
Chapter 38
American Option Pricing with Time-Varying
Parameters

Meng Wu, Nanjing Huang and Huiqiang Ma

Abstract In this paper, we provide an explicit formula for American option pricing
on a dividend-paying equity when the parameters in Black-Scholes equation are
time dependent. By using a general transformation, the option value is shown as
an explicit formula which is based on the value of American option with constant
parameters. Finally, the optimal boundary of American option is given.

Keywords Option pricing · Time-varying parameters · American put option ·
Black-scholes equation

38.1 Introduction

Options have been traded on public exchanges since 1973. There are American and
European options and a variety of exotic options in the market. American option
entitles the holder to buy or sell, respectively, at any time prior to a specified expira-
tion date. The existence of derivative securities leads to the mathematical question:
pricing. Our paper presents the valuation of an American put option by solving the
Black-Scholes partial differential equation (for short, PDE) with time dependent
parameters. Since some investors do not want to corporate the market’s view on
the direction of the future behavior which the option price depends on, we concern
on American option with time-varying parameters in order to give a mathematical
model to handle the concrete affairs in practice.

By using the Feynman-Kac theorem [11], the popular method of matingale pric-
ing for contingent claims (see [2, 3, 5–7]) is equivalent to the PDE technique. We
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shall only focus on the transformation of PDEs to obtain solutions to the valuation
problems.

The original derivation of the Black-Scholes equation with time-varying param-
eters can be found in [8]. A method of reducing this PDE into the heat equation was
described in [10] and an alternative approach to solving this PDE with time-varying
parameters was given in [9]. In [10], it has to keep track of how the terminal condi-
tion and solve the problem based on the heat equation. In [9], Rodrigo and Mamon
provided a simple derivation of an explicit formula for pricing a European option
on a dividend-paying equity when the parameters in Black-Scholes PDE are time
dependent. The approach of [9] is to transform the Black-Scholes equation with
time-varying parameters directly into a Black-Scholes equation with time indepen-
dent but arbitrary parameters.

Although Merton [8], Rodrigo and Mamon [9], Wilmott et al [10] introduced
different approaches to solve the Black-Scholes equation with time-varying param-
eters, they only considered European option but not American option. American
option is quite different with European option in that the buyer of an American op-
tion can opt, at any time of his choice, for a lump-sum settlement of the option. In [3]
and [4], American option’s price has been decomposed to a European option’s price
(see [1]) plus another part due to the extra premium required by early exercising the
contract. In this paper, we show the price of American put option with time-varying
parameters by using the approach of [9] and the decomposition of American option.

38.2 Preliminaries

Let S be the price of a stock, V (S, t) be the value of an American option on a
dividend-paying equity at time t and K be the exercise price or strike price in the
contract. We assume that σ(t) denotes the volatility of the equity at time t, r(t) and
q(t) are riskless interest rate and dividend yield at time t, respectively. It is clear that
r(t), q(t) and σ(t) are time dependent parameters which are different with constant
parameters. From [8], American put option satisfies the following equation:{

min{−LV,V −g(S)} = 0,
V (S, t) = g(S), (38.1)

where

LV =
∂V
∂ t

+
σ2(t)

2
S2 ∂ 2V

∂S2 +(r(t)−q(t))S
∂V
∂S

− r(t)V

and

g(S) =
{

(S−K)+, call option,
(K −S)+, put option.

(38.2)
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Definition 38.1. In mathematical theory, American option pricing is a free boundary
problem. The free boundary is a boundary curve (to be determined) which divides
the domain {0 ≤ S < ∞,0 ≤ t ≤ T} into two parts: the continuation region and the
stopping region. To be specific, e.g., consider an American put option. The two sets
of American put option are:

Σ1 = {(S, t) ∈ R
+ × [0,T )|V (S, t) > (K −S)+}

= {(S, t)|S(t) ≤ S < ∞,0 ≤ t ≤ T},
Σ2 = {(S, t) ∈ R

+ × [0,T )|V (S, t) = (K −S)+}
= {(S, t)|0 ≤ S ≤ S(t),0 ≤ t ≤ T},

where S(t) < K for 0 ≤ t < T . It is called that Σ1 is the continuation region which
means it is possible to hold an American put option and find an exercise policy that
gives riskless profits and Σ2 is the stopping region which means it is possible to
sell the American put option and can make riskless profits for every exercise policy
option of the buyer. Γ : S = S(t) is called the optimal exercise boundary and it must
be determined simultaneously with the option price V (S, t).

