column does not count the communication required to specify the answer.

Problem Implementation Problem P V Rounds Total Circuit
Size Time Time Communication Eval Time

MATMULT Previous state of the art 512 x 512 9759 s 0.10 s 767 17.97 KBs 6.07 s
MATMULT Theorem 1 512 x 512 37.85 s 0.10 s 236 5.48 KBs 6.07 s
DISTINCT Previous state of the art n = 220 3400 s 0.20 s 3916 91.3 KBs 1.88 s
DISTINCT Theorem 1 n = 220 17.28 s 0.20 s 1361 40.76 KBs 1.88 s
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least a 28x speedup. The 3x reduction in the number of rounds accounts for another 3x
speedup. The remaining speedup factor of roughly 2x may be due to a more streamlined
implementation relative to prior work, rather than improved protocol design per se.

4 Verifying General Data Parallel Computations

Theorem 1 only applies to circuits with regular wiring patterns, as do other existing im-
plementations of interactive proof protocols for circuit evaluation [14, 37]. For circuits
with irregular wiring patterns, these implementations require the verifier to perform an
expensive preprocessing phase (requiring time proportional to the size of the circuit) to
pull out information about the wiring of the circuit, and they require a substantial factor
blowup (logarithmic in the circuit size) in runtime for the prover relative to evaluating
the circuit without a guarantee of correctness.

To address these bottlenecks, we do need to make an assumption about the structure
of the circuit we are verifying. Ideally our assumption will be satisfied by many real-
world computations. To this end, Theorem 2 below describes a protocol that is highly
efficient for any data parallel computation, by which we mean any setting in which the
same sub-computation is applied independently to many pieces of data, before possibly
aggregating the results. We do not want to make significant assumptions on the sub-
computation that is being applied (in particular, we want to handle sub-computations
computed by circuits with irregular wiring patterns), but we are willing to assume that
the sub-computation is applied to many pieces of data.

For example, Theorem 2 applies to arbitrary counting queries on a database. In a
counting query, one applies some function independently to each row of the database
and sums the results. For instance, one may ask “How many people in the database sat-
isfy Property P?” Our protocol allows one to verifiably outsource such a counting query
with overhead that depends minimally on the size of the database, but that necessarily
depends on the complexity of the property P.

Overview of the Protocol. Let C be a circuit of size S with an arbitrary wiring pattern,
and let C∗ be a “super-circuit” that applies C independently to B different inputs before
possibly aggregating the results in some fashion. For example, in the case of a counting
query, the aggregation phase simply sums the results of the data parallel phase. We
assume that the aggregation step is sufficiently simple that the aggregation itself can
be verified using existing techniques such as the basic GKR protocol or Theorem 1,
and we focus on verifying the data parallel part of the computation. For instance, in
the case of a counting query, the aggregation phase simply sums the outputs, and this
is easily handled via Theorem 1. We stress that our protocol applies even if there is no
aggregation phase; in this case P will begin the protocol by sending V all outputs of
C∗, and the protocol can then be used to prove the validity of those outputs.

If we naively apply the GKR protocol to the super-circuit C∗, V might have to per-
form an expensive pre-processing phase to evaluate the wiring predicate of C∗ at the
necessary locations – this would require time Ω(B · S). Moreover, when applying the
basic GKR protocol to C∗, P would require time Θ (B ·S · log(B ·S)). A different ap-
proach was taken by Vu et al [37], who applied the GKR protocol B independent times,
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once for each copy of C. This causes both the communication cost and V’s online check
time to grow linearly with B, the number of sub-computations.

In contrast, our protocol achieves the best of both prior approaches. We observe that
although each sub-computationC can have a very complicated wiring pattern, the super-
circuit C∗ is maximally regular between sub-computations, as the sub-computations do
not interact at all. Therefore, each time the basic GKR protocol would apply the sum-
check protocol to a polynomial derived from the wiring predicate of C∗, we instead
use a simpler polynomial derived only from the wiring predicate of C. By itself, this
is enough to ensure that V’s pre-processing phase requires time only O(S), rather than
O(B · S) as in a naive application of the GKR protocol to C∗. That is, the cost of V’s
pre-processing phase in our protocol is proportional to the cost of applying the basic
GKR protocol only to C, not to C∗.

Furthermore, by combining this observation with the ideas underlying Theorem 1,
we can bring the runtime of P down to O(B · S · logS). That is, the blowup in runtime
suffered by the prover, relative to performing the computation without a guarantee of
correctness, is just a factor of logS – the same as it would be if the prover had run the
basic GKR protocol on a single instance of the sub-computation.

Notation. Let C be an arithmetic circuit over F of depth d and size S with an arbitrary
wiring pattern, and let C∗ be the circuit of depth d and size B · S obtained by laying B
copies of C side-by-side, where B = 2b. We will use the same notation as in Section 3.1,
using ∗’s to denote quantities referring to C∗. For example, layer i of C has size Si = 2si

and gate values specified by the function Vi, while layer i of C∗ has size S∗i = 2s∗i and
gate values specified by the function V ∗

i . We denote the length of the input to C∗ by n∗.
We assume at the start of our protocol that P has made a claim about Ṽ ∗

1 (z) for
some z ∈ Fs∗1 , in the sense that it is safe for V to believe P has followed the prescribed
protocol as long as Ṽ ∗

1 (z) is as claimed. Such a claim about Ṽ ∗
1 (z) would be obtained

by first applying existing verification techniques such as Theorem 1 to the aggregation
phase of the data parallel computation.

Theorem 2. For any point z ∈ Fs∗1 , there is a valid interactive proof protocol for com-
puting Ṽ ∗

1 (z) with the following costs. V spends O(S) time in a pre-processing phase,
and O(n∗ logn∗+d · log(B ·S)) time in an online verification phase. P runs in total time
O(S ·B · logS). The total communication is O(d · log(B ·S)) field elements.

Proof sketch: Consider layer i of C∗. Let p = (p1, p2) ∈ {0,1}si ×{0,1}b be the binary
label of a gate at layer i of C∗, where p2 specifies which “copy” of C the gate is in,
while p1 designates the label of the gate within the copy. Similarly, let ω = (ω1,ω2) ∈
{0,1}si+1 ×{0,1}b and γ = (γ1,γ2) ∈ {0,1}si+1 ×{0,1}b be the labels of two gates at
layer i+ 1. It is straightforward to check that for all (p1, p2) ∈ {0,1}si ×{0,1}b,

V ∗
i (p1, p2) = ∑

ω1∈{0,1}si+1
∑

γ1∈{0,1}si+1

g(i)(p1, p2,ω1,γ1),where g(i)(p1, p2,ω1,γ1) is

defined as:

βs∗i
(z,(p1, p2))·

(
˜addi(p1,ω1,γ1)

(
Ṽ ∗

i+1(ω1, p2)+Ṽ∗
i+1(γ1, p2)

)
+ ˜multi(p1,ω1,γ1)

(
Ṽ ∗

i+1(ω1, p2) · Ṽ∗
i+1(γ1, p2)

))
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Essentially, the above says that a gate p = (p1, p2) ∈ {0,1}si+b is connected to gates
ω = (ω1,ω2) ∈ {0,1}si+1+b and γ = (γ1,γ2) ∈ {0,1}si+1+b if and only if p,ω , and γ are
all in the same copy of C, and p is connected to ω and γ within the copy. The above
derivation can be shown to imply that for any z ∈ Fs∗i ,

Ṽ ∗
i (z) = ∑

(p1,p2,ω1,γ1)∈{0,1}si×{0,1}b×{0,1}si+1×{0,1}si+1

g(i)(p1, p2,ω1,γ1).

Thus, in iteration i of our protocol, we apply the sum-check protocol to g(i). This reduces
P’s claim about Ṽ ∗

i (z) to a claim about Ṽ ∗
i+1(z

′) for some z′ ∈ Fs∗i+1 , exactly as in the ith
iteration of the GKR protocol.

Costs for V . The bottleneck in V’s runtime is that, in the last round of the sum-check
protocol, V must evaluate g(i) at a single point. This requires evaluating βs∗i

, ˜addi, ˜multi,
and Ṽ ∗

i+1 at a constant number of points. The Ṽ ∗
i+1 evaluations are provided by P in

all iterations i of the protocol except the last. The bottleneck in the evaluation is the
˜addi and ˜multi computations. These can be done in pre-processing in time O(Si) by

enumerating the in-neighbors of each of the Si gates at layer i [14, 37]. Adding up the
pre-processing time across all iterations i of our protocol, V’s pre-processing time is
O(∑i Si) = O(S) as claimed.

Costs forP . Notice g(i) is a polynomial in v := si+2si+1+b variables. We order the sum
in this sum-check protocol so that the si+2si+1 variables in p1, ω1, and γ1 are bound first
in arbitrary order, followed by the variables of p2.P can compute the prescribed messages
in the first si +2si+1 = O(logS) rounds exactly as in the implementation of Cormode et
al. [14], who show that each gate at layers i and i+1 ofC∗ contributes to exactly one term
in the sum defining P’s message in any given round of the sum-check protocol. Hence
the total time required by P to handle these rounds is O(B · (Si+ Si+1) · logS).

It remains to show how P can compute the prescribed messages in the final b rounds
of the sum-check protocol while investing O((Si + Si+1) ·B) across all rounds of the
protocol. The idea is that once the variables of p1, ω1, and γ1 are bound, the truth table
of g(i), viewed as a function of the unbound variables, is dense on the Boolean hyper-
cube, in the sense of Section 3.2. We therefore exploit the reuse-of-work techniques
underlying Theorem 1 to achieve the desired runtime for the prover.

5 Optimal Space and Time Costs for MATMULT

In Theorem 3 below, we describe a special-purpose protocol for n× n MATMULT in
Theorem 3. The idea behind this protocol is as follows. The GKR protocol, as well
the protocols of Theorems 1 and 2, only make use of the multilinear extension Ṽi of
the function Vi mapping gate labels at layer i of the circuit to their values. In some
cases, there is something to be gained by using a higher-degree extension of Vi. This
is precisely what we exploit here. In more detail, our special-purpose protocol can be
viewed as an extension of our circuit-checking techniques applied to a circuit C per-
forming naive matrix multiplication, but using a quadratic extension of the gate values
in this circuit. This allows us to verify the computation using a single invocation of the
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sum-check protocol. More importantly, P can evaluate this higher-degree extension at
the necessary points without explicitly materializing all of the gate values of C, which
would not be possible if we had used the multilinear extension of the gate values of C.

In the protocol of Theorem 3, P just needs to compute the correct output (possibly
using an algorithm that is much more sophisticated than naive matrix multiplication),
and then perform O(n2) additional work to prove the output is correct. We obtain the
O(n2) bound on the extra work required by P by exploiting the reuse-of-work technique
underlying Theorems 1 and 2.

Since P does not have to evaluate C in full, this protocol is perhaps best viewed
outside the lens of circuit evaluation. Still, the idea underlying Theorem 3 extends those
underlying our circuit evaluation protocols, and we believe similar ideas may yield
further improvements to general-purpose protocols in the future.

Theorem 3. There is a valid interactive proof protocol for n× n matrix multiplication
over the field Fq with the following costs. The communication cost is n2 +O(logn) field
elements. The runtime of the prover is T (n) +O(n2) and the space usage is s(n) +
o(n2), where T (n) and s(n) are the time and space requirements of any (unverifiable)
algorithm for n×n matrix multiplication. The verifier can make a single streaming pass
over the input as well as over the claimed output in time O(n2 logn), storing O(logn)
field elements.

5.1 Comparison to Prior Work

It is worth comparing Theorem 3 to a well-known protocol due to Freivalds [17]. Let D∗

denote the claimed output matrix. In Freivalds’ algorithm, the verifier stores a random
vector x∈Fn, and computes D∗x and ABx, accepting if and only if ABx=D∗x. Freivalds
showed that this is a valid protocol. In both Freivalds’ protocol and that of Theorem 3,
the prover runs in time T (n)+O(n2) (in the case of Freivalds’ algorithm, the O(n2)
term is 0), and the verifier runs in linear or quasilinear time. We now highlight several
properties of our protocol that are not achieved by prior work.

Utility as a Primitive. A major advantage of Theorem 3 relative to prior work is its
utility as a primitive that can be used to verify more complicated computations. This is
important as many algorithms repeatedly invoke matrix multiplication as a subroutine.
For concreteness, consider the problem of computing A2k

via repeated squaring. By
iterating the protocol of Theorem 3 k times, we obtain a valid interactive proof protocol
for computing A2k

with communication cost n2+O(k log(n)). The n2 term is due simply

to specifying the output A2k
, and can often be avoided in applications – see for example

the diameter protocol described two paragraphs hence. The ith iteration of the protocol
for computing A2k

reduces a claim about an evaluation of the multilinear extension of
A2k−i+1

to an analogous claim about A2k−i
. Crucially, the prover in this protocol never

needs to send the verifier the intermediate matrices A2k′
for k′ < k. In contrast, applying

Freivalds’ algorithm to this problem would require O(kn2) communication, as P must
specify each of the intermediate matrices A2i

.
The ability to avoid having P explicitly send intermediate matrices is especially im-

portant in settings in which an algorithm repeatedly invokes matrix multiplication, but
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the desired output of the algorithm is smaller than the size of the matrix. In these cases,
it is not necessary for P to send any matrices; P can instead send just the desired output,
and V can use Theorem 3 to check the validity of the output with only a polylogarithmic
amount of additional communication. This is analogous to how the verifier in the GKR
protocol can check the values of the output gates of a circuit without ever seeing the
values of the interior gates of the circuit.

As a concrete example illustrating the power of our matrix multiplication proto-
col, consider the fundamental problem of computing the diameter of an unweighted
(possibly directed) graph G on n vertices. Let A denote the adjacency matrix of G, and
let I denote the n× n identity matrix. Then it is easily verified that the diameter of G
is the least positive number d such that (A+ I)d

i j �= 0 for all (i, j). We therefore obtain
the following natural protocol for diameter. P sends the claimed output d to V , as well
as an (i, j) such that (A+ I)d−1

i j = 0. To confirm that d is the diameter of G, it suffices

for V to check two things: first, that all entries of (A+ I)d are non-zero, and second that
(A+ I)d−1

i j is indeed non-zero.
The first task is accomplished by combining our matrix multiplication protocol of

Theorem 3 with our DISTINCT protocol from Theorem 1. Indeed, let d j denote the jth

bit in the binary representation of d. Then (A+ I)d =∏�logd�
j (A+ I)2 j

, so computing the

number of non-zero entries of (A+ I)d can be treated as a sequence of O(logd) matrix
multiplications, followed by a DISTINCT computation. The second task, of verifying
that (A+ I)d−1

i j = 0, is similarly accomplished using O(logd) invocations of the matrix
multiplication protocol of Theorem 3 – since V is only interested in one entry of (A+
I)d−1, P need not send the matrix (A+ I)d−1 in full, and the total communication here
is just polylog(n).

V’s runtime in this diameter protocol is O(m logn), where m is the number of edges
in G. P’s runtime in the above diameter protocol matches the best known unverifiable
diameter algorithm up to a low-order additive term [30, 38], and the communication is
just polylog(n). We know of no other protocol achieving this.

In many settings, practitioners will not tolerate even a 2x slowdown to achieve verifi-
ability, so the fact that P’s slowdown is a low-order additive term is critical. Moreover,
for a graph with n = 1 million nodes, the total communication cost of the above proto-
col would be on the order of KBs – in contrast, if P had to send the matrices (I +A)d

or (I +A)d−1 explicitly (as required in prior work, e.g., Cormode et al. [13]), the com-
munication cost would be at least n2 = 1012 words of communication, which translates
to terabytes of data.

Small-Space Streaming Verifiers. In Freivalds’ algorithm, V has the store the random
vector x, which requires Ω(n) space. There are methods to reduce V’s space usage by
generating x with limited randomness: Kimbrel and Sinha [24] show how to reduce V’s
space to O(logn), but their solution does not work if V must make a streaming pass
over arbitrarily ordered input. Chakrabarti et al. [12] extend the method of Kimbrel
and Sinha to work with a streaming verifier, but this requires P to play back the input
matrices A,B in a special order, increasing proof length to 3n2. Our protocol works
with a streaming verifier using O(logn) space, and our proof length is n2 +O(logn),
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where the n2 term is due to specifying AB and can be avoided in applications such as
the diameter example considered above.

5.2 Protocol Details

When multiplying matrices A and B such that AB = D, let A(i, j), B(i, j) and D(i, j)
denote functions from {0,1}logn ×{0,1}logn → Fq that map input (i, j) to Ai j, Bi j, and
Di j respectively. Let Ã, B̃, and D̃ denote their multilinear extensions.

Lemma 1. For all (p1, p2) ∈ Flogn ×Flogn,

D̃(p1, p2) = ∑
p3∈{0,1}logn

Ã(p1, p3) · B̃(p3, p2)

Proof. For all (p1, p2) ∈ {0,1}logn ×{0,1}logn, the right hand side is easily seen to
equal D(p1, p2), using the fact that Di j = ∑k AikBk j and the fact that Ã and B̃ agree with
the functions A(i, j) and B(i, j) at all Boolean inputs. Moreover, the right hand side is a
multilinear polynomial in the variables of (p1, p2). Putting these facts together implies
that the right hand side is the unique multilinear extension of the function D(i, j).

Lemma 1 implies the following valid interactive proof protocol for matrix multiplica-
tion: P sends a matrix D∗ claimed to equal the product D = AB. V evaluates D̃∗(r1,r2)
at a random point (r1,r2) ∈ Flogn × Flogn. It can be shown that it is safe for V to
believe D∗ is as claimed, as long as D̃∗(r1,r2) = D̃(r1,r2). In order to check that
D̃∗(r1,r2) = D̃(r1,r2), we invoke a sum-check protocol on the polynomial g(p3) =
Ã(r1, p3) · B̃(p3,r2).

V’s final check in this protocol requires her to compute g(r3) for a random point
r3 ∈ Flogn. V can do this by evaluating both of Ã(r1,r3) and B̃(r3,r2) with a single
streaming pass over the input, and then multiplying the results. The prover can be made
to run in time T (n)+O(n2) across all rounds of the sum-check protocol using the reuse-
of-work technique underlying Theorem 1. Moreover, the space requirements of P are
just s(n)+ o(n2).

Implementation. We implemented the protocol of Theorem 3 over the field with q =
261 − 1 elements. The results are shown in Table 2, where the column labelled “Ad-
ditional Time for P” denotes the time required to compute P’s prescribed messages
after P has already computed the correct answer. We report the naive matrix multipli-
cation time both when the computation is done using standard multiplication of 64-bit
integers, as well as when the computation is done using finite field arithmetic over Fq.
The main takeaways from Table 2 are that the verifier does indeed save substantial time
relative to performing matrix multiplication locally, and that the runtime of the prover
is hugely dominated by the time required simply to compute the answer.

Table 2. Experimental results for the n×n MATMULT protocol of Theorem 3

Problem Size Naive Matrix Multiplication Time Additional Time for P V Time Rounds
210 ×210 2.17 s over Z; 9.11 s over Fq 0.03s 0.67 s 11
211 ×211 18.23 s over Z; 73.65 s over Fq 0.13s 2.89 s 12
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Abstract. An argument system for NP is a proof system that allows effi-
cient verification of NP statements, given proofs produced by an untrusted yet
computationally-bounded prover. Such a system is non-interactive and publicly-
verifiable if, after a trusted party publishes a proving key and a verification key,
anyone can use the proving key to generate non-interactive proofs for adaptively-
chosen NP statements, and proofs can be verified by anyone by using the verifi-
cation key.

We present an implementation of a publicly-verifiable non-interactive ar-
gument system for NP. The system, moreover, is a zero-knowledge proof-of-
knowledge. It directly proves correct executions of programs on TinyRAM, a
nondeterministic random-access machine tailored for efficient verification. Given
a program P and time bound T , the system allows for proving correct execution
of P , on any input x, for up to T steps, after a one-time setup requiring Õ(|P |·T )
cryptographic operations. An honest prover requires Õ(|P |·T ) cryptographic op-
erations to generate such a proof, while proof verification can be performed with
only O(|x|) cryptographic operations. This system can be used to prove the cor-
rect execution of C programs, using our TinyRAM port of the GCC compiler.

This yields a zero-knowledge Succinct Non-interactive ARgument of Knowl-
edge (zk-SNARK) for program executions, in the preprocessing model — a pow-
erful solution for delegating NP computations, with several features not achieved
by previously-implemented primitives.

Our approach builds on recent theoretical progress in the area. We present
efficiency improvements and implementations of two main ingredients:
1. Given a C program, we produce a circuit whose satisfiability encodes the cor-

rectness of execution of the program. Leveraging nondeterminism, the gen-
erated circuit’s size is merely quasilinear in the size of the computation. In
particular, we efficiently handle arbitrary and data-dependent loops, control
flow, and memory accesses. This is in contrast with existing “circuit genera-
tors”, which in the general case produce circuits of quadratic size.

2. Given a linear PCP for verifying satisfiability of circuits, we produce a cor-
responding SNARK. We construct such a linear PCP (which, moreover, is
zero-knowledge and very efficient) by building and improving on recent work
on quadratic arithmetic programs.

R. Canetti and J.A. Garay (Eds.): CRYPTO 2013, Part II, LNCS 8043, pp. 90–108, 2013.
c© International Association for Cryptologic Research 2013
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1 Introduction

Proof systems for NP let an untrusted prover convince a verifier that “x ∈ L” where L
is some fixed NP-complete language. Proof systems for NP that satisfy the zero knowl-
edge and proof of knowledge properties are a powerful tool that enables a party to prove
that he or she “knows” a secret satisfying certain properties, without revealing anything
about the secret itself. Such proofs are important building blocks of many cryptographic
tools, including secure computation [GMW87, BGW88], group signatures [BW06,
Gro06], malleable proof systems [CKLM12], anonymous credentials [BCKL08], del-
egatable credentials [BCC+09], electronic voting [KMO01, Gro05, Lip11], and many
others. Known constructions of zero-knowledge proofs of knowledge are practical only
when proving statements of special form that avoid genericNP reductions (e.g., proving
pairing-product equations [Gro06]). Obtaining implementations that are both generic
and efficient in practice is a long-standing goal in cryptography [BBK+09, ABB+12].

Due to differences in computational power among parties, many applications also re-
quire succinct verification: the verifier is able to check a nondeterministic polynomial-
time computation in time that is much shorter than the time required to run the compu-
tation when given a valid NP witness. For instance, this is the case when a weak client
wishes to outsource (or delegate) a computation to an untrusted worker. The additional
requirement of succinct verification has still not been achieved in practice in its full
generality, despite recent theoretical and practical progress.

Furthermore, a difficulty that arises when studying the efficiency of proofs for ar-
bitrary NP statements is the problem of representation. Proof systems are typically
designed for inconvenient NP-complete languages such as circuit satisfiability or al-
gebraic constraint satisfaction problems, while in practice, many of the problem state-
ments we are interested in proving are easiest to express via algorithms written in some
high-level programming language. Modern compilers can efficiently transform these
algorithms into a program to be executed on a random-access machine (RAM). There-
fore, we seek proof systems that efficiently support NP statements expressed as the
correct execution of a RAM program.

1.1 Succinct Verification in the Preprocessing Model

There has been a lot of work on the problem of how to enable a verifier to succinctly
verify long computations. Depending on the model, the functionality, and the security
notion, different constructions are known. See the extended version of this paper for a
brief summary of prior theoretical work in this area.

Many constructions achieving some form of succinct verification are only computa-
tionally sound: their security is based on cryptographic assumptions, and therefore are
secure only against bounded-size provers. Yet, computational soundness seems inherent
in many of these cases [BHZ87, GH98, GVW02, Wee05]. Proofs (interactive or non)
that are only computationally sound are also known as arguments [BCC88].
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In this work we are interested in non-interactive succinct verification in the prepro-
cessing model: we investigate efficient implementations of succinct non-interactive ar-
guments (SNARGs) in the preprocessing model. Also, we focus on the publicly-verifiable
case, where a non-interactive proof can be (succinctly) verified by anyone. For simplic-
ity, we start by introducing this cryptographic primitive for circuit satisfiability: the
circuit satisfaction problem of a circuit C : {0, 1}n × {0, 1}h → {0, 1} is the relation
RC = {(x, a) ∈ {0, 1}n × {0, 1}h : C(x, a) = 1}; its language is LC = {x ∈
{0, 1}n : ∃ a ∈ {0, 1}h, C(x, a) = 1}.

A publicly-verifiable preprocessing SNARG (or, for brevity in this paper, simply
SNARG) is a triple of algorithms (G,P, V ), respectively called key generator, prover,
and verifier, working as follows. The (probabilistic) key generatorG, on input a security
parameter λ and circuit C : {0, 1}n × {0, 1}h → {0, 1}, outputs a proving key σ and a
verification key τ ; these are the system’s public parameters, which need to be generated
only once per circuit. After that, anyone can use the proving key σ to generate non-
interactive proofs for the language LC , and anyone can use the verification key τ to
check these proofs. Namely, given σ and any (x, a) ∈ RC , the honest proverP (σ, x, a)
produces a proof π attesting that x ∈ LC ; the verifier V (τ, x, π) checks that π is a valid
proof for x ∈ LC .

The efficiency requirements are as follows:

– running the generator G on input (1λ, C) requires poly(|C|) cryptographic
operations;

– running the prover P on input (σ, x, a) also requires poly(|C|) cryptographic opera-
tions; but

– running the verifier V on input (τ, x, π) only requires poly(|x|) cryptographic oper-
ations; and

– an honestly-generated (publicly-verifiable non-interactive) proof has size poly(λ).

We require (adaptive) computational soundness: for every polynomial-size prover P ∗,
constant c > 0, large enough security parameter λ ∈ N, and circuit C : {0, 1}n ×
{0, 1}h → {0, 1} of size λc, letting (σ, τ) ← G(1λ, C), if P ∗(σ, τ) outputs an
adaptively-chosen (x, π) such that there is no a for which (x, a) ∈ RC then V (τ, x, π)
rejects (except with negligible probability over G’s randomness).

Furthermore, if a SNARG satisfies a certain natural proof-of-knowledgeproperty, we
call it a SNARK. If it additionally satisfies a certain natural zero-knowledge property, we
call it a zero-knowledge SNARK (zk-SNARK). See the extended version of this paper
for definitions.

1.2 Motivation

It would be wonderful to have efficient and generic implementations of SNARGs with-
out any expensive preprocessing. (That is, running the generatorG only requirespoly(λ)
time instead of poly(|C|) cryptographic operations.) The two known approaches to
constructing such SNARGs are Micali’s “computationally-sound proofs” [Mic00], and
the bootstrapping techniques of Bitansky et al. [BCCT13]. Algorithmically, both are
complex (and, thus far, expensive) constructions: the former requires probabilistically-
checkable proofs (PCPs) [BFLS91] and the latter the use of recursive proof-composition.
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Thus, even in light of recent advances in the computational efficiency of PCPs
[BS08, Din07, MR08, BCGT13b], it seems wise to first investigate efficient imple-
mentations of SNARGs in the preprocessing model, which is a less demanding model
because it allows G to conduct a one-time expensive computation “as a setup phase”.
Despite the expensive preprocessing, this model is potentially useful for many appli-
cations: while the generator G does require a lot of work to set up the system’s pub-
lic parameters (which only depend on the given circuit C but not the input to C), this
work can be subsequently amortized over many succinct proof verifications (where each
proof is with respect to a new, adaptively-chosen, input to C).

In this work we focus on the preprocessing model, due to the simpler and tighter
constructions known in it. Recent works [Gro10, Lip12, GGPR13, BCI+13] constructed
zk-SNARKs based on knowledge-of-exponent assumptions [Dam92, HT98, BP04] in
bilinear groups, and all of these constructions achieved the attractive feature of having
proofs consisting of only O(1) group elements and of having verification via simple
arithmetic circuits that are linear in the size of the input for the circuit.

In this vein, Bitansky et al. [BCI+13] gave a general technique for constructing
zk-SNARKs. First, they define a linear PCP to be one where the honest proof oracle
is a linear function (over an underlying field), and soundness is required to hold only
for linear proof oracles. Then, they show a transformation (also based on knowledge-
of-exponent assumptions) from any linear PCP with a low-degree verifier to a SNARK;
also, if the linear PCP is honest-verifier zero-knowledge (HVZK), then the resulting
SNARK is zero knowledge.

When combining with other works the transformation of Bitansky et al. from lin-
ear PCPs, one obtains a theoretically simple and attractive route for the construction of
zk-SNARKs. Specifically, the work on quadratic-span programs (QSPs) and quadratic
arithmetic programs (QAPs) of Gennaro et al. [GGPR13] implies efficient construc-
tions of (HVZK) linear PCPs with low-degree verifiers for circuit satisfiability, and the
work on fast reductions of Ben-Sasson et al. [BCGT13a] implies that random-access
machine computations can be efficiently reduced to circuit satisfiability.

In this paper, we study the tantalizing question of whether the aforementioned the-
oretical progress can be translated into efficient implementations of zk-SNARKs. As
always, bringing theory to practice requires significant additional insights and improve-
ments, and tackling these is the goal of our work.

1.3 Contributions

In this work we present an implementation of a zk-SNARK (i.e., a non-interactive ar-
gument system for NP with the properties of zero knowledge, proof of knowledge, and
succinct verification in the preprocessing model). Moreover, our implementation effi-
ciently supports NP statements expressed as the correct execution of a program on a
nondeterministic random-access machine or (via a compiler we wrote) expressed as the
correct execution of a C program. Our contributions can be summarized as follows:

1) Verifying circuit satisfiability via linear PCPs. We obtain an implementation of
zk-SNARKs for (arithmetic) circuit satisfiability with excellent asymptotic efficiency:
linear-time generator, quasilinear-time prover, and linear-time verifier. Moreover, proofs
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consist of only 12 group elements (a total of 780 bytes), independently of the circuit C
or the input x to C. A proof provides 128 bits of security.

Our approach consists of two steps. First, we significantly optimized and imple-
mented the transformation of Bitansky et al. [BCI+13]; our optimizations rely on multi-
exponentiation algorithms (see [Ber02] and references therein) and parallelism. Second,
by building on the work on quadratic arithmetic programs (QAPs) of Gennaro et al.
[GGPR13] and by leveraging algebraic structure of a carefully-chosen field, we give
an efficient implementation of a linear PCP with a low-degree verifier. When verifying
that x ∈ LC , our linear PCP has 5 queries of 2|C| field elements each; each query can
be generated in linear time; the prover can compute the linear proof oracle via an arith-
metic circuit of size O(|C| log |C|) and depth O(log |C|); the answers to the 5 queries
can be verified with O(|x|) field operations.

2) From correctness of program execution to circuit satisfiability. The SNARKs
generated by the previous transformation are for proving the satisfiability of a given
(arithmetic) circuit. However, programs are easier to write using high-level program-
ming languages, like C, and it is often not realistic to require an arbitrary application to
already provide a circuit encoding the NP statement of interest. We address this prob-
lem by providing a “circuit generator” that differs significantly and qualitatively from
all previous implementations of circuit generators (e.g., Fairplay [MNPS04, BDNP08]):
it leverages nondeterminism to reduce the size of the output circuit. Specifically, pre-
vious circuit generators produce circuits of O(T 2) size for T -step computations in the
worst case, whereas our generator produces circuits of only O(T logT ) size. In more
detail, our solution to the circuit generation problem is as follows:

(i) We design a minimalistic nondeterministic random-access machine, called
TinyRAM.

(ii) We obtain a transformation, significantly more efficient than the one in [BCGT13a],
that takes as input a TinyRAM program P and a time bound T and outputs a cir-
cuit whose satisfiability encodes the correct execution of P for up to T steps. Our
efficiency improvements are achieved by leveraging field operations and nonde-
terminism in order to verify several types of crucial (boolean) computations via
smaller arithmetic circuits. We implemented our transformation.

(iii) We complement the above transformation with a GCC backend, for compiling
programs written in a subset of C into TinyRAM assembly. This compiler provides
a convenient way to obtain TinyRAM programs for problems of interest. Crucially,
we can efficiently support arbitrary and data-dependent loops, control flow, and
memory accesses.

Our choice of architecture for TinyRAM strikes a balance between the ability to effi-
ciently compile programs into TinyRAM assembly code, and the need to design small
circuits for the transition function of TinyRAM.

Delegation for NP Programs. Together, our contributions yield a system to verify
program executions succinctly and in zero knowledge.

In particular, our contributions provide a solution for non-interactively delegating
arbitrary NP computations, also in a way that does not compromise the privacy of any
input that the untrusted worker contributes to the computation. Previous implementation
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work did not achieve many of the features enjoyed by our implementation. (See the
extended version of this paper for a comparison with prior implementation work.)

2 From Correctness of Program Execution to Circuit Satisfiability

As summarized in Section 1.3, we implemented an efficient transformation that reduces
correctness of program execution to circuit satisfiabiliy. The following gives further de-
sign and performance details about this transformation. Concretely, in Section 2.1 we
motivate and discuss our choice of architecture, TinyRAM. Then, in Section 2.2, we dis-
cuss implementation and performance of our compiler from C to TinyRAM assembly.
Finally, in Section 2.3, we discuss implementation and performance of our reduction
from the correctness of TinyRAM assembly to circuit satisfiability.

2.1 The TinyRAM Architecture

To reason about correctness of program executions, we first need to fix a specific
random-access machine. An attractive choice is to pick the instruction set architec-
ture (ISA) of some existing, well-supported family of CPUs (e.g., x86 or ARM). We
could then reuse existing tools and software written for those CPUs. This is possible in
principle.

However, the design of CPUs typically focuses on efficient ways of getting data and
code, at the right time, to the different executions units of the CPU, with the goal of
maximizing utilization of these units. This is achieved by complex mechanisms whose
size can dwarf the functional core circuitry (execution units, register file, instruction
decoding, and so on). Thus, modern CPUs afford, and employ, large and rich instruction
sets. As explained next, the efficiency considerations are very different in our context.

Executing vs. Verifying. CPUs and their ISAs are optimized for fast execution of
programs. However, we are interested in fast verification of (alleged) past executions.
In our setting, the computation has already been executed and we possess a trace of
this execution, giving the state of the processor (registers and flags) at every time step.
Our goal is to efficiently verify the correctness of the trace: that every state in the trace
follows from the preceding one.

This means that values that are expensive to produce during the execution become
readily available for verification in the trace. For example, in real CPUs, reading from
external memory is relatively slow and a large fraction of the circuitry is dedicated to
caching data. However, in the trace, the result of a load from memory is readily seen in
the processor state at the end of the computation step; thus the need for caches is moot.
Similarly, modern CPUs use complicated speculative-execution and branch-prediction
mechanisms to keep their execution pipelines full; but a trace verifier going down the
trace can “peek into the future” and readily observe control flow.

The elimination of the above mechanisms, and many others, affects the ISA. In par-
ticular, it means that the aforementioned functional core circuitry dominates cost. This
leads to the next consideration.

Transition Function Complexity. We are ultimately interested in carrying out the
verification of a trace via a circuit, so we wish to optimize the circuit complexity of the
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transition function of the ISA: the size of the smallest circuit that, given two adjacent
states in the trace, verifies that the transition between the two indeed respects the ISA
specification.1

We thus seek an ISA that strikes a balance between two opposing requirements:
(1) the need for a transition function of small circuit complexity and (2) the need to
produce small and fast machine code, in particular when compiling from high-level
programming languages. Rich architectures allow for smaller code and shorter execu-
tion trace but have transition functions of higher circuit complexity, while minimalistic
architectures require longer machine code and longer execution traces, but enjoy tran-
sition functions with smaller circuit complexity.

Modern ISAs designed for general purpose CPUs (such as x86) are complex instruc-
tion set computer (CISC) machines: they support many elaborate instructions (e.g., a
round of AES [Gue12]) and addressing modes. Less rich ISAs are reduced instruc-
tion set computer (RISC) machines designed for devices like smartphones (ARM) and
embedded microcontrollers (Atmel AVR).

In sum, we seek a minimal ISA that enables us to design a transition function with
small circuit complexity, and yet allows reasonable overheads in code size and execu-
tion time (relative to richer ISAs).

A Custom ISA. In light of the above, we designed an instruction set architecture,
named TinyRAM, that is tailored for our setting. TinyRAM is a minimalistic RISC
random-access machine with a Harvard architecture and word-addressable random-
access memory. It has two parameters: the word size, denoted W , and the number of
registers, denoted K . The global state of the machine at any time consists of:

– the program counter, denoted pc; it consists of W bits;
– K general-purpose registers, denoted r0,r1, . . . ,r(K − 1), each with of W bits;
– the (condition) flag, denoted flag; it consists of a single bit; and
– memory, which is a linear array of 2W words of W bits each.

In addition, the machine has two input tapes, each containing a string of W -bit words.
Each tape can be read sequentially in one direction only. The first input tape is for the
primary input, denoted x; the second input tape is for the auxiliary input, denoted w.
We treat the primary input as given, and the auxiliary input as nondeterministic advice.
(See Definition 1 below.)

We carefully selected the instructions of TinyRAM so to support relatively efficient
compilation from high-level programming languages (like C), as discussed in Sec-
tion 2.2, and, furthermore, allow for small circuits implementing its transition function
(and other checks), as discussed in Section 2.3. Briefly, the instruction set of TinyRAM
includes simple load and store instructions for accessing random-access memory, as
well as simple integer, shift, logical, compare, move, and jump instructions. TinyRAM
can efficiently implement complex control flow, loops, subroutines, recursion, and so
on. Complicated instructions, such as floating-point arithmetic, are not directly sup-
ported and can be implemented “in software” by TinyRAM programs. Supporting only

1 This does not include the task of checking the correctness of values loaded from random-access
memory. Memory consistency is efficiently handled separately. See Section 2.3.
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fairly simple load and store operations is important for efficiently verifying consistency
of random-access memory; see Section 2.3.

In keeping with the setting of verifiying computation, the only input to TinyRAM
programs is via its two input tapes, and the only output is via an accept instruction,
which also terminates execution.2

So far we have only informally discussed “correctness of TinyRAM program execu-
tion”. This notion is formalized by defining a TinyRAM universal language.

Definition 1. Fix the word size W and number of registers K . Let P be a TinyRAM
program, let x and w be strings of W -bit words. We say that P(x,w) accepts in T
steps if P, with x on its first input tape and w on the second, executes the instruction
accept in step T .
The TinyRAM universal language consists of the triples (P, x, T ) where P is a
TinyRAM program, x is a string of W -bit words, and T is a time bound, such that
there exists a string w of W -bit words for which P(x,w) accepts in T steps.

A specification for the TinyRAM architecture can be found in [BCG+13].

2.2 A Compiler from C to TinyRAM

The GCC compiler is a versatile framework supporting many source languages (e.g.,
C and Java) and many target languages (e.g., x86 and ARM assembly). Internally, the
GCC compiler is partitioned into two main modules [StGDC13]. The frontend is re-
sponsible for converting a program written in a high-level programming language like
C or Java into an intermediate representation language called Register Transfer Lan-
guage (RTL). The backend is responsible for optimizing and converting RTL code into
corresponding assembly code for a given architecture.

In order to automatically generate TinyRAM assembly for problems of interest, we
have implemented a prototype of a GCC backend for converting RTL code to TinyRAM
assembly code. Our prototype backend works with the C frontend, and can be extended
to other programming languages by combining it with suitable GCC frontends (and
providing the requisite standard libraries). Concretely, we have a prototype that can
compile a subset of C to TinyRAM, with word size W ∈ {8, 16} and number of regis-
ters K ≥ 15.

Because TinyRAM’s instruction set is quite minimal, any operation not directly sup-
ported by TinyRAM “hardware” needs to be implemented in “software”. This incurs
overheads in both the code size (the number of lines in an assembly code) and execution
time (the number of machine steps required to execute a piece of code). By running ex-
periments, we established that both of these overheads are not large, as discussed next.

Code Size Overhead. We first evaluate the code size produced when compiling C code
examplesinto TinyRAM assembly using our GCC port, compared to the code produced
by standard GCC for some common architectures: x86, ARM and AVR. (We used the
−O1 optimization flag in all cases.) Our results show that, compared to the RISC ar-
chitectures (ARM and AVR), the resulting TinyRAM code is at most twice larger than

2 For ease of development, the TinyRAM simulator also supports debugging instructions that
produce additional outputs. These are excluded from the execution trace and not verified.



98 E. Ben-Sasson et al.

ARM and significantly smaller than AVR. Compared to x86, which is a very rich CISC
architecture, TinyRAM code is up to three times bigger. We deduce that, at least for the
program styles represented by these examples, the TinyRAM architecture allows for
compilation into compact programs. See the extended version of this paper for details.

Execution Time Overhead. The circuits ultimately produced by our reduction have
size O(T logT ), where T is the execution time (measured in machine steps). This exe-
cution time depends on the choice of architecture, and we wish to ensure that TinyRAM
does not necessitate very long execution times due to deficiencies in the instruction set.

To evaluate this, we compiled examples of C code into both TinyRAM machine code
and x86 machine code. Our results show that in terms of execution time measured in
machine steps (i.e., clock cycles), TinyRAM is slower than x86 by a factor of merely 2
to 6, for examples that represent some realistic computations. This is despite x86 being
a very rich CISC architecture that is heavily optimized for minimizing clock cycles,
which is typically implemented using many millions of gates. (Recall the difference of
executing vs. verifying, discussed in Section 2.1.) See the extended version for details.

These small overheads are more than compensated by the fact that TinyRAM has
a very compact transition function circuit. For instance, for a wordsize W = 16 and
number of registers K = 16, and for a program with 100 instructions, the transition
function consists of only 708 gates.

In summary, our experiments show that, even when working with a minimalistic
architecture such as TinyRAM, we do not incur large overheads in code size or exe-
cution time. In Section 2.3, we discuss the circuit complexity of TinyRAM’s transition
function and how to efficiently verify TinyRAM traces.

2.3 An Efficient Reduction from TinyRAM to Circuit Satisfiability

The following describes our efficient reduction from correctness of TinyRAM execu-
tions to F-arithmetic circuit satisfiability, for any prime field F of sufficiently large size.

The Reduction Notion. In our setting, a (circuit) reduction is a triple of functions
(circ,wit,wit−1) working as follows. The circuit generator function, circ, maps a
TinyRAM program P, time bound T , and primary input size n to a corresponding
F-arithmetic circuit C that encodes the correct computation of P for at most T steps on
primary inputs of n words. The witness map function, wit, maps a pair of primary and
auxiliary inputs (x,w) that make P accept in T steps, to a satisfying assignment a for
C(x, ·). The inverse witness map function, wit−1, maps a satisfying assignment a for
C(x, ·) to w with the property that (x,w) makes P accept in T steps.

Definition 2. A reduction from TinyRAM (for a word size W and number of registers
K) to F-arithmetic circuit satisfiability is a triple of functions (circ,wit,wit−1) such
that, for every TinyRAM program P, time bound T , and primary input size n, the
following hold:
– C := circ(P, T, n) is an F-arithmetic circuit from FW ·n × Fh to F� for some h, �;

C’s gates are bilinear;3

3 A gate with inputs x1, . . . , xn is bilinear if the output is 〈a, (1, x1, . . . , xn)〉 ·
〈b, (1, x1, . . . , xn)〉 for some a,b ∈ Fn+1.
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– for every (x,w) such that P(x,w) accepts in T steps, C
(
x,wit(P, T, x, w)

)
= 0�;

– for every (x, a) such that C(x, a) = 0�, P
(
x,wit−1(P, T, x, a)

)
accepts in T steps.

The work on fast reductions of Ben-Sasson et al. [BCGT13a] implies a reduction
(circ,wit,wit−1) where |C| := O(T (logT )2) and circ,wit,wit−1 all run in
O(T (logT )2) time.4 In our work, we optimize and implement a reduction that builds
on the theoretical approach of [BCGT13a]. We shall focus our attention only on the
efficiency of the circuit and witness maps (i.e., circ and wit), because these actually
need to be run in practice. Before discussing our work, however, we briefly review the
approach of [BCGT13a].

The Reduction in [BCGT13a]. We begin with necessary basic definitions.

– A (local) state of TinyRAM, denoted S, is a string of (W +KW +1) bits, encoding
the values of the program counter, K registers, and condition flag at a given step.

– The transition function of TinyRAM, denoted ΠTF, is the predicate that, given a
TinyRAM program P and two states S and S′, outputs 1 if and only if the machine
in state S can transition (for some choice of values in random-access memory) to the
state S′ in the next step, according to the program P.5

– An execution trace6 for a TinyRAM program P, time bound T , and primary input
x is a sequence of states tr = (S1, . . . , ST ). An execution trace tr is valid if there
exists an auxiliary input w such that the sequence of states induced by P running
with input tapes (x,w) is tr.

The goal is to design an F-arithmetic circuit C for verifying that tr is valid that is as
small as possible. This is done in three steps, as follows.

Step 1: Code Consistency. Let CTF be a circuit that implements the transition function
ΠTF of TinyRAM: namely, CTF(P, S, S′) = 1 if and only if ΠTF(P, S, S′) = 1. By
invoking CTF on each pair of successive states of tr, we can verify every state transition
in the trace tr, i.e., ensure that ΠTF(P, Si, Si+1) = 1 for i = 1, . . . , T − 1. Doing so
gives rise to a sub-circuit of C, consisting of T copies of CTF, that, when given as input
tr, checks that tr is code-consistent.

Step 2: Memory Consistency. The global state of a random-access machine, however,
also includes memory. In particular, in order to verify that tr is valid, we also need to
verify that tr is memory-consistent: namely, that every load operation from an address
in memory actually retrieves the value of the last store to that address.

But the accesses to memory of a program P depend on the inputs x and w. Hence,
in general, at each time step i any of the addresses in memory could be accessed by
the program. The naive solution of designing the verification circuit C to maintain a

4 Given a space bound S on the computation of P on (x,w), Ben-Sasson et al. also present a
reduction where |C| is only O(T log T log S). We have so far not considered this additional,
significantly more complex, optimization.

5 Traditionally, the transition function is the function that, given the global state of a machine as
input, outputs the next state. We abuse this terminology, and use it for the function that, given
two local states S, S′, decides whether the second can follow the first.

6 An execution trace is also at times known as a computation transcript [BCGT13a].
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snapshot of memory for each time step is not efficient: such a circuit has size that
is Ω(T 2). (All previous circuit generators either adopt the naive solution or restrict a
program’s memory accesses to be known at compile time.)

Ben-Sasson et al. [BCGT13a] do not adopt the naive solution (or restrict a pro-
gram’s memory accesses), but instead take an approach that is more efficient; the
approach builds on classical results on quasilinear-time nondeterministic reductions
[Sch78, GS89, Rob91]. The high-level idea in [BCGT13a] is that memory consistency
would be easier to verify if the circuit C were to also have, as additional input, the
same trace tr but sorted according to accessed memory addresses (and breaking ties via
timestamps); let us denote this sorted trace by MemSort(tr). Concretely, one can define
another “local” predicate ΠMC such that, if ΠMC is satisfied by each pair of adjacent
states in MemSort(tr) (and, in addition, tr is code-consistent) then tr is valid. We can
then augment C with T copies of a sub-circuit CMC that verifies the predicate ΠMC on
MemSort(tr). The circuit C is thus left to verify that the auxiliary input MemSort(tr)
is the result of sorting tr.

Step 3: Routing Network. The circuit C can efficiently perform this check if it is
given yet another additional input: (alleged) routing decisions for a routing network
which permutes tr into MemSort(tr). A T -packet routing network is a directed graph
with T sources, T sinks, and inner nodes (switches) such that, for any permutation
π : [T ] → [T ], there are routing decisions for the switches that cause T packets at the
sources to travel to the T sinks, according to the permutation π, and without using
a switch twice (i.e., with no congestion). One such a network is the Beneš network
[Ben65], which has O(log T ) layers of T nodes each, and each node in a layer is con-
nected to two nodes in the next layer. The idea is to interpret the switch settings in a
routing network as a coloring on the routing network. Crucially, verifying that the given
switch settings (i.e., a coloring of the network) implement some permutation from the
input nodes to the output nodes can be done via simple and local routing constraints;
furthermore, given that the switches implement some permutation, verifying that they
implement the sorting permutation is easy to verify too. Overall we obtain a certain
graph-coloring problem all of whose constraints can be evaluated by a circuit of size
T · O((log T )2), which we add to C.

In Sum. The approach from [BCGT13a] described in the above paragraphs yields a
circuit C of size T ·

(
|CTF|+ |CMC|+O((log T )2)

)
for verifying a T -step trace.

Our Optimized Reduction. As mentioned, in our work we optimize and implement
the theoretical approach of Ben-Sasson et al. [BCGT13a]. Despite the excellent asymp-
totic efficiency of the approach, getting to the point in which the verification circuit C
has a manageable size in practice proved quite challenging, both theoretically and pro-
grammatically. For instance: while (as discussed in Section 2.1) we devised TinyRAM
to facilitate the design of a small circuit CTF for the transition function ΠTF, how small
of a circuit can we actually design? And how well does its size scale with, say, the word
size W , number of registers K , and program size |P|?
Our Circuit Generator. At high level, our main technical contribution is leveraging
(1) “native” arithmetic in the field F (which for us is a prime field ) and
(2) nondeterministic advice
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so to achieve highly-optimized implementations of CTF, CMC, and routing constraints,
and ultimately obtain drastic improvements in the size of the verification circuit C out-
put by our circuit generator circ.

To illustrate the use of (1) and (2), consider the basic task of multiplexing bit vectors,
used numerous times in C. Given n vectors a1, . . . , an of � bits each and a �logn�-bit
index i, we seek a small F-arithmetic circuit that computes the vector selected by the
index. The naive multiplexer circuit requires O(n(�+logn)) bilinear gates. In contrast,
by relying on (1) and (2), we design a multiplexer circuit that needs only O(n� �

|F|�)
bilinear gates. The efficiency improvement is significant because we ultimately need to
work with cryptographically-large fields; for instance, in our setting, if n = � = 16, the
naive implementation uses 320 gates while we only use 51.

The idea of our multiplexer construction is as follows. Suppose, first, that every input
vector, as well as the index, were represented as integers, and we only had to design a Z-
arithmetic circuit to output the integer representing the selected bit vector. In this case,
we could easily construct a nondeterministic Z-arithmetic circuit of size O(n) (with
bilinear gates of unbounded fan-in). However, the vectors are only given to us as strings
of bits, and we need to work with F-arithmetic circuits. This gap motivates two fun-
damental operations: packing and unpacking of bit vectors. Packing denotes mapping
a bit vector to a sequence of field elements efficiently storing these bits, and unpack-
ing denotes the inverse operation. The packing operation is very efficient: in the prime
field Fp with p ≥ 2�, a single gate suffices to compute

∑�
i=1 2

i−1ai from the input
a1, . . . , a�. The inverse operation is much more expensive to compute directly, but we
can nondeterministically guess the answer and verify it using a single gate. In general,
p ≥ 2� need not hold, so we use � �

|F|� field elements to store an �-bit vector. Given
the aforementioned efficient packing operations, our multiplexer construction works as
follows: it guesses the selected �-bit vector, then computes the integers corresponding
to the input �-bit vectors as well as the index, and then verifies the guess by selecting
the correct integer according to the (integer) index.

More generally, we have found that, throughout our circuit generator, it is often
advantageous to maintain, alongside certain vectors a, also the corresponding integer∑

i 2
i−1ai. We believe that packing and unpacking operations will be crucial for dras-

tically decreasing the size of circuits used in future circuit generators.
With these techniques in mind, we proceed to describe the circuit generator.

– Designing the transition function circuit CTF. The circuit CTF is the most complex
sub-circuit of C. The size of CTF is dominated by the size of sub-circuits for multi-
plexing bit strings (for instruction fetch, register fetch, and so on) and of the arith-
metic logic unit (ALU), which executes the architecture’s non-memory operations.
To obtain an efficient implementation of the ALU, we again make use of field arith-
metic and nondeterministic advice. Since we work over a prime field of large char-
acteristic, field arithmetic looks like integer arithmetic whenever there is no “wrap
around”. Thus, after fetching the arguments to an operation, we derive from each
argument’s binary representation also the corresponding integer. Then, each opera-
tion in the ALU computes on the integer representation, instead of the binary one,
when it is more efficient to do so. For instance, we use this idea to compute result
and overflow information for addition, subtraction, and multiplication with only 2W ,
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Table 1. Number of gates in CTF as a function of |P|,W,K

|P| = 10/100/1000 W = 8 W = 16 W = 32

K = 8 416 / 506 / 1406 520 / 610 / 1510 728 / 818 / 1718
K = 16 514 / 604 / 1504 618 / 708 / 1608 826 / 916 / 1816
K = 32 708 / 798 / 1698 812 / 902 / 1802 1020 / 1110 / 2010

2W , and 3W bilinear gates, respectively; as for division, we guess the result and
verify it with a multiplication. In each case, the integer output by an operation can be
“unpacked” into its binary representation, via nondeterministic advice. By carefully
implementing each operation, we obtain an ALU that, e.g., when W = 16 only has
296 gates.
Given efficient implementations of multiplexing and ALU, it is not difficult to obtain
an efficient implementation of CTF. Table 1 shows the number of gates in our imple-
mentation of CTF for |P| ∈ {10, 102, 103}, W ∈ {8, 16, 32} and K ∈ {8, 16, 32}.

– Designing the memory consistency circuit CMC. The predicate ΠMC is not as com-
plex as the transition function ΠTF, but it is still important to design a small circuit
CMC for it. The bottleneck in the computation of ΠMC is again multiplexing, this
time for fetching the two arguments of a memory operation. Thus, the natural ap-
proach here would be to use additional copies of our efficient multiplexer circuit.
Instead, we show how to avoid additional multiplexing altogether by “stealing” cer-
tain intermediate computations from CTF. We thereby obtain a circuit for CMC that
only contains two integer comparisons and few other logical operations. For instance,
when W = 16, CMC only costs us 60 additional gates.

– Checking routing constraints. Asymptotically, the routing constraints on the routing
network are the most expensive sub-circuit of C. It is thus crucial to compute these
constraints as efficiently as possible. A first concern is to minimize the size of a
packet routed through the network. Instead of setting a packet to be a local state of
the machine, which consists of (W + KW + 1) bits, we show that it only suffices
to send a much smaller packet, consisting of about 2W bits, obtained from inter-
mediate computations of CTF. This optimization in fact leads to another important
one: now that a packet is as small as only about 2W bits, we can “pack” all the bits
on a single field element (in our setting, F has size at least 2W ); then, because the
packets consist of single field elements, computing the routing constraints becomes
particularly simple: only one bilinear gate per vertex. Concretely, the gate at a given
vertex checks whether the vertex’s packet is equal to at least one of the packets at
the two neighbor vertices in the next layer. Overall, when T is a power of 2, all the
routing constraints can be verified with only 2 · T · logT gates. (We thus also obtain
an asymptotic improvement, by a log T factor, over the circuit size in [BCGT13a],
where routing constraints required O(T (logT )2) gates. )

Of course, there are numerous additional details that go into our final construction of
the verification circuit C. Overall, say that for concreteness we fix W = 16, K = 16,
and |P| = 100, then we get

|C| = A · T · log T +B · T + C ,where A = 4, B = 1116 and C = 307.
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In particular, for logT < 20, every cycle of TinyRAM computation costs ≈ 1200
gates. Note that, while the gate count per cycle increases as T increases (as the number
of routing constraints grows as O(T logT )), the growth rate is slow: doubling T costs
only 4 + o(1) additional gates per cycle.

Our Witness Map. Thus far, we have focused on achieving soundness: verifying the
validity of an execution trace of a TinyRAM program P by using the circuit C :=
circ(P, T, n) output by the circuit generator circ. The circuit generator is run by the
key generator when computing the public parameters. For completeness, we need to
implement a witness map wit(P, T, x, w) that computes a satisfying assignment a for
C(x, ·), whenever P(x,w) accepts in T steps. The witness map is executed by the
prover when generating a proof. See the extended version for details on this map.

3 Verifying Circuit Satisfiability via Linear PCPs

As summarized in Section 1.3, we have implemented a zk-SNARK for circuit satisfia-
bility; see Section 1.1 for an informal definition of this cryptographic primitive, or the
extended version of this paper for a formal one. In this section we describe the design
and performance of this part of our system.

3.1 A Transformation from Any Linear PCP

We begin by discussing efficiency aspects of the transformation from a linear PCP to a
corresponding SNARK. To do so, we first recall (at high level) the transformation itself.

Constructing a SNARK from a linear PCP. The transformation of Bitansky et al.
[BCI+13] consists of an information-theoretic step followed by cryptographic step.

– Step 1 (information-theoretic): compile the linear PCP into a 2-message linear inter-
active proof (linear IP), i.e., one where the prover is restricted to only apply linear
functions to the verifier’s message.
This is achieved by adding a consistency-check query, which is a random linear com-
bination of the linear PCP queries. In more detail, if the linear PCP has k queries
each with m elements from a field F, in the resulting linear IP the verifier sends
to the prover a single message q consisting of m′ = (k + 1)m elements in F; the
message q is the concatenation of the k linear PCP queries and the consistency-
check query. A (potentially malicious) prover is restricted to only apply linear func-
tions to q, i.e., reply with a vector a∗ ∈ Fk+1 such that a∗ = Π∗q + b∗ for
some Π∗ ∈ F(k+1)×m′

and b∗ ∈ Fk+1. The honest prover simply returns the vector
a = (a1, . . . , ak+1) where ai = 〈π, qi〉, qi is the i-th m-element block of q, and π
is the linear PCP. A prover’s message a∗ is verified by checking consistency of a∗k+1

with a∗1, . . . , a
∗
k and then invoking the linear PCP decision predicate on a∗1, . . . , a

∗
k;

the consistency check ensures that a∗i = 〈π∗, qi〉 for some linear PCP π∗.
– Step 2 (cryptographic): compile the linear IP into a SNARK, by forcing any

polynomial-size malicious prover to act as if it were a linear function.
This is achieved using a cryptographic encodingEnc(·) with the following properties.
(i) It allows public testing of quadratic predicates on encoded elements.
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(ii) It provides a certain notion of one-way security to encoded elements.
(iii) It ensures that any polynomial-size prover can only perform linear operations on

the encoded elements, “up to” information leaked by the encoding.7

Given Enc(·), the compilation is then conceptually simple. The SNARK genera-
tor G(1λ, C) samples a verifier message q ∈ Fm′

(which depends on the circuit
C but not its input) for the linear IP, and outputs, as a proving key, the encoding
Enc(q) = (Enc(qi))

m′
i=1. (We omit here the discussion of how the short verifica-

tion key is generated.) Starting from Enc(q) and a linear PCP π, the honest SNARK
proverP homomorphically evaluates the inner products 〈π, qi〉 and returns as a proof
the resulting encoded answers. The SNARK verifier checks a proof by running the
linear IP decision predicate on the encoded answers.

For precise definitions and details, see [BCI+13].

Computational Overheads. The transformation from a linear PCP to a SNARK in-
troduces several computational overheads. In Step 1, the only overhead is due to the
consistency-check query, and is minor. However, the cryptographic overheads in Step 2
are significant, and require optimizations for practical use.

Specifically, after sampling q ∈ Fm′
, the SNARK generator G must compute

Enc(q) = (Enc(qi))
m′
i=1. In other words G needs to compute the encoding of m′ field

elements, where m′ is on the order of the size of the circuit C. Furthermore, after com-
puting a linear proof oracle π ∈ Fm, the honest SNARK prover P needs to homomor-
phically evaluate, for i = 1, . . . , k+1, the inner product 〈π, qi〉 to obtain Enc(〈π, qi〉).

In our case, the encoding is Enc(γ) = (gγ , hγ) where g ∈ G1, h ∈ G2 and G1, G2

are prime-order groups; the linear homomorphism is Enc(aγ + bδ) = Enc(γ)aEnc(δ)b

with coordinate-wise multiplication and exponentiation. Therefore, both G and P need
to compute a large number of cryptographic exponentiations. These operations greatly
affect the complexity of G and P , and must be performed efficiently.

Efficiency Optimizations. We address the cryptographic bottleneck by using multi-
exponentiation algorithms and parallelization. See the extended version of this paper
for the impact of these optimizations.

3.2 An Efficient Linear PCP

In the previous section we discussed how to ensure that the transformation from a linear
PCP to a SNARK adds as little computational overhead as possible. In this section, we
discuss the problem of implementing a linear PCP (to give as input to the transforma-
tion) that is as efficient as possible.

Our Linear PCP. Our starting point is the work on quadratic-span programs (QSPs)
and quadratic-arithmetic programs (QAPs) of Gennaro et al. [GGPR13]. Indeed, Bi-
tansky et al. [BCI+13] observed that any QSP for a relation R yields a corresponding
3-query linear PCP for R, and any QAP for a relation R yields a corresponding 4-
query linear PCP for R. By following the QAP approach of [GGPR13], we design a

7 Since the encoding cannot provide semantic security (due to the functionality requirement
of allowing for evaluation of quadratic predicates on encoded elements) but only a notion of
one-way security, a limited amount of information is necessarily leaked.
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linear PCP that trades an increased number of 5 queries for a linear PCP that, while
keeping essentially optimal asymptotics, enjoys excellent efficiency in practice.

Concretely, for checking membership in the language LC for a circuit C, our linear
PCP has only 5 queries of 2|C| field elements each (and sampling the 5 queries needs
only a single random field element); generating the queries can be done in linear time.
The 5 answers of the queries can be verified via 2 quadratic polynomials using only
2n + 9 field operations, where n is the input size. The soundness error is 2|C|/|F|.
Through a suitable use of FFTs, the honest prover can compute the linear proof oracle
via an arithmetic circuit of size O(|C| log |C|) and depth O(log |C|) only. (In particular,
the prover is highly parallelizable.)

Efficiency Optimizations. In practice, tailored FFT algorithms are more efficient than
“generic” ones (i.e., ones that work over any finite field). To leverage the efficiency of
tailored FFT algorithms, we further specialize our choice of elliptic curve so to ensure
that G1, G2 are groups of a prime order p with p− 1 = 2�h for a large integer �. This
means that, in our linear PCP, we can choose the finite field F = Fp. In such a field,
there is a primitive 2�-th root of unity, and multi-point evaluation/interpolation over
domains consisting of roots of unity (or their multiplicative cosets) can be performed
via very simple and efficient FFT algorithms. Furthermore, the choice F = Fp also
simplifies the linear-time algorithm for sampling queries.

Zero Knowledge. The transformation from a linear PCP to a SNARK is such that
if the linear PCP is honest-verifier zero-knowledge (HVZK) then the SNARK is zero
knowledge. (See the extended version of this paper for a definition of HVZK.) Thus, we
need to ensure that our linear PCP is HVZK. Bitansky et al. [BCI+13] showed a general
transformation from a linear PCP to a HVZK linear PCP of similar efficiency. We do
not rely on their general transformation. Instead, our linear PCP can be made HVZK
with essentially no computational overhead, via a simple modification analogous to the
one used in [GGPR13] to achieve zero knowledge. With this modification, we ensure
that the SNARK obtained from our linear PCP has (statistical) zero knowledge.

For more details on our linear PCP construction, see the extended version of this paper.

3.3 Performance

Plugging our linear PCP for arithmetic circuits (Section 3.2) into the transformation
(Section 3.1), we thus obtain an implementation of zk-SNARKs for arithmetic circuit
satisfiability with excellent asymptotic efficiency: linear-time key generator, quasilinear-
time prover, and linear-time verifier. Next, we discuss concrete performance.

Our algebraic setup is as follows: we work over E(Fq) where E is the elliptic curve
y2 = x3 + x and q is a prime of 512 bits; the order of the group is divisible by p =
2159 + 2107 + 1. This curve gives 128 bits of security. Our experiments are run on a
machine with eight 2.4 GHz AMD Opteron 8431 6-core processors and 16 GB of RAM.

Performance of Key Generation. Given an arithmetic circuit C : Fn × Fh → F as
input, the SNARK key generatorG outputs: a proving key σ of (12|C|+2n+40) group
elements and a verification key τ of (n+8) group elements. Each group element (when
compressed) is 65 bytes. Only 8 random field elements need to be sampled for this
computation. A small set of public parameters provides information, to both the prover
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and verifier, about the choice of elliptic curve; storing these public parameters only
requires 310 bytes. The extended version of this paper includes performance graphs of
G(C) as a function of |C|. For instance, when |C| ≈ 2 · 106, G performs ≈ 4.2 · 109
field operations in less than 20 minutes.

Performance of Proving. Given σ and (x, a) in the relation RC , the SNARK prover
outputs a proof consisting of 12 group elements. As before, each group element (when
compressed) is 65 bytes, so the proof length in bytes is 780. The extended version
of this paper includes graphs of P (σ, x, a) as a function of |C|. For instance, when
|C| ≈ 2 · 106, P performs ≈ 3.3 · 109 field operations in less than 15 minutes.

Performance of verifying. Given τ , an input x, and a proof π, the SNARK verifier
computes the decision bit. To do so, the verifier evaluates 21 pairings and solves a
multi-exponentiation problem of size |x|.The extended version of the paper includes
performance graphs of V (τ, x, π) as a function of |x|. For instance:

– when |x| ≤ 26, V performs ≈ 2.2·105 field operations in less than 50 milliseconds;
– when |x| ≤ 217, V performs ≈ 1.3 · 107 field operations in less than 20 seconds.

We emphasize that the above performance holds no matter how large is the circuit C.
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Complex & Adaptive Systems Laboratory and
School of Mathematical Sciences
University College Dublin, Ireland

{farukgologlu,robbiegranger}@gmail.com,
{gary.mcguire,jens.zumbragel}@ucd.ie

Abstract. In this paper we propose a binary field variant of the Joux-
Lercier medium-sized Function Field Sieve, which results not only in
complexities as low as Lqn (1/3, (4/9)

1/3) for computing arbitrary loga-
rithms, but also in an heuristic polynomial time algorithm for finding the
discrete logarithms of degree one and two elements when the field has a
subfield of an appropriate size. To illustrate the efficiency of the method,
we have successfully solved the DLP in the finite fields with 21971 and
23164 elements, setting a record for binary fields.
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1 Introduction

When it comes to selecting appropriate parameters for public-key cryptosystems,
one invariably observes a trade-off between security and efficiency. At a most
basic level, for example, larger keys usually mean higher security, but worse
performance.

A related rule of thumb which one does well to keep in mind, is that a spe-
cialised parameter which improves efficiency, typically (or potentially) weakens
security. Examples abound of such specialisations and consequent attacks: dis-
crete logarithms modulo Mersenne (or Crandall) primes and the Special Num-
ber Field Sieve [19]; Optimal Extension Fields [2] and Weil descent for elliptic
curves [8]; high-compression algebraic tori [23] and specialised index calculus [10];
quasi-cyclic or dyadic McEliece variants [21] and Gröbner basis attacks [6], and
more recently elliptic curves over binary fields [7], to name just a few. In practice
therefore, one should be wary of any additional structure, which may potentially
weaken a system.

� Research supported by the Claude Shannon Institute, Science Foundation Ireland
Grant 06/MI/006. The fourth author was in addition supported by SFI Grant
08/IN.1/I1950.

R. Canetti and J.A. Garay (Eds.): CRYPTO 2013, Part II, LNCS 8043, pp. 109–128, 2013.
c© International Association for Cryptologic Research 2013
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In this paper we give a fairly extreme example of this principle in the case of
binary (or in general small characteristic) fields which possess a small to medium-
sized intermediate field. In 2006 Joux and Lercier designed a particularly efficient
variation of the Function Field Sieve (FFS) algorithm for computing discrete
logarithms [16], which at the time possessed the fastest asymptotic complexity
of all known discrete logarithm algorithms for appropriately balanced q and n,
namely Lqn(1/3, 3

1/3) ≈ Lqn(1/3, 1.442), where

Lqn(a, c) = exp
(
(c+ o(1)) (log qn)a(log log qn)1−a

)
,

and qn is the cardinality of the finite field.
In 2012, Joux proposed a more efficient method of obtaining relations, dubbed

‘pinpointing’, which applies to a specialisation of the function field setup of [16].
In this approach, each relation found via classical sieving can be amplified into
many more [13], which is advantageous when sieving is the dominant phase,
rather than the linear algebra (or individual logarithm phase). The overall com-
plexity of this technique for solving the DLP can be as low as Lqn(1/3, (8/9)

1/3) ≈
Lqn(1/3, 0.961). To demonstrate the practicality of the approach, Joux solved
the DLP in two cases: in a 1175-bit field and in a 1425-bit field, setting records
for medium-sized base fields, in this case prime fields.

In this work we demonstrate that a basic assumption used in the analysis
of virtually all fast index calculus algorithms can be very wrong indeed; in the
case of binary fields possessing a subfield of an appropriate size, this leads to the
dramatic conclusion that the logarithms of degree one elements over this subfield
can be solved in polynomial time. As far as we are aware, no other algorithm for
the collecting of relations and the linear algebra step has beaten the Lqn(1/3)
barrier. Our fundamental observation is that the splitting probabilities in Joux-
Lercier’s variation of the FFS can be cubic in the reciprocal of the degree –
rather than exponential. The reason for this is the richer structure of binary
extension fields relative to prime fields, which lends weight to the argument that
such fields should be avoided in practice. We also exploit our basic observation
to efficiently compute the logarithms of degree two elements — which until now
were the bottleneck of the individual logarithm descent phase — which for a
range of binary fields results in the fastest Lqn(1/3) algorithm to date, namely
Lqn(1/3, (4/9)

1/3) ≈ Lqn(1/3, 0.763), which is precisely the square root of the
complexity of the ordinary FFS, for which c = (32/9)1/3.

We emphasise that our relation generation method arises purely as a special-
isation of [16], and is thus completely independent of [13]. However, at a high
level, our relation generation method may be viewed as a form of one-sided pin-
pointing, but with two central differences to that of [13]. Firstly, we do not need
to search for an initial splitting polynomial, since we have an explicit description
of all such polynomials, i.e., no sieving need take place. Secondly, as members of
this family of polynomials have arbitrarily high degree, the other ‘random’ side
can be made to have very small degree, which thus splits with very high proba-
bility. These two differences result in our polynomial time relation generation.

The paper is organised as follows. In §2 we recall the Joux-Lercier variant
of the FFS. In §3 we present our specialisation and our analysis of splitting



On the Function Field Sieve and the Impact of Higher Splitting Probabilities 111

probabilities, while in §4 we present our new descent methods and analyse the
complexity of the resulting algorithms. In §5 we present our implementation
results and conclude in §6.

2 The Medium-Sized Base Field Function Field Sieve

In this section we briefly recall the 2006 FFS variant of Joux and Lercier [16].
Let Fqn be the finite field in which discrete logarithms are to be solved, where q
is a prime power. In order to represent Fqn , choose two univariate polynomials
g1, g2 ∈ Fq[X ] of degrees d1 and d2 respectively. Then whenever X − g1(g2(X))
possesses a degree n irreducible factor F (X) over Fq, one can represent Fqn in
two related ways. In particular, let x ∈ Fqn be a root of F (X) = 0, and let
y := g2(x), so that by construction x = g1(y) as well. These relations give an
explicit isomorphism between Fq(x) and Fq(y), both of which represent Fqn .

In the most basic version of the algorithm (which also leads to the best com-
plexity) one chooses d1 ≈ d2 ≈

√
n, and considers elements of Fqn represented

by:

xy + ay + bx+ c , with a, b, c ∈ Fq .

Substituting x by g1(y), and y by g2(x), we obtain the following equality in Fqn :

xg2(x) + ag2(x) + bx+ c = yg1(y) + ay + bg1(y) + c . (1)

The factor base consists simply of the degree one elements of Fq(x) and Fq(y);
then for every triple (a, b, c) for which both sides of (1) split over Fq — i.e., when
all of its roots are in Fq — in the respective factor bases, one obtains a relation.
Determining such triples can naturally be made faster using sieving techniques.
Once more than 2q such relations have been collected, one performs a linear
algebra elimination to recover the individual logarithms. To compute arbitrary
discrete logarithms, one uses a ‘descent’ method, as we detail in §4.

In order to assess the complexity of this algorithm, throughout the paper
let Q = qn, let q = LQ(1/3, α), and let LQ(1/3, c1) and LQ(1/3, c2) denote
the complexity of the sieving and linear algebra phases respectively. As shown
in [16], heuristically one has

c1 = α+
2

3
√
α

and c2 = 2α .

In order to generate sufficiently many relations, α must satisfy the condition:

2α ≥ 2

3
√
α
.

For such α’s, the complexity of the entire algorithm, including the descent phase,
is minimised for α = 3−2/3, with resulting complexity LQ(1/3, 3

1/3).
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3 Specialisation to Binary Fields

We now present a specialisation of the construction of [16] as presented in the
previous section, and detail some interesting consequences. From now on let Fq

denote the finite field with 2l elements.
All of our improvements and observations arise from a rather innocent-looking

choice for g2, namely y = x2k . Our primary motivation for this was to automati-
cally eliminate half of the factor base, since any linear polynomial (y+a) is equal

to (x + a2
−k

)2
k

, and so log (y + a) = 2k log (x+ a2
−k

). However, this selection
has further serendipitous consequences, the central two being:

• Whenever k | l and l ≥ 3k, the probability of the l.h.s. of (1) splitting over
Fq is approximately 2−3k, instead of the expected 1/(2k+1)!. We show that
for some asymptotic families of binary fields, this leads to a polynomial time
algorithm to find the logarithms of all degree one elements of Fqn .

• As surprising as the above result is, for such families, the individual log-
arithm phase then has complexity Lqn(1/2). Hence one must ensure the
complexity of the stages is balanced. Depending on the form of n, we show
that the bottleneck of the descent changes from degree two to degree three
special-q, since the x-side has the same form of the l.h.s. of (1), and thus en-
joys the same higher splitting probability. This ensures that our claimed new
Lqn(1/3) complexities are achieved across all the phases of the algorithm.

In the remainder of the paper we explain these advantages in more detail. In
addition to the above two observations, for certain extensions which possess
Galois-invariant factor bases, the use of non-prime base fields can induce extra
automorphisms, which reduce its size further, see §5. Other practical speed ups

arise from our choice y = x2k . The matrix-vector multiplications in Lanczos’
algorithm consists of only cyclic rotations, i.e., shifts mod qn − 1, and so no
multiplications need to be performed. Furthermore, in the descent phase, one
ordinarily needs to perform special-q eliminations in both function fields. How-
ever, due to the simple relation between x and y, one is free to map from one
side to the other in order to increase the probability of smoothness. One can
also balance the degrees of both sides by utilising other auxiliary function fields
arising from passing a power of 2 from the x-side to other side; this not only
provides a practical speed up but is core to our new complexity results, see §4.

3.1 Higher Splitting Probabilities

Throughout this section, rather than use the field elements x, y as variables,
we use X,Y to emphasise that the stated results are valid in the univariate
polynomial ring over Fq, which is implicitly either Fq[X ] or Fq[Y ], depending on
which side of (1) is involved.

Assume 1 < k < l. When Y = X2k the l.h.s. of (1) becomes

X2k+1 + aX2k + bX + c . (2)
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Assuming c �= ab and b �= a2
k

, this polynomial may be transformed (up to a
scalar factor) into the polynomial

fB(X) = X
2k+1

+BX +B , with B =
(b+ a2

k

)2
k+1

(ab+ c)2k
, (3)

via

X =
ab+ c

b+ a2k
X + a .

The polynomial fB is related to PA(X) = X
2k+1

+X +A, which is well-studied
in the literature, having arisen in several contexts including finite geometry,
difference sets, as well as determining cross correlation between m-sequences;
see references in [12] for further details.

We have the following theorem due to Bluher [3] (and refined in the binary
case by Helleseth and Kholosha [12]), which counts the number of B ∈ Fq for
which fB splits over Fq.

Theorem 1. [12, Thm. 1] Let d = gcd (l, k). Then the number of B ∈ F×
2l

such

that fB(X) has exactly 2d + 1 roots over F2l is⎧⎪⎪⎪⎨⎪⎪⎪⎩
2l−d − 1

22d − 1
if l/d odd,

2l−d − 2d

22d − 1
if l/d even.

Theorem 1 of [12] also states that fB can have no more than 2d + 1 roots in
Fq, and so if gcd (l, k) < k then fB can not split. Hence we must have k | l
for our application. Indeed we must also have l ≥ 3k in order for there to be
at least one such B. Observe that under these two conditions, for B chosen
uniformly at random from Fq, the probability that fB splits completely over Fq

is approximately 1/23k – far higher than the splitting probability 1/(2k +1)! for
a degree 2k + 1 polynomial chosen uniformly at random.

Furthermore, the set SB of all such B can be computed explicitly, without
needing to perform any factorisations or smoothness tests. Indeed, the proof of
Prop. 5 in [12] gives an explicit parameterisation of all such B: for u ∈ G =
F2l \ F22k , we have

SB = Im

(
u −→ (u+ u22k)2

k+1

(u+ u2k)22k+1

)
.

By analysing the form of this map, one can avoid obtaining repeated images.
However, even a naive enumeration of elements of G requires at most Õ(q) Fq-
operations, which is comparable to the complexity of relation generation, as we
now show.
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3.2 Relation Generation

By exploiting the above transformation of (2) to (3) and the list SB of precom-
puted B’s for which (3) splits, one can construct polynomials of the form (2)

which always split completely over Fq. Indeed, for any (a, b) for which b �= a2
k

,
and for each B ∈ SB, we simply compute via (3) the corresponding unique
c ∈ Fq. This ensures that (2) splits and therefore requires no sieving whatsoever.

In order to obtain a relation, we also require that

Y g1(Y ) + bg1(Y ) + aY + c (4)

splits over Fq, which we assume occurs with probability 1/(d1+1)! for randomly
chosen g1. Since |LB| ≈ q/23k, for each (a, b) we expect to obtain

q

23k (d1 + 1)!

relations. Since we need q relations, we expect to require about 23k (d1 + 1)!
pairs (a, b) to obtain sufficiently many. For each pair (a, b) this costs O(q/23k) 1-
smoothness tests, or Õ(q/23k)Fq-operations. Hence the total cost is Õ(q (d1 + 1)!).
Finally, in order for there to be sufficiently many relations, we must have

q3

23k (d1 + 1)!
> q , or q2 > 23k (d1 + 1)! .

Since we insist that l ≥ 3k, having q > (d1 + 1)! is sufficient. In §4 we consider
the impact of this approach on the full DLP complexity in two cases when
q = Lqn(1/3, α) and n ≈ 2k · d1: firstly for 2k ≈ d1 and secondly for 2k � d1.
However, we now consider the relation generation complexity when the base field
cardinality is polynomially related to the extension degree.

3.3 Polynomial Time Relation Generation

With a view to reducing the complexity of degree one relation generation to a
minimum for some example fields, we choose k as large as possible such that
k | l and l ≥ 3k, and set d1 to be as small as possible, assuming a g1 can be

found with X−g1(X
2k) possessing a degree n irreducible factor. Experimentally

it seems that d1 = 3 (or possibly d1 = 4) is sufficient to produce an irreducible
of any degree n ≤ 2k, for q sufficiently large. Of course, n may be as large as
2k · d1 in this case.

Writing l = k · k′ with k′ ≥ 3 a constant, and n ≈ 2k · d1 with d1 constant,
as l → ∞, the logarithms of the degree one factor base elements of Fqn can be

computed in heuristic polynomial time. In particular, as n ≈ 2k · d1 = 2l/k
′ · d1,

we have
Q = qn ≈ 2l·2

l/k′
·d1 .

As l → ∞, we therefore have

logQ

log logQ
= O(2l/k

′
) .
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The cost of relation generation is Õ(q (d1 + 1)!) = Õ(q) = Õ(2l) = Õ(logk
′
Q),

whereas the cost of sparse linear algebra, using Lanczos’ algorithm [18] for in-
stance, is the product of the row weight and the square of number of variables,
namely

(2l/k
′
+ d1) Õ(q2) = Õ(log2k

′+1 Q) .

For the optimal choice k′ = 3 the complexity is therefore Õ(log7 Q). We sum-
marise this in the following:

Heuristic Result 1. Let q = 2l with l = k ·k′ and k′ ≥ 3 a constant, let d1 ≥ 3
be constant, and assume n ≈ 2k·d1. Assuming that Y g1(Y )+aY +bg1(Y )+c splits
over Fq with probability 1/(d1+1)! over all triples (a, b, c) ∈ (Fq)

3, the logarithms

of all degree one elements of Fqn can be computed in time Õ(log2k
′+1 Q).

Note that the set of degree one elements is always defined relative to a particular
representation of Fqn . As it is easy to switch between any two representations
of a finite field [20], one can always map to our Fq(x) first. Note also that the
statement of Heuristic Result 1 implicitly assumes that the factor base contains
a generator of F×

qn . A result of Chung proves that for all prime powers s and all
r ≥ 1 such that s > (r − 1)2, if Fsr = Fs(x) then {x + a | a ∈ Fs} generates
F×
sr [4, Thm. 8]. In our context we therefore need qk

′
> (n − 1)2 ≈ q2 · d21 in

order for our DLP algorithm to work, which is satisfied for our q and small d1.
However, the issue of whether there exists a generator in the stated factor base
remains an open problem in general, see for instance [26].

3.4 An Extreme Case: n = 2k ± 1

If n = 2k ± 1 then the degree one relation generation becomes extremely fast. In

particular, if g1(X) = γX∓1 then as g2(X) = X2k , we obtain the polynomials

X2k±1 + γ. Furthermore, if k | l then X2k±1 + γ is irreducible whenever γ has
no root of prime order p | (2k ± 1). In both cases, (4) has degree two and splits
with probability 1/2.

Table 1 contains timing data for relation generation for a family of fields with
q = 23k and n = 2k − 1, which incorporates the factor base reduction tech-
nique arising from quotienting out by the action of the k-th power of Frobenius,
which has order 3n, see §5. We used an AMD Opteron 6128 processor clocked at
2.0GHz. Note that the time is quasi-cubic in the bitlengh, in accordance with
the discussion preceeding Heuristic Result 1.

4 Individual Logarithms and Complexity Analysis

As unexpected as Heuristic Result 1 is, it does not by itself solve the DLP. Using
a descent method à la [16,5], computing individual logarithms unfortunately then
has complexity Lqn(1/2). Hence one can not allow the extension degree n to grow
as fast as Theorem 1 permits; it must be tempered relative to the base field size.
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Table 1. Relation generation times for q = 23k and n = 2k − 1

k log2(q
n) #vars time

7 2667 5506 2.3s
8 6120 21932 15.0s
9 13797 87554 122s

10 30690 349858 900s

With this in mind, we now consider the complexity of the descent, for q and n
appropriately balanced so that the total complexity is Lqn(1/3).

For a generator g ∈ F×
qn and a target element h ∈ 〈g〉, the descent proceeds by

first finding an i ∈ N such that z = h gi is m-smooth for a suitable m, i.e., so that
all of the irreducible factors of z have degrees ≤ m. The goal of the descent is to
eliminate every irreducible factor of z, by expressing each as a product of smaller
degree irreducibles recursively, until only degree one elements remain, whose
logarithms are known. We do so using the special-q lattice approach from [16],
as follows.

Let p(x) be a degree d irreducible (considered as an element of Fq[X ]) which

we wish to eliminate. Since y = x2k , we have

p(x)2
k

= p(x2k) = p(y) ,

where the coefficients of p are those of p, powered by 2k. Note that we also have

p(y)2
−k

= p(x) ,

and hence we can freely choose to eliminate p using either the x-side or the y-side
of (1). For convenience we focus on the y-side. The corresponding lattice Lp is
defined by:

Lp(Y ) = {(w0(Y ), w1(Y )) ∈ Fq[Y ]2 : w0(Y ) g1(Y ) + w1(Y ) ≡ 0 (mod p(Y ))} .

A basis for this lattice is (0, p(Y )), (1, g1(Y ) (mod p(Y ))), which is clearly un-
balanced. Using the extended Euclidean algorithm, we may construct a balanced
basis (u0(Y ), u1(Y )), (v0(Y ), v1(Y )) for which the degrees are ≈ d/2. Then for
any r(Y ), s(Y ) ∈ Fq[Y ] with r(Y ) monic we have

(w0(Y ), w1(Y )) =
(
r(Y )u0(Y ) + s(Y )v0(Y ) , r(Y )u1(Y ) + s(Y )v1(Y )

)
∈ Lp(Y )

and thus RHS(Y ) ≡ 0 (mod p(Y )), where

RHS(Y ) = w0(Y ) g1(Y ) + w1(Y ) .

When RHS(Y )/p(Y ) is (d − 1)-smooth, we also check whether LHS(X) is also
(d− 1)-smooth, where

LHS(X) = w0(X
2k)X + w1(X

2k) .
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When both sides are (d − 1)-smooth, we may replace p(Y ) with a product of
irreducibles of degree at most d− 1, and then recurse.

Let Q = qn. As in [16], we assume there is a parameter α such that:

n =
1

α

(
logQ

log logQ

)2/3

, q = exp
(
α

3

√
logQ · log2 logQ

)
. (5)

The three stages to consider are relation generation, linear algebra, and
the descent, whose complexities we denote by LQ(1/3, c1), LQ(1/3, c2) and
LQ(1/3, c3), respectively. The total complexity is therefore LQ(1/3, c), where
c = max{c1, c2, c3}. We next consider degree 2 elimination and then two special
cases of field representation.

4.1 Degree 2 Elimination

We begin with degree 2 elimination as firstly it is the bottleneck in the descent,
and secondly because one can exploit the higher splitting probability of the
polynomials (2) as well. Let p(Y ) be a degree 2 irreducible to be eliminated. A
reduced basis (u0(Y ), u1(Y )), (v0(Y ), v1(Y )) for the lattice Lp(Y ) can be found
with degrees (1, 0), (0, 1). Hence with r normalised to be 1 and s ∈ Fq, we have

(w0(Y ), w1(Y )) =
(
u0(Y ) + s v0(Y ), u1(Y ) + s v1(Y )

)
∈ Lp(Y )

with degrees (1, 1). We have thus

w0(Y ) g1(Y ) + w1(Y ) ≡ 0 (mod p(Y )) ,

and so the remaining factor has degree d1 − 1. The corresponding polynomial
LHS(X) is

w0(X
2k)X + w1(X

2k) , (6)

which is of the form X2k+1+aX2k +bX+c, and as a consequence of Theorem 1,
it splits over Fq with probability approximately 2−3k. However, as with relation
generation, we can also ensure that LHS(X) always splits, with the following
technique. Writing the basis elements explicitly as (Y + u00, u10), (v00, Y + v10),
and with r = 1 and s ∈ Fq the lattice elements are (w0(Y ), w1(Y )) = (Y +u00+
sv00, sY + u10+ sv10). Thus combining (6) and (3), for each B ∈ SB we find the
set of roots s ∈ Fq that satisfy the Fq[S] polynomial

B · (v00S2 + (u00 + v10)S + u10)
2k + (S2k + v00S + u00)

2k+1 = 0 ,

by computing its GCD with Sq + S. This technique extracts all such s alge-
braically for any B, which ensures that LHS(X) automatically splits.

On average one expects there to be one such s ∈ Fq for each B. Then for each
such s we check whether RHS(Y )/p(Y ) splits, which we assume occurs with
probability 1/(d1− 1)!. In general we therefore need sufficiently many B’s in SB

for this to occur with good probability, i.e., that q/23k > (d1 − 1)!.
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4.2 Case 1: n ≈ 2k · d1 and 2k ≈ d1

In this section we will show the following:

Heuristic Result 2 (i). Let q = 2l, let k | l and let n be such that (5) holds.
Then for n ≈ 2k · d1 where 2k ≈ d1, the DLP can be solved with complexity
LQ(1/3, (8/9)

1/3) ≈ LQ(1/3, 0.961).

This is the simplest case we present; however for the sake of completeness and
ease of exposition, we explicitly tailor the derivation presented in §3.2. By our
relation generation method, the l.h.s. polynomial (2) always splits, whereas the
probability of (4) being smooth is approximately 1/

√
n!. Using the standard

approximation logn! ≈ n logn, the logarithm of the probability P of both sides
being smooth is therefore:

logP ≈ −
√
n log

√
n = −1

2

√
n log n .

The size of the sieving space is q3/23k, and since we require q relations we must
have:

q3 P

23k
≥ q , or 2 log q ≥

(3
2
+

√
n

2

)
log n ≈

√
n

2
logn .

Ignoring low order terms, by (5) this is equivalent to

2α ≥ 1

3
√
α
, or α ≥ 6−2/3 . (7)

Given that we require q relations, the expected time to collect these relations is

q

P
= LQ

(
1/3 , α+

1

3
√
α

)
,

and hence c1 = α+ 1
3
√
α
. Since the linear algebra is quadratic in the size of the

factor base, we also have c2 = 2α.
For the descent, as in [16], let the smoothness bound be m = μ

√
n. Then the

probability of finding such an expression is

1 /LQ

(
1/3 ,

1

3μ
√
α

)
.

If the descent is to be no more costly than either the relation generation or the
linear algebra, then we must have

1

3μ
√
α

≤ max
{
α+

1

3
√
α
, 2α
}
. (8)

We also need to ensure three further conditions are satisfied. Firstly, that the cost
of all the special-q eliminations is no more than LQ(1/3,max{c1, c2}). Secondly,
that there are enough (r, s) pairs to ensure a relation is found. And thirdly, that
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during the descent the degrees of the polynomials being tested for smoothness
is really descending.

By the discussion in §4.1, in order to eliminate degree 2 elements we need
q ≥ 23k (d1 − 1)!, or equivalently,

α ≥ 1

3
√
α
, or α ≥ 3−2/3 .

Since for degree 3 special-q LHS(X) will not have the form (2), we need to
check that the smoothness probability does not impose an extra condition on α.
For p(Y ) a degree 3 irreducible to be eliminated, a reduced basis (u0(Y ), u1(Y )),
(v0(Y ), v1(Y )) for the lattice Lp(Y ) can be found with degrees (1, 1), (0, 2). Hence
with r now allowed to be monic of degree one and s ∈ Fq, we have

(w0(Y ), w1(Y )) =
(
(Y + r0)u0(Y ) + s v0(Y ) , (Y + r0)u1(Y ) + s v1(Y )

)
∈ Lp(Y ),

with degrees (2, 2). As before, we have

w0(Y ) g1(Y ) + w1(Y ) ≡ 0 (mod p(Y )) ,

and the corresponding polynomial LHS(X) is

w0(X
2k)X + w1(X

2k) .

Once divided by p(Y ), the degree of the Y -side is d1 − 1 ≈
√
n while the degree

of the X-side is 2k+1 +1 ≈ 2
√
n. The logarithm of the probability that a degree

n polynomial over Fq is m-smooth, for q and n tending to infinity but m fixed,
can be estimated by −(n/m) log (n/m), as shown in [16]. Therefore the log of
the probability P of both sides being 2-smooth is:

logP ≈ −
√
n

2
log

√
n

2
− 2

√
n

2
log

2
√
n

2
≈ −3

2

√
n log

√
n

2
≈ −3

4

√
n logn ,

and therefore P = 1/LQ(1/3,
1

2
√
α
). Since the (r, s) search space has size q2

(which is also the complexity of the linear algebra), we require that

2α ≥ 1

2
√
α

or α ≥ 16−1/3 .

Since 16−1/3 < 3−2/3, this imposes no additional constraint on α. Hence we can
set α = 3−2/3, and one can check that in this case, c1 = c2 = c3 = 2α, giving
complexity

LQ(1/3, (8/9)
1/3) ≈ LQ(1/3, 0.961) ,

which is precisely the complexity Joux obtained using either optimal one-sided,
or advanced pinpointing [13]. Furthermore for this α, (8) implies that μ ≥ 1/2.
For an upper bound, note that for special-q of degree μ

√
n, the degree of RHS(Y )

is about
√
n(1− μ/2), while the degree of LHS(X) is about μn/2, so that μ < 2

ensures that the descent is effective.
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4.3 Case 2: n ≈ 2k · d1 and 2k � d1

In this section we will show the following:

Heuristic Result 2 (ii). Let q = 2l, let k | l and let n be such that (5)
holds. Then for n ≈ 2k · d1 where 2k � d1, the DLP can be solved with
complexity between LQ(1/3, (4/9)

1/3) ≈ LQ(1/3, 0.763) and LQ(1/3, (1/2)
1/3) ≈

LQ(1/3, 0.794).

Observe that interestingly, these two complexities are precisely the square-roots
of the complexities of Coppersmith’ algorithm [5], for which c = (32/9)1/3 and
41/3, the lower of the two being the complexity of the ordinary FFS [1,14].

For n and q of the form (5), we claim that c1 = α, c2 = 2α, and that there
are sufficiently many relations available. In particular, if we write d1 = nβ with
β < 1/2 and 2k = n1−β , then again by our relation generation method, the l.h.s.
polynomial (2) always splits, and the log of the probability P of both sides being
1-smooth is:

logP ≈ −βnβ logn.

By (5) we have

−βnβ logn ≈ − 2β

3αβ

(
logQ

log logQ

)2β/3

(log logQ)

= − 2β

3αβ
(logQ)2β/3 (log logQ)1−2β/3 .

Hence the expected time of the relation generation is

q

P
= LQ(1/3, α) · LQ

(
2β/3,

2β

3αβ

)
.

For β < 1/2 the second term on the right is absorbed by the o(1) term in the
first term, and hence c1 = α and c2 = 2α. The size of the sieving space is q3/23k,
and since we require q relations we must have:

q3 P

23k
≥ q , or LQ(1/3, 2α) ≥ LQ

(
2β/3,

2β

3αβ

)
,

which holds for any α > 0 when β < 1/2.
For the descent (as for Case 1) the cost of finding the first μ

√
n-smooth relation

is LQ(1/3,
1

3μ
√
α
). And as before, for degree 2 special-q, the X-side has the same

form and the condition on q arising from the search space being sufficiently large
is always satisfied, since

q ≥ 23k (d1 − 1)! = n3(1−β) LQ

(
2β/3,

2β

3αβ

)
,

which holds for any α > 0 when β < 1/2.
Hence degree 3 special-q are the bottleneck. As in the first case, with r allowed

to be monic of degree one and s ∈ Fq, the degree of RHS(Y ) is d1 − 1 while the
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degree of LHS(X) is 2k+1 + 1. These degrees are clearly unbalanced. However,
we can employ the following tactic to balance them.

Since g1(Y )2
k

+Y = 0, we let X ′ = g1(Y )2
a

and thus Y = X ′2k−a

. We are free
to choose any 1 < a < k, as an elimination of a special-q using Y and X ′ can be
written in terms of Y and X by powering by a power of 2. With r allowed to be
monic of degree one and s ∈ Fq we have (w0(Y ), w1(Y )) ∈ Lp(Y ) with degrees
(2, 2), and our new expressions become

w0(Y ) g1(Y )2
a

+ w1(Y ) ≡ 0 (mod p(Y )) .

The corresponding polynomial LHS(X ′) is

w0(X
′2k−a

)X ′ + w1(X
′2k−a

) .

Assuming the degrees are (approximately) the same, taking logs we have

k − a+ 1 = log2 (d1) + a , or a = (k + 1− log2 (d1))/2 .

Since a must be an integer, rather than a real variable, we must choose the
nearest integer to this value. In the best case, we can take a to be this exact
value, and consequently both degrees are

√
2d1 2

k/2 =
√
2
√
n. Therefore the log

of the probability P of both sides being 2-smooth is:

logP ≈ −
√
2

2

√
n log

(√2

2

√
n
)
−

√
2

2

√
n log

(√2

2

√
n
)
≈ −

√
2

2

√
n logn ,

and hence P = LQ(1/3,−
√
2

3
√
α
). In order to have a sufficiently large search space

we must therefore have

2α ≥
√
2

3
√
α
, or α ≥ 18−1/3 .

For α = 18−1/3 the descent initiation stipulates that μ ≥ α−3/2/6 = 1/
√
2, and

any μ ∈ [1/
√
2,
√
n) suffices. We therefore have a total complexity of

LQ(1/3, 2α) = LQ(1/3, (4/9)
1/3) ≈ LQ(1/3, 0.763) .

On the other hand when we need to round a to the nearest integer, the degrees
can become unbalanced so that the degree of one side is up to double the degree
of the other. In this case a simple calculation shows that the optimal α is 16−1/3,
giving a complexity of

LQ(1/3, 2α) = LQ(1/3, (1/2)
1/3) ≈ LQ(1/3, 0.794) .

Naturally, for a ratio of degrees in (1/2, 2), we get c-values in between. This
situation is redolent of Coppersmith’s algorithm [5], in which precisely the same
issue arises when forcing a real variable to take integer arguments only.

Note that this degree balancing technique also works for special-q of any
degree, making the descent far more rapid than for Case 1.
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Remark 1. Observe that the best-case complexity with c = (4/9)1/3 is precisely
the complexity of the oracle-assisted Static Diffie-Hellman Problem in finite fields
of small characteristic [17, §3]. Our result may therefore seem unsurprising, since
the complexity of computing the logarithms of the factor base elements is never
more than the complexity of the descent, and is thus effectively free. However,
this reasoning overlooks the fact that we are working with a medium-sized base
field, as opposed to the traditional FFS setting with a very small base field.
In contrast to the result in [17, §3], our complexities depend crucially on our
degree two elimination method, in addition to the fast computation of degree
one logarithms.

5 Application to the DLP in F21971 and F23164

In this section we provide details of our implementation for discrete logarithm
computations in the finite fields with 21971 (as announced in [9]) and 23164 ele-
ments, respectively.

5.1 Discrete Logarithms in F21971

In order to represent the finite field with 21971 elements we first defined Fq = F227

by F2[T ]/(T
27+T 5+T 2+T +1). Denoting by t a root of this irreducible in F227

we defined F21971 = Fq73 by Fq[X ]/(X73 + t). For x a root of X73 + t in Fq73 , we
defined y by y := x8, and we therefore also have x = t/y9.

Since we use a Kummer extension, the elements of the factor base are related
via the generator of the Galois group of Fq73/Fq [16,13], and one can therefore
quotient out by the action of this automorphism to reduce the number of vari-
ables from 227 to ≈ 227/73. As stated in §3, we can take this idea even further.

In fact, x29 = c x for c = t7 ∈ Fq, so the map σ : a → a2
9

is an additional auto-
morphism which preserves the set of degree one factor base elements. The map
σ3 equals the Frobenius a → aq (of order 73) and hence σ generates a group G
of order 219. Considering the orbits of G acting on the factor base elements, we
find 612 864 orbits of full size 219, seven of size 73, and one of size 1, resulting
in N = 612 872 orbits, which gives the number of factor base variables.

Since the degrees of the polynomials relating x and y are nearly balanced, the
complexity of our relation generation falls into Case 1 in §4.2, which matches
Joux’s optimal one-sided, or advanced pinpointing for Kummer extensions. How-
ever, for Kummer extensions for which the degrees are balanced — as opposed
to being very skewed as in §3.4 where 2k � d1 — the advanced pinpointing is
faster in practice, and so we used it for relation generation. We computed approx-
imately 10N relations in about 14 core-hours computation time. For simplicity,
we keep only those relations with distinct factors; this ensures that each entry
of the relation matrix is a power of two, and hence all element multiplications
in the matrix-vector products consist of cyclic rotations modulo 21971 − 1.

After relation generation, we performed structured Gaussian elimination
(SGE) (in a version based on [15]) to reduce the number of variables and thus to
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decrease the cost for the subsequent linear algebra step. During our experiments
we made the observation that additional equations are indeed useful for reduc-
ing the number of variables. However, the benefit of SGE is unclear as the row
weight is being increased. We therefore stopped the SGE at this point, which
resulted in a 528 812× 527 766 matrix of constant row weight 19. The running
time here was about 10 minutes on a single core.

We obtained the following partial factorisation of 21971 − 1:

7 · 732 · 439 · 3943 · 262657 · 2298041 · 10178663167 · 27265714183 · 9361973132609
· 1406791071629857 · 5271393791658529 · 671165898617413417 · 2762194134676763431
· 4815314615204347717321 · 42185927552983763147431373719
· 22068362846714807160397927912339216441
· 781335393705318202869110024684359759405179097 · C338 ,

where C338 is a 338-digit composite. We took as our modulus for the linear
algebra step the product of C338 and the six largest prime factors of the cofactor,
which has 507 digits. We applied a parallel version of Lanczos’ algorithm (see
[18]) using OpenMP on an SGI Altix ICE 8200EX cluster using Intel (Westmere)
Xeon E5650 hex-core processors and GNU Multi-Precision library [11], taking
2220 core-hours in total.

For the DLP we took as (a presumed) generator g = x + 1 ∈ F×
21971 and the

target element was set as usual to be

xπ =

72∑
i=0

τ(�π · qi+1� mod q)xi ,

where τ takes the binary representation of an integer and maps to Fq via 2i  → ti.
We first solved the target logarithm in the subgroups of order the first 11 terms
in the factorisation using either linear search or Pollard’s rho [22].

The descent proceeded by first finding an i ∈ N such that

xπ gi = z1/z2 ,

where both z1 and z2 were 7-smooth. We implemented the descent in such a way
that at the early phase of the algorithm the expected subsequent costs are as
small as possible. This means that we try to find factorisations which consist of
as many small degree factors as possible. We used about 40 core-hours to find
an exponent i with favourable factorisation patterns and found i = 47 147 576
to be a good choice. We then spent about 3 hours to perform the descent down
to degree 3. As stated in §3 and §4, at each stage during the descent, we can
eliminate a given special-q on either the x-side or on the y-side, one of which
may be much faster. Computing the elimination probabilities we found that
eliminating on the y-side is always faster. Indeed, for degree 2 special-q we must
perform this on the y-side, as it is not possible to do so on the x-side, due to the
factorisation patterns of (2).

At this point we were left with 103 special-q of degree 3, as opposed to the
≈ 500 expected with a random 7-smooth split of xπ gi. The expected cost of
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eliminating each of these is 225.1 2-smoothness tests. These special-q elements
were resolved on the same SGI Altix ICE 8200EX cluster in about 850 core-
hours, using Shoup’s Number Theory Library [24], resulting in 1140 special-q
elements of degree 2. Using the technique of §4.1, we reduced the cost of the
elimination of each of these by a factor of 29 = 23k, and all their logarithms were
computed in 5 core-hours, completing the descent.

Thus the running time for solving an instance of the discrete logarithm prob-
lem completely in the finite field F21971 sums to 14+2220+898 = 3132 core-hours
in total. Finally, we found that logg(xπ) equals

119929842153541068660911463719888558451868527554471633523689590076090219879

574578400818114877593394465603830519782541742360236535889937362200771117361

678269423101163403135355522280804113903215273555905901082282248240021928787

820730402856528057309658868827900441683510034408596191242700060128986433752

110002214380289887546061125224587971197872750805846519623140437645739362938

235417361611681082562778045965789270956115892417357940067473968434606299268

294291957378226451182620783745349502502960139927453196489740065244795489583

279208278827683324409073424466439410976702162039539513377673115483439 .

5.2 Discrete Logarithms in F23164

For this case we defined Fq = F228 = F2[T ]/(T
28+T +1). We denote by t a root

of this irreducible in F228 . Furthermore, let Fq113 = Fq[X ]/(X113+ t) and denote
by x a root of X113+ t in F23164 . We defined y by y = x16, and we therefore also
have x = t/y7.

As in the previous section we use the Kummer extension idea of [16,13] to
reduce the size of the factor base. Again we can use a larger group than just the
Galois group of Fq113/Fq, since x214 = c x for c = t9 + t8 + t5 + t4 ∈ Fq and thus

the map σ : a → a2
14

is an additional factor base preserving automorphism. The
map σ2 equals the Frobenius a → aq and hence σ generates a group G of order
226. Considering the orbits of G acting on the factor base elements, we find
N = 1 187 841 orbits in total, which gives the number of factor base variables.

For relation generation, since 16 > 7 the degrees are unbalanced and hence
more favourable toward the use of our relation generation method as given
in §3.2. It produces one relation in just under a second, so that more than N
relations can be found in about 350 core-hours. However, thanks to our choice
of g2, Joux’s pinpointing methods also benefit from the higher splitting proba-
bility as explained by Theorem 1, and so for this Kummer extension, it is still
preferable to use Joux’s advanced pinpointing method, which generates about
10N relations in approximately 2 hours on a single-core.

With the structured Gaussian elimination step in mind we computed approx-
imately 10N relations and performed SGE on this matrix to reduce the number
of variables, where we stopped again at the point when the row weight is being
increased. The result was a 1 066 010× 1 064 991 matrix of constant row weight
25, which constitutes a reduction of 10.3% in the number of variables.
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The full factorisation of 23164−1 (obtained from the Cunningham tables [25])
is:

3 · 5 · 29 · 43 · 1132 · 127 · 227 · 1583 · 3391 · 6329 · 23279 · 48817 · 58309 · 65993 · 85429
· 1868569 · 2362153 · 116163097 · 636190001 · 7920714887 · 54112378027
· 1066818132868207 · 94395483835364237 · 362648335437701461 · 491003369344660409
· 15079116213901326178369 · 10384593717069655112945804582584321
· 1621080768750408973059704415815994507256956989913429764153
· 2549280727345379556480596752292189634269829765250993670402549042422649
· 4785290367491952770979444950472742768748481440405231269246278905154317
· 9473269157079395685675919841491177973411952441563539679986494109833096556
0269355785101434237

· 3089373243567970615946973825901451962366657227182021958407434474458178967
78913944687997002267023826460611132581755004799

· 3324813819582203465990827109237712556609800137361416392155020337627510135
82088798815990776059210975124107935798363184741320908696967121 · P190 ,

where P190 is a 190-digit prime.
We then ran a parallel version of the Lanczos’ algorithm on several nodes

of the SGI Altix ICE 8200EX cluster, using MPI and OpenMP parallelisation
techniques on 144 cores and again the GNU Multi-Precision library [11], taking
85488 core-hours in total. Note that since the nodes we used for the computation
were not very “well-connected,” the total running time would have been reduced
to around 30000 core-hours if we had run our algorithm on 12 cores.

For the DLP we took as our (proven) generator g = x + t+ 1 ∈ F×
23164 and a

target element set as usual to be xπ =
∑113

i=0 τ(�π · qi+1� mod q)xi.
As before the descent proceeded by first finding an i ∈ N such that xπ gi =

z1/z2, where both z1 and z2 were here 16-smooth. At each stage, we choose to
sieve for the special-q on the y-side.

In this case we put even more effort in analysing and optimising the descent in
the earlier stages so that the expected subsequent costs will be minimised. In fact
we associated a cost kd to each factor of degree d arising in the factorisation of the
l.h.s. and r.h.s. polynomials, which we estimated by considering the distribution
of factorisation pattern.

We used about 70 core-hours to find the 16-smooth initial fraction z1/z2, then
spent 210 core-hours for the descent down to degree 4, and used 340 core-hours
for processing the degree 4 polynomials. At this point we had 71 polynomials of
degree 3, which needed an expected number of 234.1 2-smoothness tests to be
resolved. These special-q elements have been processed by the same SGI Altix
ICE 8200EX cluster in about 20972 core-hours, using Shoup’s Number Theory
Library [24], and resulted in 1239 special-q elements of degree 2. Finally, using
the technique in §4.1, these elements were eliminated in about 10 core-hours,
completing the descent.
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The running time for solving an instance of the discrete logarithm problem
completely in the finite field F23164 sums to 350+85488+20972+210+340+10 =
107092 core-hours (as already indicated, this figure would be reduced to around
52000 core-hours if Lanczos’ algorithm was run on 12 cores). Finally, we found
that logg(xπ) equals

241095867208470377990120207726164220907051431328878753338580871702487845657

126883120634910367653233575538571774779776654573178495647701688094481773173

140524389502529386852264636049383546885561763318178634174789337030959840258

271899626361867369755406779988551274283201239012948389915300241739340043916

105822834002897204293036197694065337903255793451858773664350130030722091666

253172541070447948299781221019342860701064036544430331967753114646806335063

300203074234861067471668411998204544319176832353801982221924995804295426167

112306970795960798988644631100037393291558580412406942004555116148790387654

960490008429769544400790081908807239407134157724166048246419405503557398035

897999852593196954031439629768776850999887720870561741913055531864041654707

840433795403753200520891617150254756586728215941551355064840779765682398993

156390000024249110739956919350069293033670423070299581557636664993721204536

86303873671488016409635578117870889230278649164378133 .

Observe that this computation also breaks the elliptic curve DLP for supersingu-
lar curves defined over F2791 , with embedding degree 4. However, since 791 is not
prime, even before this break, such curves would not have been recommended,
due to the potential applicability of Weil descent attacks [8].

6 Conclusion

We have presented and analysed new variants of the medium-sized base field
FFS, for binary fields, which have complexities as low as Lqn(1/3, (4/9)

1/3) for
computing arbitrary logarithms. Furthermore, for fields possessing a subfield of
an appropriate size, we have provided the first ever heuristic polynomial time
algorithm for finding the discrete logarithms of degree one and two elements,
which have both been verified experimentally. To illustrate the efficiency of the
methods, we have successfully solved the DLP in the finite fields F21971 and
F23164 , setting a record for binary fields.

It would be interesting to know whether there are more general theorems on
splitting behaviours for other polynomials arising during the descent, and also
to what extent the known theorems apply to other characteristics.
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1 Introduction

Arguably, one of the most important cryptographic hardness assumptions is
the Decisional Diffie-Hellman (DDH) Assumption. For a fixed additive group �
of prime order q and a generator P of �, we denote by [a] := aP ∈ � the
implicit representation of an element a ∈ �q. The DDH Assumption states that
([a], [r], [ar]) ≈c ([a], [r], [z]) ∈ �3, where a, r, z are uniform elements in �q and
≈c denotes computationally indistinguishability of the two distributions. It has
been used in numerous important applications such as secure encryption [8], key-
exchange [16], hash-proof systems [9], pseudo-random functions [26], and many
more.

Bilinear Groups and the Linear Assumption. Bilinear groups (i.e., groups
�,�T of prime order q equipped with a bilinear map e : �×�→ �T ) [20,3] rev-
olutionized cryptography in recent years and and are the basis for a large number
of cryptographic protocols. However, relative to a (symmetric) bilinear map, the
DDH Assumption is no longer true in the group �. (This is since e([a], [r]) =
e([1], [ar]) and hence [ar] is not longer pseudorandom given [a] and [r].) The
need for an “alternative” decisional assumption in � was quickly addressed with
the Linear Assumption (2-Lin) introduced by Boneh, Boyen, and Shacham [2]. It
states that ([a1], [a2], [a1r1], [a2r2], [r1+r2]) ≈c ([a1], [a2], [a1r1], [a2r2], [z]) ∈ �5,
where a1, a2, r1, r2, z ← �q. 2-Lin holds in generic bilinear groups [2] and it
has virtually become the standard decisional assumption in the group � in
the bilinear setting. It has found applications to encryption [23], signatures
[2], zero-knowledge proofs [17], pseudorandom functions [4] and many more.
More recently, the 2-Lin Assumption was generalized to the (k-Lin)k∈� Assump-
tion family [19,29] (1-Lin = DDH), a family of increasingly (strictly) weaker
Assumptions which are generically hard in k-linear maps.

Subgroup membership problems. Since the work of Cramer and Shoup [9]
it has been recognized that it is useful to view the DDH Assumption as a hard
subgroup membership problem in �2. In this formulation, the DDH Assumption
states that it is hard to decide whether a given element ([r], [t]) ∈ �2 is contained
in the subgroup generated by ([1], [a]). Similarly, in this language the 2-Lin As-
sumption says that it is hard to decide whether a given vector ([r], [s], [t]) ∈ �3

is in the subgroup generated by the vectors ([a1], [0], [1]), ([0], [a2], [1]). The same
holds for the (k-Lin)k∈� Assumption family: for each k, the k-Lin assumption
can be naturally written as a hard subgroup membership problem in �k+1.
This alternative formulation has conceptual advantages for some applications,
for instance, it allowed to provide more instantiations of the original DDH-based
scheme of Cramer and Shoup and it is also the most natural point of view for
translating schemes originally constructed in composite order groups into prime
order groups [14].

Linear Algebra in Bilinear Groups. In its formulation as subgroup de-
cision membership problem, the k-Lin assumption can be seen as the problem
of deciding linear dependence “in the exponent.” Recently, a number of works
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have illustrated the usefulness of a more algebraic point of view on decisional
assumptions in bilinear groups, like the Dual Pairing Vector Spaces of Okamoto
and Takashima [28] or the Subspace Assumption of Lewko [24]. Although these
new decisional assumptions reduce to the 2-Lin Assumption, their flexibility and
their algebraic description have proven to be crucial in many works to obtain
complex primitives in strong security models previously unrealized in the liter-
ature, like Attribute-Based Encryption, Unbounded Inner Product Encryption
and many more.

This work. Motivated by the success of this algebraic viewpoint of decisional
assumptions, in this paper we explore new insights resulting from interpreting
the k-Lin decisional assumption as a special case of what we call a Matrix Diffie-
Hellman Assumption. The general problem states that it is hard to distinguish
whether a given vector in�� is contained in the space spanned by the columns of
a certain matrix [A] ∈ ��×k, where A is sampled according to some distribution
D�,k. We remark that even though all our results are stated in symmetric bilinear
groups, they can be naturally extended to the asymmetric setting.

1.1 The Matrix Diffie-Hellman Assumption

A new framework for DDH-like Assumptions. For integers � > k let D�,k

be an (efficiently samplable) distribution over ��×k
q . We define the D�,k-Matrix

DH (D�,k-MDDH) Assumption as the following subgroup decision assumption:

D�,k-MDDH : [A||Ar] ≈c [A||u] ∈ ��×(k+1), (1)

where A ∈ ��×k
q is chosen from distribution D�,k, r ← �k

q , and u ← ��. The
(k-Lin)k∈� family corresponds to this problem when � = k + 1, and D�,k is the
specific distribution Lk (formally defined in Example 2).

Generic hardness. Due to its linearity properties, the D�,k-MDDH Assump-
tion does not hold in k + 1-linear groups. In Section 3.2 we give two different
theorems which state sufficient conditions for the D�,k-MDDH Assumption to
hold generically in m-linear groups. Theorem 1 is very similar to the Uber-
Assumption [1,6] that characterizes hardness in bilinear groups (i.e., m = 2) in
terms of linear independence of polynomials in the inputs. We generalize this to
arbitrary m using a more algebraic language. This algebraic formulation has the
advantage that one can use additional tools (e.g. Gröbner bases or resultants)
to show that a distribution D�,k meets the conditions of Theorem 1, which is
specially important for large m. It also allows to prove a completely new result,
namely Theorem 2, which states that a matrix assumption with � = k + 1 is
generically hard if a certain determinant polynomial is irreducible.

New Assumptions for bilinear groups. We propose other families of
generically hard decisional assumptions that did not previously appear in the
literature, e.g., those associated to Ck,SCk, ILk defined below. For the most im-
portant parameters k = 2 and � = k+1 = 3, we consider the following examples
of distributions:
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C2 : A =

(
a1 0
1 a2

0 1

)
SC2 : A =

(
a 0
1 a
0 1

)
L2 : A =

(
a1 0
0 a2

1 1

)
IL2 : A =

(
a 0
0 a+ 1
1 1

)
,

for uniform a, a1, a2 ∈ �q as well as U3,2, the uniform distribution in �3×2
q (al-

ready considered in several previous works like [15]). All assumptions are hard
in generic bilinear groups. It is easy to verify that L2-MDDH = 2-Lin. We define
2-Casc := C2-MDDH (Cascade Assumption), 2-SCasc := SC2-MDDH (Symmetric
Cascade Assumption), and 2-ILin := IL2-MDDH (Incremental Linear Assump-
tion). In the full version [12], we show that 2-SCasc ⇒ 2-Casc, 2-ILin ⇒ 2-Lin and
that U3,2-MDDH is the weakest of these assumptions (which extends the results
of [15,30,14] for 2-Lin), while 2-SCasc and 2-Casc seem incomparable to 2-Lin.

Efficiency improvements. As a measure of efficiency, we define the repre-
sentation size RE�(D�,k) of an D�,k-MDDH assumption as the minimal number
of group elements needed to represent [A] for any A ← D�,k. This parameter
is important since it affects the performance (typically the size of public/secret
parameters) of schemes based on a Matrix Diffie-Hellman Assumption. 2-Lin and
2-Casc have representation size 2 (elements ([a1], [a2])), while 2-ILin and 2-SCasc
only 1 (element [a]). Hence our new assumptions directly translate into shorter
parameters for a large number of applications (see the Applications in Section
4). Further, our result points out a tradeoff between efficiency and hardness
which questions the role of 2-Lin as the “standard decisional assumption” over
a bilinear group �.

New Families of Weaker Assumptions. By defining appropriate distribu-

tions Ck, SCk, ILk over �
(k+1)×k
q , one can generalize all three new assumptions

naturally to (k-Casc)k∈�, (k-SCasc)k∈�, and (k-ILin)k∈� with representation size
k, 1, and 1, respectively. Using our results on generic hardness, it is easy to ver-
ify that all three assumptions are generically hard in k-linear groups. Since they
are false in k + 1-linear groups this gives us three new families of increasingly
strictly weaker assumptions. In particular, the (k-SCasc) and (k-ILin) assump-
tion families are of great interest due to their compact representation size of only
1 element.

Relations to Other Standard Assumptions. Surprisingly, the new as-
sumption families can also be related to standard assumptions. The k-Casc
Assumption is implied by the (k + 1)-Party Diffie-Hellman Assumption
((k + 1)-PDDH) [5] which states that ([a1], . . . , [ak+1], [a1 · . . . · ak+1]) ≈c

([a1], . . . , [ak+1], [z]) ∈ �k+2. Similarly, k-SCasc is implied by the k+1-Exponent
Diffie-Hellman Assumption ((k+1)-EDDH) [22] which states that ([a], [ak+1]) ≈c

([a], [z]) ∈ �2.

1.2 Basic Applications

We believe that all schemes based on 2-Lin can be shown to work for any Matrix
Assumption. Consequently, a large class of known schemes can be instantiated
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more efficiently with the new more compact decisional assumptions, while of-
fering the same generic security guarantees. To support this belief, in Section
4 we show how to construct some fundamental primitives based on any Matrix
Assumption. All constructions are purely algebraic and therefore very easy to
understand and prove.

• Public-key Encryption. We build a key-encapsulation mechanism with
security against passive adversaries from any D�,k-MDDH Assumption. The
public-key is [A], the ciphertext consists of the first k elements of [z] =
[Ar], the symmetric key of the last � − k elements of [z]. Passive security
immediately follows from D�,k-MDDH.

• Hash Proof Systems. We build a smooth projective hash proof system
(HPS) from any D�,k-MDDH Assumption. It is well-known that HPS im-
ply chosen-ciphertext secure encryption [9], password-authenticated key-ex-
change, zero-knowledge proofs, and many other things.

• Pseudo-Random Functions. Generalizing the Naor-Reingold PRF [26,4],
we build a pseudo-random function PRF from any D�,k-MDDH Assumption.
The secret-key consists of transformation matrices T1, . . . ,Tn (derived from
independent instances Ai,j ← D�,k) plus a vector h of group elements. For
x ∈ {0, 1}n we define PRFK(x) =

[∏
i:xi=1 Ti · h

]
. Using the random self-

reducibility of the D�,k-MDDH Assumption, we give a tight security proof.
• Groth-Sahai Non-Interactive Zero-Knowledge Proofs. We show how
to instantiatiate the Groth-Sahai proof system [17] based on any D�,k-MDDH
Assumption. While the size of the proofs depends only on � and k, the CRS
and verification depends on the representation size of the Matrix Assump-
tions. Therefore our new instantiations offer improved efficiency over the
2-Lin-based construction from [17]. This application in particular highlights
the usefulness of the Matrix Assumption to describe in a compact way many
instantiations of a scheme: instead of having to specify the constructions for
the DDH and the 2-Lin assumptions separately [17], we can recover them as
a special case of a general construction.

More efficient proofs for CRS dependent languages. In Section 5
we provide more efficient NIZK and NIWI proofs for concrete natural languages
which are dependent on the common reference string. More specifically, the com-
mon reference string of the D�,k-MDDH instantiation of Groth-Sahai proofs of
Section 4.4 includes as part of the commitment keys the matrix [A], where
A ∈ ��×k

q ← D�,k. We give more efficient proofs for several languages related to
A. Although at first glance the languages considered may seem quite restricted,
they naturally appear in many applications, where typically A is the public key
of some encryption scheme and one wants to prove statements about cipher-
texts. More specifically, we obtain improvements for several kinds of statements,
namely:

• Subgroup membership proofs. We give more efficient proofs in the
language LA,�,P := {[Ar], r ∈ �k

q} ⊂ ��. To quantify some concrete im-
provement, in the 2-Lin case, our proofs of membership are half of the size
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of a standard Groth-Sahai proof and they require only 6 groups elements.
We stress that this improvement is obtained without introducing any new
computational assumption. To see which kind of statements can be proved
using our result, note that a ciphertext is a rerandomization of another one
only if their difference is in LA,�,P . The same holds for proving that two
commitments with the same key hide the same value or for showing in a pub-
licly verifiable manner that the ciphertext of our encryption scheme opens
to some known message [m]. This improvement has a significant impact on
recent results, like [25,13], and we think many more examples can be found.

• Ciphertext validity. The result is extended to prove membership in the
language LA,z,�,P = {[c] : c = Ar + mz} ⊂ ��, where z ∈ ��

q is some
public vector such that z /∈ Im(A), and the witness of the statement is
(r, [m]) ∈ �k

q × �. The natural application of this result is to prove that
a ciphertext is well-formed and the prover knows the message [m], like for
instance in [11].

• Plaintext equality. We consider Groth-Sahai proofs in a setting in which
the variables of the proofs are committed with different commitment keys,
defined by two matrices A ← D�1,k1 ,B ← D′

�2,k2
. We give more efficient

proofs of membership in the language LA,B,�,P := {([cA], [cB]) : [cA] =
[Ar + (0, . . . , 0,m)T ], [cB] = [Bs + (0, . . . , 0,m)T ], r ∈ �

k1
q , s ∈ �

k2
q } ⊂

��1 × ��2 . To quantify our concrete improvements, the size of the proof
is reduced by 4 group elements with respect to [21]. As in the previous
case, this language appears most naturally when one wants to prove equality
of two committed values or plaintexts encrypted under different keys, e.g.,
when using Naor-Yung techniques to obtain chosen-ciphertext security [27].
Concretely, our results apply also to the encryption schemes in [18,7,10].

2 Notation

For n ∈ �, we write 1n for the string of n ones. Moreover, |x| denotes the length
of a bitstring x, while |S| denotes the size of a set S. Further, s ← S denotes the
process of sampling an element s from S uniformly at random. For an algorithm
A, we write z ← A(x, y, . . .) to indicate that A is a (probabilistic) algorithm that
outputs z on input (x, y, . . .). If A is a matrix we denote by aij the entries and
ai the column vectors.

Let Gen be a probabilistic polynomial time (ppt) algorithm that on input 1λ

returns a description G = (�, q,P) of a cyclic group� of order q for a λ-bit prime
q and a generator P of �. More generally, for any fixed k ≥ 1, let MGenk be a
ppt algorithm that on input 1λ returns a description MGk = (�,�Tk

, q, ek,P),
where � and �Tk

are cyclic additive groups of prime-order q, P a generator of
�, and ek : �k → �Tk

is a (non-degenerated, efficiently computable) k-linear
map. For k = 2 we define PGen := MGen2 to be a generator of a bilinear group
PG = (�,�T , q, e,P).

For an element a ∈ �q we define [a] = aP as the implicit representation
of a in �. Similarly, [a]Tk

= aPTk
is its implicit representation in �Tk

, where
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PTk
= ek(P , . . . ,P) ∈ �Tk

. More generally, for a matrix A = (aij) ∈ �n×m
q we

define [A] and [A]Tk
as the implicit representations of A computed elementwise.

When talking about elements in � and �Tk
we will always use this implicit

notation, i.e., we let [a] ∈ � be an element in � or [b]Tk
be an element in �Tk

.
Note that from [a] ∈ � it is generally hard to compute the value a (discrete
logarithm problem in �). Further, from [b]Tk

∈ �Tk
it is hard to compute the

value b ∈ �q (discrete logarithm problem in �Tk
) or the value [b] ∈ � (pairing

inversion problem). Obviously, given [a] ∈ �, [b]Tk
∈ �Tk

, and a scalar x ∈ �q,
one can efficiently compute [ax] ∈ � and [bx]Tk

∈ �Tk
.

Also, all functions and operations acting on� and�Tk
will be defined implic-

itly. For example, when evaluating a bilinear pairing e : �×�→ �T in [a], [b] ∈
� we will use again our implicit representation and write [z]T := e([a], [b]). Note
that e([a], [b]) = [ab]T , for all a, b ∈ �q.

3 Matrix DH Assumptions

3.1 Definition and Basic Properties

Definition 1. Let �, k ∈ � with � > k. We call D�,k a matrix distribution if
it outputs (in poly time, with overwhelming probability) matrices in ��×k

q of full
rank k. We define Dk := Dk+1,k.

For simplicity we will also assume that, wlog, the first k rows of A ← D�,k form
an invertible matrix.

We define the D�,k-matrix problem as to distinguish the two distributions
([A], [Aw]) and ([A], [u]), where A ← D�,k, w ← �k

q , and u ← ��
q.

Definition 2 (D�,k-Matrix Diffie-Hellman Assumption D�,k-MDDH). Let
D�,k be a matrix distribution. We say that the D�,k-Matrix Diffie-Hellman (D�,k-
MDDH) Assumption holds relative to Gen if for all ppt adversaries D,

AdvD�,k,Gen(D) = Pr[D(G, [A], [Aw]) = 1]− Pr[D(G, [A], [u]) = 1] = negl(λ),

where the probability is taken over G = (�, q,P) ← Gen(1λ), A ← D�,k,w ←
�k

q ,u ← ��
q and the coin tosses of adversary D.

Definition 3. Let D�,k be a matrix distribution. Let A0 be the first k rows of

A and A1 be the last � − k rows of A. The matrix T ∈ �(�−k)×k
q defined as

T = A1A
−1
0 is called the transformation matrix of A.

We note that using the transformation matrix, one can alternatively define the
advantage from Definition 2 as

AdvD�,k,Gen(D) = Pr[D(G,
[

A0

TA0

]
,

[
h

Th

]
) = 1]− Pr[D(G,

[
A0

TA0

]
, [u]) = 1],
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where the probability is taken over G = (�, q,P) ← Gen(1λ), A ← D�,k,h ←
�k

q ,u ← ��−k
q and the coin tosses of adversary D.

We can generalize Definition 2 to the m-fold D�,k-MDDH Assumption as fol-
lows. Given W ← �k×m

q for some m ≥ 1, we consider the problem of distinguish-

ing the distributions ([A], [AW]) and ([A], [U]) where U ← ��×m
q is equivalent

to m independent instances of the problem (with the same A but different wi).
This can be proved through a hybrid argument with a loss of m in the reduction,
or, with a tight reduction (independent of m) via random self-reducibility.

Lemma 1 (Random self reducibility). For any matrix distribution D�,k,
D�,k-MDDH is random self-reducible. Concretely, for any m,

Advm
D�,k,Gen

(D′) ≤

⎧⎨⎩m ·AdvD�,k,Gen(D) 1 ≤ m ≤ �− k

(�− k) ·AdvD�,k,Gen(D) +
1

q − 1
m > �− k

,

where

Advm
D�,k,Gen(D

′) = Pr[D′(G, [A], [AW]) = 1]− Pr[D′(G, [A], [U]) = 1],

and the probability is taken over G = (�, q,P) ← Gen(1λ), A ← D�,k,W ←
�k×m

q ,U ← ��×m
q and the coin tosses of adversary D′.

The proof is given in the full version [12].
We remark that, given [A], [z] the above lemma can only be used to re-

randomize the value [z]. In order to re-randomize the matrix [A] we need that
one can sample matrices L and R such that A′ = LAR looks like an indepen-
dent instance A′ ← D�,k. In all of our example distributions we are able to do
this.

Due to its linearity properties, the D�,k-MDDH assumption does not hold in
(k + 1)-linear groups.

Lemma 2. Let D�,k be any matrix distribution. Then the D�,k-Matrix Diffie-
Hellman Assumption is false in (k + 1)-linear groups.

This is proven in the full version [12] by computing determinants in the target
group.

3.2 Generic Hardness of Matrix DH

Let D�,k be a matrix distribution as in Definition 1, which outputs matrices A ∈
��×k

q . We call D�,k polynomial-induced if the distribution is defined by picking

t ∈ �d
q uniformly at random and setting ai,j := pi,j(t) for some polynomials

pi,j ∈ �q[T ] whose degree does not depend on λ. E.g. for 2-Lin from Section 1.1,
we have a1,1 = t1, a2,2 = t2, a2,1 = a3,2 = 1 and a1,2 = a3,1 = 0 with t1, t2 (called
a1, a2 in Section 1.1) uniform.

We set fi,j = Ai,j − pi,j and gi = Zi−
∑

j pi,jWj in the ring R = �q[A1,1, . . . ,
A�,k,Z,T ,W ]. Consider the ideal I0 generated by all fi,j ’s and gi’s and the ideal
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I1 generated only by the fi,j ’s in R. Let Jb := Ib ∩ �q[A1,1, . . . , A�,k,Z]. Note
that the equations fi,j = 0 just encode the definition of the matrix entry ai,j by
pi,j(t) and the equation gi = 0 encodes the definition of zi in the case z = Aω.
So, informally, I0 encodes the relations between the ai,j ’s, zi’s, ti’s and wi’s in
([A], [z] = [Aω]) and I1 encodes the relations in ([A], [z] = [u]). For b = 0
(z = Aω) and b = 1 (z uniform), Jb encodes the relations visible by considering
only the given data (i.e. the Ai,j ’s and Zj ’s).

Theorem 1. Let D�,k be a polynomial-induced matrix distribution with notation
as above. Then the D�,k-MDDH assumption holds in generic m-linear groups if
and only if (J0)≤m = (J1)≤m, where the ≤m means restriction to total degree at
most m.

Proof. Note that J≤m captures precisely what any adversary can generically
compute with polynomially many group and m-linear pairing operations. For-
mally, this is proven by restating the Uber-Assumption Theorem of [1,6] and its
proof more algebraically.

For a given matrix distribution, the condition (J0)≤m = (J1)≤m can be verified
by direct linear algebra or by elimination theory (using e.g. Gröbner bases). For
the special case � = k+1, we can actually give a criterion that is simple to verify
using determinants:

Theorem 2. Let Dk be a polynomial-induced matrix distribution, which out-
puts matrices ai,j = pi,j(t) for uniform t ∈ �d

q . Let d be the determinant of
(pi,j(T )‖Z) as a polynomial in Z,T .

1. If the matrices output by Dk always have full rank (not just with overwhelm-
ing probability), even for ti from the algebraic closure �q, then d is irreducible
over �q.

2. If all pi,j have degree at most one and d is irreducible over �q and the total
degree of d is k+1, then the Dk-MDDH assumption holds in generic k-linear
groups.

This theorem and generalizations for non-linear pi,j and non-irreducible d are
proven in the full version [12] using tools from algebraic geometry.

3.3 Examples of D�,k-MDDH

Let D�,k be a matrix distribution and A ← D�,k. Looking ahead to our appli-
cations, [A] will correspond to the public-key (or common reference string) and
[Aw] ∈ �� will correspond to a ciphertext. We define the representation size
RE�(D�,k) of a given polynomial-induced matrix distribution D�,k with linear
pi,j ’s as the minimal number of group elements it takes to represent [A] for any
A ∈ D�,k. We will be interested in families of distributions D�,k such that that
Matrix Diffie-Hellman Assumption is hard in k-linear groups. By Lemma 2 we
obtain a family of strictly weaker assumptions. Our goal is to obtain such a
family of assumptions with small (possibly minimal) representation.
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Example 1. Let U�,k be the uniform distribution over ��×k
q .

