
Self-stabilizing Consensus Average Algorithm
in Distributed Sensor Networks

Jacques M. Bahi1, Mohammed Haddad2,
Mourad Hakem1, and Hamamache Kheddouci2

1 DISC Laboratory, Femto-ST - UMR CNRS, Université de Franche-Comté, France
2 LIRIS Laboratory, UMR CNRS 5205, Université de Lyon 1, F-69622, France

{Mourad.Hakem,Jacques.Bahi}@lifc.univ-fcomte.fr,
{Mohammed.Haddad,Hamamache.Kheddouci}@univ-lyon1.fr

Abstract. One important issue in sensor networks that has received renewed
interest recently is average consensus, i.e., computing the average of n sensor
measurements, where nodes iteratively exchange data with their neighbors and
update their own data accordingly until reaching convergence to the right param-
eters estimate. In this paper, we introduce an efficient self-stabilizing algorithm
to achieve/ensure the convergence of node states to the average of the initial mea-
surements of the network. We prove that the convergence of the fusion process
is finite and express an upper bound of the actual number of moves/iterations re-
quired by the algorithm. This means that our algorithm is guaranteed to reach a
stable situation where no load will be sent from one sensor node to another. We
also prove that the load difference between any two sensor nodes in the network
is within ε

D
×⌊

D+1
2

⌋
< ε, where ε is the prescribed global equilibrium threshold

(this threshold is given by the system) and D is the diameter of the network.

1 Introduction

Recent years have witnessed significant advances in wireless sensor networks which
emerge as one of the most promising technologies for the 21st century [1]. In fact,
they present huge potential in several domains ranging from health care applications to
military applications. Distributed in irregular patterns across remote and often hostile
environments, sensor nodes will autonomously aggregate into collaborative and asyn-
chronous communication mode. Indeed, the asynchronous mode presents the major ad-
vantages of allowing more flexible communication schemes. They are less sensitive to
the communication delays and to their variations. Moreover, they also present some tol-
erance to the loss of data messages since that losses do not prevent the progression of
the fusion process on both the sender and destination nodes.

In general, the primary objective of a wireless sensor network is to collect data from
the monitored area and to transmit it to a base station (sink) for processing. During
this phase, resource failures are more likely to occur and can have an adverse effect
on the application. Hence, they must be robust and survivable despite individual node
and link failures [2, 3, 4, 5, 6]. The advent of wireless sensor networks and its con-
ception constraints, have posed a number of research challenges to the networking and

A. Hameurlain et al. (Eds.): TLDKS IX, LNCS 7980, pp. 28–41, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Self-stabilizing Consensus Average Algorithm in Distributed Sensor Networks 29

distributed computation communities. A problem that has received renewed interest re-
cently is average consensus. It computes iteratively the global average of distributed
measures in a sensor network by using only local communications. Distributed average
consensus, in ad hoc networks, is an important issue in distributed agreement and syn-
chronization problems [7] and is also a central topic for load balancing (with divisible
tasks) in parallel computing [8, 9]. More recently, it has also found applications in dis-
tributed coordination of mobile autonomous agents and distributed data fusion in sensor
networks [10, 11, 12, 13].

In the literature, this problem has been formulated and studied in various ways. The
first approaches were based on flooding. For instance, in [14], each sensor node broad-
casts all its stored and received data to its neighbors. After some times, each node will
hold all the data of the network and acts as a fusion center to compute the estimate of
the unknown parameter. In [15, 16, 17], the authors compute the average of the sensor
measurements combined with local Kalman filtering and/or mobile agents. The works
developed in [14, 18, 19] consist of distributed linear iterations, where each sensor up-
dates its current state by a weighted fusion of its current neighbors’ states (which are
distorted when they reach it) and these fusion weights decrease to zero in an appro-
priate way, as time progresses. Other authors consider some practical issues in sensor
networks such as fault tolerance and asynchronism. For instance, some works compute
the average while taking into account link failures [20], other works study the consen-
sus problem into asynchronous environment [21, 22] while considering communication
delays, or from the energy point of view by minimizing the number of iterations [19].

