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Abstract This paper presents a WFA for Multi-objective Continuous Optimization
Problems. Namely WFA4MC. In order to prove WFA4MC performances precisely,
this research proposes Correctness and Coverness to measure non-dominated
solutions in ZDT functions. Besides, the Generational Distance is used in the
comparison with other heuristic algorithms. The result showed that based on the
same limit of the number of objective function calls, the WFA4MC outperform than
others.

Keywords Correctness • Multi-objective continuous optimization problem •
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1 Introduction

Multiple-Objective continuous optimization problem has been applied in widely
many fields such as science, engineering and management. However, solving such
problem is regarded as a challenge because of the high dimensionality and complex
objectives. Some heuristic-based methods capable with dealing such difficulties
have been developed such as AMOPSO [1], NSGAII [2] and MOEPSO [3]. Such
kind of methods has constant number of solution agent. For these methods, once the
solutions tend to converge during the searching process, redundant computation is
arisen.

This paper proposed a novice approach, i.e. Water Flow-like Algorithm for
Multi-objective Continuous Optimization Problems (WFA4MC). This approach
tactically adjusts the solution agent number for efficient search and is based
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on Water Flow-like Algorithm (WFA) proposed by Yang and Wang [4]. WFA
mimics the water flow traversing on the terrain with regard to several phenomena
such as flow moving, flow splitting, evaporation and precipitation. Single water
corresponds to a solution agent and the terrain is related to the solution space. A
single moving water flow represents searching behavior of a solution agent. Flow
splitting increases the solution agent number to intensify the searching direction and
computation. While flow merging decreases the solution agent number to remove
the resemble solutions. Evaporation decreases the solution agent number for the
removal of weak solution. When the air is saturated with water, precipitation starts.
Additional solution agents are generated for random search.

Evaluation of non-dominant solutions in a proper manner is another issue.
Generational distance proposed by Zitzler et al. [5] is commonly in use for
measuring the Euclidean distance between current obtained non-dominant solution
and the true optimal p solution.

However, Generation distance does not provide the information that how well
the non-dominant solutions are not dominant by Pareto-front solution Also it cannot
detect the solutions narrowly distributed in Pareto front. This paper further proposed
two more performance indices, i.e. Correctness and Coverness. Correctness eval-
uates how many current obtained non-dominant solutions are not dominant from
true optimal non-dominant solutions. Coverness quantifies how well the current-
obtained non-dominant solutions cover the true optimal non-dominant solutions.

2 Multi-objective Continuous Optimization Problem

Assume that a solution to the multi-objective optimization problem consists of p
indexed real numbers and is defined as a p-dimensional vector xD [x1x2 � � � xp].
Each variable is bounded by given lower and upper limits, such that xk � xk � xk ;
xk; xk; xk 2 R, 8 k2 f1,2, : : : ,pg. Suppose that there are g objective functions
defined for the problem: fj(x) :Rp!R; jD 1, 2, � � � , g. Objective values of the solu-
tion x can be denoted by a g-dimensional vector fD [f1f2 � � � fg]� [f1(x) f2(x) � � � fg(x)].
The goal of this optimization problem is to either maximize or minimize these
objective values.

Instead of providing an optimal solution, a set of non-dominated solutions are
usually presented to the user for a multi-objective optimization problem. Let the set
be bX . Without loss of generality, assume that the goal of the optimization problem
is to minimize all objective values. Therefore, for a pair of non-dominated solutions
xi and xi 0

, xi ; xi 0 2 bX , there is at least one component j such that f i
j < f i 0

j ,

where fiD [f i
1f i

2 � � � f i
g]� [f1(xi) f2(xi) � � � fg(xi)] and fi 0 D

h

f i 0

1 f i 0

2 � � � f i 0

g

i

�
h

f1

�

xi 0

�

f2

�

xi 0

�

� � � fg

�

xi 0

�i

are their objective vectors respectively. In other

words, non-dominated solutions should mutually have at least one objective value

superior than that of others. Let operation Dominated
�

Xi ; Xi 0

�

be used to test
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whether the first solution, xi, is dominated by the second one, xi 0

. Then

Dominated
�

Xi ; Xi 0

�

D
(

false; if 9j 2 f1; 2; : : : ; gg � f i
j < f i 0

j

true; otherwise
(1)

When a candidate solution xi is considered for joining the non-dominated
solution set bX , it will be subject to this domination test against all solutions in the
set. Once the solution is not dominated by any solution in the set, it is recognized as
a new member of the set.

