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Preface

Euro-Par is an annual series of international conferences dedicated to the
promotion and advancement of all aspects of parallel and distributed computing.
It covers a wide spectrum of topics from algorithms and theory to software tech-
nology and hardware-related issues, with application areas ranging from scientific
to mobile and cloud computing. Euro-Par provides a forum for the introduction,
presentation, and discussion of the latest scientific and technical advances, ex-
tending the frontier of both the state of the art and the state of the practice.

The main audience of Euro-Par are the researchers in academic institutions,
government laboratories, and industrial organizations. Euro-Par’s objective is to
be the primary choice of such professionals for the presentation of new results in
their specific areas. As a wide-spectrum conference, Euro-Par fosters the synergy
of different topics in parallel and distributed computing. Of special interest are
applications that demonstrate the effectiveness of the main Euro-Par topics.

In addition, Euro-Par conferences provide a platform for a number of accom-
panying technical workshops. Thus, smaller and emerging communities can meet
and develop more focused topics or as yet less established topics.

Euro-Par 2013 was the 19th conference in the Euro-Par series, and was or-
ganized in Aachen, Germany, by the German Research School for Simulation
Sciences (GRS), Forschungszentrum Jülich, and RWTH Aachen University in
the framework of the Jülich Aachen Research Alliance. Previous Euro-Par con-
ferences took place in Stockholm, Lyon, Passau, Southampton, Toulouse, Mu-
nich, Manchester, Paderborn, Klagenfurt, Pisa, Lisbon, Dresden, Rennes, Las
Palmas, Delft, Ischia, Bordeaux, and Rhodes. Next year, the conference will be
held in Porto, Portugal. More information on the Euro-Par conference series and
organization is available on the website at http://www.europar.org.

Euro-Par 2013 covered 16 topics. The paper review process for each topic
was managed and supervised by a committee of at least four people: a global
chair, a local chair, and two members. Some specific topics with a high number
of submissions were managed by a larger committee with more members. The
final decisions on the acceptance or rejection of the submitted papers were made
at a meeting of the conference co-chairs and local chairs of the topics.

The call for papers attracted 261 full-paper submissions, representing 45
countries. A total of 1,016 review reports were collected, which is an average
of 3.9 review reports per paper. The Program Committee members hailed from
22 different countries. We selected 70 papers to be presented at the conference
and included in the conference proceedings, representing 26 countries from all
continents, and resulting in an acceptance rate of 26.8%.

Euro-Par 2013 was very pleased to present three invited speakers of high
international reputation, who discussed important developments in very inter-
esting areas of parallel and distributed computing:
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1. Alok Choudhary (Northwestern University, USA)
2. Arndt Bode (Leibniz Supercomputing Centre and Technische Universität

München, Germany)
3. Timothy G. Mattson (Intel Corporation, USA)

As part of Euro-Par 2013, three tutorials and 13 workshops were held prior to
the main conference. The three tutorials were:

1. Tools for High-Productivity Supercomputing
2. Introduction to OpenACC Programming on GPUs
3. Advanced OpenMP

The 13 workshops were:

1. Big Data Management in Clouds (BigDataCloud)
2. Dependability and Interoperability in Heterogeneous Clouds (DIHC)
3. Federative and Interoperable Cloud Infrastructures (FedICI)
4. Algorithms, Models and Tools for Parallel Computing on Heterogeneous

Platforms (HeteroPar)
5. High Performance Bioinformatics and Biomedicine (HiBB)
6. Large-Scale Distributed Virtual Environments on Clouds and P2P (LSDVE)
7. Middleware for HPC and Big Data Systems (MHPC)
8. On-chip Memory Hierarchies and Interconnects (OMHI)
9. Parallel and Distributed Agent Based Simulations (PADABS)

10. Productivity and Performance (PROPER)
11. Resiliency in High-Performance Computing with Clusters, Clouds, and Grids

(Resilience)
12. Runtime and Operating Systems for the Many-core Era (ROME)
13. UnConventional High-Performance Computing (UCHPC)

