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Abstract. Early detecting the approaching events is the primary way
of minimizing their damages in the sensor-based systems. The majority
of existing approaches of event description and detection rely on using
crisp raw sensory data, which requires large amount of data transmis-
sion as well as is memory-consuming, moreover, these approaches are
only applicable to homogeneous sensor networks. This paper describes a
novel efficient framework for event prewarning in sensor networks with
multi microenvironments, which mainly includes a simple and practical
data preprocessing method, Node-level Noteworthy Event (NNE) detec-
tion algorithm, event probability encodings of NNEs and two distributed
Node-level Alert Event (NAE) detection algorithms. We demonstrate
our algorithms by experimentally evaluating their performance in vari-
ous scenarios using real and synthetic data. Our NAE detection algo-
rithm by leveraging spatial correlation only requires a small amount
of data transmission and can detect over 90% of NAEs with few false
negatives.

Keywords: microenvironment, sensor network, event probability, node-
level noteworthy event, node-level alert event.

1 Introduction

Sensor networks can be viewed as energy constrained distributed database sys-
tems, and their tasks are monitoring physical environments, processing sensed in-
formation, and forwarding results to base stations (sink). Since data transmission
consumes most of the energy, asignificant challenge for such kind of systems is to de-
sign reliable, energy-efficient data processing algorithms to maximize the lifetime
of sensor networks. Moreover, the low amount of data transmission also contributes
to quick response time and less signal interference in wireless communication.
Event detection is a common required service in sensor network based appli-
cations such as environmental monitoring [II2] and object tracking [3l4], which
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has attracted increasing research attention. Various studies on event description
and detection approaches have been reported in the literature [IJ-[8]. However,
these approaches rely on using raw sensor measurements, which results in large
data transmission inside the network and long response time. Moreover, the
aforementioned approaches are only applicable to sensor networks with single
microenvironment, while in many sensor network applications, the monitoring
area consists of multi MicroEnvironments (MEs), where the characteristics of
each ME are different. For example, different types of materials with different
ignition points (e.g., burning point of methanol is less than 30°C and fire point
of turpentine is under 65 °C) are placed in different areas of a warehouse, where
each resulting segment (area) will have different tolerance for warehouse fire.
Each of these segments of the warehouse, then, represents a ME as shown in
Fig. 1. When users check the £ most likely impending fire locations in such kind

(E

sink

(93 °C does not cause a fire)

Fig. 1. An example of three MEs in a warehouse

of sensor networks, if the existing event detection methods (such as the weighted
voting schemes in [7I8] are used, they will lead to erroneous results, since the
small temperature values in the combustible MEs might be the top & results.
In this paper we develop an event prewarning framework for sensor networks
with multi MEs in a scenario of relatively short sampling period, which has not
been studied before. The contributions of this paper are summarized as follows:

— A conceptually simple, yet practically effective data preprocessing approach
is given to eliminate erroneous sensory data.

— The definition of Node-level Noteworthy Event (NNE) and the detection
algorithm of NNE are proposed.

— Two distributed node-level alert event detection algorithms are devised, and
extensive simulations are performed to validate our motivation.

The remainder of the paper proceeds as follows. Our network model is explained
in Section 2, and Section 3 describes the data preprocessing approach. Then,
node-level noteworthy event algorithm is proposed in Section 4. Section 5 details
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two node-level alert event detection algorithms. Meanwhile, simulation results
are presented in Section 6. Finally, Section 7 presents conclusions and future
research direction.

2 Network Model

This section gives an overview of our network model. It also covers the almost
reasonable assumptions.

In our geographical location based clustering networks, there are two types
of nodes which are regular sensor node and Cluster Head (CH) sensor node
respectively in the network. Each node (we use “node” to refer to a regular
sensor node or CH sensor node) has a unique identification (nodeID). Tentative
CH nodes are selected from regular nodes mainly based on their remaining energy
via a non-probabilistic fashion [9]. In addition to collect its own sensory data,
every CH node manages the topology information of all regular nodes within its
cluster, as shown in Fig. 2(a).

@ Cluster Head
o Regular sensor

@ Cluster Head
o Regular sensor

(@ " (b)

Fig. 2. (a) Cluster-based network. (b) CH-TAG network with three MEs.