Although, it seems that we can provide as many as non-dominated solutions to
the user for decision making, people prefers a finite number of solutions for easier
application. Therefore, suppose s is the required number of non-dominated solution
in bX and s is the number of solutions in bX . When s > s, s � s “inferior” solutions
should be expelled from bX . Moreover, the objective vectors f of the solutions in
bX are expected to cover the objective space as large as possible to provide a wider
spectrum for decision making. This means the s non-dominated solutions should
be separated far from each other on the objective space. A solution with smaller
distances to its neighbors on the solution space is then regarded as inferior one,
which is a candidate for solution pruning. We propose a pruning method that sorts
the solutions in bX with a jamming distance. The s � s solutions with smaller
jamming distances are pruned away; details will be given later.

3 WFA Model for the Continuous Multi-objective
Optimization Problems

The developed computation model based on the water flow like algorithm consists
of a set of water flows represented by their locations, XDfx1,x2, � � � ,xng, where
n is the number of flows of the current flow set X. The location of flow i is
xiD [xi

1 xi
2 � � � xi

p], representing a solution to the optimization problem. For easier
presentation, hereafter we alternatively use index i or location xi to refer to a
flow. The set of water flows is then recursively subject to a serial of water flow
operations to yield a new set of flows to enhance the objective values of the
solutions represented by their locations. Note that the set of flows X is updated
both in the number of flows and their locations, subjecting to water splitting and
merging operations. The flow splitting operation on a flow depends on the objective
enhancement of the current location with respective to its previous location.

Therefore, a virtual parent flow with location Qxi D
h

Qxi
1 Qxi

2 � � � Qxi
p

i

is defined for flow

i. Chronically, Qxi can be regarded as the previous location of flow i. When more than
one sub flow is split, these sub flows share the same parent. Let fiD [f i

1f i
2 � � � f i

g]

and Qfi D
h Qf i

1
Qf i
2 � � � Qf i

g

i

be the vectors of objective values of flow i and its parent,

respectively. In addition to the location and objective values, a mass property mi is
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[v ≥ rm] 

[else] 

[stopping condition met]  

Precipitation 
[else] 

Objective Evaluation 
Non-dominated Solution Update 

Initialization 

Water Evaporation 

Flow Merging 

Flow Splitting and Moving 

Non-dominated Solution Pruning 

Fig. 1 The computation flow
of the proposed WFA for
multi-objective optimization
problems

defined for flow i, which is used to determine whether a flow survives to the next
flowing iteration and to regulate the precipitation operation.

For final optimal solution presentation, a non-dominated solution set is con-
structed, which is denoted by bX D ˚

bx1;bx2; � � � ;bxs
�

, where s is number of non-

dominated solutions found. Each solution in bX is cloned from the set of flows in X
after exclusive domination tests.

Figure 1 illustrates the computation flow of the presented WFA for Multi-
objective Continuous Optimization Problems. Notice that several stopping condi-
tions can be provided and specified by the user to stop the solution evolution. In
our model, iteration limits, elapsed CPU execution time, and number of objective
evaluations are provided to stop the solution evolution.