To the best of our knowledge, none of the above approaches is able to give an ana-
lytical bound of the actual number of moves/iterations required by the algorithm, nor
to improve the upper bound for the load difference (upper bounded by the diameter of
the topology) between any two sensor nodes in the final load balanced distribution. In
this paper, we present an efficient self-stabilizing algorithm to tackle the problem of
distributed data fusion in large-scale sensor networks. This study differs from previous
works for the following reasons:

– We express an upper bound of the actual number of moves/iterations required by
the algorithm to ensure the convergence of node states to the average of the initial
measurements of the network. More precisely, we prove that there exists an upper
bound of the convergence time beyond which all the sensor nodes in the network
neither receive nor send any amount of load and, therefore, achieve a stable bal-
anced state.

– We improve the load difference between any two sensor nodes in the network which
is within ε

D × ⌊
D+1
2

⌋
rather than ε, where ε is the prescribed global equilibrium

threshold (this threshold is given by the system) and D is the diameter of the net-
work.

– Unlike earlier methods, we use a new concept of Self-Stabilization to achieve the
convergence of the system to a final balanced load state.

In a self-stabilizing model [23, 24, 25, 26], each vertex has only a partial view of the
system, called the local state. The vertex’s local state include the state of the vertex
itself and the state of its neighborhood. The union of the local states of all the vertices

30 J.M. Bahi et al.

gives the global state of the system. Based on its local state, a vertex can decide to
make a move. Then, self-stabilizing algorithms are given as a set of rules of the form
[If p(i) Then M], where p(i) is a predicate and M is a move. p(i) is true when state of
the vertex i is locally illegitimate. In this case, the vertex i is called a privileged/active
vertex. A vertex executes the algorithm as long as it is active (at least one predicate is
true).

The rest of the paper is organized as follows. After some definitions and notations
in Section 2.1, we present in Sections 2 the design and analysis of the proposed self-
stabilizing algorithm and give the corresponding proofs. To evaluate the behavior of the
proposed algorithm, we provide in Section 3 some results through simulations that we
conducted on NS2 (Network Simulator 2). Finally we give some concluding remarks in
Section 4 and 5.

2 Self-stabilizing Consensus Average Algorithm

In this section, we give a self-stabilizing algorithm for computing the consensus av-
erage in a wireless sensor network under a serial, or central, scheduler. Nevertheless,
there exist algorithms that make any self-stabilizing algorithm using the central sched-
uler operate under the distributed one [27, 28, 29, 30, 31]. We also assume a composite
read/write atomicity. We begin by giving fundamentals and a description of our algo-
rithm then we focus on the legitimate state formulation as well as the local information
at the nodes. After that, we present the algorithm which consists in only one rule and
give the proofs.

2.1 Fundamentals

A sensor network is modeled as a connected undirected graph G = (V,E). The set
of nodes is denoted by V (the set of vertices), and the links between nodes by E (the
set of edges). The nodes are labeled i = 1, 2, . . . , n, and a link between nodes i and
j is denoted by (i, j). The set of neighbors of node i is denoted by Ni = {j ∈ V |
(i, j) ∈ E}, and the degree (number of neighbors) of node i ηi = |Ni|. Each node takes
initial measurement zi, for the sake of simplicity, let us suppose that zi ∈ R. Then,
z will refer to the vector whose ith component is zi. Each node on the network also
maintains a dynamic state xi(t) ∈ R which is initially set to xi(0) = zi. Intuitively
each node’s state xi(t) is its current estimate of the average value

∑n
i=1 zi/n. The goal

of the averaging algorithm, is to let all the states xi(t) go to the average
∑n

i=1 zi/n, as
t → ∞. Throughout the paper, we use the terms scalar and load interchangeably.

