
 123

Transactions on
Large-Scale
Data- and Knowledge-
Centered Systems IXLN

CS
 7

98
0

Abdelkader Hameurlain • Josef Küng • Roland Wagner
Editors-in-Chief

Jo
ur

na
l S

ub
lin

e

Lecture Notes in Computer Science 7980
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Abdelkader Hameurlain Josef Küng
Roland Wagner (Eds.)

Transactions on
Large-Scale
Data- and Knowledge-
Centered Systems IX

13

Editors-in-Chief

Abdelkader Hameurlain
Paul Sabatier University, IRIT
118, route de Narbonne, 31062 Toulouse Cedex, France
E-mail: hameur@irit.fr

Josef Küng
Roland Wagner
University of Linz, FAW
Altenbergerstraße 69, 4040 Linz, Austria
E-mail: {jkueng, rrwagner}@faw.at

ISSN 0302-9743 (LNCS) e-ISSN 1611-3349 (LNCS)
ISSN 1869-1994 (TLDKS)
ISBN 978-3-642-40068-1 e-ISBN 978-3-642-40069-8
DOI 10.1007/978-3-642-40069-8
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013944558

CR Subject Classification (1998): H.2.8, H.2, C.2, F.2, I.2.6, H.3, J.1

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The LNCS journal Transactions on Large-Scale Data- and Knowledge-Centered
Systems focuses on data management, knowledge discovery, and knowledge pro-
cessing, which are core and hot topics in computer science.

This volume is the third so-called regular volume of the TLDKS journal. It
contains, after reviewing, a selection of 5 contributions from 20 submitted papers
in response to the call for papers for this regular volume. One paper has been
selected from the 5th International Conference on Data Management in Cloud,
Grid and Peer-to-Peer Systems (Globe 2012), which was held during September
5–6, 2012, in Vienna, Austria. The authors were invited to submit an extended
version for a new round of reviewing.

The content of this volume covers a wide range of different and hot topics
in the field of data and knowledge management, mainly: top-k query process-
ing in P2P systems, self-stabilizing consensus average algorithms in distributed
sensor networks, recoverable encryption schemes, XML data in a multi-system
environment, and pairwise similarity for cluster ensemble problems.

We would like to express our thanks to the external reviewers and editorial
board for thoroughly refereeing the submitted papers and ensuring the high
quality of this volume. Special thanks go to Gabriela Wagner for her availability
and her valuable work in the realization of this TLDKS volume.

May 2013 Abdelkader Hameurlain
Josef Küng

Roland Wagner

Editorial Board

Reza Akbarinia INRIA, France
Stéphane Bressan National University of Singapore, Singapore
Francesco Buccafurri Università Mediterranea di Reggio Calabria,

Italy
Yuhan Cai A9.com, USA
Qiming Chen HP-Lab, USA
Tommaso Di Noia Politecnico di Bari, Italy
Dirk Draheim University of Innsbruck, Austria
Johann Eder Alpen Adria University Klagenfurt, Austria
Stefan Fenz Vienna University of Technology, Austria
Georg Gottlob Oxford University, UK
Anastasios Gounaris Aristotle University of Thessaloniki, Greece
Theo Härder Technical University of Kaiserslautern,

Germany
Dieter Kranzlmüller Ludwig-Maximilians-Universität München,

Germany
Philippe Lamarre University of Nantes, France
Lenka Lhotská Technical University of Prague, Czech Republic
Vladimir Marik Technical University of Prague, Czech Republic
Mukesh Mohania IBM India, India
Tetsuya Murai Hokkaido University, Japan
Gultekin Ozsoyoglu Case Western Reserve University, USA
Torben Bach Pedersen Aalborg University, Denmark
Günther Pernul University of Regensburg, Germany
Klaus-Dieter Schewe University of Linz, Austria
Makoto Takizawa Seikei University Tokyo, Japan
David Taniar Monash University, Australia
A Min Tjoa Vienna University of Technology, Austria
Chao Wang Oak Ridge National Laboratory, USA

External Reviewers

Nadia Bennani INSA Lyon, France
Deniz Cokuslu Izmir University, Turkey
Bernard Dousset Paul Sabatier University, Toulouse, France
Franck Morvan Paul Sabatier University, Toulouse, France
Andrew Pavlo Brown University, USA
Wenny Rahayu La Trobe University, Australia
Farouk Toumani Blaise Pascal University, Cl. Ferrand, France

Table of Contents

As-Soon-As-Possible Top-k Query Processing in P2P Systems 1
William Kokou Dédzoé, Philippe Lamarre, Reza Akbarinia, and
Patrick Valduriez

Self-stabilizing Consensus Average Algorithm in Distributed Sensor
Networks . 28

Jacques M. Bahi, Mohammed Haddad, Mourad Hakem, and
Hamamache Kheddouci

Recoverable Encryption through a Noised Secret over a Large Cloud . . . 42
Sushil Jajodia, Witold Litwin, and Thomas Schwarz SJ

Conservative Type Extensions for XML Data . 65
Jacques Chabin, Mirian Halfeld-Ferrari, Martin A. Musicante, and
Pierre Réty

Pairwise Similarity for Cluster Ensemble Problem: Link-Based and
Approximate Approaches . 95

Natthakan Iam-On and Tossapon Boongoen

Author Index . 123

As-Soon-As-Possible Top-k Query Processing

in P2P Systems

William Kokou Dédzoé1, Philippe Lamarre2, Reza Akbarinia3,
and Patrick Valduriez3

1 INRIA Rennes, France
William.Dedzoe@inria.fr
2 INSA de Lyon, France

Philippe.Lamarre@insa-lyon.fr
3 INRIA and LIRMM, Montpellier, France

{Reza.Akbarinia,Patrick.Valduriez}@inria.fr

Abstract. Top-k query processing techniques provide two main ad-
vantages for unstructured peer-to-peer (P2P) systems. First they avoid
overwhelming users with too many results. Second they reduce signifi-
cantly network resources consumption. However, existing approaches suf-
fer from long waiting times. This is because top-k results are returned
only when all queried peers have finished processing the query. As a re-
sult, query response time is dominated by the slowest queried peer. In
this paper, we address this users’ waiting time problem. For this, we
revisit top-k query processing in P2P systems by introducing two novel
notions in addition to response time: the stabilization time and the cu-
mulative quality gap. Using these notions, we formally define the as-soon-
as-possible (ASAP) top-k processing problem. Then, we propose a family
of algorithms called ASAP to deal with this problem. We validate our
solution through implementation and extensive experimentation. The re-
sults show that ASAP significantly outperforms baseline algorithms by
returning final top-k result to users in much better times.

1 Introduction

Unstructured Peer-to-Peer (P2P) systems have gained great popularity in recent
years and have been used by millions of users for sharing resources and content
over the Internet [4,30,25]. In these systems, there is neither a centralized direc-
tory nor any control over the network topology or resource placement. Because
of few topological constraints, they require little maintenance in highly dynamic
environnements [26]. However, executing queries over unstructured P2P systems
typically by flooding may incur high network traffic and produce lots of query
results.

To reduce network traffic and avoid overwhelming users with high numbers of
query results, complex query processing techniques based on top-k answers have
been proposed e.g. in [2]. With a top-k query, the user specifies a number k of
the most relevant answers to be returned by the system. The quality (i.e. score
of relevance) of the answers to the query is determined by user-specified scoring

A. Hameurlain et al. (Eds.): TLDKS IX, LNCS 7980, pp. 1–27, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 W.K. Dédzoé et al.

functions [9,18]. Despite the fact that these top-k query processing solutions e.g.
[2] reduce network traffic, they may significantly delay the answers to users. This
is because top-k results are returned to the user only when all queried peers have
finished processing the query. Thus, query response time is dominated by the
slowest queried peer, which makes users suffer from long waiting times. There-
fore, these solutions are not suitable for emerging applications such as P2P data
sharing for online communities, which may have high numbers of autonomous
data sources with various access performance. Most of the previous work on
top-k processing has focused on efficiently computing the exact or approximate
result sets and reducing network traffic [6,17,34,32,2].

A naive solution to reduce users’ waiting time is to have each peer return its
top-k results directly to the query originator as soon as it has done executing the
query. However, this significantly increases network traffic and may cause a bot-
tleneck at the query originator when returning high numbers of results. In this
paper, we aim at reducing users’ waiting time by returning high quality interme-
diate results, while avoiding high network traffic. The intermediate results are
the results of peers which have already processed locally their query. Providing
intermediate results to users is quite challenging because a naive solution may
saturate users with results of low quality, and incur significant network traffic
which in turn may increase query response time.

In this paper, our objective is to return high quality results to users as soon as
possible. For this, we revisit top-k query processing in P2P systems by introduc-
ing two notions to complement response time: stabilization time and cumulative
quality gap. The stabilization time is the time needed to obtain the final top-k
result set, which may be much lower than the response time (when it is sure
that there is no other top-k result). The quality gap of the top-k intermedi-
ate result set is the quality that remains to be the final top-k result set. The
cumulative quality gap is the sum of the quality gaps of all top-k intermedi-
ate result sets during query execution. Using these notions, we formally define
the as-soon-as-possible (ASAP) top-k processing problem. Then, we propose a
family of algorithms called ASAP to deal with this problem.

This paper is an extended version of [12] with the following added value.
First, in Section 6 we propose a solution to deal with node failures (or depar-
tures) which may decrease the quality and accuracy of top-k results. In Sec-
tion 7, we propose two techniques to compute ”probabilistic guarantees” for
the users showing for example the probability that current intermediate top-k
results are the true top-k results (i.e. confidence of current top-k result). Sec-
tion 8.2 shows experimentally the effectiveness of our solution for computing
“probabilistic guarantees”. Finally, we study experimentally the impact of data
distribution on our algorithms (Section 8.2).

2 System Model

In this section, we first present a general model of unstructured P2P systems
which is needed for describing our solution. Then, we provide a model and defi-
nitions for top-k queries.

As-Soon-As-Possible Top-k Query Processing in P2P Systems 3

2.1 Unstructured P2P Model

We model an unstructured P2P network of n peers as an undirected graph
G = (P,E), where P = {p0, p1, · · · , pn−1} is the set of peers and E the set of
connections between the peers. For pi, pj ∈ P, (pi, pj) ∈ E denotes that pi and pj
are neighbours. We also denote by N(pi), the set of peers to which pi is directly
connected, so N(pi) = {pj |(pi, pj) ∈ E}. The value ‖N(pi)‖ is called the degree
of pi. The average degree of peers in G is called the average degree of G and is
denoted by ϕ. The r-neighborhood N r(p) (r ∈ N) of a peer p ∈ P is defined as
the set of peers which are at most r hops away from peer p, so

N r(p) =

∣∣∣∣∣∣
{p} if r = 0

{p}
⋃

p′∈N(p)

Nr−1(p′) if r ≥ 1

Each peer p ∈ P holds and maintains a set D(p) of data items such as images,
documents or relational data (i.e. tuples). We denote by Dr(p)(r ∈ N), the set
of all data items which are in N r(p), so

Dr(p) =
⋃

p′∈Nr(p)

D(p′)

In our model, the query is forwarded from the query originator to its neighbours
until the Time-To-Live value of the query decreases to 0 or the current peer has
no peer to forward the query. So the query processing flow can be represented
as a tree, which is called the query forwarding tree. When a peer p0 ∈ P issues
query q to peers in its r-neighborhood, the results of these peers are bubbled up
using query q’s forwarding tree with root p0 including all the peers belonging to
N r(p0). The set of children of a peer p ∈ N r(p0) in query q’s forwarding tree is
denoted by ψ(p, q).

2.2 Top-k Queries

We characterize each top-k query q by a tuple < qid, c, ttl, k, f, p0 > such that
qid is the query identifier, c is the query itself (e.g. SQL query), ttl ∈ N (Time-
To-Live) is the maximum hop distance set by the user, k ∈ N∗ is the number of
results requested by the user f : D×Q → [0,1] is a scoring function that denotes
the score of relevance (i.e. the quality) of a given data item with respect to a
given query and p0 ∈ P the originator of query q, where D is the set of data
items and Q the set of queries.

A top-k result set of a given query q is the k top results among data items
owned by all peers that receive q. Formally we define this as follows.

4 W.K. Dédzoé et al.

Definition 1 Top-k Result Set. Given a top-k query q, let D′ = Dq.ttl(q.p0).
The top-k result set of q, denoted by Topk(D′, q), is a sorted set on the score (in
decreasing order) such that:

1. Topk(D′, q) ⊆ D′;
2. If ‖D′‖ < q.k, Topk(D′, q) = D′, otherwise ‖Topk(D′, q)‖ = q.k;
3. ∀d ∈ Topk(D′, q), ∀d′ ∈ D′ \ Topk(D′, q), q.f(d, q.c) ≥ q.f(d′, q.c)

Definition 2 Result’s Rank. Given a top-k Result set I, we define the rank
of result d ∈ I, denoted by rank(d, I), as the position of d in the set I.

Note that the rank of a given top-k item is in the interval
[
1; k].

In large unstructured P2P systems, peers have different processing capabili-
ties and store different volumes of data. In addition, peers are autonomous in
allocating the resources to process a given query. Thus, some peers may process
more quickly a given query than others. Intuitively, the top-k intermediate result
set for a given peer is the k best results of both the results the peer received
so far from its children and its local results (if any). Formally, we define this as
follows.

Definition 3 Top-k Intermediate Result Set. Given a top-k query q, and
p ∈ N q.ttl(q.p0). Let D1 be the result set of q received so far by p from peers in
ψ(p, q) and D2 = D1 ∪ D(p). The top-k intermediate result set of q at peer p,
denoted by Iq(p), is such that:

Iq(p) =

∣∣∣∣∣∣
Topk(D2, q) if p has already processed q

T opk(D1, q) otherwise

3 Problem Definition

Let us first give our assumptions regarding schema management and the un-
structured P2P architecture. We assume that peers are able to express queries
over their own schema without relying on a centralized global schema as in data
integration systems [28]. Several solutions have been proposed to support decen-
tralized schema mapping. However, this issue is out of scope of this paper and we
assume it is provided using one of the existing techniques, e.g. [23], [28] and [1].
We also assume that all peers in the system are trusted and cooperative. In the
following, we first give some definitions which are useful to define the problem
we focus and formally state the problem.

3.1 Foundations

To process a top-k query in P2P systems, an ASAP top-k algorithm provides in-
termediate results to users as soon as peers process the query locally. This allows

As-Soon-As-Possible Top-k Query Processing in P2P Systems 5

Fig. 1. Quality of top-k results at the query originator wrt. Execution time.

users to progressively see the evolution of their query execution by receiving inter-
mediate results for their queries. Note that at some point of query execution, the
top-k intermediate results received by a peer may not change any more, until the
end of the query execution. We denote this point as the stabilization time (see
Figure 1).

Recall that the main goal of ASAP top-k query processing is to return high-
quality results to user as soon as possible. To reflect this, we introduce the
quality evolution concept. Given a top-k query q, we define the quality evolution
Y (t) of q at time t as the sum of scores of q’s intermediate top-k results at t
and at q’s originator. Figure 1 shows the quality evolution of intermediate top-k
results obtained at the query originator during a given query execution. To be
independent of the scoring values —which can be different from one query to
another—, we normalize the quality evolution of a query. With this in mind, we
divide the quality evolution of a given query by the sum of scores of the final
top-k results of that query. Thus, the quality evolution values are in the interval
[0, 1] and the quality of the top-k final results is equal to 1. Note that we do
not use the proportion of the final top-k results in intermediate top-k results (i.e
precision) to characterize ASAP algorithm because this metric does not express
the fact of returning the high quality results as soon as possible to users.

The quality evolution of intermediate top-k results at the query originator
increases as peers answer the query. To reflect this, we introduce the cumulative
quality gap, which is defined as the sum of the quality difference between inter-
mediate top-k result sets received until the stabilization time and the final top-k
result set. We formalize this in Definition 4.

Definition 4 Cumulative Quality Gap. Given a top-k query q, let Y (t) be
the quality evolution of q at time t at q originator, and S be the stabilization
time of q. The cumulative quality gap of the query q, denoted by Cqg is:

Cqg =

S∫
0

(1− Y (t)) dt = S −
S∫

0

Y (t) dt (1)

6 W.K. Dédzoé et al.

3.2 Problem Statement

Formally, we define the ASAP top-k query processing problem as follows. Given
a top-k query q, let S be the stabilization time of q and Cqg be the cumulative
quality gap of q. The problem is to minimize Cqg and S while avoiding high
communication cost.

4 ASAP Top-k Query Processing Overview

ASAP query processing proceeds in two main phases. The first phase is the query
forwarding and local execution of the query. The second phase is the bubbling
up of the peers’ results for the query along the query forwarding tree.

4.1 Query Forwarding and Local Execution

Query processing starts at the query originator, i.e. the peer at which a user
issues a top-k query q. The query originator performs some initialization. First,
it sets ttl which is either user-specified (or default). Second, it creates a unique
identifier qid for q which is useful to distinguish between new queries and those
received before. Then, q is included in a message that is broadcast by the query
originator to its reachable neighbors. Algorithm 1 shows the pseudo-code of
query forwarding. Each peer that receives the message including q checks qid
(see line 2, Algorithm 1). If it is the first time the peer has received q, it saves
the query (i.e. saves the query in the list of seen queries and the address of the
sender as its parent) and decreases the query ttl by 1 (see lines 3-4, Algorithm 1).
If the ttl is greater than 0, then the peer sends the query message to all neighbors
except its parent (see lines 5-7, Algorithm 1). Then, it executes q locally. If q
has been already received, then if the old ttl is smaller than the new ttl, the
peer proceeds as where q is received for the first time but without executing q
locally (see lines 10-18, Algorithm 1), else the peer sends a duplicate message to
the peer from which it has received q.

4.2 Bubbling Up Results

Recall that, when a peer submits a top-k query q, the local results of the peers
who have received q are bubbled (i.e returned upwards) up to the query originator
using query q’s forwarding tree. In ASAP, a peer’s decision to send intermediate
results to its parent is based on the improvement impact computed by using
the ratio of its current top-k intermediate result set over the top-k intermediate
result set which it has sent so far to its parent. This improvement impact can
be computed in two ways: by using the score or rank of top-k results in the
result set. Therefore, we introduce two types of improvement impact: score-based
improvement impact and rank-based improvement impact.

Intuitively, the score-based improvement impact at a given peer for a given
top-k query is the gain of score of that peer’s current top-k intermediate set
compared to the top-k intermediate set it has sent so far.

As-Soon-As-Possible Top-k Query Processing in P2P Systems 7

Algorithm 1. receive Query(msg)
input : msg, a query message.

1 begin
2 if (!already Received(msg.getID())) then
3 memorize(msg);
4 msg.decreaseTTL();
5 if (msg.getTTL() > 0) then
6 forwardToNeighbors(msg);
7 end
8 executeLocally(msg.getQuery());

9 else
10 qid = msg.getID();
11 oldMsg = SeenQuery(qid).;
12 if (msg.getTTL() > oldMsg.TTL()) then
13 memorize(msg);
14 msg.decreaseTTL();
15 if (msg.getTTL() > 0) then
16 forwardToNeighbors(msg);
17 end
18 sendDuplicateSignal(qid, oldMsg.getSender());

19 else
20 sendDuplicateSignal(qid, msg.getSender());
21 end

22 end

23 end

Definition 5 Score-Based Improvement Impact. Given a top-k query q,
and peer p ∈ N q.ttl(q.p0), let Tcur be the current top-k intermediate set of q at
p and Told be the top-k intermediate set of q sent so far by p. The score-based
improvement impact of q at peer p, denoted by IScore(Tcur, Told) is computed as

IScore(Tcur, Told) =

∑
d∈Tcur

q.f(d, q.c) −
∑

d′∈Told

q.f(d′, q.c)

k
(2)

Note that in Formula 2, we divide by k instead of ‖Tcur − Told‖ because we do
not want that IScore(Tcur, Told) be an average which would not be very sensitive
to the values of scores. The score-based improvement impact values are in the
interval [0, 1].

Intuitively, the rank-based improvement impact at a given peer for a given
top-k query is the loss of rank of results in the top-k intermediate result set sent
so far by that peer due to the arrival of new intermediate results.

Definition 6 Rank-Based Improvement Impact. Given a top-k query q
and peer p ∈ N q.ttl(q.p0), let Tcur be the current top-k intermediate result set of
q at p and Told be the top-k intermediate result set of q sent so far by p. The
rank-based improvement impact of q at peer p, denoted by IRank(Tcur, Told) is
computed as

IRank(Tcur, Told) =

∑
d∈Tcur\Told

(k − rank(d, Tcur) + 1)

k ∗ (k + 1)

2

(3)

8 W.K. Dédzoé et al.

Note that in Formula 3, we divide by k∗(k+1)
2 which is the sum of ranks of a

set containing k items. The rank-based improvement impact values are in the
interval [0, 1].

Notice also that, in order to minimize network traffic, ASAP does not bubble
up the results (which could be large), but only their scores and addresses. A
score-list is simply a list of k pairs (ad, s), such that ad is the address of the peer
owning the data item and s its score.

A simple way to decide when peer must bubble up newly received intermediate
results to its parent is to set a minimum value (threshold) that must reach its
improvement impact. This value is set initially by the application and it is the
same for all peers in the system. Note also that this threshold does not change
during the execution of the query. Using both types of improvement impact we
have introduced, we have two types of static threshold-based approaches. The
first approach uses the score-based improvement impact and the second one the
rank-based improvement impact.

A generic algorithm for our static threshold-based approaches is given in
Algorithm 2. In these approaches, each peer maintains for each query a set
Told of top-k intermediate results sent so far to its parent and a set Tcur of cur-
rent top-k intermediate results. When a peer receives a new result set N from its
children (or its own result set after local processing of a query), it first updates
the set Tcur with results in N (see line 2, Algorithm 2). Then, it computes the
improvement impact imp of Tcur compared to Told (line 3, Algorithm 2). If imp
is greater than or equal to the defined threshold delta or if there are no more
children’ results to wait for, the peer sends the set Ttosend = Tcur \ Told to its
parent and subsequently sets Tcurr to Told (see lines 4-7, Algorithm 2).

5 Dynamic Threshold-Based Approaches for Bubbling
Up Results

Although the static threshold-based approaches are interesting to provide results
quickly to user, they may be blocking if results having higher scores are bubbled
up before those of lower score. In other words, sending higher score’s results will
induce a decrease of improvement impact of the following results. This is because
the improvement impact considers the top-k intermediate results sent so far by
the peer. Thus, results of low scores even if they are in the final top-k results
may be returned at the end of the query execution. To deal with this problem,
an interesting way would be to have a dynamic threshold, i.e. a threshold that
decreases as the query execution progresses. However, this would require finding
the right parameter on which the threshold depends. We have identified two
possible solutions for the dynamic threshold. The first one is to use an estimation
of the query execution time. However, estimating the query execution time in
large P2P system is very difficult because it depends on network dynamics, such
as connectivity, density, medium access contention, etc., and the slowest queried
peer. The second, more practical, solution is to use the peer’s result set coverage,
i.e for each peer the proportion of peers in its sub-tree including itself (i.e. all

As-Soon-As-Possible Top-k Query Processing in P2P Systems 9

Algorithm 2. Streat(k, Tcur, Told, N, delta, Func)
input : k, number of results; Tcur , current top-k; Told, top-k sent so far; N , new

result set; delta, impact threshold; Func, type of improvement impact.
1 begin
2 Tcur = mergingSort Topk(k, Tcur , N);
3 imp = Func(Tcur, Told);
4 if ((imp ≥ delta) or all Results()) then
5 Ttosend = Tcur \ Told;
6 send Parent(Ttosend, all Results());
7 Told = Tcur ;

8 end

9 end

its descendants and itself) which have already processed the query to decrease
the threshold.

5.1 Peer’s Local Result Set Coverage

Definition 7 Peer’s Local Result Set Coverage. Given a top-k query, and
p ∈ N q.ttl(q.p0), let A be the set of peers in the sub-tree whose root is p in
the query q’s forwarding tree. Let E be the set of peers in A which have al-
ready processed q locally. The local result set coverage of peer p for q, denoted by
Cov(E ,A), is computed using the following equation:

Cov(E ,A) = ‖E‖
‖A‖

Peer’s local result set coverage values are in the interval [0, 1].
Note that is very difficult to have the exact value of a peer’s local result set

coverage without inducing an additional number of messages in the network. This
is because each peer must send a message to its parent each time its local coverage
result set value changes. Thus, when a peer at hop m from query originator
updates its local result coverage, m messages will be sent over the network. To
deal with this problem, an interesting solution is to have an estimation of this
value instead of the exact value.

The estimation of peer’s local result set coverage can be done using two dif-
ferent strategies: optimistic and pessimistic. In the optimistic strategy, each peer
computes the initial value of its local result set coverage based only on its chil-
dren nodes. This value is then updated progressively as the peers in its sub-tree
bubble up their results. Indeed, each peer includes in each response message sent
to its parent the number of peers in its sub-tree (including itself) which have
already processed the query locally and the total number of peers in its sub-tree
including itself. This couple of values is used in turn by its parent to estimate its
local result set coverage. Contrary to the optimistic strategy, in the pessimistic
strategy, the local result set coverage estimation is computed at the beginning
by each peer based on the Time-To-Live received with the query and the average
degree of peers in the system. As in the case of the optimistic strategy, this value
is updated progressively as the peers in its sub-tree bubble up their results.

10 W.K. Dédzoé et al.

In our dynamic threshold-based approaches, we estimate a peer’s local result
set coverage using the pessimistic strategy because the estimation value is more
stable than with the optimistic strategy. Now, let us give more details about how
a peer’s local result set coverage pessimistic estimation strategy is done.

5.2 Peer’s Local Result Set Coverage Pessimistic Estimation

In order to estimate its local result set coverage, each peer pi maintains for each
top-k query q and for each child pj a set C1 of pairs (pj , a) where a ∈ N is the
number of peers in the sub-tree of peer pj including pj itself. pi maintains also
a set C2 of pairs (pj , e) where e ∈ N is the total number of peers in the sub-tree
of peer pj including pj itself which have already processed locally q. Now let ttl′

be the time-to-live with which pi received query q and ϕ be the average degree
of peers in the system. At the beginning of query processing, for all children of

pi, e = 0 and a =

ttl′−2∑
u=0

ϕu. During query processing, when a child pj in ψ(pi, q)

wants to send results to pi, it inserts in the answer message its couple of values
(e, a). Once pi receives this message, it unpacks the message, gets these values
(i.e. e and a) and updates the sets C1 and C2. The local result set coverage of
peer pi for the query q is then estimated using Formula 4.

C̃ov(C1, C2) =

∑
(pj ,e)∈C1

e

∑
(pj ,a)∈C2

a
(4)

Note that peer’s local result set coverage estimation values are in the interval
[0, 1].

5.3 Dynamic Threshold Function

In the dynamic threshold approaches, the improvement impact threshold used
by a peer at a given time t of the query execution depends on its local result set
coverage at that time. This improvement impact threshold decreases as the local
result set coverage increases. To decrease the improvement impact threshold used
by a peer as the local result set coverage increases, we use a linear function that
allows peers to set their improvement impact threshold for a given local result
set coverage. Now let us define formally the threshold function.

Definition 8 Dynamic Threshold Function. Given a top-k query q and p ∈
N q.ttl(q.p0), the improvement impact threshold used by p during q’s execution,
is a monotonically decreasing function H such that:

H :

∣∣∣∣∣
[0, 1] → [0, 1]

x �→ −α ∗ x+ α
(5)

As-Soon-As-Possible Top-k Query Processing in P2P Systems 11

Algorithm 3. Dtreat(k, Tcur, Told, N, Func, cov, ¯cov,H)
input : k; Tcur ; Told; N ; Func; cov, current local result set coverage; ¯cov,

result set coverage threshold; H, a dynamic threshold function.
1 begin
2 Tcur = mergingSort Topk(k, Tcur , N);
3 if (cov > ¯cov) then
4 delta = H(cov);
5 imp = Func(Tcur, Told);
6 if ((imp ≥ delta) or all Results()) then
7 Ttosend = Tcur \ Told;
8 send Parent(Ttosend, all Results());
9 Told = Tcur ;

10 end

11 end

12 end

with α ∈ [0, 1[. Notice that x is a peer’s result set coverage at given time and α
the initial improvement impact threshold (i.e. H(0) = α).

5.4 Reducing Communication Cost

Using a rank-based improvement impact has the drawback of not reducing as
much as possible network traffic. This is because the rank-based improvement
impact value is equal to 1 (the maximum value it can reach) when a peer receives
the first result set (from one of its children or after local processing of a query).
Thus, each peer always sends a message over the network when it receives the
first result set containing k results. To deal with this problem and thus reduce
communication cost, we use peers’ result sets coverage to prevent them to send
a message when they receive their first result set. Therefore, the idea is to allow
peers to start sending a message if and only if their local result sets coverage
reaches a predefined threshold. With this result set coverage threshold, peers
send intermediate results based on the improvement impact threshold obtained
from the dynamic threshold function H define above.

5.5 Dynamic Threshold Algorithms

Our dynamic threshold approaches algorithms are based on the same principles
as the static threshold ones. A generic algorithm for our dynamic threshold-
based approaches is given in Algorithm 3. When a peer receives a new result
set N from its children (or generates its own result set after local processing of
a query), it first updates the set Tcur of its current top-k intermediate results
with results in N (see line 2, Algorithm 3). If its current result set coverage
cov is greater than the defined threshold result set coverage cov′, then the peer
computes the improvement threshold delta using the dynamic function H and
subsequently the improvement impact imp (see lines 3-5, Algorithm 3). If imp is
greater than or equal to delta or if there are no more children’ results to wait for,
then the peer sends the set Ttosend = Tcur \ Told to its parent and subsequently
sets Tcurr to Told (see lines 6-9, Algorithm 3). Recall that Tcur is the set of the

12 W.K. Dédzoé et al.

current top-k intermediate results and Told is the top-k intermediate results sent
so far to its parent.

6 Dealing with Peers Failures in ASAP

One main characteristics of P2P systems is the dynamic behaviour of peers.
It may happen that some peers leave the system (or fail) during the query
processing. As a result peers may become inaccessible in the result bubbling up
phase. In this section, we deal with this problem.

6.1 Absence of Parent

In the query results bubbling up phase, each peer p bubbles up the results of peers
in its subtree to its parent. It may happen that p’s parent is inaccessible because
it has left the system or failed. The question is which path to choose to bubble
up p’s intermediate results to the query originator. To deal with this problem
a naive solution is that p sends its intermediate results directly to the query
originator when p’s parent is inaccessible. Recall that at the query forwarding
phase the IP address and port of the query originator is communicated to all
peers which have received the query. However the naive approach has some
drawbacks. First, it may incur expensive merge of intermediates results at query
originator which may be resource consuming. Second, by returning intermediate
results of the peer whose parent is failed directly to the query originator, we
reduce the capacity of peers to prune uninteresting intermediate results and this
may increase significantly the volume of transferred data over the network.

Our solution to deal with the above mentioned problem is as following. Each
peer p maintains locally for each active query q a list QPath involving the
addresses of peers (IP addresses and ports) in the path from the query originator
to p in the q’s forwarding tree. QPath list is sorted by increasing positions of
peers from the peer p in query q forwarding tree (the first item in this list is
the parent of p, the second item is the grand parent of p, etc.). For constructing
this list, each peer, including the query originator, adds its address to the query
message before forwarding it to the neighbours. Thus, when a query message
reaches a peer p, it contains the address of all parents of p.

In the phase of results bubble up when a peer detects that his parent (i.e first
item in the list QPath) is inaccessible, the peer sends its new results to the next
peer in the list QPath which is reachable. Another problem which may happen
is that a peer may leave the system without being able to send to its parent
the results received so far from its children, and this may have serious impact
in the accuracy of final top-k results. To overcome this problem we adopt the
following approach. During the results bubbling up phase, when a peer finds that
its parent is unreachable, it sends its current top-k results to the next available
peer in the list QPath. Although, this technique can increase the volume of
data transferred in highly dynamic environment it may improve significantly
the accuracy of top-k results.

As-Soon-As-Possible Top-k Query Processing in P2P Systems 13

6.2 Adjustment of Peer’ Local Result Set Coverage

When computing the local result set coverage, we must take into account the
fact that a peer may change parent when its direct parent becomes inaccessible.
Indeed, not taking this into account will result in overestimation of peers’ result
sets coverage which may affect the value of the impact of intermediate results
and thereby reducing the ability of peers to bubble up good quality results as
soon as possible. In this section, we present our technique for adjusting the local
result set coverage which is based on updating sets C1 and C2 which each pi
maintains for each top-k query q and for each child pj . Recall that C1 is a set of
pairs (pj , a) where a ∈ N is the number of peers in the sub-tree of peer pj and
C2 a set of pairs (pj , e) where e ∈ N is the total number of peers in the sub-tree
of peer pj which have already processed locally the query.

To help peers to have a good estimation of their result set coverage when
some peers become inaccessible, we modify as follows our approach for peers
failures management presented previously. Each peer pi maintains for its parent
pj and for each active query the latest values of the estimation of number of
peers which have already processed the query in the sub-tree and the number
of peers in its sub-tree it has sent to pj . In the results bubbling up phase, when
pj is inaccessible, pi inserts into its answer message to its new parent pk (the
first accessible peer in QPath list) the following information: 1) the new and
the latest (sent to pj) values of the number of peers and the number of peers
which have already processed locally in the sub-tree; 2) the address of the peer
which is before pk in the list QPath (this peer is one of child of pk in the query
forwarding tree).

When a peer pk receives an answer message of a query q from a peer pj
whose parent is inaccessible, it updates its estimation about the number of peers
and the number of peers which have already processed locally q in the sub-
tree of its direct child pr which is declared as ”inaccessible” by pj (see lines
2-17, Algorithm 4). Then pk activates a trigger to inform pr (when it becomes
accessible) that pj is no longer in its sub-tree (see line 18, Algorithm 4).

7 Feedback Measures for Intermediate Results

Although it is important to provide good quality results as soon as possible to
users, it is also interesting to associate “probabilistic guarantee” to the interme-
diate results allowing the user to know how far these results are from the final
results. For example, we may wish to be able to give probabilistic guarantees,
such as: “with probability γ, the current top-k results are likely to be the final
top-k results”. Our goal is to provide a mechanism to continuously compute
these guarantees as results are bubbled up to the query originator. To do so, we
compute two feedback measures which are returned to the user continuously: 1)
the proportion of peers whose local results are already considered in the compu-
tation of the current top-k (we call this the proportion of contributor peers); 2)
the probability of having the best k results in the current top-k results (we call

14 W.K. Dédzoé et al.

Algorithm 4. result Coverage Adjustment(msg)
input : msg, an answer message of a query; C1; C2.

1 begin
2 if (change Parent(msg)) then
3 qid = msg.getQueryID();
4 sender = msg.getAnswerSender();
5 al = getNbPeersSent(msg);
6 el = getNbAnsPeersSent(msg);
7 p = getLastPeerInacessible(msg);
8 if (el > C2.get(p)) then
9 x1 = C2.get(p);

10 y1 = C1.get(p);

11 else
12 x2 = C2.get(p) − el;
13 y2 = C1.get(p) − al;

14 end

15 C2.update(p,
x1+x2

2);

16 y2 = C1.update(p,
y1+y2

2);

17 end
18 propagateUpdate(queryId, Sender, p, al, el);

19 end

this the stabilization probability). In this section, we present how these feedback
measures can be computed.

Note that our goal is not to provide approximative top-k result with proba-
bilistic guarantees where at the end of the query execution approximative top-k
result set is returned to user with a probability showing how this result is far
from the exact top-k result. In our work, probabilistic guarantees are computed
continuously during the execution of the query on intermediate results as in [5].
Notice that the work presented in [5] considered centralized databases where it
is easier to get some information on data stored (e.g data distribution or scores
distribution, number of data stored, etc.) and to collect statistics during query
processing, in order to provide probabilistic guarantees for top-k intermediate
results. Therefore, the approach proposed in [5] cannot easily be applied for un-
structured P2P system where data are completely distributed (i.e. there is no
centralized catalog).

7.1 Stabilization Probability

To be able to calculate the stabilization probability (i.e the probability that the
current top-k is the exact top-k for a query q), we use the following information:

– the total number L of queried peers for the query q
– the total number M of data items shared by the L peers
– the number l of peers whose data items are taken into account in calculating

the current top-k result of q
– the total number m of data items shared by the l peers

In Section 4.1, we presented how to estimate the parameter L and how to calcu-
late l. Note that the calculation of m can be done by including in each answer

As-Soon-As-Possible Top-k Query Processing in P2P Systems 15

message which a peer sends to its parent the number of data items which have
already taken into account in the calculation of this response. However to be
able to estimate M it is necessary to know the number l′ of peers that are al-
ready known by the query initiator and the number m′ of data items of those
peers. The mechanism to calculate l′ and m′ works as follows. Each peer pi
maintains for each child pj a set C3 of pairs (pj , c, d) where c is the number of
peers which pi knows in the sub-tree whose root is pj and d the number of data
items shared by the c peers. At the beginning of query processing, each peer sets
c = 0 and d = 0. In the phase of result bubbled up, when a child pj in ψ(pi, q)
wants to send results to pi, it inserts in the answer message the couple of values

(
∑

(pj ,c,d)∈C3

c,
∑

(pj ,c,d)∈C3

d). Once pi receives this message, it unpacks the message,

gets these values and updates the set C3.
The total number M of data items of all queried peers is then estimated using

Formula 6.