Workshop papers will be published in a separate proceedings volume.
The 19th Euro-Par conference in Aachen would not have been possible with-

out the support of many individuals and organizations. We owe special thanks
to the authors of all the submitted papers, the members of the topic commit-
tees, and the reviewers in all topics for their contributions to the success of
the conference. We would also like to express our gratitude to the members of
the Organizing Committee. Moreover, we are indebted to the members of the
Euro-Par Steering Committee for their trust, guidance, and support. Finally, a
number of institutional and industrial sponsors contributed to the organization
of the conference. Their names and logos appear on the Euro-Par 2013 website:
http://www.europar2013.org.

It was a pleasure and an honor to organize and host Euro-Par 2013 in Aachen.
We hope that all participants enjoyed the technical program and the social events
organized during the conference (despite the fact that the conference building
did not overlook the beach, as it did last year).

August 2013 Felix Wolf
Dieter an Mey
Bernd Mohr
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Workshops

Dieter an Mey RWTH Aachen University, Germany

Local Organization

Vera Kleber GRS, Germany
Elisabeth Altenberger GRS, Germany
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Marian Vajteršic University of Salzburg, Austria

Topic 11: Multicore and Manycore Programming

Chair

Luiz DeRose Cray Inc., USA

Local Chair

Jan Treibig Friedrich-Alexander-Universität
Erlangen-Nürnberg, Germany

Members

David Abramson Monash University, Australia
Alastair Donaldson Imperial College London, UK



XII Organization

William Jalby University of Versailles
Saint-Quentin-en-Yvelines, France

Alba Cristina M.A. de Melo University of Brasilia, Brazil
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Davide Bertozzi University of Ferrara, Italy

Topic 14: High-Performance and Scientific Applications

Chair

Turlough P. Downes Dublin City University, Ireland

Local Chair

Sabine Roller University of Siegen, Germany

Members

Ari P. Seitsonen University of Zurich, Switzerland
Sophie Valcke CERFACS, France



Organization XIII

Topic 15: GPU and Accelerator Computing

Chair

Naoya Maruyama RIKEN Advanced Institute for Computational
Science, Japan

Local Chair

Leif Kobbelt RWTH Aachen University, Germany

Members

Pavan Balaji Argonne National Laboratory, USA
Nikola Puzovic Barcelona Supercomputing Center, Spain
Samuel Thibault University of Bordeaux, France
Kun Zhou Zhejiang University, China

Topic 16: Extreme-Scale Computing

Chair

David Keyes King Abdullah University of Science and
Technology, Saudi Arabia

Local Chair

Marie-Christine Sawley Intel Exascale Lab Paris, France

Members

Thomas Schulthess ETH Zurich, Switzerland
John Shalf Lawrence Berkeley National Laboratory, USA

Euro-Par 2013 Reviewers

Laeeq Ahmed
Dong Ahn
Sadaf R Alam
Marco Aldinucci
Ferdinando Alessi
Francisco Alfaro
Paulo Sérgio Almeida
Lluc Alvarez
Alba Amato
Flora Amato
Nikos Anastopoulos
Diego Andrade
Cosmin Arad
Francisco Argüello
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Cosimo Palazzo
Francesco Palmieri
Jia Pan
Antonis Papaioannou
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Solving a Least-Squares Problem with Algorithmic Differentiation and
OpenMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763

Michael Förster and Uwe Naumann

Hierarchical Parallel Algorithm for Modularity-Based Community
Detection Using GPUs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 775

Chun Yew Cheong, Huynh Phung Huynh, David Lo, and
Rick Siow Mong Goh

GWAS on GPUs: Streaming Data from HDD for Sustained
Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 788

Lucas Beyer and Paolo Bientinesi

Topic 15: GPU and Accelerator Computing

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 800
Naoya Maruyama, Leif Kobbelt, Pavan Balaji, Nikola Puzovic,
Samuel Thibault, and Kun Zhou