In our framework, instead of reaching
∑n

i=1 zi/n, when t → ∞, we ensure reach-
ing

∑n
i=1 zi/n ± ε but in a finite time. Where ε is the prescribed global equilibrium

threshold.

2.2 Outline of the Algorithm

In order to reach, in a fully distributed way, the global consensus average, we draw
inspiration from a natural phenomenon that fits well as a model for our problem. This

Self-stabilizing Consensus Average Algorithm in Distributed Sensor Networks 31

phenomenon is the communicating vessels. In fact, one can see that by considering
nodes the network as similar vessels all filled with some amount of water (the sensed
value), then by making all the vessels communicating we will obtain, after stabilization,
the same amount of water in all vessels. This amount is actually the global average (see
Figure 1).

To model the behavior of the transfer of water from a vessel to another, we also
act as in the natural phenomenon; that is the vessels with low amount of water create
a depression and aspirate water from more loaded neighbors until the equilibrium is
reached. Hence, there will be streams of water circulating between the vessels as a ves-
sel could aspirate and be aspirated at the same time. In our model, we transfer an atomic
quantity ε from a highly loaded node to a less loaded node until they reach the equilib-
rium. This transfer is supposed to be performed by some atomic transaction mechanism
that could be called by our algorithm. Thus, the atomic transaction algorithm will be
composed with our algorithm [32].

Fig. 1. Communicating vessels

2.3 Global Legitimate State

Let G = (V,E) the graph modeling the sensor network. The algorithm should converge
to a state where all node reach the same value representing the consensus average.
However, we admit some error in the precision; that is two nodes should reach the same
value according to some error ε. The legitimate state of the network is then expressed
as follows:

∀i, j ∈ V : |xi − xj | ≤ ε (1)

where ε is the prescribed global equilibrium threshold. This threshold is given
by the system. We first prove that the Statement (1) ensures that every node in the
network has reached the consensus average within a certain error e but always within
the threshold ε.

32 J.M. Bahi et al.

Theorem 1. Let G = (V,E) be a graph such that |V | = n.

(∀i, j ∈ V : |xi − xj | ≤ ε) =⇒ (∀i ∈ V : xi =

∑
j xj

n
± ei ∧ ei ≤ ε)

Proof. Since all the vertices are holding the same value according to a given error ε, we
have:

(∀i, j ∈ V : |xi − xj | ≤ ε)
⇔ (∀i, j ∈ V : −ε ≤ xi − xj ≤ ε)
⇔ (∀i, j ∈ V : xj − ε ≤ xi ≤ xj + ε)
⇔ (∀i, j ∈ V : xi = xj ± ei ∧ ei ≤ ε)
⇒ (∀i ∈ V :

∑
j xi =

∑
j xj ±

∑
j ei ∧ ei ≤ ε)

⇒ (∀i ∈ V : n× xi =
∑

j xj ± n× ei ∧ ei ≤ ε)

⇒ (∀i ∈ V : xi =

∑
j xj

n
± ei ∧ ei ≤ ε)
�

2.4 Local Information

Every node i in the network has to maintain the following data structure:

– xi: the scalar value at node i.
– Ni: the set of neighbors of node i.
– σ: the local equilibrium threshold.

Fig. 2. The threshold σ

The threshold σ has to be chosen such that the transitive difference between nodes will
never exceed the real threshold ε (see Figure 2). In fact, let’s suppose three vertices a, b
and c such that a is a neighbor of b which also a neighbor of c but a an c aren’t neighbors.
If the difference between the values xa and xb is less than σ and the difference between
the values xb and xc is less than σ then what could we say about the difference between
the values xa and xc ? Hence, the threshold σ is defined according to the diameter of the
network D. Actually, by setting σ ≤ ε/D, we obtain a sufficient condition on vertices
to ensure the global threshold. The deployment knowledge of sensor networks is often
used to get better performance. Indeed, in [33] deployment knowledge like the number
of nodes and the diameter of the network is addressed.

