
Chapter 8
A Third-party Logistics Network Design Model
under Fuzzy Random Environment

Xiaoyang Zhou and Yan Tu

Abstract In the present paper, for the location problem of a third-party logistics
company which is under the fuzzy random environment, we proposed an chance
constraint model. In order to solve it, we transform it into an equivalent crisp model
by some mathematical proofs. Finally, an illustrative examples are given in order to
show the application of the proposed models.

Keywords 3PLs · Network design · Fuzzy random variable · Chance-constraint
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8.1 Introduction

Today’s competitive business environment has resulted in increasing cooperation
among individual companies as members of a supply chain. In other words, the suc-
cess of a companies will depend on their ability to achieve effective integration of
worldwide organizational relationships within a supply chain [1]. Moreover, con-
sumers now require high levels of customer services for a variety of products with
a short life cycle. In such an environment, companies are under pressure with fill-
ing their customers’ orders, keeping the deliveries of products up to speed, reducing
inventory. Consequently, the individual companies of a supply chain are frequently
faced with the challenges of restructuring their distribution network with respect to
global need and volatile market changes. Faced with such a situation, 3PLs come
into being to cooperate the manufacturing companies to improve the logistics effi-
ciency.
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In the recent past, third-party logistics (3PLs), also referred to as logistics out-
sourcing [2–4], has received considerable attention from logistics scholars, resulting
in a plethora of research and writing in this field. The interest of researchers in 3PLs
should continue as several recent studies suggest that a steadily increasing number
of companies across industry sectors use third-party providers for the management
of all or part of their logistics operations [5, 6].

The main advantage of outsourcing services to 3PLs is that these 3PLs allow
companies to get into a new business or a new market without interrupting forward
flows; in addition, logistics costs can be greatly reduced. These 3PLs have evolved
the logistics functions such as transportation management, warehouse management,
inventory management etc. 3PLs are playing an increasing role in the management
of supply chains.

In general, 3PLs operate clients’ transportation and warehouses services. More
specifically, through the use of these logistics centers, 3PLs provide inbound and
outbound transportation, cross-docking, and distribution as well as holding inven-
tory for their clients. So the design of 3PLs network is very important for a third
party logistics enterprise.

Unfortunately, the 3PLs network design problem is subject to many sources
of uncertainty besides random uncertainty and fuzzy uncertainty. In a practical
decision-making process, we often face a hybrid uncertain environment. To deal
with this twofold uncertainty, fuzzy random variable was proposed by Kwakernaak
[13, 14] to depict the phenomena in which fuzziness and randomness appear si-
multaneously [11, 15]. Several research works have been published in recent years
[16, 17]. However, in this paper, we consider the amount of demand on the products
as normally distributed variable N(μ,σ2) from the view point of probability theory,
and the values of μ as a triangular fuzzy variable (a,b,c) because of scanty data
to analyze. Therefore, probability 3PLs network with fuzzy parameters appears. In
this case, random fuzzy variable which was presented by Liu [12] can be used to
deal with this kind of combined uncertainty of randomness and fuzziness. How to
model and solve the problem of 3PLs network design in random fuzzy environment
is a new area of research interest. To the best of the author’s knowledge, so far, there
is little research in this area.

Our purpose in this paper is to make some contribution on 3PLs network design
in an uncertain environment of combined fuzziness and randomness and obtain opti-
mal solutions. We apply uncertain programming techniques to the real 3PLs network
design problem, and provide optimal alternative solutions to the decision-maker.

The remainder of the paper is organized as follows: In Sect. 8.2, we introduce
the third-party logistics problem, the fuzzy random chance constraint model and the
details of modelling for 3PLS location problem. A crisp equivalent model is pre-
sented in Sect. 8.3. An application is presented in Sect. 8.4. Finally the conclusion
has been drawn in Sect. 8.5.



8 A Third-party Logistics Network Design Model 101

8.2 Model for 3PLs Network Design

In this section, we will built up a model according to the third-party logistics net-
work design problem under fuzzy random environment.
(1) Problem statement

The first important thing for a third-party logistics company is to decide the lo-
cation of logistics centers, it’s the core of a 3PLs company. The function of a third-
party logistics company is to manage the products of the client plants, that is, to
perform the outsourcing contract signed with client plants, which includes distribut-
ing the products to the customers to satisfy their demand, and manage the inventory
for the client plants. So the client plants can just concentrate on the production, and
let the 3PLS company to deal with the distribution and the inventory.

