Nonintrusive Efficiency Estimation of Induction
Motors Using an Optimized EKF
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Abstract In this paper, an intelligent optimal EKF (Extended Kalman Filter)
algorithm was presented to overcome the defect of getting the noises covariance
matrices of EKF by a trial and error method. In order to get optimal parameter of
noises covariance matrices by intelligent method, an optimal model was established
using the error of estimated speed and torque with measured, then solved by PSO.
The efficiency was computed using the estimated speed and load torque by the
optimized EKF. Experimental results demonstrated that the estimated efficiency
using this method has higher estimated accuracy than EKF.
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1 Introduction

Electric machines are extensively used as driven equipment in industrial, agricul-
tural and commercial domain etc. In industry, over two-thirds of the total electric
energy consumed by motor [1, 2], Energy saving of induction motors are important
for overall energy saving. This could be done replacing oversized motors [3] or
applying more efficient control techniques [4]. When replacing oversized motors,
the operating efficiency of the motor can be used to evaluate the energy efficiency
of the motor and provide a reference for choosing a more suitable motor; when it
comes to efficient control techniques, the efficiency of the motor can also evaluate
the effect of energy-saving control.
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Therefore, a lot of methods are presented to estimate efficiency of motor,
Engineers and scholars strive to implement nonintrusive efficiency estimation that is
to estimate the efficiency of induction motor does not interfere with the running of
motor system in actual industrial field. Lu gives a summary of efficiency estimation
methods [5]. The two main methods for non-intrusive efficiency estimated are
equivalent circuit method [6, 7] and the air gap torque method [8]. In equivalent
circuit method, the efficiency of the motor are calculated using the copper losses
and iron loss of motor calculated in equivalent circuit, the mechanical and stray
loss using approximation, the parameters of equivalent circuit are identified using
stator current, voltage and estimated speed. The nonintrusive air gap torque method
is implemented by introducing nonintrusive speed and stator resistance estimation
into the air gap torque method, the mechanical and stray loss using approximation.
So, these methods have the same problem that the mechanical and stray loss are
assumed to be a percentage of the rated power in efficiency estimation.

In recent years, the sensorless motor’s speed estimation methods using EKF
(Extended Kalman Filter) was researched by many researchers [9-11] for its good
dynamic performance and robustness. The EKF method can estimated motor speed
accurately when the motor’s model is imprecise for the motor parameter variation
and signal measurement error are account to the noise in EKF Algorithm. But
the key problem is that the estimation results of using EKF is greatly affected by
the covariance matrices of noise, the improper covariance matrices of noise will
make the result of estimation divergence or have large estimate error. The mostly
used method of get covariance matrices of noise is to try and regulate according
estimate error repeatedly, obviously it is a tedious procedure, Also getting the
optimal covariance noise matrices is difficult by this method. To solve this problem,
the covariance matrices of noise are got by optimization using GA in [12, 13], the
covariance matrices of noise are got by optimization using SA in [14].

The PSO is swarm intelligence method based on the foraging behavior of birds
and schools of fish developed by Kennedy and Eberhart, and was widely used in
a variety of optimization problems [15, 16] for, its iterative process is relatively
simple and faster convergence. In this paper, The noise covariance matrices of EKF
was optimized through the particle swarm optimization (PSO). The optimization
goal is to make the speed and torque estimation error is minimized, the potential
solution of the parameter of noise covariance matrices consist of the search space
of the particles. The algorithm avoid the tedious process of trial and error method to
obtain the noise covariance matrix, and at the same time you can get a better noise
covariance array, the estimation accuracy of EKF using optimized noise covariance
matrix are improving effectively.

2 Model of Induction Motor

In the stator stationary frame, the mathematical model of induction motor can be
expressed as formula (1).
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Where ¥, and ¥, are rotor flux, uy, and wug are stator voltages, iy, and i
are stator current,  is angular speed, a; = — (Ry/oL, + 1 —o/013),ay = L,,/o L L,,
Ty =1/Ry,0=1— L,Zn/Lng, R, and L, are stator resistance and inductance, R, and
L, are rotor resistance and inductance, L,, is mutual inductance.

The mechanical equation of induction motor can be expressed as formula (2).
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Where J; is the total inertia of the IM and load, B is mechanical friction
coefficient, T, is load torque, a3 = szm/JLz, p is the number of pole pairs.
In steady-state, the state equation of load torque can be expressed as formula (3).

