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Abstract The artificial bee colony algorithm (ABC) hybrid two loading heuristics
for the three-dimensional loading capacitated vehicle routing problem (3L-CVRP)
is presented in the paper. The 3L-CVRP is a combination of two well-known NP-
hard problems, the capacitated vehicle routing problem, and the three-dimensional
bin packing problem. It is very difficult to get a good performance solution in prac-
tice for these problems. The problem is solved by different heuristics for the loading
part, and by artificial bee colony algorithm for the overall optimization. To solve the
representation problem of the solution, a novel real encoding method is presented
to represent the solution for ABC. The effectiveness of the proposed algorithm is
tested, and proven by extensive computational experiments on benchmark instances.

Keywords 3L-CVRP • Artificial bee colony algorithm • Bin packing problem •
Vehicle routing problem

1 Introduction

The Three-Dimensional Loading Capacitated Vehicle Routing Problem (3L-CVRP)
is a highly complex problem combining three dimensional loading and vehicle
routing, which was introduced by Gendreau et al. (2006). The 3L-CVRP calls for the
determination of the routes traveled by a fleet of homogeneous vehicles that deliver
items to customers such that the total distance traveled by all vehicles is minimized.
In addition, the three-dimensional loading plan for each vehicle must be formulated
while fulfilling a number of constraints that address issues such as the stability of
the items, packing requirements for fragile items, and the convenience of loading
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and unloading. The problem is of practical interest in freight distribution since the
combination of the vehicle routing problem and the 3-D container loading problem
with realistic constraints closely models real-life situations, especially when the
delivery involves multiple large items of dissimilar dimensions. Examples are the
distributions of household appliances, kitchen components, mechanical components
and furniture.

On the other hand, the 3L-CVRP is an extremely hard and challenging opti-
mization problem since it generalizes two of the most well known problems in
combinatorial optimization: the Capacitated Vehicle Routing Problem (CVRP), and
the Three Dimensional Bin Packing Problem (3D-BPP). During the past decades,
in the area of combinatorial optimization, CVRP and 3D-BPP problems have been
researched intensively but independently. About CVRP and related vehicle routing
problems, e.g. the VRP with time windows (VRPTW), we recommend that readers
survey the books by Toth and Vigo (2001) and Golden et al. (2008) and recent
reviews (Laporte 2009; Vidal et al. 2013). The 3D-BPP problem and its variants,
e.g. 3D strip packing problem (3D-SPP), have been solved to optimality so far.
Exact methods for the 3D-BPP were proposed by Martello et al. (2000). Heuristic
and meta-heuristic methods for the 3D-BPP were developed by Faroe et al. (2003),
Crainic et al. (2008), Egeblad and Pisinger (2009).

Only in the recent years have some researchers pay attention to this combined
optimization problem. Gendreau et al. (2006) were the first to consider the vehicle
routing problem with three-dimensional loading constraints. A tabu search approach
was proposed to address the 3L-CVRP problem, where the three-dimensional
loading sub-problem was also solved by tabu search algorithm. Tarantilis et al.
(2009) designed a hybrid procedure combining the strategies tabu search and guided
local search, and they also devised collection of plain packing heuristics. Fuellerer
et al. (2010) generalized their ant colony algorithm to the three-dimensional case
by checking loading feasibility through fast and effective packing heuristics. Zhu et
al. (2012) improved two packing heuristics, namely the Deepest-Bottom-Left-Fill
heuristic and the Maximum Touching Area heuristic, for the three-dimensional load-
ing sub-problem and provided efficient implementations. Based on these two new
heuristics, an effective tabu search algorithm is given to address the overall problem.
Bortfeldt (2012) presented a new hybrid algorithm including a tabu search algorithm
for routing and a tree search algorithm for packing boxes into vehicles for the 3L-
CVRP. Qingfang Ruan et al. (2013) proposed a hybrid approach which combines
Honey Bee Mating Optimization and six loading heuristics to solve the 3L-CVRP.
Moura and Oliveira (2009) studied the combination of the Vehicle Routing Problem
with Time Window (VRPTW) and the Container Loading Problem. The number of
vehicles is to be minimized with higher priority, whereas the total travel distance
is to be minimized with lower priority. They proposed a genetic algorithm with a
hybrid meta-heuristic methodology combining the strategies of tabu search to solve
the problem. Then both a sequential and a hierarchical approach were proposed.