The next lemma says that U�,k-MDDH is the weakest possible assumption
among all D�,k-Matrix Diffie-Hellman Assumptions. However, U�,k has poor
representation, i.e., RE�(U�,k) = �k.

Lemma 3. Let D�,k be any matrix distribution. Then D�,k-MDDH ⇒
U�,k-MDDH.

Proof. Given an instance ([A], [Aw]) of D�,k, if L ∈ ��×�
q and R ∈ �k×k

q are two
random invertible matrices, it is possible to get a properly distributed instance of
the U�,k-matrix DH problem as ([LAR], [LAw]). Indeed, LAR has a distribution
statistically close to the uniform distributionin �k×�

q , while LAw = LARv for

v = R−1w. Clearly, v has the uniform distribution in �k
q .

Example 2 (k-Linear Assumption/k-Lin). We define the distribution Lk as
follows

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 0 . . . 0 0
0 a2 . . . 0 0

0 0
. . . 0

...
. . .

...
0 0 . . . 0 ak
1 1 . . . 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ �(k+1)×k

q ,

where ai ← �
∗
q . The transformation matrix T ∈ �

1×k
q is given as T =

( 1
a1
, . . . , 1

ak
). Note that the distribution (A,Aw) can be compactly written as

(a1, . . . , ak, a1w1, . . . , akwk, w1+ . . .+wk) = (a1, . . . , ak, b1, . . . , bk,
b1
a1

+ . . .+ bk
ak
)

with ai ← �∗
q , bi, wi ← �q. Hence the Lk-Matrix Diffie-Hellman Assumption is

an equivalent description of the k-linear Assumption [2,19,29] with RE�(Lk) = k.

It was shown in [29] that k-Lin holds in the generic k-linear group model and
hence k-Lin forms a family of increasingly strictly weaker assumptions. Further-
more, in [5] it was shown that 2-Lin ⇒ BDDH.

Example 3 (k-Cascade Assumption/k-Casc). We define the distribution Ck as
follows

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 0 . . . 0 0
1 a2 . . . 0 0

0 1
. . . 0

...
. . .

...
0 0 . . . 1 ak
0 0 . . . 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where ai ← �∗
q . The transformation matrix T ∈ �1×k

q is given as T = (± 1
a1·...·ak

,

∓ 1
a2·...·ak

. . . , 1
ak
). Note that (A,Aw) can be compactly written as (a1, . . . , ak,

a1w1, w1 + a2w2 . . . , wk−1 + akwk, wk) = (a1, . . . , ak, b1, . . . , bk,
bk
ak

− bk−1

ak−1ak
+

bk−2

ak−2ak−1ak
− . . .± b1

a1·...·ak
). We have RE�(Ck) = k.
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Matrix A bears resemblance to a cascade which explains the assumption’s name.
Indeed, in order to compute the right lower entry wk of matrix (A,Aw) from
the remaining entries, one has to “descent” the cascade to compute all the other
entries wi (1 ≤ i ≤ k − 1) one after the other.

A more compact version of Ck is obtained by setting all ai := a.

Example 4. (Symmetric k-Cascade Assumption) We define the distribution SCk

as Ck but now ai = a, where a ← �∗
q . Then (A,Aw) can be compactly written as

(a, aw1, w1+aw2, . . . , wk−1+awk, wk) = (a, b1, . . . , bk,
bk
a − bk−1

a2 +
bk−2

a3 −. . .± b1
ak ).

We have RE�(Ck) = 1.

Observe that the same trick cannot be applied to the k-Linear assumption k-Lin,
as the resulting Symmetric k-Linear assumption does not hold in k-linear groups.
However, if we set ai := a + i − 1, we obtain another matrix distribution with
compact representation.

Example 5. (Incremental k-Linear Assumption) We define the distribution ILk

as Lk with ai = a+ i − 1, for a ← �q. The transformation matrix T ∈ �1×k
q is

given as T = ( 1a , . . . ,
1

a+k−1 ). (A,Aw) can be compactly written as (a, aw1, (a+

1)w2, . . . , (a+ k− 1)wk, w1 + . . .+wk) = (a, b1, . . . , bk,
b1
a + b2

a+1 + . . .+ bk
a+k−1 ).

We also have RE�(ILk) = 1.

The last three examples need some work to prove its generic hardness.

Theorem 3. k-Casc, k-SCasc and k-ILin are hard in generic k-linear groups.

Proof. We need to consider the (statistically close) variants with ai ∈ �q rather
that �∗

q . The determinant polynomial for Ck is d(a1, . . . , ak, z1, . . . , zk+1) =

a1 · · · akzk+1 − a1 · · · ak−1zk + . . . + (−1)kz1, which has total degree k + 1.
As all matrices in Ck have rank k, because the determinant of the last k
rows in A is always 1, by Theorem 2 we conclude that k-Casc is hard in k-
linear groups. As SCk is a particular case of Ck, the determinant polynomial
for SCk is d(a, z1, . . . , zk+1) = akzk+1 − ak−1zk + . . . + (−1)kz1. As before,
by Theorem 2, k-SCasc is hard in k-linear groups. Finally, in the case of IL,
d(a, z1, . . . , zk+1) = a(a+1) · · · (a+k−1)

(
zk−1− z1

a − z2
a+1 − . . .− zk

a+k−1

)
, which

has total degree k + 1. It can be shown that all matrices in ILk have rank k.
Indeed, matrices in Lk can have lower rank only if at least two parameters ai
are zero, and this cannot happen to ILk matrices. Therefore, as in the previous
cases, k-ILin is hard in k-linear groups.

For relations among this new security assumptions we refer the reader to the full
version [12].

4 Basic Applications

Basic cryptographic definitions (key-encapsulation, hash proof systems, and
pseudo-random functions) are given in the full version [12].
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4.1 Public-Key Encryption

Let Gen be a group generating algorithm and D�,k be a matrix distribution
that outputs a matrix over ��×k

q such that the first k-rows form an invertible
matrix with overwhelming probability. We define the following key-encapsulation
mechanism KEMGen,D�,k

= (Gen,Enc,Dec) with key-space K = ��−k.

– Gen(1λ) runs G ← Gen(1λ) and A ← D�,k. Let A0 be the first k rows of A

andA1 be the last �−k rows ofA. Define T ∈ �(�−k)×k
q as the transformation

matrix T = A1A
−1
0 . The public/secret-key is

pk = (G, [A] ∈ ��×k), sk = (pk ,T ∈ �(�−k)×k
q )

– Encpk picks w ← �k
q . The ciphertext/key pair is

[c] = [A0w] ∈ �k, [K] = [A1w] ∈ ��−k

– Decsk ([c] ∈ �k) recomputes the key as [K] = [Tc] ∈ ��−k.

Correctness follows by the equation T · c = T · A0w = A1w. The public key
contains RE�(D�,k) and the ciphertext k group elements.

Theorem 4. Under the D�,k-MDDH Assumption KEMGen,D�,k
is IND-CPA

secure.

Proof. By the D�,k Matrix Diffie-Hellman Assumption, the distribution of
(pk , [c] , [K]) = ((G, [A]), [Aw]) is computationally indistinguishable from
((G, [A]), [u]), where u ← ��

q.

4.2 Hash Proof System

Let D�,k be a matrix distribution. We build a universal1 hash proof system
HPS = (Param,Pub,Priv), whose hard subset membership problem is based on
the D�,k Matrix Diffie-Hellman Assumption.

– Param(1λ) runs G ← Gen(1λ) and picks A ← D�,k. Define

C = ��, V = {[c] = [Aw] ∈ �� : w ∈ �k
q}.

The value w ∈ �k
q is a witness of [c] ∈ V . Let SK = ��

q, PK = �k, and

K = �. For sk = x ∈ ��
q, define the projection μ(sk) = [x
A] ∈ �k. For

[c] ∈ C and sk ∈ SK we define

Λsk ([c]) := [x
 · c] . (2)

The output of Param is params =
(
S=(G, [A]),K, C,V ,PK,SK, Λ(·)(·), μ(·)

)
.

– Priv(sk , [c]) computes [K] = Λsk ([c]).
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– Pub(pk , [c],w). Given pk = μ(sk ) = [x
A], [c] ∈ V and a witness w ∈
�k

q such that [c] = [A · w] the public evaluation algorithm Pub(pk , [c],w)

computes [K] = Λsk ([c]) as [K] = [(x
 ·A) ·w] .

Correctness follows by (2) and the definition of μ. Clearly, under the D�,k-Matrix
Diffie-Hellman Assumption, the subset membership problem is hard in HPS.

We now show that Λ is a universal1 projective hash function. Let [c] ∈ C \ V .
Then the matrix (A||c) ∈ ��×(k+1)

q is of full rank and consequently (x
 ·A||x
 ·
c) ≡ (x
A||u) for x ← �k

q and u ← �q. Hence, (pk , Λsk ([c]) = ([x
A], [x
c]) ≡
([x
A], [u]) = ([x
A], [K]).

4.3 Pseudo-random Functions

Let Gen be a group generating algorithm and D�,k be a matrix distribution that
outputs a matrix over ��×k

q such that the first k-rows form an invertible matrix
with overwhelming probability. We define the following pseudo-random function
PRFGen,D�,k

= (Gen,F) with message space {0, 1}n. For simplicity we assume
that �− k divides k.

– Gen(1λ) runs G ← Gen(1λ), h ∈ �k
q , and Ai,j ← D�,k for i = 1, . . . , n

and j = 1, . . . , t := k/(� − k) and computes the transformation matrices

Ti,j ∈ �(�−k)×k
q of Ai,j ∈ ��×k

q (cf. Definition 3). For i = 1, . . . , n define the
aggregated transformation matrices

Ti =

⎛⎜⎝Ti,1

...
Ti,t

⎞⎟⎠ ∈ �k×k
q

The key is defined as K = (G,h,T1, . . . ,Tn).
– FK(x) computes

FK(x) =

[ ∏
i:xi=1

Ti · h
]
∈ �k.

We prove the following theorem in the full version [12].

Theorem 5. Under the D�,k-MDDH Assumption PRFGen,D�,k
is a secure

pseudo-random function.

4.4 Groth-Sahai Non-interactive Zero-Knowledge Proofs

Groth and Sahai gave a method to construct non-interactive witness-indistin-
guishable (NIWI) and zero-knowledge (NIZK) proofs for satisfiability of a set
of equations in a bilinear group PG. (For formal definitions of NIWI and NIZK
proofs we refer to [17].) The equations in the set can be of different types, but
they can be written in a unified way as

n∑
j=1

f(aj , yj) +
m∑
i=1

f(xi, bi) +
m∑
i=1

n∑
j=1

f(xi, γijyj) = t, (3)
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where A1, A2, AT are �q-modules, x ∈ Am
1 , y ∈ An

2 are the variables, a ∈ An
1 ,

b ∈ Am
2 , Γ = (γij) ∈ �m×n

q , t ∈ AT are the constants and f : A1×A2 → AT is a
bilinear map. More specifically, equations are of either one these types i) Pairing
product equations, with A1 = A2 = �, AT = �T , f([x], [y]) = [xy]T ∈ �T ,
ii) Multi-scalar multiplication equations, with A1 = �q, A2 = �, AT = �,
f(x, [y]) = [xy] ∈ � or iii) Quadratic equations in �q, with A1 = A2 = AT = �q,
f(x, y) = xy ∈ �q.

Overview. In the GS proof system the prover gives to the verifier a commit-
ment to each element of the witness (i.e., values of the variables that satisfy
the equations) and some additional information, the proof. Commitments and
proof satisfy some related set of equations computable by the verifier because of
their algebraic properties. To give new instantiations we need to specify the dis-
tribution of the common reference string, which includes the commitment keys
and some maps whose purpose is roughly to give some algebraic structure to
the commitment space. All details are postponed to the full version [12], here
we only specify how to commit to scalars x ∈ �q to give some intuition of the
results in Sections 5.1, 5.2 and 5.3.

Commitments. The commitment key [U] = ([u1], . . . , [uk+1]) ∈ ��×(k+1) is
either [U] = [A||Aw] in the soundness setting (binding key) or [A||Aw − z]
in the WI setting (hiding key), where A ← D�,k, w ← �k

q , and z ∈ ��
q, z /∈

Span(u1, . . . ,uk) is a fixed, public vector. Clearly, the two types of commitment
keys are computationally indistinguishable under the D�,k-MDDH Assumption.
To commit to a scalar x ∈ �q using randomness s ← �k

q we define the maps

ι′ : �q → ��
q and p′ : �� → �q as

ι′(x) = x·(uk+1+z), p′([c]) = ξ
c, defining com′
[U],z(x; s) := [ι′(x)+As] ∈ ��,

where ξ ∈ ��
q is an arbitrary vector such that ξ
A = 0 and ξ
 · z = 1. On

a binding key (soundness setting) we have that p′ ◦ [ι′] is the identity map on
�q and p′([ui]) = 0 for all i = 1 . . . k so the commitment is perfectly binding.
On a hiding key (WI setting), ι′(x) ∈ Span(u1, . . . ,uk) for all x ∈ �q, which
implies that the commitment is perfectly hiding. Note that, given [U] and x,
ι′(x) might not be efficiently computable but [ι′(x)] is, which is enough to be
able to compute com′(x; s).

Efficiency. We emphasize that for D�,k = L2 and z = (0, 0, 1)
 and for D�,k =
DDH and z = (0, 1)
 (in the natural extension to asymmetric bilinear groups),
we recover the 2-Lin and the SXDH instantiations of [17]. While the size of
the proofs depends only on � and k, both the size of the CRS and the cost of
verification increase with RE�(D�,k). In particular, in terms of efficiency, the
SC2 Assumption is preferable to the 2-Lin Assumption.
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5 More Efficient Proofs for Some CRS Dependent
Languages

5.1 More Efficient Subgroup Membership Proofs

Let [U] be the commitment key defined in last section as part of a D�,k-MDDH
instantiation, for some A ← D�,k. In this section we show a new technique to
obtain proofs of membership in the language LA,PG := {[Ar], r ∈ �k

q} ⊂ ��.

Intuition. Our idea is to exploit the special algebraic structure of commitments
in GS proofs, namely the observation that if [Φ] = [Ar] ∈ LA,PG then [Φ] =
com[U](0; r). Therefore, to prove that [Φ] ∈ LA,PG , we proceed as if we were
giving a GS proof of satisfability of the equation x = 0 where the randomness
used for the commitment to x is r. In particular, no commitments have to be
given in the proof, which results in shorter proofs. To prove zero-knowledge we
rewrite the equation x = 0 as x · δ = 0. The real proof is just a standard GS
proof with the commitment to δ = 1 being ι′(1) = com[U](1;0), while in the
simulated proof the trapdoor allows to open ι′(1) as a commitment of 0, so we
can proceed as if the equation was the trivial one x · 0 = 0, for which it is easy
to give a proof of satisfiability. For the 2-Lin Assumption, our proof consists of
only 6 group elements, whereas without using our technique the proof consists
of 12 elements. In the full version [12] we prove the following theorem.

Theorem 6. Let A ← D�,k, where D�,k is a matrix distribution. There exists
a Non-Interactive Zero-Knowledge Proof for the language LA,PG , with perfect
completeness, perfect soundness and composable zero-knowledge of k� group ele-
ments based on the D�,k-MDDH Assumption.

Applications. Think of [A] as part of the public parameters of the hash proof
system of Section 4.2. Proving that a ciphertext is well-formed is proving mem-
bership in LA,PG . For instance, in [25] Libert and Yung combine a proof of
membership in 2-Lin with a one-time signature scheme to obtain publicly veri-
fiable ciphertexts. With our result, we reduce the size of their ciphertexts from
15 to 9 group elements. We stress that in our construction the setup of the CRS
can be built on top of the encryption key so that proofs can be simulated with-
out the decryption key, which is essential in their case. Another application is
to show that two ciphertexts encrypt the same message under the same public
key, a common problem in electronic voting or anonymous credentials. There
are many other settings in which subgroup membership problems appear, for
instance when proving that a certain ciphertext is an encryption of [m].

5.2 More Efficient Proofs of Validity of Ciphertexts

The techniques of the previous section can be extended to prove the validity
of a ciphertext. More specifically, given A ← D�,k, and some vector z ∈ ��

q,
z /∈ Im(A), we show how to give a more efficient proof of membership in:

LA,z,PG = {[c] : c = Ar +mz} ⊂ ��,
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where (r, [m]) ∈ �k
q ×� is the witness.

This is also a proof of membership in the subspace of �� spanned by the
columns of [A] and the vector [z], but the techniques given in Section 5.1 do not
apply. The reason is that part of the witness, [m], is in the group� and not in �q,
while to compute the subgroup membership proofs as described in Section 5.1
all of the witness has to be in �q. In particular, since GS are non-interactive
zero-knowledge proofs of knowledge when the witnesses are group elements, the
proof guarantees both that the c is well-formed and that the prover knows [m].

In a typical application, [c] will be the ciphertext of some encryption scheme,
in which case r will be the ciphertext randomness and [m] the message. Deciding
membership in this space is trivial when Im(A) and z span all of ��

q, so in
particular our result is meaningful when � > k + 1. In the full version [12] we
prove the following theorem:

Theorem 7. Let D�,k be a matrix distribution and let A ← D�,k. There exists
a Non-Interactive Zero-Knowledge Proof for the language LA,z,PG of (k + 2)�
group elements with perfect completeness, perfect soundness and composable
zero-knowledge based on the D�,k-MDDH Assumption.

5.3 More Efficient Proofs of Plaintext Equality

The encryption scheme derived from the KEM given in Section 4.1 corresponds
to a commitment in GS proofs. That is, if pkA = (G, [A] ∈ ��×k), for some
A ← D�,k, given r ∈ �k

q ,

EncpkA
([m]; r) = [c] = [Ar+(0, . . . , 0,m)
] = [Ar+m ·z] = com[A||Aw]([m]; s),

where s
 := (r
, 0) and z := (0, . . . , 0, 1)
. Therefore, given two (potentially
distinct) matrix distributions D�1,k1 , D′

�2,k2
and A ← D�1,k1 ,B ← D′

�2,k2
, prov-

ing equality of plaintexts of two ciphertexts encrypted under pkA, pkB, corre-
sponds to proving that two commitments under different keys open to the same
value. Our proof will be more efficient because we do not give any commit-
ments as part of the proof, since the ciphertexts themselves play this role. More
specifically, given [cA] = EncpkA

([m]) and [cB] = EncpkB
([m]) we will treat

[cA] as a commitment to the variable [x] ∈ A1 = � and [cB] as a commit-
ment to the variable [y] ∈ A2 = � and prove that the quadratic equation
e([x], [1]) · e([−1], [y]) = [0]T is satisfied. The zero-knowledge simulator will open
ι1([1]), ι2([−1]) as commitments to the [0] variable and simulate a proof for the
equation e([x], [0]) · e([0], [y]) = [0]T , which is trivially satisfiable and can be sim-
ulated. More formally, let r ∈ �k1

q , s ∈ �k2
q ,m ∈ �q, z1 ∈ ��1

q , and z1 /∈ Im(A)

and z2 ∈ ��2
q , z2 /∈ Im(B). Define:

LA,B,z1,z2,PG := {([cA], [cB ]) : cA = Ar +mz1, cB = Bs+ z2} ⊂ ��1 ×��2 .

In the full version [12] we prove:
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Theorem 8. Let D�1,k1 and D′
�2,k2

be two matrix distributions and let A ←
D�1,k1 ,B ← D′

�2,k2
. There exists a Non-Interactive Zero-Knowledge Proof for

the language LA,B,z1,z2,PG of �1(k2 + 1) + �2(k1 + 1) group elements with per-
fect completeness, perfect soundness and composable zero-knowledge based on the
D�1,k1-MDDH and the D�2,k2-MDDH Assumption.

Applications. In [21], we reduce the size of the proof by 4 group elements
from 18 to 22, while in [18] we save 9 elements although their proof is quite
inefficient altogether. We note that even if both papers give a proof that two
ciphertexts under two different 2-Lin public keys correspond to the same value,
the proof in [18] is more inefficient because it must use GS proofs for pair-
ing product equations instead of multi-scalar multiplication equations. Other
examples include [7,10]. We note that our approach is easily generalizable to
prove more general statements about plaintexts, for instance to prove mem-
bership in L′

A,B,z1,z2,PG := {([cA], [cB]) : cA = Ar + (0, . . . , 0,m)
, cB =

Bs + (0, . . . , 0, 2m)
, r ∈ �k1
q , s ∈ �k2

q } ⊂ ��1 × ��2 or in general to show
that some linear relation between a set of plaintexts encrypted under two differ-
ent public-keys holds.
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Abstract. A long-standing open problem in cryptography is proving the
existence of (deterministic) hard-core predicates for the Diffie-Hellman
problem defined over finite fields. In this paper, we make progress on
this problem by defining a very natural variation of the Diffie-Hellman
problem over Fp2 and proving the unpredictability of every single bit of
one of the coordinates of the secret DH value.

To achieve our result, we modify an idea presented at CRYPTO’01 by
Boneh and Shparlinski [4] originally developed to prove that the LSB of
the elliptic curve Diffie-Hellman problem is hard. We extend this idea in
two novel ways:
1. We generalize it to the case of finite fields Fp2 ;
2. We prove that any bit, not just the LSB, is hard using the list de-

coding techniques of Akavia et al. [1] (FOCS’03) as generalized at
CRYPTO’12 by Duc and Jetchev [6].

In the process, we prove several other interesting results:
• Our result also hold for a larger class of predicates, called segment

predicates in [1];
• We extend the result of Boneh and Shparlinski to prove that every

bit (and every segment predicate) of the elliptic curve Diffie-Hellman
problem is hard-core;

• We define the notion of partial one-way function over finite fields Fp2

and prove that every bit (and every segment predicate) of one of the
input coordinates for these functions is hard-core.

Keywords: Hard-Core Bits, Diffie-Hellman Problem, Finite Fields,
Elliptic Curves.

1 Introduction

A long-standing open problem in cryptography is proving the existence of (de-
terministic) hard-core predicates for the Diffie-Hellman problem defined over
finite fields. In this paper we make progress on this problem by defining a very
natural extension of the Diffie-Hellman problem over Fp2 and proving that a
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large class of predicates (including every single bit of one of the coordinates) are
unpredictable under the assumption that this problem is hard.

In their seminal paper that introduced public-key cryptography [5] Diffie and
Hellman defined the following key exchange protocol, which works in arbitrary
finite cyclic groups. Let G be such a group, generated by g of order n. Two
parties, Alice and Bob, want to establish a secret value. Alice chooses a random
value a ∈ Zn and sends the value A = ga to Bob. Similarly Bob chooses a random
value b ∈ Zn and sends the value B = gb to Alice. At this point they share the
common Diffie-Hellman secret value K = gab = Ab = Ba.

The Computational Diffie-Hellman Assumption (CDH) over the group G in-
formally states that no efficient algorithm can compute K = gab when given
only g, A = ga, B = gb. The hardness of computing the entire value K, however
does not rule out an efficient way to compute some of the bits of K, or even
just predict them with a probability better than a random guess. This property
is very important because without it, Alice and Bob do not have any guaran-
tee about the “pseudorandomness” of any bit of the secret value K, and those
are the properties needed by K in order to be used as a secret key in a sub-
sequent cryptographic scheme. This problem is usually addressed by making a
much stronger assumption on the hardness of the Diffie-Hellman problem: the
so-called Decisional Diffie-Hellman Assumption (DDH) states that the value K
is computationally indistinguishable from a random element of G. While the
DDH guarantees that the entire value of K is pseudorandom, there are groups
G where the DDH is false, even when the CDH is still conjectured to be hard.

Ideally, however, one would like to prove that certain bits (or more generally,
certain predicates) of the value K are unpredictable, when given ga and gb,
simply under the CDH assumption. Such results were established quite early for
other conjectured hard-problems (e.g., Blum and Micali’s result on the hardness
of discrete log bits [3] and Alexi at al. work on the hardness of the RSA input
bits [2]). However for the case of the Diffie-Hellman problem no such result has
been proven (except for the result by Boneh and Shparlinksi [4] in a slightly
different model and which we discuss below). The only hard-core predicates
known for the Diffie-Hellman function are the generic “randomized” predicates
which work over any computationally hard problem (e.g., the Goldreich-Levin
and Näslund hard-core bits [8, 10]).

Hard-Core Predicates. Let π : G → {±1} be a predicate1 defined over
G. To prove that π is hard-core for the CDH problem one has to construct a
reduction from guessing π better than at random, to solving the CDH problem.
More specifically, assume we have an oracle Ω which on input g, ga, gb outputs
the correct π(gab) with probability (taken over the choice of a, b) substantially
better than2 1/2, then there is an efficient algorithm A which invokes Ω and
solves the CDH problem.
1 For reasons that will become clearer in the technical section of the paper, we adopt

the convention that predicates map a value to ±1 instead of {0, 1}.
2 Let’s assume for now that π is balanced. In the rest of the paper we take into account

the possible bias of π.
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Note that a crucial step of this reduction is to “correct” the answers of the oracle
Ω which are guaranteed to be right only slightly more than half of the times. This
step requires randomizing the queries to Ω while still keeping its answers useful to
the solution of the underlying CDH problem. This proves somewhat difficult, due
to the limited random self-reducibility of the Diffie-Hellman problem.
Randomizing the Problem Representation. Boneh and Shparlinksi in [4]
achieved a breakthrough for the elliptic curve Diffie-Hellman problem, i.e., the
CDH problem defined over the group G of points of an elliptic curve. They
were able to prove that the least significant bit of each coordinate of the Diffie-
Hellman secret value K is hard-core, when the probability space of the oracle Ω
also includes a random choice for the representation of the curve.

More specifically: let p be a prime and let E be an elliptic curve defined over
Fp, the finite field with p elements. To represent E we use a short Weierstrass
equation W : y2 = x3+ax+b, with a, b ∈ Fp and 4a3+27b2 �= 0. Let W (E) be the
set of Weierstrass equations representing E. It is well known that W (E) is defined
by the equations Wλ of the form y2 = x3+λ4ax+λ6b for λ ∈ F×

p . If Q = (Qx, Qy)
is a point satisfying W then the point Qλ = (Qλ,x = λ2Qx, Qλ,y = λ3Qy)
satisfies Wλ. Furthermore, the points of E form a group under a certain operation,
and the mapping Φλ : E → E defined as Φλ(Q) = Qλ is an isomorphism with
respect to such group operation over E.

Let G be a cyclic subgroup of E generated by a point P . Switching to additive
notation for the group operation, the elliptic curve CDH (EC-CDH) assumption
says that given W, P, aP, bP it is hard to compute abP .

In [4] they prove that if there exists an oracle Ω that works on a random
representation of E, i.e., such that

Pr
λ,a,b

[
Ω(λ, P, aP, bP ) = LSB([Φλ(abP )]x)

]
> 1/2 + ε

for a non-negligible value ε, then it is possible to solve EC-CDH on any curve (a
similar result holds for the y-coordinate of abP ).

1.1 Our Results
Our main technical contribution is to show that the Boneh-Shparlinski idea of
randomizing the representation of the underlying group for the CDH problem
can be also applied to the case of finite fields Fp2 .

For a given prime p, there are many different fields Fp2 , but they are all
isomorphic to each other. Let h(x) = x2 + h1x + h0 be a monic irreducible
polynomial of degree 2 in Fp. It is well known that Fp2 is isomorphic to the field
Fp[x]/(h), and therefore elements of Fp2 can be written as linear polynomials:
if g ∈ Fp2 then g = g0 + g1x and addition and multiplication are performed as
polynomial operations modulo h. In the following, given g ∈ Fp2 we denote with
[g]i the coefficient of the degree-i term.

Let I2(p) be the set of monic irreducible polynomials of degree 2 in Fp. For
h, ĥ ∈ I2(p) we know that there exists an (easily computable) isomorphism

φh,ĥ : Fp[x]/(h) → Fp[x]/(ĥ).



Hard-Core Predicates for a Diffie-Hellman Problem over Finite Fields 151

Finally, denote with g a generator of the multiplicative group of Fp2 which is
known to be cyclic.

Our first attempt was to use the approach from [4] over Fp2 . That is, we
hoped to prove that given an oracle Ω which, on input random values ga, gb and
a random description of Fp2 , outputs LSB

([
gab

]
i

)
, then we can solve the CDH

over Fp2 . Unfortunately there are several technical complications with directly
applying the approach of [4] to the finite field case, one of them being the fact
that representations of an elliptic curve are in bijective correspondence with
Fp allowing them to be represented by a single element of Fp. Conversely the
representations of Fp2 are in bijective correspondence with I2(p) which has ≈
p2/2 elements.

A new Diffie-Hellman Problem. To solve these technical problems we had
to define the following variant of the CDH problem over Fp2 : informally we
say that the Partial-CDH problem is hard in Fp2 if no efficient algorithm given
g, A = ga, B = gb ∈ Fp2 can compute K =

[
gab

]
1 ∈ Fp (i.e., the coefficient of

the degree 1 term of gab).
We note that the Partial-CDH problem is obviously weaker than the regular

CDH problem over Fp2 , but that it still allows Alice and Bob to agree on a
common secret value in Fp, via the traditional Diffie-Hellman protocol.

Our Main Result. Assuming the hardness of the Partial-CDH problem we
prove that for a large class of predicates π (described below – it includes every
individual bit of K), the bit π(K) is unpredictable given ga, gb and a random
representation of Fp2 . More specifically, we prove that if there exists an oracle
Ω such that for any h ∈ I2(p) it holds that

Pr
ĥ,a,b

[
Ω

(
h, ĥ, g, ga, gb

)
= π

([
φh,ĥ

(
gab

)]
1

)]
> 1/2 + ε

for a non-negligible value ε, then it is possible to solve Partial-CDH on Fp[x]/(h).
We may define an analogous problem for the general case of Fpt with any

t > 1. The Partial-CDH problem is defined as outputting the coefficient of the
term of degree t − 1. However our hard-core results hold only for the quadratic
(Fp2 ) case. See the conclusion (Section 6) for a discussion.

Our Techniques. To achieve our result we divert from the techniques used
in [4] in another fundamental way. To prove that the predicate π is hard-core for
the Partial-CDH problem in Fp2 we use the list-decoding approach pioneered by
Akavia et al. [1] as extended by Duc and Jetchev in [6] to the case of prediction
oracles which also take as input a random representation of the underlying group.

We describe the approach in detail in Section 3. For now we just remind the
reader that as defined originally in [1] this approach allows one to prove the
security of so-called segment predicates which include both the most and least
significant bits of the input. In [9] the technique was extended to work for any
input bit. So the class of predicates P described above includes every individual
bit of the input and also segment predicates as defined in [1].
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Additional Results. Since the list-decoding approach works for a larger class
of predicates, we obtain two additional results:

1. In the elliptic curve scenario, we are able to extend the [4] result for EC-CDH
to any predicate π as above, not just the LSB.

2. For the finite field case we prove that the predicates π are hard-core for a
much larger class of conjectured computationally hard problems. Consider
a function f : Fp2 → S for an arbitrary set S. We say that f is a finite
field-based partial one-way function (FFB-POWF) if the following conditions
hold:

• f is “independent” of the representation used for Fp2 (see Section 5.2 for
a precise definition);

• no efficient algorithm, given f(x) can compute [x]1, i.e., the coefficient
of the degree 1 term of x.

Then we can prove that if f is a FFB-POWF then it is hard to predict
π([x]1) better than at random (over a random representation of Fp2) when
given only f(x).

Interpretation of Our Results. One way to interpret our results is to
think of the group representation as part of the input to the computational
hard problem (be it a one-way function, or the CDH problem) being used. This
means that our results do not apply to the case when the Diffie-Hellman key
exchange protocol is performed over a fixed representation of the finite field (or
the elliptic curve). Rather it is necessary for Alice and Bob to choose a random
representation (an irreducible polynomial for Fp2 or a Weierstrass equation for
the curve E) over which to run the protocol.

1.2 Paper Organization

Section 2 reviews some relevant background, particularly the notion of Fourier
transform for codes. In Section 3, we cover the list-decoding approach to prove
hard-core predicates [1] and its generalization to the case of elliptic curves from
[6]. Sections 4 and 5 present our original results. First, as a warm-up we prove
that every bit of the EC-CDH problem is hard-core. Then we present our main
result on the bit security of Partial-CDH over finite fields, and its extension to
FFB-POWF. Finally, we conclude in Section 6 with some discussion about our
results and a list of interesting problems left open by our work.

2 Background

2.1 Fourier Transforms

Let Zn denote the additive group of integers modulo n. For any two functions
f, g : Zn → C, their inner product is defined as 〈f, g〉 = 1

n

∑
x∈Zn

f(x)g(x).
Let C(Zn) denote the vector space formed by all functions f : Zn → C. The
�2-norm of f on C(Zn) is defined as ‖f‖2 =

√〈f, f〉. A character of Zn is a
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homomorphism χ : Zn → C×, such that ∀x,y∈Znχ(x + y) = χ(x)χ(y). These
characters are defined by χα(x) = ωαx

n , where α ∈ Zn and ωn = e2πi/n. The
set of all characters form a group Ẑn. Since the members of Ẑn are orthogonal
and |Ẑn| = |Zn|, they form an orthogonal basis, termed the Fourier basis, for
C(Zn). The Fourier transform f̂ : Ẑn → C of f is defined as f̂(χ) = 〈f, χ〉. The
Fourier expansion of f is written as

∑
χ∈Ẑn

f̂(χ)χ. For Γ ⊂ Ẑn the restriction of
f to Γ is the function f|Γ : Zn → C defined by f|Γ =

∑
χ∈Γ f̂(χ)χ. The Fourier

coefficients of f are the coefficients f̂(χ) in the Fourier basis Ẑn. The weight of
a Fourier coefficient is denoted by |f̂(χ)|2. Definition 2.1 formalizes the notion
of heavy characters with respect to f .

Definition 2.1 (τ-heavy Characters). Let τ ∈ R+ be a threshold and f :
Zn → C be an arbitrary function. We say a character χ ∈ Ẑn is τ-heavy if the
weight of its corresponding Fourier coefficient is at least τ . The set of all such
character is denoted by Heavyτ (f), i.e.,

Heavyτ (f) = {χ ∈ Ẑn : |f̂(χ)|2 ≥ τ}.

2.2 Codes and Their Properties

In what follows, we report a few useful known definitions [6] and lemmata [1]
about codes over Zn. As in [6], we will regard Zn-codes as associating an element
x ∈ Zn to a Zn-codeword Cx, which we will in turn see interchangeably as a
function Cx : Zn → {±1} or as a length-n sequence of {±1}.

Definition 2.2 (ε-concentrated Function). We say a function f : Zn →
{±1} is Fourier ε-concentrated if there exist a size poly(n, 1/ε), ε > 0, set of
characters Γ ⊂ Ẑn such that

∥∥f − f|Γ
∥∥

2 ≤ ε. We say a function is Fourier
concentrated if it is ε-concentrated for every ε > 0.

Definition 2.3 (ε-concentrated Code). We say a code C = {Cx : Zn →
{±1}} is ε-concentrated if all its codewords Cx are Fourier ε-concentrated. We
say a code is Fourier concentrated if it is ε-concentrated for every ε > 0.

Definition 2.4 (Code Recoverability). We say a code C = {Cx : Zn →
{±1}} is recoverable if there exists an algorithm that, given as input a threshold
τ and a character χ ∈ Ẑn, produces a list of all elements x associated with code-
words Cx for which χ is a τ-heavy coefficient, that is, {x ∈ Zn : χ ∈ Heavyτ (Cx)},
in time polynomial in log n and 1/τ .

The following two results appear in [1]. Lemma 2.5 shows that, in a concentrated
code C, any noisy version C̃x of codeword Cx share at least one heavy coefficient
with Cx. Theorem 2.6 shows that one can efficiently learn all the heavy characters
of any function when given query access to it. Therefore having query access to
C̃x (which in our case is obtained by querying the prediction oracle Ω), one can
learn at least one heavy coefficient of Cx, and that if the code is also recoverable,
then one can recover x.
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Lemma 2.5 (Lem. 1 of [1]). Let f, g : Zn → {±1} such that f is Fourier
concentrated and, for some ε > 0,

Pr
x∈Zn

f(x) = g(x) ≥ majf + ε,

where majf denotes the bias of the function f , i.e., majf = max{b=±1} Prx∈Zn

f(x) = b. Then there exist a threshold τ such that 1/τ is polynomial in ε and
log n, and there exists a character χ �= 0 heavy for f and g: χ ∈ Heavyτ (f) ∧
Heavyτ (g).

Theorem 2.6 (Thm. 6 of [1]). There exists a randomized learning algorithm
over Zn that, given query access to a function w : Zn → {±1}, τ > 0 and 0 <
δ < 1, returns a list of O(1/τ) characters containing Heavyτ (w) with probability
at least 1 − δ. The probability is taken over the random coins of the algorithm,
whose running time is

Õ

(
log(n) ln2 (1/δ)

τ5.5

)
.

An overview of the above learning algorithm [1] is provided in Appendix A of
the full version [7].

3 Hard-Core Predicates by List Decoding

In this section, we review the work of Akavia et al. [1] on how to prove that
certain predicates are hard-core for a one-way function f using list decoding of a
particular error-correcting code. We also summarize the extensions by Duc and
Jetchev [6] to the case of elliptic-curve based one-way functions.

Let f : Zn → S be a one-way function and let y = f(x) for x ∈ Zn. Let
also π : Zn → {±1} denote a predicate (with the convention that a 0 bit is
encoded as +1). Finally we denote with βπ the bias of the predicate π, i.e.,
βπ = max{b=±1} Prx[π(x) = b].

The goal is to prove that π is a hard-core predicate for the function f . The
proof goes as usual by contradiction by assuming that there exists an oracle
Ω which, when queried on f(x), returns a bit b which is equal to π(x) with
probability βπ + ε for a non-negligible ε, and then using Ω to invert f , i.e., find
x given y.

To achieve this goal, Akavia et al. in [1] define a multiplication code

C = {Cx : Zn → {±1}}x∈Zn, where Cx(λ) = π(λx).

In order for their proof to work this code needs the following properties:
Accessibility: Given y = f(x), it must be possible to obtain a “noisy” version

C̃x of the codeword Cx, i.e., one that agrees with the correct one with prob-
ability βπ + ε for a non-negligible ε. In [1], this is done by assuming that the
one-way function has some homomorphic property, i.e given y = f(x) and
λ ∈ Zn it is possible to compute yλ = f(λx) (modular exponentiation has
this property). Then, by querying Ω on yλ one gets the desired accessibility
property;
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Concentration: Every codeword Cx must be a Fourier concentrated function.
Remember that according to the definition above this means that for every ε
there exists a polynomial (in log n and ε−1) set Γ of Fourier characters, such
that ‖Cx − Cx,Γ ‖ ≤ ε (where Cx,Γ is the restriction of Cx to the Fourier
characters in Γ );

Recoverability: There exists an algorithm that on input a Fourier character
χ and a threshold τ , outputs a list Lχ containing all the values x ∈ Zn such
that χ is τ -heavy for Cx. The algorithm runs in polynomial (in log n and
τ−1) time, which in particular means that the size of Lχ is also “small”.

Concentration and recoverability depends on the choice of the predicate π. In [1],
the notion of segment predicates is defined and shown to be sufficient for the
purpose. Later Morillo and Rafols in [9] prove that any individual input bit
yields a concentrated and recoverable code (we review this in Appendix B of the
full version [7]). We assume π to be one of such predicates in the following.

If the code C has the above properties then it is possible to prove that π is a
hard-core predicate. Assume we have an oracle Ω which when queried on f(x)
returns a bit b which is equal to π(x) with probability βπ + ε where ε = 1/poly(�)
(where � = |n|). We need to show how to use Ω to invert f .

The inversion works as follows. On input y = f(x), the oracle Ω allows us to
access a “noisy” version C̃x of Cx, i.e., such that Prλ[Cx(λ) = C̃x(λ)] > βπ+ε. By
applying Lemma 2.5 we know that there exists a threshold τ which is polynomial
in ε and at least one Fourier character χ which is τ -heavy for both Cx and
C̃x. Using the learning algorithm described in Theorem 2.6, we obtain a list
containing all the τ -heavy Fourier characters for C̃x; for each such character we
use the recovery property to create a polynomial size list of possible pre-images
for y which because of Lemma 2.5 must necessarily include x. The correct x
can be identified by evaluating the OWF f over all the possible candidates and
comparing with y. Details can be found in [1] (in any case, in Sections 4 and 5
we present the details of this algorithm as it applies to our results).

3.1 Accessibility via Elliptic Curve Isomorphisms
Taking the result of [1] as a starting point, and using techniques first developed
in [4], Duc and Jetchev [6] show how to obtain the accessibility property in a
different way, when the one-way function is defined over the group G of points
of an elliptic curve. Their result does not require the one-way function f to have
some homomorphic property; on the other hand it requires the oracle to work
over a random description of the curve.

Let p be a prime and let E be an elliptic curve defined over Fp. To represent
E we use a short Weirstrass equation W : y2 = x3 + ax + b, with a, b ∈ (Fp) and
4a3 + 27b2 �= 0. Let W (E) be the set of Weirstrass equations representing E: so
W ∈ W (E). It is well known that W (E) is defined by the equations Wλ of the
form y2 = x3 + λ4ax + λ6b for λ ∈ F×

p . If Q = (Qx, Qy) is a point satisfying W
then the point Qλ = (Qλ,x = λ2Qx, Qλ,y = λ3Qy) satisfies Wλ. It is not hard to
see that the mapping Φλ : E → E defined as Φλ(Q) = Qλ is an isomorphism
with respect to the group operation over E.
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Boneh and Shparlinski were the first to note that this isomorphism gives raise
to a natural extension of the prediction oracle Ω, by requiring that the input
distribution for Ω also include λ. Following this idea, the oracle in [6] takes as
input f(Q) where f is a one-way function defined over the group E, and also
a value λ (i.e., a representation Wλ of E). The oracle returns a bit b such that
b = π(Qλ,x) with probability βπ +ε (for a non-negligible ε) where the probability
is not only over the choice of Q (and the internal random coins of Ω) but also
over the choice of λ ∈ F×

p .
As defined, the prediction oracle Ω gives noisy access to the quadratic code-

word CQ(λ) = π(λ2Qx), which would complicate matters (in particular it makes
it hard to prove concentration and recovery, see [6] for a discussion). To apply
the techniques of [1], we need noisy access to the multiplication code CQ : Fp →
{±1} defined as CQ(λ) = π(λQx).

Following [4] again, Duc and Jetchev defined a modified oracle Ω′ which
queries Ω if λ is a square in F×

p , otherwise tosses a βπ-biased coin. It is not
hard to see that if Ω had advantage ε, then Ω′ has advantage ε/2 (see [4]).

Using Ω′, the generic approach on [1] shows that π is a hard-core predicate for
any one-way function f defined over E, provided that the output of f does not
depend on the Weirstrass equation used to describe E (in other words that the
function f is defined over the group of points, irrespective of its representation).
Duc and Jetchev call such a function an elliptic curve-based one-way function
(ECB-OWF) and discuss the application of their result to bilinear pairings de-
fined over elliptic curves, which are indeed a conjectured example of ECB-OWF.

4 Hard-Core Predicates for the Diffie-Hellman Problem
over Elliptic Curves

In this section, we show our first original result: if the Diffie-Hellman problem
over elliptic curves is hard, then every bit (and every segment predicate) of a
secret Diffie-Hellman value is unpredictable. This generalizes the result of Boneh
and Shparlinski [4] which holds only for the least significant bit.

For a security parameter �, consider an instance generator E which on input
1� outputs E� an elliptic curve defined over Fp�

where p� is a �-bit prime, such
that G� is a cyclic subgroup of E� (under the standard group operation defined
over the curve points) generated by a point P�. In the following, we will drop
the suffix � when it is clear from the context. We also use the additive notation
for the group operation over E, therefore every point Q ∈ G can be written as
Q = aP for some a ∈ {1, . . . , |G|}.

Assumption 4.1. We say that the Diffie-Hellman problem over E is hard if for
every polynomial time machine A, we have that the probability

Pr
[
A(E�, P�, aP�, bP�) = abP� | E� ← E(

1�
)
; a, b ← {1, . . . , |G|}]

is negligible in �.
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For every point Q ∈ E we denote with Qx the x-coordinate of Q. As before
we denote with W (E) the set of short Weirstrass equations describing a curve
E; recall that each W ∈ W (E) can be uniquely associated with a λ ∈ F×

p which
gives rise to the isomorphism Φλ defined in the previous section.

Let Bk : Fp → {±1} denote the k-th bit predicate and let βk be the bias
of Bk. We now state our first main theorem. Intuitively it says that under As-
sumption 4.1, every bit of the binary expansion of the x-coordinate of abP is
unpredictable (e.g., pseudorandom) for a random representation of the curve E.

Theorem 4.2. Under Assumption 4.1, for any polynomial time machine Ω,∣∣Pr
[
Ω(λ, P, aP, bP ) = Bk([Φλ(abP )]x) | λ ← F×

p ; a, b ← {1, . . . , |G|}] − βk

∣∣
must be negligible.

The intuition of the proof is as follows. The crucial observation is that the tech-
niques of Duc and Jetchev [6] apply not just to ECB-OWFs but to any computa-
tion which “respects” the isomorphism Φλ defined by a change in the Weirstrass
representation of the curve. The Diffie-Hellman problem is one such problem since
applying the Diffie-Hellman transform to Φλ(aP ), Φλ(bP ) yields the value Φλ(abP )
– indeed this is at the basis of the result of [4]. Therefore, an oracle Ω contradict-
ing Theorem 4.2 on input aP, bP and a curve Wλ defined by a parameter λ ∈ F×

p

would output a bit equal to Bk

(
λ2[abP ]x

)
with non-negligible advantage. This al-

lows us to construct a multiplication code with the required properties and apply
the framework of [1] to prove that the predicate is hard-core.

Remark 4.3. The extension to segment predicates follow from using the concen-
tration and recoverability arguments for those predicates as presented in [1].

Proof. Assume that there exists an oracle Ω such that the quantity∣∣Pr
[
Ω(λ, P, aP, bP ) = Bk([Φλ(abP )]x) | λ ← F×

p ; a, b ← {1, . . . , |G|}] − βk

∣∣
is larger than a non-negligible quantity ε.

From this oracle we build a modified oracle Ω′ which queries Ω if λ is a square
in F×

p , otherwise tosses a βk-biased coin. It is not hard to see [4] that if Ω had
advantage ε, then Ω′ has advantage ε/2. We now show how to use Ω′ to break
Assumption 4.1.

Let E be an elliptic curve defined by an equation W ∈ W (E) over Fp and
let G be a cyclic subgroup of |E| generated by the point P . Given P, aP, bP we
want to compute Q = abP with non-negligible probability.

Consider the codeword:

CQ : Fp → {±1} defined as CQ(λ) = Bk(λQx).

The following properties hold for CQ.

Accessibility: The oracle Ω′ gives us access to a noisy version C̃Q of this code-
word defined as C̃Q = Ω′(λ, P, aP, bP ). Because Ω′ has advantage ε/2 we
know that Prλ[CQ(λ) = C̃Q(λ)] > βk + ε/2.
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Concentration: The codeword CQ is a Fourier concentrated function. Indeed
for a threshold τ the τ -heavy characters of CQ must belong to the set

ΓQ,τ = {χβ : β = αQx mod p for α ∈ Γτ },

where Γτ is a set of size O(τ−2) containing the τ -heavy coefficients of the
function Bk. We refer the reader to [6, 9] for a proof of this statement and
also the definition of Γτ which shows that the elements of Γτ can be easily
enumerated. See also Appendix B of the full version [7].

Recoverability. Given a Fourier character χβ we want to find a set Lβ con-
taining all the points Q such that χβ is τ -heavy for CQ. If χβ is τ -heavy for
CQ then χβ ∈ ΓQ,τ and therefore Qx = βα−1 mod p for α ∈ Γτ , therefore

Lβ = {Q : Qx = βα−1 mod p for α ∈ Γτ }.

By applying Lemma 2.5 we know that there exists a threshold τ which is poly-
nomial in ε and at least one Fourier character χ which is τ -heavy for both CQ

and C̃Q.
We then invoke Theorem 2.6 and use the learning algorithm of [1] to learn a

polynomial-size list LQ of all the τ -heavy Fourier characters for C̃Q. For each
such character χβ ∈ LQ we use the recovery property to create a polynomial size
list Lβ of possible values for Q. Let L = ∪χβ ∈LQLβ ; this is a polynomial-size set
and because of Lemma 2.5 it must necessarily include Q.

More specifically, on input E, P, aP, bP and with access to Ω, the following
algorithm produces a polynomial size list of points in E which is guaranteed to
contain Q with probability 1 − δ:

1. Let τ be the threshold determined by Lemma 2.5 ; note that τ−1 is polyno-
mial in � = |p|, since ε−1 is.

2. Learn the polynomial-size set LQ containing all τ -heavy Fourier characters
of C̃Q, using the learning algorithm in [1], which is correct with probability
1 − δ. This algorithms uses oracle Ω′ to obtain the required query access to
C̃x. By applying Lemma 2.5, we know that there exists at least one Fourier
character χ which is τ -heavy for CQ and χ ∈ LQ.

3. Use the recovery algorithm to construct a polynomial-size list of candidates
values for Q. For each χβ ∈ LQ let

Lβ = {R ∈ E : χβ is τ -heavy for CR}
= {R ∈ E : Rx = βα−1 mod p for α ∈ Γ }.

Let L = ∪χβ ∈LQLβ. Note that L’s size is polynomial in � and that Q ∈ L
with probability 1 − δ.

The algorithm runs in polynomial time, since the learning algorithm of [1] is
efficient and all the enumerations in the algorithm are over polynomial-size lists.

To contradict Assumption 4.1 at this point, it would be sufficient to choose
a random point in L. The probability to select the correct point Q is 1/|L| and
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therefore the algorithm outputs the correct Q with probability (1− δ)/|L| which
is non-negligible since |L| is of polynomial-size.

Another option is to use the above algorithm as a subroutine in Shoup’s “self-
corrector” for the Diffie-Hellman problem (Theorem 7 in [11]). Shoup shows how
an algorithm A that runs in time TA and produces a list of m points, which
contains the correct Diffie-Hellman value with probability > 7/8 can be easily
converted into an algorithm B that output only the correct Diffie-Hellman value
with overwhelming probability and runs in time TA� + poly(m, �).

5 Hard-Core Predicates for the Diffie-Hellman Problem
over Finite Fields

In this section, we state and prove our main result: after defining a natural
(though weaker) variation of the Diffie-Hellman problem over finite fields Fpt for
t > 1, we prove that in the case of quadratic extensions (t = 2), this problem
admits a large class of hard-core predicates, including every single bit of one of
the coordinates of the secret value.

For a given prime p, there are many different fields Fp2 , but they are all
isomorphic to each other. Let h(x) = x2 + h1x + h0 be a monic irreducible
polynomial of degree 2 in Fp. It is well known that Fp2 is isomorphic to the field
Fp[x]/(h), and therefore elements of Fp2 can be written as linear polynomials:
if g ∈ Fp2 then g = g0 + g1x and addition and multiplication are performed as
polynomial operations modulo h. In the following, given g ∈ Fp2 we denote with
[g]i the coefficient of the degree-i term.

Let I2(p) be the set of monic irreducible polynomials of degree 2 in Fp. For
h, ĥ ∈ I2(p) we know that there exists an (easily computable) isomorphism

φh,ĥ : Fp[x]/(h) → Fp[x]/(ĥ).

Finally, denote with g a generator of the multiplicative group of Fp2 which is
known to be cyclic.

A new Diffie-Hellman Problem. Denote with g the generator of the mul-
tiplicative group of Fp2 which is known to be cyclic. We define the following
variant of the CDH problem over Fp2 : informally we say that the Partial-CDH
problem is hard in Fp2 if no efficient algorithm given g, A = ga, B = gb ∈ Fp2

can compute K =
[
gab

]
1 ∈ Fp, for any representation of Fp2 .

More formally, for a security parameter �, consider an instance generator
F which on input 1� outputs p� an �-bit prime. Let g� be a generator of the
multiplicative group of the finite field Fp2

�
. In the following, we will drop the

suffix � when it is clear from the context.

Assumption 5.1. We say that the Partial Diffie-Hellman problem over F is
hard if for every polynomial time machine A, we have that for all h� ∈ I2(p�)
the following probability is negligible in �:

Pr
[
A

(
p�, h�, g�, ga

� , gb
�

)
=

[
gab

�

]
1 | p� ← F(

1�
)
; a, b ← {

1, . . . , p2
� − 1

}]
.
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Note that A gets as input a representation h� of the field, and that A’s advantage
must be negligible for all representations.

We now state our second main theorem. We show that, when given an oracle
Ω which predicts the kth bit of the degree-1 coefficient of the Diffie-Hellman
secret with non-negligible advantage (where the probability is taken over the
input pair), as well as the representation of the field, then one can efficiently
solve the Partial Diffie-Hellman problem with non-negligible probability.

Theorem 5.2. Under Assumption 5.1, for any polynomial time machine Ω we
have that the following quantity must be negligible for all h ∈ I2(p):∣∣∣ Pr

[
Ω

(
h, ĥ, g, ga, gb

)
= Bk

([
φh,ĥ

(
gab

)]
1

)
| ĥ ← I2(p); a, b ← {

1, . . . , p2 − 1
}]

− βk

∣∣∣.
The proof of Theorem 5.2 appears in Section 5.1. Here we give an informal
intuition of the proof.

Our goal is to construct a code similar to that of [6], which must be accessible
by querying Ω over many different representation of the field. For an element
α ∈ Fp2 , and a fixed h ∈ I2(p), a natural definition for a codeword is as follows:

Cα

(
ĥ

)
= Bk

([
φh,ĥ(α)

]
1

)
. (1)

This code is accessible using Ω, however it is defined over I2(p), and it is not
immediately seen to be a multiplication code like the ones used in [1, 6]. Note,
however, that the predicate Bk is evaluated only on the first coordinate of φh,ĥ(α).
In this case, it holds that

[
φh,ĥ(α)

]
1 = λ[α]1 for some λ ∈ F×

p (see Lemma 5.5
below).

Consider then the following multiplication code over Fp: for α ∈ Fp2 and for
λ ∈ F×

p , set
Cα(λ) = Bk(λ[α]1)

extended with Cα(0) = −1. We stress that in light of Lemma 5.5, the above
code is conceptually the same as equation (1) in that codewords are obtained by
evaluating a predicate over all possible representations of elements. We’ve simply
restricted attention to the degree-1 coordinate. Therefore the multiplication is
accessible via Ω and then the proof follows similarly to the one in [1, 6].

Remark 5.3 (List of Candidate Solutions). The list-decoding algorithm of [1] ap-
plied to the code above returns a polynomial size list of possible candidates for [α]1.
In our reduction α = gab and therefore it will be sufficient to output a random ele-
ment of the list to contradict Assumption 5.1. In contrast to Theorem 4.2, we will
not be able to apply Shoup’s “self-corrector” in this case to identify the correct
solution with high probability, as we have only a single coordinate for gab.

Remark 5.4 (Segment Predicates). While Theorem 5.2 is stated only for the
predicate Bk, it holds for any predicate π such that the corresponding code Cα

can be proven to be concentrated and recoverable; in particular, it holds for the
segment predicates defined in [1].
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5.1 Proof of Theorem 5.2

We start with a lemma that gives a simple characterization of the isomorphisms
between two different representations of the field Fp2 . When describing such
maps, it will be convenient for us to view them as matrices in GL2(Fp).

Lemma 5.5. For any h ∈ I2(p) there exists a unique function Lh : Fp × F×
p →

I2(p) which takes a pair (a, b) to the polynomial ĥ = Lh(a, b) such that the
matrix ( 1 a

0 b ) defines an isomorphism Fp[x]/(h) → Fp[x]/(ĥ). Moreover, for any
ĥ ∈ I2(p), L−1

h (ĥ) represents the complete set of isomorphisms from Fp[x]/(h) →
Fp[x]/(ĥ) using the above matrix identification.

Proof. First note that any isomorphism of fields must send the unit element
to itself (and thus fix the entire base field Fp). Thus, when viewing such an
isomorphism as a linear transformation, the first basis element

(
1
0

)
must be fixed,

which determines the first column of the matrix as
(

1
0

)
. Since clearly we must

have b �= 0 if the map is to represent an isomorphism, the completeness would
follow immediately, once we establish the existence and uniqueness of the map
Lh. We define Lh as follows. For a, b ∈ Fp with b �= 0, let Lh(a, b)(x) = h(a+bx)

b2 .
To make the notation less cumbersome, we’ll fix a, b in what follows, and refer to
this polynomial more simply as Lh(x). To see that this definition is as desired,
note that to specify a homomorphism φ from Fp[x]/(h) to another field K of
characteristic p it is both necessary and sufficient to choose φ(x) = x ∈ K such
that h(x) = 0 in K. The matrix corresponding to (a, b) sends x �→ a + bx, and
indeed, a + bx is a root of h in the ring Fp[x]/(Lh) by construction. However,
it remains to show that Lh ∈ I2(p), as well as the uniqueness of Lh. Towards
the first goal: it is an elementary fact that since h was irreducible over Fp, so
is h(a + bx), and hence Lh. It is easy to verify additionally that Lh is monic,
and has degree 2, so that Lh ∈ I2(p). Thus, by the above remarks, the mapping
defined by x �→ a + bx is an isomorphism Fp[x]/(h) → Fp[x]/(Lh) as desired.
The fact that Lh so constructed is unique (within I2(p)) follows easily as well,
since if h(a + bx), and hence Lh(x), are elements of an ideal (h′) for some other
h′ ∈ I2(p), then Lh, h′ are associates, and thus Lh = h′ since both are monic.

Remark 5.6. We actually know a little more about the distribution; in particular,
we have

∣∣L−1
h (ĥ)

∣∣ = 2 for any ĥ ∈ I2(Fp). This follows at once from the fact
that every isomorphism has a (unique) matrix representation as above, and that
Gal(Fp2 /Fp) ∼= Z2 (so that there are precisely two isomorphisms between any
two representations Fp[x]/(h),Fp[x]/(ĥ)).

Proof Sketch (Theorem 5.2). Suppose that the theorem were false, and that an
oracle Ω with an advantage that is not negligible exists. Now consider another
oracle Ω′ that takes as input a base representation h ∈ I2(p), a Diffie-Hellman
triple g, ga, gb as well as an element of λ ∈ Fp (instead of ĥ ∈ I2(p)), which
works as follows. The oracle selects a ← Fp uniformly at random, and constructs
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an isomorphism ĥ from the matrix ( 1 a
0 λ ) as described in Lemma 5.5. Ω′ then

returns the output of Ω(h, ĥ, g, ga, gb). One can then show that∣∣∣∣ Pr
λ,a,b

[
Ω′(h, λ, g, ga, gb

)
= Bk

(
λ

[
gab

]
1

)] − βk

∣∣∣∣
is also not a negligible function. At this point, the proof follows closely to that of
Theorem 4.2. To begin, observe that we can, for any element α ∈ Fp2 , construct
the following encoding of [α]1 in its base polynomial representation as an element
of Fp[x]/(h):

Cα : Fp → {±1} defined as Cα(λ) = Bk(λ[α]1),

where [α]1 is taken under the representation determined by h. The fact that
this code is concentrated and recoverable follows immediately from the proof of
Theorem 4.2. The argument for accessibility is the same, but with the added
simplification that we no longer need to restrict to squares in Fp.

As in Theorem 4.2, we will be able to efficiently construct a list of candidates
for

[
gab

]
1. As mentioned, we unfortunately will not be able to apply Shoup’s

“self-corrector” in this case as we have only a single coordinate. Nevertheless, we
still obtain a contradiction by guessing a random element of the list as the value
of

[
gab

]
1, since the list is of polynomial size.

5.2 Finite Field-Based One-Way Functions

The work of [6] introduces “elliptic curve-based one-way functions”, and goes on to
prove interesting hardness results for this entire class of functions. Loosely speak-
ing, elliptic curve-based OWF’s are one-way functions which are well defined on
isomorphism classes of curves, and do not depend on any specific representation.
Similarly, we consider finite field-based OWF’s, which are those that do not depend
on the isomorphism class. When considering only prime-order fields Fp, this con-
cept is somewhat trivial, since once one fix a bit representation for integers, there
are no non-trivial isomorphisms. However, the situation becomes far more inter-
esting when one considers field extensions. Even with a fixed representation for
integers, there are many different representations of even a quadratic extension
(see Lemma 5.5). As demonstrated in [6] for the case of elliptic curves, having a
one-way function which is well defined on many different representations may give
rise to a number of hardness results that apply to the entire class of functions. We
demonstrate similar results, showing that for quadratic extensions, an efficient or-
acle that predicts the k-th bit of the input over a random representation of the field
will imply an efficient procedure that can “partially” invert the function (i.e., if f
is the one-way function, given f(α), it computes [α]1).

In order to define a function f on a finite field, we first define the function on
a particular “base” representation F . Then, to define f on any other isomorphic
copy F ′, we wish to simply compute f ◦ ψ, where ψ : F ′ → F is an isomorphism.
The following definition guarantees that f is well defined on isomorphism classes
of finite fields.
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Definition 5.7. Let F ∼= Fpt be a concrete representation of a finite field. A
function f : F → Y is said to be finite field-based if for any F ′ ∼= F and any
two isomorphisms ψ, ψ′ : F ′ → F , we have f ◦ ψ = f ◦ ψ′.

Remark 5.8. Note that any function f satisfying Definition 5.7 is actually defined
on a quotient space, F/ ∼, where α ∼ α′ if and only if α, α′ have the same
minimal polynomial over Fp. Furthermore, any function which is well defined
on F/ ∼ will satisfy the definition. Thus, an equivalent definition would be to
require that f(α) depends only on the minimal polynomial of α. (This follows
from the fact that the Galois group acts transitively on the roots of irreducible
polynomials.)

We now define a natural relaxation of the notion of one-way functions over finite
fields, where it is assumed to be hard to output the maximal degree coordinate
of the input. While this definition makes sense for the general case pt for t > 1,
we only consider the case of quadratic extensions.

Consider the instance generator F which on input a security parameter 1�,
outputs p� (an �-bit prime), and a function f� : Fp2

�
→ S�, where S� is an arbitrary

set. We drop the suffix � when it is clear from the context.

Definition 5.9. We say that F is partial one-way if for any efficient algorithm
A the following probability is negligible in � for all h� ∈ I2(p�):

Pr
[
A(h�, f�(α)) = [α]1 | p�, f� ← F(

1�
)
; α ← Fp�

[x]/(h�)
]
.

Again, note that A takes as input a representation of the field, but the probability
must be negligible for all representations.

In the case of quadratic extensions, we can obtain results similar to what
was shown in [6] for elliptic-curve based OWF. In particular, the existence of a
noisy oracle which works with non-negligible probability over the point, as well
as the representation of the field, will give rise to an efficient procedure which
“partially” inverts f contradicting Definition 5.9. More formally, we have the
following.

Theorem 5.10. Suppose that f is a finite field-based partial one-way function,
and fix a base representation Fp2 = Fp[x]/(h) for some h ∈ I2(p). Then, for any
probabilistic polynomial time machine Ω, it must be that the following quantity
is negligible:∣∣∣Pr

[
Ω

(
h, ĥ, f(α)

)
= Bk

([
φh,ĥ(α)

]
1

)
| ĥ ← I2(p); α ← Fp[x]/(h)

]
− βk

∣∣∣.
The proof is a combination of the proofs of Theorems 4.2 and 5.2 and will be
presented in the full version [7].

Remark 5.11. We note that the Diffie-Hellman problem does not satisfy the
above definition: apart from the fact that the domain is actually two (or three)
field elements, the value gab is not independent of the representation. However, if
one modifies the usual Diffie-Hellman problem to report the minimal polynomial



164 N. Fazio et al.

of gab instead, then the definition is satisfied (with the caveat regarding the input
coming from a product space). We also remark that the minimal polynomial is
efficiently computable; see for example the work of [12]. Finally, we note that
for Fpt , each of the equivalence classes under ∼ has size t. Since t is usually a
small constant (in our case, it is 2), the aforementioned conversion in which one
“throws away” some information by only considering the minimal polynomial
will not affect the problem’s computational character.

6 Conclusion and Future Work

We presented a relaxed variant of the Diffie-Hellman problem over finite fields of
the form Fpt for t > 1 and proved that for the case of quadratic extensions Fp2 ,
this problem admits several hard-core predicates (including every single bit of
one coordinate of the secret Diffie-Hellman value) over a random representation
of the field. These are the first results known for hard-core predicates for the
CDH problem over finite fields. We extended this result to a larger class of
computationally hard problems (which we called finite field-based partial one-
way functions) over such finite fields.

We also proved that the same class of predicates is hard-core for the elliptic
curve Diffie-Hellman, over a random representation of the underlying elliptic
curve, thereby extending the Boneh-Shparlinski result [4] which worked only for
the least significant bit.

Our results can be interpreted as “augmenting” the input to the computational
hard problem (being it a one-way function, or the CDH problem) with a random
description of the underlying group being used.

Our work leaves several open questions. Perhaps the most natural is to extend
the results to Fpt for t > 2. In the case of t = 2, the isomorphisms from one
representation to another amounted, in some sense, to a linear change of vari-
ables: x �→ a + bx. This made the set of isomorphisms between representations
easy to analyze, and enabled us to show that when restricting attention to the
coefficient of x, each of these maps acts by translation for some λ ∈ F×

p . For
t > 2, this is not the case, and thus our original techniques must be augmented
somehow. Perhaps one can find a large (enough) number of representations for
which the isomorphisms have the required properties as a linear map.

Other natural questions include the study of the hardness of the Partial-CDH
problem in Fpt for t > 1. While it seems quite a reasonable assumption to
make, the ultimate goal would be to reduce it to the “full” CDH over another
platform. In particular, is it possible to reduce the Partial-CDH over Fpt to the
regular CDH problem over Fp? A related question is if we can use the hardness
of Partial-CDH over, say Fp2 , to prove the unpredictability of a predicate for the
traditional CDH problem over Fp.

Finally it is our hope that the techniques presented in this paper could even-
tually lead to the proof that CDH over Fp does have a (deterministic) hard-core
predicate.
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Abstract. Randomized encodings of functions can be used to replace
a “complex” function f(x) by a “simpler” randomized mapping f̂(x; r)
whose output distribution on an input x encodes the value of f(x) and
hides any other information about x. One desirable feature of random-
ized encodings is low online complexity. That is, the goal is to obtain
a randomized encoding f̂ of f in which most of the output can be pre-
computed and published before seeing the input x. When the input x
is available, it remains to publish only a short string x̂, where the on-
line complexity of computing x̂ is independent of (and is typically much
smaller than) the complexity of computing f . Yao’s garbled circuit con-
struction gives rise to such randomized encodings in which the online
part x̂ consists of n encryption keys of length κ each, where n = |x| and
κ is a security parameter. Thus, the online rate |x̂|/|x| of this encoding
is proportional to the security parameter κ.

In this paper, we show that the online rate can be dramatically im-
proved. Specifically, we show how to encode any polynomial-time com-
putable function f : {0, 1}n → {0, 1}m(n) with online rate of 1+o(1) and
with nearly linear online computation. More concretely, the online part
x̂ consists of an n-bit string and a single encryption key. These construc-
tions can be based on the decisional Diffie-Hellman assumption (DDH),
the Learning with Errors assumption (LWE), or the RSA assumption.
We also present a variant of this result which applies to arithmetic for-
mulas, where the encoding only makes use of arithmetic operations, as
well as several negative results which complement our positive results.

Our positive results can lead to efficiency improvements in most con-
texts where randomized encodings of functions are used. We demonstrate
this by presenting several concrete applications. These include protocols
for secure multiparty computation and for non-interactive verifiable com-
putation in the preprocessing model which achieve, for the first time,
an optimal online communication complexity, as well as non-interactive
zero-knowledge proofs which simultaneously minimize the online com-
munication and the prover’s online computation.
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1 Introduction

Suppose that we want to perform some cryptographic task which involves com-
putation and communication on n-bit data. In many scenarios, it is beneficial to
minimize the online complexity (i.e., the resources spent after seeing the data)
and shift the expensive computation and communication to an offline phase.
This setting has been extensively studied in many contexts including signa-
tures [17,40], verifiable computation (delegation) [19,4,14], and secure compu-
tation [8,32,11,15,31]. The goal of the present paper is to further explore the
question of minimizing the online complexity of cryptography.

Let us first consider the following concrete example from [5]. Imagine a sce-
nario of sending a weak device U to the field in order to perform some expensive
computation f on sensitive data x. The computation is too complex for U to
quickly perform it on its own and, since the input x is sensitive, U cannot just
send the entire input out. Ideally, we would like to have a non-interactive solu-
tion of the following form: In an offline phase, before sent to the field, U picks a
short random secret key sk and publishes a (potentially long) related public key
pk. Once it observes the input x, the device U applies some cheap computation
to sk and x and sends out the result x̂, a short “encrypted” version of x. The
rest of the world should be able, at this point, to recover f(x) and nothing else.

Abstracting the above, the computation of U can be described as a randomized
function f̂ : (x; sk)  → (pk, x̂) that encodes the value f(x) in the sense that
(pk, x̂) reveals f(x) but nothing else. Using the terminology of [3], the function

f̂ is referred to as a randomized encoding (RE) of f . The general motivation for

using REs is the hope to make f̂ in some sense “simpler” than f , where different
applications dictate different notions of simplicity. The earliest uses of REs in
cryptography were in the area of secure computation [42,34,18,30]. Along the
years, REs have found a diverse range of other applications to problems such
as computing on encrypted data [39,13], parallel cryptography [3,2], verifiable
computation [19,4], software protection [25,27,9], functional encryption [38,26],
key-dependent message security [7,1,10], and others. We refer the reader to [10]
for a finer-grained treatment of REs under the term “garbling schemes”.

In the online/offline setting considered here, we would like to minimize the
online computation and communication resources required for computing and
distributing x̂. That is, we would like the online time complexity of computing
x̂ to be much smaller than the time required for computing f , and the length of
x̂ to be not much bigger than that of x.

The best known general constructions of online-efficient REs are based on
Yao’s garbled circuit technique [42]. In this case, the output of f(x) is encoded
by an offline part pk which consists of a big “garbled circuit” and an online
part x̂ which consists of n keys K1, . . . ,Kn of size κ each, where n is the bit-
length of x and κ is a security parameter. (Under a standard asymptotic security
convention in which n serves both as an input length parameter and a security
parameter, κ can be thought of as nε, for some small constant ε > 0.) Each
key Ki is selected from a pair of keys (Ki,0,Ki,1) according to the i-th input
bit xi. Hence, the online computation and communication complexity are both
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O(nκ). An appealing feature is that the online computation complexity is nearly
linear in the input length, independently of the complexity of f . However, an
undesirable feature is that the online rate of the construction — i.e., the ratio
between the bit-length of x̂ and the bit length of x — grows linearly with the
security parameter κ. Hence, we ask:

Is it possible to obtain a constant online rate or even rate of 1+o(1) (e.g.,
|x̂| = n+poly(κ)) while keeping the online computation independent of
the complexity of f?

1.1 Our Contribution

We answer the above question in the affirmative by constructing, under a variety
of standard intractability assumptions, an online-efficient RE with rate 1 + o(1)
for every polynomial-time computable function.

Theorem 1. (Informal) Under the Decisional Diffie-Hellman Assumption
(DDH), the RSA Assumption, or the Learning-with-Errors Assumption (LWE),
every polynomial-time computable function f : {0, 1}n → {0, 1}m(n) admits an
RE with online rate 1+o(1) and with O(n1+ε) online computation, for any ε > 0.

In more concrete terms, our constructions efficiently compile any boolean circuit
C into a corresponding RE with succinct and efficiently computable online part.
These constructions can be viewed as analogues of the garbled circuit construc-
tion in which the n keys determined by x are compressed into a shorter string
x̂ whose length is very close to that of x. This comes at the cost of a slight in-
crease in the online computation complexity, which still remains nearly linear in
n. An additional (related) difference is that in contrast to the standard garbled
circuit construction, where each bit of x̂ depends only on a single bit of x, in
our constructions there are bits of x̂ which depend on many bits of x. We prove
that this is inherent for REs with constant or even logarithmic online rate. In
particular, it is impossible to obtain a direct generalization of the garbled circuit
construction in which each input bit xi selects between a pair of keys (Ki,0,Ki,1)
which have constant size.

The DDH and LWE based constructions are affine in the sense that after the
private randomness is fixed in the offline phase, the remaining computation can
be described as an affine function of the inputs x (over some ring R, e.g., R = Zp

where p is the size of a DDH group). This captures a strong form of algebraic
simplicity which is useful for some of the motivating applications (e.g., secure
computation).

Motivated by the concrete efficiency of encoding arithmetic computations, we
also present an LWE-based arithmetic variant of the above result that applies to
arithmetic formulas (i.e., circuits of fan-out 1) over large finite fields, where the
encoding is restricted to applying arithmetic operations to the inputs. Specifi-
cally, we obtain an affine randomized encoding (ARE, for short) with optimal
online rate (i.e., 1+o(1)) for arithmetic mod-p formulas, assuming that elements
of Zp can be viewed as elements of Zq for some q � p. If we insist on working
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in the more restricted model of [5], where the encoding should be affine over the
integers, then we get a constant-rate encoding.

It should be mentioned that the online computational overhead of our con-
structions is still polynomial in the security parameter. Whether this overhead
can be improved remains an interesting open question.

Lower Bounds. We further explore the complexity of REs in the online/offline
setting by proving several lower bounds on the online and offline rate of REs
which complement our positive results. Among other results, we study the min-
imal achievable online rate. The online rate is clearly lower-bounded by 1 for
some functions with long outputs (this is the case, for instance, for the identity
function). This leaves open the possibility of achieving a strictly better rate for
boolean functions. We show that even in the case of boolean functions, the online
rate of affine REs (satisfying the algebraic simplicity condition discussed above)
cannot generally be smaller than 1. Thus, achieving rate 1 + o(1) is essentially
optimal for affine REs. While we cannot unconditionally prove a similar result for
non-affine REs with, say, quadratic online computation, such a negative result
follows from the conjecture that for any c > c′, an input for a time-(nc) compu-
tation cannot generally be “compressed” by a time-(nc′) algorithm into a shorter
string which contains sufficient information to recover the output. See [29,16] for
related conjectures.

Adaptive Security. Informally, an offline/online RE is adaptively secure if

f̂(x; r) = (pk, x̂) remains private even if the online input x is adaptively cho-
sen based on the offline part of the encoding, pk. Similarly to all other known
implementations of garbled circuits with short keys, our constructions cannot
be proved to satisfy this stronger notion of security unless analyzed in the (pro-
grammable) random oracle model. We prove that this is inherent to some extent:
in any RE whose adaptive security holds in the plain model, the length of the
online part x̂ should grow with the output length of f . (This negative result is
similar in spirit to negative results for non-committing encryption [37] or func-
tional encryption [12].) In contrast, our constructions in the non-adaptive setting
(or the adaptive setting with random oracles) have online rate of 1 + o(1), in-
dependently of the output length of f . Adaptive security of garbled circuits has
recently been considered in the work of Bellare et al. [9]. The above negative
result partially settles a question left open by [9].

On Concrete Efficiency. In concrete terms, our offline/online REs reduce the
online communication of Yao’s garbled circuit construction by a factor of κ ≈ 100
at the expense of introducing “public-key” computations. This is not always a
good tradeoff in practice. For instance, communicating 100 bits is typically less
expensive than a single modular exponentiation. Luckily, our REs are also very
cheap in online computation. For instance, the online encoding in the DDH-
based construction involves at most one mod-p addition per input bit, where
p is the order of the DDH group. Since a mod-p addition is typically much
cheaper than the amortized cost of communicating a bit (let alone 100 bits),
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we improve the overall concrete online complexity by roughly a factor of 100.
This is contrasted with most applications of public-key cryptography towards
improving communication complexity, where the additional computational cost
outweighs the savings in communication (cf. [41]). While our REs do increase the
complexity of the offline encoding and online decoding, the additional overhead is
insignificant when the circuit complexity of f is much bigger than its input size.
Thus, our offline/online REs seem to have a true practical potential in secure
computation or delegation scenarios in which a weak client (who performs the
offline and online encoding) interacts with a powerful server (who performs the
online decoding).

1.2 Applications

Our positive results can lead to efficiency improvements in most contexts in
which randomized encodings of functions are used. We focus on three represen-
tative applications.

Secure Multiparty Computation (MPC). In the online/offline model (or pre-
processing model) for MPC, there are t players who wish to securely compute
some fixed public function f . In the offline phase, before the inputs “arrive”, the
parties are allowed to invoke some (relatively expensive) protocol; later, in the
online phase, the parties get their inputs and apply an online (hopefully cheap)
protocol. The close connection of REs to MPC [30] allows to translate our results
into highly efficient MPC protocols in the offline/online setting. In Section 5, we
further extend and optimize these reductions (exploiting the affinity property
and the information-theoretic techniques from [11]). This leads to general MPC
protocols in which the online phase only requires each party to broadcast a mes-
sage of the same length as its input along with a message of size poly(κ), where
κ is a security parameter. Again, this is information-theoretic optimal, and it
beats, in terms of online communication complexity, all previously known results
even in the simplest case of two semi-honest parties. We note, however, that our
protocols do not offer provable security against malicious parties which adap-
tively choose their inputs based on the information they receive in the offline
phase, except in the random oracle model or under nonstandard assumptions.
See full version for further discussion.

It is instructive to compare the efficiency of our RE-based protocols to pro-
tocols which are based on fully homomorphic encryption (FHE). The following
discussion is restricted to the preprocessing model, which does not seem to signif-
icantly improve the complexity of FHE-based protocols. In FHE based protocols
(as well as all other general MPC protocols from the literature) the communi-
cation complexity grows at least linearly with the total input and output length
n+m. In contrast, the online communication complexity of our protocol does not
depend on the output length. This is particularly useful when securely comput-
ing functionalities that have a short online secret input (say, shares of a signature
key) and a long output (say, signatures on many predetermined messages using
the shared signature key). Furthermore, our protocols can be made completely
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non-interactive in certain scenarios, e.g., when part of the secret input is known
offline and the online part is known in its entirety to one of the parties. This is
impossible to get using FHE.1 On the other hand, our protocols are incompara-
ble to FHE-based protocols in terms of their online computational complexity.
In the case of computing a complex function f which takes inputs from Alice and
Bob and delivers an output to Alice, our approach yields two-message protocols
in which Bob’s online computation is very efficient (nearly linear in its input),
whereas FHE provides similar protocols in which Alice’s computation is very
efficient (quasilinear in the input and output). From a concrete efficiency point
of view, the online phase of our protocols is much “lighter” (e.g., Bob only needs
to add a subset of Zp elements corresponding to its input) and they can also be
based on a wider variety of assumptions.

Verifiable Computation. In an online/offline protocol for verifiable computation
(VC), a computationally weak client with an input x delegates a complex com-
putation f to an untrusted server in a two phase manner. In the offline phase
the client sends to the server a possibly long and computationally expensive
message pk, and at the online phase (when the input x arrives) the client sends
a message x̂ to the server, and receives back the result of the computation y
together with a certificate for correctness. This setting was studied in several
works (e.g., [36,25,33,19,14,4,9]). Specifically, in [19] Yao’s garbled circuit tech-
nique was used to achieve efficient VC in the online/offline model. (The security
of the construction follows from standard assumptions only when the input x is
picked by the client independently of pk [9].) This connection was generalized
and optimized in [4]. By plugging our encodings in these protocols, we get com-
munication optimal VC protocols, where the bit-length of the up-stream (online)
message from the client to the server is n + κ and the bit-length of the down-
stream message (from server to client) is m+ κ, where n is the input length, m
is the output length and κ is the security parameter. Information-theoretically,
n + m bits are necessary even if the server is fully trusted. To the best of our
knowledge, all previous protocols, including ones which are based on fully ho-
momorphic encryption, have a multiplicative overhead of κ, either with respect
to n or to m.

Non-Interactive Zero-Knowledge (NIZK). The complexity of NIZK has received
much attention. The length of traditional NIZK proofs for NP grows linearly
with the size of a circuit R(x,w) which verifies that w is a legal witness for the
statement x ∈ L. Using FHE, these traditional NIZKs can be converted into ones
whose length is only |w| + poly(κ) bits [20,28]. The proof consists of an FHE
encryption c of w, along with a traditional NIZK proving that the ciphertext
resulting from evaluating the verification algorithm on c encrypts the result of
a correct verification. Thus, the prover’s computation grows linearly with the
time required for verifying R(x,w), which can be an arbitrary polynomial in |w|.
1 Similarly, FHE does not yield a non-interactive solution to the motivating problem
described in the beginning of the introduction.
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Moreover, there seems to be no obvious way to reduce this computational cost
using offline preprocessing. Our results yield offline/online NIZK proofs with
online proof length of |w|+poly(κ) bits as before, but where the prover’s online
computation is nearly linear in |w| + |x|. This is done as follows. The common
reference string of the NIZK defines a function f which maps w (along with a
short seed which generates the prover’s secret randomness) into a NIZK proof
π. Applying our offline/online REs to this f yields the desired result. We note
that while the length of NIZK arguments can be made sublinear in |w| (under
nonstandard but plausible assumptions), breaking this barrier in the case of
proofs seems highly unlikely [22].

1.3 Techniques

We briefly sketch some of the ideas used to prove Theorem 1. Our starting point
is a standard garbled-circuit based encoding, such as the one from [2]. In the
offline phase of this encoding, we garble the circuit f and prepare, for each input
i, a pair of random secret keys (K0

i ,K
1
i ). In the online phase, for each i, we use

the i-th bit of x to select a key Kxi

i and output the selected keys. In order to
reduce the online complexity of the encoding, we would like to have a compact
way to reveal the selected keys. Let us consider the following “riddle” which is a
slightly simpler version of this problem. In the offline phase, Alice has n vectors
M1, . . . ,Mn ∈ {0, 1}k. She is allowed to send Bob a long encrypted version of
these vectors. Later, in the online phase, she receives a bit vector x ∈ {0, 1}n. Her
goal is to let Bob learn only the vectors which are indexed by x, i.e., {Mi}i:xi=1

while sending only a single message of length O(n) bits (or even n+ κ bits).2

Before solving the riddle, let us further reduce it to an algebraic version in
which Alice wants to reveal a 0-1 linear combination of the vectors which are
indexed by x. Observe that if we can solve the new riddle with respect to nk-bit
vectors T = (T1, . . . , Tn), then we can solve the original riddle with k-bit vectors
(M1, . . . ,Mn). This is done by placing the Mi’s in the diagonal of T , i.e., Ti is
partitioned to k-size blocks with Mi in the i-th block and zero elsewhere. In this
case, Tx simply “packs” the vectors {Mi}i:xi=1.

It turns out that the linear version of the riddle can be efficiently solved via
the use of a symmetric-key encryption scheme with some (additive) homomorphic
properties. Specifically, let (E,D) be a symmetric encryption schemewith both key
homomorphismandmessagehomomorphismas follows:Apair of ciphertextsEk(x)
and Ek′(x′) can be mapped (without any knowledge of the secret keys) to a new ci-
pheretxt of the formEk+k′ (x+x′).Given such a primitive the answer to the riddle is
easy: Alice encrypts each vector under a fresh keyKi and publishes the ciphertexts
Ci. At the online phase Alice sends the sum of keys Kx =

∑
Kixi together with

the indicator vector x. Now Bob can easily constructC = EKx(Mx) by combining
the ciphertexts indexed by x and, since Kx is known, Bob can decrypt the result.

2 The main difference between the riddle and the garbled-circuit problem is that in the
latter case, the vector x itself should remain hidden; this gap is bridged by permuting
the pairs and randomizing the vector x; see Section 4.



Encoding Functions with Constant Online Rate 173

Intuitively, Bob learns nothing about a column Mj which is not indexed by x as
the online key Kx is independent of the j-th key. Our DDH and LWE based solu-
tions are based on (approximate) implementations of this primitive. (A somewhat
different approach is used in the RSA-based construction).

The arithmetic setting is more challenging. Here, instead of computing the
selection function, we should compute an affine function Mx + v over the inte-
gers or over Zp, for some large integer p (not necessarily a prime). While it is
possible to solve this via a similar encryption scheme with (stronger) additive
homomorphism, there are several technical problems. Typically, all (or most)
of the coordinates of x are non-zero and so we should argue that given Kx the
secrecy of the key Ki was not compromised, despite the fact that Ki may par-
ticipate in the linear combination Kx. This translates to some form of security
under Related-Key attacks. In addition, it is harder to achieve homomorphism
for integers or over Zp directly, and so one should somehow embed this domain
in a larger, less “friendly”, message space. Still, it turns out that a variant of
this gadget can be implemented based on the LWE assumption. Specifically, we
use the following variant of the key-shrinking gadget of [5] (which was originally
introduced as a tool for garbling arithmetic circuits). Intuitively, we create a
noisy version M̂ and v̂ of the matrix M and the vector v, and then plant them
in a random linear space W of a low dimension κ over Zq (where q � p). The

space W is made public. Now every linear combination of M̂ and v̂ lies in W ,
and so it can be succinctly described by its coefficients with respect to W . In
particular, to reveal the output Mx+ v, it suffices for the encoding to reveal the
coefficients of its representation M̂x+ v̂. The security of the construction follows
from the LWE assumption.

Concurrent and Subsequent Works. The recent works [24,23] gives the first
reusable construction of garbled circuits. This implies REs in which a single
offline computation can support an arbitrary polynomial number of efficient on-
line computations. The question of optimizing the online rate of reusable garbled
circuits remains open. On a different front, improvements in the size of garbled
circuits for uniform Turing Machine or RAM computations were recently given
in [35,23]. These lead to REs with succinct offline outputs. Our construction can
be applied on top of these constructions, yielding REs with an online output of
size n+ o(n), nearly linear online computation, and offline outputs that are only
longer by an additive term of O(nε · T ) than those in [35,23], where T is the
online computational complexity of the original constructions.

Organization. Section 2 gives the necessary background on randomized encod-
ings. In Section 3, we present several constructions of succinct randomized en-
codings for a concrete boolean function called the subset function (SF). Later,
in Section 4, we use these encodings as a building block and obtain succinct en-
codings for general boolean functions. In Section 5, we sketch the application of
succinct randomized encodings to secure multiparty computation (MPC). Appli-
cations related to non-interactive zero-knowledge proofs (NIZK), and verifiable
computation (VC) in the preprocessing model are deferred to the full version [6],
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which also contains the construction of succinct encoding for arithmetic formu-
las, some lower bounds and a detailed treatment of the issue of adaptivity.

2 Randomized Encoding of Functions

Intuitively, a randomized encoding of a function f(x) is a randomized mapping

f̂(x; r) whose output distribution depends only on the output of f . We for-
malize this intuition via the notion of computationally-private perfectly-correct
randomized encoding (in short RE) from [2]. In the following, we assume that f
is defined over Zn

p for some integer p (by default p = 2), and allow the encoding

f̂ be defined over a possibly larger alphabet Zn
q for p ≤ q under the convention

that a vector x ∈ Zn
p can be naturally identified with a vector x ∈ Zn

q .

Definition 1 (Randomized Encoding (RE)). Let p = p(n), q = q(n) where
p(n) ≤ q(n) ≤ 2poly(n) and � = �(n),m = m(n), s = s(n) = poly(n) be integer
valued functions. We naturally view Zp as a subset of Zq. Let f : Zn

p → Z�
p be

an efficiently computable function. We say that an efficiently computable ran-
domized function f̂ : Zn

q × {0, 1}m → Zs
q is a perfectly-correct computationally-

private randomized encoding of f (in short, RE), if there exist an efficient de-
coder algorithm Dec and an efficient simulator Sim that satisfy the following
conditions:

– Perfect correctness. For every x ∈ Zn
p , Prr[Dec(1

n, f̂(x; r)) �= f(x)] = 0.
– (t, ε) privacy. For every sequence {xn}n, where xn ∈ Zn

p , and every t(n)-size
circuit A∣∣∣Pr[A(f̂(xn; r)) = 1]− Pr[A(Sim(1n, f(xn))) = 1]

∣∣∣ ≤ ε(n).

By default, t = nω(1) and ε = n−ω(1), i.e., the distributions are computation-
ally indistinguishable (denoted by

c≡). The encoding is statistically secure if t is
unbounded and perfectly secure if, in addition, ε = 0.

Remarks

– (Security parameter.) The above definition uses n both as an input length
parameter and as a cryptographic “security parameter” quantifying compu-
tational privacy. When describing our constructions, it will be convenient to
use a separate parameter κ for the latter, where computational privacy will
be guaranteed as long as κ ≥ nε for some constant ε > 0.

– (Collections) Let F be a collection of functions with an associated represen-
tation (by default, a boolean or arithmetic circuit). We say that a class of
randomized functions F̂ is an RE of F if there exists an efficient algorithm
(compiler) which gets as an input a function f ∈ F and outputs (in time

polynomial in the representation length |f |) three circuits (f̂ ∈ F̂ ,Dec, Sim)
which form a (t = nω(1), ε = n−ω(1))-RE of f .
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2.1 Efficiency Measures

So far the notion of RE can be trivially satisfied by taking f̂ = f and letting
the simulator and decoder be the identity functions. To make the definition
non-trivial, we should impose some efficiency constraint. In this work, our main
measure of efficiency is online complexity.

Online/Offline Complexity. We would like to measure separately the complexity

of the outputs of f̂ which depend solely on r (offline part) from the ones which
depend both on x and r (online part). Without loss of generality, we assume that

f̂ can be written as f̂(x; r) = (f̂off(r), f̂on(x; r)), where f̂off(r) does not depend on
x at all. The online communication complexity (resp., online computational com-

plexity) of f̂ is the bit-length (resp., the time complexity) of f̂on(x; r). Similarly,
the offline communication complexity (resp., offline computational complexity)

of f̂ is the bit-length (resp., the time complexity) of f̂off(r). The rate of f̂ is
ρ if the online communication complexity is at most ρ-times larger than the
bit-length n log p of the input of the encoded function f .

Efficient Online Encodings. Let F̂ be an encoding of the collection F . We say
that F̂ is online-efficient if for every function f ∈ F , the online computational
complexity of the encoding f̂ is independent of the computational complexity
(i.e., circuit size) of the encoded function f (but grows with the bit-length of the
input of f). The encoding is online-succinct (or simply succinct) if, in addition
to being online efficient, every f ∈ F is encoded by a 1 + o(1)-rate encoding.

Remark 1 (Online Inputs). In some applications, it is natural to think of the
encoded function f as having online inputs xon and offline inputs xoff . In this
case, we measure the online commuincation/computational complexity of the

encoding f̂ with respect to the outputs that depend on xon. By default, we
simply assume that all the input x is an online input and there is no offline part.

Some of the applications of REs further require some form of algebraic simplicity;
this is captured by the notion of affinity.

Affine RE. We say that an encoding f̂ : Zn
q × {0, 1}m → Zs

q is an affine ran-
domized encoding (ARE) if, for every fixing of the randomness r, the online

part of the encoding f̂on(x; r) becomes an affine function over the ring Zq, i.e.,

f̂on(x; r) = Mr · x + vr, where Mr (resp., vr) is a matrix (resp., vector) that
depends on the randomness r. It will sometimes be the case that certain outputs
of f̂ are restricted to an interval [0, q′] in Zq. Each such entry will only contribute
�log2 q′� towards computing the rate.

Remark 2 (ARE vs. DARE). Previous works considered a stronger form of
affinity called decomposable affine randomized encoding (DARE).3 Decompos-

ability requires that each output of f̂ depends on a single deterministic in-
put xi. Hence, a decomposable affine randomized encoding can be written as

3 In fact, in the conference version of [5] the term ARE was used to denote DARE.
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f̂(x; r) = (f̂off(r), f̂1(x1; r), . . . , f̂n(xn; r)) where each function f̂i is affine with
respect to xi. It is known how to convert an ARE to DARE, however, the known
transformation introduces a non-constant (O(n)) multiplicative blow-up in the
online communication complexity. In the full version, we show that this is inher-
ent and decomposability cannot be achieved with constant rate.

Remark 3 (On Adaptive Security). In the online/offline model, it is natural
to ask if the encoding can be adaptively secure, namely, if security holds when
the online input x is chosen based on the offline part of the encoding. In the full
version, we show that, in the standard model, adaptively secure REs cannot be
online-efficient, let alone have constant rate (assuming the existence of one-way
functions). On the other hand, it turns out that this barrier can be bypassed via
the use of a (programmable) random oracle.

3 Succinct AREs for the Subset Function

In order to succinctly encode boolean circuits, we will need a succinct encoding
for the following concrete function g, called the Subset Function. It has length
parameter n and message size κ and is defined by

g(M,x) = ((Mi)i∈x, x),

where M = (M1, . . . ,Mn) ∈ ({0, 1}κ)n is a vector of n “messages”, and x ∈
{0, 1}n is a selection vector which is viewed as the set {i : xi = 1}. (The latter
convention will be implicit through the whole section.) Our goal is to encode
g by an RE of the form ĝ(M,x; r) = (ĝoff(M ; r), x,K(x; r)) where K(x; r) is
of bit-length κc for some universal constant c. Security will hold as long as n is
bounded by some arbitrary polynomial in κ whose degree may be independent of
the constant c. We will construct such an encoding based on several assumptions.
Specifically, we will show that such an encoding can be based on a special form
of symmetric-key encryption with additive homomorphism which, in turn, can
be constructed under the DDH assumption or the LWE assumption. In the full
version, we also present a direct encoding (which does not go through the additive
homomorphism) under the RSA assumption.

3.1 Encoding the Subset Function via Additive Homomorphism

Definition 2 (Additive Homomorphic Encryption (AHE)). An additive
homomorphic Encryption is a triple of efficient algorithms (Setup,E,D) for which
the following hold:

– Syntax: The randomized algorithm Setup takes a length parameter 1κ and
outputs a string param which specifies four (additive) groups: key-space K,
message-space M, ciphertext-space C and public randomness space W. We
assume that κ-bit strings can be efficiently embedded in M and denote the
identity element of M by 0. The input to the encryption and decryption
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algorithms consist of a message/ciphertext, a key K, some private random-

ness, and some public randomness W
R← W which is selected during the

encryption. Both algorithms also depend on the string param. (We make this
dependency implicit to simplify notation.)

– Semantic Security: Let param = (K,M, C,W)
R← Setup(1κ). For every

n = poly(κ) and every n-tuple of messages M1, . . . ,Mn ∈ M, we have that(
param, (Wi,EK(Mi;Wi))i∈[n]

) c≡
(
param, (Wi,EK(0;Wi))i∈[n]

)
,

where Wi
R← W, K

R← K, and indistinguishability is parameterized by κ.
– Additive Homomorphism: For every n = poly(κ) and every n-tuple of

keys K1, . . . ,Kn ∈ K, n-tuple of messages M1, . . . ,Mn ∈ M, and public
randomness W ∈ W, we have that

D∑
i Ki

(∑
i

EKi(Mi;W );W

)
=
∑
i

Mi,

where sums are computed over the corresponding groups. In fact, it suffices
to have a relaxed form of additive homomorphism which holds in the special
case where all messages, except for one, equal to 0 ∈ M.

The definition implies that the key size is independent of the homomorphism
parameter n. This will be crucial for our applications. As a concrete example of
AHE consider the following symmetric-key version of ElGamal encryption. Let
M = C = W equal to a cyclic groupG of prime order p and let K = Zp. Using the
standard multiplicative notation, encryption is defined by EK(M ;W ) = WK ·M
and decryption by DK(C;W ) = C/WK . It is not hard to show that if the DDH
assumption holds in G then the scheme is an AHE with relaxed homomorphism.
(More details about this implementation, as well as a description of an analogous
implementation under LWE appear in the full version.) We show how to encode
the subset function g(M,x) with length n and message size κ based on AHE.

Lemma 1. Assume that AHE exists. Then the Subset Function g(M,x), where
M ∈ ({0, 1}κ)n, x ∈ {0, 1}n, has an encoding

ĝ(M,x; r) = (ĝoff(M ; r), x,
∑
i∈x

Ki(r)),

where ĝoff outputs O(n2) ciphertexts in C, the functions Ki output an element in
K, and the sum is computed over the key-space K.

Proof. At the offline phase, we invoke Setup(1κ) and obtain a specification param
of K, M, C and W . We encode each entry of the offline input M = (M1, . . . ,Mn)
by an element of M, and from now on identify Mi with its encoding. We de-
fine a diagonal n × n matrix {Mi,j} whose diagonal equals to the message
vector M , i.e., Mi,i = Mi, ∀i ∈ [n] and Mi,j = 0, ∀i �= j. Next, we select a
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tuple of public random elements W = (W1, . . . ,Wn)
R← Wn, a tuple of ran-

dom keys K = (K1, . . . ,Kn)
R← Kn and compute a matrix of “ciphertexts”

C = (Ci,j) ∈ Cn×n, where Ci,j = EKi(Mi,j ;Wj). The output of ĝoff con-
sists of the tuple (param,W,C) and the online part ĝon consists of the pair
(x,Kx =

∑
i∈x Ki).

Decoding. Given (param,W,C, x,Kx), we decode (Mi)i∈x by exploiting the
homomorphism property of the above encryption. Namely, for each j ∈ x we
compute

Yj =
∑
i∈x

Ci,j =
∑
i∈x

EKi(Mi,j ;Wj),

and output the value DKx(Yj ;Wj).

Simulation. For � = 0, . . . , n define the hybrid H�(M,x) exactly as in ĝ except
that

Mi,i =

{
Mi if i < � or i ∈ x,

0 otherwise

The first hybrid H0 can be sampled based on ((Mi)i∈x, x), and so it is be-
ing used as the simulator. The last hybrid Hn corresponds to the distribu-
tion of the encoding ĝ. Hence, by a standard argument, it suffices to show
that each pair of neighboring hybrids is computationally indistinguishable. As-
sume, towards a contradiction, that A distinguishes the hybrid H�−1 from H�

with non-negligible advantage δ. Observe that in this case x� = 0, as other-
wise the two hybrids are identically distributed. We construct a new adver-
sary B that breaks the semantic security of the scheme. Given a challenge

(param,w, c) where param
R← Setup(1κ) and w = (w1, . . . , wn)

R← Wn, the

adversary B distinguishes between c
R← (EK(0;w1), . . . ,EK(0;wn)) and c

R←
(EK(0;w1), . . . ,EK(M�;w�), . . . ,EK(0;wn))) as follows. Use param to compute
the hybrid H�−1 where the public randomness W1, . . . ,Wn is set to w, and the
�-th row of the ciphertext matrix C takes the value c. It is not hard to verify that

the resulting distribution is identical to H�−1 if c
R← (EK(0;w1), . . . ,EK(0;wn)),

and to H� if c
R← (EK(0;w1), . . . ,EK(M�;w�), . . . ,EK(0;wn))), and the claim

follows. $%

Complexity. To encode the online part, one has to compute n additions (over the
key space) and send x together with a single key element. The cost of the offline
part is n2 encryptions/ciphertexts. One can obtain a smooth tradeoff between
the offline part and the online part by partitioning the inputs to blocks (see full
version). Also note that decoding costs n2 additions over the key space (which
can be reduced via the previous optimization) and n decryption operations.
Finally, we mention that in our RSA-based solution the offline complexity is
only linear in n but quadratic in κ. (The latter can be improved assuming sub-
exponential hardness of RSA.)
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4 Succinct AREs for Boolean Circuits

In this section, we will encode any efficiently computable function via a succinct
encoding. We begin by showing that if F : {0, 1}n → {0, 1}� has a decomposable
affine randomized encoding (DARE) then it also has a succinct encoding. In the
following, let κ be a security parameter which is polynomially related to n, i.e.,
κ = nδ for some fixed δ > 0. We will employ a succinct encoding for the subset
function g(M, x̂) with length N = 2n and message size κ. We will also make use
of the following simple observation: if a κ× 2n matrix M is composed of n pairs
of columns (M2i−1|M2i) = (v0i , v

1
i )i∈[n], then for any x ∈ {0, 1}n the sub-matrix

(vxi

i )i∈[n] can be written as (Mi)i∈pad(x), where pad(x) maps an n-bit vector x
to the 2n-bit vector (1− x1, x1, . . . , 1− xn, xn), and i ∈ pad(x) if pad(x)i = 1.

Lemma 2. Let F : {0, 1}n → {0, 1}� be an efficiently computable function
having a decomposable ARE f(x; ρ) = (foff(ρ), f1(x1; ρ), . . . , fn(xn; ρ)), where
the output length of each fi is κ bits. Also, assume that the subset function
g(M, x̂) with length 2n and message size κ has an RE of the form ĝ(M, x̂; r) =
(ĝoff(M ; r), x̂,K(x̂; r)). Then, F is encoded by the randomized function

F̂ (x; ρ, s, r) = (foff(ρ), ĝoff(M ; r), x⊕ s,K(pad(x⊕ s); r)) ,

where

M = (f1(s1; ρ)|f1(s1 ⊕ 1; ρ)| · · · |fn(sn; ρ)|fn(sn ⊕ 1; ρ)) ∈ {0, 1}κ×2n.

Proof. It will be useful to start by encoding the n-wise one-out-of-two selection
function H which maps an online input x ∈ {0, 1}n and an offline matrix of
pairs V = (v01 |v11 | . . . |v0n|v1n) ∈ {0, 1}κ×2n to the tuple (vxi

i )i∈[n]. Observe that the
output of H is essentially the value of the subset function g applied to the matrix
V and the vector pad(x) ∈ {0, 1}2n, except that H hides x whereas g reveals it.
Nevertheless one can easily randomize x and then employ the subset function.

Specifically, select a random mask s
R← {0, 1}n, let x̂ ∈ {0, 1}2n be the vector

pad(x⊕ s), and construct the κ× 2n matrix M = (vs11 |vs1⊕1
1 | . . . |vsnn |vsn⊕1

n ). It
is not hard to show that the randomized mapping h(V, x; s)  → g(M, x̂) is an
encoding of H . Indeed, the output distribution of g(M, x̂) consists of the matrix
(Mi)i∈x̂ and the vector x̂ — the former simply equals to (vxi

i )i∈[n] and the latter
is just a sequence of n pairs of a random bit and its complement.

Next, let us view h as a deterministic function of V, x and s. Since h can be
written as g(MV,s, x̂x,s), we can encode h by the mapping ĝ(MV,s, x̂x,s; r). It is
not hard to show that the latter encoding also encodes H . Overall, our encoding
for H(V, x) is defined as follows:

(V, x; s, r)  → (ĝoff(MV,s; r), pad(x⊕ s),K(pad(x⊕ s); r)).

To improve the online complexity, we replace the redundant value pad(x ⊕ s),
which is sent in the clear, with x⊕ s.
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We can now prove the lemma. Let us view ρ as a deterministic input and
encode the deterministic function f(x, ρ). Since f is decomposable, we can write
it as

(foff(ρ), H(Vρ, x)), where Vρ = (f1(0; ρ)| . . . |fn(0; ρ)|f1(1; ρ)| . . . |fn(1; ρ))

and H is the n-wise one-out-of-two selection function. Using appropriate sub-
stitution and concatenation lemmas (see full version), it can be shown that f is

encoded by (foff(ρ), ĥ(V, x; s, r)), where ĥ encodesH . Plugging in our (improved)
encoding of H , we obtain an encoding of the form

f̂(x, ρ; s, r) = (foff(ρ), ĝoff(Ms,ρ; r), x ⊕ s,K(pad(x ⊕ s); r)).

Finally, a similar (composition) argument shows that the function f̂(x; ρ, s, r)
encodes F (x) and the lemma follows. $%

It follows that F has an encoding with online complexity of n + Len(K), on-
line computational complexity of O(n + Comp(K)), and offline computational
complexity of Comp(foff) + Comp(ĝoff), where Comp(·) and Len(·) measure the
computational complexity (circuit size), and the output length (in bits) of a
given function. Furthermore, observe that for every fixed randomness s each bit
of the term pad(x⊕s) can be written as xi or as 1−xi and so if K(x̂; r) is affine
(over some ring) then so is F̂on.

In [2] it is shown that, assuming the existence of one-way functions, any ef-
ficiently computable function F (x) can be encoded by a decomposable ARE
f(x; ρ) = (foff(ρ), f1(x1; ρ), . . . , fn(xn; ρ)), where the output length of the fi’s
is κ bits, and the computational complexity of foff is κ · Comp(f). Combining
this with Lemma 2 and our encodings for the Subset Function, we derive suc-
cinct encodings for general boolean functions. By using an optimized version of
Lemma 1 (which encodes the subset function in blocks), we can do this while
keeping the online computational complexity asymptotically “almost linear”, as
in the following theorem whose proof is deferred to the full version.

Theorem 2 (Theorem 1 Restated). Assume that the DDH assumption, or
LWE assumption or the RSA assumption holds. Let ε > 0 be an arbitrary con-
stant. Then, every efficiently computable function F : {0, 1}n → {0, 1}�(n) has
an encoding F̂ with online communication of n + o(n), online computational
complexity of O(n1+ε), and offline computational/communication complexity of
O(nεComp(F )). Furthermore, in the case of LWE and DDH the encoding is
affine.

5 MPC with Optimal Online Communication

In this section, we sketch the application of succinct randomized encodings to se-
cure multiparty computation (MPC) in the preprocessing model. We start with
the two-party case, and later generalize to the multiparty case. For concrete-
ness, we focus on distributing the DDH-based encoding obtained by combining
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Lemmas 1 and 2 with the DDH-based AHE. Similar protocols can be obtained
based on any succinct Affine RE. We do not know how to get similar results
from general (non-affine) succinct REs.

Let F be a deterministic two-party functionality which takes an input a ∈
{0, 1}na from Alice and an input b ∈ {0, 1}nb from Bob, and delivers an output
c to Alice.4 The DDH-based encoding of F can be written as

F̂ (a, b;R) = (F̂off(R), a⊕ ra, b⊕ rb,

na∑
i=1

KA
i,ai⊕rai

+

nb∑
i=1

KB
i,bi⊕rbi

mod p),

where the “masks” ra ∈ {0, 1}na, rb ∈ {0, 1}nb, and the “keys” KA
i,σ,K

B
i,σ ∈ Zp

are random and independent of a, b (these values are given as part of R).
In the semi-honest model, the protocol is straightforward. In the offline phase,

a trusted party samples R and sends the value F̂off(R) together with the mask
ra to Alice, and the mask rb along with the 2na + 2nb keys KA

i,σ,K
B
i,σ to Bob.

(Of course, in the real world, this step is implemented via the use of any off-
the-shelf secure two-party protocol.) In the online phase, Alice sends to Bob
a ⊕ ra and Bob replies with b ⊕ rb and

∑na

i=1 K
A
i,ai⊕rai

+
∑nb

i=1 K
B
i,bi⊕rbi

mod p.

Alice computes the output using the decoder of F̂ . Note that the view of Bob is
completely random, whereas the view of Alice contains the output of F̂ which
can be simulated given F (a, b). This proves the following:

Theorem 3. Suppose that the DDH assumption holds in a prime order group of
size p = p(κ). Let F (a, b) be a polynomial-time computable functionality which
delivers its output to Alice. Assume trusted preprocessing which does not depend
on the inputs. Then, F can be securely realized in the semi-honest model by a
protocol in which Alice sends a message of length |a| and Bob sends a message
of length |b|+ �log p�, independently of the length of the output or the complexity
of F .

In the full version [6], we describe an efficient extension of this protocol to the
malicious model and to the multiparty model, and discuss the issue of adap-
tive security. Applications related to NIZKs and verifiable computation are also
deferred to the full version.
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Abstract. We put forward a new approach for the design of efficient
multiparty protocols:

1. Design a protocol π for a small number of parties (say, 3 or 4) which
achieves security against a single corrupted party. Such protocols are
typically easy to construct, as they may employ techniques that do
not scale well with the number of corrupted parties.

2. Recursively compose π with itself to obtain an efficient n-party pro-
tocol which achieves security against a constant fraction of corrupted
parties.

The second step of our approach combines the “player emulation” tech-
nique of Hirt and Maurer (J. Cryptology, 2000) with constructions of
logarithmic-depth formulae which compute threshold functions using
only constant fan-in threshold gates.

Using this approach, we simplify and improve on previous results in
cryptography and distributed computing. In particular:

– We provide conceptually simple constructions of efficient protocols
for Secure Multiparty Computation (MPC) in the presence of an
honest majority, as well as broadcast protocols from point-to-point
channels and a 2-cast primitive.

– We obtain new results on MPC over blackbox groups and other
algebraic structures.

The above results rely on the following complexity-theoretic contribu-
tions, which may be of independent interest:

– We show that for every j, k ∈ N such that m � k−1
j−1

is an
integer, there is an explicit (poly(n)-time) construction of a
logarithmic-depth formula which computes a good approximation of
an (n/m)-out-of-n threshold function using only j-out-of-k threshold
gates and no constants.
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– For the special case of n-bit majority from 3-bit majority gates,
a non-explicit construction follows from the work of Valiant (J.
Algorithms, 1984). For this special case, we provide an explicit
construction with a better approximation than for the general
threshold case, and also an exact explicit construction based on stan-
dard complexity-theoretic or cryptographic assumptions.

1 Introduction

Secure multiparty computation (MPC) enables a set of parties to jointly accom-
plish some distributed computational task, while maintaining the secrecy of the
inputs and the correctness of the outputs in the presence of coalitions of dishon-
est parties. Originating from the seminal works of [41,25,4,10], secure MPC has
been the subject of an enormous body of work.

Despite this body of work, MPC protocols remain quite complicated and their
security is difficult to prove. In this work we propose a new general approach to
the construction of efficient1 multiparty protocols in the presence of an honest
majority. This approach enables us to obtain conceptually simple derivations of
known feasibility results (or slightly weaker variants of such results), and also to
obtain new results.

Our approach is inspired by and builds on the “player emulation” technique
of Hirt and Maurer [28], who obtain secure MPC protocols by reducing the
construction of an n-party protocol to the task of constructing a protocol π for
a constant (e.g., three or four) number of parties. The motivation of [28] was to
obtain n-party protocols that are secure with respect to general (non-threshold)
adversary structures. A disadvantage of their n-party protocols is that their
complexity grows exponentially with n. This seems inevitable when considering
arbitrary adversary structures.

Our motivation is very different: We would like to use the atomic protocol
π for constructing efficient n-party protocols in the traditional MPC setting of
threshold adversary structures. Since π only involves a small number of parties,
its design may employ simpler techniques that do not scale well with the number
of corrupted parties. Thus, our goal is to simplify the design of efficient n-party
protocols by reducing it to the design of a simpler atomic protocol π.

To make the approach of [28] scale with the number of parties, we introduce a
new complexity-theoretic primitive: a logarithmic-depth formula2 which is com-
posed only of constant-size threshold gates and computes an n-input threshold
function. The problem of constructing such formulae is closely related to a clas-
sical problem in complexity theory. In this work we also make a contribution to
this complexity-theoretic problem, which may be of independent interest.

1 Here and throughout this work, by “efficient” we mean polynomial-time in the num-
ber of parties and the input size.

2 A formula is a circuit with fan-out 1. A logarithmic-depth formula (more precisely,
infinite family of formulas) is one whose depth is O(log n), where n is the num-
ber of inputs. Throughout this paper we consider only monotone formulas without
negations or constants.



Efficient Multiparty Protocols via Log-Depth Threshold Formulae 187

In addition to providing conceptually simple protocols, our approach is very
general and can be applied in a variety of settings and models. In contrast to most
traditional MPC protocols, it is not tied to some underlying algebraic structure.
We demonstrate this generality by obtaining new results on MPC over black-box
groups and other algebraic structures, improving on previous results from the
literature.

Before proceeding to describe the details of our approach, we note that the goal
of designing MPC protocols whose complexity grows (only) polynomially with
the number of parties also has relevance to two-party cryptography. Indeed, there
are general techniques for applying MPC protocols with security in the presence
of an honest majority (where the number of parties grows with the security
parameter) towards two-party tasks such as zero-knowledge proofs and secure
two-party computation [30,31].

1.1 Our Approach

In the following, for simplicity, we consider the case of perfect security against
a passive adversary. In this setting, parties are honest but curious. That is, they
follow the protocol but may attempt to learn secret information based on what
they see. We note that, in contrast to the norm, the extension of this approach
to the case of an active adversary is relatively straightforward.

We first give an overview of the player emulation technique of Hirt and Mau-
rer [28] and then proceed to describe how we overcome the exponential blow-up
incurred by [28] in the case of threshold adversary structures.

Recall that security of MPC protocols is defined by comparing a real protocol
to an ideal protocol, in which, in addition to the parties involved in the computa-
tion, there is a trusted party. A protocol is deemed secure if for every adversary
in the real protocol controlling a subset of the parties, there is an equivalent
adversary controlling the same subset in the ideal protocol.

The technique from [28] is to reduce the design of n-party protocols to the
design of protocols that support only 3 parties (the minimal number of parties
for perfect security in the passive security model).

We proceed to present an informal description of the reduction. Indeed, sup-
pose that the 3-party case has been solved. That is, for every computational task
involving three parties there exists a secure protocol that securely implements
this task when at most one of the parties is passively corrupted.3 We describe
how to use this protocol to securely implement computational tasks using a
larger number of parties.

Consider n parties that wish to securely accomplish some joint computational
task. It is best to think of this task as being specified by an ideal protocol π0

which involves, in addition to the n parties, a trusted party τ . The ideal protocol
is secure (by definition) even if the adversary controls any subset of the parties
that does not contain τ .
3 Since we deal with perfect security, the size of the secure protocol depends only on
the size of the original protocol. In particular, any constant size protocol can be
implemented securely in constant size.
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Consider a new protocol π1 that involves the n original parties but where
we replace the trusted party τ with three new virtual parties v1, v2, v3. Since in
π0, the trusted party τ is just involved in a computational task, we can use the
given 3-party protocol to simulate τ using v1, v2, v3. When is the new protocol
π1 secure? Since π0 was only insecure whenever the adversary controlled τ and
since the 3-party protocol is secure as long as the adversary controls at most one
of the virtual parties, π1 is secure as long as the adversary does not control two
or more of the virtual parties.

We continue this process by designing a new protocol π2 in which the virtual
party v1 is itself simulated by three new virtual parties w1, w2, w3. Since π1 is
only insecure whenever the adversary controls more than one of v1, v2, v3 and
since the protocol for emulating v1 is secure when at most one of w1, w2, w3 is
controlled by the adversary, π2 is secure as long as the adversary does not control
either v2 and v3 or one of v2, v3 and two or more of w1, w2, w3.

We continue in this process simulating virtual parties by more virtual parties.
The sets of corrupted parties against which the resulting protocol is secure can be
described by looking at a formula composed of 3-input majority gates which we
denote byMaj3. Each wire represents a virtual party. The protocol π1 can be rep-
resented by a simple formula F1 consisting of a single Maj3 gate where the three
input wires correspond to the virtual parties v1, v2, v3 and the output wire corre-
sponds to τ . We assign to each input wire corresponding to an honest party a value
of 0 and a value of 1 to those corresponding to dishonest parties. It can be easily
verified that the protocol is secure whenever the formula F1 evaluates to 0.

Similarly, the protocol π2 can be represented by a formula F2 which is con-
structed from F1 by connecting the input wire corresponding to v1 with an ad-
ditional Maj3 gate with three new input wires (corresponding to w1, w2, w3). It is
easy to verify that the new protocol is secure whenever the formula evaluates to 0.

Suppose that we continue on like this but instead of arbitrarily choosing which
virtual party to simulate, we choose it according to some formula F , composed
only of Maj3 gates.4 Once we reach the input layer of the formula, we associate
each input variable to a real party and every remaining virtual party is simulated
by the real party associated with the corresponding input wire.

As above, the protocol is secure against every set T of parties on which the for-
mula F evaluates to 0. (Here and in the following we associate a set T with its
characteristic vector χT .) Thus, to obtain a protocol that is secure for a particular
adversary structure, it suffices to provide a formula that evaluates to 0 on all sets in
the structure. Since, in contrast to [28], our goal is merely to obtain security in the
presence of an honest majority, we need only to construct a formula that computes
the majority function (using onlyMaj3 gates and no constants).

Such a formula was implicitly constructed by Hirt and Maurer [28] for general
Q2 functions5 and in particular for majority. Unfortunately, the formula of [28]

4 Actually, [28] do not present their construction in the terminology of Maj3 formulae;
we use this presentation since it is more intuitive and is better suited for our purposes.

5 A monotone function f : {0, 1}n → {0, 1} is said to be of type Qd if f(x1) = f(x2) =
. . . = f(xd) = 0 implies that x1 ∨ x2 ∨ . . . ∨ xd �= 1n.
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has linear depth. This yields a protocol whose complexity grows exponentially
with the number of parties, since when traversing the formula we increased the
complexity of the protocol by a constant multiplicative factor (corresponding to
the number of operations in the 3-party protocol) at every layer.

To overcome the exponential blowup, we replace the formula of [28] by a
logarithmic-depth formula (which computes the majority function using only
Maj3 gates). Using the formula-based protocol described above, the logarithmic
depth results in an efficient protocol, namely one whose complexity only grows
polynomially with the number of parties. In Section 1.2 we describe the construc-
tion of a good “approximation” of such a formula as well as exact constructions
under standard complexity-theoretic assumptions.

This approach is indeed very general and canbe used indifferentmodels of secure
MPC. For example, it can be used to obtain both passive security as outlined above
and active security by using an underlying 4-party protocol that is secure against
one active party and a log-depth threshold formula composed of two-out-of-four
threshold gates (denoted by Th42) which we also construct (see Section 1.2).

In fact, this reduction gives us a “cookbook” for designing secure multiparty
protocols. The first step is to design a protocol for a constant number of par-
ties that is secure against one dishonest party and the second step is to use a
logarithmic-depth threshold from thresholds formula to obtain an efficient mul-
tiparty protocol that is secure against a constant fraction of corrupted parties.

We demonstrate the generality of this approach by deriving protocols in both
passive and active settings and in different MPC models which differ in the type
of underlying algebraic structure, including models for which no protocols were
known. We also obtain conceptually simple protocols for classical problems in
distributed computing such as broadcast protocols.

Simplified Feasibility Results. The classical results of Ben-Or et al. [4] and
Chaum et al. [10] allow n parties to evaluate an arbitrary function, using se-
cure point-to-point channels, with perfect security against t < n/2 passively
corrupted parties or t < n/3 actively corrupted parties. We can derive concep-
tually simpler variants of these results by applying our approach with π being a
3-party or 4-party instance of the simple MPC protocol of Maurer [36]. On the
one hand our results are slightly weaker because they either need the thresh-
old t to be slightly sub-optimal or alternatively require (standard) complexity
theoretic assumptions to construct an appropriate formula for implementing the
protocol. It is instructive to note that the complexity of Maurer’s protocol grows
exponentially with the number of parties. Our approach makes this a non-issue,
as we only use the protocol from [36] with a constant number of parties.6

MPC over Blackbox Algebraic Structures. There has been a considerable amount
of work on implementingMPC protocols for computations over different algebraic

6 While in the present work we apply our approach only to perfectly secure protocols,
one could apply a similar technique to derive the result of Rabin and Ben-Or [38],
namely a statistically secure protocol which tolerates t < n/2 actively corrupted
parties.
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structures such as fields, rings, and groups. Algebraic computations arise in
many application scenarios. While it is possible in principle to emulate each
algebraic operation by a sequence of boolean operations, this is inefficient both
in theory and in practice. In particular, the communication complexity of the
resulting protocols grows with the computational complexity of the algebraic
operations rather than just with the bit-length of the inputs and outputs. This
overhead can be avoided by designing protocols which make a blackbox (i.e.,
oracle) use of the underlying structure. The advantage of such protocols is that
their communication complexity and the number of algebraic operations they
employ are independent of the complexity of the structure.

MPC over Rings and k-linear Maps. The work of Cramer et al. [13] shows how
to efficiently implement secure MPC over blackbox rings. We obtain a simpler
derivation of such a protocol by noting that the simple protocol of Maurer [36]
directly generalizes to work over a blackbox ring. As before, one could not apply
this protocol directly because its complexity is exponential in the number of
parties. We show how to use a similar approach for obtaining the first blackbox
feasibility results for MPC over k-linear maps.

MPC over Groups. The problem of MPC over blackbox groups was introduced
by Desmedt et al. [17] and further studied in [39,16,15]. To apply our approach
in the group model, we need to specify the atomic protocol π that we use. For
the case of passive security, we directly construct a simple 3-party protocol that
has security against one corrupted party. This protocol is loosely based on a
protocol by Feige et al. [19] and considerably simplifies the 3-party instance of
a general result from [16].

In the active security model, we rely on the recent work of [15] who obtain
the first MPC protocols with active security in the group model. The complexity
of the protocol of [15] grows exponentially with the number of parties. However,
we only need to employ the [15] protocol for four parties and so we do not suffer
the exponential blowup. Thus, we settle the main problem left open in [15] by
applying our technique to an instance of their results.

We also obtain the first two-party MPC protocols over blackbox groups. In the
passive corruption model, we combine a group product randomization technique
due to Kilian [32] with a “subset sum” based statistical secret sharing of group
elements. We then get security against active corruptions by combining this two-
party protocol with our efficient n-party protocol for the active model via the
IPS compiler [31].

Broadcast. Broadcast is one of the most basic problems in distributed comput-
ing. Recall that in a broadcast protocol a broadcaster wants to send a message
to all other parties. A broadcast protocol should end with all parties holding the
same value, even if some of the parties, possibly including the broadcaster, be-
have adversarially. Obtaining efficient broadcast protocols is a highly nontrivial
task [37,18,22]. Our generic approach for MPC protocols can be used to directly
construct simple broadcast protocols for t < n/3 corrupted parties. We also get
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a simplified proof of a result of Fitzi and Maurer [21], showing that an ideal
primitive allowing broadcast for 3 parties (so-called 2-cast) implies broadcast
with t < n/2 corrupted parties. Our proof technique also yields broadcast for
the more general case of Q2 adversaries which was previously an open problem.

1.2 Threshold Formulae from Threshold Gates

Motivated by the above applications to MPC, we consider the problem of con-
structing a logarithmic-depth threshold formula from threshold gates. Before
discussing the general problem, we first discuss the special case of constructing a
logarithmic depth formula composed of Maj3 gates that computes the majority
function. Note that this is exactly the type of formula required in the setting of
passive MPC security.

Majority from Majorities. A closely related problem was considered by
Valiant [40] who proved the existence of a logarithmic-depth monotone formula
that computes the majority function where the formula uses And and Or gates,
both of fan-in 2. As noted independently by several authors [6,26,42,24], a slight
modification of Valiant’s argument shows the existence of a logarithmic-depth
formula composed of Maj3 gates that computes the majority function.

Valiant’s proof is based on the probabilistic method and is non-constructive.
Namely, the proof only assures us of the existence of a formula with the above
properties, but does not hint on how to find it efficiently. Motivated by the
applications presented in Section 1.1, we ask whether Valiant’s proof can be
derandomized using only Maj3 gates and no constants.7 We raise the following
conjecture:

Conjecture 1 (Majority from Majorities). There exists an algorithmA that given
an odd integer n as input, runs in poly(n)-time and generates a formula F on n
inputs, with the following properties:

– F consists only of Maj3 gates and no constants.
– depth(F ) = O(log n).
– F computes the majority function on n inputs.

A derandomization for Valiant’s proof for formulas over And and Or gates follows
from the seminal paper of Ajtai, Komlós and Szemerédi [1], though the latter
does not seem to imply a derandomization in the context of Maj3 gates, where
constants are not allowed.8

In this paper we make a significant progress towards proving Conjecture 1. In
particular, we prove that relaxed variants of the conjecture hold. In addition, we
show that the conjecture follows from standard complexity assumptions, namely,

7 We cannot allow the use of the constant 0, as this would correspond to assuming
parties to be incorruptible. The use of the constant 1 alone is not helpful in our
context.

8 Note that And and Or gates can be implemented using Maj3 gates and constants.
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E � DTIME(2O(n)) does not have 2εn-size circuits for some constant ε > 0.
Note that the latter follows from the existence of exponentially hard one-way
functions.9 See details in Section 2.

Threshold Formulae from Threshold Gates. Motivated by applications to
the active MPC setting, and being a natural complexity-theoretic problem on its
own, we initiate the study of a generalization of the majority from majorities
problem, which we call the threshold from thresholds problem.

For integers 2 ≤ j ≤ k, define the threshold function Thkj : {0, 1}k → {0, 1}
as follows. Thkj (x) = 1 if and only if the Hamming weight of x is at least j. Note

that Maj3 = Th32.
Unlike the majority from majorities problem, it is not a priori clear what

threshold function, if any, can be computed by a log-depth formula composed
only of Thkj gates, even if no explicit construction is required.

We make significant progress also on this question. Roughly speaking, we
provide an explicit construction of a logarithmic depth formula composed solely
of Thkj gates, that well approximates Thnn/m, where m = k−1

j−1 . For further details,
see Section 2.3.

Organization. In Section 2 we state our results and in Section 3 we present the
proof techniques of the complexity-theoretic part. For an overview of the appli-
cations to cryptography and distributed computing, as well as formal statements
and full proofs of our results, see the full version.

2 Our Results

We first describe the applications of our approach in cryptography and dis-
tributed computing, and then proceed to the complexity-theoretic results.

2.1 Cryptographic Results

We start by stating known results that we rederive using our approach, and later
state our new results.

In the passive Ring-MPC model, we get the following results.

– If the majority from majorities conjecture (Conjecture 1) holds then we
obtain an explicit MPC protocol that has optimal security in the passive
model. That is, it is secure as long as at most a 1

2 −Ω( 1
n ) fraction of the n

parties (more precisely, t < n/2) are passively corrupted.
As noted above and stated formally in Theorem 3, Conjecture 1 follows

from widely-believed conjectures in complexity theory and cryptography.

9 We find it curious that perfectly secure MPC results are based on the existence of
(sufficiently strong) one-way functions.
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– An unconditional explicit and close to optimal protocol in the passive model
in which the fraction of dishonest parties is at most 1

2 − 2−O(
√
logn) out of

the n parties (in contrast to the optimal threshold of 1
2 −Ω( 1n )).

– A randomized construction of an optimal protocol in the passive model. By
randomized construction we mean that the protocol is constructed by a ran-
domized algorithm which may fail with negligible (undetectable) probability,
but otherwise outputs the description of a perfect protocol.

We obtain the following result in the active Ring-MPC model.

– An explicit but non-optimal protocol that is secure against any active ad-
versary that controls at most a 1

3 − Ω( 1√
logn

) fraction of the n parties (in

contrast to the optimal bound of 1
3 −Ω( 1

n )).

Next we state our new results in the blackbox group model, introduced by
Desmedt et al. [17,16]. In this model the function computed by the protocol
is specified by an arithmetic circuit over a (possibly non-Abelian) group, and
the parties are restricted to making blackbox access to the group. (This includes
oracle access to the group operation, taking inverses, and sampling random group
elements.) In particular, the number of group operations performed by the pro-
tocol should not depend on the structure of the group or the complexity of
implementing a group operation using, say, a Boolean circuit.

– Group-MPC, Passive: The best explicit protocol of [16] offers perfect se-
curity against a 1

nε fraction of passively corrupted parties, for any constant
ε > 0, where n is the total number of parties.

We improve upon the latter by constructing an explicit protocol that has
perfect security against an (almost optimal) 1

2 − 2−O(
√
logn) fraction of pas-

sively corrupted parties. Alternatively, we get an optimal bound of 1
2 −Ω( 1n )

assuming the majority from majorities conjecture, via a non-uniform con-
struction, or under standard derandomization or cryptographic assumptions.

– Group-MPC, Active: In a recent work, Desmedt et al. [15] constructed a
secure MPC protocol in the group model with security against an active
adversary. However, their result only gives a protocol whose complexity de-
pends exponentially on the number of parties, regardless of the corruption
threshold.

We construct an efficient secure MPC protocol in the group model where
an active adversary can control (an almost optimal) 1

3 − Ω( 1√
logn

) fraction

of the n parties.
– Secure Two-party Computation over Groups: We construct the first

secure two-party protocols over blackbox groups. Our protocols offer statisti-
cal security against active corruptions (assuming an oblivious transfer oracle)
and rely on the afforementioned n-party protocols over black-box groups.

Finally, our protocols for the Ring-MPCmodel described above can be generalized
to yield the following new result for MPC over k-linear maps.
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– MPC over k-linear Maps: We show that, for any constant k and any
basis B of k-linear maps over finite Abelian groups, there are efficient MPC
protocols for computing circuits over B which only make blackbox access
to functions in B and group operations. This generalizes previous results
for MPC over blackbox rings [13], which follow from the case k = 2, and
can potentially be useful in cryptographic applications that involve complex
bilinear or k-linear maps. These protocols are perfectly secure against a
1
k − Ω( 1√

logn
) fraction of passively corrupted parties or a 1

k+1 − Ω( 1√
logn

)

fraction of actively corrupted parties.

2.2 Distributed Computing Results

Broadcast. It is well known that broadcast can be implemented over point-
to-point channels if and only if less than a third of the parties are actively
corrupted [37,18] or, more generally, if and only if no three of the subsets the
adversary may corrupt cover the entire set of parties [28,20], a so called Q3-
adversary.

In this paper we show that a trivial broadcast protocol for 4 parties where one
is actively corrupted easily implies the result of [20] using existing constructions
of (super-logarithmic depth) formulae. Substituting instead our own logarithmic
depth formula constructions implies a simple polynomial-time broadcast protocol
for less than n(13 −Ω( 1√

log n
)) corrupted parties.

Broadcast from 2-cast. In [21], Fitzi and Maurer identify a minimal primitive
that allows to improve the n

3 corruption threshold: if we are given the ability
to broadcast among any subset of 3 parties for free, a so-called 2-cast primitive,
then broadcast becomes possible when less than n

2 parties are corrupted. It is
natural to ask whether 2-cast also implies broadcast secure against general Q2-
adversaries (where no two corruptible subsets cover the entire set of parties).
This problem was previously open.

We apply our approach to construct broadcast protocols based on a 2-cast
primitive. Together with existing constructions of (super-logarithmic depth) for-
mulae composed of Maj3-gates, this immediately implies a construction of broad-
cast from 2-cast for every Q2-adversary, resolving the above problem. Substi-
tuting instead our logarithmic-depth formula constructions, we get a simplified
derivation of polynomial-time protocols for the case of an honest majority con-
sidered in [21]. We do not know if the formula based approach also implies the
results in [11], which consider generalizations of the 2-cast primitive.

2.3 Complexity-Theoretic Results

In this section we describe our results on constructing threshold formulae from
threshold gates. For the special case of computing majority from Maj3 gates we
obtain stronger results which we state first.
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Majority from Majorities. Our first complexity-theoretic result shows that
given a small promise on the bias of the input (defined as the difference between
the normalized Hamming weight and 1/2), Conjecture 1 holds.

Theorem 2. There exists an algorithm A that given an odd integer n as input,
runs in poly(n)-time and computes a formula F on n inputs, with the following
properties:

– F consists only of Maj3 gates and no constants.
– depth(F ) = O(log n).

– ∀x ∈ {0, 1}n such that bias(x) ≥ 2−O(
√
logn) it holds that F (x) = Maj(x).

Our second result shows that under standard complexity hardness assumptions,
Conjecture 1 holds.

Theorem 3. If there exists an ε > 0 such that E � DTIME(2O(n)) does not
have 2εn-size circuits then Conjecture 1 holds. In particular, if there exist expo-
nentially hard one-way functions then Conjecture 1 holds.10

In fact, the proof of Theorem 3 explicitly presents an algorithm for constructing
a formula as in Conjecture 1 given the truth table of any function in E, on a
suitable number of inputs, that cannot be computed by 2εn-size circuits.

