
A Hybrid Parallel Barnes-Hut Algorithm
for GPU and Multicore Architectures

Hannes Hannak1,�, Hendrik Hochstetter2, and Wolfgang Blochinger1

1 Institute of Parallel and
Distributed Systems, University of Stuttgart, Germany

first.last@ipvs.uni-stuttgart.de
2 Computer Graphics and Multimedia Systems Group, University of Siegen, Germany

hochstetter@nt.uni-siegen.de

Abstract. Using the Barnes-Hut algorithm as an example we deal with
the design of parallel algorithms that are able to exploit multicore CPUs
and GPUs conjointly. Specifically, we demonstrate how to modularize a
parallel application according to specific aspects of parallel execution.
This allows for a flexible assignment of individual modules to the two
parallel architectures based on their actual performance characteristics.
Furthermore, we discuss a hybrid module for the most time consuming
part of the algorithm that utilizes CPU and GPU simultaneously em-
ploying a novel load balancing heuristic. Our experimental evaluation
shows that our method greatly increases overall efficiency by allowing to
deploy the optimal configuration of modules for each individual computer
system.

1 Introduction

In recent years, GPU-based parallel computing has attained considerable inter-
est. However, most algorithm designs presented so far exclusively exploit the
GPU for executing parallel tasks while the (potentially many) cores of the CPU
are running idle.

In this paper, we discuss a modularized parallel application which enables
a flexible assignment of individual parts of the algorithm for execution on the
GPU, the CPU cores, or on both platforms in parallel. We chose the Barnes-
Hut algorithm as an example for our studies. It computes the evolution of a
large set of particles based on the forces individual particles exert on each other.
In contrast to existing works (e.g. [7,8]), our approach specifically takes into
account that, depending on the actual capabilities of the hosts’ CPU cores and
GPU, different assignments of computational parts of the Barnes-Hut algorithm
to platforms may yield the most efficient solution.

Achieving such a degree of flexibility is especially important when executing
parallel applications (e.g. [6,14]) in highly heterogeneous environments. A typical

� Hannes Hannak is supported by a grant of the Landesgraduiertenförderung Baden-
Württemberg.

F. Wolf, B. Mohr, and D. an Mey (Eds.): Euro-Par 2013, LNCS 8097, pp. 559–570, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

560 H. Hannak, H. Hochstetter, and W. Blochinger

example of this kind are Desktop Grids (e.g. [1,16]) which combine the computing
power provided by volunteers into a global computing grid and are known to
aggregate a huge variety of hardware resources [10]. Also, Cloud Computing
instances exhibit a similar scenario: Even though the user is guaranteed certain
minimal hardware limits, the actual configurations and capabilities can vary
considerably.

2 Preliminaries

2.1 The Barnes-Hut Algorithm

N-Body methods simulate the dynamics occurring in a set of N particles based on
the forces (e.g. gravity) the particles exert on each other. Simulations proceed in
discrete timesteps, each resulting in new particle positions. As exact approaches
consider the forces between each pair of particles, O(N2) calculations are neces-
sary per timestep. To treat larger numbers of particles, approximation methods
have been proposed that considerably decrease the quadratic complexity [17].

One well known hierarchical approach to the N-body problem is the Barnes-
Hut algorithm [2] which exhibits O(N logN) time complexity. It employs a tree
data structure to approximate forces acting on the individual particles. The leaf
nodes of the Barnes-Hut tree hold the positions and masses of single particles
whereas each inner node represents particle equivalents summarizing the posi-
tions and masses of all particles of the subtree rooted at that node. Thus, inner
nodes act as pseudo particles which correspond to a certain area of the simulation
space.

��������

	
����
��

�

�

��������

	����
���	�
�����
��

��

��	��

	����

��������

	����

���	����
�

�

	����

	
�����	���

��

��	��

	����

Fig. 1. Simulation space and corresponding Barnes-Hut tree (same colors denote re-
spective pseudo particles). For clarity we show a two-dimensional space, however, the
same principles hold in 3D, too. We also illustrate the parameters of the opening cri-
terion applied for steering the tree walk for one particle and the resulting tree cut.