On the optimal exercise boundary Γ ,

V (S, t)
∣∣
S=S(t) = K −S(t),

lim
S→S(t)

∂V (S, t)
∂S

= −1 =
∂ (K −S)+

∂S

∣∣∣∣
S=S(t)

. (38.3)

The free boundary condition (38.3) indicates the option price’s derivative is con-
tinuous at crossing the optimal exercise boundary. This fact expresses the principle
of American option pricing. In order to value an American put option, we should
get V (S, t) ∈C1

Σ where Σ = {(S, t)|0 ≤ S < ∞,0 ≤ t ≤ T} = Σ1 ∪Σ2 ∪Γ .
Within the framework of constant risk-free rate rc, constant dividend yield qc and

time independent volatility σc, the following definition and lemma are given.

Definition 38.2. G(S, t;ξ ,T ) is called the fundamental solution of the Black-
Scholes equation, if it satisfies the following terminal value problem to the Black-
Scholes equation:⎧⎨⎩LV =

∂V
∂ t

+
σ2

c

2
S2 ∂ 2V

∂S2 +(rc −qc)S
∂V
∂S

− rcV = 0,

V (S, t) = δ (S−ξ ),

where 0 < S < ∞, 0 < ξ < ∞, 0 < t < T and δ (x) is a Dirac function.

Lemma 38.1. [4] Assume that the volatility of the equity, riskless interest rate and
dividend rate are constant, the price of American put option Vc(S, t) satisfies:

Vc(S, t) = VEc(S, t)+ ec(S, t),
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where VEc(S, t) is the European put option price contract and ec(S, t) is the early
exercise premium with constant parameters,

VEc(S, t) = Ke−rc(T−t)N(−d2)−Se−qc(T−t)N(−d1),

ec(S, t) =
∫ T

t
dη
∫ S(η)

0
(Krc −ξ qc)G(S, t;ξ ,η)dξ

and ⎧⎪⎨⎪⎩d1 =
ln S

K +(rc −qc + σ2
c

2 )(T − t)
σc
√

T − t
,

d2 = d1 −σc
√

T − t.

38.3 American Put Option Pricing with Time-Varying
Parameters

In this section, we investigate the American put option pricing problem with time
varying parameters.

From Equations (38.1) and (38.2), we know that the price process of American
put option V (S, t) satisfies:{

min{−LV,V −g(S)} = 0,
V (S, t) = (K −S)+.

Following the methodology of Lemma 38.1, we separate the variational inequal-
ity equation into a European put option and early exercise premium.

38.3.1 European Put Option with Time-Varying Parameters

At first, we investigate the price of the European put option which satisfies:⎧⎨⎩ ∂V
∂ t

+
σ2(t)

2
S2 ∂ 2V

∂S2 +
(
r(t)−q(t)

)
S

∂V
∂S

− r(t)V = 0,

V (S, t) = (K −S)+.
(38.4)

Within the framework of constant parameters which includes risk-free rate, con-
stant dividend yield and time-independent volatility, the Black-Scholes PDE of the
option pricing V (S, t) at time t is given by:⎧⎨⎩

∂V
∂ t

+
σ2

c

2
S2 ∂ 2V

∂S2 +(rc −qc)S
∂V
∂S

− rV = 0,

V (S,T ) = (K −S)+,

(38.5)
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where K is the exercise price at time T . The parameters σc,rc,qc and K are assumed
to be positive. Following the methodology of [9], we transform Equation (38.4) into
the Black-Scholes PDE with constant parameters Equation (38.5) directly. There-
fore, t = T when t = T .