3.1 Initialization

Initially, only one flow is defined in the flow set; i.e., nD 1 and XDfx1g. Let m1 D
m, where m is a user specified mass that will regulate flow splitting. Components of
location x1 are randomly set by

x1
k  � U .0; 1/ .xk � xk/C xk; k D 1; 2; � � � ; p
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where �U(0,1) is a uniformly distributed random real value bounded within [0,1].
Since the initial flow is not split from any other flow, we randomly assign the
location of its parent flow Qx1 as

Qx1
k  � U .0; 1/ .xk � xk/C xk; k D 1; 2; � � � ; p

The objective vectors f1D [f 1
1f 1

2 � � � f 1
g] and Qf1 D

h Qf 1
1
Qf 1
2 � � � Qf 1

g

i

of both locations

(solutions) x1 and Qx1 are then evaluated and solution domination test is conducted
to constitute the initial non-dominated solution set. Therefore,

bX D

8

ˆ

<

ˆ

:

˚

x1
�

; if Dominated
�Qx1; x1

� D true
˚Qx1
�

; else if Dominated
�

x1; Qx1
� D true

˚Qx1; x1
�

; otherwise

(2)

The amount of objective improvement influences the flow moving and flow
splitting, both in the location change and the number of sub flows split. To evaluate
the amount of objective value improvement, the largest and smallest values of each
objective value obtained so far are updated and recorded during the water flowing
operation. Let f

j
and f j be the smallest and largest values of objective values fj(x)

obtained so far. Therefore, initially

f
j
D min

�

f 1
j ; Qf 1

j

�

I j D 1; 2; � � � ; g (3)

and

f j D max
�

f 1
j ; Qf 1

j

�

I j D 1; 2; � � � ; g (4)

The j-th objective value of water flow i can be normalized as

f 0i
j D

f i
j � f

j

f j � f
j

(5)

In addition, since there are g objective values, a weighted sum of objective value
Fi is defined for flow i as

F i D
Xg

j D1
wj f 0i

j D
Xg

j D1
wj

f i
j � f

j

f j � f
j

(6)

where wj is a user specified weight for objective function fj(�). Similarly, the
weighted objective value of the parent flow of flow i is

QF i D
Xg

j D1
wj

Qf i
j � f

j

f j � f
j

(7)
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We let the amount of objective improvement determine the number of sub
flows in the operation of flow splitting. To help evaluating the improvement,
an improvement threshold � is defined in our WFA model. When the objective
improvement of a flow exceeds the threshold, no flow splitting is executed. The
threshold is defined as the average of the difference between weighted objective
values of all flows and their parents; i.e.,

� D �F

N
(8)

where N is the total number of flows constructed so far and �F is cumulated
objective differences of these flows. Initially

�F D ˇˇF 1 � QF 1
ˇ

ˇ and N D 1 since X D ˚x1
�

(9)

3.2 Flow Splitting and Moving

Flow splitting and moving operation is sequentially conducted for each flow in
the current flow set X. Firstly, the objective value improvement for each flow is
evaluated to determine the number of sub flows. Once the number is determined,
the location advancements of all sub flows follow to create sub flows. The number
of sub flows split from a flow is restricted by a split limit n, whose value is set by
the user to avoid an exponentially increased number of flows. In general, a smaller
improvement amount of objective value is designated to split more sub flows for a
wider solution exploration. On the other hand, a larger amount should bind the same
flow for neighborhood exploitation. Therefore, we define the number of sub flows
split from flow i as

ni D

8

ˆ

ˆ

<

ˆ

ˆ

:

1; if
ˇ

ˇ QF i � F i
ˇ

ˇ > �

Round

 

Pow

 

n;

 

1 �
ˇ

ˇ QF i � F i
ˇ

ˇ

�

!!!

; otherwise
(10)

Assume that xi
1; xi

2; � � � ; xi
ni are locations of the ni sub flows split from flow i and

xi
q D

h

xi
q1 xi

q2 � � � xi
qp

i

; q D 1; 2; � � � ; ni (11)

Where

xk � xi
qk � xk; k D 1; 2; � � � ; p (12)
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For a multi-objective optimization problem, the solution evolution is a forward-
ing process toward non-dominated solutions. Locations of the sub flows split from
flow i are stochastically determined by the corresponding variables of flow i, parent
flow of flow i, and a randomly selected flow from the non-dominated set. For
each sub flow, a referential non-dominated solution is randomly selected first. Let
location vectorbxi 0

be the selected non-dominated solution for a sub flow of flow i,
where i0DRandomInteger(1, m).