CH nodes communicate with each other hop by hop. We assume that a data
aggregation tree (i.e., TAG [I0]) is constructed over these CH nodes, and even-
tually connected to base station, as is shown in Fig. 2 (b). We call the CH nodes
based aggregation tree as CH-TAG. Our network also consists of multi MEs, and
an example of three MEs in a CH-TAG network is shown in Fig. 2(b).

3 Data Preprocessing

Event detection techniques need to prevent erroneous data from influencing the
detection reliability. Most of existing outlier (here mainly refers to errors and
noise) detection [5] approaches relay on using the neighboring information, which
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leads to a large amount of data transmission and is not suitable for energy con-
strained sensor networks. Therefore, we give a node-level erroneous data detec-
tion approach only leveraging the temporal correlation of the local measurements
within the recent sampling periods.

The erroneous sensory data we concentrated here mainly come from FAULTY
(failed) nodes and noisy data in normal working nodes. Therefore, our goal of
data preprocessing is to identify and prune faulty nodes and eliminate noisy data
in functioning nodes.

Definition 1 (FAULTY Node Rule). Most of the data in the FAULTY
node significantly deviate from the normal pattern of sensed data [I1]. A simple
and effective method is that we can know whether a sensor node is a FAULTY
node by checking the standard deviation and temporal correlation of the sensor
readings within recent time window. FAULTY nodes should be pruned as early
as possible.

Definition 2 (NOISY Data Rule). In functioning node, smoothing factor [12]
based approach (improved smoothing factor) is used to identify and eliminate
the noisy data, where the improved smoothing factor can be defined as follows:
Given:

e a set of sensor measurements MS

e a dissimilarity function D : D(MS) — RT , where RT means positive real
number.

ISF(M;) = D(MS) — D(MS — {M;}). (1)

The improved smoothing factor (ISF') indicates how much the dissimilarity can
be reduce by removing an element (sensor measurement) from the set MS. Ob-
serve that ISF may be negative for some measurement M; if the dissimilarity of
MS — {M;} is higher than that of the original set MS.

Example. Let

e the set MS be the set of float values 32.6, 31.9, 11.7, 32.8, 93.5, 33.3;

e the dissimilarity function D : D(MS) — R™ be the variance of the numbers
in the set, i.e., Y1 | (z; — Z)?/n,then we get D(M S) = 646.22

By computing the ISF for each measurement M; via (1), we get:

Table 1. ISF calculation for each measurement M;

M; MS — {M;} D(MS — {M,}) ISF(M,)
32.6  {31.9, 11.7, 32.8, 93.5, 33.3} 764.69 -118.47
31.9 {326, 11.7, 32.8, 93.5, 33.3} 762.32 -116.1
1.7 {32.6, 31.9, 32.8, 93.5, 33.3} 592.64 53.58
32.8  {32.6, 31.9, 11.7, 93.5, 33.3} 803.93 -157.71
93.5  {32.6, 31.9, 11.7, 32.8, 33.3} 70.43 575.79
333 {32.6, 31.9, 11.7, 32.8, 93.5} 766.82 -120.6

32.6 {31.9, 11.7, 32.8, 93.5, 33.3} 764.69 -118.47
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Thus, the measurement 93.5 has the highest probability to be the noisy data
as its ISF is the largest, followed by the element 11.7, as shown in Table 1. The
measurement whose ISF is over a preset threshold can be eliminated, and the
improved smoothing factor provides tunable accuracy guarantees based on users
requirement that how much noise data should be eliminated.

4 Node-Level Noteworthy Event

Definition 3 (Node-level Noteworthy Event (NNE)). node u is a node-
level noteworthy event once us measurements make the event probability (ep) of
u reach a preset threshold value thrd (usually 0.5).

4.1 NNE Detection Algorithm

After pruning FAULTY nodes and eliminating noisy data in functioning nodes,
each node calculates its ep based on its measurements and ep function, where the
ep function varies in different MEs, or the function parameters are different in
each ME, which can be defined based on empirical or domain knowledge. In the
warehouse fire monitoring system with multi MEs; if two properties (temperature
(t) and humidity (h)) are mainly used for defining fire event, then an example
of ep function can be defined as follows.

