
Fast Methods for Computing Selected Elements
of the Green’s Function in Massively Parallel

Nanoelectronic Device Simulations

Andrey Kuzmin1, Mathieu Luisier2, and Olaf Schenk1

1 Institute of Computational Science, Universita della Svizzera italiana
CH-6900 Lugano, Switzerland

{andrey.kuzmin,olaf.schenk}@usi.ch,@usi.ch
http://www.ics.inf.usi.ch

2 Integrated Systems Laboratory, ETH Zürich, CH-8092 Zürich, Switzerland
mluisier@iis.ee.ethz.ch
http://www.iis.ee.ethz.ch

Abstract. The central computation in atomistic, quantum transport
simulation consists in solving the Schrödinger equation several thousand
times with non-equilibrium Green’s function (NEGF) equations. In the
NEGF formalism, a numerical linear algebra problem is identified re-
lated to the computation of a sparse inverse subset of general sparse un-
symmetric matrices. The computational challenge consists in computing
all the diagonal entries of the Green’s functions, which represent the in-
verse of the electron Hamiltonian matrix. Parallel upward and downward
traversals of the elimination tree are used to perform these computations
very efficiently and reduce the overall simulation time for realistic nano-
electronic devices. Extensive large-scale numerical experiments on the
CRAY-XE6 Monte Rosa at the Swiss National Supercomputing Center
and on the BG/Q at the Argonne Leadership Computing Facility are
presented.

1 Introduction

Ultrascaled nanowire field-effect transistors (NWFETs) [1,2] could become the
next generation logic devices when it will no longer be possible to scale the
dimensions of the currently manufactured fin-shaped field effect transistor (Fin-
FETs) and keep improving their performance. Technology computer aided design
(TCAD) has established itself as a great accelerator for the development of novel
transistors. However, to simulate the characteristics of NWFETs, it is neces-
sary to go beyond classical approximations such as the drift-diffusion model and
to use a quantum transport approach. Energy quantization, quantum confine-
ment, and quantum mechanical tunneling can only be accurately captured if the
Schrödinger equation is directly solved in a full-band, atomistic basis and if open
boundary conditions describing the coupling of the device with its environment
are included [3,4].

F. Wolf, B. Mohr, and D. an Mey (Eds.): Euro-Par 2013, LNCS 8097, pp. 533–544, 2013.
© Springer-Verlag Berlin Heidelberg 2013

http://www.ics.inf.usi.ch
http://www.iis.ee.ethz.ch


534 A. Kuzmin, M. Luisier, and O. Schenk

The non-equilibrium Green’s function formalism (NEGF) is one of the most
efficient techniques for performing this task. It has been widely used to study
the electronic and thermal properties of nanoscale transistors and molecular
switches on massively parallel architectures. The NEGF formalism is used, e.g.,
in the highly successful nanoelectronics modeling tools OMEN 1 [5] and TranSI-
ESTA2 [6]. In these applications, a subset of the entries of the inverse of complex
unsymmetric matrices must be repeatedly computed, which represents a signif-
icant computational burden. This is usually achieved with a so-called recursive
Green’s function (RGF) algorithm [7,8].

The calculation of a subset of the entries of the inverse of a given matrix
also occurs in a wide range of other applications, e.g., in electronic transport
simulation [9,10], the diagonal and sometimes subdiagonal of the discrete Green’s
function are needed in order to compute electron density. It is therefore of utmost
importance to develop and implement efficient scalable algorithms targeting the
diagonal of the inverse that are faster than, e.g., inverting the entire matrix based
on successive application of a sparse direct LU decomposition of A or faster than
the RGF algorithm.

Consider a general sparse unsymmetric matrix A ∈ Cn×n, and assume that
A is not singular so that it can be factorized as A = LU . If the matrix A
is irreducible then A−1 is a dense matrix [11]. In this paper, the problem of
computing selected elements of the inverse A−1 of A is addressed. This subset
of selected elements is defined by the set of nonzero entries in the factorized
matrix. It was proved in [12] that both the subset and the diagonal of A−1 can
be evaluated without computing any inverse entry from outside of the subset.

