
A Contention-Friendly Binary Search Tree

Tyler Crain1, Vincent Gramoli2, and Michel Raynal1,3

1 IRISA, Université de Rennes 1, France
2 NICTA and University of Sydney, Australia

3 Institut Universitaire de France
tyler.crain@inria.fr, vincent.gramoli@sydney.edu.au,

raynal@irisa.fr

Abstract. This paper proposes a new lock-based concurrent binary tree using
a methodology for writing concurrent data structures. This methodology limits
the high contention induced by today’s multicore environments to come up with
efficient alternatives to the most widely used search structures.

Data structures are generally constrained to guarantee a big-oh step complex-
ity even in the presence of concurrency. By contrast our methodology guarantees
the big-oh complexity only in the absence of contention and limits the contention
when concurrency appears. The key concept lies in dividing update operations
within an eager abstract access that returns rapidly for efficiency reason and a
lazy structural adaptation that may be postponed to diminish contention. Our
evaluation clearly shows that our lock-based tree is up to 2.2× faster than the
most recent lock-based tree algorithm we are aware of.

Keywords: Binary tree, Concurrent data structures, Efficient implementation.

1 Introduction and Related Work

Today’s processors tend to embed more and more cores. Concurrent data structures,
which implement popular abstractions such as key-value stores [1], are thus becoming
a bottleneck building block of a wide variety of concurrent applications. Maintaining
the invariants of such structures, like the balance of a tree, induces contention. This is
especially visible when using speculative synchronization techniques as it boils down
to restarting operations [2]. In this paper we describe how to cope with the contention
problem when it affects a non-speculative execution or technique.

As a widely used and studied data structure in the sequential context, binary trees
provide logarithmic access time complexity given that they are balanced, meaning that
among all downward paths from the root to a leaf, the length of the shortest path is
not far apart the length of the longest path. Upon tree update, if the height difference
exceeds a given threshold, the structural invariant is broken and a rebalancing is trig-
gered to restructure accordingly. This threshold depends on the considered algorithm:
AVL trees [3] do not tolerate the longest length to exceed the shortest by 2 whereas
red-black trees [4] tolerate the longest to be twice the shortest, thus restructuring less
frequently. Yet in both cases the restructuring is triggered immediately when the thresh-
old is reached to hide the imbalance from further operations. In a concurrent context,
slightly weakened balance requirements have been suggested [5], but they still require
immediate restructuring as part of update operations to the abstractions.

F. Wolf, B. Mohr, and D. an Mey (Eds.): Euro-Par 2013, LNCS 8097, pp. 229–240, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

230 T. Crain, V. Gramoli, and M. Raynal

We introduce the contention-friendly tree as a tree that transiently breaks its balance
structural invariant without hampering the abstraction consistency in order to reduce
contention and speed up concurrent operations that access (or modify) the abstraction.
More specifically, we propose a partially internal binary search tree data structure im-
plementing a key-value store, decoupling the operations that modify the abstraction (we
call these abstract operations) from operations that modify the tree structure itself but
not the abstraction (we call these structural operations). An abstract operation either
searches for, logically deletes, or inserts an element from the abstraction where in cer-
tain cases the insertion might also modify the tree structure. Separately, some structural
operations rebalance the tree by executing a distributed rotation mechanism as well as
physically removing nodes that have been logically deleted.

Context. On the one hand, the decoupling of update and rebalancing dates back from the
70’s [6] and was exclusively applied to trees, including B-trees [7], {2,3}-trees [8], AVL
trees [9] and red-black trees [10] (resulting in largely studied chromatic trees [11, 12]
whose operations cannot return before reaching a leaf). On the other hand, the decou-
pling of the removals in logical and physical phases is more recent [13] but was applied
to various structures: linked lists [13,14], hash tables [15], skip lists [16], binary search
trees [2, 17] and lazy lists [18]. Our methodology generalizes both kinds of decoupling
by distinguishing an abstract update from a structural modification.

The guarantees of some data structures, like list-based stack, are relaxed to tolerate
the high concurrency induced by multicores [19]. This idea is quite different from ours.
It aims at avoiding performance of some highly contended structures to drop below
sequential ones whereas we aim at designing highly-concurrent structures that lever-
age multi-/many-cores. Finally, the corresponding solution lies in trading off atomicity
for quiescent consistency, guaranteeing that the last-in-first-out policy of an access is
only with respect to preceding calls when no other accesses execute concurrently. By
contrast, our solution guarantees atomicity even in concurrent executions.