0, t <tgs,h...
ep(t,h) = ¢ w x avg(t)/(tig — tas) + (1 —w) flavg(h)), tas <t < tig,h... (2)
1, t>tig, h...

Where avg means getting the average value of measurements. t,; means the
absolute safe temperature, which by no means causes a fire, and t;; means the
ignition temperature, which varies in different MEs. The first part of (2) demon-
strates that the higher temperature leads to higher probability of fire, and the
f(h) in the second part of (2) is a function of how humidity affect the fire event,
which humidity usually has a negative impact on fire event. w is a tunable value,
which determines how much temperature and humidity influence the fire event
respectively. Due to the different [t,s, ¢;4] in each ME, (2) can describe the char-
acteristics of fire occurrence in different MEs. Therefore, each node in different
MEs can determine whether it is a NNE by the Algorithm 1.

In Algorithm 1, ep() is the event probability of node i, and pFlag(i) is a flag
to determine whether node ¢ can be pruned. If pFlag(i) is “TRUE”, then node
1 is not a noteworthy node and should be pruned as early as possible.

4.2 ep Encoding of NNEs

In order to reduce the data transmission, we discretize the ep values and give their
encodings. We use linguistic characters to define the severity grades (GRADE)
of NNEs and each GRADE corresponds to a non-uniform ep sub range R(ep).
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Algorithm 1. NNE Detection

1: for each node i do 8: if ep(i) < thrd then
2:  pFlag + FALSFE; 9: pFlag + TRUFE;
3: if ¢ is FAULTY node then 10: else
4: pFlag < TRUFE, 11: i is a NNE;
5: else 12: end if
6: eliminate the noisy data 13:  end if
using NOISY Data Rule; 14: end for
7 calculate the ep(i);

When GRADE is closer to the event occurrence threshold, the interval of R(ep)
is smaller.

For example, as shown in Table 2, we define eight GRADEs (‘a’, ‘b, ‘c¢’, ‘d’,
‘e’, ‘f’, ‘g’ and ‘h’) (the first column, not be fully presented due to the lim-
ited space) whose interpretations are shown in the second column with different
R(ep). The ep sub range interval of GRADE ‘a’ is the smallest as shown in the
last column, and the threshold thrd is 0.5, which means every node whose ep
is below 0.5 (below ‘A’) can be pruned. We also give 3-bits encoding for each
GRADE to reduce the total data transmission, as is shown in the third column
of Table 2.

Table 2. An Example of ep encoding based on non-uniform ep sub ranges

GRADE Interpretation Encoding R(ep)

a Almost happened 000  [0.98, 1.00)
b Very serious 001  [0.95, 0.98)
c Serious 010  [0.91, 0.95)
d Alert 011 [0.86, 0.91)
h Noteworthy 111 [0.50, 0.62)

The above non-uniform ep sub ranges R(ep) can be obtained via mathematical
models based on the actual situation of specified application. The accuracy of
event prewarning might be higher if more GRADEs are used.

5 Node-Level Alert Event Detection

Definition 4 (Node-level Alert Event (NAE). A sensor node u belonging
to NNEs becomes a node-level alert event if it has relatively large ep and has at
least one neighboring NNE. Here, the relatively large ep means that the ep of u
meets application-specific threshold, such as 0.86 (‘d’ ) used later in this paper.

NAEs are the node-level prewarning events that we focus in this paper. And
we propose two following NAE detection approaches.
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5.1 NAE Detection without Considering Spatial Correlation

NAE detection scheduling without considering spatial correlations, denoted as
NAED-noSC, can be described as follows. Each NNE whose GRADE reaches a
predefined threshold (‘d’ in this paper) is forwarded to the base station as NAE.
The main data in each message packet is “GRADE (Encoding of GRADE)”
and “nodelD” denoted as “GRADE+nodelD”. The spatial correlation of these
NAEs can be checked to further confirm the approaching events (or event re-
gions) according to the global network topology information at the base station.
The data transmission of NAED-noSC is very small, but there might be false
positives and false negatives.