Using the transformations:

V (S, t) = ϕ(t)V (S, t), S = φ(t)S, t = ψ(t), (38.6)

we can get the following equations by chain rule:

∂V
∂ t

= ϕ(t)
(

∂V
∂S

φ ′(t)S +ψ ′(t)
∂V
∂ t

)
+ϕ ′(t)V ,

∂V
∂S

= ϕ(t)φ(t)
∂V
∂S

,
∂ 2V
∂S2 = ϕ(t)φ(t)2 ∂ 2V

∂S2 . (38.7)

Substituting Equation (38.7) to (38.4), then regrouping and comparing it with
Equation (38.5), we have:

∂V
∂ t

+
σ2(t)φ 2(t)S2

2ψ ′(t)
∂ 2V

∂S2 +

(
r(t)−q(t)

)
φ(t)S +φ ′(t)S

ψ ′(t)
∂V
∂S

+
ϕ ′(t)− r(t)ϕ(t)

ϕ(t)ψ ′(t)
V = 0,

σ2(t)φ 2(t)S2

2ψ ′(t)
=

σ2
c

2
φ 2(t)S2,(

r(t)−q(t)
)
φ(t)S +φ ′(t)S

ψ ′(t)
= (rc −qc)φ(t)S,

ϕ ′(t)− r(t)ϕ(t)
ϕ(t)ψ ′(t)

= −rc.

Integrating the above formulas, we can get ϕ(t),φ(t) and ψ(t) as follows:

ϕ(t) = Aexp
{
−
∫ T

t

(
r(τ)− rcψ ′(τ)

)
dτ
}

,

φ(t) = Bexp
{
−
∫ T

t

(
(rc −qc)ψ ′(τ)+q(τ)− r(τ)

)
dτ
}

,

ψ(t) = − 1
σ2

c

∫ T

t
σ2(τ)dτ +C,

where A, B are positive constants and C is an arbitrary constant. From the terminal
condition of Equations (38.4), (38.5) and the transformation Equation (38.6), we
have:

(K −S)+ = V (S, t) = ϕ(T )V (S,T ) = ϕ(T )(K −S)+
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= ϕ(T )φ(T )
(

K
φ(T )

−S
)+

.

Thus, ϕ(T )φ(T ) = 1, K
φ(T ) = K, A = ϕ(T ) = K

K , B = φ(T ) = K
K , and C = ψ(T ) =

T . Then, the price of the European put option with time-varying parameters Equa-
tion (38.4) is given as follows:

V (S, t) =
K
K

exp
{
−
∫ T

t

(
r(τ)− rc

σ2(τ)
σ2

c

)
dτ
}

V (S, t),

S =
K
K

exp
{
−
∫ T

t

(
(rc −qc)

σ2(τ)
σ2

c
+q(τ)− r(τ)

)
dτ
}

S,

t = − 1
σ2

c

∫ T

t
σ2(τ)dτ +T ,

where V (S, t) is the price of the classic European put option Equation (38.5) which
is given by:

V (S, t) = K exp{−rc(T − t)}N(−d2)−Sexp{−qc(T − t)}N(−d1),

with:

d1 =
lnS− lnK +(rc −qc + σ2

c
2 )(T − t)

σc

√
T − t

,

d2 = d1 −σc

√
T − t (38.8)

and N(x) is the cumulative distribution function of a standard normal variable.

38.3.2 Early Exercise Premium with Time-Varying Parameters

In order to get e(S, t), we solve the fundamental solution of the following Black-
Scholes equation first.⎧⎨⎩LV =

∂V
∂ t

+
σ2(t)

2
S2 ∂ 2V

∂S2 +
(
r(t)−q(t)

)
S

∂V
∂S

− r(t) = 0,

V (S, t) = δ (S−ξ ).
(38.9)

Within the framework of constant parameters, the fundamental solution G(S, t;ξ ,
T ) at time t is given by:⎧⎨⎩

∂V
∂ t

+
σ2

c

2
S2 ∂ 2V

∂S2 +(rc −qc)S
∂V
∂S

− rcV = 0,

V (S,T ) = δ (S−ξ ),
(38.10)



38 American Option Pricing with Time-Varying Parameters 445

where 0 < S < ∞, 0 < ξ < ∞, 0 < t < T and δ (x) is a Dirac function.
It is clear that the only difference between Equations (38.4) and (38.9) is the

terminal condition. Thus, by Equation (38.6) and terminal conditions of Equations
(38.9) and (38.10), we have:

δ (S−ξ ) = V (S, t) = ϕ(T )V (S,T ) = ϕ(T )δ (φ(T )S−ξ )

=
ϕ(T )
φ(T )

δ

(
S− ξ

φ(T )

)
.