M = ‖D(p0)‖+m′ +
‖D(p0)‖+m′

l′ + 1
∗ (L− l′ − 1) (6)

where D(p0) is the number of data items shared by the query originator.
By assuming that the data distribution over peers is uniform, the probability

Pm
k of finding the k best data items in the current top-k result is:

Pm
k =

Cm−k
M−k

Cm
M

(7)

If l peers over L have already bubbled up their local results to query originator,
the probability of having m data items on these l peers is:

Pm
l =

∣∣∣∣∣
1 if l = L

Cm
M × (

l

L
)
m

× (
L− l

L
)
M−m

otherwise
(8)

Knowing that l peers have already bubbled up their local results to query origi-
nator, the probability of having at least k data items is given by:

P≥k
l =

M∑
m=k

Pm
l (9)

To find all the k best results in those l peers there must be at least k data items
on these l peers and all the best results must be owned by these l peers. Thus
the probability of having all the the top-k results in the current top-k result set
is equal to:

P ktop
l =

M∑
m=k

Pm
l × Pm

k (10)

To ensure a better estimation of the probability that the current top-k is the
exact top-k in the case of peers failures, we have adopted the technique presented

16 W.K. Dédzoé et al.

in Section 6 to readjust the estimation of all parameters used for calculating that
probability.

7.2 Proportion of Contributor Peers

The proportion of contributor peers of a given current top-k results is the number
of queried peers whose local results are already considered in the computation
of that current top-k over the total number of queried peers. This proportion is
equal to estimation of the query originator local result set coverage presented in
Section 5. Thus, continuously we return the latter coverage to the user as the
proportion of contributor peers.

7.3 Discussion

In some cases, it may happen that an unstructured P2P system is configured
so that an issued query reaches all peers in the system (e.g by using very high
ttl). In this case an efficient way to estimate the number of queried peers (i.e the
network size) is to use gossip-based aggregation approach [19]. This approach
relies on the following statement: if exactly one node of the system holds a
value equal to 1, and all the other values are equal to 0, the average is 1/N .
The system size could thus be directly computed. To run this algorithm, an
initiator should take the value equal to 1, and start gossiping; the reached nodes
participate to the process by setting their value to 1. At each predefined cycle,
each node in the network chooses one of its neighbors at random and swaps its
estimation parameter (the network size and the number of shared data items).
The contacted node does the same (push/pull heuristic of [19]). Both nodes then
recompute their estimation as follows:

Estimation =
Estimation+Neighbor′s Estimation

2

By relying on gossip-based aggregation approach, we can also estimate the total
number of data items shared by all peers in the system.

Notice that to provide correct estimations, this algorithm needs to wait a
certain number of rounds to elapse before computing the size estimation; this
period is the required time for the gossip to propagates in the whole overlay
and for the values to converge. Notice that this method converge to the exact
value in the stable system as demonstrated in [19]. Gossip protocols have been
shown to provide exponentially fast convergence with low message transmission
overhead as presented in [21].

8 Performance Evaluation

In this section, we evaluate the performance of ASAP through simulation using
the PeerSim simulator [20]. This section is organized as follows. First, we de-
scribe our simulation setup, the metrics used for performance evaluation. Then,

As-Soon-As-Possible Top-k Query Processing in P2P Systems 17

we study the effect of the number of peers and the number of results on the
performance of ASAP, and show how it scales up. Next, we study the effect of
the number of replicas on the performance of ASAP. We also study the effective-
ness of our solution for providing probabilistic guarantees on the top-k results.
After that, we study the effect of data distribution on the performance of ASAP.
Finally, we investigate the effect of peers failures on the correctness of ASAP.

8.1 Simulation Setup

We implemented our simulation using the PeerSim simulator. PeerSim is an
open source, Java based, P2P simulation framework aimed to develop and test
any kind of P2P algorithm in a dynamic environment. It consists of configurable
components and it has two types of engines: cycle-based and event-driven engine.
PeerSim provides different modules that manage the overlay building process and
the transport characteristics.

We conducted our experiments on a machine with a 2.4 GHz Intel Pentium 4
processor and 2GB memory. The simulation parameters are shown in Table 1.
We use parameter values which are typical of P2P systems [15]. The latency
between any two peers is a normally distributed random number with mean of
200 ms. Since users are usually interested in a small number of top results, we set
k = 20 as default value. In our experiments we vary the network size from 1000
to 10000 peers. In order to simulate high heterogeneity, we set peers’ capacities
in our experiments, in accordance to the results in [15]. This work measures
the peers capacities in the Gnutella system. Based on these results, we generate
around 10% of low-capable, 60% of medium-capable, and 30% of high-capable
peers. The high-capable peers are 3 times more capable than medium-capable
peers and still 7 times more capable than low-capable ones.

In the context of our simulations each peer in the P2P system has a table
R(data) in which attribute data is a real value. The number of rows of R at
each peer is a random number uniformly distributed over all peers greater than
1000 and less than 20000. Unless otherwise specified, we assume only one copy
of each data item in our system (i.e. no data replication). We also ensure that
there are not two different data items with the same score. In all our tests, we
use the following simple query, denoted by qload as workload:
SELECT val FROM R ORDER BY F (R.data, val) STOP AFTER k
The score F (R.data, val) is computed as:

1

1 + |R.data− val|

In our simulation, we compare ASAP with Fully Distributed (FD) [2], a baseline
approach for top-k query processing in unstructured P2P systems which works
as follows. Each peer that receives the query, executes it locally (i.e. selects the
k top scores), and waits for its children’s results. After receiving all its children
score-lists, the peer merges its k local top data items with those received from
its children and selects the k top scores and sends the result to its parent.

18 W.K. Dédzoé et al.

Table 1. Simulation parameters

Parameters Values

Latency Normally distributed
random number,
Mean = 200 ms,
V ariance = 100

Number of peers 10,000 peers

Average degree of peers 4

ttl 9

k 20

Number of replicas 1

In our experiments, to evaluate the performance of ASAP comparing to FD,
we use the following metrics:

(i) Cumulative quality gap: As defined in Section 3, is the sum of the
quality difference between intermediate top-k result sets received until the
stabilization time and the final top-k result set.

(ii) Stabilization time: We report on the stabilization time, the time of re-
ceiving all the final top-k results.

(iii) Response time: We report on the response time, the time the query
initiator has to wait until the top-k query execution is finished.

(iv) Communication cost: We measure the communication cost in terms of
number of answer messages and volume of data which must be transferred
over the network in order to execute a top-k query.

(v) Accuracy of results: We define the accuracy of results as follows. Given
a top-k query q, let V be the set of the k top results owned by the peers
that received q, let V ′ be the set of top-k results which are returned to the
user as the response of the query q. We denote the accuracy of results by
acq and we define it as

acq =
‖V ∩ V ′‖
‖V ‖

(iv) Total number of results: We measure the total number of results as the
number of results received by the query originator during query execution.

In our experimentation, we perform 30 tests for each experiment by issuing qload
20 different times and we report the average of their results. Due to space lim-
itations, we only present the main results of ASAP’s dynamic threshold-based
approaches denoted by ASAP-Dscore and ASAP-Drank. ASAP-Dscore uses a
score-based improvement impact and ASAP-Drank a rank-based improvement
impact. ASAP’s dynamic threshold-based approaches have proved to be bet-
ter than ASAP’s static threshold-based approaches without being expensive in
communication cost. In our all experiments, for ASAP-Dscore approach we use
H(x) = −0.2x+ 0.2 as dynamic threshold function and 0 as peer’s local result
set coverage threshold. In the case of Asap-Drank, we use H(x) = −0.5x+0.5 as
dynamic threshold function and 0.05 as peer’s local result set coverage threshold.

As-Soon-As-Possible Top-k Query Processing in P2P Systems 19

8.2 Performance Results

Effect of Number of Peers. We study the effect of the number of peers
on the performance of ASAP. For this, we ran experiments to study how cu-
mulative quality gap, stabilization time, number of answer messages, volume of
transferred data, number of intermediate results and response time increase with
the addition of peers. Note that the other simulation parameters are set as in
Table 1.

Figure 2(a) and 2(b) show respectively how cumulative quality gap and sta-
bilization time increase with the number of peers. The results show that the cu-
mulative quality gap of ASAP-Dscore and ASAP-Drank is always much smaller
than that of FD, which means that ASAP returns quickly high quality results.
The results also show that the stabilization time of ASAP-Dscore is always much
smaller that of ASAP-Drank and that of FD. The reason is that ASAP-Dscore
is score sensitive, so the final top-k results are obtained quickly.

Figure 2(c) shows that the total number of results received by the user in-
creases with the number of peers in the case of ASAP-Dscore and ASAP-Drank
while it is still constant in the case of FD. This is due to the fact that FD
does not provide intermediate results to users. The results also show that the
number of results received by the user in case of ASAP-Dscore is smaller than
that of ASAP-Drank. The main reason is that ASAP-Dscore is score sensitive
in contrast to ASAP-Drank.

Figure 2(d) and Figure 2(e) show that the number of answer messages and
volume of transferred data increase with the number of peers. The results show
that the number of answer messages and volume of transferred data of ASAP-
Drank are always higher than those of ASAP-Dscore and FD. The results also
show that the differences between ASAP-Dscore and FD’s number of answer
messages and volume of transferred data are not significant. The main reason
is that ASAP-Dscore is score sensitive in contrast to ASAP-Drank. Thus, only
high quality results are bubbled up quickly.

Figure 2(f) shows how response time increases with increasing the numbers
of peers. The results show that the difference between ASAP-Dscore and FD
response time is not significant. The results also show that the difference between
ASAP-Drank and FD’s response time increases slightly in favour of ASAP-Drank
as the number of peers increases. The reason is that ASAP-Drank induces more
network traffic than ASAP-Dscore and FD.

Effect of k. We study the effect of k, i.e. the number of results requested by
the user, on the performance of ASAP. Using our simulator, we studied how
cumulative quality gap, stabilization time and volume of transferred data evolve
while increasing k from 20 to 100, with the other simulation parameters set as
in Table 1. The results (see Figure 3(a), Figure 3(b)) show that k has very slight
impact on cumulative quality gap and stabilization time of ASAP-Dscore and
ASAP-Drank. The results (see Figure 3(c)) also show that by increasing k, the
volume of transferred data of ASAP-Dscore and ASAP-Drank increase less than

20 W.K. Dédzoé et al.

(a) Cumulative quality gap vs. Num-
ber of peers

(b) Stabilization time vs. Number of
peers

(c) Total number of results vs. Num-
ber of peers.

(d) Number of answer messages vs.
Number of peers

(e) Volume of transferred data vs.
Number of peers

(f) Response time vs. Number of
peers

Fig. 2. Impact of number of peers on ASAP performance

As-Soon-As-Possible Top-k Query Processing in P2P Systems 21

(a) Cumulative quality gap vs. k (b) Stabilization time vs. k

(c) Volume of transferred data vs. k

Fig. 3. Impact of k on ASAP performance

(a) Cumulative quality gap vs. Num-
ber of replicas

(b) Stabilization time vs. Number of
replicas

Fig. 4. Impact of data replication on ASAP performance

22 W.K. Dédzoé et al.

Fig. 5. Accuracy of results vs. fail rate

that of FD. This is due to the fact that ASAP-Dscore and ASAP-Drank prune
more intermediate results when k increases.

Data Replication. Replication is widely used in unstructured P2P systems
to improve search or achieve availability. For example, modern unstructured
overlays like BubbleStorm [29] use large number of replicas for each object placed
in the overlay to improve their search algorithms.

We study the effect of the number of replicas, which we replicate for each
data (uniform replication strategy [14]), on the performance of ASAP. Using our
simulator, we studied how cumulative quality gap and stabilization time evolve
while increasing the number of replicas, with the other simulation parameters
set as in Table 1. The results (see Figure 4(a) and Figure 4(b)) show that in-
creasing the number of replicas for ASAP and FD decrease ASAP-Dscore and
ASAP-Drank’s cumulative quality gap and stabilization time. However, FD’s
cumulative quality gap and stabilization time are still constant. The reason is
that ASAP returns quickly the results having high quality in contrast to FD
which returns results only at the end of query execution. Thus, if we increase
the number of replicas, ASAP finds quickly the results having high scores.

Effectiveness of Our Solution for Computing “Probabilistic Guaran-
tees”. In this section, we study the effectiveness of the proposed solution in
Section 7 for computing the probabilistic guarantees, by comparing them with
optimal values. For this, we ran experiments to study how our probabilistic guar-
antees values evolve comparing to the optimal (i.e real) values during the query
execution in the case of ASAP-Dscore. Figure 6(a) and Figure 6(b) show that
the difference between our probabilistic guarantees values and the exact values
is very slight. The results also show that our probabilistic guarantees values
converge to exact values and this before the end of the execution of the query
execution. This means that our solution provides reliable guarantees for the user
on the intermediate results.

As-Soon-As-Possible Top-k Query Processing in P2P Systems 23

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 20 40 60 80 100 120 140

%
 o

f
co

n
tr

ib
u

to
r

p
ee

rs

Execution time (s)

Estimated value
Exact value

(a) Proportion of contributor peers
vs. Execution time (s)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 20 40 60 80 100 120 140

S
ta

b
il

iz
at

io
n

 p
ro

b
ab

il
it

y

Execution time (s)

Estimated value
Exact value

(b) Stabilization probability vs. Ex-
ecution time (s)

Fig. 6. Effectiveness of our solution for computing probabilistic guarantees

Data Distribution. In this section, we study the effect of data distribution
on the performance of our top-k query processing solution. Often relevant data
items are grouped together, stored on a group of neighbouring peers. If these
groups of peers have some good data objects for top-k, they become the sweet
region in the network that can contribute a lot to a final top-k. To study the
effect of data distribution on the performance of ASAP, we randomly distribute
the top-k data items of our test bed queries respectively on 4, 6, 8 and 10
peers of P2P system and the other data (i.e which are not in the top-k results)
uniformly over all the peers of the system. Using our simulator, we studied how
cumulative quality gap, stabilization time and volume of transferred data evolve
while only 4, 6, 8 and 10 peers of the P2P system store the top-k results with the
other simulation parameters set as in Table 1. The results (see Figure 7(a) and
Figure 7(b)) show that ASAP can take advantage of grouped data distribution
to provide quickly high quality results to users in contrast to FD. The results
(see Figure 7(c)) also show that in the case of ASAP, the higher the top-k data
items are grouped together, the smaller is the volume of transferred data over
the network, while this volume is constant in the case of FD.

Effect of Peers Failures. In this section, we investigate the effect of peers’
failures on the accuracy of top-k results of ASAP. In our tests, we vary the value
of fail rate and investigate its effect on the accuracy of top-k results. Figure 5
shows accuracy of top-k results for ASAP-Dscore, ASAP-Drank and FD while
increasing the fail rate, with the other parameters set as in Table 1. Peers’ failures
have less impact on ASAP-Dscore and ASAP-Drank than FD. The reason is that
ASAP-Dscore and ASAP-Drank return the high-score results to the user as soon
as possible. However, when increasing the fail rate in FD, the accuracy of top-k
results decreases significantly because some score-lists are lost. Indeed, in FD,
each peer waits for results of its children so in the case of a peer failure, all the
score-lists received so far by that peer are lost.

24 W.K. Dédzoé et al.

 0
 20
 40
 60
 80

 100
 120
 140

 4 6 8 10

C
u
m

u
la

ti
v
e

q
u
al

it
y
 g

ap

Number of peers holding the top-k

ASAP-Dscore
ASAP-Drank

FD

(a) Cumulative quality gap vs.
Number of peers holding the top-k
results

 0
 20
 40
 60
 80

 100
 120
 140

 4 6 8 10

S
ta

b
il

iz
at

io
n
 t

im
e

(s
)

Number of peers holding the top-k

ASAP-Dscore
ASAP-Drank

FD

(b) Stabilization vs. Number of
peers holding the top-k results

 0

 0.5

 1

 1.5

 2

 2.5

 3

 4 6 8 10V
ol

um
e

of
 t

ra
ns

fe
rr

ed
 d

at
a

(M
B

)

Peers holding the top-k

ASAP-Dscore
ASAP-Drank

FD

(c) Volume of transferred data vs.
Number of peers holding the top-k re-
sults

Fig. 7. Impact of data distribution on ASAP performance

9 Related Work

Efficient processing of top-k queries is both an important and hard problem that
is still receiving much attention. Several papers have dealt with top-k query pro-
cessing in centralized database management systems [9,18,27,24]. In distributed
systems [10,16,7,31,33], previous work on top-k processing has focused on verti-
cally distributed data over multiple sources, where each source provides a rank-
ing over some attributes. Some of the proposed approaches, such as recently [3],
try to improve some limitations of the Threshold Algorithm (TA) [13]. Follow-
ing the same concept, there exist some previous work for top-k queries in P2P
over vertically distributed data. In [8], the authors propose an algorithm called
”Three-Phase Uniform Threshold” (TPUT) which aims at reducing communi-
cation cost by pruning away intelligible data items and restricting the number
of round-trip messages between the query originator and other nodes. Later,
TPUT was improved by KLEE [22] that uses the concept of bloom filters to

As-Soon-As-Possible Top-k Query Processing in P2P Systems 25

reduce the data communicated over the network upon processing top-k queries.
It brings significant performance benefits with small penalties in result precision.
However, theses approaches assume that data is vertically distributed over the
nodes whereas we deal with horizontal data distribution.

For horizontally distributed data, there has been little work on P2P top-k pro-
cessing. In [2], the authors present FD, a fully distributed approach for top-k query
processing in unstructured P2P systems. We have briefly introduced FD in sec-
tion 8.1.

PlanetP [11] is the content addressable publish/subscribe service for unstruc-
tured P2P communities up to ten thousand peers. PlanetP uses a gossip protocol
to replicate global compact summaries of content (term-to-peer mappings) which
are shared by each peer. The top-k processing algorithm works as follows. Given
a query q, the query originator computes a relevance ranking (using the global
compact summary) of peers with respect to q, contacts them one by one from
top to bottom of ranking and asks them to return a set of their top-scored docu-
ment names together with their scores. However, in a large P2P system, keeping
up-to-date the replicated index is a major problem that hurts scalability.

In [6], the authors present an index routing based top-k processing technique
for super-peer networks organized in an HyperCuP topology which tries to min-
imize the number of transfer data. The authors use statistics on queries to main-
tain the indexes built on super-peers. However, the performance of this technique
depends on the query distribution.

In [32], the authors present SPEERTO, a framework that supports top-k query
processing in super-peer networks by using a skyline operator. In SPEERTO, for
a maximum ofK, denoting an upper bound on the number of results requested by
any top-k query (k ≤ K), each peer computes its K-skyband as a pre-processing
step. Each super peer maintains and aggregates the K-skyband sets of its peers
to answer any incoming top-k query. The main drawback of this approach is
that each join or leave of peer may induce the recomputing of all super-peers
K-skyband. Although these techniques are very good for super-peers systems,
they cannot apply efficiently for unstructured P2P systems, since there may be
no peer with high reliability and computing power.

Zhao et al. [34] use a result caching technique to prune network paths and
answer queries without contacting all peers. The performance of this technique
depends on the query distribution. They assume acyclic networks, which is re-
strictive for unstructured P2P systems.

10 Conclusion

In this paper we deal with as-soon-as-possible top-k query processing in P2P
systems. We proposed a formal definition for as-soon-as-possible top-k query
processing by introducing two novels notions: stabilization time and cumulative
quality gap. We presented ASAP, a family of algorithms which uses a threshold-
based scheme that considers the score and the rank of intermediate results to
return quickly the high quality results to users. We validated ASAP through
implementation and extensive experimentation. The results show that ASAP

26 W.K. Dédzoé et al.

significantly outperforms baseline algorithms by returning final top-k result to
users in much better times. Finally, the results demonstrate that in the pres-
ence of peers’ failures, ASAP provides approximative top-k results with good
accuracy, unlike baseline algorithms.

References

1. Akbarinia, R., Martins, V., Pacitti, E., Valduriez, P.: Design and Implementation
of Atlas P2P Architecture. In: Global Data Management, 1st edn. IOS Press (2006)

2. Akbarinia, R., Pacitti, E., Valduriez, P.: Reducing network traffic in unstructured
p2p systems using top-k queries. Distributed and Parallel Databases 19(2-3), 67–86
(2006)

3. Akbarinia, R., Pacitti, E., Valduriez, P.: Best position algorithms for top-k queries.
In: Proceedings of Int. Conf. on Very Large Data Bases (VLDB), pp. 495–506 (2007)

4. Androutsellis-Theotokis, S., Spinellis, D.: A survey of peer-to-peer content distri-
bution technologies. ACM Computing Surveys 36(4), 335–371 (2004)

5. Arai, B., Das, G., Gunopulos, D., Koudas, N.: Anytime measures for top-k al-
gorithms. In: Proceedings of Int. Conf. on Very Large Data Bases (VLDB), pp.
914–925 (2007)

6. Balke, W.-T., Nejdl, W., Siberski, W., Thaden, U.: Progressive distributed top k
retrieval in peer-to-peer networks. In: Proceedings of Int. Conf. on Data Engineer-
ing (ICDE), pp. 174–185 (2005)

7. Bruno, N., Gravano, L., Marian, A.: Evaluating top-k queries over web-accessible
databases. In: Proceedings of Int. Conf. on Data Engineering (ICDE), pp. 369–380
(2002)

8. Cao, P., Wan, Z.: Efficient top-k query calculation in distributed networks. In:
Proceedings of Annual ACM Symposium on Principles of Distributed Computing
(PODC), pp. 206–215 (2004)

9. Chaudhuri, S., Gravano, L.: Evaluating top-k selection queries. In: Proceedings of
Int. Conf. on Very Large Databases (VLDB), pp. 397–410 (1999)

10. Chaudhuri, S., Gravano, L., Marian, A.: Optimizing top-k selection queries over
multimedia repositories. IEEE Transactions on Knowledge Data Engineering 16(8),
992–1009 (2004)

11. Cuenca-Acuna, F.M., Peery, C., Martin, R.P., Nguyen, T.D.: Planetp: Using gos-
siping to build content addressable peer-to-peer information sharing communities.
In: Proceedings of IEEE Int. Symp. on High-Performance Distributed Computing
(HPDC), pp. 236–249 (2003)

12. Dedzoe, W.K., Lamarre, P., Akbarinia, R., Valduriez, P.: Asap top-k query process-
ing in unstructured p2p systems. In: Proceedings of IEEE Int. Conf on Peer-to-Peer
Computing (P2P), pp. 187–196 (2010)

13. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware.
In: Proceedings of Symposium on Principles of Database Systems (PODS), pp.
102–113 (2001)

14. Feng, G., Jiang, Y., Chen, G., Gu, Q., Lu, S., Chen, D.: Replication strategy in
unstructured peer-to-peer systems. In: Proceedings of IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pp. 1–8 (2007)

15. Gummadi, P.K., Saroiu, S., Gribble, S.D.: A measurement study of napster and
gnutella as examples of peer-to-peer file sharing systems. Computer Communica-
tion Review 32(1), 82 (2002)

As-Soon-As-Possible Top-k Query Processing in P2P Systems 27

16. Güntzer, U., Balke, W.-T., Kießling, W.: Optimizing multi-feature queries for im-
age databases. In: Proceedings of Int. Conf. on Very Large DataBases (VLDB),
pp. 419–428 (2000)

17. Hose, K., Karnstedt, M., Sattler, K.-U., Zinn, D.: Processing top-n queries in p2p-
based web integration systems with probabilistic guarantees. In: Proceedings of
International Workshop on web and databases (WebDB), pp. 109–114 (2005)

18. Hristidis, V., Koudas, N., Papakonstantinou, Y.: Prefer: A system for the efficient
execution of multi-parametric ranked queries. In: Proceedings of ACM. Int. Conf.
on Management of Data (SIGMOD), pp. 259–270 (2001)

19. Jelasity, M., Montresor, A.: Epidemic-style proactive aggregation in large overlay
networks. In: Int. Conference on Distributed Computing Systems (ICDCS), pp.
102–109 (2004)

20. Jelasity, M., Montresor, A., Jesi, G.P., Voulgaris, S.: The Peersim simulator,
http://peersim.sf.net

21. Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate infor-
mation. In: Symposium on Foundations of Computer Science (FOCS), pp. 482–491
(2003)

22. Michel, S., Triantafillou, P., Weikum, G.: Klee: A framework for distributed top-k
query algorithms. In: Proceedings of Int. Conf. on Very Large Data Bases (VLDB),
pp. 637–648 (2005)

23. Ooi, B.C., Shu, Y., Tan, K.-L.: Relational data sharing in peer-based data man-
agement systems. SIGMOD Record 32(3), 59–64 (2003)

24. Qin, L., Yu, J.X., Chang, L.: Diversifying top-k results. PVLDB 5(11), 1124–1135
(2012)

25. Ramaswamy, L., Chen, J., Parate, P.: Coquos: Lightweight support for continuous
queries in unstructured overlays. In: Proceedings of IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pp. 1–10 (2007)

26. Schmid, S., Wattenhofer, R.: Structuring unstructured peer-to-peer networks. In:
Proceedings of IEEE Int. Conf. on High Performance Computing (HiPC), pp. 432–
442 (2007)

27. Shmueli-Scheuer, M., Li, C., Mass, Y., Roitman, H., Schenkel, R., Weikum, G.:
Best-effort top-k query processing under budgetary constraints. In: Proceedings of
Int. Conf. on Data Engineering (ICDE), pp. 928–939 (2009)

28. Tatarinov, I., Ives, Z.G., Madhavan, J., Halevy, A.Y., Suciu, D., Dalvi, N.N., Dong,
X., Kadiyska, Y., Miklau, G., Mork, P.: The piazza peer data management project.
SIGMOD Record 32(3), 47–52 (2003)

29. Terpstra,W.W., Kangasharju, J., Leng, C., Buchmann,A.P.: Bubblestorm: resilient,
probabilistic, and exhaustive peer-to-peer search. In: SIGCOMM, pp. 49–60 (2007)

30. Tsoumakos, D., Roussopoulos, N.: Analysis and comparison of p2p search methods.
In:Proceedings of Int.Conf. on Scalable Information Systems (Infoscale), p. 25 (2006)

31. Vlachou, A., Doulkeridis, C., Nørv̊ag, K.: Distributed top-k query processing by
exploiting skyline summaries. Distributed and Parallel Databases 30(3-4), 239–271
(2012)

32. Vlachou, A., Doulkeridis, C., Nørv̊ag, K., Vazirgiannis, M.: On efficient top-k query
processing in highly distributed environments. In: Proceedings of ACM. Int Conf.
on Management of Data (SIGMOD), pp. 753–764 (2008)

33. Ye, M., Lee, W.-C., Lee, D.L., Liu, X.: Distributed processing of probabilistic top-
k queries in wireless sensor networks. IEEE Trans. Knowl. Data Eng. 25(1), 76–91
(2013)

34. Zhao, K., Tao, Y., Zhou, S.: Efficient top-k processing in large-scaled distributed
environments. Data and Knowledge Engineering 63(2), 315–335 (2007)

http://peersim.sf.net

Self-stabilizing Consensus Average Algorithm
in Distributed Sensor Networks

Jacques M. Bahi1, Mohammed Haddad2,
Mourad Hakem1, and Hamamache Kheddouci2

1 DISC Laboratory, Femto-ST - UMR CNRS, Université de Franche-Comté, France
2 LIRIS Laboratory, UMR CNRS 5205, Université de Lyon 1, F-69622, France

{Mourad.Hakem,Jacques.Bahi}@lifc.univ-fcomte.fr,
{Mohammed.Haddad,Hamamache.Kheddouci}@univ-lyon1.fr

Abstract. One important issue in sensor networks that has received renewed
interest recently is average consensus, i.e., computing the average of n sensor
measurements, where nodes iteratively exchange data with their neighbors and
update their own data accordingly until reaching convergence to the right param-
eters estimate. In this paper, we introduce an efficient self-stabilizing algorithm
to achieve/ensure the convergence of node states to the average of the initial mea-
surements of the network. We prove that the convergence of the fusion process
is finite and express an upper bound of the actual number of moves/iterations re-
quired by the algorithm. This means that our algorithm is guaranteed to reach a
stable situation where no load will be sent from one sensor node to another. We
also prove that the load difference between any two sensor nodes in the network
is within ε

D
×⌊

D+1
2

⌋
< ε, where ε is the prescribed global equilibrium threshold

(this threshold is given by the system) and D is the diameter of the network.

1 Introduction

Recent years have witnessed significant advances in wireless sensor networks which
emerge as one of the most promising technologies for the 21st century [1]. In fact,
they present huge potential in several domains ranging from health care applications to
military applications. Distributed in irregular patterns across remote and often hostile
environments, sensor nodes will autonomously aggregate into collaborative and asyn-
chronous communication mode. Indeed, the asynchronous mode presents the major ad-
vantages of allowing more flexible communication schemes. They are less sensitive to
the communication delays and to their variations. Moreover, they also present some tol-
erance to the loss of data messages since that losses do not prevent the progression of
the fusion process on both the sender and destination nodes.

In general, the primary objective of a wireless sensor network is to collect data from
the monitored area and to transmit it to a base station (sink) for processing. During
this phase, resource failures are more likely to occur and can have an adverse effect
on the application. Hence, they must be robust and survivable despite individual node
and link failures [2, 3, 4, 5, 6]. The advent of wireless sensor networks and its con-
ception constraints, have posed a number of research challenges to the networking and

A. Hameurlain et al. (Eds.): TLDKS IX, LNCS 7980, pp. 28–41, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Self-stabilizing Consensus Average Algorithm in Distributed Sensor Networks 29

distributed computation communities. A problem that has received renewed interest re-
cently is average consensus. It computes iteratively the global average of distributed
measures in a sensor network by using only local communications. Distributed average
consensus, in ad hoc networks, is an important issue in distributed agreement and syn-
chronization problems [7] and is also a central topic for load balancing (with divisible
tasks) in parallel computing [8, 9]. More recently, it has also found applications in dis-
tributed coordination of mobile autonomous agents and distributed data fusion in sensor
networks [10, 11, 12, 13].

In the literature, this problem has been formulated and studied in various ways. The
first approaches were based on flooding. For instance, in [14], each sensor node broad-
casts all its stored and received data to its neighbors. After some times, each node will
hold all the data of the network and acts as a fusion center to compute the estimate of
the unknown parameter. In [15, 16, 17], the authors compute the average of the sensor
measurements combined with local Kalman filtering and/or mobile agents. The works
developed in [14, 18, 19] consist of distributed linear iterations, where each sensor up-
dates its current state by a weighted fusion of its current neighbors’ states (which are
distorted when they reach it) and these fusion weights decrease to zero in an appro-
priate way, as time progresses. Other authors consider some practical issues in sensor
networks such as fault tolerance and asynchronism. For instance, some works compute
the average while taking into account link failures [20], other works study the consen-
sus problem into asynchronous environment [21, 22] while considering communication
delays, or from the energy point of view by minimizing the number of iterations [19].

To the best of our knowledge, none of the above approaches is able to give an ana-
lytical bound of the actual number of moves/iterations required by the algorithm, nor
to improve the upper bound for the load difference (upper bounded by the diameter of
the topology) between any two sensor nodes in the final load balanced distribution. In
this paper, we present an efficient self-stabilizing algorithm to tackle the problem of
distributed data fusion in large-scale sensor networks. This study differs from previous
works for the following reasons:

– We express an upper bound of the actual number of moves/iterations required by
the algorithm to ensure the convergence of node states to the average of the initial
measurements of the network. More precisely, we prove that there exists an upper
bound of the convergence time beyond which all the sensor nodes in the network
neither receive nor send any amount of load and, therefore, achieve a stable bal-
anced state.

– We improve the load difference between any two sensor nodes in the network which
is within ε

D ×
⌊
D+1
2

⌋
rather than ε, where ε is the prescribed global equilibrium

threshold (this threshold is given by the system) and D is the diameter of the net-
work.

– Unlike earlier methods, we use a new concept of Self-Stabilization to achieve the
convergence of the system to a final balanced load state.

In a self-stabilizing model [23, 24, 25, 26], each vertex has only a partial view of the
system, called the local state. The vertex’s local state include the state of the vertex
itself and the state of its neighborhood. The union of the local states of all the vertices

30 J.M. Bahi et al.

gives the global state of the system. Based on its local state, a vertex can decide to
make a move. Then, self-stabilizing algorithms are given as a set of rules of the form
[If p(i) Then M], where p(i) is a predicate and M is a move. p(i) is true when state of
the vertex i is locally illegitimate. In this case, the vertex i is called a privileged/active
vertex. A vertex executes the algorithm as long as it is active (at least one predicate is
true).

The rest of the paper is organized as follows. After some definitions and notations
in Section 2.1, we present in Sections 2 the design and analysis of the proposed self-
stabilizing algorithm and give the corresponding proofs. To evaluate the behavior of the
proposed algorithm, we provide in Section 3 some results through simulations that we
conducted on NS2 (Network Simulator 2). Finally we give some concluding remarks in
Section 4 and 5.

2 Self-stabilizing Consensus Average Algorithm

In this section, we give a self-stabilizing algorithm for computing the consensus av-
erage in a wireless sensor network under a serial, or central, scheduler. Nevertheless,
there exist algorithms that make any self-stabilizing algorithm using the central sched-
uler operate under the distributed one [27, 28, 29, 30, 31]. We also assume a composite
read/write atomicity. We begin by giving fundamentals and a description of our algo-
rithm then we focus on the legitimate state formulation as well as the local information
at the nodes. After that, we present the algorithm which consists in only one rule and
give the proofs.

2.1 Fundamentals

A sensor network is modeled as a connected undirected graph G = (V,E). The set
of nodes is denoted by V (the set of vertices), and the links between nodes by E (the
set of edges). The nodes are labeled i = 1, 2, . . . , n, and a link between nodes i and
j is denoted by (i, j). The set of neighbors of node i is denoted by Ni = {j ∈ V |
(i, j) ∈ E}, and the degree (number of neighbors) of node i ηi = |Ni|. Each node takes
initial measurement zi, for the sake of simplicity, let us suppose that zi ∈ R. Then,
z will refer to the vector whose ith component is zi. Each node on the network also
maintains a dynamic state xi(t) ∈ R which is initially set to xi(0) = zi. Intuitively
each node’s state xi(t) is its current estimate of the average value

∑n
i=1 zi/n. The goal

of the averaging algorithm, is to let all the states xi(t) go to the average
∑n

i=1 zi/n, as
t→∞. Throughout the paper, we use the terms scalar and load interchangeably.

In our framework, instead of reaching
∑n

i=1 zi/n, when t → ∞, we ensure reach-
ing

∑n
i=1 zi/n ± ε but in a finite time. Where ε is the prescribed global equilibrium

threshold.

2.2 Outline of the Algorithm

In order to reach, in a fully distributed way, the global consensus average, we draw
inspiration from a natural phenomenon that fits well as a model for our problem. This

Self-stabilizing Consensus Average Algorithm in Distributed Sensor Networks 31

phenomenon is the communicating vessels. In fact, one can see that by considering
nodes the network as similar vessels all filled with some amount of water (the sensed
value), then by making all the vessels communicating we will obtain, after stabilization,
the same amount of water in all vessels. This amount is actually the global average (see
Figure 1).

To model the behavior of the transfer of water from a vessel to another, we also
act as in the natural phenomenon; that is the vessels with low amount of water create
a depression and aspirate water from more loaded neighbors until the equilibrium is
reached. Hence, there will be streams of water circulating between the vessels as a ves-
sel could aspirate and be aspirated at the same time. In our model, we transfer an atomic
quantity ε from a highly loaded node to a less loaded node until they reach the equilib-
rium. This transfer is supposed to be performed by some atomic transaction mechanism
that could be called by our algorithm. Thus, the atomic transaction algorithm will be
composed with our algorithm [32].

Fig. 1. Communicating vessels

2.3 Global Legitimate State

Let G = (V,E) the graph modeling the sensor network. The algorithm should converge
to a state where all node reach the same value representing the consensus average.
However, we admit some error in the precision; that is two nodes should reach the same
value according to some error ε. The legitimate state of the network is then expressed
as follows:

∀i, j ∈ V : |xi − xj | ≤ ε (1)

where ε is the prescribed global equilibrium threshold. This threshold is given
by the system. We first prove that the Statement (1) ensures that every node in the
network has reached the consensus average within a certain error e but always within
the threshold ε.

32 J.M. Bahi et al.

Theorem 1. Let G = (V,E) be a graph such that |V | = n.

(∀i, j ∈ V : |xi − xj | ≤ ε) =⇒ (∀i ∈ V : xi =

∑
j xj

n
± ei ∧ ei ≤ ε)

Proof. Since all the vertices are holding the same value according to a given error ε, we
have:

(∀i, j ∈ V : |xi − xj | ≤ ε)
⇔ (∀i, j ∈ V : −ε ≤ xi − xj ≤ ε)
⇔ (∀i, j ∈ V : xj − ε ≤ xi ≤ xj + ε)
⇔ (∀i, j ∈ V : xi = xj ± ei ∧ ei ≤ ε)
⇒ (∀i ∈ V :

∑
j xi =

∑
j xj ±

∑
j ei ∧ ei ≤ ε)

⇒ (∀i ∈ V : n× xi =
∑

j xj ± n× ei ∧ ei ≤ ε)

⇒ (∀i ∈ V : xi =

∑
j xj

n
± ei ∧ ei ≤ ε) ��

2.4 Local Information

Every node i in the network has to maintain the following data structure:

– xi: the scalar value at node i.
– Ni: the set of neighbors of node i.
– σ: the local equilibrium threshold.