Accuracy analysis of NAED-noSC. In NAED-noSC, since every NNE
with a “Alert” GRADE (‘d’) is detected as NAE, there might be isolated NAEs
(without any neighboring NNEs) leading to false positives. While those NNEs
whose GRADEs are little bit smaller than ‘d’ but have neighboring NNEs might
not be detected as NAEs in NAED-noSC, which leads to false negatives.

5.2 NAE Detection by Leveraging Spatial Correlation

Existence of spatial correlation implies that the readings from sensor nodes geo-
graphically close to each other are expected to be largely correlated. We would
be more confident that there is an actual fire if there are at least two neighboring
nodes reporting high temperature and low humidity readings. There might be
a false positive if there is just one NAE without any neighboring NNE. This
is particularly reasonable in sensor networks where nodes are usually densely
deployed.

The strategy here is that we update the GRADFEs of spatial-correlated NNEs,
and the Approach of GRADE Update of spatial-correlated NNEs (AoGU) can
be described as follows. If there are two spatial-correlated NNEs, then both of
their GRADEs are increased to a higher level GRADEs. For instance, there are
three NNEs Ny, Ny and N3, and their GRADESs are ‘h’, ‘f’ and ‘e’ respectively.
If N; and Ns are spatial-correlated, and N is N3’s neighboring NNE, but there
is no spatial correlation between N; and N3, then their GRADFEs after grade
update are ‘g’, ‘d’ and ‘d’ respectively. The magnitude of GRADE update is
tunable, which is specified depending on the application scenario.

NAE Detection by Leveraging Spatial Correlations (NEAD-bySC).
Firstly, every CH node gets all the NNEs in its local cluster, and then each leaf
CH node (CH-TAG based network) forwards all the NNEs in its cluster to its
parent CH node. When a non-leaf CH node @ has obtained all the NNEs from
its local cluster and its child clusters, it Checks the Spatial Correlation of these
NNEs and Updates the GRADEs of spatial-correlated NNEs (CSC-UG) based
on AoGU. Finally, all the non-isolated NAEs in @’s child clusters are forwarded
to base station as NAEs, and then () forwards all the NNEs in its local cluster
to its parent cluster, until all the non-leaf CHs finished the CSC-UG and NAE
detection.More details of NAED-bySC are described in Algorithm 2.
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Algorithm 2. NAED-bySC

Step 1. NNEs forwarding 3: if GRADE(NNE j) be updated then
1: for each NNE i do 4: uwFlag(j) + TRUE;
2:  wFlag(i) + FALSE; 5:  end if
3: i be forwarded to its local CH node; 6 for each NNE £ in ¢ do
4: end for T if GRADE(k) > ‘d'&&uFlag(k) ==
5: for each leaf CH node i do TRUE then
6: i forwards all the NNEs to its parent & k is detected as a NAE;

CH node; 9: end if

7: end for 10: end for

Step 2. CSC-UG and NAE detection 11: éﬁrwaﬁd all the NNEs to its parent
1: for each non-leaf CH node i do noas;

12: end for

2:  CSC-UG of i’'s NNEs is done;

Where uFlag(i) is a flag to demonstrate whether the GRADE of NNE i be
updated, which is used for identifying whether i is an isolated NNE. If wFlag(7)
is “FALSE”, then i is a isolated NNE. In Algorithm 2, the main data structure
of NNE and NAE message packet of line 3 in step 1 and line 8 in step 2 are both
“GRADE + nodelD”, and the main data structure of NNE message packet
in line 11 of step 2 is “GRADE + nodelD + LOCATION”, where the “LO-
CATION” is the geographic coordinates which are used for spatial correlation
detection.

Example. As shown in Fig. 3, there are three clusters with cluster head CHj,
CHs and CHjs. Firstly, all NNEs are forwarded to its local CH node, such as
NNE Sq, S3 and S; in CH; cluster are forwarded to CH;. Then each leaf CH
node forwards their NNEs to its parent CH node, such as CH; and CHsy forward
their NNEs to CHsz. Then CH3 does CSC-UG based on the AoGU. S1; and S3
are spatial-correlated, and Sg is the neighboring node of S5 and S7, as shown the
green dotted lines in Fig. 3. All the GRADESs of these NNEs are updated based
on AoGU, as shown in Fig. 3. S; is not a NAE because it is an isolated NNE
although it has a high GRADE, and all the non-isolated NAEs in CHj’s child
clusters (cluster CH; and CHy) are forwarded to base station as NAEs. Finally,
CHjs forwards all the NNEs in its local cluster to its parent cluster, until all the
CHs finishes the NAE detection.