To the best of our knowledge, there is no detailed work that describes the use
of the ABC algorithm to deal with 3L-CVRP. We present ABC algorithm with two
loading heuristic to solve the 3L-CVRP. A novel real encoding method is presented
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to represent the solution. The ABC algorithm is mainly searches the space of routing
solutions, while checking the feasibility of the three-dimensional loading of each
route by means of two loading heuristic deepest-bottom-left fill (DBLF) and max
touching area (MTA). Our aim is to provide good solutions to the instances, leading
to the algorithm of practical use in transportation.

The remainder of this paper is organized as follows: in Sect. 2, a detailed
description of the problem is provided. In Sect. 3 the proposed algorithm is
described, and followed by the computational results in Sect. 4. Finally, Sect. 5
concludes the paper.

2 Problem Description

Let G D (V,E) be an undirected graph, where V D (0,1,2, : : : ,n) is the set of n C 1
vertices corresponding to a depot, represented by vertex 0, and n clients, denoted by
vertices 1, : : : , n and E is the set of edges. The cost of an edge (i,j) is denoted by cij.
There are K identical vehicles available; each vehicle has a weight capacity D and
a three-dimensional rectangular loading space S D W � H � L defined by width W,
height H and length L. Each client i(1,2, : : : ,n) requires the delivery of a set of mi

three-dimensional items Iit(t D 1, 2, : : : , mi) having width wit, height hit and length
lit with total weight di.

In 3L-CVRP, we assume all items are rectangular boxes. The items can only be
placed orthogonally inside a vehicle; however, items can be rotated 90ı by on the
width-length plane. Some items are fragile; only fragile items can be placed on top
of other fragile items, whereas any item can be placed on top of a non-fragile item.
The stability of the packed items is important; one method to ensure stability is
to require items that are placed on top of other items to have sufficient supporting
areas. A packing is feasible if all items are either placed directly on the floor of
the vehicle or on top of other items with total supporting area of at least ˛ percent
of their base areas. Another important requirement is to ensure that items can be
easily unloaded; this is approximated by a Last-In-First-Out (LIFO) policy. When
client i is visited, all of its corresponding items Iit must not be stacked beneath nor
be blocked by items of clients that are to be visited later; an item A is beneath B if
the interior of the projections of their bases on the vehicle floor intersect, and the
top of A is not higher than the bottom of B in the vertical direction. An item is also
considered blocked if it will overlap any item of a later client when it is moved along
the L axis toward the rear door.

The objective of 3L-CVRP is to find a set of at most K routes (one per vehicle)
such that:

1. Every vehicle starts from the depot, visits a sequence of clients and returns to the
depot.

2. All clients are served, and every client is served by exactly one vehicle.
3. No vehicle carries a total weight that exceeds its capacity.
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4. All items demanded by all the clients served by a vehicle can be orthogonally
packed into that vehicle while satisfying the following loading constraints:

(1) (Fragility constraint) no non-fragile items are placed on top of fragile items.
(2) (Supporting area constraint) all items have a supporting area of at least a

percent of their base area.
(3) (LIFO constraint) all items fulfill the LIFO policy.

5. The total cost of all edges included in the routes is minimized.

3 The Proposed Algorithm

3.1 Artificial Bee Colony Algorithm

The Artificial Bee Colony (ABC) algorithm is a new swarm intelligence technique
inspired by intelligent foraging behavior of honey bees. The first framework of ABC
algorithm was presented by Karaboga and Basturk (2007, 2008). In ABC algorithm,
the colony of artificial bees contains three groups of bees: employed bees, onlookers
and scouts. A bee waiting on the dance area for making a decision to choose a food
source is called onlooker and one going to the food source visited by it before is
named employed bee. The other kind of bee is scout bee that carries out random
search for discovering new sources. The position of a food source represents a
possible solution to the optimization problem and the nectar amount of a food source
corresponds to the quality (fitness) of the associated solution. In the algorithm, the
first half of the colony consists of employed artificial bees and the second half
constitutes the onlookers. The number of the employed bees or the onlooker bees
is equal to the number of solutions in the population. At the first step, the ABC
generates a randomly distributed initial population of SN solutions (food source
positions) according Eq. (1).

x
j
i D x

j
min C rand ./

�
xj

max � x
j
min

�
i 2 SN; j 2 D (1)

Where SN denotes the size of population. Each solution xi where i D 1, 2, : : : SN
is a D-dimensional vector. Here, D is the number of optimization parameters. xj

max

and xj
min are lower and upper bounds of parameter j, respectively.