Self-stabilizing Consensus Average Algorithm in Distributed Sensor Networks 33

2.5 The Algorithm

As mentioned above, the algorithm consists in only on rule that

2.1. The rule R1 : Local equilibrium
R1: Transfers σ from a neighbor j to i if j is more loaded than
i.
If ∃j ∈ Ni : xj − xi > σ Then
Transfer(xj, xi)

End If

With
2.2. Transfer Transaction Procedure

Transfer(xj, xi)
xj = xj − σ
xi = xi + σ

2.6 Convergence Proof

Let G = (V,E) the graph modeling the sensor network, with |V | = n and |E| = m.
In the following, we consider a discrete time where every move increments the time t
by 1. Let Max(t) be the maximum value in the network at the time t and respectively
Min(t) be the minimum value.

Lemma 1. ∀t,Max(t) ≥ Max(t+ 1) (respectively, ∀t,Min(t) ≤ Min(t+ 1)).

Proof. the proof is straightforward since we transfer an atomic quantity σ from a highly
loaded node to a less loaded node.
�
Lemma 2. If the system is unstable, that is the Statement (1) is false, then we have
Max(t) < Max(t+Δt) such that Δt is within O(n) moves.

Proof. The worst case is when only one vertex is not in the equilibrium (consider it
to be the black vertex in Figure 3). Since all other vertices are in equilibrium, all of
them are holding the maximum value. Hence, in the worst case, the transfer stream will
be formed by all the vertices in the network as a Hamiltonian path. This produces that
the Max (rsp. Min) value will be decremented (rsp. incremented) by at least σ within
O(n) moves.
�
Theorem 2. The algorithm described by the rule R1 converges within

O

(
Max(0)−Min(0)

σ
× n

)
moves.

Proof. By the previous lemmas, we have seen that Max value is decremented by
at least σ within O(n) moves (rsp. for Min). The worst case here is when the
average is close to one of the extremal values either Max(0) or Min(0). Hence,

O

(
Max(0)−Min(0)

σ

)
transfers will be needed to reach the average. Since ev-

ery transfer could cost O(n) moves, we obtain that the algorithm converges within

O

(
Max(0)−Min(0)

σ
× n

)
.
�

34 J.M. Bahi et al.

Fig. 3. Worst case of load transfer

2.7 Improvement of the Algorithm

We propose now to introduce a new rule to the algorithm. This rule aims to improve the
global equilibrium of the network while proceeding only on local information. The rule
is as follows:

2.3. Neighborhood Equilibrium
R2: Transfers σ from a neighbor k to a neighbor l if k is more
loaded than l.
If (∀j ∈ Ni : |xj − xi| ≤ σ) ∧ (∃k, l ∈ Ni : xk − xl > σ) Then
Transfer(xk, xl)

End If

With

2.4. Transfer procedure
Transfer(xk, xl)
xk = xk − σ
xl = xl + σ

Observe however that this second transfer procedure will require distance two knowl-
edge.

Theorem 3. The load difference between any two sensor nodes in the network is within
ε
D × ⌊

D+1
2

⌋
< ε, where ε is the prescribed global equilibrium threshold (this threshold

is given by the system) and D is the diameter of the network.

Proof. To prove this bound, consider a linear chain graph of n nodes (D = n − 1)
arranged with ascending order of their loads xi, 1 ≤ i ≤ n along a line. If all nodes are
in the following state:

x1 = ε
n−1 < x2 = 2× ε

n−1
< · · · <

xi−1 = (i − 1)× ε
n−1 < xi = i× ε

n−1
< · · · <

xn−1 = ε < xn = n× ε
n−1

Self-stabilizing Consensus Average Algorithm in Distributed Sensor Networks 35

Then, for this configuration, the only rule that can be executed is rule 2. For the sake
of simplicity, assume that nodes, with index i mod 2 = 0, will be activated for rule 2.
Thus, we get