Accuracy Analysis of NAED-bySC. In NAED-bySC, some spatial-correlated
NNEs become NAEs due to their GRADFEs update, which reduces the false nega-
tive. For instance, in Fig. 3, the NNE Sq1(‘e’) in cluster CHj is spatial-correlated
with S3 in cluster CHy, so the GRADE of Sy is updated to ‘d’ and S1; becomes
a NAE, while S1; is a false negative in NAED-noSC. All the isolated NNEs will
not be detected as NAEs in NAED-bySC, so there is no false positive in NAED-
bySC. For example, the NNE S; with GRADE ‘¢’ is not detected as NAE since
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® NAE /// N S;: isolated NNE //be filtered
O NNE ) : S3, Ss, S7, Sii 4
‘ [non-leaf CH3] Inter-cluster CSC&UG ‘ Y
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O
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< / Ss(d — ¢):NAE

Fig. 3. Inter-cluster CSC-UG and NAE detection

it is an isolated NNE without any neighboring NNE. Therefore, the false rate of
NAED-bySC is very low.

Tradeoff. Generally speaking, larger scope of inter-cluster CSC-UG contributes
higher accuracy of NAE detection, but the data transmission will be lager. There
is a tradeoff between data transmission and accuracy. In NAED-bySC, we only
consider the spatial correlation of the nodes from parent-child clusters as well
as the nodes from brother-brother clusters, without other spatial correlation.
Since the spatial correlation we have considered accounts for the most of the
all spatial correlation, NAED-bySC can guarantee high accuracy, while requires
small amount of data transmission. More experimental analysis is given in later
section 6.

6 Performance Evaluations

We use OMNET++ [13] to evaluate our algorithms in terms of data transmission
and accuracy of NAE detection. We use part of real data (Surface Temperature
and Relative Humidity) from LUCE [14] and part of synthetic data which is
generated and injected with outliers via scenarios of other MEs due to lack of
real data of sensor networks with multi MEs.

Owing to the lack of research work on event detection in multi MEs sensor
networks in literature, we performed comparison among three following methods:

— Optimized Conventional Method (OCM)The idea of conventional method
[4, 9, 10, etc.] is that every node uses the information from its neighboring
nodes to check whether it is an event node (or there is an event region).
For a fair comparison, event probabilities instead of raw sensor readings are
used. Since all the spatial correlation is checked, the OCM can get the true
NAEs accurately.

— NAED-bySC (Algorithm 2).

— NAED-noSC.



Efficient Event Prewarning for Sensor Networks with Multi MEs 391

6.1 Comparison of Data Transmission

Since data transmission consumes most of the energy in sensor networks, We
evaluate the data transmission of OCM, NAED-bySC and NAED-noSC in four
different networks, where 40, 80, 120 and 160 nodes are randomly deployed
in four regions of 300 x 300 m?, 400 x 400 m?, 500 x 500 m? and 600 x 600
m? respectively. The communication radius R is 80 m. ep is a float number,
which requires 4 bytes space (due to the 32-bit simulation platform). LOCATION
consists of x-coordinate and y- coordinate (both float number), and GRADE is
3 bits, and nodelD is short int that requires 16 bits space. We did not consider
the data transmission of other information in message packet, e.g., HEAD.

Among the three methods mentioned above, the data transmission of OCM
is the largest, and the one of NAED-noSC is the smallest in our four networks.
The average data transmission of NAED-noSC is 1.3% of the one of OCM,
and the average data transmission of NAED-bySC is 5.5 percent of the one of
OCM. And the average data transmission of NAED-noSC is 23.89% of the one
of NAED-bySC, as is shown in Fig. 4(a). So our algorithms can reduce the data
transmission greatly compared with OCM. Although the data transmission of
NAED-noSC is the smallest, its accuracy is not satisfactory (more details will
be described in Subsection 6.2).