Thresholds Formulae from Threshold Gates

Lemma 4. There exists an algorithm A that given t, j, k ∈ N as input, where
j, k are constants in t such that j ≥ 2 and k ≥ 2j− 1,11 runs in exp(t)-time and
generates a formula F with the following properties:

– F has mt+ 1 inputs, where m =
⌊
k−1
j−1

⌋
.

– F consists only of Thkj gates and no constants.
– depth(F ) = O(t).
– ∀x ∈ {0, 1}mt+1 it holds that F (x) = Thmt+1

t+1 (x).

Lemma 4 generalizes results of [2,28,3], who proved it for particular values of
j and k, and uses a similar technique. We note that the depth of the formula
generated in Lemma 4 is linear, which is too large for our applications. Never-
theless, the following theorem, which uses Lemma 4 as a building block, shows
that a formula with logarithmic depth can be generated efficiently assuming a
sufficient “bias” on the input.

10 A one-way function f is exponentially hard if there exists an ε > 0 such that every
family of 2εn-size circuits can invert f with only 2−εn probability. If there exists such
a function f , then the language Lf is in E but does not have 2εn-size circuits, where
Lf = {(y, x′, 1n) : y has a preimage of length n under f which starts with x′}.

11 Throughout the paper we assume, without loss of generality, that k ≥ 2j − 1. The
complementary case can be reduced to this one by using Thkk−j+1 gates and inter-
preting 0 as 1 and vice versa.
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Theorem 5. There exists an algorithm A that given n, j, k ∈ N as input, where
j, k are constants in n such that j ≥ 2 and k ≥ 2j− 1, runs in poly(n)-time and
generates a formula F on n inputs, with the following properties:

– F consists only of Thkj gates and no constants.
– depth(F ) = O(log n).
– ∀x ∈ {0, 1}n with normalized Hamming weight at least 1

m + Ω( 1√
logn

), it

holds that F (x) = 1, where m =
⌊
k−1
j−1

⌋
.

– ∀x ∈ {0, 1}n with normalized Hamming weight at most 1
m − Ω( 1√

logn
), it

holds that F (x) = 0.

Note that Theorem 2 is not a special case of Theorem 5 (with j = 2, k = 3)
as the required promise on the bias in Theorem 2 is exponentially smaller than
that in Theorem 5.

We do not know whether an analog of Conjecture 1 is plausible for the thresh-
old from thresholds problem, even without the time-efficiency requirement. The-
orem 5 might serve as evidence for the affirmative. However, the probabilistic
argument used in the majority from majorities problem (see, e.g., [24]) breaks
for this more general case. We consider this to be an interesting open problem
for future research.

3 Proof Overview of Complexity-Theoretic Results

In this section we give an overview of our complexity-theoretic constructions. For
simplicity, we start by giving an overview of our construction of a logarithmic-
depth formula composed of Maj3 gates, and no constants, that computes the
majority function for inputs with constant bias. That is, we informally describe
an efficient algorithm that given n, ε as inputs, where ε > 0 is constant in n,
outputs a logarithmic-depth formula with n inputs which computes the majority
function correctly on inputs with bias at least ε. It is not hard to see that it
is enough to construct a logarithmic-depth circuit, since such a circuit can be
efficiently converted to an equivalent logarithmic-depth formula.

To this end, we design an algorithm called ShrinkerGenerator that given n, ε as
inputs, generates a constant-depth circuit Shrinker with n inputs and n

2 outputs,
composed of Maj3 gates and no constants, such that

∀x ∈ {0, 1}n bias(x) ≥ ε =⇒ bias(Shrinker(x)) ≥ ε.

Thus, Shrinker shrinks the number of variables to half while maintaining the
bias, assuming the input has a sufficiently large bias. By repeatedly calling
ShrinkerGenerator on inputs n, n2 ,

n
4 , . . . , 2 (with the same ε) and concatenat-

ing the resulting circuits, one gets a logarithmic-depth circuit that computes the
majority function assuming the input has large enough bias.

A key object we use in the design of ShrinkerGenerator is a Boolean sampler.
Roughly speaking, a Boolean sampler is a randomized algorithm which on input
x ∈ {0, 1}n approximates the Hamming weight of x by reading only a small
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number of the bits of x. More precisely, a (d, ε, δ)-Boolean sampler is a random-
ized algorithm that on input x ∈ {0, 1}n with normalized Hamming weight ω,
samples at most d bits of x, and outputs β ∈ [0, 1] such that Pr[|ω−β| ≥ ε] ≤ δ.

We will use a special type of samplers which take their samples in a non-
adaptive fashion, and their output is simply the average of the sampled bits. For
any ε, δ > 0 there exist efficient (d, ε, δ)-Boolean samplers, with d = O(ε−2 ·δ−1),
that on inputs of length n use only logn random bits.

Because such a sampler is non-adaptive and simply outputs the average of
the sampled bits, it can be represented as a bipartite graph G = (L,R,E), with
|L| = |R| = n. For an input x ∈ {0, 1}n, the i’th vertex in L is labeled with the
i’th bit of x. Each vertex in R represents one of the possible logn bit random
strings used by the sampler. Each right vertex r is connected to the d left-vertices
that are sampled by the algorithm when r is used as the random string.

The algorithm ShrinkerGenerator on inputs n, ε starts by constructing a graph
G that represents a (d, ε

2 ,
1
8 )-Boolean sampler, with d = poly(1ε ) = O(1). It then

arbitrarily chooses half of the right vertices in G and discards the rest. This
gives a bipartite graph G′ = (L′, R′, E′) with |L′| = n, |R′| = n

2 and constant
right-degree d. The circuit Shrinker that the algorithm ShrinkerGenerator outputs
is given by placing a circuit that computes the majority function on d inputs for
every right vertex. The inputs of this majority circuit are the neighbors of the
respective right vertex. Note that as d is constant, a constant-depth circuit that
computes the majority function on d inputs can be found in constant time.

As for the correctness of the construction, assume now that x ∈ {0, 1}n has
some constant bias ε and, without loss of generality, assume that the bias is
towards 1 (i.e., wt(x) ≥ (12 + ε)n). Then, by the guarantee of the sampler, for
all but 1

8 of the right vertices in the original graph G, the fraction of neighbors
with label 1 of a right vertex is at least 1

2 + ε − ε
2 > 1

2 . Thus, all but
1
8 of the

(constant-size) majority circuits located in R output 1. Hence, the fraction of

majority circuits that output 0 in R′ is at most n/8
n/2 = 1

4 ≤ 1
2 − ε, as desired.

3.1 Supporting Sub-constant Bias

For sub-constant ε, the sampler technique described above is wasteful, as it
requires us to use a sequence of O(log n) layers with fan-in O(ε−2). For sub-
constant ε, this results in a circuit with a super-logarithmic depth. However, we
observe that one layer of fan-in O(ε−2) circuits is enough to amplify the bias
from ε to 0.4 (rather than just keep the bias at ε). This reduces us to the constant
bias case, which can be solved as above with an additional O(log n)-depth.

Thus, in order to obtain an O(log n)-depth circuit on n inputs, that computes
majority correctly for inputs with bias at least ε, it is enough to construct an
O(log n)-depth circuit with O(ε−2) inputs that computes majority correctly on
all inputs.

Using a naive brute-force algorithm, one can efficiently find an optimal-depth
circuit on roughly logn inputs that computes majority. By plugging this cir-
cuit into the above scheme, one immediately gets an O(log n)-depth circuit that
computes majority on n inputs with bias roughly ε = Ω( 1√

logn
).
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We improve on this by using an additional derandomization idea. Specifi-
cally, we construct an O(log n)-depth circuit on 2O(

√
log n) inputs, that com-

putes majority (under no assumption on the bias). Thus, we obtain an explicit
construction of a circuit that computes majority assuming the bias is at least
ε = 2−O(

√
log n).

We first describe a randomized construction of an O(logm)-depth circuit onm

inputs for majority, where m is set, in hindsight, to 2O(
√
log n). Our construction

only uses O(log2 m) random bits (compared to poly(m) random bits used in
Valiant’s construction). We then show how to derandomize this construction.

Our randomized construction works as follows. Consider an input x ∈ {0, 1}m
with bias ε. Suppose that we sample uniformly and independently at random 3
bits of x and compute their majority. It is shown in [24] that the majority’s bias
is at least 1.2ε (as long as ε is not too large).

Thus, by placing m majority gates of fan-in 3, and selecting their inputs from
x uniformly and independently at random, the output of the m majority gates
will have bias of at least 1.1ε with overwhelming probability. By composing
O(log (1/ε)) such layers, we can amplify the bias to a constant. Note that this
construction uses O(m · logm · log(1/ε)) random bits.

To save on the number of random bits used (which is essential for the de-
randomization step), instead of sampling the inputs of each one of the m gates
uniformly at random, we choose them in each layer using a 6-wise independent
hash function. While 3-wise independence suffices for the expectation of the bias
to be as before, the 6-wise independence guarantees that the outputs of the ma-
jority gates in each layer are pairwise independent. Using tail inequalities we
show that, with probability 1− o(1), the bias increases in each layer as before.

By composing O(log (1/ε)) such layers, each of which requires O(logm) ran-
dom bits, we obtain a circuit as desired. The total number of random bits used
is O(log (m) · log (1/ε)), which is bounded by O(log2 m). We derandomize the

construction by placing all 2O(log2 m) majority circuits that can be output by the
randomized construction and taking the majority vote of these circuits.

Since we have a guarantee that almost all (a 1− o(1) fraction) of the circuits
correctly compute majority, it is enough to compute the majority vote at the
end using a circuit with 2O(log2 m) inputs that works for, say, constant bias. Such
a circuit, with depth O(log2 m), can be constructed in time 2O(log2 m) by the
constant-bias scheme described earlier.

As we set m = 2O(
√
logn), we get a poly(n)-time uniform construction of an

O(log n)-depth circuit on 2O(
√
logn) inputs that computes majority correctly on

all inputs. This circuit is then used in the scheme described above.

Threshold Formulae from Thresholds Gates. The scheme described above works
also in the more general setting of threshold from thresholds. Indeed, in the
paper we present the scheme in the general setting. To apply the scheme in
the thresholds setting, one needs to construct a small circuit that computes the
required threshold formula, to be used by ShrinkerGenerator. We accomplish this
by extending results of [2,28,3].
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4 The Player Emulation Technique

The formulas obtained in the previous section can be used to construct efficient
multiparty protocols via the “player emulation” technique from [28]. Variants of
this technique, also referred to as player virtualization or simulation, were used
for different purposes in several other works (e.g. [5,9,27,14,31,35,34]). While
implementing player emulation in the passive security model is quite straight-
forward, in the active security model it requires more care. In the following we
give more details on the implementation of this technique.

Recall that in a single player emulation step, the role of a party τ participat-
ing in a protocol Π is replaced by a secure protocol π which involves a small
set of parties v1, . . . , vk, along with the parties of Π . We will typically let k = 3
(resp., k = 4) in the case of security against a passive (resp., active) adver-
sary, and let π be a protocol which remains secure as long as at most one of
the emulating parties vi is corrupted. Furthermore, the total computational
complexity of all parties in π (which is typically cast in some algebraic com-
putation model) is only bigger by a constant factor than that of the emulated
party τ in Π . As explained in the Introduction, a logarithmic-depth threshold
formula defines a sequence of such player emulation steps which result in trans-
forming an atomic protocol π for a constant number of parties into an efficient
n-party protocol which tolerates an optimal or near-optimal fraction of corrupted
parties.

The application of the player emulation technique in [28] is formulated in a
specialized framework for secure MPC and is restricted to the protocol compiler
of BGW [4].12 However, the technique is quite insensitive to many of these
details and can be applied with other protocols and notions of security from the
literature.

A conceptually simple way for implementing a player emulation step is by
viewing the role of τ in Π as a reactive ideal functionality, which interacts with
the parties in Π (receiving incoming messages as inputs and delivering outgoing
messages as outputs), and maintains a state information during this interaction.
The protocol π emulating τ then needs to realize the corresponding functionality
using the emulating parties vi instead of τ . Note that protocol π does not only
involve the players emulating τ . It also specifies how players communicating with
τ should translate their messages into whatever format π uses13.

The protocol π can satisfy any composable notion of security that applies to
reactive functionalities, namely one which ensures that π can be securely used
as a substitute for τ in an arbitrary execution environment if at most a single vi

12 Since the atomic protocols π we employ in this work all have a similar high-level
structure to the BGW protocol, they can be used within the framework of [28] in a
similar way.

13 Alternatively, if the communication channels are modeled as an ideal functionality,
one can extend the definition of this functionality so it will do the translation, and
then in a final step implement the translation. This leads in some cases to a slightly
simpler protocol in the end.
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is corrupted. The protocols π we use in this work all satisfy the standard notion
of UC-security from [8], which suffices for this purpose.14

Alternatively, it is possible to implement a player emulation step by only
relying on protocols for secure function evaluation which satisfy the standard
definitions of standalone security [7,23]. The idea is to first ensure that only a
single message is sent in each round of Π , and then implement a round in which
τ interacts with party P by a protocol involving P and the emulating parties
vi. The functionality realized by such a protocol is determined by the choice of
a concrete (robust) secret sharing scheme which is used to distribute the state
of τ between the emulating parties.
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Abstract. At STOC ’87, Goldreich et al. presented two protocols for
secure multi-party computation (MPC) among n parties: The first proto-
col provides passive security against t < n corrupted parties. The second
protocol provides even active security, but only against t < n/2 corrupted
parties. Although these protocols provide security against the provably
highest possible number of corruptions, each of them has its limitation:
The first protocol is rendered completely insecure in presence of a sin-
gle active corruption, and the second protocol is rendered completely
insecure in presence of �n/2� passive corruptions.

At Crypto 2006, Ishai et al. combined these two protocols into a single
protocol which provides passive security against t < n corruptions and
active security against t < n/2 corruptions. This protocol unifies the
security guarantees of the passive world and the active world (“best of
both worlds”). However, the corruption threshold t < n can be tolerated
only when all corruptions are passive. With a single active corruption,
the threshold is reduced to t < n/2.

As our main result, we introduce a dynamic tradeoff between active
and passive corruptions: We present a protocol which provides security
against t < n passive corruptions, against t < n/2 active corruptions,
and everything in between. In particular, our protocol provides full secu-
rity against k active corruptions, as long as less than n − k parties are
corrupted in total, for any unknown k.

The main technical contribution is a new secret sharing scheme that,
in the reconstruction phase, releases secrecy gradually. This allows to
construct non-robust MPC protocols which, in case of an abort, still pro-
vide some level of secrecy. Furthermore, using similar techniques, we also
construct protocols for reactive MPC with hybrid security, i.e., different
thresholds for secrecy, correctness, robustness, and fairness. Intuitively,
the more corrupted parties, the less security is guaranteed.

Keywords: Multi-party computation, gradual secret sharing, computa-
tional security, mixed adversary.
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1 Introduction

1.1 Secure Multi-Party Computation

Multi-Party Computation (MPC) allows a set of n parties to securely compute
a (probabilistic) function f in a distributed manner, where security means that
secrecy of the inputs and correctness of the output are maintained even when
some of the parties are dishonest. The dishonesty of parties is modeled with a
central adversary who corrupts parties. The adversary can be passive, i.e., can
read the internal state of the corrupted parties, or active, i.e., can make the
corrupted parties deviate arbitrarily from the protocol. Reactive MPC considers
the more general case where parties can provide inputs even after having received
(intermediate) outputs.

MPC was originally proposed by Yao [Yao82]. The first general solution was
provided in [GMW87], where two protocols are presented, one providing pas-
sive security against any number of corruptions, and one providing active se-
curity against a faulty minority. These protocols are computationally secure
only. Information-theoretically secure MPC was considered in [BGW88, CCD88,
RB89, Bea91].

1.2 Extensions of the Basic Setting

These seminal MPC results have been generalized and extended in numerous di-
rections, among which we focus on those most relevant for us: The strict separa-
tion between active and passive adversaries was overcome in [Cha89, DDWY93,
FHM98, HMZ08] by considering an adversary that corrupts some parties actively
and some additional parties passively. Such a mixed adversary is characterized by
two fixed thresholds, indicating the maximum number of actively and passively
corrupted parties, respectively.

A more fine-grained analysis of the achieved security guarantees was initi-
ated in [Cha89] and further advanced in [FHHW03, FHW04, Kat07, LRM10,
HLMR11, HLMR12]: These protocols provide hybrid security, i.e., depending on
the actual adversary, only a subset of the usual security guarantees (secrecy,
correctness, robustness, fairness) are guaranteed. Intuitively, the more parties
are corrupted, the less security is guaranteed.

For completeness, the considered models and achieved security levels of the
mentioned protocols are summarized in Appendix A.

1.3 Prior Work

In their seminal paper [GMW87], the authors provide two different protocols,
one for passive security against up to t < n corruptions, and one for active se-
curity against up to t < n

2 corruptions. In [IKLP06], these two protocols are
combined into a single protocol, which is secure against an adversary that either
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passively corrupts any number of parties or actively corrupts a minority of the
parties. This combined protocol is only applicable for non-reactive functions, and
it is proven that this combination is impossible for reactive MPC. For this more
general setting, the authors present a protocol in the active world that provides
full security up to a first threshold t, and correctness and secrecy up to a second
threshold s, given that t < n/2 and s+ t < n.

Note that all provided protocols are secure against an adversary that is either
fully passive or fully active. In particular, the protocol for non-reactive MPC is
rendered completely insecure when the adversary corrupts �n/2� parties, even if
all but one corruptions are only passive.

1.4 Contributions

We present an MPC protocol (for non-reactive functions) with a dynamic trade-
off between active and passive corruptions. As [IKLP06], the protocol provides
the best possible security level in presence of a purely passive adversary (namely
t < n) as well as in presence of a purely active adversary (namely t < n/2). In
addition, the protocol also tolerates mixed adversaries that corrupt some parties
actively and some other parties passively, as long as at most k parties are cor-
rupted actively and at most n− k − 1 parties are corrupted in total. Note that
k need not be known, as it is not a parameter of the protocol.

In order to construct such a protocol, we introduce the notion of gradual
verifiable secret sharing (VSS). In contrast to traditional VSS, a gradual VSS
reduces the number of adversaries against which secrecy is guaranteed during
reconstruction in a step-wise fashion, and at the same time increases the number
of adversaries against which robustness is guaranteed. By that, if the reconstruc-
tion of a secret aborts, secrecy against many adversaries is still guaranteed.

Furthermore, we generalize and extend our results in two directions: First,
we work in a model with hybrid security. That means, we consider each secu-
rity guarantee (correctness, secrecy, robustness, and fairness) separately, and our
protocols provide each guarantee against as many corrupted parties as possible.
Second, in the setting of reactive MPC, we extend the protocol from [IKLP06]
with fairness and security against mixed adversaries, while at the same time
removing the restriction that robustness can only be guaranteed against a cor-
rupted minority.

1.5 Outline of the Paper

The paper is organized as follows: The model used in this work is described
in Section 2. In Section 3, we briefly review the standard definition of VSS and
introduce the notion of gradual reconstruction. Furthermore, we provide gradual
VSS protocols for threshold adversaries. In Sections 4 and 5, we present protocols
for non-reactive and reactive MPC, respectively, together with optimal bounds.
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2 Model

2.1 Parties

We consider n parties p1, . . . , pn, connected by pairwise synchronous secure chan-
nels and authenticated broadcast channels,1 who want to implement an ideal
functionality F computing a (probabilistic) function f over a finite field F with
|F| > n. Without loss of generality, we assume only public outputs (possibly
several at the same time). Local outputs towards a designated party can be
blinded with a random input from that party. For reactive MPC, F is not re-
stricted to functions and can provide outputs before taking some other inputs.
There is a central adversary with polynomially bounded computing power who
corrupts some parties passively (and reads their internal state) or even actively
(and makes them misbehave arbitrarily). We denote the set of actually actively
(passively) corrupted parties by D∗ (E∗), where for ease of notation, we assume
that D∗ ⊆ E∗. Uncorrupted parties are called honest, non-actively corrupted par-
ties are called correct. For ease of notation, we assume that if a party does not
receive an expected message (or receives an invalid message), a default message
is used instead.

2.2 Security

The security of our protocols is computational, i.e., based on some computational
assumption. We say a security guarantee holds computationally if it holds against
a computationally bounded adversary. We consider the five standard security
guarantees: Secrecy means that the adversary learns nothing about the honest
parties’ inputs and outputs (except, of course, for what can be derived from the
corrupted parties’ inputs and outputs). Correctness means that all parties either
output the right value or no value at all. Robustness means that the adversary
cannot prevent the honest parties from learning their respective outputs. This
last requirement turns out to be very demanding. Therefore, relaxations of full
security have been proposed, where robustness is replaced by weaker output
guarantees: Fairness means that the adversary can possibly prevent the honest
parties from learning their outputs, but then also the corrupted parties do not
learn their outputs. In the case of reactive MPC, fairness can only be achieved
for outputs provided at the same time, i.e., for each output round, either all
(honest) parties learn the outputs or also the adversary does not learn them.
However, the adversary can abort the protocol after having received outputs
from prior rounds. Agreement on abort means that the adversary can possibly
prevent honest parties from learning their output, even while corrupted parties
learn their outputs, but then the honest parties at least reach agreement on this

1 Secure bilateral channels are usually established via standard techniques such as
encryption and digital signatures. Broadcast channels are usually simulated with an
appropriate protocol [DS82].
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fact (and typically make no output).2 The level of security (secrecy, correctness,
fairness, robustness, agreement on abort) depends on (D∗, E∗).

2.3 Characterization of Tolerated Adversaries

Traditionally, protocols for threshold adversaries are characterized by a sin-
gle threshold t that specifies the maximal adversary that can be tolerated.
This basic representation has been extended as follows: On the one hand, a
mixed adversary is characterized by two thresholds (ta, tp), where he may cor-
rupt up to tp parties passively, and up to ta of these parties even actively.
To model security guarantees against incomparable maximal adversaries, we
need to consider multiple pairs of thresholds. Therefore, we use multi-thresholds
T = {(ta,1, tp,1), . . . , (ta,k, tp,k)}, i.e., sets of pairs of thresholds (ta, tp). In this
model, security is guaranteed if (|D∗|, |E∗|) ≤ (ta, tp) for some (ta, tp) ∈ T ,
denoted by (|D∗|, |E∗|) ≤ T , where (|D∗|, |E∗|) ≤ (ta, tp) is a shorthand for
|D∗| ≤ ta and |E∗| ≤ tp. On the other hand, the level of security (correctness,
secrecy, robustness, and fairness) depends on the number (|D∗|, |E∗|) of actually
corrupted parties (hybrid security). Hence, we consider the four multi-thresholds
T c, T s, T r, and T f : Correctness with agreement on abort is guaranteed for
(|D∗|, |E∗|) ≤ T c, secrecy is guaranteed for (|D∗|, |E∗|) ≤ T s, robustness is guar-
anteed for (|D∗|, |E∗|) ≤ T r, and fairness is guaranteed for (|D∗|, |E∗|) ≤ T f .
We have the assumption that T r ≤ T c and T f ≤ T s ≤ T c,3 as secrecy and
robustness are not well defined without correctness, and as fairness cannot be
achieved without secrecy.

2.4 Ideal Functionality

For ease of presentation, we provide our proof sketches in a property-based se-
curity model. This allows to describe our ideas in a straightforward and un-
derstandable way. All statements could be made formal in a simulation-based
model. To avoid ambiguity, we sketch the ideal functionality of our non-reactive
MPC protocol in Figure 1.

We stress that in a setting without secrecy (i.e., (D∗, E∗) �≤ T s) the adversary
may learn the inputs from honest parties before he has to provide inputs from
the corrupted parties. Furthermore, for probabilistic functions, the adversary
can freely choose the random string.

3 Gradual Verifiable Secret Sharing

We first briefly review the standard definition of verifiable secret sharing (VSS)
schemes. Then, we define a new property for VSS schemes introducing the notion

2 In our constructions, all abort decisions are based on publicly known values. Hence,
we have agreement on abort for free. Note that the impossibility proofs hold even
when agreement on abort is not required.

3 We write T1 ≤ T2 if ∀(ta, tp) ∈ T1 : (ta, tp) ≤ T2.
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Ideal Functionality F : Given (T r, T f , T s, T c) and (D∗, E∗) ≤ T c.
1. Receive inputs from honest parties P \ E∗.
2. If (D∗, E∗) �≤ T s: send these inputs to the adversary.
3. Receive inputs from the adversary for the parties in E∗.
4. For probabilistic functions only:

If (D∗, E∗) ≤ T s: sample a random bit string r of appropriate length.
Otherwise: Receive r from the adversary.

5. Evaluate the function.
6. If (D∗, E∗) �≤ T f : send the output to the adversary.
7. If (D∗, E∗) �≤ T r: receive a bit from the adversary, and abort if the bit is 1.
8. Send the output to the honest parties P \ E∗ and to the adversary.

Fig. 1. Sketch of the Ideal Functionality for non-reactive MPC

of gradual reconstruction.4 Finally, we present schemes that achieve the new
requirements.

3.1 Definitions

A Verifiable Secret Sharing (VSS) scheme allows a designated party (the dealer)
to share a value s among all parties, such that the parties can jointly reconstruct
the value. The following definition captures the standard, well-known properties
of verifiable secret sharing:

Definition 1 (VSS). A (T s, T r)-secure Verifiable Secret Sharing (VSS) is a
pair of protocols Share and Rec, where Share takes input s from the dealer and
Rec gives output s′ to each party, if the following conditions are fulfilled:
Secrecy: If (D∗, E∗) ≤ T s, then in Share the adversary obtains no information
about s.
Correctness: After Share, the dealer is bound to a value s′, where s′ = s if
the dealer is correct. Furthermore, in Rec, either each (correct) party outputs s′

or all (correct) parties abort.
Robustness: The adversary cannot abort Share. If (D∗, E∗) ≤ T r, then the
adversary cannot abort Rec.

For (D∗, E∗) �≤ T r, this definition does not rule out that the reconstruction
protocol aborts even in an unfair way, where the honest parties do not learn the
secret but the corrupted parties do. In fact, most VSS schemes in the literature
show this undesired behavior: When corrupted parties do not broadcast their
shares, they still learn the shares from the honest parties and can compute the
secret, but the honest parties do not obtain enough shares and abort.

Clearly, a certain level of unfairness cannot be avoided when secrecy and
robustness are to be guaranteed with respect to many corruptions. In particular,

4 This notion should not be confused with the notion of gradual release of secrecy as
introduced by [Blu83].
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whenever a sharing scheme is secret with respect to some subset M ⊆ P of the
parties, then it cannot be robust with respect to the complement P \M of this
subset: When the parties in M have no information about the shared value after
Share, and the parties in P \M do not participate in Rec, then the value cannot
be reconstructed. Hence, the collection of subsets against which a sharing is
secret implicitly defines the collection of subsets that can abort reconstruction
(namely, the complements). In usual reconstruction protocols, all correct parties
directly broadcast their entire shares, i.e., secrecy is given up against all subsets
at once, before robustness against a single subset is achieved. This means that
during reconstruction, any subset of parties that can abort, can also abort in an
unfair way. Our new definition below requires that the transition from secrecy to
robustness is gradual, such that when a small set of parties does not broadcast
their share, then only a large subset of parties jointly obtains information about
the secret.

Definition 2 (Gradual VSS). A (T s, T r)-secure VSS is gradual if the fol-
lowing conditions are fulfilled: If Rec aborts, each party outputs a non-empty
set B ⊆ D∗, and the adversary obtained no information about the secret s if
(|D∗|, |E∗|) ≤ T s and |E∗| < n− |B|.

3.2 A Gradual VSS Scheme

We describe a gradual VSS scheme based on the standard Shamir sharing scheme
[Sha79], and extended with (homomorphic) commitments to provide verifiabil-
ity (e.g. [Ped91]). To obtain the gradual property, summands s1, . . . , sd with
s1 + . . . + sd = s are chosen at random and, rather than the secret itself, these
summands are shared, where summand si is shared with degree i. Then, dur-
ing reconstruction, the summands are reconstructed one by one, in decreasing
order of the sharing degree. We assume that each party pi is assigned a unique
and publicly known evaluation point αi ∈ F \ {0},5 and that the commitments
are homomorphic and transferable by sending the opening information. This
construction results in the scheme VSSd = (Shared, Recd) for parameter d.

Definition 3 (d-sharing). A value s is d-shared, denoted by [s]d, if there are
values s1, . . . , sd, such that s1 + . . .+ sd = s and, for all i ∈ {1, . . . , d}, there is
a polynomial gi(x) of degree i with gi(0) = si, and every party pj holds a share
sij = gi(αj) and is committed to it.

The sharing protocol from [Ped91] can be extended in a straightforward way to
compute such a d-sharing. A description of the protocol can be found in Figure 2.
This share protocol provides resilience even against a corrupted dealer. It turns
out that in our protocols, essentially only ideal functionalities need to compute
d-sharings. Trivially, given a value s, such an honest dealer can directly sample
and distribute a correct sharing [s]d without running Shared. The (probabilistic)
function that samples shares of some given input s is denoted by Stated.

5 This implies that the field F must have more than n elements.
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Protocol Shared: Given input s from the dealer, compute a d-sharing of this value.
1. The dealer chooses uniformly random summands s1, . . . , sd with

∑d
i=1 si = s.

2. For i ∈ {1, . . . , d}:
(a) The dealer chooses a random polynomial gi(x) of degree i with gi(0) = si, and

computes and broadcasts (homomorphic) commitments of the coefficients of
gi(x).

(b) For each share sij = gi(αj), each party locally computes a commitment cij
(using the homomorphic property), and the dealer sends the corresponding
opening information oij to party pj . Then, pj broadcasts a complaint bit,
indicating whether oij opens cij to some value s′ij .

(c) For each share sij for which an inconsistency was reported, the dealer broad-
casts the opening information oij , and if oij opens cij , pj accepts oij . Oth-
erwise, the dealer is disqualified (and a default sharing of a default value is
used).

3. Each party pj outputs its share
(
(s1j , o1j), . . . , (sdj , odj)

)
and all commitments.

Fig. 2. The share protocol for threshold adversaries

Lemma 1. Given a parameter d < n and input s, Shared robustly computes a
correct d-sharing [s]d. If |E∗| ≤ d, the adversary obtains no information about s.

Proof. Correctness: Trivially, in Step 2.a, any (well-formed) commitments
broadcasted by the dealer are correct. In Step 2.b, commitments to all shares are
computed locally by each party directly from the commitments to the coefficients
broadcasted in Step 2.a. Hence, all (correct) parties have a consistent view with
correct commitments. In Steps 2.b and 2.c, due to the binding property of the
commitments, the adversary cannot distribute inconsistent opening information
without being detected. Hence, the sharing is correct (or the dealer is disqualified
and a default sharing is used).
Secrecy: The commitments are computationally hiding. Therefore, the adver-
sary obtains no information in Step 2.a of Shared. Furthermore, the summand
sd is shared with degree d. Hence, in Step 2.b, if not more than d parties are
passively corrupted, the adversary obtains no information about sd, and there-
fore not about s. In Step 2.c, whenever a value is broadcasted, the adversary
knew this value already beforehand.
Robustness: By inspection, the share protocol does not abort.

In Figure 3, we describe the reconstruction protocol for a single sharing. Clearly,
this protocol can be extended to reconstruct multiple sharings in parallel by
executing the protocol on a vector of sharings, where an abort in one instance
implies an immediate abort (in the same round) for all instances.

Lemma 2. Given is a d-sharing [s]d for d < n. If |D∗| < n − d, then Recd

(robustly) outputs s to all parties. Otherwise, either it outputs s to all parties,
or it aborts and outputs a non-empty set B ⊆ D∗, and the adversary obtained
no information about the secret if |E∗| < n− |B|.
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Protocol Recd : Given a d-sharing of some value s, reconstruct s to all parties.
1. For i = d down to 1:

(a) Each party pj opens the commitment to its share sij via broadcast.
(b) If at least i+1 parties correctly opened the commitments to their respective

shares, each party locally interpolates gi(x) and computes si = gi(0). Oth-
erwise, the protocol is aborted and each party outputs the set B of parties
that did not broadcast correct opening information.

2. Each party outputs s = s1 + . . .+ sd.

Fig. 3. The protocol for gradual reconstruction for threshold adversaries

Proof. Correctness: The only operation in the protocol is the opening of
commitments. Hence, given a correct sharing and the binding property of the
commitment scheme, incorrect parties cannot deviate without being detected.
Robustness: To abort the reconstruction of some si, at least n − i ≥ n − d
parties must refuse to correctly open their respective commitments. Hence, for
|D∗| < n− d, the protocol is robust.
Gradual: The reconstruction aborts (with B) only if in the ith iteration (for
some i), the reconstruction of si failed. In that case, strictly less than i+ 1 par-
ties opened their commitments correctly, hence |B| ≥ n − i. Clearly, B ⊆ D∗,
since only active parties do not open their commitments correctly. Furthermore,
if |E∗| < n− |B|, the adversary has no information about s|E∗| since the recon-
struction of s|E∗| did not yet start (note that |E∗| < n− |B| ≤ i).

The following corollary summarizes Lemma 1 (Shared) and Lemma 2 (Recd):

Corollary 1. Given a parameter d < n, VSSd = (Shared, Recd) is a computa-
tionally (T s, T r)-secure, gradual VSS where (|D∗|, |E∗|) ≤ T s if |E∗| ≤ d, and
(|D∗|, |E∗|) ≤ T r if |D∗| < n− d.

4 Non-reactive Multi-Party Computation

4.1 Overview

Our protocol for non-reactive MPC is based on an idea from [IKLP06]: Given the
function f and the inputs x1, . . . , xn, the protocol first distributedly computes
y = f(x1, . . . , xn) using a correct and secret, but non-robust MPC protocol. Yet,
instead of y itself, this MPC protocol outputs a sharing of y that was computed
according to some VSS scheme. Then, the parties reconstruct this sharing.

In [IKLP06], whenever the non-robust MPC protocol aborts, the computation
of y = f(x1, . . . , xn) is repeated with a robust MPC protocol, which provides
security against an actively corrupted minority. Yet, if the reconstruction of y
aborts, the adversary might already have learned the output, and repeating the
computation would violate security. In contrast, by using a gradual VSS scheme
to share y (cf. Section 3), our protocols achieve stronger security guarantees.
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Given a set of actually (actively) cheating parties, a gradual VSS allows to
maintain as much secrecy as possible. Then, in case of an abort during the
reconstruction, the cheaters are identified and eliminated, and if the gradual
VSS still guarantees enough secrecy,6 the computation of y = f(x1, . . . , xn)
is repeated using again the same MPC protocol among the remaining parties.
Otherwise, the execution halts.

The protocol in [GMW87] (in the following denoted by GMW) provides security
with abort for t < n corrupted parties (i.e., correctness and secrecy against
t < n corrupted parties, and, in case of an abort, each correct party outputs the
same non-empty set B ⊆ D∗). However, it can easily be seen that correctness
(but not secrecy) can also be achieved for t = n corrupted parties.7 We use
GMW to implement the ideal functionality computing f and then a sharing of the
result y.8

4.2 Construction

We use the gradual VSS scheme described in Section 3.2 with degree d = n−1. In
fact, we only require the reconstruction protocol Recn−1 and the (probabilistic)
function Staten−1 that, given a value y, samples shares of y according to VSSn−1.
Furthermore, the protocol receives a robustness parameter e stating the number
of actively corrupted parties that the protocol can eliminate (and then repeat
the run) without violating security. A set of parties is eliminated by removing
the parties from P and reducing n and e accordingly. For details see Figure 4.

Lemma 3. Given a function f and a robustness parameter e, the protocol for
non-reactive MPC computes f in presence of an adversary corrupting (|D∗|, |E∗|).
It is always correct, robust if |D∗| ≤ e, secret if |D∗|+ |E∗| < n or |E∗| < n−e,
and fair if |D∗|+ |E∗| < n.

Proof. Correctness and robustness follow trivially by inspection.
Secrecy: GMW is secret for any number of corrupted parties. Furthermore, since
|E∗| ≤ n − 1 (otherwise there is no secrecy requirement), it follows from Corol-
lary 1 that the output [y]n−1 reveals no information to the adversary. Hence, he
obtains no information about the inputs in Step 1. Steps 2 and 3 are indepen-
dent from the inputs given the output. Therefore, if the protocol does not abort,

6 The protocols are described with respect to a robustness parameter rather than a
secrecy parameter as suggested here. It turns out that this simplifies the description
and the proof.

7 In particular this holds also in the setting with mixed adversaries where some parties
are actively and all remaining parties are passively corrupted. This follows from the
fact that each party has to prove the correctness of the messages it sends using a
zero-knowledge protocol. Given instant randomness (i.e., randomness generated only
when needed), even the challenges of passively corrupted parties are unpredictable
to the adversary.

8 Vanilla [GMW87] considers only Boolean circuits. However, any ideal functionality
can be converted into a Boolean circuit in a straightforward way.
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Non-reactive MPC: Given are a function f and a robustness parameter e.

1. Employ GMW to first compute y = f(x1, . . . , xn), where xi is the input from party
pi, then evaluate Staten−1 on y, and finally output to each party its correspond-
ing share, resulting in [y]n−1. If GMW aborts with a set B of active cheaters, repeat
with P = P \B, n = n− |B|, and e = e− |B|.

2. Invoke Recn−1 on [y]n−1. On abort with a set B of active cheaters: If |B| ≤ e,
then repeat the whole protocol with P = P \ B, n = n − |B|, and e = e − |B|.
Otherwise, halt the execution.

3. Output y.

Fig. 4. The protocol for non-reactive MPC for threshold adversaries

secrecy is maintained. Yet, secrecy may be violated if the adversary can force
a repetition of the protocol after learning the output.9 If the protocol aborts
in Step 2 with B ⊆ D∗, then in the case |D∗| + |E∗| < n we directly have
|E∗| < n− |D∗| ≤ n− |B|, hence secrecy is maintained. In the case |E∗| < n− e,
we either have that |E∗| < n−|B| (and secrecy is maintained), or |E∗| ≥ n−|B|,
hence |B| ≥ n − |E∗| > e and the protocol aborts, i.e. the adversary learns at
most one output value.
Fairness is a subcase of secrecy and therefore omitted.

Given Lemma 3, we can derive a tight bound for (non-reactive) MPC:

Theorem 1. In the model with broadcast and multi-threshold adversaries, com-
putationally secure (non-reactive) MPC among n parties with thresholds T c, T s,
T r, and T f , where T f ≤ T s ≤ T c and T r ≤ T c, is possible if either T s = {(0, 0)},
or (

∀(tsa, tsp) ≤ T s, (tra, ·) ≤ T r : tra + tsp < n ∨ tsa + tsp < n
)

∧
(
∀(tfa , tfp) ≤ T f : tfa + tfp < n

)
.

This bound is tight: If violated, there are (non-reactive) functionalities that can-
not be securely computed.

Proof. The proof of necessity can be found in Section 4.3. To prove sufficiency,
first consider the (trivial) case T s = {(0, 0)}. Then, every party simply broad-
casts its inputs and computes the function on the broadcasted values (c.f.
Section 2.4).

Otherwise, we use the protocol in Figure 4 with e = t̂ra, where t̂ra is the
maximal tra value in T r.
Correctness is always guaranteed, and Robustness follows directly from the
choice of e.
Secrecy: Since (|D∗|, |E∗|) ≤ T s, we immediately have that |D∗| + |E∗| <
n ∨ ∀(tra, ·) ≤ T r : tra + |E∗| < n. Then, it follows from the choice of e that
|D∗|+ |E∗| < n ∨ e+ |E∗| < n.

9 In that case, the adversary may learn two evaluations of f for different inputs.
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Fairness: Since (|D∗|, |E∗|) ≤ T f and ∀(tfa , tfp) ≤ T f : tfa + tfp < n, we immedi-
ately have |D∗|+ |E∗| < n.

Theorem 2. There exists a cryptographically secure multi-party computation
protocol among n parties for non-reactive functionalities which is fully secure
against all adversaries (D, E) with |D|+ |E| < n.

Proof. Apply Theorem 1 with T c = T s = T r = T f = {(k, n − k − 1) : k =
0, . . . , �n−1

2 �}.

4.3 Proof of Necessity for Non-reactive MPC

In this section, we prove that the bound in Theorem 1 is necessary, i.e. if violated,
(non-reactive) MPC is impossible. The bound in Theorem 1 is violated if T s �=
{(0, 0)} and

(
∃(tsa, tsp) ≤ T s, (tra, ·) ≤ T r : tra + tsp ≥ n ∧ tsa + tsp ≥ n

)
∨(

∃(tfa , tfp) ≤ T f : tfa + tfp ≥ n
)

Case: ∃(tsa, tsp) ≤ T s, (tra, ·) ≤ T r : tra + tsp ≥ n ∧ tsa + tsp ≥ n.
For the sake of contradiction, assume that there is a protocol for this setting,
and without loss of generality assume that tsp > 0 (there is such a tsp because
T s �= {(0, 0)}). For each E ⊆ P , let �E denote the first round in the protocol
in which the parties in E jointly can efficiently compute the output. Among
all subsets E ⊆ P with |E| = tsp, let E denote the one with minimal �E , i.e.,
E ∈ {E ⊆ P : |E| = tsp ∧ �E′ ⊆ P : |E′| = tsp ∧ �E′ < �E}. Now consider an
adversary actively corrupting some subset D ⊆ E with |D| = n− tsp, and let him
abort all parties in D in round �−1. By assumption, the remaining tsp parties P\D
cannot compute the output (corresponding to the actual inputs). However, the
protocol must not abort, as the actual adversary could be (D∗, E∗) = (D,D), for
which robustness is guaranteed as (|D∗|, |E∗|) = (n− tsp, n− tsp) ≤ (tra, t

r
a) ≤ T r.

Hence, the remaining parties must again take inputs and set default values for
the inputs of parties in D, but this violates secrecy if the actual adversary is
(D∗, E∗) = (D, E) (note that (|D∗|, |E∗|) = (n − tsp, t

s
p) ≤ T s), who then learns

the output of this run as well as the output of the next run with default input
values for the parties in D (note that |E∗| ≥ 1).

As an example, consider the following (generalized OT-) functionality: Each

party pi inputs three bits: a
(i)
0 , a

(i)
1 , and b(i) (with default input a

(i)
0 = a

(i)
1 =

b(i) = 0). Let d = b(1) ⊕ . . .⊕ b(n). The output is y = (a
(1)
d , . . . , a

(n)
d ). The adver-

sary lets one actively corrupted party input b = 1, and all others b = 0. Then,

with the attack described above, the adversary learns both y0 = (a
(1)
0 , . . . , a

(n)
0 )

and y1 = (a
(1)
1 , . . . , a

(n)
1 ), which clearly is a violation of secrecy.

Case: ∃(tfa, tfp) ≤ T f : tfa + tfp ≥ n. Again, assume that there is a
protocol for this setting, and let E denote the subset among all subsets E ⊆ P
with |E| = tfp such that �E is minimal (see Section 4.3). Consider the adversary
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(D∗, E∗) = (D, E) for D ⊆ E with |D| = n − tfp , and let him abort all parties

in D∗ in round � − 1. By assumptions, the remaining tfp parties in P \ D∗ are
not able to efficiently compute the output, whereas the adversary (D∗, E∗) does
learn the output, a violation of fairness.

5 Reactive Multi-Party Computation

5.1 Overview

For our protocol for reactive MPC, we adapt an idea from [IKLP06] and modify
the given functionality F as follows: For each output y, instead of the value itself,
it outputs a sharing of y that was computed according to some VSS scheme.
Then, to obtain the output, the parties reconstruct this sharing. This modified
F is implemented using an MPC protocol that is always correct, and as robust
and secret as some (second) VSS scheme.

In contrast to [IKLP06], we use a gradual VSS scheme for the modification of
F . The gradual property allows to provide fairness beyond robustness. In fact,
we only require the (probabilistic) function State that, given a value y, samples
shares of y according to the gradual VSS scheme. We modify F such that it
invokes State on each output value y, and then outputs the shares of y (instead
of y itself). We modify F to use VSSd (Section 3.2) and denote the resulting
functionality by Fd.

The MPC protocol implementing the (modified) functionality F receives as
parameter a (T s, T r)-secure VSS, and then provides correctness for any number
of corrupted parties, secrecy if (D∗, E∗) ≤ T s, and robustness if (D∗, E∗) ≤ T r.
Furthermore, if the protocol is aborted, then each party outputs the same non-
empty set B ⊆ D∗. Clearly, the non-robust protocol used in Section 4 can be
extended accordingly with a VSS as described in [GMW87].10 We instantiate the
protocol using VSSd (Section 3.2) and denote the resulting protocol by GMWd. Note
that for this extension of GMW, a standard, non-gradual VSS would be sufficient.

5.2 Construction

We use the gradual VSS scheme described in Section 3.2 with the same sharing
degree d for both the modification of F , resulting in Fd, and within GMW, resulting
in GMWd.

Lemma 4. Given a functionality F and a parameter d < n, the protocol for
reactive MPC implements F in presence of an adversary corrupting (|D∗|, |E∗|).
It is always correct, secret if |E∗| ≤ d, robust if |D∗| < n − d, and fair if
|E∗| ≤ d ∧ |D∗|+ |E∗| < n.

10 The original description considers only VSS with a threshold of n/2. However, it is
easy to see that any VSS can be used. The resulting protocol inherits the robust-
ness and secrecy properties of the corresponding VSS, while leaving the correctness
properties unchanged. The same holds for the simplified protocol in [Gol04, p. 735].
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Reactive MPC: Given are a functionality F and a sharing degree d.

1. Invoke GMWd implementing Fd.
2. On each output [y]d, invoke Recd. If it aborts, halt the execution. Otherwise,

output y.

Fig. 5. The protocol for reactive MPC for threshold adversaries

Proof. Correctness follows trivially by inspection, and Secrecy and Ro-

bustness follow immediately from Corollary 1. Fairness: Since |E∗| ≤ d, it
follows from Corollary 1 that the adversary obtains no information in Step 1.
Furthermore, if the reconstruction of an output value aborts with B, the grad-
ual property guarantees that B ⊆ D∗. Since |D∗| + |E∗| < n, we then have
|E∗| < n− |D∗| ≤ n− |B|, hence, the adversary did not obtain any information
about y and fairness is preserved.

Given Lemma 4, we can derive a tight bound for reactive MPC:

Theorem 3. In the model with broadcast and multi-threshold adversaries, com-
putationally secure (reactive) MPC among n parties with thresholds T c, T s, T r,
and T f , where T f ≤ T s ≤ T c and T r ≤ T c, is possible if either T s = {(0, 0)},
or

∀(tra, ·) ≤ T r, (·, tsp) ≤ T s : tra + tsp < n ∧ ∀(tfa , tfp) ≤ T f : tfa + tfp < n

This bound is tight: If violated, there are (reactive) functionalities that cannot be
securely computed.

Proof. To prove sufficiency, first consider the (trivial) case T s = {(0, 0)}. Then,
every party simply broadcasts its inputs and computes the function on the broad-
casted values (c.f. Section 2.4). Otherwise, we use the protocol described in Fig-
ure 5 with d = t̂sp, where t̂sp is the maximal tsp value in T s. Correctness is
always guaranteed, and Secrecy follows immediately from the choice of d.
Robustness: Since (|D∗|, |E∗|) ≤ T r and ∀(tra, ·) ≤ T r, (·, tsp) ≤ T s : tra+ tsp < n,
we have that ∀(·, tsp) ≤ T s : |D∗| + tsp < n. Then, it follows from the choice of d
that |D∗|+ d < n.
Fairness: Given is that (|D∗|, |E∗|) ≤ T f . Since T f ≤ T s, we have |E∗| ≤
d. Furthermore, since ∀(tfa , tfp) ≤ T f : tfa + tfp < n, we immediately have
|D∗|+ |E∗| < n.
The proof of necessity is given in the next section.

5.3 Proof of Necessity for Reactive MPC

In this section, we prove that the bound in Theorem 3 is necessary, i.e. if violated,
(reactive) MPC is impossible. The bound in Theorem 3 is violated if T s �=
{(0, 0)} and

∃(tra, ·) ≤ T r, (·, tsp) ≤ T s : tra + tsp ≥ n ∨ ∃(tfa , tfp) ≤ T f : tfa + tfp ≥ n
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Case: ∃(tra, ·) ≤ T r, (·, tsp) ≤ T s : tra + tsp ≥ n. Assume that there is a
secure protocol for this setting. Then, the adversary corrupts (D∗, E∗) = (D,D)
with D ⊆ P and |D| = n − tsp and has the parties in D stop sending messages.
Since there are only tsp remaining parties, the state is lost and the computation
cannot be continued. Hence, robustness is violated.11

Case: ∃(tfa, tfp) ≤ T f : tfa + tfp ≥ n. Same as in the non-reactive case
(Section 4.3).

6 Conclusions

In this work, we have generalized and extended known results from the literature.
In particular, we improved over the work in [IKLP06] that combines optimal
results from the active and the passive world. Our protocols distinguish not only
whether or not active cheating occurs, but provides a dynamic tradeoff between
active and passive corruptions. Hence, we achieve “the best of both worlds – and
everything in between” with a single protocol.

Furthermore, we introduced the notion of gradual verifiable secret sharing.
This notion requires that, during reconstruction, secrecy is given up gradually,
one subset at a time, while immediately establishing robustness against the corre-
sponding complement set. As a consequence, intuitively speaking, the adversary
might still abort the protocol, but does not automatically learn the secret. This
technique turned out to be very useful in the setting of both non-reactive and
reactive MPC to provide more flexible and therefore more practical protocols.

Moreover, the use of multi-thresholds allows to unify two incomparable models
for combining active and passive corruption. In the first model, used for example
by [IKLP06], the adversary can corrupt parties either passively or actively, but
not both at the same time. Then, for each of the two corruption options, a max-
imally tolerable adversary is considered. In the second model, used for example
by [FHM98], the adversary can corrupt some parties actively, and additionally
some parties passively, at the same time. Yet, their model only allows to con-
sider a single maximally tolerable adversary. By using multi-thresholds, we can
provide a single protocol that subsumes results for both models simultaneously.

A Comparison with Related Work

For completeness, we summarize the considered models and achieved security
levels of several protocols in the literature. In case of protocols with hybrid
security, we indicate in parentheses over which properties the hybridization is
achieved.

11 Note that the proof in [IKLP06] considers only the special case where tra ≤ tsp.
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Paper Prot Adv. Security

[Cha89] MPC mixed hybrid (comp/statistical)
[DDWY93] SMT mixed perfect
[FHM98] MPC mixed statistical
[HMZ08] MPC mixed computational or statistical
[FHHW03] BA active perfect
[FHW04] MPC active hybrid (comp/stat)
[Kat07] MPC active hybrid (output guarantee)
[LRM10] MPC active hybrid (comp/stat and robustness/fairness)
[HLMR11] MPC mixed perf., hybrid (privacy/correctness/robustness/fairness)
[HLMR12] MPC mixed stat., hybrid (privacy/correctness/robustness/fairness)
this work MPC mixed comp., hybrid (privacy/correctness/robustness/fairness)

MPC/SMT/BA = MPC/secure message transmission/Byzantine agreement,
comp/stat/perf = computational/statistical/perfect.
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Abstract. A long series of works have established far reaching impos-
sibility results for concurrently secure computation. On the other hand,
some positive results have also been obtained according to various weaker
notions of security (such as by using a super-polynomial time simulator).
This suggest that somehow, “not all is lost in the concurrent setting.”

In this work, we ask what and exactly how much private information
can an adversary learn by launching a concurrent attack? Inspired by the
recent works on leakage-resilient protocols, we consider a security model
where the ideal world adversary (a.k.a simulator) is allowed to query
the trusted party for some “leakage” on the honest party inputs. (Intu-
itively, the amount of leakage required by the simulator upper bounds
the security loss in the real world).

We show for the first time that in the concurrent setting, it is pos-
sible to achieve full security for “most” of the sessions, while incurring
significant loss of security in the remaining (fixed polynomial fraction
of total) sessions. We also give a lower bound showing that (for general
functionalities) this is essentially optimal. Our results also have inter-
esting implications to bounded concurrent secure computation [Barak-
FOCS’01], as well as to precise concurrent zero-knowledge [Pandey et
al.-Eurocrypt’08] and concurrently secure computation in the multiple
ideal query model [Goyal et al.-Crypto’10]

At the heart of our positive results is a new simulation strategy that
is inspired by the classical set covering problem. On the other hand,
interestingly, our negative results use techniques from leakage-resilient
cryptography [Dziembowski-Pietrzak-FOCS’08].

1 Introduction

Concurrently Secure Computation. Traditional security notions for
cryptographic protocols such as secure computation [38,16] were defined for a
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stand-alone setting, where security holds only if a single protocol session is ex-
ecuted in isolation. Today’s world, however, is driven by networks – the most
important example being the Internet. In a networked environment, several pro-
tocol instances may be executed concurrently, and an adversary may be able
to perform coordinated attacks across sessions by corrupting parties in various
sessions. As such, a protocol that is secure in the classical standalone setting
may become completely insecure in the network setting.

Towards that end, over the last decade, a tremendous amount of effort has
been made to obtain protocols with strong composability guarantees under con-
current execution. Unfortunately, a sequence of works have demonstrated far
reaching impossibility results for designing secure protocols in the concurrent
setting [8,9,26,25,27,3,19,1,15]. In particular, these works have ruled out secure
realization of essentially all non-trivial functionalities even in very restricted set-
tings such as where inputs of honest parties are fixed in advance (rather than
being chosen adaptively in each session), and where the adversary is restricted
to corrupting parties with specific roles.

What Information is Getting Leaked to the Adversary?Many of these im-
possibility results work by designing an explicit “chosen protocol attack”. Such an
attack shows that there exists some information the concurrent adversary can learn
in the real world which is impossible to obtain for the ideal adversary (a.k.a the
simulator). Nevertheless, subsequent to these impossibility results, several prior
works have in fact obtained positive results for concurrently secure computation
according to various relaxed notions of security such as super-polynomial simu-
lation [31,4,10,13,24], input indistinguishable computation [29,13], multiple-ideal
query model [20], etc.1 These results suggest that somehow, not all security is lost
in the concurrent setting. Given the above, the following natural questions arise:

What and exactly how much private information can the adversary learn by
launching a concurrent attack? Can we “measure” the amount of security loss
that must occur in a concurrent session? Can we achieve full security in some
(or even most) of the sessions fully while incurring security loss in the remaining
sessions?

We believe the above questions are very natural to ask and fundamental to
the understanding of concurrent composition. Indeed, despite a large body of re-
search on the study of concurrent composition, in our opinion, the understanding
of “what exactly is it that goes wrong in the concurrent setting, and, to what
extent” is currently unsatisfactory. The current paper represents an attempt
towards improving our understanding of this question.

A Leaky-Ideal World Approach. We adopt the “leaky-ideal world” approach
of Goldreich and Petrank [17] (recently used in works on leakage-resilient pro-
tocols; see below) to quantify the information leakage to the adversary in con-
currently secure computation. Specifically, generalizing the approach of [17], we

1 There has also been a rich line of works on designing secure computation with some
type of “setup” where, e.g., a trusted party publishes a randomly chosen string [7,2,22].
However the focus of the current work is the plain model.
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consider a modification of the standard real/ideal paradigm where in the ideal
world experiment, the simulator is allowed to query the trusted party for some
“leakage” on the honest party inputs. The underlying intuition (as in [17]) is
that the amount of leakage observed by the simulator in order to simulate the
view of an adversary represents an upper bound on the amount of private infor-
mation potentially leaked to the real adversary during the concurrent protocol
executions.

We remark that the our ideal model resembles that considered in the recent
works on leakage-resilient secure computation protocols [14,5,6]. However, we
stress that in our setting, there is no physical leakage in the real world and in-
stead there are just an (unbounded) polynomial number of concurrent sessions.
Indeed, while [14,5,6] use the leaky ideal world approach to bound the security
loss in the real world due to leakage attacks, we use the leaky ideal world ap-
proach to bound the security loss in the real world due to concurrent attacks.
Nevertheless, we find it interesting that there is a parallel between the ideal
world guarantees considered in two unrelated settings: leaky real world, and,
concurrent real world.

We now describe our security model in more detail. Concretely, we consider
two notions of leaky ideal world, described as follows.

Ideal World with Joint Leakage. Let there be m concurrent sessions with the
honest party input in the ith session denoted by xi. In the joint leakage model,
the simulator is allowed to query the trusted party with efficiently computable
leakage functions Li and get Li(X) in return (where X = (x1, . . . , xm)). The
constraint is that throughout the simulation, the total number of bits leaked∑

Li(X) is at most ε|X|. If this is the case, we say that the protocol is ε-secure
in the joint leakage model. In this model, our main result is a positive one, as
we discuss below.

Ideal World with Individual Leakage. In the individual leakage model, in every
session i, the simulator can query with an efficiently computable leakage function
Li and get Li(xi) in return. The constraint is that in every session i, the length
of Li(xi) is at most ε|xi|. If this is the case, we say that the protocol is ε-secure
in the individual leakage model. As we discuss below, in this model, our main
result is a negative one. This brings us to our next model.

1.1 Our Results

We consider the setting of unbounded concurrent composition in the plain model.
We allow for static corruptions and assume that the inputs of honest parties are
a priori fixed. We now describe our main results along with some applications.

I. Positive Result in the Joint Leakage Model. We obtain the following
main result in the joint leakage model:

Theorem 1. (Informally stated.) Let f be any functionality. Assuming 1-out-
of-2 oblivious transfer (OT), for every polynomial poly(n), there exists a protocol
that (ε = 1

poly(n) )-securely realizes f in the joint leakage model.
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The round complexity of our protocol is log6 n
ε . We show that this is almost

optimal w.r.t. a black-box simulator: we rule out protocols with round complexity
O(logn)

ε proven secure using a black-box simulator.

Fully Preserving the Security of most Sessions. We note that the simulator for
our positive result, in fact, satisfies the following additional property: rather
than leaking a small fraction of the input in each session, it leaks the entire
input of a small (i.e., ε) fraction of sessions while fully preserving the security of
the remaining sessions. Hence, we get the following interesting corollary:

Theorem 2. Let f be any functionality. Assuming 1-out-of-2 OT, for every
polynomial poly(n), there exists a protocol that (ε = 1

poly(n) )-securely realizes f

in the joint leakage model s.t. the security of at most ε fraction of the sessions
is compromised, while the remaining sessions are fully secure.

In fact, our negative result in the independent leakage model (discussed below)
indicates that for a general positive result, the above security guarantee is es-
sentially optimal.

Bounded Concurrent Secure Computation with Graceful Security Degradation.
Going further, observe that by choosing ε < 1

m|X| , we get a construction where

the simulator is allowed no leakage at all if the number of sessions is up to m.
This is because the maximum number of bits simulator is allowed to leak will
be εm|X| which is less than 1. Hence, positive results for bounded concurrent
secure computation [25,33,32] follow as a special case of our result. However if
the actual number of sessions just slightly exceed m, the simulator is allowed
some small leakage on the input vector (i.e., total of only 1 bit up to 2m sessions,
2 bits up to 3m sessions, and so on). Thus, the leakage allowed grows slowly as
the number of sessions grow. This phenomenon can be interpreted as graceful
degradation of security in the concurrent setting.

Theorem 3. (Informally Stated.) Let f be any functionality. Assuming 1-out-
of-2 oblivious transfer, there exists a protocol that securely realizes f in the
bounded concurrent setting. However if the actual number of sessions happen
to exceed this bound, there is graceful degradation of security as the number of
sessions increase.

A Set-Cover Approach to Concurrent Extraction. In order to obtain our positive
result, we take a generic “cost-centric” approach to rewinding in the concurrent
setting. For example, in our context, the amount of leakage required by the sim-
ulator to simulate the protocol messages during the rewindings can be viewed
as the “cost” of extraction. Thus, the goal is to perform concurrent extraction
with minimal cost. With this view, we model concurrent extraction as the classi-
cal set-covering problem and develop, as our main technical contribution, a new
sparse rewinding strategy. Very briefly, unlike known concurrent rewinding
techniques [37,23,36,30] that are very “dense”, we rewind “small intervals” of
the execution transcript, while still guaranteeing extraction in all of the ses-
sions. Very roughly, by rewinding small intervals (only a few times), we are able
to minimize the cost and obtain our positive result.
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Our sparse rewinding strategy also yields other interesting applications that
we discuss below in (III).

II. Negative Result in the Individual Leakage Model. In the individual
leakage model, our main result is negative, ruling out even non-black-box simula-
tion. Specifically, we give an impossibility result for the OT functionality where
the ideal leakage allowed is (1/2− δ) fraction of the input length (for every pos-
itive constant δ). Note that this is the maximum possible leakage bound such
that the ideal adversary still does not learn the entire input of the honest parties
(which would otherwise result in a trivial positive result).2

Leakage-resilient One-Time Programs. Of independent interest, the techniques
used in our negative result also yield a new construction of one-time programs
[18] where the adversary can query the given hardware tokens once (as usual),
and additionally leak once on the secrets stored in each token in any arbitrary
manner (as long as the total leakage is a constant fraction of the secrets).
Our key technical tool in constructing such a gadget is the intrusion-resilient
secret sharing scheme of [12]. In an independent work, Jain et al. [21] also con-
sider the problem of constructing leakage-resilient OTPs. See the full version for
details.

Put together, results (I) and (II) show that in the concurrent setting, signifi-
cant loss of security in some of the sessions is unavoidable if one wishes to obtain
a general positive result. However on the brighter side, one can make the fraction
of such sessions to be an arbitrarily small polynomial (while fully preserving the
security in all other sessions).

III. Other Applications. As discussed above, along the way to developing our
main positive result, we develop a new sparse rewinding strategy that leads to
other interesting applications. We discuss them below.

Improved precise concurrent zero knowledge. In the traditional notion of zero-
knowledge, the simulator may run in time which is any polynomial factor of
the (worst-case) running time of the adversarial verifier. The notion of precise
zero-knowledge [28] deals with studying how low this polynomial can be. In
particular, can one design protocols where the running time of the simulator is
only slightly higher than the actual running time of the adversary? Besides being
a fundamental question on its own, the notion of precise zero-knowledge has
found applications in unrelated settings such as leakage-resilient zero-knowledge
[14], concurrently secure protocols [20], etc.

Pandey et al. [30] study the problem of precise concurrent zero-knowledge
(cZK) and give a protocol with the following parameters. Let t be the ac-
tual running time of the verifier. Then, their protocol has round complexity nδ

2 Indeed, if the fraction of leakage allowed is 1/2, the ideal adversary can learn one
of the sender inputs by making use of leakage, and, the other by making use of the
“official” trusted party call.
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(for any constant δ ≤ 1) and knowledge precision c · t where c is a large constant
depending upon the adversary.3

Our sparse rewinding strategy directly leads to a new construction of precise
cZK, improving upon [30] both in terms of round complexity as well as knowledge
precision.

Theorem 4. Assuming one way functions, there exists a cZK protocol with poly-
log round-complexity and knowledge precision of (1 + δ)t (for any constant δ).

Improved concurrently secure computation in the MIQ model. In the quest for
positive results for concurrently secure computation, Goyal et al. proposed the
multiple ideal query (MIQ) model, where for every session in the real world,
the simulator is allowed to query the ideal functionality for the output multiple
times (as opposed to only once, as in the standard definition of secure compu-
tation). They construct a protocol in this model whose security is proven w.r.t.
a simulator that makes a total of c · m number of ideal queries in total (and c
queries per session, on an average), where c is a large constant that depends on
the adversary and m is the number of sessions.

We note that our security model is intimately connected to the MIQ model
since the additional output queries in this model can simply be viewed as leakage
observed by the simulator in our model. Indeed, our positive result described in
(I) can be stated as an improved result in the MIQ model since leaking the
function output (multiple times) is “no worse” than leaking the entire secret
input of the honest party. We defer further discussion to the full version due to
lack of space.

Theorem 5. (Informally stated.) Let f be any functionality. Assuming 1-out-
of-2 OT, there exists a concurrently secure protocol in the MIQ model with (1 +

1
poly(n) ) number of ideal queries per session (on an average).

1.2 Our Techniques

Here we give an overview of the underlying techniques used in our positive result.

A Starting Approach. A well established approach to constructing secure
computation protocols against malicious adversaries in the standalone setting
is to use the GMW compiler [16]: take a semi-honest secure computation pro-
tocol and “compile” it with zero-knowledge arguments. Then, a natural start-
ing point to construct a concurrently secure computation protocol is to follow
the same principles in the concurrent setting: somehow compile a semi-honest
secure computation protocol with a concurrent zero-knowledge protocol (for se-
curity in more demanding settings, compilation with concurrent non-malleable
zero-knowledge [3] may be required). Does such an approach (or minor vari-
ants) already give us protocols secure according to the standard ideal/real world
definition in the plain model?

3 [30] also give a construction requiring only ω(logn) rounds, however, the knowledge
precision achieved in this case is super-linear.
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The fundamental problem with this approach is the following. Note that
known concurrent zero-knowledge simulators (in the fully concurrent setting)
work by rewinding the adversarial parties. In the concurrent setting, the adver-
sary is allowed to control the scheduling of the messages of different sessions.
Then the following scenario might occur:

• Between two messages of a session s1, there may exist entire other session s2.

• When the simulator rewinds the session s1, it may rewind past the begin-
ning of session s2. Hence throughout the simulation, the session s2 may be
executed multiple times from the beginning.

• Every time the session s2 is executed, the adversary may choose a different
input (e.g., the adversary may choose his input in session s2 based on the
entire transcript of interaction so far). In such a case, the simulator is re-
quired to leak additional information about the input of the honest party
(e.g., in the form of an extra output as in [20]).

Indeed, some such problem is rather inherent as indicated by various impossibil-
ity results [27,3,19,1,15]. As stated above, our basic idea will be to use leakage
on the inputs of the honest parties in order to continue in the rewindings (or
look-ahead threads). Our simulator would simply request the ideal functionality
for the entire input of the honest party in such a session. Subsequent to this,
such a session can appear on any number of look-ahead threads : we can simply
use the leaked input and use that to proceed honestly.

Main Technical Problem. The key technical problem we face is the follow-
ing. All previous rewinding strategies are too “dense” for our purposes. These
strategies do not lead to any non-trivial results in our model: the simulator will
simply be required the leak the honest party input in each session. For example,
in the oblivious rewinding strategies used in [23,36,30,20], the “main” thread
of protocol execution is divided into various blocks (2 blocks in [23,36] and n
blocks in [30,20]). Each given block is rewound that results in a “look-ahead
thread”. Each session on the main thread will also appear on these look-ahead
threads (in fact, on multiple look-ahead threads). Hence, it can be shown that
our strategy of leaking inputs of sessions appearing in look-ahead threads will
result in leakage of inputs in all sessions. For the case of adaptive rewinding
strategies [37,35,11], the problem is even more pronounced. Any given block (or
an interval) of the transcript may be rewound any polynomial number of times
(each time to solve a different session).

Thus, the known rewinding strategies do not yield any non-trivial results in
our model (let alone allow leakage of any arbitrarily small polynomial fraction
of inputs).

Main Idea: Sparse Rewinding Strategies. In order to address the above
problem, we develop a new “cost-based” rewinding strategy. In particular, our
main technical contribution is the development of what we call sparse rewinding
strategies in the concurrent setting. In a sparse rewinding strategy, the main
idea is to choose various small intervals of the transcript and rewind only those
intervals. The main technical challenge is to show that despite rewinding only
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only few locations of the transcript, extraction is still guaranteed for every session
(regardless of where it lies on the transcript).

In more detail, our rewinding strategy bears similarities with the oblivious
recursive rewinding strategies used in [23,36]. Our main contribution lies in
showing that a “significantly stripped down” version of their strategy is still
sufficient to guarantee extraction in all sessions. More specifically, recall that
the recursive rewinding strategies in [23,36] have various threads of executions
(also called blocks) which are at different “levels” and have different sizes. We
carefully select only a small subset of these blocks and carry them out as part
of our rewinding schedule (while discarding the rest). The leakage parameter ε
and the resulting round complexity (which we show to be almost optimal w.r.t.
a black-box simulator) determines what fraction of blocks (and at what levels)
are picked to be carried out in the rewinding schedule. Given such a strategy,
we reduce the problem of covering all sessions to a set cover problem: pick suffi-
ciently many blocks (each block representing a set of sessions which are “solved”
when that block is carried out as part of the rewinding schedule) such that every
session is covered (i.e., extraction is guaranteed) while still keeping the overall
leakage (more generally, the “cost”) to be low. Indeed, this cost-centric view is
what also allows us to improve upon the precision guarantees in [30].

Additional Challenges. To convert the above basic idea into an actual con-
struction, we encounter several difficulties. The main challenge is to argue ex-
traction in all sessions. Recall that the swapping arguments in prior works
[23,36,34,30] crucially rely on “symmetry” between the main thread of execution
and the look-ahead threads (i.e., execution threads created view rewinding). In
particular, to argue extraction, [36,34] define swap and undo procedures w.r.t.
execution threads that allow to transform a “bad” random tape of the simulator
(that leads to extraction failure) into a “good” random tape (where extraction
succeeds) and back. The idea being to show that every bad random tape, there
exist super-polynomially many good random tapes; as such, with overwhelming
probability, the simulator must choose a good random tape.

In our setting, using such swapping arguments becomes non-trivial. First off,
note that we cannot directly employ the standard greedy strategy for set-cover
problem to choose which blocks must be rewound. Very briefly, this is because
once one swaps two blocks (one on the main thread, and the corresponding one
on a look-ahead thread), the choice of set of blocks which should be chosen
might completely change (this is because the associated “costs” of blocks may
change after swapping). Indeed, any such “biased” strategy seems to be doomed
for failure against adversaries that choose the schedule adaptively. Towards this
end, we use a randomized strategy for choosing which blocks to rewind, with
the goal of still keeping the extraction cost minimal. Nevertheless, despite the
randomized approach, the sparse nature of our block choosing strategy still re-
sults in significant “asymmetry” across the entire rewinding schedule. This leads
to difficulties in carrying out the swap and undo procedures as in [36,34]. We
resolve these difficulties by using a careful “localized” swapping argument (see
technical sections for details).
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Our final protocol is based on compilation with concurrent non-malleable
zero-knowledge [3]. We recall that there are several problems that arise with
such a compilation. First, the security of the [3] construction is analyzed only
for the setting where all the statements being proven by honest parties are fixed
in advance. Secondly, the extractor of [3] is unsuitable for extracting inputs of
the adversary since it works after the entire execution is complete on a session-
by-session basis. Fortunately, these challenges were tackled in the work of Goyal
et al. [20]. Indeed, Goyal et. al. presented an approach which can be viewed as a
technique to correctly compile a semi-honest secure protocol with [3]. We adopt
their approach to construct our final protocol.

2 Our Model

In this section, we present a brief overview of our security model, with details
deferred to the full version. Throughout this paper, we denote the security pa-
rameter by κ.

We define our security model by extending the standard real/ideal paradigm
for secure computation. Roughly speaking, we consider a relaxed notion of con-
currently secure computation where the ideal world adversary (aka, the sim-
ulator) is allowed to leak on the inputs of the honest parties. Intuitively, the
amount of leakage obtained by the simulator in order to simulate the view of a
concurrent adversary corresponds to the “information leakage” under concurrent
composition.

In this work, we consider a malicious, static adversary. The scheduling of the
messages across the concurrent executions is controlled by the adversary. We
allow the adversary to start arbitrarily polynomial number of concurrent session.
Also, we consider the fixed input setting, i.e. the inputs of the honest party
across all sessions is fixed in advance. Finally, we consider computational security
only and therefore restrict our attention to adversaries running in probabilistic
polynomial time.

We consider two security models that differ in the nature of ideal world leakage
available to the simulator. In both of these security models, the real world is the
same as in the standard security model for concurrently secure computation. The
real concurrent execution ofΠ with security parameter κ, input vectors x, y and
auxiliary input z to A, denoted realΠ,A(κ,x,y, z), is defined as the output pair
of the honest party and A, resulting from the above real-world process. Also,
in each of the ideal world experiments described below, the ideal execution of a
function F with security parameter κ, input vectors x, y and auxiliary input z
to S, denoted idealF ,S(κ,x,y, z), is defined as the output pair of the honest
party and S from the ideal execution.

Concurrently Secure Computation in the Joint Leaky Ideal World
Model. In this model, at any time during the ideal world experiment, adversary
may send leakage queries of the form L to the trusted party. On receiving such
a query, the trusted party computes L(x) over honest party inputs x across all
sessions and returns it to the adversary.
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Definition 1 (ε-Joint-Ideal-Leakage Simulator). Let S be a non-uniform
probabilistic (expected) ppt ideal-model adversary. We say that S is a ε-joint-
ideal-leakage simulator if it leaks at most ε fraction of the input vector of the
honest party.

Definition 2 (Concurrently Secure Computation in the Joint Leaky
Ideal World Model). A protocol Π evaluating a functionality F is said to be
ε-secure in the joint leaky ideal world model if for every real model non-uniform
ppt adversary A, there exists a non-uniform (expected) ppt ε-joint-ideal-leakage
simulator S such that for every polynomial m = m(κ), every pair of input vectors
x ∈ Xm, y ∈ Y m, every z ∈ {0, 1}∗s,

{idealF ,S(κ,x,y, z)}κ∈N

c≡ {realΠ,A(κ,x,y, z)}κ∈N

Concurrently Secure Computation in the Individual Leaky Ideal
World Model. In this model, for every session i, the ideal adversary may send
one leakage query of the form (i, L) to the trusted party and learn L(xi) (where
xi is the input of the honest party in session i).

Definition 3 (ε-Individual-Ideal-Leakage Simulator). Let S be a non-
uniform probabilistic (expected) ppt ideal-model adversary. We say that S is
a ε-individual-ideal-leakage simulator if it leaks at most ε fraction of the the
honest party input in each session.

Definition 4 (Concurrently Secure Computation in the Individual
Leaky Ideal World Model). A protocol Π evaluating a functionality F is
said to be �-secure in the leaky ideal world model against joint leakage if for
every real model non-uniform ppt adversary A, there exists a non-uniform (ex-
pected) ppt ε-individual-ideal-leakage simulator S such that for every polynomial
m = m(κ), every pair of input vectors x ∈ Xm, y ∈ Y m, every z ∈ {0, 1}∗s,

{idealF ,S(κ,x,y, z)}κ∈N

c≡ {realΠ,A(κ,x,y, z)}κ∈N

3 Framework for Cost-Based Rewinding

Consider two players P1 and P2 running concurrent execution of a two party
protocol Π . Π may consists of multiple executions of the extractable commit-
ment scheme 〈C,R〉 (Section 3.1) and some other protocol messages. These other
protocol messages will depend upon our underlying applications. In particular
we will consider two main applications. In our application of concurrently secure
computation in joint leaky ideal world model, protocol Π is simply the secure
computation protocol. In precise concurrent zero-knowledge protocol, Π will be
a zero-knowledge protocol.

Moreover, each message in the protocol will have an associated fixed non-
zero cost based on the application. In case of concurrent execution of the secure
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computation protocol, any message from the adversary which causes our simu-
lator to make an output query to the trusted functionality in the ideal world is
considered a “heavy” message. All other messages are almost “free”. In case of
concurrent precise zero-knowledge, cost of a message is the time taken by the
adversary to generate that message. All messages of the honest prover are unit
cost.

We consider the scenario when exactly one of the parties is corrupted. We
begin by describing the extractable commitment scheme 〈C,R〉.

3.1 Extractable Commitment Protocol 〈C,R〉
Let com(·) denote the commitment function of a non-interactive perfectly bind-
ing string commitment scheme. Let κ denote the security parameter. Let � =
ω(log κ). Let N = N(κ) which is fixed based on the application. The commit-
ment scheme 〈C,R〉, where the committer commits to a value σ (referred to as
the preamble secret), is described as follows.

Commit Phase:

Stage Init: To commit to a κ-bit string σ, C chooses (� · N) independent

random pairs of κ-bit strings {α0
i,j, α

1
i,j}

�,N
i,j=1 such that α0

i,j ⊕ α1
i,j = σ for all

i ∈ [�], j ∈ [N ]. C commits to all these strings using com, with fresh randomness
each time. Let B ← com(σ), and A0

i,j ← com(α0
i,j), A

1
i,j ← com(α1

i,j) for every
i ∈ [�], j ∈ [N ].
We say that the protocol has reached Start if message in Stage Init is exchanged.

Challenge-Response Stage:

For every j ∈ [N ], do the following:

• Challenge : R sends a random �-bit challenge string vj = v1,j , . . . , v�,j .

• Response : ∀i ∈ [�], if vi,j = 0, C opens A0
i,j , else it opens A1

i,j by sending
the decommitment information.

A slotj of the commitment scheme consists of the receiver’s Challenge and the
corresponding committer’s Response message. Thus, in this protocol, there are
N slots.

We say that the protocol has reached End when Challenge-Response

Stage is completed and is accepted by R.

Open Phase: C opens all the commitments by sending the decommitment in-
formation for each one of them. R verifies the consistency of the revealed values.

This completes the description of 〈C,R〉 which is an O(N) round protocol. The
commit phase is said to the valid iff there exists an opening of commitments
such that the open phase is accepted by an honest receiver.

Having defined the commitment protocol, we will describe a simulator S for
the protocol Π that uses a rewinding schedule to “simulate” the view of the
adversary. For this, we would like to prove an extraction lemma similar to [36,30]
for the protocol Π , i.e., in every execution whenever a valid commit phase ends
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such that the adversary is playing the role of the committer, our simulator (using
rewinding) would be able to extract the preamble secret with all but negligible
probability. Moreover, we would like to guarantee that if the honest execution
has total cost4 C, then the cost incurred by our simulator is only C(1+ ε(N, κ)),
where is ε is a small fraction.

3.2 Description of the Simulator

We describe a new “cost-based” recursive rewinding strategy. We begin by giving
some preliminary definitions that will be used in the rest of the paper.

A thread of execution (consisting of the views of all the parties) is a perfect
simulation of a prefix of an actual execution. In particular, the main thread, is a
perfect simulation of a complete execution, and this is the execution thread that
is output by the simulator. In addition, our simulator will also make other threads
by rewinding the adversary to a previous state and continuing the execution from
that state. Such a thread shares a (possibly empty) prefix with the previous
thread. We call the execution on this thread which is not shared with any of the
previous threads as a look-ahead thread.

We now first give an overview of the main ideas underlying our simulation
technique and then proceed to give a more formal description.

Overview. Consider the main thread of execution. At a high level, we divide
this thread into multiple parts referred to as “sets” consisting of possibly many
protocol messages. The way we define our sets is similar to previous rewinding
strategies [36,30]. Essentially if the entire execution has cost c, then we divide
the entire main thread into two sets of cost c/2 each, where cost of a set is the
total cost of the messages contained in that set. Next, we divide each of these
sets into two subsets, each of cost c/4. We continue this process recursively till
we have c sets, each of unit cost5. Note that if each message is of unit cost, then
this dividing strategy is exactly identical to [36].6 The novel idea underlying
our rewinding technique is that unlike [36,30], our simulator only rewinds a
small subset of these sets while still guaranteeing extraction. In other words,
unlike [36,30], ours is a “sparse” rewinding strategy.

We now describe our rewinding strategy by using an analogy to the classical
set covering problem. Recall that in the set covering problem, there is a universe
of elements and sets. Each set contains some elements and has a fixed cost. The
goal is to choose a minimum cost collection of these sets which covers all the
elements in the universe. In our setting, we think of each session as an element
in the universe. If there are m concurrent sessions {1, 2, . . . ,m}, we have m
elements in our universe. Now consider the sets defined above in our setting. A
set is said to cover an element i if it contains a complete slot of session i. Recall

4 Cost of an execution is the total cost of all the messages sent and received.
5 Note that due to this dividing strategy, we allow a message to be “divided” across
multiple sets.

6 If cost of a message is the time taken by the adversary to generate that message,
then this dividing strategy is exactly identical to [30].



232 V. Goyal, D. Gupta, and A. Jain

that the cost of a set is the sum of the cost of messages in this set. We want
to consider a minimum cost collection C of these sets which together covers all
the elements in the universe (i.e. all the sessions). Intuitively, we wish to rewind
only the sets in C. At a high level, this is the strategy adopted by our simulator.
Due to reasons as discussed in Section 1.2, we adopt a slightly modified strategy
in which the collection C is picked via a randomized strategy. Recall that for
all i there 2i sets with cost c/2i. Very briefly, for each collection of sets which
have same cost, we pick a fixed small fraction of these sets. We will prove that
using this strategy we will cover each session ω(log κ) times in order to guarantee
extraction. As we will see later on, with this strategy, we are able to guarantee
that the simulator performs extraction with all but negligible probability while
incurring a small overhead.

Formal Description of the Simulator. We begin by introducing some nota-
tion and terminology. Let C be the total cost of main execution7. Without loss
of generality, let C = 2x for some x ∈ N. Let p(κ) = ω(log κ), and q(κ) = ω(1).
Recall that N is the number of challenge-response slots in 〈C,R〉.
Thread at Recursion Level RL. We say that the main thread belongs to
recursion level 0. The look-ahead threads which fork off the main thread are said
to be at recursion level 1. Recursively, we say that look-ahead threads forking
off a thread at recursion level RL belong to recursion level (RL+ 1).

Sets and Set Levels. Let T be the main thread or a look-ahead thread with
cost c at recursion level RL. We define the sets and the set levels of T as follows:
The entire thread T is defined as one set at recursion level RL and set level 0
with cost c. We denote it as set0RL. Now divide set0RL into two sets at recursion

level RL and set level 1 of cost c/2 each. We denote the first set as set1,1RL and

the second set as set1,2RL . Let set
i,1
RL, set

i,2
RL, . . . , set

i,2i

RL be 2i sets at set level i, each of

cost c/2i, where seti,jRL is the jth set at set level i. Divide each set seti,jRL into two
sets at set level (i + 1) each of cost c/2i+1. We continue this recursively till we
reach set level log c where each set has cost 1. This way we have L = log c + 1
set levels (0, 1, . . . , log c) with total sets 2c− 1.

For ease of notation, we will denote each set seti,jRL as a tuple (s-point, e-point)
where s-point denotes the cost of the thread T from the start of T till the start
of seti,jRL and e-point to denote the cost of thread from the start of T till the end

of seti,jRL. Thus by definition cost of a set seti,jRL is (e-point − s-point). This will
help us in describing our simulation strategy.

Simulator S.We now proceed to describe our simulation strategy which consists
of procedures Simulate, PickSet and SimMsg. More specifically, S simply
runs Simulate(C, st0, φ, 0, rm, rs) to simulate the main thread at recursion level
0 with cost C when st0 is the initial state of A. S starts with empty history of
messages, i.e. hist = ∅. Also, S uses two separate random tapes rm and rs to

7 This cost C is always bounded by some polynomial in κ, i.e., C ≤ κα for some
constant α.
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The Simulate(c, st, hist,RL, rm, rs) Procedure.

1. Compute psets = {(s-pointj , e-pointj)} ← PickSet(c, r), where r is randomness of appro-

priate size from rs. Update rs = rs\r. Let J = |psets|.
2. Create a list ˜psets from psets as follows: For each entry (s-pointj , e-pointj) ∈ psets, initialize

stj = ⊥ and histj = ⊥. Insert (s-pointj , e-pointj , stj , histj) into ˜psets. We order the list by
increasing order of e-point.

3. If c = 1, (st′, hist′, r′m, ˜psets) ← SimMsg(0, 1, st, hist, rm, ˜psets). Output: (st′, hist′, r′m, rs).

4. Otherwise (i.e., c > 1),
• Initialize ctr = 0.

• While (j < J)

• (st′, hist′, r′m, ˜psets) ← SimMsg(ctr, e-pointj − ctr, st, hist, rm, ˜psets).

• Set ctr = e-pointj , r
0
m = r′m, r0s = rs.

• Let there exist � entries {(s-pointji , e-pointji , stji , histji )}i∈[�] in ˜psets such that

e-pointji = e-pointj .

• For each i ∈ [�],

(st′ji , hist
′
ji
, rim, ris) ← Simulate((e-pointji − s-pointji ), stji , histji ,RL+1, ri−1

m , ri−1
s ).

• Set hist = hist′ ∪ (
⋃

i hist
′
ji
), st = st′, rm = r�m, rs = r�s and j = j + �.

• If (ctr < c)

• (st′, hist′, r′m, ˜psets) ← SimMsg(ctr, c − ctr, st, hist, rm, ˜psets).

• Update hist = hist′, st = st′, rm = r′m.

• Output: (st, hist, rm, rs).

Fig. 1. The cost-based content oblivious simulator Simulate

generate messages and choose sets respectively. Finally, S returns its output as
the view of the adversary. We begin by describing these procedures in detail.

Procedure Simulate. The procedure is used to simulate any thread T at
recursion level RL of cost c. It takes the following set of inputs. (a) The cost c
of thread T . (b) The state st of the adversary at the beginning of T . (c) The
history hist of messages seen so far in simulation. (d) Recursion level RL of T .
(e) The random tape rm which is used to generate messages of the honest party.
(f) The random tape rs used by PickSet to choose sets.

At a high level, Simulate procedure when invoked on a set of inputs (c, st, hist,
RL, rm, rs) does the following:

1. It invokes PickSet procedure to choose a list of sets on T , say psets, which
it will rewind. Here each set will be denotes by the corresponding tuple
(s-point, e-point).

2. Next, Simulate augments each entry of psets with two additional entries to
create a new list ˜psets where each entry consists of (s-point, e-point, st, hist),
where st is the state of the adversary and hist is the history of simulation at
s-point. State st and history hist at s-point are populated by the procedure
SimMsg (described below) when simulation reaches s-point.

3. Simulate generates messages for the thread iteratively till the end of the
thread is reached as follows:
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1. It invokes the SimMsg procedure to generate the messages from current
point of simulation to the next e-point of some set in ˜psets.

2. For each of the sets which end at this point, it calls Simulate procedure
recursively to create new look-ahead threads at recursion level RL+ 1.

3. Finally, it merges the current history of messages with messages seen on
the look-ahead threads.

4. It returns (st′, hist′, r′m, r′s), where st
′ is the state of the adversary at the end

of the thread, hist′ is the updated collection of messages, r′m and r′s are the
unused parts of the random tapes rm and rs respectively.

The figure 1 gives a formal description of Simulate procedure.

Algorithm PickSet. At a high level, given the main thread or a look-ahead
thread T at recursion level RL with cost c, it chooses a fixed fraction of sets across
all set levels of T where our simulator would rewind. More formally, on input
(c, r), where c is the cost of T and r is some randomness, PickSet(c, r) returns

a list of sets psets= {(s-pointj, e-pointj)} consisting of
⌊
p(κ)·q(κ)·log3 κ

N · 2i
⌋
sets

at random at set level i for every i ∈ [log c].
Note that the sets picked by PickSet depend only on the cost c of the thread

T and randomness r and not on the protocol messages of T .

Procedure SimMsg. This procedure generates the messages by running the
adversary step by step8, i.e. incurring unit cost at a time. It takes the following
set of inputs. (a) The partial cost ctr of the current thread simulated so far.
(b) The additional cost c for which the current thread has to be simulated.
(c) The current state st of the adversary. (d) The history hist of messages seen
so far in simulation. (e) The random tape rm to be used to generate messages.
(f) The list ˜psets of the sets chosen by PickSet for thread T .

SimMsg generates messages on thread T one step at a time for c steps as
follows:

1. If the next scheduled message is the challenge message in an instance of
〈C,R〉, it chooses a challenge uniformly at random. Also, if the next sched-
uled message is some other protocol message from honest party, it uses the
honest party algorithm to generate the same.

2. If the next scheduled message is from A, SimMsg runs A for one step and
updates st and hist. Note that it is possible that A may not generate a
message in one step.

3. If the current point on the thread corresponds to the s-point of some sets in
˜psets, it updates the corresponding entries with current state st of A and

history hist of messages.

8 We will assume that it is possible to run the adversary one step at a time. We
elaborate on this in our applications.
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Finally it outputs the final state st of the adversary, updated history hist of
messages, unused part r′m of random tape rm and updated list ˜psets. Procedure
SimMsg is described formally in Figure 2.

The SimMsg(ctr, c, st, hist, rm, ˜psets) Procedure.

For i = 1 to c do the following:

– Next scheduled message if from honest party to A: If the next scheduled message is
a challenge message of 〈C,R〉, choose a random challenge message using randomness from
rm. Else, if the next message is some other message from honest party, send this message
according to honest party algorithm using randomness from rm. Feed this message to A.
Next scheduled message is from A: If the next scheduled message is from A, run A from
its current state st for exactly 1 step. If an output, β, is received and if β is a response message
in 〈C,R〉, store β in hist as a response to the corresponding challenge message. Update st to
the current state of A. If it is some other message of the protocol, store it in hist.

– If there exists k entries {(s-pointjy , e-pointjy , stjy , histjy )}y∈[k] in ˜psets such that s-pointjy =

ctr + i. For each y ∈ [k] update stjy = st and histjy = hist.

Let r′m be the unused part of rm. Output: (st, hist, r′m, ˜psets).

Fig. 2. The SimMsg Procedure

Lemma 1. (Extraction lemma) Consider two parties P1 and P2 running poly-
nomially many (in the security parameter) sessions of a protocol Π consisting
of possibly multiple executions of the commitment scheme 〈C,R〉. Also, let one
the parties, say P2, be corrupted. Then there exists a simulator S such that ex-
cept with negligible probability, in every thread of execution simulated by S, if
honest P1 accepts a commit phase of 〈C,R〉 as valid, then at the point when that
commit phase is concluded, S would have already extracted the preamble secret
committed by the corrupted P2.

Lemma 2. Let C be the cost of the main thread. Then the cost incurred by our
simulator is bounded by

C · (1 + (log∗ κ)2 logC log4 κ
N ) when 〈C,R〉 has N ≥ log6 κ slots.

4 Our Results

We now state the main results in this paper.

Positive Results.As the main result of this paper, we construct anO(N) round
protocol Π that ε-securely realizes any (efficiently computable) functionality F
in the joint leaky ideal world model for any ε > 0. More formally, we show the
following:

Theorem 6. Assume the existence of 1-out-of-2 oblivious transfer protocol se-
cure against honest but curious adversaries and collision resistent hash func-
tions. Then for any ε > 0, for any functionality F , there exists an O(N) round
protocol Π that ε-securely realizes F in the joint leaky ideal world model, where

N = (log6 κ)
ε .
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In the case when ε = 1/poly(κ), we do not need to assume the existence of colli-
sion resistent hash functions. ProtocolΠ is essentially the protocol of [20] instan-
tiated with N -round concurrently-extractable commitment scheme described
earlier in the paper. The security analysis of the protocol is done using the
simulation technique described earlier.

Negative Results. We also present strong impossibility results for achieving
security in both the individual and joint leaky ideal world model. First, we prove
the following result:

Theorem 7. There exists a functionality f such that no protocol Π ε-securely
realizes f in the individual leaky ideal world model for ε = 1

2 − δ, where δ is any
constant fraction.

Additionally, we prove a lower bound on the round-complexity of protocols for
achieving ε-security in the joint leaky ideal world model, with respect to black-
box simulation. Specifically, we prove the following result:

Theorem 8. Let ε be any inverse polynomial. Assuming dense cryptosystems,
there exists a functionality f that cannot be ε-securely realized with respect to

black-box simulation in the joint leaky ideal world model by any log(κ)
ε round

protocol.
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Abstract. We construct an efficient information-theoretically non-mall-
eable code in the split-state model for one-bit messages. Non-malleable
codes were introduced recently by Dziembowski, Pietrzak and Wichs
(ICS 2010), as a general tool for storing messages securely on hardware
that can be subject to tampering attacks. Informally, a code (Enc : M →
L × R,Dec : L × R → M) is non-malleable in the split-state model if
any adversary, by manipulating independently L and R (where (L,R)
is an encoding of some message M), cannot obtain an encoding of a
message M ′ that is not equal to M but is “related” M in some way.
Until now it was unknown how to construct an information-theoretically
secure code with such a property, even for M = {0, 1}. Our construction
solves this problem. Additionally, it is leakage-resilient, and the amount
of leakage that we can tolerate can be an arbitrary fraction ξ < 1/4 of
the length of the codeword. Our code is based on the inner-product two-
source extractor, but in general it can be instantiated by any two-source
extractor that has large output and has the property of being flexible,
which is a new notion that we define.

We also show that the non-malleable codes for one-bit messages have
an equivalent, perhaps simpler characterization, namely such codes can
be defined as follows: if M is chosen uniformly from {0, 1} then the
probability (in the experiment described above) that the output message
M ′ is not equal to M can be at most 1/2 + ε.

1 Introduction

Real-life attacks on cryptographic devices often do not break their mathematical
foundations, but exploit vulnerabilities in their implementations. Such “physical
attacks” are usually based on passive measurements such as running-time, elec-
tromagnetic radiation, power consumption (see e.g. [24]), or active tampering
where the adversary maliciously modifies some part of the device (see e.g. [3]) in
order to force it to reveal information about its secrets. A recent trend in theo-
retical cryptography, initiated by [34,31,30] is to design cryptographic schemes
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that already on the abstract level guarantee that they are secure even if imple-
mented on devices that may be subject to such physical attacks. Contrary to the
approach taken by the practitioners, security of these constructions is always an-
alyzed formally in a well-defined mathematical model, and hence covers a broad
class of attacks, including those that are not yet known, but may potentially be
invented in the future. Over the last few years several models for passive and
active physical attacks have been proposed and schemes secure in these models
have been constructed (see e.g. [31,30,22,2,35,7,15,25]). In the passive case the
proposed models seem to be very broad and correspond to large classes of real-
life attacks. Moreover, several constructions secure in these models are known
(including even general compliers [27] for any cryptographic functionality). The
situation in the case of active attacks is much less satisfactory, usually because
the proposed models include an assumption that some part of the device is
tamper-proof (e.g. [26]) or because the tampering attacks that they consider are
very limited (e.g. [30] or [13] consider only probing attacks, and in [37] the tam-
pering functions are assumed to be as linear). Hence, providing realistic models
for tampering attacks, and constructing schemes secure in these models is an
interesting research direction.

In a recent paper [23] the authors consider a very basic question of storing
messages securely on devices that may be subject to tampering. To this end they
introduce a new primitive that they call the non-malleable codes. The motivating
scenario for this concept is as follows. Imagine we have a secret message m ∈ M
and we want to store it securely on some hardware D that may be subject to the
tampering attacks. In order to increase the security, we will encode the message
m by some (randomized) function Enc and store the codeword x := Enc(m) on
D. Since we later want to recover m from D we obviously also need a decoding
function Dec : X → M∪{⊥} such that for everym ∈ M we have Dec(Enc(m)) =
m. Now, suppose the adversary can tamper with the device in some way, which
we model by allowing him to choose a function F : X → X , from some fixed
set F of tampering functions and substitute the contents of D by F (x). Let
m′ := Dec(F (Enc(m))) be the result of decoding such modified codeword.

Let us now think what kind of security properties one could expect from such
an encoding scheme. Optimistically, e.g., one could hope to achieve tamper-
detection by which we would mean that m′ = ⊥ if F (x) �= x. Unfortunately
this is usually unachievable, as, e.g., if the adversary chooses F to be a constant
function equal to Enc(m̃) then m′ = m̃. Hence, even for very restricted classes F
(containing only the constant functions), the adversary can force m′ to be equal
to some message of his choice. Therefore, if one hopes to get any meaningful
security notion, one should weaken the tamper-detection requirement.

In [23] the authors propose such a weakening based on the concept of non-
malleability introduced in the seminal paper of Dolev et al. [19]. Informally, we
say that a code (Enc,Dec) is non-malleable if either (1) the decoded message m′

is equal to m, or (2) the decoded message m′ is “independent” from m. The
formal definition appears in Section 3, and for an informal discussion of this
concept the reader may consult [23]. As argued in [23] the non-malleable codes
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can have vast applications to tamper-resistant cryptography. We will not discuss
them in detail here, but let us mention just one example, that looks particularly
appealing to us. A common practical way of breaking cryptosystems is based
on the so-called related-key attacks (see, e.g. [5,4]), where the adversary that
attacks some device D(K) (where K is the secret key) can get access to an
identical device containing a related key K ′ = F (K) (by for example tampering
with K). Non-malleable codes provide an attractive solution to this problem. If
(Enc,Dec) is a non-malleable code secure with respect to same family F , then
we can store the key K on D in an encoded form, and prevent the related key
attacks as long as the “relation F” is in F . This is because, the only thing that
the adversary can achieve by applying F to Enc(K) is to produce encoding of
either a completely unrelated key K ′, or to keep K ′ = K. It is clear that both
cases do not help him in attacking D(K).

It is relatively easy to see that if the family F of tampering functions is equal to
the entire space of functions from X to X then it is impossible to construct such
a non-malleable code secure against F . This is because in this case the adversary
can always choose F (x) = Enc(H(Dec(x))) for any function H : M → M, which
yields m′ = Dec(x) = Dec(Enc(H(Dec(Enc(m))))) = H(m), and therefore he can
relate m′ to m in an arbitrary way. Therefore non-malleable codes can exist only
with respect to restricted classes F of functions. The authors of [23] propose
some classes like this and provide constructions of non-malleable codes secure
with respect to them. One example is the class of bit-wise tampering functions,
which tamper with every bit of x “independently”, more precisely: the ith bit x′

i

of x′ is a function of xi, and does not depend on any xj for j �= i. This is a very
strong assumption and it would be desirable to weaken it. One natural idea for
such weakening would be to allow x′

i to depend on the bits of x from positions on
some larger subset Ii � {1, . . . , |x|}. Observe that I always needs to be a proper
subset of {1, . . . , |x|}, as, for the reasons described above, allowing xi to depend
on entire x would render impossible any secure construction. It is of course not
clear what would be the right “natural” subsets Si that one could use here. The
authors of [23] solve this problem in the following simple way. They assume that
the codeword consists of two parts (usually of equal size), i.e.: x = (L,R) ∈ L×R,
and the adversary can tamper in an arbitrary way with both parts, i.e., F consists
of all functions Mallf,g that can be defined as Mallf,g(L,R) = (f(L), g(R)) (for
some f : L → L and g : R → R). In practical applications this corresponds to a
scenario in which L and R are stored on two separate memory parts that can be
tampered independently. A similar model has been used before in the context
of leakages and is called a split-state model [22,14,28,16]. The authors of [23]
show existence of non-malleable codes secure in this model in a non-constructive
way (via the probabilistic argument). They also provide a construction of such
codes in a random oracle model, and leave constructing explicit information-
theoretically secure codes as an open problem. A very interesting partial solution
to this problem came recently from Liu and Lysyanskaya [33] who constructed
such codes with computationally-security, assuming a common reference string.
Their construction comes with an additional feature of being leakage-resilient, i.e.
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they allow the adversary to obtain some partial information about the codeword
via memory leakage (the amount of leakage that they can tolerate is a 1

2 − o(1)
fraction of the length of the codeword). However, constructing the information-
theoretically secure nonmalleable codes in this model remained an open problem,
even if messages are of length 1 only (i.e. M = {0, 1}).

Our Contribution. We show a construction of efficient information-theoretically
secure non-malleable codes in the split-state model for M = {0, 1}. Additionally
to being non-malleable, our code is also leakage-resilient and the amount of
leakage that we can tolerate is an arbitrary constant ξ < 1

4 of the length of
the codeword (cf. Thm. 2). Our construction is fairly simple. The codeword is
divided into two parts, L and R, which are vectors from a linear space Fn, where
F is a field of exponential size (and hence log |F| is linear). Essentially, to encode
a bit B = 0 one chooses at a random pair (L,R) ∈ Fn × Fn of orthogonal
vectors (i.e. such that 〈L,R〉 = 0), and to encode B = 1 one chooses a random
pair of non-orthogonal vectors (clearly both encoding and decoding can be done
very efficiently in such a code). Perhaps surprisingly, the assumption that F is
large is important, as our construction is not secure for small F’s. An interesting
consequence is that our code is “non-balanced”, in the sense that a random
element of the codeword space with an overwhelming probability encodes 1. We
actually use this property in the proof.

Our proof also very strongly relies on the fact that the inner product over finite
field is a two-source extractor (cf. Sect. 2). We actually show that in general a
split-state non-malleable code for one-bit messages can be constructed from any
two source-extractor with sufficiently strong parameters (we call such extractors
flexible, cf. Sect. 2).

We also provide a simple argument that shows that our scheme is secure
against affine mauling functions (that look at the entire codeword, hence not in
the split-state model).

Typically in information-theoretic cryptography solving a certain task for
one-bit messages automatically gives a solution for multi-bit messages. Unfor-
tunately, it is not the case for the non-malleable codes. Consider for example
a naive idea of encoding n bits “in parallel” using the one bit encoding func-
tion Enc, i.e. letting Enc′(m1, . . . ,mn) := ((L1, . . . , Ln), (R1, . . . , Rn)), where
each (Li, Ri) = Enc(mi). This encoding is obviously malleable, as the adversary
can, e.g., permute the bits of m by permuting (in the same way) the blocks
L1, . . . , Ln and R1, . . . , Rn. Nevertheless we believe that our solution is an im-
portant step forward, as it may be useful as a building blocks for other, more ad-
vanced constructions, like, e.g., tamper-resilient generic compilers (in the spirit of
[31,30,13,20,27]). This research direction looks especially promising since many of
the leakage-resilient compliers (e.g. [20,27]) are based on the same inner-product
extractor.

We also show that for one-bit messages non-malleable codes can be defined
in an alternative, and perhaps simpler way. Namely we show (cf. Lemma 2) that
any code (Enc,Dec) (not necessarily defined in the split-state model) in non-
malleable with respect to some family F of functions if and only if “it is hard to
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negate the encoded bit B with functions from F”, by which we mean that for a
bit B chosen uniformly from {0, 1} any F ∈ F we have that

P [Dec(F (Enc(B))) �= B] ≤ 1

2
. (1)

(the actual lemma that we prove involves also some small error parameter ε
both in the non-malleability definition and in (1), but for the purpose of this
informal discussion let us omit them). Therefore, the problem of constructing
non-malleable bit encoding in the split state model can be translated to a much
simpler and perhaps more natural question: can one encode a random bit B as
(L,R) in such a way that independent manipulation of L and R produces an
encoding (L′, R′) of B with probability at most 1/2? Observe that, of course, it
is easy to negate a random bit with probability exactly 1/2, by deterministically
setting (L′, R′) to be an encoding of a fixed bit, 0, say. Informally speaking,
(Enc,Dec) is non-malleable if this is the best that the adversary can achieve.

In the full version of this paper [21] we analyze the general relationship be-
tween the two-source extractors and the non-malleable codes in the split state
model pointing out some important differences. We also compare the notion of
the non-malleable codes with the leakage-resilient storage [14] also showing that
they are fundamentally different.

Related and Subsequent Work. Some of the related work was already described
in the introduction. There is no space here to mention all papers that propose
theoretical countermeasures against tampering. This research was initiated by
Ishai et al. [30,26]. Security against both tampering and leakage attacks were also
recently considered in [32]. Unlike us, they construct concrete cryptosystems (not
encoding schemes) secure against such attacks. Another difference is that their
schemes are computationally secure, while in this work we are interested in the
information-theoretical security.

The notion of non-malleability (introduced in [19]) is used in cryptography in
several contexts. In recent years it was also analyzed in the context of randomness
extractors, starting from the work of Dodis and Wichs [18] on non-malleable ex-
tractors (see also [17,12]). Informally speaking an extractor ext is non-malleable if
its output ext(S,X) is (almost) uniform even if one knows the value ext(F (S), X)
for some “related” seed F (S) (such that F (S) �= S). Unfortunately, it does not
look like this primitive can be used to construct the non-malleable codes in the
split-state model, as this definition does not capture the situation when X is
also modified.

Constructions of non-malleable codes secure in different (not split-state) mod-
els were recently proposed in [8,9,10].

Recently, Aggarwal, Dodis and Lovett [1] solved the main open problem left in
this paper, by showing a non-malleable code that works for messages of arbitrary
length. This exciting result is achieved by combining the inner-product based
encoding with sophisticated methods from the additive combinatorics.

Acknowledgments. We are very grateful to Divesh Aggarwal and to the anony-
mous CRYPTO reviewer for pointing out errors in the proof of Lemma 3 in the
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previous versions of this paper. We also thank Yevgeniy Dodis, Konrad Durnoga
and Karol Cwalina for helpful discussions.

2 Preliminaries

If Z is a set then Z ← Z will denote a random variable sampled uniformly from
Z. We start with some standard definitions and lemmas about the statistical
distance. Recall that if A and B are random variables over the same set A then
the statistical distance between A and B is denoted as Δ(A;B), and defined as
Δ(A;B) = 1

2

∑
a∈A |P [A = a] − P [B = a] |. If the variables A and B are such

that Δ(A,B) ≤ ε then we say that A is ε-close to B, and write A ≈ε B. If
X ,Y are some events then by Δ(A|X ; B|Y) we will mean the distance between
variables A′ and B′, distributed according to the conditional distributions PA|X
and PB|Y .

If B is a uniform distribution over A then d(A|X ) := Δ(A|X ;B) is called
statistical distance of A from uniform given the event X . If moreover C is inde-
pendent from B then d(A|C) := Δ((A,C); (B,C)) is called statistical distance
of A from uniform given the variable C. More generally, if X is an event then
d(A|C,X ) := Δ((A,C)|X ; (B,C)|X ). It is easy to see that d(A|C) is equal to∑

c P [C = c] · d(A|C = c).

Extractors. As described in the introduction, the main building block of our
construction is a two-source randomness extractor based on the inner product
over finite fields. The two source extractors were introduced (implicitly) by Chor
and Goldreich [11], who also showed that the inner product over Z2 is a two-
source extractor. The generalization to any field is shown in [36].

Our main theorem (Thm. 1) does not use any special properties of the inner
product (like, e.g., the linearity), besides of the fact that it extracts randomness,
and hence it will be stated in a general form, without assuming that the un-
derlying extractor is necessarily an inner product. The properties that we need
from our two-source extractor are slightly non-standard. Recall that a typical
way to define a strong two-source extractor1 (cf. e.g. [36]) is to require that
d(ext(L,R)|L) and d(ext(L,R)|R) are close to uniform, provided that L and R
have min-entropy at least m (for some parameter m). For the reasons that we
explain below, we need a slightly stronger notion, that we call flexible extrac-
tors. Essentially, instead of requiring that H∞(L) ≥ m and H∞(R) ≥ m we
will require only that H∞(L) +H∞(R) ≥ k (for some k). Note that if k = 2m
then this requirement is obviously weaker than the standard once, and hence the
flexibility strengthens the standard definition.

Formally, let L,R and C be some finite sets. A function ext : L ×R → C is a
strong flexible (k, ε)-two source extractor if for every L ∈ L and R ∈ R such that
H∞(L) +H∞(R) ≥ k we have that d(ext(L,R)|L) ≤ ε and d(ext(L,R)|R) ≤ ε.
Since we are not going to use any weaker version of this notion we will often

1 Recall also that a random variable A has min-entropy k, denoted H∞(A) = k if
k = mina (− logP [A = a]).
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simply call such extractors “flexible” without explicitly stating that they are
strong. As it turns out the inner product over finite fields is such an extractor.

Lemma 1. For every finite field F and any n we have that ext : Fn × Fn → F
defined as extn

F
(L,R) = 〈L,R〉 is a strong flexible (k, ε)-extractor for any k and

ε such that

log (1/ε) =
k − (n+ 4) log |F|

3
− 1. (2)

Although this lemma appears to be folklore, at least in case of the “weak”
flexible extractors (i.e. when we require only that d(ext(L,R)) ≤ ε), we were not
able to find it in the literature for the strong flexible extractors. Therefore for
completeness in the full version of this paper [21] we provide a proof of it (which
is straightforward adaptation of the proof of Theorem 3.1 in [36]).

Note that since ε can be at most 1, hence (2) makes sense only if k ≥ 6+4 |F|+
n log |F|. It is easy to see that it cannot be improved significantly, as in any flex-
ible (k, ε)-extractor ext : L ×R → C we need to have k > max (log |L| , log |R|).
To see why it is the case, suppose we have such a flexible (k, ε)-extractor ext
for k = log |L| (the case k = log |R| is obviously symmetric). Now let L′ be a
random variable uniformly distributed over L and let R′ ∈ R be constant. Then
obviously H∞(L′)+H∞(R′) = log |L|+0 = k, but ext(L′, R′) is a deterministic
function of L′, and hence d(ext(L′, R′)|L′) is large. Therefore, in terms of the en-
tropy threshold k, the inner product is optimal in the class of flexible extractors
(up to a small additive constant). Note that this is in contrast with the situation
with the “standard” two-source extractors where a better extractor is known [6].

The reason why we need the “flexibility” property is as follows. In the proof
of Lemma 3 we will actually use in two different ways the fact that ext is an
extractor. In one case (in the proof of Claim 2 within the proof of Lemma 3)
we will use it in the “standard” way, i.e. we will apply it to two independent
random variables with high min-entropy. In the other case (proof of Claim 1) we
will use the fact that d(ext(L,R)|R) ≤ ε even if L has relatively low min-entropy
(H∞(L) = k−|R|) while R is completely uniform (and hence H∞(L)+H∞(R) =
k).2 Hence we will treat ext as standard seeded extractor. It should not be
surprising that we can use the inner product in this way, as it is easy to see
that the inner product is a universal hash function, and hence the fact that it
is a seeded strong extractor follows from the leftover hash lemma [29]. Hence
Lemma 1 in some sense “packs” these two properties of the inner product into
one simple statement.

The observation that the inner product extractor is flexible allows us as also
to talk about the sum of leakages in Section 5, instead of considering bounded
leakage from L and R separately (as it is done, e.g., in [14]). We would like to
stress that this is actually not the main reason for introducing the “flexibility”
property, as it would be needed even if one does not incorporate leakages into
the model.

2 We will also use a symmetric fact for d(ext(L,R)|L).
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3 Non-malleable Codes and the Hardness of Negation

In this section we review the definition of the non-malleable codes from [23],
which has already been discussed informally in the introduction. Formally, let
(Enc : M → X ,Dec : X → M∪ {⊥}) be an encoding scheme. For F : X → X
and for any m ∈ M define the experiment TamperFm as:

TamperFm =

⎧⎪⎪⎨⎪⎪⎩
X ← Enc(m),
X ′ := F (X),
m′ := Dec(X ′)
output: m′

⎫⎪⎪⎬⎪⎪⎭
Let F be a family of functions from X to X . We say that an encoding scheme
(Enc,Dec) is ε-non-malleable with respect to F if for every function F ∈ F there
exists distribution DF on M∪ {same∗,⊥} such that for every m ∈ M we have

TamperFm ≈ε

⎧⎨⎩ d ← DF

if d = same∗ then output m
otherwise output d.

⎫⎬⎭ (3)

The idea behind the “⊥” symbol is that it should correspond to the situation
when the decoding function detects tampering and outputs an error message.
Since the codes that we construct in this paper do not need this feature, we will
usually drop this symbol and have Dec : X → M. The “⊥” symbol is actually
more useful for the strong non-malleable codes (another notion defined in [23])
where it is required that any tampering with X should be either “detected” or
should produce encoding of an unrelated message. Our codes do not have this
property. This is because, for example, permuting the elements of the vectors L
and R in the same manner does change these vectors, but does not change their
inner product. Fortunately, for all applications that we are aware of this stronger
notion is not needed. The following lemma, already informally discussed in Sect.
1, states that for one-bit messages non-malleability is equivalent to the hardness
of negating a random encoded bit. It turns out that such a characterization of
the non-malleable codes is much simpler to deal with. We also believe that it
may be of independent interest.

Lemma 2. Suppose M = {0, 1}. Let F be any family of functions from X to
X . An encoding scheme (Enc : M → X ,Dec : X → M) is ε-non-malleable with
respect to F if and only if for any F ∈ F and B ← {0, 1} we have

P [Dec (F (Enc(B))) �= B] ≤ 1

2
+ ε. (4)

The proof of this lemma appears in the full version of this paper [21]. In this
paper we are interested in the split-state codes. A split-state code is a pair
(Enc : M → L × R,Dec : L × R → M). We say that it is ε-non-malleable
if it is ε-non-malleable with respect to a family of all functions Mallf,g defined
as Mallf,g(L,R) = (f(L), g(R)).
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4 The Construction

In this section we present a construction of a non-malleable code in the split-state
model, together with a security proof. Before going to the technical details, let us
start with some intuitions. First, it is easy to see that any such code (Enc,Dec)
needs to be a 2-out-of-2 secret sharing scheme, where Enc is the sharing function,
Dec is the reconstruction function, and (L,R) = Enc(M) are shares of a secret
M . Informally speaking, this is because if one of the “shares”, L, say, reveals some
non-trivial information about M then by modifying L we can “negate” stored
secret M with probability significantly higher than 1/2. More precisely, suppose
that M = {0, 1} and that we know that there exist some values �0, �1 ∈ L such
that for b = 0, 1 if L = �b then M is significantly more likely to be equal to b.
Then (f, g) where g is an identity and f is such that f(�0) = �1 and f(�1) = �0
would lead to M ′ = Dec(f(L), g(R)) = 1 − M with probability significantly
higher than 1/2 (this argument is obviously informal, but it can be formalized).

It is also easy to see that not every secret sharing scheme is a non-malleable
code in the split-state model. As an example consider Enc : Za → Za × Za (for
some a ≥ 2) defined as Enc(M) := (L,L + M (mod a)), where L ← Za, and
Dec(L,R) := L + R mod m. Obviously it is a good 2-out-of-2 secret sharing
scheme. However, unsurprisingly, it is malleable, as an adversary can, e.g., easily
add any constant w ∈ Za to a encoded message, by choosing an identity function
as f , and letting g be such that that g(R) = R+w mod a. Obviously in this case
for every L and R that encode someM we have Dec(f(L), g(R)) = M+w mod a.

We therefore need to use a secret sharing scheme with some extra security
properties. A natural idea is to look at the two-source randomness extractors, as
they may be viewed exactly as “2-out-of-2 secret sharing schemes with enhanced
security”, and since they have already been used in the past in the context of
the leakage-resilient cryptography. The first, natural idea, is to take the inner
product extractor ext : Fn × Fn → F and use it as a code as follows: to encode
a message M ∈ F take a random pair (L,R) ∈ Fn × Fn such that 〈L,R〉 = M
(to decode (L,R) simply compute 〈L,R〉). This way of encoding messages is a
standard method to provide leakage-resilience in the split-state model (cf. e.g.
[14]). Unfortunately, it is easy to see that this scheme can easily be broken by
exploiting the linearity attacks of the inner product. More precisely, if the adver-
sary chooses f(L) := a ·L and g(R) := R (for any a ∈ F) then the encoded secret
gets multiplied by a. Obviously, this attack does not work for F = Z2, as in this
case the only choices are a = 0 (which means that the secret is deterministically
transformed to 0) and a = 1 (which leaves the secret unchanged). Sadly, it turns
out that for F = Z2 another attack is possible. Consider f and g that leave their
input vectors unchanged except of setting the first coordinate of the vector to
1, i.e.: f (L1, . . . , Ln) := (1, L2, . . . , Ln) and g (R1, . . . , Rn) := (1, R2, . . . , Rn).
Then it is easy to see that 〈f(L), g(R)〉 �= 〈L,R〉 if and only if L1 ·R1 = 0, which
happens with probability 3/4 both for M = 0 and for M = 1.

Note that the last attack is specific for small F’s, as over larger fields the
probability that L1 ·R1 = 0 is negligible. At the first glance, this fact should not
bring any hope for a solution, since, as described above, for larger fields another
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attack exists. Our key observation is that for one-bit messages it is possible to
combine the benefits of the “large field” solution with those of the “small field”
solution in such a way that the resulting scheme is secure, and in particular
both attacks are impossible! Our solution works as follows. The codewords are
pairs of vectors from Fn for a large F. The encoding of 0 remains as before –
i.e. we encode it as a pair (L,R) of orthogonal vectors. To encode 1 we choose a
random pair (L,R) of non-orthogonal vectors, i.e. such that 〈L,R〉 is a random
non-zero element of F. Before going to the technical details let us first “test” this
construction against the attacks described above. First, observe that multiplying
L (or R) by some constant a �= 0 never changes the encoded bit as 〈a · L,R〉 =
a 〈L,R〉 which is equal to 0 if and only if 〈L,R〉 = 0. On the other hand if a = 0
then 〈a · L,R〉 = 0, and hence the secret gets deterministically transformed to
0, which is also ok. It is also easy to see that the second attack (setting the first
coordinates of both the vectors to 1) results in 〈f(L), g(R)〉 close to uniform (no
matter what was the value of 〈L,R〉), and hence Dec(f(L), g(R)) = 1 with an
overwhelming probability.

Let us now define our encoding scheme formally. As already mentioned in Sect.
2 our construction uses a strong flexible two-source extractor ext : L × R → C
in a black-box way (later we show how to instantiate it with an inner product
extractor, cf. Thm. 2). This in particular means that we do not use any special
properties of the inner product, like the linearity. Also, since C does not need to
be a field, hence obviously the choice to encode 0 is by a pair of vectors such
that 〈L,R〉 = 0 (in the informal discussion above) was arbitrary, and one can
encode 0 as any pair (L,R) such that 〈L,R〉 = c, for some fixed c ∈ F. Let
ext : L × R → C be a strong flexible (k, ε)-extractor, for some parameters k
and ε, and let c ∈ C be arbitrary. We first define the decoding function. Let
Dc

ext : L ×R → {0, 1} be defined as:

Dc
ext(L,R) =

{
0 if ext(X) = c
1 otherwise.

Now, let Ec
ext : {0, 1} → L × R be an encoding function defined as Ec

ext(b) :=
(L,R), where (L,R) is a pair chosen uniformly at random from the set {(L,R) :
Dc

ext(L,R) = b}. We also make a small additional assumption about ext. Namely,
we require that L̃ and R̃ are completely uniform over L and R (resp.) then
ext(L̃, R̃) is completely uniform. More formally

for L̃ ← L and R̃ ← R we have d(ext(L̃, R̃)) = 0. (5)

The reason why we impose this assumption is that it significantly simplifies the
proof, thanks to the following fact. It is easy to see that if ext satisfies (5), then
for every x ∈ C the cardinality of each set {(�, r) : ext(�, r) = x} is exactly 1/ |F|
fraction of the cardinality of L×R. Hence, if B ← {0, 1} and (L,R) ← Ec

ext(B),
then in the distribution of (L,R) every (�, r) such that ext(�, r) = c is exactly
(|C| − 1) more likely than any (�′, r′) such that ext(�′, r′) �= c. Formally:

P [(L,R) = (�, r)] = (|C| − 1) · P [(L,R) = (�′, r′)] . (6)
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It is also straightforward to see that every extractor can be easily converted to
an extractor that satisfies (5)3. Lemma 3 below is the main technical lemma of
this paper. It states that (Ec

ext,D
c
ext) is non-malleable, for an appropriate choice

of ext. Since later (in Sect. 5) we will re-use this lemma in the context of non-
malleability with leakages, we prove it in a slightly more general form. Namely,
(cf. (8)) we show that it is hard to negate an encoded bit even if one knows that
the codeword (L,R) happens to be an element of some set L′ × R′ ⊆ L × R.
Note that we do not explicitly assume any lower bound on the cardinality of
L′×R′. This is not needed, since this cardinality is bounded implicitly in (7) by
the fact that in any flexible extractor the parameter k needs to be larger than
max (log |L| , log |R|) (cf. Sect. 2). If one is not interested in leakages then one
can read Lemma 3 and its proof assuming that L′ × R′ = L × R. Lemma 3 is
stated abstractly, but one can, of course, obtain a concrete non-malleable code,
by using as ext the two-source extractor extn

F
. We postpone presenting the choice

of concrete parameters F and n until Section 5, where it is done in a general
way, also taking into account leakages.

Lemma 3. Let L′ and R′ be some subsets of L and R respectively. Suppose
ext : L ×R → C is a strong flexible (k, ε)-extractor that satisfies (5), where, for
some parameter δ we have:

k =
2

3
· (log |L′|+ log |R′|)− 2

3
· log(1/δ). (7)

Take arbitrary functions f : L → L and g : R → R, let B be chosen uniformly
at random from {0, 1} and let (L,R) ← Ec

ext(B). Then

P [Dc
ext(f(L), g(R)) �= B | (L,R) ∈ (L′,R′)] ≤

1

2
+

3

2
|C|−1

+ 6 |C|2 ε+ δ/(|C|−1 − ε), (8)

and, in particular (Ec
ext,D

c
ext) is

(
3
2 |C|

−1+6 |C|2 ε+ δ/(|C|−1− ε)
)
-non-malleable.

Proof. Before presenting the main proof idea let us start with some simple obser-
vations. First, clearly it is enough to show (8), as then the fact that (Ec

ext,D
c
ext) is(

|C|−1
+ 2 |C|2 ε+ δ/(|C|−1− ε)

)
-non-malleable can be obtained easily by assum-

ing that L′ ×R′ = L×R and applying Lemma 2. Observe also that (8) implies
that log |L′|+log |R′| ≥ k, and hence, from the fact that ext is a (k, ε)-two source
extractor we obtain that if L̃ ← L′ and R̃ ← R̃′ then

d(ext(L̃, R̃)) ≤ ε. (9)

We will use this fact later. The basic idea behind the proof is a as follows. Denote
B′ := Mallf,g(Enc(B)). Recall that our code is “non-balanced” in the sense that

3 The inner-product extractor satisfies (5) if we assume, e.g., that the fist coordinate
of L and the last coordinate of R are non-zero. In general, if ext : L × R → C is
any extractor, then ext′ : (L×C)×R → C defined as ext((C,L), R) = ext(L,R)+C
(assuming that (C,+) is a group) satisfies (5).
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a random codeword (L,R) ∈ L′ ×R′ with only negligible probability encodes 0.
We will exploit this fact. Very informally speaking, we would like to prove that
if B = 1 then the adversary cannot force B′ to be equal to 0, as any independent
modifications of L and R that encode 1 are unlikely to produce an encoding of
0. In other words, we would hope to show that P [B′ = 0|B = 1] is small. Note
that if we managed to show it, then we would obviously get that P [B′ �= B]
cannot be much larger than 1/2 (recall that B is uniform), and then the proof
would be finished. Unfortunately, this is too good to be true, as the adversary
can choose f and g to be constant such that always Dc

ext(f(L), g(R)) = 0, which
would result in B′ = 0 for any value of B. Intuitively, what we will actually
manage to prove is that the only way to obtain B′ = 0 if B = 1 is to apply
such a “constant function attack”. Below we show how to make this argument
formal.

Let us first observe that any attack where f and g are constant will never work
against any encoding scheme, as in this case (f(L), g(R)) carries no information
about the initial value of B. Our first key observation is that for our scheme,
thanks to the fact that it is based on extractor, this last statement holds even if
any of f and g is only “sufficiently close to constant”. Formalizing this property
is a little bit tricky, as, of course, the adversary can apply “mixed” strategies,
e.g., setting f to be constant on some subset of L′ and to be injective (and hence
“very far from constant”) on the rest of L′. In order to deal with such cases we
will define subsets LFFC ⊆ L′ and RFFC ⊆ R′ on which f and g (resp.) are “very
far from constant”. Formally, for L̃ ← L′ and R̃ ← R′ let

LFFC :=
{
� ∈ L′ : H∞(L̃ | f(L̃) = f(�)) < k + 1− log |R′|

}
,

and

RFFC :=
{
r ∈ R′ : H∞(R̃ | g(R̃) = g(r)) < k + 1− log |L′|

}
,

where FFC stands for “far from constant”. Hence, in some sense, we define a
function to be “very far from constant on some argument x” if there are only
a few other arguments of this function that collide with x. We now state the
following claim (whose proof appears in the full version of this paper [21]) that
essentially formalizes the intuition outlined above, by showing that if either
L �∈ LFFC or R �∈ RFFC then (f, g) cannot succeed in negating B.

Claim 1. Let B ← {0, 1} and (L,R) ← Ec
ext(B). Then:

P
[
Dc

ext(Mallf,g(L,R)) �= B | L �∈ LFFC ∨R �∈ RFFC

]
≤ 1

2
+

3

4
· |C|−1 + 6 |C|2 ε.

(10)

Hence, what remains is to analyze the case when (L,R) ∈ LFFC ×RFFC. We will
do it only for the case B = 1, and when LFFC × RFFC is relatively large, more
precisely we will assume that

|LFFC ×RFFC| ≥ δ · |L′ ×R′| . (11)
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This will suffice since later we will show (cf. (23)) that the probability that
Enc(B) ∈ LFFC × RFFC is small for small δ’s (note that this is not completely
trivial as (L,R) does not have a uniform distribution over L′×R′). We now have
the following claim whose proof appears in the full version of this paper [21].

Claim 2. Let (L1, R1) ← Ec
ext(1) and suppose LFFC and RFFC are such that (11)

holds. Then

P
[
Dc

ext

(
Dec(f(L1), g(R1))

)
= 0 |(L1, R1) ∈ LFFC ×RFFC

]
≤ 2 |C|−1 + 2ε. (12)

To finish the proof we need to combine the two above claims. A small technical
difficulty, that we need still to deal with, comes from the fact that Claim 2 was
proven only under the assumption (11). Let us first expand the left-hand-side of
(8). We have

P
[
Dc

ext(Mallf,g(L,R) �= B|(L,R) ∈ L′ ×R′
]

(13)

=

(∗)︷ ︸︸ ︷
P
[
Dc

ext(Mallf,g(L,R) �= B | L �∈ LFFC ∨R �∈ RFFC

]
(14)

· P [L �∈ LFFC ∨R �∈ RFFC]

+

(∗∗)︷ ︸︸ ︷
P
[
Dc

ext(Mallf,g(L,R) �= B | (L,R) ∈ LFFC ×RFFC

]
· P [(L,R) ∈ LFFC ×RFFC] (15)

From Claim 1 we get that (∗) is at most 1
2 + 1

2 · |C|−1
+ 2 |C|2 ε. Now consider

two cases.
Case 1 First, suppose that (11) holds (i.e. |LFFC ×RFFC| ≥ δ · |L × R|). In this
case we get that (∗∗) is a equal to

≤ 2|C|−1+2ε by Claim 2︷ ︸︸ ︷
P
[
Dc

ext(Mallf,g(L,R) �= B|B = 0 ∧ (L,R) ∈ LFFC ×RFFC

]

·

≥ 1
2−|C|ε︷ ︸︸ ︷

P [B = 0|(L,R) ∈ LFFC ×RFFC] + (16)

P
[
Dc

ext(Mallf,g(L,R) �= B|B = 1 ∧ (L,R) ∈ LFFC ×RFFC

]
︸ ︷︷ ︸

≤1

· P [B = 1|(L,R) ∈ LFFC ×RFFC]︸ ︷︷ ︸
≤ 1

2+|C|ε

(17)

≤ 1

2
+ |C|−1 − ε+ |C| (ε − ε2) ≤ 1

2
+ |C|−1

+ |C| ε. (18)

The inequalities in (16) and (18) follow from the fact that LFFC × RFFC is a
large set and the fact that B depends on ext(L,R), where ext is a randomness
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extractor. The detailed proof of these inequalities appears in the full version of
this paper [21]. Now, since (13) is a weighted average of (∗) and (∗∗), hence
obviously

(13) (19)

≤ max

(
1

2
+

3

2
· |C|−1 + 6 |C|2 ε, 1

2
+ |C|−1 + |C| ε

)
(20)

≤ 1

2
+

3

2
|C|−1

+ 6 |C|2 ε. (21)

Case 2 Now consider the case when (11) does not hold, i.e.:

|LFFC ×RFFC| < δ · |L × R| (22)

We now give a bound on the probability that (L,R) is a member of LFFC×RFFC.

P [(L,R) ∈ LFFC ×RFFC]

=
1

2
· P [Ec

ext(0) ∈ LFFC ×RFFC] +
1

2
· P [Ec

ext(1) ∈ LFFC ×RFFC]

=
1

2
· P
[
(L̃, R̃) ∈ LFFC ×RFFC | ext(L̃, R̃) = c

]
+

1

2
· P
[
(L̃, R̃) ∈ LFFC ×RFFC | ext(L̃, R̃) �= c

]
≤ 1

2
·
P
[
(L̃, R̃) ∈ LFFC ×RFFC

]
P
[
ext(L̃, R̃) = c

] +
1

2
·
P
[
(L̃, R̃) ∈ LFFC ×RFFC

]
P
[
ext(L̃, R̃) �= c

]
≤ 1

2
·
P
[
(L̃, R̃) ∈ LFFC ×RFFC

]
|C|−1 − ε

+
1

2
·
P
[
(L̃, R̃) ∈ LFFC ×RFFC

]
(|C| − 1) · |C|−1 − ε

(23)

≤ δ/(|C|−1 − ε),

where in (23) we used (9). Hence, in this case, (15) is at most equal to δ/(|C|−1−
ε), and therefore, altogether, we can bound (13) by

(13) ≤ (∗) + δ/(|C|−1 − ε) (24)

=
1

2
+

3

2
|C|−1 + 6 |C|2 ε+ δ/(|C|−1 − ε) (25)

Since analyzing both cases gave us bounds (21) and (25), hence all in all we can
bound (13) by their maximum, which is at most

1

2
+

3

2
|C|−1

+ 6 |C|2 ε + δ/(|C|−1 − ε).

Hence (8) is proven.
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5 Adding Leakages

In this section we show how to incorporate leakages into our result. First, we
need to extend the non-malleability definition. We do it in the following, straight-
forward way. Observe that we can restrict ourselves to the situation when the
leakages happen before the mauling process (as it is of no help to the adversary
to leak from (f(L), g(R) if he can leak already from (L,R)). For any split-state
encoding scheme (Ec

ext : M → L × R,Dc
ext : L × R → M), a family of func-

tions F , any m ∈ M and any adversary A define a game TamperAm (where λ
is some parameter) as follows. First, let (L,R) ← Ec

ext(m). Then the adversary
A chooses a sequence of functions (v1, w1, . . . , vt, wt), where each vi has a type
vi : L → {0, 1}λi and each wi has a type wi : R → {0, 1}ρi where the λ’s and
ρ’s are some parameters such that

λ1 + · · ·+ λt + ρ1 + · · · ρt ≤ λ. (26)

He learns Leak(L,R) =
(
v1(L), w1(R), . . . , vt(L), wt(R)

)
. Moreover this process

is adaptive, i.e. the choice of an ith function in the sequence (26) can depend on
the i − 1 first values in the sequence Leak(L,R). Finally the adversary chooses
functions f : L → L and g : R → R. Now define the output of the game as:
TamperAm := (f(L), g(R)). We say that the encoding scheme (Ec

ext,D
c
ext) is ε-non-

malleable with leakage λ if for every adversary A there exists distribution DA

on M∪ {same∗} such that for every m ∈ M we have

TamperAm ≈ε

⎧⎨⎩ d ← DA

if d = same∗ then output m,
otherwise output d.

⎫⎬⎭
Theorem 1. Suppose ext : L×R → C is a flexible (k, ε)-extractor that satisfies
(5), where, for some parameters δ and λ we have

k =
2

3
· (log |L|+ log |R| − λ)− 4

3
· log(1/δ). (27)

Then the encoding scheme is
(
3
2 |C|

−1
+ 6 |C|2 ε + 2δ/(|C|−1 −ε)

)
-non-malleable

with leakage λ.

The proof of this theorem appears in the full version of this paper [21]. We
now show how to instantiate Theorem 1 with the inner-product extractor from
Sect. 2.