The computations of a timestep consist of the following consecutive steps:

S1) Tree Building: The simulation space is recursively divided into equally
sized subspaces until each of them contains at most one particle (cf. Fig. 1).

A Hybrid Parallel Barnes-Hut Algorithm 561

These subspaces define the leaf nodes of the Barnes-Hut tree which store the
position and the mass of the contained particle.
S2) Computing Pseudo Particles: For each inner node in the tree, the pseudo
particle data has to be computed. The mass is calculated as the sum of the masses
of the child nodes and the position as the center of mass.
S3) Force Evaluation: Forces are computed for each particle separately by
traversing the tree, starting with the root node (tree walk). To every pseudo-
particle an opening criterion is applied to decide whether it can be used for
force evaluation or if the node must be expanded. The opening criterion is given
by θ < l/d, where θ is a chosen approximation factor, l the length of the sub-
space the node represents and d the distance of the node’s position to the current
particle (cf. Fig. 1). Thus, choosing a smaller value for θ decreases the simula-
tion’s approximation error but increases running time as more interactions have
to be computed. If the opening criterion applies to an inner node, the algorithm
executes recursively on all child nodes and adds up the individual forces. Oth-
erwise, either the pseudo particle data is used to compute forces or, in case of
a leaf node, the particle data. The set of interaction partners define a particle’s
tree cut as that part of the tree that is needed for the particle’s force evaluation.
S4) Particle Update: Once the total force on each particle is known, the al-
gorithm calculates the new positions and velocities of the particles (by applying
Newton’s laws). These serve as input for the next timestep.

2.2 GPGPU Computing

In contrast to CPUs, GPUs consist of a hierarchical combination of many primi-
tive processor cores. On the nVidia platform, e.g., each Streaming Multiprocessor
(SM) comprises a set of simple Streaming Processors (SP) which share a common
program counter and control unit. All SPs within an SM execute instructions
synchronously and thus follow the SIMD architecture model, whereas different
SMs operate independently and follow the MIMD model.

We use nVidia GPUs and the CUDA SDK to speed up the Barnes-Hut algo-
rithm. nVidia GPUs offer hardware support for the scheduling of threads. When
running kernels, the scheduler selects small groups of threads, called warps, for
execution on SMs. If single threads of a warp follow different program paths,
all paths have to be followed one after another as each SM only possesses one
control unit. So, to achieve high efficiency with the computational resources of
GPUs, one must avoid thread divergence as if-then-else constructs have to be
serialized in the SIMD model. Because of this limitation, GPUs are best suited
to compute regularly structured problems.

To attenuate this constraint, modern GPUs introduce warp vote functions to
allow all threads of a warp to evaluate conditions jointly. For a Boolean variable
var, the warp vote function __all(var) returns true in each thread of the warp
if var is true in every thread. If var is false in only one thread, false is returned
in all threads of the warp. Thus, warp vote functions in conditional expressions
ensure coherent program paths within warps and avoid thread divergence which
can greatly increase efficiency.

562 H. Hannak, H. Hochstetter, and W. Blochinger

3 A Barnes-Hut Method for Hybrid Architectures

To efficiently use the computing power provided by the CPUs and GPUs of
different hosts, we designed a modular method that employs the most suitable
platform for each of the steps of the Barnes-Hut algorithm.

We first describe the structure and organization of the simulation data in Sec-
tion 3.1 followed by the characteristics of the individual steps that lead to our
modularization in Section 3.2. As force evaluation is the most expensive step,
we afterwards focus on the implementation of this module. In Section 3.3 we lay
out how we use the GPU for force evaluation. To exploit the maximum available
computational power, we designed an additional module that runs on both plat-
forms in parallel (hybrid mode) which we discuss in Section 3.4. Furthermore,
we invented a new load balancing mechanism to minimize processor idle time.
We present details and advantages of this method in Section 3.5.