Fig. 2. The threshold σ

The threshold σ has to be chosen such that the transitive difference between nodes will
never exceed the real threshold ε (see Figure 2). In fact, let’s suppose three vertices a, b
and c such that a is a neighbor of b which also a neighbor of c but a an c aren’t neighbors.
If the difference between the values xa and xb is less than σ and the difference between
the values xb and xc is less than σ then what could we say about the difference between
the values xa and xc ? Hence, the threshold σ is defined according to the diameter of the
network D. Actually, by setting σ ≤ ε/D, we obtain a sufficient condition on vertices
to ensure the global threshold. The deployment knowledge of sensor networks is often
used to get better performance. Indeed, in [33] deployment knowledge like the number
of nodes and the diameter of the network is addressed.

Self-stabilizing Consensus Average Algorithm in Distributed Sensor Networks 33

2.5 The Algorithm

As mentioned above, the algorithm consists in only on rule that

2.1. The rule R1 : Local equilibrium
R1: Transfers σ from a neighbor j to i if j is more loaded than
i.
If ∃j ∈ Ni : xj − xi > σ Then
Transfer(xj, xi)

End If

With
2.2. Transfer Transaction Procedure

Transfer(xj, xi)
xj = xj − σ
xi = xi + σ

2.6 Convergence Proof

Let G = (V,E) the graph modeling the sensor network, with |V | = n and |E| = m.
In the following, we consider a discrete time where every move increments the time t
by 1. Let Max(t) be the maximum value in the network at the time t and respectively
Min(t) be the minimum value.

Lemma 1. ∀t,Max(t) ≥Max(t+ 1) (respectively, ∀t,Min(t) ≤Min(t+ 1)).

Proof. the proof is straightforward since we transfer an atomic quantity σ from a highly
loaded node to a less loaded node. ��
Lemma 2. If the system is unstable, that is the Statement (1) is false, then we have
Max(t) < Max(t+Δt) such that Δt is within O(n) moves.

Proof. The worst case is when only one vertex is not in the equilibrium (consider it
to be the black vertex in Figure 3). Since all other vertices are in equilibrium, all of
them are holding the maximum value. Hence, in the worst case, the transfer stream will
be formed by all the vertices in the network as a Hamiltonian path. This produces that
the Max (rsp. Min) value will be decremented (rsp. incremented) by at least σ within
O(n) moves. ��
Theorem 2. The algorithm described by the rule R1 converges within

O

(
Max(0)−Min(0)

σ
× n

)
moves.

Proof. By the previous lemmas, we have seen that Max value is decremented by
at least σ within O(n) moves (rsp. for Min). The worst case here is when the
average is close to one of the extremal values either Max(0) or Min(0). Hence,

O

(
Max(0)−Min(0)

σ

)
transfers will be needed to reach the average. Since ev-

ery transfer could cost O(n) moves, we obtain that the algorithm converges within

O

(
Max(0)−Min(0)

σ
× n

)
. ��

34 J.M. Bahi et al.

Fig. 3. Worst case of load transfer

2.7 Improvement of the Algorithm

We propose now to introduce a new rule to the algorithm. This rule aims to improve the
global equilibrium of the network while proceeding only on local information. The rule
is as follows:

2.3. Neighborhood Equilibrium
R2: Transfers σ from a neighbor k to a neighbor l if k is more
loaded than l.
If (∀j ∈ Ni : |xj − xi| ≤ σ) ∧ (∃k, l ∈ Ni : xk − xl > σ) Then
Transfer(xk, xl)

End If

With

2.4. Transfer procedure
Transfer(xk, xl)
xk = xk − σ
xl = xl + σ

Observe however that this second transfer procedure will require distance two knowl-
edge.

Theorem 3. The load difference between any two sensor nodes in the network is within
ε
D ×

⌊
D+1
2

⌋
< ε, where ε is the prescribed global equilibrium threshold (this threshold

is given by the system) and D is the diameter of the network.

Proof. To prove this bound, consider a linear chain graph of n nodes (D = n − 1)
arranged with ascending order of their loads xi, 1 ≤ i ≤ n along a line. If all nodes are
in the following state:

x1 = ε
n−1 < x2 = 2× ε

n−1
< · · · <

xi−1 = (i − 1)× ε
n−1 < xi = i× ε

n−1
< · · · <

xn−1 = ε < xn = n× ε
n−1

Self-stabilizing Consensus Average Algorithm in Distributed Sensor Networks 35

Then, for this configuration, the only rule that can be executed is rule 2. For the sake
of simplicity, assume that nodes, with index i mod 2 = 0, will be activated for rule 2.
Thus, we get

x1 = x2 = x3 = 2× ε
n−1

< · · · <
xi−1 = xi = xi+1 = i× ε

n−1
< · · · <

xn−2 = xn−1 = xn = ε

Similarly, for this configuration, the only rule that can be executed is rule 1 and for the
sake of simplicity, assume that the involved nodes (3, 6, . . . n− 3) will be activated for
rule 1. Thus, we get:

x1 = x2 = 2× ε
n−1 < x3 = x4 = 3× ε

n−1
< · · · <

xi−1 = xi = i× ε
n−1 < xi+1 = xi+2 = (i+ 1)× ε

n−1
< · · · <

xn−3 = xn−2 = ε− ε
n−1 < xn−1 = xn = ε

Now, by alternating the execution of the two rules, there will be streams of load circu-
lating between the nodes as a node could aspirate and be aspirated at the same time.
Hence, this process is repeated until reaching the configuration case where nodes on the
line are in the ascending order by an increment of ε

n−1 with at least two adjacent nodes
which have the same load value. Formally:

∀i, ∀k, l ∈ Ni, k /∈ Nl : xk − xl ≤ σ

In this case, all nodes will never again execute rule 2. This means, that all nodes reach
their stable state where no load will be sent from one sensor node to another.

This configuration case can be viewed as a splitting of the initial linear chain graph
into a new linear chain of virtual nodes, where each virtual node contains at least two
nodes with the same load value. The virtual nodes along a new chain graph are in the
ascending order by an increment of ε

n−1 .
Thus, it follows that for n ≥ 2 the load difference between any two sensor nodes in

the linear chain graph is within

ε
n−1 ×

⌊
n
2

⌋
= ε

D ×
⌊
D+1
2

⌋
< ε

��
Theorem 4. The bound ε

D ×
⌊
D+1
2

⌋
is attainable.

Proof. To see that this bound is really attainable, consider a linear chain graph of n = 6,
a non negative integer ε = 5 and

σ = ε
D = 5

5 = 1 = |xi+1 − xi|, 1 ≤ i ≤ n− 1

By alternating the execution of the two rules, we obtain the final stable situation of loads

x1 = 2 < x2 = x3 = 3 < x4 = x5 = 4 < x6 = 5

36 J.M. Bahi et al.

with the difference of

ε
n−1 ×

⌊
n
2

⌋
= ε

D ×
⌊
D+1
2

⌋
= 5

5 ×
⌊
5+1
2

⌋
= 3 < ε = 5

��
Theorem 5. For a non negative integer load balancing problem, the load difference
between any two sensor nodes in the network is within

⌊
D+1
2

⌋
, where D is the diameter

of the network.

Proof. the proof is straightforward since the prescribed global equilibrium threshold ε
is bounded by the diameter of the network D. ��
We discuss the performance of introducing this rule in the next section.

3 Experimentation

In this section, we discuss some results through simulations that we conducted on NS2
(Network Simulator 2). We considered different sizes for the sensor network: 50, 100,
200, 400, 800 and 1600 nodes with an average density of 100 nodes per km2. The
radio transmission range is assumed to be 250 m. The threshold σ is set to 0.1 while
Max(0)−Min(0) is set to 10. The scalars of nodes and nodes positions are determined
according to uniform distribution. We ran the two versions of our algorithm. The first
version executes only the rule R1 and the second executes both rules R1 and R2. For
every size of the network, we consider 10 executions of the algorithm then we calculate
the average of obtained results.

Fig. 4. Convergence time

Self-stabilizing Consensus Average Algorithm in Distributed Sensor Networks 37

Fig. 5. Number of moves per node

We first discuss the convergence time. In our study we express this time by the num-
ber of moves performed by the set of all nodes of the network.

Consider the Figure 4. We can observe that both versions of the algorithms converge
within similar amount of moves. We also observe that the number of moves is increasing
linearly with the number of nodes in the network n. In fact, the slope of the line is about
22 while the one determined by the upper bound of the convergence time is exactly
(Max(0)−Min(0)) /σ = 100. Actually, the equation of the obtained line is y =
22.33 x − 415. Hence, we can expect that for large values of n, the number of moves
performed by a node will be about 22 moves. This is confirmed by Figure 5.

This figure gives the number of moves performed by a node according to the total
number of nodes in the network. The observed value increases in a logarithmic way
until reaching the value of ∼ 22.

Now, in order to show the performance of the introduction of the ruleR2, we consider
the number of nodes that converge outside the interval x ± σ where x is the global
consensus average. Before giving interest to that number of nodes, we first discuss the
ratio between σ and ε. In all our simulations, we observed that for every node i, after the
convergence, the value |xi−x| is always less than 3×ε. Hence, if we suppose a uniform
distribution of sensed values or scalars, one might have no need of a prior knowledge
or estimation of the diameter of the network to set σ according to a precision ε.

The Figure 6 gives the number of nodes that converge outside the interval x± σ (but
still all the nodes converge within the interval x± ε).

We can observe that for networks with small number of nodes, the introduction of
the rule R2 has not much effect. However, with the increase of the node number, the
difference between the two versions of the algorithm become more important. More-
over, after the convergence, the value |xi − x| is always less than 2 × ε if we consider
the algorithm using both rules R1 and R2.

38 J.M. Bahi et al.

Fig. 6. Number of node out of x± σ

4 Discussion and Future Work

We present in this section some generalizations of our algorithms. For the sake of sim-
plicity, the discussion is given from the point of view of node i.

i) Improving Reliability: unexpected node failures may occur during the fusion pro-
cess due to various reasons such as battery depletion/ exhaustion, software glitches,
dislocation or environmental hazards and malicious attacks. To cope with this problem,
when the area of interest has a significant density of sensors, we can perform redun-
dancy/replication mechanisms, where some sensors can be in an active state: they par-
ticipate in the network functioning while the others in a passive state (standby). These
sensors wakeup periodically. If a working sensor node fails, it must be replaced by a
passive one. However, two questions arise here: i) How the fault detection is done? and
ii) how to replace the failed sensors?

These questions (i) and (ii) raise the following problems: (1) Since sensor nodes are
not aware of their neighbors, especially the number of sleeping/passive nodes. How
to adjust the wakeup period of these sensors? (2) During the recovery process, how
to handle the case where two or more sleeping nodes, would realize at the same time
that the working/active node is down? Indeed, for the same covered area, it should not
contain several working nodes simultaneously, which would distort the computation of
the average consensus, the self stabilizing algorithm should be built on the fact that only
one sensor node must be in the active state for each covered area. To compute node’s
sleeping wakeup rate, we can borrow the same principle to [5]. Intuitively, nodes are
initially in the sleeping mode. Each node sleeps for an exponentially distributed time
generated according to a probability density function (PDF) f(t) = λe−λt, where λ is
the probing rate of the sensor node and t denotes its sleeping time duration.

ii) Distributed Termination: the detection of the conjunction of local terminations, which
is a stable property, is a non-trivial problem. In fact it covers two issues: (i) detect

Self-stabilizing Consensus Average Algorithm in Distributed Sensor Networks 39

whether all sensor node states converge to the average of the initial measurements of
the network even when sensor nodes are subject to failures and (ii) ensure that we have
achieved the desired computations. Solving this problem in a distributed manner, allows
each sensor to detect that it has done and all the nodes reach this coherent state. Thus,
the objective here is to overlay the self stabilizing iterative fusion process, a control
mechanism that can detect the conditions of termination/convergence.

5 Conclusion

In this paper, we have addressed the problem of distributed data fusion in wireless sen-
sor networks. This is a very natural and important problem, as several objectives (con-
vergence, performance) must be considered simultaneously to fulfill the requirements
of the user application. To the best of our knowledge, the proposed algorithm is the first
to address the upper bound of the number of moves/iterations required to achieve/ensure
the convergence of node states to the average of the initial measurements of the network.
In addition, we also showed that the load difference between any two sensor nodes in
the network is within ε

D ×
⌊
D+1
2

⌋
< ε, where ε is the prescribed global equilibrium

threshold (this threshold is given by the system) and D is the diameter of the network.
Our approach should be extended to the context of safety critical applications. For

instance, security threats must be addressed during the self-stabilizing fusion process.
Most current approaches do not consider/include security measures, which opens an
opportunity for further research in this field.

Acknowledgments. We thank the referees for all the valuable comments that helped
us to improve the paper.

References

[1] Akyildiz, I., Su, W., Sankarasubramniam, Y., Cayirci, E.: A survey on sensor networks.
IEEE Communications Magazine, 102–114 (2002)

[2] Paradis, L., Han, Q.: A survey of fault management in wireless sensor networks.
JNSM 15(2), 171–190 (2007)

[3] Hai, L., Amiya, N., Ivan, S.: Fault-tolerant algorithms/protocols in wireless sensor net-
works. In: Handbook of Wireless Ad Hoc and Sensor Net., pp. 265–295 (2009)

[4] Saleh, I., Eltoweissy, M., Agbaria, A., El-Sayed, H.: A fault tolerance management frame-
work for wireless sensor networks. JCM 2(4), 38–48 (2007)

[5] Ye, F., Zhang, H., Lu, S., Zhang, L., Hou, J.C.: A randomized energy-conservation protocol
for resilient sensor networks. Wireless Networks 12(5), 637–652 (2006)

[6] de Souza, L.M.S., Vogt, H., Beigel, M.: A survey on fault tolerance in wireless sensor
networks. Sap research, braunschweig, germany

[7] Lynch, N.: Distributed algorithms. Morgan Kaufmann Publishers, Inc. (1996)
[8] Cedo, F., Cortés, A., Ripoll, A., Senar, M.A., Luque, E.: The convergence of realistic dis-

tributed load-balancing algorithms. Theory Comput. Syst. 41(4), 609–618 (2007)
[9] Rabani, Y., Sinclair, A., Wanka, R.: Local divergence of markov chains and the analysis of

iterative load-balancing schemes. In: Proceedings of the IEEE Symp. on Found. of Comp.
Sci., Palo Alto (1998)

40 J.M. Bahi et al.

[10] Bahi, J., Couturier, R., Vernier, F.: Synchronous distributed load balancing on dynamic
networks. Journal of Parallel and Distributed Computing 65(11), 1397–1405 (2005)

[11] Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching
topology and time-delays. IEEE Transaction on Automatic Control 49(9), 1520–1533

[12] Bliman, P., Ferrari-Trecate, G.: Average consensus problems in networks of agents with
delayed communications. Journal of IFAC 44(8), 1985–1995 (2008)

[13] Moallemi, C.C., Roy, B.V.: Consensus propagation. IEEE Trans. Inf. Theory 52(11), 4753–
4766 (2006)

[14] Legg, J.A.: Tracking and sensor fusion issues in the tactical land environement. Technical
Report TN.0605 (2005)

[15] Olfati-Saber, R., Shamma, J.S.: Consensus filters for sensor networks and distributed sensor
fusion. In: 44th IEEE Conf. on Dec. and Cont. CDC-ECC (2005)

[16] Olfati-Saber, R.: Distributed kalman filter with embeded consensus filters. In: 44th IEEE
Conf. on Dec. and Cont. (2005)

[17] Olfati-Saber, R., Fax, J., Murray, R.: Consensus and cooperation in networked multi-agent
systems. In: Proc. of IEEE, pp. 215–233 (2007)

[18] Xiao, L., Boyd, S., Lall, S.: A space-time diffusion scheme for peer-to-peer least-squares
estimation. In: Proc. of Fifth International Conf. on Information Processing in Sensor Net-
works (IPSN 2006), pp. 168–176 (2006)

[19] Talebi, M.S., Kefayati, M., Khalaj, B.H., Rabiee, H.R.: Adaptive consensus averaging for
information fusion over sensor networks. In: IEEE International Conference on Mobile
Adhoc and Sensor Systems (MASS), pp. 562–565 (2006)

[20] Kar, S., Moura, J.M.F.: Distributed consensus algorithms in sensor networks with imper-
fect communication: link failures and channel noise. IEEE Transactions on Signal Process-
ing 57(1), 355–369 (2009)

[21] Bahi, J.M., Giersch, A., Makhoul, A.: A scalable fault tolerant diffusion scheme for data
fusion in sensor networks. In: InfoScale 2008, pp. 1–5. ICST press (2008)

[22] Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical Methods.
Athena Scientific (1997)

[23] Gupta, S.K.S., Srimani, P.K.: Self-stabilizing multicast protocols for ad hoc networks. Jour-
nal of Parallel and Distributed Computing 63(1), 87–96 (2003); Wireless and Mobile Ad
Hoc Networking and Computing

[24] Beauquier, J., Clement, J., Messika, S., Rosaz, L., Rozoy, B.: Self-stabilizing counting in
mobile sensor networks. In: PODC 2007: Proceedings of the Twenty-Sixth Annual ACM
Symposium on Principles of Distributed Computing, pp. 396–397. ACM, New York (2007)

[25] Hoepman, J.-H., Larsson, A., Schiller, E.M., Tsigas, P.: Secure and self-stabilizing clock
synchronization in sensor networks. In: Masuzawa, T., Tixeuil, S. (eds.) SSS 2007. LNCS,
vol. 4838, pp. 340–356. Springer, Heidelberg (2007)

[26] Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

[27] Gradinariu, M., Tixeuil, S.: Conflict managers for self-stabilization without fairness as-
sumption. In: International Conference on Distributed Computing Systems, p. 46 (2007)

[28] Goddard, W., Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Self-stabilizing protocols for
maximal matching and maximal independent sets for ad hoc networks. In: Proceedings of
the 17th International Symposium on Parallel and Distributed Processing, IPDPS 2003, pp.
162.2. IEEE Computer Society, Washington, DC (2003)

[29] Goddard, W., Hedetniemi, S.T., Jacobs, D.P., Trevisan, V.: Distance- k knowledge in self-
stabilizing algorithms. Theoretical Computer Science 399(1-2), 118–127 (2008); Flocchini,
P., Gąsieniec, L. (eds.): SIROCCO 2006. LNCS, vol. 4056. Springer, Heidelberg (2006)

Self-stabilizing Consensus Average Algorithm in Distributed Sensor Networks 41

[30] Beauquier, J., Datta, A.K., Gradinariu, M., Magniette, F.: Self-stabilizing local mutual ex-
clusion and daemon refinement. In: Herlihy, M.P. (ed.) DISC 2000. LNCS, vol. 1914, pp.
223–237. Springer, Heidelberg (2000)

[31] Afek, Y., Dolev, S.: Local stabilizer. Journal of Parallel and Distributed Computing 62(5),
745–765 (2002)

[32] Leal, W., Arora, A.: Scalable self-stabilization via composition. In: Proceedings of the 24th
International Conference on Distributed Computing Systems (ICDCS 2004), pp. 12–21.
IEEE Computer Society, Washington, DC (2004)

[33] Jaworski, J., Ren, M., Rybarczyk, K.: Random key predistribution for wireless sensor net-
works using deployment knowledge. Computing 85(1-2) (2009)

Recoverable Encryption through a Noised Secret

over a Large Cloud

Sushil Jajodia1, Witold Litwin2, and Thomas Schwarz SJ3

1 George Mason University, Fairfax, Virginia, USA
jajodia@gmu.edu

2 LAMSADE, Université Paris Dauphine, Paris, France
witold.litwin@dauphine.fr

3 Universidad Católica del Uruguay, Montevideo, Uruguay
tschwarz@ucu.edu.uy

Abstract. The safety of keys is the Achilles’ heel of cryptography. A
key backup at an escrow service lowers the risk of loosing the key, but
increases the danger of key disclosure. We propose Recoverable Encryp-
tion (RE) schemes that alleviate the dilemma. RE encrypts a backup of
the key in a manner that restricts practical recovery by an escrow service
to one using a large cloud. For example, a cloud with ten thousand nodes
could recover a key in at most 10 minutes with an average recovery time
of five minutes. A recovery attempt at the escrow agency, using a small
cluster, would require seventy days with an average of thirty five days.
Large clouds have become available even to private persons, but their
pay-for-use structure makes their use for illegal purposes too dangerous.
We show the feaibility of two RE schemes and give conditions for their
deployment.

Keywords: Cloud Computing, Recoverable Encryption, Key Escrow,
Privacy.

1 Introduction

Data confidentiality ranks high among user needs and is usually achieved using
high quality encryption. But what the user of cryptography gains in confidential-
ity he looses in data safety because the loss of the encryption key destroys access
to the user’s data. A frequent cause for key loss is some personal catastrophy
that befalls the owner of the owner such as a fire that destroys the device(s)
with passwords and keys. Organizations have to prevent a scenario where the
sole employee with access to an important key leaves the organization or becomes
incapacitated. In the past, keys were lost in natural disasters, such as when the
basement of a large insurance (!) company was flooded and keys and their back-
ups were destroyed. Many patients encrypt files with health data, but access
to them becomes crucial especially if a health issue discapacitates the patient.
Encrypted family data needs to be able to allow for their owner’s disappearance,
e.g. on a hiking trip in the Alaskan wilderness.

A. Hameurlain et al. (Eds.): TLDKS IX, LNCS 7980, pp. 42–64, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

RE through a Noised Secret over a Large Cloud 43

A common approach to key safety is a remote backup copy with some escrow
service [JLS10]. The escrow service can be a dedicated commercial service, an
administrator at the organization, a volunteer service, . . . However, if the user
entrusts a key to an escrow service, the user has to be able to trust the escrow
service itself. The escrow service not only needs to prevent accidental and mali-
cious disclosure by insiders and outsiders, but most be able to convince its users
that the measures taken to protect the keys against disclosure or loss are of
sufficient strength. This might explain why the use of escrow service is not very
popular. No wonder that some users prefer to forego encryption [MLFR02], or
prefer less security by using a weak or repeated password.

The Recoverable Encryption (RE) scheme [JLS10] is intended to alleviate the
problem. It encrypts a backup of the key so that the decryption of the backup
is possible without the owner using brute-force. Legitimate, authorized recovery
is easy, while unauthorized recovery is computationally involved and dangerous.
RE [JLS10] or Clasas [SL10] was designed for client-side encrypted data stored
in a large LH* file in a cloud. The key backup is subjected to secret sharing and
the shares are spread randomly over many LH* buckets. To recover the key, an
adversary has to intrude buckets, which are stored in different sites, and search
them until she can recover all or sufficient shares of the key. Thus, unauthorized
recovery of the key involves illegal activity and is at best cumbersome.

Here, we present more general schemes, which we call collectively Recoverable
Encryption through a Noised Secret (RENS). In these schemes, a single com-
puter or cloud node suffices as the storage for key backups. The client uses an
encryption of the backup key that resists brute force at the site of the escrow
agency, decryption is possible through brute force by distributing the workload
over the many nodes of a cloud. The user can choose an encryption strenght
based on the maximum time D needed to recover the key at the site of the es-
crow service. On average, the time to key retrieval is D/2. The user will choose
a time D in years or at least months, depending on his trust into the additional
security measures of the escrow service. The user will also specify at maximum
time R for legitimate recovery, which is in the range of minutes or even seconds.
The relationship between R and D is given by the number N of cloud nodes
needed for legitimate recovery and is approximately given by

N = D/R

Cloud computing has brought large-scale distributed computing to the masses.
The possibility to rent a large number of standardized virtual servers for short
amounts of time and that allow remote access changes the possibilities of a small
organization or even an individual, bringing them tremendous compute power
without investing into a proper IT infrastructure. The fact that this is a paid-for
service brings additional benefits, as a cloud user can be forensically connected
to any services used not only by user data and login information, but also by
the money trail.

Nowadays, the number N of nodes is at least in the tens of thousands. Large
clouds are now available to legitimate users. Today, (2012), Google and Yahoo

44 S. Jajodia, W. Litwin, and T. Schwarz

claim to use clouds with more than hundred of thousands nodes and Microsoft’s
Azure advertizes millions of nodes. An unauthorized recovery of the key is clearly
possible with these resources, but the cloud service providers are well aware of the
potential of their resources for criminal activity and protect themselves against
this possibility. Additionally, using legitimate clouds leaves many traces behind
that can be used to trace and convict an adversary.

A legitimate recovery needs to rent the resources of such a large cloud and
is somewhat costly. The amount depends of course on D, R, and the rental
costs of the cloud. The user chooses R according to a trade-off between the
urgency of an eventual recovery and the costs. An example that we later discuss
shows that a public cloud with 8000 nodes would cost about a couple of hundred
dollars. These costs are by themselves a deterrent to an escrow service who wants
to “precompute their users’ need”. An escrow service would certainly not spend
these amounts of money on recovering all keys, but when reimbursed by the user,
be willing to broker the recovery using a cloud service. We can speculate that
giving an economic cost to key recovery would make “key insurance” possible.
The user might then protect herself against key loss by buying insurance at a
nominal cost.

Technically, an RENS scheme hides the key within a noised secret. Like the
classical shared secret scheme by Shamir [Sha79], a noised secret consits of two
shares at least and the secret is the exclusive-or (xor) of the shares. At least
one of the shares is “noised”, which means that it is hidden in a large set –
the noise space. The size M of the noise space is a parameter set by the user
who in this way determines D and R, both linearly proportional to M . With
overwhelming probability only the noised share reveals the secret. The RENS
recovery procedure searches for the noised share through the noise space by
brute force. It recognizes the noise share because it is given a secure hash of the
noised share as a hint. Decryption by searching for the true share within the
noise space might need to inspect all shares, and will on average be successful
after inspecting half of them.

If we move the search to the cloud, we can speed it up by parallelizing it. Two
schemes are possible. We can use a static scheme where the number of nodes
is selected before the search begins. A scalable scheme changes the number of
servers if necessary in order to meet the deadline. If the through-put of each
server is the same, then a static scheme will achieve the smallest cloud size N .
Otherwise, a scalable scheme needs to be used.

A static scheme with a cloud of 10,000 nodes provides a speed-up that changes
seconds into days, as a day has 86,400 seconds and minutes into months as a
30-day month has 43,200 minutes.

We use classical secret sharing to prevent any information leakage through
the use of the cloud. Only one share of the key’s backup is ever recovered by the
cloud and the other share is retained by the escrow service. An adversary needs
to gain access to both shares in order to obtain the key.

In the rest of this article, we analyze the feasibility of RENS schemes. We
define the schemes, discuss correctness, safety, and the properties that we just

RE through a Noised Secret over a Large Cloud 45

outlined. We discuss related work in Section 2. Section 3 introduces the basic
RENS scheme formally. The basic scheme assumes that the capacities of the
nodes are approximately identical. We present a static scheme where the escrow
service knows the capabilities of the nodes in advance. For instance, the escrow
service rents hardware nodes from a cloud provider for a certain time. We then
present a scheme that uses scalable partitioning where the nodes autonomously
adjust their number to the task at hand. We present an optimization of this
scheme that uses data from one additional node in order to lower the total
number of nodes involved and hence the costs to the escrow server. We discuss
the performance using simulation of an inhomogeneous cloud in Section 4. Our
schemes so far does not give any assurance against finishing recovery early. We
provide another extension in Section 5 to our basic idea that gives tight assur-
ance for boundaries of the recovery time. For instance, we can guarantee with
three nines assurance that the actual recovery time is between 1/2 and 1 of the
maximum recovery time. At the end, we conclude and discuss future work.

2 Related Work

The risks of key escrow are hardly a new issue. Key escrow mandated by gov-
ernment was a hotly contested issue in the nineties in the United States. Much
work has been devoted to define the legal, ethical, and technical issues and to de-
sign, prototype, and standardize key recovery mechanisms. The work by Bellare
and Goldwasser [BG97], the work on the Clipper proposal by US government
[MA96] [Bla11], the proposal by Verheul and van Tilborg [VvT97], and the risk
evaluation by Abelson and colleagues [AAB+97] on the technical side, and the
ethical and legal assessments by Denning and Baugh [DBJ96] and Singhal [Sin95]
among many others show this interest. The concept of recoverable encryption
was implicit in Denning’s taxonomy [DB96] and became more explict in a re-
vised version [DB97]. Of course, we are considering here voluntary key escrow
so that much of this work and criticism simply does not apply.

Gennaro and colleagues describe a two-phase key recovery system that allows
reusing a single asymetrical cryptography operation to generate key recovery data
for various sessions and give it to a recovery agent [GKM+97]. Ando et al. exhibit
a method that replaces a human recovery agent with an automatic one [AMK+01].
Johnson and colleages patented a key recovery scheme that is interoperable with
existing systems [JKKJ+00]. Gupta provides interoperability by defining a com-
mon key recovery block [Gup00], a work extended by Chandersekaran and col-
leagues, who patented a method for achieving interoperability between key re-
covery enabled and unaware systems [CG02], [CMMV05]. Andrews, Huang, and
Ruan distribute information in order to simplify access to private keys in a public
key infrastructure without sacrificing security [AHR+05]. D’Souza and Pandey al-
low data to be stored in a cloud system where the data store can release encrypted
data upon receiving a threshold number of requests from third parties. The scheme
is based on verifiable secret sharing [DP12]. Fan et al. give an overview of the state
of the art [FZZ12]. Current work on key escrow in the scientific literature tries to

46 S. Jajodia, W. Litwin, and T. Schwarz

avoid an unintended form of key escrow, where a public key generation system can
reconstruct a client key [CS11].

We published the original Recoverable Encryption (RE) idea in 2010 [JLS10],
where we applied it to data that a client encrypted and entrusted to the cloud.
These data form an LH*RE file distributed over the nodes in the cloud. As
its name suggests, this is a Linear Hash (LH) based Scalable Distributed Data
Structure [LNS96], [AMR+11]. The encryption key was maintained by the user
but also backed up in the cloud structure itself. The backup is subjected to secret
sharing and to recover it, one has to collect all the shares. An authorized client
of the cloud can use the LH*RE scan operation, but an intruder would have
to break into typically many cloud nodes [JLS10], [SL10]. Whereas an LH*RE
backup key is stored in the cloud itself, RENS only uses the cloud for the recovery
itself.

In CSCP [LJS11], we also store files encrypted by the client in the cloud, but
in contrast to LH*RE several users share keys among authorized clients. CSCP
uses a static Diffie-Helman (DH) scheme. If a client looses her Diffie-Helman
number, access to keys and files are lost, but an administrator has a backup of
each private Diffie-Helman key. Obviously, RENS blends nicely with CSCP.

Our current proposal replaces the dispersion of the key into shares by a re-
covery scheme based on a targeted amount of computation. Whereas in previous
schemes, the key was dispersed into a reasonably large number of shares, here,
we only use two shares and allow access to one share through a limited com-
putational effort. This concept has been made possible by the advent of “cloud
computing” that puts large-scale distributed computing at the fingertips of the
masses.

The concept of RE is rooted in the cryptographical concepts of one-way hashes
with trapdoor and cryptograms or crypto-puzzles [DN93], [Cha11], [KRS+12]. RE
can be considered to be a one-way hash where the computational capacity of
cloud services for a distributed brute-force attack constitutes the trapdoor. RE
in this sense is similar to Rivest’s and Shamir’s timed release crypto [RSW96],
where a certain amount of computation needs to be performed in order to obtain
a secret.

3 Recoverable Encryption through a Noised Secret

Recoverable encryption through a noised secret appears to the owner as the
simple entrusting of the key in processed form to the escrow server, usually
accompanied with some information for what the key is used. Upon request and
after authentication and payment, the owner receives the key back from the
escrow service after some processing time.

3.1 Client-Side Encryption

Before entrusting the backup of a key to the escrow service, the owner X pre-
processes the key. The key is a bit-string of normal length (e.g. 256b for AES)
that appears to be a random number.

RE through a Noised Secret over a Large Cloud 47

Fig. 1. Traditional secret sharing with two shares (a) and secret sharing with a noised
secret (b)

import random

def create(S, M):

S1 = random.getrandbits(KEYLENGTH)

S0 = S1 xor S

hashValue = hash(HASHALGO, S0)

f = random.randint(0,M)

l = int(S0) - f

return S1, M, l, hashValue, HASHALGO

def recover(S1, M, l, hashValue, HASHALGO):

for i in range(l, l+M):

if hash(HASHALGO, i) == hashValue:

S0 = i

return S0 xor S1

Fig. 2. Pseudo-code for the creation of and the recovery from the noised secret

48 S. Jajodia, W. Litwin, and T. Schwarz

The owner uses classical secret sharing to write the key S as the exclusive or
(xor) of two random strings of the same size as S:

S = S1 ⊕ S0

The owner calculates the hash of S0 using a standard, high-quality cryptograph-
ical hash method and stores h(S0) and a descriptor of the hash method as the
hint H(S) of the key. The owner chooses a size M of the noise space. As we will
discuss, this parameter determines the average single-core recovery time D that
represents the safety of the key backup. The owner creates a random number
f in the interval [0,M [. The owner then converts S0 from a bit string into an
unsigned integer. She calculates l = S0 − f . l forms the lower limit of the noise
space that consists of the numbers l, l+1, . . ., l+M − 1. We call these numbers
the noise shares, and refer to them collectively as the noise space. The true share
S0 is one of the noise shares and can be identified by the hint h(S0). Since we
assume that the size of the hash is much larger than M , this is always possi-
ble with overwhelming probability. Figure 1 shows the procedure. The complete
information given to the escrow service consists of S1, M , l, and the hint H(S).

We can still recover the original key S from this information. We iterate
through the noise space starting with l and apply the hash to all noise shares. If
we find one with the same hash as in the hint, we can assume that it is the true
share S0. We then recover the key as S1 ⊕ S0. (Figure 2)

In order to protect against previously unknown vulnerabilities in the chosen
hash method, we can choose an n-th power of a secure hash, i.e. calculate h(S0) =
φn(S0) where φ is a NIST recommended standard hash function.

The owner uses the size M of the noise space in order to control the difficulty
of the recovery operations. For this, she needs to have some reasonable estimate
on the timing of the chosen hash function on a single-core processor together with
a reasonable assumption on the number of cores that the escrow service or a bad
employee of the escrow service might use. If she thinks that a reasonable number
for the throughput of hash operations is T , then she obtains the maximum time
D for recovery by the escrow using its own resources as

D = M/T

On average, an adversarial escrow service will use half that time to recover the
noised share S0 as the offset f of S0 in the noise space was chosen randomly.

We need to be more carefull when we are using a private or public key created
with one of the standard public key algorithms such as RSA, since the bits in such
a key are highly redundant. It is known that an RSA key can be reconstructed
from half of the bits [BM03, EJMDW05]. In case that we have a key that is
not generated as a random bit string, we encrypt the key using a symmetric
encryption method such as AES with a random key and then subject the latter
key to our scheme. In this case, the usage information contains a description of
the algorithm and the encryption of the original key.

RE through a Noised Secret over a Large Cloud 49

3.2 Server Side Decryption

To recover a key, the escrow server has a share S1, a size M of the noise space,
and lower limit l of the noise space, and the hint H(S), which contains the hash
h(S0) of the noised share. The escrow server recovers the information using a
brute-force attack, in which all elements of the noise space l, l+1, . . ., l+M − 1
are generated, their hash calculated, and compared with h(S0). With exceedingly
high probability, there is only one share that has this hash value, namely the
noised share S0. The secret S = S0 ⊕ S1 is returned.

The noise space is dimensioned so large that the server does not possibly have
the means to perform this search with its own resources with any reasonable hope
for success. It therefore needs to use a widely distributed computing service – a
cloud service – in order to arme the recovery attempt. Brute force attacks are of
course what is called “embarrassingly parallel” and can be easily partitioned into
any number of sub-tasks that do not need to communicate amongst each other. If
the server has Quality-of-Service (QoS) guarantees from the cloud provider, the
easiest scheme is static partitioning, which we discuss first below. Otherwise, the
server might use the principles of Scalable Distributed Data Structures (SDDS)
[LNS96], (scalable partitioning), or a more involved interaction between a con-
troller andparticipatingworking nodes.Wedescribe a scalable partitioning scheme
and two enhancements to deal with variations among node capacities below.

There is a (very) small chance for hash collisions, where there is more than
one solution to hash(X) = hint(= hash(S0)). A brute force attack will in general
only returns the first solution found, which is not necessarily the true one. In
this case, the escrow service will return a false key to the user. We assume
that this becomes immediately obvious to the user who will complain to the
escrow service. The escrow service will then repeat the search in an exhaustive
manner, making sure to return all the possible solutions to hash(X) = hint. The
probability of a collision is for a good hash close to the number of possible hashes
divided by the size of the noise space. As good hashes have at least twenty bytes
or one hundred and sixty bits, and as reasonable noise spaces do not have more
than sixty bits, the chance for a hash collision is still in the order of 2−100 and
probably much higher. If we want to protect against this already vanishingly
small probability, we can do so at the costs of an additional hash. Since the
changes necessary to switch to an exhaustive search are quite obvious, we do not
consider this protection against the remote possibility of a hash collision in the
following.

Example. A client wants to encrypt an AES key of length 512 bits. She wants
D to be at least a month, i.e. 222 seconds. She wants to be able to recover a
key in minutes, leading her to set R = 29 seconds. Assume now that a node can
make 220 hash calculations per second. These numbers are reasonable in 2012
for a 2 GHz core processor, if we use SHA-256 as the hash. This gives us a noise
space of 220+22 or 242 elements. Since the AES key is treated as an unsigned
integer between 0 and 2512, there is plenty of choice for the offset to an interval
I = [0, 242].