Theorem 2. Take any ξ ∈ [0, 1/4) and γ > 0 then there exist an explicit split-
state code (Enc : {0, 1} → {0, 1}N/2 × {0, 1}N/2,Dec : {0, 1}N/2 × {0, 1}N/2 →
{0, 1}) that is γ-non-malleable with leakage λ := ξN such that N = O(log(1/γ) ·
(1/4− ξ)−1). The encoding and decoding functions are computable in O(N ·
log2 (log(1/γ))) and the constant hidden under the O-notation in the formula
for N is around 100.
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The proof of this theorem appears in the full version of this paper [21]. We would
like to remark that it does not look like we could prove, with our current proof
techniques, a better relative leakage bound than ξ < 1

4 . Very roughly speaking
it is because we used the fact that the inner product is an extractor twice in the
proof. On the other hand we do not know any attack on our scheme for relative
leakage ξ ∈

(
1
4 ,

1
2

)
(recall that for ξ = 1

2 obviously any scheme is broken). Hence,
it is quite possible, that with a different proof strategy (perhaps relying on some
special features of the inner product function) one could show a higher leakage
tolerance of our scheme.

6 Security against Affine Mauling

Interestingly, we can also show that our encoding scheme (Ec
ext,D

c
ext), instantiated

with the inner product extractor, is secure in the model where (L,R) ∈ Fn ×Fn

can be mauled simultaneously (i.e. we do not use the split-model assumption),
but the class of the mauling functions is restricted to the affine functions over
F, i.e. each mauling function h is of a form

h((L1, . . . , Ln), (R1, . . . , Rn)) = M · (L1, . . . , Ln, R1, . . . , Rn)
T + V T , (28)

where M is an (2n× 2n)-matrix over F and V ∈ F2n. We now argue informally
why it is the case, by showing that every h that breaks the non-malleability of
this scheme can be transformed into a pair of functions (f, g) that breaks the
non malleability of the scheme(

Ec
ext : Fn+2 ×Fn+2 → {0, 1},Dc

ext : {0, 1} → Fn+2 ×Fn+2
)

in the split-state model. Let (L,R) ∈ Fn+2 × Fn+2 denote the codeword in this
scheme. Our attack works only under the assumption that it happened that
(L,R) ∈ L′ × R′, where L′ × R′ := (Fn × {0} × {0}) × (Fn × {0} × {0}) (in
other words: the two last coordinates of both L and R are zero). Since L′×R′ is
large, therefore this clearly suffices to obtain the contradiction with the fact that
our scheme is secure even if (L,R) happen to belong to some large subdomain
of the set of all codewords (cf. Lemma 3). Clearly, to finish the argument it is
enough to construct the functions f and g such that

〈f(L), g(R)〉 =
〈
(L′

1, . . . , L
′
n+2), (R

′
1, . . . , R

′
n+2)

〉
,

where (L′
1, . . . , L

′
n+2, R

′
1, . . . , R

′
n+2) = h(L1, . . . , Ln, R1, . . . , Rn). It is easy to

see that, since h is affine, hence the value of
〈
(L′

1, . . . , L
′
n+2), (R

′
1, . . . , R

′
n+2)

〉
can be represented as a sum of monomials over variables Li and Rj where each
variable appears in power at most 1. Hence it can be rewritten as the following
sum:

n∑
i=1

⎛⎝Li ·
∑
j∈Ji

Rj

⎞⎠+
∑

j∈Jn+1

Lj +
∑

i,j∈Kn+1

LiLj + y +
∑

j∈Jn+2

Rj +
∑

i,j∈Kn+2

RiRj ,



Non-malleable Codes from Two-Source Extractors 255

where each Ji is a subset of the indices {1, . . . , n} and y ∈ F is a constant. It is
also easy to see that the above sum is equal to the inner product of vectors V
and W defined as:

V :=
(
L1, . . . , Ln,

∑
j∈Jn+1

Lj +
∑

i,j∈Kn+1

LiLj, 1
)

W :=
( ∑

j∈J1

Rj , . . . ,
∑
j∈Jn

Rj , 1, y +
∑

j∈Jn+2

Rj +
∑

i,j∈Kn+2

RiRj

)
.

Now observe that V depends only on the vector L, and similarly,W depends only
onR.We can therefore set f(L) := V and g(R) := W . This finishes the argument.
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Abstract. Error correction and message authentication are well studied
in the literature, and various efficient solutions have been suggested and
analyzed. This is however not the case for data streams in which the
message is very long, possibly infinite, and not known in advance to
the sender. Trivial solutions for error-correcting and authenticating data
streams either suffer from a long delay at the receiver’s end or cannot
perform well when the communication channel is noisy.

In this work we suggest a constant-rate error-correction scheme and
an efficient authentication scheme for data streams over a noisy chan-
nel (one-way communication, no feedback) in the shared-randomness
model. Our first scheme does not assume shared randomness and (non-
efficiently) recovers a (1 − 2c)-fraction prefix of the stream sent so far,
assuming the noise level is at most c < 1/2. The length of the recovered
prefix is tight.

To be able to overcome the c = 1/2 barrier we relax the model and
assume the parties pre-share a secret key. Under this assumption we
show that for any given noise rate c < 1, there exists a scheme that
correctly decodes a (1 − c)-fraction of the stream sent so far with high
probability, and moreover, the scheme is efficient. Furthermore, if the
noise rate exceeds c, the scheme aborts with high probability. We also
show that no constant-rate authentication scheme recovers more than a
(1− c)-fraction of the stream sent so far with non-negligible probability,
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thus the relation between the noise rate and recoverable fraction of the
stream is tight, and our scheme is optimal.

Our techniques also apply to the task of interactive communication
(two-way communication) over a noisy channel. In a recent paper, Braver-
man and Rao [STOC 2011] show that any function of two inputs has a
constant-rate interactive protocol for two users that withstands a noise
rate up to 1/4. By assuming that the parties share a secret random string,
we extend this result and construct an interactive protocol that succeeds
with overwhelming probability against noise rates up to 1/2. We also
show that no constant-rate protocol exists for noise rates above 1/2 for
functions that require two-way communication. This is contrasted with
our first result in which computing the “function” requires only one-way
communication and the noise rate can go up to 1.

Keywords: data stream, private codes, adversarial noise, authentication,
tree codes, interactive communication.

1 Introduction

The tasks of error-correction and of authentication are well studied in the liter-
ature. In both cases, a sender (Alice) wishes to send a message over a one-way,
noisy channel to a receiver (Bob). To do so, Alice produces a longer, redundant
message and sends it over the channel. The added redundancy helps Bob in re-
covering the original message if possible, or aborting otherwise. The overhead of
this process is the amount of redundancy added to each message; in this work we
focus on constant-rate schemes, i.e., schemes in which the transmitted message
is at most constant-times longer.

Interestingly, in all known authentication schemes (and in many of the error-
correction codes) there are two important assumptions: (1) the message to be
communicated has a given length n and (2) the message is fully known to the
sender in advance. These two assumptions don’t hold anymore when the informa-
tion to be transmitted is in the form of a data stream, which is a long, possibly
infinite, sequence of symbols x1, x2, . . . over some alphabet Σ, where each xi

arrives at the sender’s end at time i and is unknown beforehand.
In this paper, we investigate the question of transmitting data streams over

an adversarially noisy channel. Within this framework we consider two related
questions, namely, error-correction and authentication of data streams. Loosely
speaking, in error-correction schemes, the receiver decodes the correct message
as long as the noise level is below some threshold (but possibly outputs a wrong
message if the noise exceeds that threshold). In authentication schemes, the
receiver’s task is to indicate whether or not the received (decoded) message is
indeed the one sent to him. To see the relation between these two tasks note
that if the corruption level of an adversary is guaranteed to be lower than the
threshold, any error-correction guarantees that the receiver decodes the original
message. However, while no constant-rate error-correction scheme can withstand
a noise level higher than 1/2, this is not the case for authentication schemes that
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are capable of indicating a change in the message even when the adversary has
a full control of the channel. On the other hand for the task of authentication,
it is generally assumed that the parties pre-share a secret key.

Standard error-correction and authentication methods do not apply directly
to the model of data streams. The straightforward method to perform error-
correction (or authentication) of a data stream is to cut the stream into chunks
and separately encode each chunk. The problem now is that while the adversary
is limited to some global noise rate, there is no restriction on the noise level of any
local part of the stream. Specifically, the adversary can corrupt a single chunk
in its entirety (while not exceeding the global amount of allowed noise), and
cause Bob to decode this chunk in a wrong way. Even if this event is noticed by
Bob since the chunk fails the authentication, the information carried within this
chunk is lost unless Bob requests a retransmission of that chunk, i.e., unless the
communication is interactive. The same problem exists (with high probability)
when the noise is random rather than adversarial, given that the stream is long
enough or infinite.

A possible mitigation to the above is to increase the chunks’ size. This, how-
ever, has an undesirable side effect—Bob needs to wait until receiving a complete
chunk in order to decode and authenticate it. This means that the information
received in the very recent bits is inaccessible to Bob until the chunk is com-
pletely received. Our goal is thus, to construct a constant-rate scheme that can
withstand a constant fraction of errors (globally) and still guarantee the correct
decoding and authenticity of the information received so far. To the best of our
knowledge, no such solution is known.

1.1 Our Results

In this work we construct optimal encoding schemes for both interactive and non-
interactive (streaming) communication, and show a dramatic difference between
these two cases in the following sense. For each case, we show an upper bound
on the noise rates that allow a successful constant-rate communication, and
construct a protocol that achieves the bound. Interestingly, the bound for one-
way communication is different from the interactive one.

Specifically, our result for one-way communication is a constant-rate coding
scheme for data streams that withstands noise rates of less than 1/2. Informally,
as long as the global noise rate up to some time n does not exceed some parameter
c < 1/2, a fraction of 1 − 2c of the stream sent up to time n can be recovered
(see Section 4). For constant-rate schemes, it is clear that c < 1/2 is a hard limit
and no scheme can succeed when the noise is higher. In order to achieve schemes
that withstand higher noise rates we must relax the model and give the users
more resources. Indeed, with the use of shared randomness (i.e., a shared secret
key) we can break the c = 1/2 barrier. To emphasize the fact that the parties are
allowed to share a secret key, we refer schemes in this model as authentication
schemes rather than error-correction schemes, based on the relation of these two
tasks mentioned above (codes that assume a private shared key are also known
as private codes [16], see Related Work).
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This leads to our first main result: we construct a constant-rate authentication
scheme for data streams sent over a noisy (possibly adversarial) channel. For any
constant fraction of noise c less than 1, our scheme succeeds in decoding at least
a (1 − c)-fraction of the stream so far, with high probability. The decoded part
is always the prefix of the stream. The decoded prefix is authenticated, meaning
that there is only a negligible probability that the scheme outputs a different
string. Furthermore, our scheme is efficient. More formally (see formal theorems
in Section 5), we show that for any noise rate 0 ≤ c < 1 and small constant
ε > 0:

– There exists an efficient constant-rate scheme that, at time n, decodes a
prefix of length at least (1− c)n− εn of the stream sent so far.

– Any constant-rate protocol that decodes a prefix of length (1 − c)n + εn
succeeds with probability at most 2−Ω(εn) in the worst case.

Our scheme is unconditionally secure and does not make any (cryptographic)
assumptions, other than pre-sharing a secret random string. The amount of ran-
domness utilized by the scheme grows with the message length, and can be
unbounded if the data stream is infinite. However, if we only consider a compu-
tationally bounded adversary, the required amount of randomness is relatively
small (polynomial in the security parameter). With the aid of a pseudo-random
generator, the parties only need to pre-share a small seed, from which they gen-
erate randomness at will. Moreover, such a solution scales to the multiparty
case by a simple public-key infrastructure construction. Each user generates a
pair of a public and a secret key, and any pair of users perform Diffie-Hellman
key-exchange [6] to obtain a secret shared authentication-key used as the pseudo-
random generator’s seed.

We apply the same techniques used in our streaming-authentication scheme
onto the task of interactive communication to get our second main result. In the
interactive communication scenario, two parties perform an arbitrary interactive
protocol over a noisy channel, while keeping the amount of exchanged data only
a constant factor more than an equivalent protocol for a noiseless channel (i.e.,
the encoding is constant-rate). This question was initially considered for both
random and adversarial noise by Schulman [22,23,24] who showed a constant-
rate encoding scheme that copes with a noise rate of up to 1/240, and recently
revisited by Braverman and Rao [5] who showed how to deal with noise rates
less than 1/4. In addition, Braverman and Rao show that 1/4 is the highest error
rate any protocol can withstand, as long as the protocol defines whose turn it is
to speak at every round regardless of the observed noise. The fascinating open
question left by the work of Braverman and Rao is whether other methods could
extend the 1/4 bound.

In this work we improve the bound obtained by [5] by allowing the parties
to pre-share a secret key. Specifically, we show how to convert any interactive
protocol (for noiseless channel) into a constant-rate protocol that withstands
any adversarial noise level smaller than 1/2, given pre-shared randomness. We
also show that for higher noise rates, no constant-rate interactive protocol exists
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for tasks that depend on inputs of both parties. Similarly to previous results for
interactive communication with adversarial noise [24,5,9], our decoding scheme
is inefficient. Very recently, Brakerski and Kalai [2] showed how to augment
previous results of interactive communication protocols and achieved efficient
schemes that withstand adversarial noise (the computation efficiency was further
improved by Brakerski and Naor [3] to O(N logN)). Note that the bounds (on
adversarial noise) obtained by [2] are improved by our work as well, since we
improve the bounds of the underlying schemes used by [2].

1.2 Our Methods

The Blueberry Code. The main ingredient of our construction is an error-
detection code we name the Blueberry code1. The Blueberry code uses the shared
randomness in order to detect corruptions made by the channel, and marks them
as erasures. One can think about this code as a weak message authentication
code (MAC) that authenticates each symbol separately with a constant proba-
bility (see [11] for a formal definition of MAC). To this end, each symbol of the
input alphabet Σ is randomly and independently mapped to a larger alphabet Γ
(the channel alphabet). This means that only a small subset of the channel al-
phabet is meaningful and the other symbols serve as “booby-traps”. Since each
symbol is encoded independently, any corruption is caught with constant prob-

ability |Σ|−1
|Γ |−1 and marked with a special sign ⊥ to denote it was deleted by the

channel. Most of the corruptions made by an adversary become erasures and
only a small fraction (arbitrarily small, controlled by the size of |Γ |) turns into
errors.

...

0

1

...

0

1

...

0

1

...

0

1

time

Σ = {0, 1}

Γ = {0, . . . , N}

Fig. 1. A demonstration of the Blueberry code: at any given time each symbol in Σ
is randomly mapped to a symbol of Γ . Symbols of Γ with no incoming arrow are
“booby-traps”, which serve to detect corruptions.

1 The name of the Blueberry code is inspired by the children’s book “The case of the
hungry stranger” [1] in which a blueberry pie is gone missing, and the thief (who
turns out to be the dog) is identified by his big blue grin.
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The main insight that leads to our results is the different ways error correction
codes deal with errors and erasures. We observe that, in terms of Hamming
distance, the impact of a single error is twice as harmful as a single erasure.
Indeed, assume that the Hamming distance of two strings, x and y, is m. Then
if x was communicated but y is decoded it means that at least m/2 errors
have occurred, or alternatively, at least m erasures. More generally, assuming
we decode by minimizing the Hamming distance, then our decoding fails if the
number of errors e and the number of erasures d satisfy 2e+ d ≥ m.

Combining Blueberry Codes and Tree Codes. The second ingredient of our work
is encoding via tree codes [24], an online encoding that has a “self-healing” prop-
erty: when decoding a stream at time n, the tree will decode correctly up to a
particular time t such that the stream suffix between times t and n is the longest
suffix in which the error rate is high. This means, for instance, that even if all the
transmissions until some time t′ were corrupted (and thus the decoding failed at
those times), if the noise rate up to time n > t′ is low enough, not only can we
decode between t′ and n, but we will also be able to decode the entire stream
up to time n.

Encoding via both a tree code and a Blueberry code immediately gives a
streaming authentication method: the Blueberry code prevents the adversary
from corrupting too many transmissions without being noticed, and given that
the noise level is low enough, the tree code correctly decodes a prefix of the
stream whose length is determined by the average noise level up to that time.

Efficient Constructions. The only caveat of the above construction is that tree
code decoding is not necessarily efficient and may be in the worst case exponen-
tial in the length of the received transmission. We obtain an efficient authentica-
tion scheme by splitting the stream into small segments and repeatedly sending
random segments of the history. That way, even if some part of the transmission
was changed by the channel, the same information will keep being retransmitted
at random future times, and eventually (with high probability) will be received
at the other side intact.

Roughly speaking, we use n/ logn tree codes to encode chunks of the stream
(each of length roughly logn). Note that as n grows, so does the number of the
trees in use, and the expected depth of each tree. At each time step, we randomly
select one of the n/ logn trees and transmit the next label of the path defined
by the corresponding chunk of the stream. For most of the trees, the expected
number of labels transmitted is Θ(log n), and the decoding of the specific chunk
succeeds except with polynomially small probability. Since each tree code is used
to encode a word of length O(log n), the decoding can be performed efficiently
by an exhaustive search.

1.3 Other Related Works

The works of Even, Goldreich and Micali [7] and Gennaro and Rohatgi [10] con-
sider authentication of data streams, however the focus of these schemes is not
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only to authenticate the message but also to prevent the sender from denying hav-
ing signed the information. These constructions rely on cryptographic primitives
such as one-time signatures. Another related line of research [21,19,12] pursues
authentication of streams over lossy channels, usually in the multicast setting.

Coding schemes that assume the parties pre-share some randomness (also
known as Private Codes [16]) first appeared in [25], and were greatly analyzed
since. The main advantage of such codes is that they can deal with adversarial
noise, rather than a random noise. Langberg [16] considers private codes for ad-
versarial channels that approach Shannon’s bound and require only O(log n) ran-
domness for block size n, as well as anΩ(logn) lower bound for the needed random-
ness. The construction of Langberg also implies an efficient code with O(n logn)
randomness. This result was improved to n+ o(n) randomness by Smith [26]. Ex-
plicit constructions with o(n) randomness are yet unknown (see [26]).

Error correction codes for computationally bounded noise models were first
addressed by Lipton [17] who constructs error-correction codes given pre-shared
randomness and later considered by Micali, Peikert, Sudan and Wilson [18] who
only assume sharing a short public-key, and recently by the surprising result
of Guruswami and Smith [13] who assume no shared setup between the users.
Locally Decodable codes with constant-rate in the public-key model were in-
troduced by Hemenway and Ostrovsky [14] and later improved by Hemenway,
Ostrovsky, Strauss and Wootters [15].

2 Preliminaries, Model and Definitions

We denote the set {1, 2, . . . , n} by [n], and for a finite set Σ we denote by Σ≤n

the set ∪n
k=1Σ

k. The Hamming distance Δ(x, y) of two strings x, y ∈ Σn is the
number of indices i for which xi �= yi. Throughout the paper, log() denotes the
binary logarithm (base 2) and ln() denotes the natural logarithm (base e).

Shared Randomness Model. We assume the following shared-randomness model.
The legitimate users (Alice and Bob) have access to a random string R of un-
bounded length, which is unknown to the adversary (Eve). Protocols in this
model are thus probabilistic, and are required to succeed with high probability
over the choice of R. We assume that all the randomness comes from R and that
for a fixed R the protocols are deterministic.

Tree Codes. A d-ary tree code [24] over alphabet Σ is a rooted d-regular tree of
arbitrary depth N whose edges are labeled with elements of Σ. For any string
x ∈ [d]≤N , a d-ary tree code T implies an encoding of x, TCencT (x) = w1w2..w|x|
with wi ∈ Σ, defined by concatenating the labels along the path defined by x, i.e.,
the path that begins at the root and whose i-th node is the xi-th child of the
(i − 1)-th node. We usually omit the subscript T when the tree is clear from
the context. Note that tree code encoding is online: to communicate TCenc(xσ)
where σ ∈ [d] given that TCenc(x) was already communicated, we only need to
send one symbol of Σ. Hence, if |Σ| = O(1) the encoding scheme has a constant
rate.
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For any two paths (strings) x, y ∈ [d]≤N of the same length n, let � be the
longest common prefix of both x and y. Denote by anc(x, y) = n−|�| the distance
from the n-th level to the least common ancestor of paths x and y. A tree code
has distance α if for any k ∈ [N ] and any distinct x, y ∈ [d]k, the Hamming
distance of TCenc(x) and TCenc(y) is at least α · anc(x, y).

For a string w ∈ Σn, decoding w using the tree code T means returning the
string x ∈ [d]n whose encoding minimizes the Hamming distance to the received
word, namely,

TCdecT (w) = argmin
x∈[d]n

Δ(TCencT (x), w).

A theorem by Schulman [24] proves that for any d and α < 1 there exists
a d-ary tree code of unbounded depth and distance α over alphabet of size
dO(1/(1−α)). However, no efficient construction of such a tree is yet known. For
a given depth N , Peczarski [20] gives a randomized construction for a tree code
with α = 1/2 that succeeds with probability at least 1 − ε, and requires alpha-

bet of size at least dO(
√

log ε−1). Braverman [4] gives a sub-exponential (in N)
construction of a tree code, and Gelles, Moitra and Sahai [9] provide an efficient
construction of a randomized relaxation of a tree code of depth N , namely a
potent tree code, which is powerful enough as a substitute for a tree code in most
applications.

Communication Model. Our communication model consists of a channel ch :
Σ → Σ subject to corruptions made by an adversary (or by the channel itself).
The noise model is such that any symbol σ sent through the channel can turn
into another symbol σ̃ ∈ Σ. It is not allowed to insert or delete symbols. For
all of our applications we assume that one symbol σi ∈ Σ is sent at any time
slot i.2 We say that the adversarial corruption rate is c if for n transmissions, at
most cn symbols were corrupted.

3 The Blueberry Code

Definition 3.1. For i ≥ 1 let Bi : [L + 1] → [L + 1] be a random and inde-
pendently chosen permutation. The Blueberry code maps a string x of arbitrary
length n to

B(x) = B1(x1)B2(x2) · · ·Bn(xn).

We denote such a code as B : [L+ 1]∗ → [L+ 1]∗.

We use the Blueberry code in the shared-randomness model where the legitimate
parties share the random permutations Bi, unknown to the adversary (these kind
of codes, determined by a random string unknown to the channel are referred to
as private codes by [16]). Although Bi is a permutation on [L + 1], we actually

2 The channel time slots need not correspond with the times in which stream symbols
are received. I.e, it is possible that between the arrival of stream elements xi and xi+1,
several channel-symbols are transmitted.
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use it to encode strings over a smaller alphabet [S + 1] with S < L; that is,
we focus on the induced mapping B : [S + 1]∗ → [L + 1]∗. The adversary does
not know the specific permutations Bi, and has probability of at most S/L to
change a transmission into a symbol whose pre-image is in [S + 1].

Definition 3.2. Assume that at some time i, yi = Bi(xi) is transmitted and
ỹi �= yi is received. If B−1

i (ỹ) /∈ [S + 1], we mark the transmission as an erasure
(specifically, the decoding algorithm outputs ⊥); otherwise, this event is called
an error.

Corollary 3.3. Let x ∈ [S + 1]n and assume B(x) is communicated over a
noisy channel. Every symbol altered by the channel will cause either an error
with probability S/L, or an erasure with probability 1− S/L.

Assuming S � L, most of the corruptions done by the channel are marked
as erasures, and only a small fraction of the corruptions percolate through the
Blueberry code and cause an error.

Lemma 3.4. Let S,L ∈ N be fixed and assume a Blueberry code B : [S+1]∗ →
[L + 1]∗ is used to transmit a string x ∈ [S + 1]n over a noisy channel. For
any constant 0 ≤ c ≤ 1, if the channel’s corruption rate c, then with probability
1− 2−Ω(n) at least a (1− 2S

L)-fraction of the corruptions are marked as erasures.

Proof. Denote by zi the random variable which is 1 if the i-th corrupted-
transmission is marked as an erasure and 0 otherwise. These are independent
Bernoullis with probability 1− S

L . Let Z =
∑

i zi and note that E[Z] = cn(1− S
L ).

By Chernoff-Hoeffding inequality,

Pr
R

[
1

n

∑
i

zi < c
(
1− 2S

L

)]
< e−2n(cS/L)2.

Corollary 3.5. Let S,L ∈ N be fixed. If out of n received transmissions, cn
were marked as erasures by a Blueberry code B : [S+1]∗ → [L+1]∗, then except
with probability 2−Ω(n) over the shared randomness, the adversarial corruption
rate is at most c/(1− 2S

L ).

We will use the Blueberry code concatenated with another (outer) code that is
less sensitive to erasures than to errors. From the outer code’s point of view,
this effectively increases the channel’s “error rate resilience” from 1 − 2c to
1 − c(1 + S/L). The construction of the code B from independent Bi’s allows
us to encode and decode each xi independently, which is crucial for on-line
applications in which the message x to be sent is not fully known in advance.

4 Error Correction of Data Streams

Before we reach our main result, we begin with a simple, non-efficient, constant-
rate error-correction scheme for data streams that withstands noise c < 1/2
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and decodes a prefix of length 1 − 2c of the stream sent so far. The scheme is
obtained by simply encoding the stream via a tree code T with large enough
distance parameter α ∈ (0, 1) and a constant-size alphabet, which depends on α.

Theorem 4.1. For any constants c < 1/2 and ε > 0 there exists a constant-rate
error-correction scheme for data stream x1, x2, . . . such that at any given time n
the receiver outputs a string x′

1, x
′
2, . . . , x

′
n, and if the noise rate until time n is

at most c, then

x′
1, x

′
2, . . . , x

′
(1−2c)n−εn = x1, x2, . . . , x(1−2c)n−εn

that is, a prefix of the stream of length at least (1−2c)n−εn is correctly decoded.

Proof. Assume Alice encodes each stream symbol using TCencT () using some
tree code T whose parameters we fix shortly.

For a specific time n, consider a string x̃ ∈ {0, 1}n, such that anc(x, x̃) ≥
(2c + ε)n. Due to the tree distance property, the Hamming distance between
TCenc(x̃) and TCenc(x) is at least α(2c + ε)n. Assume Eve causes e errors, a
maximal-likelihood decoding will prefer x over x̃ as long as �α(2c + ε)n� > 2e.
Since Eve’s corruption rate is limited to c, we know that e ≤ cn. By setting
α > 2c

2c+ε we guarantee that α(2c+ ε)n > 2e, and Bob decodes a string x′ such
that anc(x, x′) < (2c+ ε)n with certainty. $%

5 Perpetual Authentication

Sending a data stream over a noisy channel is not a simple task, especially
when the noise model is adversarial. Our goal is to design an encoding and
decoding scheme such that the encoding has a constant rate and the decoding
recovers the encoded transmitted stream, or else aborts. Furthermore, we wish
an “authentication” guarantee, that is, if the decoding scheme did not abort, it
decodes the correct data with high probability (note that the probability that the
scheme aborts potentially differs from the probability that the decoding scheme
outputs incorrect data). The amount of recoverable data depends on the noise
and the goal is to output (and authenticate) the longest possible prefix of the
stream, given a constant corruption rate.

Definition 5.1. A (c(n), γ(n), κ(n))-Streaming Authentication Scheme with
constant rate r is an encoding e : {0, 1}∗×{0, 1}∗ → {0, 1}r that encodes a stream
x1, x2, . . . into a stream y1 = e(x1, R), y2 = e(x1x2, R), . . ., yi = e(x1 · · ·xi, R),
and a decoding d : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ ∪ {⊥} such that the following
holds. For any n, and for any adversary Adv(x1 · · ·xn, y1 · · · yn) = y′1 · · · y′n, ei-
ther d(y′1 · · · y′n, R) = x′

1x
′
2 · · ·x′

n or d(y′1 · · · y′n, R) = ⊥, and if at most c(n)
transmissions were corrupted, then

1. the scheme aborts with probability at most κ(n),

Pr
R
[d(y′1 · · · y′n, R) = ⊥] < κ(n).
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2. if not aborted, the probability to decode an incorrect γ(n)-prefix of the stream
is at most κ(n),

Pr
R
[d(y′1 · · · y′n, R) �= ⊥ ∧ x′

1 · · ·x′
γ(n) �= x1 · · ·xγ(n)] < κ(n).

Eve is given both the raw stream and the channel transmissions, however she does
not know the shared random string R used as the secret authentication key. It
is desired that as long as Eve corrupts only a small fraction of the transmissions,
Bob will be able to correctly decode a prefix of the stream, or otherwise be aware
of the adversarial intervention and abort.

We show the following dichotomy: If the adversarial corruption rate is some
constant c, then there exists a streaming authentication stream that decodes a
prefix of at most (1− c)-fraction of the stream received so far. In addition, there
does not exist a streaming authentication scheme that is capable of decoding a
longer prefix with non-negligible probability.

Theorem 5.2. In the shared-randomness model, for every constants c, ε such
that 0 ≤ c < 1 and 0 < ε ≤ (1− c)/2 there exists a constant-rate (cn, (1− c)n−
εn, 2−Ω(n))-Streaming Authentication Scheme. Moreover, there exists an efficient
constant-rate (cn, (1− c)n− εn, 2−Ω(logn))-Streaming Authentication Scheme.

For any constant cth > c, if the adversarial corruption rate exceeds cth, the
schemes abort with overwhelming probability over the shared randomness.

Theorem 5.3. Assume that a bitstream x1, x2, . . . is communicated using some
encoding protocol with a constant rate, and assume that at time n the receiver
decodes the bitstring x′

1, . . . , x
′
n. If the rate of adversarial corruptions is 0 ≤ c ≤ 1,

then for any constant ε > 0,

Pr[x′
1 · · ·x′

(1−c)n+εn = x1 · · ·x(1−c)n+εn] ≤ 2−Ω(εn)

where the probability is over the coin tosses of the decoding algorithm, assuming
{xi} are uniformly, independently distributed.

We now prove Theorem 5.3 and then construct the protocols guaranteed by
Theorem 5.2

Proof. Consider an adversary that, starting at time (1 − c)n, corrupts all the
transmissions. It is easy to verify that the corruption rate is c. Clearly, from time
(1 − c)n and on, the effective capacity of the channel is 0. This means that the
decoder has no use of transmissions of times ≥ (1−c)n and he decodes only using
transmissions received up to time (1−c)n. However, due to the streaming nature
of the model, transmissions at times < (1 − c)n depend only on x1, . . . , x(1−c)n

(the suffix of the stream is yet unknown to the sender). The receiver has no
information about any bit xi with i > (1− c)n and his best strategy is to guess
them. The probability to correctly guess the last εn bits is at most 2−�εn�. $%

In order to construct a streaming authentication scheme, we use two concate-
nated layers of online codes. The inner code is a Blueberry B : [S+1]∗ → [L+1]∗
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code with constant S,L, and the outer code A is an online code that allows a
prefix decoding in the presence of errors and erasures. The entire process can be
described by

(x1, . . .)
A−→ (y1, . . .)

B−→ (z1, . . .)
channel−→ (z̃1, . . .)

B−1

−→ (ỹ1, . . .)
A−1

−→ (x̃1, . . .)

We begin with a simple and elegant construction which, although not efficient,
demonstrates the power of the Blueberry code.

Proposition 5.4. Let c, ε be constants 0 ≤ c < 1, 0 < ε ≤ (1 − c) and let
A = TCenc() be an encoding using a binary tree code and B a Blueberry code
with constant parameters determined by c, ε. The concatenation of A and B is a
(cn, (1− c)n− εn, 2−Ω(n))-streaming authentication scheme.

Proof. Assume that in order to encode the bitstream x1, x2, . . ., we use a bi-
nary tree code over alphabet [S + 1] with distance α to be determined later,
concatenated with a Blueberry-code B : [S + 1]∗ → [L + 1]∗. We show that if
at time n we decode a string x̃1 · · · x̃n whose prefix x̃1 · · · x̃(1−c−ε)n differs from
x1 · · ·x(1−c−ε)n, then the corruption rate was larger than c.

For a specific time n, consider a string x̃ ∈ {0, 1}n, such that anc(x, x̃)
≥ (c + ε)n. Due to the tree distance property, the Hamming distance between
TCenc(x̃) and TCenc(x) is at least α(c + ε)n. Assume Eve causes d erasures
and e errors, a maximal-likelihood decoding will prefer x over x̃ as long as
�α(c+ ε)n� > 2e+ d.

If Eve’s corruption rate is limited to c, Lemma 3.4 implies that with over-
whelming probability at most 2cnS/L of these corruptions become errors and
the rest are marked as erasures. Setting α > c

c+ε (1 + 2S
L ) we guarantee that

α(c + ε)n > 2 · 2cnS/L+ cn(1 − 2S/L),3 thus Bob decodes with overwhelming
probability a string x̃ such that anc(x, x̃) < (c+ ε)n, as claimed.

Note that the actual fraction of adversarial corruptions can be estimated
out of the number of erasures marked by the Blueberry code. We abort the
decoding if at a specific time n the number of erasures exceeds cn. Lemma 3.4
guarantees that if the adversary corrupts more than a c/(1 − 2S

L )-fraction of
the transmissions, she will cause at least cn erasures, except with negligible
probability. Choosing L such that (1 − 2S

L ) ≥ c
cth

completes the proof for the
non-efficient case of Theorem 5.2. $%

We note that although in the above proof we require ε to be constant, for the
case of c = 0 (i.e., when the channel is not inherently noisy) we can let ε be
smaller. For instance, if we let ε = κ/n for a security parameter κ, the scheme is
comparable to a (non-streaming) authentication scheme with the same security
parameter: in order to change even a single bit in a prefix of length n, after n+κ

3 It is required to have α < 1, thus the choice of (the constant) L should depend
on ε and c, specifically, L > 2S c

ε
. Also note that S depends on α, however L is

independent of both. For a fixed value of α (and S = dO(1/(1−α))) there is always a
way to choose a constant L that satisfies the conditions.
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symbols were transmitted, the adversary must change at least ακ/2 transmis-
sions, and will be caught except with probability 2−Ω(κ). Since the above holds
for any time n, we get a perpetual authentication of the stream.

The case where c > 0 has a meaning of communicating over a noisy chan-
nel (regardless of the adversary). The users do not abort the authentication
scheme although they know the message was changed by the channel. Instead,
the scheme features both error-correction and authentication abilities and the
parties succeed to recover (a prefix of) the original message with high probability.

5.1 Efficient Streaming Authentication

We now complete the proof of Theorem 5.2 by defining an efficient randomized
code Aeff for prefix-decoding in the presence of errors and erasures. The protocol
partitions the stream into words of logarithmic size and encodes each using a
tree code. At any time n, one of the O(n/ logn) words is chosen at random and
its next encoded symbol is transmitted. The value n increases as the protocol
progresses which means that the length of each encoded word increases as well.
This however causes no problem: each word is encoded by a tree code (rather
than, say, a block code), which is performed in an online manner without assum-
ing knowledge of the word’s length. Decoding can be performed efficiently by an
exhaustive search since each word is of logarithmic length in the current time n.
We note that the parties hold the entire stream in their memory throughout the
protocol, which is different from the common practice of streaming algorithms
in which there is only a single party (rather than two) which aim to compute
some statistics of the stream using poly-logarithmic memory.

Proposition 5.5. For any constants 0 ≤ c < 1, 0 < ε ≤ (1−c)/2 and a constant
c1 > 0, there exist efficient constant-rate encoding and decoding scheme such that,
for any set of infinite strings {x1,x2, . . .} the following holds for any sufficiently
large time n except with polynomially small probability in n. If the corruption
rate at time n is at most c then the scheme correctly decodes a prefix of length

c1 logn of each one of the strings xk with k ∈ {� εn/4
log εn/4�, . . . , �

(1−c−ε)n
log(1−c−ε)n�}.

Moreover, up to time n the encoding scheme assumes knowledge of only strings xk

with k ≤ n/ logn.

In the full version of this paper [8] we show that a protocol that satisfy Propo-
sition 5.5 can be obtained by concatenating Protocol 1 (see below) with a
Blueberry code B : [S + 1]∗ → [L+ 1]∗. We show that with high probability,
Θ(log n) symbols of TCenc(xk) are transmitted by time n for every k in the

range Kn � {� εn/4
log εn/4�, . . . , �

(1−c−ε)n
log(1−c−ε)n�}. Moreover, at least a constant frac-

tion of these transmissions were not corrupted by the adversary. Therefore, we
can use Proposition 5.4 to decode a prefix of length O(log n) of each of the
codewords indexed by Kn, with high probability.

Finally, in Appendix A we show how to split the stream x1, x2, . . . into words
{x1,x2, . . .}, so that the prefix x1, . . . , x(1−c−ε)n completely appears in the

O(log n)-prefix of strings {xk} with k ∈ Kn. This gives an efficient (cn, (1−c)n−
εn, 2−Ω(logn))-authentication scheme and completes the proof of Theorem 5.2.
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Let 0 ≤ c < 1 and 0 < ε < (1 − c)/2 be fixed parameters of the protocol. Let
c0, c1 be some constants which depend on c and ε. Let T be a tree code over
alphabet [S + 1] with distance α to be set later.

Aeff Encoding: For every k > 0 set countk = 0.
At any time n > 1, repeat the following process for j = 1, 2, . . . , c0:

(a) randomly choose k ∈ {1, . . . , �n/ log n�}.
(b) set countk = countk + 1.
(c) transmit yn,j ∈ [S +1], the next symbol of the encoding of xk using T , that

is, the last symbol of

TCenc(xk
1 · · ·xk

countk
) = TCenc(xk

1 · · ·xk
countk−1) ◦ yn,j .

Aeff Decoding: For every (i, j) ∈ N× [c0] we denote by ID(i, j) the identifier k of
the string xk used at iteration (i, j). For each time n, mark all the transmissions yi,j
with i < εn/4 as erasures, and decode xk for � εn/4

log εn/4
� ≤ k ≤ � (1−c−ε)n

log(1−c−ε)n
�:

let Yk = {(i, j) | ID(i, j) = k}. Decode the received string indexed by Yk. That is,
set

x̂k = TCdec(y|Yk
),

where y|Yk
is the string given by concatenating all yi,j with (i, j) ∈ Yk, where yi,j

comes before yi′,j′ if i < i′ or (i = i′)∧(j < j′). Consider a prefix of length c1 log n
of x̂k and ignore the rest.

Protocol 1: An efficient protocol for communicating a logarithmic prefix of
{x1,x2, . . . , }.

5.2 Extensions for Streaming Authentication

There are several possible extensions to the above results, which we briefly dis-
cuss here. See [8] for full details and proofs.

Efficient Streaming Authentication Scheme with Exponentially Small
Error. It is possible to improve the efficient scheme of Theorem 5.2 so that it
aborts with polynomially small probability, however, given that it did not abort,
the probability that the decoded prefix is incorrect is exponentially small. More
accurately, the ‘trust’ Bob has in the decoded string increases with the amount
of received transmissions. Thus, except for the last fraction of the stream, the
decoded stream is equal to the one sent by Alice with overwhelming probability.

Theorem 5.6. For any 0 ≤ c < 1, 0 < ε ≤ 1
2 (1 − c) there exists an effi-

cient (cn, (1−c)n−εn, 2−Ω(logn))-streaming authentication protocol that, for any
time n in which the decoding procedure did not abort, for any 1 ≤ � ≤ (1−c−ε)n
it holds that

Pr[x′
� �= x�] < 2−Ω(n).
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Decoding a Prefix Longer than (1 − c)n. Although our scheme decodes
a prefix of length at most (1 − c)n in the worst case, the successfully decoded
prefix can be in fact longer. The worst case, as demonstrated by Theorem 5.3,
happens when the adversary blocks the suffix of the transmitted stream. On
the other hand, if the adversary blocks the prefix of the transmissions, then
the scheme of Proposition 5.4 correctly decodes the entire stream! In fact, the
protocol succeeds to decode the entire prefix for any time n that satisfies the
following γ-suffix condition, if the tree distance satisfies α > γ.

Definition 5.7. For any constant 0 ≤ γ < 1, we say that time n satisfies
the γ-suffix condition if any suffix xt . . . xn has at most γ(n − t) corrupted
transmissions.

Definition 5.8. Let c < 1 and γ ∈ (c, 1) be given. For any time n let Nγ(n)
be the latest index that satisfies the γ-suffix condition. When n is clear from the
context, we denote Nγ(n) simply as Nγ.

The following Lemma guarantees that, for any γ ∈ (c, 1) it holds that
(1− c/γ)n ≤ Nγ(n) ≤ n.

Lemma 5.9. For every corruption rate c and constant 1 < ξ < 1/c there exist
a time t > (1− 1

ξ )n that satisfies the cξ-suffix condition.

For a corruption rate c and any ε > 0, and for any time n, if the decoding
algorithm did not decode up to time n, then that time n did not satisfy the
suffix condition for γ = c/(c + ε), but then, by Lemma 5.9, there must exist a
time Nγ > (1 − c − ε)n that satisfies the γ-suffix condition, and at that time
the protocol correctly decoded the entire stream (up to time Nγ). Bob does not
know the value of Nγ but he can estimate it by checking the number of erasures
marked by the Blueberry code.

Proposition 5.10. Bob can efficiently compute a (lower-bound) estimation N ′
γ

for Nγ , such that N ′
γ > (1 − c− ε)n and

Pr[N ′
γ > Nγ ] < 2−Ω(N ′

γ−Nγ).

Reducing the Amount of Shared Randomness. Our schemes rely on the
fact that the parties share a secret random string whose length increases with
the size of the information to be communicated. This assumption is sometimes
not satisfied in practical applications, especially when considering a multiparty
setting in which any two parties run a separate instance of the scheme.

We can mitigate the need for a long shared randomness if the adversary is as-
sumed to be polynomial, assuming standard cryptographic assumptions (specif-
ically, hardness of DDH). To this end, each user generates a pair (sk, pk) of
a secret and a public key, broadcasts the public key pk and keeps sk secret.
When two users initiate an authentication scheme instance, they first perform a
Diffie-Hellman [6] key exchange and obtain an authentication key. They both use
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the authentication key as a seed to a pseudo-random-generator that generates a
long random string for the authentication scheme. Under the DDH assumption,
a polynomially-bounded adversary has only negligible information about the au-
thentication key nor the generated randomness, and the authentication scheme
remains secure.

6 Interactive Communication

In this section we extend our discussion to the 2-way communication model of
interactive communication. We show that for adversarial corruption rate of 1/2 or
higher, no constant-rate protocol can compute functions that require interaction
between the parties, while with the usage of the Blueberry code we show how
to construct a protocol for any function assuming adversarial corruption rate
below 1/2.

Assume that Alice and Bob wish to compute some function f : X × Y →
Z, where Alice holds x ∈ X and Bob holds y ∈ Y in the shared-randomness
model. The computation is performed interactively: at each round, both parties
communicate a message which depends on their input and previous transmissions.
At the end of the computation Alice outputs zA ∈ Z and Bob outputs zB ∈ Z,
and we say that f was correctly computed if zA = zB = f(x, y).

In the full version [8] we prove the following separation theorems,

Theorem 6.1. For any function f which depends on both x and y, the following
holds. If the adversarial corruption rate is 1

2 or higher then no constant-rate in-
teractive protocol correctly computes f with probability higher than the probability
of guessing f(x, y) given only the input x (or only the input y).

Theorem 6.2. For any constants ε > 0 and for any function f and inputs
x, y, there exists an interactive protocol with constant overhead such that if the
adversarial corruption rate is at most c = 1

2 −ε, the protocol outputs f(x, y) with
overwhelming probability over the shared random string R.
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APPENDIX

A Construction of {x1, x2, . . .}
For every k, define xk to be the string that contains the stream prefix xt(k)

downto x1 concatenated with as many zeros as needed, xk =
xt(k)xt(k)−1 · · ·x2x1000 · · · , where t(k) is defined to be the minimal time such

that t(k)/ log t(k) > k. We say xk is declared at time t(k), meaning that only
from this time and on the algorithm may choose to send symbols of the encod-
ing of xk. It is easy to verify that the string xk is well defined at the time it is
declared (the corresponding xi’s are known).

If some string xk is declared at time t(k) then xk+1 will be declared at time
t(k + 1) ≈ t(k) + log t(k) +O(log log t(k)). By setting c1 = 2 we are guaranteed
that, for every εn/4 ≤ � ≤ (1 − c − ε)n, x� appears in a correctly decoded
c1 logn-prefix of some xk with k ∈ Kn.

Lemma A.1. If xk is the latest string declared at time i > 8, then xk+1 is
declared at time sooner than i + 2 log i.

Proof. Let f(i) = i+2 log i
log(i+2 log i) −

i
log i . f is monotonically increasing, and f(8) > 1.

Corollary A.2. For any time n > 8, and any �, the bit x� is within the first
2 logn symbols of x��/ log ��. Hence, every x� with εn/4 ≤ � ≤ (1 − c − ε)n,
appears in a 2 logn-prefix of (at least) one of the strings {xk}k∈Kn .

Unfortunately, with the above choice of xks, only part of the stream, namely
xεn/4, . . . , x(1−c−ε)n, is decoded by the protocol. In order to communicate the
prefix x1, . . . , xεn/4 we run another instance of the scheme guaranteed by Propo-
sition 5.5 for the following set of infinite strings {v1,v2, . . .}. (We explain how
to combine these two instances below). Define vk in the following way

vk
i =

⎧⎪⎨⎪⎩
x1 k = 1, ∀i
x1+(� mod �t(k)/2�+1) k > 1, i = 1 and vk−1

2 log t(k−1) = x�

x1+(� mod �t(k)/2�+1) k > 1, i > 1 and vk
i−1 = x�

It is easy to verify that at time n, the string v�n/ logn� is well defined and known
to the encoder.

Lemma A.3. For every time n > 256/(1− c− ε), any bit x� with 1 ≤ � ≤ εn/4
appears in a 2 logn-prefix of (at least) one of the strings {vk}k∈Kn .
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Proof. Note that the concatenation of O(log n)-prefix of the vks gives a string
of the form V � x1x2 . . . x�t(k1)/2�x1x2 . . . x�t(k2)/2�x1x2 . . ., and V is decoded
by Protocol 1 with high probability.4 By taking c1 = 2 and recalling that
ε < (1 − c)/2, (and thus, (1 − c − ε)n/4 > εn/4) the length of V is lower
bounded by the amount of indices in prefixes of size 2 log 1

4 (1 − c − ε)n of

{v(1−c−ε)n/4, . . . ,v(1−c−ε)n},

2 log
1

4
(1− c− ε)n

(
(1− c− ε)n

log(1− c− ε)n
−

1
4 (1− c− ε)n

log 1
4 (1− c− ε)n

)
≥ 3

2
(1− c− ε)n− 4

(1− c− ε)n

log(1 − c− ε)n

≥ (1 − c− ε)n

where the last inequality holds for n > 256
1−c−ε . Consider the latest place in V

where x1 appears. If that place is at least (1 − c − ε)/4 indices from the end
of V , it is clear that x1 . . . x(1−c−ε)/4 appears in the (1 − c − ε)/4-suffix of the
decoded V . For the other case, let the bit that precedes this x1 be x�. By the
way we defined vk it follows that 3

8 (1 − c− ε) ≤ � ≤ 1
2 (1 − c− ε) which means

that x1 . . . x(1−c−ε)/4 must appear in a prefix of size 3/4 · (1− c− ε)n of V . Since
(1− c− ε)n/4 > εn/4, the claim holds. $%

One cannot run Protocol 1 twice, once for {x} and once for {v}. Indeed, Eve
can block all the transmissions of one of the instances, thus prevent the correct
decoding of the stream with probability one, while her corruption rate does
not exceed c = 1/2. One possible solution is to set c1 = 4 and interleave the
transmitted data, that is, define the set {z1, z2, . . .} where zk = xk

1v
k
1x

k
2v

k
2 . . .,

etc.

Corollary A.4. Let c, ε be constants 0 ≤ c < 1, 0 < ε ≤ (1 − c)/2, and let
B be a Blueberry code with constant parameters determined by c, ε. For the
strings {z1, z2, . . .} defined above, the concatenation of Aeff with B is an efficient
(cn, (1− c)n− εn, 2−Ω(logn))-streaming authentication scheme.

4 To be more accurate, V is a substring of the string decoded by the scheme.
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Abstract. Beimel and Orlov proved that all information inequalities on
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1 Introduction

Secret sharing schemes, which were independently introduced by Shamir [27]
and Blakley [6], make it possible to distribute a secret value into shares among
a set of participants in such a way that only the qualified sets of participants
can recover the secret value, while no information at all on the secret value is
provided by the shares from an unqualified set. The qualifed sets form the access
structure of the scheme.

This work deals with the problem of the size of the shares in secret sharing
schemes for general access structures. The reader is referred to [2] for an up-to-date
survey on this topic. Even though there exists a secret sharing scheme for every
access structure [20], all known general constructions are impractical because
the size of the shares grows exponentially with the number of participants. The
general opinion among the researchers in the area is that this is unavoidable.
Specifically, the following conjecture, which was formalized by Beimel [2], is
generally believed to be true. It poses one of the main open problems in secret
sharing, and a very difficult and intriguing one.

Conjecture 1. There exists an ε > 0 such that for every integer n there is an
access structure on n participants, for which every secret sharing scheme dis-
tributes shares of length 2εn, that is, exponential in the number of participants.

Nevertheless, not many results supporting this conjecture have been proved. No
proof for the existence of access structures requiring shares of superpolynomial
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size has been found. Moreover, the best of the known lower bounds is the one
given by Csirmaz [9], who presented a family of access structures on an arbitrary
number n of participants that require shares of size Ω(n/ logn) times the size of
the secret.

In contrast, superpolynomial lower bounds on the size of the shares have been
obtained for linear secret sharing schemes [1, 3, 17]. In a linear secret sharing
scheme, the secret and the shares are vectors over some finite field, and both
the computation of the shares and the recovering of the secret are performed
by linear maps. Because of their homomorphic properties, linear schemes are
needed for many applications of secret sharing. Moreover, most of the known
constructions of secret sharing schemes yield linear schemes.

Similarly to the works by Csirmaz [9] and by Beimel and Orlov [5], we analyze
here the limitations of the technique that has been almost exclusively used to find
lower bounds on the size of the shares. This is the case of the bounds in [7–9, 21]
and many other papers. Even though it was implicitly used before, the method
was formalized by Csirmaz [9]. Basically, it consists of finding lower bounds on
the solutions of certain linear programs. This method provides lower bounds on
the information ratio of secret sharing schemes, that is, on the ratio between
the maximum size of the shares and the size of the secret.

The constraints of those linear programs are derived from the fact that certain
linear combinations of the values of the joint entropies of the random variables
defining a secret sharing scheme must be nonnegative. These constraints can be
divided into two classes.

1. The first class is formed by the constraints that are derived from the access
structure. Namely, from the fact that the qualified subsets can recover the
secret while the unqualified ones have no information about it.

2. The second class is formed by constraints derived from information inequal-
ities that hold for every collection of random variables.

In the second class, the constraints derived from the so-called Shannon inequal-
ities are always considered. These basic information inequalities are equivalent
to the conditional mutual information being nonnegative, and equivalent also
to the fact that the joint entropies of a collection of random variables define a
polymatroid [15, 16].

Csirmaz [9] proved that, by taking only the Shannon inequalities in the sec-
ond class, one obtains lower bounds that are at most linear on the number of
participants. This was proved by showing that every such linear program admits
a small solution.

One may expect that better lower bounds should be obtained by adding to
the second class new constraints derived from the non-Shannon information
inequalities, which are the ones that cannot be derived from the basic Shannon
inequalities. The existence of such inequalities was unknown when Csirmaz [9]
formalized that method. The first one was presented by Zhang and Yeung [30]
and many others have been found subsequently [11, 13, 23, 29]. When deal-
ing with linear secret sharing schemes, one can improve the linear program by
using rank inequalities, which apply to configurations of vector subspaces or,
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equivalently, to the joint entropies of collections of random variables defined
from linear maps. It is well-known that every information inequality is also a
rank inequality. The first known rank inequality that cannot be derived from
the Shannon inequalities was found by Ingleton [19]. Other rank inequalities
have been presented afterwards [12, 22]. Indeed, better lower bounds on the
information ratio have been found for some families of access structures by
using non-Shannon information and rank inequalities [4, 10, 24, 25].

Nevertheless, Beimel and Orlov [5] presented a negative result about the power
of non-Shannon information inequalities to provide better general lower bounds
on the size of the shares. Specifically, they proved that the best lower bound that
can be obtained by using all information inequalities on four and five variables,
together with all inequalities on more than five variables that are known to date,
is at most linear on the number of participants. Specifically, they proved that
every linear program that is obtained by using these inequalities admits a small
solution that is related to the solution used by Csirmaz [9] to prove his negative
result. They used the fact that there exists a finite set of rank inequalities that,
together with the Shannon inequalities, span all rank inequalities, and hence all
information inequalities, on four or five variables [12, 18]. By executing a brute-
force algorithm using a computer program, they checked that Csirmaz’s solution
is compatible with every rank inequality in that finite set. In addition, they
manually executed their algorithm on a symbolic representation of the infinite
sequence of information inequalities given by Zhang [29]. This sequence contains
inequalities on arbitrarily many variables and generalizes the infinite sequences
from previous works.

In particular, the results in [5] imply that all rank inequalities on four or five
variables cannot provide lower bounds on the size of shares in linear secret
sharing schemes that are better than linear on the number of participants.
Unfortunately, their algorithm is not efficient enough to be applied on the known
rank inequalities on six variables.

We present here another negative result about the power of information
inequalities to provide general lower bounds on the size of the shares in secret shar-
ing schemes. Namely, we prove that every lower bound that is obtained by using
rank inequalities on at most r variables is O(nr−2), and hence polynomial on the
number n of participants. Since all information inequalities are rank inequalities,
this negative result applies to the search of lower bounds for both linear and
general secret sharing schemes. Therefore, information inequalities on arbitrar-
ily many variables are needed to find superpolynomial lower bounds by using
the method described above.

The proof is extremely simple and concise. Similarly to the proofs in [5, 9],
it is based on finding small solutions to the linear programs that are obtained
by using rank inequalities on a bounded number of variables. These solutions
are obtained from a family of polymatroids that are uniform and Boolean. This
family contains the polymatroids that were used in [5, 9].

In some sense, our result is weaker than the one in [5], because for r = 4
and r = 5, our solutions to the linear programs do not prove that the lower
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bounds must be linear on the number of participants, but instead quadratic and
cubic, respectively. But in another sense our result is much more general because
it applies to all (known or unknown) rank inequalities. In addition, our proof
provides a better understanding on the limitations of the use of information
inequalities in the search of lower bounds for secret sharing schemes.

2 Polymatroids, Rank Inequalities and Information
Inequalities

Some basic concepts and facts about polymatroids that are used in the paper
are presented here. A more detailed presentation can be found in textbooks on
the topic [26, 28]. For a finite set Q, we notate P(Q) for the power set of Q, that
is, the set of all subsets of Q.

Definition 1. A polymatroid is a pair S = (Q, f) formed by a finite set Q, the
ground set, and a rank function f :P(Q) → IR satisfying the following properties.

– f(∅) = 0.
– f is monotone increasing: if X ⊆ Y ⊆ Q, then f(X) ≤ f(Y ).
– f is submodular: f(X ∪Y )+ f(X ∩Y ) ≤ f(X)+ f(Y ) for every X,Y ⊆ Q.

A polymatroid is called integer if its rank function is integer-valued.

The following characterization of rank functions of polymatroids is a straight-
forward consequence of [26, Theorem 44.1].

Proposition 1. A map f :P(Q) → IR is the rank function of a polymatroid with
ground set Q if and only if the following properties are satisfied.

– f(∅) = 0.
– If X ⊆ Q and y ∈ Q, then f(X) ≤ f(X ∪ {y}).
– If X ⊆ Q and y, z ∈ Q, then f(X∪{y, z})+f(X) ≤ f(X∪{y})+f(X∪{z}).

If S = (Q, f) is a polymatroid and α is a positive real number, then αS = (Q,αf)
is a polymatroid too, which is called a multiple of S. A polymatroid S ′ = (Q′, g)
is called an extension of a polymatroid S = (Q, f) if Q ⊆ Q′ and g(X) = f(X)
for every X ⊆ Q. In general, we will use the same symbol for the rank function
of a polymatroid and the rank function of an extension.

Let V be a vector space over a field IK and (Vx)x∈Q a tuple of vector subspaces
of V . For X ⊆ Q, we notate VX =

∑
x∈X Vx. Then the map f :P(Q) → ZZ

defined by f(X) = dim VX for every X ⊆ Q is the rank function of an integer
polymatroid S with ground set Q. Integer polymatroids that can be defined
in this way are said to be IK-linearly representable, or simply IK-linear or IK-
representable, and the tuple (Vx)x∈Q is called a IK-linear representation of S. A
IK-poly-linear polymatroid is the multiple of a IK-linear polymatroid.

For a finite set Q, consider a family of random variables (Sx)x∈Q, where Sx

is defined on a finite set Ex. For every X ⊆ Q, we use SX to denote the ran-
dom variable (Sx)x∈X on the set

∏
x∈X Ex, and H(SX) will denote its Shannon

entropy. Fujishige [15, 16] found out the following connection between Shannon
entropy and polymatroids.
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Theorem 1. Let (Sx)x∈Q be a family of random variables. Consider the map-
ping h:P(Q) → IR defined by h(∅) = 0 and h(X) = H(SX) if ∅ �= X ⊆ Q. Then
h is the rank function of a polymatroid with ground set Q.

A polymatroid S = (Q, h) is said to be entropic if there exists a family (Sx)x∈Q

of discrete random variables such that h(X) = H(SX) for every X ⊆ Q. A poly-
entropic polymatroid is a multiple of an entropic polymatroid. It is well known
that, if IK is a finite field, then every IK-poly-linear polymatroid is poly-entropic.
Indeed, given a IK-vector space E, let E∗ be its dual space, which is formed by
all linear forms α : E → IK, and S the random variable given by the uniform
probability distribution on E∗. For every subspace V ⊆ E, consider the random
variable S|V on V ∗, the restriction of S to V . Clearly, H(S|V ) = log |IK| dimV .
Therefore, the IK-linear polymatroid given by a collection (Vx)x∈Q of subspaces
of E is a multiple of the entropic polymatroid defined by (Sx)x∈Q, where Sx =
S|Vx . The collections of random variables that can be defined in this way are
said to be IK-linear.

Consider a finite set M and a family (Mx)x∈Q of subsets of M . For every
X ⊆ Q, take MX =

⋃
x∈X Mx. Then the map defined by f(X) = |MX | for every

X ⊆ Q is the rank function of an integer polymatroid S with ground set Q. The
family (Mx)x∈Q is called a Boolean representation of S. Boolean polymatroids are
those admitting a Boolean representation. Boolean polymatroids are IK-linear
for every field IK. Indeed, the set IKM of all functions v:M → IK is a IK-vector
space. For every w ∈ M , consider the vector ew ∈ IKM given by ew(w′) = 1 if
w′ = w and ew(w′) = 0 otherwise. Clearly, (ew)w∈M is a basis of IKM . For every
x ∈ Q, consider the vector subspace Vx = 〈ew : w ∈ Mx〉. Obviously, these
subspaces form a IK-linear representation of S.

We say that a polymatroid S with ground set Q is uniform if every
permutation on Q is an automorphism of S. In this situation, the rank f(X)
of a set X ⊆ Q depends only on its cardinality, that is, there exist values
0 = f0 ≤ f1 ≤ · · · ≤ fn, where n = |Q|, such that f(X) = fi for every
X ⊆ Q with |X | = i. By Proposition 1, such a sequence (fi)1≤i≤n defines a uni-
form polymatroid if and only if fi − fi−1 ≥ fi+1 − fi for every i = 1, . . . , n− 1.
Clearly, a uniform polymatroid is univocally determined by its increment vector
δ = (δ1, . . . , δn), where δi = fi − fi−1. Observe that δ ∈ IRn is the increment
vector of a uniform polymatroid if and only if δ1 ≥ · · · ≥ δn ≥ 0. All uniform
integer polymatroids are linearly representable. Specifically, a uniform integer
polymatroid is IK-linear if the field IK has at least as many elements as the
ground set [14].

For a positive integer r, we notate [r] = {1, . . . , r}. Given a collection (Ai)i∈[r]

of subsets of a set Q and I ⊆ [r], we notate AI =
⋃

i∈I Ai. An information
inequality, respectively rank inequality, on r variables consists of a collection
(αI)I∈P([r]) of real numbers such that∑

I⊆[r]

αIf(AI) ≥ 0
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for every poly-entropic, respectively poly-linear, polymatroid (Q, f) and for every
collection (Ai)i∈[r] of r subsets of Q. Observe that the number r of variables may
be larger than the cardinality of the ground set Q.

Every information inequality is also a rank inequality [12]. By Theorem 1,
the polymatroid axioms are information inequalities, which are called Shannon
inequalities . The Ingleton inequality [19] was the first known example of a rank
inequality that cannot be derived from Shannon-type inequalities. Zhang and
Yeung [30] presented the first information inequality that cannot be derived
from the Shannon inequalities. Subsequently, many other rank and information
inequalities have been found in [11–13, 22, 23, 29] and other works. We need the
following technical result, which is a consequence of [5, Lemma 4.3].

Lemma 1. Let (αI)I∈P([r]) be a rank inequality. Then
∑

I : I∩J �=∅ αI ≥ 0 for
every J ⊆ [r].

Proof. Take J ⊆ [r], a set M with |M | = 1, and the family (Mi)i∈[r] of subsets of
M given by Mi = M if i ∈ J and Mi = ∅ otherwise. Let ([r], f) be the Boolean
polymatroid defined by this family. Then

∑
I : I∩J �=∅ αI =

∑
I⊆[r] αIf(I) ≥ 0

because Boolean polymatroids are linearly representable. $%

3 Polymatroids and Secret Sharing

Let P be a finite set of participants, p0 /∈ P a special participant, usually called
dealer, and Q = P ∪ {p0}. This notation will be used from now on. An access
structure Γ on P is a monotone increasing family of subsets of P , that is, if
X ⊆ Y ⊆ P and X ∈ Γ , then Y ∈ Γ . To avoid anomalous situations, we assume
always that ∅ /∈ Γ and P ∈ Γ . The members of Γ are called qualified sets. An
access structure Γ is determined by the family minΓ of its minimal qualified
sets. For a polymatroid S = (Q, f) and an element p0 ∈ Q with f({p0}) > 0, we
define the access structure Γp0(S) on P = Q \ {p0} by

Γp0(S) = {X ⊆ P : f(X ∪ {p0}) = f(X)}.

We need also the parameter

σp0(S) =
maxx∈P f({x})

f({p0})
.

If Γ = Γp0(S) and, in addition, f(X ∪ {p0}) = f(X) + 1 for every unqualified
set X ⊆ P , then S is said to be a Γ -polymatroid.

A secret sharing scheme Σ on P with access structure Γ is a family (Sx)x∈Q

of random variables such that

1. H(SX∪{p0}) = H(SX) if X ∈ Γ and
2. H(SX∪{p0}) = H(SX) +H(Sp0) otherwise.
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The random variables Sp0 and (Sx)x∈P correspond, respectively, to the secret
value and the shares that are distributed among the participants in P . A secret
sharing scheme is IK-linear if it is a IK-linear collection of random variables. The
information ratio σ(Σ) of the secret sharing scheme Σ is the ratio between the
maximum length of the shares and the length of the secret. Namely,

σ(Σ) =
maxx∈P H(Sx)

H(Sp0)
.

The entropic polymatroid S defined by the collection (Sx)x∈Q is such that Γ =
Γp0(S) and, in addition, σ(Σ) = σp0(S).

The optimal information ratio σ(Γ ) of an access structure Γ is the infimum
of the information ratios of all secret sharing schemes for Γ . Clearly,

σ(Γ ) = inf{σp0(S) : S is a poly-entropic Γ -polymatroid}.

Therefore, the parameters

κ(Γ ) = inf{σp0(S) : S is a Γ -polymatroid}

and
λ(Γ ) = inf{σp0(S) : S is a poly-linear Γ -polymatroid}

are, respectively, a lower and an upper bound for σ(Γ ). Observe that λ(Γ ) is
the infimum of the information ratios of the linear secret sharing schemes for
Γ . The value κ(Γ ) is the solution of a linear programming problem, and hence
the infimum is a minimum and κ(Γ ) is a rational number [25]. Most of the
known lower bounds on the information ratio, as the ones from [7–9, 21], are
lower bounds on κ(Γ ). In fact, this is the case for all lower bounds that can be
obtained by using only Shannon inequalities.

Information inequalities and rank inequalities can be added to the linear pro-
gram computing κ(Γ ) to find better lower bounds on σ(Γ ) and λ(Γ ), respec-
tively. This has been done for several families of access structures [4, 10, 24, 25].

A polymatroid S = (P, f) and an access structure Γ on a set P are said to
be compatible if S can be extended to a Γ -polymatroid S(Γ ) = (Q, f).

Proposition 2. An access structure Γ on P is compatible with a polymatroid
S = (P, f) if and only if the following conditions are satisfied.

1. If X ⊆ P and y ∈ P are such that X /∈ Γ and X ∪ {y} ∈ Γ , then f(X) ≤
f(X ∪ {y})− 1.

2. If X ⊆ P and y, z ∈ P are such that X /∈ Γ while both X ∪{y} and X ∪{z}
are qualified, then f(X ∪ {y, z}) + f(X) ≤ f(X ∪ {y}) + f(X ∪ {z})− 1.

Proof. Suppose that S can be extended to a Γ -polymatroid S(Γ ) = (Q, f). If
X /∈ Γ and X ∪ {y} ∈ Γ , then

f(X ∪ {y}) = f(X ∪ {y, p0}) ≥ f(X ∪ {p0}) = f(X) + 1.
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If X /∈ Γ and X ∪ {y} and X ∪ {z} are qualified, then

f(X ∪ {y}) + f(X ∪ {z}) = f(X ∪ {y, p0}) + f(X ∪ {z, p0})
≥ f(X ∪ {y, z, p0}) + f(X ∪ {p0})
= f(X ∪ {y, z}) + f(X) + 1.

For the converse, assume that S = (P, f) satisfies the conditions in the statement
and consider the extension of f to P(Q) determined by f(X ∪ {p0}) = f(X) if
X ∈ Γ and f(X ∪ {p0}) = f(X) + 1 otherwise. We have to prove that (Q, f) is
a polymatroid. Clearly, f(X) ≤ f(X ∪ {p0}) and f(X ∪ {p0}) ≤ f(X ∪ {p0, y})
for every X ⊆ P and y ∈ P . Therefore, the first condition in Proposition 1 is
satisfied. Moreover, it is not difficult to prove that the second condition holds
by checking that f(X ∪ {y, p0})+ f(X) ≤ f(X ∪ {y})+ f(X ∪ {p0}) and f(X ∪
{p0, y, z})+ f(X ∪{p0}) ≤ f(X ∪{p0, y})+ f(X ∪{p0, z}) for every X ⊆ P and
y, z ∈ P . $%

The following result was presented by Csirmaz [9].

Proposition 3. An access structure Γ on P is compatible with a polymatroid
S = (P, f) if and only if the following conditions are satisfied.

1. If X ⊆ Y ⊆ P are such that X /∈ Γ and Y ∈ Γ , then f(X) ≤ f(Y )− 1.
2. If X,Y ∈ Γ and X ∩Y /∈ Γ , then f(X ∪Y )+ f(X ∩ Y ) ≤ f(X)+ f(Y )− 1.

Proof. Necessity can be proved in a similar way as in Proposition 2. Sufficiency
is obvious from Proposition 2. $%

4 A Family of Uniform Boolean Polymatroids

We present a family of polymatroids that are uniform and Boolean. In addition,
every member of this family is compatible to all access structure on its ground
set. The following results are straightforward consequences of Proposition 2.

Proposition 4. A polymatroid S = (P, f) is compatible with all access struc-
tures on P if and only if the following conditions are satisfied.

1. f(X) ≤ f(X ∪ {z})− 1 for every X ⊆ P and z ∈ P \X.
2. f(X ∪ {y, z}) + f(X) ≤ f(X ∪ {y}) + f(X ∪ {z})− 1 for every X ⊆ P and

y, z ∈ P \X.

Proposition 5. Let P be a set with |P | = n and let S be a uniform polymatroid
on P . Then S is compatible with all access structures on P if and only if its
increment vector (δ1, . . . , δn) is such that δi ≥ δi+1 + 1 for i = 1, . . . , n− 1 and
δn ≥ 1.

Given a set P and an integer r ≥ 2, let M(P, r) be the set of all multisets of size
r of the set P . For example, if P = {a, b, c}, then

M(P, 3) = {aaa, aab, aac, abb, abc, acc, bbb, bbc, bcc, ccc}.
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Observe that |M(P, r)| =
(
n+r−1

r

)
if |P | = n. For every x ∈ P , let Mx(P, r) be

the set of the multisets in M(P, r) that contain x. In the previous example,

Ma(P, 3) = {aaa, aab, aac, abb, abc, acc}.

Finally, we define Z(P, r) = (P, f) as the Boolean polymatroid on P defined by
the family (Mx(P, r))x∈P of subsets of M(P, r). As usual, we notate MX(P, r) =⋃

x∈X Mx(P, r) for every X ⊆ Q.
Clearly, every permutation on P is an automorphism of Z(P, r), and hence this

polymatroid is uniform. For every X ⊆ P , the multisets in M(P, r) \MX(P, r)
are the ones involving only elements in P \ X . That is, M(P, r) \ MX(P, r) =
M(P \X, r), and hence

f(X) = |MX(P, r)| = |M(P, r)| − |M(P \X, r)|

=

(
|P |+ r − 1

r

)
−
(
|P | − |X |+ r − 1

r

)
.

Therefore, if |P | = n, the increment vector (δ1, . . . , δn) of Z(P, r) is given by

δi =

(
n− i+ r

r

)
−
(
n− i+ r − 1

r

)
=

(
n− i+ r − 1

r − 1

)
for every i = 1, . . . , n. Observe that δ1 > · · · > δn > 0, and hence Z(P, r)
is compatible with all access structures on P . In particular, δi = n − i + 1 if
r = 2, and hence κ(Γ ) ≤ n for every access structure Γ on n participants [9].
The Csirmaz function introduced in [5, Definition 3.10] coincides with the rank
function of Z(P, 2). The rank function of Z(P, 2) is the smallest among the
rank functions of all uniform polymatroids on P that are compatible with all
access structures on P [5, Lemma 3.11]. Finally, observe that [5, Lemma 6.2] is a
straightforward consequence of the fact that Z(P, 2) is a Boolean polymatroid.

5 Main Result

This section is devoted to prove our main result, Theorem 2.

Proposition 6. Let P be a set of n participants and Γ an access structure
on P . For an integer r ≥ 3, consider Zr−1 = Z(P, r− 1) and the Γ -polymatroid
Zr−1(Γ ), an extension of Zr−1 to Q = P ∪{p0}. Then Zr−1(Γ ) satisfies all rank
inequalities on r variables.

Proof. Let f be the rank function of Zr−1(Γ ) and (αI)I∈P([r]) a rank inequality
on r variables. We have to prove that

∑
I⊆[r] αIf(AI) ≥ 0 for every r sub-

sets (Ai)i∈[r] of Q. Take Bi = Ai \ {p0}. If Bi ∈ Γ for every i ∈ [r], then∑
I⊆[r] αIf(AI) =

∑
I⊆[r] αIf(BI) ≥ 0 because Zr−1 is Boolean. If B[r] /∈ Γ ,

then
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I⊆[r]

αIf(AI) =
∑
I⊆[r]

αIf(BI) +
∑

I : p0∈AI

αI ≥ 0

by Lemma 1 with J = {i ∈ [r] : p0 ∈ Ai}. From now on, we assume that
B[r] ∈ Γ and that Bi /∈ Γ for some i ∈ [r].

Consider the polymatroid S = ([r], g) determined by g(I) = f(BI) for every
I ⊆ [r]. In addition, consider the access structure Λ on [r] formed by the sets
I ⊆ [r] such that BI ∈ Γ . We prove next that S can be extended to a linearly
representable Λ-polymatroid S(Λ) = ([r] ∪ {0}, g). This concludes the proof.
Indeed, since S(Λ) is a Λ-polymatroid, f(AI) = g(I ∪{0}) if p0 ∈ AI , and hence∑

I⊆[r]

αIf(AI) =
∑

I : p0 /∈AI

αIf(BI) +
∑

I : p0∈AI

αIf(AI)

=
∑

I : p0 /∈AI

αIg(I) +
∑

I : p0∈AI

αIg(I ∪ {0}).

Consider the family (Ci)i∈[r] of subsets of [r]∪{0} given by Ci = {i, 0} if p0 ∈ Ai

and Ci = {i} otherwise. Then∑
I : p0 /∈AI

αIg(I) +
∑

I : p0∈AI

αIg(I ∪ {0}) =
∑
I⊆[r]

αIg(CI) ≥ 0

because S(Λ) is linearly representable.
The polymatroid S is Boolean. Indeed, take M = M(P, r − 1) and MX =

MX(P, r − 1) for every X ⊆ P . Then (MBi)i∈[r] is a Boolean representation
of S. Therefore, this polymatroid is linearly representable over every field, as
proved in Section 2. For a field IK, take a basis (ew)w∈M of IKM . Then the
subspaces (Vi)i∈[r] with Vi = 〈ew : w ∈ MBi〉 form a IK-linear representation
of S.

Consider the dual access structure Λ∗ = {J ⊆ [r] : [r] \ J /∈ Λ}. Take
J ∈ minΛ∗ and I = [r] \ J . Observe that BI /∈ Γ and BI ∪ Bj ∈ Γ for every
j ∈ J . In particular, this implies that J �= ∅, [r]. Therefore, we can take an
element xj ∈ Bj \ BI for every j ∈ J . Consider a multiset wJ ∈ M(P, r − 1)
containing exactly the elements in {xj : j ∈ J}, repeating some of them if
necessary. Take the vector

v0 =
∑

J∈minΛ∗
ewJ ∈ IKM

and the subspace V0 = 〈v0〉. By adding this subspace to the collection (Vi)i∈[r],
an extension S(Λ) = ([r]∪{0}, g) of S is obtained. Obviously, S(Λ) is IK-linearly
representable.

Finally, we prove that S(Λ) is a Λ-polymatroid. Clearly, I ∈ Λ if and only
if I ∩ J �= ∅ for every J ∈ minΛ∗. If I ∈ Λ, then wJ ∈ MBI (P, r − 1) for
every J ∈ minΛ∗. Indeed, if j ∈ I ∩ J , the element xj in the multiset wJ is
also in BI . Therefore, e

wJ ∈ VI for every J ∈ minΛ∗, and hence v0 ∈ VI and
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g(I ∪ {0}) = g(I). Suppose now that I /∈ Λ and take J ∈ minΛ∗ with I ∩ J = ∅.
Then wJ /∈ MBI (P, r − 1) because xj /∈ BI for every j ∈ J . Therefore, v0 /∈ VI

and g(I ∪ {0}) = g(I) + 1. $%

Theorem 2. For an access structure Γ on n participants, the best lower bound
on λ(Γ ) that can be obtained by using rank inequalities on r variables is at most(

n+ r − 3

r − 2

)
, (1)

and hence O(nr−2). As an immediate consequence, the same applies to the
lower bounds on the optimal information ratio σ(Γ ) that are obtained by using
information inequalities on r variables.

Proof. By Proposition 6, the polymatroid Zr−1(Γ ) is a feasible solution to any
linear program that is obtained from rank inequalities on r variables.
Therefore, every lower bound on λ(Γ ) derived from such a linear program is
at most σp0 (Zr−1(Γ )) = δ1, where δ1 is the first component of the increment
vector of Z(P, r − 1). $%

Observe that we are not assuming r ≤ n in Theorem 2. A smaller value for the
bound (1) can be proved for the case r ≤ n by using in the same way the uniform
Boolean polymatroid defined by the set M of all subsets (instead of multisets) of
P with at most r − 1 participants and the subsets (Mx)x∈P , where Mx consists
of the subsets in M that contain x. Nevertheless, asymptotically the new bound
is not better than O(nr−2).
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Abstract. Structure-preserving signatures (SPS) are signature schemes
where messages, signatures and public keys all consist of elements
of a group over which a bilinear map is efficiently computable. This
property makes them useful in cryptographic protocols as they nicely
compose with other algebraic tools (like the celebrated Groth-Sahai proof
systems). In this paper, we consider SPS systems with homomorphic
properties and suggest applications that have not been provided before
(in particular, not by employing ordinary SPS). We build linearly homo-
morphic structure-preserving signatures under simple assumptions and
show that the primitive makes it possible to verify the calculations per-
formed by a server on outsourced encrypted data (i.e., combining secure
computation and authenticated computation to allow reliable and secure
cloud storage and computation, while freeing the client from retaining
cleartext storage). Then, we give a generic construction of non-malleable
(and actually simulation-sound) commitment from any linearly homo-
morphic SPS. This notably provides the first constant-size non-malleable
commitment to group elements.

Keywords: Structure-preserving cryptography, signatures, homomor-
phism, commitment schemes, non-malleability.

1 Introduction

Composability is an important cryptographic design notion for building systems
and protocols. Inside protocols, cryptographic tools need to compose well with
each other in order to be used in combination. Structure-preserving cryptography
[3], in turn, is a recent paradigm that takes care of composing algebraic tools, and
primarily within groups supporting bilinear maps to allow smooth composition
with the Groth-Sahai proof systems [41]. The notion allows for modular and
simplified designs of various cryptographic protocols and primitives. In the last
three years, a large body of work has analyzed the feasibility and the efficiency
of structure-preserving signatures (SPS) [40,25,34,1,3,4,17,26,44,5,6], public-key
encryption [18] and commitments schemes [42,2].
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In this paper, we consider SPS schemes with linearly homomorphic properties
and argue that such primitives have many applications, even independently of
Groth-Sahai proofs. Let us next review our results and then review related work.

1.1 Our Contributions

Linearly Homomorphic Structure-Preserving Signatures. In this
paper, we put forth the notion of linearly homomorphic structure-preserving
signatures (homomorphic signatures and structure-preserving signatures have
been defined before, as we review in the sequel, but the combination of the ear-
lier notions is useful and non-trivial). These signature schemes function exactly
like ordinary homomorphic signatures with the additional restriction that sig-
natures and messages only consist of (vectors of) group elements whose discrete
logarithms may not be available. We describe three constructions and prove their
security under established complexity assumptions in symmetric bilinear groups.

Applications. As in all SPS systems, the structure-preserving property makes
it possible to efficiently prove knowledge of a homomorphic signature on a com-
mitted vector. However, as indicated above, we describe applications of linearly
homomorphic SPS beyond their compatibility with the Groth-Sahai techniques.

First, we show that the primitive enables verifiable computation mechanisms
on encrypted data.4 Specifically, it allows a client to store encrypted files on
an untrusted remote server. While the dataset is encrypted using an additively
homomorphic encryption scheme, the server is able to blindly compute linear
functions on the original data and provide the client with a short homomorphi-
cally derived signature vouching for the correctness of the computation. This
is achieved by having the client sign each ciphertext using a homomorphic SPS
scheme and handing the resulting signatures to the server at the beginning. After
this initial phase, the client only needs to store a short piece of information, no
matter how large the file is. Still, he remains able to authenticate linear functions
on his data and the whole process is fully non-interactive. The method extends
when datasets are encrypted using a CCA1-secure encryption schemes. Indeed,
we will observe that linearly homomorphic SPS schemes yield simple homomor-
phic IND-CCA1-secure cryptosystems with publicly verifiable ciphertexts.

As a second and perhaps more surprising application, we show that linearly
homomorphic SPS schemes generically yield non-malleable [31] trapdoor commit-
ments to group elements.We actually construct a simulation-sound trapdoor com-
mitment [35] —a primitive known (by [35,47]) to imply re-usable non-malleable
commitments with respect to opening [28]— from any linearly homomorphic SPS
satisfying a relatively mild condition. To our knowledge, we thus obtain the first
constant-size trapdoor commitments to group elements providing re-usable non-
malleability with respect to opening. Previous non-interactive commitments to
group elements were either malleable [41,42] or inherently length-increasing [32]:

4 Our goals are very different from those of [37], where verifiable computation on
homomorphically encrypted data is also considered. We do not seek to outsource
computation but rather save the client from storing large datasets.
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if we disregard the trivial solution consisting of hashing the message first (which
is not an option when we want to allow for efficient proofs of knowledge of an
opening), no general technique has been known, to date, for committing to many
group elements at once using a short commitment.

In the structure-preserving case, our transformation is purely generic as
it applies to a template which any linearly homomorphic SPS necessarily
satisfies in symmetric bilinear groups. We also generalize the construction so as
to build simulation-sound trapdoor commitments to vectors from any pairing-
based (non-structure-preserving) linearly homomorphic signature. In this case,
the conversion is only semi-generic as it imposes conditions which are only met
by pairing-based systems for the time being: essentially, we need the under-
lying signature scheme to operate over groups of finite, public order. While
only partially generic, this construction of non-malleable commitments from
linearly homomorphic signatures is somewhat unexpected considering that the
terms “non-malleability” and “homomorphism” are antagonistic, and may be
considered incompatible.

Techniques and ideas. At first, the very name of our primitive may sound
almost self-contradictory when it comes to formally define its security. Indeed,
the security of a linearly homomorphic scheme [14] notably requires that it be
infeasible to publicly compute a signature on a vector outside the linear span
of originally signed vectors. The problem is that, when vector entries live in a
discrete-logarithm hard group, deciding whether several vectors are independent
or not is believed to be a hard problem. Yet, this will not prevent us from
applying new techniques and constructing schemes with security proofs under
simple assumptions and the reduction will be able to detect when the adversary
has won by simply solving the problem instance it received as input.

Our first scheme’s starting point is the one-time (regular) SPS scheme of Abe
et al. [1]. By removing certain public key components, we obtain the desired
linear homomorphism, and prove the security using information-theoretic argu-
ments as in [1]. The key observation here is that, as long as the adversary does
not output a signature on a linear combination of previously signed vectors, it
will be unable to sign its target vector in the same way as the reduction would,
because certain private key components will remain perfectly hidden.

Our initial scheme inherits the one-time restriction of the scheme in [1] in
that only one linear subspace can be safely signed with a given public key.
Nevertheless, we can extend it to build a full linearly homomorphic SPS system.
To this end, we suitably combine our first scheme with Waters signatures [51].
Here, Waters signatures are used as a resting ground for fresh random exponents
which are introduced in each signed vector and help us refresh the state of the
system and apply each time the same argument as in the one-time scheme. We
also present techniques to turn the scheme into a fully randomizable one, where
a derived signature has the same distribution as a directly signed message.

In our simulation-sound commitments to group elements, the commitment gen-
eration technique appeals to the verification algorithm of the signature scheme,
and proceeds by evaluating the corresponding pairing-product equations on the
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message, but using random group elements instead of actual signatures. The
binding and simulation-binding properties, in turn, stem from the infeasibility
of forging signatures while the signature homomorphism allows equivocating fake
commitments when simulating the view of an adversary. It was already known
how to build simulation-sound and non-malleable commitments [35,47,28,36,21]
from signature schemes with efficient Σ protocols. Our method is, in fact, differ-
ent and immediately yields length-reducing structure-preserving commitments
to vectors without using Σ protocols.

1.2 Related Work

Structure-Preserving Signatures. Signature schemes where messages only
consist of group elements appeared for the first time —without the “structure-
preserving” terminology— as ingredients of Groth’s construction [40] of group
signatures in the standard model. The scheme of [40] was mostly a proof of con-
cept, with signatures consisting of thousands of group elements. More efficient
realizations were given by Cathalo, Libert and Yung [25] and Fuchsbauer [34].
Abe, Haralambiev and Ohkubo [1,3] subsequently showed how to sign messages
of n group elements at once using O(1)-size signatures. Lower bounds on the size
of structure-preserving signatures were given in [4] while Abe et al. [7] provided
evidence that optimally short SPS necessarily rely on interactive assumptions.
As an ingredient for their tightly secure cryptosystems, Hofheinz and Jager [44]
gave constructions based on the Decision Linear assumption [13] while similar
results were independently achieved in [17,26]. Quite recently, Abe et al. [5,6]
obtained constant-size signatures without sacrificing the security guarantees
offered by security proofs under simple assumptions.

Regarding primitives beyond signature schemes, Camenisch et al. [18] showed
a structure-preserving variant of the Cramer-Shoup cryptosystem [27] and used
it to implement oblivious third parties [19]. Groth [42] described length-reducing
trapdoor commitments (i.e., where the commitment is shorter than the commit-
ted message) to group elements whereas [2] showed the impossibility of realizing
such commitments when the commitment string lives in the same group as the
message. Sakai et al. [49] recently suggested to use structure-preserving identity-
based encryption [50] systems to restrict the power of the opening authority in
group signatures.

Linearly Homomorphic Signatures. The concept of homomorphic
signatures can be traced back to Desmedt [30] while proper definitions remained
lacking until the work of Johnson et al. [46]. Since then, constructions have
appeared for various kinds of homomorphisms (see [8] and references therein).

Linearly homomorphic signatures are an important class of homomorphic
signatures for arithmetic functions, whose study was initiated by Boneh, Free-
man, Katz and Waters [14]. While initially motivated by applications to network
coding [14], they are also useful in proofs of storage [9] or in verifiable com-
putation mechanisms, when it comes to authenticate servers’ computations on
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outsourced data (see, e.g., [8]). The recent years, much attention was given to
the notion and a variety of constructions [38,10,15,16,23,24,33,11,12] based on
various assumptions have been studied.

1.3 Organization

Section 2 first gives security definitions for linearly homomorphic SPS systems,
for which efficient constructions are provided in Section 3. Their applications
to verifiable computation on encrypted data are explained in Section 4 while
Section 5 shows how to build simulation-sound commitments to group elements.

2 Background

2.1 Definitions for Linearly Homomorphic Signatures

Let (G,GT ) be a configuration of (multiplicatively written) groups of prime
order p over which a bilinear map e : G×G → GT is efficiently computable.

Following [1,3], we say that a signature scheme is structure-preserving if
messages, signature components and public keys live in the group G.

We consider linearly homomorphic signatures for which the message space M
consists of pairs M := T × Gn, for some n ∈ N, where T is a tag space. We
remark that, in the applications considered in this paper, tags do not need to be
group elements. We thus allow them to be arbitrary strings.

Definition 1. A linearly homomorphic structure-preserving signature scheme
over (G,GT ) is a set of efficient algorithms Σ = (Keygen, Sign, SignDerive,Verify)
for which the message space is M := T × Gn, for some n ∈ poly(λ) and some
set T , and with the following specifications.

Keygen(λ, n): is a randomized algorithm that takes in a security parameter
λ ∈ N and an integer n ∈ poly(λ) denoting the dimension of vectors to be
signed. It outputs a key pair (pk, sk) and the description of a tag (i.e., a file
identifier) space T .

Sign(sk, τ, 
M): is a possibly probabilistic algorithm that takes as input a private

key sk, a file identifier τ ∈ T and a vector �M ∈ Gn. It outputs a signature
σ ∈ Gns , for some ns ∈ poly(λ).

SignDerive(pk, τ, {(ωi, σ
(i))}�

i=1): is a (possibly probabilistic) signature
derivation algorithm. It takes as input a public key pk, a file identifier τ
as well as � pairs (ωi, σ

(i)), each of which consists of a weight ωi ∈ Zp and
a signature σ(i) ∈ Gns . The output is a signature σ ∈ Gns on the vector
�M =

∏�
i=1

�M ωi

i , where σ(i) is a signature on �Mi.

Verify(pk, τ, 
M, σ): is a deterministic algorithm that takes in a public key pk,

a file identifier τ ∈ T , a signature σ and a vector �M . It outputs 1 if σ is
deemed valid and 0 otherwise.

Correctness is expressed by imposing that, for all λ ∈ N, all integers n ∈ poly(λ)
and all triples (pk, sk, T ) ← Keygen(λ, n), the following holds:
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1. For all τ ∈ T and all n-vectors �M , if σ = Sign(sk, τ, �M), then we have

Verify(pk, τ, �M, σ) = 1.

2. For all τ ∈ T , � > 0 and {(ωi, σ
(i), �Mi)}�i=1, if Verify(pk, τ,

�Mi, σ
(i)) = 1 for

each i, then Verify
(
pk, τ,

∏�
i=1

�M ωi

i , SignDerive(pk, τ, {(ωi, σ
(i))}�i=1)

)
= 1.

Security. In linearly homomorphic signatures, we use the same definition of
unforgeability as in [11]. This definition implies security in the stronger model
used by Freeman [33] since the adversary can interleave signing queries for in-
dividual vectors belonging to distinct subspaces. Moreover, file identifiers can
be chosen by the adversary (which strengthens the definition of [14]) and are
not assumed to be uniformly distributed. As a result, a file identifier can be a
low-entropy, easy-to-remember string such as the name of the dataset’s owner.

Definition 2. A linearly homomorphic SPS scheme Σ = (Keygen, Sign,Verify)
is secure if no PPT adversary has non-negligible advantage in the game below:

1. The adversary A chooses an integer n ∈ N and sends it to the challenger
who runs Keygen(λ, n) and obtains (pk, sk) before sending pk to A.

2. On polynomially-many occasions, A can interleave the following kinds of
queries.
– Signing queries: A chooses a tag τ ∈ T and a vector �M ∈ Gn. The

challenger picks a handle h and computes σ ← Sign(sk, τ, �M). It stores

(h, (τ, �M, σ)) in a table T and returns h.

– Derivation queries: A chooses a vector of handles �h = (h1, . . . , hk) and a

set of coefficients {ωi}ki=1. The challenger retrieves {(hi, (τ, �Mi), σ
(i))}ki=1

from T and returns ⊥ if one of these does not exist or if there exists
i ∈ {1, . . . , k} such that τi �= τ . Otherwise, it computes �M =

∏k
i=1

�Mωi

i

and runs σ′ ← SignDerive
(
pk, τ, {(ωi, σ

(i))}ki=1

)
. It also chooses a handle

h′, stores (h′, (τ, �M), σ′) in T and returns h′ to A.

– Reveal queries:A chooses a handle h. If no tuple of the form (h, (τ, �M), σ′)
exists in T , the challenger returns ⊥. Otherwise, it returns σ′ to A and
adds ((τ, �M), σ′) to the set Q.

3. A outputs an identifier τ�, a signature σ� and a vector �M� ∈ Gn. The
adversary A wins if Verify(pk, τ�, �M�, σ�) = 1 and one of the conditions
below is satisfied:
◦ (Type I): τ� �= τi for any entry (�τi, .) in Q and �M� �= (1G, . . . , 1G).

◦ (Type II): τ� = τi for ki > 0 entries (τi, .) in Q and �M� �∈ Vi, where

Vi denotes the subspace spanned by all vectors �M1, . . . , �Mki for which an

entry of the form (τ�, �Mj), with j ∈ {1, . . . , ki}, appears in Q.

A’s advantage is its probability of success taken over all coin tosses.

In our first scheme, we will consider a weaker notion of one-time security. In this
notion, the adversary is limited to obtain signatures for only one linear subspace.
In this case, there is no need for file identifiers and we assume that all vectors
are assigned the identifier τ = ε.

In the following, the adversary will be said independent if
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– For any given tag τ , it is restricted to only query signatures on linearly
independent vectors.

– Each vector is only queried at most once.

Non-independent adversaries are not subject to the above restrictions. It will
be necessary to consider these adversaries in our construction of non-malleable
commitments. Nevertheless, security against independent adversaries suffices for
many applications — including encrypted cloud storage— since the signer can
always append unit vectors to each newly signed vector.

At first, one may wonder how Definition 2 can be satisfied at all given that
the challenger may not have an efficient way to check whether the adversary
is successful. Indeed, in cryptographically useful discrete-logarithm-hard groups
G, deciding whether vectors { �Mi}i of Gn are linearly dependent is believed
to be difficult when n > 2. However, it may be possible using some trapdoor
information embedded in pk, especially if the adversary additionally outputs
signatures on { �Mi}i.

2.2 Hardness Assumptions

We rely on the following hardness assumptions, the first of which implies the
second one.

Definition 3 ([13]). In a group G of prime order p, the Decision Linear Prob-
lem (DLIN), consists in distinguishing the distributions (ga, gb, gac, gbd, gc+d)

and (ga, gb, gac, gbd, gz), with a, b, c, d
R← Z∗

p, z
R← Z∗

p. The Decision Linear
Assumption is the intractability of DLIN for any PPT distinguisher D.

Definition 4. The Simultaneous Double Pairing problem (SDP) in (G,GT )
is, given a tuple of elements (gz, gr, hz, hu) ∈R G4, to find a non-trivial triple
(z, r, u) ∈ G3\{(1G, 1G, 1G)} satisfying the equalities e(gz, z) · e(gr, r) = 1GT and
e(hz, z) · e(hu, u) = 1GT .

3 Constructions of Linearly Homomorphic
Structure-Preserving Signatures

As a warm-up, we begin by describing a one-time homomorphic signature, where
a given public key allows signing only one linear subspace.

3.1 A One-Time Linearly Homomorphic Construction

In the description hereunder, since only one linear subspace can be signed for
each public key, no file identifier τ is used. We thus set τ to be the empty string
ε in all algorithms.
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Keygen(λ, n): given a security parameter λ and the dimension n ∈ N of the
subspace to be signed, choose bilinear group (G,GT ) of prime order p > 2λ.

Then, choose generators h, gz, gr, hz
R← G. Pick χi, γi, δi

R← Zp, for i = 1
to n. Then, for each i ∈ {1, . . . , n}, compute gi = gχi

z gγi
r , hi = hχi

z hδi . The
private key is sk = {χi, γi, δi}ni=1 while the public key is defined to be

pk =
(
gz, hr, hz, h, {gi, hi}ni=1

)
∈ G2n+4.

Sign(sk, τ, (M1, . . . ,Mn)): to sign a vector (M1, . . . ,Mn) ∈ Gn associated
with the identifier τ = ε using sk = {χi, γi, δi}ni=1, compute the signature
consists of σ = (z, r, u) ∈ G3, where

z =

n∏
i=1

M−χi

i , r =

n∏
i=1

M−γi

i , u =

n∏
i=1

M−δi
i .

SignDerive(pk, τ, {(ωi, σ
(i))}�

i=1): given a file identifier τ = ε, the public key
pk and � tuples (ωi, σ

(i)), parse each σ(i) as σ(i) =
(
zi, ri, ui

)
∈ G3 for i = 1

to �. Compute and return σ = (z, r, u) =
(∏�

i=1 z
ωi

i ,
∏�

i=1 r
ωi

i ,
∏�

i=1 u
ωi

i

)
.

Verify(pk, σ, τ, (M1, . . . ,Mn)): given a signature σ = (z, r, u) ∈ G3, a vector
(M1, . . . ,Mn) and a file identifier τ = ε, return 1 if and only if it holds that
(M1, . . . ,Mn) �= (1G, . . . , 1G) and (z, r, u) satisfy

1GT = e(gz, z) · e(gr, r) ·
n∏

i=1

e(gi,Mi), 1GT = e(hz, z) · e(h, u) ·
n∏

i=1

e(hi,Mi).

The security proof relies on the fact that, while the signing algorithm is determin-
istic, signatures are not unique. However, the reduction will be able to compute
exactly one signature for each vector. At the same time, an adversary has no in-
formation about which signature the legitimate signer would compute on a vector
outside the span of already signed vectors. Moreover, by obtaining two distinct
signatures on a given vector, the reduction can solve a given SDP instance. The
following theorem is proved in the full version of the paper.

Theorem 1. The scheme is unforgeable if the SDP assumption holds in
(G,GT ).

3.2 A Full-Fledged Linearly Homomorphic SPS Scheme

We upgrade our one-time construction so as to sign an arbitrary number of linear
subspaces. Here, each file identifier τ is a L-bit string. The construction builds
on the observation that, in the scheme of Section 3.1, signatures (z, r, u) could

be re-randomized by computing (z · gθr , r · g−θ
z , u · h− logh(gr)·θ

z ), with θ
R← Zp, if

h
− logh(gr)
z were available. Since publicizing h

− logh(gr)
z would render the scheme

insecure, our idea is to use Waters signatures as a support for introducing extra
randomizers in the exponent.

In the construction, the u component of each signature can be seen as an
aggregation of the one-time signature of Section 3.1 with a Waters signature

(h
logh(gr)
z ·HG(τ)

−ρ, hρ) [51] on the tag τ .
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Keygen(λ, n): given a security parameter λ and the dimension n ∈ N of the
subspace to be signed, choose bilinear group (G,GT ) of prime order p > 2λ.

1. Choose h
R← G, αz , αr, βz

R← Zp. Define gz = hαz , gr = hαr , hz = hβz .

2. For i = 1 to n, pick χi, γi, δi
R← Zp and compute gi = gχi

z gγi
r , hi = hχi

z hδi .

3. Choose a random vector w = (w0, w1, . . . , wL)
R← GL+1. The latter

defines a hash function HG : {0, 1}L → G which maps any L-bit string

τ = τ [1] . . . τ [L] ∈ {0, 1}L to HG(τ) = w0 ·
∏L

k=1 w
τ [k]
k .

The private key is sk =
(
hαr
z , {χi, γi, δi}ni=1

)
while the public key consists of

pk =
(
gz, gr, hz, h, {gi, hi}ni=1, w

)
∈ G2n+4 ×GL+1.

Sign(sk, τ, (M1, . . . ,Mn)): to sign a vector (M1, . . . ,Mn) ∈ Gn w.r.t. the file

identifier τ using sk =
(
hαr
z , {χi, γi, δi}ni=1

)
, choose θ, ρ

R← Zp and output
σ = (z, r, u, v) ∈ G4, where

z = gθr ·
n∏

i=1

M−χi

i r = g−θ
z ·

n∏
i=1

M−γi

i

u = (hαr
z )−θ ·

n∏
i=1

M−δi
i ·HG(τ)

−ρ v = hρ

SignDerive(pk, τ, {(ωi, σ
(i))}�

i=1): given pk, a file identifier τ and � tuples
(ωi, σ

(i)), parse σ(i) as σ(i) =
(
zi, ri, ui, vi

)
∈ G4 for i = 1 to �. Then, choose

ρ′
R← Zp and compute and return σ = (z, r, u, v), where z =

∏�
i=1 z

ωi

i ,

r =
∏�

i=1 r
ωi

i , u =
∏�

i=1 u
ωi

i ·HG(τ)
−ρ′

and v =
∏�

i=1 v
ωi

i · hρ′
.

Verify(pk, σ, τ, (M1, . . . ,Mn)): given a signature σ = (z, r, u, v) ∈ G4, a
file identifier τ and a vector (M1, . . . ,Mn) ∈ Gn, return 1 if and only if
(M1, . . . ,Mn) �= (1G, . . . , 1G) and (z, r, u, v) satisfy

1GT = e(gz, z) · e(gr, r) ·
n∏

i=1

e(gi,Mi), (1)

1GT = e(hz, z) · e(h, u) · e(HG(τ), v) ·
n∏

i=1

e(hi,Mi).

The security of the scheme against non-independent Type I adversaries is proved
under the SDP assumption. In the case of Type II forgeries, we need to assume
the adversary to be independent because, at some point, the simulator is only
able to compute a signature for a unique value5 of θ.

Theorem 2. The scheme is unforgeable against independent adversaries if the
SDP assumption holds in (G,GT ). Moreover, the scheme is secure against non-
independent Type I adversaries.

5 Note that this is not a problem since the signer can derive θ as a pseudorandom
function of τ and (M1, . . . ,Mn) to make sure that a given vector is always signed
using the same θ.
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The proof of Theorem 2 is available in the full verison of the paper. It uses
Waters signatures as a handle to randomize signatures. Whenever the reduction
is able to compute a Waters signatures (hαr

z · HG(τ)
−ρ, hρ) on the tag τ , it

can inject a fresh extra randomizer θ ∈ Zp in the exponent for each vector
associated with τ . By doing so, with non-negligible probability, the specific vector
(χ1, . . . , χn) used by the reduction will remain undetermined from A’s view.

Since the signature component u cannot be publicly randomized, the scheme
does not have fully randomizable signatures. In the full version of the paper,
we describe a fully randomizable variant. In applications like non-malleable
commitments to group elements, the above scheme is sufficient however.

4 Applications

4.1 Verifiable Computation for Encrypted Cloud Storage

Linearly homomorphic schemes are known (see, e.g., [8]) to provide verifiable
computation mechanisms for outsourced data. Suppose that a user has a dataset
consisting of n samples s1, . . . , sn ∈ Zp. The dataset can be encoded as vec-
tors �vi = (�ei|si) ∈ Zn+1

p , where �ei ∈ Zn
p denotes the i-th unit vector for each

i ∈ {1, . . . , n}. The user then assigns a file identifier τ to {�vi}ni=1, computes sig-
natures σi ← Sign(sk, τ, �vi) on the resulting vectors and stores {(�vi, σi)}ni=1 at
the server. When requested, the server can then evaluate a sum s =

∑n
i=1 si and

provide evidence that the latter computation is correct by deriving a signature
on the vector (1, 1, . . . , 1, s) ∈ Zn+1

p . Unless the server is able to forge a signature
for a vector outside the span of {�vi}ni=1, it is unable to fool the user. The above
method readily extends to authenticate weighted sums or Fourier transforms.

One disadvantage of the above method is that it requires the server to
retain the dataset {si}ni=1 in the clear. Using linearly homomorphic structure-
preserving signatures, the user can apply the above technique on encrypted
samples using the Boneh-Boyen-Shacham (BBS) cryptosystem [13].

The BBS cryptosystem involves a public key (g, g̃, f = gx, h = gy) ∈R G4,
where (x, y) ∈ Z2

p is the private key. The user (or anyone else knowing his pub-
lic key) can first encrypt his samples {si}ni=1 by computing BBS encryptions

(C1,i, C2,i, C3,i) = (f ri , hti , g̃si · gri+ti), with ri, ti
R← Zp, for each i ∈ {1, . . . , n}.

If the user holds a linearly homomorphic structure preserving signature key
pair for vectors of dimension n + 3, he can generate n signatures on vectors
((C1,i, C2,i, C3,i)| �Ei) ∈ Gn+3, where �Ei = (1G, . . . , 1G, g, 1G, . . . , 1G) = g�ei for

each i ∈ {1, . . . , n}. The vectors {((C1,i, C2,i, C3,i)| �Ei)}ni=1 are then archived in
the cloud with their signatures {(zi, ri, ui, vi)}ni=1 in such a way that the server
can publicly derive a signature on

(
f
∑

i ri , h
∑

i ti , g̃
∑

i si ·g
∑

i(ri+ti), g, g, . . . , g
)
∈

Gn+3 in order to convince the client that the encrypted sum was correctly com-
puted. Using his private key (x, y), the client can then retrieve the sum

∑
i si as

long as it remains in a sufficiently small range.
The interest of the above solution lies in that the client can dispense with the

need for storing the O(n)-size public key of his linearly homomorphic signature.
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Indeed, he can simply retain the random seed that was used to generate pk and
re-compute private key elements {(χi, γi, δi)}ni=1 whenever he wants to verify the
server’s response. In this case, the verification equations (1) become

1GT = e(gz, z ·
n∏

i=1

Mχi

i ) · e(gr, r ·
n∏

i=1

Mγi

i )

1GT = e(hz, z ·
n∏

i=1

Mχi

i ) · e(h, u ·
n∏

i=1

M δi
i ) · e(HG(τ), v),

so that the client only has to compute O(1) pairings. Moreover, the client does
not have to determine an upper bound on the size of his dataset when generating
his public key. Initially, he only needs to generate {(gj, hj)}3j=1. When the i-th
ciphertext (C1,i, C2,i, C3,i) has to be stored, the client derives (χi+3, γi+3, δi+3)
and (gi+3, hi+3) by applying a PRF to the index i. This will be sufficient to sign

vectors of the form ((C1,i, C2,i, C3,i)| �Ei).
In order to hide all partial information about the original dataset, the server

may want to re-randomize the derived signature and ciphertext before returning
them. This can be achieved by having the client include signatures on the vectors
(f, 1G, g, 1G, . . . , 1G), (1G, h, g, 1G, . . . , 1G) in the outsourced dataset. Note that,
in this case, the signature should be re-randomized as well. For this reason,
our randomizable scheme described in the full version of the paper should be
preferred.

Complete security models for “verifiable computation on encrypted data” are
beyond the scope of this paper. Here, they would naturally combine the proper-
ties of secure homomorphic encryption and authenticated computing. It should
be intuitively clear that a malicious server cannot trick a client into accepting
an incorrect result (i.e., one which differs from the actual defined linear function
it is supposed to compute over the defined signed ciphertext inputs) without
defeating the security of the underlying homomorphic signature.

4.2 Extension to CCA1-Encrypted Data

In the application of Section 4.1, the underlying crypotosystem has to be
additively homomorphic, which prevents it from being secure against adaptive
chosen-ciphertext attacks. On the other hand, the method is compatible with
security against non-adaptive chosen ciphertext attacks. One possibility is to
apply the “lite” Cramer-Shoup technique (in its variant based on DLIN) as it
achieves CCA1-security while remaining homomorphic. Unfortunately, the valid-
ity of ciphertexts is not publicly verifiable, which may be annoying in applications
like cloud storage or universally verifiable e-voting systems. Indeed, servers may
be willing to have guarantees that they are actually storing encryptions of some
message instead of random group elements.

Consider the system where (C1, C2, C3, C4) = (f r, ht, gr+t, g̃m · Xr
1 · Xt

2) is
decrypted as m = logg̃(C4 · C−x1

1 C−x2
2 C−z

3 ), where X1 = fx1gz and X2 =
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hx2gz are part of the public key. In [45], such a system was made chosen-
ciphertext secure using a publicly verifiable one-time simulation-sound proof that
(f, h, g, C1, C2, C3) forms a DLIN tuple. In the security proof, if the reduction
is guaranteed not to leak C−x1

1 C−x2
2 C−z

3 for an invalid triple (C1, C2, C3) (i.e.,
as long as the adversary is unable to generate a fake proof for this), the private
key component z will remain perfectly hidden. Consequently, if the challenge
ciphertext is computed by choosing C�

3 ∈R G (so that (f, h, g, C�
1 , C

�
2 , C

�
3 ) is not

a DLIN tuple) and computing C�
4 = g̃m · C�

1
x1 · C�

2
x2 · C�

3
z, the plaintext m

is independent of A’s view. If we replace the one-time simulation-sound proofs
by standard proofs of membership in the scheme of [45], we obtain a CCA1
homomorphic encryption scheme. Linearly homomorphic SPS schemes provide
a simple and efficient way to do that.

The idea is to include in the public key the verification key of a one-time
linearly homomorphic SPS —using the scheme of Section 3.1— for n = 3 as well
as signatures on the vectors (f, 1G, g), (1G, h, g) ∈ G3. This will allow the sender
to publicly derive a signature (z, r, u) on the vector (C1, C2, C3) = (f r, ht, gr+t).
Each ciphertext thus consists of (z, r, u, C1, C2, C3, C4). In the security proof,
at each pre-challenge decryption query, the signature (z, r, u) serves as publicly
verifiable evidence that (f, h, g, C1, C2, C3) is a DLIN tuple. In the challenge
phase, the reduction reveals another homomorphic signature (z�, r�, u�) for a
vector (C�

1 , C
�
2 , C

�
3 ) that may be outside the span of (f, 1G, g) and (1G, h, g) but

it does not matter since decryption queries are not allowed beyond this point.
We note that linearly homomorphic SPS can also be used to construct CCA1-

secure homomorphic encryption schemes based on the Naor-Yung paradigm [48].

5 Non-malleable Trapdoor Commitments to
Group Elements from Linearly Homomorphic
Structure-Preserving Signatures

As noted in [42,43], some applications require to commit to group ele-
ments without knowing their discrete logarithms or destroying their algebraic
structure by hashing them first. This section shows that, under a certain
mild condition, linearly homomorphic SPS imply length-reducing non-malleable
structure-preserving commitments to vectors of group elements.

As a result, we obtain the first length-reducing non-malleable structure-
preserving trapdoor commitment. Our scheme is not strictly6 structure-preserving
(according to the terminology of [2]) because the commitment string lives in GT

rather thanG. Still, openings only consist of elements in G, which makes it pos-
sible to generate efficient NIWI proofs that committed group elements satisfy
certain properties. To our knowledge, the only known non-malleable commit-
ment schemes whose openings only consist of group elements were described by

6 We recall that strictly structure-preserving commitments cannot be length-reducing,
as shown by Abe et al. [2], so that our scheme is essentially the best we can hope for if
we aim at short commitment stings.
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Fischlin et al. [32]. However, these constructions cannot be length-reducing as
they achieve universal composability [20,22].

Our schemes are obtained by first constructing simulation-sound trapdoor
commitments (SSTC) [35,47] to group elements. SSTC schemes were first sug-
gested by Garay, MacKenzie and Yang [35] as a tool for constructing univer-
sally composable zero-knowledge proofs [20]. MacKenzie and Yang subsequently
gave a simplified security definition which suffices to provide non-malleability
with respect to opening in the sense of the definition of re-usable non-malleable
commitments [28].

In a SSTC, each commitment is labeled with a tag. The definition of [47]
requires that, even if the adversary can see equivocations of commitments to
possibly distinct messages for several tags tag1, . . . , tagq, it will not be able to
break the binding property for a new tag tag �∈ {tag1, . . . , tagq}.

Definition 5 ([47]). A simulation-sound trapdoor commitment is a tuple of
algorithms (Setup,Com,FakeCom,FakeOpen, Verify) where (Setup,Com,Verify)
forms a commitment scheme and (FakeCom,FakeOpen) are PPT algorithms with
the following properties

Trapdoor: for any tag and any message Msg, the following distributions are
computationally indistinguishable:

Dfake := {(pk, tk) ← Setup(λ); (c̃om, aux) ← FakeCom(pk, tk, tag);

d̃ec ← FakeOpen(aux, tk, c̃om,Msg) : (pk, tag,Msg, c̃om, d̃ec)}

Dreal := {(pk, tk) ← Setup(λ); (com, dec) ← Com(pk, tag,Msg) :

(pk, tag,Msg, com, dec)}

Simulation-sound binding: for any PPT adversary A, the following proba-
bility is negligible

Pr[ (pk, tk) ← Setup(λ); (com, tag,Msg1,Msg2, dec1, dec2) ← AOtk,pk(pk) :

Msg1 �= Msg2 ∧ Verify(pk, tag,Msg1, com, dec1) = 1

∧Verify(pk, tag,Msg2, com, dec2) = 1 ∧ tag �∈ Q],

where Otk,pk is an oracle that maintains an initially empty set Q and operates
as follows:
– On input (commit, tag), it runs (c̃om, aux) ← FakeCom(pk, tk, tag),

stores (c̃om, tag, aux), returns c̃om and adds tag in Q.
– On input (decommit, c̃om,Msg): if a tuple (c̃om, tag, aux) was previously

stored, it computes d̃ec ← FakeOpen(aux, tk, tag, c̃om,Msg) and returns

d̃ec. Otherwise, Otk,pk returns ⊥.

While our SSTC to group elements will be proved secure in the above sense,
a non-adaptive flavor of simulation-sound binding security is sufficient for con-
structing non-malleable commitments. Indeed, Gennaro used [36] such a relaxed
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notion to achieve non-malleability from similar-looking multi-trapdoor commit-
ments. In the non-adaptive notion, the adversary has to choose the set of tags
tag1, . . . , tag� for which it wants to query Otk,pk before seeing the public key pk.

5.1 Template of Linearly Homomorphic SPS Scheme

We first remark that any constant-size linearly homomorphic structure-
preserving signature necessarily complies with the template below.

For simplicity, the template is described in terms of symmetric pairings but
generalizations to asymmetric configurations are possible.

Keygen(λ, n): given λ and the dimension n ∈ N of the vectors
to be signed, choose constants nz, nv,m. Among these, nz and nv

will determine the signature length while m will be the num-
ber of verification equations. Then, choose {Fj,μ}j∈{1,...,m},μ∈{1,...,nz},
{Gj,i}i∈{1,...,n}, j∈{j,...,m} in the group G. The public key is pk =(
{Fj,μ}j∈{1,...,m},μ∈{1,...,nz}, {Gj,i}i∈{1,...,n}, j∈{j,...,m}

)
while sk contains in-

formation about the representation of public elements w.r.t. specific bases.
Sign(sk, τ, (M1, . . . ,Mn)): Outputs σ =

(
Z1, . . . , Znz , V1, . . . , Vnv

)
∈

Gnz+nv .
SignDerive(pk, τ, {(ωi, σ

(i))}�
i=1): parses σ(i) as(

Z
(i)
1 , . . . , Z

(i)
nz , V

(i)
1 , . . . , V

(i)
nv

)
for each i ∈ {1, . . . , �} and computes

Zμ =

�∏
i=1

Z(i)
μ

ωi
Vν =

�∏
i=1

V (i)
ν

ωi
μ ∈ {1, . . . , nz}, ν ∈ {1, . . . , nv}.

After possible extra re-randomizations, it outputs
(
Z1, . . . , Znz , V1, . . . , Vnv

)
.

Verify(pk, σ, τ, (M1, . . . ,Mn)): given σ =
(
Z1, . . . , Znz , V1, . . . , Vnv

)
∈

Gnz+nv , a tag τ and (M1, . . . ,Mn), return 0 if (M1, . . . ,Mn) = (1G, . . . , 1G).
Otherwise, do the following.
1. For each j ∈ {1, . . . ,m} and ν ∈ {1, . . . , nv}, compute one-to-one7 en-

codings Tj,ν ∈ G of the tag τ as a group element.
2. Return 1 if and only if cj = 1GT for j = 1 to m, where

cj =

nz∏
μ=1

e(Fj,μ, Zμ) ·
nv∏
ν=1

e(Tj,ν , Vν) ·
n∏

i=1

e(Gj,i,Mi) j ∈ {1, . . . ,m}. (2)

We say that a linearly homomorphic SPS is regular if, for each file identifier τ ,
any non-trivial vector (M1, . . . ,Mn) �= (1G, . . . , 1G) has a valid signature.

5.2 Construction of Simulation-Sound Structure-Preserving
Trapdoor Commitments

Let ΠSPS = (Keygen, Sign, SignDerive,Verify) be a linearly homomorphic SPS.
We construct a simulation-sound trapdoor commitment as follows.

7 This condition can be relaxed to have collision-resistant deterministic encodings.
Here, we assume injectivity for simplicity.
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SSTC.Setup(λ, n): given the desired dimension n ∈ N of vectors, choose pub-
lic parameters pp for the linearly homomorphic SPS scheme. Then, run
ΠSPS.Keygen(λ, n) to obtain a public key pk =

(
{Fj,μ}j∈{1,...,m},μ∈{1,...,nz},

{Gj,i}i∈{1,...,n}, j∈{j,...,m}
)
, for some constants nz, nv,m, and a sk. The com-

mitment key is pk = pk and the trapdoor tk consists of sk. Note that the
public key defines a signature space Gnz+nv , for constants nz and nv.

SSTC.Com(pk, tag, (M1, . . . ,Mn)): to commit to (M1, . . . ,Mn) ∈ Gn with

respect to the tag tag = τ , choose
(
Z1, . . . , Znz , V1, . . . , Vnv

) R← Gnz+nv

in the signature space. Then, run step 1 of the verification algorithm and
evaluate the right-hand-side member of (2). Namely, compute

cj =

nz∏
μ=1

e(Fj,μ, Zμ) ·
nv∏
ν=1

e(Tj,ν , Vν) ·
n∏

i=1

e(Gj,i,Mi) j ∈ {1, . . . ,m} (3)

where {Tj,ν}j,ν form an injective encoding of tag = τ as a set of group
elements. The commitment string is com = (c1, . . . , cm) whereas the decom-
mitment is dec =

(
Z1, . . . , Znz , V1, . . . , Vnv

)
.

SSTC.FakeCom(pk, tk, tag): proceeds like SSTC.Com with randomly chosen

(M̂1, . . . , M̂n)
R← Gn. If ( ˆcom, ˆdec) denotes the resulting pair, the algorithm

outputs c̃om = ˆcom and the auxiliary information aux, which consists of the
pair aux = ((M̂1, . . . , M̂n), ˆdec) for tag = τ .

SSTC.FakeOpen(aux, tk, tag, c̃om, (M1, . . . ,Mn)): parses c̃om as
(c̃1, . . . , c̃m) and aux as

(
(M̂1, . . . , M̂n), (Ẑ1, . . . , Ẑnz , V̂1, . . . , V̂nv )

)
.

The algorithm first generates a linearly homomorphic signa-
ture on (M1/M̂1, . . . ,Mn/M̂n) for the tag tag = τ . Namely,
using the trapdoor tk = sk, compute a signature σ′ =
(Z ′

1, . . . , Z
′
nz
, V ′

1 , . . . , V
′
nv
) ← ΠSPS.Sign

(
sk, τ, (M1/M̂n, . . . ,Mn/M̂n)

)
.

Since aux =
(
(M̂1, . . . , M̂n), (Ẑ1, . . . , Ẑnz , V̂1, . . . , V̂nv )

)
satisfies

c̃j =

nz∏
μ=1

e(Fj,μ, Ẑμ) ·
nv∏
ν=1

e(Tj,ν , V̂ν) ·
n∏

i=1

e(Gj,i, M̂i) j ∈ {1, . . . ,m}, (4)

FakeOpen runs (Z̃1, . . . , Z̃nz , Ṽ1, . . . , Ṽnv ) ←
SignDerive(pk, τ, {(1, σ′), (1, σ̂)}), where σ̂ = (Ẑ1, . . . , Ẑnz , V̂1, . . . , V̂nv ).

It outputs a valid de-commitment d̃ec = (Z̃1, . . . , Z̃nz , Ṽ1, . . . , Ṽnv ) to
(M1, . . . ,Mn) with respect to tag = τ .

SSTC.Verify(pk, tag, (M1, . . . ,Mn), com, dec): parse com as (c1, . . . , cm) ∈
Gm

T and dec as
(
Z1, . . . , Znz , V1, . . . , Vnv

)
∈ Gnz+nv (if these values do not

parse properly, return 0). Then, compute a one-to-one encoding {Tj,ν}j,ν of
tag = τ . Return 1 if relations (3) hold and 0 otherwise.

In the full version of the paper, we extend this construction so as to build
simulation-sound trapdoor commitment to vectors from any linearly homomor-
phic signature that fits a certain template. As a result, we obtain a modular con-
struction of constant-size non-malleable commitment to vectors which preserves
the feasibility of efficiently proving properties about committed values.
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Theorem 3. Assuming that the underlying linearly homomorphic SPS is regular
and secure against non-independent Type I adversaries, the above construction is
a simulation-sound trapdoor commitment to group elements. (The proof is given
in the full version of the paper.

A standard technique (see [35,36]) to construct a re-usable non-malleable com-
mitment from a SSTC scheme is as follows. To commit to Msg, the sender
generates a key-pair (VK, SK) for a one-time signature and generates
(com, dec) ← SSTC.Commit(pk,VK,MSg) using VK as a tag. The non-malleable
commitment string is the pair (com,VK) and the opening is given by (dec, σ),
where σ is a one-time signature on com, so that the receiver additionally checks
the validity of σ. This construction is known to provide input independence [29]
and thus non-malleability with respect to opening, as proved in [29,39].

In our setting, we cannot compute σ as a signature of com, as it consists of GT

elements. However, we can sign the pair (Msg, dec) —whose components live in
G— as long as it uniquely determines com. To this end, we can use the one-time
structure-preserving of [1, Appendix C.1] as it allows signing messages of arbi-
trary length using a constant-size one-time public key. Like our scheme of Section
3.2, it relies on the SDP assumption and yields a non-malleable commitment
based on this sole assumption. Alternatively, we can move σ in the commitment
string (which becomes (com,VK, σ)), in which case the one-time signature does
not need to be structure-preserving but it has to be strongly unforgeable (as
can be observed from the definition of independent commitments [29]) while the
standard notion of unforgeability suffices in the former case.
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Abstract. We show how to construct, from any weak pseudorandom
function, a 3-round symmetric-key authentication protocol that is
secure against man-in-the-middle attacks. The construction is very
efficient, requiring both the secret key and communication size to be only
3n bits long and involving only one call to the weak-PRF. Our techniques
also extend to certain classes of randomized weak-PRFs, chiefly among
which are those based on the classical LPN problem and its more efficient
variants such as Toeplitz-LPN and Ring-LPN. Building an efficient man-
in-the-middle secure authentication scheme from any weak-PRF resolves
a problem left open by Dodis et al. (Eurocrypt 2012), while building
a man-in-the-middle secure scheme based on any variant of the LPN
problem solves the main open question in a long line of research aimed
at constructing a practical light-weight authentication scheme based on
learning problems, which began with the work of Hopper and Blum
(Asiacrypt 2001).

1 Introduction

The need for light-weight cryptography is increasing rapidly due to the
growing deployment of low-cost devices, such as smart cards and RFID tags,
in the real world. One of the most common cryptographic protocols required
on these devices is a symmetric key authentication protocol in which the prover
(usually referred to as the Tag) authenticates his identity to the verifier (usually
referred to as the Reader). The most direct way in which this protocol can be
constructed is by using a pseudorandom function f (e.g. AES) for which the Tag
and the Reader share a common key. Then the authentication protocol simply
consists of the Reader sending a challenge c to which the Tag replies with f(c),
and the Reader verifies that the received evaluation of c is indeed correct. The
main problem with this approach is that the pseudorandom function, whether
it is a “provably-secure” one based on some mathematical assumption or an
“ad-hoc” block cipher like AES, is usually quite costly for light-weight devices.
For this reason, researchers have worked on designing block ciphers specifically
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for low-cost devices (e.g. [19,4]). A different approach for solving this problem
is constructing authentication schemes from building blocks that have weaker
security properties than block ciphers or pseudorandom functions. We pursue
this latter avenue of research in the present work.

1.1 Authentication from LPN

The Learning Parity with Noise (LPN) problem was initially shown to have
cryptographic applications by Goldreich et al. and Blum et al. in [11,3], and
then used as a basis for authentication schemes by Hopper and Blum in their
HB scheme [14]. In this latter paper, a simple LPN-based authentication scheme
was proposed that was secure in the passive attack model. Later work by Juels
and Weis [15], and also by Katz and Shin [16], modified this protocol (the result
was called HB+) to be secure against active adversaries. Nevertheless, even these
schemes had a serious security shortcoming. If the adversary were allowed to
modify the communication between the Tag and the Reader and observe the
response of the reader to verification queries, then, as shown by Gilbert et al.
[7], there exists a very simple attack that can recover the secret key in polynomial
time. Because such a man-in-the-middle attack can be mounted with relatively
small effort, schemes that fall to it cannot be considered secure enough for real-
world applications that require some decent level of security. It was thus a major
open problem to construct an efficient LPN-based authentication scheme that
remains secure against man-in-the-middle attacks.

A notable advance was made by Gilbert et al. [9] who proposed a scheme
(termed HB#) that was able to resist the attack from [7] and was shown to be
secure against restricted man-in-the-middle adversaries. A second contribution
of this work was to offer a solution to another problematic feature of previous
LPN-based protocols. All protocols that are based on LPN require either the key
size or the communication complexity to be square in the security parameter.
Thus either the key size or the communication complexity would have to be
on the order of hundreds of thousands of bits. Since the main motivation for
LPN-based protocols is low-cost hardware, this is clearly unacceptable. To this
end, [9] proposed a protocol based on a related assumption, called Toeplitz-
LPN (see Section 2.2 for definitions), where the communication complexity was
small and the secret key had some structured form which allowed for compact
representations. While there has been no known weakness caused by using the
Toeplitz-LPN assumption, it did turn out that the restricted man-in-the-middle
model introduced in [9] was not sufficient to prevent all practical attacks, and
one such attack was shown by Ouafi et al. [24].

There have been many other proposals, some without security proofs,
others with claimed proofs that attempted to solve this problem, but all of
these methods were ultimately shown to be flawed (see [8] for a small overview).
A breakthrough finally came in a series of recent papers by Kiltz et al. [18]
and Dodis et al. [6] who constructed relatively-efficient MACs based on the
hardness of the LPN problem. Because MACs immediately give rise to man-in-
the-middle secure authentication schemes, their work also resolved the problem
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of building such schemes from the LPN problem. This LPN MAC, however, suf-
fered from the same drawback as other LPN-based schemes – the key size was
prohibitively large. Thus in order to be useful in practice, the proof techniques
would have to be adapted to work with more compact LPN-related assumptions,
such as Toeplitz-LPN. But the constructions of [18] and [6] made use of certain
algebraic structure of the LPN-problem, and the proofs turn out to be
incompatible with other previously-considered versions of LPN.

1.2 Authentication from Weak-PRFs

Weak pseudo-random functions are keyed functions whose outputs on random
inputs are indistinguishable from uniform. Weak PRFs are considered to be
much “weaker” primitives than PRFs, and in particular, it is not known how
to transform a weak-PRF into a PRF except by using tree techniques simi-
lar to the classical GGM construction [10]. Additionally, it also appears to be
much easier to build secure weak-PRFs than PRFs. For example, the function
fa(x) = xa mod p is a weak-PRF based on the DDH assumption, whereas the
construction of a PRF based on DDH is much less efficient [22], requiring n
multiplications in addition to the exponentiation in the weak-PRF. Similarly,
the recent construction of lattice-based PRFs [1] first builds a relatively efficient
weak-PRF (which is just fA(x) = Round(Ax mod p), where A ∈ Zm×n

p , x ∈ Zn

with ‖x‖ small, and the Round(·) function drops a super-logarithmic number of
least-significant bits) and then converts it to a full PRF using techniques similar
to [22,23]. The resulting lattice-based PRF is both less efficient and requires a
stronger computational assumption than the underlying weak-PRF.

Due to efficiency advantages and lower security requirements, there has been
some research on constructions of cryptographic primitives such as symmetric
encryption and stream ciphers built directly from weak-PRFs (e.g. [5,21,25]).
The work along this theme that is most related to ours is the aforementioned
one of Dodis et al. [6], where it is shown how to build a 3-round authentication
scheme secure against active attacks from any weak-PRF. As we mentioned
earlier, the active security model, where the adversary is not allowed to send
any verification queries to the Reader, is not considered strong enough for real-
world applications. And so the problem of constructing man-in-the-middle secure
authentication schemes from arbitrary weak-PRFs remained open.

1.3 Our Results

Our first result is a construction, from any weak pseudorandom function, of a
3-round symmetric-key authentication protocol that is secure against man-in-
the-middle attacks. Our scheme has the exact same communication complexity
as the actively-secure scheme of [6], and only has one extra key element. To be
more precise, the secret keys in our scheme consist of the key of the weak-PRF
plus the description of a pairwise-independent hash function, which requires an
additional two elements, whose size is the output length of the weak-PRF. So if
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we assume that both the domain and range of the weak-PRF is n bits, then the
total key size is 3n.

We then extend our construction of a weak-PRF scheme to randomized
weak-PRFs. Randomized weak-PRFs are keyed functions that become com-
putationally indistinguishable from uniform when their outputs are perturbed
by some low-entropy noise. Noisy learning problems such as LPN and LWE
[26] can be equivalently viewed as problems of distinguishing the outputs of a
randomized weak-PRF from the uniform distribution. To get a man-in-the-
middle secure authentication scheme from a randomized weak-PRF, we require
just one more secret key element than our weak-PRF based scheme.

Our constructions, and to some extent their security proofs as well, turn out
to be surprisingly simple. The main insight is that one should embed the n-bit
output of the (randomized) weak-PRF into a finite field of size 2n. Then, in
addition to the secret keys associated to the function, we also create secret keys
in the field which end up being masked by the presumed indistinguishability from
uniform of the (randomized) weak-PRF. We then show how the interplay in the
field between the weak-PRF and the additional secret keys results in protocols
that have the desired man-in-the-middle security.

We prove security of our schemes in the sequential man-in-the-middle model, in
which the adversary simultaneously interacts with one copy of the Tag and Reader
(see Figure 1). The schemes remain secure even if the adversary has access to mul-
tiple readers (this is shown in the full version of the work), whereas concurrent
access to multiple tags may result in a vulnerability.1 In the stronger notion of
concurrent man-in-the-middle security the adversary is allowed to simultaneously
communicate with multiple copies of the Tag and Reader. While the concurrent
model is theoretically stronger, we do not believe that it is practically relevant to
the low-cost device setting considered in this paper. In particular, it is unlikely that
a low-cost Tag would have the need (or ability) to simultaneously participate in
more than one authentication session. Furthermore, it also seems imprudent that in
an ecosystemwhere one wants to have relatively strong security, secret keys would
be shared among the Tags. Still, constructing an efficient authentication scheme
from generic weak-PRFs that is secure in the concurrentman-in-the-middle model
is an interesting open problem. 2

1.4 Comparison to Other Works

Table 1 compares the results obtained in this paper with those of previous
works. Compared to the protocols that only achieve active security, our scheme
achieves the much stronger man-in-the-middle security at a fairly small cost. In
the case of protocols based on a generic weak-PRF, we extend the security to the
man-in-the middle model at the cost of only one extra secret key element and one
extra field multiplication. We get similar results when comparing our protocol
with actively-secure LPN-based ones.

1 In the full version of the paper, we show that for certain instantiations of a randomized
weak-PRF there indeed exists a concurrent man-in-the-middle attack.

2 Our current scheme is still secure in the concurrent model against active attacks.
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Table 1. Authentication Protocols Based on Weak-PRFs and the LPN-
related Assumptions. Listed is the amount of authentication rounds #r, the se-
curity properties achieved by the protocol and its complexity (with lower order terms
dropped) according to the key size and the communication. Let ε be the advantage
in breaking the assumption, then the term depending on ε is proven to be the best
possible advantage of breaking the protocol in the given model. Q is the amount of
tag and verification queries whereas qv is defined as the amount of verification queries,
which is qv = 1 in the active model. n parameterizes the hardness of the assumption
and λ is the statistical security parameter. [6] gives an alternate construction of MAC1

and MAC2 with better computational complexity, but the rest of the properties are
basically the same.

Protocol #r
Security Complexity

assumption active MIM key size com.

weak-PRF [6] 3 weak-PRF
√
ε ? 2n 3n

weak-PRF [this work] 3 weak-PRF qv · √ε 3n 3n

HB+ [15,16] 3 LPNn,τ
√
ε X [7] 2n 2n2

Random-HB# [9] 3 LPNn,τ
√
ε X [24] 2n2 3n

HB# [9] 3 Toeplitz-LPNn,τ
√
ε X [24] 4n 3n

MAC1 [18] 2 LPNn,τ ε 2λ · ε 2n2 4n

MAC2 [18] 2 LPNn,τ ε Q · ε λn2 4n

Lapin [13] 2 Ring-LPNn,τ ε ? 2n 3n

MAC1 + Lapin 2 Ring-LPNn,τ ε 2λ · ε 6n+ 2λ 4n

3
LPNn,τ

qv ·
√
ε

n2

3nLPN-based [this work] Toeplitz-LPNn,τ 5n
Ring-LPNn,τ 4n

It is also interesting to compare our LPN protocol to the MAC constructions
in [18]. There are three advantages to the MAC constructions – they are only
two rounds, they have slightly tighter reductions to LPN, and they are secure
in the concurrent man-in-the-middle model, whereas our scheme is secure in
the sequential man-in-the-middle model. The advantages of our construction are
that the key sizes and the communication complexities are smaller.

The above-listed differences between our LPN scheme and the MAC schemes
are, in our opinion, fairly minor with several pluses and minuses on both sides.
In practice, it makes almost no difference whether the authentication scheme
is 2 or 3 rounds since the Tag is the one who starts the protocol – thus a 2-
round protocol essentially becomes a 3-round one. And while security tightness
is certainly a desirable property, it is very unclear what effects it has in practice.
Similar public key authentication schemes, such as GQ [12] and Schnorr [27],
have been studied for a long time, yet do not exhibit any weaknesses due to
their non-tight reductions.