7, =0 (3)

So the extended mathematical model of induction motor including state variables
of the speed and load torque of induction motor can be expressed as (4).
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Y(0) = h(x(t). u(t)) = [2}
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Where x = [im isp Vra Vip @ TL] is state vector and y = [lm lsﬁ] is

output vector.

In actual system of induction motor, the process noise w(f), the measuring noise
v(t) and the input noise {(f) are considered, so the stochastic model of induction
motor can be expressed as formula (5).

x(1) = f (x(@).u(t) + @) +w(t)

V() = h (e u(t) + £0)) + v(0) ©)
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Where, the noises are subject to the following distribution:

p (@)~ N(0,0)
p(») ~N(0,R)
p()~N(0,D) (6)

3 Optimized EKF

3.1 Speed and Load Torque Estimation Using EKF

When the speed and load torque of induction motor are the state of system model
and parameter of coefficient matrix, the model described by (4) became a nonlinear
model, however the EKF (Extended Kalman Filter) is based on the linear model, so
the nonlinear model must be transformed to linear model by linearization, the linear
model of induction motor can be expressed as formula (7).

§x(r) = F (x(1)) 8x (1) + B (u(t) + £(1)) + w(1)

9 0
- % (x(1), u(t),0) 8x (1) + a—i (e (2).u(t). 0) (u(t) + (1)) + w(t)

y(t) = Héx(t) + v(t)

)

= g_h (x(0), u(t), 0) 8x (1) + v(t)
X

The computer implementation of EKF algorithm is based on discretization
system model, when the sample time is 7§, the linear system model (7) of induction
motor are discretized to be the following linear discretization model (8).

8x (k) = Prdx (k) + My (u(k)+(k)) + Wew(k)

3
y(k) = Héx(k) + v(k)
Where
Oy = exp (FiT}) 9)
T
W, = / d(k)dt (10)
0

T
M, =/ Bo(k)dt (11)
0
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When assumed that the n sampling data is estimated, the implementation process
of EKF algorithm based on linear discretization (8) model is as follows:

1. Initialization Xy, §Xo, Py, Q, R, D
2. Begin sampling, k =1
3. State prediction

X = 1 (Ric . 0) ~ @y Kooy + Micyun (12)
Yo =h ()?,;,o) ~ Hi Xy (13)
§X, = O4_16X;, (14)

Piji—1 = Qoo P @) + My Dy My " + Wi Qi Wi T (15)

4. State update

Ki = Prji—1 H (Hx Piji—1 H{ + Rk)_l (16)
§X, = 6X + Ki (SYk - HkSJ?,;) 17)
Y=Y, — Y (18)

Prj = (I — Ky Hy) Pryi— (19)

X = X7 + 68X, (20)

5. If k <n, then k =k + 1, go to step(3)
6. End

The noise covariance matrix (D, R and Q) can be got by trial and error. The form
of the noise covariance matrices are:

D =diag[§ €]
R =diag[ 1 ] 1)
Q =diagla o« ¢ ¢ B ]
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3.2 Optimized Noise Covariance Matrices

The potential solution of the problem constitutes the search space of particles
in particle swarm when the optimization problem was solved by PSO algorithm.
According to form of noise covariance matrix D, R and Q, the parameters of the
noise covariance matrix needed to be optimized are &, A, o, ¢, B, ¥. So the potential
solution space of the problem is 6, whereby the dimension of the particles of the
search space can be determined as 6, each dimension of the particles correspond to
the parameters of the noise covariance matrix, the i-th particle of particle group can
be expressed as:

Xi=[x1 X X3 Xia Xis g

[6 2 « ¢ B 7]

For the optimal goal of PSO is to improve the estimation accuracy of EKF,
the objective function is defined using speed load torque estimated by EKF and
measured,

1 (< 5 N ~ \2
T== (Z (ni —7)° + ) (TLi - TLi) ) (22)

i=1 i=l1

Where, n; and T}; are measured speed and load torque of motor, 72; and fu are
estimated speed and load torque by EKF.

When the optimal problem is solved by PSO, the PSO method initially has a
population of random selective solutions. Each potential solution is called a particle.
Each particle is given random position and velocity, then flown towards the target to
find the optimal solution of the problem through the problem space. Particle swarm
algorithm is widely used in a variety of optimization problems [6, 7] for its iterative
process is relatively simple and faster convergence.