Therefore, ϕ(T )
φ(T ) = 1, ξ

φ(T ) = ξ , A = ϕ(T ) = ξ
ξ , B = φ(T ) = ξ

ξ and C = ψ(T ) = T .
Then, the fundamental solution of Equation (38.9) is:

G(S, t;ξ ,T ) =
ξ
ξ

exp
{
−
∫ T

t

(
r(τ)− rc

σ2(τ)
σ2

c

)
dτ
}

G(S, t;ξ ,T ),

S =
ξ
ξ

exp
{
−
∫ T

t

(
(rc−qc)

σ2(τ)
σ2

c
+q(τ)−r(τ)

)
dτ
}

S, (38.11)

t = − 1
σ2

c

∫ T

t
σ2(τ)dτ +T , (38.12)

where

G(S, t;ξ ,T ) =
e−rc(T−t)

ξ σc
√

2π(T − t)

exp

⎧⎪⎨⎪⎩−

(
ln S

ξ
+(rc −qc − σ2

c
2 )(T − t)

)2

2σ2
c (T − t)

⎫⎪⎬⎪⎭ (38.13)

is the fundamental solution of the classic Black-Sholes Equation (38.10).

Theorem 38.1. If the fundamental solution G(S, t;ξ ,η) of Black-Scholes equation
is regarded as a function of ξ ,η , then it is the fundamental solution of the adjoint
equation of the Black-Scholes equation. That is, let υ(ξ ,η) = G(S, t;ξ ,η), then
υ(ξ ,η) satisfies:⎧⎪⎪⎨⎪⎪⎩

L ∗υ = −∂υ
∂η

+
σ2(η)

2
∂ 2(ξ 2υ)

∂ξ 2 −
(

r(η)−q(η)
)∂ (ξ υ)

∂ξ
− r(η)υ = 0,

υ(ξ , t) = δ (ξ −S),

(38.14)

where 0 < ξ < ∞, 0 < S < ∞, t < η . If the fundamental solution of Equation (38.14)
is G∗(ξ ,η ;S, t), then G(S, t;ξ ,η) = G∗(ξ ,η ;S, t).

Proof. Consider the integral:
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0 =
∫ ∞

0

∫ η−ε

t+ε
{G∗(x,y;S, t)L G(x,y;ξ ,η)−G(x,y;ξ ,η)L ∗G∗(x,y;S, t)}dxdy

=
∫ ∞

0
dx
∫ η−ε

t+ε

{
∂
∂y

(
G∗G

)
+

σ2(y)
2

∂
∂x

(
x2G∗ ∂G

∂x

)
− σ2(y)

2
∂
∂x

(
G

∂
∂x

(
x2G∗))

+
(

r(y)−q(y)
) ∂

∂x

(
xGG∗)}dy.

When x → 0 and/or ∞, x2G∗ ∂G
∂x → 0,G ∂

∂x

(
x2G∗)→ 0,xGG∗ → 0. Thus∫ ∞

0
G∗(x,η − ε;S, t)G(x,η − ε;ξ ,η)dx =

∫ ∞

0
G∗(x, t + ε;S, t)G(x, t + ε;ξ ,η)dx.

Letting ε → 0, from the initial conditions of Equations (38.9) and (38.14), we
have: ∫ ∞

0
G∗(x,η ;S, t)δ (x−ξ )dx =

∫ ∞

0
δ (x−S)G(x, t;ξ ,η)dx,

which implies G∗(ξ ,η ;S, t) = G(S, t;ξ ,η). This completes the proof. �

Theorem 38.2. For time varying parameters, the value of an American put option
V (S, t) is:

V (S, t) = VE(S, t)+ e(S, t), (38.15)

where VE(S, t) is the value of the European put option and e(S, t) is the early exercise
premium of the American put option.