For a 3PLs company, first all of the products are transported to logistics centers,
then according to the demand of customers the products are sent to the destination
of the customers. For the superfluous amount, the 3PLs company will keep them as
inventory, see Fig. 8.1.
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A third-party logistics company want to profit, they should minimize the total
cost under the precondition that they should carry out the outsourcing contract.
(2) 3PLs model with fuzzy random coefficients

We try to present a 3PLS model under fuzzy random environment, here we first
introduce some basic knowledge about fuzzy random, and then we give the details
of establishing fuzzy random chance constraint 3PLS model.

In order to establish a optimization network, we have the following assumptions:

• The 3PLs company sign a outsourcing contract with the client company for very
long time, and we consider one period;

• The location and the number of client companies and customers are known;
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• The demand of customers and the standard transaction costs are uncertain, we
use random fuzzy variables to denote it.

Fuzzy random variable, which was introduced by Kwakemaak [7] in 1978, is
a concept to depict the phenomena in which randomness and fuzziness appear si-
multaneously. Since then, its variants and extensions were presented by other re-
searchers, e.g., Colubi et al. [8], Kruse and Meyer [9], López-Diaz and Gil [10] ,
Puri and Ralescu [11] and Liu [12].

In this paper, the definitions about fuzzy random variable are cited from Liu [12].

Definition 8.1. [12] Let (Ω ,A ,Pr) be a probability space, F be a collection of
fuzzy variables defined on the possibility space. A fuzzy random variable is a func-
tion ξ : Ω → F such that for any Borel set B of ℜ, ξ ∗(B) = Pos{ξ (ω) ∈ B} is a
measurable function of ω .

Fuzzy random variable ξ is said to be triangular, if for each ω , ξ (ω) is a triangu-
lar fuzzy variable, denoted by (X1(ω),X2(ω),X3(ω)), with Xi are random variables
defined on the probability space Ω . The randomness of ξ is said to be determined
by random variables Xi, i = 1,2,3.

In this problem, we assume each logistic center has enough storage space for the
client plant. The notations for the proposed model are presented as follows:

Index

p : set of clients’ product types, p = {1, · · · ,P};
i : set of clients’ plant locations, i = {1, · · · , I};
j : set of potential sites of logistics centers, j = {1, · · · ,J};
k : set of fixed customers locations, k = {1, · · · ,K}.

Parameters

˜̄c1
pi j : standard unit transportation cost from i to j by product p;

˜̄c2
p jk : standard unit transportation cost from j to k by product p;

f j : fixed cost of potential logistics center j;
˜̄dpk : demand of customer k for product p;
spi : supply of product p of client company i;
tp j : the unit storage cost of product p in logistics center j;
yp j : the storage amount of product p in logistics center j.

Decision variables

x1
pi j : amount of product p from client plant i to logistics center j;

x2
p jk : amount of product p from logistics center j to customer k;

z j :
{

1 if the logistics center j is open,
0 otherwise.

For a 3Pls company, the objective is minimizing the total cost which is composed
of the transaction cost from client plant 1 to the logistics center j and from the
logistics center j to customer k, the fixed cost of opening the logistics center j, the
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variable intermediary cost of logistics center j transfer the products, and the storage
cost, ao we get the following objective function:

min F = ∑
p∈P

∑
i∈I

∑
j∈J

x1
pi j ˜̄c

1
pi j + ∑

p∈P
∑
j∈J

∑
k∈K

x2
p jk ˜̄c2

p jk + ∑
j∈J

z j f j + ∑
p∈P

∑
j∈J

tp jyp j. (8.1)

The constraints include the following:
The total amount of products from logistics center to the customer should be just
satisfied the demand of customer,

∑
j∈J

x2
p jk ≥ ˜̄dpk, ∀p,k. (8.2)

The total amount of products from client plant to logistics center should be no
more than the production of client plant,

∑
j∈J

x1
pi j ≤ spi, ∀p, i. (8.3)

The total number of logistics centers that will be open should be not larger than
a certain number,

∑
j∈J

z j ≤ n, ∀ j. (8.4)