We have recently observed the performance benefit of decoupling accesses while
preserving atomicity within speculative executions (specifically transactional memory).
Our recent speculation-friendly tree splits updates into separate transactions to avoid a
conflict with a rotation from rolling back the preceding insertion/removal [2]. While it
benefits from the reusability and efficiency of elastic transactions [20], it suffers from
the overhead of bookkeeping accesses with software transactional memory. The goal
was to bound the asymptotic step complexity of speculative accesses to make it compa-
rable to the complexity of pessimistic lock-based ones. Although this complexity is low
in pessimistic executions, our new result shows that the performance of a lock-based
binary search tree greatly benefits from this decoupling.

Content of the Paper. We present a contention-friendly methodology which lies essen-
tially in splitting accesses into an eager abstract access and a lazy structural adaptation.
We illustrate our methodology with a contention-friendly binary search tree. In partic-
ular, we compare its performance against the performance of the most recent practical
binary search tree we are aware of [21]. Although both algorithms are lock-based binary
search trees, ours speeds up the other by 2.2×.

A Contention-Friendly Binary Search Tree 231

2 Overview

In this section, we give an overview of the Contention-Friendly (CF) methodology by
describing how to write contention-friendly data structures as we did to design a lock-
free CF skip-list [22, 23]. The following section will describe how this is specifically
done for the binary search tree.

The CF methodology aims at modifying the implementation of existing data struc-
tures using two simple rules without relaxing their correctness. The correctness criterion
ensured here is linearizability [24]. The data structures considered are search structures
because they organize a set of items, referred to as elements, in a way that allows to
retrieve the unique position of an element in the structure given its key. The typical
abstraction implemented by such structures is a collection of elements that can be spe-
cialized into various sub-abstractions like a set (without duplicates) or a map (that maps
each element to some value). We consider insert, delete and contains operations that,
respectively, inserts a new element associated to a given key, removes the element as-
sociated to a given key or leaves the structure unchanged if no such element is present,
and returns true if there is element associated to a given key or false if such an element
is absent. Both inserts and deletes are considered updates, even though they may not
modify the structure.

The key rule of the methodology is to decouple each update into an eager abstract
modification and a lazy structural adaptation. The secondary rule is to make the re-
moval of nodes selective and tentatively affect the less loaded nodes of the data struc-
ture. These rules induce slight changes to the original data structures that result in a
corresponding data structure that we denote using the contention-friendly adjective to
differentiate them from their original counterpart.

2.1 Eager Abstract Modification

Existing search structures rely on strict invariants to guarantee their big-oh (asymptotic)
complexity. Each time the structure gets updated, the invariant is checked and the struc-
ture is accordingly adapted as part of the same operation. While the update may affect
a small sub-part of the abstraction, its associated restructuring can be a global modifi-
cation that potentially conflicts with any concurrent update, thus increasing contention.

The CF methodology aims at minimizing such contention by returning eagerly the
modifications of the update operation that make the changes to the abstraction visible.
By returning eagerly, each individual process can move on to the next operation prior
to adapting the structure. It is noteworthy that executing multiple abstract modifications
without adapting the structure does no longer guarantee the big-oh step complexity of
the accesses, yet, as mentioned in the Introduction, such complexity may not be the
predominant factor in contended executions.

A second advantage is that removing the structural adaption from the abstract mod-
ification makes the cost of each operation more predictable as operations share similar
cost and create similar amount of contention. More importantly the completion of the
abstract operation does not depend on the structural adaptation (like they do in existing
algorithms), so the structural adaptation can be performed differently, for example, us-
ing global information or being performed by separate, unused resources of the system.

232 T. Crain, V. Gramoli, and M. Raynal

2.2 Lazy Structural Adaptation

The purpose of decoupling the structural adaptation from the preceding abstract modi-
fication is to enable its postponing (by, for example, dedicating a separate thread to this
task, performing adaptations when observed to be necessary), hence the term “lazy”
structural adaptation. The main intuition here is that this structural adaptation is in-
tended to ensure the big-oh complexity rather than to ensure correctness of the state of
the abstraction. Therefore the linearization point of the update operation belongs to the
execution of the abstract modification and not the structural adaptation and postponing
the structural adaptation does not change the effectiveness of operations.