3.1 Data Structures and Data Organization

As described in Section 2.1, the Barnes-Hut algorithm can be divided into a se-
quence of distinct steps each of which depends on the outcome of preceding ones
but can be solved as an independent entity. In our approach modules encapsulate
the functionality of these steps. Depending on its implementation, each module
can be executed in parallel on either one or both platforms. The definition of ex-
plicit interfaces between successive modules allows us to run the algorithm with
an arbitrary assignment of modules to execution platforms. The best configura-
tion for a specific host can be determined by initially performing a benchmark
run evaluating all possible combinations.

In principle, we replicate particle and tree data in the memories of the two
platforms to minimize costly data transfers between CPU and GPU memory
during computations. However, if data that is needed by the subsequent module
has been changed on one platform, e.g. by updating particle positions or tree
building (cf. Tab. 1), it must be transferred if the execution crosses platform
borders. As the resulting memory latencies reduce efficiency, we minimize idle
time by overlapping data transfers with the module execution.

To facilitate modularity and to speed up data transfers and computations, we
introduce two further steps/modules between tree building (S1) and computing
pseudo particles (S2):

S1a) Tree Linearization: To allow for an efficient transfer between platforms
and to speed up tree traversals, we transform the tree data structure into a set of
linear arrays: The tree array reflects the recursive structure of the tree, the next
and more arrays allow for a stack-free tree traversal, and the particle indirection
array allows particles to be accessed according to their spatial position.
S1b) Particle Sorting: Spatial proximity within particles can be exploited in a
number of cases during the computation to speed up execution and memory ac-
cess. As particles close to each other need to interact frequently, keeping them in
close memory positions increases cache efficiency. Thus, we sort particles through

A Hybrid Parallel Barnes-Hut Algorithm 563

the particle indirection array using three dimensional space filling Peano-Hilbert
curves.

3.2 Modularization

Each of the steps described above exhibits different characteristics, especially
with respect to data dependencies. In the following paragraphs, we give a detailed
account of the characteristics that determined the parallelization strategy for
each module. Table 1 provides an overview.

Table 1. Modules with interfaces and platforms (C = CPU, G = GPU, H = Hybrid.)

Requires Provides Platform

S1 particle data unsorted tree C
S1a unsorted tree next/more, particle indirection, tree arrays C
S1b particle indirection array, particle data sorted particle data C, G
S2 tree array, sorted particle data pseudo particles C, G
S3 next/more, pseudo particles, sorted particle data forces C, G, H
S4 forces, sorted particle data particle data C, G

The most time consuming steps of the Barnes-Hut algorithm are tree building
(S1) and force evaluation (S3) which both have a time complexity of O(N logN).
All four remaining steps are of linear complexity. Especially particle sorting
(S1b) can be done in linear time as one can determine the actual spatial order
of particles from the tree structure in one traversal.

Concerning data access patterns, tree building (S1), tree linearization (S1a)
and particle sorting (S1b) are the most complex problems. Tree building is real-
ized by inserting particles into a dynamically changing tree. The way in which
the tree is arranged in memory thus depends on the order the particles are
processed in. This usually leads to highly irregular access patterns. During tree
linearization (S1a), the tree data structures are rearranged in the order of a
depth first traversal to speed up succeeding steps. Computing pseudo particles
(S2) and force evaluation (S3) benefit from tree linearization (S1a) and particle
sorting (S1b) in that they have less irregular access patterns traversing the tree
than the steps before. Particle sorting (S1b) allows for regular access patterns
on particle data in later steps but has highly irregular access patterns, itself.

In addition to irregular access patterns, tree building (S1), linearization (S1a),
and computing pseudo particles (S2) suffer from data dependencies. During tree
building (S1), particles are inserted in parallel into a shared tree. Changes to the
tree have to be made atomic through locking mechanisms so that no inconsistent
states of the tree may arise. This limits the amount of parallelism that can
be achieved. Particle sorting (S1b), force evaluation (S3) and particle update
(S4), in contrast, do not involve any data dependencies and thus are trivially
parallelizable.