Accordance with the objective function, the main steps to optimize the parame-
ters of the noise covariance matrix in the particle swarm optimization are described
as follows:

1. Initialize a population of particles. Initialization number of populations is M,
and the population is initialized by random positions x;(0) and velocities v;(0) in
6 dimensions of the problem space. The optimization algebra is iter _max, the
target of the objective function value is Jiin;

2. Evaluate the fitness J(x;(0)) of each particle in the swarm. The particle initial
value is set to the optimum position of the particles themselves p;(0) = x;(0), and
to find the optimum position p, according to Eq. (23) for all particles.

J (pg) = min{J (x;(0)}.i = 1,2,3,--- ' M 23)
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. Change the velocity v;(vi;,vi2,Vi3,Via,Vis,Vi6) and position of the particle

Xi(Xi1,X2,X13,Xi4,Xi5,Xi6) according to Eqgs. (24) and (25) respectively.

via(k) = wvig (k = 1) + c1r1 (pia — Xia (k = 1)) + cor1 (pga — xia (k — 1))
(24)

xia (k) = xia (k = 1) + via (k) (25)
Where: v;; and x;; represent the velocity and position of the ith particle with d

dimensions respectively. 7 and r, are two uniform random number, and w is the
inertia weight, cl and c2 are learn factor.

. Update the optimal location of the particle itself p;. For every iterations, the

optimal location obtained by compare each particle’s fitness with its previous
best fitness.

pitk)  J(xi(k+1)>=J(pi(k))

pi(k+1)= xitk+1) Jxi(k+1)<J(pi(k))

(26)

. Update best location of all particles p,. Compare best fitness of particles with

each other and update the swarm global best location p,.

J (pg) = min{J (x; (k)},i = 1,2,3,-- . M Q27)

. If J(pg(k)) < Jmin, then go step (8);
. If k < iter _max, then k =k + 1, turn to step (3);
. The optimization results is given, the end.

4 Nonintrusive Efficiency Estimation

After speed and load torque are estimated using PSOEKEF, The efficiency estimation
value can be calculated by formula (28) through substituting 7; and n with the
steady-state mean value of the estimated speed 77; and load torque Ty:, the steady-
state mean of speed and load torque are defined as formula (30) and (31).

Pout _ 30 TL*n
P, pi P

(28)

Where input power can be calculated as follows:

T T
/ (vuiu + vpip + Vcic) dt / (Vabia - Vbcic) dt
0

Py = T =0 7 (29)
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_ 1 4,096
n= o n; (30)
’ i=2,049
o 1 4,096
To=-—2 > Tu 31
2’ 048 i=2,049

5 Experimental Results

Figure 1 shows the bench, an induction motor (Y100L2-4) drag a DC generator
(Z,-42), a precision torque meter and the voltage and current sensors are equipped in
bench. The nameplate parameter of induction motor and DC generator are given in
Table 1. The induction motor parameters are p =2, Ry =2.0713 Q, Ly = 0.241929H,
R,=1.7148 Q, L, = 0.242007H, L,, = 0.232559H, J; = 0.02 kg-m?, B=0.

The load of induction motor are changed by changing the excited voltage of
the generator, and stator instantaneous line voltage(v,p, Vi), instantaneous phase
current (i,, ip, i), speed (n) and load torque (77) are collected at different excitation
voltage(EV), The sampling period is 1/4,096 s, Acquisition time is 1 s. The
calculated data using measured value by formula (28), (29), (30), and (31) at
different load are shown in Table 2.

Fig. 1 Bench of induction
motor

Table 1 Nameplate data of motor

Motor Py Kw) Iy(A) ny@pm) 1y (%) cosgy A
Y100L2-4 3 6.8 1,420 82.5 0.81 2.3
Z,-42 4 220 22.3 1,500
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Table 2 Calculated values using measured value at different excited voltage

EV (V) 71 (rpm) T (Nm) Pin (W) 1 (%)
0 1,495.7 0.76 392.04 30.35
25 1,488.1 2.52 634.02 61.90
50 1,474.3 6.15 1,242.72 76.35
75 1,463.1 9.92 1,917.08 79.24
100 1,455.1 13.03 2,469.88 80.39
125 1,445.2 15.59 2,912.19 80.97
150 1,435.0 17.72 3,269.54 81.4
175 1,428.1 19.25 3,560.91 80.8
200 1,421.1 21.01 3,871.67 80.71
Table 3 Optimized parameters of noise covariance matrix