After initialization, the population of the positions (solutions) is subjected to
repeated cycles C D 1, 2 : : : MCN of the search processes of the employed bees,
the onlooker bees and scout bees. An employed bee produces a modification on
the position (solution) using the formula (2) in her memory depending on the local
information (visual information) and tests the nectar amount (fitness value) of the
new source (new solution). Provided that the nectar amount of the new one is higher
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than that of the previous one, the bee memorizes the new position and forgets the
old one. Otherwise she keeps the position of the previous one in her memory.

vij D xij C 'ij

�
xij � xkj

�
(2)

Where a food source vi is determined by changing one parameter of xi.
k 2 f1, 2, : : : SNg and j 2 f1, 2, : : : Dg are randomly chosen indexes. Although k is
determined randomly, it has to be different from i. ®ij is a random number between
[�1,1]. It controls the production of neighbor food sources around xij and represents
the comparison of two food positions visible to a bee.

After all employed bees complete the search process; they share the nectar
information of the food sources and their position information with the onlooker
bees on the dance area. An onlooker bee evaluates the nectar information taken from
all employed bees and chooses a food source with a probability value associated
with that food source pi calculated by the following expression:

pi D fiti
SNX
iD1

fiti

(3)

Where fiti is the fitness value of solution i.As in the case of the employed bee, it
produces a modification on the position using formula (3) in its memory and checks
the nectar amount of the candidate source. Providing that its nectar is higher than
that of the previous one, the bee memorizes the new position and forgets the old
one. If a position cannot be improved further through a predetermined value named
“limit”, then that food source is assumed to be abandoned. The corresponding
employed bee becomes a scout. The abandoned position will be replaced with a
new food source found by the scout.

3.2 ABC for 3L-CVRP

For these state-of-arts algorithms such as ABC, encoding method is the key problem
and also is a kind of art problem. When ABC was used to solve the combinatorial
optimization problems, usually has two encoding method: real number encoding and
integer number encoding. For the real number encoding method, such as random-
key procedure is always used to solve the combinatorial optimization problems. For
the integer number coding method, they are more used since can avoid many coding
issues. For ABC algorithm, the new operators should be designed when the integer
number was used. To avoid the problem, a new real number encoding method was
presented in the paper.
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Table 1 Example for Step2

1 2 3 4 5 6 7 8

fX1g f1245 3422 2345 3004 5434 6759 4355 8432g
fX2g (63 94 61 53 32 87 59 23)

Table 2 Example for Step3

1 2 3 4 5 6 7 8

X10 D fX1g mod 8 f5 6 1 4 2 7 3 0g
X10 C 1 f6 7 2 5 3 8 4 1g
(X2) mod 3 (0 1 1 2 2 0 2 2)

3.2.1 Solution Representations and Decoding Methods

Solution Representation

For n customers (non depot) k vehicles 3L-CVRP problem, the n real numbers as
the representation has the form of a vector of length n.

For example: 8 customers, 3 vehicles.
X(x1,x2 : : : ,x8) D (1.24563, 3.42294, 0.0234561, 300.453, 54.3432, 6759.87,

43.5559, 8.43223).

Decoding Procedure

The next procedure is to decode the representation to the solution. The detail
procedure is below:

Step1: Remove the decimal point of xi; transform xi to integer number. For example:
Change X to [X] D (124563, 342294, 234561, 300453, 543432, 675987, 435559,
843223)

Step2: Segregate xi two parts: fX1g and (X2). fX1g has four significant figures and
(X2) has two significant figures. You can also adjust the number according to the
instance size. For example (Table 1):

Step3: Modulo operation. the first part modulo n, the second part modulo the
number of vehicles k. Then, the first part is plus 1. For example (Table 2).

Step4: Map the element of X10 to the current vehicle in the current position X2,
and the visited order is the order of customer appearance. So, the customer 6
corresponds to the vehicle 0, and customer 6 is the first visited in the route 0.