Our partition of the Barnes-Hut algorithm into a sequence of unique steps was
guided by the characteristics described above. They are summarized in Table 2.

564 H. Hannak, H. Hochstetter, and W. Blochinger

Although force evaluation dominates the running time in sequential implemen-
tations with 97 %, all steps have to be parallelized. If only force evaluation
was parallelized, following Amdahl’s law a maximum speedup of 33.3 could be
achieved, no matter how many processors were employed. However, implement-
ing different parallelization approaches for each step can be easily accomplished
through our modular design.

Table 2. Properties of the modules of our implementation of the Barnes-Hut algorithm

Access

patterns

Data depen-

dencies

Time

complexity

Sequential CPU

running time (in %)

S1 highly irregular yes O(N log N) ≈ 2
S1a highly irregular yes O(N) < 1
S1b highly irregular no O(N) < 1
S2 irregular yes O(N) < 1
S3 irregular no O(N log N) ≈ 97
S4 regular no O(N) < 1

As GPUs usually use relatively slow, high-bandwidth memory, regular access
patterns are crucial to achieve good performance. If irregular access patterns
occur, compute time is wasted waiting for memory accesses. In contrast, on
CPUs, more sophisticated memory hierarchies with larger and more cache stages
are employed which can better hide latencies if irregular patterns occur. We thus
expect GPUs to perform best in particle update (S4) and force evaluation (S3)
and less well in steps with more irregular access patterns and data dependencies.

Due to the combination of highly irregular access patterns and data depen-
dencies, we expect tree building (S1) and linearization (S1a) to be best suited
for an execution on CPUs. The additional steps of tree linearization (S1a) and
particle sorting (S1b) provide tree and particle data in an order that allows for
more regular memory access patterns, so that the most time consuming step,
the force evaluation (S3), can be parallelized efficiently on both CPU and GPU.

3.3 GPU Based Force Evaluation

As motivated above, GPUs are well suited to perform the force evaluation by
executing one thread per particle. Because we sort particles (S1b), each warp
only processes nearby particles. The force evaluation of nearby particles leads to
very similar tree cuts, so we thereby greatly reduce thread divergence.

To completely avoid thread divergence, interaction lists can be employed in
GPU-based force evaluation [8,4]. This approach groups nearby particles to-
gether. A tree walk computes an interaction list for each group that stores all
particles and pseudo-particles that contribute to the groups’ forces. Forces acting
on the individual particles of a group are computed completely synchronously,
using the interaction list. In contrast, like [7], we use warp vote functions to
achieve a similar effect. During the tree walk, the opening criterion is evaluated
using __all. Approximations thus are only acceptable if all threads of a warp
agree. Else the threads continue the tree walk with the children of the current

A Hybrid Parallel Barnes-Hut Algorithm 565

node. So, all threads of a warp access the same node data and don’t diverge.
Evaluating the opening criterion for each particle separately would cause parts
of the tree to be traversed to different depths. Using __all, all threads of a warp
follow the deepest path necessary for any one of the warp’s particles, thereby
increasing accuracy.

Although more interactions are computed using warp vote functions, the re-
duced amount of memory accesses and the absence of thread divergence greatly
improve performance. Additionally, latency hiding through the scheduling hard-
ware can work more effectively with warp vote functions than interaction lists
as the memory bound tree traversal and the compute bound evaluation of inter-
actions are not artificially separated but interleaved.

3.4 Hybrid Force Evaluation

Our modularized approach allows us to combine CPU- and GPU-based imple-
mentations of the force evaluation to yield a hybrid module that utilizes both
platforms in parallel. To balance the workload among CPU and GPU, each pro-
cessor evaluates forces for a subset of particles. The size of the subset depends
on the processor’s computational power.