x1 = x2 = x3 = 2× ε
n−1

< · · · <
xi−1 = xi = xi+1 = i× ε

n−1
< · · · <

xn−2 = xn−1 = xn = ε

Similarly, for this configuration, the only rule that can be executed is rule 1 and for the
sake of simplicity, assume that the involved nodes (3, 6, . . . n− 3) will be activated for
rule 1. Thus, we get:

x1 = x2 = 2× ε
n−1 < x3 = x4 = 3× ε

n−1
< · · · <

xi−1 = xi = i× ε
n−1 < xi+1 = xi+2 = (i+ 1)× ε

n−1
< · · · <

xn−3 = xn−2 = ε− ε
n−1 < xn−1 = xn = ε

Now, by alternating the execution of the two rules, there will be streams of load circu-
lating between the nodes as a node could aspirate and be aspirated at the same time.
Hence, this process is repeated until reaching the configuration case where nodes on the
line are in the ascending order by an increment of ε

n−1 with at least two adjacent nodes
which have the same load value. Formally:

∀i, ∀k, l ∈ Ni, k /∈ Nl : xk − xl ≤ σ

In this case, all nodes will never again execute rule 2. This means, that all nodes reach
their stable state where no load will be sent from one sensor node to another.

This configuration case can be viewed as a splitting of the initial linear chain graph
into a new linear chain of virtual nodes, where each virtual node contains at least two
nodes with the same load value. The virtual nodes along a new chain graph are in the
ascending order by an increment of ε

n−1 .
Thus, it follows that for n ≥ 2 the load difference between any two sensor nodes in

the linear chain graph is within

ε
n−1 × ⌊

n
2

⌋
= ε

D × ⌊
D+1
2

⌋
< ε

�
Theorem 4. The bound ε

D × ⌊
D+1
2

⌋
is attainable.

Proof. To see that this bound is really attainable, consider a linear chain graph of n = 6,
a non negative integer ε = 5 and

σ = ε
D = 5

5 = 1 = |xi+1 − xi|, 1 ≤ i ≤ n− 1

By alternating the execution of the two rules, we obtain the final stable situation of loads

x1 = 2 < x2 = x3 = 3 < x4 = x5 = 4 < x6 = 5

36 J.M. Bahi et al.

with the difference of

ε
n−1 × ⌊

n
2

⌋
= ε

D × ⌊
D+1
2

⌋
= 5

5 × ⌊
5+1
2

⌋
= 3 < ε = 5

�
Theorem 5. For a non negative integer load balancing problem, the load difference
between any two sensor nodes in the network is within

⌊
D+1
2

⌋
, where D is the diameter

of the network.

Proof. the proof is straightforward since the prescribed global equilibrium threshold ε
is bounded by the diameter of the network D.
�
We discuss the performance of introducing this rule in the next section.

3 Experimentation

In this section, we discuss some results through simulations that we conducted on NS2
(Network Simulator 2). We considered different sizes for the sensor network: 50, 100,
200, 400, 800 and 1600 nodes with an average density of 100 nodes per km2. The
radio transmission range is assumed to be 250 m. The threshold σ is set to 0.1 while
Max(0)−Min(0) is set to 10. The scalars of nodes and nodes positions are determined
according to uniform distribution. We ran the two versions of our algorithm. The first
version executes only the rule R1 and the second executes both rules R1 and R2. For
every size of the network, we consider 10 executions of the algorithm then we calculate
the average of obtained results.

Fig. 4. Convergence time

Self-stabilizing Consensus Average Algorithm in Distributed Sensor Networks 37

Fig. 5. Number of moves per node

We first discuss the convergence time. In our study we express this time by the num-
ber of moves performed by the set of all nodes of the network.

Consider the Figure 4. We can observe that both versions of the algorithms converge
within similar amount of moves. We also observe that the number of moves is increasing
linearly with the number of nodes in the network n. In fact, the slope of the line is about
22 while the one determined by the upper bound of the convergence time is exactly
(Max(0)−Min(0)) /σ = 100. Actually, the equation of the obtained line is y =
22.33 x − 415. Hence, we can expect that for large values of n, the number of moves
performed by a node will be about 22 moves. This is confirmed by Figure 5.