Note that RandomInteger(min, max) returns a random integer that follows
uniform distribution between integers min and max.

The value of the k-th variable xi
qk is then set stochastically with respective to a

target value � that is selected from the k-th component of either xi, Qxi , or bxi 0

. If
flow i has a clone in the non-dominated solution set bX , � is directly selected from
xi. Otherwise, if the parent flow is a non-dominated solution � is selected from Qxi ,
since flow i is inferior to its parent. On the other hand, if both xi and Qxi are not
non-dominated solutions,bxi 0

is targeted. Therefore,

� D

8

ˆ

ˆ

<

ˆ

ˆ

:

xi
k; if xi 2 bX
Qxi
k; else if Qxi 2 bX
bxi 0

k ; othewise

(13)

Value of xi
qk is then stochastically set to the target � or a random value bounded

by
h

�; �
i

with an equal probability. Bounds

� D
8

<

:

1
2

.xk C �/ ; if � D bxi 0

k

max
�

xk; � �
ˇ

ˇ

ˇ� �bxi 0

k

ˇ

ˇ

ˇ

�

; otherwise
(14)

� D
8

<

:

1
2

.xk C �/ ; if � D bxi 0

k

min
�

xk; � C
ˇ

ˇ

ˇ� �bxi 0

k

ˇ

ˇ

ˇ

�

; otherwise
(15)

Note that bounds � and � are constrained by the given coordinate bounds xk

and xk , as well as the target value � and bxi 0

k . The reduced bounds are then used to
generate location values centering around � . Therefore,

xi
qk D

8

<

:

�; if � U .0; 1/ � 0:5

RandomReal
�

�; �
�

; otherwise
(16)
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Where RandomReal(min,max) returns a uniformly distributed random real value
bounded by min and max. Note that the location vectors of all sub flows are
sequentially determined while the component values are determined one after the
other.

The last step in flow splitting is to distribute the mass to sub flows and assign their
parents. Two types of mass distribution are provided. Each type is dedicated to a
type of flow merging operation. Our WFA for multi-objective optimization problems
presents two types of flow merging: one is based on the closeness of flow locations
and the other is on the similarity of objective values.

The first type of mass distribution evenly distributes the mass to all the sub flows.
Let mi

q be the mass of the q-th sub flow split form flow i; then

mi
q D

1

ni
mi ; q D 1; 2; � � � ; ni (17)

The second type of mass distribution requires that the objective values of all sub
flows must be evaluated first. Assume that the objective vector of the q-th sub flow
split form flow i is

fi
q �

h

f1

�

xi
q

�

� � � fg

�

xi
q

�i

D
h

f i
q1 f i

q2 � � � f i
qg

i

(18)

and the weighted sum of objective value is

F i
q D

Xg

j D1
wj

f i
qj � f

j

f j � f
j

; q D 1; 2; � � � ; ni (19)

Notice that the largest and smallest objective values, f j and f
j
, are updated

before evaluating the objective values of all sub flows. The amount of mass received
by a sub flow is proportional to the amount of objective improvement from its parent;
e.g., Fi �Fi

q for the q-th sub flow. Notice that the amount of improvement might be
negative. We let the sub flow with the largest improvement receive twice the mass
of the one with the lowest. Therefore for sub flows split from flow i, the largest and
smallest objective improvements are determined first by

ı D maxqD1;2;��� ;ni

n

F i � F i
q

o

(20)

and

ı D minqD1;2;��� ;ni

n

F i � F i
q

o

(21)
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The relative portion of mass splitting for the q-th sub flow is

�q D
�

F i � F i
q � ı

�

C
�

ı � ı
�

(22)

The mass received by the q-th sub flow form flow i is

mi
q D

�q

Xni

q0D1
�q0

mi ; q D 1; 2; � � � ; ni (23)

After the mass is distributed, the location, objective values, and weighted
objective value of flow i are then assigned as parent attributes of the split sub
flows; i.e.,

Qxi
q  xi

Qfi
q  fi

QF i
q  F i

9

>

>

=

>

>

;

q D 1; 2; � � � ; ni

Notice that if niD 1, flow i is regarded as being transformed into its single sub
flow that is subject to location moving, objective evaluation, and parent change, etc.