A fast direct algorithm called fast inverse using nested dissection (FIND)
that was proposed in [9] is used to compute the required components of the
NEGF in the simulations of nanoscale devices. The method is based on the
algorithm of nested dissection. A graph of the matrix is constructed and de-
composed using a tree structure. An upward and downward traversal of the tree
is used to perform the computation efficiently. An alternative method is based
on the Schur-complement method described in [13,14]. The fast sequential algo-
rithm proposed for symmetric indefinite matrices was implemented in the Selinv3

library.

1.1 Contribution

To the best of our knowledge, there is no parallel efficient software package
currently available for computing an inverse subset of a general unsymmetric
sparse matrix. This paper fills this gap by describing an efficient BLAS level-
3 algorithm and its parallel multithreaded implementation. It is available in

1 OMEN was awarded an honorable mention at the 2011 ACM Gordon Bell Prize for
reaching a sustained performance of 1.44 PFlop/s on the Cray-XT5 Jaguar. It is
available at http://nanohub.org/resources/omenwire

2 http://www.icmab.es/dmmis/leem/siesta
3 https://web.math.princeton.edu/~linlin/software.html

http://nanohub.org/resources/omenwire
http://www.icmab.es/dmmis/leem/siesta
https://web.math.princeton.edu/~linlin/software.html


Parallel Inversion in Nanoelectronics 535

0 0.2 0.4 0.6
10

−6

10
−2

10
2

V
gs

 (V)

D
ra

in
 C

ur
re

nt
 (m

A
)

0 20 40
0

0.2

0.4

x (nm)

N
um

be
r o

f e
le

ct
ro

ns

0 20 40
0.5

1

1.5

Co
nd

uc
tio

n 
Ba

nd
 E

dg
e 

(e
V)

1.2 1.4 1.6 1.8
0

5

10

15

20

Energy (eV)

Tr
an

sm
is

si
on

 P
ro

ba
bi

lit
y

1.2 1.4 1.6 1.8
0

20

40

60

80

D
en

si
ty

−
of

−
St

at
es

 (a
rb

. u
ni

ts
)

diam
eter

tox

y

x
z

Source

Drain

Lg

(a)
(b)

(c) (d)

Source Drain

Fig. 1. (a) Schematic view of a Si ultrascaled NWFET composed of source, channel,
and drain regions. Each single Si atom (red dot) is taken into account. The central
semiconducting nanowire of diameter d is surrounded by an oxide layer of thickness
tox. The gate contact (blue) has a length Lg. Electrons flow from source to drain along
the x-axis. (b) Transfer characteristics Id-Vgs (drain current vs. gate-to-source voltage)
at a drain-to-source voltage Vds=0.6 V of a Si NWFET with d=3 nm, Lg=15 nm,
and tox=1 nm. (c) Number of electrons (solid blue line) and conduction band profile
(dashed green line) along the x-axis of the same Si NWFET as in (b). (d) Electron
transmission probability (solid blue line) and density of states (dashed green line) under
the same conditions as in (c).

the latest version of the PARDISO4 package. Extensive intranode performance
studies were perfromed on Cray XE-6 and IBM BG/Q architectures. The method
is fully integrated into the massively parallel nanoelectronic simulation code
OMEN. Numerical experiments show significant advantage of method over the
RGF approach.

The paper is organized as follows: in Section 2, an overview of the atomistic,
quantum transport simulation approach including its RGF implementation is
given. In Section 3 the idea of selected parallel inversion as an alternative to the
RGF method is described. The performance of our code is finally described and
analyzed in Section 4 before the paper is concluded in Section 5.