This postponing has several advantages whose prominent one is to enable merging
of multiple adaptations in one simplified step. Only one adaptation might be necessary
for several abstract modifications and minimizing the number of adaptations decreases
accordingly the induced contention. Furthermore, several adaptations can compensate
each other as the combination of two restructuring can be idempotent. For example,
a left rotation executing before a right rotation at the same node may lead back to
the initial state and executing the left rotation lazily makes it possible to identify that
executing these rotations is useless. Following this, instead of performing rotations as
a string of updates as part of a single abstract operation, each rotation is performed
separately as a single local operation, using the most up to date balance information.

Although the structural adaptation might be executed in a distributed fashion, by each
individual updater thread, one can consider centralizing it at one dedicated thread. Since
these data structures are designed for architectures that use many cores, performing the
structural adaptation on a dedicated single separate thread leverages hardware resources
that might otherwise be left idle.

Selective Removal. In addition to decoupling level adjustments, removals are preformed
selectively. A node that is deleted is not removed instantaneously but is marked as
deleted. The structural adaptation then selects among these marked nodes those that
are suitable for removal, i.e., whose removal would not induce high contention. This
selection is important to limit contention. Removing a frequently accessed node requires
locking or invalidating a larger portion of the structure. Removing such a node is likely
to cause much more contention than removing a less frequently accessed one. In order
to prevent this, only nodes that are marked as deleted and have at least one of their
children as an empty subtree are removed. In addition, marked deleted nodes that have
not been physically removed can then be added back into the abstraction by simply
unmarking them during an insert operation. This leads to less contention, but also means
that certain nodes that are marked as deleted may not be removed. In similar, partially
external/internal trees, it has already been observed that only removing such nodes [2],
[21] results in a similar sized structure as existing algorithms.

3 The Contention-Friendly Tree

The CF tree is a lock-based concurrent binary search tree implementing classic
insert/delete/contains operations. Each of its nodes contains the following fields: a

A Contention-Friendly Binary Search Tree 233

key k, pointers l and r to the left and right child nodes, a lock field, a del flag indicat-
ing if the node has been logically deleted, a rem flag indicating if the node has been
physically removed (note that the rem flag an additional third state (by-left-rot) which
evaluates to true) , and the integers left-h, right-h and local-h storing the estimated
height of the node and its subtrees used in order to decide when to perform rotations.

This section will now describe the CF tree algorithm by first describing three specific
CF modifications that reduce contention during traversal, followed by a description of
the CF abstract operations.

3.1 Avoiding Contention during Traversal

Each abstract operation of a tree is expected to traverse O(logn) nodes when there is no
contention. During an update operation, once the traversal is finished a single node is
then modified in order to update the abstraction. In the case of delete, this means setting
the del flag to true, or in the case of insert changing the child pointer of a node to point
to a newly allocated node (or unmarking the del flag in case the node exists in the tree).
Given then, that the traversal is the longest part of the operation, the CF tree algorithm
tries to avoid here, as often as possible, producing contention. Traditionally, concurrent
data structures often require synchronization during traversal (not even including the
updates done after the traversal). For example, performing hand-over-hand locking in a
tree helps ensure that the traversal remains on track during a concurrent rotation [21],
or, using optimistic strategy (such as transactional memory), validation is done during
the traversal, risking the operation to restart in the case of concurrent modifications [18,
25, 26]. The following paragraphs describe the modifications made to the algorithm in
order to allow avoiding contention during traversal.

Physical Removal. As previously mentioned, the algorithm attempts to remove only
nodes whose removal incurs the least contention. Specifically, removing a node n with
a subtree at each child requires finding its successor node s in one of its subtrees, then
replacing n with s. Therefore precautions must be taken (such as locking all the nodes)
in order to ensure any concurrent traversal taking place on the path from n to s does
not violate linearizability. Instead of creating contention by removing such nodes, they
are left as logically deleted in the CF tree; to be removed later if one of their subtrees
becomes empty, or to be unmarked if a later insert operation on the same node occurs.