Finally, a new set of flows constructed from sub flows is yielded as

X  
[n

iD1

˚

xi
1; xi

2; � � � ; xi
ni

�

and the new number of flows is

n 
Xn

iD1
ni

3.3 Flow Merging

The flow merging operation conducted in the WFA is to eliminate duplicated solu-
tion agents to avoid unnecessary solution searches and evaluations. The location-
based merging approach is frequently adopted in general optimization problems,
either continuous or discrete ones. In addition to the location-based approach, we
propose an objective-based merging approach for our multi-objective optimization
problems, where a set of non-dominated solutions with objective values dispersedly
distributed in the objective space is preferred.

Two flows will be merged in the location-based merging operation when the loca-
tions of two flows are close enough. A Location Closeness Factor ˇL, 0 < ˇL < 1,
is defined to facilitate the merging operation. Ifthe normalized component variable
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differences of two flows are all smaller than the factor, they are eligible for merging.
Let LocationMergeable(xi, xi 0

) be used to identify whether flow i can be merged
with i0;

LocalMergeable
�

xi ; xi 0

�

D
8

<

:

false; if 9k 2 f1; 2; � � � ; pg �
ˇ

ˇ

ˇxi
k�xi0

k

ˇ

ˇ

ˇ

xk�xk
> ˇL

true; otherwise
(24)

On the other hand, when objectives of two flows on the objective space are close
enough, they can be merged to increase the spread of non-dominated solutions on
the objective space. Let ˇO, 0 < ˇO < 1 be the Objective Closeness Factor, which
is used for objective-based merging operation. In addition, let ObjectiveMergeable
(xi, xi 0

) be used to identify whether flow i can be merged with i0; then

ObjectiveMergeable
�

xi ; xi 0

�

D
8

<

:

false; if 9j 2 f1; 2; � � � ; gg �
ˇ

ˇ

ˇf i
j �f i0

j

ˇ

ˇ

ˇ

f j �f
j

> ˇO

true; otherwise
(25)

Note that if the number of objective functions is far smaller than the number of
variables in a problem, an objective-based merging test is simpler than the location-
based test. However, the newly generated sub flows are subject to objective value
evaluations prior to the test.

The merging operation sequentially loops through each flow i in the current flow
set X to establish a flow sub set Ai that rounds in mergeable flows indexed after i.
If flow i0, i < i0, is rounded in Ai, which means flow i0 is mergeable with flow i, Ai 0

is set to null. On the other hand if flow i0 is not merged by any preceding flow, Ai 0

contains at least flow i0 itself; i.e., Ai 0 ¤ ∅ and xi 0 2 Ai 0

. To identify whether flow i
can merge flow i0, operation LocalMergeable(xi,xi ’) or ObjectiveMergeable(xi,xi ’) is
applied depending on which merging mode is chosen. Suppose that flow i is not null

and Ai D ˚

xi
� [

n

x0i
1; x0i

2; � � � ; x0i
n0i

o

; then, there are n0i flows that are mergeable

with flow i. The merging operation simply randomly selects one flow from Ai to
represent the merged flow and assigns its mass properties with the aggregated mass
of all flows in Ai. Let RandomElement(A) be a random operation that returns one
element of the given set A; i.e. RandomElement(A) 2A. Then the merged flow of
a non-null flow set Ai is x0iDRandomElement(Ai). In addition, the mass of the
selected flow is replaced with the aggregated mass; i.e., m0i D

X

8i;xi 2Ai
mi . When

all none-null mergeable flow sets are merged into single flows the flow set is further
updated as

X  
n

x0i
ˇ

ˇ

ˇAi ¤ ∅ ^ x0i D RandomElement
�

Ai
�

o

and the number of flows is as n Count(Ai¤∅).
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3.4 Water Evaporation

Evaporation operation simulates the natural behavior of water evaporating to the
atmosphere. The water flow-like algorithm conducts this operation to store a certain
amount of water up in the air for chances of water flow regeneration in water
precipitation.