2 Overview of the Simulation Approach

2.1 Formulation of the Quantum Transport Problem

Simulating NWFET in a full-band, atomistic basis requires repeatedly solving
the Schrödinger equation with open boundary conditions and dealing with large
4 https://www.pardiso-project.org

https://www.pardiso-project.org


536 A. Kuzmin, M. Luisier, and O. Schenk

matrices whose size depends on the number of atoms present in the simulation
domain and on the number of atomic orbitals considered on each atom. A typ-
ical device structure is schematized in Fig. 1(a). The current flowing through
the NWFET at a given gate-to-source (Vgs) and drain-to-source (Vds) voltage
represents the most relevant quantity of interest since it can be compared to ex-
perimental data. An example is given in Fig. 1(b). The electron charge density
is also important since it induces an electrostatic potential through the Poisson
equation, which in turn affects the Schrödinger equation. It must therefore also
be calculated as illustrated in Fig. 1(c). In ballistic simulations, to obtain the
current and charge density, the energy-resolved electron transmission probability
T (E) and density of states (DOS) g(E) must be first evaluated. They are shown
in Fig. 1(d).

In order to calculate T (E) and g(E) and then the electron and charge density,
the following NEGF equation must be solved for each electron energy E:

(
EI−H−ΣRS(E)−ΣRD(E)

) ·GR(E) = I. (1)

In Eq. (1), the Hamiltonian matrix H is of size NA × Norb, where NA is the
number of atoms and Norb the number of orbitals in the full-band basis used to
describe the device material properties. Here, a semiempirical, nearest-neighbor
sp3d5s∗ tight-binding model without spin-orbit coupling is employed, which
means that Norb=10 [15]. In many applications, H is block tridiagonal, but
it can also exhibit more complicated structures. The matrix I is the identity
matrix while the self-energy matrices ΣRS(E) and ΣRD(E) refer to the source
and drain open boundary conditions respectively, calculated as in [5]. Only the
upper left corner of ΣRS(E) and lower right corner of ΣRD(E) are different
from 0. In a device with more than two contacts, additional self-energies must
be included in Eq. (1). Here, for simplicity, only a source and drain contact are
accounted for. Finally, GR(E) is the retarded Green’s Function at energy E.

Once GR(E) is calculated, either with a standard approach as in Section 2.2 or
with the new algorithm proposed in Section 3, the electron density of states g(E)
and transmission probability T (E) can be derived. First, g(E) is considered. It
contains as many components as contacts so that

g(E) = gS(E) + gD(E), (2)

where gS(E) and gD(E) refer to the DOS coming from the source and drain,
respectively. It can be demonstrated that [3]

g(E) =
i

2π
diag

(
GR(E)−GR†(E)

)
, (3)

gS(E) =
1

2π
diag

(
GR(E) · ΓS(E) ·GR†(E)

)
, (4)

gD(E) = g(E)− gS(E). (5)

Similarly, the transmission probability T (E) is given by

T (E) = trace
(
GR(E) · ΓS(E) ·GR†(E) · ΓD(E)

)
. (6)



Parallel Inversion in Nanoelectronics 537

In both Eqs. (4) and (6), broadening functions ΓS/D(E) are introduced. They
are defined as

ΓS/D(E) = i
(
ΣRS/D(E)−ΣRS/D†(E)

)
. (7)

Based on Eqs. (3)–(6) and on the fact that only the upper left corner of ΣRS(E)
and ΓS(E) is different from 0, it appears that not the entire GR(E) matrix is
needed, but only its diagonal and its first n columns, where n is the size of the
nonzero square block of ΓS(E). This simplification is valid in ballistic simulations
only. As soon as scattering is included, e.g., electron-phonon interactions or
interface roughness, the situation becomes more complicated. However, such
cases are outside the scope of this paper.

With the knowledge of gS(E), gD(E), and T (E), the charge density nel and
current Id can be computed as

nel =

∫
dE

(
gS(E)f(E − EfS) + gD(E)f(E − EfD)

)
, (8)

Id =
q

�

∫
dE

2π
T (E) (f(E − EfS)− f(E − EfD)) , (9)

where f(E) is a distribution function (here Fermi-Dirac), EfS and EfR the
source and drain Fermi levels, q the elementary charge constant, and � the
reduced Planck constant. The electron density nel takes the form of a vector
with different values on each atom. The drain current Id is a scalar.