This figure gives the number of moves performed by a node according to the total
number of nodes in the network. The observed value increases in a logarithmic way
until reaching the value of ∼ 22.

Now, in order to show the performance of the introduction of the ruleR2, we consider
the number of nodes that converge outside the interval x ± σ where x is the global
consensus average. Before giving interest to that number of nodes, we first discuss the
ratio between σ and ε. In all our simulations, we observed that for every node i, after the
convergence, the value |xi−x| is always less than 3×ε. Hence, if we suppose a uniform
distribution of sensed values or scalars, one might have no need of a prior knowledge
or estimation of the diameter of the network to set σ according to a precision ε.

The Figure 6 gives the number of nodes that converge outside the interval x± σ (but
still all the nodes converge within the interval x± ε).

We can observe that for networks with small number of nodes, the introduction of
the rule R2 has not much effect. However, with the increase of the node number, the
difference between the two versions of the algorithm become more important. More-
over, after the convergence, the value |xi − x| is always less than 2 × ε if we consider
the algorithm using both rules R1 and R2.

38 J.M. Bahi et al.

Fig. 6. Number of node out of x± σ

4 Discussion and Future Work

We present in this section some generalizations of our algorithms. For the sake of sim-
plicity, the discussion is given from the point of view of node i.

i) Improving Reliability: unexpected node failures may occur during the fusion pro-
cess due to various reasons such as battery depletion/ exhaustion, software glitches,
dislocation or environmental hazards and malicious attacks. To cope with this problem,
when the area of interest has a significant density of sensors, we can perform redun-
dancy/replication mechanisms, where some sensors can be in an active state: they par-
ticipate in the network functioning while the others in a passive state (standby). These
sensors wakeup periodically. If a working sensor node fails, it must be replaced by a
passive one. However, two questions arise here: i) How the fault detection is done? and
ii) how to replace the failed sensors?

These questions (i) and (ii) raise the following problems: (1) Since sensor nodes are
not aware of their neighbors, especially the number of sleeping/passive nodes. How
to adjust the wakeup period of these sensors? (2) During the recovery process, how
to handle the case where two or more sleeping nodes, would realize at the same time
that the working/active node is down? Indeed, for the same covered area, it should not
contain several working nodes simultaneously, which would distort the computation of
the average consensus, the self stabilizing algorithm should be built on the fact that only
one sensor node must be in the active state for each covered area. To compute node’s
sleeping wakeup rate, we can borrow the same principle to [5]. Intuitively, nodes are
initially in the sleeping mode. Each node sleeps for an exponentially distributed time
generated according to a probability density function (PDF) f(t) = λe−λt, where λ is
the probing rate of the sensor node and t denotes its sleeping time duration.

ii) Distributed Termination: the detection of the conjunction of local terminations, which
is a stable property, is a non-trivial problem. In fact it covers two issues: (i) detect

Self-stabilizing Consensus Average Algorithm in Distributed Sensor Networks 39

whether all sensor node states converge to the average of the initial measurements of
the network even when sensor nodes are subject to failures and (ii) ensure that we have
achieved the desired computations. Solving this problem in a distributed manner, allows
each sensor to detect that it has done and all the nodes reach this coherent state. Thus,
the objective here is to overlay the self stabilizing iterative fusion process, a control
mechanism that can detect the conditions of termination/convergence.

5 Conclusion

In this paper, we have addressed the problem of distributed data fusion in wireless sen-
sor networks. This is a very natural and important problem, as several objectives (con-
vergence, performance) must be considered simultaneously to fulfill the requirements
of the user application. To the best of our knowledge, the proposed algorithm is the first
to address the upper bound of the number of moves/iterations required to achieve/ensure
the convergence of node states to the average of the initial measurements of the network.
In addition, we also showed that the load difference between any two sensor nodes in
the network is within ε

D × ⌊
D+1
2

⌋
< ε, where ε is the prescribed global equilibrium

threshold (this threshold is given by the system) and D is the diameter of the network.
Our approach should be extended to the context of safety critical applications. For

instance, security threats must be addressed during the self-stabilizing fusion process.
Most current approaches do not consider/include security measures, which opens an
opportunity for further research in this field.