For a logistics center and a product, the quantity difference between inbound and
output is the products that should be stocked, that is the storage amount,

yp j = ∑
i∈I

x1
pi j − ∑

k∈K
x2

p jk, ∀p, j. (8.5)

The storage amount should be no less than 0,

yp j ≥ 0, ∀p, j. (8.6)

In addition, there are some logical constrains,

x1
pi j = x1

pi j · z j, ∀i, j, x2
p jk = x2

p jk · z j, ∀ j,k,

x1
pi j ≥ 0, ∀i, j, x2

p jk ≥ 0, ∀ j,k, z j = {0,1}, ∀ j. (8.7)

From the discussions above, we can formulate a fuzzy random mixed-integer
non-linear programming model as follows:

min F = ∑
p∈P

∑
i∈I

∑
j∈J

x1
pi j ˜̄c

1
pi j + ∑

p∈P
∑
j∈J

∑
k∈K

x2
p jk ˜̄c2

p jk + ∑
j∈J

z j f j + ∑
p∈P

∑
j∈J

tp jyp j,
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s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
j∈J

x2
p jk ≥ ˜̄dpk, ∀p,k,

∑
j∈J

x1
pi j ≤ spi, ∀p, i,

yp j = ∑
i∈I

x1
pi j − ∑

k∈K
x2

p jk, ∀p, j,

yp j ≥ 0, ∀p, j,

x1
pi j = x1

pi jz j, ∀i, j,

x2
p jk = x2

p jkz j, ∀ j,k,

x1
pi j ≥ 0, ∀i, j,

x2
p jk ≥ 0, ∀ j,k,

z j = {0,1}, ∀ j.

(8.8)

Generally, in order to solve the model above, we have to transform these fuzzy
random variables into crisp parameters. In this paper we use the chance operator
to transform the fuzzy random programming to a chance-constraint programming
model.

Before the transformation, we give the following three useful definitions.

Definition 8.2. [17] (Probability measure) Let Ω be a nonempty set, and A a σ -
algebra over Ω , A is an event in A . The set function Pr is called a probability
measure if it satisfies the following three axioms.
Axiom 1. Pr{Ω} = 1.
Axiom 2. Pr{A} ≥ 0 for any A ∈ A .
Axiom 3. For every countable sequence of mutually disjoint events {Ai}∞

i=1, we
have:

Pr
{ ∞⋃

i=1

Ai

}
=

∞

∑
i=1

Pr{Ai}.

Definition 8.3. [17](Possibility measure) Given a universe Γ , P(Γ ) is the power
set of Γ and Pos is a set function defined on P(Γ ). Pos is said to be a possibility
measure, if Pos satisfies the following conditions:
(1) Pos{Φ} = 0;
(2) Pos(Γ ) = 1, and

(3) Pos
( ⋃

i∈I
Ai

)
= sup

i∈I
Pos(Ai) for any subclass {Ai|i ∈ I} of P(Γ ).

Definition 8.4. [17] (Chance measure) Let ξ be a fuzzy random variable, and B a
Borel set of ℜ. Then the chance of fuzzy random event ξ ∈ B is a function from
(0, 1] to [0, 1], define as:

Ch{ξ ∈ B}(α) = sup
Pr{A}≥α

inf
ω∈A

Pos{ξ (ω) ∈ B}.

Therefore, Ch{ fi(ξ ) ≤ 0}(αi), i = 1,2, · · · ,m means the possibility of the fuzzy
random event fi(ξ )≤ 0 standing under the probability level αi. Ch{ fi(ξ )≤ 0}(αi)≥
βi, i = 1,2, · · · ,m means the possibility of the fuzzy random event fi(ξ ) ≤ 0 stand-
ing under the probability level αi is no less than βi.
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For the purpose of minimizing the optimistic value F ′ of the fuzzy random ob-
jective, we turn the objective function to Equation (8.9),

min F ′, (8.9)

and we add constraint (8.9),

Ch
{

∑
p∈P

∑
i∈I

∑
j∈J

x1
pi j ˜̄c

1
pi j + ∑

p∈P
∑
j∈J

∑
k∈K

x2
p jk ˜̄c2

p jk + ∑
j∈J

z j f j

+ ∑
p∈P

∑
j∈J

vp jx1
pi j + ∑

p∈P
∑
j∈J

tp jyp j ≤ F ′
}

(ϕ) ≥ δ , (8.10)

where δ ,ϕ ∈ [0,1] are confidence levels, and min F ′ is the (δ ,ϕ)-optimistic return,
Ch{·} denotes the chance of the event in {·}.