In the CF tree, nodes that are logically deleted and have less than two child sub-
trees are physically removed lazily (cf. Algorithm 1). Since we do not want to use
synchronization during traversal these removals are done slightly differently than by
just unlinking the node. The operation starts by locking the node n to be removed and
its parent p (line 6). Following this, the appropriate child pointer of p is then updated
(lines 12-13), effectively removing n from the tree. Additionally, before the locks are
released, both of n’s left and right pointers are modified to point back to p and the rem
flag of n is set to true (lines 14-15). These additional modifications allow concurrent
abstract operations to keep traversing safely without using synchronization as they will
then travel back to p before continuing their traversal, much like would be done in a
solution that uses backtracking.

234 T. Crain, V. Gramoli, and M. Raynal

Algorithm 1. Remove and rotate operations
1: remove(parent, left-child)p:
2: if parent.rem then return false
3: if left-child then n← parent.�
4: else n← parent.r

5: if n =⊥ then return false
6: lock(parent); lock(n);
7: if ¬n.del then return false // release locks

8: if (child← n.�) �⊥ then
9: if n.r �⊥ then

10: return false // release locks

11: else child← n.r
12: if left-child then parent.�← child
13: else parent.r← child

14: n.�← parent; n.r← parent;
15: n.rem← true;
16: // release locks

17: update-node-heights();
18: return true.

19: right-rotate(parent, left-child)p:
20: if parent.rem then return false
21: if left-child then n← parent.�
22: else n← parent.r

23: if n =⊥ then return false
24: �← n.�;
25: if �=⊥ then return false
26: lock(parent); lock(n); lock(�);
27: �r← l.r; r← n.r;
28: // allocate a node called new

29: new.k← n.k; new.�← �r;
30: new.r← r; �.r← new;
31: if left-child then parent.�← �
32: else parent.r← �

33: n.rem← true; // by-left-rot if left rotation

34: // release locks

35: update-node-heights();
36: return true.

Rotations. Rotations are performed to rebalance the tree so that traversals execute in
O(logn) time once contention decreases. As described in Section 2, the CF tree uses
localized rotations in order to minimize conflicts. Methods for performing localized
rotation operations in the binary trees have already been examined and proposed in
several works such as [5]. The main concept used here is to propagate the balance
information from a leaf to the root. When a node has a ⊥ child pointer then the node
must know that this subtree has height 0 (the estimated heights of a node’s subtrees are
stored in the integers left-h and right-h). This information is then propagated upwards
by sending the height of the child to the parent, where the value is then increased by
1 and stored in the parent’s local-h integer. Once an imbalance of height more than 1
is discovered, a rotation is performed. Higher up in the tree the balance information
might become out of date due to concurrent structural modifications, but, importantly,
performing these local rotations will eventually result in a balanced tree [5].

Apart from performing rotations locally as unique operations, the specific CF ro-
tation procedure is done differently in order to avoid using locks and aborts/rollbacks
during traversals. Let us consider specifically the typical tree right-rotation operation
procedure. Here we have three nodes modified during the rotation: a parent node p, its
child n who will be rotated downward to the right, as well as n’s left child � who will be
rotated upwards, thus becoming the child of p and the parent of n. Consider a concur-
rent traversal that is preempted on n during the rotation. Before the rotation, � and its
left subtree exist below n as nodes in the path of the traversal, while afterwards (given
that n is rotated downwards) these are no longer in the traversal path, thus violating cor-
rectness if these nodes are in the correct path. In order to avoid this, mechanisms such
as hand over hand locking [21] or keeping count of the number of operations currently
traversing a node [5] have been suggested, but these solutions require traversals to make

A Contention-Friendly Binary Search Tree 235

Algorithm 2. Restructuring process
1: background-struct-adaptation()p:
2: while true do
3: // continuous background restructuring

4: restructure-node(root)s.

5: propagate(n)s:
6: if n.� �⊥ then n.left-h← n.�.localh
7: else n.left-h← 0

8: if n.r �⊥ then n.right-h← n.r.localh
9: else n.right-h← 0

10: n.localh←max(n.left-h,n.right-h)+1.

11: restructure-node(node)s:
12: if node =⊥ then return
13: restructure-node(node.�)s;
14: restructure-node(node.r)s;
15: if node.� �⊥∧node.�.del then
16: remove(node, false)

17: if node.r �⊥∧node.r.del then
18: remove(node, true)

19: propagate(node);
20: if |node.left-h−node.right-h|> 1 then
21: // Perform appropriate rotations.

themselves visible at each node, creating contention. Instead, in the CF tree, the rotation
operation is slightly modified, allowing for safe, concurrent, invisible traversals.