2.2 RGF Algorithm

When the Hamiltonian matrix H has a block tridiagonal structure, as in most
device simulations, an efficient RGF algorithm can be used to solve Eq. (1) [7,8].
To briefly sketch the functionality of the RGF algorithm, it is assumed that
H contains N diagonal blocks and that Mij is the block with row index i and
column index j in the matrix M. The algorithm involves two recursive steps,
the first one starting at the lower right corner,

gRi =
(
E −Hii −Hii+1g

R
i+1Hi+1i

)−1
C (10)

with

gRN =
(
E −HNN −ΣRD

NN

)−1
, (11)

gR1 =
(
E −H11 −H12g

R
2 H21 −ΣRS

11

)−1
. (12)

The gRi ’s are approximate solutions to Eq. (1) when Hii−1 and Hi−1i are set
to 0. It then becomes clear that the exact Green’s Function GR

11 is equal to gR1 .
Then, in a second phase, two additional recursions can be derived to calculate
the exact diagonal and first column blocks of GR(E) starting from the upper
left corner:

GR
ii = gRi + gRi Hii−1G

R
i−1i−1Hi−1ig

R
i , (13)

GR
i1 = gRi Hii−1G

R
i−11. (14)



538 A. Kuzmin, M. Luisier, and O. Schenk

No other system of equations must be solved to evaluate Eqs. (3)–(6). Note finally
that the computational complexity of the RGF algorithm amounts to O(Nn3),
where n is the average block size, and that it cannot be efficiently parallelized.
This becomes a serious issue in large simulation domains, for which the required
memory to solve Eqs. (10)–(14) is larger than the one available on each CPU.

3 A Selected Sparse Inverse Matrix Algorithm (SINV)

3.1 Sparse Inverse Supernodal Factorization

The obvious way to compute selected entries of the inverse is to invert the
entire matrix and than to extract the selected entries. The standard approach
for matrix inversion is to perform the LU factorization first:

A = LU ,

where L and U are unit lower triangular and upper triangular matrices respec-
tively. Using such a factorization, A−1 = (x1, x2, ..., xn) could be obtained by
solving a number of linear systems Axi = ei. Each of the systems is solved using
backward and forward substitution phases, Ly = ej and Uxj = y. Before the al-
gorithm is presented, the process of computing LU factorization is reviewed. Let
A be a nonsingular unsymmetric matrix. Each step of LU factorization produces
the following decomposition:

A =

[
A11 A12

A21 A22

]
,

A =

[
A11 A12

A21 A22

]
=

[
L11

L21 I

] [
I
S

] [
U11 U12

I

]
,

where S = A22 − A21A
−1
11 A12 is the Schur-complement of A11 with respect to

A. In order to simplify the derivation, it is assumed that no row or column
permutation is required during the factorization. The discussion could be easily
generalized for the case of pivoting algorithms used in order to improve stabil-
ity. The main idea of the algorithm is that A−1 could be computed using the
following expression:

A−1 =

[
U−1
11 L−1

11 + U−1
11 U12S

−1L−1
11 L21 −U−1

11 U12S
−1

−S−1L−1
11 L21 S−1

]
.

Using the notation Ũ12 = −U−1
11 U12, L̃12 = −L−1

11 L12 and D̃−1 = U−1
11 L−1

11 this
expression for the inverse can be simplified:

A−1 =

[
D̃−1 + Ũ12S

−1L̃21 Ũ12S
−1

−S−1L̃21 S−1

]
.



Parallel Inversion in Nanoelectronics 539

Fig. 2. Example of a supernodal partition for sparse LU factorization and the corre-
sponding supernodal elimination tree

The idea was originally proposed in [16]. The more general approach for un-
symmetric matrices is presented in this paper. This expression suggests that
given the LU factorization, computation of the inverse can be reduced to com-
puting S−1. The computation of A−1 can be organized in a recursive manner
similar to the LU factorization algorithm, but computing the sequence of the
diagonal elements is organized in the opposite direction. The last diagonal el-
ement of the inverse equals a reciprocal of the last diagonal element of the U
factor, A−1

nn = (Unn)
−1. Starting from the last element, which is also the Schur-

complement produced in the last step of the LU factorization algorithm, we
proceed step by step, computing more and more blocks from the lower right
corner to the upper left corner. Thus, more and more entries of A−1 are com-
puted. The complexity of such an inversion algorithm is still O(n3) in the case
of a dense matrix. However, computational cost can be drastically reduced if
the matrix A is sparse. Rigorous consideration of this topic leads to the concept
of sparse matrix elimination tree and its extension to the inverse factorization
case [17,18,19]. As a consequence the complexity of the inversion process can
be reduced to O(n2) for matrices from three-dimensional simulations.