An Evaporation Factor ˛ is initially set by the user, whose value is restricted by
0�˛ < 0.5. Let the mass of the cumulated water in the air be v. In the evaporation
operation, the evaporated mass of water is added to v by

v vC ˛
Xn

iD1
mi

and the mass of each flow in X after evaporation is updated as

mi  .1 � ˛/ mi I i D 1; 2; � � � ; n

Notice that the mass of a flow indicates the liveliness of the flow while it traverses
on the ground. Once it is reduced to a minimal amount, it is regarded as a dried-
out flow. The total number of flows is restricted by a user specified limit. Let the
maximal number of flows allowed be z; the minimal amount of mass is then m=z,
where m is the user specified initial flow mass. A dried-out flow is removed from
the flow set and its leftover mass is added to v; i.e.,

v vC
X

8i;mi �m=z
mi

X  X �
n

xi
ˇ

ˇ

ˇmi � m=z
o

3.5 Precipitation

Precipitation operation simulates the natural rainfall that results in water flows
covering a wide range of the territory. The water flow-like algorithm conducts this
operation to generate new solution agents for exploring new solution space. When
the mass of the evaporated water exceeds a user specified saturation amount the
precipitation operation is conducted automatically. The limit is a fraction of the
initial mass: �m; where � is the Precipitation Factor specified by the user and
0 < �� 0.5. In other worlds, the precipitation operation is conducted when v � �m.

The number of precipitation flows generated is set to the number of ground flows
in X; i.e., n. However the total number of flows allowed is restricted by z. On the
other hand, since a minimal mass m=z is required, at most bvz=mc flows can be
generated. Therefore, the number of precipitation flows is

n00 D min .n; z � n; bvz=mc/ (26)
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Let X 00 D
n

x001; x002; � � � ; x00n00

o

be the set of generated precipitation flows.

Evaporated mass v is then evenly distributed to generated precipitation flows. Let

m00i be the mass of precipitation flow x00i, then m00i D v
.

n00 . The location of each

precipitation flow is directly duplicated from a randomly selected ground flow and
some components are perturbed with random distances. In assigning the location of
flow x00i, a ground flow i0 in X is randomly selected first. Then a random distance
ıi

k for each component k, restricted by the length between lower and upper bounds,
is stochastically calculated. If a forward advancement or backward retraction of
distance ıi

k from xi 0

k exceeds the bounds, no perturbation is applied. Otherwise,
either forward or backward perturbation is stochastically applied. Components of
the location are set by

x00i
k D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

xi 0

k ; if
�

xi 0

k C ıi
k > xk _ xi 0

k � ıi
k < xk

�

xi 0

k C ıi
k; else if � U .0; 1/ � 0:5

xi 0

k � ıi
k; otherwise

I k D 1; 2; � � � ; p

9

>

>

>

=

>

>

>

;

I

i D 1; 2; � � � ; n00

(27)

Where

i 0 D RandomInteger .1; n/ ;

and

ıi
k D� U .0; 1/ .xk � xk/ :

The parent flow of a precipitation flow is cloned from the selected ground flow

as Qx00i  Qxi 0

. Finally, the flow set X is augmented by precipitation flows as
X X[X00 and number of flows is updated as n nC n00.

3.6 Water Flow Evaluation and Non-dominated Solution
Set Update

The final operation performed in an iteration of water flow-like optimization
algorithm is to evaluate the objectives of the solutions represented by the flows.
Therefore, objective vector for each flow i in X is evaluated as

fi D �f1

�

xi
�

f2

�

xi
� � � � fg

�

xi
�� �

h

f i
j

i

1�g
; i D 1; 2; � � � ; n
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and the maximum and minimum objectives are updated as

f
j
 min

�

f
j
; f i

j

�

f j  max
�

f j ; f i
j

�

9

=

;

j D 1; 2; � � � ; g

Moreover, the cumulated objective differences �F and the cumulated number of
flows generated N are both updated as

�F  �F C
Xn

iD1

ˇ

ˇF i � QF i
ˇ

ˇ and N  N C n

Notice that we have maintained the non-dominated solution set bX that will be
presented to the user as solutions to the problem. Once the objectives of all flows
are calculated, each flow is subject to a serial of domination tests for being added to
bX . To be added to bX the solution of a flow must not be dominated by any solution
in both X and bX . Therefore bX is augmented by new non-dominated solutions as

bX  bX [ ˚xi
�

; if

 

^
8xi0 2X;i¤i 0

:Dominated
�

xi ; xi 0

�

!