We model the CPU as a set of equally powerful processors. Because of its
hardware-based thread scheduling we can’t control the GPU’s load balancing. We
thus represent the GPU as a single processor. For the same reason, it is difficult to
predict GPU running times solely from the problem structure. Thus, we exploit
the spatio-temporal stability of N-Body problems. We measure running times of
CPU and GPU computations and adjust the GPU’s computational power pGPU
dynamically in each timestep. That way, we are able to capture the ratio between
the computing power of GPU and CPU and to distribute the load, accordingly.

If computations on the GPU (tGPU) took less time than on the CPU (tCPU),
pGPU is increased to pGPU

(
cinc

tGPU
tCPU

+ (1− cinc)
)

so that the GPU evaluates
more forces. If on the other hand the CPU took less time than the GPU, pGPU

is decreased to pGPU

(
cdec

tGPU
tCPU

+ (1 − cdec)
)
. Else, pGPU remains unchanged.

The constants cinc, cdec and the initial value of pGPU are precomputed in a
benchmark run. cinc and cdec determine how fast pGPU is increased or decreased.
They are chosen in such a way that no work is stolen from the faster platform
due to fluctuations in tGPU or tCPU that may be caused by the different ways in
which CPUs and GPUs operate, the operating system, or the system’s user.

3.5 A Novel Dynamic Load Balancing Scheme for Force Evaluation

To improve the hybrid force evaluation’s load balancing, the varying costs to
evaluate forces acting on different particles must be considered, instead of as-
suming a uniform cost per particle. For particles in dense areas of the simulation
space more interactions have to be computed than for particles in sparse areas.
Due to the spatio-temporal stability of N-body problems, particles move only

566 H. Hannak, H. Hochstetter, and W. Blochinger

 0

 2

 4

 6

 8

 10

 12

 14

 0 100000 200000 300000 400000 500000
 0

 200

 400

 600

 800

 1000

 1200

 1400

tr
ee

−
le

ve
l

in
te

ra
ct

io
ns

particle

Core 1 Core 2 Core 3 Core 4 Core 5 Core 6

particle’s tree−level
number of interactions

Fig. 2. Comparison between our tree-level heuristic and the number of interactions
for one timestep during force evaluation using θ = 0.75. Columns depict the resulting
particle distribution among six CPU cores (gray and white).

slightly between timesteps. Thus, the number of interactions also changes slowly
and provides a good measure for the computational cost to evaluate forces.

A common approach to load balancing is counting the number of interac-
tions for each particle and using the data to distribute work in subsequent
timesteps [17]. As GPUs use hardware-based thread scheduling, this approach
isn’t very well suited for our hybrid module. When counting interactions on the
GPU, more resources are required and less threads can be resident in SMs, which
strongly impairs the scheduling mechanism and the GPU’s performance.

We thus introduce a novel heuristic approach to predict the number of inter-
actions. It uses only data gathered during one traversal of the tree and does not
introduce any overhead into the force evaluation itself. Our method is based on
the tree level l of each particle x which turned out to be a good measure for
the particle density in the region surrounding that particle (cf. Fig. 2). If l is
large, many particles are located close to x and many interactions have to be
considered to evaluate the force acting on x. The tree level thus provides a good
heuristic to approximate the computational cost for a given particle.

To incorporate our heuristic into the force evaluation, we write a cost array
containing the prefix sum of the tree level (and thus cost) of each particle. The
last element of this array holds the total cost C to evaluate all forces. Each
processor i, which may be a CPU core or the GPU, has a computing power pi
that determines the amount of work assigned to it. The system’s total computing
power is ptotal =

∑
i pi. During simulations, each processor i computes forces

for a contiguous subset of particles, the lower and upper indices of which are
the same as the indices of C

∑i−1
k=0 pk

ptotal
and C

∑i
k=0 pk

ptotal
, respectively, in the cost

array which can be determined through binary search. Fig. 2 shows a particle
distribution resulting from our load balancing scheme. Note how, e.g., Core 1 is
assigned a larger particle subset than Core 2, as for most particles assigned to
Core 1 less interactions have to be computed.

