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Abstract Richardson extrapolation is a commonly used technique in financial
applications for accelerating the convergence of numerical methods. In this paper
an unconditionally stable high-order compact finite difference scheme is proposed
for solving the Black-Scholes equation, and the convergence rate is second-order in
time and fourth-order in space. Then a Richardson extrapolation algorithm develops
to make the final computed solution sixth-order accurate both in time and space
when the time step equals the spatial mesh size. Numerical experiments show the
effectiveness of the method.

Keywords Black-Scholes equation • High-order compact scheme • Richardson
extrapolation • Unconditional stability

1 Introduction

In the past several decades, the stock option was one of the most popular financial
derivatives, which was widely and successfully used to hedge risk in the financial
world. To develop a model for the price of a stock option, Black and Scholes
(1973) and Merton (1973) derived a parabolic second order partial differential
equation (PDE) for the value V(S,t) of an option on stokes in 1973. This equation is
known as the Black-Scholes equation, and can be solved exactly by transforming
the equation into a diffusion one, when the coefficients are constant or space
independent. However, when a problem is space-dependent, this transformation is
impossible, numerical solution is a natural way to solve the problem. In the real
financial market, numerical solutions are normally sought. Hence, efficient and
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accurate numerical algorithms are essential for solving this problem accurately.
Options research methods are mainly binarytree (Boyle and Lau 1994), Monte Carlo
methods (Shahbandarzadeh et al. 2013) and finite difference method (Han and Wu
2003; Tavella and Randall 2000; During et al. 2003).

Standard discretization schemes break down for the Black-Scholes equation for
high interest rate and low volatility. For these parameters, the problem becomes
singly-perturbed, which means that coefficient of the diffusion term becomes
very small, the Black-Scholes equation becomes a convection-dominated operator.
Hence, standard schemes like the second-order central difference introduce spurious
oscillations around the true solution. The central difference method will lead to
nonphysical oscillations in the computed solution. This is due to a loss in stability
(Hundsdorfer and Verwer 2003). To overcome this disadvantage, the convection
term needs to be discretized using proper upwind finite difference schemes to avoid
oscillations in convection dominated problems. However, if the sign of convection
coefficient changes over the solution domain, the direction of the upwind scheme
must also be changed accordingly. On the other hand, the order of accuracy of the
upwind schemes is usually lower than the central schemes on the same stencil.
To eliminate the affection of the convection term, we must introduce a variable
substitution in the convection diffusion equation to transform into the diffusion
equation (Hua Huang 2011; Liao and Khaliq 2009). Our goal is to obtain an
unconditionally stable high-order compact finite difference scheme for solving
Black-Scholes equation with variable coefficients. Another distinct feature of our
method is that the option price and the derivatives-hedge delta can be solved,
simultaneously.

This paper is organized as follows. A continuous model of Black-Scholes
equation is introduced in Sect. 2, The high order compact scheme for solving
linear convection-diffusion equation with variable coefficient are outlined, an
unconditional stability is also proved, improvement of accuracy both in time and
space can be achieved by applying Richardson extrapolation algorithm in Sect. 3.
Two numerical examples are presented in Sect. 4 for verifying the accuracy and the
efficiency of the new algorithms. In the end, we give some concluding remarks.

2 Black-Scholes Equation

Assume V(S,t) is the option price at time t and stock value S 2 [0, 1) � R, t 2 [0,T],
respectively with T denote the terminal expiry time of the option, � is the volatility,
r is the risk-free interest rate, D is dividend yield. It is well known that V satisfies
the following Black-Scholes equation (Black and Sholes 1973);
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For a call option, the most common final and boundary conditions are defined as:

V .S; T / D max .S � E; 0/ ; S 2 � (2)

V .0; t/ D 0;

lim
S!1V .S; t/ D S � Ee�r.T �t/ (3)

where Q D � � (0,T), � D [0, 1), D(S,t) D Sd(S,t).
Both the solution V and its derivative VS are desired. VS is called the hedge delta

which represents the sensitivity of the option value to the change of the underlining
stock price. The instantaneously riskless portfolio at time t consists of one long
position in the derivative and a short position of exactly VS shares of the underlying
stock (Liao and Khaliq 2009).