The solution is below:
Route 0: 0-6-8-0 Route 1: 0-7-2-0 Route 2: 0-5-3-4-1-0.
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Revise the Solutions and the Representations

After decoding, maybe some solutions are infeasible. Two issues should be consid-
ered. (1) Maybe some customers are duplicated and some missed. (2) Maybe some
route will exceed the vehicle capacity. So, we should check the solution, and revised
the duplicated customers to the missed customers.

3.2.2 Local Search Procedure for Route

In previous works, many researchers used the meta-heurist algorithms hybrid the
local search operator for the route. The local search operator can improve the
solution quality very much. In the paper, 2-Opt and 3-Opt were used to improve
the solution after decoding and check the solution. The 2-Opt is used to search in
the inter route and intra route. The 3-Opt is mainly used to search in the intra route.

3.2.3 Algorithms for Three-Dimension Loading

In this subsection, we want to determine whether all the items needed by customers
in a given route can be loaded into a single vehicle while satisfying all loading
constraints depicted in Sect. 2. The heuristics presented to solve this problem must
be flexible because they should be adaptable to consider all loading constraints or
only a subset of them. We make use of the following procedures, aiming at a feasibly
loading of items demanded by customers along the route.

To compute the potential infeasibility of a route, we first easily check if the
weight constraint is not violated, and then apply the lower bounds for the 3BPP
by Martello et al. (2000). If the lower bounds do not prove the infeasibility, then
we repeatedly apply the two heuristics: deepest-bottom-left-fill algorithm and max
touching area algorithm. These heuristics place the items according to a given
sequence, one at a time, into a container of width W, height H and infinite length.
Their aim is to find a feasible loading of minimum length, which does not exceed
the vehicle length L. By changing the sequence of the items and again invoking the
heuristics one can obtain new solutions. This process is iterated � times or until a
feasible solution has been found.

The initial loading sequence is constructed by taking the various loading
constraints into account. We sort the items by applying the following sorting rules
in order:

SR1: (applies only if the LIFO constraint is to be enforced) Sort the items in reverse
order of the clients to be visited. Hence, the items for later customers will be
loaded first. Ties are broken using the next rule SR2.
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SR2: (applies only if fragility constraint is to be enforced) Sort the items so that
non-fragile items are before fragile items. We would like to load the non-fragile
items first since fragile item can be placed on top of non-fragile items, but the
reverse is prohibited. Ties are broken using the next rule SR3.

SR3: Sort the items by decreasing order of volume.

The deepest-bottom-left-fill algorithm packs the current item into the normal
position which has lowest width, breaking ties by lowest height, breaking ties by
lowest length. For each position, both feasible orientations on the w-l plane are
considered. The first packing satisfying the loading conditions is selected and the
process is iterated until all items are packed or no feasible packing exists for an
item.

The max touching perimeter algorithm generates among all the possible normal
positions for the current item, selects the one maximizing the percentage of the item
surface touching the container and other items already packed. In this case too, the
process is iterated until all items are packed or no feasible packing exists for an item.

4 Computational Results

In this section, the proposed algorithm is analyzed using several benchmarking
problems. The proposed algorithm was coded in Visual CCC, executed on an
Intel Core2 i5, 2.5 GHz with 4 GB of RAM under Windows 7. The algorithm was
tested on the classical 3L-CVRP instances, which were proposed by Gendreau et al.
(2006). And they are available at http://www.or.deis.unibo.it/research.html. In the
instances, the graphs, customers demand, and vehicle weight capacity are taken
from CVRP instances. The arc costs are determined as the Euclidean distances
between coordinates of customers. The vehicle loading volume has dimensions
W D 25, H D 30, and L D 60. For each customer the number of required items is
randomly generated according to a uniform distribution between 1 and 3. Each item
dimension is randomly generated according to a uniform distribution in the interval
between 20 and 60 % of the corresponding vehicle dimension. The minimum
supporting area is set equal to 0.75. In the experiment, we select 10 instances from
the benchmark.

The parameters of the proposed algorithm have remarkable effect on the
quality and effectiveness of the algorithm. Therefore, with the help of the initial
experiments, the algorithm parameters are set as follows: the population size NP is
60, the max iteration MCN is 500, the max try number limit is 50. In the following
experiments, each problem is independently run 10 times. The results for every
instance are the mean values of 10 times.