@ 45000 20
S 40000 18 4 16.5 16.5 BAvg. #of
= 35000 16 1 true NAEs
£ 30000 £
2
‘g 25000 4 —6-NAED-noSC 12 BAvg, # of
£ 20000 - —A—NAED-bySC g 10 false
£ 15000 4 —%—O0CM Z 84 6 negatives
‘3 10000 Z : OAvg. # of
S 5000 _é_/ﬁg——_é 1 1.5 false
0 - T T T 27 0 positives
40 80 120 160 0
Network size (n - nodes) NAED-noSC NAED-bySC

(a) (®)

Fig. 4. (a) Comparison of data transmission. (b) Accuracy comparison.

6.2 Comparison of Accuracy

Besides good performance on data transmission, another important goal of event
detection is accuracy. We study the accuracy performance of NAED-noSC, NAED-
bySC and OCM based on our four networks mentioned in Subsection 6.1. Here
accuracy is defined as:

1—(numberof falsepositives+numberof falsenegatives)/numberoftrueN AEs

As all the spatial correlation is examined for event detection in OCM, there
is no false positive or false negative (accuracy is 100%). There are a few false
positives in NAED-noSC, and the average (Avg.) number (#) of false positives
in our four networks was 1 (the total number of true NAEs is 16.5), shown as in
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Fig. 4(b). However there are relatively large number of false negatives in NAED-
noSC, and the Avg. # of false negatives in the four networks was 6; There
was no false positive in NAED-bySC, however there are a few false positives
in NAED-bySC because that we do not consider all the spatial correlation. The
Avg. # of false negatives of NAED-bySC in our four networks was 1.5, and other
results are shown in Fig. 4(b). These experimental results verify the correctness
of the accuracy analysis of NAED-noSC and NAED-bySC in Subsection 5.1 and
Subsection 5.2.

The accuracies of NAED-bySC in the four networks were 90.9%, 93.75%,
90.91% and 88.89% respectively, and the average accuracy of NAED-bySC was
more than 90% (91.11% actually). The accuracy of NAED-noSC was relatively
lower than NAED-bySC, namely 54.55%, 62.5%, 59.09% and 55.56% respectively
in our four networks, which are shown in Fig. 5(a).

ENAED-noSC BNAED-bySC BOCM BENAED-noSC

1

0.8 1 > 0.8
oy g

g 0.6 1 ::‘; 0.6

3 04 < 04

0.2 1 0.2

0 - 0

40 80 120 160 50 80 100
Network size (n - nodes) R

(a) (b)

Fig. 5. (a) Accuracy comparison (R = 80). (b) Accuracy comparison (80 nodes).

With the increase of node density, the accuracy of NAED-noSC decreases.
In our 80 nodes network, with the increase of R (equivalent to the increase
of node density), the accuracy of NAED-noSC decreased, shown as the blue
column chart in Fig. 5(b). This is because the increase of node density leads to
the increase of spatial correlation, thus NAED-noSC will miss more true NAEs.
The variation of node density (or the change of communication radius in the
same network) almost has no effect on the accuracy of NAED-bySC. This is
because that the increase of spatial correlation among nodes contributes to the
increase of true NAEs, meanwhile, more NAEs will be detected in NAED-bySC.
Therefore, there is almost no causal relationship between accuracy and node
density, which is shown as the yellow column chart in Fig. 5(b).

7 Conclusions

This paper presents a novel efficient framework for event prewarning in sensor
networks with multi MEs, which mainly includes a simple and practical data
preprocessing method, NNE detection algorithm, event probability encodings of
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NNEs and two distributed NAE detection algorithms (NAED-noSC and NAED-
bySC). Experimental evaluation demonstrates our approach reduces the data
transmission greatly compared with conventional approaches, and NAED-bySC
guarantees good detection accuracy. When the network situation is bad, namely
when the proportion of NNEs with relatively high GRADFESs is large, NAED-
noSC is a more suitable approach with few false negatives. Our on-going work is
to enhance our approach to deal with the phenomenon in which the alert event
enlarges or disappears with time elapsed.
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