High-Resolution Power Profiling of GPU Functions Using
Low-Resolution Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 801

Jens Lang and Gudula Rünger
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Abstract. For a long period in the development of computers and com-
puting efficient applications were only characterized by computational
– and memory complexity or in more practical terms elapsed comput-
ing time and required main memory capacity. The history of Euro-Par
and its predecessor-organizations stands for research on the development
of ever more powerful computer architectures that shorten the compute
time both by faster clocking and by parallel execution as well as the
development of algorithms that can exhibit these parallel architectural
features. The success of enhancing architectures and algorithms is best
described by exponential curves regarding the peak computing power of
architectures and the efficiency of algorithms. As microprocessor parts
get more and more power hungry and electricity gets more and more
expensive, ”energy to solution” is a new optimization criterion for large
applications. This calls for energy aware solutions.

Components of Energy Aware Computing

In order to reduce the power used to run an application, four components have
to be optimized, three of them relate to the computer system and the programs
to be extended, one relates to the infrastructure of the computer system:

– Energy aware infrastructure: This parameter relates to the fact, that
computers need climate, cooling, uninterruptable voltage supply, building
with light, heating and additional infrastructure components that consume
power. Examples for measures to reduce energy are: Use of liquid cooling, di-
rect cooling, free cooling, waste heat reuse, adsorption machines, monitoring
and optimizing of energy consumption and infrastructure control, coupling
of infrastructure power requirements with behavior of computers and the
application execution.

– Energy aware system hardware: This parameter describes all mecha-
nisms in new hardware to reduce power in the system itself: sleep modes of
inactive parts, clock control of the parts, fine grain hardware-monitoring of
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system consumption, any hardware that relates to accumulating, processing
and using consumption data for power reduction in the part and its relation
to other parts of the system, autonomous optimizing and learning behavior.

– Energy aware system software: This parameter describes all sorts of
automatic, semi-automatic, or online and offline user controlled tools, that
do monitor, analyze and control the execution of application software on the
system: support for optimal pinings of threads, finding the optimal clock
based on previous runs and data on execution behavior looking at relations
between processing, memory, interconnection and storage/I/0 boundedness.

– Energy aware algorithms: In most cases, the fastest algorithm consumes
the minimum power. But there are exceptions, if algorithms use redundancy
(sometimes in applications with super linear speedup). This is a very broad
research area in its own.

Experiences with SuperMUC

Energy-aware HPC solutions are tried out at Leibniz Supercomputing Center
with SuperMUC a system with 160.000 cores of XEON (IBM iDataPlex). Energy
consumption is measured and controlled at many different levels starting at the
course grain level with the overall infrastructure control down to very fine grain
tools on the individual chip level. Some of the tools are under user control,
other were controlled by the datacenter management team, some are even fully
automatic. Clocking control is offered by LRZ to the general user of SuperMUC
as a tool that supports measuring in detail the execution of a program at a first
run, puts data into a database and uses this for subsequent runs to optimize the
clocking of SuperMUC.

These measures implemented so far present a first step and will be enhanced in
the future. Further development and research is needed to couple and optimize
the effects of the various tools. We also advocate for better energy awareness
indicators (such as PUE) that do measure the total consumption including the
entire infrastructure and take into account that the percentage of peak perfor-
mance used in highly parallel applications is rather poor and varies with the
system architecture, in order to allow for fair evaluations and comparison.

If we want to afford the electricity for an Exascale system, energy awareness
of computing has to be approved by orders of magnitude. The methods and tools
that have to be developed to do so, present an interesting new field of research
for the Euro-Par community.



Topic 1: Support Tools and Environments

(Introduction)

Bronis R. de Supinski, Bettina Krammer,
Karl Fürlinger, Jesus Labarta, and Dimitrios S. Nikolopoulos

Topic Committee

Despite an impressive body of research, parallel and distributed computing re-
mains a complex task prone to subtle software issues that can affect both the
correctness and the performance of the computation. This track focuses on tools
and techniques to tackle that complexity. Submissions covered a wide range
of challenges of parallel and distributed computing, including, but not limited
to, scalability, programmability, portability, correctness, reliability, performance
and energy efficiency. This topic brings together tool designers, developers, and
users to share their concerns, ideas, solutions, and products for a wide range of
platforms.