The rotation procedure is then performed as follows as shown in Algorithm 1: The
parent p, the node to be rotated n, and n’s left child � are locked in order to prevent
conflicts with concurrent insert and delete operations. Next, instead of modifying n
like would be done in a traditional rotation, a new node new is allocated to take n’s
place in the tree. Thus, the key, value, and del fields of new are set to be the same as n’s.
The left child of new is set to �.r and the right child is set to n.r (these are the nodes that
would become the children of n after a traditional rotation). Next �.r is set to point to
new and p’s child pointer is updated to point to � (effectively removing n from the tree),
completing the structural modifications of the rotation. To finish the operation n.rem is
set to true (or by-left-rot, in the case of a left-rotation) and the locks are released. There
are two important things to notice about this rotation procedure: First, new is the exact
copy of n and, as a result, the effect of the rotation is the same as a traditional rotation,
with new taking n’s place in the tree. Second, the child pointers of n are not modified,
thus all nodes that were reachable from n before the rotation are still reachable from n
after the rotation, thus, any current traversal preempted on n will still be able to reach
any node that was reachable before the rotation.

3.2 Structural Adaptation

As mentioned earlier, one of the advantages of performing structural adaptation lazily
is that it does not need to be executed immediately as part of the abstract operations.
In a highly concurrent system this gives us the possibility to use processor cores that
might otherwise be idle to perform the structural adaptation, which is exactly what
is done in the CF tree. A fixed structural adaption thread is then assigned the task
of running the background-struct-adaptation operation which repeatably calls the
restructure-node procedure on the root node, as shown in Algorithm 2, taking care of
balance and physical removal. restructure-node is simply a recursive depth-first proce-
dure that traverses the entire tree. At each node, first the operation attempts to physically
remove its children if they are logically deleted. Following this, it propagates balance
values from its children and if an imbalance is found, a rotation is performed.

236 T. Crain, V. Gramoli, and M. Raynal

While here we have a single thread constantly running, other possibilities such as
having several structural adaptations threads, or distributing the work amongst applica-
tion threads can be used. It should be noted that, in a case where there can be multiple
threads performing structural adaptation, we would need to be more careful on when
and the order in which the locks are obtained (for example they could be obtained in a
global order based on their key).

Algorithm 3. Abstract operations

1: contains(k)p:
2: node← root;
3: while true do
4: next← get next(node,k);
5: if next =⊥ then break
6: node← next;
7: result← false;
8: if node.k = k then
9: if ¬node.del then result← true

10: return result.

11: insert(k)p:
12: node← root;
13: while true do
14: next← get next(node,k);
15: if next =⊥ then
16: lock(node);
17: if validate(node,k) then break

18: unlock(node);
19: else node← next
20: result← false;
21: if node.k = k then
22: if node.del then
23: node.del← false; result← true
24: else // allocate a node called new

25: new.key← k;
26: if node.k > k then node.r← new
27: else node.�← new
28: result← true;
29: unlock(node);
30: return result.

31: delete(k)p:
32: node← root
33: while true do
34: next← get next(node,k);
35: if next =⊥ then
36: lock(node);
37: if validate(node,k) then break

38: unlock(node);
39: else node← next
40: result← false;
41: if node.k = k then
42: if ¬node.del then
43: node.del← true; result← true
44: unlock(node);
45: return result.

46: get-next(node,k)s:
47: rem← node.rem;
48: if rem = by-left-rot then next← node.r
49: else if rem then next← node.�
50: else if node.k > k then next← node.r
51: else if node.k = k then next←⊥
52: else next← node.�
53: return next.

54: validate(node,k)s:
55: if node.rem then return false
56: else if node.k = k then return true
57: else if node.k > k then next← node.r
58: else next← node.�
59: if next =⊥ then return true
60: return false.

3.3 Abstract Operations

The abstract operations are shown in Algorithm 3. Each of the abstract operations begin
by starting their traversal from the root node. The traversal is then performed, without
using locks, from within a while loop where each iteration of the loop calls the get-next
procedure, which returns either the next node in the traversal, or ⊥ in the case that the
traversal is finished.