According to the definition of chance, constraint (8.10) could be written as Equa-
tion (8.11),

Pr
{

ω
∣∣∣∣Pos

{
∑
p∈P

∑
i∈I

∑
j∈J

x1
pi j ˜̄c

1
pi j(ω)+ ∑

p∈P
∑
j∈J

∑
k∈K

x2
p jk ˜̄c2

p jk(ω))

+ ∑
j∈J

z j f j + ∑
p∈P

∑
j∈J

vp jx1
pi j + ∑

p∈P
∑
j∈J

tp jyp j ≤ F ′
}
≥ δ
}
≥ ϕ, (8.11)

where Pos{·} denotes the possibility of the event in {·}, and Pr{·} denotes the
probability of the event in {·}.

Remark 8.1. When the fuzzy random variable ˜̄cp degenerates to random variable c̄p,
the constraint (8.11) is equivalent to Equation (8.12),

Pr
{

∑
p∈P

∑
i∈I

∑
j∈J

x1
pi jc̄pi j(ω)+ ∑

p∈P
∑
j∈J

∑
k∈K

x2
p jkc̄p jk(ω)

+ ∑
j∈J

z j f j + ∑
p∈P

∑
j∈J

vp jx1
pi j + ∑

p∈P
∑
j∈J

tp jyp j ≤ F ′
}
≥ ϕ. (8.12)

And similarly, when the fuzzy random variable ˜̄cp degenerates to fuzzy variable
c̃p, the constraint (8.11) is equivalent to Equation (8.13),

Pos
{

∑
p∈P

∑
i∈I

∑
j∈J

x1
pi jc̃pi j(ω)+ ∑

p∈P
∑
j∈J

∑
k∈K

x2
p jkc̃p jk(ω)

+ ∑
j∈J

z j f j + ∑
p∈P

∑
j∈J

vp jx1
pi j + ∑

p∈P
∑
j∈J

tp jyp j ≤ F ′
}
≥ δ . (8.13)

For given confidence level (αpk,βpk), constraint (8.2) can be transformed to Equa-
tion (8.14),
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Ch
{

∑
j∈J

x2
p jk ≥ ˜̄dkp

}
(αpk) ≥ βpk, (8.14)

and it also can be written as Equation (8.15),

Pr
{

ω
∣∣∣∣Pos

{
∑
j∈J

x2
p jk ≥ ˜̄dpk(ω)

}
≥ βpk

}
≥ (αpk), (8.15)

where αpk and βpk are predetermined confidence levels.

Remark 8.2. When the random fuzzy variable ˜̄dpk degenerates to random variable
d̄kp, the constraint (8.14) is equivalent to Eqaution (8.16),

Pr
{

∑
j∈J

x2
p jk ≥ d̄pk(ω)

}
≥ (αpk). (8.16)

And similarly, when the fuzzy random variable ˜̄dpk degenerates to fuzzy variable
d̃kp, the constraint (8.15) is equivalent to Equation (8.17),

Pos
{

∑
j∈J

x2
p jk ≥ d̃pk(ω)

}
≥ βpk. (8.17)

We propose the chance-constraint programming model under random fuzzy en-
vironment as follows,

min F ′,

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ch
{

∑
p∈P

∑
i∈I

∑
j∈J

x1
pi j ˜̄c

1
pi j + ∑

p∈P
∑
j∈J

∑
k∈K

x2
p jk

˜̄c2
p jk + ∑

j∈J
z j f j

+ ∑
p∈P

∑
j∈J

tp jyp j ≤ F ′
}

(ϕ) ≥ δ ,

Ch
{

∑
j∈J

x2
p jk ≥ ˜̄dpk

}
(αpk) ≥ βpk, ∀p,k,

∑
j∈J

x1
pi j ≤ spi, ∀p, i,

yp j = ∑
i∈I

x1
pi j − ∑

k∈K
x2

p jk, ∀p, j,

yp j ≥ 0, ∀p, j,

x1
pi j = x1

pi j · z j, ∀i, j,

x2
p jk = x2

p jk · z j, ∀ j,k,

x1
pi j ≥ 0, ∀i, j,

x2
p jk ≥ 0, ∀ j,k,

z j = {0,1}, ∀ j.

