
Chapter 9
The Optimization of the Bandpass Lengths in
the Multi-Bandpass Problem

Mehmet Kurt, Hakan Kutucu, Arif Gürsoy and Urfat Nuriyev

Abstract The Bandpass problem has applications to provide a cost reduction in de-
sign and operating telecommunication network. Given a binary matrix Am×n and a
positive integer B called the Bandpass length, a set of B consecutive non-zero ele-
ments in any column is called a Bandpass. No two bandpasses in the same column
can have common rows. The general Bandpass Problem consists of finding an opti-
mal permutation of rows of the matrix A that produces the maximum total number
of bandpasses having the same given bandpass length B in all columns. The Multi-
Bandpass problem includes different bandpass lengths B j in each column j of the
matrix A, where j = 1,2, · · · ,n. In this paper, we propose an extended formulation
for the Multi-Bandpass problem. A given B j may not be always efficient bandpass
lengths for the communication network. Therefore, it is important to find an optimal
values of the bandpass lengths in the Multi-Bandpass problem. In this approach, the
lengths in each destination are defined as z j and we present a model to find the op-
timal values of z j. Then, we calculate the approximate solution of this model using
genetic algorithm for the problem instances which are presented in an online library.
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9.1 Introduction

Since the beginning of the 21st century, usage of the internet, digital tv broadcasts
and GSM networks have been dramatically increasing. Rapid growth in the number
of users leads to the need for more effective communication techniques. Manufac-
turers research and develop to overcome these kinds of problems. Recent studies
focus on data transmission speed and capacity increase in reasonable costs.

The Bandpass problem and the Multi-Bandpass problem (MBP) are problems
which are aimed to reduce the costs of communication [2].

This work is organized as follows. In Sect. 9.2, we give the definition and a
brief history of the bandpass problem. In Sect. 9.3, we present the mathematical
model of the problem with a constant bandpass length B. In Sect. 9.4, we introduce
another mathematical model for optimizing bandpass length B which is a decision
variable in the model. In Sect. 9.5, we extend the bandpass problem to the MBP and
give a mathematical model of it. In Sect. 9.6, we propose a new model consists of
finding the optimal bandpass lengths. In Sect. 9.7, we improve genetic algorithms
and present our experimental results. In Sect. 9.8, we give some concluding remarks.

9.2 The Bandpass Problem

Today, wavelengths multiplexing technology for fiber optic cables is a major mile-
stone to increase transmission capacity and speed. This technology is called dense
wavelength division multiplexing (DWDM) and provides a platform to exploit the
huge capacity of optical fiber. DWDM increases the number of communication
channels within a fiber-optic cable, thereby letting service providers obtain much
more bandwidth without installing a new cable. The 101 Tb/s transmission, based
on the wavelength division multiplexing (WDM) of 370 wavelengths each having a
speed of 273 Gb/s, is the highest ever reported in the optical transmission field by
NEC in 2011 [12].

An add-drop multiplexer (ADM) is one of the most important elements in a fiber
optic network. An ADM is a device that can add, block, pass or redirect various
wavelengths in a fiber optic network. Each ADM facilitates flows on some wave-
lengths to exit the cable according to their paths. In each ADM, special cards con-
trol each wavelength; they may either pass through the ADM or may be dropped
at their destination. An ADM can be programmed to drop consecutive wavelengths
by one special card. Thus, n consecutive wavelengths in the fiber optic cable can be
dropped in a station using only one card instead of n cards.

Not only developing new technologies are important, but reducing the cost of
these systems is crucial to ensure widespread use of them.

There are several wavelengths which are used by a source vertex to carry data to
destinations in a communication network. In addition, some of these wavelengths
are dropped at the intermediate stations. If the wavelengths are not ordered properly,
we might encounter an inefficient network in terms of cost.
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The bandpass problem is an optimization problem that finds an optimal permu-
tation of wavelengths, and thus it provides an opportunity to reduce the number of
cards to be used in the optical communication networks. This problem is first pro-
posed by Babayev and Bell in 2004. Then it is proved to be NP-hard. In [3, 9, 10], In-
teger programming models of the bandpass problem are developed and some heuris-
tic polynomial algorithms are presented. A library of the bandpass problem which
includes the optimum and the best known solutions of 90 instances is published [1].
The MBP that includes several bandpass lengths is modeled and some approxima-
tion algorithms are given [6, 7]. In [4, 5], several genetic algorithms, in which initial
population is generated randomly or using heuristic algorithms are improved for
different models of the bandpass problem.