The implementation is built on top of the PARDISO package that uses supern-
odal BLAS level-3 algorithm during the direct factorization phase. The METIS
package is used to produce the fill-in reducing reordering [20]. An example of
such a supernodal partitioning for LU factorization can be seen in Fig. 2. The
nested dissection algorithm allows to reduce significantly the size of diagonal
subblocks compared to RGF method that results in additional performance in-
crease. Nonzero entries of LU factors are stored in dense subblocks, so that each
supernode consists of many dense submatrices that could be used in efficient
dense matrix-matrix multiplication subroutines.



540 A. Kuzmin, M. Luisier, and O. Schenk

Fig. 3. Example of a dense subblock gathering during the inverse factorization process.
The scheme on the left-hand side depicts the submatrix that contributes to the update
of the supernode {G,H,I} by the supernode {K,L}. Contribution of the supernode
{N,O,P,Q,R} to {G,H,I} is represented on the right-hand side.

In the implementation, the inverse factorization is computed in place so that
the original LU factorization is overwritten by the entries of the inverse. The
most computationally time consuming operations at this stage are two matrix-
matrix products, namely Ũ12S

−1 and −S−1L̃21 where S−1 is a sparse matrix
with supernodal storage and L̃21, Ũ12 are, in turn, sparse block vectors stored
by contiguous dense subblocks. First the computation of the product Ũ12S

−1 is
considered. It could be split according to the supernodal partition of the Schur-
complement: Ũ12S

−1 = Ũ12S
−1
{A,B} + Ũ12S

−1
{C} + . . .+ Ũ12S

−1
{M,N,O,P,Q,R}, where

S−1
{A,B}, S

−1
{C}, . . . are supernodes of S−1 consisting of a lower and upper triangu-

lar part each. Each of the terms in the sum can be computed in two steps. First
the required entries are gathered into a dense block using indirect addressing
schemes similar to techniques described in [21] (see Fig. 3). Then, the product
is computed using two dense matrix-matrix multiplications. The sum is accu-
mulated in a temporary buffer. After Ũ12S

−1 has been computed, the product
Ũ12S

−1L̃21 = (Ũ12S
−1)L̃21 could be immediately calculated using the xGEMM

function. The product −S−1L̃21 is calculated in a similar manner. Thus, all the
computations were performed using BLAS level-3 subroutines that guarantees
optimal use of vector operations on modern architectures and effecient usage of
their cache hierarchies.

3.2 Intranode Parallelization

Data dependencies in the selected inversion algorithm are represented by the
inverse elimination tree. Therefore, the inversion algorithm permits paralleliza-
tion strategies similar to parallel direct solvers. The level of parallelism mainly
utilized in this case is the tree level parallelism.

Consider the serial inversion algorithm described in the previous section. Fac-
torization for each supernode consists of two parts. The first part could be called
internal inverse factorization (computing Ũ12, L̃21 and D̃−1) since it is done



Parallel Inversion in Nanoelectronics 541

independently. The second part (computing Ũ12S
−1
{I} and −S−1

{I}L̃21 for each su-
pernode of S) accumulates external contributions from other supernodes and
could be called the external update phase. In order to parallelize the algorithm,
data dependencies must be maintained. This suggests creation of the global tasks
queue. Each element of the queue is a supernode and the size of the queue is
bounded by the total number of supernodes. Tasks distribution is performed
dynamically: each thread fetches one element Sj from the queue and proceeds
with the internal inversion phase. Computation of external contributions requires
synchronization with threads working on the descendants of SJ , i.e., the thread
waits until the inversion of each of the dependents is finished.