(8.18)
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8.3 Model Analysis

One way of solving a chance constraint programming model is to convert the con-
straints of problem (8.18) into their respective crisp equivalents. As we know, this
process is usually a hard work and only successful for some special cases. Next, we
will consider a special case and present the result in this section.

Lemma 8.1. Let m̃ and ñ be two independently fuzzy numbers with continuous mem-
bership functions. For given confidence level α ∈ [0,1],

Pos{m̃ ≥ ñ} ≥ α = sup{μm̃(u)∧μñ(v)|u > v}.

By using the α-level sets of the fuzzy variables, the above Lemma 8.1 can also
be rewritten as:

Pos{m̃ ≥ ñ} ≥ α ⇔ mR
α ≥ nL

α , (8.19)

where mL
α ,mR

α and nL
α ,nR

α are the left and right side extreme points of the α-level sets
[mL

α ,mR
α ] and [nL

α ,nR
α ] of m̃ and ñ, respectively, and Pos{m̃ ≥ ñ} means the degree

of possibility that m̃ is greater than or equal to ñ.

Theorem 8.1. Let ˜̄dpk be a fuzzy random variable which is characterized by the
following membership function,

μ ˜̄dpk(ω)(t) =

⎧⎪⎪⎨⎪⎪⎩
L
(

dpk(ω)−t
ad

pk

)
, t ≤ dpk(ω), ad

pk > 0,

R
(

t−dpk(ω)
bd

pk

)
, t ≥ dpk(ω), bd

pk > 0,

ω ∈ Ω , (8.20)

where random vector dpk(ω) is normally distributed with mean vector ud and vari-

ance σd
pk

2, written as dpk(ω) ∼ N (ud
pk,σ

d
pk

2), ad
pk,b

d
pk are positive numbers ex-

pressing the left and right spreads of ˜̄dpk(ω), and reference functions L,R : [0,1] →
[0,1] with L(1) = R(1) = 0 and L(0) = R(0) = 1 are non-increasing, continuous
functions. Then, we have:

Pr
{

ω
∣∣∣∣Pos

{
∑
j∈J

x2
p jk ≥ ˜̄dpk(ω)

}
≥ αpk

}
≥ βpk,

if and only if
∑
j∈J

x2
p jk ≥ ud

pk −L−1(αpk)ad
pk +Φ−1(βpk)σd

pk,

where Φ is the standardized normal distribution and αpk,βpk ∈ (0,1) are predeter-
mined confidence levels.

Proof. From assumption we know that ˜̄dpk is a fuzzy number with membership
function μ ˜̄dpk

(t) for given ω ∈Ω . For convenience, we denote ˜̄dpk(ω)= (dpk(ω),ad
pk,

bd
pk)LR. By Lemma (8.1), we have that:
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Pos
{

∑
j∈J

x2
p jk ≥ ˜̄dpk(ω)

}
≥ αpk ⇔ ∑

j∈J
x2

p jk ≥ dpk(ω)−L−1(αpk)ad
pk.

Since dpk(ω) ∼ N (ud
pk,σ

d
pk

2), for given confidence levels αpk,βpk ∈ (0,1), we
have:

Pr
{

ω
∣∣∣∣Pos

{
∑
j∈J

x2
p jk ≥ ˜̄dpk(ω)

}
≥ αpk

}
≥ βpk

⇔ Pr
{

ω
∣∣∣∣∑

j∈J
x2

p jk ≥ dpk(ω)−L−1(αpk)ad
pk

}
≥ βpk

⇔ Pr

⎧⎪⎨⎪⎩ω
∣∣∣∣dpk(ω)−ud

pk

σd
pk

≤
∑
j∈J

x2
p jk +L−1(αpk)ad

pk −ud
pk

σd
pk

⎫⎪⎬⎪⎭≥ βpk

⇔ Φ

⎛⎜⎝ ∑
j∈J

x2
p jk +L−1(αpk)ad

pk −ud
pk

σd
pk

⎞⎟⎠≥ βpk

⇔ ∑
j∈J

x2
p jk ≥ ud

pk −L−1(αpk)ad
pk +Φ−1(βpk)σd

pk.