A Contention-Friendly Binary Search Tree 237

The get-next procedure starts by reading the rem flag of node. If the flag was set to
by-left-rotate then the node was concurrently removed by a left-rotation. As we saw
in the previous section, a node that is removed during rotation is the node that would be
rotated downwards in a traditional rotation. Specifically, in the case of the left rotation,
the removed node’s right child is the node rotated upwards, therefore in this case, the
get-next operation can safely travel to the right child as it contains at least as many
nodes in its path that were in the path of the node before the rotation. If the flag was set
to true then the node was either removed by a physical removal or a right-rotation, in
either case the operation can safely travel to the left child, this is because the remove
operation changes both of the removed node’s child pointers to point to the parent and
the right-rotation is the mirror of the left-rotation. If the rem flag is false then the key
of node is checked, if it is found to be equal to k then the traversal is finished and ⊥ is
returned. Otherwise the traversal is performed as expected, traversing to the right if the
node.k is bigger than k or to the left if smaller.

Given that the insert and delete operations might modify node, they lock it for safety
once⊥ is returned from get-next. Before the node is locked, a concurrent modification
to the tree might mean that the traversal is not yet finished (for example the node might
have been physically removed before the lock was taken), thus the validate operation
is called. If false is returned by validate, then the traversal must continue, otherwise
the traversal is finished. Differently, given that it makes no modifications, the contains
operation exits the while loop immediately when ⊥ is returned from get-next.

The validate operation performs three checks on node to ensure that the traversal is
finished. First it ensures that rem = false, meaning that the node has not been physically
removed from the tree. Then it checks if the key of the node is equal to k, in such a
case the traversal is finished and true is returned immediately. If the key is different
from k then the traversal is finished only if node has ⊥ for the child where a node with
key k would exist. In such a case true is returned, otherwise false is returned. Once the
traversal is complete the rest of the code is straightforward. For the contains operation,
true is returned if node.k = k and node.del = false, false is returned otherwise. For the
insert operation, if node.k = k then the del flag is checked, if it is false, then false is
returned; otherwise if the flag is true it is set to false, and true is returned. In the case
that node.k � k, a new node is allocated with key k and is set to be the child of node.
For the delete operation, if node.k � k, then false is returned. Otherwise, the del flag is
checked, if it is true then false is returned, otherwise if the flag is false, it is set to true
and true is returned.

Linearization. Given that the insert and delete operations that return false do not
modify the tree and that all other operations that modify nodes only do so while owning
the node’s locks, these failed insert and delete operations can be linearized at any
point during the time that they own the lock of the node that was successfully validated.
The successful insert (i.e., the one that returns true) operation is linearized either at the
instant it changes node.del to false, or when it changes the child pointer of node to point
to new. In either case, k exists in the abstraction immediately after the modification.
The successful delete operation is linearized at the instant it changes node.del to true,
resulting in k no longer being in the abstraction.

238 T. Crain, V. Gramoli, and M. Raynal

The contains operation is a bit more difficult as it does not use locks. To give an
intuition of how it is linearized, first consider a system where neither rotations nor
physical removals are performed. In this system, if node.k = k on line 8 is true, then
the linearization point is when node.del is read (line 9). Otherwise if node.k � k, then the
linearization point is either on line 50 or 52 of the get-next operation where ⊥ is read
as the next node (meaning at the time of this read k does not exist in the abstraction).

Now, if rotations and physical removals are performed in the system, then a contains
operation who has finished its traversal might get preempted on a node that is removed
from the tree. First consider the case where node.k = k, since neither rotations nor re-
movals will modify the del flag of a node, then in this case the linearization point is
simply either on line 50 or 52 of the get-next operation where the pointer to node was
read. Now consider the case where node.k � k. First notice that when false is not read
from node.rem (line 47 of get-next) then the traversal will always continue to another
node. This is due to the facts that after a right (resp. left) rotation, the node removed
from the tree will always have a non-⊥ left (resp. right) child (this is the child rotated
upwards by the rotation) and that a node removed by a remove operation will never have
a⊥ child pointer. Therefore if the traversal finishes on a node that has been removed from
the tree, it must have read that node’s rem flag before the rotation or removal had com-
pleted. This read will then be the linearization point of the operation. In this case, for the
contains operation to complete, the next node in the traversal must be read as ⊥ from
the child pointer of node, meaning that the removal/rotation has not made any structural
modifications to this pointer at the time of the read (this is because rotations make no
modifications to the child pointers of the node they remove, and removals point the re-
moved node’s pointers towards its parent). Thus, given that removals and rotations will
lock the node removed meaning no concurrent modifications will take place, effectively
the contains operation has observed the state of the abstraction immediately before the
removal took place.