4 Numerical Experiments

4.1 Experimental Testbase

In this section the parallel performance and efficiency of OMEN equipped with
the PARDISO selected inversion implementation for the NEGF equation is re-
ported. Before moving on to the parallel scalability of the atomistic, quantum
transport simulation benchmarks, this section gives a brief description of the
target hardware, namely, IBM BG/Q at the Argonne Leadership Computing
Facility and a Cray XE6 system installed at the Swiss National Supercomputing
Center CSCS. Intranode experiments were performed on one rack of the “Mira”
BG/Q which has a 1.6-GHZ 16-way quad-core PowerPC processor and 16 GB
of RAM. The Cray XE6 “Monte Rosa” compute nodes were used for intranode
performance experiments. The Cray XE6 consists of 2 16-core AMD Opteron
6272 2.1-GHz Interlagos processors, giving 32 cores in total per node with 32
GBytes of memory. The Interlagos CPUs implement AMD’s recent “Bulldozer”
microarchitecture and each Interlagos socket contains two dies, each of which
contains four so-called “modules.”

4.2 Intranode Performance

In this section the results on performance of the inversion algorithm based on
matrices from the NEGF solver implemented in OMEN are presented. Table 1
shows the speedup of the selected inversion over the full inversion algorithm for
the set of 4 Hamiltonian matrices of the size 97900 to 581900 uknowns with
LU factors containing around 106 nonzero elements. The advantage over the full
inversion grows as the problem size increases that makes it practically possible
to solve the problem with more than 106 nonzero elements. The new method is
more than 250 times faster on both architectures for the largest matrix.

Table 2 demonstrates the scalability of the inversion algorithm for the set of 2
largest matrices on one node with 2 to 32 threads compared to the RGF method
that was previously used in OMEN. The observed scalability is comparable to
that of the direct factorization algorithm. The shared-memory parallel efficiency
of the PARDISO-SINV implementation is considerable and compelling for larger



542 A. Kuzmin, M. Luisier, and O. Schenk

Table 1. Average time in seconds (and Gflop/s in brackets) in PARDISO and
PARDISO-SINV on 32 cores when computing all diagonal entries of the inverse of
A for four selected OMEN test matrices; n represents the size of the Hamiltonian
matrix

n CRAY XE6 BG/Q
PARDISO PARDISO-SINV PARDISO PARDISO-SINV

97900 (d=2nm) 2434.0 0.8 (51) 4174.0 3.0 (22)
212300 (d=3nm) 4198.0 7.5 (89) 19571.1 8.7 (45)
375100 (d=4nm) 20525.1 42.7 (69) 65847.6 70.7 (63)
581900 (d=5nm) 26657.1 102.1 (119) 62296.7 217.2 (68)

Table 2. Average time in seconds to calculate the density of states and the transmission
probability for one energy point, as indicated by the dashed line in Fig. 1(d), for
nanowire transistors with two different diameters (4 and 5 nm). The first column gives
the Hamiltonian matrix size in Eq. (1), the second the number of cores, the third the
solution time with the RGF algorithm [7,8], while columns 4 to 9 are dedicated to the
new approach proposed in this paper. The times to reorder the Hamiltonian matrix,
factorize it, compute selected elements of its inverse, solve it to obtain GR

N1, and derive
the DOS with Eq. (4) are reported. The last column represents the sum of columns 4
to 8.

n Cores RGF Reordering Factorization SINV GR
N1 Eq. (4) Total

375100
(d=4nm)

IBM
BG/Q

1 4179.1 55.85 601.53 1122.41 1601.13 - 3380.92
2 - 56.01 251.55 463.25 760.15 - 1530.96
4 - 55.63 147.91 300.77 440.86 - 945.17
8 - 54.99 67.60 162.49 237.69 - 522.77
16 - 54.71 37.89 84.72 150.25 - 327.57
32 - 55.85 28.72 67.56 112.17 - 264.3

581900
(d=5nm)