The major advantage of our construction is that it is generic and can be
instantiated with virtually any version of the LPN function or a randomized
weak-PRF satisfying a few mild properties (see Section 2.1). For example, our
construction allows for authentication schemes based on the fairly well-studied
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Toeplitz-LPN assumption, which seems to provide a very good compromise be-
tween security and computational efficiency. The constructions of [18] and [6], on
the other hand, can only construct MACs from functions with very “algebraic”
properties.

The recent work of Heyse et al. [13] proposed a new LPN-type assumption,
called Ring-LPN, to enable efficient constructions that are compatible with the
MAC transformation in [18]. The assumption is relatively new, and its unclear
at this point whether it has the same hardness as the more well-studied LPN
and Toeplitz-LPN assumptions. Still, even if the Ring-LPN problem is hard, our
LPN protocol can also be instantiated based on this assumption and is more
efficient than the resulting MAC transformation.

2 Preliminaries and Notation

2.1 Function Families and Their Properties

In this section we define the important classes of functions that will appear in
the paper. As mentioned earlier, we will be considering embeddings of function
outputs into a finite field. The embedding can be arbitrary, and the simplest one
is to simply think of a function output string s ∈ {0, 1}n as a polynomial in a
finite field F = (Zn

2 ,+,×) for appropriately defined addition and multiplication
operations. Thus, without loss of generality, we will assume that all our functions
output elements to some finite field F.

Definition 2.1. A function family H : D → F is called pairwise-independent if
for all x1 �= x2 ∈ D, y1, y2 ∈ F,

Pr
h

$←H
[h(x1) = y1 ∧ h(x2) = y2] = 1/|F|2.

Definition 2.2. A function family F : D → F is said to be a weak-PRF family
if for any polynomial-sized k, randomly-chosen f ∈ F , and randomly-chosen
r1, . . . , rk ∈ D, the distribution of (r1, f(r1)), . . . , (rk, f(rk)) is computationally
indistinguishable from the uniform distribution over (D,F)k.

Even if (r1, f(r1)), . . . , (rk, f(rk)) can be distinguished from the uniform distri-
bution over (D,F)k, it’s possible that the sequence can become indistinguishable
if the outputs f(ri) were perturbed by some noise. Such function families are
called randomized weak-PRFs. The noise perturbation can be anything, but in
this paper we will only consider noise distributions with an eye towards LPN
applications. In particular, both the noise and the output of f(ri) are group
elements, and the perturbation consists of adding the two together. This is still
consistent with our requirement of being able to embed the output of all func-
tions into a finite field F since the group needed for LPN can simply be the
underlying additive group of F (see Section 2.2).
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Definition 2.3. For a function f(·) : D → F and a distribution χ over F, we
will write fχ(r) to mean a randomized function that generates an element e ∈ F
according to the distribution χ and outputs f(r)+e. A function family F : D → F
is said to be a randomized weak-PRF family with noise χ if for any polynomial-
sized k, randomly-chosen f ∈ F , and randomly-chosen r1, . . . , rk ∈ D, the distri-
bution of (r1, f

χ(r1)), . . . , (rk, f
χ(rk)) is computationally indistinguishable from

the uniform distribution over (D,F)k.

In order for randomized weak-PRFs to be useful for cryptographic constructions,
the range F and the error distribution should have certain characteristics. For
example, the weak-PRFs would be of very little use if the error distribution χ
was just the uniform distribution over F. In this paper we will assume that the
additive group of the field F and the error distribution χ satisfy the following
three properties:

1. There exists a weight function ‖ · ‖ : F → R+ such that the additive group
that underlies the field F satisfies the triangle inequality – that is for all
a, b ∈ F, ‖a± b‖ ≤ ‖a‖+ ‖b‖. Additionally, ‖a‖ = 0 if and only if a = 0.

2. There exists a positive real τ ′ ∈ R such that Pre∼χ[‖e‖ ≤ τ ′] = 1− n−ω(1).3

3. For a positive real α, let β(α) = {z ∈ F : ‖z‖ ≤ α}. We will assume that
|β(2τ ′)|/|F| = n−ω(1).

The first property essentially makes sure that the randomness in the randomized
weak-PRF behaves “nicely” via the triangular inequality.4 The second property
determines the completeness of our protocol. Additionally, because of the way
our security proof works, the completeness of the protocol also plays a role in the
soundness of the protocol.5 Thus this value should be very close to 1. The third
property determines the soundness of the protocol. Intuitively, it is related to the
probability that an adversary can randomly guess a response and be accepted
by the verifier.

Due to their similarity, we will be presenting our authentication scheme and
its proof based on weak-PRFs together with the ones based on randomized
weak-PRFs. Since a weak-PRF is just a randomized weak-PRF whose error
distribution χ has its support entirely on 0, it’s easy to see that it can trivially
be made to satisfy the above three properties. We can define the weight function
as ‖x‖ = 1 for all x �= 0 and set τ ′ = 0. Thus for weak-PRFs we have Pre∼χ[‖e‖ ≤
τ ′] = 1 (and so the protocol will have perfect completeness) and |β(2τ ′)|/|F| =
|{0}|/|F| = 1/|F|.
3 More formally, τ ′ is a function of n, τ ′(n), but we will omit the n throughout the
paper.

4 Even though we are using the standard notation for “norm”, the weight function
‖ · ‖ is not quite a norm because it’s not true that for all integers α, α‖a‖ = ‖αa‖
(since we are working over a finite field).

5 This seems to be a common feature of protocols that have man-in-the-middle security
because the simulator replies to the adversary under the assumption that properly-
formed responses by the Tag are accepted by the Reader. Even though it is not
stated in [18,6], the soundness of their protocols also depends on their completeness
in exactly the same way as in this work.
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2.2 Randomized Weak-PRFs from the LPN Problem and Its
Variants

The classical decisional LPNn,τ assumption states that the uniform distribution
over Zn

2×Z2 is computationally-indistinguishable from the following distribution:
for a fixed randomly-chosen vector s ∈ Zn

2 , output (r, r · s+ e) where r is chosen
uniformly random from Zn

2 and e is a Bernoulli random variable that is 1 with
probability τ . By the hybrid argument, it is easy to see that if the fixed secret
is now a matrix S ∈ Zm×n

2 then the distribution (r, Sr + e), where r is chosen
as before and e is a vector each of whose coefficients is 1 with probability τ , is
also computationally-indistinguishable from the uniform distribution over Zn

2 ×
Zm
2 (with a loss of a factor m in the reduction). We now formulate this latter

statement in terms of the randomized weak-PRF notation from the previous
subsection.

Let Bermτ be a distribution over Zm
2 where every coordinate is independently

chosen to be 1 with probability τ and 0 with probability 1− τ .

Definition 2.4 (LPN). Let F : Zn
2 → Zm

2 be a function family indexed by
matrices S ∈ Zm×n

2 . For a function fS ∈ F and a vector r ∈ Zn
2 , define fS(r) :=

Sr. Then the LPNn,τ assumption implies that F is a randomized weak-PRF
family with noise Bermτ .

In the above definition, the domain D of F is Zn
2 . Because we insisted in Def-

inition 2.3 that the range of the function family F be a finite field (this will
be used in our protocol) and the LPN problem only requires an additive group
structure, we have some freedom as to how to define this field. The LPN as-
sumption requires the range to have the group structure (Zm

2 ,+), thus F can
be any finite field that has (Zm

2 ,+) as its underlying additive group. The most
natural definition is F = Z2[x]/(g(x)) where g(x) is a polynomial of degree m
that is irreducible over Z2, and addition and multiplication are just standard
polynomial addition and multiplications modulo 2 and g(x). Thus addition in
(F,+,×) exactly corresponds to addition in (Zm

2 ,+).
The randomized weak-PRF based on LPN can also quite naturally be made to

satisfy the three properties after Definition 2.3. The weight function ‖ · ‖ can be
defined to be the Hamming weight. That is, for any element a ∈ Zm

2 , ‖a‖ is the
number of 1’s in a. With this definition of the weight function, one can compute,
via the Chernoff bound, a τ ′ such that any element e chosen according to Bermτ
satisfies ‖e‖ ≤ τ ′ with overwhelming probability. To satisfy the third property,
we would need that |β(2τ ′)|/|F| = n−ω(1), which is equivalent to the condition

that

(
�2τ ′�∑
i=0

(
m
i

))
/2m = n−ω(1). The above conditions are identical to those in

other authentication protocols, such as [16,17,9], and so the LPN parameters
needed to make those schemes secure, also carry over to ours.

Because the LPN problem yields rather inefficient schemes, Gilbert et al. [9]
proposed protocols based on the hardness of the Toeplitz-LPN problem, which is
just like the LPN problem except that the secret matrix S is a Toeplitz matrix.
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Tag Adversary Reader

ri � ri + r′i �
ci + c′i� ci�

zi � zi + z′i �
replyi = accept/reject�

Fig. 1. Man-in-the-Middle Attack Model

Definition 2.5 (Toeplitz-LPN). Let F : Zn
2 → Zm

2 be a function family in-
dexed by Toeplitz matrices S ∈ Zm×n

2 . For a function fS ∈ F and a vector
r ∈ Zn

2 , define fS(r) := Sr. Then the Toeplitz-LPNn,τ assumption implies that
F is a randomized weak-PRF family with noise Bermτ .

Heyse et al. [13] recently introduced the Ring-LPN problem, which also results in
more efficient protocols. While the Ring-LPN problem has not been well-studied,
it does have some resemblance to the better-studied Ring-LWE problem [20] in
lattice cryptography, and so there are some reasons to believe that it might be
secure.

Definition 2.6 (Ring-LPN). Let g(x) be a polynomial of degree n in Z2[x]
irreducible over Z2 and define the field F to be F = Z2[x]/((g(x)). Let F : F → F
be a function family indexed by polynomials s ∈ F. For a function fs ∈ F and a
polynomial r ∈ F, define fs(r) := sr. Then the Ring-LPNn,τ assumption implies
that F is a randomized weak-PRF family with noise Bernτ .

2.3 Security Models

All authentication schemes are protocols in which the Tag and the Reader possess
some secret key sk and then perform an interaction in which the Tag must
convince the Reader of his identity. The difference in the security models depends
on the strength that we give the adversary. The three most natural security
models are passive, active, and man-in-the-middle. All three models consist of
two stages. In the first stage, depending on the model, the Adversary is allowed
to have some interaction with the Tag and the Reader. In the second stage, in
all three models, he loses the interaction with the Tag and must interact with
the Reader in hopes of getting the latter to accept the interaction.

Man-in-the-Middle Adversary. The strongest type of Adversary is one who in
the first stage is able to simultaneously interact with the Tag and the Reader and
make verification queries to the Reader. In the second stage, the Adversary loses
access to the Tag, and interacts with the Reader hoping to make the latter accept.
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In this paper, the protocols we will be constructing will be sigma protocols (i.e.
have three rounds usually referred to as commit, challenge, and response) and
will use a model that is simpler to describe and is at least as secure as the
man-in-the-middle one. We now describe the security game and the Adversary’s
condition for winning it:

Setup: Generate a secret key and give it to the Tag T and the Reader R.
Attack: Invoke the AdversaryA who has access to T andR and let him interact

with them t times. Each of the interactions is as follows (see Figure 1):
A receives a commitment ri from T and sends a commitment ri+r′i to R. R
responds with a challenge ci and A sends a challenge ci+ c′i to T . T answers
with a valid response zi. A can now send his response zi+ z′i for verification
to R. R answers with accept, if (ri + r′i,c

′
i,zi + z′i) is valid according to the

verification function, otherwise he answers with reject.

Winning Condition: We say that the Adversary A wins the game if at some
point he makes a query to R such that (r′i, c

′
i, z

′
i) �= (0, 0, 0) and the Reader

R sends reply = accept.

Notice that if there is an Adversary who can win the two stage Man-in-the-
Middle game (i.e. where he loses access to the Tag in the second stage and must
get the reader to accept), then he can also win the game described above since
he can simply ignore the messages sent by the Tag in the second stage. Thus
security in the model that we will be using in this paper implies security in the
“more natural” two stage model.

3 Construction Based on a (Randomized) Weak-PRF

In this section we present our main construction, an authentication protocol
secure against man-in-the-middle attacks from any weak-PRF or a randomized
weak-PRF that satisfies the three properties stated after Definition 2.3. The
protocol based on a weak-PRF is very similar to the one based on a randomized
weak-PRF, and so we present them together in Figure 2. The security proofs are
also very similar, and we also present them together in the next section.

The underlying building blocks of the protocol in Figure 2 are a pairwise-
independent function family H and a family F of randomized weak-PRFs with
noise χ. If F is a family of standard (non-randomized) weak-PRFs, then it’s the
same as a randomized weak-PRF with noise χ, where χ has all of its support
on 0 – thus for all f ∈ F , fχ(·) = f(·). The secret keys of the authentication
scheme are randomly chosen f ∈ F , h ∈ H, and s ∈ F. In the case that F is a
standard weak-PRF family, we do not need the extra key s, and in the protocol
we can assume that s = 1. In the case that F is a randomized weak-PRF family,
we assume that it satisfies the three properties after Definition 2.3. Thus there
is an associated weight function ‖ · ‖ and a value τ ′ such that the error e chosen
from χ satisfies ‖e‖ ≤ τ ′ with overwhelming probability.
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F : D → F (a randomized weak-PRF family with noise χ)
H : D → F (a pairwise-independent function family)

Keys: f
$← F , h

$← H, s
$← F

Tag Reader

r
$← D r �

c
$← F

c�
z ← fχ(r)s+ h(r)c

z �
Accept iff ‖f(r)− s−1 (z − h(r)c) ‖ ≤ τ ′

Fig. 2. Authentication Protocol Based on a (randomized) weak-PRF. If the
weak-PRF is not randomized, (i.e. the support of the distribution χ is 0 and τ ′ = 0),
then we can set s = 1. In this case, the condition ‖f(r)−s−1 (z − h(r)c) ‖ ≤ τ ′ simplifies
to f(r) = z − h(r)c.

In the first step of the protocol, the Tag picks a random element r ∈ D and
sends it to the Reader. The reader chooses a random c ∈ F and sends it to the
Tag. In its turn, the Tag evaluates fχ(r) and h(r), and sends z = fχ(r)s+h(r)c
back to the Reader, where all addition and multiplication operations take place
in the field F. In the case that F is a standard weak-PRF family, the response
of the Tag is simply z = f(r) + h(r)c. The Reader accepts the Tag if ‖f(r) −
s−1(z−h(r)c)‖ ≤ τ ′. In case of a standard weak-PRF family without noise, this
condition is equivalent to f(r) = z − h(r)c.

Example Instantiation. We now give an example instantiation of the protocol
using the LPNn,τ assumption from Definition 2.4. The noise distribution χ is
Bermτ and to choose the secret key f , a random S ∈ Zn×m

2 is picked and fχ(r) :=
Sr+e where e ∼ Bermτ . Thus f maps the domain Zn

2 to Zm
2 . As in the discussion

following Definition 2.4, the field F is defined to be Z2[x]/(g(x)) where g(x) is
any irreducible polynomial of degree m. The simplest definition of a pairwise
independent function family that maps Zn

2 to F is to index the family by two
polynomials in F. To pick a random element of the family, one randomly picks
a1, a2 ∈ F and defines h(r) = a1r+ a2, where r is treated like a polynomial in F
and multiplication and addition is performed over F.6 The final secret key is a
random polynomial s ∈ F. Thus the secret keys are (S, a1, a2, s).

In the protocol, the Tag chooses an r ∈ Zn
2 and sends it to the Reader, who

replies with a randomly-chosen c ∈ F. The Tag receives the c computes fχ(r) =
Sr+ e ∈ Zm

2 , and treats the result as a polynomial in F. He then multiplies it by
s and adds it to h(r)c = (a1r+ a2)c, and sends the resulting z = fχ(r)s+ h(r)c

6 To be able to treat r as an element of F, it is important that m ≥ n. If m < n,
then one can define the pairwise-independent function differently (e.g. h(r) = a1r1+
. . . akrk + ak+1), where r = r1| · · · |rk).
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to the Reader. The reader computes f(r) = Sr and s−1(z − h(r)c), and accepts
if the weight of f(r) − s−1(z − h(r)c) is less than or equal to τ ′.

Notice that the protocol would be exactly the same for the Toeplitz-LPNn,τ

problem, with the only difference being how S is defined. By having S be a
Toeplitz matrix, the key storage space shrinks from mn + 3m to n + 4m, and
the matrix-vector multiplication Sr can be computed more efficiently. The Ring-
LPNn,τ protocol would also work in essentially the same way. In this case, we set
m = n and have D = F. The secret key S will just be a random polynomial in F
just like s, a1, and a2. Thus Sr will simply be a multiplication of two polynomials
in the field F.

Lemma 3.1. The completeness of the authentication protocol is Pre∼χ[‖e‖ ≤ τ ′].
And in particular, if the weak-PRF is not randomized, the completeness is 1.

Proof. The Tag sets z ← fχ(r)s + h(r)c = (f(r) + e)s + h(r)c, where e ∼ χ.
Thus f(r) − s−1(z − h(r)c) = e, and so the Reader accepts whenever ‖f(r) −
s−1(z − h(r)c)‖ = ‖e‖ ≤ τ ′.

4 Security of the Authentication Scheme

Theorem 4.1 Suppose that the authentication protocol in Figure 2 has com-
pleteness κ and there is a man-in-the-middle adversary who successfully breaks
this scheme with probability ε while making at most qv verification queries. Then
there exists an algorithm which, in the same amount of time, has advantage
1
2

(
κqv−1 (ε/qv − 1/|F|)2 − β(2τ ′)/|F|

)
in breaking the (randomized) weak-PRF

assumption of the family F .

Proof. If an adversary making qv verification queries wins the game, then one of
these qv queries can be thought of as the “winning query”. By “winning query”,
we mean that it is the first accepted query such that (r′i, c

′
i, z

′
i) �= (0, 0, 0) (where

r′i, c
′
i, z

′
i are as in Figure 1). Once the Adversary sends such a query, he wins the

game. If the Adversary has an ε success probability of winning the MIM-game,
then by an averaging argument there must be some integer i∗ ≤ qv such that
the probability that the Adversary wins the game and query number i∗ is the
“winning query” is at least ε/qv. For the rest of the proof, we will assume that
we know this i∗ (which can be determined a priori by running the adversary on
known inputs.)

The Challenger gives us ordered pairs (ri, yi) ∈ D × F where the ri are uni-
formly random in D and the yi are either uniformly random in F or equal to
fχ(ri) (where f is a randomly-chosen function from the (randomized) weak-PRF
family F with noise χ). We will show how to use the adversary who breaks the
authentication protocol with the i∗th winning query to decide which of the two
distribution the Challenger is outputting.

Our security proof is most naturally divided into two cases. In the first case,
the adversary does not modify the ri∗ , in other words, (r′i∗ , c

′
i∗ , z

′
i∗) = (0, c′i∗ , z

′
i∗).

In the second case, the ri∗ is modified in the winning query. The manner in which
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Ch. Simulator (Tag) Adv. Simulator (Reader)

s
$← F, h

$← H
(ri, yi)� ri� ri + r′i�

ci
$← F

ci + c′i� ci�
zi ← yis+ h(ri)(ci + c′i)

zi� zi + z′i�
if (r′i, c

′
i, z

′
i) = (0, 0, 0)

then replyi ← “accept′′

else replyi ← “reject′′

replyi�

Fig. 3. Simulating the Tag and the Reader before the Adversary’s i∗th ver-
ification query. If the weak-PRF is not randomized, then we set the secret key s=1
instead of choosing it at random from F.

the simulator uses the Adversary’s winning query to respond to the challenger
differs based on whether r′i∗ is 0 or not. For the purposes of improved readability,
throughout the rest of the paper, we will drop the subscript i∗ from all variables
in the winning query. So for example, instead of writing r′i∗ , we simply write r′.

Answering the Challenger when r′ = 0. We first show how to simulate the
Tag and the Reader before the Adversary’s i∗th verification query (see Figure 3).
We pick a random s ∈ F and h ∈ H as the secret keys, and upon receiving a pair
(ri, yi) from the Challenger, we send ri to the Adversary. The Adversary can
then modify this and forward ri + r′i to the Reader. The Reader picks a random
ci ∈ F, sends it to the adversary, who then sends the possibly modified challenge
ci + c′i to the Tag. The Simulator playing as the Tag computes h(ri)(ci + c′i)
using his secret key h, and then uses the yi received from the challenger together
with his other secret key s, to send zi = yis+ h(ri)(ci + c′i). After receiving zi,
the Adversary may send zi + z′i to the verifier and make a verification query.

Notice that if the Challenger sends (ri, yi = fχ(ri)), then the responses of
the Tag are exactly what they should be if the secret key were (f, s, h). Thus
if (r′i, c

′
i, z

′
i) = (0, 0, 0), the Reader who always sends “accept” is correct with

probability κ (the completeness of the protocol). And if (r′i, c
′
i, z

′
i) �= (0, 0, 0),

the response of “reject” is also correct since the i∗th verification query has
not yet been reached. Because the simulator has faithfully simulated the valid
Tag and Reader up to this point with probability κqv−1, the Adversary’s i∗th
query will be the “winning one” (i.e. (r′, c′, z′) �= (0, 0, 0) and ‖f(r + r′) −
s−1 ((z + z′)− h(r + r′)c) ‖ ≤ τ ′) with probability κqv−1ε/qv. Additionally, be-
cause z = fχ(r)s+h(r)(c+ c′), we also have ‖f(r)− s−1(z−h(r)(c+ c′))‖ ≤ τ ′.
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Ch. Simulator (Tag) Adv. Simulator (Reader)

(r, y)� r� r�
c

$← F
c+ c′� c�

z ← ys+ h(r)(c+ c′)
z� z + z′�

if ‖s−1 (z′ + h(r)c′) ‖ ≤ 2τ ′

then reply ← “not random′′

else reply ← “random′′

reply�

Fig. 4. Answering the Challenger after the Adversary’s i∗th verification query if r′=0

Thus by the triangular inequality, we obtain ‖s−1 (z′ + h(r)c′) ‖ ≤ 2τ ′. If this
condition is satisfied, we respond to the challenger that the ordered pairs he was
sending were indeed of the form (ri, yi = fχ(ri)).

Lemma 4.1. If the challenger were sending valid pairs, i.e. (ri, yi = fχ(ri))
∀i, then ‖s−1 (z′ + h(r)c′) ‖ ≤ 2τ ′ should be satisfied with probability at least
κqv−1ε/qv.

On the other hand, if the Challenger were sending uniformly random pairs
(ri, yi) ∈ (D,F) then we will show that the adversary is not be able (except with a
negligible probability) to come up with (c′, z′) �= (0, 0) that satisfy the inequality
‖s−1 (z′ + h(r)c′) ‖ ≤ 2τ ′. Notice that if the yi are uniform and independent of
the ri, the secret keys h, s chosen by the simulator are information-theoretically
hidden throughout the interaction in Figure 3. Therefore the Adversary’s behav-
ior will be exactly the same as in the case where s and h are chosen after he sends
his i∗th query. In Lemma 4.2, we use this to show that even an all-powerful ad-
versary cannot produce a query z+ z′ such that ‖s−1(z′+h(r)c′)‖ ≤ 2τ ′, except
with probability β(2τ ′)/|F|.

Lemma 4.2. If the ordered pairs (ri, yi) sent by the challenger are uniformly
random in D × F, then the probability that even an all-powerful adversary can
output (c′, z′) �= (0, 0) such that ‖s−1 (z′ + h(r)c′) ‖ ≤ 2τ ′ is at most |β(2τ ′)|/|F|.

Proof. We first handle the case where f is a weak-PRF without any noise (i.e.
the support of the distribution χ is 0 and τ ′ = 0). In this case, the extra ran-
dom key s is not necessary in the protocol (i.e. s = 1) and so the condition
‖s−1 (z′ + h(r)c′) ‖ ≤ 2τ ′ becomes 0 = z′ + h(r)c′. Since y is uniformly ran-
dom in F and independent of everything else, the value z that the adversary
receives is also uniformly random and independent of the pairwise independent
hash function h. Thus the adversary will behave in the same way if the function



322 V. Lyubashevsky and D. Masny

h were chosen after the adversary chooses c′ and z′. Notice that the adversary
must set c′ �= 0 because otherwise z′ is also necessarily 0. Thus,

∀r ∈ D, z′ ∈ F, c′ ∈ F \ {0},Pr
h
[0 = z′ + h(r)c′] = Pr

h
[h(r) = −z′c′−1] = 1/|F|.

The proof for case where the support of χ is not restricted to 0 is similar, except
that it also uses the unpredictability of the key s. The full proof is given in the
full version. $%

Answering the Challenger When r′ 
= 0. We now deal with the case where
the Adversary’s winning query changes the randomness r to r + r′. Performing
the simulation until the i∗th query is exactly the same as before (i.e. see Figure
3). Similarly, if the Challenger sends (ri, yi = fχ(ri)), then the responses of the
Tag are exactly what they should be if the secret key were (f, s, h). And so, as
before, the Adversary’s i∗th query will be the “winning one” with probability
κqv−1ε/qv. The difference from the previous part lies in how we will use the
Adversary’s response in the i∗th query to respond to the challenger. Unlike
the previous case, we will now need to rewind the adversary and receive two
responses for the same value of r + r′ (see Figure 5). By the Reset Lemma [2,
Lemma 3.1], the adversary will respond correctly to two distinct challenges c0 and

c1 with probability κqv−1 (ε/qv − 1/|F|)2. If the Adversary successfully replies to
the two queries, then we have ‖f(r + r′)− s−1(z0 + z′0 − h(r + r′)c0)‖ ≤ τ ′ and
‖f(r + r′) − s−1(z1 + z′1 − h(r + r′)c1)‖ ≤ τ ′. Thus, by the triangle inequality,
we have the condition ‖s−1((z0 + z′0)− (z1 + z′1)− h(r + r′)(c0 − c1))‖ ≤ 2τ ′. If
this is satisfied, we reply to the challenger that the ordered pairs he was sending
were indeed of the form (ri, yi = fχ(ri)).

Lemma 4.3. If the Challenger were sending valid pairs, i.e. (ri, yi = fχ(ri))
∀i, then ‖s−1((z0 + z′0)− (z1 + z′1)−h(r+ r′)(c0 − c1))‖ ≤ 2τ ′ should be satisfied

with probability at least κqv−1 (ε/qv − 1/|F|)2.

On the other hand, if the Challenger were sending uniformly random pairs
(ri, yi) ∈ (D,F) then we will show that the adversary is not be able (except
with a negligible probability) to come up with (r′, c′, z′) where r′ �= 0 that sat-
isfy ‖s−1((z0 + z′0)− (z1 + z′1)−h(r+ r′)(c0 − c1))‖ ≤ 2τ ′. As before, notice that
if the yi are uniform and independent of the ri, the secret keys h, s chosen by
the simulator are information-theoretically hidden throughout the interaction in
Figure 3. Therefore the Adversary’s behavior will be exactly the same as in the
case where s and h are chosen after he outputs his i∗th query the first time.
When we rewind the Adversary, we also end up rewinding the left-hand side
of the simulator, which will end up revealing some information about h. But
we use the pairwise-independent property of h to show (in Lemma 4.4) that
even an all-powerful adversary still cannot produce a query z + z′ such that
‖s−1((z0 + z′0) − (z1 + z′1) − h(r + r′)(c0 − c1))‖ ≤ 2τ ′, except with probability
β(2τ ′)/|F|.
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Ch. Simulator (Tag) Adv. Simulator (Reader)

(r, y)� r� r + r′�
c0, c1

$← F
c0 + c′0� c0�

z0 ← ys+ h(r)(c0 + c′0)
z0� z0 + z′0�

c1 + c′1� c1�
z1 ← ys+ h(r)(c1 + c′1)

z1� z1 + z′1�
if ‖s−1((z0 + z′0)− (z1 + z′1)−

h(r + r′)(c0 − c1))‖ ≤ 2τ ′

then reply ← “not random′′

else reply ← “random′′

reply�

Fig. 5. Answering the Challenger after the Adversary’s i∗th verification query if r′ �=0

Lemma 4.4. If the ordered pairs (ri, yi) sent by the challenger are uniformly
random in D × F, and r′ �= 0, and c0 �= c1, then the probability that even an
all-powerful adversary can output z′0 and z′1 such that ‖s−1((z0 + z′0) − (z1 +
z′1)− h(r + r′)(c0 − c1))‖ ≤ 2τ ′ is at most |β(2τ ′)|/|F|.

Proof. For simplicity, we will define w = (z0 + z′0)− (z1 + z′1). The information
given to the adversary (in the two rewindings) by the simulator playing as the
tag is z0 = ys+h(r)(c0+c′0) and z1 = ys+h(r)(c1+c′1). This is exactly the same
as receiving z0 and z̃ = z0 − z1 = h(r)(c0 + c′0 − (c1 + c′1)). Notice that since z0
contains the term ys, the value of z0 is uniform and independent of the function
h. The value of z̃, on the other hand, does depend on h(r). So the behavior of
the adversary would be unchanged if we chose z0 uniformly at random, chose a
random element u for h(r) and set z̃ = h(r)(c0+c′0−(c1+c′1)), and then after the
adversary picks z′0, z

′
1, we finally choose h (conditioned on the already set value

of h(r)). Thus we have that ∀t ∈ β(2τ ′), c0 �= c1 ∈ F, r ∈ D, r′ �= 0, w, s, u ∈ F

Pr
h
[s−1(w − h(r + r′)(c0 − c1)) = t |h(r) = u] = Pr

h
[h(r + r′)

= (w − st)(c0 − c1)
−1 |h(r) = u] = 1/|F|

where (c0 − c1)
−1 exists since we assumed c0 �= c1 and the last equality is true

because h is a pairwise-independent function and r′ �= 0. $%

Combining Lemmas 4.1, 4.2, 4.3, and 4.4 gives the statement of Theorem 4.1. $%
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5 Discussion and Open Problems

In this work we presented a very efficient 3-round authentication scheme that
utilizes only one call to a (randomized) weak-PRF, and proved it secure against
sequential MIM attacks. The security proof can be extended to the scenario
where Adversary is allowed to concurrently interact with many copies of the
Reader (this will be shown in the full version of the paper). Another simple
extension is the conversion of the scheme into an interactive message authen-
tication scheme by sending r||μ in lieu of just r in the first round and setting
z ← fχ(r)s + h(r||μ)c in the third round, where μ is the message digest.

We believe that the most interesting (theoretical) question left open by our
work is to construct a MIM-secure authentication scheme that is secure in the
full concurrent setting (i.e. where the Adversary is also allowed to concurrently
interact with multiple provers). Such a scheme can be easily constructed by
first creating a PRF from a weak-PRF using O(n) calls to the weak-PRF. The
challenge is thus to construct such a scheme using just one, or even a constant
number, of (randomized) weak-PRF invocations.

Acknowledgements. We are very grateful to Eike Kiltz and Krzysztof Pietrzak
for numerous discussions pertaining to their work on the LPN problem. We
also thank Daniel Wichs and the other anonymous CRYPTO 2013 reviewers for
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Abstract. A natural measure for the amount of quantum information that a
physical system E holds about another system A = A1, ..., An is given by the
min-entropy Hmin(A|E). Specifically, the min-entropy measures the amount of
entanglement between E and A, and is the relevant measure when analyzing
a wide variety of problems ranging from randomness extraction in quantum
cryptography, decoupling used in channel coding, to physical processes such as
thermalization or the thermodynamic work cost (or gain) of erasing a quantum
system. As such, it is a central question to determine the behaviour of the min-
entropy after some process M is applied to the system A. Here we introduce a
new generic tool relating the resulting min-entropy to the original one, and apply
it to several settings of interest, including sampling of subsystems and measuring
in a randomly chosen basis. The results on random measurements yield new
high-order entropic uncertainty relations with which we prove the optimality
of cryptographic schemes in the bounded quantum storage model. This is an
abridged version of the paper; the full version containing all proofs and further
applications can be found in [13].

1 Introduction

A central task in quantum theory is to effectively quantify the amount of information
that some system E holds about some classical or quantum data A. For classical data,
i.e., A is a string Xn = X1, . . . , Xn, the min-entropyHmin(X

n|E) forms a particularly
relevant measure because it determines the length of a secure key that can be obtained
fromXn. This is the setting typically considered in quantum key distribution whereE is
some information that an adversary Eve has gathered during the course of the protocol,
and Xn is the so-called raw key. More precisely, the maximum number � of (almost)
random bits 1 that can be obtained from Xn that are both uniform and uncorrelated
from E obeys � ≈ Hmin(X

n|E), if E is classical [15] and quantum [25]. The process
by which such randomness is obtained is known as randomness extraction (see [30]
for a survey) or privacy amplification. Classically, a (strong) randomness extractor is
simply a set of functions F = {f : {0, 1}n → {0, 1}�} such that for almost all
functions f ∈ F , its output f(Xn) is close to uniform and uncorrelated from the

1 We restrict ourselves to bits in the introduction, however, all our results also apply to higher
dimensional alphabets.
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adversary, even if he learns which function was applied. That is, the output is of the
form ρF (X)EF ≈ id/2n � ρEF . A well known example of such a set F is a set of two-
universal hash functions which are used in quantum cryptography to turn a raw key Xn

into a secure key f(Xn). The min-entropy also has a very intuitive interpretation as it
can be expressed as Hmin(X

n|E) = − logPguess(X
n|E) where Pguess(X

n|E) is the
probability that the adversary manages to guess Xn maximized over all measurements
on E [16].

What can we say in the case of quantum data A? It turns out that the fully
quantum min-entropy Hmin(A|E) provides us with a similarly useful way to quantify
the amount of information that E holds about A. Its first significance is to quantum
cryptography where E is again held by an adversary. More specifically, it has been
shown that a quantum-to-classical extractor (QC-extractor) can produce exactly � ≈
Hmin(A|E) + log |A| classical bits which are uniform and uncorrelated from E [7].
Instead of applying functions to a classical string, a QC-extractor consists of a set of
projective measurements on A giving a classical string as a measurement outcome.
Such extractors form a useful tool in two-party quantum cryptography where one might
have an estimate of Hmin(A|E), but not of the min-entropy of any classical string Xn

produced from A. Thus Hmin(A|E) is directly related to the amount of cryptographic
randomness that can be produced from A.

It turns out that the fully quantum min-entropy also enjoys a very appealing
operational interpretation [16]. More precisely,

Hmin(A|E) = − log

(
|A| max

ΛE→Ā

F (ΦN
AĀ, idA � ΛE→Ā(ρAE))

2

)
, (1)

where F is the fidelity (see below) and ΦN
AĀ

is the normalized maximally entangled
state across A and Ā. That is, Hmin(A|E) measures how close ρAE can be brought to
the maximally entangled state by performing a quantum operation on E. Intuitively, this
quantifies how close the adversary E can bring himself to being quantumly maximally
correlated with A — exactly analogous to maximizing his classical correlations by
trying to guess Xn.

1.1 Results

Given the significance of the min-entropy in quantum information, it is a natural
question to ask how the min-entropy changes if we apply a quantum operation M to A.
More precisely, one might ask how Hmin(M(A)|E) relates to Hmin(A|E), for some
completely positive trace preserving map M. At present, we know that the min-entropy
satisfies Hmin(M(A)|E) � Hmin(A|E) if M is unital [27]. Can we make more refined
statements?

Of particular interest to us is the case where the quantum system consist of n qudits
An = A1, . . . , An. Our main result is to establish the following very general theorem
for maps M with the property that we can diagonalize ((M† ◦M)� idĀn)(ΦAnĀn) =∑

s∈{0,...,d2−1} λsΦs where An = A1, . . . , An, d = |Aj | is the dimension of one
of the individual qudits, ΦAnĀn is again the maximally entangled state, and {Φs}s
is a basis for the space An

� Ān consisting of maximally entangled vectors, and
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λs ≥ 0 are the corresponding eigenvalues (see Sections 2 and Section 3 for precise
definitions and statement of the theorem). In terms of the smooth min-entropy Hε

min,
which, loosely speaking, is equal to the min-entropy except with error probability ε,
our first contribution can be stated as

– Main result (Informal) For any partition of {0, . . . , d2 − 1}n = S+ ∪ S−
into subsets S+,S− we have 2−Hε

min(M(An)|E) �
∑

s∈S+
λs2

−Hmin(A
n|E) +

(maxs∈S− λs)d
n.

At first glance, our condition on the maps M may seem rather unintuitive and
indeed restrictive. Yet, it turns out that many interesting maps do indeed satisfy these
conditions, allowing us to establish the following results.

Entanglement Sampling. In the study of classical extractors, a goal was to construct
families of functions f that are locally computable [31]. That is, if our goal were to
extract only a very small number of key bits from a long string Xn of length n, one
might wonder whether this can be done efficiently in the sense that the functions f
depend only on a small number of bits of Xn. Classically, a very beautiful method to
answer this question is to show that the min-entropy can in fact be sampled [31,24].
That is, if we choose a subset S of the bits at random, then the min-entropy of the bits
XS in that subset S obeys

Hmin(XS |ES) � |S|R(Hmin(X
n|E)/n) , (2)

for some function R. The function R can be understood as a rate function that
determines the relation of the original min-entropy rate Hmin(X

n|E)
n to the min-entropy

rate on a subset S of the bits. In other words, min-entropy sampling says that if Xn is
hard to guess, then even given the choice of subset S it is tricky for the adversary to
guess XS . To see why this yields the desired functions f note that one way to construct
a randomness extractor would be to first pick a random subset S, and then apply an
arbitrary extractor to the much shorter bit string XS . In the classical literature, this is
known as the sample-then-extract approach [31].

Inspired by the classical results of Vadhan [31], it is a natural question whether there
exists QC-extractors which are efficient in the sense that the measurements M ∈ M
only act on a small number of qubits of An = A1, . . . , An. Or, even more generally,
whether there exist decoupling operations which depend on only very few qubits. As
before, one way to answer this question in generality is to show that even the fully
quantum min-entropy can be sampled.

– Entanglement sampling (Informal) For any quantum state ρAnE , i.e.,
Hε

min(AS |ES) � |S|R(Hmin(A
n|E)/n) for the rate function R plotted in Figure

1. See Theorem 2 for a precise statement.

It should be noted that even the case of standard min-entropy sampling of a classical
string Xn, but quantum side information E has proved challenging. The results of [4]
imply that sampling of classical strings is possible when the distribution over the strings
Xn is uniform (i.e., ρXnE = (1/2n)

∑
x∈{0,1}n |x〉〈x| � ρxE), and the size of E
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is bounded, and [18] has shown that sampling of blocks (but not individual bits) is
possible. This was later refined in [34] to show that bitwise sampling is also possible
(see Figure 1 for a comparison of the rate function). Very roughly, the techniques used
in [34] relate the adversary’s ability to guess the string Xn to his ability to guess the
XOR of bits in the string. Clearly, in the case of fully quantum An such techniques
cannot be used as it is indeed unclear what the XOR of qubits even means.

As this is the first result on entanglement sampling, it required entirely novel
techniques. More precisely, it inspired the even more general theorem sketched above,
from which entanglement sampling follows by choosing an appropriate map M. As a
byproduct, using the same techniques, we also obtain a stronger statement of sampling
a classical string Xn with respect to a quantum system E in the sense that the rate R is
improved (see Figure 1 for a comparison). What’s more, we are able to show an even
more precise statement in terms of the entropy H2(A

n|E)ρ - without any ε error terms.
Classically, this quantity is known as the (conditional) collision entropy. In general, it
is very closely related to the min-entropy, and in fact enjoys a very similar operational
interpretation. More specifically, it can be expressed in the same form as (1) where the
optimization over all quantum operations ΛE→Ān is replaced by the so-called pretty
good recovery map Λpg

E→Ān which is close to optimal [2].

Uncertainty Relations. Another consequence of our main result is a new uncertainty
relation with quantum side information for measurements of n qubitsAn = A1, . . . , An

in randomly chosen BB84 bases. Apart from the foundational consequences, such
relations have found applications in quantum cryptography (see e.g., [7]). Our result
establishes the first entropic uncertainty relation with quantum side-information that
uses a high-order entropy like the min-entropy and that is nontrivial as soon as the
system being measured is not maximally entangled with the observer E. In other
words, this shows a quantitative bound on the probability of successfully guessing the
measurement outcome that is nontrivial as soon as Hmin(A

n|E) > −n. 2

– High-order entropic uncertainty relation for BB84 bases If Xn is obtained by
measuring the system An in a random BB84 basis Θn, we have Hmin(X

n|EΘn) �
n · 1

2γ
(

Hmin(A
n|E)

n

)
, where the function γ is plotted in Figure 2. See Theorem 5

and Corollary 6 for precise statements.

We can also prove uncertainty relations for qudit-wise measurements in mutually
unbiased bases (see full version [13]). Again, these results follow from our very general
theorem sketched above, this time for a map M that represents randomly chosen
measurements.

Applications to the Noisy-Storage Model. Our new uncertainty relations have several
interesting applications to cryptography. The goal of two-party cryptography is to
enable Alice and Bob to solve tasks in cooperation even if they do not trust each other. A
classic example of such tasks are bit commitment and oblivious transfer. Unfortunately,
it has been shown that even using quantum communication, none of these tasks can

2 The fully quantum min-entropy can be negative up to Hmin(A
n|E) = −n if ρAnE is the

maximally entangled state.
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be implemented securely without making assumptions [22,19]. What makes such tasks
more difficult than quantum key distribution is that Alice and Bob cannot collaborate to
check on any eavesdropper. Instead, each party has to fend for itself.

Nevertheless, because two-party computation is such a central part of modern
cryptography, one is willing to make assumptions on how powerful an attacker can be in
order to implement them securely. Classically, such assumptions generally take the form
of computational assumptions, where we assume that a particular mathematical problem
cannot be solved in polynomial time. Here, we consider physical assumptions that can
enable us to solve such tasks. In particular, can the sole assumption of a limited storage
device lead to security [21]? This is indeed the case and it was shown that security can
be obtained if the attacker’s classical storage is limited [21,9]. Yet, apart from the fact
that classical storage is cheap and plentiful, assuming a limited classical storage has
one rather crucial caveat: If the honest players need to store n classical bits to execute
the protocol in the first place, any classical protocol can be broken if the attacker can
store more than roughly n2 bits [14]. Motivated by this unsatisfactory gap, it was thus
suggested to assume that the attacker’s quantum storage was bounded [5,10,11,12,8], or,
more generally, noisy [32,26,17]. The central assumption of the noisy-storage model is
that during waiting times Δt introduced in the protocol, the attacker can keep quantum
information only in his noisy quantum storage device; otherwise he is all-powerful (see
Section 4.4).

The assumption of bounded or noisy quantum storage offers significant advantages in
that the proposed protocols do not require any quantum storage at all to be implemented
by the honest parties. They are typically based on BB84 [17] or six-state [7] encodings,
and indeed the first implementation of a bit commitment protocol has recently been
performed experimentally [23]. So far it was known that there exist protocols that send
n qubits encoded in either the BB84 or six-state encoding, and that are secure as long as
the adversary can only store strictly less than n/2 or 2n/3 noise-free qubits respectively.

Using our new techniques, we are able to show security of the primitive called weak
string erasure [17] (see Section 4.4), which in turn can be supplemented with additional
classical or quantum communication to obtain primitives such as bit commitment.

– Application 1: Bounded storage There exists a weak string erasure protocol
transmitting n qubits that is secure as long as the adversary can store at most strictly
less than n−O(log2 n) qubits. The protocol does not require any quantum memory
to be executed, and merely requires simple quantum operations and measurements.
See Theorem 8 for a precise statement.

It should be noted that no such protocol can be secure as soon as the adversary can store
n qubits, so our result is essentially optimal. Our result highlights the sharp contrast
between the classical and the quantum bounded storage model and answers the main
open question in the BQSM. The noisy-storage model offers an advantage over the case
of bounded-storage not only for implementations using high-dimensional encodings
such as the infinite-dimensional states sent in continuous variable experiments, but
allows security even for arbitrarily large storage devices as long as the noise is large
enough. Essentially, the noisy-storage model captures our intuition that security should
be linked to how much information the adversary can store in his quantum memory.
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The first proofs linked security to the classical capacity [17], the entanglement cost [6]
and finally the quantum capacity [7]. The latter result used a protocol based on six-state
encodings and required the fidelity of the device to be exponentially small in the number
of qubits communicated during the protocol.

– Application 2: Noisy storage We prove that security in the noisy-storage model
is possible basically as soon as the fidelity of the storage device is smaller than
desired error parameter, which is best possible (see Section 4.4). Furthermore, we
link security of a BB84-based protocol to the quantum capacity of the adversary’s
storage device for the first time. See Theorem 7 for a precise statement.

2 Preliminaries

2.1 Basic Concepts and Notation

In quantum mechanics, a system such as Alice’s or Bob’s labs are described
mathematically by Hilbert spaces, denoted by A,B,C, . . .. Here, we follow the usual
convention in quantum cryptography and assume that all Hilbert spaces are finite-
dimensional. We write |A| for the dimension of A. A system of n qudits is also denoted
as An = A1, . . . , An, where we also use |A| to denote the dimension of one single qudit
in An. The set of linear operators on A is denoted by L(A), and we write Herm(A) and
Pos(A) for the set of hermitian and positive semidefinite operators on A respectively.
We denote the adjoint of an operator M by M †. A quantum state ρA is an operator
ρA ∈ S(A), where S(A) = {σA ∈ Pos(A) | Tr(σA) = 1}. We will often make
use of operator inequalities: whenever X,Y ∈ Herm(A), we write X � Y to mean
that Y − X ∈ Pos(A). A quantum operation is given by a completely positive map
M : L(A) → L(C). A map M is said to be completely positive if for any system B
and X ∈ Pos(A � B) we have (M � id)(X) � 0.

Throughout, we use the shorthand [d] = {0, 1, . . . , d − 1}. We will follow the
convention to use H to denote the unitary that takes the computational {|0〉, |1〉} to
the Hadamard basis: H |0〉 = 1√

2
(|0〉+ |1〉), H |1〉 = 1√

2
(|0〉 − |1〉). When considering

n qubits, we also use Hθn

= Hθ1 � · · · � Hθn for the unitary defining the basis
θn ∈ {0, 1}n.

2.2 Entropies

Next to its operational interpretation given in (1), the conditional min-entropy of a state
ρAB ∈ S(AB) can also be expressed as Hmin(A|B)ρ = maxσB∈S(B) Hmin(A|B)ρ|σ ,
with

Hmin(A|B)ρ|σ = max
{
λ ∈ R : 2−λ · idA � σB � ρAB

}
, (3)

where the symbol idA refers to the identity on A. We use the subscript ρ to emphasize
the state ρAB of which we evaluate the min-entropy. The smoothed version is defined
by Hε

min(A|B)ρ = maxρ̃AB∈Bε(ρAB) Hmin(A|B)ρ̃ , where Bε(ρ) is the set of states at
a distance at most ε from ρ. We use the purified distance as the distance measure [28].
We refer to [27] for a review of the properties of the min-entropy.
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It is simpler to state our results in terms of the related collision entropy defined for
any ρAB ∈ Pos(A � B) by

H2(A|B)ρ = − logTr

[(
ρ
−1/4
B ρABρ

−1/4
B

)2]
. (4)

We use relations between Hmin and H2 proved in the full version [13], in particular

Hε
min(A|B)ρ ≥ H2(A|B)ρ − log(2/ε2), (5)

and
Hmin(X |B)σ ≤ H2(X |B)σ ≤ 2Hmin(X |B)σ, (6)

for a classical-quantum state σXB . Finally, we use the binary entropy function h(x) =
−x log x− (1− x) log(1− x).

2.3 A Convenient Basis

Throughout, we make use of a very convenient basis of maximally entangled states for
the space A � Ā where Ā * A. The (unnormalized) maximally entangled state

|Φ〉AĀ =
∑
a

|a〉A � |a〉Ā (7)

will play an important role in our analysis. Here, the vectors |a〉 label the standard basis
of A. We use |ΦN 〉AĀ to denote the normalized version |ΦN 〉AĀ = 1√

|A|
|Φ〉AĀ. We

repeatedly use the following properties. For any operators X and Y acting on A, we
have

Tr[XY ] = Tr[X � +(Y )ΦAĀ] (8)

where + denotes the transpose map in the standard basis and ΦAĀ = |Φ〉〈Φ|AĀ.
Moreover, if X : A → C is a linear operator from A to C we have

(X � idĀ)|Φ〉AĀ = (idC � +(X))|Φ〉CC̄ . (9)

Using (8) and (9) one can naturally construct an orthogonal basis of AĀ by applying
unitary transformations to |Φ〉 that are orthogonal with respect to the Hilbert-Schmidt
inner product. Define for s ∈ [|A|2], |Φs〉 = (Ws � id)|Φ〉AĀ where Ws denote the
generalized Pauli operators (see e.g., [1]), sometimes also called Weyl operators. In
fact, all our results would hold for any unitary operators Ws that are orthogonal with
respect to the Hilbert-Schmidt inner product. We again use Φs = |Φs〉〈Φs|.

In particular for |A| = 2, W0,W1,W2,W3 are the Pauli operators id, X, Y, Z
respectively, and we obtain the well-known Bell basis.

For n > 0, we will denote by An the system
⊗n

i=1 Ai, where each Ai is a copy
of A. Furthermore, if S ⊆ {1, . . . , n}, we write AS to denote

⊗
i∈S Ai. In other

words, An consists of n copies of the system A, and AS contains the copies that
correspond to indices in S. In such a setting the dimension of the system A is denoted
d. We can naturally define for s ∈ [d2]n, |Φs〉 = �

n
i=1|Φsi〉AiĀi

. We then have
that { 1√

dn
|Φs〉}s is an orthonormal basis of AnĀn. For such strings s, we denote

supp(s) = {i ∈ {1, . . . , n} : si �= 0} and |s| = |supp(s)|.
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3 Evolution of H2 under General Maps

In this section, we derive constraints on the evolution of the conditional collision
entropy H2 when the system An undergoes some transformation described by a
completely positive map M. Our results on entanglement sampling and uncertainty
relations are obtained by evaluating this bound for particular channels M. A statement
for the smooth min-entropy follows directly by applying inequality (5).

Theorem 1. Let MAn→C be a completely positive map such that ((M† ◦ M)An �

idĀn)(ΦAnĀn) =
∑

s∈[d2]n λsΦs and let ρAnE ∈ S(AnE) be a state, where
An = A1, . . . , An is comprised of n qudits of dimension d. Then for any partition
[d2]n = S+ ∪S− into subsets S+ and S−, we have

2−H2(C|E)M(ρ) �
∑
s∈S+

λs2
−H2(A

n|E)ρ + (max
s∈S−

λs)d
n. (10)

The maps M of interest typically have some symmetry. For example, if the map M is
invariant under permutations of the n systems A1, . . . , An, then the coefficients λs only
depend on the type of s, i.e., the number of times each symbol in [d2] occurs in s. For
example, for the entropy sampling result (Theorem 2), the map M is such that λs only
depends on the weight |s| = |{i ∈ [n] : si �= 0}|.

Proof. Let ρ̃AnE = ρ
−1/4
E ρAnEρ

−1/4
E , and let ρ̂AnĀn = TrEĒ [(ρ̃AnE �

+(ρ̃ĀnĒ))ΦEĒ ]. Note that ρ̂AnĀn ≥ 0 and Tr[ρ̂AnĀn ] = Tr[ρ̃2E ] = 1. Furthermore,
define M̄ as M̄(X) = +(M(+(X))) for all X . Our first goal is to rewrite H2(C|E)σ
in terms of the basis {Φs}s. We obtain from (8)

2−H2(C|E)σ = Tr[M(ρ̃AnE)
2]

= Tr[(M(ρ̃AnE) � +(M(ρ̃ĀnĒ)))ΦCC̄ � ΦEĒ ]

= Tr[(M(ρ̃AnE) � M̄(+(ρ̃ĀnĒ)))ΦCC̄ � ΦEĒ ]

= Tr[(ρ̃AnE � +(ρ̃ĀnĒ))((M†) � (M̄†))(ΦCC̄) � ΦEĒ ].

Now by writing a Kraus representation M(X) =
∑

i KiXK†
i with operators Ki :

A → C and using (9), we see that (idC � M̄†)(ΦCC̄) = (MAn→C � idĀn)(ΦAnĀn).
Thus, we obtain using the definition of ρ̂AnĀn and the condition on M

2−H2(C|E)σ = Tr[(ρ̃AnE � +(ρ̃ĀnĒ))((M† ◦M) � idĀn)(ΦAnĀn) � ΦEĒ ]

= Tr[ρ̂AnĀn((M† ◦M) � idĀn)(ΦAnĀn)]

=
∑

s∈[d2]n

λs Tr[ρ̂AnĀnΦs]. (11)

We prove the two key constraints on the terms Tr[ρ̂AnĀnΦs] we will be using. First,
we have a global constraint. Note that the set of vectors { 1√

dn
|Φs〉}s∈[d2]n forms an

orthonormal basis and thus idAnĀn = 1
dn

∑
s∈[d2]n Φs. This yields∑

s∈[d2]n

Tr[ρ̂AnĀnΦs] = dn Tr[ρ̂AnĀn ] = dn. (12)
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The second observation concerns the individual terms Tr[ρ̂AnĀnΦs]. For any s,

Tr[ρ̂AnĀnΦs] = Tr[ρ̂AnĀn(Ws � idĀn)ΦAnĀn(W †
s � idĀn)]

= Tr[
(
W †

s ρ̃AnEWs � +(ρ̃ĀnĒ)
)
ΦAnĀn � ΦEĒ ]

= Tr[W †
s ρ̃AnEWsρ̃AnE)]

� Tr[ρ̃2AnE ] = 2−H2(A
n|E)ρ ,

using the Cauchy-Schwarz inequality in the form Tr[XY ] ≤
√
Tr[X2] Tr[Y 2] with

X = W †
s ρ̃AnEWs and Y = ρ̃AnE . Also, observe that the positivity of ρ̂AnĀn implies

that Tr[ρ̂AnĀnΦs] = 〈Φs|ρ̂AnĀn |Φs〉 � 0. Thus, we have

0 � Tr[ρ̂AnĀnΦs] � 2−H2(A
n|E)ρ . (13)

Applying inequalities (12) and (13) to (11), we obtain the desired result.

4 Applications

We now derive several interesting consequences of Theorem 1. All of these follow by
making an appropriate choice for the map M.

4.1 Quantum-Quantum Min-entropy Sampling

We now state our results on entanglement sampling. The theorem below deals with
the following scenario: we have n qudits and we choose a subset of them of size k
uniformly at random. We have a lower bound on the collision entropy of the whole
state conditioned on some quantum side-information E; the theorem then gives a lower
bound on the conditional collision entropy of the sample. The rate function obtained
is plotted in Figure 1. The same figure also shows plots of classical-quantum sampling
results that are discussed in Section 4.2.

Theorem 2. Let ρAnE ∈ S(AnE) and 1 � k � n, let d = |A| be the dimension of a
single system, and let h2 :=

H2(A
n|E)ρ
n . Then, we have for n > d2

2−H2(AS |ES)ρ = ES⊆[n],|S|=k2
−H2(AS |E)ρ � 2−kRd(h2)+log(n2+1), (14)

where Rd(·) is the rate function defined as Rd(x) := − log(d − df−1
d (x)), and

fd(x) := h(x) + x log(d2 − 1)− log d. Using (5), we have for any ε ∈ [0, 1)

Hε
min(AS |ES)ρ � kRd(hmin)− log(n2 + 1)− log

2

ε2
, (15)

where hmin :=
Hmin(A

n|E)ρ
n .

Proof. We now prove (14) by applying Theorem 1 for an appropriately chosen map
M. Naturally, M will (up to normalization) select a random subset S and discard all
the qubits of the input except the ones in S. More formally, define MAn→AkS(X) =
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Fig. 1. Plot of our quantum-quantum rate function R2(h2) from Theorem 2 ( ), our classical-
quantum rate function C2(h2) from Theorem 4 ( ), Wullschleger’s min-entropy sampling
result [34, Corollary 1] ( ), Vadhan’s purely classical min-entropy sampling results [31,
Lemma 6.2] ( ), and the classical and quantum upper bounds we get from a state that is
uniform on strings of a fixed type analyzed in the full version [13] ( , ). As Vadhan’s result
requires a choice of parameters we chose τ = 0.1, which yields a lower bound on the smooth
min-entropy, with smoothing parameter of the order of 10−6 for a block size of n = 10000.

1√
(nk)

∑
S⊆[n],|S|=k TrSc [X ] � |S〉〈S|, for X ∈ L(An), where the second register

contains a classical description of the set S, and Sc denotes the complement of S in
[n]. The reason for this normalization will be clear in the following calculation. Our
first task is to relate this map to H2(AS |ES)ρ. A simple calculation reveals that

2−H2(A
kS|E)M(ρ) = ES⊆[n],|S|=k Tr

[(
ρ
−1/4
E ρASEρ

−1/4
E

)2]
= 2−H2(AS|ES)ρ .

Our second task is to show that our choice of M satisfies the conditions of
Theorem 1. We have

((M† ◦M) � idĀn)(ΦAnĀn) = M†

⎛⎝ 1√(
n
k

) ∑
|S|=k

|S〉〈S| � ΦASĀS
� idĀSc

⎞⎠
=

1(
n
k

) ∑
|S|=k

ΦASĀS
� idAScĀSc .
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We now write this operator in terms of {Φs}s∈[d2]n . Recall that { 1√
dn

|Φs〉}s forms an

orthonormal basis and thus idAnĀn = 1
dn

∑
s∈[d2]n Φs:

((M† ◦M) � idĀn)(ΦAnĀn) =
1

dn−k
(
n
k

) ∑
|S|=k

∑
s:supp(s)⊆Sc

Φs

=
1

dn−k
(
n
k

) ∑
s:|s|�n−k

(
n− |s|

k

)
Φs.

As a result, the coefficients λs from Theorem 1 are λs =
(n−|s|

k )
dn−k(nk)

. Observe that λs only

depends on |s| and is a decreasing function of |s|. In order to apply Theorem 1, it is
natural to choose the partition S+ ∪S− of the form S+ = {s ∈ [d2]n : |s| � �0} and
S− = {s ∈ [d2]n : |s| > �0} for a value of �0 ∈ {0, . . . , n} to be chosen as a function
of h2.

Writing equation (10) in our case we obtain,

2−H2(AS |ES)ρ �
�0∑
�=0

(
n−�
k

)
dn−k

(
n
k

)(n
�

)
(d2 − 1)�2−h2n +

(
n−�0−1

k

)(
n
k

) dk

=
2−h2n

dn−k

�0∑
�=0

(
n− k

�

)
(d2 − 1)� +

(
n−�0−1

k

)(
n
k

) dk. (16)

Now all that remains is to optimize over �0 and to find a simple expression for this
quantity. Before choosing �0, we simplify the expression above. For the second term,
we bound (

n−�0−1
k

)(
n
k

) dk �
(
n− �0 − 1

n

)k

dk.

To obtain a simple bound on the first term, we use the following lemma whose proof
can be found in the appendix of the full version [13].

Lemma 3. For any �0 ∈ {0, . . . , n} such that �0 � d2−1
d2 n where d2 < n, we have

�0∑
�=0

(
n− k

�

)
(d2 − 1)� � n2

(
n

�0

)
(d2 − 1)�0max

(
n− �0 − 1

n
,
1

d2

)k

.

It then follows from equation (16) that

2−H2(AS |ES)ρ � max

(
n− �0 − 1

n
,
1

d2

)k

dk
(
2−h2n

dn
n2

(
n

�0

)
(d2 − 1)�0 + 1

)
.

We now determine the value of �0 as a function of h2. Observe that using properties
of binomial coefficients, we have

(
n
�

)
(d2 − 1)� � 2nh(�0/n)(d2 − 1)�0 = 2nfd(�0/n)dn

provided �0 � d2−1
d2 n. We define �0 to be the largest integer that is at most d2−1

d2 n such
that fd(�0/n) � h2. As a result, we have

2−H2(AS |ES)ρ � max

(
n− �0 − 1

n
,
1

d2

)k

dk
(
n2 + 1

)
. (17)
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Observe also that in the case where the maximum is 1/d2, the result follows directly
as Rd(h2) ≤ log d. In the case where (n − �0 − 1)/n > 1/d2, we observe that
(�0 + 1)/n > f−1

d (h2) by our choice of �0. Note that if �0 + 1 � (d2 − 1)/d2 · n,
this follows from the fact that fd is nondecreasing, and otherwise it follows from the
fact that by definition f−1

d is always upper bounded by (d2 − 1)/d2. We now write(
n−�0−1

n

)k
in terms of the entropy rate h2:

k log

(
n− �0 − 1

n

)
= k log

(
1− �0 + 1

n

)
� k log(1− f−1

d (h2))

= k log(d− df−1
d (h2))− k log d

= −kRd(h2)− k log d.

By plugging these inequalities into (17), we obtain the desired result.

4.2 Classical-Quantum Min-entropy Sampling

Statement. Observe that in the case where the system An is classical, i.e., ρAnE =∑
xn∈[d]n p(xn)|xn〉〈xn|�ρE(x

n) for some distribution p and states ρE(xn), Theorem
2 can still be applied but in many cases it gives trivial bounds. In fact, when An is
classical, we have H2(A

n|E) � 0 as well as H2(AS |ES) � 0. In order to improve on
the lower bound of Theorem 2 in the case of a classical system, we can apply Theorem
1 to a more specific map M that measures the systems AS that are sampled. This allows
us to obtain a lower bound on the collision entropy H2(AS |ES) that is nontrivial for
the entire range H2(A

n|E) ∈ [0, n log d].

Theorem 4. Let ρAnE be a classical-quantum state, and 1 � k � n, let d = |A|, and

let h2 :=
H2(A

n|E)ρ
n . Then, for any n > d,

2−H2(AS |ES)ρ = ES⊆[n],|S|=k2
−H2(AS |E)ρ � 2−kCd(h2)+log(n2+1),

where Cd(·) is the rate function defined as Cd(α) := − log(1− c−1
d (α)), and cd(α) :=

h(α) + α log(d− 1).

4.3 High-Order Uncertainty Relations against Quantum Side-Information

Uncertainty relations play a fundamental role in quantum information and in particular
in quantum cryptography. Many of the modern security proofs for quantum key
distribution are based on an uncertainty relation (see, e.g. [29]). They are also at
the heart of security proofs in the bounded quantum storage model [11,10,7]. An
uncertainty relation is a statement about a guaranteed uncertainty in the outcome of
a measurement in a randomly chosen basis. We refer the reader to [33] for a survey on
uncertainty relations.
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Uncertainty Relation for BB84 Measurements. Here we consider a system An

of n qubits. Then we measure each one of these qubits in either the standard basis
(labeled 0 with vector |0〉, |1〉) or the Hadamard basis (labeled 1 with vectors |+〉 =
(|0〉+ |1〉)/

√
2, |−〉 = (|0〉 − |1〉)/

√
2). More precisely, choose a random vector

Θn ∈ {0, 1}n and measure qubit i in the basis specified by the i-th component
of Θn = Θ1, . . . , Θn. Call the outcome Xi. An uncertainty relation is a statement
about the amount of uncertainty in the random variable Xn = X1, . . . , Xn given
the knowledge of the basis choice Θn. The uncertainty is often measured in terms of
the Shannon entropy. However, for the applications we consider here, the measure of
uncertainty needs to be stronger, i.e., we should use a higher order entropy like Hmin or
H2. Such an uncertainty relation has been established in [10]:

Hε
min(X

n|Θn) � n/2. (18)

The way this uncertainty relation was used in the context of the bounded storage model
was to apply a chain rule to (18) to obtain Hε

min(X
n|EΘn) � n/2 − log |E|. There

are two reasons for this inequality to be unsatisfactory: it depends on the dimension
of E rather than on the correlations between An and E, and it becomes trivial when
H2(A

n|E) < −n/2 as this implies log |E| > n/2. An uncertainty relation for
measurements in the six-state bases that depends on H2(A

n|E) was established in [7],
but it also becomes trivial when H2(A

n|E) < −0.586n.
It is simple to see that if the system An is maximally entangled with some system

E, then the outcome Xn of this measurement can be perfectly predicted by having
access to E. In other words, if the conditional entropy H2(A

n|E) = −n, then Xn can
be correctly guessed with probability 1. The following theorem provides a converse: if
H2(A

n|E) � −(1− ε)n for ε > 0, then Xn cannot be guessed with probability better
than 2−nδ(ε) with δ(ε) > 0 whenever ε > 0.

Theorem 5. Let ρAnE ∈ S(AnE) where An is an n-qubit space and define h2 =
H2(A

n|E)ρ
n . Then we have

H2(X
n|EΘn)ρ � nγ(h2)− 1

where ρXnEΘn = 1
2n

∑
xn∈{0,1}n,θn∈{0,1}n |xn〉〈xn|〈xn|Hθn

ρAnEH
θn |xn〉 �

|θn〉〈θn| is the state obtained when system An is measured in the basis defined in the
register Θn and the function γ (plot in Figure 2) is defined by γ(h2) = h2 if h2 ≥ 1/2
and γ(h2) = g−1(h2) if h2 < 1/2 with g(α) = h(α) + α− 1.

Proof. We apply Theorem 1 with MAn→XnΘn = N�n where N (ρ) =
1√
2

∑
x∈{0,1},θ∈{0,1} |θ〉〈θ| � |x〉〈x|〈x|HθρHθ|x〉. We have

2−H2(X
nΘn|E)M(ρ) = Tr

[(
ρ
−1/4
E (N�n

� id)(ρAnE)ρ
−1/4
E

)2
]

=
1

2n

∑
θn∈{0,1}n

Tr

⎡
⎣
⎛
⎝ρ

−1/4
E

∑
xn∈{0,1}n

|θn〉〈θn| � |xn〉〈xn|〈xn|HθnρHθn |xn〉ρ−1/4
E

⎞
⎠

2⎤
⎦

= 2−H2(X
n|EΘn)ρ .
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Fig. 2. Plot of the function γ(h2) ( ) from Theorem 5 giving a lower bound on the uncertainty
of the outcome of BB84 measurement as a function of the entropy rate h2 of the state
being measured. For comparison, we also plot the uncertainty rate function proved in [7] for
measurements in the six-state bases ( ).

We then evaluate the state (N † ◦ N � id)(Φ) = 1
2

(
Φ0 +

1
2Φ1 +

1
2Φ3

)
, where

Φi are defined Section 2.3. In the notation of Theorem 1, we have for the map M
and for s ∈ {0, 1, 3}n, λs = 1

2n · 1
2|s| . For s /∈ {0, 1, 3}n, λs = 0. As a result,

when applying Theorem 1, it is natural to choose the partition S+ ∪ S− of the form
S+ = {s ∈ [d2]n : |s| � �0} and S− = {s ∈ [d2]n : |s| > �0} for a value of
�0 ∈ {0, . . . , n} to be chosen as a function of h2. We obtain for any �0

2−H2(X
n|EΘn)ρ �

�0∑
�=0

(
n

�

)
2−h2n−n + 2−�0−1δ�0≤n−1 , (19)

where δ�0≤n−1 = 1 if �0 ≤ n − 1 and 0 if �0 = n. If h2 � 1/2, let �0 = n, in which
case we obtain a bound of 2−H2(X

n|EΘn)ρ � 2−h2n.
If h2 < 1/2, then we are going to choose �0 � n/2. Define the function g(α) =

h(α) + α− 1 and let α0 � 1/2 be such that g(α0) = h2. We then choose �0 = �α0n�.
As a result,

�0∑
�=0

(
n

�

)
2−h2n−n � 2n(h(�0/n)−h2−1)

� 2n(h(α0)−h2−1) = 2n(−α0+1+h2−h2−1) = 2−α0n.

In addition, we have 2−�0−1 � 2−α0n. Using these bounds in (19), we obtain in this
case 2−H2(X

n|EΘn)ρ � 2−α0n+1. Taking the logarithm leads to the desired result.

The following corollary expresses the uncertainty relation described in Theorem 5
in terms of min-entropies, which will be more convenient for the cryptographic
applications.
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Corollary 6. Using the same notation as in Theorem 5, we have

Hmin(X
n|EΘn)ρ � 1

2
(nγ(hmin)− 1), (20)

where hmin =
Hmin(A

n|E)ρ
n . Moreover, for any ε ∈ (0, 1], we have Hε

min(X
n|EΘn)ρ �

nγ(hmin)− 1− log 2
ε2 .

4.4 Security in the Noisy-Storage Model

General Noisy Storage Model. We now use our new uncertainty relations to prove
that the primitive weak string erasure can be secure as soon as one of the parties has
a memory that cannot reliably store n qubits. In weak string erasure, the objective is
to generate a string Xn such that Alice holds Xn and Bob holds a random subset
I ⊆ [n] and the bits XI of Xn corresponding to the indices in I . Randomly chosen
here means that each index i ∈ [n] has probability 1/2 of being in I . The security
criterion is that at the end of the protocol, a cheating Bob should have a state satisfying
Hmin(X

n|B) � λn where B represents Bob’s system, and a cheating Alice should not
learn anything about I . To summarize all relevant parameters, we speak of an (n, λ)-
WSE scheme and refer to [17] for a definition. 3 It is proved in [17] that bit commitment
can be implemented using weak string erasure and classical communication.

Protocol. The protocol we use here is the same as the one of [17]. Alice prepares
a random string Xn ∈ {0, 1}n and encodes each bit Xi in either the standard basis
Θi = 0 or the Hadamard basis Θi = 1, each with probability 1/2. Then Bob measures
these qubits in randomly chosen bases Θ′

i. After the waiting time, Alice reveals both
Xn and Θn. The set I is defined by I = {i : Θi = Θ′

i}. For a more detailed description
of the protocol, we refer the reader to [17].

To state the result, we first define the notion of channel fidelity introduced by [3]
which is perhaps the most widely used quantity to measure how good a channel is at
sending quantum information. For a channel N : S(Q) → S(Q′), the channel fidelity
Fc quantifies how well N preserves entanglement with a reference:

Fc(N ) = F (ΦN
Q′A, [N � idA] (Φ

N
QA)), (21)

where ΦN
QA is a normalized maximally entangled state. For example, one way of

defining the (one-shot) quantum capacity with free classical forward communication of
a channel FB→C is by the maximum of log |Q| over all encodings E : S(Q) → S(B �

M) and decodings D : S(C �M) → S(Q′) such that Fc(D ◦ (F � idM ) ◦ E) � 1− ε
for small enough ε. Here idM refers to a noiseless classical channel.

The following theorem states that as soon as the storage device of Bob cannot send
quantum information with reliability better than η, then we can perform two-party
computation securely provided η � 2−c(log2 n+logn log(1/ε)) for some large enough
constant c. Previously, this was only known when η < 2−(2−log 3)n [7]. Before that,
security was analyzed in terms of other more specific quantities like the ability of the
storage device to transmit classical information [17], or to simulate noiseless quantum

3 Note that the original definition includes a security error ε, which in our case is ε = 0.
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channels [6]. As the ability to transmit quantum information is a stronger requirement,
the results we prove here apply to more general settings and give better bounds.

Theorem 7. Let Bob’s storage device be given by F : S(Hin) → S(B), and let
η ∈ (0, 1). Assume that we have

max
D,E

Fc(D ◦ (F � idM ) ◦ E)2 � η (22)

where the maximum is over all quantum channels E : S
(
(C2)�n

)
→ S(Hin �M) and

D : S(B � M) → S((C2)�n).
Then, the protocol described above implements a (n, λ)-WSE for

λ =
1

2

(
γ (−1 + log(1/η)/n)− 1

n

)
.

Proof. The proof of correctness of the protocol, and security against dishonest Alice
is identical to [17] and does not lead to any error terms. For the security against
dishonest Bob, it is convenient to imagine a purification of the protocol, in which
Alice prepares n EPR pairs ΦN

AnQ, where she sends Q to Bob and later measures her
n qubits An in randomly chosen BB84 bases. Bob’s general attack can be modeled
as performing some encoding on Q and obtaining some classical output M together
with a quantum output that has to be stored in the device described by F . The output
of this device is denoted B. We use the uncertainty relation in Equation (20), with
E = BMΘn on ρAnBMΘn . In order to do that, we first derive a lower bound on
hmin =

Hmin(A
n|BMΘn)ρ
n . Note that because Θn is independent of AnBM , we have

Hmin(A
n|BMΘn)ρ = Hmin(A

n|BM)ρ. We now use Condition (22) to obtain a
lower bound on Hmin(A

n|BM). In fact, we use an operational interpretation of the
conditional min-entropy due to [16]:

Hmin(A
n|BM)ρ = − log |An| max

ΛBM→Ān

F (ΦN
AnĀn , idAn � Λ(ρAnBM ))2 , (23)

where ΦN
AnĀn is the normalized maximally entangled state across AnĀn. That is,

the min-entropy is directly related to the “amount” of entanglement between An and
BM . The map Λ in (23) can be understood as a decoding attack D aiming to restore
entanglement with Alice.

Further, note that the expression in (23) is the same as

max
D,E

F
(
ΦN
AnB, idAn �

[
D ◦ (F � idM ) ◦ E

]
(ΦN

AnQ)
)
= max

D,E
Fc(D◦(F� idM )◦E) .

By the assumption on the storage device F , we obtain that for any encoding E and
decoding D attack of Bob

Hmin(A
n|BM)ρ � − log 2nFc(D ◦ (F � idM ) ◦ E)2 � − (n− log(1/η)) .

Then, using the uncertainty relation (20), we obtain Hmin(X
n|BMΘn)ρ ≥

1
2 (nγ (−1 + log(1/η)/n)− 1), which proves the desired result.
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Special Case: Bounded Storage Model. The next theorem simply states the result in
the important special case of the bounded storage model.

Theorem 8 (WSE in the bounded storage model). If Alice has q qubits of quantum
memory then the protocol described in the previous section implements (n, λ)-WSE
with λ = 1

2

(
γ(−q/n)− 1

n

)
.

Previously, in this case, security was only proven when q < 2n
3 [20] with a variant

of this protocol that uses a six-state encoding. Using simple estimates for the function
γ, the previous theorem shows that q < n − c log2 n for some large enough c would
be sufficient to perform WSE securely. Using the construction of [17], this leads to a
secure bit commitment provided q < n − c log2 n − c logn log(1/ε) for some large
enough constant c and where ε is the failure probability.
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Abstract. A one-time program is a hypothetical device by which a user
may evaluate a circuit on exactly one input of his choice, before the device
self-destructs. One-time programs cannot be achieved by software alone,
as any software can be copied and re-run. However, it is known that
every circuit can be compiled into a one-time program using a very basic
hypothetical hardware device called a one-time memory. At first glance it
may seem that quantum information, which cannot be copied, might also
allow for one-time programs. But it is not hard to see that this intuition is
false: one-time programs for classical or quantum circuits based solely on
quantum information do not exist, even with computational assumptions.

This observation raises the question, “what assumptions are required
to achieve one-time programs for quantum circuits?” Our main result is
that any quantum circuit can be compiled into a one-time program as-
suming only the same basic one-time memory devices used for classical
circuits. Moreover, these quantum one-time programs achieve statistical
universal composability (UC-security) against any malicious user. Our
construction employs methods for computation on authenticated quan-
tum data, and we present a new quantum authentication scheme called
the trap scheme for this purpose. As a corollary, we establish UC-security
of a recent protocol for delegated quantum computation.

1 Introduction

A one-time program (OTP) for a function f , as introduced by Goldwasser, Kalai,
and Rothblum [1], is a cryptographic primitive by which a user may evaluate f
on only one input chosen by the user at run time. (See also Refs. [2,3] for sub-
sequent improvements.) No adversary, after evaluating the one-time program
on x, should be able to learn anything about f(x′) for any x′ �= x beyond what
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can be inferred from f(x). One-time programs cannot be achieved by software
alone, as any classical software can be re-run. Thus, any hope of achieving any
one-time property must necessarily rely on an additional assumptions such as
secure hardware or quantum mechanics: computational assumptions alone do
not suffice.

Classically, it has been shown [1,2,3] how to construct a one-time program for
any function f using a hypothetical hardware device called a one-time memory
(OTM). An OTM is non-interactive idealization of oblivious transfer: it stores
two secret strings (or bits) s0, s1; a receiver can specify a bit c, obtain sc, and
then the OTM self-destructs so that sc is lost forever. OTMs are an attractive
minimal hardware assumption: their specification is independent of any specific
function f , so they could theoretically be mass-produced.

OTPs are a special form of non-interactive secure two-party computation [3],
in which two parties evaluate a publicly known function f(x, y) as follows: the
sender uses her input string x to prepare a program p(x) for the receiver, who
uses this program and his input y to compute f(x, y). A malicious receiver
should not be able to learn anything about f(x, y′) beyond what can be in-
ferred from f(x, y), for any y′. We use the term “OTP” interchangeably with
“non-interactive secure two-party computation”.

In this extended abstract we study quantum one-time programs (QOTPs), in
which the sender and receiver evaluate a publicly known channel Φ : (A,B) → C
specified by a quantum circuit acting on registers A (the sender’s input), B (the
receiver’s input), and C (the receiver’s output). The security goal is similar in
spirit to that for classical functions: for each joint state ρ of the input registers
(A,B), a malicious receiver should not be able to learn anything about Φ(ρ′)
beyond what can be inferred from Φ(ρ), for any ρ′.

Can quantum one-time programs be constructed? If so, how? If not, why not,
and under what additional assumptions can they be achieved? QOTPs, if they
do exist, would be useful for a variety of secure quantum computation tasks,
such as providing copy protection of software [4] and implementing verification
for quantum coin schemes [5]. (Note that QOTPs are different from the task of
program obfuscation, which is known to be impossible classically [6] but remains
an open question quantumly.)

Our main contributions are as follows: (i) We present a universally compos-
able QOTP protocol for any quantum channel, assuming only the same single-bit
one-time memories used in classical OTPs. Our protocol employs quantum com-
putation on authenticated data (QCAD), a technique of independent interest in
quantum cryptography. (ii) We present a new quantum authentication scheme
called the trap scheme and show that it allows for QCAD. (iii) We identify
pathological classes of “unlockable” classical functions and quantum channels
that admit trivial OTPs without any hardware assumptions. The remainder of
this section elaborates upon these contributions.
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1.1 Quantum One-Time Programs from Classical One-Time
Memories

Unlike ordinary classical information, quantum information cannot in general be
copied. This no-cloning property prompts one to ask: does quantum information
allow for one-time programs without hardware assumptions? (When there are
no hardware assumptions, we refer to this as the plain quantum model.)

For both classical functions and quantum channels, a moment’s thought re-
veals a negative answer to this question: for any function f or channel Φ, a
quantum “program state” for f or Φ can always be re-constructed by a re-
versible receiver after each use to obtain the evaluation of f or Φ on multiple
distinct inputs. Computational assumptions do not help.

Given that one-time programs do not exist for arbitrary quantum channels
in the plain quantum model, and that one-time programs do exist for arbitrary
classical functions assuming secure OTMs, we ask: what additional assumptions
are required to achieve one-time programs for quantum channels? Our main
result answers this question.

Theorem 1 (Main result, informal). For each channel Φ : (A,B) → C spec-
ified by a quantum circuit there is a non-interactive two-party protocol for the
evaluation of Φ, assuming classical one-time memory devices. The run time of
this protocol is polynomial in the size of the circuit specifying Φ and the proto-
col achieves statistical quantum universal composability (UC-security) against a
malicious receiver.

Since all communication is one-way from sender to receiver, a malicious sender
cannot learn anything about the receiver’s portion of the input state ρ. The
question of security against a malicious sender who tries to convince the receiver
to accept an output state other than Φ(ρ) is left for future work. We restrict
our attention to the case of non-reactive quantum one-time programs. The more
general scenario of bounded reactive programs which can be queried a bounded
number of times (including the case of an n-use program) may be implemented
using standard techniques as is done in the classical case. Most of the components
of our QOTP for Φ are independent of the sender’s input register A and so can
be compiled by the sender before she receives her input. As a corollary of our
main result we obtain the UC-security of the protocol for delegated quantum
computations (DQC) from Ref. [7]. Composable security for other variants of
DQC was independently studied in Ref. [8].

1.2 A New Authentication Scheme That Admits Universal
Computation

Our protocol employs a method for quantum computation on authenticated data
(QCAD), which refers to the application of quantum gates to authenticated
quantum data without knowing the authentication key. We propose a new au-
thentication scheme, called the trap scheme, and show that it allows for QCAD.
Our trap scheme also seems to provide a concrete and efficient realization of the
“hidden subspaces” used in the public-key quantum money scheme of Ref. [9].
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Prior to our work, the only authentication scheme known to admit QCAD was
the signed polynomial scheme [10,7]. Recently, and independently of our work,
it was shown in Ref. [11] that the Clifford authentication scheme can be used to
authenticate two-party quantum computations. However, that protocol requires
two parties to process quantum information and so cannot be used for QCAD
or QOTPs.

Our QOTP protocol calls for the receiver to use QCAD to apply the gates of Φ
to the authenticated input registers (A,B). In general, QCAD can only be per-
formed if the receiver (who holds the authenticated data) is allowed to exchange
classical messages with the sender (who knows the authentication key). To keep
our protocol non-interactive, all the classical interaction is encapsulated by a
bounded, reactive classical one-time program (BR-OTP) prepared by the sender,
the existence of which follows straightforwardly from the work of Ref. [3] and is
described in detail in the full version of this extended abstract [12]. This program
for the BR-OTP depends upon the authentication key chosen for the sender’s
input register, but not on the contents of that register. By selecting this key in
advance, the BR-OTP can be prepared before the sender gets his input register.

To implement QCAD, the receiver’s input must be authenticated prior to com-
putation. This is accomplished non-interactively by having the sender prepare a
pair of registers in a special “teleport-through-encode” state. The authentication
key is determined by the (classical) result of the Bell measurement used for tele-
portation. The receiver non-interactively de-authenticates the output at the end
of the computation by means of a special “teleport-through-decode” state, also
prepared by the sender. In order to successfully de-authenticate, the receiver’s
messages to the BR-OTP must be consistent with the secret authentication key
held by the BR-OTP. Otherwise, the BR-OTP simply declines to reveal the final
decryption key for the receiver’s output.

1.3 Unlockable Functions and Channels

Curiously, our study has uncovered a pathological class of functions and chan-
nels that can never be made into a one-time program. For example, the function
f : (x, y)  → x+y cannot have a one-time program because a receiver can use his
knowledge of y to deduce x from f(x, y). Once he has deduced x, the receiver is
free to evaluate f(x, y′) for any y′ of his choosing. This function is an example
of what we call an unlockable function. Technically, it is incorrect to say that
such a function can never be made into a one-time program. Rather, such func-
tions admit trivial one-time programs in the plain model—a technicality arising
from the standard simulation-based definition of security. This phenomenon is
somewhat akin to trivially obfuscatable functions [6].

We propose a definition of unlockability and prove that a (classical) function f
admits a one-time program in the plain quantum model if and only if it is
unlockable. For quantum channels the situation is quite interesting. We define
two classes of channels called weakly and strongly unlockable. We prove that
every strongly unlockable channel admits a trivial one-time program in the plain
quantum model. Conversely, we prove that any channel admitting a one-time
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program in the plain quantum model must be weakly unlockable. It is easy to see
that every strongly unlockable channel is also weakly unlockable; we conjecture
that the two classes are equal. To summarize, we prove that no “useful” function
or channel admits a one-time program without any hardware assumptions.

2 Security of Quantum One-Time Programs

Intuitively, a QOTP for a channel Φ is secure if anything that any (possibly
cheating) receiver could learn by processing the program state prepared by the
sender could also be learned by interacting with a simulator that uses only one-
time access to an idealized black box for Φ. Thus, no receiver can learn anything
beyond what can be inferred from this ideal functionality for Φ.

Formally, we define security in the quantum UC framework as defined by
Unruh [13]. Our main ideal functionality, FOTP

Φ , is specified in Functionality 1
and involves two parties, the sender and the receiver. The functionality may
exist in multiple instances and involve various parties.1

Functionality 1. Ideal functionality FOTP
Φ for a quantum channel

Φ : (A,B) → C

1. Create: Upon input register A from the sender, send create to the receiver and
store the contents of register A.

2. Execute: Upon input register B from the receiver, evaluate Φ on registers A,B
and send the contents of the output register C to the receiver. Delete any trace of
this instance.

The map Φ that is computed is a public parameter of the functionality and it
takes an input from the sender and an input from the receiver, so FOTP

Φ hides
the sender’s input only. If the intention is to hide the map Φ itself—as in the
intuitive notion of one-time programs—then we can consider a universal map U
that takes as part of the sender’s input a representation of Φ (see [14,15,16]).
Sometimes we emphasize the fact that the ideal functionality may be called
only a single time by saying “one-shot access to an ideal functionality for Φ”.
The functionality FOTP

Φ is sender-oblivious since it delivers the result of the
functionality to the receiver but not the sender.

We now give some intuition on how the notions of UC translate to the context
of QOTPs.

Functionality. A non-interactive protocol for evaluation of a channel Φ : (A,B)
→ C consists of (i) an encoding channel enc : A → P applied by the sender
on its input A that prepares a program state P, and (ii) a decoding channel

1 Formally, instances are denoted by session identifiers and each instance involves
labelled parties. For simplicity, we have omitted these identifiers as they are implicit
from the context.



Quantum One-Time Programs 349

dec : (P,B) → C applied by the receiver on the program state P and its input B
such that dec ◦ enc and Φ are indistinguishable.

When P consists solely of a quantum register, we call this the plain quantum
model. In the bounded reactive OTP-quantum-hybrid model, the program state is
a quantum register P augmented with one or more BR-OTPs. (For our construc-
tion, it suffices to consider a single BR-OTP.) In this setting, the actions of any
receiver (honest or otherwise) can be viewed as the serialization of a multi-round
“interaction” in which the first message consists of the quantum registers from
the sender and subsequent messages consist of purely classical data exchanged
with the BR-OTP.

Security. By the completeness of the dummy-adversary [13], in order to show se-
curity, it suffices to consider only the adversary that relays messages between the
environment and the honest parties (we can see the environment as performing
the attack). Thus, security of a non-interactive protocol for the evaluation of Φ in
the BR-OTP-quantum-hybrid model corresponds to the existence of a simulator
that can mimic the sender’s message, combined with the interactive behaviour of
the BR-OTP, using only one-shot, black-box access to Φ with register A fixed.

A key result of Unruh [13] is the quantum lifting theorem which establishes
that, in the statistical case, classical-UC-secureprotocols are quantum-UC-secure.
We apply this result to the protocol of Goyal, Ishai, Sahai, Venkatesan, and Wa-
dia [3], which establishes statistically classical-UC-secure one-time programs in
the OTM-hybrid model (i.e., assuming one-time memories); by quantum lifting,
this protocol is also statistically quantum-UC-secure and hence we can use it our
construction. Ideal functionalities for OTMs, OTPs, and BR-OTPs, as well as a
proof extending Goyal et al.’s result for OTPs to BR-OTPs, appear in the full
version [12].

3 The Trap Authentication Scheme

In this section we present a new quantum authentication scheme called the trap
scheme and argue that it admits quantum computation on authenticated data
(QCAD). A quantum authentication scheme consists of procedures for encoding
and decoding quantum information with a secret classical key k such that an ad-
versary with no knowledge of k who tampers with encoded data will be detected
with high probability. Quantum authentication codes were first introduced by
Barnum, Crépeau, Gottesman, Smith and Tapp [17].

3.1 Trap Codes Yield a Secure Authentication Scheme

Our trap scheme is based on any fixed quantum error-detecting code C that
encodes one logical qubit into n physical qubits with distance d (an [[n, 1, d]]-
code). Each such code induces a different trap scheme. Authentication and de-
authentication operations for the trap scheme based on a code C are specified
in Protocol 1.
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Protocol 1. Authentication and de-authentication for the trap scheme based
on an [[n, 1, d]]-code C

Classical key. A pair (π, P ) consisting of a permutation π on 3n elements and a
(description of a) 3n-qubit Pauli operator P .

Authentication. Input: one qubit. Output: 3n qubits.
1. Encode the data qubit under C, producing an n-qubit register.
2. Introduce two new n-qubit trap registers in states |0〉⊗n, |+〉⊗n, respectively.
3. Permute all 3n qubits according to π.
4. Encrypt all 3n qubits by applying P .

De-authentication. Input: 3n-qubits. Output: one qubit and “accept”; or “reject”.
1. Decrypt all 3n qubits by applying P .
2. Permute all 3n qubits according to π−1.
3. Decode the data qubit under C.
4. Measure the trap registers to ensure they are in their proper states. If these

measurements succeed and if C indicated no error syndrome then “accept”
and output the data qubit, otherwise “reject”.

The trap scheme is an example of a class of authentication schemes that we call
encode-encrypt schemes, owing to a two-step authentication process of encoding
followed by encryption. Encode-encrypt schemes have many desirable properties,
chief among them the fact that an arbitrary attack on such a scheme is equivalent
to a probabilistic mixture of Pauli attacks on the underlying family E of codes.
Thus, by the encode-encrypt mechanism, in order to construct a secure quantum
authentication scheme it suffices to exhibit a family E of codes that is secure
against Pauli attacks.

In the trap scheme, the family E consists of all codes obtained by permuting
data encoded under C together with registers in states |0〉⊗n, |+〉⊗n. We call E
a family of trap codes. The first use of these codes was implicit in the Shor–
Preskill security proof for quantum key distribution [18]. (See also Ref. [19].) We
establish security of this family against Pauli attacks, from which the security
of the trap scheme follows.

Proposition 1 (Security of trap codes against Pauli attacks). The fam-
ily E of trap codes based on a code of distance d is (2/3)d/2-secure against Pauli
attacks.

That is, for each fixed choice of 3n-qubit Pauli operation Q it holds that the
probability—taken over a uniformly random choice of code E ∈ E—that Q acts
nontrivially on logical data and yet has no error syndrome is at most (2/3)d/2.

See the full version [12] for proofs of Proposition 1 and several other properties
of encode-encrypt schemes.

3.2 The Trap Scheme Admits Quantum Computing on
Authenticated Data

Authentication schemes that also allow for QCAD—the implementation of a
universal set of quantum gates on authenticated data without knowing the
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key—hold great promise for a host of cryptographic applications. In this sec-
tion we argue that the trap scheme allows for QCAD for appropriate choices of
the underlying code C.

It helps to think of two parties: a trusted verifier who prepares authenticated
data with secret classical key k and a malicious attacker who is to act upon the
authenticated data without knowledge of k. The goal is to construct a scheme
with the property that for each gate G belonging to some universal set of gates
there exists a gadget circuit G̃ that the attacker can apply to authenticated data
so as to implement a logical G. Furthermore, we require that the gadget G̃ be
independent of the choice of classical key k so that it may be implemented by
an attacker without knowledge of k.

Normally, any non-identity gadget G̃ would invalidate the authenticated state.
We therefore require a scheme which allows the verifier to validate the state again
simply by updating the classical key k  → k′. Moreover, by updating the key in
this way the verifier effectively forces the attacker to apply the desired gadget
G̃ as otherwise the state would fail verification under the updated key k′.

Following the example of the polynomial scheme of Ben-Or et al. [10], gadget
design for our trap scheme is inspired by methods for fault-tolerant quantum
computation. In the full version [12] we present gadgets for the universal gate
set consisting of Pauli gates, controlled-NOT, Hadamard, i-shift phase K : |a〉  →
ia|a〉, and π/8-phase T : |a〉  → eaiπ/4|a〉.

Some gates, such as the controlled-NOT, admit straightforward bitwise gad-
gets. Others, such as the π/8 gate, require authenticated “magic states” and
the ability to measure authenticated data in the computational basis. For these
gadgets the verifier must interpret the classical measurement result for the at-
tacker so that he may complete the gadget. Thus, these gadgets require classical
interaction between verifier and attacker.

Our gadgets require that the underlying code C allow bitwise implementation
of logical controlled-NOT and Hadamard gates—that is, that C be a self-dual
CSS code. For a concrete example, it suffices that C be the seven-qubit Steane
code nested a sufficient number of levels so as to achieve distance d.

4 Protocol for Quantum One-Time Programs

In this section we present our protocol for quantum one-time programs in the
quantum BR-OTP hybrid model. In particular, we specify how an honest sender
prepares her quantum registers and BR-OTP for the receiver and how an honest
receiver should use these objects to recover the action of Φ. The protocol requires
an encode-encrypt scheme that admits QCAD such as the trap scheme presented
in Section 3, but is completely independent of the specific choice of scheme.

We assume without loss of generality that the channel Φ has the form Φ :
(A,B) → B so that the receiver’s output register C ∼= B has the same size
as the input register and that Φ is specified by a unitary circuit U acting on
registers (A,B,E). The extra register E is an auxiliary register initialized to the
|0E〉 state. The action of Φ is recovered from U by discarding registers (A,E) so
that Φ : ρ  → TrAE(U (ρ⊗ |0E〉〈0E|)U∗).
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Given a circuit U one can efficiently find a circuit for the controlled-U opera-
tion, which we denote c-U . This circuit acts on registers (A,B,E) plus an extra
control qubit, which we bundle into the auxiliary register E for convenience. Our
protocol calls for the receiver to apply c-U to authenticated data with the con-
trol qubit always initialized to the |on〉 state. The purpose of this technicality
is to better facilitate the proof of security. We also have an alternate protocol
in which logical U is implemented directly with no need for c-U . However, the
security proof for this alternate protocol is more technically cumbersome than
our protocol for c-U , so we have elected to present only the protocol for c-U in
this extended abstract.

4.1 Protocol for an Honest Sender

Let r be the number of gates in c-U that require magic states. After the parties
have received their input registers A,B, a non-interactive protocol for c-U con-
sists of a single message from the sender to the receiver containing the following
objects:

1. Quantum registers Ã,Bin, B̃in,Bout, B̃out, Ẽ, M̃ = (M̃1, . . . , M̃r).
2. An (r + 1)-round BR-OTP.

The sender prepares these objects as specified in Protocol 2 and Figure 1.

(a) Teleport-through-authentication

|φ+〉
Bin

E

D

X

Z

|0〉

|0〉

PB̃in B̃in

(b) Teleport-through-de-authentication

|φ+〉

B̃out

E∗ PB̃out

Bout

syndrome

registers

discarded

Fig. 1. Circuits for teleporting through authentication and de-authentication. Here
the Pauli operations PB̃in

, PB̃out
refer to the portions of P acting on registers B̃in, B̃out,

respectively.
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Protocol 2. Message preparation for an honest sender

Secret classical key.Authentication key for registers (Ã, B̃in, B̃out, Ẽ, M̃). In particular,
a random pair (E,P ) consisting of a code E ∈ E and Pauli P acting on these registers.

Registers prepared by the sender. Given the input register A the sender prepares
the following registers:

(Bin, B̃in): Teleport-through-authentication state of Figure 1(a).

(B̃out,Bout): Teleport-through-de-authentication state of Figure 1(b).

Ã: Authenticated input register A.

Ẽ: Authenticated ancilla in logical state |0〉|on〉.
M̃: Authenticated ancilla in logical state |μ〉 = |μ1〉 · · · |μr〉 where

|μ1〉, . . . , |μr〉 are the r magic states required for c-U .

BR-OTP prepared by the sender.

1. Receive (a classical description of) a purported teleport-through-authentication
correction Pauli T in.

2. For i = 1, . . . , r:
(a) Receive a classical bit string ci—a purported measurement result of the ith

authenticated magic state register M̃i.
(b) Decode ci into a classical bit ai as dictated by T in and the authentication

key (E,P ). If the decoding process indicates a non-zero error syndrome then
cheating has been detected. Return the decoded bit ai to the user.

3. Receive a purported teleport-through-de-authentication correction Pauli T out. If
cheating was never detected in step 2b then return a decryption Pauli Ŝ. Otherwise
return random bits.

4.2 Protocol for an Honest Receiver

An honest receiver can recover Φ(ρ) from an honest sender’s message as specified
in Protocol 3.

5 Simulator and Proof of UC Security

The simulator must not pre-process the sender’s input register A. Instead, the
simulator is permitted only one-shot, black-box access to the “ideal functional-
ity” for Φ. We represent this ideal functionality by a single call to an oracle for U
acting on registers (A,B,E) prepared by the simulator. The rules for permissible
preparation and disposal of these registers are as follows:

1. The simulator must pass the input register A directly to U without any
pre-processing.

2. The simulator must prepare the ancillary register E in pure state |0〉.
3. Upon receiving the output registers (A,B,E) from the oracle for U , the

simulator must discard registers A,E without any post-processing.

The simulator is specified in Protocol 4. The main idea is that our simulator will
use the control qubit contained in register Ẽ to “switch off” the application of U
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Protocol 3. Protocol for an honest receiver
1. Perform a Bell measurement on (B,Bin) so as to teleport-through-authentication.

Let T in be the correction Pauli indicated by this measurement. Send T in as the first
message to the BR-OTP. [At this time the contents of B have been authenticated
and placed in register B̃in.]

2. Apply a logical c-U to the authenticated registers (Ã, B̃in, Ẽ, M̃). Explicitly:
(a) Apply the gates of c-U occurring before the first magic state measurement.
(b) For i = 1, . . . , r:

i. Measure the ith magic state register in the computational basis and send
the result to the BR-OTP.

ii. The BR-OTP provides a single bit indicating the proper correction.
iii. Apply the gates of c-U occurring after the ith magic state measurement

but before the (i+ 1)th magic state measurement.
[The implementation of c-U is now complete. At this time the register (Ã, B̃in, Ẽ)
holds the authenticated version of (A,B,E) with c-U applied.]

3. Perform a Bell measurement on (B̃in, B̃out) so as to teleport-through-de-
authentication. Let T out be the correction Pauli indicated by this measurement.
Send T out as the final message to the BR-OTP. [At this time the register Bout holds
the receiver’s output. This register is encrypted but not authenticated.]

4. For its final output, the BR-OTP provides the Pauli decryption key Ŝ. Apply this
Pauli to Bout to recover the output of Φ.

that would have been implemented by an honest receiver. Instead, the black-
box call to the ideal functionality will be embedded at the proper time so as to
recover the required action of U . An additional teleportation step is required so
that our simulator can embed U at the proper time.

We now sketch a proof that the simulator of Protocol 4 certifies the secu-
rity of the QOTP protocol presented in Section 4. We begin with a formal re-
statement of Theorem 1 in the language of UC-security. Details appear in the full
version [12].

Theorem 2 (Main theorem, formal). For each channel Φ : (A,B) → C
specified by a quantum circuit, there is an efficient, non-interactive, quantum
protocol in the OTM-hybrid model that statistically quantum-UC-emulates FOTP

Φ

against a malicious receiver.

Proof (sketch). As discussed in Section 2, UC-security of our protocol is estab-
lished by proving that that no entity (or environment) could possibly distin-
guish an interaction with our simulator from an interaction with a real sender.
We employ a highly technical, “brute-force” approach to this end. In particular,
we begin by writing down a general form that every environment must have.
From such a description we derive an expression for the final state of all the
registers in the environment’s possession at the end of an interaction with a real
sender. We perform a similar analysis for the environment’s final state at the
end of an interaction with our simulator. Finally, we argue that these two fi-
nal states are statistically indistinguishable—that is, the trace distance between
them is proportional to the security parameter of the underlying encode-encrypt
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Protocol 4. Simulator

Secret classical key. Authentication key (E,P ) for registers (Ã, B̃in, B̃out, Ẽ, M̃) as in
Protocol 2.

Registers prepared by the simulator. Given the input register A, the simulator
constructs the following registers:

(Bin,Sin): Simple EPR pairs |φ+〉 for teleportation.

(Sout, B̃in): Teleport-through-authentication state of Figure 1(a).

(B̃out,Bout): Teleport-through-de-authentication state of Figure 1(b).

Ã: Authenticated dummy input register in logical state |0〉.
Ẽ: Authenticated dummy ancillary register in logical state |0〉|off〉.
M̃: Authenticated magic states as in Protocol 2.
E : To be used in the call to the ideal functionality. Ancillary register in state

|0〉.

Execution of the simulator.

1. Send the registers Bin, B̃in, B̃out,Bout, Ã, Ẽ, M̃ to the environment.
2. The environment responds with a Pauli T in. Apply T in to register Sin. Then use

the ideal black-box to apply U to (A, Sin,E).
3. Perform a Bell measurement on (Sin,Sout) so as to teleport the contents of Sin

through authentication and place the result in B̃in. Let T
sim denote the teleportation

Pauli indicated by this measurement.
4. Execute the BR-OTP of Protocol 2 under the assumption that T sim was received

in the first round.

scheme upon which our protocol is based. (For example, if the trap scheme built
on a code of distance d is used with our protocol then this trace distance is
exponentially small in d.) $%

6 Impossibility of Non-trivial OTPs in the Plain Model

In this section we propose a definition of unlockability for quantum channels,
from which a definition for classical functions arises as a special case. We then
prove two complementary results on channels that admit one-time programs in
the plain model. Our possibility result (Theorem 3) is that every strongly un-
lockable channel admits a trivial one-time program in the plain quantum model,
and in fact that this protocol is UC-secure. Our impossibility result (Theorem 4)
is that every channel that is not weakly unlockable does not admit a one-time
program in the plain quantum model. The latter result holds even if we relax to
an approximate case or allow computational assumptions.2

As we will see, it is easy to establish that the weak and strong unlockability no-
tions are equivalent for classical functions. Whether these notions are equivalent

2 Although our impossibility result is stated in the UC framework, the impossibility is
not an artifact of the high security required by UC, but seems inherent in the notion
of OTPs, and the impossibility argument applied for any relaxation we attempted.
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(a) Strongly unlockable
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(b) Weakly unlockable
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Fig. 2. (a) For a strongly unlockable channel Φ, there exists a key state ξ0 and a
recovery algorithm A that allows computation of Φ(ρ) for any ρ. (b) For a weakly
unlockable channel Φ, there exists a key channel Ξ0 such that for any channel Ψ there
exists a recovery algorithm AΨ that allows computation of Φ(Ψ(ρ)) for any ρ.

for quantum channels is an open question, which appears to be an interesting
and deep question related to invertible subspaces of a channel.

6.1 Definitions of Unlockability

Informally, a function or channel is unlockable if there is a key3 input for the
receiver that unlocks enough information to fully simulate the map. For quantum
channels we present two variants of unlockability, the difference being whether
the key that unlocks the channel is a state (strongly unlockable) or a channel
that transforms a given input (weakly unlockable).

Definition 1 (Strongly/weakly unlockable channels). A channel Φ : (A,
B) → C is strongly unlockable if there exists a register K, a key state ξ0 of (B,K)
and a recovery algorithm (i.e., channel) A : (C,K,B) → C with the property
that A ◦ Φ0 ≈ Φ, where the channel Φ0 is specified by Φ0 : A → (C,K) : A  →
(Φ⊗ �K)(A⊗ ξ0).

A channel Φ : (A,B) → C is weakly unlockable if there exists a register K and
a key channel Ξ0 : B → (B,K) such that the channel Φ ◦ Ξ0 has the following
property: for every choice of registers E and channels Ψ : B → (B,E) for the
receiver there exists a recovery algorithm (i.e., channel) AΨ : (C,K) → (C,E)
such that AΨ ◦ Φ ◦ Ξ0 ≈ Φ ◦ Ψ.

See Figure 2 for graphical depictions of these definitions. Here, ≈ can denote
perfect, statistical, or (for polynomial-time uniform families of channels {Φn})
computational indistinguishability; in all cases, channels Φ0, A, Ξ0, and AΨ

must have circuits of size polynomial in the size of the circuit for Φ.

It is easy to see that every strongly unlockable channel is also weakly unlockable:
if ξ0 is the key state for Φ, then the key channel Ξ0 generates ξ0, sends the B
register of ξ0 to ideal functionality Φ and the K register of ξ0 and the B register
of ρ to AΨ = A ◦ Ψ .
3 Note we use “key” not in the cryptographic sense of a secret key, but in the metaphor-
ical sense of something that unlocks a lock.
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When the channel Φ is entirely classical, the definitions of strongly unlockable
and weakly unlockable are equivalent. A simplification for the classical case is as
follows (we restrict to the perfect case for clarity). A classical function f : A ×
B → C is unlockable if there exists a key input b0 ∈ B and a recovery algorithm
A : C × B → C such that, for all a ∈ A and b ∈ B, we have that f(a, b) =
A(f(a, b0), b). Intuitively, for an unlockable classical function there exists an
algorithm that can compute all values of f(a, ·) given a one-time program for
f(a, ·), but this is okay, because a simulator, given one-shot oracle access to
f(a, ·), can also compute f(a, b) for all b: this function is “learnable” in one shot,
and so a simulator can do everything any algorithm can.

Simple examples of strongly unlockable channels include all unitary channels
of the form Φ : X  → UXU∗ for some unitary U and all constant channels of the
form Φ : X  → Tr(X)σ for some fixed state σ. Simple examples of unlockable
functions include permutations.

6.2 Trivial One-Time Programs for Unlockable Channels

We can now see that strongly unlockable channels have OTPs; but again,
trivially so.

Theorem 3. Let Φ : (A,B) → C be a channel specified by a circuit. If Φ is
strongly unlockable then there exists an efficient, quantum non-interactive proto-
col which quantum-UC-emulates FOTP

Φ in the plain quantum model. This holds
in the perfect, statistical and computational cases.

Theorem 3 is in the quantum setting; it follows from the proof that if Φ is in
fact a classical channel, then the resulting protocol is a purely classical protocol.

6.3 Impossibility of One-Time Programs for Arbitrary Channels

Having seen that, in the plain model, strongly unlockable channels admit one-
time programs, we now see that every channel which admits a one-time program
must be weakly unlockable.

Theorem 4. Let Φ : (A,B) → C be a channel specified by a circuit and suppose
that Φ admits an efficient, non-interactive quantum protocol which quantum-UC-
emulates FOTP

Φ in the plain model. Then Φ is weakly unlockable. This holds in
the perfect, statistical and computational cases.

The intuition of the proof is as follows. If a channel has a one-time program, then
for any adversary there exists a simulator that can match the behaviour of the
adversary. In particular, there must be a simulator that matches the behaviour
of the dummy-adversary that just outputs the program state: thus, there must
be an algorithm that can reconstruct the program state given the output of the
channel, thus allowing computation for any output, meeting the definition of a
weakly unlockable channel.
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An alternate intuition for the impossibility result for classical functions can
be found by considering rewinding. Any correct one-time program state ρx for a
classical function f(x, ·) must result in the receiver obtaining an output state ρx,y
that is (almost) diagonal in the basis in which the receiver measures it, because
the measurement of ρx,y results in f(x, y) with (almost) certainty. As a result,
measurement does not disturb the state (much), so the receiver can reverse the
computation to obtain (almost) the program state again, and then rerun the
computation to obtain (close to) f(x, y′) for a different y′. It is possible to give
a proof for impossibility of OTPs for classical functions in the plain quantum
model using this rewinding argument. Impossibility for classical functions also
follows as a special case of the impossibility shown in Ref. [20].

6.4 A Conjecture on Unlockable Channels

As noted earlier, every strongly unlockable channel is also weakly unlockable. We
conjecture that the converse also holds. Though we do not yet have a formal proof
of this conjecture for arbitrary Φ, we can nonetheless provide a high-level outline
of a direction that might lead to a proof. See the full version for details [12].

Conjecture 1. Every channel Φ : (A,B) → C that is weakly unlockable is also
strongly unlockable.

7 UC-Security of Delegated Quantum Computations

Several protocols have been designed to allow a computationally weak client to
interface with a quantum computer in order to remotely accomplish a quan-
tum computation while maintaining privacy of the user’s input [21,19,7]. These
works, however, do not consider composability. (Recently, Dunjko, Fitzsimons,
Portmann and Renner [8] showed the composability of the blind quantum
computing protocol of Ref. [19].)

In this section we show that our main proof technique can be used to estab-
lish the statistical quantum-UC security of a family of protocols for delegated
quantum computations, closely related to the protocol of Aharonov et al. [7].
Originally studied in the context of quantum interactive proof systems, the pro-
tocol of Aharonov et al., which provides a mechanism to ensure both privacy of
the user’s input and verifiability of the computation, was not originally shown
to be secure according to any rigorous cryptographic security definition.

We generalize the protocol of Aharonov et al. to support delegated quan-
tum computation (in contrast to only deciding membership in a language) by
making two minor modifications. First we instantiate the protocol using any
encode-encrypt quantum authentication scheme that admits computing on au-
thenticated data (such as the trap scheme or the signed polynomial scheme as
used by Aharonov et al.). Analogously to our main protocol, we also introduce
as an aid in the proof a control bit so that the circuit being implemented is a
controlled-unitary.

The ideal functionality we achieve is described in Functionality 2. Following [7],
we describe the functionality in terms of a prover and verifier.
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Functionality 2. Ideal functionality Fdelegated
Φ for a quantum channel Φ : A → C

1. Create: Upon input register A from the verifier, send create to the prover and
store the contents of register A.

2. Execute: The prover provides an input in {execute, abort}. Upon input execute,
evaluate Φ on register A, and send the contents of the output register C to the
verifier; upon input abort, output ⊥ to the verifier.

Theorem 5. Let Φ be a channel specified by a circuit. There exists an efficient
quantum interactive protocol in the plain model that statistically quantum-UC-
emulates Fdelegated

Φ against a malicious prover. Furthermore, the only quantum
power required of the verifier is to encode the input and auxiliary quantum regis-
ters and to decode the output. In particular, all the interaction is classical except
for the first and last messages.

The proof of Theorem 5 follows as a special case of our main result about QOTPs
(Theorem 2). In the case of a general Φ, the registers that the verifier prepares
in Theorem 5 are polynomial-size in the security parameter. In the interactive
proof scenario of Aharonov et al., the input to Φ is the all-|0〉 product state, the
output is a single classical bit, and it suffices to implement Fdelegated

Φ with only
constant security. Given these assumptions, the only quantum power required of
the verifier is the ability to prepare constant-sized quantum registers in the first
round.
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Abstract. We initiate the study of quantum-secure digital signatures
and quantum chosen ciphertext security. In the case of signatures, we
enhance the standard chosen message query model by allowing the ad-
versary to issue quantum chosen message queries: given a superposition
of messages, the adversary receives a superposition of signatures on those
messages. Similarly, for encryption, we allow the adversary to issue quan-
tum chosen ciphertext queries: given a superposition of ciphertexts, the
adversary receives a superposition of their decryptions. These adversaries
model a natural ubiquitous quantum computing environment where end-
users sign messages and decrypt ciphertexts on a personal quantum
computer.

We construct classical systems that remain secure when exposed to
such quantum queries. For signatures, we construct two compilers that
convert classically secure signatures into signatures secure in the
quantum setting and apply these compilers to existing post-quantum
signatures. We also show that standard constructions such as Lamport
one-time signatures and Merkle signatures remain secure under quantum
chosen message attacks, thus giving signatures whose quantum security
is based on generic assumptions. For encryption, we define security un-
der quantum chosen ciphertext attacks and present both public-key and
symmetric-key constructions.

Keywords: Quantum computing, signatures, encryption, quantum
security.

1 Introduction

Recent progress in building quantum computers [IBM12] gives hope for their
eventual feasibility. Consequently, there is a growing need for quantum-secure
cryptosystems, namely classical systems that remain secure against quantum
computers. Post-quantum cryptography generally studies the settings where the
adversary is armed with a quantum computer, but users only have classical
machines. In this paper, we go a step further and study the eventuality where
end-user machines are quantum. In these settings, an attacker may interact with
honest parties using quantum queries, as discussed below, potentially giving the
attacker more power. The challenge is to construct cryptosystems that remain se-
cure when exposed to such quantum queries. We emphasize that all the systems

R. Canetti and J.A. Garay (Eds.): CRYPTO 2013, Part II, LNCS 8043, pp. 361–379, 2013.
c© International Association for Cryptologic Research 2013



362 D. Boneh and M. Zhandry

we consider are classical and can be easily implemented on a classical computer.
Our goal is to construct classical systems that remain secure even when im-
plemented on a quantum computer, thereby potentially giving the attacker the
ability to issue quantum queries.

Along these lines, Zhandry [Zha12b] showed how to construct pseudoran-
dom functions (PRFs) that remain secure even when the adversary is allowed
to issue quantum queries to the PRF. A quantum query is a superposition
of inputs

∑
x ψx |x〉 of the attacker’s choice. The response is a superposition∑

x ψx |x, F (k, x)〉 where F (k, x) is the value of the PRF at a point x under
key k. Zhandry showed that certain PRFs are secure even under such a pow-
erful query model. More recently, Boneh and Zhandry [BZ13a] showed how to
construct message authentication codes (MACs) that remain secure even when
the attacker is allowed to issue quantum chosen message queries. That is, for a
superposition of messages

∑
m ψm |m〉 of the attacker’s choice, the attacker is

given
∑

m ψm |m, S(k, m)〉 where S(k, m) is the tag on message m using key k.
They showed that some classically secure MACs become insecure under quan-
tum chosen message queries and they constructed several quantum-secure MAC
families.

Our Contributions. In this paper, we construct the first quantum-secure signa-
tures and quantum-secure chosen ciphertext encryption systems.

We begin by defining security for digital signatures under a quantum chosen
message attack. A quantum chosen message query [BZ13a] gives the attacker
the signatures on all messages in a quantum superposition. In more detail, a
quantum chosen message query is the transformation∑

m

ψm

∣∣m〉 −→
∑
m

ψm

∣∣m, S(sk, m)
〉

where S(sk, x) is the signature on x using signing key sk. The attacker can sample
the response to such a query and obtain one valid message-signature pair. After
q such queries, it can obtain q valid message-signature pairs. We say that a
signature scheme is existentially unforgeable under a quantum chosen message
attack if, after q quantum chosen message queries, the attacker cannot produce
q + 1 valid message-signature pairs.

Next, we present several compilers that convert a signature scheme that is se-
cure under classical queries into one secure under quantum queries. In particular,
we give the following constructions:

– Using a chameleon hash [KR00], we show how to transform any signature
that is existentially unforgeable under a classical random message into a sig-
nature scheme that is existentially unforgeable under a quantum chosen mes-
sage attack. We apply this conversion to several existing signature schemes,
giving constructions whose quantum security is based on the quantum hard-
ness of lattice problems.

– We show that any universally unforgeable signature under a classical ran-
dom message attack can be made existentially unforgeable under a quantum
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chosen message attack in the random oracle model. For example, this con-
version applies to a randomized variant of GPV signatures [GPV08], proving
security of the scheme even under a quantum chosen message attack. We also
separately show that the basic deterministic GPV scheme is secure in this
setting.

– Finally, we prove that classical constructions such as Lamport one-time sig-
natures and Merkle signatures are existentially unforgeable under a quantum
chosen message attack. These results show how to build quantum-secure sig-
natures from any collision resistant hash function. We leave open the prob-
lem of basing security on one-way functions. We also note that the version
of Lamport signatures that we prove secure is non-optimized, and can po-
tentially be made more efficient using standard combinatorial techniques.
Unfortunately, we cannot prove quantum-security of an optimized Lamport
signature and leave that as an interesting open problem.

Turning to encryption, we first explain how to adapt the chosen ciphertext se-
curity game to the quantum setting. In the classical game, the attacker is given
classical access to a decryption oracle used to answer chosen ciphertext queries
and to an encryption oracle used to create challenge ciphertexts. In the quantum
setting, the decryption oracle accepts a superposition of ciphertexts and returns
a superposition of their decryptions:∑

m

ψc

∣∣c〉 −→
∑

c

ψc

∣∣c, D(sk, c)
〉

.

One might also try to allow quantum access to the encryption oracle; however,
we show that the resulting concept is unsatisfiable. We therefore restrict the
encryption oracle to be classical.

Armed with this definition of security, we construct quantum-secure chosen
ciphertext systems in both the public-key and symmetric-key settings:

– Our symmetric-key construction is built from any secure PRF, and fol-
lows the encrypt-then-MAC paradigm. The classical proof that encrypt-then-
MAC is secure for generic encryption and generic MAC schemes does not
carry over to the quantum setting, but we are able to prove security for our
specific construction.

– We show that public-key quantum chosen ciphertext security can be obtained
from any identity-based encryption scheme that is selectively secure under a
quantum chosen identity attack. Such an identity-based encryption scheme
can, in turn, be built from lattice assumptions. This construction is the quan-
tum analogue of the CHK transformation from identity-based encryption to
public-key chosen ciphertext security [BCHK04].

Motivation. Allowing the adversary to issue quantum queries is a natural and
conservative security model and is therefore an interesting one to study. Con-
structing signature and encryption schemes that remain secure in these models
gives confidence in the event that end-user computing devices eventually become
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quantum. Nevertheless, one might imagine that in a future where all computers
are quantum, the last step in a signature or decryption procedure is to sam-
ple the final quantum state. This ensures that the results are always classical,
thereby preventing quantum superposition attacks. Security in this case relies on
a physical hardware assumption, namely that the final “classicalization” step is
implemented correctly and cannot be circumvented by a quantum adversary. In
contrast, using systems that are inherently secure against superposition attacks
frees the hardware designer from worrying about the security of the classicaliza-
tion step.

As further motivation, we note that our results are the tip of a large emerg-
ing area with many open questions. For any cryptographic primitive modeled as
an interactive game, one can ask how to design primitives that remain secure
when the interaction between the adversary and its given oracles is quantum.
For example, can we design quantum-secure threshold signatures and group sig-
natures? Can we construct a quantum-secure PRF for a large domain from a
quantum-secure PRF for a small domain? In particular, do the CBC-MAC or
NMAC constructions give quantum-secure PRFs?

Other Related Work. Several recent works study the security of cryptographic
primitives when the adversary can issue quantum queries. Boneh et al. [BDF+11]
and Zhandry [Zha12a] prove the classical security of signatures, encryption, and
identity-based encryption schemes in the quantum random oracle model, where
the adversary can query the random oracle on superpositions of inputs. In these
papers, the interaction with the challenger is classical. These results show that
many, but not all, random oracle constructions remain secure in the quantum
random oracle model. The quantum random oracle model has also been used
to prove security of Merkle’s Puzzles in the quantum setting [BS08, BHK+11].
Damg̊ard et al. [DFNS11] examine secret sharing and multiparty computation
in a model where an adversary may corrupt a superposition of subsets of players,
and build zero knowledge protocols that are secure, even when a dishonest verifier
can issue challenges on superpositions.

Some progress toward identifying sufficient conditions under which classical
protocols are also quantum immune has been made by Unruh [Unr10] and Hall-
gren et al. [HSS11]. Unruh shows that any scheme that is statistically secure in
Cannetti’s universal composability (UC) framework [Can01] against classical ad-
versaries is also statistically secure against quantum adversaries. Hallgren et al.
show that for many schemes, this is also true in the computational setting. These
results, however, do not apply to cryptographic primitives such as signatures and
encryption and do not consider quantum superposition attacks.

2 Preliminaries: Background and Techniques

We will let [n] denote the set {1, ..., n}. Functions will be denoted by capital
letters (such as F ), and sets by capital script letters (such as X ). We will let
x

R←−D for some distribution D denote drawing x according to D, and x
R←−X
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for some set X denote drawing a random element from X . Given a function
F : X → Y and a subset S ⊆ X , the restriction of F to S is the function
FS : S → Y where FS(x) = F (x) for all x ∈ S. A distribution D on F induces
a distribution DS on FS . We say that D is k-wise independent if each of the
distributions DS are truly random distributions on functions from S to Y, for all
sets S of size at most k. A set F of functions from X to Y is k-wise independent
if the uniform distribution on F is k-wise independent. A non-negative function
f(n) is negligible if, for any c, f(n) < 1/nc for all sufficiently large n. If a
function g(n) can be written as h(n) ± f(n) where f(n) is negligible, we write
g(n) = h(n) ± negl.

2.1 Quantum Computation

We give a short introduction to quantum computation. A quantum system A
is a complex Hilbert space H together with and inner product 〈·|·〉. The state
of a quantum system is given by a vector |ψ〉 of unit norm (〈ψ|ψ〉 = 1). Given
quantum systems H1 and H2, the joint quantum system is given by the tensor
product H1 ⊗ H2. Given |ψ1〉 ∈ H1 and |ψ2〉 ∈ H2, the product state is given
by |ψ1〉|ψ2〉 ∈ H1 ⊗ H2. Given a quantum state |ψ〉 and an orthonormal basis
B = {|b0〉, ..., |bd−1〉} for H, a measurement of |ψ〉 in the basis B results in the
value i with probability |〈bi|ψ〉|2, and the quantum state collapses to the basis
vector |bi〉. If |ψ〉 is actually a state in a joint system H ⊗ H′, then |ψ〉 can be
written as

|ψ〉 =
d−1∑
i=0

αi |bi〉|ψ′
i〉

for some complex values αi and states |ψ′
i〉 over H′. Then, the measurement

over H obtains the value i with probability |αi|2 and in this case the resulting
quantum state is |bi〉|ψ′

i〉.
A unitary transformation over a d-dimensional Hilbert space H is a d × d

matrix U such that UU† = Id, where U† represents the conjugate transpose. A
quantum algorithm operates on a product space Hin ⊗Hout ⊗Hwork and consists
of n unitary transformations U1, ..., Un in this space. Hin represents the input
to the algorithm, Hout the output, and Hwork the work space. A classical input
x to the quantum algorithm is converted to the quantum state |x, 0, 0〉. Then,
the unitary transformations are applied one-by-one, resulting in the final state

|ψx〉 = Un...U1|x, 0, 0〉 .

The final state is then measured, obtaining the tuple (a, b, c) with probability
|〈a, b, c|ψx〉|2. The output of the algorithm is b. We say that a quantum algorithm
is efficient if each of the unitary matrices Ui come from some fixed basis set, and
n, the number of unitary matrices, is polynomial in the size of the input.

Quantum-accessible Oracles. We will implement an oracle O : X → Y by a
unitary transformation O where

O|x, y, z〉 = |x, y + O(x), z〉
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where + : X × X → X is some group operation on X . Suppose we have a quan-
tum algorithm that makes quantum queries to oracles O1, ..., Oq. Let |ψ0〉 be the
input state of the algorithm, and let U0, ..., Uq be the unitary transformations
applied between queries. Note that the transformations Ui are themselves pos-
sibly the products of many simpler unitary transformations. The final state of
the algorithm will be

UqOq...U1O1U0|ψ0〉
We can also have an algorithm make classical queries to Oi. In this case, the
input to the oracle is measured before applying the transformation Oi. We call
a quantum oracle algorithm efficient if the number of queries q is a polyomial, and
each of the transformations Ui between queries can be written as the product
polynomially many unitary transformations from some fixed basis set.

Tools. Next we state several lemmas and definitions that we will use throughout
the paper. Some have been proved in other works, and the rest are proved in the
full version [BZ13b]. The first concerns partial measurements, and will be used
extensively throughout the paper:

Lemma 1. Let A be a quantum algorithm, and let Pr[x] be the probability that
A outputs x. Let A′ be another quantum algorithm obtained from A by pausing
A at an arbitrary stage of execution, performing a partial measurement on the
state of A that obtains one of k outcomes, and then resuming A. Let Pr′[x] be
the probability A′ outputs x. Then Pr′[x] ≥ Pr[x]/k.
This lemma means, for example, that if you measure just one qubit, the probabil-
ity of a particular output drops by at most a factor of two. We also make use of
the following lemma, proved by Zhandry [Zha12a], which allows us to simulate
random oracle efficiently using k-wise independent functions:

Lemma 2 ([Zha12a]). Let H be an oracle drawn from a 2q-wise independent
distribution. Then the advantage any quantum algorithm making at most q queries
to H has in distinguishing H from a truly random function is identically 0.

The next definition and lemma are given by Zhandry [Zha12b] and allow for
the efficient simulation of an exponentially-large list of samples, given only a
polynomial number of samples:

Definition 1 (Small-range distributions [Zha12b]). Fix sets X and Y and
a distribution D on Y. Fix an integer r. Let y = (y1, ..., yr) be a list of r samples
from D and let P be a random function from X to [r]. The distributions on y
and P induce a distribution on functions H : X → Y defined by H(x) = yP (x).
This distribution is called a small-range distribution with r samples of D.

Lemma 3 ([Zha12b]). There is a universal constant C0 such that, for any
sets X and Y, distribution D on Y, any integer �, and any quantum algorithm
A making q queries to an oracle H : X → Y, the following two cases are indis-
tinguishable, except with probability less than C0q3/�:

– H(x) = yx where y is a list of samples of D of size |X |.
– H is drawn from the small-range distribution with � samples of D.
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3 Quantum-Secure Signatures

Our goal is to construct signatures that are resistant to a quantum chosen mes-
sage attack, where the adversary submits quantum superpositions of messages
and receives the corresponding superpositions of signatures in return. First, we
need a suitable definition of what a signature scheme is in our setting, and what
it means for such a scheme to be secure. Correctness for a stateless signature
scheme is identical to the classical setting: any signature produced by the sign-
ing algorithm must verify. There is some subtlety, however, for stateful signature
schemes. If the state of the signing algorithm depends on the messages signed,
and if the adversary mounts a quantum chosen message attack, the signing al-
gorithm and adversary will become entangled. To keep the state of the signing
algorithm classical and unentangled with the adversary, we therefore restrict the
state to be independent of the messages signed so far. We note that many stateful
signature schemes, such as stateful Merkle signatures, satisfy this requirement.
We arrive at the following definition:

Definition 2. A signature scheme S is a tuple of efficient classical algorithms
(G, Sign, Ver) where

– G(λ) generates a private/public key pair (sk, pk).
– Sign(sk, m, state) outputs a signature σ and new state state′. If the output

state is ever non-empty, we say that algorithm Sign is stateful and we require
that the state does not depend in any way on the messages that have been
signed so far. If the output state is always empty, we say that Sign is stateless
and we drop the state variables altogether.

– Ver(pk, m, σ) either accepts or rejects. We require that valid signatures are al-
ways accepted, that is if σ is the output of Sign(sk, m, state) then Ver(pk, m, σ)
accepts.

For security, we use a notion similar to that for message authentication codes
defined by Boneh and Zhandry [BZ13a]. There are two issues in defining security
under a quantum chosen message attack:

– Randomness. When using a randomized signature scheme, there are several
choices for how the randomness is used. One option is to choose a single
randomness value for each chosen message query, and sign every message in
the superposition with that randomness. Another approach is to choose fresh
randomness for each message in the superposition. Using a single randomness
value for each query is much simpler for implementers, and we therefore
design signature schemes secure in this setting.
Fortunately, there is a simple transformation that converts a scheme requir-
ing independent randomness for every message into a scheme that is secure
when a single randomness value is used for an entire query: when signing,
choose a fresh random key k for a quantum pseudorandom function (QPRF).
This will be the single per-query randomness value. To sign a superposition
of messages, sign each message m in the superposition using randomness
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obtained by applying the QPRF to m using the key k. From the adversary’s
point of view, this is indistinguishable from choosing independent random-
ness for each message. Using Lemma 2, we can replace the QPRF with a
function drawn from a pairwise independent function family, which is far
more efficient than using a QPRF. Hence, requiring global randomness per
query does not complicate the signature scheme much, but greatly simplifies
its implementation.

– Forgeries. Each quantum chosen message query can be a superposition of
every message in the message space. Sampling the returned superposition will
result in a single message/signature pair for a random message. Therefore,
the classical notion of existential forgery being a signature on a new message
is ill-defined when we allow quantum access. Instead, for security we require
that the adversary cannot produce q + 1 valid message/signature pairs with
q quantum chosen message queries. Security definitions in this style were
previously used in the context of blind signatures [PS96].

We arrive at the following definition of security:

Definition 3 (Quantum Security). A signature scheme S = (G, Sign, Ver) is
strongly existentially unforgeable under a quantum chosen-message attack (EUF-
qCMA secure) if, for any efficient quantum algorithm A and any polynomial q,
A’s probability of success in the following game is negligible in λ:

Key Gen. The challenger runs (sk, pk) ← G(λ), and gives pk to A.
Signing Queries. The adversary makes a polynomial q chosen message queries.

For each query, the challenger chooses randomness r, and responds by signing
each message in the query using r as randomness:∑

m,t

ψm,t

∣∣m, t
〉 −→

∑
m,t

ψm,t

∣∣m, t ⊕ Sign(sk, m; r)
〉

Forgeries. The adversary is required to produce q + 1 message/signature pairs.
The challenger then checks that all the signatures are valid, and that all
message/signature pairs are distinct. If so, the challenger reports that the
adversary wins. ��

In this paper, we will also be using several weaker notions of security. The first
is for a classical chosen message attack:

Definition 4. S is existentially unforgeable under a classical random message
attack (EUF-CMA secure) if every signing query is measured before signing, so
that only a single classical message is signed per query.

Next, we define random message security:

Definition 5. S is existentially unforgeable under a random message attack
(EUF-RMA secure) if the adversary is not allowed any signing queries, but in-
stead receives q message/signature pairs for uniform random messages at the
beginning of the game.
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We can weaken the security definition even further, to get universal unforgeability:

Definition 6. S is universally unforgeable under a random message attack (UUF-
RMA secure) if, along with receiving q message/signature pairs for random mes-
sages, the adversary receives n additional random messages, and all of the q + 1
messages for which a signature is forged must be among the q+n messages received.

All of the above security definitions also have weak variants, where in addition to
requiring that message/signature forgery pairs be distinct, we also require that
the messages themselves be distinct. Finally, all of the above security definitions
also have k-time variants for any constant k, where the value of q is bounded to at
most k. When the distinction is required, we refer to the standard unbounded q
notion as many-time security.

Separation from Classical Security. In the full version [BZ13b], we present a
signature scheme that is secure under classical queries, but completely insecure
once an adversary can make quantum queries.

The idea is to augment a classically secure scheme by choosing a random
secret prime p and storing p in the secret signing key. We modify the signature
scheme so that the signature on the message m = p includes the entire secret key.
As long as the adversary does not learn p, she should not be able to learn the
secret key. Following ideas from Zhandry [Zha12b], we also add some auxiliary
information to the signatures such that, under classical queries, p is hidden, but
a single quantum query suffices to recover p. Since classically, signatures can be
built from one-way functions, we immediately get the following theorem:

Theorem 1. Assuming the existence of one-way functions, there exists a signa-
ture scheme S that is existentially unforgeable under a classical chosen message
attack, but is totally broken under a quantum chosen message attack.

3.1 Quantum-Secure Signatures from Classically-Secure Signatures

Now we move to actually building signature schemes that are secure against
quantum chosen message attacks. In this section, we show a general transfor-
mation from classically secure signatures to quantum secure signatures. The
building blocks for our construction are chameleon hash functions and signa-
tures that are secure against a classical random message attack. First, we will
define a chameleon hash function. The definition we use is slightly different from
the original definition from Krawczyk and Rabin [KR00], but is satisfied by the
known lattice constructions:

Definition 7. A chameleon hash function H is a tuple of efficient algorithms
(G, H, Inv, Sample) where:

– G(λ) generates a secret/public key pair (sk, pk).
– H(pk, m, r) maps messages to some space Y
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– Sample(λ) samples r from some distribution such that, for every pk and m,
H(pk, m, r) is uniformly distributed.

– Inv(sk, h, m) produces an r such that H(pk, m, r) = h, and r is distributed
negligibly-close to Sample(λ) conditioned on H(pk, m, r) = h

We say that a chameleon hash function is collision resistant if no efficient quantum
algorithm, given only pk, can find collisions in H(pk, ·, ·). Cash et al. [CHKP10]
build a simple lattice-based chameleon hash function, and prove that it is colli-
sion resistant, provided that the Shortest Integer Solution problem (SIS) is hard
for an appropriate choice of parameters. The idea behind our construction is to
first hash the message with the chameleon hash function and then sign the hash.
In order to be secure against quantum queries, care has to be taken in how the
randomness for the hash and the signature scheme is generated. In what follows,
for any randomized algorithm A, we let A(x; r) denote running A on input x with
randomness r.