VE(S, t) =
K
K

exp
{
−
∫ T

t

(
r(τ)− rc

σ2(τ)
σ2

c

)
dτ
}

V E(S,T ),

e(S, t) =
∫ T

t
dη
∫ S(η)

0
(Kr(η)−q(η)ξ )G(S, t;ξ ,η)dξ , (38.16)

where G(S, t;ξ ,η) is the fundamental solution of the Black-Scholes equation with
time-varying parameters,

V E(S,T ) = K exp [−rc(T − t)]N(−d2)−Sexp [−qc(T − t)]N(−d1),

G(S, t;ξ ,η) =
ξ
ξ

exp
{
−
∫ η

t

(
r(τ)− rc

σ2(τ)
σ2

c

)
dτ
}

G(S, t;ξ ,η) (38.17)

and d1,d2 are defined as Equation (38.8).

Proof. For American put option’s domain Σ = {(S, t)|0≤ S < ∞,0≤ t ≤ T}, V (S, t)
has continuous second derivative in each region. Thus V (S, t) satisfies

−LV (S, t) =
{

0, (S, t) ∈ Σ1,
Kr(t)−q(t)S, (S, t) ∈ Σ2,

(38.18)
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where L is the Black-Scholes operator.
Multiplying G∗(ξ ,η ;S, t) to the both sides of Equation (38.18) and integrating it

on domain {(ξ ,η)|0 ≤ ξ < ∞, t + ε ≤ η ≤ T}, we have:

= −
∫ T

t+ε
dη
∫ ∞

0

{
∂

∂η
(
G∗V

)
+

σ2(η)
2

∂
∂ξ

(
ξ 2G∗ ∂V

∂ξ

)
−σ2(η)

2
∂

∂ξ

(
V

∂
∂ξ
(
ξ 2G∗))+

(
r(η)−q(η)

) ∂
∂ξ
(
ξV G∗)}dξ .

When ξ → 0 and/or ∞, ξ 2G∗ ∂V
∂ξ → 0,V ∂

∂ξ
(
ξ 2G∗)→ 0,ξV G∗ → 0. Thus,

∫ T

t+ε
dη
∫ S(η)

0

(
Kr(η)−q(η)ξ

)
G∗(ξ ,η ;S, t)dξ

=
∫ ∞

0
G∗(ξ , t + ε;S, t)V (ξ , t + ε)dξ −

∫ ∞

0
G∗(ξ ,T ;S, t)V (ξ ,T )dξ .

Letting ε → 0, from Theorem 38.1 and the terminal condition of Equation
(38.14), we have:

V (S, t) =
∫ ∞

0
G(S, t;ξ ,T )(K−ξ )+dξ+

∫ T

t
dη
∫ S(η)

0

(
Kr(η)−q(η)ξ

)
G(S, t;ξ ,η)dξ ,

=
K
K

exp
{
−
∫ T

t

(
r(τ)− rc

σ2(τ)
σ2

c

)
dτ
}

V E(S,T )

+
∫ T

t
dη
∫ S(η)

0

(
Kr(η)−q(η)ξ

)
· ξ

ξ

·exp
{
−
∫ η

t

(
r(τ)− rc

σ2(τ)
σ2

c

)
dτ
}

G(S, t;ξ ,η)dξ ,

= VE(S, t)+ e(S, t).

This completes the proof. �
Theorem 38.3. The optimal boundary of American put option S = S(t) satisfies the
following nonlinear integral equation:

S(t) = K − K
K

exp
{
−
∫ T

t

(
r(τ)−rc

σ2(τ)
σ2

c

)
dτ
}

V (S(t), t)

−K
∫ T

t
r(η)exp

{
−
∫ η

t
r(τ)dτ

}
N
(
− d̃1

∣∣
S=S(t)

)
dη

+S(t)
∫ T

t
q(η)exp

{∫ η

t
−q(τ)dτ

}
N
(
− d̃2

∣∣
S=S(t)

)
dη , (38.19)

where

β =
rc −qc

σ2
c

− 1
2
,
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d̃1 =
1√∫ η

t σ2(τ)dτ

(
ln

S
S(η)

+β
∫ η

t
σ2(τ)dτ

−
∫ η

t

(
(rc −qc)

σ2(τ)
σ2

c
+q(τ)− r(τ)

)
dτ
)

,

d̃2 = d̃1 +

√∫ η

t
σ2(τ)dτ,

S(t) =
ξ
ξ

exp
{
−
∫ T

t

(
(rc −qc)

σ2(τ)
σ2

c
+q(τ)− r(τ)

)
dτ
}

S(t).