IBM
BG/Q

1 16644.2 92.93 2042.29 3393.81 5057.64 - 10586.67
2 - 93.21 818.52 1799.18 2655.33 - 5366.24
4 - 93.13 460.88 996.35 1790.10 - 3340.46
8 - 91.49 229.03 622.89 1089.41 - 2032.82
16 - 91.61 120.61 328.37 768.19 - 1308.78
32 - 91.86 90.82 217.21 723.23 - 1123.12

375100
(d=4nm)
Cray XE6

1 1393.9 15.6 222.7 392.2 1149.5 390.1 2191.3
2 - 16.6 163.5 311.4 671.4 327.7 1515.6
4 - 16.4 83 171 215.9 165.4 677.3
8 - 17.5 47.1 105.1 108.6 87.7 394.4
16 - 17.5 25.6 64.2 59.6 45.6 242.1
32 - 17 15.5 13.7 51.7 24.1 153.5

581900
(d=5nm)
Cray XE6

1 5548.9 23.5 697.8 1250.5 1466.1 1428.4 4892.7
2 - 25.4 533.5 1033.3 1072.1 1171.7 3865.9
4 - 25.5 270.1 529.2 564.2 609.2 2029.2
8 - 27.6 153.1 333.5 328.6 322.3 1199.4
16 - 27.2 79.2 166.9 302.3 168.2 779.7
32 - 27.7 46.7 99.3 283.7 91.8 587.9



Parallel Inversion in Nanoelectronics 543

problems (e.g., d=5 nm). The experiments show that the new implementation
has the performance lower or comparable to RGF method when using 1 or 2
threads; however the RGF implementation has a low potential for scalability
and the new approach is one order of magnitude faster when using 32 threads.
These results show that the selected inversion algorithm can be very efficiently
applied in large-scale computational nanolectronics, significantly reducing the
overall simulation time for realistic devices.

5 Conclusion

The recursive Green’s function algorithm that is typically used in large-scale
atomistic nanoelectronic device engineering has good algorithmic efficiency in
the order of O(Nz · n3), where n = nx · ny is the average block size, but sig-
nificant disadvantages in terms of parallelism. An alternative method based on
parallel selected inversion has been presented in this paper for the NEGF that is
the central computation in atomistic, quantum transport simulations. The com-
plexity of the selected inversion method is in the order of O(N2

z · n2). It is used
to extract all diagonal entries of the inverse of a complex sparse unsymmetric
matrix. The new selected inversion method overcomes the scalabilty barrier of
RGF by using parallel upward and downward traversals of the elimination tree to
solve the NEGF equations very efficiently. The implementation of the inversion
solver showed substantial speedup over the previous approach. PARDISO-SINV
solved realistically sized examples in OMEN in about 5 min compared to over
1.5 hour on the Cray XE6.

Acknowledgment. This research used resources of the Argonne Leadership
Computing Facility at Argonne National Laboratory, which is supported by the
Office of Science of the U.S. Department of Energy under contract DE-AC02-
06CH11357. We acknowledge the Swiss National Supercomputing Center and
for giving us access to their hardware and for their support. The work done
in Switzerland is funded partially under the HP2C initiative. Mathieu Luisier
acknowledges the support of SNF grant PPOOP2_133591.

References

1. Cui, Y., Zhong, Z., Wang, D., Wang, W., Lieber, C.: High performance silicon
nanowire field effect transistors. Nano Letters 3, 149–152 (2003)

2. Singh, N., Agarwal, A., Bera, L., Liow, T., Yang, R., Rustagi, S., Tung, C., Kumar,
R., Lo, G., Balasubramanian, N., Kwong, D.: High-performance fully depleted sil-
icon nanowire (diameter ≤ 5 nm) gate-all-around CMOS devices. IEEE Electron
Device Letters 27, 383–386 (2006)

3. Datta, S.: Electronic transport in mesoscopic systems. Press Syndicate University
of Cambridge, Cambridge (1995)

4. Cauley, S., Jain, J., Koh, C., Balakrishnan, V.: A scalable distributed method for
quantum-scale device simulation. J. Appl. Phys. 101, 123715 (2007)



544 A. Kuzmin, M. Luisier, and O. Schenk

5. Luisier, M., Klimeck, G., Schenk, A., Fichtner, W.: Atomistic simulation of
nanowires in the sp3d5s∗ tight-binding formalism: from boundary conditions to
strain Calculations. Phys. Rev. B 74, 205323 (2006)