The value of this portfolio is given by;

Y
D V � SVS (4)

One must employ a change of variables

S D Eex; t D T � �; V D Eu .x; �/ (5)

These formulas are substituted into the (1), we get a forward convection diffusion
equation

@u
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D 1
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�2 .�/
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C c .x; �/
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@x
� r .�/ u (6)

where a .�/ D 1
2
�2 .�/ ; c .x; �/ D Er.t/ex �D .x; t/, which is a viable coefficient

equation.
This change of variables gives initial conditions for the call

u .x; 0/ D g.x/ D max .ex � 1; 0/ ; (7)

Boundary conditions

lim
x!�1u .x; �/ D 0; t > 0

lim
x!1u .x; �/ D ex � e��� ; t > 0

(8)

Let c(x,� ) depends on r, � , high interest rate and low volatility result to the
convection dominated flow. The solution of (6) u and ux must be obtained, for the
riskless portfolio, simultaneously.
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3 New Compact Finite Difference

3.1 Description of the New Method

We introduce the notations

An
i D A

�
xi ; tnC1=2

�
; Bn

i D B
�
xi ; tnCnC1=2

�

ıt u
n D

�
unC1 � un

�.
� ; �t u

n D
�
unC1 C un

�.
2

ı2
xUi D UiC1 � 2Ui C Ui�1

�x2

Differentiating both sides of (6) with respect to x leads to

.u� /x D a .�/ .uxx/x C c0
x.x/ux C c.x/uxx � �ux (9)

Let v D ux in (9), then

vt D a .�/ vxx C c0
x.x/v C c.x/uxx � �v (10)

(9) and (10) now form a system of equations for u and v
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u�

v�
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a 0

c.x/ a

� �
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vxx

�
C

� �� c.x/
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x.x/ � �

� �
u
v

�
(11)

Setting U D (u,v)T , Eq. (11) can be written as

U� D A .x; �/ Uxx C B .x; �/ U (12)

where

A .x; �/ D
�

a 0

c.x/ a

�
; B .x; �/ D

� �� c.x/

0 c0
x.x/ � �

�
:

(12) is the common reaction–diffusion equation, the Padé approximation for the
special derivative can be used to achieve fourth-order accuracy on the 3-points
stencil (You 2006), Crank-Nicolson scheme used to handle the time derivative
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where s1(x,t), s2(x,t) are given by

s1 D 1

24
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(13)

Regarding the second derivative,
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Defining difference operator Mx
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Multiplying (12) �Mx and substituting (13),
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Then, we can obtain
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Omitting the small term, we obtain

.I � Ci / U nC1
iC1 C 10 .I � Di / U nC1

i C .I � Ci / U nC1
i�1

D .I C Ci / U n
iC1 C 10 .I C Di / U n

i C .I C Ci / U n
i�1 (15)

where r1 D �
h2 ; Ci D �B

nC 1
2

i

2
C 6r1An

i ; Di D �Bn
i

2
� 12r1An

i

The discretized equations form a system of block tridiagonal algebraic equation.
Scheme (15) is fourth-order accurate in space and second order in time. We can get
U D [u,ux]T through solving the (15).
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3.2 Initial and Boundary Conditions

The initial condition for v can be obtained by differentiating g(x)

v .x; 0/ D ux .x; 0/ D gx.x/ (16)

When the approximation at the boundary has one-order lower accuracy than
at inner points, the overall accuracy of the solution is kept at the higher order
(Gustaffon 1975). The boundary conditions for v are less straight forward. In order
to guarantee the fourth accuracy in scheme (15). We should generate boundary
conditions for v at the spatial grid point i D 0 and i D M at least under the third
accuracy.

The direct application of Taylor’s expansion with Maclaurin reminder derives

u2 � u0

2h
D

�
1 C h2

6
ı2

x

�
@u

@x
jxDx1 � h4

360

@5u

@x5
jxDx1 C O

�
h6

�

Omitting small term, we have

u2 � u0

2h
D

�
1 C h2

6
ı2

x

�
v1 D 1

6
v2 C 4

6
v1 C 1

6
v0 C Qs

Then, we obtain the boundary condition

v0 D 3 .u2 � u0/

�x
� v2 � 4v1 (17)

Considering the other end point i D M, the boundary condition can be got from
the (8)

vM D 3 .uM � uM�2/

�x
� 4vM�1 � vM�2 (18)

3.3 Stability Analysis

Theorem 1 Suppose u(x,� ) 2 C4,2(R � [0,T]) is the solution of the convection
diffusion equation with constant para-meter �, then for any � � 0, the difference
scheme (15) is unconditional stable.

Proof We conduct Von Neumann stability analysis (Balsara 1995) for the new
compact scheme. Assume that the solution is of the form un

j D buneikjh the
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exponential represents the spatial dependence. In the exponential jh represents the
position along the grid and k is the spatial wave number

Taking the discrete Fourier transform of the difference scheme (15), we have

M
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D N
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�
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M D
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5

with � D kh, B D 1 � 1
3
sin2 �

2
; H D 2r1sin2 �

2
;

R D B
�
1 C ��

2

� C H , obviously, R � B > 0, H � 0, for any � � 0.
Thus

�
bunC1

bvnC1

�
D M �1N

�
bun

bvn

�
(19)

Here M� 1N is the amplification matrix at each time-step. In order for the numerical
algorithm to be stable, the modulus of the eigenvalues of M� 1N must be less than
or equal to unity for all possible values of � .