50 S. Jajodia, W. Litwin, and T. Schwarz

3.3 Decryption with Static Partitioning

If the server has guarantees for a minimum throughput of hash calculations at
each node, the server determines the number of nodes necessary from the quality
of service promise. If the maximal recovery time promised to the client is R, if
a node can calculate at least T hashes per time unit, if N nodes are used, and
if the size of the noise space is M then the ensemble can perform NT hashes
per time unit. To evaluate a total of M hashes, it needs therefore M/NT time
units, so that

M

NT
≥ R

The minimum number of nodes needed is simply M/(TR).
We can describe the algorithm using the popular map-reduce scheme. When

the escrow server requests a cloud service, it deals directly only with one node,
the coordinator. The coordinator calculates the number of worker nodes N . In
the map-phase, the coordinator requests the N worker nodes and assigns them
logical identification numbers 0, 1, . . ., N − 1. It also sends them the hint, the
lower bound l of the noise space and the size M of the noise space.

In the reduce-phase, node a calculates the hash of the elements l+a, l+a+N ,
l + a + 2N , . . . and compares them with the hash of share S0 contained in the
hint. If it has found an element of the noise space with that hash, we assume
that it has found S0 and it sends a message with S0 to the coordinator. If
it has exhausted the search space, it sends a “terminated” message. Once the
coordinator has received the result from one of the nodes, it will send a “stop”
message to all nodes. A nodes that receives this message simply obeys.

In the termination phase, the coordinator sends the found string to the escrow
server. This string is only one of the two shares, so the cloud itself has no
information about the key. The escrow server now combines the two shares to
obtain the key to return to the user.

Example Continued. Since R = 29 sec and D = 222 sec, N = 213 = 8192. If
we can rent a dedicated server core per hour at a cost of US$0.50 (November
2012), we would spend US$512.00 for an hour. If we can negotiate to pay for
only part of the hour, the costs could sink to US$60.00 for the maximum time
needed for recovery.

3.4 Recovery with Scalable Partitioning

Forscalable or dynamic partitioning, we use the principles of Scalable Distributed
Data Structures (SDDS) design to adjust the number of servers to the capabilities
of the nodes. We assume that a node can reliably assess the throughput it can
deliver for the time of the calculation. In order to distribute the work scalably
and dynamically, any algorithm needs to make decisions based on the capabilities
of only relatively few nodes. In this section, we present an algorithm where nodes
make a decision on a split only based on their state. In the next section, Section
3.5, we provide two enhancements that use capacity information on the new node.

RE through a Noised Secret over a Large Cloud 51

Our performance results (Section 4) show that they yield better performance
measured in terms of the ratio of total capacity over total load. A smaller ratio
means less nodes involved and hence less money paid to the cloud provider.

The scalable schemes go through the same phases as static partitioning. In
the initialization phase, the escrow server selects a single cloud node (with index
0). The map phase immediately follows. Starting with the original node, each
node compares its capacity with the task assigned to it and decides whether it
needs to split, that is, request a new node from the cloud and share its workload
with it. In the process of splits, each node acquires two parameters, its logical
identifier and its level, that we use for the workload distribution. In this basic
scheme, nodes only use local information in order to decide whether to split.

At the beginning of the mapping phase, Node 0 calculates its throughput
capability B0 given its current load. This throughput calculation is repeated at
each node used in the recovery procedure. The node has a number n of hashes to
calculate, a maximum time R to perform all of these calculations, and calculates
a rate τ of calculations. A node then calculates its load factor α = τn/R. If
α > 1, then the node is overloaded. If the initial node 0 has α ≤ 1, it is capable
of doing the whole calculation itself, which it does and then returns the result
to the escrow service. In the much more likely opposite case, Node 0 requests
a new node from the cloud service provider, which becomes Node 1. The noise
interval is divided into two equal halves and each half is assigned to one of the
two nodes. Both new nodes acquire a new level j = 1.

Each node calculates its load factor α. If the load factor is larger than one
(the node is overloaded), it splits. A split effectively divides the work assigned to
the node between that node and a new node. Thus, each split operation requests
a new node from the cloud server and incorporates it into the system. If node
i with level j has split, then the node increases its level to j + 1, and the new
node receives number i+ 2j and level j + 1.

We recall that the noise space starts with number l. The node with identity
number n and level j calculates the hashes l + x, where x ≡ n mod 2j and
0 ≤ x < M . LH* addressing [LNS96] guarantees that element in the noise space
is assigned to exactly one node.

As in the static scheme, a node that finds a solution and therefore with over-
whelming probability the noised share S0 sends its find to Node 0. This consti-
tutes the reduce phase. In the termination phase, Node 0 asks all other nodes to
stop. It does so by sending the stop message to all nodes that split from it, i.e.
to Nodes 1, 2, , 4, 8, Each node that receives the stop message, forwards its
to all nodes that have split from it. The number of messages that a node has to
send or forward is lmited by its level and therefore logarithmic in the number of
nodes.

Example. We assume a very small example with nodes of largely varying ca-
pacity. Node 0 receives a workload of 15000 hashes and estimates that it can
calculate 10000 hashes. Therefore, its workload factor α is 1.5 or 150%. It there-
fore splits. The new node has logical address 1 = 0 + 20 and both nodes have
level 1. Node 1 estimates that it can calculate 2000 hashes and has therefore a

52 S. Jajodia, W. Litwin, and T. Schwarz

load factor α = 3.75, while the load factor at Node 0 has been halved to .75.
Node 0 therefore stops splitting, but Node 1 will have do, claiming a new node
with logical address 3 = 1 + 21. Node 3 decides that it can handel 11000 hashes
and has therefore a load factor of 0.295, whereas Node 1 has a load factor of
1.875. Therefore, Node 1 splits once more, requesting a new Node with identity
number 5 = 1+22. Its load sinks to 1625 hashes and its new load factor is .8125.
If the new node 5 can handle 9000 hashes, then its load factor is 0.181, so that
there are no more splits.

We now have a total of four nodes. Node 0 has level 1, Node 1 has level 3,
Node 3 has level 2, and Node 5 has level 3. Assume that l = 1000000, so that
the noise space is [1000000, 1015000[. Node 0 calculates the hashes of all even
numbers, i.e. 1000000, 1000002, 10000004, . . ., 1014998, using an increment of
21, since it has level 1. Node 1 has level 3, therefore an increment of 8, and
calculates 1000001, 1000009, 1000017, Node 3 has level 2 and therefore an
increment of 4, so that it calculates 1000003, 1000007, Node 5 has level 3,
an increment of 8, and calculates 1000005, 1000013,

3.5 Scalable Partitioning with Limited Load Balancing

To scale well, scalable partitioning needs to minimize the interchange of infor-
mation between nodes. In real life instances, the load factor of the initial node
is several tens of orders of magnitude larger. For example, a scheme where the
coordinator polls potential nodes for their capacity in order to use an optimal
assignment is completely out of the question. In the current scalable partitioning
scheme, decision on splits are made based on information only at the level of a
single node. A good solution will have to balance the speed of making decisions
only at the local level with the overprovisioning caused by variations in the ca-
pacity of the nodes. In the previous example, the problems stem from Node 1,
which has only one fifth of the capacity of the initial load. If Node 0 and Node 3
would have been used at their full capacity, the incorporation of Node 5 would
have become superfluous.

Besides allowing limited communication between nodes, we also need to change
to a more flexible assignment of load. We now use a type of range partitioning
to assign loads. Now nodes calculate the hashes of a contiguous range of num-
bers [x0, x1[of numbers within the noise interval [l, l + M [. If node p with an
assignment of [x0, x1[splits, it decides on a cutoff point p1 and assigns itself the
workload [x0, p1[and to the new node the interval [p1, x1[. During the first phase
of the map-phase, p1 will be the midpoint �(x0+x1)/2�. Our enhancements have
the splitting node use the capacity of the new node when calculating p1.

We only investigate here two enhancements of the scheme where during a split
the new node sends the information about its capacity to the splitting node. Our
first strategy has the splitting node p detect if the capacity of the new node n
and its own capacity suffice to perform the work assigned currently to p. For
example, if node p has a capacity of 0.8 in order to do work 1.8, it has to split.
If the new node has capacity 1.2, the combined capacity of 2.0 is sufficient to
do the work. However, if we distribute the work equally, p will have work of 0.9

RE through a Noised Secret over a Large Cloud 53

assigned to it, and will have to split again, whereas Node n has spare capacity.
In the first improvement strategy, node p will get 0.8 work and n will get 1.0
work.

Our second, additional strategy has a node decide whether the load distribu-
tion is getting close to achieve its goal. If node p has a capacity cp and a currently
assigned workload of w < 3 · p, it will split, but assign to itself only the work that
is within its capacity. The new node is likely to have to split itself, but probably
(though not for sure) no more than once. Our full enhancement uses both strate-
gies, but can be obviously expanded by interchanging information between more
nodes. We have to leave the exploration of these issues to future work.

Example (Continued). If we use the full enhancement in the previous exam-
ple, then Node 0 communicates with Node 1 in order to obtain its capacity. Since
the combined capacity of both nodes is 12000 and the total load is 15000, the
first strategy is not employed. However, since the capacity of Node 0 is within
“striking distance” of the load, it assigns itself 10000 hashes (the numbers in
[1000000, 1010000[) and the remainder (the numbers in [1010000, 1015000[) to
Node 1. The load factor of Node 1 after this split is 5000/2000 = 2.5 and it still
has to split. Since the capacity of the new node, Node 3, is 11000, the combined
capacity of Nodes 1 and 3 is sufficient. Therefore, Node 1 splits its load at a
ratio of 2 : 11. It therefore assigns to itself the interval [1010000, 1010769[and to
Node 3 the interval [1010769, 1015000[. In this case, more extensive communica-
tion between Nodes 0, 1, and 3 could have let to a more balanced distribution,
but not employed less nodes. The total capacity of the three nodes is 23000, so
that we still overprovide. A more sophisticated scheme could have liberated Node
1, since its potential contribution is not only marginal, but also unnecessary.

4 Performance Analysis

Static partitioning always yields the best utilization of cloud nodes, but assumes
that the throughputs at all nodes are perfectly even and known at the beginning
of a run.

Scalable partitioning allows nodes to have different capacities, and detects
these capacities whenever a new node is added. If nodes have all the same ca-
pacities, then a node will be split and its load divided by two until the load is
less than 1 times the capacity of a node. If the total load is l times the node
capacity, then Node 0 is split �log2(l)�+1 times. This gives us the ratio of total
capacity over total load to be

2�log2(l)�+1/l

This functions oscillates between 1.0 and 2.0 as Figure 3 shows. The average
ratio is log(2) = 1.38629 and is the price we pay for scalability.

If the capacity of the nodes is not constant but instead is subject to a non-
constant probability distribution, then a different picture emerges. We assumed

54 S. Jajodia, W. Litwin, and T. Schwarz

0 10000 20000 30000 40000 50000 60000
0.0

0.5

1.0

1.5

2.0

2.5
Total Capacity � Total Load

Fig. 3. Ratio of total capacity over total load with identical capacity at each node

first that the capacity of the node is normally distributed around l times the node
capacitywith different standard deviation and simulated the ratio. The simulation
is accurate to three or four digital digits. The result of our simulation is given in
Figures 4 and 5, where the standard deviation is 10%, 25%, 33%, and 50%.

The simple enhancement (as discussed previously) determines if a splitting
node and the new node together have the capacity to perform the assigned task.
In this case, the task is split according to capacity. Otherwise, the task is split
evenly among the splitting and new node. In this case, at least one of them has
to split.

The enhancement (as also discussed previously) includes the simple enhance-
ment. If this is not the case, but if the assigned load is within three times its
capacity, then the splitting node assign to itself all the load it can handle and
passes the rest of the load to the new node. The assumption is that frequently,
the new node will only have to split once.

We first observe that the basic variant now performs more consistently than
without variation in the node capabilities. If the standard deviation is small, it
exhibits overprovisioning close to the expected rate. However, the ratio of to-
tal capacity over total load for the basic scalable partitioning scheme increases
with increased standard deviation. For 50% standard deviation, its ratio is con-
sistently higher than 2. (In our simulation, we used a minimum capacity of
1/100 so that the probability distribution is strictly speaking no longer nor-
mally distributed, which would allow for negative capacities. As the standard
deviation increases, the mean capacity therefore slightly increases as well.) With
increasing deviation, the oscillations become much less pronounced. The simple
enhancement shows visible improvements with all standard deviations, but for
10% standard deviation only in the dips of the curve. The full enhancement

RE through a Noised Secret over a Large Cloud 55

�
�

�

�
�

�

�
�

�

�

�
�

�

�
�

�

�

�
�

�

Fig. 4. Ratio of total capacity over total load depending on the load given in terms of
expected node capability, using scalable partitioning without variation,scalable parti-
tioning with normally distributed node capacity with standard deviations of 10% and
25% and with two of our extensions

56 S. Jajodia, W. Litwin, and T. Schwarz

�
�

�

�
�

�

�
�

�

�

�
�

�

�
�

�

�

�
�

�

� 	 � � �
 � � � � � � � � � � �
 � � � �
 	 � � �

 � � �
 � � � �

Fig. 5. Ratio of total capacity over total load depending on the load given in terms of
expected node capability, using scalable partitioning without variation, scalable parti-
tioning with normally distributed node capacity with standard deviations of 33% and
50% and with two of our extensions

RE through a Noised Secret over a Large Cloud 57

Table 1. Average values of total capacity over total load ratios

Standard Deviation Average Total Capacity over Total Load

Base with Variance

10% 1.438
25% 1.542
33% 1.641
50% 2.086

Weibull 50% 1.856
Gamma 50% 2.170

Simple Extension

10% 1.382
25% 1.393
33% 1.409
50% 1.458

Weibull 50% 1.478
Gamma 50% 1.598

Extension

10% 1.219
25% 1.266
33% 1.289
50% 1.339

Weibull 50% 1.357
Gamma 50% 1.465

shows continuous improvements over the base and the simple enhancement. We
notice however that the average increases slightly as is shown in Table 1.

When we simulated a scenario where the capacity of the nodes follows a dif-
ferent distribution, namely a gamma distribution with mean 1.0 and standard
deviation of 50% and a Weibull distribution with the same mean and distribu-
tion, we found that the average ratio of total capacity over load was close to being
constant, not depending on the total load. As was to be expected, the distribu-
tion is a major factor in the ratio. However, the benefits of the two extensions
considered were equally obvious, though in the case of the Weibull distribution
to a slightly lesser degree.

We show the effects of varying the standard deviation in Figures 6 and 7,
which shows that the use of local capacity information when distributing small
remaining load among few nodes is beneficial. The enhancements to the protocol
do better in the case of the gamma distribution, since the gamma distribution
(a convolution of the exponential distribution) has more small capacity nodes.
We should note that our choice of probability distributions serve just as a stand-
in for the unknown distribution. Much more research and measurements are
necessary in this area.

The basic idea of exchanging information in the final phase of mapping does
not violate the principles of scalability. In these scenarios, a node in the mapping
phase enters a final assignment state whenever its assigned load is within c times
its capacity, where c is a relatively small number. In this state, the node recruits

58 S. Jajodia, W. Litwin, and T. Schwarz

�� �
�� �

Fig. 6. Ratio of total capacity over total load in dependence on the standard deviation

�� �
�� �

Fig. 7. Ratio of total capacity over total load in dependence on the standard deviation

new nodes one by one until there are enough nodes left to deal with the workload.
In the worst case, this method leaves the last recruited node with only a marginal
workload. In expectation, the number of nodes recruited would be between c and
c + 1, so that we can estimate a reasonable upper bound on the load factor to
be 1 + 1/c.

RE through a Noised Secret over a Large Cloud 59

5 Multiple Noises

In our scheme, the worst-time recovery at the esrow service is R, but the best
possible time is negligible, since the very first hash calculated might yield the
noised share. Some users averse to gambling might find this prospect discom-
forting. For this group, we present now a solution that gives guarantees against
obtaining the backup of the key too quickly.

The chance to obtain the noised share within time ρR (where R is the maxi-
mum time) is equal to ρ. It is well known, that the last of n uniformly distributed
tasks has a much smaller spread. In our case, this leads to multiple noising.
There, we require the escrow service to use brute force in the cloud to invert n
hashes.

Fig. 8. Selection of noised part of key for multiple noises

Assume that we want a maximum of 2k hashes to be calculated, that the
key length is m > k, and that we want to invert n hashes. We recall that our
scheme splits the key S into two different shares S0 and S1 of the same length
and that share S0 is being noised. We select k among the m bit positions in
the key. Figure 8 shows a selection of k contiguous bits. The share S0 is the
concatenation of the selected bits and the m − k remaining bits. We write this
concatenation as S0 = I �R, where I is made up of the k selected bits and R of
the remaining bits. We now use classical secret sharing writing I = I1⊕I2⊕. . . In,
where the I-shares I1, I2, . . . In are random bit strings. We calculate the hashes
Hν = h(Iν �R) as the core part of n hints. (The remainder of the hints contains
information about the hash selected and the length k of I and m− k of R.)

For server side decryption, the escrow service uses a cloud to solve in parallel

h(X �R) = Hν ν ∈ {1, 2, . . . , n}

After it has found all solutions J1, J2, . . . Jn, the share S0 is calculated as

S0 = (J1 ⊕ J2 ⊕ . . .⊕ Jn)) �R

This calculation terminates after the last of the n equations has been solved.
The expected time to recover the key is the expected time to recover the

last of the n shares J1, J2, . . . Jn. We normalize the maximum recovery time
to 1. Let the random variable Xi represent the time to recover share Ji. The

60 S. Jajodia, W. Litwin, and T. Schwarz

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

n�1 n�2
n�5

n�10

n�20

Fig. 9. Probability density for the maximum of m uniformly distributed random vari-
ables in [0, 1]

Table 2. Three and six nines guarantees that the last of n hashes is inverted in no less
than p

n p (three nines) p (six nines) Expected Value

1 0.001 10−6 0.500
3 0.100 0.010 0.750
5 0.252 0.063 0.833
10 0.501 0.251 0.909
20 0.708 0.501 0.952

random variables are identically and independently distributed. The cumulative
distribution function for the time to recover the last of the n shares of S0 is then

F (x) = Prob(max(Xi) < x) = Prob(X1
n < x) = xn

The probability density function of recovering all n shares is thus given by ntn−1

(Figure 9). Consequentially, the probability of key recovery in an exceedingly
short time is made very low. The mean time to recovery is then n/(n+ 1.

We can also give minimum time guarantee at a certain assurance level a such
as a = 0.999 (three nines) or a = 0.999999 (six nines. This is defined to be the
time value x0 such that Prob(max(Xi) < x0) = a, i.e. that with probability (at
least) a, the recovery takes more than x0 times the maximum recovery time.
Table 2 gives us the guarantees. For example, if we choose a safety of six nines,
then we know at this level of assurance that the last of 20 shares will be recovered
in less than 0.501 or 50% of the maximum recovery time.

RE through a Noised Secret over a Large Cloud 61

6 Security

The security of our scheme is measured by the inability of an attacker to recover
a key entrusted to the escrow service. An attacker outside of the escrow service
needs to obtain both shares S1 and S0 of the key. This is only possible by
breaking into the escrow server and becoming effectively an insider. We can
therefore restricts ourselves to an attacker who is an insider. In this case, we
have to assume that the attacker can break through internal defenses and obtain
S1 and the hint h(S0) of the noised secret. The insider then has to invert the
hash function in order to obtain S0.

We can systematically list the possibilities:
It is possible that there is no need to invert the hash function. As already

mentioned in Section 3.1, RSA keys can be reconstructed from about half of the
bits [BM03, EJMDW05]. If the scheme would be applied to keys that cannot be
assumed to be random bits, then the specification of the noise space could be
sufficient to generate a single or a moderate number of candidate keys just from
the knowledge of the noise space. The insider attacker can then easily recover
S0 and therefore the key.

The inversion of the hash in the noise space could be much simpler than as-
sumed. Cryptography is full of examples of more and more powerful attacks, as
the history of MD5 and WEP show. In addition, the computational power of
a single machine has increased exponentially at a high rate since the beginning
of computing. The introduction of more powerful Graphical Processing Units
(GPU) [OHL+08, KO12], has lead to a one-time jump in the capabilities of rel-
atively cheap servers. It is certainly feasible that GPU computing can enter the
world of for-hire cloud computing. Even if this is not the case, then competition,
better energy use, and server development should lower the costs of computa-
tion steadily. This is a real problem for our scheme, but shares it with much
of cryptographical methods. Just as for example key length has to be steadily
increased, so the size of our noise spaces needs to be increased in order to main-
tain the same degree of security. Only, our system has to be more finely tuned
as we cannot err on the side of exaggerated security. A developer worried about
computational attack on a certain cryptographical scheme can always double the
key size “just to be sure” and the product will only show a slight deterioration
in response time due to the more involved cryptographical calculations. In our
scheme, this is not an option. On the positive side, there is no new jump in
sight that would increase single machine capability as the introduction of GPU
computing did, and this one came with ample warning. Second, the times of the
validity of Moore’s law seem to be over, as single CPU performance cannot be
further increased without incurring an intolerable energy use. The new form of
Moore’s law will be a steady decline in the decrease of the costs of single CPU
computation. Overall, the managerial challenges of decreasing computation costs
seem to be quite solvable.

Finally, the insider attacker could use the recovery scheme itself, availing her-
self of anonimity servers and untraceable credit cards, as are sold in many coun-
tries for use as gifts. This is a known problem for law enforcement as spammers

62 S. Jajodia, W. Litwin, and T. Schwarz

can easily use the untraceability of credit cards in order to set up fraudulent
websites. However, any commercial service that accepts this type of untraceable
credit card opens itself up to charges of aiding and abetting and at least of gross
negligence. When we are assessing these type of dangers, we need to be realis-
tic. Technology such as cryptography only defines quasi-absolute security, but
assuming a certain social ambience. If I want to read my boss’s letters, I have
certainly the technical tools to open an envelope (apparently hot water steam
is sufficient), read the letter, and use a simple adhesive to close the letter. But
even if I were inclined to do so, the social risk is inacceptable. In our case, an
insider or an outside attacker that has penetrated the escrow service would have
to undertake an additional step with a high likelihood of leaving traces. People
concerned with security in organizations at high and continued risk know that
adversaries usually resort to out-of-band methods. West-German ministries in
the eighties were leaking secret information like sieves not because of technical
faults but because of Romeo-attacks, specially trained STASI agents seducing
well-placed secretaries.

7 Conclusions

We have introduced a new password recovery scheme based on an escrow service.
Unlike other escrow based schemes, in our scheme the user knows that the escrow
server will not peek at the data entrusted to it, as it would cost too much. Our
scheme is based on a novel idea of using the scalable and affordable power of
cloud computing as a back door for cryptography. Recoverable encryption could
even be considered a new form of cryptography.

The relatively new paradigm of cloud computing still has to solve questions
such as reliable quality of service guarantees and protection against node failures.
In our setting, ignoring the issue is a reasonable strategy, since the only node that
matters (ex post facto) is the one that will find the noised share. The expected
behavior of recovery is hence the one of that single server and the quality of
service of that single server is the one experienced by the end-user. However, our
discussion on how to distribute an embarrassingly parallel workload in a cloud
with nodes of varying capacity should apply to other problems. In this case,
scalable fault-resilience does become an interesting issue. For instance, cloud
virtual machines can suffer capacity fluctuations because of collocated virtual
machines. We plan to investigate these issues in future work.

References

[AAB+97] Abelson, H., Anderson, R., Bellovin, S.M., Benaloh, J., Blaze, M., Diffie,
W., Gilmore, J., Neumann, P.G., Rivest, R.L., Schiller, J.I., Schneier, B.:
The risks of key recovery, key escrow, and trusted third-party encryption.
World Wide Web Journal 2(3), 241–257 (1997)

[AHR+05] Andrews, R.F., Huang, Z., Ruan, T.Q.X., et al.: Method and system of
securely escrowing private keys in a public key infrastructure. US Patent
6,931,133 (August 2005)

RE through a Noised Secret over a Large Cloud 63

[AMK+01] Ando, H., Morita, I., Kuroda, Y., Torii, N., Yamazaki, M., Miyauchi,
H., Sako, K., Domyo, S., Tsuchiya, H., Kanno, S., et al.: Key recovery
system. US Patent 6,185,308 (February 6, 2001)

[AMR+11] Abiteboul, S., Manolescu, I., Rigaux, P., Rousset, M.C., Senellart, P.:
Web data management. Cambridge University Press (2011)

[BG97] Bellare, M., Goldwasser, S.: Verifiable partial key escrow. In: Proceedings
of the 4th ACM Conference on Computer and Communications Security,
pp. 78–91. ACM (1997)

[Bla11] Blaze, M.: Key escrow from a safe distance: looking back at the clipper
chip. In: Proceedings of the 27th Annual Computer Security Applications
Conference, pp. 317–321. ACM (2011)

[BM03] Blömer, J., May, A.: New partial key exposure attacks on RSA. In: Boneh,
D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 27–43. Springer, Heidelberg
(2003)

[CG02] Chandersekaran, S., Gupta, S.: Framework-based cryptographic key re-
covery system. US Patent 6,335,972 (January 1, 2002)

[Cha11] Chandrasekhar, S.: Construction of Efficient Authentication Schemes Us-
ing Trapdoor Hash Functions. PhD thesis, University of Kentucky (2011)

[CMMV05] Chandersekaran, S., Malik, S., Muresan, M., Vasudevan, N.: Apparatus,
method, and computer program product for achieving interoperability
between cryptographic key recovery enabled and unaware systems. US
Patent 6,877,092 (April 5, 2005)

[CS11] Chatterjee, S., Sarkar, P.: Avoiding key escrow. In: Identity-Based En-
cryption, pp. 155–161. Springer (2011)

[DB96] Denning, D.E., Branstad, D.K.: A taxonomy for key escrow encryption
systems. Communications of the ACM 39(3), 35 (1996)

[DB97] Denning, D.E., Branstad, D.K.: A taxonomy for key escrow encryption
systems (1997),
faculty.nps.edu/dedennin/publications/TaxonomyKeyRecovery.htm

[DBJ96] Denning, D.E., Baugh Jr., W.E.: Key escrow encryption policies and
technologies. Villanova Law Review 41, 289 (1996)

[DN93] Dwork, C., Naor, M.: Pricing via processing or combatting junk mail.
In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147.
Springer, Heidelberg (1993)

[DP12] D’Souza, R.P., Pandey, O.: Cloud key escrow system. US Patent
20,120,321,086 (December 20, 2012)

[EJMDW05] Ernst, M., Jochemsz, E., May, A., de Weger, B.: Partial key exposure
attacks on RSA up to full size exponents. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 371–386. Springer, Heidelberg (2005)

[FZZ12] Fan, Q., Zhang, M., Zhang, Y.: Key escrow attack risk and preventive
measures. Research Journal of Applied Sciences 4 (2012)

[GKM+97] Gennaro, R., Karger, P., Matyas, S., Peyravian, M., Roginsky, A., Safford,
D., Willett, M., Zunic, N.: Two-phase cryptographic key recovery system.
Computers & Security 16(6), 481–506 (1997)

[Gup00] Gupta, S.: A common key recovery block format: Promoting interoper-
ability between dissimilar key recovery mechanisms. Computers & Secu-
rity 19(1), 41–47 (2000)

[JKKJ+00] Johnson, D.B., Karger, P.A., Kaufman Jr., C.W., Matyas Jr., S.M., Saf-
ford, D.R., Yung, M.M., Zunic, N.: Interoperable cryptographic key recov-
ery system with verification by comparison. US Patent 6,052,469 (April
18, 2000)

faculty.nps.edu/dedennin/publications/TaxonomyKeyRecovery.htm

64 S. Jajodia, W. Litwin, and T. Schwarz

[JLS10] Jajodia, S., Litwin, W., Schwarz, T.: LH*RE: A scalable distributed data
structure with recoverable encryption. In: CLOUD 2010: Proceedings of
the 2010 IEEE 3rd International Conference on Cloud Computing, pp.
354–361. IEEE Computer Society, Washington, DC (2010)

[KO12] Komura, Y., Okabe, Y.: Gpu-based single-cluster algorithm for the sim-
ulation of the ising model. Journal of Computational Physics 231(4),
1209–1215 (2012)

[KRS+12] Kuppusamy, L., Rangasamy, J., Stebila, D., Boyd, C., Nieto, J.G.: Prac-
tical client puzzles in the standard model. In: Proceedings of the 7th
ACM Symposium on Information, Computer and Communications Secu-
rity, ASIACCS 2012. ACM, New York (2012)

[LJS11] Litwin, W., Jajodia, S., Schwarz, T.: Privacy of data outsourced to a cloud
for selected readers through client-side encryption. In: WPES 2011: Pro-
ceedings of the 10th Annual ACM Workshop on Privacy in the Electronic
Society, pp. 171–176. ACM, New York (2011)

[LNS96] Litwin, W., Neimat, M.A., Schneider, D.A.: Lh* – a scalable, distributed
data structure. ACM Transactions on Database Systems (TODS) 21(4),
480–525 (1996)

[MA96] McConnell, B.W., Appel, E.J.: Enabling privacy, commerce, security and
public safety in the global information infrastructure. Office of Manage-
ment and Budget, Interagency Working Group on Cryptography Policy,
Washington, DC (1996)

[MLFR02] Miller, E.L., Long, D.D.E., Freeman, W.E., Reed, B.C.: Strong security
for network-attached storage. In: Proceedings of the 1st USENIX Confer-
ence on File and Storage Technologies, p. 1. USENIX Association (2002)

[OHL+08] Owens, J.D., Houston, M., Luebke, D., Green, S., Stone, J.E., Phillips,
J.C.: Gpu computing. Proceedings of the IEEE 96(5), 879–899 (2008)

[RSW96] Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-
release crypto. Technical report, Massachusetts Institute of Technology,
Cambridge, MA, USA (1996)

[Sha79] Shamir, A.: How to share a secret. Communications of the ACM 22(11),
612–613 (1979)

[Sin95] Singhal, A.: The piracy of privacy-a fourth amendment analysis of key
escrow cryptography. Stanford Law and Policy Review 7, 189 (1995)

[SL10] Schwarz, T., Long, D.D.E.: Clasas: a key-store for the cloud. In: 2010
IEEE International Symposium on Modeling, Analysis & Simulation of
Computer and Telecommunication Systems (MASCOTS), pp. 267–276.
IEEE (2010)

[VvT97] Verheul, E.R., van Tilborg, H.C.A.: Binding ElGamal: A fraud-detectable
alternative to key-escrow proposals. In: Fumy, W. (ed.) EUROCRYPT
1997. LNCS, vol. 1233, pp. 119–133. Springer, Heidelberg (1997)

Conservative Type Extensions for XML Data

Jacques Chabin1, Mirian Halfeld Ferrari1,
Martin A. Musicante2, and Pierre Réty1

1 Université d’Orléans, LIFO, Orléans, France
2 Universidade Federal do Rio Grande do Norte, DIMAp Natal, Brazil

Abstract. We introduce a method for building a minimal XML type
(belonging to standard class of regular tree grammars) as an extension of
other given types. Not only do we propose an easy-to-handle XML type
evolution method, but we prove that this method computes the smallest
extension of a given tree grammar, respecting pre-established constraints.
We also adapt our technique to an interactive context, where an advised
user is guided to build a new XML type from existing ones. A basic
prototype of our tool is implemented.

1 Introduction

We deal with the problem of exchanging valid XML data in a multi-system
environment. We assume that I1, . . . , In are local systems that inter-operate
with a global system I which should be capable of receiving information from
any local system. Local systems I1, . . . , In deal with sets of XML documents
X1, . . . , Xn, respectively. Each set Xi conforms to schema constraints Di and
follows an ontology Oi. We want to associate I to a schema for which documents
from any local system are valid, and, in this way, we consider that this new
schema D is an evolution for all local systems.

Every real application goes through type evolution, and, thus, in general, our
approach is useful whenever one wants not only to generate XML types from
given ones but also to preserve the possibility of processing previous versions of
software systems. In other words, we focus on a conservative type evolution, i.e.,
in allowing some backward-compatibility on the types of data processed by new
versions, in order to ensure that old clients can still be served. In a multi-system
environment, this means to keep a service capable of processing information from
any local source, without abolishing type verification.

In the XML world, it is well known that type (or schema) definitions and
regular tree grammars are similar notions and that some schema definition lan-
guages can be represented by using specific classes of regular tree grammars.
As mentioned in [Mani and Lee, 2002], the theory of regular tree grammars pro-
vides an excellent framework for understanding various aspects of XML type
languages. They have been actively used in many applications such as: XML
document processing (e.g. XQuery and XDuce)1 and XML document validation

1 http://www.w3.org/TR/xquery/ and http://xduce.sourceforge.net/

A. Hameurlain et al. (Eds.): TLDKS IX, LNCS 7980, pp. 65–94, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

66 J. Chabin et al.

algorithms (e.g. RELAX-NG2). They are also used for analysing the expressive
power of the different schema languages [Murata et al., 2005].

Regular tree grammars define sets of trees (in contrast to more traditional
string grammars, which generate sets of strings). The rules of general regular
tree grammars (or RTG) have the form X → a [R], where X in a non-terminal
symbol, a is a terminal symbol, and R is a regular expression over non-terminal
symbols. Local tree grammars (LTG) are regular tree grammars where rules for
the same terminal symbol have the same non-terminal on their left-hand side.
Single-type tree grammars (STTG) are regular tree grammars where distinct
non-terminal symbols which appear in a same regular expression of the gram-
mar, always generate distinct terminal symbols. Notice that the restriction for a
grammar to be an LTG is stronger than the restriction for STTGs. This means
that every LTG is also an STTG.

The interest of regular tree grammars in the context of XML progressing
is that each of the two main stream languages for typing XML documents,
i.e., DTD3 and XML Schema (XSD)4, correspond, respectively to LTG and
STTG [Murata et al., 2005].

Given an XML type and its corresponding tree grammar G, the set of XML
documents described by G corresponds to the language (set of trees) L(G) gen-
erated by the tree grammar. Then, given regular tree languages L1, L2, . . . Ln

we propose an algorithm for generating a new type that corresponds to a tree
language which contains the union of L1, L2, . . . Ln but which should be an
LTG or a STTG. Notice that even if the grammars G1, . . . , Gn that generate
L1, . . . , Ln are LTGs (resp. STTGs), in general their union G = G1 ∪ · · · ∪Gn is
not an LTG (resp. not a STTG) [Murata et al., 2005]. This is because the union
of the sets of rules from these grammars may not respect the conditions imposed
by the definitions of LTGs and STTGs.

In this context, our proposal can be formally expressed as follows: We present
a method for extending a given regular tree grammar G into a new grammar G′

respecting the following property: the language generated by G′ is the smallest
set of unranked trees that contains the language generated byG and the grammar
G′ is a Local Tree Grammar (LTG) or a Single-Type Tree Grammar (STTG).

Thus, the contribution of this paper is twofold:

1. We introduce two algorithms to transform a given regular grammar G into a
new grammar G′ such that: (i) L(G) ⊆ L(G′); (ii) G′ is an LTG or a STTG;
and (iii) L(G′) is the smallest language that respects constraints (i) and (ii).
We offer formal proofs of some interesting properties of our methods.
2. We propose an interactive tool capable of guiding the user in the generation
of a new type.

Paper organization: Section 2 gives an overview of our contributions. Section 3
introduces notations, concepts and properties needed in the paper. In Section 4

2 http://relaxng.org/
3 http://www.w3.org/TR/REC-xml/
4 http://www.w3.org/XML/Schema

Conservative Type Extensions for XML Data 67

we consider the extension of a regular tree grammar to a local tree gram-
mar while in Section 5 we deal with its extension to a single-type tree gram-
mar. These proposals are revisited versions of the algorithms we have presented
in [Chabin et al., 2010]. In Section 6, we modify the first algorithm to get an
interactive tool for helping with the construction of XML types. In Section 7, we
discuss time complexity and show some experiment results. Section 8 discusses
some related work and Section 9 concludes the paper.

2 Overview

This section is an overview of our contributions. In our work, we consider the
existence of an ontology associated to each grammar. An ontology alignment
allows the implementation of translation functions that establish the correspon-
dence among different words with the same meaning. In the following examples,
we represent the tables (a kind of dictionary) over which the translation func-
tions are implemented. All information in these tables is obtained from a given
ontology alignment. A word without any entry in a table is associated to itself.

The first example illustrates the evolution of an XML type, expressed by a
tree grammar, when the resulting type should be a DTD (i.e., a LTG).

Example 1. Let G1 be a regular tree grammar, resulting from the union of other
regular tree grammars. We suppose that the data administrator needs a type
for which both organisations of research laboratory are valid. He has an addi-
tional constraint: the resulting grammar should be expressed via an LTG (whose
translation to a DTD is direct).

G1 Translation table
R1 → lab[T ∗

1] R2 → lab[Emp∗] researcher ↔ employee
T1 → team[Res∗] Emp → employee[IsIn] team ↔ group

Res → researcher[ε] IsIn → group[ε]

By translating the rules of G1 according to the translation table we verify that
the non-terminals Res and Emp generate the same terminal researcher, and
consequently are in competition, which is forbidden for local tree grammars
or DTDs (i.e., G1 is not an LTG). The same conclusion is obtained for non-
terminals T1 and IsIn which generate terminal team. Non-terminals R1 and R2

are also competing ones. Our goal is to transform the new G1 into an LTG,
and this transformation will result in a grammar that generates a language L
such that L(G1) ⊆ L. In this context, we propose an algorithm that extends
G1 into a new local tree grammar GA. The solution proposed is very simple.
Firstly, rules concerning non-terminals Res and Emp are combined, given the
rule S → researcher[IsIn | ε]. Secondly, in regular expressions (of other rules),
Res and Emp should be replaced by S. Thus, we have T1 → team[S∗] and
R2 → lab[S∗]. All competing non-terminals are treated in the same way, giving
rise to grammar GA with rules: R → lab[T ∗ | S∗]; S → researcher[T | ε] and
T → team[S∗ | ε]. �

68 J. Chabin et al.

The result obtained in Example 1 respects the imposed constraints: the obtained
grammar is the least LTG (in the sense of language inclusion) and it generates
a language that contains the language L(G1). This algorithm is presented in
Section 4.