^
	

^
8xi0 2bX

:Dominated
�

xi ;bxi 0

�




I i D 1; 2; � � � n:

3.7 Non-dominated Solution Set Pruning

Before presenting the final non-dominated solution set bX to the user, an extra
pruning operation is required if the number of solutions s bX in exceeds the user
specified maximum number s. In the operation, the same procedure of removing
the worst solution is recursively executed s � s times to prune bX to have exactly
s non-dominated solutions left. The worst solution is the one that has the smallest
jamming distance among the solutions. The jamming distance � i of a solutionbxi in
bX is the smallest aggregated normalized distance to other solutions on the objective
space. A normalized objective distance is the objective value difference between
two solutions divided by the bounding length of the objective value. Let rj be the
bounding length of objective j, then

rj D max
i 0D1;��� ;s

n

bf i 0

j

o

� min
i 0D1;��� ;s

n

bf i 0

j

o

(28)
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The jamming distance of each non-dominated solution i in bX is

� i D min
i 0D1;��� ;sIi¤i 0

�

Xg

j D1

	

1

rj

ˇ

ˇ

ˇ

bf i
j � bf i 0

j

ˇ

ˇ

ˇ


�

(29)

In the repeated procedure, all rj are updated by the objective values of all of
the current solutions in bX first. Then the jamming distances of all solutions are
recalculated. The solutionbxi�

with the smallest jamming distance is then removed

form bX ; i.e., bX  bX �
n

bxi�

o

, where i� D arg min
iD1;��� ;s

� i . Note that instead of

executing the procedure only one time to removing s � s inferior solutions directly,
s � s recursive recalculations of all rj and � i are conducted to remove totally s � s

solutions from the objective space. The recursive removal of the worst solution has
a better ability to yield an evenly dispersed solution set.

4 Performance Index

Generational distance is a common way to evaluate the performance of non-
dominant solution. In addition, this paper proposed two more performance indices
are proposed to evaluate the non-dominant solution.

4.1 Generational Distance

Generational Distance is proposed by Veldhuize [5]. It is defined as the Euclidean
distance between current computed non-dominant solution and the known global
optimal solution. Smaller Generational Distance means the current obtained non-
dominant solution is closer to the optimal Pareto-front solution.

4.2 Correctness

Correctness index is to measure that how many percentages of current obtained
non-dominant solutions belong to the true optimal Pareto front. An optimizer which
yields the solution with high Correctness indicates that such optimizer is credible.
Correctness index is calculated as follows

C D
ˇ

ˇ

ˇ

bX 0
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

bX
ˇ

ˇ

ˇ

� 100% D 1

s
�
ˇ

ˇ

ˇ

bX 0
ˇ

ˇ

ˇ � 100% (30)
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Where

bX ’
�

bXi

ˇ

ˇ

ˇ

ˇ

bXi 2 bX and8 ^
8bXi 2bX

:Dominated
�

bXi ; bXi 0

�

�

(31)

4.3 Coverness

Coverness is devised to quantify how well the non-dominant solutions spread.
Define the Coverness

` D u
ˇ

ˇ

ˇ

ˇ

_

X

ˇ

ˇ

ˇ

ˇ

(32)

Where u represents number of Pareto front solution covered by non-dominant
solution. Define " as user specified Radius for Pareto Neighborhood. Here Radius
for Pareto Neighborhood is suggested to set as

" D 1
ˇ

ˇ

ˇ

ˇ

_

X

ˇ

ˇ

ˇ

ˇ

(33)

Define Q D
n

Q1; Q2; : : : Q
_
n
o

as the sets for identifying if Pareto front solution

covered by non-dominant solution. Where
_
n is the number of Pareto front solution.