EV(v) ¢& A o S B )4

0 6.06e-06  5.52e-07 7.21e-04 0.9754  0.6395  9.4995
25 9.43e-07 4.69e-07 2.75e-03 0.8401  0.9371 9.8133
50 6.07e-06  7.30e-07 1.53e-03  1.2973  0.6362  0.2992
75 9.81e-06  7.98e-07 2.70e-04 13754  0.0017 0.3763
100 4.39%-06 6.29¢-07 9.99e-04 0.9.695 0.4093 9.9535
125 6.85e-06  6.20e-07 7.47e-04 0.7271  0.5396  1.5550
150 7.86e-06  1.37e-06  8.00e-04 1.1800  0.2578  1.8857
175 3.84e-06 4.92e-07 2.90e-03 0.4064  0.2533  5.9555
200 2.71e-06  4.61e-06 5.23e-04 1.8459  0.5864 1.4846

105

In experiment, the population number M is initialized 20, Optimization algebra
is 2,000, the target of the objective function value is 0.00001, Inertial weight w is
chosen 0.8. learn factor cl changes adaptively in the formula (32) with an initial

value of 2, and c2 is set a constant 2.

The initial value is selected as follows in EKF:

c¢1 = 2 (1 — iter/iter — max)

x(0)=[000000]

P0) =diag[111111]-1e7'°

(32)

Table 3 give the optimized parameters of noise covariance matrix using PSO,
Fig. 2 give the estimate results of speed and load using PSOEKF at different excited
voltage. Table 4 give the estimate error of speed and load torque at different excited
voltage, the error is computed according to the formula (33) and (34). From Table 4,
the PSOEKF has higher precision than EKF.

en=n—-1n

(33)
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Fig. 2 Comparison of estimate results at different excited voltage. (a) Comparison of speed.
(b) Comparison of load torque

T, =T, -7, (34)

The efficiency was computed using estimated speed and load torque according
formula (28), (29), (30), and (31). Figure 3 gives the estimate results comparison
of efficiency using PSOEKEF at different excited voltage. Table 5 give the efficiency
estimation error at different excited voltage, in table 5 efficiency error is defined
as formula (35). Table 5 show the proposed PSOEKF method higher precision
than EKF.

en=n-1 (35)
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Table 4 Estimate error of EKF PSOEKFE
speed and load torque at — = — =
different excited voltage EV (V) en(pm) eT; (Nm) en(rpm) eT; (Nm)
0 12.7 —0.84 —0.28 —0.66
25 12.1 —0.4 0 —0.2
50 —25.88 0.26 0 0.04
75 —21.86 0.35 0 0.11
100 —13.16 —0.01 —0.05 —0.02
125 —3.55 0 0.2 —0.01
150 4.13 —0.1 0 —0.03
175 —2.92 —0.11 0.13 0
200 1.55 0.55 0.14 0.44
90 T
80 & $... B _—
hd
70 o
&
o N
& 60 [k
=
50
* Measured
40 AN EKF e .
O PSOEKF
300 50 100 1’:I'>0 200
excited voltage/V
Fig. 3 Comparison of estimate results of efficiency at different excited voltage
Table 5 Estimate results of 7 (%)
efficiency at different excited
voltage EV (V) EKF PSOEKF
0 —32.95 —26.53
25 —9.18 —4.91
50 1.88 0.45
75 1.57 0.87
100 —0.83 —0.15
125 —0.23 —0.09
150 —0.27 —0.17
175 —0.66 —0.05
200 2.13 1.65
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6 Conclusion

This paper presents a nonintrusive efficiency estimation method of induction motor
based on PSOEKEF. The nonintrusive efficiency estimation of motor is implemented
by estimating the speed and the load torque of the motor using PSOEKF. The
PSOEKEF get the optimized noise covariance matrices by minimizing the objective
function that defined using speed load torque estimated by EKF and measured
using PSO. The proposed method avoid using approximate value of stray loss in
the conventional efficiency estimation method, and overcome the defects of getting
the noise covariance matrices by trial and error in EKF method, The experimental
results show that PSOEKF with the optimized noise covariance matrix has higher
estimation accuracy.
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