We received numerous submissions on these important topics. The submis-
sions were subjected to a rigorous review process, drawing on experts from across
parallel computing to assess their novelty, correctness and importance. Through
this process we selected two papers for publication.

One of the accepted papers provides a novel mechanism to detect synchro-
nization in shared memory programs. The technique controls thread execution
in order to determine when a specific thread waits for the actions of another,
specific thread. This technique can simplify automatic analysis of the correctness
of shared memory programs.

The other accepted paper details advances in system simulation. The pa-
per specifically discusses simulation of the BlueGene/Q processor. The paper
presents techniques to reduce the time per simulated instruction while still pro-
viding an accurate timing. model. Overall, these techniques support evaluation
of system software and application performance prior to fabrication of the actual
processor chips.

We thank the authors of these papers and all submissions. In addition, we
thank our many reviewers, all of who provided detailed evaluations of the sub-
missions that ensured that the accpeted papers in this topic are of the highest
quality.
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Abstract. Identifying synchronizations could significantly improve test-
ing and debugging of multithreaded programs because it could substan-
tially cut down the number of possible interleavings in those tests. There
are two general techniques to implement synchronizations: modularized
and ad-hoc. Identifying synchronizations in multi-threaded programs
could be quite challenging. It is because modularized synchronizations
are often implemented in an obscure and implicit way, and ad-hoc syn-
chronizations could be quite subtle. In this paper, we try to identify
synchronizations from a new perspective. We found that if a thread is
waiting for synchronizations, the code it executes during the wait is very
different from that after the completion of the synchronization. Based on
such an observation, we proposed an effective method to identify synchro-
nizations. It doesn’t depend on the understanding of source codes or the
knowledge of semantics of library routines. A system called SyncTester is
developed, and experiments show that SyncTester is effective and useful.

Keywords: synchronization identification, concurrency testing, multi-
threading.

1 Instruction

Many debugging and testing algorithms use guided or unguided interleaving
among threads as the basis of such tests, e.g. Eraser [1], FastTrack [3] and CTrig-
ger [4]. However, the number of interleaves in multi-threaded programs could be
enormous. It will make those algorithms very complicated and time consum-
ing. To reduce the number of possible interleavings, and thus reducing the time
complexity, these algorithms try to exploit synchronizations. It can also reduce
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false positives in the test results. Previous work [12] shows that synchronizations
could reduce 43-86% false data races found by Valgrind. Therefore, identifying
synchronizations in multithreaded programs is very desirable and important.

In general, there are 2 types of synchronizations: modularized [12] and ad-hoc.
Modularized synchronization could be identified by their semantics [5,3,7]. And
most approaches identify ad-hoc ones by pattern-matching [7,8,12].

Identifying modularized synchronizations using their semantics could be te-
dious and error prone. There exist hundreds of libraries. Some of them have
many routines. E.g. GLIBC 2.16 has about 1200 routines [14]. Some routines
provide implicit synchronization functions (e.g. read()/write()). Moreover, some
synchronization pairs could be from different libraries (e.g. pthread kill/sigwait).
Therefore, this work could be quite challenging for programmers.

To identify ad-hoc synchronizations, ISSTA08 [7] focuses on synchronizations
that consist of a spinning read and a corresponding remote store. It is dynamic.
Helgrind+ [8] and SyncFinder [12] focus on loops whose exit condition cannot
be satisfied in their loop bodies. SyncFinder is a static method, while Helgrind+
searches for such loops statically, but identifies the remote stores dynamically.
They are all based on the synchronization patterns summarized from various
application codes. Because of the complexity and the large amount of codes,
this process is time consuming and may miss or misjudge some patterns. To
identify complex patterns, elaborate inter-procedural pointer analysis may be
needed. However, there are still many cases pointer analysis cannot handle.