Initially Qi 0 D 0, i 0 D 1; 2; : : : ;
_
n. Each element of the set is computed as

Qi� D
(

1; if i� D arg min
n

Ki 0

j

ˇ

ˇ

ˇKi 0

j < "
o

;8Qi 0 D 0

0; otherwise
(34)
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and

u D
bn
X

i 0D1

Qi 0

(36)
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Coverness ` can be obtained then. Large ` value means non-dominant solutions
have wide spreading and able to cover most of Pareto-front solution. Notice that
while using Coverness,

_
n D s is necessary condition.

5 Simulation Study

Simulation study in this paper is conducted in twofold. Firstly, find out the best of
flow merging method in WFA. Secondly, compare non-dominant solution of WFA
among other proposed methods. Recommended Parameter settings for WFA are
shown as Table 1. High saturation rate setting is suggested to avoid redundant search
caused by precipitation overly.

Table 2 presents the numerical result for simulation study2. Benchmark problem
proposed by Zizler et al. [6] is in use for this experiment. We can obtain that OM
method has better performance based on Coverness index. It indicates that OM
method generates the wider range of non-dominant solution. However, two of other
indices show that LM method has better overall performance.

In Table 3, generation distance shows that WFA4MC outperforms other methods
in the benchmark ZDT3, ZDT4 and ZDT6. Though WFA4MC is not an overwhelm-
ing MOO method, it is still an option for solving MOO problem.

Table 1 WFA4MC parameter settings for different benchmark

Benchmark

Parameter ZDT1 ZDT2 ZDT3 ZDT4 ZDT6

m 50 50 50 50 50

n 5 5 5 5 5

z 15 15 15 15 15

� 0:9 0:9 0:9 0:9 0:9

˛ 0:1 0:1 0:1 0:1 0:1

Table 2 Performance LM and OM methods

Average Generational distance Coverness Correctness

Benchmark LM OM LM OM LM OM
Obj. recalling
number

ZDT1 0.000508 0.00072 65.5 64.7 0.973 0.971333 30; 000

ZDT2 0.000427 0.00049 98.3 96.2 0.9545 0.965333 30; 000

ZDT3 0.000501 0.0005 40.4 44.5 0.8531 0.861724 30; 000

ZDT4 0.000438 0.00048 98.4 97 0.979 0.965423 250; 000

ZDT6 0.000991 0.00107 0.45 0.37 0.9036 0.918946 30; 000
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Table 3 Benchmark problems on different methods

WFA4MC WFA4MC

Benchmark (LM) (OM) AMOPSO NSGAII MOEPSO

ZDT1 0.0004 0.0004 0.0215 0.0243 0.0002
ZDT2 9.71E-05 9.80E-05 0.0083 0.0214 9.43E-05
ZDT3 0.0002 0.0002 0.0058 0.0126 0.0005
ZDT4 0.0002 0.0002 0.0224 0.0217 0.0185
ZDT6 0.0009 0.001 0.0167 0.0195 0.0177

6 Conclusion

In this paper, a multi-objective continuous problem solver WFA4MC based on WFA
is proposed. WFA mimics the phenomenon of water flow in the nature, consisting
of flow splitting, flow merging and precipitation.

In addition, other than generational distance, this paper proposed two novice
criteria for non-dominant solution evaluation such as correctness and Coverness
index. Firstly, correctness calculates the percentage that current non-dominant
solutions are not dominated from the true non-dominant solutions. Secondly,
Coverness quantifies how well the current non-dominant covers the true Pareto
front. Three total indices are applied to evaluate two of the flow merging mechanism,
OM and LM. Simulation result shows that though LM can gain smaller generational
distance, OM has higher correctness.

Comparing with AMOPSO, NSGAII and MOEPSO, Simulation study based
on generational distance index shows that our proposed method outperforms other
methods in several benchmarks.
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