Proof. By Equations (38.11), (38.12), (38.13), (38.16) and (38.17), e(S, t) can be
expressed as:

e(S, t) =
∫ T

t
dη
∫ S(η)

0

(
Kr(η)−q(η)ξ

)
· 1

ξ
· 1√

2π
∫ η

t σ2(τ)dτ

·exp
{
−
∫ η

t
r(τ)dτ − 1

2
∫ η

t σ2(τ)dτ

(
ln

S
ξ

+β
∫ η

t
σ2(τ)dτ

−
∫ η

t

(
(rc −qc)

σ2(τ)
σ2

c
+q(τ)− r(τ)

)
dτ
)2
}

dξ . (38.20)

Changing the variable to:

x =
1√∫ η

t σ2(τ)dτ

(
ln

S
ξ
−
∫ η

t

(
(rc −qc)

σ2(τ)
σ2

c
+q(τ)− r(τ)

)
dτ

+β
∫ η

t
σ2(τ)dτ

)
,

ξ = S · exp

{
−x

√∫ η

t
σ2(τ)dτ −

∫ η

t

(
(rc −qc)

σ2(τ)
σ2

c
+q(τ)− r(τ)

)
dτ

+β
∫ η

t
σ2(τ)dτ

}
,

dx =
−dξ

ξ
√∫ η

t σ2(τ)dτ
.

Then, Equation (38.20) becomes:

e(S, t) =
1√
2π

∫ T

t
exp
{
−
∫ η

t
r(τ)dτ

}
dη
∫ ∞

d̃1

(
Kr(η)−q(η)ξ

)
e−

x2
2 dx,

= K
∫ T

t
r(η)exp

{
−
∫ η

t
r(τ)dτ

}
N
(− d̃1

)
dη
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−S
∫ T

t
q(η)exp

{∫ η

t
−q(τ)dτ

}
N
(− d̃2

)
dη . (38.21)

Substituting Equation (38.21) into Equation (38.15), and taking into account:

V (S, t)
∣∣∣
S=S(t)

= V (S(t), t) = K −S(t), lim
S→S(t)

∂V (S, t)
∂S

= −1 =
∂ (K −S)+

∂S

∣∣∣∣
S=S(t)

,

we have:

VE(S, t)+ e(S, t)
∣∣∣
S=S(t)

= VE(S(t), t)+ e(S(t), t) = K −S(t),

lim
S→S(t)

∂
∂S

(
VE(S, t)+ e(S, t)

)
= −1 =

∂ (K −S)+

∂S

∣∣∣∣
S=S(t)

and

S(t) = K −VE(S(t), t)− e(S(t), t),

= K − K
K

exp
{
−
∫ T

t

(
r(τ)− rc

σ2(τ)
σ2

c

)
dτ
}

V (S(t), t)

−K
∫ T

t
r(η)exp

{
−
∫ η

t
r(τ)dτ

}
N
(
− d̃1

∣∣
S=S(t)

)
dη

+S(t)
∫ T

t
q(η)exp

{∫ η

t
−q(τ)dτ

}
N
(
− d̃1

∣∣
S=S(t)

)
dη .

This completes the proof. �

38.4 Conclusion

In this paper, we give an explicit formula for pricing an American put option
on a dividend-paying equity when the parameters in Black-Scholes equation are
time dependent. An alternative derivation of the solution is given through the use
of a generalized change of variable technique. Our results show that the value of
American put option with time-varying parameters can be expressed by that with
constant parameters. Further, the optimal boundary of American put option is given.
Although it is difficult to solve the nonlinear integral Equation (38.19), numerical
methods which are similar to [3] can be employed to handle this problem.
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