In this paper, we try to identify synchronizations from a different perspective.
We leverage the essential feature of a synchronization that it forces a thread
to wait when the thread may violate the intended order imposed by the pro-
grammer. Our scheme depends on neither the patterns nor the knowledge of
library routines, thus labor-intensive pattern collection/recognition and learning
of library routines are avoided. Moreover, our proposed scheme works on binary
executable, which is an advantage when source code is not available. Overall,
our work makes the following contributions:

(1) Propose a synchronization identification scheme from a new perspective.
It can be used to identify both modularized and ad-hoc synchronizations in
multi-threaded programs regardless of their implementation.

(2) Implement a prototype system, SyncTester. Experimental results on real
programs show that it is very effective and useful.

(3) Introduce helper processes to do contrast test. With their help, SyncTester
can avoid perturbation to the program execution.

2 Synchronization Testing

Our scheme tries to identify synchronization by monitoring the execution of a
program. A multi-threaded program is tested for several executions. In each
execution, we select a different thread as the testing thread and all other are
executing threads. We propose two algorithms: a forward test and a backward
test. They identify synchronizations according to the intended order between
the testing thread and the executing threads. Fig.1 gives an overview of it.
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while(!flag2);

flag2=1

while(!flag1);

flag1=1

Testing
Thread

Executing
Thread

Backward Test

Forward Test

Ex
ec
ut
io
n

Fig. 1. Test Scheme Overview

barrier_wait();
[CODE]

(Waiting Operation)

barrier_wait();

(Triggering Operation)

while(!flag)
{ };
[CODE]

(Waiting Operation)

flag = 1;

(Triggering Operation)

Fig. 2. Behavior of waiting operations

2.1 Forward Test

Synchronizations are used to control the orders among operations in different
threads. A synchronization involves at least two threads: one is waiting (waiting
thread) for a certain operation from another (triggering thread). We refer to the
waiting action in the waiting thread as waiting operation, and the operation that
wakes up the waiting thread as triggering operation. A waiting operation and its
corresponding triggering operation form a synchronization pair (sync pair).

Waiting operations have two forms, as shown in Fig.2. The waiting thread
may be blocked by a library call or spinning on a code segment. The triggering
operation should be a library call or a shared memory store instruction respec-
tively. So we take all the library calls and shared memory store instructions as
potential triggering operations (PTO). When a thread is waiting for a certain
operation, we say that it is in a suspended state, and such a thread is executing
a potential waiting operation (PWO). When the corresponding triggering oper-
ation occurs, waiting thread will exit the suspended state and go on to execute
its subsequent codes, as [CODE] shown in Fig.2. The code it executes during a
suspended state is different from that after it exits this state.

Then we design a sync-pair identification scheme. Algorithm 1 shows its de-
tails. When testing thread encounters a PTO, we suspend its execution until
all executing threads enter suspended states (Line 14-16). Then we execute the
PTO. If it makes an executing thread exit a suspended state, we probably find
a sync pair (Line 23-29).The italic light-grey codes are the specific techniques to
improve the scheme.

This algorithm is “safe” in the sense that we allow only one testing thread
in each test. Hence, if all the PTOs in the testing thread are not real triggering
operations, executing threads will continue running to their completion without
being suspended. If none of the suspended executing threads exits its suspended
state after a PTO is executed, the testing thread will continue executing until a
real triggering operation releases an executing thread.