6. Brandbyge, M., Mozos, J., Ordejon, P., Taylor, J., Stokbro, K.: Density-functional
method for nonequilibrium electron transport. Phys. Rev. B 74, 165401 (2002)

7. Lake, R., Klimeck, G., Bowen, R., Jovanovic, D.: Single and multiband modeling
of quantum electron transport through layered semiconductor devices. J. Appl.
Phys. 81, 7845–7869 (1997)

8. Svizhenko, A., Anantram, M., Govindan, T., Biegel, R., Venugopal, R.: Two-
dimensional quantum mechanical modeling of nanotransistors. J. Appl. Phys. 91,
2343–2354 (2002)

9. Li, S., Ahmed, S., Klimeck, G., Darve, E.: Computing entries of the inverse of a
sparse matrix using the FIND algorithm. J. Comp. Phys. 227, 9408–9427 (2008)

10. Petersen, D.A., Song, L., Stokbro, K., Sorensen, H.H.B., Hansen, P.C., Skelboe, S.,
Darve, E.: A Hybrid Method for the Parallel Computation of Green’s Functions.
J. Comp. Phys. 228(14), 5020–5039 (2009)

11. Duff, I., Erishman, A.: Sparsity structure and Gaussian elimination. ACM
SIGNUM Newsletter 23, 2–8 (2006)

12. Erishman, A., Tinney, W.: On computing certain elements of the inverse of a sparse
matrix. Comm. ACM 18, 177 (1975)

13. Lin, L., Lu, L., Ying, J.: Fast algorithm for extracting the diagonal of the inverse
matrix with application to the electronic structure analysis of metallic systems.
Comm. Math. Sci. 7, 755–777 (2009)

14. Lin, L., Yang, C.: Selinv - an algorithm for selected inversion of a sparse symmetric
matrix. ACM Trans. on Math. Software 37 (2011)

15. Slater, J., Koster, G.: Simplified LCAO method for the periodic potential problem.
Phys. Rev. 94, 1498–1524 (1954)

16. Takahashi, L., Fagan, J., Chin, M.: Formation of a sparse bus impedance matrix and
its application to short circuit study. In: Proc. 8th PICA Conference, Minneapolis,
Minnesota, pp. 63–69 (1973)

17. Campbell, Y., Davis, T.: Computing the Sparse Inverse Subset: an Inverse Mul-
tifrontal Approach. Technical Report TR-95-021, Computer and Information Sci-
ences Department, University of Florida (1995)

18. Amestoy, P., Duff, I., Robert, Y., Rouet, F., Ucar, B.: On Computing Inverse En-
tries of a Sparse Matrix in an Out-of-Core Environment. Technical Report TR/-
PA/10/59, CERFACS, Toulouse, France (2010)

19. Slavova, T.: Parallel Triangular Solution in the Out-of-Core Multifrontal Approach
for Solving Large Sparse Linear Systems. Ph.D. dissertation, Institut National
Polytechnique de Toulouse, Toulouse, France (2009)

20. Karypis, G., Kumar, V.: A fast and highly quality multilevel scheme for partitioning
irregular graphs. SIAM J. Sci. Computing 20, 359–392 (1999)

21. Schenk, O., Gärtner, K.: Solving unsymmetric sparse systems of linear equations
with PARDISO. Future Gener. Comp. Systems 20, 475–487 (2004)


	Fast Methods for Computing Selected Elements of the Green’s Function in Massively Parallel Nanoelectronic Device Simulations
	1 Introduction
	1.1 Contribution

	2 Overview of the Simulation Approach
	2.1 Formulation of the Quantum Transport Problem
	2.2 RGF Algorithm

	3 A Selected Sparse Inverse Matrix Algorithm (SINV)
	3.1 Sparse Inverse Supernodal Factorization
	3.2 Intranode Parallelization

	4 Numerical Experiments
	4.1 Experimental Testbase
	4.2 Intranode Performance

	5 Conclusion
	References