A Hybrid Parallel Barnes-Hut Algorithm 567

Table 3. Configuration of the node types used for the experimental evaluation

Type CPU (Cores / Threads / Frequency) RAM GPU VRAM

I Intel Core i7 M620 (2 / 4 / 2.67 GHz) 2 GB nVidia GeForce NVS 3100M 256 MB
II AMD Phenom II X6 1055T (6 / 6 / 2.8 GHz) 4 GB nVidia GeForce GTX 660 Ti 2 GB
III Intel Core i7-2670QM (4 / 8 / 2.2 GHz) 4 GB nVidia GeForce GTX 570M 1.5 GB

4 Performance Evaluation

To evaluate our approach we performed test runs on a variety of different hard-
ware (see Table 3). For each run we used two colliding galaxies of equal mass
as input. Each galaxy consisted of a stellar disk surrounded by a dark matter
halo following the Springel-Hernquist model. We used Starscream [5] to create
the galaxies and place them on a parabolic orbit.

We denote the configuration of platforms that execute the simulation steps
as strings of six characters, representing the six modules. Each module is either
executed on the CPU (C), the GPU (G), or in hybrid mode (H) on CPU and
GPU in parallel. Speedups are based on the sequential CPU running time on
the respective test system. Figure 3 shows the speedups obtained using different
combinations of modules on our test systems for varying problem sizes.

In purely CPU-based parallel configurations (CCCCCC), we achieved speedups
of 1.8 (type I), about 5 (type II), and 3.7 (type III). On all three systems, the
speedups of our heuristic load balancing scheme could compete with those of load
balancing based on interaction counting. In the sequential configuration CCC-
CCC, we measured an overhead of 2 % just to count interactions. For GPU-based
force evaluation this introduced an overhead of more than 30 %.

To find the most efficient module combination, we ran all possible combina-
tions on each system. On type I, the best combination turned out to be CCCCHG
which obtained speedups of 6 and above. The most efficient combination for type
II, CCGGGG, achieved speedups close to 60 for the largest problem sizes. This
discrepancy can be explained by the different ratio of GPU to CPU computing
power on the test systems. On type II the GPU outperforms the CPU, whereas
on type I both have similar peak performance. On type III, the best module
combination depended on the problem size. For problem sizes of below 6 · 106
particles, CCCCHG yielded the highest speedups whereas for larger problems
CCCGHG was fastest. We attribute this observation to the fact that GPUs
only reach their maximum performance if all computational resources are fully
utilized. As the GPU on type III is highly capable, this was only achieved for
problems with a higher number of particles. As expected, we obtained different
results among our test systems, and as such a variety of systems is common in,
e.g., Desktop Grids, the results prove our idea of a flexible modular design.

The modern GPU on type II supports the warp vote function __all, which
decreased the time of the force evaluation by over 50 %. Using the hybrid force
evaluation module (CCCCHG) on type I, we measured a speedup of over 20 %
compared to configuration CCCCGG. On type III, CCCGHG was over 50 %
faster than CCCGGG. This shows that combining the computational power of
CPU and GPU is an effective way to increase the performance of simulations.

568 H. Hannak, H. Hochstetter, and W. Blochinger

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7

S
pe

ed
up

 (
N

)

Problem size N [106 particles]

System I

CCCCHG
CCCCHC
CCCCGG
CCCGGG
CCGGGG

CCCCCC tree level heuristic
CCCCCC counting interactions

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10 12 14
S

pe
ed

up
 (

N
)

Problem size N [106 particles]

System III

CCCGHG
CCCCHG
CCCCHC

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10 12 14
S

pe
ed

up
 (

N
)

Problem size N [106 particles]

System III

CCCGGG
CCCCGG
CCGGGG

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10 12 14
S

pe
ed

up
 (

N
)

Problem size N [106 particles]

System III

CCCCCC tree level heuristic
CCCCCC counting interactions

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

 (
N

)

Problem size N [106 particles]

System II

CCGGGG
CCGGGG no latency hiding

CCCGGG

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

 (
N

)

Problem size N [106 particles]

System II

CCCCHG
CCCCGG
CCCCHC

CCGGGG no warp vote
CCCCCC tree level heuristic

CCCCCC counting interactions

Fig. 3. Speedup of different parallel module combinations compared to purely sequen-
tial CPU implementations. Timings averaged over 10 time steps using θ = 0.75.