This completes the proof. �
Theorem 8.2. Let ˜̄c be a fuzzy random variable which is characterized by the fol-
lowing membership function,

μ ˜̄c(ω)(t) =

⎧⎪⎪⎨⎪⎪⎩
L
(

c(ω)−t
ac

)
, t ≤ c(ω),ac > 0,

R
(

t−c(ω)
bc

)
, t ≥ c(ω),bc > 0,

ω ∈ Ω , (8.21)

where random vector (C(ω)) is normally distributed with mean vector uc and pos-
itive define covariance matrix V c, written as (c(ω)) ∼ N (uc,V c), ac,bc are posi-
tive numbers expressing the left and right spreads of ˜̄c(ω), and reference functions
L,R : [0,1] → [0,1] with L(1) = R(1) = 0 and L(0) = R(0) = 1 are non-increasing,
continuous functions. Then, we have:

Pr{ω|Pos{ ˜̄c(ω)T x ≤ F̄} ≥ δ} ≥ ϕ,

if and only if
F̄ ≥ ucT x−L−1(δ )acT x+Φ−1(ϕ)

√
xTV cx,

where Φ is the standardized normal distribution and δ ,ϕ ∈ [0,1] are predetermined
confidence levels.

Proof. From assumption we know that ˜̄c is a fuzzy number with membership func-
tion μ ˜̄c(t) for given ω ∈ Ω . It follows from extension principle [12] that fuzzy num-
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ber ˜̄cT x is characterized by the following membership function

μ ˜̄c(ω)T x(r) =

⎧⎪⎪⎨⎪⎪⎩
L
(

c(ω)T x−r
acT x

)
, r ≤ c(ω)T x,

R
(

r−c(ω)T x
bcT x

)
, r ≥ c(ω)T x.

(8.22)

For convenience, we denote ˜̄c(ω)= (c(ω),ac,bc)LR and ˜̄c(ω)T x = (c(ω)T x, acT x,bcT x)LR,
respectively. By Equation (8.1), we have:

Pos{ ˜̄c(ω)T ≤ F̄} ≤ δ ⇔ c(ω)T x−L−1(δ )acT x ≤ F̄ .

Since c(ω) ∼ N (uc,V c), it follows that c(ω)T x ∼ N (ucT x,xTV cx). So, for
given confidence levels δ ,ϕ ∈ (0,1), we have:

Pr{ω|Pos{c(ω)T x ≥ F̄} ≥ δ} ≥ ϕ
⇔ Pr{ω|c(ω)T x ≤ F̄ +L−1(δ )acT x} ≥ ϕ

⇔ Pr
{

ω
∣∣∣∣c(ω)T x−ucT x√

xTV cCx
≤ F̄ +L−1(δ )acT x−ucT x√

xTV cx

}
≥ ϕ

⇔ Φ
(

F̄ +L−1(δ )acT x−ucT x√
xTV cx

)
≥ ϕ

⇔ F̄ ≥ ucT x−L−1(δ )acT x+Φ−1(ϕ)
√

xTV cx.

This completes the proof. �

8.4 Numerical Example

Suppose there is a 3PLs company, the first important decision for this company is to
design the logistics network, which including choose the logistics centers, limited
by the capital, only n = 2 logistics centers could be established. This 3Pls company
will be in charge of the transportation from two client plants to six customers via
two logistic centers.

Table 8.1 Parameters about logistics center

Logistics center Fixed cost( f j) (RMB) Unit inventory cost(t j) (RMB)

1 1800 5
2 2200 6
3 1900 5
4 2000 6
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Here we just consider one type of product, that is P = 1. So we can apply Model
(8.18) to this numerical problem, and obtain the following specific Model (8.23).