9.3 The Mathematical Model of the Bandpass Problem

Let A be a binary matrix of size m× n that represents the flow of data from the
source to n destinations using m wavelengths. Such a matrix is shown in Table 9.1.
The matrix is defined as follows:

A = [aik],aik =
{

1, data in λi is transmitted to destination k ,
0, otherwise,

where i = 1,2, · · · ,m, k = 1,2, · · · ,n.
We mentioned in the previous section that an ADM can drop consecutive wave-

lengths using one special card. Consecutive wavelengths form a bandpass. The num-
ber of wavelengths in a bandpass is called bandpass length (B). Every non-zero entry
of the network flow matrix can be included in only one bandpass. This is because of
that a wavelength can not be dropped in a station by two cards.

Table 9.1 Network flow matrix

1st station 2nd station · · · nth station

λ1 1/0 1/0 · · · 1/0
λ2 1/0 1/0 · · · 1/0
· · · · · · · · · · · · · · ·
λm 1/0 1/0 · · · 1/0

In order to minimize the number of cards used in the communication network,
we should maximize the number of bandpasses. Before giving the model of the
problem, let us define the decision variables as follows:

xik,yk j ∈ 0,1, i = 1,2, · · · ,m, j = 1,2, · · · ,n, k = 1,2, · · · ,m,

xik =
{

1, if row i is relocated to position k ,
0, otherwise,
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yk j =
{

1, if row k is the first row of a bandpass in column j ,
0, otherwise.

The Bandpass problem can be modeled mathematically as follows:

max
n

∑
j=1

M−B+1

∑
k=1

yk j,

s.t.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

m
∑

k=1
xik = 1,

m
∑

i=1
xik = 1, i = 1, · · · ,m, k = 1, · · · ,m,

k+B−1
∑

i=k
yi j ≤ 1, j = 1, · · · ,n, k = 1, · · · ,m−B+1,

B · yk j ≤
M−B+1

∑
i=k

m
∑

r=1
ar jxri, j = 1,2, · · · ,n, 1 ≤ k ≤ M−B+1.

In this model, there are 2m+2n(m−B+1) constraints [11].

9.4 The Mathematical Model to Optimize Bandpass Length in
the Bandpass Problem

In Sect. 9.3, B (bandpass length) is fixed and given as an input in the model of the
Bandpass problem, but this constant length may not be so efficient for the communi-
cation network. Therefore, it is considered another model called “the mathematical
model to optimize bandpass length in the bandpass problem” [8]. In this model,
bandpass length is defined as a decision variable z and its optimal value is deter-
mined. We first introduce the variables for this model.

xik,yk j ∈ 0,1, i = 1,2, · · · ,m, j = 1,2, · · · ,n, k = 1,2, · · · ,m, z > 1,z ∈ Z,

xik =
{

1, if row i is relocated to position k ,
0, otherwise,

yk j =
{

1, if row k is the first row of a bandpass in column j ,
0, otherwise.

The mathematical model to optimize bandpass length in the bandpass problem as
follows:

max z ·
n

∑
j=1

M−z+1

∑
k=1

yk j,



9 The Optimization of the Bandpass Lengths 119

s.t.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

m
∑

k=1
xik = 1,

m
∑

i=1
xik = 1, i = 1,2, · · · ,m, k = 1,2, · · · ,m,

k+z−1
∑

i=k
yi j ≤ 1, j = 1,2, · · · ,n, k = 1,2, · · · ,m− z+1,

z · yk j ≤
k+z−1

∑
i=k

m
∑

r=1
ar jxri, j = 1,2, · · · ,n, 1 ≤ k ≤ m− z+1.

9.5 The Mathematical Model of the Multi-Bandpass Problem

In the models given in Sect. 9.3 and Sect. 9.4, there is only one bandpass length for
all destinations in the network. But ADMs which are placed in each destinations or
stations may be programmed for different bandpass lengths. In this model, we define
a bandpass length Bi for each destination point i. we first introduce some notation
for this model.

xik,yk j ∈ 0,1, i = 1,2, · · · ,m, j = 1,2, · · · ,n, k = 1,2, · · · ,m,

B j is the bandpass length for column j,

xik =
{

1, if row i is relocated to position k ,
0, otherwise,

yk j =
{

1, if row k is the first row of a bandpass in column j ,
0, otherwise.