Construction 2. Let H = (GH , H, Inv, Sample) be a chameleon hash function,
and Sc = (Gc, Signc, Verc) a signature scheme. Let Q and R be families of pair-
wise independent functions mapping messages to randomness used by Inv and
Signc, respectively. We define a new signature scheme S = (G, Sign, Ver) where:

G(λ) : (skH , pkH) R←−GH(λ), (skc, pkc) R←−Gc(λ)
output sk = (pkH , skc), pk = (pkH , pkc)

Sign((pkH , skc), m) : Q
R←−Q, R

R←−R
r ← Sample(λ; R(m)), s ← Q(m), h ← H(pkH , m, r)
σ ← Sign(pkc, h; s), output (r, σ)

Ver((pkH , pkc), m, (r, σ)) : h ← H(pkH , m, r), output Ver(pkc, h, σ)

We note that the chameleon secret key is not used in Construction 2, though
it will be used in the security proof. Classically, this method of hashing with a
chameleon hash and then signing converts any non-adaptively secure scheme into
an adaptive one. We show that the resulting scheme is actually secure against
an adaptive quantum chosen message attack.

Theorem 3. If Sc is weakly (resp. strongly) EUF-RMA secure and H is a se-
cure chameleon hash function, then S in Construction 2 is weakly (resp. strongly)
EUF-qCMA secure. Moreover, if Sc is only one-time secure, then S is also
one-time secure.

Theorem 3 shows that we can take a classically EUF-RMA secure signature
scheme, combine it with a a chameleon hash, and obtain a quantum-secure sig-
nature scheme. In particular, the following constructions will be quantum secure,
assuming SIS is hard:

– A slight modification to the signature scheme of Cash et al. [CHKP10], which
combines their chameleon hash function with an EUF-RMA secure signature
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scheme. The only difference in their scheme is that the values r and s are
sampled directly, rather than setting them to be the outputs of pairwise
independent functions.

– A modification of the scheme of Agrawal, Boneh, and Boyen [ABB10], where
we hash the message using a chameleon hash before applying the signature.

We now prove Theorem 3:

Proof. We first sketch the proof idea. Given an Sc signature σ on a random hash
h, we can construct an S signature on any given message m: use the chameleon
secret key skH to compute a randomness r such that H(pkH , m, r) = h, and
output the signature (r, σ). Thus, we can respond to a classical chosen message
attack, given only signatures on random messages.

If the adversary issues a quantum chosen message query, we need to sign
each of the exponentially many messages in the query superposition. Therefore,
using the above technique directly would require signing an exponential number
of random hashes. Instead, we use small-range distributions and Lemma 3 to
reduce the number of signed hashes required to a polynomial. The problem is
that the number of hashes signed is still a very large polynomial, whereas the
number of signatures produced by our adversary is only q + 1, so we cannot rely
on the pigeon-hole principle to argue that one of the S forgeries is in fact a Sc

forgery. We can, however, argue that two of the forgeries must, in some sense,
correspond to the same query. If we knew which query, we could perform a
measurement, observing which of the (polynomially many) random hashes were
signed. Lemma 1 shows that the adversary’s advantage is reduced by only a
polynomial factor. For this query, we now only sign a single random hash, but
the adversary produces two forgeries. Therefore, one of these forgeries must be a
forgery for Sc. Of course, we cannot tell ahead of time which query to measure,
so we just pick the query at random, and succeed with probability 1/q.

We now give the complete proof. There are four variants to the theorem
(one-time vs many time, strong vs weak). We will prove the many-time strong
security variant, the other proofs being similar. Let A be an adversary breaking
the EUF-qCMA security of S in Construction 2 with non-negligible probability
ε. We prove security through a sequence of games.

Game 0. This is the standard attack experiment, where A receives pkc and
pkH , and is allowed to make a polynomial number of quantum chosen message
queries. For query i, the challenger produces pairwise independent functions R(i)

and Q(i), and responds to each message in the query superposition as follows:

– Let r
(i)
m = Sample(λ; R(i)(m)) and s

(i)
m = Q(i)(m).

– Compute h
(i)
m = H(pkH , m, r

(i)
m )

– Compute σ
(i)
m = Signc(skc, h

(i)
m ; s

(i)
m )

– Respond with the signature (r(i)
m , σ

(i)
m ).

In the end, A must produce q + 1 distinct triples (m∗
k, r∗

k, σ∗
k) such that

Ver(pkc, H(pkH , m∗
k, r∗

k), σ∗
k) accepts. By definition, A wins with probability ε,
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which is non-negligible. Therefore, there is some polynomial p = p(λ) such that
p(λ) > 1/ε(λ) for infinitely-many λ.

Game 1. We make two modifications: first, we choose R(i) and Q(i) as truly
random functions, which amounts to generating r

(i)
m ← Sample(λ) and picking

s
(i)
m at random for each i, m. According to Lemma 2, the view of the adversary

is unchanged. Second, we modify the conditions in which A wins by requiring
that no two (m∗

k, r∗
k) pairs form a collision for H. The security of H implies that

A succeeds in Game 1 with probability at least ε − negl.

Game 2. Generate s
(i)
m as before, but now draw h

(i)
m uniformly at random. Ad-

ditionally, draw uniform randomness t
(i)
m . We will sample r

(i)
m from the set of

randomness making H(pk, m, r
(i)
m ) = h

(i)
m . That is, let r

(i)
m = Inv(sk, h

(i)
m , m; t

(i)
m ).

The only difference from A’s perspective is the distribution of the r
(i)
m values. For

each m, the distribution of r
(i)
m is negligibly-close to that of Game 1, and we show

in the full version [BZ13b] that this implies Games 1 and 2 are indistinguishable.
Therefore, the success probability is at least ε − negl.

Game 3. Let � = 2C0qp where C0 is the constant from Lemma 3. At the be-
ginning of the game, for i = 1, ..., q and j = 1, ..., �, sample values ĥ

(i)
j and

let σ̂
(i)
j = Signc(skc, ĥ

(i)
j ). Also pick q random functions Oi mapping m to [�].

Then let h
(i)
m = ĥ

(i)
Oi(m) and σ

(i)
m = σ̂

(i)
Oi(m). Let Ti be random functions, and let

t
(i)
m = Ti(m). The only difference between Game 2 and Game 3 is that the h

(i)
m

and σ
(i)
m values were generated by q small-range distributions on � samples. Each

of the small-range distributions is only queried once, so Lemma 3 implies that
the success probability is still at least ε − negl − 1/2p.

Game 4. Let the Oi and Ti be pairwise independent functions. The adversary
cannot tell the difference.
Notice that Game 4 can now be simulated efficiently, and A wins in this game
with probability ε − negl − 1/2p. Let h∗

k = H(pk, m∗
k, r∗

k) be the hashes of the
forgeries. Since we have no collisions in H, the pairs (h∗

k, σ∗
k) are distinct. Let

H(i) = {ĥ
(i)
j } be the set of ĥ values used to answer query i, and H be the union

of the H(i). There are two possibilities:

– At least one of the h∗
k is not in H, or two of them are equal. This means

that one of the h∗
k was never signed, or one of them was signed once, but

two signatures were produced for it. In either case, it is straightforward to
construct a forger B0 for Sc that wins in this case. Since Sc is secure, this
event only happens with negligible probability.

– All of the h∗
k values are distinct and lie in H. In this case, there is some i

such that two h∗
k values are in H(i) for the same i. Notice that this event

happens, and all the forgeries are valid, with probability ε − negl − 1/2p.
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Game 5. Now we guess a random query i∗ and add a check that all the h∗
k

values lie in H, and that two of them are distinct and lie in H(i∗). Without loss
of generality, assume these two h∗ values are h∗

0 and h∗
1. A then wins in this

game with probability ε/q − negl − 1/2pq. Let j∗
b be the j such that h∗

b = ĥ
(i∗)
j∗

b

for b = 0, 1.

Game 6. On query i∗, measure the value of Oi(m), to get a value j∗. Oi takes
values in [�], so Lemma 1 says the adversary’s success probability is still at least
ε/q� − negl − 1/2pq�. Notice now that for query i∗, the challenger only needs to
sign ĥ

(i∗)
j∗ , and therefore, one of the h∗

b = ĥ
(i∗)
j values was never signed.

Game 7. Now guess at the beginning of the game the value of j∗, and at the
end, check that the guess was correct. The adversary still wins with probability
ε/q�2 − negl − 1/2pq�2.
If the adversary wins in Game 7, it produced two signatures on ĥ(i∗) values,
while only one of them was signed. It is straightforward to construct a forger B1
for Sc that wins in this case. B1 has success probability ε/q�2 − negl − 1/2pq�2,
and the security of Sc implies that this quantity is negligible. Thus ε − 1/2p is
negligible. Since ε > 1/p infinitely often, we then have 1/2p < negl infinitely
often, a contradiction. Therefore, ε is negligible. ��

We note that for one-time security, this security reduction signs only a single
message, so we only need to rely on the one-time security of Sc.

3.2 Signatures in the Quantum Random Oracle Model

In this section we present a simple generic conversion from any classical signa-
ture scheme to a scheme secure against quantum chosen message attacks in the
quantum random oracle model.

Recall that when a random oracle scheme is implemented in the real-world,
the random oracle is replaced by a concrete hash function H , thereby enabling
a quantum adversary to evaluate H on a superposition of inputs. Therefore,
security proofs in the random oracle model must allow all parties, including the
adversary, to issue quantum queries to H . This model is called the quantum
random oracle model [BDF+11] and is the one we use here.

Our construction is quite simple: use the random oracle to hash the message
along with a random salt, and send the signature on the hash, together with
the salt. This construction is very appealing since messages are often hashed
anyway before signing. The results in this section then show that only minor
modifications to existing schemes are necessary to make them quantum immune.

Construction 4. Let Sc = (Gc, Signc, Verc) be a signature scheme, H be a hash
function, and Q be a family of pairwise independent functions mapping messages
to the randomness used by Signc, and k some polynomial in λ. Define S =
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(G, Sign, Ver) where:

G(λ) = Gc(λ)

Sign(sk, m) : Q
R←−Q, r

R←−{0, 1}k

s ← Q(m), h ← H(m, r), σ ← Signc(sk, h; s), output (r, σ)

Ver(pk, m, (r, σ)) : h ← H(m, r), output Verc(pk, h, σ)

We note that Construction 4 is similar to Construction 2: instead of the chameleon
hash H(pk, ·, ·) we have a random oracle H(·, ·), and instead of generating a differ-
ent r for each message in the superposition, we just generate a single r for the
entire superposition. We can achieve security for Construction 4, assuming only a
very weak form of security for Sc, namely, universal unforgeability under a random
message attack (UUF-RMA security):

Theorem 5. If Sc is strongly (resp. weakly) UUF-RMA secure, then S in Con-
struction 4 is strongly (resp. weakly) EUF-qCMA secure in the quantum random
oracle model. Moreover, if Sc is only one-time secure, then S is also one-time
secure.

We prove Theorem 5 in the full version [BZ13b]. Given that Construction 4 is
similar to Construction 2, the security proofs are similar. Now, we explain how to
realize the strong UUF-RMA notion of security. We note that any strongly EUF-
RMA or EUF-CMA secure signature scheme satisfies this security notion. We
also note that some weaker primitives do as well, such as pre-image sampleable
functions (PSFs) defined by Gentry et al. [GPV08]. Roughly, PSFs are many-
to-one functions F such that, with the secret key, a random pre-image can be
sampled. For security, we require that without the secret key, the function is
one-way and collision resistant. If we sign a message m by sampling a random
pre-image of m, and verify a signature σ by checking that F (σ) = m, then
one-wayness plus collision resistance implies strong UUF-RMA security.

Corollary 1. If PSF is a collision resistant and one-way PSF, then Construc-
tion 4 instantiated with PSF is strongly EUF-qCMA secure in the quantum
random oracle model.

Gentry et al. [GPV08] show how to construct a PSF that is collision-resistant
and one-way under the assumption that SIS is hard. Therefore, we can construct
efficient signatures in the quantum random oracle model based on SIS. In the
full version [BZ13b], we also show that the basic GPV signature scheme is secure
in the quantum random oracle model, though the proof is very different.

Next, it is straightforward to show that any adversary A breaking the universal
unforgeability of Sc by mounting a random message attack can easily be trans-
formed into an adversary B breaking Construction 4 under a classical chosen
message attack in the classical random oracle model. Together with Theorem 5,
we get the following:
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Corollary 2. If S in Construction 4 is weakly (resp. strongly) existentially un-
forgeable under a classical chosen message attack performed by a quantum ad-
versary, then it is also weakly (resp. strongly) exististentially unforgeable under
a quantum chosen message attack.

Therefore, if a scheme matches the form of Construction 4, it is only necessary
to prove classical security.

3.3 Signatures from Generic Assumptions

We briefly explain how to construct signatures from generic assumptions. We first
construct one-time signatures from one-way functions using the basic Lamport
construction [Lam79]. In the classical setting, the next step would be to use
target collision resistance to expand the message space. Unfortunately, target
collision resistance ceases to make sense in the quantum setting, so we resort
to collision resistance to expand the message space. Finally, we plug these one-
time signatures into the Merkle signature scheme [Mer87]. The end result is a
signature scheme whose quantum security relies only on the existence of collision-
resistant functions. The following is proved in the full version [BZ13b]:

Theorem 6. If there exists a collision-resistant hash function, then there exists
a strongly EUF-qCMA secure signature scheme.

4 Quantum-Secure Encryption Schemes

We now turn to encryption schemes where we first discuss an adequate notion
of security under quantum queries. In what follows, we will discuss symmetric
key schemes; the discussion for public key schemes is similar. At a high level,
our notion of security allows quantum encryption and decryption queries, but
requires challenge queries to be classical:

Definition 8. A symmetric key encryption scheme E = (Enc, Dec) is indistin-
guishable under a quantum chosen message attack (IND-qCCA secure) if no
efficient adversary A can win in the following game, except with probability at
most 1/2 + negl:
Key Gen. The challenger picks a random key k and a random bit b. It also

creates a list C which will store challenger ciphertexts.
Queries. A is allowed to make three types of queries:

Challenge queries. A sends two messages m0, m1, to which the challenger
responds with c∗ = Enc(k, mb). The challenger also adds c∗ to C.

Encryption queries. For each such query, the challenger chooses random-
ness r, and encrypts each message in the superposition using r as
randomness:∑

m,c

ψm,c

∣∣m, c
〉 −→

∑
m,c

ψm, c

∣∣m, c ⊕ Enc(k, m; r)
〉
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Decryption queries. For each such query, the challenger decrypts all
ciphertexts in the superposition, except those that were the result of a
challenge query:

∑
c,m

ψc,m

∣∣c, m
〉 −→

∑
c,m

ψc,m

∣∣c, m ⊕ f(c)
〉

where

f(c) =

{
⊥ if c ∈ C
Dec(k, c) otherwise

Guess. A produces a bit b′, and wins if b = b′.

In the above definition, we need to define the operation m ⊕ ⊥. Since the query
responses will XOR ⊥ with different messages, we need a convention that makes
this operation reversible. Taking ⊥ to be some bit string that lies outside of the
message space and ⊥ ⊕ m to be the bitwise XOR will suffice.

Note that we implicitly assume that the decryption algorithm is deterministic.
This will be true of our encryption schemes. We note that this is not a limiting
assumption since we can make the decryption algorithm deterministic by deriv-
ing the randomness for decryption from a PRF applied to the ciphertext. Also,
as in the classical case, a simple hybrid argument shows that the above definition
is equivalent to the case where the number of encryption queries is limited to
one. Lastly, it is straightforward to modify the above definition for public key
encryption schemes.

Quantum Challenge Queries. One might hope to enhance Definition 8 by making
the security game entirely quantum, where challenge queries are quantum as well.
This leads to several difficulties. First, with quantum challenge queries, it is no
longer possible to record the challenge ciphertext. This makes it difficult to check
that the adversary only asks decryption queries on ciphertexts other than the
challenge ciphertexts. The second difficulty is more serious: allowing quantum
challenge queries results in definitions of security that are unachievable, even
if we disallow decryption queries. In the full version [BZ13b], we show several
attempts at defining security with quantum challenges, and show that each of
these definitions is insecure.

Separation from Classical Security. Similar to the case for signatures, quantum
chosen ciphertext queries give the adversary more power than classical queries.
The following is proved in the full version [BZ13b]:

Theorem 7. If there exists a symmetric (resp. public) key encryption scheme E
that is secure against a classical chosen ciphertext attack, then there is a symetric
(resp. public) key encryption scheme E ′ that is secure under a classical chosen
ciphertext attack, but totally insecure under a quantum chosen ciphertext attack.
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4.1 Symmetric CCA Security

In this section, we construct symmetric-key CCA secure encryption. We will
follow the encrypt-then-MAC paradigm. Ideally, we would like to show that
encrypt-then-MAC, when instantiated with any quantum chosen plaintext se-
cure encryption scheme and any EUF-qCMA secure MAC, would be quantum
chosen ciphertext secure. However, it is not obvious how to prove security, as the
reduction algorithm has no way to tell which ciphertexts the adversary received
as the result of an encryption query, and no way to decrypt the ciphertexts if it
has received them. To remedy these problems, we choose a specific encryption
scheme and MAC and leave the general security proof as an open question. The
encryption scheme allows us to efficiently check if the adversary has seen a par-
ticular ciphertext as a result of an encryption query, and to decrypt in this case.
The construction is as follows:

Construction 8. Let F and G be pseudorandom functions. We construct the
following encryption scheme E = (Enc, Dec) where:

Enc((k1, k2), m) : r
R←−{0, 1}λ

c1 ← F (k1, r) ⊕ m, c2 ← G(k2, (r, m))
output (r, c1, c2)

Dec((k1, k2), (r, c1, c2)) : m ← c1 ⊕ F (k1, r), c′
2 ← G(k2, (r, m))

if c2 �= c′
2, output ⊥

otherwise, output m

For security, we require F to be a classically secure PRF, and G to be quantum
secure — secure against queries on a superposition of inputs. Zhandry [Zha12b]
shows how to construct PRFs meeting this strong notion of security.

Theorem 9. If F and G are quantum-secure pseudrandom functions, then E in
Construction 8 is qCCA-secure.

Theorem 9 is proved in the full version [BZ13b]. As demonstrated by Zhandry
[Zha12b], quantum-secure pseudorandom functions can be built from any one-
way function. Therefore, Theorem 9 shows that quantum chosen ciphertext se-
curity can be obtained from the minimal assumption that one-way functions
exist.

4.2 Public-key CCA Security

In the full version [BZ13b], we construct CCA-secure signatures in the public-
key setting. We follow the generic transformation from identity-based encryption
(IBE) to CCA security due to Boneh et al.[BCHK04], which uses a selectively
secure IBE scheme and a strong one-time signature scheme. The one-time sig-
nature scheme only needs to be classically secure, and can hence be built from
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any one-way function. In contrast, we need the IBE scheme to be secure against
quantum chosen identity queries. We observe that the IBE scheme of Agrawal,
Boneh, and Boyen [ABB10] meets this notion of security, assuming the hardness
of the Learning With Errors (LWE) problem. We obtain the following:

Theorem 10. If the LWE problem is hard for quantum computers, then there
exists a public-key encryption scheme that is IND-qCCA secure.

5 Conclusion and Open Problems

We defined the notions of a quantum chosen message attack for signatures and
quantum chosen ciphertext attack for encryption. We gave the first constructions
of signatures and encryption schemes meeting these strong notions of security.
For signatures, we presented two simpler compilers that transform classically
secure schemes into quantum-secure schemes. We also showed that signatures
can be built from any collision resistant hash function. For encryption, we pre-
sented both a symmetric-key and a public-key construction. There are many
directions for future work. First, can we base quantum security for signatures
on the minimal assumption of one-way functions? Also, it may be possible to
mount quantum superposition attacks against many cryptographic primitives.
For example, can we build identification protocols or functional encryption that
remain secure in the presence of such attacks?
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[BDF+11] Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C.,
Zhandry, M.: Random Oracles in a Quantum World. In: Lee, D.H., Wang,
X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidel-
berg (2011)

[BHK+11] Brassard, G., Høyer, P., Kalach, K., Kaplan, M., Laplante, S., Salvail, L.:
Merkle Puzzles in a Quantum World. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 391–410. Springer, Heidelberg (2011)



Secure Signatures and Chosen Ciphertext Security 379

[BS08] Brassard, G., Salvail, L.: Quantum Merkle Puzzles. In: Second Interna-
tional Conference on Quantum, Nano and Micro Technologies (ICQNM
2008), pp. 76–79 (February 2008)

[BZ13a] Boneh, D., Zhandry, M.: Quantum-secure message authentication codes. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881,
pp. 592–608. Springer, Heidelberg (2013), Full version available at the Elec-
tronic Colloquium on Computational Complexity:
http://eccc.hpi-web.de/report/2012/136

[BZ13b] Boneh, D., Zhandry, M.: Secure signatures and chosen ciphertext se-
curity in a quantum computing world. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 361–379. Springer,
Heidelberg (2013), Full version available at the Cryptology ePrint Archives
(2013), http://eprint.iacr.org/2013/088

[Can01] Canetti, R.: Universally composable security: A new paradigm for crypto-
graphic protocols. In: Proceedings of FOCS. IEEE (2001)

[CHKP10] Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai Trees, or How to
Delegate a Lattice Basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 523–552. Springer, Heidelberg (2010)

[DFNS11] Damg̊ard, I., Funder, J., Nielsen, J.B., Salvail, L.: Superposition attacks
on cryptographic protocols. CoRR, abs/1108.6313 (2011)

[GPV08] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for Hard Lattices
and New Cryptographic Constructions. In: Proceedings of the 40th Annual
ACM symposium on Theory of computing (STOC), p. 197 (2008)

[HSS11] Hallgren, S., Smith, A., Song, F.: Classical cryptographic protocols in a
quantum world. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841,
pp. 411–428. Springer, Heidelberg (2011)

[IBM12] IBM Research. IBM research advances device performance for quantum
computing (February 2012),
http://www-03.ibm.com/press/us/en/pressrelease/36901.wss

[KR00] Krawczyk, H., Rabin, T.: Chameleon hashing and signatures. In: Proc. of
NDSS, pp. 1–22 (2000)

[Lam79] Lamport, L.: Constructing digital signatures from a one-way function. Tech-
nical Report SRI-CSL-98 (1979)

[Mer87] Merkle, R.C.: A Digital Signature Based on a Conventional Encryp-
tion Function. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293,
pp. 369–378. Springer, Heidelberg (1988)

[PS96] Pointcheval, D., Stern, J.: Provably secure blind signature schemes. In: Kim,
K.-C., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 1–12.
Springer, Heidelberg (1996)

[Unr10] Unruh, D.: Universally Composable Quantum Multi-Party Computation.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 486–505.
Springer, Heidelberg (2010)

[Zha12a] Zhandry, M.: Secure identity-based encryption in the quantum random
oracle model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 758–775. Springer, Heidelberg (2012), Full version available
at the Cryptology ePrint Archives: http://eprint.iacr.org/2012/076/

[Zha12b] Zhandry, M.: How to construct quantum random functions. In: Proceedings
of FOCS (2012), Full version available at the Cryptology ePrint Archives:
http://eprint.iacr.org/2012/182/

http://eccc.hpi-web.de/report/2012/136
http://eprint.iacr.org/2013/088
http://www-03.ibm.com/press/us/en/pressrelease/36901.wss
http://eprint.iacr.org/2012/076/
http://eprint.iacr.org/2012/182/


Everlasting Multi-party Computation

Dominique Unruh

University of Tartu

Abstract. A protocol has everlasting security if it is secure against ad-
versaries that are computationally unlimited after the protocol execution.
This models the fact that we cannot predict which cryptographic schemes
will be broken, say, several decades after the protocol execution. In clas-
sical cryptography, everlasting security is difficult to achieve: even using
trusted setup like common reference strings or signature cards, many
tasks such as secure communication and oblivious transfer cannot be
achieved with everlasting security. An analogous result in the quantum
setting excludes protocols based on common reference strings, but not
protocols using a signature card. We define a variant of the Universal
Composability framework, everlasting quantum-UC, and show that in
this model, we can implement secure communication and general multi-
party computation using signature cards as trusted setup.

1 Introduction

Everlasting Security. Computers and algorithms improve over time and so
does the ability of an adversary to break cryptographic complexity assumptions
and protocols. It may be feasible to make a good estimate as to which computa-
tional problems are hard today, and which encryption schemes unbroken. But it
is very difficult to make more than an educated guess as to which cryptographic
schemes will be secure, say, ten years from now. Key length recommendations
(e.g., [1,2,3]) can only be made based on the assumption that progress continues
at a similar rate as today; unexpected algorithmic progress and future technolo-
gies like quantum computers can render even the most paranoid choices for the
key length obsolete.

This situation is very problematic if we wish to run cryptographic protocols
on highly sensitive data such as medical or financial data or government secrets.
Such data often has to stay confidential for many decades. But an adversary
might intercept messages from a protocol that is secure today, store them, and
some decades later, when the underlying cryptosystems have been broken, de-
crypt them. For highly sensitive data, this would not be an acceptable risk.

One way out is to use protocols with unconditional (information-theoretical)
security that are not based on any computational hardness assumptions. For
many tasks, however, unconditionally secure protocols simply do not exist (in
particular if we cannot assume an majority of honest participants). A compro-
mise is the concept of everlasting security. In a nutshell, a protocol is everlastingly
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secure if it cannot be broken by an adversary that becomes computationally un-
limited after the protocol execution. This guarantees that all assumptions need
only to hold during the protocol execution, sensitive data is not threatened by
possible future attacks on today’s schemes. We only need to reliably judge the
current state of the art, not future technologies.

Unfortunately, also for everlasting security, we have strong impossibility re-
sults. It is straightforward to see that everlastingly secure public key encryption
is not possible, symmetric encryption needs keys as long as the transmitted mes-
sages, and most secure multi-party computations (MPC) are impossible (e.g.,
oblivious transfer, see Section 3).

Quantum Cryptography. Since the inception of quantum key distribution
(QKD) by Bennett and Brassard [4], it has been known that quantum cryptog-
raphy can achieve tasks that are impossible in a classical setting: a shared key
can be agreed upon between two parties such that even a computationally un-
limited eavesdropper does not learn that key. Classically, this is easily seen to
be impossible. Crépeau and Kilian [5] showed how, given only a commitment
scheme, we can securely realize an oblivious transfer (OT), which in turn, us-
ing ideas from Kilian [6] can be used to implement arbitrary unconditionally
secure MPC. Classically, given only a commitment, it is impossible to construct
arbitrary unconditionally secure MPC (or even everlastingly secure ones, see
Section 3). Initial enthusiasm was, however, dampened by strong impossibility
results. Mayers [7] showed that it is impossible to construct an unconditionally
secure commitment from scratch. Similar impossibilities hold for OT and many
other function evaluations (Lo [8]). So the goal to get unconditionally secure
MPC is not achievable, even with quantum cryptography.

Also, the usefulness of QKD has been challenged (e.g., by Bernstein [9], who
also raises other concerns than the following). To run a QKD protocol, an au-
thenticated channel is needed. But how to implement such a channel? If we use
a public key infrastructure for signing messages, we lose unconditional security
and thus the main advantage of QKD. If we use shared key authentication, a key
needs to be exchanged beforehand. (And, if we exchange an authentication key
in a personal meeting, why not just exchange enough key material for one-time
pad encryption – storage is cheap.)

Everlasting Quantum Security. A simple change of focus resolves the prob-
lems described in the previous paragraph. Instead of seeing the goal of quantum
cryptography in achieving unconditional security, we can see it as achieving ev-
erlasting security. For example, if we run a QKD protocol and authenticate all
messages using signatures and a public key infrastructure, then we do not get
an unconditionally secure protocol, but we do get everlasting security: only the
signatures are vulnerable to unlimited adversaries, but breaking the security of
the signatures after the protocol execution does not help the adversary to recover
the key. (Experience and the discussion on composition below show that one has
to be careful: we need to check that signatures and QKD indeed play together
well and compose securely. We answer this positively in Section 4: we achieve
everlastingly secure universally composable security.)
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What about secure MPC? Recall that for constructing unconditionally secure
MPC in the quantum setting, the only missing ingredient was a commitment.
Once we have a commitment, unconditionally secure MPC protocols exist [10].
Unconditionally secure commitments do not exist, but everlastingly secure ones
do! Consider a statistically hiding commitment. That is, the binding property
may be subject to computational assumptions, but the hiding property holds
with respect to unlimited adversaries. Such a scheme is in fact everlastingly
secure. Being able to break the binding property of a commitment after the
protocol end is of no use – the recipient of the commitment is not listening any
more. And the hiding property, i.e., the secrecy of the committed data, holds
forever. So a statistically hiding commitment is in fact everlastingly secure. It
seems that we have all ingredients for everlastingly secure quantum MPC. The
next paragraph, however, shows that the situation is considerably more subtle.

We stress that the neither the concept of everlasting security nor the idea of
combining it with quantum cryptography is original to this paper. For example,
[11] already suggested to combine QKD with computational authenticated, albeit
without proof or analysis of composition problems.

Everlasting Security and Composition – A Cautionary Tale. As dis-
cussed above, statistically hiding commitments are in fact everlastingly secure,
and there are quantum protocols that construct unconditionally secure OT
(among other things). Thus, composing a statistically hiding commitment with
such a protocol will give us an everlastingly secure OT in the bare model (i.e.,
not using any trusted setup). But it turns out that this reasoning is wrong! Lo’s
impossibility of OT [8] can be easily modified to show that unconditional OT
is impossible, even if we consider only passive (semi-honest) adversaries. But
everlasting security implies unconditional security against passive adversaries:
A passive adversary is one that during the protocol follows the protocol (and
thus in particular is computationally bounded) but after the protocol may per-
form unlimited computations. Thus Lo’s impossibility excludes the existence of
everlastingly secure OTs.

What happened? The problem is that although statistically hiding commit-
ments are everlastingly secure on their own, they lose their security when com-
posed. Composition problems are common in cryptography, but we find this case
particularly instructive: The commitment does not lose its security only when
composed with some contrived protocol, but instead in a natural construction.
And not only does a particular construction break down, we are faced with a
general impossibility. And the resulting protocol is insecure in a strong sense:
an unlimited adversary can guess either Alice’s or Bob’s input. (As opposed to
a situation where the “break” consists solely of the non-existence of a required
simulator.)

One may be tempted to suggest that the failure is not related to the everlasting
security, but to the non-composability of the commitments. Damgård and Nielsen
[12] present commitment schemes that are universally composable (we elaborate
on this notion below, it is a security notion that essentially guarantees “worry-
free” composition), that only need a predistributed common reference strings
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(CRS), and that are statistically hiding.1 Yet, when using these commitments to
get everlastingly secure OT, we run into the same problem again: We would get
an everlastingly secure OT using a CRS, but a generalization of Lo’s impossibility
shows that no everlastingly secure OT protocols exist even given a CRS (see
Section 3).2 (See also page 391 for another view on the problem in the quantum
case.)

Quantum Everlasting Universal Composability. The preceding paragraph
shows that, in the setting of everlasting security, it is vital to find definitions that
guarantee composability. One salient approach is the Universal Composability
(UC) framework by Canetti [14]. In the UC framework, we compare a protocol π
against a so-called ideal functionality F which describes what π should ideally
do. (E.g., F could be a commitment functionality that registers the value Alice
commits to, but forwards it to Bob only when Alice requests an open.) We say π
UC-emulates F if for any adversaryAdv (that attacks π) there is a simulator Sim
(that “attacks” F) we have that no machine Z (the environment) can distinguish
π running with Adv (real model) from F running with Sim (ideal model). The
intuition behind this is that Adv can perform only attacks that can be mimicked
by Sim. Since F is secure by definition, Adv can perform no “harmful” attacks.
A salient property of the UC framework is that UC secure protocols can be
composed in arbitrary ways (universal composition). By tweaking the details
of the definition, we get various variants of UC: If Z, Sim, Adv are polynomial-
time, we have computational UC. If they are unlimited, statistical UC (modeling
unconditional security). Unlimited quantum machines lead to the definition of
statistical quantum-UC [10].

Müller-Quade and Unruh [13] showed that the UC framework can also be
adapted to the setting of everlasting security: We quantify over Z, Sim, Adv that
are polynomial-time, but we say that Z distinguishes the real and ideal model
if the distribution of Z’s output is not statistically indistinguishable. That is, a
protocol is considered insecure if one can distinguish real and ideal model when
being polynomial-time during the protocol, but unlimited afterwards (statistical
indistinguishability means that no unlimited machine can distinguish).

The ideas from [13] can be easily adapted to the quantum case. In Section 2,
we introduce everlasting quantum UC (eqUC). Here Z, Sim, Adv are quantum-
polynomial-time machines (representing the fact that adversaries are limited
during the protocol run), but we require that the quantum state output by Z in
the real and ideal model is trace-indistinguishable (two quantum states are trace-
indistinguishable if no unlimited quantum machine can distinguish them). The
eqUC security notion inherits all composability properties from the UC notion.
Also, protocols that are secure with respect to statistical classical or statistical
quantum UC are also eqUC-secure. In particular, known quantum protocols for

1 The schemes given in [12] were only shown secure classically. But we think it likely
that similar protocols can be constructed in the quantum setting, too.

2 That Damgård and Nielsen’s commitment does not compose well in an everlasting
security setting was already observed in [13]. Their example, however, only shows
insecurity when composing with contrived protocols.
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constructing MPC from commitments [10] are also eqUC secure. Thus, if we find
an eqUC-secure commitment protocol, we immediately get eqUC-secure MPC
protocols by composition.

Everlasting Quantum-UC Commitments. The problem of everlasting UC
commitments in the classical setting was already studied in [13]. Their protocol
uses a signature card as trusted setup.3 Here a signature card is a trusted device
(modeled as a functionality) such that the owner of the card can sign messages,
everyone can access the public key, and no-one (not even the owner) can get the
secret key.4 Their protocol is, however, only known to be secure in the classical
setting. In fact, when we try to prove the protocol secure in a quantum setting, we
stumble upon an interesting difficulty in the interplay of zero-knowledge proofs
of knowledge and signature schemes.

A core step in the protocol is that Alice performs a proof of knowledge P
showing that she knows a certain signature σ. In the security proof, we then
show that Alice must have obtained σ from the signature card: Assume Alice
successfully performs P without requesting σ first. Since P is a proof of knowl-
edge, there is an extractor E (using Alice and indirectly the signing oracle as a
black box) that returns a valid witness, i.e., the signature σ. Since E returns the
signature without requesting it from the signing oracle, we have a contradiction
to the unforgeability of the signature scheme.

It seems that the same reasoning applies against quantum adversaries if we
use quantum proofs of knowledge instead. Unfortunately, this is not the case.
In a quantum proof of knowledge (as defined by Unruh [17]), an extractor with
black box access to the prover executes both the prover (modeled as a unitary
operation) as well as its inverse (i.e., the inverse of that unitary). This is the
quantum analogue of classical rewinding. So the extractor E will invoke not only
the signing oracle, but also its inverse! But unforgeability will not guarantee
that there are no forgeries when the adversary accesses the inverse of the signing
oracle. Hence the security proof fails.

To avoid this problem, we need a new protocol which does not require rewind-
ing in the same places of the security proof where we use the unforgeability of
the signature scheme. We present such a protocol; it is considerably more in-
volved than the one from [13]. We believe that our approach is of independent
interest because it shows one way around the limitations of quantum proofs of
knowledge.

Bounded Quantum Storage Model. We quickly compare the concept of ever-
lasting security in this paper with the bounded quantum storage model (BQSM;
[18]). The BQSM achieves very similar goals. Security in the BQSM guarantees
that the protocol cannot be broken by an adversary that has limited quantum
memory during the protocol execution and unlimited quantum memory after
the execution. The BQSM is thus analogous to everlasting security as discussed

3 It is impossible to construct UC commitments without using some trusted setup
such as a CRS [15]. [13] shows that for everlasting UC, even a CRS is not sufficient.

4 The last property is mandated, e.g., by the German signature card law [16].
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here, except that it considers quantum memory where we consider computa-
tional power. The advantage of the BQSM over our model is that when using
a BQSM protocol, we only need to make assumptions about the power of the
adversary (its quantum memory). In contrast, in our model we need to assume
that the computational power is limited and that certain mathematical prob-
lems are hard. In our view, the main disadvantage of the BQSM is that it might
be useful only for a limited time: currently, we may assume a small limit on
the adversary’s quantum memory. Should quantum technology advance, though,
quantum memory might become cheap, and at that point BQSM protocols must
not be used any more. In contrast, with everlasting security as in this paper, if
an assumption we use in a protocol is broken, it is likely that there still are other
assumptions that can be used – we can then fix the protocol by switching the
underlying problem. Also, BQSM protocol tend to have a high communication
complexity, and composition is more involved (in particular when we wish for
universal composability [19]). Then again, our approach requires trusted setup
(signature cards). An interesting goal would be protocols that are simultaneously
secure in our model and the BQSM.

In the classical setting, the bounded storage model can also be used [20] but
has very high communication complexity (quadratic in the memory bound). [21]
shows that if we combine bounded storage with temporary computational as-
sumptions, then in the random oracle model we achieve lower communication
complexity (but they also show impossibilities when not using the random ora-
cle model). In contrast, our work uses quantum communication and temporary
computational assumptions, but no bounded storage.

Further Related Work. [22] also considers the problem of using an uncon-
ditionally hiding computationally binding commitment to construct a quantum
OT (as opposed to using directly a functionality). They show that with such a
commitment, OT can be realized (no impossibility results are given). However,
their OT protocol only computationally hides the sender’s inputs (although one
may be tempted to assume otherwise as the commitments that are used are
unconditionally hiding). In fact, our impossibility results imply that their OT
cannot be everlastingly secure.

Organization and Contribution. In Section 2 we present the everlasting
quantum UC model and the corresponding composition theorem. In Section 3
we show the impossibility of everlastingly secure OT in the classical and the
quantum setting using various functionalities. In Section 4 we show that using
signature cards or a public key infrastructure, an everlastingly quantum-UC-
secure secure channel can be implemented. In Section 5 we implement arbitrary
everlastingly quantum-UC-secure multi-party computation using signature cards.
Many details and proofs are omitted for space reasons, these are given in the
full version [23].
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2 Everlasting Quantum UC

We now give a terse overview of the definition of everlasting quantum UC (eqUC).
Our definition is based on the modeling of UC in the quantum case from [10].
For a full definition, see [23]. The only difference between the definition from [10]
and ours is that we allow the environment to output a quantum state and that
we require that state to be trace-indistinguishable between real and ideal model.
See also [13] for additional discussion on how to model everlasting security in
the UC framework.

The basic concept is that of a network. A network N is a set of quantum
machines. Each machine maintains a quantum state and can send and receive
messages from other machines in the network. A message can be a quantum
state. In a network, there is a distinguished machine Z. This machine is initially
activated with some input z. When a machine is activated by an incoming mes-
sage, it can apply an arbitrary quantum operation to the message and its state,
producing a new state and an outgoing message. Then the recipient of that
message is activated. If a machine sends no outgoing message, Z is activated.
At any point, Z may terminate with some output quantum state. We denote by
QExecN(η, z) the state output by Z after an execution of the network N when Z
gets initial input z and the security parameter is η. We call two networks N,N′

trace-indistinguishable TD(QExecN(η, z),QExecN′(η, z)) ≤ μ(k) is negligible for
all z ∈ {0, 1}∗ and k ∈ N where TD(ρ, ρ′) denotes the so-called trace-distance
between two quantum states.

A protocol π is a network without Z or adversary. We cannot execute π itself,
but given machines Adv and Z, we can run π∪{Adv,Z}. Given a set C of party
identities, let πC denote the result of replacing, for each id ∈ C, the party with
id id by the corruption party PC

id . This corruption party just forwards all its
communication to the adversary and is controlled by it.

We can now specify everlasting quantum-UC-security. The fact that in this
definition, we require the networks to be trace-indistinguishable (i.e., even an
unlimited machine cannot distinguish the output states of Z in real and ideal
model), models the fact that in everlasting security, we allow unlimited computa-
tions after the protocol execution. During the protocol execution, environment,
adversary, and simulator are quantum-polynomial-time.

Definition 1 (Everlasting quantum-UC-security). Let protocols π and ρ
be given. We say π everlastingly quantum-UC-emulates (short eqUC-emulates)
ρ iff for every set C of party ids and for every quantum-polynomial-time adver-
sary Adv there is a quantum-polynomial-time simulator Sim such that for ev-
ery quantum-polynomial-time environment Z, the networks πC ∪ {Adv,Z} and
ρC ∪ {Sim,Z} are trace-indistinguishable.

We can now define security by comparing a protocol π with some ideal func-
tionality F . If we say that π eqUC-emulates a functionality F , we mean that π
eqUC-emulates ρF where the ideal protocol ρF is the protocol consisting of the
functionality F plus the so-called dummy-parties. For each party in π, there is
a dummy-party P̃ that just forwards messages between the environment Z and
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the functionality F . The reason for introducing dummy-parties is that dummy-
parties can be corrupted. By corrupting Alice in the ideal protocol, the simulator
controls the dummy-party and thus effectively Alice’s inputs to F and also gets
the outputs from F to Alice.

If, e.g., we wish to express the fact that π is a eqUC-secure commitment, we
say that π eqUC-emulates FCOM where FCOM is the commitment functionality
defined below. We specify two functionalities that will be used in this paper.

Definition 2 (Commitment). Let A and B be two parties. The functionality
FA→B,�

COM behaves as follows: Upon (the first) input (commit, x) with x ∈ {0, 1}�(k)
from A, send committed to B. Upon input open from A send (open, x) to B.
All communication/input/output is classical.

We call A the sender and B the recipient.

Definition 3 (Signature card). Let S = (KG, Sign,Verify) be a signature
scheme. Let A be a party. Then the functionality FS,A

SC ( signature card for scheme
S with owner A) behaves as follows: Upon the first activation, FS,A

SC chooses a
verification/signing key pair (pk , sk) using the key generation algorithm KG(1λ).
Upon a message (getpk) from a party P or the adversary, it sends pk to P or
the adversary, respectively. Upon a message (sign,m) from A FS,A

SC computes
σ ← Sign(sk ,m) and sends (pk , σ) to A.

All communication/input/output is classical.

One of the salient features of the UC model is the universal composition theorem.
It says that if π eqUC-emulates F , then we can replace F by π in any context.
(Thus allowing for modular protocol design.) The proof of the following theorem
follows the lines of that for quantum UC [10].

Theorem 1 (Universal composition theorem). Let F and G be quantum-
polynomial-time functionalities. Let π and σF be quantum-polynomial-time pro-
tocols. Here the notation σF means that σ invokes (possibly many) instances
of F . Assume π eqUC-emulates F . Assume further that σF eqUC-emulates G.
Then σπ eqUC-emulates G. (Here σπ is the result of replacing F by the protocol
π in σF .)

3 Impossibilities

In Section 5, we show that by using signature cards and a quantum channel, we
can construct general everlastingly secure MPC protocols. The question arises
whether both signature cards and quantum channels are needed. We answer
this question positively by showing that (a) in the classical setting, most typical
trusted setup (including signature cards) is not sufficient to implement everlast-
ing OT and that (b) in the quantum setting, typical trusted setup such as a CRS
is not sufficient to implement everlasting OT. The impossibilities even apply if
we do not try to achieve UC security but only to implement a stand-alone OT.
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For space reasons, we only give a short overview here. For precise statements
and proofs see [23].

Classical Impossibilities. The basic observation underlying our impossibility
result is that a protocol that is everlastingly secure is also secure against unlim-
ited passive adversaries. This is due to the fact that a passive adversary follows
the protocol during the protocol execution (and is thus polynomial-time) and
only after the protocol execution performs an unlimited computation. Thus if
an unlimited passive adversary could break the protocol, the protocol would not
be everlastingly secure either.

We call a functionality F passively-realizable if there is a protocol that realizes
F with respect to unlimited passive adversaries. We show that the following
functionalities are passively-realizable: the coin-toss FCT, the common reference
string FCRS, the public key infrastructure FPKI, the commitment FCOM, and
the signature card FSC.

Assume now an everlastingly secure OT protocol π that uses a passively-
realizable functionality F . Then π is also secure against passive unlimited adver-
saries. Let ρ be the protocol that realizes F (passively). Then π′, resulting from
replacing F by ρ, will still be an OT secure against passive unlimited adversaries.
(Here, of course, we have to be careful with our definition of passively realizing
a functionality – the notion needs to compose such that π′ is still secure.) But
π′ does not use any functionality, and we know that no OT protocol in the bare
model can be secure against unlimited passive adversaries.

Concluding, we get:

Theorem 2 (Simplified). There is no everlastingly secure OT protocol which
only uses arbitrarily many instances of FCT (coin-toss), FCRS (common refer-
ence string), FCOM (commitment), FPKI (public key infrastructure), and FSC

(signature cards).

Quantum Impossibilities. The impossibility in the quantum case follows simi-
lar lines. However, the classical notion of passive adversaries does not make sense
in the quantum case. (A passive adversary copies all data, this is not possible
in the quantum case.) To solve this issue, we consider only protocols that per-
form no measurements (unitary protocols). Any protocol can be transformed into
such a protocol at the expense of additional quantum memory. We call a func-
tionality F quantum-passively-realizable if there is a unitary protocol π that re-
alizes F with respect to passive unlimited adversaries (that follow the protocol
exactly and do not even copy information). Notice that the requirement that π
has to be unitary has the effect that the protocol cannot just throw away informa-
tion. Thus an adversary that is passive will still have some information left over
after the protocol execution. The following functionalities turn out to be quantum-
passively-realizable: coin toss FCT, predistributed EPR pairs FEPR, public key in-
frastructure FPKI (assuming the secret key is uniquely determined by the public
key). However, signature cards and commitments are not! (The reason being that
signature cards and commitments do not allow to commit/sign superpositions of
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messages and thus enforce measurements. This cannot be realized with a unitary
protocol.)

Then we can proceed as in the classical case: Assume an everlasting quantum
OT protocol π using a quantum-passively-realizable functionality F . This proto-
col is also secure against unlimited passive adversaries (in the above sense). By
replacing F by the protocol ρ that realizes F , we get a quantum OT protocol π′

not using any functionality that is secure against unlimited passive adversaries.
But Lo [8] shows that such protocols do not exist. Thus we get:

Theorem 3 (Simplified). There is no quantum-polynomial-time everlastingly
secure OT protocol which only uses arbitrarily many instances of FCT (coin-
toss), FCRS (common reference string), FEPR (predistributed EPR pair), FPKI

(public key infrastructure; assuming that the secret key is uniquely determined
by the public key).

4 Everlasting Quantum Key Distribution

The first application of quantum everlasting security we present in this paper is a
new view on quantum key distribution (QKD). Instead of thinking of QKD as a
method for getting unconditionally secure message transmission (but then being
stuck with the problem of how to realize authenticated channels), we can combine
QKD with a computationally secure authenticated channel to get everlastingly
secure message transmission. This was already suggested in [11, Section 3.1], but
no formal statement or proof was given. We only give a short overview here, for
details see [23]. The first step is to implement an authenticated channel from,
say, a signature card. (All results in this section also hold with a normal public
key infrastructure instead of a signature card.)

Lemma 1 (Authenticated channels from signature cards). Let S be a
quantum existentially unforgeable signature-scheme. Then there is a polynomial-
time classical protocol π using one instance of FS,A

SC such that π eqUC-emulates
FA→B

auth . Here FA→B
auth denotes an authenticated channel from A to B.

The proof presents no surprises. Using FA→B
auth and FB→A

auth , we can implement
(with statistical quantum-UC-security) a bidirectional secure channel between
Alice and Bob using existing protocols from the literature [24,25,26].

Corollary 1 (Secure channels from signature cards). Let S be a quan-
tum existentially unforgeable signature-scheme. Then there is a polynomial-time
protocol π using one instance of FA,S

SC and FB,S
SC each such that π eqUC-

emulates Fsecchan. (Here Fsecchan denotes a bidirectional secure channel between
A and B.)

5 Everlasting Quantum Multi-party Computation

Classical Everlasting UC Commitments. In the classical setting, Müller-
Quade and Unruh [13] presented a protocol that everlastingly classical -UC-
emulates (called “long-term UC-emulates” there, ecUC-emulates in the following)
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the commitment functionality FCOM and that uses a signature card FSC. There
protocol cannot be proven secure in the quantum setting (at least we do not
know how), but it is instructive to understand their protocol before we present
ours.5

In order for a commitment protocol to be everlastingly UC secure, we need
to achieve the following: Obviously, it needs to be statistically hiding and com-
putationally binding. Furthermore we need that the protocol is extractable: a
simulator who controls the signature card can find out what value Alice com-
mitted to. And the protocol needs to be equivocal: a simulator who controls the
signature card can cheat the binding property and open to a different value. The
simulators need to behave in a way that is statistically indistinguishable from
the honest behavior of the parties.

The difficulty lies in the extractability. If the committed value can be extracted
by the simulator from the interaction, then it must be somehow contained in that
interaction, and an unlimited entity can extract it. But that would contradict the
statistical hiding property. The approach is to use the signature card FA

SC. When
Alice wishes to commit to a value m, we force her to obtain a signature on m.
Since the simulator controls FSC, and since Alice can only sign using FSC (even
the owner of the signature card does not know the secret key), the simulator will
learn m. How do we force Alice to sign m? First, Alice commits to m using a
commitment COM. Then Alice obtains a signature σ on (m,u) from FSC where u
is the opening information for COM(m). And then Alice proves that she knows
a signature σ on (m,u) for some u that opens COM(m) as m. (Here COM
is statistically hiding, and the proof is a statistically witness-indistinguishable
argument of knowledge.) Commit phase:

A B
c := COM(m)

Proof: I know signature σ on (m,u) s.t. u opens c as m
or I know the secret key of FSC

We now have extractability: Alice can only succeed in the proof if she gets a
signature on (m,u). But then all the simulator has to do is to check which query
(m,u) to FSC opens the commitment c, and then he knows m. (We explain the
“or I know the secret key”-part in a moment.) In the open phase, we cannot just
send u, then we would not have equivocality. Instead, Alice proves that she could
open c as m. Open phase:

A B
m

Proof: I know u that opens c as m
or I know the secret key of FSC

Now, if the simulator wishes to equivocate, he simply commits to 0, and later
he produces a fake proof that he can open c as m. To produce this fake proof, we
5 [13] actually first construct a ecUC zero-knowledge proof and use that one to con-

struct an ecUC commitment. For clarity, we present and discuss a direct construction
instead. An analogous discussion applies to their original zero-knowledge protocol.



Everlasting Multi-party Computation 391

have added the “or I know the secret key sk ”-part. Since the simulator knows sk
(he controls FSC), he can always perform the proof using sk as witness. (While
Alice, not knowing sk , is forced to prove the part of the statement before the
“or”.)

Another (Quantum) View on the Problem. It has been pointed out (by
an anonymous reviewer) that in the quantum case, the problem is actually the
following: Using a standard unconditionally hiding commitment scheme fails to
achieve everlasting security when using it to construct an OT. But this is not
due to composability issues, but to the fact that commitment schemes do not
force the committer to commit to a classical value, allowing commitments to
superpositions instead. In contrast, an ideal commitment functionality would
not allow the commit to occur in superposition. This also matches what we do
in our quantum-secure protocol below: The signature card forces the committed
message to be classical.

We believe this view to be correct, too. Indeed, our protocol would not work if
the signature card would allow the adversary to sign superpositions of messages.
Yet, this view only partially explains the situation: Even in the purely classical
case described above, standard commitments are not sufficient. But in the clas-
sical case, the possibility of committing to superpositions obviously cannot be
the reason for the problem, indicating that composition is at least part of the
problem. In fact, we believe that non-composition and the possibility to commit
to superpositions might actually be two sides of the same coin. For example,
composition usually requires extractability, i.e., the fact that the adversary can
only commit to values he knows. But if the adversary can commit to superposi-
tions, he cannot know what he commits to. It would be interesting (but beyond
the scope of this work) to explore this connection further.

Difficulties in the Quantum Case. Now assume we wish to prove the above
protocol secure in the quantum case. Then instead of an argument of knowledge,
we need to use a quantum argument of knowledge. But then we run into problems
when showing extractability. To show extractability, we need to show that Alice
cannot perform the first proof without first sending (m,u) to FSC. To do so,
consider an execution where Alice performs the proof without sending (m,u) to
FSC. We can then consider Alice as a prover AO with access to a signing oracle O.
Applying the extractor E from the argument of knowledge to Alice, we get that
EAO

outputs a witness to the statement that is proven. I.e., either a signature
on (m,u) or the secret key sk of O. Since EAO

has only black-box access to O,
and since AO and thus also EAO

never signs (m,u), both possibilities contradict
the existential unforgeability of the signature scheme. This reasoning works in
the classical case. In the quantum case (following [17]), however, the extractor
EAO

, while rewinding, does the following: It applies both U and U−1 where U
is the unitary transformation describing the operation of AO. Thus, indirectly
EAO

invokes not only O, but also its inverse. Existential unforgeability makes
no statement in this case. It could well be that given access to the inverse of O,
we can efficiently construct forgeries or even extract the secret key.
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Setup:
A B

k0

ck := COMB(k0)

k1

k0

Proof 1: ck opens as k0 or I know a signature on msg1.

Commit to m:
A B

cm := COMH(m) (open info: um)

σ: Signature on (m,um)

cσ := COMX(crs, (σ,m, um)) csk := COMX(crs, 0)

Open:
A B

m

Proof 2: cσ contains (σ,m, um)

s.t. σ is signature on (m,um) and um opens cm as m.
Or: csk contains the secret key of FSC.

Fig. 1. The commitment protocol based on signature cards – overview. Proof 1 is
a witness indistinguishable argument of knowledge, proof 2 is a statistically witness
indistinguishable argument. COMH is a statistically hiding quantum-computationally
binding commitment. COMB is a quantum-computationally hiding perfectly binding
commitment. COMX is a dual-mode commitment.

Note: At a first glance, it might seem that invoking the inverse of O is not a
problem due to the following reasoning. An oracle O implementing a function
f(x) is usually modeled as a unitary mapping |x〉|y〉 to |x〉|y⊕f(x)〉. That unitary
is self-inverse, so applying O−1 is equivalent to applying O.

However, if the signing oracle O is modeled in this way, then it can be queried
on superposition. Instead, O should measure the message to be signed first. This
could be realised by copying the message (using CNOTs) into fresh ancillae bits.
But then O is not self-inverse any more. Furthermore, to formulate the existential
unforgeability,O additionally needs to keep track of all messages that were signed
(otherwise it is not possible to define a “fresh” forgery). Applying the inverse of
O will remove messages from this list, making the notion of a fresh message
meaningless.

Our Approach. To solve this problem, we need to construct a new protocol
in whose security proof we do not need to rewind the signing oracle. A protocol
overview is given in Figure 1. We now explain the intuition behind the protocol.
As explained above, the main challenge is the extractability of the protocol: Alice
commits to m using a commitment scheme COMB, the unveil information is um.
We need to make sure that Alice is forced to sign (m,um) in order to complete
the protocol. We cannot just perform a proof of knowledge that Alice knows
such a signature σ on (m,um) – it might be that Alice proves that she knows a
signatures without actually knowing it. To force Alice to actually know the sig-
nature, we use the following approach: During the commit phase, Alice commits
to (σ,m, um) using a commitment scheme COMX. (cσ := COMX((σ,m, um)).)
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And additionally, we let Alice prove (“proof 2” in Figure 1) that the resulting
commitment cσ indeed contains a valid signature σ on (m,um). However, we
seem to have the same problem as before: How do we guarantee that Alice
knows the content of the resulting commitment cσ? We cannot use rewinding
for the same reason as before. Instead, we use a so-called dual-mode commit-
ment for cσ. A dual-mode commitment COMX depends on a public parameter
crs : If crs is honestly chosen, then COMX is statistically hiding (we need this
as otherwise the overall protocol would not be statistically hiding and thus not
everlastingly secure). But crs can also be chosen in a special way together with
a trapdoor td such that using td , we can efficiently compute (σ,m, um) given
cσ = COMX(crs , (σ,m, um)).

Then we can prove extractability of the eqUC commitment protocol roughly
as follows:

1. For extracting, the simulator looks at the list of signing queries to FSC and
finds a suitable pair (m,um). We need to show that if Alice opens successfully,
there must have been such a signing query for (m,um) during the commit
phase.

2. To show that, consider a game consisting of an execution with corrupted
Alice and that simulator. We change the game such that instead of picking
crs honestly, we pick it together with a trapdoor td . (We discuss below how
to do that.)
Note: the new game will only be computationally indistinguishable from the
preceding one. But this does not contradict everlasting security: we are in
a side-arm of the proof in order to bound the probability of a certain event
(“Alice opens without signing (m,um)”). The extracting simulator will still
be statistically indistinguishable from an honest recipient of the commitment
since the extracting simulator just passively looks at the signing queries.

3. We use the soundness of “proof 2” to show that cσ contains with overwhelming
probability a valid signature σ on (m,um). (In the full proof, we need to
additionally exclude that Alice proves the alternative option that csk contains
the secret key.)
Note: we do not claim at this point that Alice knows σ, we only show that
whatever is extracted from cσ using td is a valid signature on (m,um). In
particular, we do not use the unforgeability of the signature scheme in this
step.

4. Now we use the unforgeability: We have derived that extracting cσ using
td produces a signature on (m,um). If this would be the case without hav-
ing sent (m,um) to FSC, we would have produced a forgery, contradicting
unforgeability.

5. So Alice always signs (m,um), hence the simulator from Step 1 succeeds with
overwhelming probability in extracting.

One thing is missing in this description: How to pick crs in a way that we can
choose it together with a trapdoor in Step 2? For this, we have the setup phase
in Figure 1. Here crs is chosen using a coin toss that is designed such that Bob,
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if he knows a signature on a special message msg1, can cheat and choose crs
arbitrarily. In Step 2, this allows us to pick crs together with a trapdoor by
requesting a signature msg1 from FSC. (Here msg1 is an arbitrary fixed bitstring,
but syntactically different from all other messages occurring in the protocol.)

Notice that “proof 1” in the coin toss protocol needs to be “of knowledge” (more
precisely, a witness-indistinguishable argument of knowledge). However, we do
not run into problems with the combination of rewinding and unforgeability this
time, because during the execution of “proof 1”, the signature card is not accessed
by the honest verifier Alice. (And thus the signing oracle is not accessed by the
extractor at all.)

Thus, the protocol from Figure 1 is extractable.

Finally, we need to see how to achieve equivocality. Fortunately, this is easy:
The equivocating simulator commits to the secret key sk of FSC in the commit-
ment csk (he knows it since he controls FSC) and commits to 0 in cσ. Then, in
the open phase, to open as an arbitrary m, the simulator just performs “proof 2”
using the fact that csk indeed contains sk . Thus the protocol is equivocal, too.
(No fake CRS is needed in this case.)

5.1 The Full Protocol Description

We fix the following notation for interactive commitment schemes: If COM is
a commitment scheme, we denote by (c, u) ← COMC,R(1

η,m) an execution
of the commit phase with sender C and recipient R where C commits to the
message m. After the protocol execution, both C and R know the value c (e.g., c
could be the protocol transcript), intuitively c represents the commitment itself.
Furthermore, C gets the value u, the opening information. We assume that the
opening phase consists of C sending (m,u), and R verifying the open phase via a
deterministic function COMVerify(c,m, u). For commitments that take a public
parameter crs, we add this parameter as an additional argument to COMC,R

and COMVerify.
We now give a definition of dual-mode commitments. The definition is close to

that of dual-mode commitments in [27]. The main difference is that we addition-
ally require that the honestly chosen CRS is uniformly chosen from a set CRS .
As discussed in [27], dual-mode commitments (also according to our definition)
can be constructed from Regev’s cryptosystem [28].

Definition 4. A dual-mode commitment COM is an interactive commitment
with a public common reference string crs and which has the following properties:

– The common reference string crs is chosen from a set CRS such that one
can efficiently sample elements of CRS that are statistically indistinguishable
from uniform, and such that CRS is endowed with an arbitrary group op-
eration ∗ (e.g., CRS could be {0, 1}n or Zn for some n). The operation
∗ is efficiently computable, and inverses with respect to ∗ are efficiently
computable.

– Statistical hiding: For crs chosen uniformly from CRS , COM is statistically
hiding.
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– Fake-CRS: There is an algorithm (crs , td) ← COMFakeCRS(1η) such that
crs is quantum-computationally indistinguishable from being uniformly dis-
tributed on CRS .

– Extractability: There is an efficient algorithm COMExtract such that for
any quantum-polynomial-time A, we have that the following probability is
negligible:

Pr[∃u,m. (m �= m′ ∧ COMVerify(crs , c,m, u) = 1) :

(crs , td) ← COMFakeCRS(1η),

c ← COMA,R(crs),m
′ ← COMExtract(td , c)]

Here c ← COMA,R(crs) stands, in abuse of notation, for a commit phase
between the adversary A and an honest recipient R. The value c is the value
R gets at the end of the commit phase.

Furthermore, we will need a signature scheme S that has some (very natural) ad-
ditional properties besides quantum existential unforgeability. First, we will need
deterministic verification. This just means that the verification algorithm is not
randomized. Second, we will need that S has a matchingKeys-predicate. This
means that there is a predicate matchingKeys that can be decided in determinis-
tic polynomial time, and such that for pk , sk chosen according to the key genera-
tion algorithm, we have matchingKeys(pk , sk) = 1 with overwhelming probabil-
ity. And given pk as chosen by the key generation, a quantum polynomial-time
algorithm outputs sk with matchingKeys(pk , sk) = 1 only with negligible proba-
bility. (Intuitively, this just means that there is a well-defined concept of whether
a given secret key matches a given public key.)

Theorem 4 (Commitments from signature cards). Let A and B be par-
ties. Let � be an integer. Assume the existence of: quantum-computationally
witness-indistinguishable quantum arguments of knowledge, statistically witness-
indistinguishable arguments,6 statistically hiding quantum-computationally bind-
ing commitments, quantum-computationally hiding perfectly binding commit-
ments, dual-mode commitments. Assume that S is a quantum existen-
tially unforgeable signature scheme with deterministic verification and with
matchingKeys-predicate.

Then there is a protocol π using secure channels and one instance of FA,S
SC

such that π eqUC-emulates (FA→B,�
COM )∗. (Here (FA→B,�

COM )∗ is the functionality con-
sisting of many instances of FA→B,�

COM . I.e., we can perform many commitments
using a single signature card.)

The protocol π is shown in Figure 1. A more precise description and a security
proof are given in [23].
6 Quantum-computational witness-indistinguishability is defined analogously to the

computational witness-indistinguishability (as in, e.g., [29]). Quantum arguments
and quantum arguments of knowledge are defined like quantum proofs [30] and
quantum proofs of knowledge [17], except that we consider only quantum-polynomial-
time provers instead of unlimited provers.
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Corollary 2 (Everlasting two-party computation). Let A and B be par-
ties. Let G be a well-formed7 classical probabilistic-polynomial-time functionality
involving A and B. Under the conditions from Theorem 4, there is a protocol πG
using one instance of FA,S

SC such that πG eqUC-emulates G∗.

This corollary follows from combining Theorem 4 with known statistically se-
cure protocols from [31,32,10]. Analogously, we get everlasting multi-party com-
putation at the price of using more instances of FSC.
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Abstract. This paper provides a (standard-model) notion of security for
(keyed) hash functions, called UCE, that we show enables instantiation
of random oracles (ROs) in a fairly broad and systematic way. Goals
and schemes we consider include deterministic PKE; message-locked
encryption; hardcore functions; point-function obfuscation; OAEP; en-
cryption secure for key-dependent messages; encryption secure under
related-key attack; proofs of storage; and adaptively-secure garbled cir-
cuits with short tokens. We can take existing, natural and efficient ROM
schemes and show that the instantiated scheme resulting from replacing
the RO with a UCE function is secure in the standard model. In several
cases this results in the first standard-model schemes for these goals. The
definition of UCE-security itself is quite simple, asking that outputs of
the function look random given some “leakage,” even if the adversary
knows the key, as long as the leakage does not permit the adversary to
compute the inputs.

1 Introduction

The core contribution of this paper is a new notion of security for (keyed) hash
functions called UCE (Universal Computational Extractor). UCE-security is the
first well-defined, standard-model security attribute of a hash function shown to
permit the latter to securely instantiate ROs across a fairly broad spectrum of
schemes and goals.

Under the random-oracle paradigm of Bellare and Rogaway (BR93) [14], a
“real-world” or instantiated scheme is obtained by implementing the RO of the
overlying ROM scheme via a cryptographic hash function. The central (and
justified) critique of the paradigm [36] is that the instantiated scheme has only
heuristic security. This paper offers proven security for the (standard model)
instantiated schemes. The proof is based on the (standard-model) assumption
that the instantiating function is UCE-secure.

UCE of course does not always work. But we show that it works across a
fairly large, diverse and interesting spectrum of schemes and goals including de-
terministic PKE; message-locked encryption; hardcore predicates; point-function
obfuscation; encryption of key-dependent messages; encryption secure under
related-key attack; OAEP; correlated-input secure hashing; adaptively-secure
garbled circuits; and proofs of safe storage. In all these cases we can use UCE to
obtain standard-model solutions, in most cases instantiating known, natural and

R. Canetti and J.A. Garay (Eds.): CRYPTO 2013, Part II, LNCS 8043, pp. 398–415, 2013.
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efficient schemes, and in several cases getting the first standard-model schemes
for the goals in question.

UCE is quite simple and natural, yet powerful. The basic intuition is that
the output of a UCE-secure function looks random even given the key and some
“leakage,” as long as the inputs are not computable from the leakage. Let us now
step back to provide some background and then return to our contributions.

Background. The random-oracle paradigm of BR93 [14] has two steps: (1)
Design your scheme, and prove it secure, in the ROM, where the scheme al-
gorithms and adversary have access to a RO denoted RO (2) Instantiate the
RO to get the standard model scheme that is actually implemented and used.
We will consider instantiation via a family of functions H, which means that
the instantiated scheme is obtained by replacing RO calls of the ROM-scheme
algorithms by evaluations of the deterministic function H.Ev(hk, ·) specified by
a key hk ←$ H.Kg(1λ), where λ is the security parameter. The key hk is put
in the public key of the instantiated scheme if the latter is public key, else
enters in some scheme-dependent way. The suggestion of BR93 was that if H
“behaved like a RO,” the instantiated scheme would be secure in the standard
model. They suggested to obtain such instantiations, heuristically, via crypto-
graphic hash functions. The fundamental subsequent concern has been the lack
of a proof of security for the instantiated scheme. Canetti, Goldreich and Halevi
(CGH98) [36] show that this lack in some cases cannot be overcome because
there exist schemes secure in the ROM but which no family of functions can
securely instantiate. Advocates for the defense counter by pointing out that the
counter-example schemes are artificial, and in-use instantiations of “natural”
ROM schemes are unbroken. This has led to examples that are in one way or
another less artificial [7, 37, 42, 51, 60, 64].

It is not the purpose of this paper to take sides in this debate. We want
instead to make a scientific contribution towards better grounding the security
of instantiated ROM schemes.

The core problem and previous work. The lack of a proof of security
for the instantiated scheme is, we submit, a consequence of an even more fun-
damental lack, namely that of a definition, of what it means for a family of
functions to “behave like a RO,” that could function as an assumption on which
to base the proof. The PRF definition [50], which has worked so well in the sym-
metric setting, is inadequate here because PRF-security relies on the adversary
not knowing the key. And collision-resistance (CR) is far from sufficient in any
non-trivial usage of a RO.

Canetti [34] was the first to articulate this position and seek a standard-
model primitive sufficient to capture some usages of a RO. Notions such as
Perfectly One-Way Probabilistic Hash Functions (POWHFs) [34,35,39] and non-
malleable hash functions [19] have however proven of limited applicability [21].
Another direction has been to try to instantiate the RO in particular schemes
like OAEP [15], again with limited success [21, 22] or under strong assumptions
on RSA [59].
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mUCE1

UCE1 UCE2

mUCE2

Fig. 1. Relations between UCE security notions. Letting S denote the set of all
families H that are S-secure, an arrow A → B represents A ⊆ B, meaning any H that
is A-secure is also B-secure. A barred arrow A �→ B represents A �⊆ B, meaning there
is an H that is A-secure but not B-secure. (Assuming of course that some A-secure H
exists.)

Our position is philosophically different from that of [34, 39]. These works
aimed for security notions that they could achieve under standard assumptions.
Expectedly, applicability was limited. We aim to maximize applicability and are
willing to see our notion (UCE) as an assumption rather than something to
achieve under other assumptions.

UCE. Our definition considers an adversary S, called the source, who is given an
oracle Hash, the latter being H.Ev(hk, ·) for key hk ←$ H.Kg(1λ) if the challenge
bit b is 1, and a RO otherwise. If security now asks that S not figure out b, then,
if we deny it hk, we would be back to PRFs, and if we give it hk, security would
be unachievable. So we don’t ask S to figure out b. Instead, it must pass to an
accomplice adversary D, called the distinguisher, some information L called the
leakage. The distinguisher is given the key hk and must figure out b.

Clearly, security is not achievable for arbitrary leakage. (The source could
include in L a point x and the result y = Hash(x) of its oracle on x, and D,
having hk, can test whether or not y = H.Ev(hk, x).) We put an extra condition
on the source that we call unpredictability. It requires that it be computationally
infeasible for a predictor adversary P , given the leakage produced by the source
in the random (b = 0) game, to find any of the inputs queried by the source
to its oracle. Note that unpredictability is a property of the source, not of the
family of functions H, the latter not figuring in the definition at all.

Security, finally, requires that for any PT unpredictable source S, and any
PT distinguisher D, the advantage of S,D in figuring out b is negligible. See
Section 4 for a formal definition of this notion that we call UCE1. A variant
called UCE2, introduced in [11], preserves the source-distinguisher framework of
UCE1 but replaces the unpredictability condition with a weaker condition we
call reset-security. (“Weaker” because any unpredictable source is reset-secure.
This makes UCE stronger: any UCE2-secure family is UCE1-secure.) Both UCE1
and UCE2 involve a single hashing key. We define natural multi-key extensions
mUCE1 and mUCE2 as well.

In [11] we examine the relation between UCE and standard security notions
for families of functions such as PRF-security and collision-resistance (CR).
We show that UCE (of whatever form) neither implies, nor is implied by, any
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Goal Result UCE

D-PKE Instantiation of the ROM EwH scheme of [6] to obtain the
first standard model deterministic PKE scheme providing full
IND [9] and PRIV [6] security.

UCE1

MLE Instantiation of the ROM convergent encryption scheme
of [12, 43], showing this in-use message-locked encryption
scheme meets the IND$-CDA goal of [12].

UCE1

HC Any UCE1-secure family is hardcore for any one-way function
and allows for extraction of any number of hardcore bits.

UCE1

BR93 PKE Instantiation of a natural ROM PKE scheme from BR93 [14]
showing it is IND-CPA-secure.

UCE1

PFOB Instantiation of a ROM point-function obfuscation scheme
of [38] to obtain a secure standard-model scheme.

mUCE1

KDM Instantiation of the ROM BRS scheme [18] to get an efficient
and natural standard-model symmetric scheme for encryption
of key-dependent messages.

mUCE1

RKA An efficient standard-model symmetric encryption scheme
providing best-possible security against related-key attacks.

mUCE1

CIH Construction from UCE1 of correlation-intractable hash func-
tions meeting the strongest notion of [54].

UCE1

STORE Instantiation of a natural ROM proof of storage scheme
from [67].

UCE1

OAEP IND-CPA-KI security of OAEP [15] assuming partial one-
wayness (with UCE1) or one-wayness (with UCE2) of the
underlying trapdoor function.

UCE1/2

GB Standard-model adaptively secure garbling with short tokens. UCE2

Fig. 2. Applications of UCE: We summarize results for different goals, the last
column indicating the form of UCE used

of these. We also investigate the relations between the different forms of UCE
we have introduced. Our findings are summarized in Fig. 1. As indicated there,
UCE2 implies UCE1 but not vice versa, and analogously mUCE2 implies mUCE1
but not vice versa. Of course mUCE1 implies UCE1 and mUCE2 implies UCE2.
We do not know whether UCE1 implies mUCE1, and analogously for UCE2 and
mUCE2.

Applications. Fig. 2 summarizes the applications we now discuss.

1. Deterministic PKE. The EwH deterministic PKE (D-PKE) ROM scheme of
BBO07 [6] encrypts message m under public key ek by applying the RO
to ek‖m to get coins r and then encrypting m with an IND-CPA PKE
scheme under ek and coins r. They showed that this achieved their PRIV
notion of security in the ROM. Our instantiation adds hk ←$ H.Kg(1λ) to
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the public key and then replaces the RO with H.Ev(hk, ·). We show that if
H is UCE1-secure then this instantiated D-PKE scheme is PRIV-secure in
the standard model. This is not only the first standard-model PRIV-secure
scheme (previous standard-model D-PKE schemes achieve only restricted
notions of blocksource-PRIV-security [9,20,32,47]) but also the most prac-
tical. Our proof makes crucial use of the equivalence between PRIV and an
indistinguishability-style notion IND of D-PKE security [9].

2. Message-locked encryption. In convergent encryption (CE) [12, 43], message
m is encrypted using a deterministic symmetric encryption scheme with
the key derived, via a RO, from the message itself. CE is the most natu-
ral and prominent embodiment of message-locked encryption (MLE) and
is in current use by commercial cloud-storage providers to provide secure
deduplicated storage. The scheme is shown in [12] to meet, in the ROM,
a formal notion of MLE-security called PRV$-CDA. We instantiate with
a UCE1-family, putting the key in public parameters, and show that the
resulting MLE scheme is PRV$-CDA in the standard model.

3. Hardcore functions. A RO is an ideal hardcore function, with RO(x) return-
ing any number of bits that remain pseudorandom given f(x) where f is
one-way. UCE1 families can securely instantiate the RO here, meaning are
secure hardcore functions for any one-way function, able to extract as many
bits as desired.

4. BR93 PKE. A simple and natural ROM IND-CPA PKE scheme from [14]
encrypts m by picking random x and returning (f(x),RO(x)⊕m) where f
is a trapdoor function in the public key. We show that instantiating the RO
with a UCE1-secure family preserves the IND-CPA security.

5. Point-function obfuscation. A point function has non-⊥ output on just one
point. Canetti, Kalai, Varia, and Wichs [38] give a ROM point-function
obfuscation scheme. We mUCE1-instantiate their construction to obtain a
standard-model point-function obfuscation scheme.

6. KDM-secure SE. Black, Rogaway and Shrimpton (BRS) [18] showed that the
following simple and efficient symmetric encryption (SE) scheme is KDM-
secure in the ROM: to encrypt messagem under keyK, pick a random r and
return (r,RO(r‖K)⊕m). We instantiate by letting the random value r in
the BRS scheme take on the role of a fresh hash key, so that, to encrypt m,
we pick hk ←$ H.Kg(1λ) and return (hk,H.Ev(hk,K)⊕m). We prove that
if H is mUCE1-secure then this instantiated scheme is KDM secure in the
standard model. (We achieve non-adaptive KDM security, but this includes
popular cases such as key-cycles.) This scheme is more practical than other
standard-model KDM-secure encryption schemes such as [1, 2, 4, 31, 62].

7. RKA-secure SE. Symmetric encryption schemes secure against related-key
attack (RKA) must preserve security even when encryption is performed un-
der keys derived from the original key by application of a key-deriving func-
tion. Previous schemes [3, 13] provided security for algebraic key-deriving
functions such as linear or polynomial functions over a keyspace that is a
particular group depending on the scheme. We provide a scheme that has
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“best possible” security, in that key-deriving functions are arbitrary subject
only to a condition necessary for security, namely to have unpredictable out-
puts. Furthermore, in our scheme, keys are binary strings rather than group
elements, so we cover the most common practical attacks, such as XORing
a constant to the key. We assume only a mUCE1-secure family of functions.

8. Correlation-intractable secure hashing. Goyal, O’Neill and Rao (GOR) intro-
duced the notion of correlated-input hash (CIH) function families [54] and
proposed several notions of security for them. GOR provided constructions
achieving limited CIH security from the q-DHI assumption of [25] and from
RKA-secure blockciphers, but achieving full CIH security in the standard
model has remained open. We solve this problem, showing that UCE1-secure
function families are selective (pseudorandomness) CIH secure in the termi-
nology of GOR.

9. Secure storage. Ristenpart, Shacham and Shrimpton [67] give a ROM pro-
tocol allowing a client to check that a server is storing its file in its entirety,
its interest being that constructions indifferentiable from a RO [63] may fail
to securely replace the RO. In contrast, we show that UCE1 instantiation
succeeds.

10. OAEP. OAEP [15] has been a benchmark for RO instantiation [21, 22, 59].
We instantiate OAEP by adding hk ←$ H.Kg(1λ) to the public key and then
implementing both the ROs via H.Ev(hk, ·). Under UCE1, we get IND-CPA-
KI security under the partial-domain one-wayness, and hence by [46] under
standard one-wayness,of RSA; under UCE2 we get it directly under stan-
dard one-wayness. IND-CPA-KI is IND-CPA when challenge messages are
not allowed to depend on the public key. (This limitation arises because in
UCE the strings being hashed by the source cannot depend on the hash-
ing key. We note that this UCE feature does not always prevent us from
achieving full IND-CPA. Indeed, we do achieve it for the BR93 PKE scheme,
because there the inputs to the RO do not depend on the messages.) Kiltz,
O’Neill and Smith (KOS) [59] show that RSA-OAEP is IND-CPA-secure if
its two ROs are replaced with t-wise independent hash functions and RSA
is Φ-hiding [33]. In comparison our results for RSA are under the standard
one-wayness assumption.

11. Adaptively-secure garbling. Verifiable outsourcing [48], as well as one-time
programs [52], call for garbling schemes that are adaptively secure [10].
Standard-model adaptively-secure garbling has however so far been at the
cost of large tokens, meaning ones as large as the circuit being garbled [10,
53]. This is not only inefficient but makes the resulting verifiable outsourcing
“trivial” in that the client does as much work as the server. We provide a
UCE2-based garbling scheme that is adaptively secure and has short tokens.
This is the first standard-model garbling scheme with these properties and
it results in the first non-trivial instantiation of the outsourcing scheme
of [48]. Our garbling scheme is obtained by instantiating a ROM garbled
circuit construction of [66].
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Constructing UCE-secure families. We provide a ROM construction of a
family of functions shown to achieve both mUCE1 and mUCE2. (And thereby
UCE1 and UCE2.)

This at first may seem like a step backwards; wasn’t the purpose of UCE to
avoid the ROM? As explained in more depth in Section 2, it is a step forward
because the security we require from families of functions in implementations
has moved from something heuristic and vague, namely to “behave like a RO,”
to something well defined, namely to be UCE-secure.

In practice we would aim to instantiate UCE-secure families via blockciphers
or cryptographic hash functions. We explain that direct instantiation with a
blockcipher (e.g. AES) is not secure due to the invertibility of the blockcipher.
Cryptographic hash functions, being unkeyed, do not directly provide instantia-
tions either. We suggest instead to use HMAC [5,8].

This extended abstract. Due to space limitations, this extended abstract
will provide only the UCE1 definition and detail only one application from Fig. 2.
We refer the reader to our full paper [11] for definitions of mUCE1, UCE2 and
mUCE2 and for the 10 omitted applications.

2 Perspective and Discussion

We explain why UCE is step forward even if we can (currently) only achieve it
in the ROM, and how UCE relates to other assumptions.

Layered cryptography. Currently, RO-based design directly proves schemes
(for end goals) secure in the ROM. We are instead advocating and using what
we call a layered approach. In this approach, base primitives with standard-
model security definitions are validated in the ROM. End goals are then reached
from the base primitives purely in the standard model, the ROM being entirely
dispensed with in the second step. This is illustrated in Fig. 3. We are showing
that UCE can function as such a base primitive, and a powerful one at that,
since many goals may be reached from it.

In implementations, we would continue to instantiate families assumed UCE-
secure via appropriately-keyed cryptographic hash functions, but we claim this
layered approach is still an important advance on direct ROM-based design.
This is because the property we desire from the object (family of functions)
actually being used in the implementation has moved from something heuristic
and vague (“behave like a random oracle”) to something precise and meaningful
(be UCE-secure). Cryptanalytic validation of UCE security, even if difficult, is
at least meaningful, while cryptanalytic evaluation of “behaving like a RO” is
not even meaningful because the phrase in quotes is not well defined.

We make an analogy with pairing-based cryptography. Here we have seen the
proposal of a large number of standard-model assumptions, including BDH [28],
DLIN [27], SDH [27], BDHE [26] and SD (Subgroup Decision) [30] to name just
a small fraction. These assumptions are (ubiquitously) validated in the generic-
group model, end goals then reached from the assumptions in the standard
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Random Oracle Model

UCE1 mUCE1 UCE2

MLED-PKE OAEP KDM GBPFOB

Generic Group Model

BDH SDH DLIN SD BDHE

IBE SS GS NIZK BE

Fig. 3. The layered-cryptography paradigm for the ROM (left) and for
pairing-based cryptography (right). Assumptions are validated in the idealized
model and then used to attain end goals entirely in the standard model. SS refers to
the short signatures of [24]; BE refers to the broadcast encryption scheme of [29]; NIZK
refers to the NIZK arguments of [55]. See text for other abbreviations.

model. But the generic-group model is subject to issues, critiques and counter-
examples analogous to those for the ROM, if not worse [41,44]. We believe that
the (deserved) success and acceptance of pairing-based cryptography, and that
it has not come under as much fire as ROM-based cryptography, are due in
part to what, in our terminology, is its layered approach (again illustrated in
Fig. 3). Namely, schemes for end goals, rather than being directly validated in
the generic model (the un-layered or direct approach), are based on standard-
model assumptions that are themselves validated in the generic-group model and
amenable to cryptanalysis.

It is perhaps curious that the layered approach has not been explicitly artic-
ulated and widely used for ROM-based cryptography, while it has been widely
used (even if not explicitly articulated) in pairing-based cryptography. The ben-
efits are identical in the two cases. We view our work as making layered cryp-
tography an explicit approach for ROM-based design.

Assumption degree and achieving UCE. In the UCE definition, the adver-
sary consists of stages (source and distinguisher) that (due to the unpredictabil-
ity condition) cannot completely share state. We refer to this as a second-degree
assumption, as opposed to a first-degree assumption, where the adversary is
a single algorithm. Put another way, a first-degree assumption can be speci-
fied via an interaction (game) between an adversary and a challenger. (In some
places [57, 65] this is called a “standard” assumption, but we think this is less
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clear than “first degree.”) UCE cannot. This distinction is crucial to its power
and to why various negative results are circumvented. Thus, Wichs [68] shows
that first-degree assumptions do not suffice for PRIV-secure D-PKE, but our
proof that UCE does suffice is not a contradiction because UCE is not first-
degree.

A corollary is that UCE itself cannot be achieved based on first-degree assump-
tions. This does not necessarily mean that UCE is an implausible assumption.
(A second-degree assumption does not have to be implied by a first-degree one
to be true.)

Without ROs. There is a large body of work on cryptography without random
oracles. (A Google Scholar search shows 286 papers with the phrase “without
random oracles” in the title, and 3,640 with this phrase somewhere in the paper,
as of June 6, 2013.) More often than not, the without-RO schemes of such works
are completely different from, and less efficient than, RO ones. While UCE also
serves, of course, to get without-RO schemes, it does more, permitting these to
be obtained by actual instantiation of the RO in a ROM scheme, so that the
efficiency and practicality of the starting ROM scheme is preserved.

Directions. We believe that achieving UCE under other assumptions is an
interesting and important direction for future work. We suggest to begin by
targeting restricted versions of UCE, for example UCE1 for block sources. This
we may hope to achieve under first-degree assumptions. Hope is lent to the
enterprise by the fact that D-PKE that is PRIV-secure for block sources has
been achieved under standard assumptions [20,32,47]. Full UCE security would,
of course, require second-degree assumptions.

UCE is a framework permitting definitional variants beyond the four we have
formalized. One could define variants with extractability, which may be useful for
further applications. A tempting variant is to allow some communication back
from the distinguisher to the source. This opens the door to many interesting
applications, but is a dangerous path to tread, for any version we, at least, have
formalized, we have also broken, even for forms of communication that seemed
highly restricted.

Discussion, limitations and related work. That the source adversary in
UCE does not get the key is important in avoiding impossibility results like
those in [36,63]. (For example, UCE does not imply correlation intractability as
defined, and shown to be unachievable in the standard model, by [36].)

UCE is not a panacea in the sense that it can replace ROs everywhere. UCE
helps in cases where the RO is applied to inputs hidden (at least in part) from
the adversary. As far as we know, UCE will not help for tasks like instantiating
the RO in FDH signatures [16]. This is consistent with impossibility results [42].

Curiously, UCE-based proofs for instantiated schemes are sometimes simpler
than the proofs for the starting ROM schemes. This is the case for D-PKE. The
intuition for the ROM security of the EwH scheme of [6] is simple enough, but
a rigorous ROM proof is in our view less straightforward than our proofs for the
UCE1-based instantiation of EwH.
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The term “computational extractor” has been used for primitives that extract
pseudorandomness from distributions that have computational min-entropy [40,
45, 61]. A UCE-secure family instead extracts pseudorandomness from unpre-
dictable distributions. These may or may not have computational min-entropy
in the formal sense the latter is defined [56] but we view unpredictability as we
defined it as another computational relaxation of min-entropy so preserved the
“extractor” name. “Universal” refers to the ability to do this from any starting
(unpredictable) distribution.

Programmable hash functions [58] are an information-theoretic tool that in
some way mimic the “programmability” of ROs and were used by [58] to build
signature schemes with short signatures in the standard model. They do not serve
to instantiate ROs in the kinds of applications we consider. Several works [23,49]
define new security properties of hash functions tailored for their own particular
applications.

3 Preliminaries

By λ ∈ N we denote the security parameter and by 1λ its unary representation.
We denote the number of coordinates of a vector x by |x|, and the length of
a string x ∈ {0, 1}∗ by |x|. Algorithms are randomized unless otherwise indi-
cated. Running time is worst case. “PT” stands for “polynomial-time,” whether
for randomized algorithms or deterministic ones. If A is an algorithm, we let
y ← A(x1, . . . ; r) denote running A with random coins r on inputs x1, . . . and
assigning the output to y. We let y ←$ A(x1, . . .) be the resulting of picking r at
random and letting y ← A(x1, . . . ; r). We let [A(x1, . . . , )] denote the set of all
possible outputs of A when invoked with inputs x1, . . ..

We use the code based game playing framework of [17] augmented with explicit
Main procedures as in [67]. (See Fig. 4 for an example.) By GA(λ) we denote
the event that the execution of game G with adversary A and security parameter
λ results in output true, the game output being what is returned by Main.

4 UCE1

We define UCE1 security of a family of functions and provide a simplified but
equivalent form of unpredictability. In [11] we provide further basic results and
also define mUCE1.

Syntax. A family of functions H specifies the following. On input the unary rep-
resentation 1λ of the security parameter λ ∈ N, key generation algorithm H.Kg
returns a key hk ∈ {0, 1}H.Kl(λ), where H.Kl: N → N is the keylength function
associated to H. The deterministic, PT evaluation algorithm H.Ev takes 1λ, a key
hk ∈ [H.Kg(1λ)], an input x ∈ {0, 1}∗ with |x| ∈ H.IL(λ), and a unary encoding 1�

of an output length � ∈ H.OL(λ) to return an output H.Ev(1λ, hk, x, 1�) ∈ {0, 1}�.
(The syntax in the Introduction had simplified by dropping the first and last in-
puts.) Here H.IL is the input-length function associated to H, so that H.IL(λ) ⊆ N
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Main UCES,D
H (λ)

b←$ {0, 1} ; hk ←$ H.Kg(1λ)

L←$ SHash(1λ)

b′ ←$ D(1λ,hk, L)

Return (b′ = b)

Hash(x, 1�)

If T [x, �] = ⊥ then

If b = 1 then

T [x, �] ← H.Ev(1λ,hk, x, 1�)

Else T [x, �]←$ {0, 1}�
Return T [x, �]

Main PredP
S (λ)

done ← false ; Q ← ∅
L←$ SHash(1λ)

done ← true

Q′ ←$ PHash(1λ, L)

Return (Q ∩Q′ �= ∅)

Hash(x, 1�)

If done = false then

Q ← Q ∪ {x}
If T [x, �] = ⊥ then

T [x, �]←$ {0, 1}�
Return T [x, �]

Main SPredP ′
S (λ)

Q ← ∅
L←$ SHash(1λ)

x←$ P ′(1λ, L)
Return (x ∈ Q)

Hash(x, 1�)

Q ← Q ∪ {x}
If T [x, �] = ⊥ then

T [x, �]←$ {0, 1}�
Return T [x, �]

Fig. 4. Games UCE, Pred used to define UCE1 security of family of functions
H, and game SPred defining the simplified but equivalent form of unpre-
dictability. Here S is the source, D is the distinguisher, P is the predictor and P ′ is
the simple predictor.

is the (non-empty) set of allowed input lengths, and similarly H.OL is the output-
length function associated to H, so that H.OL(λ) ⊆ N is the (non-empty) set of
allowed output lengths. The latter allows us to cover fixed output length (FOL)
functions, captured by H.OL(λ) being a set of size one, or variable output length
(VOL) functions, where H.OL(λ) could be larger and even be N. We say that
H has input-length �: N → N if H.IL(λ) = {�(λ)} for all λ ∈ N, and if such
an � exists we denote it by H.il. We say H has output-length �: N → N if
H.OL(λ) = {�(λ)} for all λ ∈ N, and if such an � exists we denote it by H.ol.

UCE1 security. We define what it means for a family of functions H to be
UCE1-secure. Let S be an adversary called the source and D an adversary
called the distinguisher. We associate to them and H the game UCES,D

H (λ) of
Fig. 4. The source has access to an oracle Hash and we require that any query
x, 1� made to this oracle satisfy |x| ∈ H.IL(λ) and � ∈ H.OL(λ). When the
challenge bit b is 1 (the “real” case) the oracle responds via H.Ev under a key
hk that is chosen by the game and not given to the source. When b = 0 (the
“random” case) it responds as a RO. The source communicates to its accomplice
distinguisher a string L ∈ {0, 1}∗ we call the leakage. The distinguisher does get
the key hk as input and must now return its guess b′ ∈ {0, 1} for b. The game
returns true iff b′ = b, and the UCE1 advantage of (S,D) is defined for λ ∈ N
via AdvuceH,S,D(λ) = 2Pr[UCES,D

H (λ)] − 1. One’s first thought may now be to
say that H is UCE1-secure if AdvuceH,S,D(·) is negligible for all PT S and all PT
D. But an obvious attack shows that no H can meet this definition. Indeed, S
can pick some x and �, let h ← Hash(x, 1�) and return leakage L = (x, h, 1�)
to D. The latter, knowing hk, can return 1 if h = H.Ev(1λ, hk, x, 1�) and 0
otherwise. We obtain a meaningful and useful definition of UCE1-security for H
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by restricting attention to sources that are what we call “unpredictable.” The
formalization considers game PredPS (λ) of Fig. 4 associated to source S and an
adversary P called a predictor. Given the leakage, the latter outputs a set Q′.
It wins if this set contains any Hash-query of the source. For λ ∈ N we let
AdvpredP,S(λ) = Pr[PredPS (λ)]. We say that source S is unpredictable if AdvpredP,S (·)
is negligible for all PT predictors P . We stress that in the prediction game, the
Hash oracle of the source is a RO like in the random game, and the predictor gets
the same oracle. The family H is not involved in this definition; unpredictability
is a property of the source. Finally, we say that H is UCE1-secure if AdvuceH,S,D(·)
is negligible for all unpredictable, PT sources S and all PT distinguishers D.
It is convenient to let UCE1 denote the set of all function families H that are
UCE1-secure.

Simple unpredictability. Applications of UCE1 will involve proving the un-
predictability of sources we construct. This task is simplified by using a simpler
formulation of unpredictability, called simple unpredictability, that is equivalent

to the original. The formalization considers game SPredP
′

S (λ) of Fig. 4 associated
to source S and an adversary P ′ called a simple predictor. There are two sim-
plifications: the simple predictor does not have access to the RO Hash, and its
output is a single string x rather than a set of strings. It wins if x is aHash-query

of the source. For λ ∈ N we let AdvspredP ′,S(λ) = Pr[SPredP
′

S (λ)]. We say that source

S is simple unpredictable if AdvspredP ′,S(·) is negligible for all PT simple predictors
P ′. The following, whose proof is in [11], says that simple unpredictability is
equivalent to unpredictability.

Lemma 1. Let S be a source. Then S is unpredictable if and only if it is simple
unpredictable.

From FOL to VOL. In [11] we show how to build a UCE1-secure family with
variable output length (VOL) from a UCE1-secure family with fixed output
length (FOL) in a simple way using a PRF.

5 Applications of UCE1

We detail one of the 11 applications of Fig. 2. For the rest, see [11].

Deterministic encryption. EwH is a simple and natural D-PKE scheme
from [6] that deterministically encrypts m by encrypting m with a randomized
IND-CPA scheme with the coins derived by applying a RO to m. In the ROM
the scheme is PRIV-secure [6] and equivalently IND-secure [9]. We show that
instantiating the RO with a UCE1 hash family results in a scheme meeting
the same notion of security in the standard model. Previous standard model
schemes have met notions providing security only when one assumes messages
are drawn from a blocksource, meaning each message has high min-entropy even
given previous ones [20,32]. Instantiated EwH however meets the original and full
notions of [6,9] which only make the necessary assumption that each individual
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Main INDA
PKE(λ)

b←$ {0, 1}
(ek,dk)←$ DE.Kg(1λ)

(m0,m1)←$ A1(1
λ)

For i = 1 to |mb| do
c[i] ←$ DE.Enc(1λ, ek,mb[i])

b′ ←$ A2(1
λ, ek, c)

Return (b = b′)

DE.Kg(1λ)

(ek,dk)←$ RE.Kg(1λ) ; hk ←$ H.Kg(1λ)

Return ((ek,hk),dk)

DE.Enc(1λ, (ek,hk),m)

r ← H.Ev(1λ,hk, ek ‖m, 1RE.rl(λ))

c ← RE.Enc(1λ, ek, m; r) ; Return c

DE.Dec(1λ,dk, c)

m ← RE.Dec(1λ, dk, c) ; Return m

Fig. 5. Left: The IND game. Right: D-PKE scheme DE = EwH[H,RE].

message has high min-entropy, but allow messages to be arbitrarily correlated.
This is the first standard-model scheme meeting the PRIV and IND notions.

A PKE scheme PKE specifies a triple of PT algorithms. Via (ek, dk)←$

PKE.Kg(1λ) we generate keys. Via c←$ PKE.Enc(1λ, ek,m) we can encrypt a
message m ∈ {0, 1}PKE.il(λ) where PKE.il: N → N is the message-length func-
tion of the scheme. Via m ← PKE.Dec(1λ, dk, c) we deterministically decrypt.
We say PKE is a D-PKE scheme if the encryption algorithm PKE.Enc is de-
terministic. The game defining the IND notion of security for D-PKE scheme
DE, following [9], is in Fig. 5. An IND adversary A = (A1, A2) is a pair of
PT algorithms, where A1 on input 1λ returns a pair (m0,m1) of vectors of
messages. It is required that there are functions v, �, depending on the adver-
sary, such that |m0| = |m1| = v(λ) and |mb[i]| = �(λ) for all b ∈ {0, 1} and
i ∈ [v(λ)]. It is also required that the strings (messages) m0[1], . . . ,m0[|m0|]
are distinct and the strings (messages) m1[1], . . . ,m1[|m1|] are distinct. The
guessing probability GuessA(·) of A is the function that on input λ ∈ N re-
turns the maximum, over all b, i,m, of Pr[mb[i] = m], the probability over
(m0,m1)←$ A1(1

λ)]. We say that A has high min-entropy if GuessA(·) is negli-
gible. We let AdvindDE,A(λ) = 2Pr[INDA

DE(λ)]− 1 and say that DE is IND-secure if

AdvindDE,A(·) is negligible for all PT A of high min-entropy. Let IND be the set of
all IND-secure D-PKE schemes.

Let RE be a PKE scheme. Let RE.rl: N → N denote its randomness-length
function, meaning RE.Enc(1λ, ·, ·) draws its coins at random from {0, 1}RE.rl(λ).
Let H be a family of functions with H.IL = N and RE.rl(λ) ∈ H.OL(λ) for
all λ ∈ N. Our standard-model instantiation of the ROM encrypt-with-hash
transform of BBO07 [6] associates to RE and H the (standard-model) D-PKE
scheme DE = EwH[H,RE] described in Fig. 5. The message length of DE is that of
RE. The following theorem says that the transform yields an IND-secure D-PKE
scheme if H is UCE1-secure and RE is IND-CPA-secure. Here IND-CPA denotes
the set of all IND-CPA-secure PKE schemes.

Theorem 2. If H ∈ UCE1 and RE ∈ IND-CPA then EwH[H,RE] ∈ IND.
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The proof of Theorem 2 is in [11]. Here we give a sketch. Let PKE = EwH[H,RE].
Given a high min-entropy adversary A = (A1, A2) for game INDA

PKE(λ), we
build a source S and distinguisher D as follows. The source SHash(1λ) picks
(ek, dk)←$ RE.Kg(1λ) and d←$ {0, 1}. It runs A1(1

λ) to get (m0,m1) and lets
n ← |md|. For i = 1, . . . , n it obtains coins r[i] by calling its Hash oracle
with ek‖md[i], 1

RE.rl(λ). It then creates ciphertexts c[i] ← E(1λ, ek,md[i]; r[i])
for i = 1, . . . , n. It would like now to run A2 on c but cannot since A2 needs
the public key, which includes hk. Accordingly, S returns as leakage L ←
(ek, d, c). Distinguisher D(1λ, hk, L) can create public key (ek, hk). It now lets
d′ ←$ A2(1

λ, (ek, hk), c). If d = d′ it sets b′ ← 1, else b′ ← 0. It returns b′. When

the challenge bit in game UCES,D
H (λ) is b = 1, adversaries S,D are simulating

game INDA
PKE(λ), so that 2 Pr[d′ = d | b = 1] − 1 = AdvindDE,A(λ). If b = 0 then

A2 is seeing ciphertexts under the randomized RE scheme, and the assumed
IND-CPA security of RE can be used to show that 2 Pr[d′ = d | b = 0] − 1 is
negligible. This will allow us to upper bound AdvindDE,A(·) by 2AdvuceH,S,D(·) plus a
negligible amount. To conclude it suffices to show that AdvuceH,S,D(·) is negligible.
This follows if we show that S is unpredictable. By Lemma 1 it suffices to show
that S is simple-unpredictable. Since oracle queries of S include messages cre-
ated by A1, (simple) unpredictability may seem at first to follow from the high
min-entropy assumption on A. However we will additionally exploit (once again)
the assumed IND-CPA security of the randomized RE scheme. This is because
the leakage contains the ciphertexts. Overall, we exploit the IND-CPA security
of RE in two places, building two corresponding adversaries.
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Abstract. We show how to securely obfuscate the class of conjunction
functions (functions like f(x1, . . . , xn) = x1 ∧ ¬x4 ∧ ¬x6 ∧ · · · ∧ xn−2).
Given any function in the class, we produce an obfuscated program which
preserves the input-output functionality of the given function, but reveals
nothing else.

Our construction is based on multilinear maps, and can be instanti-
ated using the recent candidates proposed by Garg, Gentry and Halevi
(EUROCRYPT 2013) and by Coron, Lepoint and Tibouchi (CRYPTO
2013). We show that the construction is secure when the conjunction is
drawn from a distribution, under mild assumptions on the distribution.
Security follows from multilinear entropic variants of the Diffie-Hellman
assumption. We conjecture that our construction is secure for any con-
junction, regardless of the distribution from which it is drawn. We offer
supporting evidence for this conjecture, proving that our obfuscator is
secure for any conjunction against generic adversaries.

1 Introduction

Code obfuscation is the problem of compiling a computer program so as to
make it unintelligible to an adversary, or impossible to reverse-engineer, while
preserving its input-output functionality. Obfuscation has been of long-standing
interest to both the cryptography and security communities. However, despite
the importance of the problem, and its many exciting applications, very few
techniques or effective heuristics are known. In particular, the theoretical study
of the problem (in the “virtual black-box model” [2]) led to a handful of known
constructions, which apply to very limited classes of functions. These include the
class of point functions, and extensions such as multi-point functions, “lockers”
and constant-dimension hyperplanes.

In this work, we present an obfuscator for a new and different class: con-
junction functions. These are functions that take n-bit strings as input and
only accept if a subset of these bits are set to predefined values. Our construc-
tion relies on (asymmetric) multilinear maps, and is instantiated using the new
candidate construction due to Garg, Gentry and Halevi [14].

Previous Results. The goal of an obfuscator is generating a program that pre-
serves the functionality of the original program, but reveals nothing else. One
commonly used formalization of this objective is “virtual black box” obfuscation,
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due to Barak et al. [2]. Our work uses this formalization , as well as alternative
formalizations from subsequent works (see below).

In their work, [2] also proved the impossibility of general-purpose obfuscators
(i.e. ones that work for any functionality) in the virtual black box model. This
impossibility result was extended in [15]. While these negative results show seri-
ous limitations on the possibility of general-purpose obfuscation, they focus on
specific (often cryptographic or contrived) functionalities. Thus, they do not rule
out that obfuscation may be possible for many programs of interest.

Positive results on obfuscation focus on specific, simple programs. One pro-
gram family, which has received extensive attention, is that of “point functions”:
password checking programs that only accept a single input string, and reject
all others. Starting with the work of Canetti [6], several works have shown ob-
fuscators for this family under various assumptions [8,20,25], as well as exten-
sions [7,3]. Canetti, Rothblum and Varia [9] showed how to obfuscate a function
that checks membership in a hyperplane of constant dimension (over a large fi-
nite field). Other works showed how to obfuscate cryptographic function classes
under different definitions and formalizations. These function classes include
checking proximity to a hidden point [12], vote mixing [1], and re-encryption
[18]. Several works [6,8,17,18] relaxed the security requirement so that obfus-
cation only holds for a random choice of a program from the family, we will
also use this relaxation for one of our results. A different relaxation, known as
“best-possible obfuscation”, which allows the obfuscation to leak non black-box
information was presented in [16].

This Work: Obfuscating Conjunctions. Our main contribution is a new obfus-
cator for conjunctions. A conjunction C = (W,V ) is a function on n bit inputs,
specified by a set W ⊆ [n] of “wildcard” entries, and a vector V ∈ {0, 1}n of tar-
get values for non-wildcard entries. The conjunction accepts an input �x ∈ {0, 1}n
if for all i ∈ ([n] \W ), �x[i] = V [i], i.e. if for all non-wildcard entries in �x, their
values equal those specified in V . We use the convention that if W [i] = 1 then
V [i] = 0 (wildcard entries are ignored, so this does not effect the conjunction’s
functionality).

The class of conjunctions, while obviously quite limited, has a rich combi-
natorial and computational expressive power. They are studied in a multitude
of settings throughout computer science (e.g. in learning theory [19]). One sig-
nificant distinction from previous function classes for which obfuscators were
known, is that a conjunction may ignore some of its input bits (the wildcard
entries). An obfuscator for conjunctions needs to produce a program that hides
which bits are ignored, and which ones are influential.

As an example of the applications of a conjunction obfuscator, consider the
following setting. There are k passwords, each controlling access to a particular
type of resource. Each individual knows some subset of the k passwords, which
corresponds to the resources it is allowed to access. A gatekeeper wishes to check
whether an individual has access to some combination of resources, i.e. whether
the individual knows a particular subset S ⊂ [k] of the passwords, without
revealing to an observer which combination it is checking. A conjunction, which
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takes as input k concatenated passwords, can check whether the passwords for
resources in S are correct, while ignoring passwords for resources not in S. An
obfuscation of this conjunction can be made public, and used to check whether an
individual has access to that combination of resources, without revealing which
resources are being checked (nor, of course, what any of the passwords are).

1.1 Our Construction and Its Security

The main tool in our construction is multilinear maps. In particular, we utilize
a recent candidate for graded encoding (a generalization of multilinear maps)
due to [14].1 We prove the security of our obfuscator when the conjunction
is chosen from a distribution with sufficient entropy: namely, when sampling
C = (W,V ) from the distribution, even given the wildcard locations W , there
is sufficient (superlogarithmic) entropy in V . We stress that this does not imply
that the attacker is allowed to learn W ; on the contrary, we prove that if C
is drawn from a distribution with the aforementioned property, the adversary
cannot learn anything, wildcard locations included.2 As noted above, here we
follow several works [6,8,17,18] which relax the security requirement to hold only
when the circuit to be obfuscated is drawn from a distribution from a certain
class (usually one with sufficient entropy).

We prove the above under two security assumptions on graded encodings
schemes: The first is a translation of the SXDH assumption on bilinear groups to
the setting of graded encoding schemes.3 The second assumption is reminiscent
of “Canetti’s Assumption” [6] on Diffie-Hellman groups, which was introduced
for the purpose of obfuscating point functions.

We conjecture that the construction is secure for every conjunction, but we
were unable to produce a proof based on a well-established assumption (natu-
rally, one can always take the security of the obfuscator as an assumption). As
supportive evidence for the conjectured security, we prove that the obfuscator is
secure against generic adversaries : Ones that only use the group structure and
not the representation of the group elements. This is similar to the generic group
model of [24,21]. The proof of security against generic adversaries is non-trivial,
and we view this as one of our main technical contributions. We note that pre-
vious works on obfuscation [20,9] have also used the random oracle and generic
group models to provide evidence for the security of constructions.

1 We use the asymmetric variant of the encoding scheme, where there are several
distinct “source groups”.

2 We remark that in this case nothing at all can be learned from black-box access to
the function since it is infeasible to find an accepting input. We also remark that,
for example, the conjunctions used for the k-resource application above naturally
satisfy this condition, because of the entropy in each password.

3 This assumption is actually known to be false for the construction and formulation
of [14]. However, we show a more careful definition of the scheme and the assumption
for which no attack is known. Also, no attack is known for the recent construction
of Coron, Lepoint and Tibouchi [10].



Obfuscating Conjunctions 419

We proceed with an overview of our construction and results. As we explained,
the obfuscator uses the recent construction of multi-linear maps via graded en-
coding schemes [14]. We begin with a high-level overview on the properties of
multilinear maps that will be used. We then proceed with an overview of our
construction, and state our two main results.

Multilinear Maps and Graded Encoding Schemes: Background. We begin by re-
calling the notion of multilinear maps, due to Boneh and Silverberg [5]. Rothblum
[23] considered the asymmetric case, where the groups may be different (this is
crucial for our construction).

Definition 1.1 (Asymmetric Multilinear Map [5,23]).
For τ + 1 cyclic groups G1, . . . , Gτ , GT of the same order p, a τ-multilinear

map e : G1 × . . .×Gτ → GT has the following properties:

1. For elements {gi ∈ Gi}i=1,...,τ , index i ∈ [τ ] and integer α ∈ Zp, it holds
that:

e(g1, . . . , α · gi, . . . , gτ ) = α · g(g1, . . . , gτ )
2. The map e is non-degenerate: when its inputs are all generators of their

respective groups {Gi}, then its output is a generator of the target group
GT .

Recently, [14] suggested a candidate for graded encoding, a generalization of
(symmetric or asymmetric) multilinear maps. See Section 2.2 for a more complete
overview of these objects. For this introduction, we treat them as a generalization
of asymmetric multilinear maps in the following way. For a τ -multilinear map
e, for the group Gi of prime order p, we consider the ring Zp. For an element
σ ∈ Zp, we can think of gσi as an “encoding” of σ in Gi. We denote this by
enci(σ). We note that this encoding is easy to compute, but (presumably) hard
to invert. The multilinear map e lets us take τ encodings {enci(σi)}i∈[τ ],σi∈Zp

,
and compute the target group encoding encT (

∏
i σi). Graded encoding schemes

afford a similar functionality, albeit with randomized and noisy encodings, and
with a procedure for testing equality of encoded elements in the target group.

Our Construction. For a conjunction C = (W,V ) on n-bits inputs, the obfus-
cator uses the graded encoding scheme to obtain the above generalization to an
(n+ 1)-multilinear map. For each input entry i ∈ [n], the obfuscator picks ring
elements (ρi,0, ρi,1, αi,0, αi,1) distributed as follows: if i /∈ W , namely the entry
isn’t a wildcard, then the ring elements are independent and uniformly random.
If i ∈ W , namely the entry is a wildcard, then the ring elements are uniformly
random under the constraint that αi,0 = αi,1. After picking the ring elements,
the obfuscator outputs two pairs of encodings for each i ∈ [n]:

{(wi,b = enci(ρi,b), ui,b = enci(ρi,b · αi,b))}i∈[n],b∈{0,1}

Note that if i ∈ W , then the ratio between the ring elements encoded in ui,0

and wi,0, is equal to the ratio between the ring elements encoded in ui,1 and wi,1
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(these ratios are, respectively, αi,0 and αi,1, which are equal when i ∈ W ). We
remark that this part of the obfuscation depends only on the wildcards W , but
not on the values V .

To complete the obfuscation, the obfuscator picks independent and uniformly
random ring element ρn+1, and outputs a pair of encodings:

(wn+1 = encn+1(ρn+1), un+1 = encn+1(ρn+1 ·
∏
i∈[n]

αi,V [i]︸ ︷︷ ︸
=αn+1

))

To evaluate the obfuscated program on an input �x ∈ {0, 1}n, we test equality
between two multilinear products:4

e(. . . , ui,�x[i], . . . , wn+1)
?
= e(. . . , wi,�x[i], . . . , un+1) (1)

The full construction is in Section 3.

Correctness. Examining the two multilinear products in Eq. (1), the element
encoded in the left-hand side is (

∏
i∈[n] ρi,�x[i] ·αi,�x[i]) ·ρn+1. The element encoded

in the right-hand side is (
∏

i∈[n] ρi,�x[i] · αi,V [i]) · ρn+1. Thus, Eq. (1) holds if and
only if: ∏

i∈[n]

αi,�x[i] =
∏
i∈[n]

αi,V [i] (2)

For i ∈ W we have αi,0 = αi,1, the contributions from the i-th group to both
products in Eq. (2) are identical. For i /∈ W , the contribution from the i-th group
in the left-hand side of Eq. (2) is αi,�x[i]. In the right-hand side, the contribution
is αi,V [i]. Except for a negligible probability of error, Eq. (2) holds if and only if
all these contributions are identical, i.e. if and only if ∀i /∈ W : �x[i] = V [i].

Security. Security is not as straightforward. A slightly misleading intuition for
security, is that if a DDH-like assumption holds within each group Gi sepa-
rately, then no observer can distinguish from that group’s encodings whether
αi,0 = αi,1. This is true for each group in isolation, but it is insufficient because
the obfuscation also includes encodings, in group Gn+1, of items that are corre-
lated with the items encoded in group i. The multilinear map e might allow an
adversary to distinguish whether the i-th entry is a wildcard.

For example, if in C all the entries are wildcards, the adversary can pick a
random input, run the obfuscation, see that it accepts, and then by flipping
the input bits one-by-one it can determine that all of the entries are wildcards.
This attack clearly demonstrates that (for some conjunctions) an adversary can
determine which entries are wildcards and which aren’t. Note, however, that
(for the specific example of a conjunction that is all-wildcards) this could also
be accomplished using black-box access to the conjunction.

4 For the candidate of [14], the encodings are randomized, but there is a procedure for
testing equality between encoded elements in the target group.
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Indeed, we prove the security of the obfuscator when the conjunction is drawn
from a distribution, under mild assumptions on the distribution’s entropy. We
conjecture that the obfuscator is actually secure for any conjunction, and as
supporting evidence we show that it is secure against generic adversaries. An
overview on both results follows.

Security for High Entropy. We prove the security of our scheme in the case
where C = (W,V ) is drawn from a distribution where the entropy of V given
W is superlogarithmic. We do so by resurrecting the flawed argument described
above: We use the entropy to remove the dependence between the elements in
Gn+1 and those in the other groups, and then apply DDH in each group.

We start by noting that this dependence is due to the relation

αn+1 =
∏
i∈[n]

αi,V [i] , (3)

and if we could replace αn+1 with a completely uniform variable, independent
of the other α’s, we’d be done. To this end, we notice that Eq. (3) describes
an (almost) pairwise independent hash function, whose seed are the values αi,b

and whose input is V . We show that such a hash function is a good entropy
condenser, so that almost all of the entropy in V is preserved in αn+1. (It is
important to notice that the distinguisher has side information which depends
on W , and therefore we must require that the conditional entropy is high.)

Once we establish that αn+1 has superlogarithmic entropy, we use a “Canetti-
like Assumption” [6]: we assume a high-entropy element in the exponent of a
random group generator is indistinguishable from uniform.5 We thus isolate αn+1

from the dependence on the other α’s, which allows us to apply DDH in groups
G1, . . . , Gn, and obtain the final result: that the obfuscated program comes from
a distribution that can be efficiently simulated. The security proof is in Section 4.

Security in The Generic Model. We prove security against generic adversaries.
A generic adversary is one that succeeds regardless of the representation of the
encoding scheme. This is modeled by allowing it to only manipulate encodings
in the graded encoding scheme via oracle access to an oracle for the operations
that are available using the evparams parameters. We show that for any generic
adversary A, which takes as input an obfuscation and outputs a single bit, there
exists a generic simulator S s.t. for any conjunction C, the adversary’s output
on an obfuscation of C is statistically close to the simulator’s output given
only black-box access to C. The distribution of the adversary is taken over the
choice of a random graded encoding scheme oracle: an oracle that represents
each encoding in each group using a (long enough) uniformly random string.

In this model, since each element’s encoding is uniformly random, and the
obfuscation contains the encodings of distinct ring elements, the obfuscation
of any conjunction is simply a collection of uniformly random strings. Thus

5 Wee [25] showed that these types of assumptions (hardness given only super-
logarithmic entropy) are essential even for obfuscating point functions.
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simulating the obfuscator’s output is easy. The main challenge is that the outputs
to oracle calls on the string in the obfuscation are highly dependant on the
conjunction C. It is thus not clear how the simulator can simulate the oracle’s
outputs. For example, each accepting input �x for C specifies two possible inputs
to the oracle implementing the multilinear map, which should both yield the
same encoding in the target group. Indeed, simulating the oracle call outputs
proves challenging. Moreover, the more generalized notion of graded encoding
schemes permits more general generic operations.

The simulator S operates as follows. It feeds the adversary A with a “dummy
obfuscation” containing uniformly random strings. It then follows A’s calls to
the graded encoding scheme (GES) oracle, and tries to simulate the output. For
each call made by A, we show how S can (efficiently) identify a polynomial size
set X of inputs, such that if ∀�x ∈ X,C(�x) = 0, then the oracle’s output is
essentially independent of C and can be simulated. On the other hand, if there
exists �x ∈ X s.t. C(�x) = 1, then the simulator can use its black-box access to
C to identify this input,. Once an accepting input is identified, the simulator
can further use its block-box access to C to retrieve the conjunction’s explicit
description (W,V ) (see Claim 3 below). Once the simulator knows (W,V ) it can
(perfectly) simulate the adversary’s behavior. We view this proof of security for
generic adversaries as one of our main technical contributions.

The full specification and treatment of the generic GES model, as well as the
proof of security for generic adversaries, are deferred to the full version due to
space constraints.

2 Preliminaries

Notation. We useΔ(·, ·) to indicate total variation distance (statistical distance).
We use �1 (respectively �0) to denote the all-1 (all-0) vector (the dimension will
be clear from the context).

2.1 Min-entropy and Extraction

The following are information theoretic tools that will be required in our proof.
The main notion of entropy used in this work is that of average min-entropy
from [11], as well as its smooth version (see Definitions 2.1 and 2.2 below).
We then show that applying a pairwise independent hash function with a large
enough image on an average min-entropy source, roughly preserves the aver-
age min-entropy (that is, it is an entropy condenser). This is derived from the
generalized “crooked” leftover hash lemma [13,4].

We start by defining average min-entropy.

Definition 2.1 (average min-entropy [11]). Let X,Z be (possibly depen-
dent) random variables, the average min entropy of X conditioned on Z is:

H̃∞(X |Z) = − log
(

E
z←Z

[
2−H∞(X|Z=z)

])
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It follows from the definition that for every deterministic function f (that may
depend on Z):

H̃∞(f(X)|Z) ≤ H̃∞(X |Z) . (4)

We also use a smooth variant introduced in [11, Appendix A] following [22].

Definition 2.2 (smooth average min-entropy [11]). Let X,Z be as above
and let ε > 0, then

H̃ε
∞(X |Z) = max

(X′,Z′):Δ((X,Z),(X′,Z′))≤ε
H̃∞(X ′|Z ′) .

We will next show that pairwise independent functions condense average min-
entropy in the following way.

Lemma 2.3. Let X,Z be random variables, let H be a pairwise independent

hash family with output length ≥
⌊
H̃∞(X |Z)− 2 log(1/ε) + 2

⌋
(represented as

binary string), for some ε > 0. Then letting h ← H be a properly sampled
function from this family, it holds that

H̃ε
∞(h(X)|Z, h) ≥ H̃∞(X |Z)− 2 log(1/ε) + 1 .

Proof. Let X,Z,H, h, ε be as in the lemma statement. Our goal is to show that
there exists a random variable Y such that

Δ((h(X), Z, h), (Y, Z, h)) ≤ ε ,

and
H̃∞(Y |Z, h) ≥ H̃∞(X |Z)− 2 log(1/ε) + 1 .

Let f be the function that outputs the first k bits of its input, for

k =
⌊
H̃∞(X |Z)− 2 log(1/ε) + 2

⌋
≥ H̃∞(X |Z)− 2 log(1/ε) + 1 ,

and note that f(U) is uniform over {0, 1}k (in fact, we can use any function that
has this property).

We recall that the generalized “crooked” leftover hash lemma [4, Lemma 7.1]
implies that

Δ((f(h(X)), Z, h), (f(U), Z, h)) ≤ ε .

Now, consider a 2-step process for sampling the joint distribution (h(X), Z, h):
first, sample (f(h(X)), Z, h) from the appropriate marginal distribution; and
then sample h(X) conditioned on the previously sampled values.

We define Y using using the following process: First, sample a tuple according
to the distribution (f(U), Z, h), and then apply the second stage of the sampling
process from above. The result will be the distribution (Y, Z, h). Clearly,

Δ((h(X), Z, h), (Y, Z, h)) = Δ((f(h(X)), Z, h), (f(Y )︸ ︷︷ ︸
=f(U)

, Z, h)) ≤ ε ,
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where the first equality is since there is a deterministic mapping (f) from the
left hand side to the right hand side, and a randomized mapping (the second
step sampler) from the right hand side to the left hand side.

To conclude, we notice that

H̃∞(Y |Z, h) ≥ H̃∞(f(Y )|Z, h) = H̃∞({0, 1}k|Z, h)︸ ︷︷ ︸
=k

≥ H̃∞(X |Z)−2 log(1/ε)+1 .

2.2 Graded Encoding Schemes and Assumptions

We begin with the definition of a graded encoding scheme, due to Garg, Gentry
and Halevi [14]. While their construction is very general, for our purposes a more
restricted setting is sufficient as defined below.

Definition 2.4 (τ-Graded Encoding Scheme [14]). A τ-encoding scheme

for a ring R is a collection of sets S = {S(α)
v ⊂ {0, 1}∗ : v ∈ {0, 1}τ , α ∈ R},

with the following properties:

1. For every index v ∈ {0, 1}τ , the sets {S(α)
v : α ∈ R} are disjoint, and so they

are a partition of the indexed set Sv =
⋃

α∈R S
(α)
v .

2. There are binary operations “+” and “−” such that for all v ∈ {0, 1}τ ,
α1, α2 ∈ R and for all u1 ∈ S

(α1)
v , u2 ∈ S

(α2)
v :

u1 + u2 ∈ S(α1+α2)
v and u1 − u2 ∈ S(α1−α2)

v ,

where α1 + α2 and α1 − α2 are addition and subtraction in R.

3. There is an associative binary operation “×” such that for all v1,v2 ∈ {0, 1}τ
such that v1 + v2 ∈ {0, 1}τ , for all α1, α2 ∈ R and for all u1 ∈ S

(α1)
v1 ,

u2 ∈ S
(α2)
v2 , it holds that

u1 × u2 ∈ S
(α1·α2)
v1+v2

,

where α1 · α2 is multiplication in R.

In this work, the ring R will always be Zp for a prime p.

To the reader who is familiar with the [14] work, we note that the above is
the special case of the [14] construction in which we consider only binary index
vectors (in the [14] notation, this corresponds to setting κ = 1), and we construct
our encoding schemes to be asymmetric (as will become apparent below when
we define our zero-text index vzt = �1).

Definition 2.5 (Efficient Procedures for a τ-Graded Encoding Scheme
[14]). We consider τ-graded encoding schemes (see above) where the following
procedures are efficiently computable.
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– Instance Generation: InstGen(1λ, 1τ ) outputs the set of parameters params,
a description of a τ-Graded Encoding Scheme. (Recall that we only consider
Graded Encoding Schemes over the set indices {0, 1}τ , with zero testing in
the set S�1). In addition, the procedure outputs a subset evparams ⊂ params
that is sufficient for computing addition, multiplication and zero testing6 (but
possibly insufficient for encoding or for randomization).

– Ring Sampler: samp(params) outputs a “level zero encoding” a ∈ S
(α)
0 for

a nearly uniform α ∈R R.

– Encode and Re-Randomize:7 encRand(params, i, a) takes as input an index

i ∈ [τ ] and a ∈ S
(α)
0 , and outputs an encoding u ∈ S

(α)
ei , where the dis-

tribution of u is (statistically close to being) only dependent on α and not
otherwise dependent of a.

– Addition and Negation: add(evparams, u1, u2) takes u1 ∈ S
(α1)
v , u2 ∈ S

(α2)
v ,

and outputs w ∈ S
(α1+α2)
v . (If the two operands are not in the same in-

dexed set, then add returns ⊥). We often use the notation u1 + u2 to de-
note this operation when evparams is clear from the context. Similarly,

negate(evparams, u1) ∈ S
(−α1)
v .

– Multiplication: mult(evparams, u1, u2) takes u1 ∈ S
(α1)
v1 , u2 ∈ S

(α2)
v2 . If v1 +

v2 ∈ {0, 1}τ (i.e. every coordinate in v1+v2 is at most 1), then mult outputs

w ∈ S
(α1·α2)
v1+v2

. Otherwise, mult outputs ⊥. We often use the notation u1 × u2

to denote this operation when evparams is clear from the context.

– Zero Test: isZero(evparams, u) outputs 1 if u ∈ S
(0)
�1

, and 0 otherwise.

In the [14,10] constructions, encodings are noisy and the noise level increases
with addition and multiplication operations, so one has to be careful not to go
over a specified noise bound. However, the parameters can be set so as to sup-
port O(τ) operations, which are sufficient for our purposes. We therefore ignore
noise management throughout this manuscript. An additional subtle issue is that
with negligible probability the initial noise may be too big. However this can be
avoided by adding rejection sampling to samp and therefore ignored throughout
the manuscript as well.

It is important to notice that our definition deviates from that of [14] as we
define two sets of parameters params and evparams. While the former will be
used by the obfuscator in our construction (and therefore will not be revealed
to an external adversary), the latter will be used when evaluating an obfuscated
program (and thus will be known to an adversary). When instantiating our defi-
nition, the guideline is to make evparams minimal so as to give the least amount
of information to the adversary. In particular, in the known candidates [14,10],
evparams only needs to contain the zero-test parameter pzt (as well as the
global modulus).

6 The “zero testing” parameter pzt defined in [14] is a part of evparams.
7 This functionality is not explicitly provided by [14], however it can be obtained by
combining their encoding and re-randomization procedures.
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Hardness Assumptions. In this work, we will use two hardness assumptions
over graded encoding schemes. The first, which we call “graded external DDH”
(or GXDH, Assumption 2.6 below) is an analog of the symmetric external DH as-
sumption (SXDH), instantiated for the multilinear case. The second assumption
(GCAN Assumption 2.7) is an analog of Canetti’s assumption [6], that taking a
random generator to a high-entropy power results in a random-looking element.
We note that we make these assumptions against non-uniform adversaries.

Assumption 2.6 (Graded External DH). Letting (params, evparams) ←
InstGen(1λ, 1τ ), for all i = 1, . . . , τ , sample ri,0, ri,1, ai,0, ai,1 ← samp(params)
and consider the following values:

wi,0 ← encRand(params, i, ri,0) wi,1 ← encRand(params, i, ri,1)

ui,0 ← encRand(params, i, ri,0 × ai,0) ui,1 ← encRand(params, i, ri,1 × ai,1)

u′
i,1 ← encRand(params, i, ri,1 × ai,0)

The GXDH assumption is that for every choice of τ ∈ N and i∗ ∈ [τ ], no
ensemble of polynomial time adversaries can have have non-negligible advantage
in distinguishing the distributions:(

evparams, {(wi,0, ui,0, wi,1, ui,1, u
′
i,1)}i�=i∗ , (wi∗,0, ui∗,0, wi∗,1, ui∗,1)

)
and(

evparams, {(wi,0, ui,0, wi,1, ui,1, u
′
i,1)}i�=i∗ , (wi∗,0, ui∗,0, wi∗,1, u

′
i∗,1)
)

We note that a stronger version of this assumption, where the distinguisher is
given access to params rather than evparams, was presented in the the early
versions of [14]. It was later shown that this stronger assumption is false, see
later versions of [14] for the attack. We emphasize that no attacks are known if
only evparams is given as above. Furthermore, the new candidate of [10] is not
known to be sensitive to such attacks even if params is given.

Since we only provide our distinguisher with evparams, it may not be able
to generate DDH tuples by itself. We therefore provide it with correctly labeled
DDH samples for all groups except i∗. This is the minimal assumption that is re-
quired for our construction, however we conjecture that a stronger variant where
the adversary is allowed to receive an unbounded number of labeled samples at
any group (including i∗) is also true.

For our next assumption, we introduce the following notation. Consider a

distribution D over Sv = ∪α∈RS
(α)
v . The distribution enc−1(D) is defined by

the following process: Sample x ← D, let α be such that x ∈ S
(α)
v , output α.

We also recall the definition of smooth average min-entropy (see Definition 2.2
above).

Assumption 2.7 (“Graded Canetti”). Let (params,pzt) ← InstGen(1λ, 1τ)
and let {(Dλ, Zλ)}λ∈N be a distribution ensemble over S0 × {0, 1}∗, such that

H̃ε
∞(enc−1(Dλ)|Zλ) ≥ h(λ) ,
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for some ε = negl(λ) and function h(λ) = ω(logλ).
The GCAN assumption is that no ensemble of polynomial time adversaries

and indices i can have non-negligible advantage in distinguishing the distributions

(params, evparams,w, u, z) and (params, evparams,w, u′, z) ,

where we let: (params, evparams) ← InstGen(1λ, 1τ ), r ← samp(params), w ←
encRand(params, i, r), (x, z) ← (Dλ, Zλ), u ← encRand(params, i, r × x), u′ ←
encRand(params, i, samp(params)). (In this definition, the distinguisher is given
both params and evparams.)

This assumption is consistent with out knowledge on candidate graded encoding
schemes. However, if we want to make an even weaker assumption, we can set the
minimal entropy requirement to be higher than just ω(logλ). The constructions
in this paper can trivially be adapted to such weaker variants (with the expected
degradation in security).

2.3 Obfuscation

Definition 2.8 (Virtual Black-Box Obfuscator [2]).
Let C = {Cn}n∈N be a family of polynomial-size circuits, where Cn is a set

of boolean circuits operating on inputs of length n. And let O be a PPTM algo-
rithm, which takes as input an input length n ∈ N, a circuit C ∈ Cn, a security
parameter λ ∈ N, and outputs a boolean circuit O(C) (not necessarily in C).

O is an obfuscator for the circuit family C if it satisfies:

1. Preserving Functionality: For every n ∈ N, and every C ∈ Cn, and every
�x ∈ {0, 1}n, with all but negl(λ) probability over the coins of O:

(O(C, 1n, λ))(�x) = C(�x)

2. Polynomial Slowdown: For every n, λ ∈ N and C ∈ C, the circuit O(C, 1n, 1λ)
is of size at most poly(|C|, n, λ).

3. Virtual Black-Box: For every (non-uniform) polynomial size adversary A,
there exists a (non-uniform) polynomial size simulator S, such that for every
n ∈ N and for every C ∈ Cn:∣∣ Pr

O,A
[A(O(C, 1n, 1λ)) = 1]− Pr

S
[SC(1|C|, 1n, 1λ) = 1]

∣∣ = negl(λ)

Remark 2.9. A stronger notion of functionality, which also appears in the lit-
erature, requires that with overwhelming probability the obfuscated circuit is
correct on every input simultaneously. We use the relaxed requirement that for
every input (individually) the obfuscated circuit is correct with overwhelming
probability (in both cases the probability is only over the obfuscator’s coins). We
note that our construction can be modified to achieve the stronger functionality
property (by using a ring of sufficiently large size and the union bound).
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Definition 2.10 (Average-Case Secure Virtual Black-Box).
Let C = {Cn}n∈N be a family of circuits and O a PPTM as in Definition

2.8. Let D = {Dn}n∈N be an ensemble of distribution families Dn, where each
D ∈ Dn is a distribution over Cn.

O is an obfuscator for the distribution class D over the circuit family C, if it
satisfies the functionality and polynomial slowdown properties of Definition 2.8
with respect to C, but the virtual black-box property is replaced with:

3. Distributional Virtual Black-Box: For every (non-uniform) polynomial size
adversary A, there exists a (non-uniform) polynomial size simulator S, such
that for every n ∈ N, every distribution D ∈ Dn (a distribution over Cn),
and every predicate P : Cn → {0, 1}:∣∣ Pr

C∼Dn,
O,A

[A(O(C, 1n, 1λ)) = P (C)]− Pr
C∼Dn,

S
[SC(1|C|, 1n, 1λ) = P (C)]

∣∣ = negl(λ)

Remark 2.11. Our proof of average-case security for the conjunction obfuscator
(Theorem 4.2) is in fact stronger. We show a simulator S that does not even
require black-box access to the circuit C. Rather, for a circuit C drawn from a
distribution in D, the probability of predicting P (C) from an obfuscation of C,
is the same as the probability of predicting P (C) from a “dummy obfuscation”
that is independent of C. See the proof for further details.

3 Obfuscating Conjunctions

In this section we present our obfuscator for conjunctions ConjObf (Figure 1).
We provide a proof of security for functions that are not determined by the
locations of the wildcards in Section 4. In the full version, we provide evidence of
the security of our construction for any conjunction, by proving that it is secure
against generic adversaries that do not use the representation of the specific
graded encoding scheme.

We start by defining the class of conjunctions, and a useful property thereof.

Definition 3.1 (n-bit Conjunction).
For an input length n, a conjunction C = (W,V ) : {0, 1}n → {0, 1} is a predicate
on n-bit inputs, which is defined by two vectors W,V ∈ {0, 1}n. For every input
�x ∈ {0, 1}n, C(�x) = 1 iff for all i ∈ [n], W [i] = 1 or V [i] = �x[i]. For the
sake of unity of representation, we require that whenever W [i] = 1, it holds that
V [i] = 0.

We often alternate between treating W as an index vector and treating it as
a subset of [n]. If i ∈ W then we say that i is a wildcard location.

Definition 3.2 (Conjunction Ensemble).
A conjunction ensemble C = {Cn}n∈N is a collection of conjunctions Cn :
{0, 1}n → {0, 1}, one for each input length.
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Claim. There exists an efficient algorithm B, such that for any conjunction C =
(W,V ), and any accepting input �x of C, B can recover (W,V ):

∀C = (W,V ), ∀�x : C(�x) = 1, BC(�x) = (W,V )

Proof. Take n = |�x|, the algorithm B enumerates over the bits of �x. For each
bit i, it flips the i-th bit of �x: �x(i) = �x ⊕ ei, and checks whether C(�x(i)) = 1.
If so, then i must be a wildcard: W [i] = 1 and V [i] = 0. Otherwise, i is not a
wildcard: W [i] = 0 and V [i] = �x[i].