Memory latencies constituted only about 1 % of the total running time on
type II in configuration CCGGGG. Through our latency hiding approach, we
reduced latencies by 50 % to below 0.5 %. On type I in configuration CCCCHG,
latencies were reduced by over 66 % to less than 0.25 % of the total time.

5 Related Work

In most works, only the computationally most expensive part, the force evalu-
ation, is computed on the GPU, whereas the CPU computes all other steps of
the Barnes-Hut algorithm [15,8]. More recent works run the whole simulation on
GPUs [7,4]. In contrast, our code is completely modularized to allow arbitrary
combinations of CPU- and GPU-based implementations of the individual steps.

A Hybrid Parallel Barnes-Hut Algorithm 569

Irregular problems like cloth simulation [12] or the Barnes-Hut tree do not eas-
ily fit the parallel SIMD model of GPU programming. Construction and traver-
sal of trees on GPUs are topics of ongoing research. Two popular approaches to
parallelize construction of trees on GPUs have been proposed in literature: Tree
construction can either be accomplished by inserting particles in parallel into a
dynamically changing shared tree using locks to prevent race-conditions [7] or the
tree can be constructed level by level, which requires particles to be sorted [4].

GPU-based force evaluation can be realized executing one thread per particle.
As recursive functions are not supported on older GPU generations, tree traver-
sals have to be done iteratively. Stack-based tree traversals were used in [8,4,7].
Tree traversals using next and more arrays were first employed in [13] and later
were used on the GPU [15], as in our work. To prevent thread divergence in SMs,
force evaluation can be modified to use interaction lists, as first described in [3].
They were used in GPU-based force evaluation in [8,4]. Instead, like [7], we use
warp vote functions to prevent thread divergence.

Our modular design offers opportunities for latency hiding every time execu-
tion moves to another platform. As most works employ non-modular designs,
little information can be found on this topic. We are aware of only one work dis-
cussing latency hiding between GPU and CPU computations. In [11] the CPU
determines interaction lists and the evaluation of forces is offloaded to the GPU.
However, interaction lists are computed piecewise, so that completed interaction
lists can be sent to the GPU while the CPU computation continues.

6 Conclusion

In this paper we introduced a modularized parallelization of the Barnes-Hut
algorithm. By defining interfaces between modules and carefully choosing data
structures we facilitate efficient module implementations for CPU and GPU that
allow a flexible dynamic assignment to platforms. Through the design of hybrid
modules that combine the computing power of CPU and GPU, we fully utilize
all available computational resources.

Our test results show that for different host systems very different combina-
tions of GPU- and CPU-based modules yield the best overall performance, and
that the best combination depends highly on the underlying hardware. Hence,
by incorporating our modular design, we are able to improve an existing im-
plementation of the Barnes-Hut algorithm for Desktop Grids [9]. The flexibility
and adaptability our modular multi-platform approach offers render it an ideal
model for the design of future algorithms for heterogeneous environments.