The mathematical model of the Multi-bandpass problem is as follows:

max
n

∑
j=1

m−B j+1

∑
k=1

yk j,

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m
∑

k=1
xik = 1, i = 1,2, · · · ,m,

m
∑

i=1
xik = 1, k = 1, · · · ,m,

k+B j−1

∑
i=k

yi j ≤ 1, j = 1,2, · · · ,n, k = 1,2, · · · ,m−B j +1,

B j · yk j ≤
M−B j+1

∑
i=k

m
∑

r=1
ar jxri, j = 1,2, · · · ,n, 1 ≤ k ≤ M−B j +1.

9.6 A New Mathematical Model to Optimize Bandpass Lengths
in the Multi-Bandpass Problem

In the previous model given in Sect. 9.5, bandpass lengths Bi are fixed and given as
inputs. But this constant lengths may not be so efficient for the communication net-
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work. Therefore, we propose another model the so called the mathematical model to
optimize bandpass lengths in the Multi-bandpass problem. We define the bandpass
lengths in each destination (or station) by a decision variable zi and we focus on to
create a model finding their optimal values.

9.6.1 Determination the Objective Function

Let Am×n be a given binary matrix defined as follows, where i = 1,2, · · · ,m and
k = 1,2, · · · ,n.

A = [aik],aik =
{

1, data in λi is transmitted to destination k,
0, otherwise.

Let m j be a sum of ones in column j such that:

m j =
m

∑
i=1

ai j, j = 1,2, · · · ,n.

Bandpass length z j in a column j must be chosen so that the sum of the total number
of possible bandpasses and the total number of 1′s which are not included in a
bandpass is the minimum in the matrix. Then, we can write the objective function
as follows:

minF =
n
∑
j=1

m−z j+1

∑
i=1

yi j +
n
∑
j=1

(
m j −

m−z j+1

∑
i=1

z jyi j

)
=

n
∑
j=1

m j +
n
∑
j=1

(m−z j+1

∑
i=1

yi j −
m−z j+1

∑
i=1

z jyi j

)
= M +

n
∑
j=1

m−z j+1

∑
i=1

(yi j − z jyi j) = M +
n
∑
j=1

m−z j+1

∑
i=1

(1− z j)yi j

= M +
n
∑
j=1

(1− z j)
m−z j+1

∑
i=1

yi j = M−
n
∑
j=1

(z j −1)
m−z j+1

∑
i=1

yi j,

z j is a decision variable for an optimal bandpass length in column j, ∑n
j=1 ∑

m−z j+1
i=1 yi j

is the number of total bandpasses in the matrix, ∑n
j=1(m j −∑

m−z j+1
i=1 z jyi j) is the

number of all remaining 1′s which are not included in a bandpass in the matrix.
We can easily see if z j = 1 for all j = 1, · · · ,n then minF = M. Therefore, we sup-
pose that z j > 1 for all j = 1,2, · · · ,n. As it can be seen in the last form of the
objective function F , M is a constant value. Hence, if we want to find the minimum
value of the function F , we need to calculate the maximum value of the function
F ′ = ∑n

j=1(z j −1)∑
m−z j+1
i=1 yi j. Then, we can find the value of the function F in the

following formula: F = M−F ′.
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9.6.2 Boolean Integer Programming Model

Now, we propose the mathematical model to optimize bandpass lengths in the Multi-
bandpass problem. We first introduce the variables for this model.

xik,yk j ∈ 0,1, i = 1,2, · · · ,m, j = 1,2, · · · ,n, k = 1,2, · · · ,m,

z j ∈ Z is the bandpass length for column j, where z j > 1,

xik =
{

1, if row i is relocated to position k ,
0, otherwise,

yk j =
{

1, if row k is the first row of a bandpass in column j ,
0, otherwise.

Boolean integer programming model is as follows:

max
n

∑
j=1

(z j −1)
m−z j+1

∑
i=1

yi j,

s.t.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

m
∑

k=1
xik = 1,

m
∑

i=1
xik = 1, i = 1,2, · · · ,m, k = 1,2, · · · ,m,

k+z j−1

∑
i=k

yi j ≤ 1, j = 1,2, · · · ,n, k = 1,2, · · · ,m− z j +1,

z j · yk j ≤
k+z j−1

∑
i=k

m
∑

r=1
ar jxri, j = 1,2, · · · ,n, 1 ≤ k ≤ m− z j +1.