Next, we consider the situation where the resulting type is supposed to be
specified by a XSD (or a single-type tree grammar). The following example
illustrates an evolution in this context.

Example 2. Let us now consider G2, a regular tree grammar resulting from the
union of other regular tree grammars. We focus only on the rules concerning
publication types. The translation table summarizes the correspondence among
terminals. An ontology alignment associates article and paper.

G2 Translation table
R3 → article[T itle.T itleJournal.Y ear.V ol] article ↔ paper

R4 → paper[T itle.T itleConf.Y ear]
R5 → publication[(R3 | R4)

∗]

We propose an algorithm that extends G2 to a single type grammar GB, which
can then be translated into an XSD. Notice that the above rules of G2 vio-
late STTG constraints, since rule R5 contains a regular expression with com-
peting non-terminals. Indeed, rules R3 → article[T itle.T itleJournal.Y ear.V ol]
and R4 → paper[T itle.T itleConf.Y ear] have equivalent terminals, according to
the translation table. Thus, non-terminals R3 and R4 are competing ones. This
is not a problem for a STTG. However, both non-terminals appear in the regular
expression of rule R5 and this is forbidden for a STTG. In this case, our method
replaces the above rules by the following ones:

GB

R6 → paper[T itle.T itleJournal.Y ear.V ol | T itle.T itleConf.Y ear]
R7 → publication[R∗

6]
�

To get an LTG, competing non-terminals should be merged, which is simple.
To get a STTG, the situation is more complicate: only competing non-terminals
that appear in the same regular expression should be merged. Consequently, if
R1, R2, R3 are competing, but R1, R2 appear in the regular expression E whereas
R1, R3 appear in E′, then R1 should be merged with R2 (and not with R3) within
E, whereas R1 should be merged with R3 (and not with R2) within E′. To do
it in the general case, we introduce an equivalence relation over non-terminals,
and consider equivalence classes as being the non-terminals of the new grammar.
The algorithm is given in Section 5.

Now, suppose that the administrator wants to build a new type based on the
types he knows, i.e., by merging, in a flexible way, different types, e.g. G3 and
G4. We propose a tool to guide him in this construction by considering one rule
(of G3 and G4) at a time. The new type is built with the help of a dependency
graph D = (V,E). The set of nodes V contains the terminals of both grammars:
the set of arcs E represents the notion of dependency among terminals in these

Conservative Type Extensions for XML Data 69

grammars. The pair (a, b) of terminals is in E iff a production rule generating a
contains a non-terminal which is associated to the terminal b. We just consider
grammars where the dependency graph has no cycles. The following example
illustrates this contribution.

Example 3. Let us consider the two grammars below. We concentrate in the rule
concerning researchers.

G3 G4

R1 → researcher[IdR.Name.Pub] R2 → researcher[Name.T eam.Ref]

Figure 1 shows the dependency graph for these rules. We consider that non-
terminals IdR, Name, Pub, Name, Team, Ref are the left-hand side of rules
whose right-hand side contain terminals idR, name, publications, team and ref-
erences, respectively. Arcs are coloured according to the grammar they come
from: red (filled arrow) to indicate they come from both grammars, blue (dashed
arrow) only from G3 and green (dotted arrow) only from G4.

references

researcherteam publications

name
idR

Fig. 1. Dependency graph for grammars G3 and G4

Our interactive tool proposes to follow this graph in a topological order: start
with nodes with no output arcs, process them, delete them from the graph
together with their input arcs, and so on. Processing a node here means writing
its production rule. For each competing terminal, the user can propose a regular
expression to define it. This regular expression is built only with non-terminals
appearing as left-hand side of production rules already defined.

For instance, in our case, our interactive tool starts by proposing rules for
each A ∈ {IdR,Name, Pub, T eam, Ref} (here, we consider that all these non-
terminals are associated to rules of the formatA→ a[ε]). Then, the administrator
can define the local type R, for researchers by using any of the above non-
terminals. Suppose that the chosen rule is: R→ researcher[(Name.T eam.Pub)].

After this choice (and since in our example, no other type definition is ex-
pected), all rules defining useless types are discarded (i.e., rules for IdR and Ref
are discarded). Thus, we obtain a new grammar GB , built by the administrator,
guided by our application. More details of this tool are presented in Section 6.

Finally, if our administrator needs to accept documents of types G3 or G4 or
GB, he may use the first algorithm to define: R→ researcher [(IdR.Name.Pub) |
(Name.Team.Ref) | (Name.Team .Pub)]. �

70 J. Chabin et al.

The previous examples illustrate that our contribution is twofold. On the one
hand, to propose algorithms that automatically compute a minimal type exten-
sion of given types. On the other hand to apply these algorithms as guides to
allow the interactive definition of new types.

3 Theoretical Background

It is a well known fact that type definitions for XML and regular tree grammars
are similar notions and that some schema definition languages can be repre-
sented by using specific classes of regular tree grammars. Thus, DTD and XML
Schema, correspond, respectively, to Local Tree Grammars and Single-Type Tree
Grammars [Murata et al., 2005]. Given an XML type T and its corresponding
tree grammar G, the set of XML documents described by the type T corresponds
to the language (set of trees) generated by G.

An XML document is an unranked tree, defined in the usual way as a mapping
t from a set of positions (nonempty and closed under prefixes) Pos(t) to an
alphabet Σ. For v ∈ Pos(t), t(v) is the label of t at the position v, and t|v
denotes the subtree of t at position v. Positions are sequences of integers in IN∗

and the set Pos(t) satisfies: j ≥ 0, u.j ∈ Pos(t), 0 ≤ i ≤ j ⇒ u.i ∈ Pos(t),
where the “.” denotes the concatenation of sequences of integers. As usual, ε
denotes the empty sequence of integers, i.e. the root position. The following
figure shows a tree whose alphabet is the set of element names appearing in an
XML document. In this case we have t(ε) = directory, t(0) = student and so on.

Given a tree t we denote by t|p the
subtree whose root is at position p ∈
Pos(t),i.e., Pos(t|p) = {s | p.s ∈
Pos(t)} and for each s ∈ Pos(t|p) we
have t|p(s) = t(p.s).

ε

1.11.00.10.0 1.2

10

name

student

namenumber address phone

professor

directory

For instance, in the figure t|0 = {(ε, student), (0, name), (1, number)}, or equiv-
alently, t|0 = student(name, number).

Given a tree t such that the position p ∈ Pos(t) and a tree t′, we note t[p← t′]
as the tree that results of substituting the subtree of t at position p by t′.

Definition 1 (Sub-tree, Forest). Let L be a set of trees. ST (L) is the set of
sub-trees of elements of L, i.e. ST (L) = {t | ∃u ∈ L, ∃p ∈ Pos(u), t = u|p}. A
forest is a (possibly empty) tuple of trees. For a ∈ Σ and a forest w = 〈t1, . . . , tn〉,
a(w) is the tree defined by a(w) = a(t1, . . . , tn). On the other hand, w(ε) is
defined by w(ε) = 〈t1(ε), . . . , tn(ε)〉, i.e., the tuple of the top symbols of w. �

Definition 2 (Regular Tree Grammar, Derivation). A regular tree gram-
mar (RTG) is a 4-tuple G = (N, T, S, P), where: N is a finite set of non-terminal
symbols ; T is a finite set of terminal symbols ; S is a set of start symbols, where
S ⊆ N and P is a finite set of production rules of the form X → a [R], where
X ∈ N , a ∈ T , and R is a regular expression over N (We say that, for a pro-
duction rule, X is the left-hand side, a [R] is the right-hand side, and R is the
content model).

Conservative Type Extensions for XML Data 71

For an RTG G = (N, T, S, P), we say that a tree t built on N ∪ T derives (in
one step) into t′ iff (i) there exists a position p of t such that t|p = A ∈ N and a
production rule A→ a [R] in P , and (ii) t′ = t[p← a(w)] where w ∈ L(R) (L(R)
is the set of words of non-terminals generated by R). We write t→[p,A→a [R]] t

′.
More generally, a derivation (in several steps) is a (possibly empty) sequence of
one-step derivations. We write t→∗

G t′.

The language L(G) generated by G is the set of trees containing only terminal
symbols, defined by : L(G) = {t | ∃A ∈ S, A→∗

G t}. �

Remark. As usual, in this paper, our algorithms start from grammars in reduced
form and (as in [Mani and Lee, 2002]) in normal form. A regular tree grammar
(RTG) is said to be in reduced form if (i) every non-terminal is reachable from
a start symbol, and (ii) every non-terminal generates at least one tree containing
only terminal symbols. A regular tree grammar (RTG) is said to be in normal
form if distinct production rules have distinct left-hand-sides. �

To distinguish among sub-classes of regular tree grammars, we should understand
the notion of competing non-terminals. Moreover, we define an equivalence re-
lation on the non-terminals of grammar G, so that all competing non-terminals
are in the same equivalence class. In our schema evolution algorithms (Sections 4
and 5), these equivalence classes form the non-terminals of the new grammar.

Definition 3 (Competing Non-terminals). Let G = (N, T, S, P) be a reg-
ular tree grammar. Two non-terminals A and B are said to be competing with
each other if A �= B and G contains production rules of the form A→ a[E] and
B → a[E′] (i.e. A and B generate the same terminal symbol).

Define a grouping relation over competing non-terminals as follows. Let
‖ be the relation on N defined by: for all A,B ∈ N , A ‖ B iff A = B or A and
B are competing in P . For any χ ⊆ N , let ‖χ be the restriction of ‖ to the set
χ (‖χ is defined only for elements of χ). �

Lemma 1. Since G is in normal form, ‖ is an equivalence relation. Similarly,
‖χ is an equivalence relation for any χ ⊆ N . �

Definition 4 (Local Tree Grammar and Single-Type Tree Grammar).
A local tree grammar (LTG) is a regular tree grammar that does not have com-
peting non-terminals. A local tree language (LTL) is a language that can be
generated by at least one LTG. A single-type tree grammar (STTG) is a regular
tree grammar in normal form, where (i) for each production rule, non terminals
in its regular expression do not compete with each other, and (ii) starts sym-
bols do not compete with each other. A single-type tree language (STTL) is a
language that can be generated by at least one STTG. �

In [Murata et al., 2005] the expressive power of these classes of languages is
discussed. We recall that LTL ⊂ STTL ⊂ RTL (RTL for regular tree language).
Moreover, the LTL and STTL are closed under intersection but not under union;
while the RTL are closed under union, intersection and difference. Note that
converting an LTG into normal form produces an LTG as well.

72 J. Chabin et al.

4 Transforming an RTG into an LTG

Given a regular tree grammar G0 = (N0, T0, S0, P0), we propose a method to
compute a local tree grammar G that generates the least local tree language
containing L(G0).

In [Chabin et al., 2010], we have introduced a very intuitive version of our
algorithm: replace each pair of competing non-terminals by a new non-terminal,
until there are no more competing non-terminals.

In this section, we prefer to use the well-known formalism of equivalence
classes (Lemma 1), which makes the proofs simpler, and allows an uniform no-
tation w.r.t. to the algorithm in the next section. Competing non-terminals are
grouped together within an equivalence class, and the equivalence classes are the
non-terminals of the new grammar G.

Algorithm 1 (RTG into LTG Transformation)
Notation:
(i) For any A ∈ N0, Â denotes the equivalence class of A w.r.t. relation ‖, i.e.,
Â contains A and the non-terminals that are competing with A in P0.
(ii) For any regular expression R, R̂ is the regular expression obtained from R
by replacing each non-terminal A by Â.
(iii) As usual,N0/‖ denotes the quotient set, i.e. the set of the equivalence classes.

Let G0 = (N0, T0, S0, P0) be a regular tree grammar. We define a new regular
tree grammar G = (N, T, S, P), obtained from G0, as follows:

Let G = (N0/‖, T0, S, P) where:

– S = {Â | A ∈ S0},
– P = { {A1, . . . , An} → a [R̂] | {A1, . . . , An} ∈ N0/‖,

and A1 → a[R1], . . . , An → a[Rn] ∈ P0, and R = (R1| · · · |Rn). �

The following example illustrates our algorithm.

Example 4. Let us consider merging the rules for two different DTDs for cooking
recipes. Assuming that the vocabulary translations have already been done (on
the basis of an alignment ontology), we build the grammar G0 below. Each
A ∈ {Name, Number, Unit, Quantity, Step, Item} is associated to a production
rule having the format A→ a[ε], meaning that label a is attached to data.

Recipea → r [Ingreds.Recipe∗
a .Instrsa] Ingreds → is[OneIng∗

a]

OneInga → ing [Name.Unit .Quantity] Instrsa → ins[Step∗]

Recipeb → r [Required .OneIng∗
b .Instrsb] Required → req [Item∗]

OneIngb → ing [Name.Quantity .Unit] Instrsb → ins[(Number .Step)∗]

Clearly, non-terminals Recipea and Recipeb , OneInga and OneIngb , Instrsa and
Instrsb are competing. The equivalence classes for G0 are {Recipea , Recipeb},
{OneInga , OneIngb}, {Instrsa , Instrsb}, {Ingreds}, {Required}, {Number},

Conservative Type Extensions for XML Data 73

{Name}, {Unit}, {Quantity}, {Step}, {Item}. Each equivalence class is now seen
as a new non-terminal. Our algorithm combines rules of G0 whose left-hand non-
terminals (in N0) are in the same equivalence class. The obtained result is the
LTG G below. To shorten the notations, for each non-terminals like X,Ya, Yb we
write X instead of {X}, and Y instead of {Ya, Yb}. The missing rules are of the
form A→ a[ε].

Recipe → r [(Ingreds.Recipe∗ .Instrs)|(Required .OneIng∗ .Instrs])

Ingreds → is[OneIng∗]

OneIng → ing [(Name.Unit .Quantity)|(Name.Quantity .Unit)]

Instrs → ins[Step∗|(Number .Step)∗]

Required → req [Item∗]

�
One of the most important features of our algorithm is its simplicity. However,
one fundamental contribution of this paper is the proof that, with this very
simple method, we can compute the smallest extension of a given tree gram-
mar, respecting the constraints imposed on an LTG. This result is stated in the
following theorem.

Theorem 1. The grammar returned by Algorithm 1 generates the least LTL
that contains L(G0). �

The intuition behind the proof of Theorem 1 is as follows. Let G be the grammar
produced by our algorithm and let G′ be any LTG such that L(G0) ⊆ L(G′),
we have to prove that L(G0) ⊆ L(G) (soundness), and that L(G) ⊆ L(G′)
(minimality: L(G) is the least LTL containing L(G0)). Proving soundness is not
very difficult. Minimality comes from the following steps: (A) As production
rules of an LTG in normal form define a bijection between the sets of terminals
and non-terminals, there is only one rule in G of the form Â1 → a[R] producing
subtrees with root a. By the construction of our algorithm this rule should
correspond to rules Ai → a[Ri] in G0 with i ∈ {1, · · · , n}. All Ai are competing
in G0 and no other symbol in N0 is competing with a Ai so Â1 = · · · = Ân =
{A1, · · · , An}. And we have R = R̂1 | · · · | R̂n. (B) Consequently, we can prove
that if a(w) is a subtree of t ∈ L(G), then there is at least one tree in L(G0) with
a(w′) as a subtree, s.t. w′(ε) = w(ε) (i.e. forests w′ and w have the same tuple of
top-symbols). (C) w is a forest composed by subtrees of L(G), and by induction
hypothesis applied to each component of w (each component is a strict subtree
of a(w)), we know that w is also a forest composed by subtrees of L(G′). On
the other hand, since L(G0) ⊆ L(G′), a(w′) is a subtree of L(G′). (D) As G′ is
an LTG, and thanks to some properties of local languages, we can replace each
subtree of a(w′), rooted by the elements of w′(ε), by the corresponding subtree
of a(w) and thus, a(w) is a subtree of L(G′). (E) Finally, as this is valid for
every subtree, we have that L(G) ⊆ L(G′).

Appendix A presents the proof of Theorem 1.

74 J. Chabin et al.

5 Transforming an RTG into a STTG

Given a regular tree grammar G0 = (N0, T0, S0, P0), the following algorithm
computes a single-type tree grammar G that generates the least single-type tree
language containing L(G0). It is based on grouping competing non-terminals
into equivalence classes, in a way different from Algorithm 1. Here, we group
competing non-terminals A1, . . . , An together, only if they appear in the same
regular expression R of G0, and in this case the set {A1, . . . , An} is a non-
terminal of G. If A1, . . . , An do not appear in the same regular expression, we
have to consider subsets of {A1, . . . , An}. This is why Algorithm 2 (and proofs)
is more complicated than Algorithm 1.

Algorithm 2 (RTG into STTG Transformation)
Notation:
(i) For any regular expression R, N(R) denotes the set of non-terminals occur-
ring in R.
(ii) For any χ ⊆ N0 and any A ∈ χ, Âχ denotes the equivalence class of A w.r.t.
relation ‖χ, i.e. Âχ contains A and the non-terminals of χ that are competing
with A in P0.
(iii) σN(R) is the substitution defined over N(R) by ∀A ∈ N(R), σN(R)(A) =

ÂN(R). By extension, σN(R)(R) is the regular expression obtained from R by
replacing each non-terminal A in R by σN(R)(A).

Let G0 = (N0, T0, S0, P0) be a regular tree grammar. We define a new regular
tree grammar G = (N, T, S, P), obtained from G0, according to the following
steps:

1. Let G = (P(N0), T0, S, P) where:
– S = {ÂS0 | A ∈ S0},
– P = { {A1, . . . , An} → a [σN(R)(R)] |

A1 → a[R1], . . . , An → a[Rn] ∈ P0, R = (R1| · · · |Rn)},
where {A1, . . . , An} indicates all non-empty sets containing competing
non-terminals (not only the maximal ones).

2. Remove unreachable non-terminals and unreachable rules in G; return G. �

The difference between STTG and LTG versions (Section 4) is in the use of non-
maximal sets of competing non-terminals. In particular, Algorithm 2 considers
(step 1) each set of competing non-terminals as a left-hand side (and not only
maximal sets) to build the production rules of G. Thus, at step 1, G may create
unreachable rules (from the start symbols), which are then removed at step 2.
Algorithm 2 eases our proofs. An optimized version, where just the needed non-
terminals are generated, is given in [Chabin et al., 2010].

The following example illustrates that for an STTG only competing non-
terminals appearing in the same regular expression are combined to form a new
non-terminal.

Example 5. Let G0 be a non-STTG grammar having the following set P0 of
productions rules (School is the start symbol). It describes a French school with

Conservative Type Extensions for XML Data 75

students enrolled to an international English section (IntStudent) and normal
French students (Student). Different options are available for each student class.

School → school [IntStudent | Student]
Student → student [Name.Option3]

IntStudent → intstudent [Name.(Option1 | Option2)]

Option1 → option[EL.GL] Option2 → option[EL.SL]

Option3 → option[EL] Name → name[ε]

EL → english[ε] GL → german[ε]

SL → spanish[ε]

The grammar G obtained by our approach has the rules below where non ter-
minals are named by their equivalence class. Clearly, they can be denoted by
shorter notations.

{School} → school [{IntStudent} | {Student}]
{IntStudent} → intstudent [{Name}.{Option1 , Option2}]

{Student} → student [{Name}.{Option3}]
{Option1 ,Option2} → option[({EL}.{GL}) | ({EL}.{SL})]

{Option3} → option[{EL}]
{Name} → name[ε]

{EL} → english[ε]

{GL} → german[ε]

{SL} → spanish[ε]

Notice that although Option1, Option2 and Option3 are competing non-
terminals; our approach does not produce new non-terminals corresponding to
the combination of all of them. For instance, Option1 and Option2 are com-
bined in order to generate the non-terminal {Option1, Option2}, but we do not
need to produce a non-terminal {Option1, Option3} since Option1 and Option3
do not appear together in a regular expression. We also generate {Option3} as
non-terminal because Option3 is alone in the rule defining Student. �

The following example offers an interesting illustration of the extension of the
original language.

Example 6. Consider a non-STTG grammar G0 having the following set P0 of
productions rules (Image is the start symbol):

Image → image[Frame1 | Frame2 | Background .Foreground]
Frame1 → frame[Frame1 .Frame1 | ε]
Frame2 → frame[Frame2 .Frame2 .Frame2 | ε]

Background → back [Frame1]

Foreground → fore[Frame2]

76 J. Chabin et al.

Grammar G0 defines different ways of decomposing an image: recursively into
two or three frames or by describing the background and the foreground sepa-
rately. Moreover, the background (resp. the foreground) is described by binary
decompositions (resp. ternary decompositions). In other words, the language of
G0 contains the union of the trees: image(bin(frame)); image(ter(frame)) and
image (back (bin (frame)), fore (ter (frame))) where bin (resp. ter) denotes the
set of all binary (resp. ternary) trees that contains only the symbol frame. The
result is G, which contains the rules below (the start symbol is {Image}) :

{Image} → image[{Frame1 ,Frame2} | {Background}.{Foreground}]
{Background} → back [{Frame1}]
{Foreground} → fore[{Frame2}]

{Frame1 ,Frame2} → frame[ε | {Frame1 ,Frame2}.{Frame1 , Frame2}
| {Frame1 ,Frame2}.{Frame1 , Frame2}.{Frame1 , Frame2}]

{Frame1} → frame[{Frame1}.{Frame1} | ε]
{Frame2} → frame[{Frame2}.{Frame2}.{Frame2} | ε]

Grammar G is a STTG that generates the union of image(tree(frame)) and
image (back (bin (frame)), fore (ter (frame))) where tree denotes the set of all
trees that contain only the symbol frame and such that each node has 0 or 2
or 3 children. Let LG(X) be the language obtained by deriving in G the non-
terminal X . Actually, LG({Frame1, F rame2}) is the least STTL that contains
LG0(Frame1) ∪ LG0(Frame2). �

An important part of our work consist in proving the following theorem. We have
presented part of this proof in [Chabin et al., 2010], but the interested reader
can find its complete version in Appendix B.

Theorem 2. The grammar returned by Algorithm 2 generates the least STTL
that contains L(G0). �

From this result, we are able to ensure that our algorithm generates the least
STTL responding to our goals. This is an important result when dealing with
type we want to extend in a controlled way.

6 Interactive Generation of New Types

This section introduces an interactive tool which may help an advised user to
build an XML type based on existing ones. This tool is useful when an adminis-
trator decides to propose a new type which should co-exist with other (similar)
types for a certain time. For instance, the description of research laboratories
in a university may vary. Our administrator wants to organize information in a
more uniform way by proposing a new type, a schema evolution, based on the
existing types (since old types represent all information available and needed).
In this paper we outline the main ideas of our tool which can be used in different

Conservative Type Extensions for XML Data 77

contexts where slightly different XML types exist and should be catalogued. In-
deed, this kind of application needs the two parts of our proposal: to extend the
union of types to a standard XML schema language and to interactively allow
the construction of a new type. We illustrate the interactive function of our tool
(outlined in Section 1) in a more complete example.

Example 7 (Interactive approach). We consider the rules from two LTG after
translating terminals into a unified nomenclature, according to a translation
table. Each grammar shows a different organization of research laboratories. In
G1 laboratories are organized with researchers and teams. Publications are sub-
elements of researchers. Teams are composed by researchers, identified by their
identification numbers. All A ∈ {Dom, IdR, First, Last, TitleP, TitleConf, Year,
Vol} are associated to production rules having the format A→ a[ε].

Lab → lab[Dom.R∗.T eam∗] R → researcher[IdR.Name.P]
P → publications[CPaper∗.JPaper∗] Team → team[IdR∗]
CPaper → confPaper[T itleP.T itleConf.Y ear]
JPaper → jourPaper[T itleP.T itleJ.Y ear.V ol]
Name → name[First.Last]

Grammar G2 represents an organization where researchers and publications are
stored in an independent way, but where references are supposed to link infor-
mations. A team is just a sub-element of a researcher. All A ∈ { Dom, Name,
Code, TitleP, TitleConf, Year, Vol } are associated to production rules having
the format A→ a[ε].
Lab → lab[Dom.R∗.P] R → researcher[Name.T eam.Ref]
Ref → references[Code∗] P → publications[CPaper∗.JPaper∗]
ConfPaper → confPaper[Code.T itleP.T itleConf.Y ear]
JPaper → jourPaper[Code.T itleP.T itleJ.Y ear.V ol]

To guide the construction of a new grammar we use a dependency graph. Figure 2
shows the dependency graph for grammars G1 and G2.

dom team

name jourPaper

lab

titleP titleConflastfirst

confPaper

voltitleJidR

publicationsresearcher

references

code

year

Fig. 2. Dependency graph for grammars G1 and G2

As mentioned in Example 3, to aid an advised user in the construction of a
new XML type, we propose to follow this graph in a topological order and, for
each competing terminal, to ask the user a regular expression to define it. This
regular expression is built only by non-terminals already defined. From Figure 2

78 J. Chabin et al.

the user starts by considering terminals a ∈ {idR, name, team, titleP, titleConf,
titleJ, year, code, vol}. Let G3 be the grammar obtained by this interactive
method. Clearly, all terminals a are associated to data and thus the correspond-
ing grammar rules are of the format A → a[ε]. The following production rules
correspond to the user choices.

Lab → lab[Dom.R∗] R → researcher[Name.T eam.P]
P → publications[CPaper∗.JPaper∗]
CPaper → confPaper[T itleP.T itleConf.Y ear]
JPaper → jourPaper[T itleP.T itleJ.Y ear.V ol] �

We now formally present our interactive algorithm (which adapts Algorithm 1
to an interactive context). We recall that for a regular expression R (resp. a tree
t), NT (R) denotes the set of non-terminals occurring in R (resp. in t).

Definition 5 (Order Relation over Terminals). Let G = (N, T, S, P) be
an RTG. Let a, b ∈ T . We define the relation �G over terminals by a �G b iff
there exist production rules A → a[R], B → b[R′] in P such that B ∈ NT (R).
In other words, b may be a child of a. �

Non-recursivity is defined as usual, i.e. over non-terminals: it means that a non-
terminal A can never derive a tree that contains A again. Using terminals, we
get a stronger property, called strong non-recursivity, which means that the
dependency graph is acyclic.

Definition 6 (Recursivity)
A grammar G is non-recursive iff ¬(∃A ∈ N, A →+

G t ∧ A ∈ NT (t)), where t
is a tree. A grammar G is strongly non-recursive iff ¬(∃a ∈ T, a �+

G a), where
→+

G and �+
G are the transitive closures of →G and �G, respectively. �

Lemma 2. If G is strongly non-recursive, then G is non-recursive.

Proof: By contraposition. Suppose ∃A0 ∈ N, A0 →+
G t ∧ A0 ∈ NT (t)). Then:

∃n ∈ IN\{0}, ∀i ∈ {0, . . . , n−1}, ∃Ai → ai[Ri] ∈ P, Ai+1 ∈ NT (Ri) ∧ An = A0.
By definition of �G we have: a0 �G a1 �G · · ·�G an−1 �G a0. �

Lemma 3. If G is strongly non-recursive, then �+
G is a strict (partial) order.

Proof: �+
G is transitive. On the other hand, for all a, b ∈ T , a �+

G b ∧ b �+
G a

implies a �+
G a, which is impossible since G is strongly non-recursive. �

Algorithm 3 (Interactive Generation of an LTG)
Notation: Let G0 = (N0, T0, S0, P0) be a regular tree grammar5 strongly non-
recursive. For each terminal a, consider all the rules in P0 that generates a,
say A1 → a[R1], . . . , An → a[Rn]. Then we define â = {A1, . . . , An}. Note that
â ∈ N0/‖, i.e. â is an equivalence class.

We define a new regular tree grammar G = (N, T, S, P), obtained from G0,
according to the steps:

5 Recall that G0 is in reduced normal form and thus, for each A ∈ N0 there exists
exactly one rule in P0 whose left-hand-side is A.

Conservative Type Extensions for XML Data 79

1. Let G = (N0/‖, T0, S, P) where:

– S = {Â | A ∈ S0},
– P = { â→ a [R] | a ∈ T0,

and â = {A1, . . . , An} ∈ N0/‖,
and A1 → a[R1], . . . , An → a[Rn] ∈ P0,
and (i) R = (R̂1| · · · |R̂n) or (ii) R is defined by the user s.t.

∀B ∈ NT (R), B = b̂ ∧ a �+
G0

b.

2. Remove all unreachable or unproductive non-terminals and rules in G, then
return it. �

The aiding tool for XML type construction we propose is based on Algorithm 3.
However, to make it more user friendly, each time a user wants to propose a
new local type (the interactive step mentioned in item 1(ii)), some facilities are
offered. The first one aims at releasing the user of thinking about grammar
“technical problems” and distinction concerning terminal and non-terminals.
Therefore, our tool allows the user to propose regular expressions built over
XML labels (i.e., the terminals of G). Indeed, this opportunity matches the use
of DTDs. Grammar G resulting from Algorithm 3 is automatically obtained by
replacing each terminal b (used by the user in the construction of the type) by

non-terminal b̂. Note that the limitation of the user choice in item 1(ii) (only
b’s s.t. a �+

G0
b are allowed) is necessary to prevent from introducing cycles in

the dependency graph, i.e. to get a strongly non-recursive grammar. The second
facility aims at guiding the user in a good definition order. Thus, at each step,
our tool may guide the user to choose new (local) types according to the order
established by a topological sort of the dependency graph: one may choose the
type of a terminal a once the type of every b ∈ T0 such that a �+

G0
b has already

been treated (bottom-up approach).
We are currently discussing some other improvements to our tool. As a short

term optimisation, we intend to allow a global design of an XML type before
using Algorithm 3. By using a graphical interface, the user can, in fact, transform
the dependency graph into a tree. In this way, he establishes a choice before
entering in the details of each local type. For instance, in Example 7, Figure 2,
terminal team has two parents, meaning that it can take part in the definition
of researcher or laboratory. However, a user probably wants to choose one of
these possibilities and not use team in both definitions (which is allowed by our
algorithm), to avoid redundancy. By deleting the arc between lab and team, the
user fixes, beforehand, his choice, avoiding useless computation. We currently
consider the existence of an ontology alignment from which we can obtain a
translation table for different terminals used in the grammars. A long term
improvement concerns the methods to automatically generate this table. We
can fin in [Gu et al., 2008] some initial clues to deal with this aspect.

Now we prove that grammars obtained by Algorithm 3 are strongly non-
recursive LTGs.

Lemma 4. ∀a, b ∈ T0, a �G b =⇒ a �+
G0

b. �

80 J. Chabin et al.

Proof: Suppose a �G b. Then there exist rules â → a[R], b̂ → b[R′] ∈ P

s.t. b̂ ∈ NT (R). Therefore there exist A1 → a[R1], . . . , An → a[Rn] ∈ P0 and

B1 → b[R′
1], . . . , Bk → b[R′

k] ∈ P0 s.t. â = {A1, . . . , An} and b̂ = {B1, . . . , Bk}.
To build rule â→ a[R], there are two possibilities:

Case (i): R = (R̂1| · · · |R̂n). Since b̂ ∈ NT (R), there exists j ∈ {1, . . . , n} s.t.

b̂ ∈ NT (R̂j). Then ∃p ∈ {1, . . . , k}, Bp ∈ NT (Rj). Finally we have Aj →
a[Rj] ∈ P0, Bp → b[R′

p] ∈ P0, and Bp ∈ NT (Rj). Consequently a �G0 b.

Case (ii) ∀C ∈ NT (R), C = ĉ ∧ a �+
G0

c. Since b̂ ∈ NT (R), we have a �+
G0

b. �

Theorem 3. The grammar returned by Algorithm 3 is a strongly non-recursive
LTG in normal form. �

Proof: In Algorithm 3, for each a ∈ T0 we define only one rule in P that generates
a: it is the rule â→ a[R]. Therefore there are no competing non-terminal in G,
then G is an LTG. On the other hand, suppose that G is not in normal form,
i.e. ∃ b ∈ T0, b �= a ∧ b̂ → b[R′] ∈ P ∧ b̂ = â = {C1, . . . , Cn}. Then for all
i ∈ {1, . . . , n}, there exist two rules Ci → a[Ri], Ci → b[R′

i] ∈ P0, which is
impossible since G0 is in normal form.

Suppose that G is not strongly non-recursive. Then ∃a ∈ T0, a �+
G a. From

Lemma 4, we get a �+
G0

a which is impossible since G0 is strongly non-
recursive. �

7 Algorithm Analysis and Experiments

Algorithm 1 is polynomial. Recall that, for each original rule, the algorithm
verifies whether there exist competing non-terminals by visiting the remaining
rules and merges rules where competition is detected. The algorithm proceeds
by traversing each regular expression of the rules obtained from this first step,
replacing each non-terminal by the associated equivalent class. Thus, in the worst
case, Algorithm 1 runs in time O(N2+N.l), whereN is the number of production
rules and l is the maximal number of non-terminals in a regular expression.

In the following we consider an example which illustrates the worst case for
Algorithm 2. Indeed, in the worst case, the number of non-terminals of the STTG
returned by Algorithm 2 is exponential in the number of the non-terminals of the
initial grammar G0. However, in real cases, it is difficult to find such a situation.

Example 8. Let us consider a grammar where the production rules have the
following form:

1 S → s[A1|B1|C1] 2 A1 → a[A2 | ε]
3 A2 → a[A1] 4 B1 → a[B2 | ε]
5 B2 → a[B3] 6 B3 → a[B1]
7 C1 → a[C2 | ε] 8 C2 → a[C3]
9 C3 → a[C4] 10 C4 → a[C1]

Conservative Type Extensions for XML Data 81

Clearly, this grammar is not a STTG, since in the first rule we have a regular
expression with three competing non-terminals. By using Algorithm 2, the first
rule is transformed into {S} → s[{A1, B1, C1} | {A1, B1, C1} | {A1, B1, C1}].
Trying to merge rules 2, 5 and 7 we find {A1, B1, C1} → a[σ(A2|B2|C2)] where
the regular expression A2|B2|C2 has also three competing non-terminals that
should be put together to give a new non-terminal {A2, B2, C2}. The reasoning
goes on in the same way to obtain {A1, B3, C3}, {A2, B1, C4} and so on. The
number of non-terminals grows exponentially. �

A prototype tool implementing Algorithm 1 and Algorithm 2 may be down-
loaded from [Chabin et al.,]. It was developed using the ASF+SDF Meta-Envi-
ronment [van den Brand et al., 2001] and demonstrates the feasibility of our ap-
proach. To study the scalability of our method, Algorithm 1 has been imple-
mented in Java. In this context, we have also developed some tools for dealing
with tree grammars. Thus, given a tree grammar G, we can test whether it is in
reduced form or in normal form or whether the grammar is already an LTG.

Table 1 shows the results of some experiments obtained by the Java imple-
mentation of Algorithm 1. Our experiments were done on an Intel Dual Core
P8700, 2.53GHz with 2GB of memory. To perform these tests we have developed
an RTG generator6: from n1 terminals, we generate n2 rules (or non-terminals,
since each non-terminal is associated to one rule). When n1 ≤ n2 the gener-
ated RTG has n1 non-terminals that are not competing and n2 − n1 competing
non-terminals. When n1 = n2 the generated grammar is an LTG. The regular
expression of each rule has the form E1 | · · · | En where each Ei is a conjunction
of k non-terminals randomly generated and randomly adorned, or not, by ∗ or
?. The values of n and k are also chosen at random, limited by given thresholds.

Table 1. Runtime for Algorithm 1 in milliseconds

Example Number of Number of Runtime for Algorithm 1 (ms)
number terminals non-terminals LTG transformation

1 250 300 349
2 250 500 536
3 250 1000 2316
4 1000 1000 1956
5 1000 2000 8522
6 2000 2000 8093
7 1000 4000 36349
8 1000 8000 163236
9 1000 10000 265414

From Table 1 it is possible to see that time execution increases polynomially
according to the number of non-terminals (roughly, when the number of non-
terminals is multiplied by 2, time is multiplied by 4). We can also notice that

6 Available at http://www.univ-orleans.fr/lifo/Members/chabin/logiciels.html

82 J. Chabin et al.

when changing only the number of terminals, the impact of competition on ex-
ecution time is not very important. For instance, lines 2 and 3 show grammars
having the same set of terminals but a different number of non-terminals (or
production rules). Clearly, grammar on line 3 needs much more time to be pro-
ceeded. However, lines 3 and 4 (or lines 5 and 6) show two grammars having the
same set of non-terminals but a different number of terminals. In our examples,
this fact indicates that grammar of line 3 has more competing non-terminals than
grammar on line 4. Notice however both cases are treated in approximately the
same time.

We have just developed prototypes over which we can evaluate the initial
interest of our proposal. Even if some software engineer effort is necessary to
transform these prototypes into a software tool, the performed tests on our Java
implementation show that we can expect a good performance of our method in
the construction of tools for manipulating and integrating XML types.

8 Related Work

XML type evolution receives more and more attention nowadays, and questions
such as incremental re-validation ([Guerrini et al., 2005]), document correction
w.r.t type evolution ([Amavi et al., 2013]) or the impact of the evolution on
queries ([Genevès et al., 2009, Moro et al., 2007]) are some of the studied as-
pects. However, data administrators still need simple tools for aiding and guid-
ing them in the evolution and construction of XML types, particularly when
information integration is needed. This paper aims to respond to this demand.