Obfuscator ConjObf, on input (1λ, 1n, C = (W,V ))

1. generate (params, evparams) ← InstGen(1λ, 1n+1)
2. for i ∈ [n]:

if i ∈ W , then: ai,0 = ai,1 ← samp(params) ∈ S
(αi,0)

0 = S
(αi,1)

0

if i /∈ W , then: ai,0 ← samp(params) ∈ S
(αi,0)

0 , ai,1 ← samp(params) ∈ S
(αi,1)

0

3. for i ∈ [n]:

ri,0 ← samp(params) ∈ S
(ρi,0)

0 , ri,1 ← samp(params) ∈ S
(ρi,0)

0

si,0 ← ri,0 × ai,0 ∈ S
(ρi,0·αi,0)

0 , si,1 ← ri,1 × ai,1 ∈ S
(ρi,1·αi,1)

0

wi,0 ← encRand(params, i, ri,0) ∈ S
(ρi,0)
ei

wi,1 ← encRand(params, i, ri,1) ∈ S
(ρi,1)
ei

ui,0 ← encRand(params, i, si,0) ∈ S
(ρi,0·αi,0)
ei

ui,1 ← encRand(params, i, si,1) ∈ S
(ρi,1·αi,1)
ei

4. an+1 ←
(
Πi∈[n]ai,V [i]

)
∈ S

(Πi∈[n]αi,V [i])

0

rn+1 ← samp(params) ∈ S
(ρn+1)
0

sn+1 ← rn+1 × an+1 ∈ S
(ρn+1·Πi∈[n]αi,V [i])

0

wn+1 ← encRand(params,n+ 1, rn+1) ∈ S
(ρn+1)
en+1

un+1 ← encRand(params,n+ 1, sn+1) ∈ S
(ρn+1·Πi∈[n]αi,V [i])
en+1

5. output the obfuscation:

(evparams, {(wi,0, ui,0), (wi,1, ui,1)}i∈[n], (wn+1, un+1))

Evaluation, on input �x ∈ {0, 1}n

1. t ←
(
wn+1 ×Πi∈[n]ui,�x[i]

)
∈ S

(
ρn+1·(Πi∈[n]ρi,�x[i]·αi,�x[i])

)
(1,1,...,1)

2. t′ ←
(
un+1 ×Πi∈[n]wi

)
∈ S

(
ρn+1·(Πi∈[n]αi,V [i])·(Πi∈[n]ρi,�x[i])

)
(1,1,...,1)

3. output the bit: isZero(evparams, (t− t′)).

Fig. 1. Obfuscator for Conjunctions
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Our obfuscator for the class of conjunctions is presented in Figure 1. Correct-
ness follows in a straightforward manner as described in the following lemma
(the proof is omitted). We note that the error is one sided, it is always the case
that if C(�x) = 1 then for the obfuscated program OC(�x) = 1 as well.

Lemma 3.3 (Obfuscator Functionality). Let C be an n-variable conjunction
and consider its obfuscation OC = ConjObf(C, 1n, 1λ). Then for all �x,

Pr[OC(�x) �= C(�x)] ≤ poly(n)/p ,

where p = 2Ω(λ) is the order of the group in the graded encoding scheme, and
the probability is taken over the randomness of ConjObf.

As a concluding remark, we note that if our graded encoding scheme has the
property that p � 2n (which is indeed achievable in the candidate of [14]), then
a stronger correctness guarantee, as mentioned in Remark 2.9, can be achieved
by using the union bound. In this parameter range, the proof of security also
becomes somewhat simpler (see Section 4). However, we want to present our
scheme in the most generic way so as to be compatible with possible choices of
the security parameter and with future graded encoding schemes.

4 Security from GXDH and GCAN

In this section we prove that ConjObf is a secure distributional black box obfus-
cator for any distribution over the conjunctions family for which the function is
hard to determine (i.e. has super-logarithmic entropy) even if the locations of
all the wildcards are known. Namely, there is sufficient min-entropy in V even
given W (recall that V [i] = 0 wherever W [i] = 1).

Definition 4.1 (equivocality given wildcards). Let C be the class of con-
junctions, and let D = {Dλ} be an ensemble of families of distributions. We say
that D is equivocal given the wildcards if there exists h(λ) = ω(logλ) such that
for all D ∈ Dλ, if (V,W ) ← D then

H̃∞(V |W ) ≥ h(λ) .

We will prove the security of ConjObf for such functions under the GXDH and
GCAN assumptions (see Section 2.2).

Theorem 4.2. Based on the GXDH and GCAN assumptions, the algorithm
ConjObf is an average-case black-box obfuscator for ensembles of distribution
families that are equivocal given the wildcards.

Proof. We start by stating a claim that will be used later on in the proof.

Claim. Let p be prime and let k ∈ N be integer. Consider the hash family H ⊆
{0, 1}k → Z∗

p, where each function in H is defined by a sequence a0, a1, . . . , ak ∈
Z∗
p and

Ha0,a1,...,ak
(x1, . . . , xk) = a0 ·

∏
i∈[k]

axi

i ,

then H is pairwise independent.
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This claim follows in a straightforward manner since H (defined therein) is a
random linear function “in the exponent”.

Consider a function C = (W,V ) drawn from a distribution Dλ, and consider
the distribution of a properly obfuscated program ConjObf(C). We will show,
using a sequence of hybrids, that this distribution is computationally indistin-
guishable from one that does not depend on C, even for a distinguisher who
knows the value of the predicate P (C). This will immediately imply a simulator.
We note that our proof works even for P (C) with multiple-bit output, so long
as h(λ)− |P (C)| = ω(logλ).

1. In this hybrid, we use ConjObf as prescribed:

OC = ConjObf(C) =
(
params,pzt, {(wi,b, ui,b)}i∈[n],b∈{0,1} , (wn+1, un+1)

)
2. We change the algorithm so that ai,b �∈ S

(0)
0 . This is implemented efficiently

by rejection sampling, using the zero-test procedure. In this hybrid, therefore,
αi,b is uniform in Z∗

p.
This hybrid only incurs a negligible poly(λ)/p statistical distance in the
distribution of OC compared to the previous hybrid.

3. We change step 4 of the obfuscator. In particular, we will now sample an+1 ←
samp(params) (conditioned on it not being zero, as above). This means that

an+1 ∈ S
(αn+1)
0 for a random αn+1 ∈ Z∗

p.
We will now show that the resulting OC distribution is computationally
indistinguishable from the previous hybrid under the GCAN assumption
(Assumption 2.7), even when the distinguisher knows P (C). Namely, we
will show that for some negligible ε, the distributions in the previous hybrid
are such that

H̃ε
∞(αn+1| {(wi,b, ui,b)}i∈[n],b∈{0,1} , P (C)) = ω(logλ) , (5)

which will allow us to apply GCAN and conclude that αn+1 can be replaced
by a uniform variable.
To show that Eq. (5) holds, we present a slightly different way to generate
the variables αi,b (note that from this point and on, we are a completely
information-theoretic setting, so we will not worry about computational as-
pects). We will first sample {α̂i,b}i∈[n],b∈{0,1} completely uniformly in Z∗

p,
and then set αi,b as follows. If W [i] = 0 then αi,0 = α̂i,0, αi,1 = α̂i,1; and if
W [i] = 1 then αi,0 = αi,1 = α̂i,0. Note that the resulting distribution of the
α’s is exactly as prescribed. Further notice that

αn+1 =
∏
i∈[n]

α
1−V [i]
i,0 α

V [i]
i,1 =

∏
i∈[n]

α̂
1−V [i]
i,0 α̂

V [i]
i,1 =

∏
i∈[n]

α̂i,0 ·
∏
i∈[n]

(α̂i,1/α̂i,0)
V [i]

(6)
where the second equality is since α and α̂ only differ where W [i] = V [i] = 0.
By Claim 4 it follows, therefore, that αn+1 is the output of a pairwise-
independent hash function applied to V .
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We proceed to apply Lemma 2.3. Note that H̃∞(V |W,P (C)) ≥ H̃∞(V |W )−
|P (C)| ≥ h(λ) − 1. Therefore there must exist h′(λ) = ω(logλ) such that
h′(λ) ≤ h(λ)− 1, and in addition the length of αn+1 is at least h′(λ)/3 + 2.
We can thus apply Lemma 2.3 with ε = 2−h′(λ)/3 = negl(λ) to argue that

H̃ε
∞(αn+1|W,P (C), {α̂i,b}) ≥ h′(λ)/3 = ω(logλ) . (7)

Finally, Eq. (5) follows by noticing that there is an invertible mapping be-
tween W, {α̂i,b} and {(wi,b, ui,b)}i∈[n],b∈{0,1}.

It is interesting to note that this hybrid (and therefore our entire argument)
works not only for predicates. In fact, �-bit functions of the circuit C can be
used, so long as h(λ) − � = ω(logλ).
At this point, OC does not depend on V anymore, however it still depends
on W via step 2 of ConjObf.

4. We again allow ai,b to be zero. The statistical difference is poly(λ)/p =
negl(λ), as above.

5. We change step 2 of the obfuscator to always act as if i �∈ W , namely αi,0

and αi,1 are uniform and independent.
A sequence of n hybrids will show that any adversary distinguishing this
distribution from the previous one, can be used to break GXDH with only
a factor n loss in the advantage. This implies that the hybrids are compu-
tationally indistinguishable assuming GXDH. Note that knowledge of P (C)
(or even of C in its entirety) is useless for the distinguisher at this point.

After the last hybrid, we are at a case where all ai,b, ri,b, an+1, rn+1 are com-
pletely independent of each other, and are sampled in the same way regardless of
(V,W ). It follows that our final distribution is independent of C, but produces
OC indistinguishable from ConjObf(C) (even given P (C)). Since this distribution
is efficiently sampleable (via the process we describe in the proof), the theorem
follows.
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Abstract. We present the first fully secure Identity-Based Encryption scheme
(IBE) from the standard assumptions where the security loss depends only on
the security parameter and is independent of the number of secret key queries.
This partially answers an open problem posed by Waters (Eurocrypt 2005). Our
construction combines the Waters’ dual system encryption methodology (Crypto
2009) with the Naor-Reingold pseudo-random function (J. ACM, 2004) in a novel
way. The security of our scheme relies on the DLIN assumption in prime-order
groups. Along the way, we introduce a novel notion of dual system groups and
a new randomization and parameter-hiding technique for prime-order bilinear
groups.

1 Introduction

In an Identity-Based Encryption (IBE) scheme [27], encryption requires only the
identity of the recipient (e.g. an email address or an IP address) and a set of global
public parameters, thus eliminating the need to distribute a separate public key for
each user in the system. The first realizations of IBE were given in 2001; the security
of these schemes were based on either Bilinear Diffie-Hellman or QR in the random
oracle model [7, 13]. Since then, tremendous progress has been made towards obtaining
IBE and HIBE schemes that are secure in the standard model based on pairings
[8, 5, 6, 28, 15, 29] as well as lattices [16, 9, 2, 3]. Specifically, starting with [29],
we now have very efficient constructions of IBE based on standard assumptions which
achieve the strongest security notion of full (adaptive) security, where the adversary
may choose the challenge identity after seeing both the public parameters and making
key queries.

In this work, we focus on the issue of security reduction and security loss in the
construction of fully secure IBE. Consider an IBE scheme with a security reduction
showing that attacking the scheme in time t with success probability ε implies breaking
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some conjectured hard problem in time roughly t with success probability ε/L; we
refer to L as the security loss, and a tight reduction is one where L is a constant. All
known constructions of fully secure IBE schemes from standard assumptions incur a
security loss that is at least linear in the number of key queries q; the only exceptions
are constructions in the random oracle model [7] and those based on q-type assumptions
[15]. Motivated by this phenomenon, Waters [28] posed the following problem in 2005
(reiterated in [15, 4]):

“Design an IBE with a tight security reduction to a standard assumption.”

That is, we are interested in constructions based on “static” assumptions like the
Decisional Linear (DLIN) assumption or the subgroup decisional assumption and which
do not rely on random oracles. Note that an IBE with a tight security reduction would
also imply signatures with a tight security reduction via the Naor’s transformation [7];
indeed, the latter were the focus in a series of very recent works [1, 19, 17].

We stress that tight reductions are not just theoretical issues for IBE, rather they
are of utmost practical importance: as L increases, we need to increase the size of the
underlying groups in order to compensate for the security loss, which in turn increases
the running time of the implementation. Note that the impact on performance is quite
substantial, as exponentiation in a r-bit group takes time roughly O(r3).

While the ultimate goal is to achieve constant security loss (i.e. L = O(1)), even
achieving L = poly(λ) and independent of q is already of both practical and theoretical
interest. For typical settings of parameters (e.g. λ = 128 and q = 220), λ is much
smaller than q. From the theoretical stand-point, we currently have two main techniques
for obtaining fully secure IBE from standard assumptions: random partitioning [28] and
dual system encryption framework [29]. For the former, we now know that an Ω(q)
security loss is in fact inherent [18]. For the latter, all known instantiations also incur an
Ω(q) security loss; an interesting theoretical question is whether this is in fact inherent
to the dual system encryption framework.

1.1 Our Results

Our main result is an IBE scheme based on the d-LIN assumption with security loss
O(λ) for λ-bit identities:

Theorem 1. There exists an IBE scheme for identity space {0, 1}n based on the d-LIN
assumption with the following property: for any adversary A that makes at most q key
queries against the IBE scheme, there exist an adversary B such that:

AdvIBE
A (λ) ≤ (2n+ 1) · Advd-LIN

B (λ) + 2−Ω(λ)

and
Time(B) ≈ Time(A) + q · poly(λ, n),

where poly(λ, n) is independent of Time(A).

We compare our scheme with prior constructions in Figure 1. Applying the Naor
transform, we also obtain a d-LIN-based signature scheme with constant-size signatures
and security loss independent of the number of signature queries. This yields an
alternative construction for an analogous result in [17].
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Reference |MPK| security loss additive overhead assumption

BB1 [5] O(1) O(2n) q · poly(λ, n) DBDH

Waters [28] O(n) O(qn) q2ε−2 · poly(λ, n) DBDH

Gentry [15] O(1) O(1) q2 · poly(λ, n) q-ABDHE

BR [4] O(n) O(qn/ε) q · poly(λ, n) DBDH

LW[29, 22, 20] O(1) O(q) q · poly(λ, n) DLIN or composite

Ours O(n) O(n) q · poly(λ, n) DLIN or composite

O(d2n) O(n) d2q · poly(λ, n) d-LIN

Fig. 1. Comparison amongst IBE schemes, where {0, 1}n is the identity space, q is the number of
adversary’s key queries, and ε is the adversary’s advantage. In all of these constructions, |SK| =
|CT| = O(1).

Our Approach. The inspiration for our construction comes from a recent connection
between predicate encryption and one-time symmetric-key primitives [30] — namely
one-time MACs in the case of IBE — via dual system encryption [29]. Our key
observation is to extend this connection to “reusable MACs”, namely that if we start
with an appropriate pseudorandom function (PRF) with security loss L, we may derive
an IBE with the security loss O(L). More concretely, we begin with the Naor-Reingold
DDH-based PRF [24] which has security loss n for input domain {0, 1}n, and obtain
a fully secure IBE with security loss O(n) via a novel variant of the dual system
encryption methodology. Our IBE scheme is essentially that obtained by embedding
Waters’ fully secure IBE based on DBDH [28] into composite-order groups, and then
converting this to a prime-order scheme following [10, 25, 20, 14] (along with some new
technical ideas). Here, we exploit the fact that the Waters’ IBE and the Naor-Reingold
PRF share a similar algebraic structure based on bit-by-bit encoding of the identity and
PRF input respectively.

1.2 Technical Overview

We provide a more technical overview of our main results, starting with the proof idea
and then the construction. Here, we assume some familiarity with prior works.

Proof Idea. Our security proof combines Waters’ dual system encryption methodology
[29] with ideas from the analysis of the Naor-Reingold PRF. In a dual system encryption
scheme [29], there are two types of keys and ciphertexts: normal and semi-functional.
A key will decrypt a ciphertext properly unless both the key and the ciphertext are
semi-functional, in which case decryption will fail with overwhelming probability.
The normal keys and ciphertexts are used in the real system, and keys are gradually
introduced in the hybrid security proof, one at a time. Ultimately, we arrive at a
security game in which the simulator only has to produce semi-functional objects and
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security can be proved directly. In all prior instantiations of this methodology, the semi-
functional keys are introduced one at a time. As a result, we require q hybrid games to
switch all of the keys from normal to semi-functional, leading to an Ω(q) security loss,
since each step requires a computational assumption.

We deviate from the prior paradigm by using only n hybrid games, iterating over the
bits in the bit-by-bit encoding of the identity, as was done in the Naor-Reingold PRF.
That is, we introduce n types of semi-functional ciphertexts and keys, where type i
objects appear in game i, while gradually increasing the entropy in the semi-functional
components in each game. This strategy introduces new challenges specific to the IBE
setting, namely that the adversary could potentially use the challenge ciphertext to test
whether we have switched from type i − 1 keys to type i keys. Prior works exploit the
fact that we only switch a single key in each step, whereas we could be switching up to
q keys in each step.

We overcome this difficulty as follows. At step i of the hybrid game, we guess the
i’th bit bi of the challenge identity ID∗, and abort if our guess is incorrect. This results
in a security loss of 2, which we can afford. If our guess bi is correct,

– for all identities whose i’th bit equals bi, the corresponding type i − 1 and type i
object are the same;

– for all other identities, we increase the entropy of the keys going from type i− 1 to
type i (via a tight reduction to a computational assumption).

The first property implies that the adversary cannot use the challenge ciphertext to
distinguish between type i−1 and type i keys; in the proof, the simulator will not be able
to generate type i−1 or type i ciphertexts for identities whose i’th bit is different from bi
(c.f. Remark 3 and Section 4.4). Interestingly, decryption capabilities remain unchanged
throughout the hybrid games: a type i key for ID∗ can decrypt a type i ciphertext for
ID∗ (c.f. Remark 5). This is again different from prior instantiations of the dual system
encryption methodology where decryption fails for semi-functional objects.

In the final transition, a semi-functional type n object for identity ID has semi-
functional component Rn(ID) where Rn is a truly random function. In particular,
the semi-functional ciphertext has semi-functional component Rn(ID∗). Moreover,
Rn(ID∗) is truly random from the adversary’s view-point because it only learns SKID

and thus Rn(ID) for ID �= ID∗. We can then argue that the message which is masked by
Rn(ID∗) is information-theoretically hidden.

Construction. To achieve a modular analysis, we introduce a novel notion of nested
dual system groups (see Section 3.1 for an overview). Our construction proceeds
into two steps: the first builds an (almost) tight IBE from nested dual system groups
where we rely on the Naor-Reingold PRF argument and the dual system encryption
methodology; the second builds nested dual system groups from d-LIN where we
handle all of the intricate linear algebra associated with simulating composite-order
groups in prime-order groups from [10, 20] and with achieving a tight reduction via
random self-reducibility.
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Property
Where it is used

nested dual system groups dual system groups

projective correctness correctness

normal to type 0 (Lemma 1) normal to semi-functional CT

associative correctness correctness

orthogonality normal to type 0 (Lemma 2) final transition

non-degeneracy final transition (Lemma 4) pseudo-normal to pseudo-SF keys

final transition

H-subgroup type i− 1 to type i (Lemma 3)key delegation

left subgroup normal to type 0 (Lemma 1) normal to semi-functional CT

nested-hiding type i− 1 to type i (Lemma 3)unavailable

right subgroup unavailable normal to pseudo-normal keys

pseudo-SF to semi-functional keys

parameter-hidingunavailable pseudo-normal to pseudo-SF keys

Fig. 2. Summary of dual system groups (c.f. Section 3 and Appendix B)

Perspective. In spite of the practical motivation for tight security reductions, we clarify
that our contributions are largely of theoretical and conceptual interest. This is because
any gain in efficiency from using smaller groups is overwhelmed by the loss from the
bit-by-bit encoding of identities. Our work raises the following open problems:

– Can we reduce the size of the public parameters to a constant?

– Can we achieve tight security, namely L = O(1)?

We note that progress on either problem would likely require improving on the Naor-
Reingold PRF: namely, reducing respectively the seed length and the security loss to a
constant, both of which are long-standing open problems. We also note that the present
blow-up in public parameters and security loss arise only in using the Naor-Reingold
approach to build an IBE from nested dual system groups; our instantiation of nested
dual system groups do achieve tight security.

1.3 Additional Results

As a pre-cursor to nested dual system groups, we introduce a basic notion of dual system
groups. We present

– a generic construction of compact HIBE from dual system groups similar to the
Lewko-Waters scheme over composite-order groups [22]; and

– instantiations of dual system groups under the d-LIN assumption in prime-
order bilinear groups and the subgroup decisional assumption in composite-order
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bilinear groups respectively. Along the way, we provide a new randomization and
parameter-hiding technique for prime-order groups.

Putting the two together, we obtain a new construction of compact HIBE in prime-
order groups, as well as new insights into the structural properties needed for Waters’
dual system encryption methodology [29]. We proceed to present an overview of dual
system groups, our new techniques for prime-order groups and then an overview of
nested dual system groups.

Dual System Groups. Informally, dual system groups contain a triple of groups
(G,H,GT ) and a non-generate bilinear map e : G × H → GT . For concreteness, we
may think of (G,H,GT ) as composite-order bilinear groups. Dual system groups take
as input a parameter 1n (think of n as the depth of the HIBE) and satisfy the following
properties:

(subgroup indistinguishability.) There are two computationally indistinguishable
ways to sample correlated (n+1)-tuples from Gn+1: the “normal” distribution, and
a higher-entropy distribution with “semi-functional components”. An analogous
statement holds for Hn+1.

(associativity.) For all (g0, g1, . . . , gn) ∈ Gn+1 and all (h0, h1, . . . , hn) ∈ Hn+1

drawn from the respective normal distributions, we have that for all i = 1, . . . , n,

e(g0, hi) = e(gi, h0).

(parameter-hiding.) Both normal distributions can be efficiently sampled given the
public parameters; on the other hand, given only the public parameters, the higher-
entropy distributions contain n “units” of information-theoretic entropy (in the
semi-functional component), one unit for each of the n elements in the (n + 1)-
tuple apart from the first.

The key novelty in the framework lies in identifying the role of associativity in the prior
instantiations of the dual system encryption methodology in composite-order groups
[22].

Instantiation in Prime-Order Groups. We present a new randomization and
parameter-hiding technique for prime-order bilinear groups, which we use to instantiate
dual system groups. This technique allows us to hide arbitrarily large amounts of
entropy while working with a vector space of constant dimensions, whereas prior works
require a linear blow-up in dimensions.

To motivate the new technique, we begin with a review of composite-order bilinear
groups. Let (GN , GT ) denote a composite-order bilinear group of order N = p1p2
which is the product of two primes, endowed with an efficient bilinear map e : GN ×
GN → GT . Let g denote an element of GN of order p1. A useful property of composite-
order groups, especially in the context of dual system encryption [22, 23], is that we can
perform randomization by raising a group element to the power of a random exponent
a ←R ZN . This operation satisfy the following useful properties:
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(parameter-hiding.) given g, ga, the quantity a (mod p2) is completely hidden;

(associativity.) for all u ∈ GN , we have e(ga, u) = e(g, ua).

We show how to achieve randomization in the prime-order setting under the d-LIN
assumption. Fix a prime-order bilinear group (G,GT ) of order p, endowed with an
efficient bilinear map e : G × G → GT . Let g denote an element of G of order p.
Elements in GN correspond to elements in Gd+1 and we consider the bilinear map
e : Gd+1 × Gd+1 → GT given by e(gx, gy) := e(g, g)x

�y. Following [25, 14], we
pick a random pair of orthogonal basis (B,B∗) ←R GLd+1(Zp) × GLd+1(Zp) so that
B�B∗ is the identity matrix. We consider the projection maps πL, πR that map a (d +
1) × (d + 1) matrix to the left d columns and right-most column; they correspond to
projecting a ∈ ZN to a (mod p1) and a (mod p2) respectively.

We randomize a basis (B,B∗) as follows: pick a random A ←R Z(d+1)×(d+1)
p

and replace (B,B∗) with (BA,B∗A�). Observe that this transformation satisfy the
following properties similar to those in the composite-order setting:

(parameter-hiding.) given gπL(B), gπL(BA), gπL(B∗), gπL(B∗A�), the bottom-right
entry of A is completely hidden;

(associativity.) for all (B,B∗) and all A ∈ Z(d+1)×(d+1)
p , we have

e(gBA, gB
∗
) = e(gB, gB

∗A�
)
(
= e(g, g)A

�)
where e(gX, gY) := e(g, g)X

�Y.

We also establish a subspace indistinguishability assumption similar to those in prior
works [26, 20, 12].

Nested Dual System Groups. In nested dual system groups, we require a so-called
nested-hiding property. Roughly speaking, this property says that it is computationally
infeasible to distinguish q samples from some distribution with another; specifically, it
allows us to boost the entropy of the semi-functional components. In the instantiation,
we will need to establish this property with a tight reduction to some standard
assumption. The nested-hiding property allows us to “embed” the Naor-Reingold
analysis into the semi-functional space of a dual system encryption scheme. We stress
that the nested-hiding property even for q = 1 is qualitatively different from right
subgroup indistinguishability in dual system groups.

We outline the instantiations of dual system groups in the composite-order and
prime-order settings:

– The composite-order instantiation is very similar to that as before. We rely on
composite-order group whose order is the product of three primes p1, p2, p3. The
subgroup Gp1 of order p1 serves as the “normal space” and Gp2 of order p2
serves as the “semi-functional space”. We also require a new static, generically
secure assumption, which roughly speaking, states that DDH is hard in the Gp2

subgroup. Here, we extend the techniques from [24] to establish nested-hiding
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indistinguishability without losing a factor of q in the security reduction. Our IBE
analysis may also be viewed as instantiating the Naor-Reingold PRF in the Gp2

subgroup.

– For the prime-order instantiation based on d-LIN, we extend the prior instantiation
in several ways. First, we work with 2d× 2d matrices instead of (d+ 1)× (d+ 1)
matrices. In both constructions, the first d dimensions serve as the “normal space”;
in our construction, we require a d-dimensional semi-functional space instead of
a 1-dimensional one so that we may embed the d-LIN assumption into the semi-
functional space. Next, we extend the techniques from [24, 21] to establish nested-
hiding indistinguishability without losing a factor of q in the security reduction.

Perspective. In developing the framework for dual system groups, we opted to identify
the minimal properties needed for the application to dual system encryption in the most
basic setting of (H)IBE; we adopted an analogous approach also for nested dual system
groups. An alternative approach would have been to maximize the properties satisfied
by both the composite-order and prime-order instantiations, with the hope of capturing
a larger range of applications. In choosing the minimalist approach, we believe we can
gain better insights into how and why dual system encryption works, as well as guide
potential lattice-based instantiations. In addition, we wanted the framework to be as
concise as possible and the instantiations to be as simple as possible. Nonetheless, the
framework remains fairly involved and we hope to see further simplifications in future
work.

Organization. We present nested dual system groups in Section 3, our IBE scheme in
Section 4 and a self-contained description of our d-LIN-based scheme in Appendix A.
For completeness, we included a formal description of dual system group in Ap-
pendix B. We defer all other details to the full versions of this paper [11, 10].

2 Preliminaries

Notation. We denote by s ←R S the fact that s is picked uniformly at random from a
finite set S and by x, y, z ←R S that all x, y, z are picked independently and uniformly
at random from S. By PPT, we denote a probabilistic polynomial-time algorithm.
Throughout, we use 1λ as the security parameter. We use · to denote multiplication (or
group operation) as well as component-wise multiplication. We use lower case boldface
to denote (column) vectors over scalars or group elements and upper case boldface to
denote vectors of group elements as well as matrices.

Identity-Based Encryption. An IBE scheme consists of four algorithms (Setup,Enc,
KeyGen,Dec):

Setup(1λ, 1n) → (MPK, MSK). The setup algorithm takes in the security parameter 1λ

and the length parameter 1n. It outputs public parameters MPK and a master secret
key MSK.



Fully, (Almost) Tightly Secure IBE and Dual System Groups 443

Enc(MPK,x,m) → CTx. The encryption algorithm takes in the public parameters
MPK, an identity x, and a message m. It outputs a ciphertext CTx.

KeyGen(MPK, MSK,y) → SKy. The key generation algorithm takes in the public
parameters MPK, the master secret key MSK, and an identity y. It outputs a secret
key SKy.

Dec(MPK, SKy, CTx) → m. The decryption algorithm takes in the public parameters
MPK, a secret key SKy for an identity y, and a ciphertext CTx encrypted under an
identity x. It outputs a message m if x = y.

Correctness. For all (MPK, MSK) ← Setup(1λ, 1n), all identities x, all messages m,
all decryption keys SKy, all x such that x = y, we have

Pr[Dec(MPK, SKy,Enc(MPK,x,m)) = m] = 1.

Security Model. The security game is defined by the following experiment, played by
a challenger and an adversary A.

Setup. The challenger runs the setup algorithm to generate (MPK, MSK). It gives MPK

to the adversary A.

Phase 1. The adversaryA adaptively requests keys for any identity y of its choice. The
challenger responds with the corresponding secret key SKy, which it generates by
running KeyGen(MPK, MSK,y).

Challenge. The adversary A submits two messages m0 and m1 of equal length and
a challenge identity x∗ with the restriction that x∗ is not equal to any identity
requested in the previous phase. The challenger picks β ←R {0, 1}, and encrypts
mβ under x∗ by running the encryption algorithm. It sends the ciphertext to the
adversary A.

Phase 2. A continues to issue key queries for any identity y as in Phase 1 with the
restriction that y �= x∗.

Guess. The adversary A must output a guess β′ for β.

The advantage AdvIBE
A (λ) of an adversary A is defined to be |Pr[β′ = β]− 1/2|.

Definition 1. An IBE scheme is fully secure if all PPT adversaries A, AdvIBE
A (λ) is a

negligible function in λ.

3 Nested Dual System Groups

In this section, we present nested dual system groups, a variant of dual system groups
with a notable difference: we require (computational) nested-hiding indistinguishabil-
ity, in place of (computational) right subgroup indistinguishability and (information-
theoretic) parameter-hiding. As noted in the introduction, the nested-hiding property
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even for q = 1 is qualitatively different from right subgroup indistinguishability in dual
system groups.

3.1 Overview

Informally, nested dual system groups contain a triple of groups (G,H,GT ) and a non-
generate bilinear map e : G×H → GT . For concreteness, we may think of (G,H,GT )
as composite-order bilinear groups. Nested dual system groups take as input a parameter
1n and satisfy the following properties:

(left subgroup G.) There are two computationally indistinguishable ways to sample
correlated (n + 1)-tuples from Gn+1: the “normal” distribution, and a higher-
entropy distribution with “semi-functional components”. We sample the normal
distribution using SampG and the semi-functional components using ŜampG.

(right subgroup H.) There is a single algorithm SampH to sample correlated (n+1)-
tuples from Hn+1. We should think of these tuples as already having semi-
functional components, generated by some distinguished element h∗ ∈ H. It is
convenient to think of h∗ as being orthogonal to each component in the normal
distribution over G (c.f. orthogonality and Remark 1). On the other hand, we
require that h∗ is not orthogonal to the semi-functional components in G (c.f.
non-degeneracy) in order to information-theoretically hide the message in the final
transition.

(nested-hiding.) We require a computational assumption over H which we refer to as
nested-hiding, namely that for each i = 1, . . . , n,

(h0, hi) and (h0, hi · (h∗)γ)

are computationally indistinguishable, where (h0, h1, . . . , hn) is sampled using
SampH and γ is a random exponent. In the formal definition, we provide the
adversary with q samples from these distributions, and in the instantiations, we
provide a tight reduction (independent of q) to a static assumption such as DLIN.

(associativity.) For all (g0, g1, . . . , gn) ∈ Gn+1 and all (h0, h1, . . . , hn) ∈ Hn+1

sampled using SampG and SampH respectively, we have that for all i = 1, . . . , n,

e(g0, hi) = e(gi, h0).

We require this property for correctness.

3.2 Definitions

Syntax. Nested dual system groups consist of five randomized algorithms given by
(SampP, SampGT, SampG, SampH) along with ŜampG:

SampP(1λ, 1n): On input (1λ, 1n), output public and secret parameters (PP, SP),
where:
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– PP contains a triple of groups (G,H,GT ) and a non-generate bilinear map
e : G × H → GT , a linear map μ defined on H, along with some additional
parameters used by SampG, SampH;

– given PP, we know ord(H) (i.e. the order of the group, which is independent of
n) and can uniformly sample from H;

– SP contains h∗ ∈ H (where h∗ �= 1), along with some additional parameters
used by ŜampG;

SampGT : Im(μ) → GT. (As a concrete example, suppose μ : H → GT and Im(μ) =
GT.)

SampG(PP): Output g ∈ Gn+1.

SampH(PP): Output h ∈ Hn+1.

ŜampG(PP, SP): Output ĝ ∈ Gn+1.

The first four algorithms are used in the actual scheme, whereas the last algorithm is
used only in the proof of security. We define SampG0 to denote the first group element

in the output of SampG, and we define ŜampG0 analogously.

Correctness. The requirements for correctness are as follows:

(projective.) For all h ∈ H and all coin tosses s, we have SampGT(μ(h); s) =
e(SampG0(PP; s), h).

(associative.) For all

(g0, g1, . . . , gn) ← SampG(PP), (h0, h1, . . . , hn) ← SampH(PP),

and for all i = 1, . . . , n, we have e(g0, hi) = e(gi, h0).

Security. The requirements for security are as follows (we defer a discussion to the end
of this section):

(orthogonality.) μ(h∗) = 1.

(non-degeneracy.) With probability 1− 2−Ω(λ) over ĝ0 ← ŜampG0(PP, SP), we have
that e(ĝ0, h∗)α is identically distributed to the uniform distribution over GT , where
α ←R Zord(H).

(H-subgroup.) The output distribution of SampH(PP) is the uniform distribution over
a subgroup of Hn+1.

(left subgroup indistinguishability.) For any adversary A, we define the advantage
function:

AdvLS
A (λ) :=

∣∣Pr[ A(PP, g ) = 1 ]− Pr[ A(PP, g · ĝ ) = 1 ]
∣∣
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where

(PP, SP) ← SampP(1λ, 1n);

g ← SampG(PP); ĝ ← ŜampG(PP, SP).

For any g = (g0, . . . , gn) ∈ Gn+1, and any i ∈ [n], we use g−i to denote
(g0, . . . , gi−1, gi+1, . . . , gn) ∈ Gn.

(nested-hiding indistinguishability.) For any adversary A, we define the advantage
function:

AdvNS
A (λ, q) := max

i∈[n]

∣∣Pr[ A(PP, h∗, ĝ−i, h1, . . . ,hq ) = 1 ]

−Pr[ A(PP, h∗, ĝ−i, h′1, . . . ,h′q ) = 1 ]
∣∣

where

(PP, SP) ← SampP(1λ, 1n);

ĝ ← ŜampG(PP, SP);

hj := (h0,j , h1,j , . . . , hi,j , . . . , hn,j) ← SampH(PP), j = 1, . . . , q;

h′j := (h0,j , h1,j, . . . , hi,j · (h∗)γj , . . . , hn,j), γj ←R Zord(H), j = 1, . . . , q.

Discussion. We provide additional justification and discussion on the preceding
security properties.

Remark 1 (orthogonality). We may deduce from μ(h∗) = 1 that e(g0, h∗) = 1 for all
g0 = SampG0(PP; s): for all γ ∈ {0, 1},

e(g0, (h
∗)γ) = SampGT(μ((h∗)γ); s) (by projective)

= SampGT(μ(h∗)γ ; s) (by linearity of μ)

= SampGT(1; s) (by orthogonality)

Thus, we have e(g0, h
∗) = e(g0, 1) = 1. For the instantiation from composite-order

groups, h∗ is orthogonal to each element in the output of SampG, that is,

e(g0, h
∗) = e(g1, h

∗) = · · · = e(gn, h
∗) = 1

for all (g0, g1, . . . , gn) ← SampG(PP). On the other hand, for the instantiation from
prime-order groups, h∗ is in general not orthogonal to g1, . . . , gn.

Remark 2 (H-subgroup). We rely on H-subgroup to re-randomize the secret keys in the
proof of security for queries that share the same i-bit prefix; see Section 4.4 case 3.

Remark 3 (indistinguishability). Observe that in left subgroup indistinguishability, the
distinguisher does not get h∗; otherwise, it is possible to distinguish between the
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two distributions using orthogonality. It is also crucial that for nested-hiding, the
distinguisher gets ĝ−i and not ĝ := (ĝ0, ĝ1, . . . , ĝn). (Looking ahead to the proof
in Section 4.4, not having ĝ means that the simulator cannot generate ciphertexts to
distinguish between Type i−1 and Type i secret keys.) Otherwise, given ĝi, it is possible
to distinguish between hj and h′j by using the relation:

e(g0 · ĝ0, hi,j) = e(gi · ĝi, h0,j).

This relation follows from associative and left subgroup indistinguishability.

4 (Almost) Tight IBE from Nested Dual System Groups

We provide a construction of an IBE scheme from nested dual system groups where the
ciphertext comprises two group elements in G and one in GT .

Overview. We begin with an informal overview of the scheme. Fix a bilinear group
with a pairing e : G × G → GT . The starting point of our scheme is the following
variant of Waters’ IBE [28] with identity space {0, 1}n:

MPK := (g, u1, . . . , u2n, e(g, g)
α)

CTx := (gs, (

n∏
k=1

u2k−xk
)s, e(g, g)αs ·m)

SKy := (gr, MSK · (
n∏

k=1

u2k−yk
)r)

Note that MPK contains 2n + 1 group elements in G, which we will generate using

SampP(1λ, 12n ). We will use SampG(PP) to generate the terms (gs, us
1, . . . , u

s
2n) in

the ciphertext, and SampH(PP) to generate the terms (gr, ur
1, . . . , u

r
2n) in the secret key.

4.1 Construction

Let {0, 1}n be the identity space.

– Setup(1λ, 1n): On input length parameter 1n, first sample

(PP, SP) ← SampP(1λ, 12n).

Pick MSK ←R H and output the master public and secret key pair

MPK := ( PP, μ(MSK) ) and MSK.

– Enc(MPK,x,m): On input an identity x := (x1, . . . , xn) ∈ {0, 1}n and m ∈ GT ,
sample

(g0, g1, . . . , g2n) ← SampG(PP; s), g′T ← SampGT(μ(MSK); s)

and output

CTx := ( C0 := g0, C1 := g2−x1 · · · g2n−xn , C2 := g′T ·m ) ∈ (G)2 ×GT .
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– KeyGen(MPK, MSK,y): On input an identity y ∈ {0, 1}n, sample

(h0, h1, . . . , h2n) ← SampH(PP)

and output

SKy := ( K0 := h0, K1 := MSK · h2−y1 · · ·h2n−yn ) ∈ (H)2.

– Dec(MPK, SKy, CTx): If x = y, compute

e(g0, MSK) ← e(C0,K1)/e(C1,K0)

and recover the message as

m ← C2 · e(g0, MSK)−1 ∈ GT .

Correctness. Fix x := (x1, . . . , xn) ∈ {0, 1}n, observe that

e(C0,K1)/e(C1,K0)

=e(g0, MSK · h2−x1 · · ·h2n−xn) · e(g2−x1 · · · g2n−xn , h0)
−1

=e(g0, MSK) ·
(
e(g0, h2−x1) · · · e(g0, h2n−xn)

)
·
(
e(g2−x1, h0) · · · e(g2n−xn , h0)

)−1

=e(g0, MSK)

where the last equality relies on associative, namely, e(g0, h2i−xi) = e(g2i−xi , h0). In
addition, by projective, we have g′T = e(g0, MSK). Correctness follows readily.

4.2 Proof of Security

We prove the following theorem:

Theorem 2. Under the left subgroup and nested-hiding indistinguishability (described
in Section 3), our IBE scheme in Section 4.1 is fully secure (in the sense of Definition 1).
More precisely, for any adversary A that makes at most q key queries against the IBE
scheme, there exist adversaries B1,B2 such that:

AdvIBE
A (λ) ≤ AdvLS

B1
(λ) + 2n · AdvNS

B2
(λ, q) + 2−Ω(λ)

and
max{Time(B1),Time(B2)} ≈ Time(A) + q · poly(λ, n),

where poly(λ, n) is independent of Time(A).

Remark 4. In our instantiations of nested dual system groups, the quantity AdvNS
B2

(λ, q)
will be related to the advantage function corresponding to some static assumption,
with a constant overhead independent of q. Putting the two together, this means that
AdvIBE

A (λ) is independent of q, as stated in Theorem 1.

The proof follows via a series of games, summarized in Figure 3. To describe the games,
we must first define semi-functional keys and ciphertexts. Following [10, 30], we first
define two auxiliary algorithms, and define the semi-functional distributions via these
auxiliary algorithms.
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Auxiliary Algorithms. We consider the following algorithms:

Ênc(PP,x,m; MSK′, t): On input x := (x1, . . . , xn) ∈ {0, 1}n, m ∈ GT , MSK′ ∈ H,
and t := (T0, T1, . . . , T2n) ∈ G2n+1, output

CTx :=

(
T0,

n∏
k=1

T2k−xk
, e(T0, MSK′) ·m

)
.

K̂eyGen(PP, MSK′,y; t): On input MSK′ ∈ H, y := (y1, . . . , yn) ∈ {0, 1}n, and
t := (T0, T1, . . . , T2n) ∈ H2n+1, output

SKy :=

(
T0, MSK′ ·

n∏
k=1

T2k−yk

)
.

Auxiliary Distributions. For i = 0, 1, . . . , n, we pick a random function Ri :
{0, 1}i → 〈h∗〉 (we use {0, 1}0 to denote the singleton set containing just the
empty string ε). More concretely, given (PP, h∗), we sample the function Ri by first
choosing a random function R′

i : {0, 1}i → Zord(H) (via lazy sampling), and define

Ri(x) := (h∗)R
′
i(x) for all x ∈ {0, 1}i.

Pseudo-normal ciphertext.

Ênc(PP,x,m; MSK, g · ĝ ),

where g ← SampG(PP) and ĝ ← ŜampG(PP, SP) ; we can also write this distribution
more explicitly as

(
g0 · ĝ0,

n∏
k=1

(g2k−xk
· ĝ2k−xk

), e(g0 · ĝ0, MSK) ·m
)
,

where (g0, g1, . . . , g2n) ← SampG(PP) and (ĝ0, ĝ1, . . . , ĝ2n) ← ŜampG(PP, SP).

Semi-functional ciphertext type i (for i = 0, 1, . . . , n).

Ênc(PP,x,m; MSK ·Ri(x|i) ,g · ĝ),

where g ← SampG(PP) and ĝ ← ŜampG(PP, SP) and x|i denotes the i-bit prefix of x;
we can also write this distribution more explicitly as

(
g0 · ĝ0,

n∏
k=1

(g2k−xk
· ĝ2k−xk

), e(g0 · ĝ0, MSK ·Ri(x|i)) ·m
)
,

where (g0, g1, . . . , g2n) ← SampG(PP) and (ĝ0, ĝ1, . . . , ĝ2n) ← ŜampG(PP, SP).



450 J. Chen and H. Wee

GameCiphertext CTx∗ Secret Key SKy

0 Enc(MPK,x∗, mβ) KeyGen(MPK, MSK,y)

(g0,
∏

g2k−xk
, e(g0, MSK) ·mβ) (h0, MSK ·

∏
h2k−yk )

1 Ênc(PP,x∗,mβ; MSK, g · ĝ ) K̂eyGen(PP, MSK,y;h)

(g0ĝ0,
∏
(g2k−xk

ĝ2k−xk
), e(g0ĝ0, MSK) ·mβ)(—,—)

2,i Ênc(PP,x∗,mβ; MSK ·Ri(x
∗|i) ,g · ĝ) K̂eyGen(PP, MSK ·Ri(y|i) ,y;h)

(—,—, e(g0ĝ0, MSK ·Ri(x
∗|i)) ·mβ) (—, MSK · Ri(y|i) ·

∏
h2k−yk )

3 Ênc(PP,x∗, random ; MSK · Rn(x
∗),g · ĝ) K̂eyGen(PP, MSK · Rn(y),y;h)

(—,—, e(g0ĝ0, MSK ·Rn(x
∗)) · random) (—, MSK · Rn(y) ·

∏
h2k−yk)

Fig. 3. Sequence of games, where we drew a box to highlight the differences between each
game and the preceding one, a dash (—) means the same as in the previous game. Recall that
Ri : {0, 1}i → 〈h∗〉 is a random function. Here, the product Π denotes Πn

k=1. We transition
from Game0 to Game1 and from Game2,i−1 to Game2,i using a computational argument via
left subgroup and nested-hiding respectively; for the remaining transitions, we use a statistical
argument via orthogonality and non-degeneracy.

Semi-functional secret key type i (for i = 0, 1, . . . , n).

K̂eyGen(PP, MSK · Ri(y|i) ,y;h),

where a fresh h ← SampH(PP) is chosen for each secret key; we can also write this
distribution more explicitly as(

h0, MSK ·Ri(x|i) ·
n∏

k=1

h2k−yk

)
where (h0, h1, . . . , h2n) ← SampH(PP).

Remark 5 (decryption capabilities). As noted in the introduction, decryption capabili-
ties remain the same through the hybrid games. Observe that a type i secret key for x∗

can decrypt a type i ciphertext for x∗ since they share Ri(x
∗|i). In addition, a type i

secret key for x∗ can decrypt a normal ciphertext for x∗ because e(g0, Ri(x
∗|i)) = 1,

which follows readily from Ri(x
∗|i) ∈ 〈h∗〉 and e(g0, h

∗) = 1 (see Remark 1).

Game Sequence. We present a series of games. We write Advxx(λ) to denote the
advantage of A in Gamexx.

– Game0: is the real security game (c.f. Section 2).

– Game1: is the same as Game0 except that the challenge ciphertext is pseudo-
normal.

– Game2,i for i from 0 to n, Game2,i is the same as Game1 except that the challenge
ciphertext and all secret keys are of type i.
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– Game3: is the same as Game2,n, except that the challenge ciphertext is a semi-
functional encryption of a random message in GT .

In Game3, the view of the adversary is statistically independent of the challenge bit β.
Hence, Adv3(λ) = 0. We complete the proof by establishing the following sequence of
lemmas.

4.3 Normal to Pseudo-normal to Type 0

Lemma 1 (Game0 to Game1). For any adversary A that makes at most q key queries,
there exists an adversary B1 such that:

|Adv0(λ)− Adv1(λ)| ≤ AdvLS
B1
(λ),

and Time(B1) ≈ Time(A) + q · poly(λ, n) where poly(λ, n) is independent of
Time(A).

Proof. The adversary B1 gets as input

(PP, t) ,

where t is either g or g · ĝ and

g ← SampG(PP), ĝ ← ŜampG(PP, SP),

and proceeds as follows:

Setup. Pick MSK ←R H and output

MPK := ( PP, μ(MSK) ) .

Key Queries. On input the j’th secret key query y, output

SKy ← K̂eyGen(PP, MSK,y; SampH(PP)).

Ciphertext. Upon receiving a challenge identity x∗ and two equal length messages
m0,m1, pick β ←R {0, 1} and output

CTx∗ ← Ênc(PP,x∗,mβ; MSK, t).

Guess. When A halts with output β′, B1 outputs 1 if β′ = β and 0 otherwise.

Observe that when t = g, CTx∗ is properly distributed as Enc(MPK,x∗,mβ) from
projective, the output is identical to that in Game0; and when t = g · ĝ, the output is
identical to that in Game1. We may therefore conclude that: |Adv0(λ) − Adv1(λ)| ≤
AdvLS

B1
(λ). $%

Lemma 2 (Game1 to Game2,0). For any adversary A,

Adv1(λ) = Adv2,0(λ)

Proof. Observe that MSK and MSK · R0(ε) (where MSK ←R H) are identically
distributed, so we may replace MSK in Game1 by MSK ·R0(ε). The resulting distribution
is identically distributed to that in Game2,0 except we use μ(MSK · R0(ε)) instead of
μ(MSK) in MPK. Now, by orthogonality, these two quantities are in fact equal. $%
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4.4 Type i − 1 to Type i

We begin with an informal overview of our proof strategy. For simplicity, suppose the
adversary only requests secret keys for two identities y0 and y1 that differ only in the
i’th bit, that is,

y0 = (y1, . . . , yi−1, 0 , yi+1, . . . , yn) and y1 = (y1, . . . , yi−1, 1 , yi+1, . . . , yn)

Recall that Type i− 1 secret keys for y0 and y1 are of the form:

SKy0 =
(
h0, MSK · Ri−1(y1, . . . , yi−1) · h2−y1 · · · h2i · · ·h2n−yn

)
and

SKy1 =
(
h0, MSK · Ri−1(y1, . . . , yi−1) · h2−y1 · · · h2i−1 · · ·h2n−yn

)
whereas Type i secret keys for y0 and y1 are of the form:

SKy0 =
(
h0, MSK · Ri(y1, . . . , yi−1, 0) · h2−y1 · · · h2i · · ·h2n−yn

)
and

SKy1 =
(
h0, MSK · Ri(y1, . . . , yi−1, 1) · h2−y1 · · · h2i−1 · · ·h2n−yn

)
In order to show that Type i − 1 and Type i secret keys for y0 and y1 are
indistinguishable, it suffices to show that

(Ri−1(y1, . . . , yi−1) · h2i, Ri−1(y1, . . . , yi−1) · h2i−1) and

(Ri(y1, . . . , yi−1, 0) · h2i, Ri(y1, . . . , yi−1, 1) · h2i−1)

are computationally indistinguishable (*).
Now, suppose for simplicity that the i’th bit of the identityx∗ for challenge ciphertext

is 1. Then, nested-hiding indistinguishability with index 2i tells us that

h2i and h2i · (h∗)γ

are computationally indistinguishable, where γ ←R Z|H|. Moreover, this holds even if
the distinguisher is given ĝ−2i, which we will need to simulate the semi-functional
ciphertext for x∗. (On the other hand, given only ĝ−2i, we cannot simulate semi-
functional ciphertext for identities whose i’th bit is 0.) This means that

(Ri−1(y1, . . . , yi−1) · h2i, Ri−1(y1, . . . , yi−1) · h2i−1) and

(Ri−1(y1, . . . , yi−1) · h2i · (h∗)γ , Ri−1(y1, . . . , yi−1) · h2i−1)

are computationally indistinguishable, even given the semi-functional ciphertext for x∗.
To achieve (*), we can then implicitly set:

Ri(y1, . . . , yi−1, 0) := Ri−1(y1, . . . , yi−1) · (h∗)γ and

Ri(y1, . . . , yi−1, 1) := Ri−1(y1, . . . , yi−1)

This corresponds to Case 2 and Case 1 below respectively.
More generally, we guess at random the i’th bit of x∗ to be bi and use nested-hiding

indistinguishability with index 2i − bi. In addition, we need to handle q keys and not
just two keys, along with an additional complication arising from the fact that multiple
queries may share the same i-bit prefix (see Case 3 below).
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Lemma 3 (Game2,i−1 to Game2,i). For i = 1, . . . , n, for any adversary A that makes
at most q key queries, there exists an adversary B2 such that:

|Adv2,i−1(λ)− Adv2,i(λ)| ≤ 2AdvNS
B2

(λ, q),

and Time(B2) ≈ Time(A) + q · poly(λ, n) where poly(λ, n) is independent of
Time(A).

Proof. On input i ∈ [n], B2 picks a random bit bi ←R {0, 1} (that is, it guesses the
i’th bit of the challenge identity x∗) and requests nested-hiding instantiation for index
2i− bi. The adversary B2 gets as input(

PP, h∗, ĝ−(2i−bi)
, t1, . . . , tq

)
,

where (t1, . . . , tq) is either (h1, . . . ,hq) or (h′1, . . . ,h′q) and

hj := (h0,j , h1,j, . . . , h2n,j) ← SampH(PP),

h′j := (h0,j , h1,j, . . . , h2i−bi,j
· (h∗)γj , . . . , h2n,j),

and proceeds as follows:

Setup. Pick MSK ←R H, and output

MPK := ( PP, μ(MSK) ) .

Programming Ri−1, Ri. Pick a random function R̃i−1 : {0, 1}i−1 → 〈h∗〉 (which we
use to program Ri−1, Ri). Recall that we can sample a uniformly random element
in 〈h∗〉 by raising h∗ to a uniformly random exponent in Zord(H). For all prefixes
x′ ∈ {0, 1}i−1, we implicitly set

Ri(x
′‖bi) := R̃i−1(x

′) and Ri−1(x
′) := R̃i−1(x

′).

(We set Ri(x
′‖bi) later.) This means that for any x = (x1, . . . , xn) such that xi =

bi, we have:
Ri(x|i) = Ri−1(x|i−1) = R̃i−1(x|i−1).

Key Queries. On input the j’th secret key query y = (y|i−1, yi, . . . , yn), we consider
three cases:

– Case 1: yi = bi. Here, B2 can compute

Ri(y|i) = Ri−1(y|i−1) = R̃i−1(y|i−1)

and simply outputs

K̂eyGen(PP, MSK · R̃i−1(y|i−1),y; h̃
j),

where h̃j ← SampH(PP).
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– Case 2: yi = bi and Ri(y|i) has not been previously set. Here, we implicitly set

Ri(y|i−1‖bi) := R̃i−1(y|i−1) · (h∗)γj ,

where γj is as defined in the nested-hiding instantiation. Observe that this
is the correct distribution since Ri(y|i−1‖bi) and Ri(y|i−1‖bi) are two
independently random values. Then B2 outputs:

K̂eyGen(PP, MSK · R̃i−1(y|i−1),y; t
j).

– Case 3: yi = bi and Ri(y|i) has been previously set. Let j′ be the index of key
query in which we set Ri(y|i), recall that

Ri(y|i−1‖bi) := R̃i−1(y|i−1) · (h∗)γj′ .

Then B2 outputs:

K̂eyGen(PP, MSK · R̃i−1(y|i−1),y; t
j′ · h̃j).

where h̃j ← SampH(PP). Here, we rely on the H-subgroup property to re-
randomize tj

′
.

Ciphertext. Upon receiving a challenge identity x∗ := (x∗
1, . . . , x

∗
n) and two equal

length messages m0,m1 from A, output a random bit and halt if x∗
i �= bi. Observe

that up to the point when A submits x∗, its view is statistically independent of bi.
Therefore, the probability that we halt is exactly 1/2. Suppose that we do not halt,
which means we have x∗

i = bi. Hence, B2 knows

Ri(x
∗|i) = Ri−1(x

∗|i−1) = R̃i−1(x
∗|i−1).

Then, B2 picks β ←R {0, 1} and outputs the semi-functional challenge ciphertext
as:

Ênc(PP,x∗,mβ; MSK · R̃i−1(x
∗|i−1),g · ĝ),

Here, B2 picks g ← SampG(PP), whereas g is as defined in the nested-hiding
instantiation. Observe that B2 can compute the output of Ênc using just ĝ−(2i−bi)

since since x∗
i = bi.

Guess. When A halts with output β′, B2 outputs 1 if β′ = β and 0 otherwise.

Suppose x∗
i = bi. Then, when (t1, . . . , tq) = (h1, . . . ,hq), the output is identical to

that in Game2,i−1; and when (t1, . . . , tq) = (h′1, . . . ,h′q), the output is identical to
that in Game2,i. Hence,

AdvNS
B2

(λ, q)

=
∣∣∣Pr[x∗

i �= bi] · 0 + Pr[x∗
i = bi]

·(Pr[A outputs β′ = β in Game2,i−1]− Pr[A outputs β′ = β in Game2,i])
∣∣∣

= 1/2 ·
∣∣∣Pr[A outputs β′ = β in Game2,i−1]− Pr[A outputs β′ = β in Game2,i]

∣∣∣
≥ 1/2 · |Adv2,i−1(λ) − Adv2,i(λ)|.

We may therefore conclude that |Adv2,i−1(λ) − Adv2,i(λ)| ≤ 2AdvNS
B2

(λ, q). $%
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4.5 Final Transition

Lemma 4 (Game2,n to Game3). For any adversary A:

|Adv2,n(λ) − Adv3(λ)| ≤ 2−Ω(λ).

Proof. Observe that the challenge ciphertext in Game2,n is given by:

Ênc(PP,x∗,mβ ; MSK ·Rn(x
∗),g · ĝ) = (C0, C1, C

′
2 ·mβ),

where (C0, C1) depend only on g · ĝ = (g0 · ĝ0, . . .), and C′
2 is given by:

C′
2 = e(g0 · ĝ0, MSK ·Rn(x

∗)) = e(g0 · ĝ0, MSK) · e(ĝ0, Rn(x
∗)) ,

where in the last equality, we use the fact that e(g0, Rn(x
∗)) = 1 (see Remarks 1

and 5). In addition, MPK and all of the secret key queries reveal no information
about Rn(x

∗). Then, by non-degeneracy, with probability 1 − 2−Ω(λ) over ĝ0, we
have e(ĝ0, Rn(x

∗)) is uniformly distributed over GT . This implies that the challenge
ciphertext is identically distributed to a semi-functional encryption of a random
message in GT , as in Game3. We may then conclude that: |Adv2,n(λ) − Adv3(λ)| ≤
2−Ω(λ). $%

Remark 6. In our composite-order instantiation, we only have the weaker guarantee
that e(ĝ0, Rn(x

∗)) has at least 2λ bits of min-entropy, instead of being uniform over
GT . We will modify the IBE scheme as follows: the message space is now {0, 1}λ, and
we replace the term g′T ·m in the ciphertext with:

H(g′T )⊕m,

where H : GT → {0, 1}λ is a pairwise independent hash function. By the left-over hash
lemma, we still have |Adv2,n(λ)− Adv3(λ)| ≤ 2−Ω(λ).

Acknowledgments. We thank Dennis Hofheinz and the anonymous reviewers for
helpful feedback on the write-up.
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A Concrete IBE Scheme from d-LIN in Prime-Order Groups

In this section, we show how the concrete IBE scheme from d-LIN works in prime-order
bilinear groups (G1, G2, GT , e). Recall that πL : Z2d×2d

p → Z2d×d
p is the projection

map that maps a 2d× 2d matrix to the left d columns.

Setup(1λ, 1n): On input (1λ, 1n), sample

B,B∗,R ←R GL2d(Zp), A1, . . . ,A2n ←R Z(2d)×(2d)
p , k ←R Z2d

p

such that B�B∗ = I, and output the master public and secret key pair

MPK :=
(
g
πL(B)
1 , g

πL(BA1)
1 , . . . , g

πL(BA2n)
1 ; e(g1, g2)

k�πL(B)
)

∈ (G2d×d
1 )2n+1 ×Gd

T ,

MSK :=
(
gk2 , g

B∗R
2 , g

B∗A�
1R

2 , . . . , g
B∗A�

2nR
2

)
∈ G2d

2 × (G2d×2d
2 )2n+1.

Enc(MPK,x,m): On input an identity vector x := (x1, . . . , xn) ∈ Zn
p and m ∈ GT ,

pick s ←R Zd
p and output

CTx :=

⎛⎝ C0 := g
πL(B)s
1 , C1 := g

πL(B(A2−x1+···+A2n−xn ))s
1

C2 := e(g1, g2)
k�πL(B)s ·m

⎞⎠ ∈ (G2d
1 )2×GT .
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KeyGen(MPK, MSK,y): On input an identity vector y := (y1, . . . , yn) ∈ Zn
p , pick

r ←R Z2d
p and output

SKy :=
(
K0 := gB

∗Rr
2 , K1 := g

k+B∗(A2−y1+···+A2n−yn )�Rr
2

)
∈ (G2d

2 )2.

Dec(MPK, SKy, CTx): If x = y, compute

e(g1, g2)
k�πL(B)s ← e(C0,K1)/e(C1,K0),

and recover the message as

m ← C2 · e(g1, g2)−k�πL(B)s ∈ GT .

B Dual System Groups

Syntax. Dual system groups consist of six randomized algorithms given by (SampP,

SampGT, SampG, SampH) along with (ŜampG, ŜampH):

SampP(1λ, 1n): On input (1λ, 1n), output public and secret parameters (PP, SP),
where:

– PP contains a triple of groups (G,H,GT ) and a non-generate bilinear map
e : G × H → GT , a linear map μ defined on H, along with some additional
parameters used by SampG, SampH;

– given PP, we know ord(H) (i.e. the order of the group, which is independent of
n) and can uniformly sample from H;

– SP contains h∗ ∈ H (where h∗ �= 1), along with some additional parameters
used by ŜampG;

SampGT : Im(μ) → GT.

SampG(PP): Output g ∈ Gn+1.

SampH(PP): Output h ∈ Hn+1.

ŜampG(PP, SP): Output ĝ ∈ Gn+1.

ŜampH(PP, SP): Output ĥ ∈ Hn+1.

The first four algorithms are used in the actual scheme, whereas the last two algorithms
are used only in the proof of security. We define SampG0 to denote the first group

element in the output of SampG, and we define ŜampG0, ŜampH0 analogously.
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Correctness. The requirements for correctness are as follows:

(projective.) For all h ∈ H and all coin tosses s, we have SampGT(μ(h); s) =
e(SampG0(PP; s), h).

(associative.) For all (g0, g1, . . . , gn) ← SampG(PP) and (h0, h1, . . . , hn) ←
SampH(PP) and for all i = 1, . . . , n, we have e(g0, hi) = e(gi, h0).

(H-subgroup.) The output distribution of SampH(PP) is the uniform distribution over
a subgroup of Hn+1.

Security. The requirements for security are as follows:

(orthogonality.) μ(h∗) = 1.

(non-degeneracy.) For all ĥ0 ← ŜampH0(PP, SP), h∗ lies in the group generated by

ĥ0. For all ĝ0 ← ŜampG0(PP, SP), we have e(ĝ0, h
∗)α is identically distributed to

the uniform distribution over GT , where α ←R Zord(H).

(left subgroup indistinguishability.) For any adversary A, we define the advantage
function:

AdvLS
A (λ) :=

∣∣Pr[ A(PP, g ) = 1 ]− Pr[ A(PP, g · ĝ ) = 1 ]
∣∣

where

(PP, SP) ← SampP(1λ, 1n);

g ← SampG(PP); ĝ ← ŜampG(PP, SP).

(right subgroup indistinguishability.) For any adversary A, we define the advantage
function:

AdvRS
A (λ) :=

∣∣Pr[ A(PP, h∗,g · ĝ, h ) = 1 ]−Pr[ A(PP, h∗,g · ĝ, h · ĥ ) = 1 ]
∣∣

where

(PP, SP) ← SampP(1λ, 1n);

g ← SampG(PP); ĝ ← ŜampG(PP, SP);

h ← SampH(PP); ĥ ← ŜampH(PP, SP).

(parameter-hiding.) The following distributions are identically distributed

{PP, h∗, ĝ, ĥ } and {PP, h∗, ĝ · ĝ′, ĥ · ĥ′ }
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where

(PP, SP) ← SampP(1λ, 1n);

ĝ = (ĝ0, . . .) ← ŜampG(PP, SP);

ĥ = (ĥ0, . . .) ← ŜampH(PP, SP);

γ1, . . . , γn ←R Zord(H);

ĝ′ := (1, ĝγ1

0 , . . . , ĝγn

0 ) ∈ Gn+1;

ĥ′ := (1, ĥγ1

0 , . . . , ĥγn

0 ) ∈ Hn+1.
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Abstract. We put forward a new notion, function privacy, in identity-
based encryption and, more generally, in functional encryption.
Intuitively, our notion asks that decryption keys reveal essentially no infor-
mation on their corresponding identities, beyond the absolute minimum
necessary. This is motivated by the need for providing predicate privacy
in public-key searchable encryption. Formalizing such a notion, however,
is not straightforward as given a decryption key it is always possible to
learn some information on its corresponding identity by testing whether
it correctly decrypts ciphertexts that are encrypted for specific identities.

In light of such an inherent difficulty, any meaningful notion of func-
tion privacy must be based on the minimal assumption that, from the
adversary’s point of view, identities that correspond to its given decryp-
tion keys are sampled from somewhat unpredictable distributions. We
show that this assumption is in fact sufficient for obtaining a strong and
realistic notion of function privacy. Loosely speaking, our framework re-
quires that a decryption key corresponding to an identity sampled from
any sufficiently unpredictable distribution is indistinguishable from a de-
cryption key corresponding to an independently and uniformly sampled
identity.

Within our framework we develop an approach for designing function-
private identity-based encryption schemes, leading to constructions that
are based on standard assumptions in bilinear groups (DBDH, DLIN)
and lattices (LWE). In addition to function privacy, our schemes are also
anonymous, and thus yield the first public-key searchable encryption
schemes that are provably keyword private: A search key skw enables to
identify encryptions of an underlying keyword w, while not revealing any
additional information about w beyond the minimum necessary, as long
as the keyword w is sufficiently unpredictable.

1 Introduction

Public-key searchable encryption is needed when a proxy is asked to route en-
crypted messages based on their content. For example, consider a payment gate-
way that needs to route transactions based on the transaction type. Transactions
for benign items are routed for quick processing while transactions for sensitive

� Due to space limitations the reader is referred to the full version [19].
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items are routed for special processing. Similarly, consider an email gateway that
routes emails based on the contents of the subject line. Urgent emails are routed
to the user’s mobile device, while less urgent mails are routed to the user’s desk-
top. When the data is encrypted a simple design is to give such gateways full
power to decrypt all ciphertexts, but this clearly exposes more information than
necessary.

A better solution, called public-key searchable encryption (introduced by
Boneh, Di Crescenzo, Ostrovsky and Persiano [17]), is to give the gateway a
trapdoor that enables it to learn the information it needs and nothing else. In
recent years many elegant public-key searchable encryption systems have been
developed [17,36,1,21,47,39,6,24,2,4] supporting a wide variety of search predi-
cates.

Private Searching. Beyond the standard notions of data privacy, it is often
also necessary to guarantee predicate privacy, i.e., to keep the specific search
predicate hidden from the gateway. For example, in the payment scenario it
may be desirable to keep the list of sensitive items secret, and in the email
scenario users may not want to reveal the exact criteria they use to classify an
email as urgent. Consequently, we want the trapdoor given to the gateway to
reveal as little as possible about the search predicate.

While this question has been considered before [48,44,14,46], it is often noted
that such a notion of privacy cannot be achieved in the public-key setting. For
example, to test if an email from “spouse” is considered urgent the gateway
could simply use the public key to create an email from the spouse and test if the
trapdoor classifies it as urgent. More generally, the gateway can encrypt messages
of its choice and apply the trapdoor to the resulting ciphertexts, thereby learning
how the search functionality behaves on these messages. Hence, leaking some
information about the search predicate is unavoidable.

As a concrete example, consider the case of keyword search [17]: A search key
skw corresponds to a particular keyword w, and the search matches a ciphertext
Enc(pk,m) if and only if m = w. In this case, it may be possible to formalize and
realize a notion of “private keyword search” asking that a search key reveals no
more information than what can be learned by invoking the search algorithm.

Function-private IBE: A New Notion of Security. Motivated by the chal-
lenge of hiding the search predicates in public-key searchable encryption, in this
paper we introduce a new notion of security, function privacy, for identity-based
encryption.1 The standard notion of security for anonymous IBE schemes (e.g.,
[18,22,31,32,3,11]), asks that a ciphertext c = Enc(pp, id,m) reveals essentially

1 As observed by Abdalla et al. [1], any anonymous IBE scheme can be used as a
public-key searchable encryption scheme by defining the search key skw for a keyword
w as the IBE secret key for the identity id = w. A keyword w′ is encoded as
c = Enc(pp, w′, 0) and one tests if c matches the keyword w by invoking the IBE
decryption algorithm on c with the secret key skw. The IBE anonymity property
ensures that c reveals nothing else about the payload w′. For this reason we focus
on anonymous IBE schemes, although we note that our notion of function privacy
does not require anonymity.
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no information on the pair (id,m) as long as a secret key skid corresponding to
the identity id is not explicitly provided (but secret keys corresponding to other
identities may be provided). Our notion of function privacy takes a step forward
by asking that it should not be possible to learn any information, beyond the
absolute minimum necessary, on the identity id corresponding to a given secret
key skid.

Formalizing a realistic notion of function privacy, however, is not straightfor-
ward due to the actual functionality of identity-based encryption. Specifically,
assuming that an adversary who is given a secret key skid has some a priori
information that the corresponding identity id belongs to a small set S of identi-
ties (e.g., S = {id0, id1}), then the adversary can fully recover id: The adversary
simply needs to encrypt a (possibly random) message m for each id′ ∈ S, and
then run the decryption algorithm on the given secret key skid and each of the
resulting ciphertexts c′ = Enc(pp, id′,m) to identify the one that decrypts cor-
rectly. In fact, as long as the adversary has some a-priori information according
to which the identity id is sampled from a distribution whose min-entropy is at
most logarithmic in the security parameter, there is a non-negligible probability
for a full recovery.

Our Contributions. In light of the above inherent difficulty, any notion of func-
tion privacy for IBE schemes would have to be based on the minimal assumption
that, from the adversary’s point of view, identities that correspond to its given
secret keys are sampled from distributions with a certain amount of min-entropy
(which has to be at least super-logarithmic in the security parameter). Our work
shows that this necessary assumption is in fact sufficient for obtaining a strong
and meaningful indistinguishability-based notion of function privacy.

Our work formalizes this new notion of security (we call it function privacy
to emphasize the fact that skid hides the functionality that it provides). Loosely
speaking, our basic notion of function privacy requires that a secret key skid,
where id is sampled from any sufficiently unpredictable (adversarially-chosen)
distribution,2 is indistinguishable from a secret key corresponding to an indepen-
dently and uniformly sampled identity. In addition, we also consider a stronger
notion of function privacy, to which we refer as enhanced function privacy. This
enhanced notion addresses the fact that in various applications (such as search-
ing on encrypted data), an adversary may obtain not only a secret key skid, but
also encryptions Enc(pp, id,m) of messages m. Our notion of enhanced function
privacy asks that even in such a scenario, it should not be possible to learn any
unnecessary information on the identity id.

2 We emphasize that the distribution is allowed to depend on the public parameters of
the scheme. This is in contrast to the setting of deterministic public-key encryption
(DPKE) [8], where similar inherent difficulties arise when formalizing notions of
security. Nevertheless, our notion is inspired by that of [8], and we refer the reader to
Section 2 for an elaborate discussion (in particular, we discuss a somewhat natural
DPKE-based approach for designing function-private IBE schemes which fails to
satisfy our notion of security and only satisfies a weaker, less realistic, one).
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We refer the reader to Section 2 for the formal definitions, and for descrip-
tions of simple attacks exemplifying that the anonymous IBE schemes presented
in [18,32,3,40] do not satisfy even our basic notion of function privacy.3

Within our framework we develop an approach for designing identity-based
encryption schemes that satisfy our notions of function private. Our approach
leads to constructions that are based on standard assumptions in bilinear groups
(DBDH, DLIN) and lattices (LWE). In particular, our schemes yield keyword
searchable public-key encryption schemes that do not reveal the keywords: A
search key skw reveals nothing about its corresponding keyword w beyond the
minimum necessary, as long as the keyword w is chosen from a sufficiently un-
predictable distribution.

The Bigger Picture: Functional Encryption and Obfuscation. Our no-
tion of function privacy for IBE naturally generalizes to functional encryption
systems [20,43,12,37,5,34], where we obtain an additional security requirement
on such systems. Here, a functional secret key skf corresponding to a func-
tion f enables to compute f(m) given an encryption c = Encpk(m). Functional
encryption systems, however, need not be predicate private and skf may leak
unnecessary information about f . Intuitively, we say that a functional encryp-
tion system is function private if such a functional secret key skf does not reveal
information about f beyond what is already known and what can be obtained
by running the decryption algorithm on test ciphertexts. This can be formalized
within a suitable framework of program obfuscation (e.g., [25,7,41,35,50,26] and
the references therein) by asking, for example, that any adversary that receives
a functional secret key skf learns no more information than a simulator that has
oracle access to the function f .

In this setting, our identity-based encryption schemes provide function privacy
for the class of functions defined as

fid∗(id,m) =

{
m if id = id∗

⊥ otherwise

where id∗ is sampled from an unpredictable distribution. A fascinating direction
for future work is to extend our results to more general classes of functions.

Non-Adaptive Function Privacy and Deterministic Encryption. The
inherent difficulty discussed above in formalizing function privacy is somewhat
similar to the one that arises in the context of deterministic public-key en-
cryption (DPKE), introduced by Bellare, Boldyreva, and O’Neill [8] (see also
[10,15,9,23,30,42,51,45]). In that setting one would like to capture as-strong-
as-possible notions of security that can be satisfied by public-key encryption

3 We note that other anonymous IBE schemes, such as [31,22,11] for which we were not
able to find such simple attacks, can always be assumed to be function private based
on somewhat non-standard entropy-based assumptions (such assumptions would es-
sentially state that the schemes satisfy our definition). In this paper we are inter-
ested in schemes whose function privacy can be based on standard assumptions (e.g.,
DBDH, DLIN, LWE).
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schemes whose encryption algorithms are deterministic. Similarly to our setting,
if an adversary has some a priori information that a ciphertext c = Encpk(m)
corresponds to a plaintext m that is sampled from a low-entropy source (e.g.,
m ∈ {m0,m1}), then the plaintext can be fully recovered: the adversary simply
needs to encrypt all “likely” plaintexts and to compare each of the resulting
ciphertexts to c. Therefore, any notion of security for DPKE has to be based
on the assumption that plaintexts are sampled from distributions with a cer-
tain amount of min-entropy (which has to be at least super-logarithmic in the
security parameter).

However, unlike in our setting, in the setting of DPKE it is also necessary
to limit the dependency of plaintexts on the public-key of the scheme.4 In our
setting, as the key-generation algorithm is allowed to be randomized, such limi-
tations are not inherent: we allow adversaries to specify identity distributions in
an adaptive manner after seeing the public parameters of the scheme.

This crucial difference between our setting and the setting of DPKE rules
out, in particular, the following natural approach for designing anonymous IBE
schemes providing function privacy: encapsulate all identities with a DPKE
scheme, and then use any existing anonymous IBE scheme treating the cipher-
texts of the DPKE scheme as its identities. That is, for encrypting to identity
id, first encrypt id using a DPKE scheme and then treat the resulting ciphertext
as an identity for an anonymous IBE system. This approach clearly preserves
the standard security of the underlying IBE scheme. Moreover, as secret keys
are now generated as skc, where c = Encpk(id) is a deterministic encryption of
id, instead of as skid, one could hope that skid does not reveal any unnecessary
information on id as long as id is sufficiently unpredictable.

This approach, however, fails to satisfy our notion of function privacy and
only satisfies a weaker,“non-adaptive”, one.5 Specifically, the notion of func-
tion privacy that is satisfied by such a two-tier construction is that secret keys
do not reveal any unnecessary information on their corresponding identities as
long as the identities are essentially independent of the public parameters of the
scheme. In the full version [19] we formalize this non-adaptive notion and present
a generic transformation satisfying it based on any IBE scheme. In fact, observ-
ing that the DPKE-based construction described above never actually uses the
decryption algorithm of the DPKE scheme, in our generic transformation we
show that above idea can be realized without using a DPKE scheme. Instead,
we only need to assume the existence of collision-resistant hash functions (and
also use any pairwise independent family of permutations).

4 Intuitively, the reason is that plaintexts distributions that can depend on the pub-
lic key can use any deterministic encryption algorithm as a subliminal channel for
leaking information on the plaintexts (consider, for example, sampling a uniform
plaintext m for which the most significant bit of c = Encpk(m) agrees with that of
m). We refer the reader to [8,45] for an in-depth discussion.

5 As discussed above, any DPKE becomes insecure once plaintext distributions (which
here correspond to identity distributions) are allowed to depend on the public key
of the scheme.
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1.1 Our Approach: “Extract-Augment-Combine”

Our approach consists of three main steps: “extract,” “augment,” and “com-
bine.” We begin with a description of the main ideas underlying each step, and
then provide an example using a concrete IBE scheme.

Given any anonymous IBE scheme Π = (Setup,KeyGen,Enc,Dec), we use
the exact same setup algorithm Setup, and our first step is to modify its key-
generation algorithm KeyGen as follows: Instead of generating a secret key for an
identity id, first apply a strong randomness extractor Ext to id using a randomly
chosen seed s, then generate a secret key skids

for the identity ids := Ext(id, s),
and output the pair (s, skids

) as a secret for id in the new scheme. This steps
clearly guarantees function privacy: as long as the identity id is sampled from
a sufficiently unpredictable distribution,6 the distribution (s, ids) is statistically
close to uniform, and therefore the pair (s, skids

) reveals no information on the
identity id.

This extraction step, however, may hurt the data privacy of the underlying
scheme. For example, since randomness extractors are highly non-injective by
definition, an adversary that is given a secret key (s, skids

) may be able to find
an identity id′ such that Ext(id, s) = Ext(id′, s). In this case, the same secret
key is valid for both id and id′, contradicting the data privacy of the resulting
scheme. Therefore, for overcoming this problem we make sure that the extractor
is at least collision resistant: although many collisions exist, a computationally-
bounded adversary will not be able to find one. This is somewhat natural to
achieve in the random-oracle model [13], but significantly more challenging in
the standard model.

An even more challenging problem is that the extraction step hurts the de-
cryption of the underlying scheme. Specifically, when encrypting a message m
for an identity id, the encryption algorithm does not know which seed s will
be chosen (or was already chosen) when generating a secret key for id. In other
words, the correctness of the decryption algorithm Dec should hold for any choice
of seed s by the key-generation algorithm KeyGen, although s is not known to
the encryption algorithm Enc. One possibility, is to modify the encryption al-
gorithm such that it outputs an encryption of m for ids for all possible seeds
s. This clearly fails, as the number of seeds is inherently super-polynomial in
the security parameter. We overcome this problem by augmenting ciphertexts
of the underlying scheme with various additional pieces of information. These
will enable the new decryption algorithm to combine the pieces in a particular
way for generating an encryption of m for the identity ids for any given s, and
then simply apply the underlying decryption algorithm using the specific seed s
chosen by the key-generation algorithm.7

6 Note that the new scheme assumes a slightly larger identity space compared to the
underlying scheme.

7 In fact, in some of our schemes the decryption algorithm combines the pieces to
generate an encryption of a related message m′ from which m can be easily recovered
(e.g., m′ = 2m).



Function-Private Identity-Based Encryption 467

Our approach introduces the following two main challenges that we overcome
in each of our constructions:

– Augmenting the ciphertexts of the underlying scheme with additional pieces
of information may hurt the data privacy of the underlying scheme.

– Combining the additional pieces of information for generating an encryption
for ids for any given s requires using an extractor Ext that exhibits a partic-
ular interplay with the underlying encryption and decryption algorithms.

Our constructions in this paper are obtained by applying our approach to various
known anonymous IBE schemes [18,32,3,40]. To do so, we overcome the two
main challenges mentioned above in ways that are “tailored” specifically to each
scheme. Using our approach we provide the following constructions (see also
Table 1):

– In the random-oracle model we give fully-secure constructions from pairings
and lattices by building upon the systems of Boneh and Franklin [18] (based
on the DBDH assumption) and of Gentry, Peikert and Vaikuntanathan [32]
(based on the LWE assumption).

– In the standard model we give selectively-secure constructions from pairings
and lattices based on the constructions of Agrawal, Boneh and Boyen [3]
(based on the LWE assumption) and of Kurosawa and Phong [40] (based on
the DLIN assumption), which we then generalize to a fully-secure construc-
tion (based on the DLIN assumption8).

In all instances our constructions are based on the same complexity assumptions
as the underlying systems.

Table 1. Our IBE schemes

Scheme Model Data Privacy Function Privacy

DBDH Random Oracle Full Statistical
LWE1 Random Oracle Full Statistical

DLIN1 Standard Selective Statistical + Non-adaptive enhanced
LWE2 Standard Selective Statistical
DLIN2 Standard Full Statistical + Enhanced

CRH Standard Full Non-adaptive statistical enhanced

A Concrete Example. We conclude this section by exemplifying our approach
using our DBDH-based construction in the random-oracle model. (We refer the
reader to the full version [19] for a more formal description of the scheme and its
proofs of data privacy and function privacy.) The scheme is obtained by applying
our approach to the anonymous IBE scheme of Boneh and Franklin [18].

8 We note that a similar generalization can also be applied to our selectively-secure
LWE-based scheme in the standard model.
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– The setup algorithm in the scheme of Boneh and Franklin samples α ← Z∗
p,

and lets h = gα, where g is a generator of a group G of prime order p. The
public parameters are g and h, and the master secret key is α. Our scheme
has exactly the same setup algorithm.

– The key-generation algorithm in the scheme of Boneh and Franklin computes
a secret key for an identity id as skid = H(id)α, where H is a random oracle
mapping identities into the group G. As discussed above our first step is to
extract from id. First, we use a random oracle mapping identities into G� for
some � > 1. Then, forH(id) = (h1, . . . , h�) ∈ G�, we sample an extractor seed
s = (s1, . . . , s�) ← Z�

p, and output the secret key (s, (Ext(H(id), s)α) where

we use the specific extractor Ext((h1, . . . , h�), (s1, . . . , s�)) =
∏�

j=1 h
sj
j . Note

that Ext is, in particular, collision resistant based on the discrete logarithm
assumption in the group G.

– An encryption of a message m for an identity id in the scheme of Boneh and
Franklin is a pair (c0, c1), defined as c0 = gr and c1 = ê(h,H(id))r · m. In
our scheme, an encryption of a message m for an identity id consists of �+1
components (c0, . . . , c�) defined as c0 = gr, and ci = ê(h, hi)

r ·m for every
i ∈ [�], where H(id) = (h1, . . . , h�). This is exactly using the encryption
algorithm of Boneh and Franklin for separately encrypting m for each of
the hi’s while re-using the same randomness r. The main technical challenge
that is left is showing that such augmented ciphertexts still provide data
privacy.

– Our decryption algorithm on input a ciphertext c = (c0, . . . , c�), and a secret
key skid = (s1, . . . , s�, z), combines c1, . . . , c� by computing

�∏
i=1

csii = ê(h,
�∏

i=1

hsi
i )r ·ms1+···+s� = ê(h, ids)

r ·ms1+···+s� ,

where ids = Ext(H(id), s), as before. Note that the pair (c0,
∏�

i=1 c
si
i ) is

exactly an encryption of the message m′ = ms1+···+s� for the identity ids
in the scheme of Boneh and Franklin. This allows to invoke the decryption
algorithm of Boneh and Franklin for recoveringm′, and then to easily recover
m (as the si’s are given in the clear).

1.2 Related Work

Searchable encryption has been studied in both the symmetric settings [48,29,46]
and public-key settings [17,36,1,21,47,39,6,24,4]. Public-key searching on en-
crypted data now supports equality testing, disjunctions and conjunctions, range
queries, CNF/DNF formulas, and polynomial evaluation. These schemes, how-
ever, are not function private in that their secret searching keys reveal infor-
mation about their corresponding predicates. Indeed, until this work, predicate
privacy seemed impossible in the public-key settings.

The impossibility argument does not apply in the symmetric key settings
where the encryptor and decryptor have a shared secret key. In this setting
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the entity searching over ciphertexts does not have the secret key and can-
not (passively) test the searching key on ciphertexts of its choice. Indeed, in
the symmetric-key setting predicate privacy is possible and a general solution
to private searching on encrypted data was provided by Goldreich and Ostro-
vsky [33] in their construction of an oblivious RAM. More efficient constructions
are known for equality testing [48,27,29,28,49,38] and inner product testing [46].
The latter enables CNF/DNF formulas, polynomial evaluation, and exact thresh-
olds.

A closely related problem called private stream searching asks for the comple-
mentary privacy requirements: the data is available in the clear, but the search
predicate must remain hidden. Constructions in these settings support efficient
equality testing [44,14] and can be viewed as a more expressive variant of private
information retrieval.

1.3 Notation

Throughout the paper we use the following standard notation. For an integer
n ∈ N we denote by [n] the set {1, . . . , n}, and by Un the uniform distribution
over the set {0, 1}n. For a random variableX we denote by x ← X the process of
sampling a value x according to the distribution of X . Similarly, for a finite set S
we denote by x ← S the process of sampling a value x according to the uniform
distribution over S. We denote by x (and sometimes x) a vector (x1, . . . , x|x|).
We denote by X = (X1, . . . , XT ) a joint distribution of T random variables,
and by x = (x1, . . . , xT ) a sample drawn from X. For two bit-strings x and y
we denote by x‖y their concatenation. A non-negative function f : N → R is
negligible if it vanishes faster than any inverse polynomial. For a real number
x ∈ R we define �x� = �x+ 1/2� (i.e., the nearest integer to x). For a group G
of order p with generator g and any X ∈ Zn×m

p , we denote the matrix whose

(i, j)-th entry is (gxi,j ) by gX.
The min-entropy of a random variable X is H∞(X)=−log(maxxPr[X = x]).

A k-source is a random variable X with H∞(X) ≥ k. A (k1, . . . , kT )-source is
a random variable X = (X1, . . . , XT ) where each Xi is a ki-source. A (T, k)-
block-source is a random variable X = (X1, . . . , XT ) where for every i ∈ [T ] and
x1, . . . , xi−1 it holds that Xi|X1=x1,...,Xi−1=xi−1 is a k-source.

1.4 Paper Organization

The remainder of this paper is organized as follows. In Section 2 we formally
define our notion of function privacy for identity-based encryption. In Section
3 we present a selectively-secure DLIN-based scheme in the standard model,
and in Section 4 we discuss several extensions and open problems. Due to space
limitations we refer the reader to the full version [19].
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2 Modeling Function Privacy for IBE

In this section we introduce our notions of function privacy for anonymous
IBE schemes.9 Recall that the standard notion of security for anonymous IBE
schemes, anon-IND-ID-CPA, asks that a ciphertext c = Enc(pp, id,m) reveals
essentially no information on the pair (id,m) as long as a secret key skid corre-
sponding to the identity id is not explicitly provided (but secret keys correspond-
ing to other identities may be provided). We refer to this notion of security as
data privacy. As discussed in Section 1, we put forward three notions of function
privacy: a basic notion, an “enhanced” notion, and a non-adaptive notion. Due
to space limitations, in this section we focus on our basic notion, and refer the
reader to the full version [19] for our enhanced and non-adaptive notions.

Throughout this section we let T , k, and k1, . . . , kT be functions of the security
parameter λ ∈ N. In addition, we note that in the random-oracle model, all
algorithms, adversaries, oracles, and distributions are given access to the random
oracle.

Our basic notion of function privacy asks that it should not be possible to
learn any information, beyond the absolute minimum necessary, on the identity
id corresponding to a given secret key skid. Specifically, our notion considers
adversaries that are given the public parameters of the scheme, and can inter-
act with a “real-or-random” function-privacy oracle RoRFP. This oracle takes as
input any adversarially-chosen distribution over vectors of identities, and out-
puts secret keys either for identities sampled from the given distribution or for
independently and uniformly distributed identities.10 We allow adversaries to
adaptively interact with the real-or-random oracle, for any polynomial number
of queries, as long as the distributions have a certain amount of min-entropy. At
the end of the interaction, we ask that adversaries have only a negligible prob-
ability of distinguishing between the “real” and “random” modes of the oracle.
The following definitions formally capture our basic notion of function privacy.

Definition 2.1 (Real-or-random function-privacy oracle). The real-or-
random function-privacy oracle RoRFP takes as input triplets of the form (mode,
msk, ID), where mode ∈ {real, rand}, msk is a master secret key, and ID =
(ID1, . . . , IDT ) ∈ IDT is a circuit representing a joint distribution over IDT .
If mode = real then the oracle samples (id1, . . . , idT ) ← ID and if mode = rand
then the oracle samples (id1, . . . , idT ) ← IDT uniformly. It then invokes the
algorithm KeyGen(msk, ·) on each of id1, . . . , idT and outputs a vector of secret
keys (skid1

, . . . , skidT
).

Definition 2.2 (Function-privacy adversary). Let X ∈ {(T, k)-block, (k1,
. . . , kT )}. An X-source function-privacy adversary A is an algorithm that is

9 We focus on anonymous IBE schemes as our motivating application is public-key
searchable encryption, to which anonymity is crucial [1].

10 We note that the resulting notion of security is polynomially equivalent to the one
obtained by using a “left-or-right” oracle instead of a “real-or-random” oracle, as for
example, in the case of semantic security for public-key encryption schemes.
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given as input a pair (1λ, pp) and oracle access to RoRFP(mode,msk, ·) for some
mode ∈ {real, rand}, and to KeyGen(msk, ·), and each of its queries to RoRFP is
an X-source.

Definition 2.3 (Function privacy). Let X ∈ {(T, k)-block, (k1, . . . , kT )}. An
identity-based encryption scheme Π = (Setup,KeyGen,Enc,Dec) is X-source
function private if for any probabilistic polynomial-time X-source function-priv-
acy adversary A, there exists a negligible function ν(λ) such that

AdvFP
Π,A(λ)

def
=
∣∣∣Pr[ExptrealFP,Π,A(λ) = 1

]
− Pr

[
ExptrandFP,Π,A(λ) = 1

]∣∣∣ ≤ ν(λ),

where for each mode ∈ {real, rand} and λ ∈ N the experiment Exptmode
FP,Π,A(λ) is

defined as follows:

1. (pp,msk) ← Setup(1λ).

2. b ← ARoRFP(mode,msk,·),KeyGen(msk,·)(1λ, pp).

3. Output b.

In addition, such a scheme is statistically X-source function private if the above
holds for any computationally-unbounded X-source enhanced function-privacy
adversary making a polynomial number of queries to the RoRFP oracle.

Multi-shot vs. Single-Shot Adversaries. Note that Definition 2.3 considers
adversaries that query the function-privacy oracle for any polynomial number of
times. In fact, as adversaries are also given access to the key-generation oracle,
this “multi-shot” definition is polynomially equivalent to its “single-shot” variant
in which adversaries query the real-or-random function-privacy oracle RoRFP at
most once. This is proved via a straightforward hybrid argument, where the
hybrids are constructed such that only one query is forwarded to the function-
privacy oracle, and all other queries are answered using the key-generation oracle.

Known Schemes That Are Not Function Private. To exercise our notion
of function privacy we demonstrate that the anonymous IBE schemes of Boneh
and Frankin [18], Gentry, Peikert and Vaikuntanathan [32], Agrawal, Boneh and
Boyen [3], and Kurosawa and Phong [40] are not function private. We present
simple and efficient attacks showing that the schemes [18,32] do not satisfy Def-
inition 2.3, and note that almost identical attacks can be carried on [3,40]. As
discussed in Section 1, other anonymous IBE schemes such as [31,22] for which
we were not able to find such simple attacks, can always be assumed to be func-
tion private based on somewhat non-standard entropy-based assumptions (such
assumptions would essentially state that the schemes satisfy our definition). In
this paper we are interested in schemes whose function privacy can be based on
standard assumptions.

The Boneh-Franklin scheme uses a random oracle H : ID → G and the
secret key for id is skid = H(id)α where α ← Zp is the master secret. The
public parameters are g and h = gα for some generator g of G. Consider an
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adversary that queries the real-or-random oracle with the circuit of the distri-
bution that samples a uniformly distributed id for which the most significant
bit of ê(gα, H(id)) is 0. Clearly, this distribution has almost full entropy, and
can be described by a circuit of polynomial size given the public parameters.11

Then, given skid = H(id)α the adversary outputs 0 if the most significant bit of
ê(g, skid) is 0 and outputs 1 otherwise. Since ê(g, skid) = ê(gα, H(id)) it is easy
to see that the adversary has advantage 1/2 in distinguishing the real mode from
the rand mode, thereby breaking function privacy. In Section 1.1 we presented a
modification of this scheme which is function private, and the reader is referred
to the full version [19] for its proof of security.

In the scheme of Gentry, Peikert and Vaikuntanathan, the public parameters
consist of a matrix A ← Zn×m

q and the master secret key is a short basis for

the lattice Λ⊥
q (A). A secret key corresponding to an identity id is a short vector

e ∈ Zm such that Ae = H(id) ∈ Zn
q , where H : ID → Zn

q is a random oracle.
Consider an adversary that queries the real-or-random oracle with the circuit
of the distribution that samples a uniformly distributed id for which the most
significant bit of H(id) is 0. Then, given skid = e the adversary outputs 0 if the
most significant bit of Ae is 0 and outputs 1 otherwise. Since Ae = H(id) it is
easy to see that the adversary has advantage 1/2 in distinguishing the real mode
from the rand mode, thereby breaking function privacy. In the full version [19]
we present a modification of this scheme which is function private.

3 A Selectively-Secure DLIN-Based Scheme

In this section we present an IBE scheme based on the DLIN assumption in
the standard model. For emphasizing the main ideas underlying our approach,
we present here a selectively data private scheme, and refer the reader to for
full version [19] for its extension to full data privacy. The scheme is based on
the DLIN-based IBE of Kurosawa and Phong [40], which is an adaptation of the
LWE-based IBE of Agrawal, Boneh and Boyen [3] to bilinear groups. The scheme
is obtained by applying our “extract-augment-combine” approach, as discussed
in Section 1.1.

The Scheme. Let GroupGen be a probabilistic polynomial-time algorithm that
takes as input a security parameter 1λ, and outputs (G,GT, p, g, ê) where G and
GT are groups of prime order p, G is generated by g, p is a λ-bit prime number,
and ê : G×G → GT is a non-degenerate efficiently computable bilinear map. The
scheme IBEDLIN1 = (Setup,KeyGen,Enc,Dec) is parameterized by the security
parameter λ ∈ N. For any such λ ∈ N, the scheme has parameters m ≥ 3 and
� ≥ 2, identity space IDλ = Z�

p, and message space Mλ = GT.

– Setup: On input 1λ sample (G,GT, p, g, ê) ← GroupGen(1λ), A0,A1, . . . ,
A�,B ← Z2×m

p , and u ← Z2
p. Output pp =

(
g, gA0 , gA1 , . . . , gA� ,B, gu

)
and

msk = (A0,A1, . . . ,A�,u).

11 More specifically, rejection sampling can be used to obtain a sufficiently good ap-
proximation.
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– Key generation: On input the master secret key msk and an identity id =
(id1, . . . , id�) ∈ Z�

p, sample s1, . . . , s� ← Zp and computes

Fid,(s1,...,s�) =

⎡⎣A0

⎛⎝∑
i∈[�]

siAi

⎞⎠+

⎛⎝∑
i∈[�]

si · idi

⎞⎠B

⎤⎦ ∈ Z2×2m
p .

Then, sample v ← Z2m
p such that Fid,(s1,...,s�) · v = u (mod p) and set

z = gv ∈ G2m. Outputs skid = (s1, . . . , s�, z).
– Encryption: On input the public parameters pp, an identity id = (id1, . . . ,

id�) ∈ Z�
p, and a message m ∈ GT, sample r ← Z2

p. Set c
ᵀ
0 = gr

ᵀA0 ∈ G1×m,

cᵀi = gr
ᵀ[Ai+idiB] ∈ G1×m for all i ∈ [�], c�+1 = ê(g, g)r

ᵀu · m ∈ GT, and
output (c0, c1, . . . , c�, c�+1) ∈ G(�+1)m ×GT.

– Decryption: On input a ciphertext c = (c0, c1, . . . , c�, c�+1) and a secret
key sk = (s1, . . . , s�, z), output

m = c�+1 · ê

⎛⎝[ c0∏
i∈[�] c

si
i

]
,
|
z
|

⎞⎠−1

.

Correctness. Note that

dᵀ =

⎡⎣cᵀ0 ∏
i∈[�]

(cᵀi )
si

⎤⎦ = gr
ᵀ[A0

∑
i∈[�] siAi+(

∑
i∈[�] si·idi)B] = gr

ᵀFid,(s1,...,s�) .

We have ê(d, z) = ê(g, g)r
ᵀFid,(s1,...,s�)

·v = ê(g, g)r
ᵀu. Therefore, dividing c�+1 by

ê(d, z) eliminates the term ê(g, g)r
ᵀu which recovers m correctly.

Security. Due to space limitations we refer the reader to the full version [19]
for the proof of the following theorem. Below we briefly highlight the main ideas
underlying its proof.

Theorem 3.1. The scheme IBEDLIN1 is selectively data private based on the
DLIN assumption, and is function private for:

1. (T, k)-block-sources for any T = poly(λ) and k ≥ λ+ ω(logλ).
2. (k1, . . . , kT )-sources for any T = poly(λ) and (k1, . . . , kT ) such that ki ≥

i · λ+ ω(logλ) for every i ∈ [T ].

Proof Overview. The function privacy of the scheme follows quite naturally
from our “extract” step, as discussed in Section 1.1. To prove selective data
privacy under the DLIN assumption, given the challenge identity id∗, we set

up the public parameters {gAi}i∈[�], B, and gu such that the matrix Gid,s
def
=[(∑

i∈[�] siAi

)
+
(∑

i∈[�] si · idi
)
B
]
is equipped with a ‘punctured’ trapdoor.

This trapdoor allows us to sample a vector such that Fid,s ·v = u wheneverGid,s
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contains a non-zero scalar multiple of B. This occurs whenever
∑

i∈[�] si(idi −
id∗i ) �= 0. Thus, with all but a negligible probability, we can simulate the adver-
sary’s key-generation queries with specially chosen matrices as above.

To embed the DLIN challenge, the first two rows of the DLIN challenge are
used to construct the public parameter gA0 . The third row of the challenge is
either linearly dependent on the first two rows or chosen uniformly at random and
independently. The third row of the challenge is embedded into the augmented
challenge ciphertext that is either well-formed or uniform and independent of
the adversary’s view depending on the DLIN challenge. This is done by choosing
secret matrices R∗

i and having Ai = A0R
∗
i − id∗iB. This generalizes the ideas

of [3,40] to fit our “extract-augment-combine” approach and therefore provide
function privacy.

4 Extensions and Open Problems

Our framework for function privacy yields a variety of extensions and open prob-
lems, both conceptual ones regarding our new notions, and technical ones regard-
ing our specific approach and its resulting constructions. We now discuss several
such extensions and open problems.

Chosen-Ciphertext Security. In terms of data privacy, in this paper we con-
sidered the standard notion of anonymity and message indistinguishability un-
der an adaptive chosen-identity chosen-plaintext attack (known as anon-IND-ID-
CPA). A natural extension of our results is to guarantee data privacy even against
chosen-ciphertext attacks (known as anon-IND-ID-CCA). We note that our IBE
schemes can be extended, using standard techniques, into two-level hierarchical
IBE schemes that are anon-IND-ID-CPA-secure and their first level is function
private. Then, by applying the generic transformation of Boneh, Canetti, Halevi
and Katz [16], any such scheme can be used to construct an IBE scheme that is
anon-IND-ID-CCA-secure and function private.

Applying Our Approach to other IBE Schemes. In Section 2 we pre-
sented simple attacks exemplifying that the anonymous IBE schemes presented
in [18,32,3,40] are not function private. Nevertheless, we were able to rely on
these schemes for designing new ones that are function private using our “extract-
augment-combine” approach. For other anonymous IBE schemes, such as
[31,22,11], we were not able to find attacks against their function privacy. An
interesting open problem is to explore whether these schemes can be modified
(possibly by applying our “extract-augment-combine” approach) to be function
private based on standard assumptions. More generally, a natural open problem
is to identify a specific property of identity-based encryption schemes that make
them amenable to our “extract-augment-combine” approach.

Extension to Other Classes of Functions. As discussed in Section 1, in
the general setting of functional encryption our schemes provide function pri-
vacy for the class of functions fid∗ defined as fid∗(id,m) = m if id = id∗, and
fid∗(id,m) = ⊥ otherwise. A fascinating open problem is to construct schemes
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that are function private for other classes of functions. A possible starting point
is to consider function privacy for other, rather simple, functionalities, such as
inner-product testing [39].

Robustness of Our Schemes. As pointed out by Abdalla, Bellare, and Neven
[2], when using an anonymous IBE scheme as a public-key searchable encryption
scheme [17,1], it is often desirable to use a “robust” IBE scheme: It should be
difficult to produce a ciphertext that is valid for more than one identity. We note
that our schemes do not satisfy such a notion of robustness. However, Abdalla
et al. showed two generic transformations that transform any given IBE scheme
into a robust one. In particular, these transformations can be applied to each
of our schemes to make them robust (these transformations do not change the
decryption keys, and thus function privacy is preserved). We leave it as an open
problem to directly design function-private IBE schemes that are robust.
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1 Introduction

In traditional public key encryption a sender will encrypt a message to a targeted
individual recipient using the recipient’s public key. However, in many applica-
tions one may want to have a more general way of expressing who should be
able to view encrypted data. Sahai and Waters [SW05] introduced the notion of
Attribute-Based Encryption (ABE). There are two variants of ABE: Key-Policy
ABE and Ciphertext-Policy ABE [GPSW06]. (We will consider both these vari-
ants in this work.) In a Key-Policy ABE system, a ciphertext encrypting a mes-
sage M is associated with an assignment x of boolean variables. A secret key
SK is issued by an authority and is associated with a boolean function f chosen
from some class of allowable functions F . A user with a secret key for f can
decrypt a ciphertext associated with x, if and only if f(x) = 1.

Since the introduction of ABE there have been advances in multiple direc-
tions. These include: new proof techniques to achieve adaptive security [LOS+10,
OT10, LW12], decentralizing trust among multiple authorities [Cha07, CC09,
LW11], and applications to outsourcing computation [PRV12].

However, the central challenge of expanding the class of allowable boolean
functions F has been very resistant to attack. Viewed in terms of circuit classes,
the work of Goyal et al [GPSW06] achieved the best result until now; their
construction achieved security essentially for circuits in the complexity class
NC1. This is the class of circuits with depth logn, or equivalently, the class of
functions representable by polynomial-size boolean formulas. Achieving ABE for
general circuits is arguably the central open direction in this area1.

Difficulties in Achieving Circuit ABE and the Backtracking Attack. To
understand why achieving ABE for general circuits has remained a difficult prob-
lem, it is instructive to examine the mechanisms of existing constructions based
on bilinear maps. Intuitively, a bilinear map allows one to decrypt using group
elements as keys (or key components) as opposed to exponents. By handing out
a secret key that consists of group elements, an authority is able to computa-
tionally hide some secrets embedded in that key from the key holder herself. In
contrast, if a secret key consists of exponents in Zp for a prime order group p, as
in say an ElGamal type system, then the key holder or collusion of key holders
can solve for these secrets using algebra. This computational hiding in bilinear
map based systems allows an authority to personalize keys to a user and prevent
collusion attacks, which are the central threat.

Using GPSW [GPSW06] as a canonical example we illustrate some of the
main principles of decryption. In their system, private keys consist of bilinear
group elements for a group of prime order p and are associated with random
values ry ∈ Zp for each leaf node y in the boolean formula f . A ciphertext

1 We note that if collusions between secret key holders are bounded by a publicly
known polynomially-bounded number in advance, then even stronger results are
known [SS10, GVW12]. However, throughout this paper we will deal only with the
original setting of ABE where unbounded collusions are allowed between adversarial
users.
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encrypted to descriptor x has randomness s ∈ Zp. The decryption algorithm
begins by applying a pairing operation to each “satisfied” leaf node and obtains
e(g, g)rys for each satisfied node y. From this point onward decryption consists
solely of finding if there is a linear combination (in the exponent) of the ry values
that can lead to computing e(g, g)αs, which will be the “blinding factor” hiding
the message M . (The variable e(g, g)α is defined in the public parameters.) The
decryption algorithm should be able to find such a linear combination only if
f(x) = 1. Of particular note is that once the e(g, g)rys values are computed the
pairing operation plays no further role in decryption. Indeed, it cannot since it
is intuitively “used up” on the initial step.

Let’s now take a closer look at how GPSW structures a private key for a
given boolean formula. Suppose inside a particular boolean formula there exists
an OR gate T that received inputs from gates A and B. Then the authority will
associate gate T with a value rT and gates A,B with values rA = rB = rT to
match the OR functionality. Now suppose that on a certain input assignment x
that gate A evaluates to 1, but gate B evaluates to 0. The decryptor will then
learn the “decryption value” e(g, g)srA for gate A and can interpolate up by
simply by noting that e(g, g)srT = e(g, g)srA . While this structure reflects an
OR gate, it also has a critical side effect. The decryption algorithm also learns
the decryption value e(g, g)srB for gate B even though gate B evaluates to 0 on
input x. We call such a discovery a backtracking attack.

Boolean formulas are circuits with fanout one. If the fanout is one, then the
backtracking attack produces no ill effect since an attacker has nowhere else to
go with this information that he has learned. However, suppose we wanted to
extend this structure with circuits of fanout of two or more, and that gate B also
fed into an AND gate R. In this case the backtracking attack would allow an
attacker to act like B was satisfied in the formula even though it was not. This
misrepresentation can then be propagated up a different path in the circuit due
to the larger fanout. (Interestingly, this form of attack does not involve collusion
with a second user.)

We believe that such backtracking attacks are the principle reason that the
functionality of existing ABE systems has been limited to circuits of fanout one.
Furthermore, we conjecture that since the pairing operation is used up in the
initial step, that there is no black-box way of realizing general ABE for circuits
from bilinear maps.

Our Results. We present a new methodology for constructing Attribute-Based
Encryption systems for circuits of arbitrary fanout. Our method is described
using multilinear maps. Cryptography with multilinear maps was first postulated
by Boneh and Silverberg [BS02] where they discussed potential applications
such as one round, n-way Diffie-Hellman key exchange. However, they also gave
evidence that it might be difficult or not possible to find useful multilinear forms
within the realm of algebraic geometry. For this reason there has existed a general
reluctance among cryptographers to explore multilinear map constructions even
though in some constructions such as the Boneh-Goh-Nissim [BGN05] slightly
homomorphic encryption system, or the Boneh-Sahai-Waters [BSW06] Traitor
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Tracing scheme, there appears to exist direct generalizations of bilinear map
solutions.

Very recently, Garg, Gentry, and Halvei [GGH13a] (see [GGH12b] for full
version) announced a surprising result. Using ideal lattices they produced a can-
didate mechanism that would approximate or be the moral equivalent of multi-
linear maps for many applications. Speculative applications include translations
of existing bilinear map constructions and direct generalizations as well as fu-
ture applications. While the development and cryptanalysis of their tools is at
a nascent stage, we believe that their result opens an exciting opportunity to
study new constructions using a multilinear map abstraction. The promise of
these results is that such constructions can be brought over to their framework
or a related future one. We believe that building ABE for circuits is one of the
most exciting of these problems due to the challenges discussed above and that
existing bilinear map constructions do not have a direct generalization.

Our circuit ABE construction and its proof of security directly translate to
the framework of [GGH12b].

We construct an ABE system of the Key-Policy variety where ciphertext de-
scriptors are an n-tuple x of boolean variables and keys are associated with
boolean circuits of a max depth �, where both � and n are polynomially bounded
and determined at the time of system setup. Our main construction exposition
is for circuits that are layered (where gates at depth j get inputs from gates at
depth j−1) and monotonic (consisting only of AND plus OR gates). Neither one
of these impacts our general result as a generic circuit can be transformed into a
layered one for the same function with a small amount of overhead. In addition,
using De Morgan’s law one can build a general circuit from a monotone circuit
with negation only appearing at the input wires. We sketch this in Section 2.
We finally note that using universal circuits we can realize “Ciphertext-Policy”
style ABE systems for circuits.

We use a framework of leveled multilinear maps is that a party can call a group
generator G(1λ, k) to obtain a sequence of groups G = (G1, . . . ,Gk) each of large
prime2 order p > 2λ where each comes with a canonical generator g = g1, . . . , gk.
Slightly abusing notation, if i+ j ≤ k we can compute a bilinear map operation
on gai ∈ Gi, g

b
j ∈ Gj as e(g

a
i , g

b
j) = gabi+j . These maps can be seen as implementing

multilinear maps3. It is the need to commit to a certain k value which will require
the setup algorithm of our construction to commit to a maximum depth � = k−1.
We will prove security under a generalization of the decision BDH assumption
that we call the decision k-multilinear assumption. Roughly, it states that given

g, gs, gc1 , . . . , gck it is hard to distinguish T = g
s
∏

j∈[1,k] ck

k from a random element
of Gk.

2 We stress that our techniques do not rely on the groups being of prime order; we
only need that certain randomization properties hold in a statistical sense (which
hold perfectly over groups of prime order). Therefore, our techniques generalize to
other algebraic settings.

3 We technically consider the existence of a set of bilinear maps {ei,j : Gi × Gj →
Gi+j | i, j ≥ 1; i+ j ≤ k}, but will often abuse notation for ease of exposition.
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Our Techniques. As discussed there is no apparent generalization of the
GPSW methods for achieving ABE for general circuits. We develop new tech-
niques with a focus on preventing the backtracking attacks we described above.
Intuitively, we describe our techniques as “move forward and shift”; this replaces
and subsumes the linear interpolation method of GPSW decryption. In particu-
lar, our schemes do not rely on any sophisticated linear secret sharing schemes,
as was done by GPSW.

Consider a private key for a given monotonic4 circuit f with max depth � that
works over a group sequence (G1, . . . ,Gk). Each wire w in f is associated by the
authority with a random value rw ∈ Zp. A ciphertext for descriptor x will be
associated with randomness s ∈ Zp. A user should with secret key for f should
be able to decrypt if and only if f(x) = 1.

The decryption algorithm works by computing gsrwj+1 for each wire w in the
circuit that evaluates to 1 on input x. If the wire is 0, the decryptor should not
be able to obtain this value. Decryption works from the bottom up. For each
input wire w at depth 1, we compute gsrw2 using a very similar mechanism to
GPSW.

We now turn our attention to OR gates to illustrate how we prevent back-
tracking attacks. Suppose wire w is the output of an OR gate with input wires
A(w), B(w) at depth j. Furthermore, suppose on a given input x the wire A(w)
evaluates to true and B(w) to false so that the decryptor has g

srA(w)

j , but not

g
srB(w)

j . The private key components associated with wire w are:

gaw , gbw , g
rw−aw·rA(w)

j , g
rw−bw·rB(w)

j

for random aw, bw. To move decryption onward the algorithm first computes

e
(
gaw , g

srA(w)

j

)
= g

sawrA(w)

j+1 .

This is the move forward step. Then it computes

e
(
gs, g

rw−aw·rA(w)

j

)
= g

s(rw−awrA(w))

j+1 .

This is the shift step. Multiplying these together gives the desired term gsrwj+1.
Let’s examine backtracking attacks in this context. Recall that the attacker’s

goal is to compute g
srB(w)

j even though wire B(w) is 0, and propagate this for-
ward. From the output term and the fourth key component the attacker can

actually inverse the shift process on the B side and obtain g
sbwrB(w)

j+1 . However,
since the map e works only in the “forward” direction, it is not possible to invert
the move forward step and complete the attack. The crux of our security lies in
this idea.

The AND gate mechanism has a similar shift and move forward structure,
but requires both inputs for decryption. If this process is applied iteratively to

4 Recall that assuming that the circuit is monotonic is without loss of generality. Our
method also applies to general circuits that involve negations. See Section 2.
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an output gate w̃, then one obtains gsrw̃k . A final header portion of the key and
decryption mechanism is used to obtain the message. This portion is similar to
prior work.

1.1 Other Related Work

Other recent functionality in a similar vain to ABE includes spatial encryp-
tion [Ham11] and regular language functionality [Wat12]. Neither of these seem
to point to a path for achieving the general case of circuits. Indeed, [Wat12]
argues that backtracking attacks are the reason that the constructions can only
support Deterministic Finitie Automata and not Nondeterministic Finite Au-
tomata.

An interesting challenge going forward is whether new techniques can be ap-
plied to the general case of functional encryption [SW08, BSW11]. In this setting
we would like to hide the input x as well as the message. So far the strongest
functionality in this setting has been the inner product functionality of Katz,
Sahai, and Waters [KSW08] and different variants of this [OT12].

There have been different lattice based constructions of IBE, HIBE, Fuzzy
IBE, and ABE [CHKP10, ABB10, ABV+12, Boy13]. While the high level proof
structures of these systems follow the earlier bilinear map counterparts closely,
the analogies seem to break down at lower level mechanisms. For example, there
is more asymmetry in the construction of keys and ciphertexts — in bilinear
maps they were both bilinear group elements. Rothblum [Rot12] considers the
problem of circular security from bit encryption systems from �-multilinear maps.
He considers a different form than us where � group elements of different types
are input at once to a multilinear map function. The assumption used is a variant
of XDH.

Parno, Raykova and Vaikuntanathan [PRV12] note that delegation from ABE
can be achieved from a system that is not collusion resistant, however, they were
not able to leverage this to go beyond the boolean formulas of [GPSW06]. The
fact that the backtracking attacks described above do not use collusion attacks,
but are attacks within a key might help explain this. In our construction the
size of group elements and computational cost of group operations grows with
the sequence number k and thus the depth of the circuit. Using our system
combined with the PRV techniques one can achieve delegated computation where
the delegator’s work grows only with the depth of the circuit and not the size of
the circuit. Since the number of multilinear levels must be bounded at setup, it
is not clear if our techniques can be used to improve ABE-type applications in
the uniform setting [Wat12].

Concurrent Work. Concurrent to and independent of our work Gorbunov,
Vaikuntanathan, and Wee [GVW13] achieve ABE for circuits5. One nice feature

5 Historical note: The present paper which merges [GGH12a] and [SW12] contains
only a technical scheme and analysis already present in these works, with some addi-
tional elaboration. Thus the scheme and analysis presented here remains independent
of [GVW13], and was developed concurrently to it.
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of their result is that they reduce security to the Learning with Errors (LWE)
problem [Reg05]. Both our result and theirs has “succinct” ciphertexts in that
the ciphertext size grows with the maximum depth of the circuits and not the
size. Goldwasser, Kalai, Popa, Vaikuntanathan, and Zeldovich [GKP+13] show
how to combine such an ABE with fully homomorphic encryption into a succinct
single use functional encryption scheme. This in turn implies results for reusable
Yao garbled circuits and other applications.

Subsequent Work. Subsequent to our work Garg, Gentry, Sahai, and Wa-
ters [GGSW13] showed that a general primitive they termed witness encryption
implies circuit ABE if we have witness indistinguishable proofs. Their techniques
of moving from witness encryption to ABE are quite different from our direct
construction. A drawback of using witness encryption is that current GGSW
constructions rely on a different assumption for each NP instance.

1.2 Roadmap

We start by providing preliminary definition in Section 2. We give our construc-
tion based on (ideal) multilinear maps in Section 3 which is then translated to
the GGH framework [GGH12b] in Section 4. We refer the reader to the full
version [GGH+13b] for the proofs of security.

2 Preliminaries

In this section we provide some preliminaries. These include definition of ABE
for circuits, discussion of monotone versus general circuits, our multilinear map
convention and assumptions, and our circuit notation.

2.1 Definitions for ABE for Circuits

We now give a formal definition of our Attribute-Based Encryption for circuits.
Our security definition essentially follows [GPSW06] with the exception that
access structures are circuits. Our definition is fit for bounded circuits.

Setup(1λ, n, �). The setup algorithm takes as input the security parameter, the
length n of input descriptors from the ciphertext and a bound � on the circuit
depth. It outputs the public parameters PP and a master key MSK.

Encrypt(PP, x ∈ {0, 1}n,M). The encryption algorithm takes as input the
public parameters PP, a bit string x ∈ {0, 1}n representing the assignment of
boolean variables, and a message m. It outputs a ciphertext CT.

Key Generation(MSK, f = (n, q, A,B, GateType)). The key generation algo-
rithm takes as input the master key MSK and a description of a circuit f , where
the depth of f is at most �. The algorithm outputs a private key SK.

Decrypt(SK,CT). The decryption algorithm takes as input a secret key SK
and ciphertext CT. The algorithm attempts to decrypt and outputs a message
M if successful; otherwise, it outputs a special symbol ⊥.
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Correctness. Consider all messages M , strings x ∈ {0, 1}n, and depth � cir-
cuits f where f(x) = 1. If Encrypt(PP, x,M) → CT and KeyGen(MSK, f) →
SK where PP,MSK were generated from a call to the setup algorithm, then
Decrypt(SK,CT) = M .

Security Model for ABE for Circuits. We now briefly describe our security
model of selective security for ABE for general circuits. We refer the reader
to [GGH+13b] for a formal treatment. The selective security definition requires
that the attacker first specifies the string x∗ and later queries on multiple secret
keys, but not ones that can trivially be used to decrypt a ciphertext encrypted
under x∗. In particular the adversary can ask secret keys corresponding to any
circuit f of his choice, such that f(x∗) = 0. The goal of the adversary is then to
break semantic security of a challenge ciphertext encrypted under the string x∗.

2.2 General Circuits vs. Monotone Circuits

We begin by observing that there is a folklore transformation that uses De Mor-
gan’s rule to transform any general Boolean circuit into an equivalent monotone
Boolean circuit, with negation gates only allowed at the inputs. For complete-
ness, we sketch the construction here.

Given a Boolean circuit C, consider the Boolean circuit C̃ that computes the
negation of C. Note that such a circuit can be generated by simply recursively
applying De Morgan’s rule to each gate of C starting at the output gate. The cru-
cial property of this transformation is that in this circuit C̃ each wire computes
the negation of the corresponding original wire in C.

Now, we can construct a monotone circuit M by combining C and C̃ as
follows: take each negation gate inside C, eliminate it, and replace the output
of the negation gate by the corresponding wire in C̃. Do the same for negation
gates in C̃, using the wires from C. In the end, this will yield a monotone circuit
M with negation gates remaining only at the input level, as desired. The size of
M will be no more than twice the original size of C, and the depth of M will be
identical to the depth of C, where depth is computed ignoring negation gates.
The correctness of this transformation follows trivially from De Morgan’s rule.

As a result, we can focus our attention onmonotone circuits. Note that inputs to
the circuit correspond to boolean variablesxi, andwe can simply introduce explicit
separate attributes corresponding to xi = 0 and xi = 1. Honest encryptors are
instructed to only set one of these two attributes for each variable xi.

Because of this simple transformation, in the sequel we will only consider ABE
for monotone circuits.

2.3 Multilinear Maps

We assume the existence of a group generator G, which takes as input a security
parameter n and a positive integer k to indicate the number of allowed pairing
operations. G(1λ, k) outputs a sequence of groups G = (G1, . . . ,Gk) each of large
prime order p > 2λ. In addition, we let gi be a canonical generator of Gi (and is
known from the group’s description). We let g = g1.
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We assume the existence of a set of bilinear maps {ei,j : Gi×Gj → Gi+j | i, j ≥
1; i+ j ≤ k}. The map ei,j satisfies the following relation:

ei,j
(
gai , g

b
j

)
= gabi+j : ∀a, b ∈ Zp.

We observe that one consequence of this is that ei,j(gi, gj) = gi+j for each valid
i, j.

When the context is obvious, we will sometimes abuse notation drop the
subscripts i, j, For example, we may simply write:

e
(
gai , g

b
j

)
= gabi+j .

We define the k-Multilinear Decisional Diffie-Hellman (k-MDDH) assumption as
follows:

Assumption 1 (k-Multilinear Decisional Diffie-Hellman: k-MDDH).
The k-Multilinear Decisional Diffie-Hellman (k-MDDH) problem states the fol-
lowing: A challenger runs G(1λ, k) to generate groups and generators of order p.
Then it picks random s, c1, . . . , ck ∈ Zp.

The assumption then states that given g = g1, g
s, gc1, . . . , gck it is hard to

distinguish T = g
s
∏

j∈[1,k] cj

k from a random group element in Gk, with better
than negligible advantage (in security parameter λ).

2.4 Circuit Notation

We now define our notation for circuits that adapts the model and notation
of Bellare, Hoang, and Rogaway [BHR12] (Section 2.3). For our application we
restrict our consideration to certain classes of boolean circuits. First, our circuits
will have a single output gate. Next, we will consider layered circuits. In a layered
circuit a gate at depth j will receive both of its inputs from wires at depth j− 1.
Finally, we will restrict ourselves to monotonic circuits where gates are either
AND or OR gates of two inputs. 6

Our circuits will be a five-tuple f = (n, q, A,B, GateType). We let n be the
number of inputs and q be the number of gates. We define inputs = {1, . . . , n},
Wires = {1, . . . , n + q}, and Gates = {n + 1, . . . , n + q}. The wire n + q is
the designated output wire. A : Gates → Wires/outputwire is a function where
A(w) identifies w’s first incoming wire and B : Gates → Wires/outputwire is
a function where B(w) identifies w’s second incoming wire. Finally, GateType :
Gates → {AND,OR} is a function that identifies a gate as either an AND or
OR gate.

We require that w > B(w) > A(w). We also define a function depth(w) where
if w ∈ inputs depth(w) = 1 and in general depth(w) of wire w is equal to the
shortest path to an input wire plus 1. Since our circuit is layered we require that
for all w ∈ Gates that if depth(w) = j then depth(A(w)) = depth(B(w)) = j−1.

6 These restrictions are mostly useful for exposition and do not impact functionality.
General circuits can be built from non-monotonic circuits. In addition, given a circuit
an equivalent layered exists that is larger by at most a polynomial factor.



488 S. Garg et al.

We will abuse notation and let f(x) be the evaluation of the circuit f on input
x ∈ {0, 1}n. In addition, we let fw(x) be the value of wire w of the circuit on
input x.

3 Our Construction: Multilinear maps

We now describe our construction. Our main construction is of the Key-Policy
form where a key generation algorithm takes in the description of a circuit f
and encryption takes in an input x and message M . A user with secret key for f
can decrypt if and only if f(x) = 1. The system is of the “public index” variety
in that only the message M is hidden, while x can be efficiently discovered from
the ciphertext, as is standard for ABE. We will also discuss how our KP-ABE
scheme yields a Ciphertext-Policy ABE scheme for bounded-size circuits.

The setup algorithm will take as inputs a maximum depth � of all the circuits
as well as the input size n for all ciphertexts. All circuits f in our system will
be of depth � (have the output gate at depth �) and be layered as discussed in
Section 2.4. Using layered circuits and having all circuits be of the same depth
is primarily for ease of exposition, as we believe that our construction could
directly be adapted to the general case. The fact that setup defines a maximum
depth � is more fundamental as the algorithm defines a k = �+1 group sequence
a k pairings.

We also use the convention here that (multi-bit) messages are be encoded
as group elements. In Section 4 we will translate this construction to the GGH
setting.

Setup(1λ, n, �). The setup algorithm takes as input a security parameter λ, the
maximum depth � of a circuit, and the number of boolean inputs n.

It then runs G(1λ, k = �+1) that produces groups G = (G1, . . . ,Gk) of prime
order p, with canonical generators g1, . . . , gk. We let g = g1. Next, it chooses
random α ∈ Zp and h1, . . . , hn ∈ G1.

The public parameters, PP, consist of the group sequence description plus:

gαk , h1, . . . , hn.

The master secret key MSK is (gk−1)
α.

Encrypt(PP, x ∈ {0, 1}n,M ∈ Gk). The encryption algorithm takes in the
public parameters, an descriptor input x ∈ {0, 1}n, and a message bit M ∈ Gk.
We use the convention that M is a group element.

The encryption algorithm chooses a random s ∈ Zp. It then sets CM = M ·
(gαk )

s. We let S be the set of i such that xi = 1.
The ciphertext is created as

CT = (CM , gs, ∀i ∈ S Ci = hs
i ).

KeyGen(MSK, f = (n, q, A,B, GateType)). The algorithm takes in the master
secret key and a description f of a circuit. Recall that the circuit has n+ q wires
with n input wires, q gates and the wire n+ q designated as the output wire.
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The key generation algorithm chooses random r1, . . . , rn+q ∈ Zp, where we
think of randomness rw as being associated with wire w. The algorithm produces
a “header” component

KH = (gk−1)
α−rn+q .

Next, the algorithm generates key components for every wire w. The structure
of the key components depends upon whether w is an input wire, an OR gate,
or an AND gate. We describe how it generates components for each case.

– Input wire
By our convention if w ∈ [1, n] then it corresponds to the w-th input. The
key generation algorithm chooses random zw ∈ Zp.
The key components are:

Kw,1 = grwhzw
w , Kw,2 = g−zw .

– OR gate
Suppose that wire w ∈ Gates and that GateType(w) = OR. In addition, let
j = depth(w) be the depth of wire w. The algorithm will choose random
aw, bw ∈ Zp. Then the algorithm creates key components:

Kw,1 = gaw , Kw,2 = gbw , Kw,3 = g
rw−aw·rA(w)

j , Kw,4 = g
rw−bw·rB(w)

j .

– AND gate
Suppose that wire w ∈ Gates and that GateType(w) = AND. In addition,
let j = depth(w) be the depth of wire w. The algorithm will choose random
aw, bw ∈ Zp. The components are:

Kw,1 = gaw , Kw,2 = gbw , Kw,3 = g
rw−aw·rA(w)−bw·rB(w)

j .

We will sometimes refer to the Kw,3,Kw,4 of the AND and OR gates as the
“shift” components. This terminology will take on more meaning when we see
how they are used during decryption.

The secret key SK output consists of the description of f , the header compo-
nent KH and the key components for each wire w.

Decrypt(SK,CT). Suppose that we are evaluating decryption for a secret key
associated with a circuit f = (n, q, A,B, GateType) and a cipherext with input
x. We will be able to decrypt if f(x) = 1.

We begin by observing that the goal of decryption should be to compute gαsk .
One can then recover M by computing M = CM/gαsk . First, there is a header

computation where we compute E′ = e(KH), gs) = e(g
α−rn+q

k−1 , gs) = gαsk g
−rn+q·s
k

Our goal is now reduced to computing g
rn+q·s
k .

Next, we will evaluate the circuit from the bottom up. Consider wire w at
depth j; if fw(x) = 1 then, our algorithm will compute Ew = (gj+1)

srw . (If
fw(x) = 0 nothing needs to be computed for that wire.) Our decryption algo-
rithm proceeds iteratively starting with computing E1 and proceeds in order to
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finally compute En+q. Computing these values in order ensures that the compu-
tation on a depth j−1 wire (that evaluates to 1) will be defined before computing
for a depth j wire. We show how to compute Ew for all w where fw(x) = 1,
again breaking the cases according to whether the wire is an input, AND or OR
gate.

– Input wire
By our convention if w ∈ [1, n] then it corresponds to the w-th input. Suppose
that xw = fw(x) = 1. The algorithm computes:

Ew = e(Kw,1, g
s) · e(Kw,2, Cw) = e(grwhzw

w , gs) · e(g−zw , hs
w) = gsrw2 .

We observe that this mechanism is similar to many existing ABE schemes.
– OR gate

Consider a wire w ∈ Gates and that GateType(w) = OR. In addition, let
j = depth(w) be the depth of wire w. Suppose that fw(x) = 1. If fA(w)(x) =
1 (the first input evaluated to 1) then we compute:

Ew=e(EA(w),Kw,1) ·e(Kw,3, g
s)=e(g

srA(w)

j , gaw) ·e(grw−aw·rA(w)

j , gs)=(gj+1)
srw .

Alternatively, if fA(w)(x) = 0, but fB(w)(x) = 1, then we compute:

Ew=e(EB(w),Kw,2) · e(Kw,4, g
s)=e(g

srB(w)

j , gbw ) · e(grw−bw ·rB(w)

j , gs)=(gj+1)
srw .

Let’s examine this mechanism for the case where the first input is 1
(fA(w)(x) = 1). In this case the algorithm “moves” the value EA(w) from
group Gj to group Gj+1 when pairing it with Kw,1. It then multiplies it by
e(Kw,3, g

s) which “shifts” that result to Ew.
Suppose that fA(w)(x) = 1, but fB(w)(x) = 0. A critical feature of the

mechanism is that an attacker cannot perform a “backtracking” attack to
compute EB(w). The reason is that the pairing operation cannot be reverse
to go from group Gj+1 to group Gj . If this were not the case, it would be
debilitating for security as gate B(w) might have fanout greater than 1. This
type of backtracking attacking is why existing ABE constructions are limited
to circuits with fanout of 1.

– AND gate
Consider a wire w ∈ Gates and that GateType(w) = AND. In addition,
let j = depth(w) be the depth of wire w. Suppose that fw(x) = 1. Then
fA(w)(x) = fB(w)(x) = 1 and we compute:

Ew = e(EA(w),Kw,1) · e(EB(w),Kw,2) · e(Kw,3, g
s)

= e(g
srA(w)

j , gaw) · e(gsrB(w)

j , gbw) · e(grw−aw·rA(w)−cw·rB(w)

j , gs) = (gj+1)
srw .
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If the f(x) = fn+q(x) = 1, then the algorithm will compute En+q = g
rn+q·s
k . It

finally computes E′ ·En+q = gαsk and tests if this equals CM , outputting M = 1
if so and M = 0 otherwise. Correctness holds with high probability.

A Few Remarks. Our OR and AND key components respectively have one
and two “shift” components. It is conceivable to have a construction with one
shift component for the OR and none for the AND. However, we designed it
this way since it made the exposition of our proof provided in the full veri-
son [GGH+13b](in particular the distribution of private keys) easier.

Finally, our construction uses a layered circuit, where a wire at depth j gets
its inputs from depth j′ = j − 1. We could imagine a small modification to our
construction which allowed j′ to be of any depth less than j. Suppose this were
the case for the first input. Then instead of Kw,1 = gaw

1 we might more generally
let Kw,1 = (gj−j′ )

aw . However, we stick to describing and proving the layered
case for simplicity.

4 Our Construction: Based on GGH Graded Algebras

We now describe how to modify our construction to use the GGH [GGH12b]
graded algebras analogue of multilinear maps. The translation of our scheme
above is straightforward to the GGH setting. We start by providing background
on Garg et al.’s lattice-based “approximate” multilinear maps (a.k.a. “graded
encoding systems”) [GGH12b].

4.1 Graded Encoding Systems: Definition

Garg, Gentry and Halevi (GGH) [GGH12b] defined an “approximate” version
of a multilinear group family, which they call a graded encoding system. As a
starting point, they view gαi in a multilinear group family as simply an encoding
of α at “level-i”. This encoding permits basic functionalities, such as equality
testing (it is easy to check that two level-i encodings encode the same exponent),
additive homomorphism (via the group operation in Gi), and bounded multi-
plicative homomorphism (via the multilinear map e). They retain the notion of a
somewhat homomorphic encoding with equality testing, but they use probabilis-
tic encodings, and replace the multilinear group family with “less structured”
sets of encodings related to lattices.

Abstractly, their n-graded encoding system for a ring R includes a system of

sets S = {S(α)
i ⊂ {0, 1}∗ : i ∈ [0, n], α ∈ R} such that, for every fixed i ∈ [0, n],

the sets {S(α)
i : α ∈ R} are disjoint (and thus form a partition of Si

def
=
⋃

α S
(α)
i ).

The set S
(α)
i consists of the “level-i encodings of α”. Moreover, the system comes

equipped with efficient procedures, as follows:7

7 Since GGH’s realization of a graded encoding system uses “noisy” encodings over
ideal lattices, the procedures incorporate information about the magnitude of the
noise.
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Instance Generation. The randomized InstGen(1λ, 1n) takes as input the se-
curity parameter λ and integer n. The procedure outputs (params,pzt),
where params is a description of an n-graded encoding system as above,
and pzt is a level-n “zero-test parameter”.