min F ′,

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pr
{

ω|Pos
{

2
∑

i=1

4
∑
j=1

x1
i j ˜̄c

1
i j +

4
∑
j=1

6
∑
j=1

x2
jk

˜̄c2
jk ≤F ′ −

4
∑
j=1

z j f j−
4
∑
j=1

t jy j

}
≥δ
}
≥ϕ,

Pr
{

ω|Pos
{

4
∑
j=1

x2
jk ≥ ˜̄dk

}
≥ αk

}
≥ βk, k = 1, · · · ,6,

4
∑
j=1

x1
i j ≤ si, i = 1,2,

4
∑
j=1

z j ≤ 2, j = 1, · · · ,4,

y j =
2
∑

i=1
x1

i j −
6
∑

k=1
x2

jk, j = 1, · · · ,4,

y j ≥ 0, j = 1, · · · ,4,
x1

i j = x1
i jz j, i = 1,2, j = 1, · · · ,4,

x2
jk = x2

jkz j, j = 1, · · · ,4, k = 1, · · · ,6,

x1
i j ≥ 0, i = 1,2, j = 1, · · · ,4,

x2
jk ≥ 0, j = 1, · · · ,4, k = 1, · · · ,6,

z j = {0,1}, j = 1, · · · ,4.
(8.23)

It’s known that there are two client plants which produce one kind of product.
Client plant 1 will produce 1800 products, and client plant 1 will produce 1500
products. After doing some surveys, there are 4 potential logistics centers. Some
important data are in Table 8.1. The standard unit transportation costs of this product
from client plants to logistic centers and from the logistic centers to customers are
shown in Tables 8.2 and 8.3. Table 8.4 reveals the demand of each customers.

Table 8.2 Transportation cost from client plants to logistic centers

˜̄c1
11 = [c1

11,0.5,0.5]LR with c1
11 ∼ N(5,0.5) ˜̄c1

12 = [c1
12,0.5,0.5]LR with c1

12 ∼ N(6,0.5)
˜̄c1

13 = [c1
13,0.3,0.3]LR with c1

13 ∼ N(3,0.2) ˜̄c1
14 = [c1

14,0.5,0.4]LR with c1
12 ∼ N(5,0.5)

˜̄c1
21 = [c1

21,0.5,0.5]LR with c1
21 ∼ N(4,0.4) ˜̄c1

22 = [c1
22,0.5,0.5]LR with c1

22 ∼ N(4,0.5)
˜̄c1

13 = [c1
23,0.4,0.4]LR with c1

23 ∼ N(5,0.2) ˜̄c1
24 = [c1

24,0.5,0.5]LR with c1
22 ∼ N(3,0.3)

Because the fuzzy random variables in this model are normally distributed, so
we can use Theorems 8.1 and 8.2 which in Sect. 8.3 to transform the above model
(8.23) to an equivalent crisp model (8.24) as follows, here we suppose δ = ϕ =
αk = βk = 0.9.
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min F ′,

s. t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F ′ − [1800z1 +2200z2 +1900z3 +2000z4 +5y1 +6y2 +5y3 +6y4]
≥ 5x1

11 + · · ·+3x1
24 +7x2

11 + · · ·+12x2
46 −L−1(0.9)

(0.5x1
11 + · · ·+0.5x1

24 + x2
11 + · · ·+2x2

46)

+Φ(0.9)
√

0.5x1
11

2 + · · ·+0.3x1
24

2 +0.5x2
11

2 + · · ·+2x2
46

2
,

4
∑
j=1

x j1 ≥ 800−5L−1(0.9)+
√

16Φ−1(0.9),

...
4
∑
j=1

x j6 ≥ 400−10L−1(0.9)+
√

9Φ−1(0.9),

x1
11 + x1

12 + x1
13 + x1

14 + x1
15 + x1

16 ≤ 1800,
x1

21 + x1
22 + x1

23 + x1
24 + x1

25 + x1
26 ≤ 1500,

4
∑
j=1

z j ≤ 2,

y1 = x1
11 + x1

21 − (x2
11 + x2

12 + x2
13 + x2

14 + x2
15 + x2

16),
...
y4 = x1

14 + x1
24 − (x2

41 + x2
42 + x2

43 + x2
44 + x2

45 + x2
46),

x1
i j = x1

i j · z j i = 1,2; j = 1, · · · ,4,

x2
jk = x2

jk · z j j = 1, · · · ,4;k = 1, · · · ,6,

x1
i j ≥ 0 i = 1,2; j = 1, · · · ,4,

x2
jk ≥ 0 j = 1, · · · ,4;k = 1, · · · ,6,

z j = {0,1} j = 1, · · · ,4.
(8.24)