The eigenvalues of M� 1N can be calculated as

�1;2 D
B2 �

�
B��

.
2 C H

�2 � c2�BH
.

2 ˙ icB
p

2BH�

R2 C c2�BH
.

2

assume j�1;2j2 D P
Q

, then we have

P � Q D �4B

�
B��

2
C H

� �
R2 C c2�BH

.
2

�
� 0

So, j�1,2j2 � 1, for any � � 0.

Theorem 2 Zhi Zhong Sun (2001) suppose u(x,t) 2 C4,2(R � [0,T]) is the solution
of the linear parabolic equations with variable coefficients, the difference scheme
(15) is convergent with the convergence order O(�2 C h4) in the L1 norm.
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3.4 Richardson Extrapolation

Let the solution of the scheme (15) with conditions (16, 17, and 18) is Uk
i (h,� )

Theorem 3 Let vn
i , wn

i are the solutions of the equations

8
<

:

@v

@t
� A .x; t/

@2v

@x2
C B .x; t/ v D s1 .x; t/ ; x 2 R; t 2 .0; T 	 ;

v .x; 0/ D 0; x 2 R

8
<

:

@w

@t
� A .x; t/

@2w

@x2
C B .x; t/ w D s2 .x; t/ ; x 2 R; t 2 .0; T 	

w .x; 0/ D 0; x 2 R

with homogeneous Dirichlet boundary, and

8
ˆ̂̂
<

ˆ̂̂
:

@Qu
@t

� A .x; t/
@2 Qu
@x2

C B .x; t/ Qu D p .x; t/ ; x 2 R; t 2 .0; T 	

Qu .x; 0/ D 0; x 2 R

lim
x!�1Qu .x; t/ D Œ0; Qs	T ; lim

x!1Qu .x; t/ D Œ0; Qs	T ; t 2 .0; T 	

are smooth enough, where s1,s2 is given in(13)

p .x; t/ D A.x/
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C O
�
�6 C �2h4 C h6
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Proof The error equation of the difference (15) is

Mxı� en
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i �t ı
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xen

i C MxAn
i �t e

n
i D Mx.s1/

nC1=2
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i h4 C O
�
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�
;

e0
i D 0; ek

0 D 0; ek
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0; Qsk
m

	T
h4 C O

�
h6

�
;

(20)

Similar with (15), we also construct the difference scheme

(
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i � An
i �t ı

2
xvn

i C MxBn
i �t vn

i D Mx.s1/
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(
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i � An
i �t ı

2
xwn

i C MxBn
i �t wn

i D Mx.s2/
nC1=2
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i D 0; wk

0 D 0; wk
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(22)
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(

Mxı� Qun
i � An

i �t ı
2
x Qun

i C MxBn
i �t Qun

i D Mxp
nC1=2
i

Qu0
i D 0; Quk

0 D 0; Quk
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Let

rk
i D ek

i � �2vk
i � �4wk

i � h4 Quk
i

Let (20) � �2 � (21) � �4 � (22) � h4 � (23), we have
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n
i D O

�
�6 C �2h4 C h6

�

e0
i D 0; ek
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According to Theorem 2, we can obtain
��rk

��1 D O
�
�6 C �2h4 C �6

�

Let R D O(�6 C �2h4 C h6)

U .xi ; tk/ � U k
i .h; �/ � �

�2vk
i C �4wk

i C h4 Quk
i

	 D R (24)

Let � D O(h), we obtain the sixth-order accurate approximation both in time and
space. The detailed approach to extrapolation is described as follows.

Step 1. Replace � by �=2 in (24) yield

U .xi ; tk/ � U k
i

�
h;

�

2

�
�

�
�2

4
vk

i C �4

16
wk

i C h4 Quk
i


D R (25)

Then 4 � (25) � (24), we can get

u .xi ; tk/ � bU k
i .h; �/ D �4

4
wk

i .h; �/ C h4 Quk
i .h; �/ C R (26)

with bU k
i .h; �/ D 4

3
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i

�
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2
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3
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i .h; �/

Step 2. Replace h, � by h=2, �=2 in (26)
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Then, we have

u .xi ; tk/ � W
j

i .h; �/ D O
�
�6 C �2h4 C h6

�

with W k
i .h; �/ D 16

15
bU k

i

�
h
2
; �

2

� � 1
15

bU k
i .h; �/

Step 3. Compute the extrapolation Wk
i (h,� ) by

bU k
i .h; �/ D 4

3
uk

i

�
h;