Ring Sampler. The randomized samp(params) outputs a “level-zero encoding”

a ∈ S0, such that the induced distribution on α such that a ∈ S
(α)
0 is

statistically uniform.
Encoding. The (possibly randomized) enc(params, i, a) takes i ∈ [n] and a level-

zero encoding a ∈ S
(α)
0 for some α ∈ R, and outputs a level-i encoding

u ∈ S
(α)
i for the same α.

Re-Randomization. The randomized reRand(params, i, u) re-randomizes en-
codings to the same level, as long as the initial encoding is under a given

noise bound. Specifically, for a level i ∈ [n] and encoding u ∈ S
(α)
i , it out-

puts another encoding u′ ∈ S
(α)
i . Moreover for any two encodings u1, u2 ∈

S
(α)
i whose noise bound is at most some b, the output distributions of

reRand(params, i, u1) and reRand(params, i, u2) are statistically the same.
Addition and negation. Given params and two encodings at the same level,

u1 ∈ S
(α1)
i and u2 ∈ S

(α2)
i , we have add(params, u1, u2) ∈ S

(α1+α2)
i , and

neg(params, u1) ∈ S
(−α1)
i , subject to bounds on the noise.

Multiplication. For u1 ∈ S
(α1)
i1

, u2 ∈ S
(α2)
i2

, we have mult(params, u1, u2) ∈
S
(α1·α2)
i1+i2

.

Zero-test. The procedure isZero(params,pzt, u) outputs 1 if u ∈ S
(0)
n and 0

otherwise. Note that in conjunction with the procedure for subtracting en-
codings, this gives us an equality test.

Extraction. This procedure extracts a “canonical” and “random” representa-
tion of ring elements from their level-n encoding. Namely ext(params,pzt, u)
outputs (say) K ∈ {0, 1}λ, such that:
(a) With overwhelming probability over the choice of α ∈ R, for any two

u1, u2 ∈ S
(α)
n , ext(params,pzt, u1) = ext(params,pzt, u2),

(b) The distribution {ext(params,pzt, u) : α ∈ R, u ∈ S
(α)
n } is statistically

uniform over {0, 1}λ.

We can extend add and mult to handle more than two encodings as inputs, by ap-
plying the binary versions of add and mult iteratively. Also, we use the canonical-
izing encoding algorithm (as defined in Remark 2 of [GGH12b]) cenc�(params, i, a)
which takes as input encoding of a and generates another encoding according
to a “nice” distribution. This parameter � essentially captures the noise present
in the encodings. In our scheme the maximum value � takes will be a small
constant.

Recall that the k-multilinear assumption for the graded encodings as follows:

Assumption 2 (k-GMDDH Assumption). The k-Graded Multilinear Deci-
sional Diffie-Hellman (k-GMDDH) assumption states the following: Given cenc1(
params, 1, s), cenc1(params, 1, c1), . . . , cenc1(params, 1, ck), it is hard to distinguish
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T = cenc1(params, k, s
∏

j∈[1,k] cj) from T = cenc1(params, k, samp(params)),

with better than negligible advantage (in security parameter λ), where (params,pzt

) ← InstGen(1λ, 1k). and s, c1, . . . , ck ← samp(params).

4.2 Graded Encoding Systems: Realization

Concretely, GGH’s n-graded encoding system works as follows. (This is a whirl-
wind overview; see [GGH12b] for details.) The system uses three rings. First, it
uses the ring of integers O of the m-th cyclotomic field. This ring is typically
represented as the ring of polynomials O = Z[x]/(Φm(x)), where Φm(x) is the
m-th cyclotomic polynomial, which has degree N = φ(m). Second, for some
suitable integer modulus q, it uses the quotient ring O/(q) = Zq[x]/(Φm(x)),
similar to the NTRU encryption scheme [HPS98]. The encodings live in O/(q).
Finally, it uses the quotient ring R = O/I, where I = 〈g〉 is a principal ideal of
O that is generated by g and where |O/I| is a large prime. This is the ring “R”
referred to above; elements of R are what is encoded.

What does a GGH encoding look like? For a fixed random z ∈ O/(q), an

element of S
(α)
i – that is, a level-i encoding of α ∈ R – has the form e/zi ∈ O/(q),

where e ∈ O is a “small” representative of the coset α+I (it has coefficients that

are very small compared to q). To add encodings e1/z
i ∈ S

(α1)
i and e2/z

i ∈ S
(α2)
i ,

just add them in O/(q) to obtain (e1 + e2)/z
i, which is in S

(α1+α2)
i if e1 + e2

is “small”. To mult encodings e1/z
i1 ∈ S

(α1)
i1

and e2/z
i2 ∈ S

(α2)
i2

, just multiply

them in O/(q) to obtain e1 · e2/zi1+i2 , which is in S
(α1·α2)
i1+i2

if e1 · e2 is “small”.
This smallness condition limits the GGH encoding system to degree polynomial
in the security parameter. Intuitively, dividing encodings does not “work”, since
the resulting denominator has a nontrivial term that is not z.

The GGH params allow everyone to generate encodings of random (known)
values. The params include a level-1 encoding of 1 (from which one can generate
encodings of 1 at other levels), and (for each i ∈ [n]) a sufficient number of
level-i encodings of 0 to enable re-randomization. To encode (say at level-1), run
samp(params) to sample a small element a from O, e.g. according to a discrete
Gaussian distribution. For a Gaussian with appropriate deviation, this will in-
duce a statistically uniform distribution over the cosets of I. Then, multiply a
with the level-1 encoding of 1 to get a level-1 encoding u of a ∈ R. Finally, run
reRand(params, 1, u), which involves adding a random Gaussian linear combina-
tion of the level-1 encodings of 0, whose noisiness (i.e., numerator size) “drowns
out” the initial encoding. The parameters for the GGH scheme can be instanti-
ated such that the re-randomization procedure can be used for any pre-specified
polynomial number of times.

To permit testing of whether a level-n encoding u = e/zn ∈ Sn encodes 0,
GGH publishes a level-n zero-test parameter pzt = hzn/g, where h is “somewhat
small”8 and g is the generator of I. The procedure isZero(params,pzt, u) simply

8 Its coefficients are on the order of (say) q2/3, while other terms – such as a numerator
e or the principal ideal generator g – are much, much smaller.
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computes pzt ·u and tests whether its coefficients are small modulo q. If u encodes
0, then e ∈ I and equals g · c for some (small) c, and thus pzt · u = h · c has no
denominator and is small modulo q. If u encodes something nonzero, pzt ·u has g
in the denominator and is not small modulo q. The ext(params,pzt, u) procedure
works by applying a strong extractor to the most significant bits of pzt · u. For
any two u1, u2 ∈ S

(α)
n , we have (subject to noise issues) u1 − u2 ∈ S

(0)
n , which

implies pzt(u1 − u2) is small, and hence pzt · u1 and pzt · u2 have the same most
significant bits (for an overwhelming fraction of α’s).

4.3 Our Construction

Now we provide our construction in GGH’s n-graded encoding system. For ease
of notation on the reader, we suppress repeated params arguments
that are provided to every algorithm.. Thus, for instance, we will write
α ← samp() instead of α ← samp(params). Note that in our scheme, there will
only ever be a single uniquely chosen value for params throughout the scheme,
so there is no cause for confusion.

Setup(1λ, n, �). The setup algorithm takes as input, a security parameter λ,
the maximum depth � of a circuit, and the number of boolean inputs n.

It then runs (pzt) ← InstGen(1λ, 1k=�+1). Recall that params will be im-
plicitly given as input to all GGH-related algorithms below. Next, it samples
α, ĥ1, . . . , ĥn ← samp().

The public parameters, PP, consist of pzt, plus:

H = cenc2(k, α), h1 = cenc2(1, ĥ1), . . . , hn = cenc2(1, ĥn).

The master secret key MSK is α.

Encrypt(PP, x ∈ {0, 1}n,M ∈ {0, 1}). The encryption algorithm takes in the
public parameters, an descriptor input x ∈ {0, 1}n, and a message bitM ∈ {0, 1}.

The encryption algorithm chooses a random s ← samp(). If M = 0 it sets CM

to be a random value:

CM = cenc3(k, samp())

otherwise it lets

CM = cenc3(k,H · s).

Next, let S be the set of i such that xi = 1.
The ciphertext is created as

CT = (CM , s̃ = cenc1(1, s), ∀i ∈ S Ci = cenc3(1, hi · s)).

KeyGen(MSK = α, f = (n, q, A,B, GateType)). The algorithm takes in the
master secret key and a description f of a circuit. Recall, that the circuit has
n + q wires with n input wires, q gates and the wire n + q designated as the
output wire.
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The key generation algorithm chooses random r1, . . . , rn+q ← samp(), where
we think of randomness rw as being associated with wire w. The algorithm
produces a “header” component

KH = cenc3(k − 1, α− rn+q).

Next, the algorithm generates key components for every wire w. The structure
of the key components depends upon if w is an input wire, an OR gate, or an
AND gate. We describe how it generates components for each case.

– Input wire
By our convention if w ∈ [1, n] then it corresponds to the w-th input. The
key generation algorithm chooses random zw ← samp().
The key components are:

Kw,1 = cenc3(1, enc(1, rw) + hw · zw), Kw,2 = cenc3(1,−zw).

– OR gate
Suppose that wire w ∈ Gates and that GateType(w) = OR. In addition, let
j = depth(w) be the depth of wire w. The algorithm will choose random
aw, bw ← samp(). Then the algorithm creates key components:

Kw,1 = cenc3(1, aw), Kw,2 = cenc3(1, bw),

Kw,3 = cenc3(j, rw − aw · rA(w)), Kw,4 = cenc3(j, rw − bw · rB(w)).

– AND gate
Suppose that wire w ∈ Gates and that GateType(w) = AND. In addition,
let j = depth(w) be the depth of wire w. The algorithm will choose random
aw, bw ← samp().

Kw,1 = cenc3(1, aw), Kw,2 = cenc3(1, bw),

Kw,3 = cenc3(j, rw − aw · rA(w) − bw · rB(w)).

We will sometimes refer to the Kw,3,Kw,4 of the AND and OR gates as the
“shift” components. This terminology will take on more meaning when we see
how they are used during decryption.

The secret key SK output consists of the description of f , the header compo-
nent KH and the key components for each wire w.

Decrypt(SK,CT). Suppose that we are evaluating decryption for a secret key
associated with a circuit f = (n, q, A,B, GateType) and a cipherext with input
x. We will be able to decrypt if f(x) = 1.

We begin by observing that the goal of decryption should be to compute a
level k encoding of α · s such that we can test if this is equal to CM . First, there
is a header computation where we compute E′ = KH · s̃. Note that E′ should
thus be a level k encoding of αs−rn+q · s. Our goal is now reduced to computing
a level k encoding of rn+q · s.
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Next, we will evaluate the circuit from the bottom up. Consider wire w at
depth j; if fw(x) = 1 then, our algorithm will compute Ew to be a level j + 1
encoding of srw. Note that if fw(x) = 0 nothing needs to be computed for
that wire, since we have a monotonic circuit. Our decryption algorithm proceeds
iteratively starting with computing E1 and proceeds in order to finally compute
En+q. Computing these values in order ensures that the computation on a depth
j − 1 wire (that evaluates to 1) will be defined before computing for a depth j
wire. We show how to compute Ew for all w where fw(x) = 1, again breaking
the cases according to whether the wire is an input, AND or OR gate.

– Input wire
By our convention if w ∈ [1, n] then it corresponds to the w-th input. Suppose
that xw = fw(x) = 1. The algorithm computes:

Ew = Kw,1 · s̃+Kw,2 · Cw.

Thus, Ew computes a level 2 encoding of (rw+ĥw ·zw)·s+(−zw)·ĥw ·s = srw.
– OR gate

Consider a wire w ∈ Gates and that GateType(w) = OR. In addition, let
j = depth(w) be the depth of wire w. Suppose that fw(x) = 1. If fA(w)(x) =
1 (the first input evaluated to 1) then we compute:

Ew = EA(w) ·Kw,1 +Kw,3 · s̃.

Thus, Ew computes a level j+1 encoding of srA(w)·aw+(rw − aw · rA(w))·s =
srw.

Alternatively, if fA(w)(x) = 0, but fB(w)(x) = 1, then we compute:

Ew = EB(w) ·Kw,2 +Kw,4 · s̃.

This similarly computes a level j+1 encoding of srB(w)·bw+(rw − bw · rB(w))·
s = srw.

Let’s examine this mechanism for the case where the first input is 1
(fA(w)(x) = 1). In this case the algorithm “moves” the value EA(w) from
level j to level j + 1 when multiplying it with Kw,1. It then adds it to
Kw,3 · s̃ which “shifts” that result to Ew.

Suppose that fA(w)(x) = 1, but fB(w)(x) = 0. A critical feature of the
mechanism is that an attacker cannot perform a “backtracking” attack to
compute EB(w). The reason is that the GGH encoding cannot be reversed
to go from level j+1 to level j. (See [GGH12b] for details on why this is the
case.) If this were not the case, it would be debilitating for security as gate
B(w) might have fanout greater than 1. This type of backtracking attacking
is why existing ABE constructions are limited to circuits with fanout of 1.
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– AND gate
Consider a wire w ∈ Gates and that GateType(w) = AND. In addition,
let j = depth(w) be the depth of wire w. Suppose that fw(x) = 1. Then
fA(w)(x) = fB(w)(x) = 1 and we compute:

Ew = EA(w) ·Kw,1 + EB(w) ·Kw,2 +Kw,3 · s̃.

Note that this computes a level j+1 encoding of srw in a manner analogous
to above.

If f(x) = fn+q(x) = 1, then the algorithm will compute En+q to be a level k
encoding of rn+q · s. It finally computes E′ + En+q which is a level k encoding
of αs and tests if this equals CM using isZero(pzt, E

′ +En+q −CM ), outputting
M = 1 if so and M = 0 otherwise. Correctness holds with high probability.

A Quick Remark about Message Length. Our encryption algorithm takes
as input a single bit message. We can extend this to longer messages using
the ext algorithm provided by the GGH encoding (see Section 4.1). We restrict
ourselves to single bit messages for clarity of the scheme and proof of security.
We postpone the proof itself to the full version [GGH+13b].
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1 Introduction

Functional encryption [SW05,SW08] is a new paradigm for public-key encryption
that enables fine-grained control of access to encrypted data. It extends several
previous notions, most notably identity-based encryption [Sha84,BF01,Coc01],
and provides, for instance, the ability to generate and release secret keys
associated with a keyword that can decrypt only those documents that contain
the keyword. More generally, functional encryption allows the owner of a
“master” secret key to release restricted secret keys that reveal a specific function
of encrypted data. This stands in stark contrast to traditional encryption, where
access to the encrypted data is all or nothing: namely, given the secret key, one
can decrypt and read the entire plaintext, but without it, nothing about the
plaintext is revealed at all (other than its length).

Functional Encryption. A functional encryption scheme for a circuit family
[BSW11,O’N10] C, associates secret keys SKC with every circuit C ∈ C and
ciphertext CT with input messages x.1

In broad terms, functional encryption requires that the owner of a secret key
SKC and a ciphertext CT (corresponding to an input message x) be able to
compute C(x), but learn nothing else about x itself. (Typically, and throughout
this work, we assume that the circuit family C as well as the circuit queries C
are public, in the sense that they are not hidden from the key holders.)

Moreover, security should hold in the presence of collusions amongst “key
holders”, that is, malicious users should not be able to combine their secret keys
to learn unauthorized information. More formally, a collusion of users that hold
secret keys SKC1 , . . . , SKCq and an encryption of x should learn nothing else
about x apart from C1(x), . . . , Cq(x), for any polynomial q.

An important subclass of functional encryption is that of public-index
predicate encryption. Here, the input x is a pair (ind, μ) where ind is an index
and μ the payload message. Let P be a Boolean predicate defined on indices,
the circuit family C is given by:

CP (ind, μ) =

⎧⎨⎩ (ind, μ) if P (ind) = 1

(ind,⊥) otherwise

Even though public index predicate encryption seems like a weak object,
it already captures identity-based encryption, and is also very useful in
constructing protocols for verifiably delegating computation as shown recently
by Parno, Raykova and Vaikuntanathan [PRV12].

Predicate encryption captures and generalizes a large number
of previous constructions, including identity-based encryption
(IBE) [Sha84,BF01,Coc01,BW06], fuzzy IBE [SW05,ABV+12], attribute-
based encryption (ABE) [GPSW06,LOS+10], and inner product

1 An alternative approach is associate secret keys to inputs and ciphertexts to circuits.
This is equivalent to our approach by taking a new “universal” family Ux that on
input C outputs C(x).
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encryption [KSW08,LOS+10,AFV11]. Specifically, IBE corresponds to P
encoding a point function. Moreover, essentially all known constructions are
examples of public-index predicate encryption schemes or its variants, with
a few exceptions – constructions in [BF01,BW06,KSW08] achieve a stronger
private-index security notion in which the index ind also remains hidden from
the adversary.

Security Notions. Boneh, Sahai and Waters [BSW11] and O’Neill [O’N10] were
the first to put forth a general definitional framework for functional encryp-
tion. They considered two security notions for functional encryption, namely:
indistinguishability (IND) based security and simulation (SIM) based security.
The former stipulates that it is infeasible to distinguish encryptions of any two
messages, without getting a secret key that decrypts the ciphertexts to distinct
values; the latter stipulates the existence of an efficient simulator that given
C1(x), . . . , Cq(x), outputs the view of the colluders that are given an encryption
of x as well as secret keys SKC1 , . . . , SKCq .

Both of these notions may be further refined in two ways:

– adaptive (AD) versus non-adaptive (NA) which capture whether the adver-
sary’s queries to the key derivation oracle may or may not depend on the
challenge ciphertext; and

– one versus many, referring to whether the adversary receives a single or
multiple challenge ciphertexts.

Together, these give rise to eight security notions xx-yy-zzz, where xx ∈ {1,many},
yy ∈ {NA,AD}, and zzz ∈ {IND, SIM}.

Recent work. We briefly outline the known relationships amongst these eight
notions. We note that in general, indistinguishability based security provides a
weaker guarantee than simulation based security (that is, xx-yy-SIM implies xx-
yy-IND and xx-yy-IND does not imply xx-yy-SIM in general); on the other hand,
we have that 1-yy-IND implies many-yy-IND. Boneh, et al. [BSW11] pointed out
that indistinguishability based security is vacuous and inadequate for certain
circuit families, which indicate that we should opt for simulation-based security
whenever possible.2 O’Neill [O’N10] showed that NA-IND and NA-SIM are equiv-
alent for some subclass of circuit families that are roughly speaking, “easy to
invert”.

All prior positive results achieve many-AD-IND security or relaxations there-
of.3 The only known impossibility result we have for general functional encryp-
tion is that of Boneh et al. [BSW11] for realizing the IBE functionality under
many-AD-SIM security. In particular, in light of known results, it is entirely

2 [BSW11, Section 5.3] presents an “equivalence” between many-AD-IND and many-
AD-SIM in the programmable random oracle model for public-index predicate
encryption. For this work, we consider only the standard model.

3 A commonly used relaxation of AD-IND security for predicate encryption is that of
“selective security” [CHK03].
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realizable for public-index realizable for all circuits

xx-yy-IND [GVW13,GGH+13]4 open

xx-yy-SIM
open no (Section 4)(xx = 1 OR yy = NA)

many-AD-SIM no [BSW11] no ←

xx-yy-USIM
open open(xx = 1 OR yy = NA)

many-AD-USIM no [BSW11] � no ←

Fig. 1. Summary of results and open problems. Results from this work are marked
with boldface. Results implicit in previous works are marked with �. Results that are
trivially implied by results in a previous column are marked with ←. The second and
third columns indicate whether the definition is realizable for all public-index predicate
encryption schemes (e.g. IBE) and for all circuits respectively. USIM refers to the notion
of unbounded simulation discussed in Section 1.2.

conceivable that we can realize functional encryption for all poly-size circuits
under either 1-AD-SIM security (thus 1-AD-IND and many-AD-IND security) or
many-NA-SIM security.

In this work, we narrow the gap between existing security definitions for
functional encryption, as well as that between existing constructions and im-
possibility results. Our results are as follows.

1.1 New Lower Bound: Impossibility for Simulation-Based
Definitions

Our main result rules out general functional encryption under the one message
secure, non-adaptive simulation definition (1-NA-SIM). In particular, this rules
out both of the scenarios presented at the end of the preceding section (i.e. 1-
AD-SIM or many-NA-SIM for all circuits) in a strong sense. This is the first lower
bound that exploits unbounded collusions in an essential way. We compare the
impossibility result from [BSW11] with ours in the full version.

Theorem 1 (Informal). There exists a circuit family C for which there is no
1-NA-SIM-secure functional encryption scheme.

Specifically, assuming the existence of a family of weak pseudo-random function
wPRF(·, ·) (See Definition 3) that outputs one bit, we show that there does not
exist a functional encryption scheme for the family:

Cd(x) = wPRF(x, d),where the input message x is the PRF seed

We show that the ciphertext size in a 1-NA-SIM-secure scheme realizing this
circuit family must grow with the size of the collusion; this yields a contradic-
tion, since the scheme must handle unbounded collusions. In fact, the result is



504 S. Agrawal et al.

unconditional since any non-trivial functional encryption scheme gives rise to a
one-way function and thus pseudo-random functions.

The key observation is as follows. Suppose the adversary requests for q
secret keys corresponding to random inputs Cd1 , . . . , Cdq and then requests
for an encryption of a random x. Then, the simulated ciphertext together
with the q simulated secret keys constitute a description of the values
wPRF(x, d1), . . . ,wPRF(x, dq), which is computationally indistinguishable from
a sequence of q truly random bits via pseudo-randomness. By a standard
information-theoretic argument, this means that the length of the ciphertext
plus the secret keys must grow with q. To obtain a lower bound on the
ciphertext size, we carefully exploit the fact that the simulator has to generate
the secret keys before it sees the output of wPRF(x, ·). Then, the simulator
has to generate a small ciphertext that “explains” all these pseudorandom
values which is impossible using a compressibility argument. More generally, we
show that (1) weak pseudo-random family is “incompressible”, and (2) NA-SIM-
secure functional encryption only exists for “compressible” circuit families.
(In particular, the circuit family for all public-index predicate encryption is
compressible.)

This idea is reminiscent of the obfuscation impossibility result of Goldwasser
and Kalai [GK05], although the precise settings are quite different (in particular,
functional encryption and program obfuscation seem incomparable, although
related, objects).

Implications. The basic idea described above can be extended to a lower bound
for even weaker forms of the simulation-based definition, including (a non-
adaptive variant of) the definition of Boneh, Sahai and Waters [BSW11]. Here,
we mention yet another implication of this idea.

Gorbunov, Vaikuntanathan andWee [GVW12] recently presented a 1-AD-SIM-
secure functional encryption scheme for all circuits, assuming that the adversary
can only corrupt an a-priori bounded number of users (and thus, get the corre-
sponding secret keys). One of the shortcomings of their bounded-collusion secu-
rity notion as well as their construction is that the parameters of the system, and
especially the size of the ciphertext depends on the collusion bound q. A natural
question is whether their ciphertexts can be made to have size independent of q
(or, at the very least, o(q)).5 Indeed, in light of the results of Dodis, Katz, Xu and
Yung [DKXY02] and most recently, Goldwasser, Lewko and Wilson [GLW12] in
the context of bounded-collusion IBE, one might expect that achieving “short”
ciphertexts can actually be possible in general.

Unfortunately, our techniques result in a strong negative answer to this
question.

5 The previous lower bound for many-AD-SIM IBE in [BSW11] (which says that the
secret key size must grow with the number of challenge ciphertexts) is not applicable
here as the [GVW12] construction considers only a single challenge ciphertext.
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Corollary 1. There exists a family of circuits C such that for every q = q(κ),
there are no q-collusion resistant 1-NA-SIM-secure functional encryption schemes
with ciphertexts of size o(q).

1.2 New Perspectives: Unbounded Simulation

The preceding lower bound together with those of Boneh, Sahai and Waters
[BSW11] show that even fairly weak simulation-based definitions of functional
encryption are unachievable for a large and natural class of circuits. This state
of affairs begs the question:

What is a meaningful and generally realizable security notion for func-
tional encryption?

While we do not provide a definitive answer to this question in our work, we
believe that the quest for the right definition should incorporate insights from
secure computation and zero knowledge. Indeed, Sahai and Seyalioglu [SS10]
used Yao’s garbled circuits to construct a one-query secure functional encryption
scheme for all circuits. Subsequently, Gorbunov et al. [GVW12] exploited more
techniques and insights from secure computation [Yao86,BGW88,BMR90] to de-
rive general feasibility results for functional encryption with bounded collusions.

We put forth USIM security, where the simulator has unbounded computa-
tional power. In particular, this would allow us to circumvent our lower bound
in the previous section, since the lower bound crucially relies on the existence
of an efficient simulator in order to break the weak pseudo-random function.
Similar notions have been considered for zero knowledge and secure computation
[Pas03,PS04,BS05].6 In the more basic setting of public-key encryption, we know
that IND and SIM are equivalent [GM82], and it follows readily that all of IND,
USIM, and SIM are also equivalent.

We begin an intuitive interpretation of what USIM security buys us, via the
real/ideal paradigm. Consider an efficient adversary A holding a secret key skC .
Then, an encryption of x leaks no more information about x apart from what
a computationally unbounded adversary can learn from C(x). Specifically, in
the case of public-index predicate encryption where the predicate is false, C(x)
hides the payload message μ completely, even against unbounded adversaries.
Thus, USIM security for public-index predicate encryption offers very meaning-
ful simulation-based security.7 On the other hand, for circuits that only hide

6 The works on zero knowledge and secure computation focus on quasi-polynomial-
time simulators. We observe that our lower bound also rules out quasi-polynomial-
time simulators assuming the existence of one-way functions with sub-exponential
hardness.

7 Prior work of O’Neill [O’N10, Section 4] implies that NA-IND,NA-USIM and NA-SIM
are equivalent for public-index predicate encryption. This does not subsume the
point we are making because our argument applies also to the adaptive setting,
where AD-IND and AD-SIM are provably not equivalent for public-index predicate
encryption.
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information about x computationally, USIM security would be inadequate and
SIM security remains the desirable notion.

We observe that USIM security is “sandwiched” between IND and SIM security,
that is, for yy ∈ {NA,AD}:

yy-IND ⇐ yy-USIM ⇐ yy-SIM

This result holds for both single and many message definitions. Then, we build
upon the results in [BSW11] to obtain separations and impossibility results for
USIM security:

– We present a counter-example separating SIM and USIM security. In fact,
the example (which encodes a one-way permutation into the circuit family)
is exactly that in [BSW11, Section 4.2] for separating SIM and IND security.

– We show that it is impossible to achieve many-AD-USIM security for the
IBE functionality. This strengthens the many-AD-SIM lower bound for IBE
in [BSW11, Section 5.2]. That is, the latter is fundamentally about the
limitations of simulation-based security notion, and not about efficiency.

– A discussion in [BSW11] pointed that IND security is inadequate whenever
“the output of the functionality is supposed to have some computational
hiding properties”; however, there was no precise formalization of the lat-
ter. USIM security provides a way to make this statement precise. Recall
that USIM security implies IND security, and therefore, if USIM security is
inadequate for some functionality, then IND security must be inadequate
for the same functionality. Thanks to the real/ideal paradigm, we have a
simple “litmus test” for checking whether USIM security is adequate or not.
Specifically, USIM security is inadequate if C(x) reveals more information
about x to an unbounded adversary than to an efficient adversary. (Indeed,
this is trivially the case for the separation for USIM and SIM security since
an unbounded adversary can invert the one-way permutation.)

We leave as an intriguing open problem the question of establishing either a
separation or an equivalence between USIM and IND security. As a first step,
we establish an equivalence between USIM and IND security in the “fully non-
adaptive” setting, where all queries and messages are generated by the adversary
before it sees the public parameters (See Remark ?? for details).

Organization. We refer the reader to Figure 1 for a survey of our results and
open problems, and to Appendix ?? for results on the unbounded simulator
definition.

1.3 Discussion

FunctoMania. Let’s be wishful thinkers for a minute – suppose we can have
whatever we hope for in functional encryption, call this world “Functomania”.
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What does Functomania look like? In light of the existing (im)possibilities, there
will be two incomparable “dream results”8:

– 1-AD-SIM secure public index predicate encryption for all efficient predicates;
such schemes also satisfy 1-AD-IND, 1-AD-USIM, and many-AD-IND security.

– 1-AD-USIM secure functional encryption for all poly-size circuits; such schemes
also satisfy 1-AD-IND and many-AD-IND security.

The IND-(U)SIM Conundrum. From a definitional stand-point, SIM/USIM-based
security notions are preferable to IND-based security notion, as they offer a
stronger security guarantee that has a natural, intuitive and aesthetically pleas-
ing interpretation via the real/ideal paradigm. On the other hand, IND-based
security notion allows us to bypass the impossibility results given in [BSW11]
and in this work; in addition, they guarantee message composability in that
security with a single ciphertext implies security for multiple ciphertexts (and
so does NA-SIM considered in [GVW12] and those considered in an independent
work [BF13]). We do not offer a complete answer to this conundrum; instead, we
point out that 1-AD-SIM and 1-AD-USIM appear to be an adequate compromise
for predicate encryption and general functional encryption respectively. We also
note that such a conundrum is not unique to functional encryption, and has
indeed previously surfaced and widely studied in the context of zero knowl-
edge [FS90,Pas03] and secure multi-party computation [PS04,BS05,MPR06].
One notable difference is that in zero knowledge and secure computation, super-
polynomial time simulation offers concurrency; this is not the case for functional
encryption. (The lower bound for many-AD-USIM-secure IBE indicates that even
unbounded-time simulation does not help with message composability.)

Concurrent and Independent Work. In an independent work, Bellare and O’Neill
[BO12] put forth simulation-based definitions for functional encryption with non-
black-box simulators. In addition, they extended the [BSW11] lower bound for
IBE to the setting of efficient, non-black-box simulators, assuming the existence
of collision-resistant hash functions. At a high level, the work is similar in spirit
to our results on USIM security in that both consider larger classes of simulators
than that in [BSW11] The independent work of Barbosa and Farshim [BF13]
takes a orthognal approach, namely to restrict the adversary’s key queries via
some “potential leakage relation”.

As with [BSW11], the definitions we study in this work are “inherently black-
box” since the simulator must explicitly provide the adversary with secret keys
and ciphertexts. Moreover, our NA-SIM lower bound relies crucially on black-box
simulation as the compression comes from the simulated ciphertext. This leaves
as an open problem the question of realizing (or ruling out) many-AD-USIM IBE
with a non-black-box simulator.

8 Substantial progress were made recently on both of these problems in
[SW12,GVW13,GKP+13].
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2 Functional Encryption

Let X = {Xκ}κ∈N and Y = {Yκ}κ∈N denote ensembles where each Xκ and Yκ

is a finite set. Let C =
{
Cκ
}
κ∈N

denote an ensemble where each Cκ is a finite
collection of circuits, and each circuit C ∈ Cκ takes as input a string x ∈ Xκ and
outputs C(x) ∈ Yκ.

A functional encryption scheme FE for C consists of four algorithms FE =
(FE.Setup,FE.Keygen, FE.Enc,FE.Dec) defined as follows9.

– Setup FE.Setup(1κ) is a p.p.t. algorithm takes as input the unary represen-
tation of the security parameter and outputs the master public and secret
keys (MPK,MSK).

– Key Generation FE.Keygen(MSK, C) is a p.p.t. algorithm that takes as
input the master secret key MSK and a circuit C ∈ Cκ and outputs a
corresponding secret key SKC .

– Encryption FE.Enc(MPK, x) is a p.p.t. algorithm that takes as input the
master public key MPK and an input message x ∈ Xκ and outputs a cipher-
text CT.

– Decryption FE.Dec(SKC ,CT) is a deterministic algorithm that takes as
input the secret key SKC and a ciphertext CT and outputs C(x).

Definition 1 (Correctness). A functional encryption scheme FE is correct if
for all C ∈ Cκ and all x ∈ Xκ,

Pr

[
(MPK,MSK) ← FE.Setup(1κ);

FE.Dec(FE.Keygen(MSK, C),FE.Enc(MPK, x)) �= C(x)

]
= negl(κ)

where the probability is taken over the coins of FE.Setup, FE.Keygen, and FE.Enc.

2.1 A Simulation-Based Definition of Security

In this section, we present a simulation-based definition of functional encryption,
similar in spirit to the way one defines security for secure computation via the
ideal/real paradigm. We define the security game for a single message since our
lower bounds apply to this weaker setting. However, this definition can be easily
extended to many messages setting (see Appendix ??).

Definition 2 (1-NA-SIM- and 1-AD-SIM- Security). Let FE be a functional
encryption scheme for a circuit family C. Consider a p.p.t. adversary A =
(A1, A2) and a stateful p.p.t. simulator Sim.10 Let Ux(·) denote a universal
oracle, such that Ux(C) = C(x). Consider the following two experiments:

9 Unlike in [BSW11], we do not consider the “empty key”.
10 One can replace a stateful simulator can be replaced by a regular (stateless)

simulator that outputs a state sts upon each invocation which is carried over to
its next invocation.
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ExprealFE,A(1
κ): ExpidealFE,Sim(1

κ):

1: (MPK,MSK) ← FE.Setup(1κ)

2: (x, st) ←A
FE.Keygen(MSK,·)
1 (MPK)

3: CT ← FE.Enc(MPK, x)

4: α ← A
O(MSK,·)
2 (MPK,CT, st)

5: Output (x, α)

1: MPK ← Sim(1κ)

2: (x, st) ← A
Sim(·)
1 (MPK)

3: CT ← SimUx(·)(1κ, 1|x|)

4: α ← A
O′(·)
2 (MPK,CT, st)

5: Output (x, α)

We distinguish between two cases of the above experiment:

1. The adaptive experiment, where:
– the oracle O(MSK, ·) = FE.Keygen(MSK, ·) and
– the oracle O′(·) is the simulator, namely SimUx(·)(·)

We call a stateful simulator algorithm Sim admissible if, on each input C,
Sim makes just a single query to its oracle Ux(·) on C itself.
The functional encryption scheme FE is then said to be simulation-secure
for one message against adaptive adversaries (1-AD-SIM-secure, for short) if
there is an admissible stateful p.p.t. simulator Sim such that for every p.p.t.
adversary A = (A1, A2), the following two distributions are computationally
indistinguishable:{

ExprealFE,A(1
κ)

}
κ∈N

c≈
{
ExpidealFE,Sim(1

κ)

}
κ∈N

2. The non-adaptive experiment, where the oracles O(MSK, ·) and O′(·) are
both the “empty oracles” that return nothing.
The functional encryption scheme FE is then said to be simulation-secure for
one message against non-adaptive adversaries (1-NA-SIM-secure, for short) if
there is an admissible stateful p.p.t. simulator Sim such that for every p.p.t.
adversary A = (A1, A2), the two distributions above are computationally
indistinguishable.

Remarks on the Definition. Our definition is stronger than that in [BSW11] but
weaker than that in [GVW12]; our lower bound in Section 4 holds for all three
definitions. Amongst the three, the one in [GVW12] is the only for which we
know a composition theorem where security for one message implies security
for many messages, in the non-adaptive setting. Note that composition in the
non-adaptive setting is the “best” we can hope for; composition in the adaptive
setting is essentially impossible by many-AD-SIM lower bound for IBE [BSW11].
In more detail:

– In [BSW11], the simulator is given oracle access to A2, which it can
call on any ciphertext. Therefore, it can “rewind” the adversary A2 and
adaptively reconstruct the view, which is problematic for composition
[PRS02,Lin04,BMQU07]. We call this a “rewinding” definition. In our
“straight-line” definition, the simulator must commit to a ciphertext once
and for all, which makes it stronger.
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– Unlike our definition, the [GVW12] definition does not allow the simulator
to fake or “program” the setup parameters and the secret keys. The difficulty
in proving a composition theorem for our definition lies in that the simulator
may use “trapdoor” information from faking the setup parameters and secret
keys while simulating the ciphertext.

We note that in the equivalence of NA-IND and NA-SIM under pre-image sam-
pleability in [O’N10, Section 4], the NA-SIM-simulator actually satisfies the
stronger definition in [GVW12].

The Indistinguishability-based Definition of Security. We refer the reader to the
full version for the non-adaptive NA-IND and the adaptive AD-IND notions of
security.

3 Preliminaries

Notations. Let D denote a distribution over some finite set S. Then, x ← D is
used to denote the fact that x is chosen from the distribution D. When we say
x ← S, we simply mean that x is chosen from the uniform distribution over S.
Let κ denote the security parameter.

Definition 3 (wPRF). Let wPRF = {wPRFκ}κ∈N denote a family of efficiently
computable functions where wPRFκ : {0, 1}n(κ) × {0, 1}m(κ) → {0, 1}k(κ), the
first argument of which is called the seed to the wPRF and the second argument
is the input.

For every probabilistic polynomial time oracle distinguisher Dist, consider the
following two experiments:

– RealDist(1
κ): Choose x

$← {0, 1}n(κ) and run Dist with access to a probabilis-
tic oracle Oreal(x) which, when invoked, chooses a uniformly random d ←
{0, 1}m(κ) and returns the pair (d,wPRFκ(x, d)). This experiment outputs
whatever Dist outputs.

– RandDist(1
κ): Choose a uniformly random function R : {0, 1}m(κ) →

{0, 1}k(κ) and run Dist with access to a probabilistic oracle Orand(R) which,
when invoked, chooses a uniformly random d ← {0, 1}m(κ) and returns the
pair (d,R(d)). This experiment outputs whatever Dist outputs.

We say wPRF is a weak pseudo-random function if for all p.p.t. distinguishers
Dist, ∣∣Pr[RealDist(1

κ) = 1]− Pr[RandDist(1
κ) = 1]

∣∣ = negl(κ)

where the probabilities are over the choice of x and R, as well as the coin-tosses
of Dist and the oracles Oreal and Orand.

This is in contrast to the stronger notion of (regular) pseudo-random functions
where the distinguisher Dist gets query access to the function, namely it can
query the function on inputs x of its choice and get either the output of the
function (in the real world) or independent random bits (in the ideal world).

In our impossibility result, we will use a weak pseudo-random function with
seed length n(κ) = κ and output length k(κ) = 1.



Functional Encryption: New Perspectives and Lower Bounds 511

4 Impossibility Results for Functional Encryption

In this section, we present our main lower bound for 1-NA-SIM-secure functional
encryption. We begin with a notion of “incompressible” circuits. Then, we show
that (1) weak pseudo-random functions are “incompressible”, and (2) 1-NA-SIM-
secure functional encryption only exists for “compressible” circuits. Putting the
two together yields our lower bound.

4.1 Incompressible Circuits

We first define a family of compressible circuits. Informally, we say that a family
of circuits {Gκ} is (�, t)-compressible if for a list of uniformly random circuit
descriptions G1, . . . , G� ∈ Gκ and a uniformly chosen input x, there is some
efficiently computable description of G1(x), . . . , G�(x) of size t.

Definition 4 (Incompressible Circuits). Let � = �(κ) and t = t(κ) be
functions of the security parameter κ. A family of circuits G = {Gκ}κ∈N is
(�, t)-compressible if there exists a family of (deterministic) compressor circuits
{Cκ}κ∈N and a family of decompressor circuits {Dκ}κ∈N such that:

– (polynomial size) the circuits Cκ and Dκ have size poly(κ, �).
– (mild compression) for sufficiently large κ and all x,∣∣Cκ(G1, . . . , G�, y1, . . . , y�)

∣∣ = t

where yi = Gi(x).
– (correctness) there is a polynomial p = p(κ) such that

Pr[x
$←{0, 1}κ, G1, . . . , G�

$← Gκ, yi = Gi(x) :

Dκ(G1, . . . , G�,Cκ(G1, . . . , G�, y1, . . . , y�)) = (y1, . . . , y�)] ≥ 1/p(κ)

where the probability is taken over the choice of x as well as the circuits
G1, . . . , G�.

The family G is (�, t)-incompressible if it is not (�, t)-compressible.

We now give examples of (in)compressible circuits. First, consider the notion
of pre-image samplable family of circuits introduced by O’Neill [O’N10] which
requires that given G1(x), . . . , G�(x), there is a polynomial-time algorithm that
returns an arbitrary x′ such that Gi(x

′) = Gi(x) for all i. In our language, this
says that the family G is (�, |x′|)-compressible; the compression algorithm simply
outputs x′.

Next, consider an arbitrary public-index circuit family parametrized by pred-
icates P and given by:

GP (ind, μ) =

⎧⎨⎩ (ind, μ) if P (ind) = 1

(ind,⊥) otherwise
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It is easy to see that this circuit family is (�, |(ind, μ)|)-compressible. On input

GP1(ind, μ), . . . , GP�
(ind, μ)

the compression algorithm always learn ind. In addition, if Pi(ind) = 1 for some
i, then the compressor also learns μ and hence it outputs (ind, μ). If Pi(ind) = 0
for all i, then the compressor outputs (ind,⊥). Given

(
GP1 , . . . , GP�

, (ind, μ)
)

the decoding algorithm outputs yi = (ind, μ) if GPi(ind) = 1 and yi = (ind,⊥
) otherwise. Given

(
GP1 , . . . , GP�

, (ind,⊥)
)
the decoder simply outputs yi =

(ind,⊥) for all i.
On the other hand, as we show below (see Lemma 1), any family of (weak)

pseudo-random functions is incompressible in a strong sense. More precisely,
consider a family of circuits G = {Gdi(·) = wPRF(·, di)} where di serves as the
input to the pseudo-random function. Informally, the incompressibility is due to
the fact that a sequence (Gd1(x), . . . , Gd�

(x)) = (wPRF(x, d1), . . . ,wPRF(x, d�))
is indistinguishable from a sequence of uniformly random bits, which are clearly
incompressible.

Lemma 1 (weak PRFs are (�, �−κ)-incompressible). Let wPRF = {wPRFκ :
{0, 1}κ × {0, 1}m(κ) → {0, 1}}κ∈N be a family of weak pseudo-random functions,
where m(κ) = ω(log κ). Define Gd(x) = wPRF(x, d). Consider a family G =
{Gκ}κ∈N defined as

Gκ =
{
Gd(·) : |d| = m(κ)

}
Then, G is (�, �− κ)-incompressible.

We refer the reader to the full version for the formal proof.

4.2 The Impossibility Result

We are now ready to state and prove our main theorem.

Theorem 2. There exists a family of circuits G for which there are no 1-
NA-SIM-secure functional encryption schemes.

Proof. We consider two cases.

Case 1: Assume there exists a circuit family of weak pseudo-random functions

wPRF = {wPRFκ : {0, 1}κ × {0, 1}m(κ) → {0, 1}}κ∈N

where m(κ) = ω(log κ). Let Gd(x) = wPRF(x, d) and consider a family G =
{Gκ}κ∈N defined as

Gκ =
{
Gd(·) : |d| = m(κ)

}
Assume, for the sake of contradiction, there exist a 1-NA-SIM-secure function
encryption scheme FE for G, and let |CT| denote the length of a ciphertext in
the scheme. Let � = �(κ) = |CT|+ κ.

From Lemma 1, we know that G is (|CT|+ κ, |CT|)-incompressible. However,
Lemma 2 below tells us that since there is a 1-NA-SIM secure scheme for G, the
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family G is (|CT| + κ, |CT|)-compressible. This gives us the desired contradic-
tion, and therefore, there cannot exist a 1-NA-SIM-secure functional encryption
scheme for G.

Case 2: Assume there does not exist a family of weak pseudo-random func-
tions. Also, for the sake of contradiction, assume there exists a 1-NA-SIM-secure
function encryption scheme for all families of circuits G.

In particular, this means that there is a functional encryption scheme for the
empty circuit family (namely, a family G that does not contain any circuits at
all). A 1-NA-SIM-secure scheme FE for G is also a secure public-key encryp-
tion scheme. Since public-key encryption implies one-way functions, which in
turn imply pseudo-random functions [GGM86,HILL99], we obtain the desired
contradiction.

Lemma 2 (1-NA-SIM ⇒ (�, |CT|)-compressibility). Let G = {Gκ}κ∈N be a
family of circuits. Suppose there exists a 1-NA-SIM-secure functional encryption
scheme for the G. Then, the family G is (�, |CT|)-compressible for any polynomially
bounded � = �(κ), where |CT| denotes size of the encryption of input x.

Informally, the compression algorithm works as follows: on input G1, . . . , G� and
G1(x), . . . , G�(x), the output is the simulated ciphertext corresponding to an
encryption of x. The decompression algorithm then evaluates the decryption
algorithm, which is guaranteed to produce G1(x), . . . , G�(x).

Proof. Let (FE.Setup,FE.Keygen,FE.Enc,FE.Dec) denote the encryption scheme
for the family G. Consider the adversary A = (A1, A2) in the 1-NA-SIM security
experiment that acts as follows:

– A1 chooses G1, . . . , G�
$← G independently at random and requests for

the corresponding secret keys SK1, . . . , SK�. In addition, it chooses x
$←

{0, 1}m(κ) and outputs x as the challenge message and state

(G1, . . . , G�, SK1, . . . , SK�)

– A2 outputs α composed of the challenge ciphertext and the state

(G1, . . . , G�, SK1, . . . , SK�)

Let Sim denote the (admissible) stateful p.p.t. simulator guaranteed by 1-NA-SIM
security. We show how to use the simulator to construct a family of (determin-
istic) compressor and decompressor circuits Cρ and Dρ, indexed by a random
string ρ corresponding to the random tape for the simulator:

– The compressorCρ, on input G1, . . . , G� and y1, . . . , y� works as follows: first,
compute MPK ← Sim(1κ; ρ) and secret keys {SKi : SKi ← Sim(Gi; ρ)}i∈[�].
Then compute and output CT as the compressed string, where queries Gi(x)
are answered with yi:

CT ← SimUx(·)(1|m(κ)|)
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– The decompressor Dρ, on input G1, . . . , G� and CT first reconstructs the
master public key MPK ← Sim(1κ; ρ) and the set of secret keys:

{SKi : SKi ← Sim(Gi; ρ)}i∈[�]

Note that Dρ has the same randomness ρ hard-wired, and so the secret keys
SKi are exactly the same as those used by Cρ. Finally, it computes and
outputs: {

yi ← FE.Dec(SKi,CT)
}
i∈[�]

Formally, we output (Cρ,Dρ) for a random ρ, which is a pair of polynomial-size
circuits. Clearly, we achieve mild compression (where |CT| is the compressor’s
output size), since the size of CT is determined by the functional encryption
scheme and independent of �. To establish correctness, it suffices to show that:

Pr
ρ,x,G1,...,G�

[Dρ(G1, . . . , G�,Cρ(G1, . . . , G�, G1(x), . . . , G�(x))) =

(G1(x), . . . , G�(x))] ≥ 1− negl(κ)

Here, we will rely on the correctness of the functional encryption scheme as well
as 1-NA-SIM-security. First, consider the distinguisher Dist that given the output
(x,CT, G1, . . . , G�, SK1, . . . , SK�) of the adversary A2 proceeds as follows:

Output 1 iff for all i ∈ [�], FE.Dec(SKi,CT) = Gi(x).

Observe that by correctness of the encryption scheme, Dist outputs 1 with
probability 1−negl(κ) given the output of the adversary A2 in the 1-NA-SIM ex-
periment. Therefore, by 1-NA-SIM-security, Dist also outputs 1 with probability
1−negl(κ) given the output of the (admissible) simulator, where the randomness
is taken over the coin tosses ρ of the simulator, along with the random choices
of x,G1, . . . , G�.

This shows that the pair of circuits (Cρ,Dρ) for a uniformly random ρ
is a correct compressor-decompressor pair. Therefore, we obtain a (�, |CT|)-
compressor and a decompressor, thus establishing the lemma.

We point out here that our lower bound extends to the setting where the
simulator is not required to be admissible, by using a family of (standard)
pseudo-random functions.

Finally, the argument here generalizes to showing that functional encryption
secure against an a-priori bounded number q = q(κ) of collusions is impossible
if one insists on small ciphertexts (namely, ciphertexts with much fewer than q
bits). This matches the recent result of [GVW12] who construct such functional
encryption schemes with ciphertexts of size polynomial in q.

Corollary 2. There exists a family of circuits G such that for every q = q(κ),
there are no q-collusion resistant 1-NA-SIM-secure functional encryption schemes
with ciphertexts of size o(q).
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4.3 Extensions: Impossibility of Weaker Simulation-Based
Definitions

The idea behind our impossibility result is robust enough to apply to various re-
laxations of the simulation-based security definition. In this section, we describe
a number of such extensions of our result.

Impossibility for the Selective and Random-Input Definitions. In the selective
model, the adversary is required to commit to the secret key queries G1, . . . , Gq

as well as the challenge input x before the setup phase. In particular, this means
that the adversary will not be able to pick up the circuits or the challenge input
depending on the system parameters. Variants of the selective security model are
frequently considered in the literature as a relaxations of regular security notions
(see, e.g., [BB11,GPSW06,AFV11]). Another relaxation one can consider is one
where the adversary is not allowed to choose the circuits or the challenge, but
instead, they are chosen uniformly at random.

Our lower bound easily extends to these weaker notions, simply because the
adversary we consider in the proof of Lemma 2 chooses the circuits and the
challenge uniformly at random, and independent of the system parameters.

Impossibility for the Non-Adaptive BSW Definition (the “Rewinding Defini-
tion”). The main difference between the definition proposed by [BSW11] and
our definition in Section 2 is that whereas our definition restricts the simulator
to be “straight-line”, the BSW definition allows the simulator to “rewind” the
adversary and interact with it in order to generate the view. For more details,
we direct the reader to the full version.

We also state the impossibility extension for secret-key functional encryption
in the full version.
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Abstract. This work attempts to clarify to what extent simulation-
based security (SIM-security) is achievable for functional encryption (FE)
and its relation to the weaker indistinguishability-based security (IND-
security). Our main result is a compiler that transforms any FE scheme
for the general circuit functionality (which we denote by Circuit-FE)
meeting indistinguishability-based security (IND-security) to a Circuit-
FE scheme meeting SIM-security, where:

– In the random oracle model, the resulting scheme is secure for an un-
bounded number of encryption and key queries, which is the strongest
security level one can ask for.

– In the standard model, the resulting scheme is secure for a bounded
number of encryption and non-adaptive key queries, but an un-
bounded number of adaptive key queries. This matches known im-
possibility results and improves upon Gorbunov et al. [CRYPTO’12]
(which is only secure for non-adaptive key queries).

Our compiler is inspired by the celebrated Fiat-Lapidot-Shamir paradigm
[FOCS’90] for obtaining zero-knowledge proof systems from witness-
indistinguishable proof systems. As it is currently unknown whether
Circuit-FE meeting IND-security exists, the purpose of this result is to
establish that it remains a good target for future research despite known
deficiencies of IND-security [Boneh et al. – TCC’11, O’Neill – ePrint ’10].
We also give a tailored construction of SIM-secure hidden vector encryp-
tion (HVE) in composite-order bilinear groups. Finally, we revisit the
known negative results for SIM-secure FE, extending them to natural
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weakenings of the security definition and thus providing essentially a full
picture of the (in)achievability of SIM-secure FE.

Keywords: Functional Encryption, Hidden Vector Encryption,
Simulation-Based Security.

1 Introduction

Let F : K ×M → Σ be a functionality, where K is the key space and M is the
message space and Σ is the output space. Then a functional encryption scheme
for F (or F -FE scheme) [23,7] is a special encryption scheme in which, for every
key k ∈ K, the owner of the master secret keyMsk associated with the public key
Pk can generate a special key or “token” Tokk that allows the computation of
F (k,m) from a ciphertext of m computed under public key Pk. In other words,
whereas in traditional encryption schemes decryption is an all-or-nothing affair,
in FE it is possible to finely control the amount of information that is revealed
by a ciphertext. This opens up exciting applications to access control, searching
on encrypted data [6], and secure delegation of computation (cf. [22]), among
others.

Unlike in the case of classical cryptosystems, a general study of the secu-
rity of FE did not appear initially. Instead, progressively more expressive forms
of FE were constructed in a series of works (see, e.g., [23,16,8,17,18,20,24,15])
that adopted indistinguishability-based (IND) notions of security. The study of
simulation-based (SIM) notions of security for FE were initiated only compara-
tively recently by Boneh, Sahai, and Waters [7] and O’Neill [21].1 In particular,
they show there exist clearly insecure FE schemes for certain functionalities that
are nonetheless deemed secure by IND-security, whereas these schemes do not
meet the stronger notion of SIM-security. On the other hand, negative results
have also emerged showing SIM-security is not always achievable [7,3,1]. This
leads to the main questions that we study in this work:

To what extent is SIM-security for FE achievable? In particular, can
schemes for IND-secure FE be “compiled” to ones meeting the stronger
notion of SIM-security?

In order to make these questions more precise, let us call an F -FE scheme
(q1, �, q2)-SIM-secure (resp. (q1, �, q2)-IND-secure) if it is secure under the re-
spective security definition for adversaries making at most q1 “non-adaptive” key
queries (i.e., before seeing the challenge ciphertexts), q2 “adaptive” key queries
(i.e., after seeing the challenge ciphertexts), and at most � encryption queries

1 Very roughly, in both definitions the adversary makes key-derivation queries, then
queries for challenge ciphertexts, then again makes key-derivation queries. IND-
security asks that the adversary cannot distinguish between encryptions of messages
that it cannot trivially distinguish using the keys. SIM-security asks that the “view”
of the adversary can be simulated by simulator given neither ciphertexts nor keys
but only the corresponding outputs of the functionality on the underlying plaintexts.
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(i.e., the number of challenge ciphertexts). Note that these bounds are fixed a
priori and do not vary per adversary. In the case that a parameter is unbounded
we denote it by poly, so for example (poly, poly, poly)-SIM security means SIM-
security where the number of encryption and key queries are all unbounded. Of
particular interest is F = Circuit, meaning the general circuit functionality.

A Compiler for General Functionalities. Our main result is a compiler that
takes a IND-secure Circuit-FE scheme and produces a SIM-secure Circuit-FE
scheme. More specifically, in the random oracle (RO) model [4], we show the ex-
istence of a (poly, poly, poly)-IND-secure Circuit-FE scheme implies the existence
of a (poly, poly, poly)-SIM-secure Circuit-FE scheme. In the standard (random
oracle devoid) model, we show the existence of a (poly, poly, poly)-IND-secure2

Circuit-FE scheme implies the existence of a (q1, �, poly)-SIM-secure Circuit-FE
scheme for any polynomials q1, �. The result in the standard model is optimal in
that it matches recent impossibility results [7,1,3] discussed later.

We note that it is currently a central open question in FE to construct a
(poly, poly, poly)-IND-secure Circuit-FE scheme.3 If such a scheme is achieved,
we will obtain interesting new results via our compiler. To compare, Boneh et
al. [7] achieve (poly, poly, poly)-SIM-secure identity-based encryption (IBE) in the
RO model; in fact, they explicitly raise the open question of constructing SIM-
secure Circuit-FE in the RO model. Gorbunov et al. [14] construct Circuit-FE
(in the standard model) which achieves only (q1, �, 0)-SIM-security (instead of
q2 = poly). See Table 1.

Our Techniques. Our compiler is inspired by the construction of zero-knowledge
proof systems from witness indistinguishable proof systems, as studied in the cel-
ebrated work of Feige, Lapidot and Shamir [12]. Recall that in the FLS paradigm,
the simulator operates the proof system in a “trapdoor” mode which is indis-
tinguishable from the behavior of the honest party to the adversary. Adopting
this paradigm to FE, our compiler produces “trapdoor circuits” which have ad-
ditional “slots” in plaintext and keys that are used only by the simulator, not by
the real system. To illustrate our techniques, consider the simpler case of a single
challenge ciphertext and only adaptive key queries. Then, at a very high-level,
instead of F we use a trapdoor circuit Ftrap with an additional slot flag in the
plaintext and an additional slot value in the key, namely:

Ftrap((k, value), (m, flag)) =

{
F (k,m) if flag = 0

value if flag = 1

(This is not actually sufficient because a key may reveal value, but we are just
trying to get a rough idea across; see Section 3 for the full constructions.) An
honest encryptor will always set flag = 0, but the simulator will set flag = 1

2 This can be relaxed to (q1, �, poly)-IND-security.
3 We emphasize that, since our transformation matches the known impossibility results,
we do not obtain any impossibility result for (poly, poly, poly)-IND-secure Circuit-FE.
Indeed, we believe (poly, poly, poly)-IND-secure Circuit-FE is possible.
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and can then set value in the tokens it gives out to program the output Ftrap

appropriately. The proof of SIM-security is by reduction to IND-security of the
underlying scheme, since the output of Ftrap in the flag = 0 and flag = 1 cases
will be the same.

Why is IND-security Enough? The above shows that, surprisingly, despite the
weakness of IND-security for certain functionalities shown in [7,21], an IND-
secure FE scheme for general circuits is enough to go “all the way” to a SIM-
secure one. To see how this can be possible, let us look at the counter-example
functionality of [21], which is an f (which we think of here as a circuit) for
which there is another function g such that g is “hard to compute” from f but
is “isomorphic” to g, meaning f and g have the same equality pattern across the
domain. In this case, despite IND-security, a token for f may also allow comput-
ing g. However, the corresponding trapdoor circuit produced by our compiler
can be programmed to agree on f (via the additional slots) on all the chal-
lenge messages but no longer agree on g, because g is computed on a “dummy”
message in the first plaintext slot. This means that if a token for computing f
in the compiled scheme allowed computing g an adversary could indeed violate
IND-security.

Simulation-Secure Hidden Vector Encryption. By using a similar high-
level approach as in our general compiler, we also give a tailored construction of
(poly, �, poly)-SIM-secure HVE-FE, where “HVE” denotes hidden vector encryp-
tion, a generalization of anonymous IBE introduced by [8]. Again, these param-
eters are optimal in that they match known impossibility results [7,3] discussed
later. (Note that in this case we are able to achieve security for an unbounded
number of non-adaptive key queries, which is impossible for the general Circuit
functionality considered above [1].) The scheme is set in composite order bilin-
ear groups and proven secure under the general subgroup decision assumption
of [5]. In some sense, we compile existing IND-secure constructions of HVE-FE
to a SIM-secure one in a “non-blackbox” way. Namely, our scheme mirrors ex-
isting IND-secure constructions of HVE-FE [20,11] except in some additional
subgroups. The presence of an additional subgroup component in a simulated
ciphertext acts as the “flag” that triggers an interaction with this additional
subgroup component in the simulated keys.

Stronger Impossibility Results. As we mentioned, the positive results we ob-
tain match the recent impossibility results for SIM-secure FE. Namely, Boneh et
al. [7] show that (0, poly, 2)-SIM-secure IBE is impossible (though in the “non-
programmable” RO model; this was recently extended to the standard model
in [3]). Agrawal et al. [1] show impossibility of (poly, 1, 0)-SIM-security for a func-
tionality that computes a weak pseudorandom function (wPRF-FE) and hence
for Circuit-FE.

One mays wonder if there are weaker formulations of SIM-security under
which these results might be circumvented. We identify two:

1. Fully Non-Adaptivity Adversaries. The above results crucially rely on the
fact that the experiment proceeds in distinct phases of non-adaptive key
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queries, encryption queries, then adaptive key queries. (In particular, the
result of [1] for non-adaptive key queries crucially uses adaptivity of the
encryption queries.) We thus ask whether these results can be circumvented
for fully non-adaptive adversaries that must choose their encryption and key
queries simultaneously.

2. Non-Blackbox Simulation. The result of [1] requires that the simulator use
the adversary as a black-box. We ask whether this result can be circumvented
by using non-blackbox simulation.

Unfortunately, by building on the techniques of [3,1], we go on to resolve these
possibilities in the negative. See Table 2.

As a final contribution of independent interest, we show that in Circuit-FE
the ciphertext length must grow with the output length of the functionality.
Namely, we show impossibility of (1, 1, 0)-SIM-security for a functionality that
computes a pseudorandom generator (PRG); that is, the ciphertext length must
be as long as the output length of the PRG. To the best of our knowledge, this is
the first impossibility result for non-adaptive key queries and bounded collusion.
Note that Goldwasser et al. [13] recently give a construction of FE for boolean
functionalities with “succinct” ciphertexts, but for functionalities with longer
output the ciphertext length in all existing constructions grows linearly with the
output length of the functionality. Our result shows this is inherent.

Table 1. Positive results for SIM-secure FE. UB and B denote unbounded and bounded,
respectively. Single-boxed entries are inherent (matching impossibility results below).

Work Func #Non-Adaptive
Key Queries

#Encryption
Queries

#Adaptive
Key Queries Assumptions

[BSW11] IBE UB UB UB RO

Ours HVE UB B UB Standard

[GVW12] Circuit B UB 0 Standard

Ours Circuit UB UB UB RO, IND-security

Ours Circuit B B UB IND-security

Table 2. Negative results for SIM-secure FE. Boxed entries are new to our work. UB
denote unbounded. Pre-challenge and post-challenge key queries refer to non-adaptive
and adaptive queries , respectively, while simultaneous queries are queried together with
the challenge. Results using pre-challenge and post-challenge queries are incomparable,
while results using simultaneous queries are stronger. PRG∗ refers to a pseudorandom
generator functionality whose output is longer than the ciphertext size.

Work Func #Key
Queries

#Encryption
Queries Key Query Time Non-Black-Box

Simulation?

[BSW11,BO12] IBE 2 UB Post-Challenge YES

[AGVW12] wPRF UB 1 Pre-Challenge NO

Ours wPRF UB 1 Pre-Challenge YES

Ours wPRF UB UB Simultaneous YES

Ours PRG∗ 1 1 Pre-Challenge NO
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Organization. In Section 2 we give the basic definitions for FE. In Section 3
we describe the transformations from IND-secure to SIM-secure FE, both in the
random oracle model and in the plain model. Section 4 describes the construction
of SIM-secure FE for the hidden vector encryption functionality. In Section 5 we
present our negative results.

2 Definitions

A negligible function negl(k) is a function that is smaller than the inverse of
any polynomial in k. If D is a probability distribution, “x ← D” denotes that
x is chosen according to D. If D is a finite set, “x ← D” denotes that x is
chosen according to uniform probability on D. If q > 0 is an integer then [q]
denotes the set {1, . . . , q}. “PPT” stands for “probabilistic polynomial time”
and “PT” stands for “polynomial time.” Algorithms are PPT unless explicitly
noted otherwise. If A and B are algorithms, we denote by “y ← AB(·)(x)” that
y is assigned the output of A when run on input x with oracle access to B. If
A or B are randomized this is done using fresh random coins. If a and b are
strings, then a|b denotes the string representing their delimited concatenation.
We will make use of standard primitives such as pseudorandom functions and
symmetric-key encryption; definitions are in the full version of this paper [10].

2.1 Functional Encryption

Functional encryption (FE) schemes [7] are encryption schemes for which the
owner of the master secret can compute restricted keys (also called “tokens”) that
allow to compute a functionality on the plaintext associated with a ciphertext.
A formal definition follows.

Syntax. A functionality F = {Fn}n>0 is a family of PT functions Fn : Kn ×
Mn → Σ where Kn is the key space for parameter n, Mn is the message space for
parameter n and Σ is the output space. Sometimes we will refer to functionality
F as a function from F : K ×M → Σ with K = ∪nKn and M = ∪nMn.

A functional encryption scheme for F (an F -FE scheme) is a tuple FE =
(Setup,KeyGen,Enc,Eval) of four algorithms with the following syntax: Algo-
rithm Setup(1λ, 1n) outputs public and master secret keys (Pk,Msk) for security
parameter λ and length parameter n that are polynomially related. Algorithm
KeyGen(Msk, k), on input a master secret key Msk outputs secret key (or to-
ken) Tok. Algorithm Enc(Pk,m), on input public key Pk and plaintext m ∈ Mn

outputs ciphertext Ct. PT algorithm Eval(Pk,Ct,Tok) outputs y ∈ Σ ∪ {⊥}.
For correctness we require for all (Pk,Msk) ← Setup(1λ, 1n), all k ∈ Kn

and m ∈ Mn, for Tok ← KeyGen(Msk, k) and Ct ← Enc(Pk,m), we have that
Eval(Pk,Ct,Tok) = F (k,m) whenever F (k,m) �= ⊥, except with negligible prob-
ability. (See [3] for a discussion about this condition.)

Functionalities of Interest. In this paper, we will mainly be concerned with
two specific functionalities.
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First, the Circuit functionality has key space Kn equals to the set of all n-
input Boolean circuits and message space Mn the set {0, 1}n of n-bit strings.
For C ∈ Kn and m ∈ Mn, we have Circuit(C,m) = C(m). In the random oracle
(RO) model [4] we allow the circuits in the Circuit functionality to have RO
gates. This is because, in practice, we replace the random oracle invocations
with computation of a cryptographic hash function having an explicit circuit
description.

Second, the HVE functionality [8] has message space Mn equal to the set
of length n Boolean vectors x = 〈x1, . . . , xn〉 and key space Kn equal to the
set length n Boolean vectors y = 〈y1, . . . , yn〉 with �’s (“don’t-care” entries).
HVE(x,y) is equal to 1 iff, for all 1 ≤ i ≤ n, xi = yi or yi = �.
Security. We next define indistinguishability-based and simulation-based secu-
rity for FE based on [7,21]. Some remarks about the definitions follow them.

Definition 1. [Indistinguishability-based security.] We say that an F -FE
scheme is (q1, �, q2)-IND-secure if for every PPT adversary A = (A0,A1) where
A0 makes at most q1 oracle queries and A1 makes at most q2 oracle queries, the
advantage of A defined as

AdvFE,IND
A (1λ, 1n) =

∣∣∣Prob[INDFE
A (1λ, 1n) = 1]− 1/2

∣∣∣
is negligible, where:

Experiment INDFE
A (1λ, 1n):

(Pk,Msk) ← Setup(1λ, 1n)

(m0,m1, st) ← AFE.KeyGen(Msk,·)
0 (Pk) where m0,m1 ∈ M �

n

b ← {0, 1} ; Ct[i] ← FE.Enc(Pk,mb[i]) for i ∈ [�]

b′ ← AFE.KeyGen(Msk,·)
1 (st,Ct)

Output: (b = b′)

Above we require that F (k,m0[i]) = F (k,m1[i]) for every i ∈ [�] and every
oracle query k made by either A0 or A1.

Definition 2. [Simulation-Based security.] We say that an F -FE scheme is
(q1, �, q2)-SIM-secure if for every PPT adversary A = (A0,A1) where A0 makes
at most q1 oracle queries and A1 makes at most q2 oracle queries, there exists
a PPT simulator Sim = (Sim0, Sim1) such that the outputs of the following two
experiments are computationally indistinguishable:

Experiment RealExpFE,A(1λ, 1n) :

(Pk,Msk) ← FE.Setup(1λ, 1n)

(m, st) ← AFE.KeyGen(Msk,·)
0 (Pk)

Ct ← Enc(Pk,m)

α ← AFE.KeyGen(Msk,·)
1 (Pk,Ct, st)

Output: (Pk,m, {ki}, α)

Experiment IdealExpFE,ASim (1λ, 1n) :

(Pk,Msk) ← FE.Setup(1λ, 1n)

(m, st) ← AFE.KeyGen(Msk,·)
0 (Pk)

(Ct, st′) ← Sim0(Pk, |m|, {ki,Tokki , F (ki,m)})
α ← AO(·)

1 (Pk,Ct, st)
Output: (Pk,m, {ki}, α)
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Above we require |m| ≤ �. In the output of the experiments, {ki} contains the
token queries of the adversary (i.e., the queries of A0 and A1 combined). The
oracle O(·) is the second stage of the simulator, namely algorithm Sim1(Msk,
st′, ·, ·), which receives as its third argument a key kj for which the adversary
queries a token and as its fourth argument the output value F (kj ,m). Further,
note that the simulator algorithm Sim1 is stateful in that after each invocation,
it updates the state st′ which is carried over to its next invocation.

We also note that above follows the security definitions of [21,14] in that in the
ideal experiment, the setup and non-adaptive token queries are handled honestly
(not by the simulator). This is just for simplicity. Additionally, the challenge
messages are selected by A0 in “one-shot” and not adaptively depending on
previous challenge ciphertexts as in [3]. Again, this is just for simplicity.

Random Oracle Model. To lift our definition to the random oracle (RO
model [4], the output of the real experiment includes the queries made by any
algorithm (i.e., either those of the scheme or the adversary) to the RO and
the responses. In the ideal experiment, the simulator provides responses to the
queries made by any algorithms to the RO and the output of the experiment
again includes all these queries and responses. This is analogous to the “explic-
itly” programmable RO model formalized by Wee [25] for zero-knowledge and
seems to us to be the most natural formalization of security in the RO model in
our context.

3 From Indistinguishability to Simulation-Based Security

In this section, we show that from an IND-secure Circuit-FE scheme one can
construct a SIM-secure Circuit-FE scheme. We give two constructions: one in
the RO model [4] and one in the standard model, which (necessarily) achieve
security for different parameters.

3.1 Trapdoor Circuits

The idea of our transformations is to replace the original circuit with a “trap-
door” one that a simulator can use to program the output in some way. This
will be done via interaction of additional “slots” in the plaintext and key that
interact when a flag is set in the plaintext. This approach is inspired by the FLS
paradigm introduced by Feige, Lapidot and Shamir [12] to obtain zero-knowledge
proof systems from witness indistinguishable proof systems.

Random Oracle Model Construction. Here, a plaintext will have four slots
and a key will have two. In the plaintext, the slots will be: (1) actual message m
(2) a bit flag to indicate trapdoor mode, (3) a random string x, and (4) a seed r
for a pseudorandom function (PRF). In the key, the slots will be (1) the actual
circuit C and (2) a random string y. For evaluation, in non-trapdoor mode we
simply evaluate the original circuit C on m. in trapdoor mode, the output is
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Circuit Trap1[C,Hash,F ]y(m′)
(m, flag, x, r) ← m′

If flag = 1
Then return Hash(x, y)⊕ fr(y)

Else return C(m)

Circuit Trap2[C, SE]
k′
(m′)

(r, cSE) ← k′

(m, flag, kSE, (r1, y1), . . . , (rq, yq)) ← m′

If flag = 1 then
If there exists i such that r = ri

Then return yi
Else y ← SE.Dec(kSE, cSE) ; Return y

Else return C(m)

Fig. 1. Construction of trapdoor circuit in the RO model (left) and standard model
(right) from a given circuit C

instead “programmed” as Hash(x, y) ⊕ fr(y), where Hash is a RO and fr is the
PRF keyed by r.

Formally, let C be a circuit on n-bits. Let Hash : {0, 1}n×{0, 1}n → {0, 1}n be
a hash function and F = {fs : s ∈ {0, 1}k}k∈N be a PRF. For y ∈ {0, 1}n define
the corresponding RO-based trapdoor circuit Trap1[C,Hash,F ]y on (3n+1)-bits
as in Figure 1.

Standard Model Construction. Here, a plaintext will have 3 + 2q slots (for
a polynomial q) and a key will three two. In the plaintext, the slots will be: (1)
the actual message m, (2) a bit flag to indicate trapdoor mode, (3) a key skSE for
a symmetric-key encryption scheme SE, and finally the last 2q slots will be pairs
(ri, zi), where ri is a random string and zi is a desired output value. (Looking
ahead, the third slot will be used to handle adaptive key queries and the last 2q
slots will be used to handle up to q non-adaptive key queries.) On the other hand,
in the key the slots will be: (1) the actual circuit C, (2) a random string r, and
(3) a ciphertext cSE under SE. For evaluation, in non-trapdoor mode we simply
evaluate the original circuit C on m. In in trapdoor mode, if r = ri for some
i ∈ [q] then the output is “programmed”’ as zi, and otherwise as SE.Dec(skSE, c)
where SE.Dec is the decryption algorithm of SE.

Formally, let C be a circuit with n-bit inputs and n-bit outputs, and let SE =
(SE.Enc, SE.Dec) be a symmetric-key encryption scheme with key-space {0, 1}s,
message-space {0, 1}n, and ciphertext-space {0, 1}ν. For k′ ∈ {0, 1}n+ν define
the corresponding standard-model trapdoor circuit Trap2[C, SE]

k′
with ((2q +

1)n+ 1 + s)-bit inputs and n-bit outputs as in Figure 1.

3.2 Random Oracle Model Transformation

Let IndFE = (IndFE.Setup, IndFE.Enc, IndFE.KeyGen, IndFE.Eval) be a functional
encryption scheme for the functionality Circuit. Let Hash : {0, 1}n × {0, 1}n →
{0, 1}n be a hash function (which will be modeled as a random oracle) and F =
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{fs : s ∈ {0, 1}k}k∈N be a PRF. We define a new FE scheme SimFE1[Hash,F ] =
(Setup,KeyGen,Enc,Eval) for Circuit as follows:

– Setup(1λ, 1n): returns the output of IndFE.Setup(1λ, 13n+1) as its own output.
– Enc(Pk,m): on input Pk and m ∈ {0, 1}n, the algorithm chooses x at random

from {0, 1}n, setsm′ = (m, 0, x, 0n) and returns IndFE.Enc(Pk,m′) as its own
output.

– KeyGen(Msk, C): on input Msk and a n-input Boolean circuit C, the al-
gorithm chooses random y ∈ {0, 1}n and returns (y,Tok) where Tok ←
IndFE.KeyGen(Msk,Trap1[C,Hash,F ]y).

– Eval(Pk,Ct,Tok): on input Pk, Ct and Tok, returns the output
IndFE.Eval(Pk,Ct,Tok).

Theorem 3. Suppose IndFE is (poly, poly, poly)-IND-Secure. Then SimFE1 is
(poly, poly, poly)-SIM-secure in the random oracle model.

We defer the proof to the full version of this paper [10] and give some intuition
here. it is instructive to consider a simpler system where fr(y) in the evaluation
is simply replaced by r. In this case, the fourth slot in the plaintext acts as an
encryption under Nielsen’s RO-based non-committing encryption scheme [19],
whose decryption can be adaptively programmed. However, this approach does
not work for multiple tokens, since then the simulator would need to program two
hash outputs to r⊕C1(m) and r⊕C2(m), which would not look independently
random to the distinguisher. Since the number of tokens is unbounded, we need
to generate more randomness than can be contained in the plaintext slot, and
thus we use a PRF to generate a “fresh” ciphertext for each token.

A Note on Uninstantiability. We notice that, due to the result of Bellare and
O’Neill [3], our construction in the RO model cannot be proven SIM-secure when
implemented with any function ensemble in place of the RO. However, we stress
that unlike other some other “uninstantiable” schemes (e.g., those of Canetti et
al. [9]) which are clearly insecure (in the standard model) when implemented
with any function ensemble, our construction does not seem to suffer any real-
world attack. In this sense, we still view it as a good heuristic for our scheme to
have a proof of security in the RO model.

3.3 Standard Model Transformation

Let IndFE = (IndFE.Setup, IndFE.Enc, IndFE.KeyGen, IndFE.Eval) be a functional
encryption scheme for the functionality Circuit. Let SE = (SE.Enc, SE.Dec) be a
symmetric-key encryption scheme with key-space {0, 1}s, message-space {0, 1}n,
and ciphertext-space {0, 1}ν. We define a new FE scheme SimFE2[SE] = (Setup,
KeyGen,Enc,Eval) for Circuit as follows:

– Setup(1λ, 1n): returns the output of IndFE.Setup(1λ, 1n(2q+1)+s+1) as its own
output. In addition the algorithm picks a random key skSE ∈ {0, 1}s and
keeps it in the master secret key Msk.
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– Enc(Pk,m): on input Pk and m ∈ {0, 1}n, the algorithm sets m′ ←
(m, 0, 0s, (0n, 0n), . . . , (0n, 0n)) and returns the output of IndFE.Enc(Pk,m′)
as its own output.

– KeyGen(Msk, C): on input Msk and a n-input Boolean circuit C, the algo-
rithm chooses random r ∈ {0, 1}λ and c ∈ {0, 1}ν, and returns (r, c,Tok)
where it computes Tok ← IndFE.KeyGen(Msk,Trap2[C, SE]

k′
) and sets k′ ←

r‖c.
– Eval(Pk,Ct,Tok): on input Pk, ciphertext Ct and token (r, c,Tok), returns

the output of IndFE.Eval(Pk,Ct,Tok).

Theorem 4. Suppose IndFE is (q1, 1, poly)-IND-secure, F is a PRF, and SE has
pseudorandom ciphertexts. Then SimFE2 is (q1, 1, poly)-SIM-secure.

Again, we defer the proof to the full version [10] and give some intuition here.
The intuition is very similar in spirit to that of Theorem 3. First, consider a
simpler system where the 2q pairs (ri, zi) are replaced by a single pair (r̃, z̃).
This approach does not work for multiple non-adaptive tokens, since then the
simulator would need to program z̃ to be C1(m) and C2(m) at the same time.
To solve this problem, we add additional pairs in the ciphertext, one for each
non-adaptive query. This is also the reason why we need an a priori bound on
the number of non-adaptive key queries. For adaptive key queries, the simulator
can instead program c in the token to be an encryption of the desired output.

We note that it is straightforward to extend our construction to achieve
(q1, �, poly)-SIM-security for any polynomial � (where now we need to assume
the starting scheme is (q1, �, poly)-IND-secure). Note that by [7,3], the restric-
tion to a bounded � is necessary in the standard model. Moreover, by [1], for the
Circuit functionality the restriction to a bounded number of non-adaptive key
queries q1 is also necessary.

An Instantiation for Polynomial Evaluation. In the full version of this
paper [10], we show how to adapt our standard model transformation to the
polynomial evaluation functionality [17], for which which we have efficient con-
structions from bilinear maps and lattices.

4 Simulation-Secure Hidden Vector Encryption

In the section we present a SIM-secure HVE-FE scheme whose whose security can
be proved under static assumptions in the bilinear pairing setting in the standard
model. We use composite order bilinear groups whose order is the product of five
distinct primes (see the full version for the standard definition of such groups
[10]).

The Scheme. We now describe our HVE scheme. To make our description and
proofs simpler, we add to all vectors x and y two dummy components and set
both of them equal to 0. We can thus assume that all vectors have at least two
non-star positions.
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– Setup(1λ, 1�): The setup algorithm chooses a description of a bilinear group
I = (N = p1p2p3p4p5, G,GT , e) ← G(1λ) with known factorization, and
random g1 ∈ Gp1 , g2 ∈ Gp2 , g3 ∈ Gp3 , g4 ∈ Gp4 , and, for i ∈ [�] and b ∈
{0, 1}, random ti,b ∈ ZN and random Ri,b ∈ Gp3 and sets Ti,b = g

ti,b
1 ·Ri,b .

The public key is Pk = [I, g3, (Ti,b)i∈[�],b∈{0,1}], and the master secret key is
Msk = [g12, g4, (ti,b)i∈[�],b∈{0,1}], where g12 = g1 · g2. The algorithm returns
(Pk,Msk).

– KeyGen(Msk,y): Let Sy be the set of indices i such that yi �= �. The key gen-
eration algorithm chooses random ai ∈ ZN for i ∈ Sy under the constraint
that

∑
i∈Sy

ai = 0. For i ∈ Sy, the algorithm chooses random Wi ∈ Gp4 and

sets Yi = g
ai/ti,yi
12 ·Wi . The algorithm returns ciphertext Ct = (Yi)i∈Sy . Here

we use the fact that Sy has size at least 2.
– Enc(Pk,x): The encryption algorithm chooses random s ∈ ZN . For i ∈ [�],

the algorithm chooses random Zi ∈ Gp3 and sets Xi = T s
i,xi

·Zi , and returns
the token Toky = (Xi)i∈[�].

– Eval(Pk,Ct,Toky): The test algorithm computes T =
∏

i∈Sy
e(Xi, Yi). It

returns TRUE if T = 1, FALSE otherwise.

It easy to see that the scheme is correct. Regarding security, we show:

Theorem 5. Under the General Subgroup Decision Assumption [5] the HVE
scheme described is (poly, 1, poly)-SIM-secure.

The proof is in the full version of this paper [10]. Informally, we simulate the
flag used in the trapdoor circuits by means of the presence of the Gp5 subgroup.
Specifically, if the Gp5 part is absent the ciphertext is in normal mode, otherwise
it acts in trapdoor mode. The simulator then modifies the distributions of the
adaptive queries, adding a Gp5 part, to interact with the trapdoor mechanism
of the ciphertext when needed.

We note that one can easily extend our construction to meet (poly, �, poly)-SIM
security for polynomial �. The idea is simply to use a different subgroup for each
message in the “trapdoor” mode. By [7,3], the restriction to a bounded number of
challenge ciphertexts � is necessary. On the other hand, the impossibility result
of [1] does not apply to HVE, so there is no contradiction with the fact that
our result here has q1 = poly (instead of bounded q1 as for our standard-model
construction of Circuit-FE in Section 3, which is necessary).

5 Impossibility Results

In the section we present new negative results for simulation-based secure FE.
We refer the reader to Section 1 for a background on the previously known im-
possibility results. All of our negative results build on ideas from the impossibil-
ity result of [1] for (poly, 1, 0)-SIM-secure wPRF-FE w.r.t. black-box simulation.
Below, we first describe the weak PRF functionality (that will be used in our
negative results as well) and recall the impossibility result of [1]. We then proceed
to discuss our new results.
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Impossibility of Agrawal et al. [1]. Let {F} be a weak pseudo-random
function family on domain K and key space M . The wPRF functionality on key
k ∈ K and input m ∈ M outputs Fm(k). Let l − 1 be an upper bound on the
ciphertext size of the wPRF-FE scheme. The adversary asks tokens for l random
inputs x1, . . . , xl in the domain of F , and for an encryption of a random k from
the key space of F . The simulator needs to produce tokens {Toki}i∈[l], and then
it is given the functionality’s outputs {Fk(xi)}i∈[l]. Now the simulator has to
produce a ciphertext Ct such that for every i ∈ [l], Fk(xi) = Eval(Pk,Ct,Toki).
Now, on the one hand, the simulator needs to “encode” all of the functionality’s
outputs into Ct. On the other hand, the functionality’s outputs are l pseudo-
random bits, while |Ct| < l−1. Since a pseudo-random string cannot be efficiently
compressed we get a contradiction. (Note that a black-box simulator cannot
encode the functionality’s outputs into the tokens {Toki} since these are fixed
before the simulator learns the outputs.)

5.1 Fully Non-adaptive Adversaries

In this section we give an impossibility result for a natural relaxation of the
simulation-security considering only adversaries that are fully non-adaptive. In
particular, we consider adversaries who make simultaneous token and ciphertext
queries in the SIM-security game for FE.

Below, we formally define security against fully non-adaptive adversaries. Our
definition allows for non-black-box simulation.

Definition 6. [Fully Non-Adaptive Security] We say that an F -FE scheme is
(q, �)-fully non-adaptively SIM-secure if every PPT adversaryA = (A0,A1) there
exists a PPT simulator Sim such that the outputs of the following two experi-
ments are computationally indistinguishable:

Experiment RealExpFE,A(1λ):
(Pk,Msk) ← Setup(1λ);
({mi}qi=1, {kj}�j=1, st) ← A0(Pk);
Tokkj ← KeyGen(Msk, kj);
Cti ← Enc(Pk, mi);
α ← A1(Pk, {Tokkj}, {Cti}, st);
Output: (Pk, α)

Experiment IdealExpFE,A
Sim (1λ):

(Pk,Msk) ← Setup(1λ);
{mi}qi=1, {kj}�j=1, st) ← A0(Pk);

α ← Sim(Pk,Msk, st, {kj , F (kj ,m)});
Output: (Pk, α)

Theorem 7. Assuming the existence of a collision-resistant hash function fam-
ily, there does not exist a (poly, poly)-fully-non-adaptively SIM-secure wPRF-FE.

We prove the above theorem by extending the impossibility of [1]. Roughly
speaking, the central idea is to use many ciphertext queries instead of one. The
intuition is that in the non-adaptive case, the simulator can encode information
about the function outputs in the tokens that might be long; however, by making
many ciphertext queries, the same tokens can be used to decrypt many cipher-
texts, making the length of the tokens insignificant. Indeed, the same idea can
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be used in the impossibility for given in the next subsections (at the cost of an
increase in a number of ciphertext queries). We defer details to the full version
[10].

5.2 Non-Black-Box Simulation

The impossibility of [1] rules out SIM-security against adversaries who make
an unbounded number of non-adaptive token queries assuming the simulator is
using the code of the adversary as black-box. In this section we extend their
result to non-black-box simulators using the techniques from [3].

Below, we give a non-black-box definition of SIM-security, which is similar to
that of [7] except that we only consider an unbounded number of non-adaptive to-
ken queries and one ciphertext query (corresponding to (poly, 1, 0)-SIM-security).
Further, following [3] we let the adversary and the simulator use an auxiliary in-
put sampled from some distribution. In our negative result, we use this auxiliary
input to store a random key of a collision-resistant hash function.4

Definition 8. [Non-Black-Box Simulation] We say that an F -FE scheme SIM-
secure with non-black-box simulator if for every distribution on auxiliary in-
put Z, and every PPT adversary A = (A0,A1), there exists a PPT simulator
Sim = (Sim0, Sim1) such that the outputs of the following two experiments are
computationally indistinguishable:

Experiment RealExpFE,A(1λ):

(Pk,Msk) ← Setup(1λ); z ← Z;

(M, st) ← AKeyGen(Msk,·)
0 (Pk, z);

m ← M,Ct ← Enc(Pk,m);
α ← A1(Ct, st);
Let {ki} be the queries of A0 to KeyGen;
Output: (z,M,m,α, {ki})

Experiment IdealExpFE
Sim(1

λ):
z ← Z;
(M, st) ← Sim0(z);
m ← M ;

α ← Sim
F (·,m)
1 (st);

Let {ki} be the queries of Sim1 to F ;
Output: (z,M,m,α, {ki})

where the output of A0 and Sim0 consists of an arbitrary state st and a
description of a distribution over messages M .

We now state our result:

Theorem 9. Assuming collision-resistant hash functions, there does not exist a
SIM-secure wPRF-FE with non-black-box simulator.

In the non-black-box simulation definition the real and the simulated outputs
may contain the generated tokens and ciphertext. However, the simulator is
only required to produce the simulated tokens and ciphertext after receiving the
functionality’s outputs. Since the tokens may encode a lot of information (at least

4 A stronger variant of FE with non-black-box simulation is defined in [3] and our
negative result holds also for their definition.
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as much as the functionality’s outputs), the impossibility of [1] is not applicable
here. To commit the simulator to the tokens before learning the functionality’s
outputs we use technique of [2]. This technique was recently used by [3] to
extend the impossibility of [7] to hold without a non-programmable random
oracle. The main idea is to consider an adversary that computes a collision-
resistant hash of the tokens, and selects the message distribution based on the
hash value. Intuitively, this commits the simulator to the tokens before it learns
the functionality’s outputs. We defer details to the full version [10].

5.3 FE for Multi-bit Outputs with Succinct Ciphertexts

Finally, we show that it is impossible to construct FE schemes where the cipher-
text length is independent of the output length of the functionality. Recently,
Goldwasser et al. [13] construct a SIM-secure FE scheme with “succinct” cipher-
texts, improving on Gorbunov et al. [14] (in which the ciphertext size depends
on the size of the circuit computing the functionality). However, [13] is only for
functionalities with boolean output; for functionalities with longer output, the
ciphertexts in both of these constructions grows linearly with the output length
of the functionality. Our result shows this dependency is inherent.

To prove this result we consider the functionality that computes a pseudo-
random generator, and we set the output length of the generator to be longer
then the size of the FE ciphertext. The proof uses an incompressibility argument
similar to the one used in [1]. However, unlike in [1] we consider only one token
query and one ciphertext query and do not rely on an unbounded collusion. Due
to space constraints, formal definitions and details are deferred to the full version
[10].

Acknowledgements. We thank the anonymous reviewers of Crypto 2013 for
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Abstract. Cryptographic schemes for computing on encrypted data promise
to be a fundamental building block of cryptography. The way one models
such algorithms has a crucial effect on the efficiency and usefulness of the
resulting cryptographic schemes. As of today, almost all known schemes for fully
homomorphic encryption, functional encryption, and garbling schemes work by
modeling algorithms as circuits rather than as Turing machines.

As a consequence of this modeling, evaluating an algorithm over encrypted data
is as slow as the worst-case running time of that algorithm, a dire fact for many
tasks. In addition, in settings where an evaluator needs a description of the algo-
rithm itself in some “encoded” form, the cost of computing and communicating
such encoding is as large as the worst-case running time of this algorithm.

In this work, we construct cryptographic schemes for computing Turing ma-
chines on encrypted data that avoid the worst-case problem. Specifically, we show:

– An attribute-based encryption scheme for any polynomial-time Turing
machine and Random Access Machine (RAM).

– A (single-key and succinct) functional encryption scheme for any polynomial-
time Turing machine.

– A reusable garbling scheme for any polynomial-time Turing machine.
These three schemes have the property that the size of a key or of a garbling
for a Turing machine is very short: it depends only on the description of the
Turing machine and not on its running time.
Previously, the only existing constructions of such schemes were for depth-
d circuits, where all the parameters grow with d. Our constructions remove
this depth d restriction, have short keys, and moreover, avoid the worst-case
running time.

– A variant of fully homomorphic encryption scheme for Turing machines,
where one can evaluate a Turing machine M on an encrypted input x in time
that is dependent on the running time ofM on input x as opposed to the worst-
case runtime of M . Previously, such a result was known only for a restricted
class of Turing machines and it required an expensive preprocessing phase
(with worst-case runtime); our constructions remove both restrictions.

Our results are obtained via a reduction from SNARKs (Bitanski et al) and an
“extractable” variant of witness encryption, a scheme introduced by Garg et al..
We prove that the new assumption is secure in the generic group model. We
also point out the connection between (the variant of) witness encryption and the
obfuscation of point filter functions as defined by Goldwasser and Kalai in 2005.

Keywords: Computing on encrypted data, Functional encryption, Fully homo-
morphic encryption, Turing machines, Input-specific running time.

R. Canetti and J.A. Garay (Eds.): CRYPTO 2013, Part II, LNCS 8043, pp. 536–553, 2013.
c© International Association for Cryptologic Research 2013



How to Run Turing Machines on Encrypted Data 537

1 Introduction

Cryptographic schemes for computing on encrypted data promise to be a major focus
of cryptographic research for years to come. We now have early constructions of fully
homomorphic encryption, functional encryption, and attribute-based encryption, as well
as more established constructions for garbling schemes. An important question for the
practicality and usability of these schemes is how to model an algorithm that computes
on encrypted data in cryptographic constructions.

Modeling algorithms as circuits instead of Turing machines has efficiency and usabil-
ity disadvantages. Indeed, almost all known1 cryptographic constructions of fully ho-
momorphic encryption, attribute-based encryption, functional encryption and garbling
schemes for general algorithms model these algorithms as Boolean or arithmetic circuits.
As a consequence, these constructions suffer from the following two disadvantages.

The first disadvantage is that evaluating an algorithm A modeled as a circuit
on encrypted data is at least as slow as the worst-case running time of algorithm
A on all inputs of a certain size. Ideally, the runtime of A on input x should be
the time A takes to run on x. The reason for this slowdown is that all the known
transformations from Turing machines to circuits essentially work by unrolling loops to
their worst-case runtime, and by considering all branches of a computation. Even if the
cryptographic overhead of these schemes were zero, such worst-case runtime can still
make the computation prohibitively slow: for example, the simplex algorithm for linear
programming runs in polynomial time on most instances one encounters in practice, but
in exponential time on rare inputs.

The second disadvantage arises for schemes that require an evaluator to obtain an
encoded description of an algorithm A (called a token) in order to run A on the
encrypted data. For example, in functional encryption, the token is a key for the
algorithm A and in garbling schemes, the token is the garbling of the algorithm. In
these settings, modeling algorithms as circuits makes the size of the token as large as
the running time of the algorithm, instead of having the token size depend only on the
description of the algorithm, which can be much shorter.

The earliest example of using circuits for computing on encrypted data is Yao’s
secure function evaluation protocol [Yao86] which takes as input any polynomial-
time computable function f – specified by a circuit – and outputs a “garbled
circuit” with the same input-output functionality. Such worst-case runtime also
affects known two-party and multi-party protocols for general secure function evalu-
ation [Yao86,GMW87,BGW88,CCD88].

More recent constructions for computing on encrypted data also use circuits to
model computation and thus suffer from the worst-case slowdown: fully homomorphic
encryption schemes (FHE) [Gen09,BV11a,BV11b,BGV12,Bra12], attribute-based
encryption (ABE) schemes [GVW13,GGH+13b,GGH13a], and functional encryption
(FE) schemes for general functions [SS10,GVW12,GKP+13b].

In this work, we present cryptographic schemes for Turing machines, thus removing
the two major limitations of circuits discussed above. We construct attribute-based

1 An exception is the garbling scheme of [LO12] for RAMs, but this scheme also suffers from
the worst-case running time problem we address in this paper (see Sec. 1.1).
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encryption, (succinct and single-key) functional encryption, reusable garbling schemes,
and a version of FHE for polynomial-time Turing machines. For each of these schemes,
we show that the time to evaluate a Turing machine M on an input x is input specific: it
depends on the runtime of M on x and not on the worst-case runtime of M on all inputs
of length n where n = |x|. Moreover, we show that the token for a Turing machine M
is short: its size depends on the size of the description of the Turing machine M and not
on M ’s runtime. Our schemes are for both uniform and non-uniform Turing machines
(so in particular, they can compute circuits).

Our schemes are based on extractable witness encryption, a variant of the
witness encryption notion of Garg et al. [GGSW13]. We show how to obtain
such an extractable witness encryption scheme using the construction of Garg
et al. [GGSW13], by strengthening their assumption with a knowledge property. We
prove the new assumption secure in the generic group model. Interestingly, we show
that extractable witness encryption is closely related to (weakly) obfuscatable point-
filter functions [GK05].

1.1 Our Results

We now explain our results in detail.

Attribute-Based Encryption (ABE) for Turing Machines and RAMs. Attribute-
based encryption schemes, originally defined by Sahai and Waters [SW05], allow a user
holding the master secret key msk to generate a function key skf for any predicate f
of his choice, where skf does not hide f . Using the master public key mpk, anyone
can encrypt a message m with respect to an “attribute” x: such a ciphertext is denoted
by Enc(x;m). The ciphertext Enc(x;m) does not hide x, and hides only m. Given a
function key skf and a ciphertext Enc(x;m), one can compute m if f(x) = 1. On the
other hand, if f(x) = 0, ABE leaks no information about m and provides semantic
security.

Attribute-based encryption is a powerful primitive and has thus received significant
attention [GPSW06,LOS+10,LW12,GVW13]. The state-of-the-art is the scheme of
Gorbunov et al. [GVW13]: based on the LWE assumption, they construct an ABE for
the class of all circuits of depth at most d, where the efficiency of the scheme (such as
the size of the ciphertexts) decreases polynomially with d. In concurrent work, Garg et
al. constructed ABE schemes with similar properties [GGH+13b], and an ABE scheme
with large ciphertexts [GGSW13], both from candidate multi-linear maps.

In this work, we construct an attribute-based encryption scheme for all circuits,
with no restriction on the depth. More importantly, we model functions as Turing
machines (with possibly non-uniform advice), as opposed to circuits as in previous
work. Computing a function key skM , corresponding to a Turing machine M , takes
roughly linear time in the size of the description of M , independent of the runtime
of M . Moreover, given skM and Enc(x;m) where f(x) = 1, one can compute m in
time that depends only on the time it takes to compute M on input x as opposed to the
worst-case running time of M . We prove the security of our scheme with respect to a
non-adaptive simulation-based definition (we refer the reader to Sec. 3 for details). We
then show that a modification of our construction provides ABE for RAMs.
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Theorem 1 (Informal). There exists an attribute-based encryption scheme (as defined
in Defs. 3, 4) for (uniform or non-uniform) polynomial-time Turing machines and RAMs
from the assumptions in Sec. 1.2.

Interestingly, we show how to extend our ABE scheme beyond Turing machines and
RAMs: for example, an evaluator can choose by himself which Turing machines to run
on the ciphertexts, as long as they satisfy some property expressed in a function key.

Functional Encryption (FE) for Turing Machines. Functional encryption,
formalized by Boneh, Sahai and Waters [BSW11], is a generalization of attribute-
based encryption. In functional encryption, a user holding the master secret key msk
can generate a function key skf corresponding to a function f ; then, anyone having a
ciphertext Enc(x) and a function key skf can compute f(x), but learns nothing else
about the input x.

So far, the only many-keys FE schemes known (schemes in which the secret
key owner can securely release an unbounded number of function keys) are for
the inner-product predicates [KSW08,SSW09]. For general functions, Agrawal et
al. [AGVW13] showed that there does not exist a many-keys FE scheme if one wants
to achieve a natural simulation-based security definition2, so the natural question was
to construct a single-key functional encryption scheme for general functions. Sahai
and Seyalioglu [SS10], Gorbunov et al. [GVW12], and Goldwasser et al. [GKP+13b]
constructed such schemes for circuits. The work of Goldwasser et al. [GKP+13b] is the
first to provide succinct ciphertexts: the ciphertext size is much smaller than the circuit
size; they constructed a succinct single-key FE scheme for any depth d circuit, where
the parameters of the scheme grow with d (but are independent of the circuit size).

In this work, we not only remove this depth-d restriction, but we model functions as
(possibly non-uniform) Turing machines, as opposed to circuits as in prior work. Our
schemes have short function keys: computing the function key of a Turing machine M
depends only on the size of M and does not depend on the runtime of M . We note that
in all previous schemes for general functions the size of a function key for a function f
grows (at least linearly) with the worst-case runtime of f . We note however, that as
opposed to our ABE scheme, in a functional encryption scheme, given Enc(x) and skM ,
the time it takes to compute M(x) must be proportional to the worst-case runtime of M ,
since the runtime of M on input x may leak sensitive information about x. However, if
one is willing to slightly relax security and allow leaking the runtime of M on the secret
inputx, then we provide a second functional encryption scheme for which the decryption
algorithm has input-specific runtime (i.e., it runs in time polynomial in the runtime of M
on input x) – we denote this by input-specific runtime functional encryption.

Theorem 2 (Informal). There exists a single-key (succinct) functional encryption
scheme and input-specific runtime functional encryption scheme for (uniform or non-
uniform) polynomial-time Turing machines from the assumptions in Sec. 1.2.

Variant of FHE for Turing Machines. We construct a variant of FHE where one can
evaluate a Turing machineM on a ciphertextEnc(x) in time that depends on the runtime

2 Their lower bound does not apply to weaker security definitions.
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of P on the specific input x. We naturally call this scheme input-specific FHE. At first
glance, this may seem impossible, since revealing the runtime of P on input x may
reveal secret information about x. However, for many Turing machines M , revealing
only the runtime of M is not harmful, and it can provide significant efficiency gains.

Our construction is an improvement of Goldwasser et al. [GKP+13b] who showed
how to construct input-specific runtime FHE from single-key functional encryption. As
in Goldwasser et al. [GKP+13b], we also encrypt a Turing machine M and x together
into a token tkM,x. Producing such a token depends only on the size of x and M , and
not on the running time of M . The evaluator can use tkM,x and public information to
compute M(x) in input-specific time. The reason we provide a token for M at all is for
security: the FHE evaluator must no longer be able to evaluate TMs of its choice on the
encrypted inputs because the running time of those TMs can leak the input entirely. We
combine M and x in tkM,x for a technical reason stemming from the fact that the FE
scheme we use in the construction is single-key – we elaborate in our full paper.

Comparing to [GKP+13b], we make the following improvements:

– Remove costly preprocessing. [GKP+13b] had an expensive preprocessing phase
taking as long as the worst-case runtime. With our scheme, the preprocessing is
cheap: polynomial in the size of the TMs and independent of the worst-case runtime
(so in fact it can be performed in the online phase).

– Works for any polynomial-time Turing machine. Because the ciphertext size in
[GKP+13b] depended on the depth of the worst-case circuit representation of the
class of Turing machines, [GKP+13b] only allowed a restricted class of Turing
machines: the class of TMs that can be expressed by shallow-depth circuits (e.g.,
log-space Turing machines). Our result does not have the depth restriction and thus
applies to any class of Turing machines with runtime upper-bounded by a polynomial.

Theorem 3 (Informal). There exists an input-specific-runtime fully homomorphic
encryption scheme for (uniform or non-uniform) polynomial-time Turing machines
based on the assumptions in Sec. 1.2.

Reusable Garbling Scheme for Turing Machines. Garbling schemes, introduced in
the seminal work of Yao [Yao86], have found many applications in cryptography. In
such schemes, a user can “garble” a function f and then encode an input x in a token tkx.
Given a garbling of f and a token tkx, one can compute f(x), but learns nothing else
about f or x. Some works also considered an authenticity property [BHR12,GVW13],
on which we do not dwell. Traditional garbling schemes are one-time: they are secure
only if an adversary gets a token for at most one input. A reusable garbling scheme is
secure when the adversary gets an unbounded number of tokens.

In known garbling schemes (even non-reusable ones), the size of the garbling is as
large as the worst-case runtime of f . Often, the reason is that programs are modeled
as circuits, and the size of the garbling is at least the size of the corresponding circuit.
In this work, we construct a (reusable) garbling scheme for (uniform or non-uniform)
Turing machines, where the size of the garbling depends only on the size of the Turing
machine, and is independent of its runtime. The work of [LO12] is an exception from
the circuit model: they model computation as RAM, but their scheme still has large
garbling size, at least as large as the worst-case running time.
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As in our FHE and FE schemes, if one allows leaking the runtime of M on input x,
we can additionally avoid worst-case evaluation time and obtain an input-specific
reusable garbling scheme: given a garbling for a Turing machine M and a token tkx,
the time to compute M(x) is polynomial in the runtime of M on the specific input x.

Goldwasser et al. [GKP+13b] provide a reusable garbling scheme only for depth
bounded circuits; our schemes remove the depth dependency, provide short garbling
size, and can additionally avoid worst-case running time.

Theorem 4 (Informal). There exists a reusable garbling scheme and an input-
specific reusable garbling scheme for (uniform or non-uniform) polynomial-time Turing
machines from the assumptions in Sec. 1.2.

In summary, our work models computation on encrypted data as Turing machines and
thus avoids the worst-case “curse” for a set of well-known cryptographic notions.

Remark 1. Interestingly, we can easily overcome the worst-case curse for interactive
tasks such as two-party and multi-party protocols as follows. To securely evaluate a
Turing machine M , we evaluate the Turing machines M1, . . . ,Mω(logn) sequentially,
where Mi runs the Turing machine M for 2i steps and outputs M ’s answer if M halted
in 2i steps, otherwise ⊥. To evaluate Mi, we simply use existing multi-party protocols.
Note that the circuit size for Mi is poly(2i), and since we halt the computation as soon
as we get a non-⊥ answer, the protocol runs in input-specific time. The reason we can
overcome the worst-case curse in this manner is that interaction is allowed. In this work,
we focus on non-interactive tasks, which are more challenging.

1.2 Our Assumptions

Our schemes rely on two assumptions: extractable witness encryption and the existence
of SNARKs.

Extractable Witness Encryption. The recent work of Garg et al. [GGSW13]
constructs a new primitive called witness encryption (WE). Such a scheme is associated
with some NP complete language L. Given an instance x and a message m, any user
can encrypt m with respect to x; this is denoted by Encx(m). Given Encx(m) and a
valid witness w of x, any user can decrypt x efficiently. On the other hand, if x is not in
the language, the scheme provides semantic security.

In our work, we additionally assume that the [GGSW13] scheme is extractable:
if an adversary can break semantic security for an instance x, an extractor can
extract the witness for x. Such an extractable scheme can be constructed from an
extractable version of the [GGSW13] assumption (called extractable DGE No-Exact-
Cover assumption) so we strengthen their assumption. While we state our assumption
in a decisional form for simplicity, the search version of the assumption suffices for our
schemes because we can use hard-core predicates to mask the one bit we care to hide
(m).

We validate our assumption in the generic group model: we prove that no polynomial-
time adversary can break the assumption in the generic group model where adversaries
can only use multilinear map operations as a black-box. We refer the reader to our full
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paper for more details on the assumption, and emphasize that we view our result as a
reduction from any extractable witness encryption scheme, as opposed to a result that
is tied to the specific computational assumption.

We show that, interestingly, extractable witness encryption is highly related to
another task that was already well-known in the cryptographic literature: (weakly)
obfuscating point-filter functions, defined by Goldwasser and Kalai [GK05]. Informally,
point-filter functions for a language L ∈ NP with witness relation RL are a class of
functions {δx,b}, indexed by a string x ∈ {0, 1}n and a bit b ∈ {0, 1} that behave as
follows:

δx,b(w) =

{
(x, b), if (x,w) ∈ RL,
(x,⊥), otherwise.

It can be shown that extractable witness encryption is indeed equivalent to (weakly)
obfuscating point filter function. Thus, the former implies the consequences of the
later regarding the impossibility of obfuscation for a wide range of natural tasks based
on [GK05]. See our full paper for more details.

The Existence of SNARKs (Succinct Non-Interactive Arguments of Knowledge).
Bitansky et al. [BCCT13] construct SNARKs in a generic way (via a reduction from
weaker SNARKs). Their work is based on “knowledge of exponent assumptions”, and
the existence of collision resistant hash functions.

If we remove SNARKs from our constructions, we still obtain novel schemes over
prior work because the sizes of the function keys and of the garbling remain short,
linear in the size of the Turing machine. Without SNARKs, though, the loss is that the
ciphertext size grows with the running time of the Turing machines.

Our FE, FHE, and reusable garbling schemes additionally rely on the existence
of a fully homomorphic encryption scheme, which can be obtained from the LWE
assumption with circular security [BGV12].

1.3 Techniques Overview

ABE for Turing Machines. The main technical challenge in this work is constructing
an ABE scheme for Turing machines.

Our construction starts with witness encryption and a signature scheme. The function
key for a Turing machine M is simply a signature of M . The master secret and public
keys generated during setup are the secret and verification keys (SigSK,VK) for the
signature scheme. To encrypt a bit b with respect to a (public) attribute x, we compute a
witness encryption Encx∗(b), where x∗ = (x,VK) and where a valid witness for x∗ is a
tuple (M,σ, π), where M is a Turing machine, σ is a signature of M using SigSK, and
π the tableau of the computation, which can be interpreted as a “proof” that M(x) = 1.

Loosely speaking, the security proof proceeds as follows. Suppose there exists
a successful adversary A for our ABE scheme. Then, given Encx∗(b), the ABE
encryption of a random bit b, and several secret keys skMi = σi such that Mi(x) = 0,
A succeeds in guessing b with non-negligible advantage. The security of the extractable
witness encryption implies that there exists a poly-time extractor that extracts a valid
witness from A with non-negligible probability. Recall that a valid witness is a triplet
of the form (M∗, σ∗, π∗) where σ∗ is a valid signature of the Turing machine M∗ and
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π∗ is a proof that M∗(x) = 1. Note that since Mi(x) = 0 for every i, it must be the
case that M∗ �= M , which contradicts the unforgeability of the signature scheme.

Unfortunately, this idea does not quite give us the results we want. The reason is
that the time to check a witness for an instance x∗ = (x,VK) is very long because it
involves checking the tableau π of M on input x. In this case, the witness encryption
of Garg et al. [GGSW13] is not “succinct”: the size of the ciphertext Encx∗(b) grows
with the time to check the witness. Thus, the approach above gives us a non-succinct
ABE scheme, where the size of a ciphertext depends on the worst-case runtime of any
(allowed) Turing machine.

To obtain succinctness, we use a SNARG scheme [BCCT13]. A SNARG has a
common reference string crs, which is assumed to be securely generated. Any user
can prove any NP statement by computing a proof π. The length of the crs, the length
of the proofs, and the time to verify a proof are all short: depending only on the security
parameter, and not on the time to verify the NP witness.

Encx∗(b) now proceeds as follows. It generates a crs corresponding the underlying
SNARG scheme. To encrypt a bit b w.r.t. a public attribute x, it simply computes
Encx∗(b), where x∗ is now (x, crs,VK). A valid witness for x∗ is a tuple of the form
(M,σ, π) where σ is a valid signature of the Turing machine M , and π is a succinct
SNARG proof that M(x) = 1. The fact that π can be verified in a short time makes the
WE ciphertext succinct, as desired.

This gives us an ABE for Turing machines. Because SNARKs are for NP, our
resulting ABE scheme is for any class of Turing machines for which there exists a
polynomial that upper bounds the runtime of all machines in the class.

There scheme still has a slight drawback: it is succinct only for uniform Turing
machines. If the Turing machines have non-uniform advice as large as the runtime,
the resulting ABE ciphertexts are non-succinct. We would like our ABE scheme to be a
generalization of previous work on circuits, and in particular to be succinct for any non-
uniform Turing machine. To this end, we replace the SNARG scheme with a SNARK
scheme (succinct non-interactive argument of knowledge) scheme. SNARKs have the
additional property that if an adversary A succeeds in proving that x ∈ L, an extractor
can extract a corresponding witness w from A.

The final ABE scheme is as before, except that now a valid witness for x∗ =
(x, crs,VK) is a pair (π, t) (without the Turing machine and the signature), where π
is a proof-of-knowledge of a Turing machine M and a signature σ such that σ is a
valid signature of M and M(x) = 1. Now the witness size and the verification time
is efficient (independent of the size of the Turing machine or its runtime). We refer the
reader to Sec. 3 for more details on our ABE scheme and the security proof.

Functional Encryption for Turing Machines. We use the reduction of Goldwasser
et al. [GKP+13b] to construct a (single-key and succinct) FE scheme from FHE and
ABE. Their reduction is for circuits so we need to adapt it to Turing machines. The
main technical issue is that we need to perform the FHE evaluation of a Turing machine
M . To achieve this goal, we construct a new Turing machine MFHE that evaluates
homomorphically the transition function of M for a t number of times. The problem
is that MFHE needs to know what inputs to read from M ’s tape to feed into the FHE
evaluation, but the movement of the head in M is an output of the transition function, so
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it is encrypted with FHE and unavailable to MFHE. To solve this issue, we transform M
into an oblivious Turing machine using Pippenger-Fischer [PF79]: now the movement
of the head follows a fixed and known pattern independent of the input to M .

If one allows the runtime of M on x to leak, we can provide a second FE scheme
FE∗ whose decryption algorithm runs in input-specific time. We construct FE∗ as
a reduction from our FE scheme above using the idea of [GKP+13b]: instead of
generating a function key skM for a Turing machine M , we generate many function
keys skM1 , . . . , skMlog Bn

, whereMi is the Turing machine that runsM for 2i time steps,
and either outputs the output of M or⊥ if M did not halt in 2i steps; the parameterBn is
a global bound on the runtime of the Turing machines we consider. To generate logBn

function keys, we use logBn instances of our single-key functional encryption scheme
above, by generating fresh keys for every instance of it. Moreover, since the underlying
functional encryption scheme is for Turing machines, generating skMi can be done very
efficiently, in time polynomial in the size of Mi, independent on the runtime of Mi.

On input a ciphertext Enc(x) and a function key (skM1 , . . . , skMlog B
) for the Turing

machine M , the decryption algorithm first tries to decrypt with skM1 , then tries with
skM2 , and so on. The first time that it succeeds it stops. Note that the runtime of this
decryption algorithm depends on the runtime of M on the specific input x, denoted
by tx. This is the case since it runs the original decryption algorithm (which runs in the
worst-case) only with the secret keys skM1 , . . . , skMlog tx

, and all the Turing machines
M1, . . . ,Mlog tx run in time at most tx.

Reusable Garbling and a Variant of FHE for Turing Machines. In our full version,
we show how to construct these schemes from our FE scheme using a similar reduction
to [GKP+13b].

Other Related Work. We discuss other related work in the full version of our paper.

1.4 Paper Roadmap

The rest of this paper is organized as follows. We provide definitions for extractable
witness encryption and ABE in Sec. 2, and refer the reader to our full paper [GKP+13a]
for other relevant preliminaries. Next, Sec. 3 presents our ABE scheme for Turing
machines, which we prove formally in our full paper. Finally, Sections 4 and 4.2 show
how to construct functional encryption for Turing machines. Due to space constraints,
in our full paper [GKP+13a], we present the construction of extractable witness
encryption and prove the new assumption in the generic group model, we show that
extractable witness encryption implies (weakly) obfuscatable point filter functions and
deduce implications to obfuscation, and we present the construction of FHE for Turing
machines.

2 Preliminaries

In this section, we define extractable witness encryption and ABE for Turing machines,
and refer the reader to our full paper for definitions of FE for Turing machines,
SNARKs, and other relevant preliminaries.
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2.1 Notation

We let κ denote the security parameter throughout this paper. For a distribution D, we
say x ← D when x is sampled from the distribution D. If S is a finite set, by x ← S,
we mean x is sampled from the uniform distribution over the set S.

We say that a function f is negligible in an input parameter κ, if for all d > 0, there
exists K such that for all κ > K , f(κ) < k−d. For brevity, we write: for all sufficiently
large κ, f(κ) = negl(κ).

2.2 Witness Encryption (WE)

The syntax of WE is as defined by Garg et al. [GGSW13], but the security definition
has an additional extractability property.

Definition 1 (Witness Encryption). A witness encryption for a language L ∈ NP
with corresponding witness relation RL consists of two polynomial-time algorithms
(WE.Enc,WE.Dec) such that

– Encryption WE.Enc(1κ, x, b): takes as input a security parameter κ, x ∈ {0, 1}∗
and a bit b and outputs a ciphertext ct.

– Decryption WE.Dec(w, ct): takes as input w ∈ {0, 1}∗ and a ciphertext ct and
outputs a bit b or the symbol ⊥.

Correctness: For all (x,w) ∈ RL, for all bits b, for every sufficiently large security
parameter κ:

Pr[ct ← WE.Enc(1κ, x, b) : WE.Dec(w, ct) = b] = 1− negl(κ).

Definition 2 (Extractable security). A witness encryption scheme for a language L ∈
NP is secure if for all p.p.t. adversaries A, and all poly q, there exists a p.p.t. extractor
E and a poly p, such that for all auxiliary inputs z and for all x ∈ {0, 1}∗, the following
holds:

Pr[b ← {0, 1}; ct ← WE.Enc(1κ, x, b) : A(x, ct, z) = b] ≥ 1/2 + 1/q(|x|)
⇒ Pr[E(x, z) = w : (x,w) ∈ RL] ≥ 1/p(|x|).

2.3 Attribute-Based Encryption (ABE) for Turing Machines

We define the syntax and security of ABE for Turing machines.

Definition 3 (ABE for Turing machines). An attribute-based encryption scheme
ABE for a class of Turing machines T is a tuple of four algorithms (ABE.Setup,
ABE.KeyGen, ABE.Enc, ABE.Dec), the first three of which are p.p.t., such that:

– ABE.Setup(1κ) takes as input the security parameter 1κ and outputs a master public
key mpk and a master secret key msk.

– ABE.KeyGen(msk,M) takes as input the master secret key msk, a Turing machine
M ∈ T , and outputs a function key skM .
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– ABE.Enc(mpk, x, b) takes as input the master public key mpk, an attribute x ∈
{0, 1}∗, and a bit b and outputs a ciphertext ct.

– ABE.Dec(skM , ct) takes as input a key skM and a ciphertext c and outputs a bit.

Correctness. For all Turing machines M ∈ T , for all attributes x ∈ {0, 1}∗, for all bits
b, for κ sufficiently large,

Pr[(mpk,msk) ← ABE.Setup(1κ); fskf ← ABE.KeyGen(fmsk, f);

c ← ABE.Enc(fmpk, x) : ABE.Dec(fskf , 1
t, c) = f(x)]

= 1− negl(κ).

Efficiency. There exists a polynomial p such that the running time of ABE.Dec(skM , ct)
is at most p(κ, runtime(M,x)).

The efficiency property states that the work of the decryption depends on the run time
of a Turing machine on the attribute. Since ABE.Setup, ABE.KeyGen and ABE.Enc
are p.p.t.-s, their running time depends only on the security parameter and not on the
running time of the Turing machines (except for a logarithmic dependency on it).

Our security definition is full (the adversary can choose the challenge attribute based
on the public key) and non-adaptive (the adversary chooses the Turing machines before
getting the challenge ciphertext).

Definition 4 (Attribute-based encryption security). Let ABE be an attribute-based
encryption scheme for a class of Turing machines T and let A = (A1, A2) be an
adversary. Consider the following experiment.

ExpABE(1
κ):

1: (mpk,msk) ← ABE.Setup(1κ)

2: (x, state) ← A
ABE.KeyGen(msk,·)
1 (mpk)

3: Choose a bit b at random and let ct ← ABE.Enc(mpk, x, b).
4: b′ ← A2(state, ct).
5: If, b = b′ and for all Turing machines M that A requests to oracle

ABE.KeyGen(msk, ·), we have M(x) = 0, output 1, else output 0.

We say that the scheme is a secure attribute-based encryption for Turing machines if
for all p.p.t. adversaries A, and for all sufficiently large κ:

AdvABE,A := |Pr[ExpABE,A(1κ) = 1]− 1/2| = negl(κ).

3 Attribute-Based Encryption for Turing Machines and RAMs

We construct an ABE scheme for Turing machines based on three ingredients:

1. an extractable witness encryption scheme WE = (WE.Enc,WE.Dec) based on the
work of [GGSW13], on which we elaborate in Sec. 2.2,
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2. a succinct argument of knowledge scheme, SNARK = (SNARK.Gen,
SNARK.Prover, SNARK.Verify), based on the work of [BCCT13],

3. an existentially unforgeable signature scheme secure against adaptive chosen
message attacks SIG = (SIG.KeyGen,SIG.Sign, SIG.Verify) [GMR88].

Theorem 5. Assuming the above three primitives, there exists a secure attribute-based
encryption scheme (as per Def. 4) for any class of (uniform or non-uniform) Turing
machines T , for which there exists a polynomial p such that the runtime of every
machine in T is upper-bounded by p.

The p restriction comes from the fact that SNARKs are for NP. From now on, for
brevity, we will refer to such a class by “a class of Turing machines with runtime upper-
bounded by some polynomial".

Corollary 1. There exists a secure attribute-based encryption scheme for any class of
(uniform or non-uniform) Turing machines whose runtime is upper-bounded by some
polynomial under the extractable DGE No-Exact-Cover assumption, “knowledge of
exponent assumption”, and the existence of collision-resistant hash functions (Sec. 1.2).

3.1 Construction preliminaries

We advise the reader to recall the intuition we provided in technique overview, Sec. 1.3.

The Language L for SNARK. We define L by defining its relation, RL. Let RL

be the following instance-witness relation: the instance is of the form y = (VK, x, t)
(a verification key VK for a signature scheme, an input x, and a time bound t)
and the witness is of the form w = (M,σ), for M a Turing machine and σ a
signature. Then, (y, w) ∈ RL iff SIG.Verify(VK,M, σ) = 1 and M halts on x in
at most t steps and outputs one. Moreover, t < p(|x|), where p is a polynomial
upper-bound on the runtime of every Turing machine in the class of interest. Let
(SNARK.Gen, SNARK.Prover, SNARK.Verify) be a SNARK system for L.

The Language L∗ for WE. Based on the above language L and the SNARK system
(SNARK.Gen, SNARK.Prover, SNARK.Verify) for L, we define a language L∗ for the
witness encryption scheme using the witness relation RL∗ as follows:

RL∗
[
x∗ = (x, crs,VK), w∗ = (π, t)

]
= 1 iff SNARK.Verify(crs, (VK, x, t), π) = 1.

Let WE = (WE.Enc,WE.Dec) be an extractable witness encryption scheme for the
witness relation RL∗ .

3.2 Construction of ABE for Turing Machines

Our construction of ABE = (ABE.Setup, ABE.KeyGen, ABE.Enc, ABE.Dec) for
Turing machines proceeds as follows. Let T be the class of (uniform or non-uniform)
polynomial time Turing machines for the ABE scheme.

Setup ABE.Setup(1κ) where κ is the security parameter:
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1. Sample a verification key / signing key pair (VK, SigSK) ← SIG.KeyGen(1κ), and
output mpk := VK and msk := SigSK.

Encryption ABE.Enc(mpk, x, b) where mpk = VK, x ∈ {0, 1}∗ and b ∈ {0, 1}:

1. Run the SNARK generator SNARK.Gen to get crs ← SNARK.Gen(1κ).

2. Let x∗ = (x, crs,VK). Compute ctWE ← WE.Enc(1κ, x∗, b).

3. Output ct := (x∗, ctWE).

Key generation ABE.KeyGen(msk,M) where M is a Turing machine:

1. Compute σ ← SIG.Sign(SigSK,M) and output skM := (M,σ).

Decryption ABE.Dec(skM , ct) where skM = (M,σ) and ct = (x∗ = (x, crs,VK),
ctWE):

1. Run M on x and let t be the number of steps after which M halts (note that M is
a polynomial time Turing machine so it must halt within a polynomial number of
steps).

2. If M(x) = 0, output ⊥ and exit.

3. Otherwise, let w := (M,σ) and note that
(
(VK, x, t), w

)
∈ RL.

4. Run SNARK.Prover to obtain a proof π ← SNARK.Prover(crs, (VK, x, t), w).

5. Let w∗ = (π, t). Compute and output WE.Dec(w∗, ctWE).

Proof Intuition. We prove Th. 5 formally in our full version, and we only provide
intuition here for the security proof. We start by assuming the ABE scheme is not
secure, and reach a contradiction by showing that one can forge signatures using the
extractability properties of the WE and SNARK schemes. Therefore, assume there is
an adversary for ABE, AABE = (AABE,1, AABE,2). We will show how to construct an
adversary AWE for the WE scheme: AWE simply embeds its challenge ciphertext into
the ciphertext for AABE and lets AABE decide.

Once we have the adversary AWE, by the security definition of WE, we also have an
extractor EWE which on input x∗, outputs a valid witness w∗ = (π, t) of (x∗, w∗) ∈
RL∗ . Using EWE, we construct a prover P ∗ for the SNARK system that is able to
construct an instance y = (VK, x, t) and a proof π for which the SNARK verifier
accepts. By the proof of knowledge property of the SNARK, there exists an extractor
ESNARK that outputs a witness for the SNARK language L, namely w = (M,σ), such
that (y, w) ∈ RL. This means that M(x) = 1 and that σ is a correct signature on
M ; but AABE only asked for signatures of Turing machines Mi for which Mi(x) = 0.
Therefore, (M,σ) are a new signature pair and thus we used P ∗ and ESNARK to forge a
signature and reach a contradiction.

3.3 ABE for RAMs

In this section, we discuss how to construct ABE for RAMs. This construction is similar
to our construction for Turing machines, so we only mention the main differences here:
the language L for the SNARK and ABE.KeyGen. See our full paper for more details.
Let (M,D) be a RAM pair: a RAM machine M and memory D.
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The Language L for SNARK. Let RL be the following instance-witness relation:
the instance is of the form y = (VK, x, t) (a verification key VK for a signature
scheme, an input x, and a time bound t) and the witness is of the form w =
(r,M, σ(r,M), S, {i,Di, σ(r,i,Di)}i∈S), where r is a nonce, M a machine, σ(M,r) is a
signature on the description of the machine M and the nonce r, S is a set of integers
that represent memory addresses (the memory accesses M makes to D), Di is the value
in the i-th slot of memory and σr,i,Di is a signature on r and Di. Then, (y, w) ∈ RL iff

1. SIG.Verify(VK, (r,M), σ(r,M)) = 1,
2. SIG.Verify(VK, (r, i,Di), σ(r,i,Di)) = 1 for all i ∈ S,
3. M halts on x in at most t, all of its memory queries are in S, and outputs one.

Key generation ABE.KeyGen(msk,M,D) where M is a RAM and D its memory:

1. Choose r ← {0, 1}poly(κ).
2. Compute σ(r,M) ← SIG.Sign(SigSK, (r,M)).
3. For every i ∈ 1 . . . |D|, compute σ(r,i,Di) ← SIG.Sign(SigSK, (r, i,Di)).

4. Output (r,M, σ(r,M), {Di, σ(r,i,Di)}
|D|
i=1).

Key generation runtime and the function key size are polynomial in the description of
the RAM and the size of |D|, but they do not depend on the runtime of the RAM. (As a
remark, to obtain a slightly shorter key size, one can sign a Merkle tree over the entries
in D.) The time to decrypt also only depends on the time to run the RAM and not on its
worst case running time or on the memory size.

3.4 Beyond ABE for Turing Machines and RAMs

Interestingly, it turns out the expressivity of our ABE construction goes beyond that of
Turing machines and RAMs. The ABE construction can be easily changed to allow the
evaluator to provide an additional input α to the computation. That is, given a function
key skM , a ciphertext ctx,m, an evaluator can choose an input α by himself; then if
M(x, α) = 1, ABE.Dec outputs m, otherwise, it outputs ⊥. To construct such an ABE,
one only has to change the SNARK language L such that an instance has the form
(VK, x, t) and a witness is (M,σ, α) with M(x, α) = 1 and σ verifies M .

This extra input α makes the scheme significantly more expressive. We illustrate on
two examples. The first example allows the secret key owner to delegate the choice
of Turing machines to another user, say Alice, by issuing a function key for Alice;
then Alice can choose Turing machines of her choice to run on the ciphertexts, without
contacting the secret key owner. To construct this example, the secret key owner
generates skUAlice

where UAlice is a universal circuit containing Alice’s public key. UAlice

takes as input α = (TM, σ(TM)) and x: it first checks that σ(TM) verifies with Alice’s
public key as being a signature of TM, and if so, it runs TM(x). Now Alice can choose
any Turing machine TM she wishes, and as long as she signs it, she will be able to
evaluate it on the ciphertext. In fact, the secret key owner can delegate the choice of
Turing machines to any group of people, and he can even express complex policies, e.g.
“allow any Turing machine that is signed by (Alice and Bob) or Chris”.

The second example is to run any approved RAM on any approved database, where
approved means that it was signed by the secret key owner. We do not elaborate further
on this construction and its applications in this short paper version.
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4 Functional Encryption for Turing Machines

In this section we construct a (single-key and succinct) functional encryption scheme
for Turing machines. We refer the reader to our full paper for a definition of FE for
Turing machines.

Theorem 6. Assuming we have:

– an attribute-based encryption scheme for any class of (uniform or non-uniform)
Turing machines with running time upper-bounded by a polynomial, and

– a fully homomorphic encryption scheme,

there is a (single-key and succinct) functional encryption scheme for any class of
(uniform or non-uniform) Turing machines with running time upper-bounded by a
polynomial.

Theorem 7. Assuming there exists a (single-key and succinct) functional encryption
scheme for any class of (uniform or non-uniform) Turing machines with running
time bounded by a polynomial, there is a (single-key and succinct) input-specific
runtime functional encryption scheme for any class of (uniform or non-uniform) Turing
machines with running time bounded by a polynomial.

Corollary 2. There exists a secure (single-key and succinct) functional encryption
scheme FE and a (single-key) input-specific runtime functional encryption scheme FE∗

for any class of (uniform or non-uniform) Turing machines with runtime bounded by
a polynomial under the extractable DGE No-Exact-Cover assumption, “knowledge of
exponent assumption”, and the LWE assumption with circular security (Sec. 1.2).

4.1 FE for Turing Machines Construction (FE)

Recall the construction overview provided in Sec. 1.3. We follow the reduction of
Goldwasser et al. [GKP+13b] who showed how to construct a (single-key and succinct)
functional encryption scheme from any ABE and FHE scheme, where functions were
modeled as circuits.

Our construction of FE = (FE.Setup, FE.KeyGen, FE.Enc, FE.Dec) proceeds
similarly to the [GKP+13b] construction, with the main difference being that we work
with Turing machines instead of circuits. There are two places in the reduction where
the treatment of circuits is different from the treatment of Turing machines: in the use
of the ABE and FHE schemes. To adapt the reduction to Turing machines, we first use
our ABE for Turing machines scheme. Second, we need to construct a Turing machine
MFHE that performs the FHE evaluation of another Turing machine M . We only present
here the construction of MFHE and delegate the full FE construction to our full paper.

Based on the intuition provided in Sec. 1.3, we describe a compiler CompileFHE that
takes as input a Turing machine M and a number of steps t and produces a Turing
machine MFHE that computes the FHE evaluation of M for t steps. In the following, let
x̂ denote the FHE encryption of x.
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Algorithm 1. (CompileFHE(M, t))
1. Use the Pippenger-Fischer transformation [PF79] for time bound t to transform M

into an oblivious Turing machine MO with head movement function next. next is
a function that takes as input i, the current step in the computation, and outputs
whether the head of MO should move left or right on the tape. The Turing machine
MO has a transition function δ: δ takes as input a tape input bit b, a state state and
outputs a new state state′, and the new content b′ for the new tape location which
is indicated by next.

2. Based on (MO, next), construct a new Turing machine MFHE that takes as input an
FHE public key hpk and an input encryption x̂. MFHE evaluates homomorphically
the transition function δ of MO for t steps. Each cell of the tape of MO corresponds
to the FHE encryption of the cell value for MFHE. At step i, MFHE maintains the
FHE encryption of the state of MO at time i: ŝtatei. At step i, MFHE takes as
input the encrypted bit from the input tape b̂ that the head currently points at, the
current encrypted state ŝtatei, and outputs an encrypted new state ̂statei+1 and a
new content b̂′. MFHE updates the current cell with b̂′ and then computes next(i) to
determine whether to move left or right.

3. Output the description of MFHE.

Note that the running time of CompileFHE and MFHE is polynomial in t.

4.2 Input-Specific Runtime Functional Encryption for Turing Machines (FE∗)

In what follows we show how to convert a (single-key) functional encryption scheme for
Turing machines FE into one where the decryption algorithm, on input a function key
for M denoted fskM and FE.Enc(MPK, x), runs in time that depends on the runtime
of M on input x. Denote by FE∗ such a functional encryption scheme. We refer the
reader to Sec. 1.3 for the construction overview and to our full paper for the definition
of input-specific runtime functional encryption.

Setup FE∗.Setup(1κ):

1. Generate τ := logBn independent pair of keys for the FE scheme: (mski,mpki) ←
FE.Setup(1κ).

2. Output MPK := (mpk1, . . . ,mpkτ ) and MSK := (msk1, . . . ,mskτ ).

Key Generation FE∗.KeyGen(MSK,M): with MSK = (msk1, . . . ,mskτ ).

1. Let Mi be the Turing machine that runs M for 2i steps and outputs M(x) if M
finishes in that number of steps, otherwise, it outputs ⊥. Let ti be the number of
steps Mi runs for.3

2. Let fskMi ← FE.KeyGen(mski,Mi, ti), for i = 1 . . . τ .

3. Output fskM := (fskM1 , . . . , fskMτ ).

Encryption FE∗.Enc(MPK, x) with MPK = (mpk1, . . . ,mpkτ )

1. Compute cti ← FE.Enc(mpki, x) for i = 1 . . . τ .

3 Note that ti may be slightly larger than 2i, since ti is the number of steps it takes to simulate
a Turing machine that runs for 2i steps.
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2. Output ct := (ct1, . . . , ctτ ).

Decryption FE∗.Dec(fskM , ct): for fskM = (fskM1 , . . . , fskMτ ), ct = (ct1, . . . , ctτ ).

1. Starting with i = 1, repeat until v �= ⊥:

(a) v ← FE.Dec(fskMi , cti)

(b) i ← i + 1

2. Output v.

Based on this construction, we prove Th. 7 in our full paper.
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Gaži, Peter I-551
Gelles, Ran II-258
Genkin, Daniel II-90
Gennaro, Rosario II-148
Gentry, Craig I-75, II-479
Goldwasser, Shafi II-536
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Hubáček, Pavel I-277

Iovino, Vincenzo II-519
Ishai, Yuval II-166, II-185

Jain, Abhishek I-316, II-220, II-519
Jarecki, Stanislaw I-353
Jean, Jérémy I-183
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Lewi, Kevin I-410
Libert, Benôıt II-289
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