Acknowledgments. We thank the referees for all the valuable comments that helped
us to improve the paper.

References

[1] Akyildiz, I., Su, W., Sankarasubramniam, Y., Cayirci, E.: A survey on sensor networks.
IEEE Communications Magazine, 102–114 (2002)

[2] Paradis, L., Han, Q.: A survey of fault management in wireless sensor networks.
JNSM 15(2), 171–190 (2007)

[3] Hai, L., Amiya, N., Ivan, S.: Fault-tolerant algorithms/protocols in wireless sensor net-
works. In: Handbook of Wireless Ad Hoc and Sensor Net., pp. 265–295 (2009)

[4] Saleh, I., Eltoweissy, M., Agbaria, A., El-Sayed, H.: A fault tolerance management frame-
work for wireless sensor networks. JCM 2(4), 38–48 (2007)

[5] Ye, F., Zhang, H., Lu, S., Zhang, L., Hou, J.C.: A randomized energy-conservation protocol
for resilient sensor networks. Wireless Networks 12(5), 637–652 (2006)

[6] de Souza, L.M.S., Vogt, H., Beigel, M.: A survey on fault tolerance in wireless sensor
networks. Sap research, braunschweig, germany

[7] Lynch, N.: Distributed algorithms. Morgan Kaufmann Publishers, Inc. (1996)
[8] Cedo, F., Cortés, A., Ripoll, A., Senar, M.A., Luque, E.: The convergence of realistic dis-

tributed load-balancing algorithms. Theory Comput. Syst. 41(4), 609–618 (2007)
[9] Rabani, Y., Sinclair, A., Wanka, R.: Local divergence of markov chains and the analysis of

iterative load-balancing schemes. In: Proceedings of the IEEE Symp. on Found. of Comp.
Sci., Palo Alto (1998)

40 J.M. Bahi et al.

[10] Bahi, J., Couturier, R., Vernier, F.: Synchronous distributed load balancing on dynamic
networks. Journal of Parallel and Distributed Computing 65(11), 1397–1405 (2005)

[11] Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching
topology and time-delays. IEEE Transaction on Automatic Control 49(9), 1520–1533

[12] Bliman, P., Ferrari-Trecate, G.: Average consensus problems in networks of agents with
delayed communications. Journal of IFAC 44(8), 1985–1995 (2008)

[13] Moallemi, C.C., Roy, B.V.: Consensus propagation. IEEE Trans. Inf. Theory 52(11), 4753–
4766 (2006)

[14] Legg, J.A.: Tracking and sensor fusion issues in the tactical land environement. Technical
Report TN.0605 (2005)

[15] Olfati-Saber, R., Shamma, J.S.: Consensus filters for sensor networks and distributed sensor
fusion. In: 44th IEEE Conf. on Dec. and Cont. CDC-ECC (2005)

[16] Olfati-Saber, R.: Distributed kalman filter with embeded consensus filters. In: 44th IEEE
Conf. on Dec. and Cont. (2005)

[17] Olfati-Saber, R., Fax, J., Murray, R.: Consensus and cooperation in networked multi-agent
systems. In: Proc. of IEEE, pp. 215–233 (2007)

[18] Xiao, L., Boyd, S., Lall, S.: A space-time diffusion scheme for peer-to-peer least-squares
estimation. In: Proc. of Fifth International Conf. on Information Processing in Sensor Net-
works (IPSN 2006), pp. 168–176 (2006)