Algorithms 1 and 2 allow the conservative evolution of schemas. Our work
complements the proposals in [Bouchou et al., 2009, da Luz et al., 2007], since
we consider not only DTD but also XSD, and adopts a global approach where all
the tree grammar is taken into account as a whole. Our algorithms are inspired
in some grammar inference methods (such as those dealing with ranked tree
languages in [Besombes and Marion, 2003, Besombes and Marion, 2006]) that
return a tree grammar or a tree automaton from a set of positive examples
(see [Angluin, 1992, Sakakibara, 1997] for surveys). Our method deals with un-
ranked trees, starts from a given RTG G0 (representing a set of positive exam-
ples) and finds the least LTG or STTG that contains L(G0). As we consider
an initial tree grammar we are not exactly inserted in the learning domain, but
their methods inspire us and give us tools to solve our problem, namely, the
evolution of a original schema (and not the extraction of a new schema).

In [Garofalakis et al., 2000, Bex et al., 2006, Bex et al., 2007] we find exam-
ples of work on XML schema inference . In [Bex et al., 2006] DTD inference
consists in an inference of regular expressions from positive examples. As the
seminal result from Gold [Gold, 1967] shows that the class of all regular expres-
sions cannot be learnt from positive examples, [Bex et al., 2006] identifies classes
of regular expressions that can be efficiently learnt. Their method is extended
to deal with XMLSchema (XSD) in [Bex et al., 2007].

The approach in [Abiteboul et al., 2009] can be seen as the inverse of ours.
Let us suppose a library consortium example. Their approach focus on defining

Conservative Type Extensions for XML Data 83

the subtypes corresponding to each library supposing that a target global type
of a distributed XML document is given. Our approach proposes to find the
integration of different library subtypes by finding the least library type capable
of verifying all library subtypes.

The usability of our method is twofold: as a theoretical tool, it can help an-
swering the decision problem announced in [Martens et al., 2006]; as an applied
tool, it can easily be adapted to the context of digital libraries, web services,
etc. In [Martens et al., 2006], the authors are interested in analysing the actual
expressive power of XSD. With some non-trivial amount of work, part of their
theorem proofs can be used to produce an algorithm similar to ours. Indeed,
in [Gelade et al., 2010] (a work simultaneous to ours in [Chabin et al., 2010]),
the authors decide to revisit their results in [Martens et al., 2006] to define ap-
proximations of the union (intersection and complement) of XSD schemas. Our
methods are similar, but our proposal works directly over grammars, allowing
the implementation of a user friendly tool easily extended to an interactive mode,
while results in [Gelade et al., 2010] are based on the construction of type au-
tomata.

A large amount of work have been done on the subject of matching XML
schemas or ontology alignment ([Shvaiko and Euzenat, 2005] as a survey) and
we can find a certain number of automatic tools for generating schema matchings
such as SAMBO [Lambrix et al., 2008] or COMA++ [Maßmann et al., 2011].
Generally, a schema matching gives a set of edges, or correspondences, between
pairs of elements, that can be stored into translation tables (a kind of dictionary).
An important perspective of our work concerns the generation of translation
tables by using methods such as the one proposed in [Gu et al., 2008], since,
until now these semantics aspects have been considered as a ’given information’.

An increasing demand on data exchange and on constraint validation have
motivated us to work on the generation of a new set of constraints from different
local sets of type or integrity restrictions. This new set of constraints should
keep all non contradictory local restrictions. The type evolution proposed here
is well adapted to our proposes and it seems possible to combine it with an
XFD filter, as the one in [Amavi and Halfeld Ferrari, 2012], in order to obtain
a (general) set of constraints allowing interoperability. This paper focus only
on schema constraints and proposes an extension that guarantees the validity
of any local document. Thus, as explained in the introduction, our approach is
very interesting when local systems I1, . . . , In, inter-operate with a global system
I which should receive information from any local source (or format) and also
ensure type constraint validation.

9 Conclusion

XML data and types age or need to be adapted to evolving environments. Dif-
ferent type evolution methods propose to trigger document updates in order
to assure document validity. Conservative type evolution is an easy-to-handle
evolution method that guarantees validity after a type modification.

84 J. Chabin et al.

This paper proposes conservative evolution algorithms that compute a local or
single-type grammar which extends minimally a given original regular grammar.
The paper proves the correctness and the minimality of the generated gram-
mars. An interactive approach for aiding in the construction of new schemas is
also introduced. Our three algorithms represent the basis for the construction
of a platform whose goal is to support administration needs in terms of mainte-
nance, evolution and integration of XML types. One possible application of our
work is in the field of Digital Libraries, due to their need of evolution when new
sources of data become available or when merging two libraries may be interest-
ing [Crane, 2006]. In these cases, it is necessary to build a new schema for the
data being merged.

We are currently working on improving and extending our approach to solve
other questions related to type compatibility and evolution. Except for the ter-
minal translation table, our approach is inherently syntactic: only structural
aspects of XML documents are considered and our new grammars are built by
syntactic manipulation of the original production rules. However, schemas can
be more expressive than DTD and XSD, associated to integrity constraints (as
in [Bouchou et al., 2012]) or expressed by a semantically richer data model (as
in [Wu et al., 2001]).

In [Amavi and Halfeld Ferrari, 2012] we find an algorithm that computes,
from given local sets of XFD, a cover of the biggest set of XFD that does not
violate any local document. This algorithm is a first step towards an extension of
our approach which will take into account integrity constraints. Notice that we
understand this extension by the implementation of different procedures, one for
each kind of integrity constraints. In other words, by using the uniform formalism
proposed in [Bouchou et al., 2012] for expressing integrity constraints on XML
documents and following the ideas exposed in [Amavi and Halfeld Ferrari, 2012],
we can build sets of integrity constraints (inclusion dependencies, keys, etc)
adapted to our global schema. In this way, the evolution of richer schema would
correspond to the parallel evolution of different sets of constraints.

We intend not only to extend our work in these directions but also to en-
rich our platform with tools (such as the one proposed in [Amavi et al., 2011])
for comparing or classifying types with respect to a ‘type distance’ capable
of choosing the closest type for a given document (as discussed, for instance,
in [Tekli et al., 2011, Bertino et al., 2008]). Interesting theoretical and practical
problems are related to all these perspectives.

References

[Abiteboul et al., 2009] Abiteboul, S., Gottlob, G., Manna, M.: Distributed xml de-
sign. In: PODS 2009: Proceedings of the Twenty-Eighth ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, pp. 247–258. ACM
(2009)

[Amavi et al., 2013] Amavi, J., Bouchou, B., Savary, A.: On correcting XML docu-
ments with respect to a schema. The Computer Journal 56(4) (2013)

Conservative Type Extensions for XML Data 85

[Amavi et al., 2011] Amavi, J., Chabin, J., Halfeld Ferrari, M., Réty, P.: Weak Inclu-
sion for XML Types. In: Bouchou-Markhoff, B., Caron, P., Champarnaud, J.-M.,
Maurel, D. (eds.) CIAA 2011. LNCS, vol. 6807, pp. 30–41. Springer, Heidelberg
(2011)

[Amavi and Halfeld Ferrari, 2012] Amavi, J., Halfeld Ferrari, M.: An axiom system
for XML and an algorithm for filtering XFD (also a poster published in sac 2013,
Technical Report RR-2012-03, LIFO/Université d’Orléans (2012)

[Angluin, 1992] Angluin, D.: Computational learning theory: survey and selected bib-
liography. In: STOC 1992: Proceedings of the Twenty-Fourth Annual ACM Sym-
posium on Theory of Computing, pp. 351–369. ACM, New York (1992)

[Bertino et al., 2008] Bertino, E., Giovanna Guerrini, G., Mesiti, M.: Measuring the
structural similarity among XML documents and dtds. J. Intell. Inf. Syst. 30,
55–92 (2008)

[Besombes and Marion, 2003] Besombes, J., Marion, J.-Y.: Apprentissage des langages
réguliers d’arbres et applications. Traitement Automatique de Langues 44(1), 121–
153 (2003)

[Besombes and Marion, 2006] Besombes, J., Marion, J.-Y.: Learning tree languages
from positive examples and membership queries. Theoretical Computer Science
(2006)

[Bex et al., 2006] Bex, G.J., Neven, F., Schwentick, T., Tuyls, K.: Inference of concise
DTDs from XML data. In: VLDB, pp. 115–126 (2006)

[Bex et al., 2007] Bex, G.J., Neven, F., Vansummeren, S.: Inferring XML schema def-
initions from XML data. In: VLDB, pp. 998–1009 (2007)

[Bouchou et al., 2009] Bouchou, B., Duarte, D., Halfeld Ferrari, M., Musicante, M.A.:
Extending XML Types Using Updates. In: Hung, D. (ed.) Services and Business
Computing Solutions with XML: Applications for Quality Management and Best
Processes, pp. 1–21. IGI Global (2009)

[Bouchou et al., 2012] Bouchou, B., Halfeld Ferrari Alves, M., de Lima, M.A.V.: A
grammarware for the incremental validation of integrity constraints on xml doc-
uments under multiple updates. T. Large-Scale Data- and Knowledge-Centered
Systems 6, 167–197 (2012)

[Chabin et al.,] Chabin, J., Halfeld Ferrari, M., Musicante, M.A., Réty, P.: A
software to transform a RTG into a LTG or a STTG., http://www.

univ-orleans.fr/lifo/Members/rety/logiciels/RTGalgorithms.html

[Chabin et al., 2010] Chabin, J., Halfeld-Ferrari, M., Musicante, M.A., Réty, P.: Min-
imal Tree Language Extensions: A Keystone of XML Type Compatibility and
Evolution. In: Cavalcanti, A., Deharbe, D., Gaudel, M.-C., Woodcock, J. (eds.)
ICTAC 2010. LNCS, vol. 6255, pp. 60–75. Springer, Heidelberg (2010)

[Crane, 2006] Crane, G.: What do you do with a million books? D-Lib Magazine 12(3)
(2006)

[da Luz et al., 2007] da Luz, R., Halfeld Ferrari, M., Musicante, M.A.: Regular expres-
sion transformations to extend regular languages (with application to a datalog
XML schema validator). Journal of Algorithms 62(3-4), 148–167 (2007)

[Garofalakis et al., 2000] Garofalakis, M.N., Gionis, A., Rastogi, R., Seshadri, S.,
Shim, K.: Xtract: A system for extracting document type descriptors from xml
documents. In: SIGMOD Conference, pp. 165–176 (2000)

[Gelade et al., 2010] Gelade, W., Idziaszek, T., Martens, W., Neven, F.: Simplify-
ing xml schema: single-type approximations of regular tree languages. In: ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,
PODS, pp. 251–260 (2010)

http://www.univ-orleans.fr/lifo/Members/rety/logiciels/RTGalgorithms.html
http://www.univ-orleans.fr/lifo/Members/rety/logiciels/RTGalgorithms.html

86 J. Chabin et al.

[Genevès et al., 2009] Genevès, P., Layäıda, N., Quint, V.: Identifying query incom-
patibilities with evolving xml schemas. SIGPLAN Not. 44, 221–230 (2009)

[Gold, 1967] Gold, E.M.: Language identification in the limit. Information and Con-
trol 10(5), 447–474 (1967)

[Gu et al., 2008] Gu, J., Xu, B., Chen, X.: An XML query rewriting mechanism with
multiple ontologies integration based on complex semantic mapping. Information
Fusion 9(4), 512–522 (2008)

[Guerrini et al., 2005] Guerrini, G., Mesiti, M., Rossi, D.: Impact of XML schema evo-
lution on valid documents. In: WIDM 2005: Proceedings of the 7th Annual ACM
International Workshop on Web Information and Data Management, pp. 39–44.
ACM Press, New York (2005)

[Lambrix et al., 2008] Lambrix, P., Tan, H., Liu, Q.: Sambo and sambodtf results for
the ontology alignment evaluation initiative 2008. In: OM (2008)

[Mani and Lee, 2002] Mani, M., Lee, D.: XML to Relational Conversion using Theory
of Regular Tree Grammars. In: Bressan, S., Chaudhri, A.B., Li Lee, M., Yu,
J.X., Lacroix, Z. (eds.) EEXTT and DIWeb 2002. LNCS, vol. 2590, pp. 81–103.
Springer, Heidelberg (2003)

[Martens et al., 2006] Martens, W., Neven, F., Schwentick, T., Bex, G.J.: Expressive-
ness and complexity of XML schema. ACM Trans. Database Syst. 31(3), 770–813
(2006)

[Maßmann et al., 2011] Maßmann, S., Raunich, S., Aumüller, D., Arnold, P., Rahm,
E.: Evolution of the coma match system. In: OM (2011)

[Moro et al., 2007] Moro, M.M., Malaika, S., Lim, L.: Preserving xml queries during
schema evolution. In: Proceedings of the 16th International Conference on World
Wide Web, WWW 2007, pp. 1341–1342. ACM (2007)

[Murata et al., 2005] Murata, M., Lee, D., Mani, M., Kawaguchi, K.: Taxonomy
of XML schema languages using formal language theory. ACM Trans. Inter.
Tech. 5(4), 660–704 (2005)

[Papakonstantinou and Vianu, 2000] Papakonstantinou, Y., Vianu, V.: DTD inference
for views of XML data. In: PODS-Symposium on Principles of Database System,
pp. 35–46. ACM Press (2000)

[Sakakibara, 1997] Sakakibara, Y.: Recent advances of grammatical inference. Theor.
Comput. Sci. 185(1), 15–45 (1997)

[Shvaiko and Euzenat, 2005] Shvaiko, P., Euzenat, J.: A survey of schema-based
matching approaches. In: Spaccapietra, S. (ed.) Journal on Data Semantics IV.
LNCS, vol. 3730, pp. 146–171. Springer, Heidelberg (2005)

[Tekli et al., 2011] Tekli, J., Chbeir, R., Traina, A.J.M., Traina, C.: XML document-
grammar comparison: related problems and applications. Central European Jour-
nal of Computer Science 1(1), 117–136 (2011)

[van den Brand et al., 2001] van den Brand, M., Heering, J., de Jong, H., de Jonge,
M., Kuipers, T., Klint, P., Moonen, L., Olivier, P., Scheerder, J., Vinju, J., Visser,
E., Visser, J.: The ASF+SDF meta-environment: a component-based language de-
velopment environment. Electronic Notes in Theoretical Computer Science 44(2)
(2001)

[Wu et al., 2001] Wu, X., Ling, T.W., Lee, M.-L., Dobbie, G.: Designing semistruc-
tured databases using ORA-SS model. In: Proceedings of the 2nd International
Conference on Web Information Systems Engineering, WISE, (1) (2001)

Conservative Type Extensions for XML Data 87

A Appendix: Proof of Theorem 1

We start by proving that G (the grammar obtained by Algorithm 1) is an LTG.
Then we show that Algorithm 1 proposes a grammar which generates a language
containing L(G0).

Lemma 5. G is an LTG. �

Proof : By contradiction. Suppose Â = {A1, ..., An} and B̂ = {B1, ..., Bk}
are competing in G, we have Â → a[R] and B̂ → a[R′] in P . By construc-
tion of the rules of G (Algorithm 1) we must have in P0 the following rules:
A1 → a[R1], · · · , An → a[Rn], B1 → a[R′

1], · · · , Bk → a[R′
k]. We deduce that

A1, · · · , An, B1, · · · , Bk are competing in G0. Thus Â = B̂. This is impossible
since by definition, competing non-terminals are different. As, by construction,
there is one rule in P for each element of N = N0/‖, G is in normal form. �

The following lemma shows that the algorithm preserves the trees generated
by the grammar G0.

Lemma 6. If X →∗
G0

t0 then X̂ →∗
G t0. �

Proof : By induction on the length of X →∗
G0

t0 = a(w). Let us consider the
first step of the derivation X →G0 a[RX] and ∃U ∈ L(RX), U →∗

G0
w. By

construction of G, X̂ is in N and X̂ → a[R] is in P with R = R̂1 | · · · | R̂n,
RX is one of Ri so Û ∈ L(R). Then X̂ →G a[R] and by induction hypothesis,
Û →∗

G w therefore X̂ →∗
G a(w) = t0. �

We can now begin to show the relationship between the original language, as
described by the grammar G0 and the language generated by the grammar G
obtained by the Algorithm 1.

Lemma 7. (A) L(G0) ⊆ L(G). (B) If X →∗
G0

t and X̂ →∗
G t′ then t(ε) = t′(ε)

(i.e. t and t’ have the same top symbol). �

Proof : Item (A) is an immediate consequence of Lemma 6. As G0 is in normal
form, we have only one rule inG0 of the formX → a[RX], i.e., the terms generated
byX inG0 have a as top symbol. Non-terminalX is in X̂. FromLemma 5, we know
that X̂ → a[R] is the unique rule in G whose left-hand side is X̂. �

From Example 4, we can, for instance, derive Instrs →∗
G ins(step, step) and

Instrs →∗
G ins(number, step). Different terms with the same top label. Now,

the next lemma states that the resulting grammar G does not introduce any
new terminal symbol at the root of the generated trees.

Lemma 8. ∀t ∈ L(G), ∃t′ ∈ L(G0) such that t′(ε) = t(ε).

Proof : Let t = a(w) ∈ L(G). Then there exists a rule {A1, · · · , An} → a[R]
in P with {A1, · · · , An} ∈ S (a start symbol in G). By definition of S, ∃i such
that Ai ∈ S0 and Ai →∗

G0
a(w′) = t′ because G0 is in the reduced form. So

t′ ∈ L(G0) and t and t′ have the same root symbol. �

Next, we show that for every subtree generated by G, its root appears in at least
one subtree of the language generated by G0 (recall that w′(ε) = w(ε) means
that forests w′ and w have the same tuple of top-symbols):

88 J. Chabin et al.

Lemma 9. If t ∈ ST (L(G)), such that t = a(w), then, ∃t′ ∈ ST (L(G0)), t
′ =

a(w′) ∧ w′(ε) = w(ε).

Proof : Let t ∈ ST (L(G)) such that t = a(w). There exists Â1 → a[R] ∈ P
such that Â1 → a(U), U ∈ L(R), U →∗

G w. By construction, R = R̂1| . . . |R̂n,

and ∀i, ∃Ai ∈ N0, Ai → a[Ri] ∈ P0 ∧ Ai ∈ Â1. Therefore there exists j such
that U ∈ L(R̂j). Consider Aj → a[Rj] ∈ P0. There exists U ′ ∈ L(Rj) such that

Û ′ = U . Now, since G0 is in reduced form, there exists a forest w′ such that
U ′ →∗

G0
w′. Consequently Aj →G0 a(U ′)→∗

G0
a(w′). Let t′ = a(w′). Since G0 is

in reduced form, the rule Aj → a[Rj] is reachable in G0, then t′ ∈ ST (L(G0)).

From Lemma 7, since Û ′ = U , we have w(ε) = w′(ε). �

As an illustration of Lemma 9, we observe that from the grammars of Exam-
ple 4, given the tree r(is(ing(name,unit,qty)), r(req(item),ing(name,unit,qty),
ins(step,step)), ins(step)) from L(G), for its sub-tree t = r(req(item),ing(name,
unit,qty),ins(step,step))= r(w) ∈ ST (L(G)), we have t’ = r(req(item),ing(name,
qty,unit),ins(number,step))= r(w′) ∈ ST (L(G0)), t(ε) = t′(ε) and w(ε) = w′(ε).

Now we need some properties of local tree languages. The following lemma
states that the type of the subtrees of a tree node is determined by the label of
its node (i.e. the type of each node is locally defined). Recall that ST (L) is the
set of sub-trees of elements of L.

Lemma 10 (See [Papakonstantinou and Vianu, 2000] (Lemma 2.10)).
Let L be a local tree language (LTL). Then, for each t ∈ ST (L), each t′ ∈ L and
each p′ ∈ Pos(t′), we have that : t(ε) = t′(p′) =⇒ t′[p′ ← t] ∈ L. �

We also need a weaker version of the previous lemma:

Corollary 1. Let L be a local tree language (LTL). Then, for each t, t′ ∈ ST (L),
and each p′ ∈ Pos(t′), we have that : t(ε) = t′(p′) =⇒ t′[p′ ← t] ∈ ST (L). �

In practical terms, Corollary 1 gives us a rule of thumb on how to “complete”
a regular language in order to obtain a local tree language. For instance, let
L = {f(a(b), c), f(a(c), b)} be a regular language. According to Corollary 1, we
know that L is not LTL and that the least local tree language L′ containing L
contains all trees where a has c as a child together with all trees where a has b
as a child. In other words, L′ = {f(a(b), c), f(a(c), b), f(a(c), c), f(a(b), b)}.

Now, we can prove that the algorithm just adds what is necessary to get an
LTL (and not more), in other words, that L(G) is the least local tree language
that contains L(G0). This is done in two stages: first for subtrees, then for trees.

Lemma 11. Let L′ be an LTL such that L(G0) ⊆ L′. Then ST (L(G)) ⊆
ST (L′).

Proof : By structural induction on the trees in ST (L(G)). Let t = a(w) ∈
ST (L(G)). From Lemma 9, there exists t′ ∈ ST (L(G0)) such that t′ = a(w′) ∧
w′(ε) = w(ε). Since L(G0) ⊆ L′, we have ST (L(G0)) ⊆ ST (L′), then t′ ∈
ST (L′). If w is an empty forest (i.e. the empty tuple), w′ is also empty, therefore
t = t′ ∈ ST (L′). Otherwise, let us write w = (a1(w1), . . . , an(wn)) and w′ =

Conservative Type Extensions for XML Data 89

(a1(w
′
1), . . . , an(w

′
n)) (since w(ε) = w′(ε), w and w′ have the same top symbols).

Since t = a(w) ∈ ST (L(G)), for each j ∈ {1, . . . , n}, aj(wj) ∈ ST (L(G)), then
by induction hypothesis aj(wj) ∈ ST (L′). L′ is an LTL, and for each j we have
: aj(wj) ∈ ST (L′), t′ ∈ ST (L′), (aj(wj))(ε) = aj = t′(j). By applying Corollary
1 n times, we get t′[1← a1(w1)] . . . [n← an(wn)] = t ∈ ST (L′). �

Theorem 4. Let L′ be an LTL such that L′ ⊇ L(G0). Then L(G) ⊆ L′.

Proof : Let t ∈ L(G). Then t ∈ ST (L(G)). From Lemma 11, t ∈ ST (L′). On
the other hand, from Lemma 8, there exists t′ ∈ L(G0) such that t′(ε) = t(ε).
Then t′ ∈ L′. From Lemma 10, t′[ε← t] = t ∈ L′. �

This result ensures that the grammar G of Example 4 generates the least LTL
that contains L(G0).

B Appendix: Proof of Theorem 2

The proof somehow looks like the proof concerning the transformation of an
RTG into an LTG (Section 4). However it is more complicate since in a STTL
(and unlike what happens in an LTL), the confusion between t|p = a(w) and
t′|p′ = a(w′) should be done only if position p in t has been generated by the
same production rule as position p′ in t′, i.e. the symbols occurring in t and t′

along the paths going from root to p (resp. p′ in t′) are the same. This is why
we introduce notation path(t, p) to denote these symbols (Definition 7).

Lemma 12. Let χ ∈ P(N0) and A,B ∈ χ. Then Âχ and B̂χ are not competing
in P . �

Proof: By contradiction. Suppose Âχ and B̂χ are competing in P . Then there
exist Âχ → a[R1] ∈ P and B̂χ → a[R2] ∈ P . From the construction of P , there
exist C ∈ Âχ (then C ‖χ A) and C → a[R′

1] ∈ P0, as well as D ∈ B̂χ (then
D ‖χ B) and D → a[R′

2] ∈ P0. Thus, C ‖χ D and by transitivity A ‖χ B, then

Âχ = B̂χ, which is impossible since competing non-terminals are not equal. �

Example 9. Consider the grammar of Example 6.
Let χ = {Frame1 ,Frame2 , Background}. The equivalence classes induced by

‖χ are F̂rame1
χ
= F̂rame2

χ
={Frame1 , Frame2}; ̂Background

χ
={Background};

which are non-competing non-terminals in P . �

Lemma 13. G = (N, T, S, P) is a STTG. �

Proof: (1) There is no regular expression in P containing competing non-
terminals: If ÂS0 , B̂S0 are in S, then A,B ∈ S0. From Lemma 12, ÂS0 and
B̂S0 are not competing in P . For any regular expression R, let ÂN(R), B̂N(R) ∈
N(σN(R)(R)). Thus, A,B ∈ N(R). From Lemma 12, ÂN(R) and B̂N(R) are not
competing in P . (2) G is in normal form: As for each Ai there is at most one
rule in P0 whose left-hand-side is Ai (because G0 is in normal form), there is at
most one rule in P whose left-hand-side is {A1, . . . , An}. �

90 J. Chabin et al.

The next lemma establishes the basis for proving that the language generated
by G contains the language generated by G0. It considers the derivation process
over G0 at any step (supposing that this step is represented by a derivation
tree t) and proves that, in this case, at the same derivation step over G, we can
obtain a tree t′ having all the following properties: (i) the set of positions is the
same for both trees (Pos(t) = Pos(t′)); (ii) positions associated to terminal are
identical in both trees; (iii) if position p is associated to a non-terminal A in
t then position p ∈ Pos(t′) is associated to the equivalence class Âχ for some
χ ∈ P(N0) such that A ∈ χ.

Lemma 14. Let Y ∈ S0. If G0 derives:
t0=Y → · · · → tn−1 →[pn, An→an[Rn]] tn then G can derive: t′0 = Ŷ S0 → · · · →
t′n−1 →[pn, Ân

χn→an[σN(Rn|···)(Rn|···)]] t
′
n

s.t. ∀i ∈ {0, . . . , n}, Pos(t′i) = Pos(ti) ∧
∀p ∈ Pos(ti): (ti(p) ∈ T0 =⇒ t′i(p) = ti(p))∧

(ti(p) = A ∈ N0 =⇒ ∃χ ∈ P(N0), A ∈ χ ∧ t′i(p) = Âχ) �

Proof: See [Chabin et al., 2010].

The following corollary proves that the language of the new grammar G, pro-
posed by Algorithm 2, contains the original language of G0.

Corollary 2. L(G0) ⊆ L(G). �

In the rest of this section we work on proving that L(G) is the least STTL that
contains L(G0). To prove this property, we first need to prove some properties
over STTLs. We start by considering paths in a tree. We are interested by paths
(sequence of labels) starting on the root and achieving a given position p in a
tree t. For example, path(a(b, c(d)), 1) = a.c.

Definition 7 (Path in a tree t to a position p). Let t be a tree and p ∈
Pos(t), then path(t, p) is recursively defined by : (1) path(t, ε) = t(ε) and (2)
path(t, p.i) = path(t, p).t(p.i) where i ∈ IN. �

Given a STTG G, let us consider the derivation process of two trees t and t′

belonging to L(G). The following lemma proves that positions (p in t and p′ in
t′) having identical paths are derived by using the same rules. A consequence of
this lemma (when t′ = t and p′ = p) is the well known result about the unicity
in the way of deriving a given tree with a STTG [Mani and Lee, 2002].

Lemma 15. Let G′ be a STTG, let t, t′ ∈ L(G′). Let X →∗
[pi,rulepi]

t be a

derivation of t and X ′ →∗
[p′

i,rule
′
p′
i
] t′ be a derivation of t′ by G′ (X,X ′ are

start symbols). Then ∀p ∈ Pos(t), ∀p′ ∈ Pos(t′), (path(t, p) = path(t′, p′) =⇒
rulep = rule′p′) �

Proof: Suppose path(t, p) = path(t′, p′). Then we have length(p) = length(p′).
The proof is by induction on length(p).

• If length(p) = 0, then p = p′ = ε, and t(ε) = t′(ε) = a. Therefore ruleε =
(X → a[R]) and rule′ε = (X ′ → a[R′]). If X �= X ′ then two start symbols are

Conservative Type Extensions for XML Data 91

competing, which is impossible since G′ is a STTG. If X = X ′ and R �= R′ then
G′ is not in normal form, which contradicts the fact that G′ is a STTG.
Therefore ruleε = rule′ε, then rulep = rule′p′ .
• Induction step. Suppose p = q.k and p′ = q′.k′ (k, k′ ∈ IN), and path(t, p) =
path(t′, p′). Then path(t, q) = path(t′, q′). By induction hypothesis, ruleq =
rule′q′ = (X → a[R]). There exits w,w′ ∈ L(R) s.t. w(k) = A, w′(k′) = A′ and
rulep = (A→ b[R1]), rule

′
p′ = (A′ → b[R′

1]) where b = t(p) = t′(p′).
If A �= A′ then A ∈ N(R) and A′ ∈ N(R) are competing, which is impossible
since G′ is a STTG. If A = A′ and R1 �= R′

1, then G′ is not in normal form,
which contradicts the fact that G′ is a STTG. Consequently rulep = rule′p′ . �

In a STTL, it is possible to permute sub-trees that have the same paths.

Lemma 16 (Also in [Martens et al., 2006]). Let G′ be a STTG. Then,
∀t, t′ ∈ L(G′), ∀p ∈ Pos(t), ∀p′ ∈ Pos(t′), (path(t, p) = path(t′, p′) =⇒ t′[p′ ←
t|p] ∈ L(G′)). �

Example 10. Let G be the grammar of Example 6. Consider a tree t as shown
in Figure 3. The permutation of subtrees t|0.0 and t|0.1 gives us a new tree t′.
Both t and t′ are in L(G). �

���
���
���

���
���
���

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���

����
����
����
����

����
����
����
����

���
���
���

���
���
���

���
���
���
���

���
���
���
���

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���

εε

0

image

frame

0.0

0.0.0 0.0.1

frame frame

0.0

0

0.1

0.0.10.0.0

image

frame

0.0.2 0.1.10.1.0

frame frameframe frame frame

frame

frame

frame

0.1

frame

0.1.2

frame frame frame

0.1.0 0.1.1

Fig. 3. Trees t and t′ with permuted sub-trees

Definition 8 (Branch Derivation). Let G′ be an RTG. A branch-derivation
is a tuple of production rules7 of G′ : 〈A1 → a1[R1], . . . , An → an[Rn]〉 s.t.
∀i ∈ {2, . . . , n}, Ai ∈ N(Ri−1). �

Notice that if A1 is a start symbol, the branch-derivation represents the deriva-
tion of a branch of a tree8. This branch contains the terminals a1, . . . , an (the
path to the node having an as label). Now, let us prove properties over the
grammar G built by Algorithm 2.

7 Indices are written as super-scripts for coherence with the notations in Lemma 17.
8 This tree may contain non-terminals.

92 J. Chabin et al.

Lemma 17. Consider a branch-derivation in G:
〈{A1

1, . . . , A
1
n1
} → a1σN(R1

1|···|R1
n1

)[R
1
1| · · · |R1

n1
], . . . ,

{Ak
1 , . . . , A

k
nk
} → akσN(Rk

1 |···|Rk
nk

)[R
k
1 | · · · |Rk

nk
]〉 and let ik ∈ {1, . . . , nk}. Then

there exists a branch-derivation in G0: (A
1
i1
→ a1[R1

i1
], . . . , Ak

ik
→ ak[Rk

ik
]). �

Proof: By induction on k.
- k = 1. There is one step. From Definition 2, Ak

ik
→ ak[Rk

ik
] ∈ P0.

- Induction step. By induction hypothesis applied on the last k−1 steps, there
exists a branch-derivation in G0 : (A

2
i2
→ a2[R2

i2
], . . . , Ak

ik
→ ak[Rk

ik
]).

Moreover {A2
1, . . . , A

2
n2
} ∈ N(σN(R1

1|···|R1
n1

)(R
1
1| · · · |R1

n1
)). Then there exists i1 ∈

{1, . . . , n1} s.t. A2
i2 ∈ N(R1

i1). And from Definition 2, A1
i1 → a1[R1

i1] ∈ P0. �

The following example illustrates Lemma 17 and its proof.

Example 11. Let G be the grammar of Example 6 and t the tree of Figure 3.
The branch-derivation corresponding to the node 0.0.0 contains the first and the
fourth rules of G presented in Example 6 (notice that the fourth rule appears
three times). Figure 4 illustrates this branch-derivation on a derivation tree. For
instance, the first rule in G is

{Image} → image[{Frame1, F rame2} | {Background}.{Foreground}] (R1)

and G0 has the production rule
Image → image[Frame1 | Frame2 | Background.Foreground]. Then, the
branch-derivation gives us the fourth rule in G, namely:

{Frame1, F rame2} → frame[ε
| {Frame1, F rame2}.{Frame1, F rame2}
| {Frame1, F rame2}.{Frame1, F rame2}.{Frame1, F rame2}].

Notice that the left-hand side {Frame1, F rame2} is a non terminal in the right-
hand side of (R1). Now, consider each non terminal of G0 forming the non
terminal {Frame1, F rame2} in G. Clearly, Frame1 is on the right-hand side of
the second rule in P0 while Frame2 is on the right-hand side of the third rule in
P0 (as shown in Example 6). We can observe the same situation for all the rules
in the branch-derivation. Thus, as proved in Lemma 17, the branch-derivation
in G0 that corresponds to the one considered in this example is:

〈 Image→ image[Frame1 | Frame2 | Background.Foreground]
Frame2→ frame[Frame2.F rame2.F rame2 | ε]
Frame2→ frame[Frame2.F rame2.F rame2 | ε]
Frame2→ frame[Frame2.F rame2.F rame2 | ε] 〉 �

The following lemma somehow expresses what the algorithm of Definition 2 does.
Given a forest w = (t1, . . . , tn), recall that w(ε) = 〈t1(ε), . . . , tn(ε)〉, i.e. w(ε) is
the tuple of the top symbols of w.

Lemma 18. ∀t ∈ L(G), ∀p ∈ Pos(t),
t|p = a(w) =⇒ ∃t′ ∈ L(G0), ∃p′ ∈ pos(t′), t′|p′ = a(w′) ∧ w′(ε) = w(ε) ∧
path(t′, p′) = path(t, p). �

Conservative Type Extensions for XML Data 93

0.0

0

0.1

0.0.10.0.0

image

frame

frame

0.0.2

{Frame1, F rame2}
{Frame1, F rame2}

{Frame1, F rame2}
0.1

{Frame1, F rame2}

frame

ε

Fig. 4. Derivation tree in G. Grey nodes illustrate a branch-derivation.

Proof: There exists a branch-derivation in G that derives the position p of t
({A1

1, . . . , A
1
n1
} → a1σN(R1

1|···|R1
n1

)[R
1
1| · · · |R1

n1
], . . . ,

{Ak
1 , . . . , A

k
nk
} → akσN(Rk

1 |···|Rk
nk

)[R
k
1 | · · · |Rk

nk
])

and u ∈ L(σN(Rk
1 |···|Rk

nk
)(R

k
1 | · · · |Rk

nk
)) s.t. u→∗

G w.

Then there exists ik s.t. u ∈ L(σN(Rk
1 |···|Rk

nk
)(R

k
ik
)). Thus, there exists v ∈ L(Rk

ik
)

s.t. u = σN(Rk
1 |···|Rk

nk
)(v). Note that ∀Y ∈ N0, ∀χ ∈ P(N0), Y and Ŷ χ generate

the same top-symbol. So u and v generate the same top-symbols. Since G0 is in
reduced form, there exists w′ s.t. v →∗

G0
w′, and then w′(ε) = w(ε).

From Lemma 17, there exists a branch-derivation in G0: (A
1
i1 → a1[R1

i1], . . . ,

Ak
ik
→ ak[Rk

ik
]). Since G0 is in reduced form, there exists t′ ∈ LG0(A

1
i1
) (i.e. t′

is a tree derived from A1
i1

by rules in P0, and t′ contains only terminals), and
there exists p′ ∈ Pos(t′) s.t. this branch-derivation derives in G0 the position
p′ of t′. Since v ∈ L(Rk

ik
) and v →∗

G0
w′, one can even choose t′ s.t. t′|p′ =

ak(w′). Since ak = a, we have t′|p′ = a(w′). On the other hand, path(t′, p′) =
a1 . . . ak = path(t, p). Finally, since t ∈ L(G), {A1

1, . . . , A
1
n1
} ∈ S. Since A1

i1
∈

{A1
1, . . . , A

1
n1
}, from Definition 2 we have A1

i1 ∈ S0. Therefore t′ ∈ L(G0). �

Example 12. Let G be the grammar of Example 6 and t the tree of Figure 3.
Let p = 0. Using the notations of Lemma 18, t|0 = frame(w) where
w = 〈frame(frame, frame, frame), frame(frame, frame)〉. We have t �∈
L(G0). Let t′ = image(frame(frame(frame, frame), frame)) ∈ L(G0) and
(with p′ = p = 0) t′|p′ = frame(w′) where w′ = 〈frame(frame, frame),
frame〉. Thus w′(ε) = w(ε). Note that others t′ ∈ L(G0) suit as well. �

We end this section by proving that the grammar obtained by our algorithm
generates the least STTL which contains L(G0).

Lemma 19. Let L′ be a STTL s.t. L(G0) ⊆ L′. Let t ∈ L(G). Then, ∀p ∈
Pos(t), ∃t′ ∈ L′, ∃p′ ∈ pos(t′), (t′|p′ = t|p ∧ path(t′, p′) = path(t, p)). �

Proof: We define the relation � over Pos(t) by p � q ⇐⇒ ∃i ∈ IN, p.i = q. Since
Pos(t) is finite, � is noetherian. The proof is by noetherian induction on �. Let
p ∈ pos(t). Let us write t|p = a(w).

94 J. Chabin et al.

From Lemma 18, we know that: ∃t′ ∈ L(G0), ∃p′ ∈ pos(t′), t′|p′ = a(w′) ∧
w′(ε) = w(ε) ∧path(t′, p′) = path(t, p). Thus, t|p = a(a1(w1), . . . , an(wn)) and
t′|p′ = a(a1(w

′
1), . . . , an(w

′
n)).