�

2

�
� 1

3
uk

i .h; �/ (27)

W k
i .h; �/ D 16

15
bU k

i .h; �/ � 1

15
bU k

i .h; �/ (28)

4 Solution of the Black-Scholes Equation

Case 1. Linear Convection-Diffusion Equation To show both the time and space
accuracy of the new algorithm, we must verify the new scheme by solving a 1D
convection-diffusion equation. Considering the follow equation:

8
<̂

:̂

@u

@t
D 1

2

@2u

@x2
C 1

2
@u
@x

; x 2 .0; 1/ ; t 2 .0; T 	

u .x; 0/ D ex; x 2 .0; 1/

which exact solution is u(x,t) D ex C t, the boundary conditions are obtained for the
exact solution.

error1, error2, error3 denote the maximum errors of the high order compact
scheme (15), extrapolation scheme (27), extrapolation scheme (28), respectively.
The data in Table 1 show the errors between the numerical and exact solutions at
T D 1.0 for a fixed h D 0.0001, while 4t is varying.

One can see that the error from the extrapolation scheme (28) is smaller than
which from the others.

The data in Table 2 shows that the error of solution by the extrapolation scheme
(28) at T D 1 with 4t D h, it is a sixth-order algorithm.

Table 1 Maximal error and
convergence order in time
when H is fixed

4t 0.2 0.1 0.05 0.025 0.0125

error1 3.15e-3 7.89e-4 1.97e-5 4.93e-5 1.23e-5
error2

a 3.87e-7 2.33e-8 1.43e-9 8.79e-11
error3

a a 3.42e-10 5.58e-12 8.85e-14
aDenote that there is no value

Table 2 Maximal error and
convergence order of the
scheme (27)

4t D h 0.2 0.1 0.05 0.025 0.0125

error3 2.88e-6 4.58e-8 7.08e-10 1.10e-11 1.14e-13
rate3

a 5.97 6.01 6.01 5.98
aDenote that there is no value
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Table 3 Maximal error and
convergence order of the
scheme (15) (4t D h2)

h 1/8 1/16 1/32 1/64 1/128

error1 3.21e-3 2.04e-4 1.29e-5 8.13e-7 5.08e-8
rate1

a 3.976 3.983 3.988 4.00
aDenote that there is no value

Table 4 Maximal error and
convergence order of the
scheme (28) (4t D h)

h 1/8 1/16 1/32 1/64 1/128

error3
a 1.28e-6 2.03e-8 3.24e-10 5.10e-12

rate3
a a 5.971 5.976 5.99

aDenote that there is no value

Case 2. Variable Coefficient Problem To verify the efficiency of the compact
scheme (15) and extrapolation schemes (28) for the nonlinear Black Scholes
equation, we construct the problem as follows (Lifeng Xi et al. 2008);

�@u

@t
� 2x2 @2u

@x2
� .1 C xt/ x

@u

@x
C et u D f .x; t/ ; .x; t/ 2 �

u .0; t/ D u .1; t/ D 0; t 2 Œ0; 1	

u .x; 1/ D �
1 � x3

�
.ex � 1/ C x .1 � x/ ; x 2 Œ0; 1	

Chosen f (x,t) such that

u .x; t/ D t
�
1 � x3

�
.ex � 1/ C t 3x .1 � x/

The data in Table 3 shows the high order compact (15) is second-order accurate
in time and fourth-order accurate in space with respect to L1-norms.

The data in Table 4 shows the extrapolation scheme (28) is sixth-order accurate
both in time and space with respect to L1-norms.

Figures 1 and 2 show the option prices and the hedge delta of the European call
at the 3 month and the half year. We can solve the Black-Scholes equation through
the high order compact (15) or the extrapolation scheme (28), simultaneously.

5 Conclusion

An efficient fourth-order compact scheme and Richardson’s extrapolation scheme
have been proposed in this paper. These methods combine the Crank-Nicolson
method in the time discretization and the fourth-order Padé approximation to the
second spatial derivatives in the space discretization. An unconditionally stable of
the compact scheme is also proved, and is particularly suitable for problems which
require calculations of both the solutions and their derivatives, such as, Black-
Scholes equation. The option price and hedge delta are obtained, simultaneously.
Then, a riskless portfolio is also obtained. A three-grid stencil extrapolation
algorithm has been established to make the final solution sixth-order accurate in
both time and space. As a result, by the use of a coarser temporal grid, we can
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obtain the numerical solution of acceptable accuracy with low time cost. Numerical
results coincide with our theoretical analysis very well, and demonstrate the high
accuracy and efficiency of the extrapolation algorithm.
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