4 Evaluation
We compare the performance of the contention-friendly tree (CF-tree) against the most
recent lock-based binary search tree we are aware of (BCCO-tree [21]) on an Ultra-
SPARC T2 with 64 hardware threads. For each run, we present the maximum, mini-
mum, and averaged numbers of operations per microsecond over 5 runs of 5 seconds
executed successively as part the same JVM for the sake of warmup. We used Java SE
1.6.0 12-ea in server mode and HotSpot JVM 11.2-b01 for both tree algorithms.

Figure 1 compares the performance of the practical BCCO tree against performance
of our binary search tree with 212 (left) and 216 elements (right) and on a read-only
workload (top) and workloads comprising up to 20% updates (bottom). The variance of
our results is quite low as illustrated by the relatively short error bars we have. While
both trees scale well with the number of threads, the BCCO tree is slower than its
contention-friendly counterpart in all the various settings.

In particular, our CF tree is up to 2.2× faster than its BCCO counterpart. As expected,
the performance benefit of our CF tree increases generally with the level of contention.
(We observed this phenomenon at higher update ratios but omitted these graphs for the
sake of space.) First, the performance improvement increases with the level of concur-
rency on Figures 1(c), 1(d), 1(e) and 1(f). As each thread updates the memory with

A Contention-Friendly Binary Search Tree 239

��

��

���

���

���

���

���

�� �� 	� ��� �
� ��� ��� �	� ��� �
� ��� ��� �	� ��� �
�
��
��

��
��
��
��

�	

��

��

�

��
��
��
��

������
��
	������

(a) 212 elements, 0% update

��

��

���

���

���

���

�� �� 	� ��� �
� ��� ��� �	� ��� �
� ��� ��� �	� ��� �
�
��
��

��
��
��
��

�	

��

��

�

��
��
��
��

������
��
	������

(b) 216 elements, 0% update

��

��

���

���

���

���

���

�� �� 	� ��� �
� ��� ��� �	� ��� �
� ��� ��� �	� ��� �
�
��
��

��
��
��
��

�	

��

��

�

��
��
��
��

������
��
	������

(c) 212 elements, 10% update

��

��

���

���

���

�� �� 	� ��� �
� ��� ��� �	� ��� �
� ��� ��� �	� ��� �
�
��
��
��

��
��
��

�	

��

��

�

��
��
��
��

������
��
	������

(d) 216 elements, 10% update

��

��

���

���

���

���

�� �� 	� ��� �
� ��� ��� �	� ��� �
� ��� ��� �	� ��� �
�
��
��

��
��
��
��

�	

��

��

�

��
��
��
��

������
��
	������

(e) 212 elements, 20% update

��

��

���

���

���

�� �� 	� ��� �
� ��� ��� �	� ��� �
� ��� ��� �	� ��� �
�
��
��

��
��
��
��

�	

��

��

�

��
��
��
��

������
��
	������

(f) 216 elements, 20% update

Fig. 1. Performance of our contention-friendly tree and the practical concurrent tree [21]

the same (non-null) probability the contention increases with the number of concurrent
threads running. Second, the performance improvement increases with the update ratio.
This is not surprising as our tree relaxes the balance invariant during contention peaks
whereas the BCCO tree induces more contention to maintain the balance invariant.

5 Concluding Remarks

To conclude, lock-based data structures can greatly benefit from the contention-friendly
methodology on multicore architectures. In particular the decoupling of accesses allow
the CF tree to scale with a reasonably large number of hardware threads. An interesting
future work would be to experimentally assess the performance gain due to applying
contention-friendliness to other data structures. Additionally, a contention metric that
complements the traditional asymptotic step complexity seems to be necessary to cap-
ture the cost of a multicore data structure.