References

1. Anderson, D.P.: Boinc: A system for public-resource computing and storage. In:
5th IEEE/ACM International Workshop on Grid Computing, pp. 4–10 (2004)

2. Barnes, J.E., Hut, P.: A hierarchical O(N log N) force-calculation algorithm. Na-
ture 324(6096), 446–449 (1986)

570 H. Hannak, H. Hochstetter, and W. Blochinger

3. Barnes, J.E.: A modified tree code: Don’t laugh; it runs. Journal of Computational
Physics 87(1), 161–170 (1990)

4. Bédorf, J., Gaburov, E., Zwart, S.P.: A sparse octree gravitational n-body code
that runs entirely on the GPU processor. Journal of Computational Physics 231(7),
2825–2839 (2012)

5. Billings, J.J.: Starscream – An open source galaxy modeling and simulation tool,
http://code.google.com/p/starscream/ (accessed in February 2013)

6. Blochinger, W., Dangelmayr, C., Schulz, S.: Aspect-oriented parallel discrete op-
timization on the cohesion desktop grid platform. In: Proc. of the Sixth IEEE
International Symposium on Cluster Computing and the Grid (CCGrid 2006),
pp. 49–56 (2006)

7. Burtscher, M., Pingali, K.: An efficient CUDA implementation of the tree-based
Barnes Hut n-body algorithm. In: Hwu, W.-M.W. (ed.) GPU Computing Gems
Emerald Edition, ch. 6, pp. 75–92. Morgan Kaufmann Publishers Inc. (2011)

8. Gaburov, E., Bédorf, J., Zwart, S.P.: Gravitational tree-code on graphics processing
units: Implementation in CUDA. Procedia CS 1(1), 1119–1127 (2010)

9. Hannak, H., Blochinger, W., Trieflinger, S.: A desktop grid enabled parallel Barnes-
hut algorithm. In: Proceedings of the 31st IEEE International Performance Com-
puting and Communications Conference (IPCCC 2012), pp. 120–129 (2012)

10. Heien, E., Kondo, D., Anderson, D.: A correlated resource model of internet end
hosts. IEEE Transactions on Parallel and Distributed Systems 23(6), 977–984
(2012)

11. Jetley, P., Wesolowski, L., Gioachin, F., Kalé, L.V., Quinn, T.R.: Scaling hierarchi-
cal n-body simulations on GPU clusters. In: Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing, Networking, Storage
and Analysis, pp. 1–11 (2010)

12. Keckeisen, M., Blochinger, W.: Parallel implicit integration for cloth animations
on distributed memory architectures. In: Proc. of Eurographics Symposium on
Parallel Graphics and Visualization 2004, pp. 119–126 (2004)

13. Makino, J.: Vectorization of a treecode. Journal of Computational Physics 87(1),
148–160 (1990)

14. Meißner, M., Hüttner, T., Blochinger, W., Weber, A.: Parallel direct volume ren-
dering on PC networks. In: Arabnia, H.R. (ed.) Proc. of the Intl. Conf. on Parallel
and Distributed Processing Techniques and Applications, PDPTA 1998. CSREA
Press (1998)

15. Nakasato, N.: Implementation of a parallel tree method on a GPU. Journal of
Computational Science 3(3), 132–141 (2012)

16. Schulz, S., Blochinger, W., Held, M., Dangelmayr, C.: Cohesion - a microkernel
based desktop grid platform for irregular task-parallel applications. Future Gener-
ation Computer Systems - The International Journal of Grid Computing: Theory,
Methods and Applications 24(5), 354–370 (2008)

17. Singh, J.P., Holt, C., Totsuka, T., Gupta, A., Hennessy, J.: Load balancing and
data locality in adaptive hierarchical n-body methods: Barnes-hut, fast multipole,
and radiosity. Journal of Parallel and Distributed Computing 27(2), 118–141 (1995)

http://code.google.com/p/starscream/

	A Hybrid Parallel Barnes-Hut Algorithm for GPU and Multicore Architectures
	1 Introduction
	2 Preliminaries
	2.1 The Barnes-Hut Algorithm
	2.2 GPGPU Computing

	3 A Barnes-Hut Method for Hybrid Architectures
	3.1 Data Structures and Data Organization
	3.2 Modularization
	3.3 GPU Based Force Evaluation
	3.4 Hybrid Force Evaluation
	3.5 A Novel Dynamic Load Balancing Scheme for Force Evaluation

	4 Performance Evaluation
	5 Related Work
	6 Conclusion
	References