Now let p � p.1. By induction hypothesis: ∃t′1 ∈ L′, ∃p′1 ∈ pos(t′1), t
′
1|p′

1
=

t|p.1 = a1(w1) ∧path(t′1, p′1) = path(t, p.1). Notice that t′1 ∈ L′, t′ ∈ L(G0) ⊆
L′, and L′ is a STTL. Moreover path(t′1, p

′
1) = path(t, p.1) = path(t, p).a1 =

path(t′, p′).a1 = path(t′, p′.1).
As path(t′1, p′1) = path(t′, p′.1), from Lemma 16 applied on t′1 and t′, we get

t′[p′.1← t′1|p′
1
] ∈ L′. However (t′[p′.1← t′1|p′

1
])|p′ = a(a1(w1), a2(w

′
2), . . . , an(w

′
n))

and path(t′[p′.1 ← t′1|p′
1
], p′) = path(t′, p′) = path(t, p). By applying the same

reasoning for positions p.2, . . . , p.n, we get a tree t′′ ∈ L′ such that t′′|p′ = t|p and
path(t′′, p′) = path(t, p). �

Corollary 3 (When p = ε, and then p′ = ε). Let L′ be a STTL such that
L′ ⊇ L(G0). Then L(G) ⊆ L′. �

Pairwise Similarity

for Cluster Ensemble Problem:
Link-Based and Approximate Approaches

Natthakan Iam-On1,� and Tossapon Boongoen2

1 School of Information Technology, Mae Fah Luang University,
Chiang Rai 57100, Thailand

nt.iamon@gmail.com
2 Department of Mathematics and Computer Science,

Royal Thai Air Force Academy,
Bangkok 10220, Thailand
tossapon_b@rtaf.mi.th

Abstract. Cluster ensemble methods have emerged as powerful tech-
niques, aggregating several input data clusterings to generate a single
output clustering, with improved robustness and stability. In particu-
lar, link-based similarity techniques have recently been introduced with
superior performance to the conventional co-association method. Their
potential and applicability are, however limited due to the underlying
time complexity. In light of such shortcoming, this paper presents two
approximate approaches that mitigate the problem of time complex-
ity: the approximate algorithm approach (Approximate SimRank Based
Similarity matrix) and the approximate data approach (Prototype-based
cluster ensemble model). The first approach involves decreasing the com-
putational requirement of the existing link-based technique; the second
reduces the size of the problem by finding a smaller, representative,
approximate dataset, derived by a density-biased sampling technique.
The advantages of both approximate approaches are empirically demon-
strated over 22 datasets (both artificial and real data) and statistical
comparisons of performance (with 95% confidence level) with three well-
known validity criteria. Results obtained from these experiments suggest
that approximate techniques can efficiently help scaling up the applica-
tion of link-based similarity methods to wider range of data sizes.

Keywords: clustering, cluster ensembles, pairwise similarity matrix,
cluster relation, link analysis, data prototype.

1 Introduction

Data clustering is a very common task, playing a crucial role in a number of ap-
plication domains, such as machine learning, data mining, information retrieval

� Corresponding author.

A. Hameurlain et al. (Eds.): TLDKS IX, LNCS 7980, pp. 95–122, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

96 N. Iam-On and T. Boongoen

and pattern recognition. Clustering aims to categorize data into groups or clus-
ters such that the data in the same cluster are more similar to each other than to
those in different clusters, with the underlying structure of real-world datasets
containing a bewildering combination of shape, size and density. Although, a
large number of clustering algorithms have been introduced for a variety of ap-
plication areas [18], the No Free Lunch theorem [36] suggests there is no single
clustering algorithm that performs best for all datasets [25], i.e. unable to dis-
cover all types of cluster shapes and structures presented in data [7], [13], [37].
Each algorithm has its own strengths and weaknesses. For any given dataset, it
is usual for different algorithms to provide distinct solutions; indeed, apparent
structural differences may occur within the same algorithm, given different pa-
rameters. As a result, it is extremely difficult for users to decide a priori which
algorithm would be the the most appropriate for a given set of data.

Recently, the cluster ensemble approach has emerged as an effective solution
that is able to overcome these problems; moreover, it improves robustness, as well
as the quality of clustering results. The main objective of the cluster ensemble
approach is to combine the different decisions of various clustering algorithms in
such a way as to achieve an accuracy superior to individual clusterings. Exam-
ples of well-known ensemble methods are: (i) the feature-based approach that
transforms the problem of cluster ensembles to clustering categorical data [34],
[35], (ii) graph-based algorithms that employ a graph partitioning methodology
[32], and (iii) the pairwise similarity approach that makes use of co-occurrence
relationships between all pairs of data points [13], [32].

Of particular interest here is the pairwise similarity approach, in which the final
partitions are derived based on relations amongst data points represented within
the similarity matrix. This is widely known as the Co-Association matrix [13].
This relation-oriented matrix denotes co-occurrence statistics between each pair
of data points, especially in term of the proportion of base clusterings in which
they are assigned to the same cluster. In essence, the co-association matrix can
be regarded as a new similarity matrix, which is superior to the original distance
based counterpart [17]. It has been wildly applied to various application domains
such as gene expression data analysis [28], [33] and satellite image analysis [27].

This approach has gained popularity and become a practical alternative mainly
due to its simplicity. However, it has been criticized because the underlying ma-
trix only considers the similarity of data points at coarse level and completely
ignores those existing amongst clusters [9], [16]. As a result, by not exploiting
available information regarding cluster associations, many relations are left un-
known with zero similarity value. To this extend, Iam-on et al. [16] introduced
methods for generating two new pairwise similarity matrices, named Connected-
Triple Based Similarity and SimRank Based Similarity matrices. Both are in-
formed by the basic conjecture of taking into consideration as much information,
embedded in a cluster ensemble, as possible when finding similarity between data
points. To discover similarity values, they consider both the associations among
data points as well as those among clusters in the ensemble using link-based
similarity measures [4], [19], [23].

Pairwise Similarity for Cluster Ensemble Problem 97

This paper aims to generalize the characteristics and performance of different
pairwise similarity methods proposed in the literature for the cluster ensem-
ble problem. To this end, the quality of clustering results achieved with these
methods over both real and artificial datasets, of distinct shapes and sizes, are ex-
tensively examined. Furthermore, difficulties in their applicability are explored,
especially the problem of high computational complexity of O(N2) (N being the
number of data points). This paper describes how pair-wise techniques can be
made more efficient, especially when applied to a large dataset, through approx-
imate schemes: (i) reducing the complexity of link-based similarity estimation
and (ii) reducing the number of data points, where a set of P (P << N) rep-
resentative data points (i.e. prototypes) are exploited instead. Following that,
a decision-support matrix is suggested with appropriate alternatives of pairwise
methods and prototyping techniques for distinct requirement contexts, regarding
time consumption, accuracy level and size of data.

The paper is organized as follows. Section 2 contains a formal definition of
the cluster ensemble problem and its general framework. Section 3 presents a
review on the pairwise similarity approach, including co-association and link-
based similarity matrices. Approximate approaches to cluster ensemble problem
and their underlying intuitions are thoroughly expressed in Section 4. Next,
Section 5 generalizes the quality of these methods through their experimental
evaluation under a variety of conditions and datasets. In Section 6, a decision-
support matrix is introduced as the guideline to selecting appropriate pairwise
similarity methods and approximation scheme for different requirement criteria.
The paper is concluded in Section 7 with suggestions for further work.

2 Cluster Ensemble Problem

This section includes fundamental concepts regarding the problem of cluster
ensemble upon which this research has been developed.

2.1 Problem Formulation

Let X = {x1, . . . , xN} be a set of N data points and let Π = {π1, . . . , πM} be a
set of M base clustering results, which will be referred to as a cluster ensemble.
Each base clustering result (called an ensemble member) returns a set of clusters

πi = {Ci
1, C

i
2, . . . , C

i
ki
}, such that

⋃ki

j=1 C
i
j = X , where ki is the number of

clusters in the i-th clustering. For each x ∈ X , Ci(x) denotes the cluster label
to which the data point x belongs. In the i-th clustering, Ci(x) = j if x ∈ Ci

j .
The problem is to find a new partition π∗ of a dataset X that summarizes the
information from the cluster ensemble Π .

2.2 Cluster Ensemble Framework

The general process of cluster ensemble is shown in Figure 1. In particular,
solutions achieved from different base clusterings, termed as ensemble members,

98 N. Iam-On and T. Boongoen

are intelligently aggregated to form a final partition. Essentially, this meta-level
method involves two major tasks of: (i) generating a cluster ensemble, and (ii)
producing the final partition (normally referred to as consensus function). At the
outset, a cluster ensemble is typically built by exploiting different cluster models
and different data partitions. Distinct cluster models refer to different cluster
algorithms or a single algorithm with several sets of parameter initialization,
such as cluster centers and number of clusters used in k-means method [11],
[12], [13], [15], [35]. In fact, a cluster ensemble can also be achieved by applying
manifold subsets of initial data to base clusterings. It is intuitively assumed that
each clustering algorithm can provide different levels of performance for different
partitions of a dataset [6]. Practically, data partitions are obtained through either
data projection (i.e. subspace) in which partitions possess identical number of
data points but each with different collection of attributes, or data sampling
where partitions are similarly characterized by all initial attributes but each
with reduced number of data points [8], [34]. In addition to using one of these
methods, any combination of them can be applied as well [6], [14], [28], [29], [32].

Fig. 1. The basic process of cluster ensembles. It first applies multiple base clusterings
to a dataset X to obtain diverse clustering decisions (π1 . . . πM). Then, these solutions
are combined to establish the final clustering result (π∗) using a consensus function.

Having obtained the cluster ensemble, a variety of consensus functions (i.e.
methods) have been developed and made available for deriving the ultimate data
partition. In general, consensus methods can be categorized into: (i) feature
based, (ii) graph based and (iii) pairwise similarity approaches. The first tech-
nique transforms the problem of cluster ensembles to clustering categorical data.
Specifically, each base clustering provides a class label as a new feature describ-
ing each data point, which is utilized to formulate the ultimate solution [3], [15],
[29], [34], [35]. The second methodology makes use of the graph representation to
solve the cluster ensemble problem [6], [9], [32]. In essence, a graph representing
an ensemble is divided into a definite number of approximately equal-sized par-
titions, using graph partitioning techniques like METIS [21] and HMETIS [20].
The last approach creates a matrix, containing the pairwise similarity among

Pairwise Similarity for Cluster Ensemble Problem 99

data points, to which any similarity-based clustering algorithms can be applied
[8], [10], [11], [12], [13], [28], [29], [32].

3 Pairwise Cluster Ensemble

3.1 Co-association Method (Benchmark Method)

This specific category of cluster ensemble method employs the pairwise simi-
larity approach as its consensus function. In particular, given a dataset X =
{x1, x2, . . . , xN}, it first generates a cluster ensemble Π = {π1, π2, . . . , πM} by
applying M base clusterings to the dataset X . Following that, an N×N similar-
ity matrix is constructed for each ensemble member, denoted as Sm,m = 1 . . .M .
Each entry in this matrix represents the relationship between two data points. If
they are assigned to the same cluster, the entry will be 1, 0 otherwise. More pre-
cisely, the similarity between two data points xi and xj from the m-th ensemble
member can be computed as follows:

Sm(xi, xj) =

{
1 ifCm(xi) = Cm(xj)
0 otherwise

(1)

In essence, M similarity matrices are merged to form a co-association matrix
(CO) [13], various names found in the literature as consensus matrix [28], sim-
ilarity matrix [32] or agreement matrix [33]. The elements in the CO matrix
represent similarity between any two data points, which is a ratio of a number of
ensemble members in which these data points are assigned to the same cluster
to the total number of ensemble members. Formally, the similarity between two
data points xi and xj across all base clusterings is defined as,

CO(xi, xj) =
1

M

M∑
m=1

Sm(xi, xj) (2)

Since the CO matrix is a similarity matrix, any similarity-based clustering algo-
rithm can be applied on this matrix to yield the final partition π∗. Among several
existing similarity-based methods, the most two well-known techniques are ag-
glomerative clustering algorithm and graph partitioning method. Specifically,
Fred and Jain [13], [12] and Monti et al. [28] made use of the agglomerative clus-
tering to derive the final partitions. In contrary, Strehl and Ghosh [32] proposed
Cluster-based Similarity Partitioning Algorithm (CSPA) that generates a sim-
ilarity graph whose vertices represent data points and edges’ weights represent
similarity scores obtained from the CO matrix. Afterwards, a graph partitioning
algorithm called METIS [21] is used to divide this similarity graph into k clusters
of approximately equal size.

3.2 Link-Based Methods

Despite the advantage of its simplicity, the CO matrix fails drastically to handle
unknown relations between data points, whose similarity is zero. Investigations

100 N. Iam-On and T. Boongoen

have shown zero-similarity occurs 75% of the time, +/- 5%, for the real-world
datasets used in [16]. The CO matrix can expose only a small proportion of pair-
wise similarity between data points, which may be better discovered by bringing
in additional information regarding similarity relations between clusters in an
ensemble. To be concise, such a relation determines the similarity of any two
clusters in questions, which can be estimated from a graph or link network rep-
resenting the ensemble. Inspired by this idea, Iam-on et al. [16] employed link-
based similarity measures to refine the evaluation of similarity values among
data points: the Connected-Triple Based similarity (CTS) and the SimRank
Based Similarity (SRS) matrices, respectively.

Figure 2 shows much lower percentages of unknown relations were achieved in
the CTS and SRS link-based similarity matrices, compared to the CO matrix.
This evidence suggests that link-based similarity measures can help discover
implicit relationship amongst data points, which is not possible using the original
co-occurrence statistical approach.

Fig. 2. Percentages of zero-similarity values in two link-based similarity matrices, com-
paring to those of the CO matrix. This set of statistics is the average figures of 50 runs
achieved on Iris and Wine datasets, with three different ensemble sizes (10, 20 and 30).

Connected-Triple Based Similarity (CTS) Matrix. The CTS matrix sub-
stantially extends the original CO matrix with the concept of cluster relations
within a cluster ensemble. Strength-of-cluster associations can be quantitatively
measured by the Connected-Triple approach, and this method has been used to
disclose duplicate author names in the Digital Bibliography and Library Project
(DBLP) database [23]. It works on the basis that if two nodes share a link to
a third node then this is indicative of similarity between the two nodes. This
principle is illustrated in Figure 3. The circled vertices denote data points and
the square vertices represent clusters in each labelled clustering. There exists an
edge between a data point xi and a cluster Cj if xi belongs to Cj . Note that data
points x1 and x2 are considered to be similar in clusterings 2 and 3, in which
they are assigned to the same clusters (clusters C and D, respectively). How-
ever, their similarity would be taken as zero using information in the clustering
1 alone. Intuitively, despite being assigned to different clusters, their similarity,

Pairwise Similarity for Cluster Ensemble Problem 101

Fig. 3. A graphical representation of a cluster ensemble

and the partial similarity of clusters A and B, should be measurable. Using the
Connected-Triple approach, this similarity becomes clear, and clusters A and
B are shown to be similar (at least to some degree) due to the fact that they
possess 2 Connected-Triples, with clusters C and D at the centers of the triples.

Originally, the number of triples associated with any two objects is summed.
This simple counting might be sufficient for data points or other indivisible
objects. However, to evaluate the similarity between clusters, it is crucial to
take into account the characteristics like shared data members among clusters.
Inspired by this idea, the new Weighted Connected-Triple algorithm for the
problem of cluster ensembles was introduced [16] and is described as follows.

Weighted Connected-Triple. Given a cluster ensemble Π , a graph G =
(V,W) can be constructed where V is the set of vertices each representing a
cluster in Π and W is a set of weighted edges between clusters. Formally, the
weight assigned to the edge connecting clusters i and j is estimated in accordance
with the proportion of their overlapping members.

wij =
|Xi ∩Xj|
|Xi ∪Xj| (3)

where XA denotes the set of data points belonging to cluster A. Instead of
counting the number of triples as a whole number, the Weighted Connected-
Triple regards each triple as the minimum weight of the two involving edges.

Ck
ij = min(wik, wjk) (4)

where Ck
ij is the count of the triple between clusters i and j whose common

neighbor is cluster k. The count of all triples (1 . . . q) between cluster i and
cluster j can be calculated as follows:

Cij =

q∑
k=1

Ck
ij (5)

102 N. Iam-On and T. Boongoen

The similarity between clusters i and j can be estimated as follows, where Cmax

is the maximum Cij value of any two clusters i and j.

SWT (i, j) =
Cij

Cmax
(6)

Connected-Triple Based Similarity (CTS) Matrix. This matrix adopts
the cluster-oriented approach previously described to enhance the quality of
the pairwise similarity matrix. Specifically, for the m-th ensemble member, the
similarity of data points xi and xj is estimated using the following equation,
where DC is a constant decay factor (i.e. confidence level of accepting two non-
identical objects, which has not been assigned to the same cluster, as being
similar) whose value range is in [0,1].

Sm(xi, xj) =

{
1 ifCm(xi) = Cm(xj)
SWT (C

m(xi), C
m(xj))×DC otherwise

(7)

Following that, each entry in the CTS matrix can be computed as,

CTS(xi, xj) =
1

M

M∑
m=1

Sm(xi, xj) (8)

SimRank Based Similarity (SRS) Matrix. This link-based matrix is built
upon the SimRank algorithm [19] with the underlying assumption of neighbors
are similar if their neighbors are similar as well. Essentially, the similarity of
any two objects, g1 and g2, can be calculated as follows:

s(g1, g2) =
DC

|Pg1 ||Pg2 |
|Pg1 |∑
i=1

|Pg2 |∑
j=1

s(P i
g1 , P

j
g2) (9)

whereDC is a decay factor andDC ∈ [0, 1], Pg1 and Pg2 are the sets of neighbors
of objects g1 and g2, respectively. Individual neighbors of these objects are spec-
ified as P i

g1 and P j
g2 , for 1 ≤ i ≤ |Pg1 | and 1 ≤ j ≤ |Pg2 |. Note that s(g1, g2) = 0

when Pg1 = ∅ or Pg2 = ∅. It is suggested by Jeh and Widom [19] that the optimal
similarity measures could be obtained through iterative refinement of similarity
values to a fixed-point (i.e. after k iterations).

lim
k→∞

Rk(g1, g2) = s(g1, g2) (10)

Rk+1(g1, g2) =
DC

|Pg1 ||Pg2 |
|Pg1 |∑
i=1

|Pg2 |∑
j=1

Rk(P
i
g1 , P

j
g2) (11)

At the outset, this iterative process starts off using the lower bound of: R0(g1, g2)
= 1 if g1 = g2, and 0 otherwise.

Pairwise Similarity for Cluster Ensemble Problem 103

Applying SimRank to the Cluster Ensemble Problem. Besides consid-
ering a cluster ensemble as a network of clusters only (as with the CTS method),
a bipartite representation can be utilized to reveal additional hidden relations.
Figure 4(a) and 4(b) show the cluster results of two base clusterings, and the
corresponding bipartite graph is presented in Figure 4(c).

Fig. 4. Representing a cluster ensemble as a bipartite graph

Given a cluster ensemble Π , a graph G = (V,E) can be constructed, where V
is a set of vertices representing both data points and clusters in the ensemble and
E denotes a set of edges between data points and their clusters. Let SRS(a, b)
be an entry in the SRS matrix, which represents the similarity between any pair
of data points or the similarity between any two clusters in the ensemble. For
a = b, SRS(a, b) = 1. Otherwise,

SRS(a, b) =
DC

|Na||Nb|
∑

a′∈Na

∑
b′∈Nb

SRS(a′, b′) (12)

where DC is constant decay factor within the interval [0, 1], Nx denotes the set
of vertices connecting to x. As a result, the similarity between data points xi

and xj is the average similarity between the clusters to which they belong, and
the similarity between clusters is the average similarity between their members.

Iterative Computation of SimRank. The similarity scores between any pair
of vertices can be computed through the iteration process. Let SRSr(a, b) be a
similarity score between a and b at iteration r, the estimation of the similarity
score at the next iteration r + 1 is given as

SRSr+1(a, b) =
DC

|Na||Nb|
∑

a′∈Na

∑
b′∈Nb

SRSr(a
′, b′) (13)

Note that, at the outset, SRS0(a, b) = 1 if a = b and 0 otherwise.

104 N. Iam-On and T. Boongoen

4 Complexity Improvements via Approximate
Methodologies

The major drawback of pairwise similarity methods is the high computational
complexity, especially with the link-based matrices, which limits their application
only to small and medium-size data [13], [16]. Given N data points and M
ensemble members (i.e. base clusterings), the time complexity of creating the
CO matrix is O(N2M), while that of the CTS matrix is O(N2MT1) (where T1

is the average of |NCa||NCb
|, Ca and Cb are the clusters to which data points a

and b belong, |NCa | and |NCb
| are the number of clusters that share members

with Ca and Cb, respectively). In addition, the same requirement of the SRS
matrix is O(r(N2T2 +C2T3)), where T2 is the average of |Na||Nb| over all pairs
of data points (a, b), Na and Nb are the set of clusters linked to data points a
and b, respectively. Similarly, T3 denotes the average of |Nc||Nd| over all pairs
of clusters (c, d), Nc and Nd are the set of data points linked to clusters a and
b. With the SimRank algorithm, r is the number of iterations of estimating
similarity values and C is the total number of clusters in the ensemble.

As a result, computing the two link-based matrices is more computation-
ally expensive than computing the original CO matrix, and their use may be
impractical for large datasets. However, as empirically demonstrated in [16],
they greatly improve robustness and quality of clustering results, by being able
to recover additional hidden relations among data points that are completely
neglected in the CO approach. Therefore, this section introduces two method-
ologies for reducing computational complexity of link-based matrices and ex-
tending their applicability to large datasets: (i) approximating the similarity
estimation performance of the SRS matrix with the new ASRS (Approximate
SRS) approach and (ii) approximating the data via a prototyping model that
can preserve the quality of similarity matrices found from the original data.

4.1 Approximate SimRank Based Similarity (ASRS) Method

With the purpose of enhancing the applicability of the SRS approach, the ASRS
method is introduced to reduce the computational requirement by eliminating
the iterative SimRank process. Essentially, this new similarity matrix is proposed
upon the same assumption used in the SRS counterpart that the similarity be-
tween data points a and b is the average similarity between the clusters to which
they belong.

At the outset, a bipartite graph G = (V,E) is constructed to represent a
cluster ensemble Π , where V is a set of vertices representing both data points
and clusters in the ensemble and E denotes a set of edges between data points
and their clusters. Let ASRS(a, b) is the entry in the ASRS matrix, which
represents the similarity between any pair of data points in the ensemble. For
a = b, ASRS(a, b) = 1. Otherwise,

ASRS(a, b) =
1

|Na||Nb|
∑

a′∈Na

∑
b′∈Nb

wSRS(a′, b′) (14)

Pairwise Similarity for Cluster Ensemble Problem 105

where Nx denotes the set of vertices connecting to data point x (i.e. a set of
clusters to which x belongs) and wSRS(y, z) is a similarity value between clusters
y and z, which can be obtained using the weighted SimRank algorithm described
below.

Weighted SimRank. Given a cluster ensemble Π , a graph G = (V,W) can be
constructed where V is the set of vertices each representing a cluster in Π and W
is a set of weighted edges between clusters. Formally, the weight assigned to the
edge connecting clusters i and j is estimated in accordance with the proportion
of their overlapping members.

wij =
|Xi ∩Xj|
|Xi ∪Xj| (15)

where XA denotes the set of data points belonging to cluster A. Let wSRS(y, z)
be a similarity between any two clusters. For y = z, wSRS(y, z) = 1. Otherwise,
it can be estimated as follows.

wSRS(y, z) =
wSR(y, z)

wSRmax
DC (16)

where DC ∈ [0, 1] is the confidence level to accept two non-identical clusters to
be similar, and wSRmax is the maximum wSR value of any two clusters y and
z, being defined as

wSR(y, z) =
1

|Ny||Nz|
∑

y′∈Ny

∑
z′∈Nz

(wyy′ × wzz′) (17)

where Ny and Nz are the set of clusters to which clusters y and z are linked (i.e.
sharing data points), respectively.

Using the prescribed approach of ASRS, the time complexity required for esti-
mating the pairwise similarity amongst data points is reduced from O(r(N2T2+
C2T3)) (with the SRS method) to O(N2T2 + C2T1), where T3 measured in a
bi-partite network is typically greater than T1 estimated in the single-object
network of clusters.

4.2 Approximate Data: The Prototype Based Cluster Ensemble
Method

Another approximating approach to help pairwise similarity methods scale up to
large datasets is the prototype-based cluster ensemble scheme. This new method-
ology involves three phases: (i) selecting representative data or prototypes, (ii)
performing cluster ensemble on the set of prototypes using the pairwise simi-
larity methods and (iii) mapping the original dataset to the clustering solution
achieved from the cluster ensemble process of prototypes. The generic process
of this approximating model is demonstrated in Figure 5.

Specifically, from a given dataset X = {x1, . . . , xN} of N data points, a
set of prototypes R = {r1, . . . , rP } is firstly generated, where P is the num-
ber of prototypes and P < N . Subsequently, pairwise similarity methods are

106 N. Iam-On and T. Boongoen

Fig. 5. The process of prototype-based cluster ensemble

applied to the set of prototypes and provide a set of clusters of prototypes
πp = {Cp

1 , C
p
2 , . . . , C

p
k}, where k is the desired number of clusters. Finally, each

data point in the original dataset X is mapped to the solution of the previous
cluster ensemble process πp, to obtain the final clustering partition π∗.

Initially, selecting a subset of representative data (i.e. prototypes) from the
original dataset is performed using data sampling techniques, which have been
extensively exploited to reduce computational complexity of data mining algo-
rithms. The most commonly used is the uniform random sampling with which
each object has an equal probability of being included in the sample set. How-
ever, in the case of datasets with skewed cluster sizes, this simple technique often
fails to select data points from small clusters [30]. To overcome this shortcom-
ing, Density-Biased Sampling (DBS) was first introduced in [30], with which the
probability of including a data point in the sample set is based on local density
of its neighbors. This sampling methodology has proven more effective than uni-
form sampling [22], [24], [30]. However, most of DBS algorithms are sensitive to
noise and some of them are suffered from high computational requirements.

To this extend, another density-biased sampling algorithm, named Biased
Box Sampling (BBS) [1], was developed to be less sensitive to noise and able to
provide a superior set of representative objects within linear time complexity of
O(NE), where N and E are the number of data points in the original dataset
and the number of attributes, respectively. Henceforth, the proposed prototype-
based model makes use of this BBS sampling technique to generate a set of
prototypes.

Having applied a pairwise similarity method to selected prototypes, a mapping
mechanism is then exploited to assign each data point to an appropriate cluster
of prototypes previously derived. In particular, each original data point xi ∈ X is
assigned to the cluster of prototypes Cp

∗ , with the minimum of average pairwise
distance between xi and all prototypes in that cluster.

Cp
∗ = Cp

j , min
∀Cp

j ,j=1...k

∑
∀rs∈Cp

j ,s=1...Pj

d(xi, rs)

Pj
(18)

where Cp
j ∈ πp, j = 1 . . . k, Pj is the number of prototypes in the cluster Cp

j ,∑
j=1...k Pj = P (i.e. the total number of prototypes), and d(xi, rs) denotes the

distance between a data point xi and the prototype rs.

Pairwise Similarity for Cluster Ensemble Problem 107

5 Performance Evaluation

This section evaluates the performance of different pairwise similarity methods,
using a variety of validity indices, over both synthetic and real-world datasets.
The applicability of these techniques, which is enhanced by the approximation of
link-based similarity estimation and a data prototyping technique, is empirically
studied in several settings of cluster ensemble.

5.1 Datasets

Four pairwise similarity matrices (CO, CTS, SRS and ASRS) are experimentally
evaluated over 23 datasets, where true natural clusters are known but are not
explicitly used by the cluster ensemble process. The details of these datasets are
summarized in Table 1, which divided into three categories of: small, medium
and large.

Table 1. Description of datasets: number of data points, number of features, number
of classes and source

Dataset Data points Features Classes Source

Small datasets:
Difficult doughnut 100 12 2 [26]
4-gaussian 100 12 4 [26]
2-doughnut 100 3 2 [5]
2-spiral 190 2 2 [5]
2-banana 200 2 2 [16]
Iris 150 4 3 UCI [2]
Wine 178 13 3 UCI [2]
Glass 214 9 6 UCI [2]
Ecoli 336 8 8 UCI [2]
Ionosphere 351 34 2 UCI [2]

Medium datasets:
Complex Image 500 2 11 modified from [26]
5-gaussian 600 2 5 modified from [26]
3-ring 600 2 3 modified from [26]
Breast Cancer 683 10 2 UCI [2]
Pima Indians Diabetes 768 8 2 UCI [2]
Vehicle 846 18 4 UCI [2]

Large datasets:
Yeast 1,484 9 10 UCI [2]
Image Segmentation 2,310 19 7 UCI [2]
Optical Digits 3,823 64 10 UCI [2]
Spambase 4,601 57 2 UCI [2]
Landsat Satellite 6,435 36 6 UCI [2]
Pen Digits 10,992 16 10 UCI [2]
Census Income 299,285 7 2 UCI [2]

108 N. Iam-On and T. Boongoen

Eight synthetic datasets are included in the experiments: Difficult dough-
nut, 4-gaussian, 2-doughnut, 2-spiral, 2-banana, Complex Image, 5-gaussian and
3-ring, shown in Figure 6(a) to 6(h), respectively. Particularly, the first two syn-
thetic datasets acquired from [26] are created in two dimensions with added ten
more dimensions of noise. In addition to the synthetic data collection, 14 real-
world datasets obtained from UCI benchmark repository [2] are also employed.
Specific to Census Income dataset that originally consists of seven continuous
and thirty three nominal features, only those continuous ones are included in
the current experiment of numerical data clustering.

Fig. 6. Synthetic datasets: (a) Difficult doughnut, (b) 4-gaussian, (c) 2-doughnut,
(d) 2-spiral, (e) 2-banana, (f) Complex Image, (g) 5-gaussian and (h) 3-ring

5.2 Evaluation Criteria

Since the external class labels are available for all experimented datasets, the
results of final clustering are evaluated using three label-oriented validity indices:
Classification Accuracy [29], Normalized Mutual Information [32] and Rand
index [31]. The label-oriented validity index assesses the degree of agreement
between two data partitions, where one of the partitions is obtained from a clus-
tering algorithm (π∗) and the other is taken from a prior information, i.e. the
known label of the data (Π ′). The description of each validity index is given
below.

Classification Accuracy. The classification accuracy (CA) is commonly used
for evaluating clustering results. It measures the number of correctly classified
data points of a clustering solution compared with known class labels. To com-
pute the CA, each cluster from the clustering result is relabeling with the ma-
jority class label, which most of data points in that cluster come from, and then
the accuracy of the new labels is measured by counting the number of correctly
labeled data points, in comparison to their known class labels, and dividing by
the total number of data in the dataset.

Pairwise Similarity for Cluster Ensemble Problem 109

Let mi is the number of data points with the majority class label in cluster
i, the CA can be regarded as the ratio of the number of correctly classified
data points to the total number of data points in the dataset. According to the
definition given by Nguyen and Caruana [29], the CA is defined as,

CA(π∗, Π ′) =
∑K

i=1(mi)

N
(19)

where N is the total number of data in the dataset. The CA ranges from 0 to 1.
If the clustering result takes value 1 of the CA, it denotes that all data points are
clustered correctly and the clustering contains only pure clusters, i.e. clusters in
which all data points have the same class label.

Normalized Mutual Information. This criterion is proposed by Strehl and
Ghosh [32] to measure how similar the two data partitions are. The Normalized
Mutual Information (NMI) measures the average mutual information between
every pair of cluster and class. Its range is 0 < NMI ≤ 1 and the maximum
value of 1 indicating that the clustering result and the original classes com-
pletely match. Given the two data partitions with K clusters and K ′ classes,
respectively, the NMI is computed by the following equation.

NMI(π∗, Π ′) =

∑K
i=1

∑K′

j=1 ni,j log(
ni,jN
nimj

)√∑K
i=1 ni log(

ni

N)
∑K′

j=1 mj log(
mj

N)
(20)

where ni,j is the number of data points agreed by cluster i and class j, ni is the
number of data points in cluster i, mj is the number of data points in class j
and N is the total number of data points in the dataset.

Rand Index. The Rand index [31] is one of many validity indices that evaluate
the agreement between two data partitions. It takes into account the number
of object pairs that exist in the same and different clusters. More formally, the
Rand index (RI) can be defined as

RI(π∗, Π ′) =
n11 + n00

n11 + n10 + n01 + n00
(21)

where n11 is the number of pairs of data points that are in the same clusters in
both partitions π∗ and Π ′, n00 denotes the number of pairs of data points that
are placed the different clusters in both π∗ and Π ′, n10 is the number of pairs
of data points, which belong to the same cluster in π∗ but are in the different
clusters in Π ′, and n01 indicates the number of pairs of data points, which are
put in the different clusters in π∗ but are in the same cluster in Π ′.

Intuitively, n11 and n00 can be interpreted as the quantity of agreements
between two partitions, while n10 and n01 are the number of disagreements. The
Rand index has a value between 0 and 1, with the more the value approximates
to 1 the higher the agreement is.

110 N. Iam-On and T. Boongoen

5.3 Empirical Evaluation of Approximate SimRank Based
Similarity Method

In order to evaluate quality of the four pairwise similarity matrices, they are
empirically compared, over 16 small-medium datasets, using several settings of
cluster ensembles exhibited below.

– The k-means clustering algorithm is specifically used to generate the base
clusterings, with random initialization of cluster centers.

– Two schemes for selecting the number of clusters (k) in each base clustering
are: fixed k =

√
N and random k in [2,

√
N], where N is the number of data

points.
– Three different ensemble sizes of 10, 20 and 30 base clusterings are experi-

mented, respectively.
– The constant decay factor (DC) are set to be 0.5, 0.8 and 0.8 for the

Connected-Triple algorithm, SimRank algorithm and Approximate SimRank
method, respectively.

– The number of iterations for SimRank algorithm is set to be 4.
– Consensus methods: three agglomerative approaches (single-linkage: SL,

complete-linkage: CL, and average-linkage: AL) and a graph partitioning
method (METIS). Note that, applying METIS to the CO matrix is the tech-
nique named Cluster-based Similarity Partitioning Algorithm (CSPA) [32].
For comparison purpose, as in [15] and [9], these consensus functions divide
data points into K (the number of true classes for each dataset) partitions in
accordance with the underlying similarity matrix (CO, CTS, SRS or ASRS).

– The ultimate clustering results are evaluated using three validity indices
emphasized in Section 5.2. The quality of each similarity matrix with each
specific ensemble setting is generalized as the average of 50 runs.

Tables 2 and 3 present two specific subsets of experimental results (using four
different consensus methods, the classification accuracy measure and the en-
semble size of 30) with small and medium datasets, respectively. As a result,
the performance of ASRS is generally competitive to that of the SRS method.
Interestingly, in some cases, ASRS can significantly improve the quality of clus-
tering results, especially with average-linkage being employed as the consensus
function. In addition, the ASRS matrix usually outperforms the original CO
method, especially with the complete-linkage algorithm where the CO matrix
causes the worst performance across all experimented datasets. This empirical
evidence effectively implies the better quality of three link-based similarity ma-
trices comparing to the traditional co-association method.

In order to further evaluate the quality of four similarity matrices over each
dataset, the number of times that one method is significantly better (of 95%
confidence level) than the others are assessed across all experimental settings.
LetXC(i, j) be the average value of validity index C across n runs for a similarity
matrix j ∈ SM (SM = {CO,CTS, SRS,ASRS}) and a specific compositional
setting i (from 4 × 2 × 3 different combinations of consensus function, base

Pairwise Similarity for Cluster Ensemble Problem 111

Table 2. Classification accuracy (in percentage) of CO, CTS, SRS and ASRS pairwise
methods. Represented figures are the averages across 50 runs of cluster ensemble (size
= 30), using four different consensus techniques (SL, CL, AL and METIS) and two
ensemble generating schemes (Fixed k and Random k), over ten small datasets. The
highest CA score of each specific ensemble setting is highlighted in boldface.