References

1. Mao, Y., Kohler, E., Morris, R.T.: Cache craftiness for fast multicore key-value storage. In:
EuroSys., pp. 183–196 (2012)

240 T. Crain, V. Gramoli, and M. Raynal

2. Crain, T., Gramoli, V., Raynal, M.: A speculation-friendly binary search tree. In: PPoPP, pp.
161–170 (2012)

3. Adelson-Velskii, G., Landis, E.M.: An algorithm for the organization of information. In:
Proc. of the USSR Academy of Sciences, vol. 146, pp. 263–266 (1962)

4. Bayer, R.: Symmetric binary B-trees: Data structure and maintenance algorithms. Acta In-
formatica 1 1(4), 290–306 (1972)

5. Bougé, L., Gabarro, J., Messeguer, X., Schabanel, N.: Height-relaxed AVL rebalancing: A
unified, fine-grained approach to concurrent dictionaries. Technical Report RR1998-18, ENS
Lyon (1998)

6. Guibas, L.J., Sedgewick, R.: A dichromatic framework for balanced trees. In: FOCS, pp.
8–21 (1978)

7. Bayer, R., McCreight, E.: Organization and maintenance of large ordered indices. In: Proc. of
the ACM SIGFIDET Workshop on Data Description, Access and Control, pp. 107–141 (1970)

8. Huddleston, S., Mehlhorn, K.: A new data structure for representing sorted lists. Acta Inf. 17,
157–184 (1982)

9. Kessels, J.L.W.: On-the-fly optimization of data structures. Commun. ACM 26(11), 895–901
(1983)

10. Nurmi, O., Soisalon-Soininen, E.: Uncoupling updating and rebalancing in chromatic binary
search trees. In: PODS, pp. 192–198 (1991)

11. Nurmi, O., Soisalon-Soininen, E.: Chromatic binary search trees. A structure for concurrent
rebalancing. Acta Inf. 33(6), 547–557 (1996)

12. Boyar, J., Fagerberg, R., Larsen, K.S.: Amortization results for chromatic search trees, with
an application to priority queues. J. Comput. Syst. Sci. 55(3), 504–521 (1997)

13. Mohan, C.: Commit-LSN: a novel and simple method for reducing locking and latching in
transaction processing systems. In: VLDB, pp. 406–418 (1990)

14. Harris, T.L.: A pragmatic implementation of non-blocking linked-lists. In: Welch, J.L. (ed.)
DISC 2001. LNCS, vol. 2180, pp. 300–314. Springer, Heidelberg (2001)

15. Michael, M.M.: High performance dynamic lock-free hash tables and list-based sets. In:
SPAA, pp. 73–82 (2002)

16. Fraser, K.: Practical lock freedom. PhD thesis, Cambridge University (September 2003)
17. Ellen, F., Fatourou, P., Ruppert, E., van Breugel, F.: Non-blocking binary search trees. In:

PODC, pp. 131–140 (2010)
18. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming, p. 528. Morgan Kaufmann

(2008)
19. Shavit, N.: Data structures in the multicore age. Commun. ACM 54(3), 76–84 (2011)
20. Felber, P., Gramoli, V., Guerraoui, R.: Elastic transactions. In: Keidar, I. (ed.) DISC 2009.

LNCS, vol. 5805, pp. 93–107. Springer, Heidelberg (2009)
21. Bronson, N.G., Casper, J., Chafi, H., Olukotun, K.: A practical concurrent binary search tree.

In: PPoPP (2010)
22. Crain, T., Gramoli, V., Raynal, M.: Brief announcement: A contention-friendly, non-blocking

skip list. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 423–424. Springer,
Heidelberg (2012)

23. Crain, T., Gramoli, V., Raynal, M.: No hot spot non-blocking skip list. In: ICDCS (2013)
24. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent objects.

ACM Trans. Program. Lang. Syst. 12, 463–492 (1990)
25. Herlihy, M.P., Lev, Y., Luchangco, V., Shavit, N.: A simple optimistic skiplist algorithm.

In: Prencipe, G., Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 124–138. Springer,
Heidelberg (2007)

26. Raynal, M.: Concurrent Programming: Algorithms, Principles, and Foundations. Springer
(2013)

	A Contention-Friendly Binary Search Tree
	1 Introduction and Related Work
	2 Overview
	2.1 Eager AbstractModification
	2.2 Lazy Structural Adaptation

	3 The Contention-Friendly Tree
	3.1 Avoiding Contention during Traversal
	3.2 Structural Adaptation
	3.3 Abstract Operations

	4 Evaluation
	5 Concluding Remarks
	References