9.7 Genetic Algorithm and Computational Tests

The solution of the MBP is a permutation of the input matrix of size mxn and it is
easy to adapt for using genetic algorithms. Therefore, we improve a genetic algo-
rithm (GA) having three crossover and four mutation operators to solve the MBP. In
the GA, chromosomes of initial set of population are created randomly and then the
best bandpass lengths in each column are determined for each chromosome. Then,
the chromosomes are sorted in increasing order by the fitting values which mean
the value of objective function of the mathematical model. In the beginning of the
GA, initial population size (ps), crossover rate (cr), mutation rate (mr), crossover
number (cn) and mutation number (mn) are determined as below:
m : the number of rows in the matrix;
n : the number of columns in the matrix;
d : the density of the matrix;
ps = (n ·m)/2;
cr = 0.9;
mr = 1− cr;
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cn = cr · ps;
mn = mr · ps.

Two main crossover methods named as C1 and C2 have been used. The first
crossover method C1 selects two parents using roulette wheel selection. This opera-
tion is repeated cn times in the population set and the new solutions (offsprings) are
formed. C2 crosses the best cn parents with randomly selected parents and then the
new offsprings are formed. The last crossover operator C3 uses previous crossovers
sequentially.

The mutation operators M1 and M2 use 2-opt and they are differ from each other
by selection. The third mutation operator M3 uses 3-opt method. In this method, a
chromosome is chosen using roulette wheel selection and 5 new chromosomes are
obtained by permuting of these 3 genes. The chromosome which has the maximum
fitness value continues to live. The last mutation operator M4 is an exchange of a
determined random row length.

Table 9.2 Computational experiments of the library problems

Problem m n Min-cost # of bpasses Problem m n Min-cost # of bpasses

MBP-P1 64 8 107 71 MBP-P24 96 16 243 149
MBP-P2 64 8 61 39 MBP-P25 96 16 205 115
MBP-P3 64 8 96 62 MBP-P26 96 16 184 108
MBP-P4 64 8 60 27 MBP-P27 96 25 499 262
MBP-P5 64 8 69 40 MBP-P28 96 25 405 221
MBP-P6 64 8 40 24 MBP-P29 96 25 319 183
MBP-P7 64 12 159 104 MBP-P30 96 25 352 204
MBP-P8 64 12 151 88 MBP-P31 64 8 37 25
MBP-P9 64 12 129 71 MBP-P32 64 12 46 28
MBP-P10 64 12 97 58 MBP-P33 64 16 159 96
MBP-P11 64 12 115 60 MBP-P34 64 25 225 127
MBP-P12 64 12 100 70 MBP-P35 64 25 176 84
MBP-P13 64 16 240 146 MBP-P36 64 25 169 87
MBP-P14 64 16 196 132 MBP-P37 96 8 70 47
MBP-P15 64 16 199 121 MBP-P38 96 25 276 158
MBP-P16 64 16 145 90 MBP-P39 96 8 106 61
MBP-P17 64 16 152 80 MBP-P40 96 8 78 48
MBP-P18 64 16 168 75 MBP-P41 96 16 149 72
MBP-P19 96 8 128 63 MBP-P42 96 16 208 129
MBP-P20 96 8 104 59 MBP-P43 96 16 263 154
MBP-P21 96 8 106 64 MBP-P44 96 25 294 168
MBP-P22 96 8 96 68 MBP-P45 96 25 260 148
MBP-P23 96 16 299 176

Using above 3 crossover and 4 mutation operators, 12 GA implementations have
been created and these GA implementations have been tested on MBP problem
instances which are published on http://fen.ege.edu.tr/ arifgursoy/mbpopt/ and the
best solutions of the GA implementations are listed in Table 9.2. In this table, there
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are 45 instances having different number of rows and columns. Further details about
the problems can be found at the web page.

9.8 Conclusion

In this paper, a new extended mathematical model are presented for optimization
of the Multi-Bandpass problem. 12 genetic algorithm implementations are created
using combinations of 2 crossover operators and 4 mutation operators, and an on-
line problem library is created including 45 problem instances in the Web page
http://fen.ege.edu.tr/ arifgursoy/mbpopt/. These problems are tested using the ge-
netic algorithm implementations and the results are presented.
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