[19] Talebi, M.S., Kefayati, M., Khalaj, B.H., Rabiee, H.R.: Adaptive consensus averaging for
information fusion over sensor networks. In: IEEE International Conference on Mobile
Adhoc and Sensor Systems (MASS), pp. 562–565 (2006)

[20] Kar, S., Moura, J.M.F.: Distributed consensus algorithms in sensor networks with imper-
fect communication: link failures and channel noise. IEEE Transactions on Signal Process-
ing 57(1), 355–369 (2009)

[21] Bahi, J.M., Giersch, A., Makhoul, A.: A scalable fault tolerant diffusion scheme for data
fusion in sensor networks. In: InfoScale 2008, pp. 1–5. ICST press (2008)

[22] Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical Methods.
Athena Scientific (1997)

[23] Gupta, S.K.S., Srimani, P.K.: Self-stabilizing multicast protocols for ad hoc networks. Jour-
nal of Parallel and Distributed Computing 63(1), 87–96 (2003); Wireless and Mobile Ad
Hoc Networking and Computing

[24] Beauquier, J., Clement, J., Messika, S., Rosaz, L., Rozoy, B.: Self-stabilizing counting in
mobile sensor networks. In: PODC 2007: Proceedings of the Twenty-Sixth Annual ACM
Symposium on Principles of Distributed Computing, pp. 396–397. ACM, New York (2007)

[25] Hoepman, J.-H., Larsson, A., Schiller, E.M., Tsigas, P.: Secure and self-stabilizing clock
synchronization in sensor networks. In: Masuzawa, T., Tixeuil, S. (eds.) SSS 2007. LNCS,
vol. 4838, pp. 340–356. Springer, Heidelberg (2007)

[26] Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

[27] Gradinariu, M., Tixeuil, S.: Conflict managers for self-stabilization without fairness as-
sumption. In: International Conference on Distributed Computing Systems, p. 46 (2007)

[28] Goddard, W., Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Self-stabilizing protocols for
maximal matching and maximal independent sets for ad hoc networks. In: Proceedings of
the 17th International Symposium on Parallel and Distributed Processing, IPDPS 2003, pp.
162.2. IEEE Computer Society, Washington, DC (2003)

[29] Goddard, W., Hedetniemi, S.T., Jacobs, D.P., Trevisan, V.: Distance- k knowledge in self-
stabilizing algorithms. Theoretical Computer Science 399(1-2), 118–127 (2008); Flocchini,
P., Gąsieniec, L. (eds.): SIROCCO 2006. LNCS, vol. 4056. Springer, Heidelberg (2006)

Self-stabilizing Consensus Average Algorithm in Distributed Sensor Networks 41

[30] Beauquier, J., Datta, A.K., Gradinariu, M., Magniette, F.: Self-stabilizing local mutual ex-
clusion and daemon refinement. In: Herlihy, M.P. (ed.) DISC 2000. LNCS, vol. 1914, pp.
223–237. Springer, Heidelberg (2000)

[31] Afek, Y., Dolev, S.: Local stabilizer. Journal of Parallel and Distributed Computing 62(5),
745–765 (2002)

[32] Leal, W., Arora, A.: Scalable self-stabilization via composition. In: Proceedings of the 24th
International Conference on Distributed Computing Systems (ICDCS 2004), pp. 12–21.
IEEE Computer Society, Washington, DC (2004)

[33] Jaworski, J., Ren, M., Rybarczyk, K.: Random key predistribution for wireless sensor net-
works using deployment knowledge. Computing 85(1-2) (2009)

	Self-stabilizing Consensus Average Algorithm in Distributed Sensor Networks
	1 Introduction
	2 Self-stabilizing Consensus Average Algorithm
	2.1 Fundamentals
	2.2 Outline of the Algorithm
	2.3 Global Legitimate State
	2.4 Local Information
	2.5 The Algorithm
	2.6 Convergence Proof
	2.7 Improvement of the Algorithm

	3 Experimentation
	4 Discussion and Future Work
	5 Conclusion
	References