Dataset Consensus Fixed k Random k
Function CO CTS SRS ASRS CO CTS SRS ASRS

Difficult SL 62.90 63.82 93.04 88.44 90.50 92.40 96.58 97.62
doughnut CL 60.04 71.22 74.80 63.50 67.30 76.00 76.58 76.52

AL 93.60 88.02 97.66 97.80 72.42 74.88 79.84 85.62
METIS 98.68 99.00 99.00 98.96 99.02 99.00 99.00 99.00

4-gaussian SL 93.84 94.80 96.16 98.28 97.96 98.00 98.56 90.94
CL 77.74 98.52 98.52 98.68 95.72 97.76 98.40 98.40
AL 98.68 98.56 98.60 98.74 98.20 98.32 98.42 98.24
METIS 99.16 99.26 99.34 98.90 99.34 98.60 98.72 98.80

2-doughnut SL 100.00 100.00 100.00 100.00 73.82 72.96 81.50 80.34
CL 63.28 73.64 87.80 78.78 67.74 72.44 71.80 69.96
AL 92.94 98.22 99.22 96.48 66.02 66.34 67.06 67.66
METIS 90.16 99.02 100.00 95.16 61.16 67.98 68.36 71.76

2-spiral SL 61.62 59.01 57.49 51.21 53.94 53.59 61.61 51.29
CL 52.46 55.93 50.69 55.43 57.20 61.37 60.08 61.34
AL 53.16 52.41 54.13 53.93 61.85 62.12 62.47 62.06
METIS 59.36 60.73 63.49 60.89 64.06 65.00 64.47 64.85

2-banana SL 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
CL 58.06 66.18 75.09 71.76 70.55 87.59 88.78 88.07
AL 100.00 100.00 100.00 100.00 95.07 97.92 97.65 99.81
METIS 100.00 100.00 100.00 100.00 86.62 94.14 92.93 96.94

Iris SL 76.60 79.09 83.09 92.64 81.80 81.31 90.43 84.00
CL 52.57 83.93 85.08 84.53 82.89 88.47 87.71 87.45
AL 86.81 83.89 87.25 92.56 85.45 85.85 85.73 87.53
METIS 95.64 96.04 96.08 96.17 95.44 95.59 95.48 95.72

Wine SL 57.53 58.14 60.06 75.35 51.42 53.11 67.73 60.58
CL 50.11 91.47 92.34 92.33 79.75 92.87 92.04 91.92
AL 89.00 83.47 91.06 91.98 95.83 95.64 94.99 95.44
METIS 92.16 92.30 92.06 92.33 92.82 92.69 92.71 93.28

Glass SL 51.18 51.26 59.33 51.00 46.12 46.19 50.55 48.64
CL 49.93 53.94 54.49 53.41 51.96 52.35 52.17 52.95
AL 51.25 51.10 52.40 52.47 53.00 52.31 52.68 52.44
METIS 61.18 59.99 59.83 60.69 58.81 59.58 59.97 60.67

Ecoli SL 71.70 72.36 51.78 63.05 74.10 75.46 75.14 72.11
CL 56.76 80.81 80.98 79.39 79.89 80.43 79.83 79.79
AL 83.86 83.77 83.61 81.40 81.32 81.74 81.38 80.13
METIS 77.76 77.38 76.36 76.70 77.26 76.82 76.43 77.04

Ionosphere SL 65.30 65.47 64.82 65.97 64.90 65.15 65.64 64.52
CL 67.15 77.46 66.45 66.84 74.38 70.73 71.20 68.87
AL 70.85 72.76 73.02 67.98 71.34 71.30 72.78 73.18
METIS 67.30 66.29 67.05 66.34 68.48 68.50 68.49 67.59

clustering generation scheme and ensemble size). The 95% confidence interval
for the mean XC of each validity criterion C is calculated as[

XC(i, j)− 1.96
SC(i, j)√

n
,XC(i, j) + 1.96

SC(i, j)√
n

]
(22)

where SC(i, j) denotes the standard deviation of the validity index C across n
runs for experiment setting i and similarity matrix j.

The statistical significance of the difference between any two similarity matri-
ces, p and q, on any experiment setting, i, is observed if there is no intersection

112 N. Iam-On and T. Boongoen

Table 3. Classification accuracy (in percentage) for the four similarity matrices over
six medium datasets

Dataset Consensus Fixed k Random k
Function CO CTS SRS ASRS CO CTS SRS ASRS

Complex Image SL 70.09 70.26 73.71 71.67 71.12 69.22 67.86 49.79
CL 53.05 58.52 57.64 60.03 55.74 56.46 54.25 52.38
AL 62.02 63.12 63.65 64.47 60.93 60.78 59.03 53.38
METIS 65.81 65.63 65.56 65.67 64.73 64.66 64.75 65.78

5-gaussian SL 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
CL 43.71 100.00 100.00 100.00 99.79 100.00 100.00 100.00
AL 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
METIS 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

3-ring SL 100.00 100.00 100.00 100.00 87.29 86.64 83.51 76.70
CL 50.00 54.18 63.17 55.66 52.78 51.55 51.46 51.03
AL 100.00 100.00 100.00 100.00 51.97 53.58 52.73 55.17
METIS 82.43 83.05 83.39 83.08 59.22 58.75 59.43 66.77

Breast Cancer SL 65.64 65.57 66.39 69.36 79.34 82.62 73.43 66.94
CL 66.51 80.43 96.04 77.24 76.97 96.98 96.57 96.75
AL 96.78 96.72 96.28 96.04 96.06 96.97 96.98 96.90
METIS 75.04 85.07 85.06 85.01 83.20 84.59 84.77 84.81

Pima Indians SL 65.63 65.56 65.56 65.37 65.10 65.10 65.12 65.18
Diabetes CL 65.10 65.84 65.44 65.55 65.22 65.61 66.20 66.03

AL 65.10 65.10 65.10 65.10 65.51 65.39 65.41 65.38
METIS 65.10 65.23 65.17 65.12 67.38 65.71 66.62 67.08

Vehicle SL 30.90 30.76 29.44 27.32 29.64 29.84 28.41 26.34
CL 29.48 37.36 40.16 39.60 34.44 38.63 38.93 38.80
AL 39.77 40.16 39.75 39.54 40.83 40.82 40.76 40.31
METIS 40.92 45.34 45.22 45.44 41.66 42.80 41.54 42.28

between their confidence interval. Formally, for any setting i, a similarity matrix
p is significantly better than another matrix q when(

XC(i, p)− 1.96
SC(i, p)√

n

)
>

(
XC(i, q) + 1.96

SC(i, q)√
n

)
(23)

For each dataset, Table 4 presents the number of times that one similarity matrix
p ∈ SM is significantly better than its competitors, better scoreC(p), in accor-
dance with the validity criterion C ∈ {CA,NMI,RI}, across all experimental
settings.

better scoreC(p) =
∑
∀i

∑
∀q∈SM,q
=p

betteriC(p, q) , ∀p ∈ SM (24)

betteriC(p, q) =

{
1 if

(
XC(i, p)− 1.96SC(i,p)√

n

)
>

(
XC(i, q) + 1.96SC(i,q)√

n

)
0 otherwise

(25)
where i denotes a particular setting of cluster ensemble (i.e. a specific combina-
tion of consensus function, base clustering generation scheme and ensemble size).
According to this statistics, the three link-based approaches generally perform
much better than the conventional CO method across all validity measures.

Pairwise Similarity for Cluster Ensemble Problem 113

Table 4. The number of times that each matrix provides the better performance
(at 95% confidence level), measured by three validity indices, across 16 datasets, four
combination methods (SL, CL, AL and METIS), two different ensemble distributions
(Fixed k =

√
N and Random k in [2,

√
N]) and three ensemble sizes (10, 20 and 30)

Dataset CA NMI RI
CO CTS SRS ASRS CO CTS SRS ASRS CO CTS SRS ASRS

Difficult doughnut 0 9 29 30 0 8 26 31 0 9 29 30
4-gaussian 6 7 12 8 5 9 12 7 6 9 12 8
2-doughnut 0 10 17 10 1 10 17 10 0 10 17 8
2-spiral 5 13 23 9 3 4 20 3 3 10 25 9
2-banana 0 8 13 14 0 8 13 14 0 8 13 14
Iris 0 8 14 30 0 8 13 34 0 8 13 32
Wine 1 8 15 27 1 8 14 24 1 8 14 26
Glass 2 3 23 11 5 11 7 7 0 4 30 11
Ecoli 15 19 14 5 11 36 12 6 12 33 13 4
Ionosphere 14 14 8 20 15 19 12 7 17 13 9 23
Complex Image 12 13 17 12 13 13 13 16 11 12 17 8
5-gaussian 0 5 5 5 0 5 5 5 0 5 5 5
3-ring 1 4 10 11 2 5 9 12 1 7 13 14
Breast Cancer 4 22 21 19 3 22 25 19 4 22 22 19
Pima Indians Diabetes 6 8 11 12 10 11 17 21 7 9 16 18
Vehicle 7 17 17 10 9 20 14 10 4 16 18 10
Total 73 168 249 233 78 197 229 226 66 183 266 239

In addition, Figure 7 presents a bar chart which compares the frequency of
better performance, detailed by four consensus functions, between the four ma-
trices across all experiment settings and 16 datasets. The results indicate that
the CO matrix performs worst over all consensus methods, compared to the oth-
ers, especially with the CL algorithm. Amongst the three link-based methods,
the SRS matrix greatly outperforms the other two in the CL case. However,
with SL and METIS, it provides comparably results with the ASRS matrix.
More interestingly, with the AL consensus function, ASRS can notably enhance
the performance of the SRS counterpart. Hence, this bar graph signifies that the
ASRS method can produce the clustering results with comparative quality to
the SRS approach, however, with less time complexity.

5.4 Empirical Evaluation of Prototype Based Cluster Ensemble
Approach

While the previous section demonstrated the performance of the approximate
algorithm, Approximate SimRank Based Similarity (ASRS) matrix, this section
evaluates the quality of the other approximate technique, the prototype-based
cluster ensemble approach. Two sets of experiments are conducted over: (i) four
small-size datasets (Difficult doughnut, 4-gaussian, Iris and Wine) and (ii) seven
large datasets containing 1, 000 to 300, 000 instances. Firstly, with the experi-
mental setting described in Section 5.3, the quality of clustering results obtained
from the prototype model are compared to those acquired by using original
datasets. For the prototype approach, the methods of selecting the number of
clusters (k) in each base clustering (k-means) are modified to be fixed k =

√
P

and random k ∈ [2,
√
P], where P is the number of prototypes. Additionally,

114 N. Iam-On and T. Boongoen

Fig. 7. The number of time that each pairwise similarity matrix provides significantly
better performance (at 95% confidence level) than other counterparts, measured by
three different validity criteria, over 16 small-medium experimented datasets and cat-
egorized by four consensus functions

parameter values of the BBS data sampling algorithm are R = 3, Ratio = 70,
providing the number of prototypes: 31 for the two synthetic datasets, 24 and
96 for Iris and Wine datasets, respectively.

Empirical results achieved using each pairwise similarity method over these
four small datasets with ensemble size of 30, shown in Table 5, can be discussed
in two folds as follows:

– Performance of the prototype-based approach against the exploita-
tion of original dataset. In case of three agglomerative hierarchical con-
sensus functions (SL, CL and AL), the prototype-based approach frequently
improves the quality of clustering results, especially over 4-gaussian and two
real datasets. Particularly to the 4-gaussian dataset, the prototype model
usually provides better performance than the original-data counterpart for
all similarity matrices with the SL, and rather competitive with the CL and
AL algorithms.

In contrary, using METIS as the consensus function results in worse per-
formance than that of using the original data, especially over the first three
balanced datasets (i.e. Difficult doughnut, 4-gaussian and Iris). This is due to
the fact that generating a set of prototypes may no longer promise balanced
groups of prototypes, which METIS attempts to partition into equally-size
clusters. As a result, assigning original data points to wrong groups of pro-
totypes leads to low quality of final clustering results. However, with an
unbalanced dataset like Wine, results obtained from METIS are improved
with all similarity matrices.

– Performance of four similarity matrices in prototype approach. For
Difficult doughnut dataset, link-based matrices usually outperforms the CO

Pairwise Similarity for Cluster Ensemble Problem 115

Table 5. Classification accuracy (in percentage) averaged across 50 runs for each
matrix over four small datasets, two ensemble generating schemes (Fixed k and Random
k), ensemble size of 30, four consensus functions (SL, CL, AL and METIS), with both
original data (Org) and prototype paradigm (Ptt)

Dataset Base Consensus CO CTS SRS ASRS
Clustering Function Org Ptt Org Ptt Org Ptt Org Ptt

Difficult Fixed k SL 62.90 67.86 63.82 68.00 93.04 68.00 88.44 68.00
doughnut CL 60.04 62.48 71.22 70.18 74.80 69.08 63.50 69.92

AL 93.60 68.06 88.02 68.00 97.66 68.00 97.80 68.00
METIS 98.68 65.02 99.00 66.76 99.00 66.54 98.96 66.08

Random k SL 90.50 70.88 92.40 70.90 96.58 68.14 97.62 69.38
CL 67.30 67.18 76.00 70.98 76.58 71.16 76.52 70.92
AL 72.42 70.84 74.88 71.00 79.84 70.76 85.62 70.74
METIS 99.02 65.82 99.00 65.84 99.00 65.78 99.00 65.80

4-gaussian Fixed k SL 93.84 98.00 94.80 98.00 96.16 98.00 98.28 98.00
CL 77.74 98.00 98.52 98.00 98.52 98.00 98.68 98.00
AL 98.68 98.00 98.56 98.00 98.60 98.00 98.74 98.00
METIS 99.16 87.62 99.26 87.30 99.34 87.66 98.90 89.02

Random k SL 97.96 98.00 98.00 98.00 98.56 98.00 90.94 98.00
CL 95.72 98.00 97.76 98.00 98.40 98.00 98.40 98.00
AL 98.20 98.00 98.32 98.00 98.42 98.00 98.24 98.00
METIS 99.34 88.14 98.60 88.14 98.72 87.94 98.80 88.12

Iris Fixed k SL 76.60 84.67 79.09 84.67 83.09 84.67 92.64 84.67
CL 52.57 84.67 83.93 84.67 85.08 84.67 84.53 84.67
AL 86.81 84.67 83.89 84.67 87.25 84.67 92.56 84.67
METIS 95.64 84.83 96.04 85.11 96.08 85.16 96.17 84.47

Random k SL 81.80 84.67 81.31 84.67 90.43 84.67 84.00 84.67
CL 82.89 84.67 88.47 84.67 87.71 84.67 87.45 84.67
AL 85.45 84.67 85.85 84.67 85.73 84.67 87.53 84.67
METIS 95.44 85.09 95.59 85.11 95.48 84.69 95.72 85.35

Wine Fixed k SL 57.53 90.39 58.14 90.62 60.06 89.94 75.35 92.30
CL 50.11 67.06 91.47 94.87 92.34 94.85 92.33 94.88
AL 89.00 94.84 83.47 94.92 91.06 94.89 91.98 94.83
METIS 92.16 94.90 92.30 94.75 92.06 94.91 92.33 92.83

Random k SL 51.42 89.74 53.11 91.80 67.73 92.54 60.58 93.78
CL 79.75 92.40 92.87 93.99 92.04 94.79 91.92 95.19
AL 95.83 95.27 95.64 95.21 94.99 95.16 95.44 95.04
METIS 92.82 94.91 92.69 94.93 92.71 94.94 93.28 94.90

matrix with Fixed k scheme, while competitive results are obtained in the
case of Random k setting. With 4-gaussian dataset, four matrices achieve
quite consistent and similar results with all consensus functions, and ag-
glomerative hierarchical algorithms in particular. Interestingly, similar ob-
servations can also be found over Iris dataset. As for Wine dataset, the
performance of the CO matrix is often worse than the other three.

By following the same experiment settings described in Section 5.3, the second
set of experiments evaluates the prototype-based cluster ensemble approach over
seven large datasets from UCI repository [2], as described in Table 1, using the
same base clustering generating schemes as the previous set of experiments. How-
ever, there are further adjustments regarding parameters of the BBS algorithm
in order to produce prototype sets of around 300 to 400 instances as shown in
Table 6. Furthermore, as suggested in the previous experiments, METIS does
not perform well with unbalanced prototype sets, only three agglomerative hi-
erarchical consensus functions are thus examined in this empirical study.

116 N. Iam-On and T. Boongoen

Table 6. Description of large datasets: number of data points, number of prototypes
and Ratio (parameter values for BBS algorithm). Note that parameter R is set to 3
for all datasets and parameter Ratio is dataset-specific (as shown in the table).

Dataset Data points Prototypes Ratio

Yeast 1,484 319 20.0
Image Segmentation 2,310 322 3.5
Optical Digits 3,823 345 3.0
Spambase 4,601 356 6.0
Landsat Satellite 6,435 370 3.6
Pen Digits 10,992 383 1.6
Census Income 299,285 398 5.6

Having evaluated over identified large datasets, Table 7 reports the classifica-
tion accuracy achieved from a fraction of performance evaluation results using
only ensembles of size 30. In particular, measures in the third column are ac-
quired from applying the single run of SL, CL and AL to the original data,
and accuracy values obtained from prototype-based approach with four pair-
wise matrices are averages across 50 runs. According to this table, the prototype
method usually outperforms the single run of the SL, CL and AL algorithms,
throughout all datasets, except in the Spambase case in which results are rather
comparable. Note that the results of single run with the original Census Income
dataset that have been marked as ‘n/a’, can not be obtained by the personal
computer used in this experiment - Intel(R) Core(TM)2 CPU 6600 @2.40GHz,
2GB RAM. Substantial improvement can be specifically observed with the pair-
wise methods using the SL algorithm. Considering the performance of the four
similarity matrices in the context of prototype approach, the three link-based
matrices usually provide superior results to that of the CO method in the case
of CL method. In contrast, with the SL and AL algorithms, the performance of
four similarity matrices are equally competitive.

In order to further generalize the performance of the four similarity matrices
with prototype-based approach, the statistical significant difference of perfor-
mance between any pair of matrices, previously used in Section 5.3, is observed.
Table 8 presents the frequency of better performance by each matrix in three
categories of evaluation criteria, detailed in all 7 large datasets. Moreover, the
bar graph shown in Figure 8 illustrates that the CO matrix performs the worst
for all consensus methods. Once again, this empirical evidence further suggests
that link-based pairwise similarity models can produce better clustering solu-
tions than the co-association technique. This also supports the conclusion that
the ASRS method can produce the clustering results with comparative quality
to the SRS approach.

Pairwise Similarity for Cluster Ensemble Problem 117

Table 7. Clustering performance, measured by classification accuracy (in percentage),
obtained from the single run of the SL, CL and AL algorithms with the original data
(the third column) and those acquired from the prototype-base approach using the four
pairwise matrices (CO, CTS , SRS and ASRS), over seven large datasets, two ensemble
generating schemes (Fixed k =

√
P and Random k in [2,

√
P]) and ensemble size of 30.

The bold-faced values are the best performance (highest CA value) of each specific
experiment setting.

Dataset Consensus Original Prototype + Pairwise Combination Methods
Function Data + Fixed k Random k

Single run CO CTS SRS ASRS CO CTS SRS ASRS
Yeast SL 32.35 43.01 43.00 41.90 41.71 43.88 44.28 43.68 41.28

CL 44.27 44.43 50.28 50.46 50.53 48.95 50.23 50.66 51.54
AL 33.02 52.52 52.51 52.80 53.17 51.85 51.35 51.84 50.80

Image SL 14.76 58.38 59.64 60.29 62.87 60.08 61.42 62.18 54.55
Segmentation CL 56.02 61.00 67.87 68.26 67.94 65.26 66.61 67.16 67.49

AL 43.59 69.16 69.26 69.08 68.94 67.51 67.61 67.25 66.63
Optical Digits SL 10.46 67.45 67.39 67.83 62.03 66.63 66.73 68.02 59.56

CL 67.54 61.89 79.91 81.18 80.93 77.01 77.92 78.44 77.38
AL 61.76 81.53 81.61 83.78 85.32 78.36 77.95 78.25 75.11

Spambase SL 60.62 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60
CL 60.60 64.15 63.99 60.60 60.94 61.83 60.60 60.86 60.90
AL 60.62 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60

Landsat SL 23.90 68.06 68.69 69.57 66.77 69.27 69.06 69.35 67.57
Satellite CL 50.69 66.54 67.89 68.97 67.33 68.97 69.16 69.36 68.72

AL 53.49 68.93 68.45 68.82 68.89 68.89 68.31 68.82 68.27
Pen Digits SL 10.50 74.30 74.90 75.10 75.26 72.98 73.18 73.02 64.56

CL 55.00 66.66 75.01 75.01 76.10 71.98 72.11 71.89 69.72
AL 55.59 75.28 76.04 76.18 75.93 74.18 73.85 73.76 68.46

Census Income SL n/a 93.95 93.95 93.95 93.95 93.83 93.83 93.83 93.90
CL n/a 93.80 93.80 93.83 93.83 93.78 93.78 93.83 93.83
AL n/a 93.95 93.95 93.95 93.95 93.83 93.83 93.83 93.83

Table 8. The number of times that each matrix provides the significantly better per-
formance, measured by three validity indices, across seven large datasets, three combi-
nation methods (SL, CL and AL), two different ensemble distributions (Fixed k =

√
P

and Random k in [2,
√
P]) and three ensemble sizes (10, 20 and 30)

Dataset CA NMI RI
CO CTS SRS ASRS CO CTS SRS ASRS CO CTS SRS ASRS

Yeast 2 5 6 12 8 17 8 9 0 3 21 27
Image Segmentation 2 6 9 8 5 10 10 3 0 3 16 16
Optical Digits 5 7 9 12 5 8 11 12 4 6 10 11
Spambase 5 3 0 1 4 3 4 6 7 10 0 0
Landsat Satellite 1 3 9 1 3 9 9 3 0 3 7 3
Pen Digits 8 14 11 6 8 15 12 7 5 10 8 11
Census Income 0 0 2 5 0 0 3 4 0 0 2 6
Total 23 38 46 45 33 62 57 44 16 35 64 74

6 Decision-Support Matrix for Alternatives of Pairwise
Similarity Method and Approximating Scheme

In this section, based on experimental results previously exhibited, a decision-
support matrix is introduced as a tool to help users choosing a pairwise method
appropriate for given time availability, data-size and accuracy constraints.

118 N. Iam-On and T. Boongoen

Fig. 8. Bar chart comparing the number of times that each similarity matrix achieves
the significantly better clustering results across all experiment settings, measured by
three different validity criteria, on each consensus function

Initially, the actual computational time of each method in specific setting is
observed. Table 9 lists the average running times (in seconds) for each ma-
trix across 50 repeated run using ensemble size of 10. All matrices were im-
plemented using MATLAB and their execution time have been measured using
the cputime() MATLAB’s function, on a workstation (Intel(R) Core(TM)2 CPU
6600 @2.40GHz, 2GB RAM). Consistent with the analytic complexity discussed
in Section 4, the execution time required by the CO method is the lowest. Con-
sidering the three link-based approaches, the CTS approach is up to 2 times
faster than the ASRS method, while the SRS is clearly the most time consum-
ing approach. In addition, the cost of computing the ASRS matrix is far less
than that of computing the SRS matrix. In fact, the SRS requires 4 to 6 times
more execution time than the ASRS method. Moreover, due to the fact that the
running time for the three link-based depends on the number of clusters in the
ensemble, thus, time spent in Random k base clustering scheme is subsequently
less than that of Fixed k scheme.

Following that, a decision-support matrix is illustrated in Figure 9, where X
and Y axis denote the size of data and time allowance, respectively. Particularly,
data is roughly categorized into three groups of small (< 500 data points),
medium (500−1, 000 data points) and large (> 1, 000 data points), regarding its
size. Similarly, time allowance (t) to studying data is subjectively classified into
four intervals (in seconds) of very short (0 < t ≤ 1), short (1 < t ≤ 5), moderate
(5 < t ≤ 10) and long (10 < t).

For any specific combination of time and data size, a pairwise method is sug-
gested for the best possible accuracy. For instance, given a small-size data and
long time availability (i.e. the top-left entry in the matrix), the matrix recom-
mends the SRS method as the most appropriate for such context. For a large
dataset, the prototype-based model is exploited since applying pairwise methods

Pairwise Similarity for Cluster Ensemble Problem 119

Table 9. Average computational time (in seconds), across 50 runs, for constructing
each matrix on a workstation (Intel(R) Core(TM)2 CPU 6600 @2.40GHz, 2GB RAM)
using two base clustering schemes (Fixed k and Random k) and ensemble size of 10,
over various sizes of experimented datasets

No. of Fixed k Random k
data points CO CTS SRS ASRS CO CTS SRS ASRS

100 0.005 0.084 0.500 0.138 0.004 0.025 0.213 0.063
150 0.006 0.175 1.200 0.291 0.004 0.069 0.603 0.159
178 0.007 0.219 1.616 0.381 0.007 0.075 0.709 0.181
190 0.007 0.225 1.725 0.403 0.007 0.066 0.728 0.191
200 0.008 0.266 2.031 0.453 0.008 0.088 0.894 0.225
214 0.011 0.275 2.238 0.488 0.013 0.113 1.134 0.275
336 0.023 0.600 5.444 1.072 0.022 0.203 2.494 0.613
351 0.028 0.616 5.725 1.119 0.025 0.213 2.634 0.634
500 0.054 1.141 11.884 2.103 0.051 0.375 5.156 1.203
600 0.088 1.563 16.685 2.922 0.071 0.513 7.438 1.700
683 0.124 2.034 22.247 3.800 0.104 0.647 9.685 2.203
768 0.169 2.425 27.544 4.653 0.127 0.741 12.066 2.713
846 0.183 2.778 32.150 5.403 0.152 1.088 16.141 3.450

Fig. 9. Decision-support matrix for users’ selection of a pairwise method

to original data is greatly expensive. Note that the BBS sampling technique is
initially employed to obtain a set of 300 to 400 prototypes, to which the suggested
pairwise method is later applied.

7 Conclusion

This paper presents two novel approximate approaches to pairwise similarity
methodology for the problem of cluster ensembles: an approximate algorithm
approach (Approximate SimRank Based Similarity (ASRS) matrix) and an ap-
proximate data approach (Prototype-based cluster ensemble model). The ap-
proximate algorithm approach aims to reduce the computational time of the

120 N. Iam-On and T. Boongoen

original SimRank Based Similarity (SRS) matrix by eliminating the iterative
process of the underlying SimRank algorithm. The empirical studies, with several
ensemble settings and validity measures over real-world and synthetic datasets,
suggest that the proposed method can provide the comparative performance
with the existing SRS approach, however, with substantially less time require-
ments. In addition, it usually achieves superior clustering results comparing to
the traditional co-association (CO) approach.

In spite of this significant enhancement, link-based similarity methods, in-
cluding ASRS, are less efficient for large-size datasets. Due to this, the second
approximate approach–the approximate data approach—sets out to improve
this scalability aspect via the application of pairwise similarity techniques to
a high-quality set of representative data points (i.e. prototypes), acquired from
a density-biased sampling technique. Based on empirical evaluation with sev-
eral large real-world datasets, the quality of clustering results obtained with the
prototype-based method is generally better than those acquired from the sin-
gle run of hierarchical algorithms over the full original data. Whilst link-based
methods are more effective than the CO counterpart, ASRS delivers the per-
formance that is essentially as good as SRS. Finally, a decision-support matrix
was provided to aid the appropriate selection of pairwise similarity method and
approximate approaches, for given constraints of time, size and accuracy.

Beyond these achievements, it is important to extend the approximate method-
ology to very large datasets (i.e. more than 1,000,000 instances). We are currently
undertaking work in this area to employ our link-based and approximate mech-
anisms to application domains such as biological data and image analysis that
frequently require the analysis of very large datasets.

Acknowledgments. The authors would like to thank Leandro Nunes de Castro
for 2-doughnut and 2-spiral datasets, Ana Paula for the executable code of Biased
Box Sampling (BSS).

References

1. Appel, A.P., Paterlini, A.A., de Sousa, E.P.M., Traina, A.J.M., Traina Jr., C.: A
density-biased sampling technique to improve cluster representativeness. In: Kok,
J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron,
A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 366–373. Springer, Heidelberg
(2007)

2. Asuncion, A., Newman, D.J.: UCI machine learning repository (2007)
3. Boulis, C., Ostendorf, M.: Combining multiple clustering systems. In: Boulicaut,

J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD 2004. LNCS (LNAI),
vol. 3202, pp. 63–74. Springer, Heidelberg (2004)

4. Calado, P., Cristo, M., Gonçalves, M.A., de Moura, E.S., Ribeiro-Neto, B.A., Zi-
viani, N.: Link-based similarity measures for the classification of web documents.
JASIST 57(2), 208–221 (2006)

5. de Castro, L.N.: Immune Engineering: Development of Computational Tools In-
spired by the Artificial Immune Systems. Ph.D. thesis, DCA - FEEC/UNICAMP,
Campinas/SP, Brazil (2001)

Pairwise Similarity for Cluster Ensemble Problem 121

6. Domeniconi, C., Al-Razgan, M.: Weighted cluster ensembles: Methods and analysis.
ACM Transactions on Knowledge Discovery from Data 2(4), 1–40 (2009)

7. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley-
Interscience (November 2000)

8. Fern, X.Z., Brodley, C.E.: Random projection for high dimensional data cluster-
ing: A cluster ensemble approach. In: Proceedings of International Conference on
Machine Learning, pp. 186–193 (2003)

9. Fern, X.Z., Brodley, C.E.: Solving cluster ensemble problems by bipartite graph
partitioning. In: Proceedings of International Conference on Machine Learning, pp.
36–43 (2004)

10. Fred, A.: Finding consistent clusters in data partitions. In: Kittler, J., Roli, F.
(eds.) MCS 2001. LNCS, vol. 2096, pp. 309–318. Springer, Heidelberg (2001)

11. Fred, A.L.N., Jain, A.K.: Data clustering using evidence accumulation. In: Inter-
national Conference on Pattern Recognition, pp. 276–280 (2002)

12. Fred, A.L.N., Jain, A.K.: Robust data clustering. In: International Conference on
Pattern Recognition, pp. 128–136 (2003)

13. Fred, A.L.N., Jain, A.K.: Combining multiple clusterings using evidence accumu-
lation. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(6),
835–850 (2005)

14. Fred, A.L.N., Jain, A.K.: Learning pairwise similarity for data clustering. In: In-
ternational Conference on Pattern Recognition, pp. 925–928 (2006)

15. Gionis, A., Mannila, H., Tsaparas, P.: Clustering aggregation. In: Proceedings of
International Conference on Data Engineering, pp. 341–352 (2005)

16. Iam-on, N., Boongoen, T., Garrett, S.: Refining pairwise similarity matrix for clus-
ter ensemble problem with cluster relations. In: Boulicaut, J.-F., Berthold, M.R.,
Horváth, T. (eds.) DS 2008. LNCS (LNAI), vol. 5255, pp. 222–233. Springer, Hei-
delberg (2008)

17. Jain, A.K., Law, M.H.C.: Data clustering: A user’s dilemma. In: Pal, S.K., Bandy-
opadhyay, S., Biswas, S. (eds.) PReMI 2005. LNCS, vol. 3776, pp. 1–10. Springer,
Heidelberg (2005)

18. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: A review. ACM Computing
Survey 31(3), 264–323 (1999)

19. Jeh, G., Widom, J.: Simrank: A measure of structural-context similarity. In: Pro-
ceedings of ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 538–543 (2002)

20. Karypis, G., Aggarwal, R., Kumar, V., Shekhar, S.: Multilevel hypergraph parti-
tioning: applications in VLSI domain. IEEE Transactions on VLSI Systems 7(1),
69–79 (1999)

21. Karypis, G., Kumar, V.: Multilevel k-way partitioning scheme for irregular graphs.
Journal of Parallel Distributed Computing 48(1), 96–129 (1998)

22. Kerdprasop, K., Kerdprasop, N., Sattayatham, P.: Density-biased clustering based
on reservoir sampling. In: Proceedings of DEXA Workshops, pp. 1122–1126 (2005)

23. Klink, S., Reuther, P., Weber, A., Walter, B., Ley, M.: Analysing social networks
within bibliographical data. In: Bressan, S., Küng, J., Wagner, R. (eds.) DEXA
2006. LNCS, vol. 4080, pp. 234–243. Springer, Heidelberg (2006)

24. Kollios, G., Gunopulos, D., Koudas, N., Berchtold, S.: Efficient biased sampling for
approximate clustering and outlier detection in large data sets. IEEE Transactions
on Knowledge and Data Engineering 15(5), 1170–1187 (2003)

25. Kuncheva, L.I., Hadjitodorov, S.T.: Using diversity in cluster ensembles. In: Pro-
ceedings of the IEEE International Conference on Systems, Man and Cybernetics,
pp. 1214–1219 (2004)

122 N. Iam-On and T. Boongoen

26. Kuncheva, L.I., Vetrov, D.: Evaluation of stability of k-means cluster ensembles
with respect to random initialization. IEEE Transactions on Pattern Analysis and
Machine Intelligence 28(11), 1798–1808 (2006)

27. Kyrgyzov, I.O., Maitre, H., Campedel, M.: A method of clustering combination
applied to satellite image analysis. In: Proceedings of International Conference on
Image Analysis and Processing, pp. 81–86 (2007)

28. Monti, S., Tamayo, P., Mesirov, J.P., Golub, T.R.: Consensus clustering: A
resampling-based method for class discovery and visualization of gene expression
microarray data. Machine Learning 52(1-2), 91–118 (2003)

29. Nguyen, N., Caruana, R.: Consensus clusterings. In: Proceedings of IEEE Interna-
tional Conference on Data Mining, pp. 607–612 (2007)

30. Palmer, C.R., Faloutsos, C.: Density biased sampling: an improved method for
data mining and clustering. SIGMOD Records 29(2), 82–92 (2000)

31. Rand, W.M.: Objective criteria for the evaluation of clustering methods. Journal
of the American Statistical Association 66, 846–850 (1971)

32. Strehl, A., Ghosh, J.: Cluster ensembles - a knowledge reuse framework for combin-
ing multiple partitions. Journal of Machine Learning Research 3, 583–617 (2002)

33. Swift, S., Tucker, A., Vinciotti, V., Martin, N., Orengo, C., Liu, X., Kellam,
P.: Consensus clustering and functional interpretation of gene-expression data.
Genome Biology 5, R94 (2004)

34. Topchy, A.P., Jain, A.K., Punch, W.F.: Combining multiple weak clusterings. In:
Proceedings of IEEE International Conference on Data Mining, pp. 331–338 (2003)

35. Topchy, A.P., Jain, A.K., Punch, W.F.: A mixture model for clustering ensembles.
In: Proceedings of SIAM International Conference on Data Mining, pp. 379–390
(2004)

36. Wolpert, D.H., Macready, W.G.: No free lunch theorems for search. Technical Re-
port SFI-TR-95-02-010, Santa Fe Institute (1995)

37. Xue, H., Chen, S., Yang, Q.: Discriminatively regularized least-squares classifica-
tion. Pattern Recognition 42(1), 93–104 (2009)

Author Index

Akbarinia, Reza 1

Bahi, Jacques M. 28
Boongoen, Tossapon 95

Chabin, Jacques 65

Dédzoé, William Kokou 1

Haddad, Mohammed 28
Hakem, Mourad 28
Halfeld Ferrari, Mirian 65

Iam-On, Natthakan 95

Jajodia, Sushil 42

Kheddouci, Hamamache 28

Lamarre, Philippe 1
Litwin, Witold 42

Musicante, Martin A. 65

Réty, Pierre 65

Schwarz, Thomas 42

Valduriez, Patrick 1

	Preface
	Editorial Board
	Table of Contents
	As-Soon-As-Possible Top-k Query Processing in P2P Systems
	1 Introduction
	2 SystemModel
	2.1 Unstructured P2P Model
	2.2 Top-k
 Queries

	3 Problem Definition
	3.1 Foundations
	3.2 Problem Statement

	4 ASAPTop-k
 Query Processing Overview
	Query Processing Overview
	4.1 Query Forwarding and Local Execution
	4.2 Bubbling Up Results

	5 Dynamic Threshold-Based Approaches for Bubbling Up Results
	5.1 Peer’s Local Result Set Coverage
	5.2 Peer’s Local Result Set Coverage Pessimistic Estimation
	5.3 Dynamic Threshold Function
	5.4 Reducing Communication Cost
	5.5 Dynamic Threshold Algorithms

	6 Dealing with Peers Failures in ASAP
	6.1 Absence of Parent
	6.2 Adjustment of Peer’ Local Result Set Coverage

	7 Feedback Measures for Intermediate Results
	7.1 Stabilization Probability
	7.2 Proportion of Contributor Peers
	7.3 Discussion

	8 Performance Evaluation
	8.1 Simulation Setup
	8.2 Performance Results

	9 Related Work
	10 Conclusion
	References

	Self-stabilizing Consensus Average Algorithm in Distributed Sensor Networks
	1 Introduction
	2 Self-stabilizing Consensus Average Algorithm
	2.1 Fundamentals
	2.2 Outline of the Algorithm
	2.3 Global Legitimate State
	2.4 Local Information
	2.5 The Algorithm
	2.6 Convergence Proof
	2.7 Improvement of the Algorithm

	3 Experimentation
	4 Discussion and Future Work
	5 Conclusion
	References

	Recoverable Encryption through a Noised Secret
over a Large Cloud
	1 Introduction
	2 Related Work
	3 Recoverable Encryption through a Noised Secret
	3.1 Client-Side Encryption
	3.2 Server Side Decryption
	3.3 Decryption with Static Partitioning
	3.4 Recovery with Scalable Partitioning
	3.5 Scalable Partitioning with Limited Load Balancing

	4 Performance Analysis
	5 Multiple Noises
	6 Security
	7 Conclusions
	References

	Conservative Type Extensions for XML Data
	1 Introduction
	2 Overview
	3 Theoretical Background
	4 Transforming an RTG into an LTG
	5 Transforming an RTG into a STTG
	6 Interactive Generation of New Types
	7 Algorithm Analysis and Experiments
	8 Related Work
	9 Conclusion
	References

	Pairwise Similarityfor Cluster Ensemble Problem:
Link-Based and Approximate Approaches
	1 Introduction
	2 Cluster Ensemble Problem
	2.1 Problem Formulation
	2.2 Cluster Ensemble Framework

	3 Pairwise Cluster Ensemble
	3.1 Co-association Method (Benchmark Method)
	3.2 Link-Based Methods

	4 Complexity Improvements via Approximate Methodologies
	4.1 Approximate SimRank Based Similarity (ASRS) Method
	4.2 Approximate Data: The Prototype Based Cluster Ensemble

	5 Performance Evaluation
	5.1 Datasets
	5.2 Evaluation Criteria
	5.3 Empirical Evaluation of Approximate SimRank Based
	5.4 Empirical Evaluation of Prototype Based Cluster Ensemble

	6 Decision-Support Matrix for Alternatives of Pairwise Similarity Method and Approximating Scheme
	7 Conclusion
	References

	Author Index