In Table 3, we compare its performance of ABC with the solutions solved by TS,
GTS, ACO approaches proposed in the literatures (Gendreau et al. 2006; Tarantilis
et al. 2009; Fuellerer et al. 2010), respectively. The first columns indicate the
instance name, the next two columns report the best results obtained by TS and

http://www.or.deis.unibo.it/research.html
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Table 3 Comparisons of ABC with TS, GTS, ACO on 3L-CVRP instances from
the literature

Instances
TS (Gendreau
et al. 2006)

GTS (Tarantilis
et al. 2009)

ACO (Fuellerer
et al. 2010) ABC

E016-03m 316:01 321:47 305:35 302.46
E021-06m 448:48 458:04 440:68 439.43
E026-08m 666:10 642:22 635:50 631.88
E030-04g 819:36 873:43 821:04 793.62
E036-11h 707:85 698:61 698:92 698.93
E041-14h 920:87 872:79 870:33 868.74
E045-04f 1400:52 1296:59 1300:9 1258.51
E051-05e 871:29 818:68 781:29 778.76
E072-04f 732:12 641:57 611:26 605.31
E101-10c 1847:95 1711:93 1616:99 1597.23

Table 4 Performance of the ABC algorithm for different loading configurations

Instances No fragility No LIFO No support 3D loading only

E016-03m 302:46 297:13 296:32 295:72

E021-06m 439:43 430:88 430:88 430:88

E026-08m 631:88 615:76 617:07 609:43

E030-04g 793:62 761:28 750:73 714:55

E036-11h 698:93 698:61 698:92 698:61

E041-14h 861:57 859:21 862:16 854:74

E045-04f 1250:73 1224:17 1198:54 1157:73

E051-05e 740:26 734:43 732:91 671:91

E072-04f 576:26 562:37 562:74 515:39

E101-10c 1529:43 1454:75 1403:68 1403:33

gap 1:54 % 3:6 % 4:22 % 6:8 %

GTS (Because only best results were reported in their papers). The average results
produced by ACO and our proposed ABC algorithm are in the last two columns.
The best results of every instance for all the algorithms are denoted by bold.

In terms of solution quality the ABC algorithm is clearly superior to the others.
The average solution values found by the ABC is worse than the one found by the
ACO and GTS in just one case (E036-11h), while in all other cases it is better. In all
instance, the average of solutions found by ABC is better 7.32 % than the one found
by TS. For GTS except the instance E036-11h, the average performance of ABC is
better than 4.13 %. We lastly note that the average quality of ABC is a little better
1.11 % than the ACO.

In Table 4 we examine the effect of the loading constraints discussed in Sect. 2.
We run ABC with four different loading constraint configurations: (1) without the
fragility constraint; (2) without the supporting area constraint; (3) without the LIFO
policy, and (4)with only the 3D loading constraint, it means all three aforementioned
constraints are not taken in to account.
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From the results, we can see that although all three constraints have a significant
effect on the cost of the final solution, the LIFO and supporting area constraints
have a more significant effect than the fragility constraint. We compute the
percentage differences between the average solution values found for each loading
configuration and the ones found for the standard configuration (gap). The standard
constraints include all the constraints and the solutions have been given in last
column of the Table 3. The removal of the LIFO constraint and supporting area
constraint leads to the larger reduction of 3.6 and 4.22 %, respectively. Removing
the fragility constraint leads to the lowest reduction. While removing the fragility
constraint only finds a weak reduction of 1.54 % in the average solution value. The
configuration with no operational constraints has by far better solution values, with
cost reductions close to 6.8 %.

5 Conclusion

In this paper, the 3L-CVRP, as a new variant of vehicle routing problem, is studied.
This is a very interesting problem in terms of both theoretical complexity and
practical applications. We have developed an ABC algorithm with two loading
heuristics to solve the problem. To the best of our knowledge, it is the first time for
ABC meta-heuristics to be employed in this combinatorial problem. A novel real
number encoding method is presented for the solution representation. Two types of
loading heuristics are presented as soon as we obtain the solution of the vehicle
routing sub-problem. For testing the robustness and effectiveness of the hybrid
approach, 10 benchmark instances of 3L-CVRP are solved. From the computational
results, it is shown that the hybrid approach obtains many more optimal solutions.
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