Table 8.3 Transportation cost from logistic centers to customers

˜̄c2
11 = [c2

11,1,1]LR with c2
11 ∼ N(7,0.5) ˜̄c2

12 = [c1
12,1,1]LR with c2

12 ∼ N(6,0.5)
˜̄c2

13 = [c1
13,1,1]LR with c2

13 ∼ N(8,1) ˜̄c2
14 = [c1

14,1,1]LR with c2
14 ∼ N(9,0.5)

˜̄c2
15 = [c2

15,1,1]LR with c2
15 ∼ N(5,0.2) ˜̄c2

16 = [c1
16,1,2]LR with c2

16 ∼ N(6,1)
˜̄c2

21 = [c2
21,2,1]LR with c2

21 ∼ N(14,1) ˜̄c2
22 = [c1

22,1,1]LR with c2
22 ∼ N(9,0.5)

˜̄c2
23 = [c1

23,1,1]LR with c2
23 ∼ N(13,1) ˜̄c2

24 = [c1
24,2,2]LR with c2

24 ∼ N(14,2)
˜̄c2

25 = [c2
25,1,2]LR with c2

25 ∼ N(12,2) ˜̄c2
26 = [c1

26,2,1]LR with c2
26 ∼ N(13,2)

˜̄c2
31 = [c2

31,1,1]LR with c2
31 ∼ N(1,0.8) ˜̄c2

32 = [c1
32,0.6,0.6]LR with c2

32 ∼ N(7,0.5)
˜̄c2

33 = [c1
33,1,1]LR with c2

33 ∼ N(9,1) ˜̄c2
34 = [c1

34,0.6,0.6]LR with c2
34 ∼ N(7,0.5)

˜̄c2
35 = [c2

35,0.6,0.8]LR with c2
35 ∼ N(8,1) ˜̄c2

36 = [c1
36,2,2]LR with c2

36 ∼ N(10,2)
˜̄c2

41 = [c2
41,1,1]LR with c2

41 ∼ N(10,2) ˜̄c2
42 = [c1

42,2,3]LR with c2
42 ∼ N(15,3)

˜̄c2
43 = [c1

43,1,2]LR with c2
43 ∼ N(13,2) ˜̄c2

44 = [c1
44,1,1]LR with c2

44 ∼ N(10,1)
˜̄c2

45 = [c2
45,1,2]LR with c2

45 ∼ N(13,2) ˜̄c2
46 = [c1

46,2,1]LR with c2
46 ∼ N(12,2)

Note that the crisp model (8.24) is transformed from (8.23), and Model (8.24)
is a crisp mixed integer programming model and it can be solved by some existing
methods. Here we employ the software Lingo 9.0 to solve it, and we can obtain
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Table 8.4 Demand of customer

˜̄d1 = [ρ1,5,5]LR with ρ1 ∼ N(800,16) ˜̄d2 = [ρ2,4,4]LR with ρ2 ∼ N(500,25)
˜̄d3 = [ρ3,5,5]LR with ρ3 ∼ N(700,9) ˜̄d4 = [ρ4,4,4]LR with ρ2 ∼ N(500,25)
˜̄d5 = [ρ5,5,5]LR with ρ5 ∼ N(600,30) ˜̄d6 = [ρ6,10,10]LR with ρ2 ∼ N(400,9)

the following results: this 3Pls company will choose the first and the third place to
establish the logistics centers, and the cost for one period will be 38700RMB, and
the transportation scheme is shown in Fig. 8.2.

Fig. 8.2 The result of the
transportation scheme
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8.5 Conclusion

In this paper, for the first time, we have formulated a fuzzy random model about
3PLs network design problems in fuzzy random environments. Till now, no 3PLs
network design model has been formulated in such environments. Besides, we cre-
atively introduced the economic factors of scale which were important factors in
real-life transportation problem into the proposed model, and make the model more
effective. We transform the fuzzy random model into a chance-constraint model
which utilize the chance operator of the fuzzy random variables, and for a special
type of fuzzy random variables, a crisp equivalent model is proposed for the chance
constraint programming model. At the end of this paper, we use an example problem
to show the efficiency of the model.
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