It is important to identify whether a thread is in a suspended state or not. A
basic block vector (BBV) [9] records the executing frequencies of all basic blocks
in a time quantum. Every thread builds its own BBVs during execution. When
a thread is in a suspended state, the BBVs of its continuous quanta should be
very similar. When a threads BBVs in continuous quanta have small differences
[9] and contain same blocks, this thread is marked as in a suspended state.
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Input: Set<Thread> Threads, including all threads in a multi-
threaded program
Mapa <Thread, PWO> pwOp := Φ;
MaMM pa <ThTT read,dd Process> helpll Proc := Φ;
Set<Thread> testingThreads = Threads;
Set<Thread> execThreads;
//// Algorithm begins
testingThTT readsdd = ThTT readGroupu (t(( estingThTT readsdd )s ;
foff r testThread testingThreads do
//// Each iteration of this foff r loop is a pass of execution
while testThread is not fiff nished do
execThreads:= Threads \ {testThread}
//// execThreads are executing frff eely.
nextOp := NextPTO(testThread);
while not AllThreadSuspended(execThreads) do

sched_yield();
end while
ifi not Repe eatOpO (n(( exee tOpO )pp thtt en
exee ecThTT readsdd := TyTT pyy eMaMM tching(e(( xee ecThTT readsdd , nexee tOpO )pp ;
foff r t execThreads do
pwOp[t] := t’s current PWO;
helpll Proc[t[[ ]t := CrCC eateHee eHH lpll erPrr roc(t(( )t ;

end foff r
Execute(testThread, nextOp);
foff r t execThreads do

if not Suspended(t) && SuSS sps endedd d(h(( elpll Proc[t[[ ]t ) then
RecordSyncPair(nextOp, pwOp[t]);

end if
TeTT rminate(h(( elpll Proc[t[[ ]t )]] ;

end foff r
elsll e
ExEE ecute(t(( estThTT read,dd nexee tOpO )pp ;

end ifi
end while

end foff r

Input: Set<Thread> Threads, including all threads in a multi-
threaded program
Map<Thread, PWO> pwOp := Φ;
Map<Thread,Process> helpProc := Φ;
Set<Thread> testingThreads = Threads;
Set<Thread> execThreads;
//Algorithm begins
testingThreads = ThreadGroup(testingThreads);
for testThread testingThreads do
//Each iteration of this for loop is a pass of execution
while testThread is not finished do
execThreads:= Threads \ {testThread}
//execThreads are executing freely.
nextOp := NextPTO(testThread);
while not AllThreadSuspended(execThreads) do

sched_yield();
end while
if not RepeatOp(nextOp) then
execThreads:= TypeMatching(execThreads, nextOp);
for t execThreads do
pwOp[t] := t’s current PWO;
helpProc[t] := CreateHelperProc(t);

end for
Execute(testThread, nextOp);
for t execThreads do

if not Suspended(t) && Suspended(helpProc[t]) then
RecordSyncPair(nextOp, pwOp[t]);

                  end if
Terminate(helpProc[t]);

end for
else
Execute(testThread, nextOp);

end if
end while

end for
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Algorithm 1 Forward TestAlgorithm 1 Forward Test
Input: Set<Thread> Threads, including all threads in a multi-
threaded program

Set<SyncPair> SyncPairs, including sync pairs
found by forward test
Set<Thread> targetThreads = Threads;
Set<Thread> execThreads;
targetThreads = ThreadGroup(targetThreads);
for testingThread targetThreads Do
//Each iteration of this for loop is a pass of execution
execThreads := Threads \ {testingThread}
//execThreads are executing freely
while testingThread is not finished do
nextOp := NextReadOp(testingThread);
if not AllThreadSuspended(execThreads) then
WaitForSuspending(execThreads);

end if
wrOp = LastWriteOp(nextOp);
if MatchHappenBefore(nextOp, wrOp, SyncPairs) &&

not RepeatedOp(nextOp, wrOp) && not LockOp(nextOp,
wrOp) && wrOp is not in testingThread then

CreateHelperProcBT(nextOp, wrOp);
end if
Execute(testingThread, nextOp);

end while
end for
//Define <rdOp, wrOp> as a Backward Test Pair
CreateHelperProcBT(OP rdOp, OP wrOp) begin
Fork(); //Create Helper Process
if this is helper process then
//The following codes execute concurrently with main

process
RestoreToPreviousValue(this, wrOp);
if Suspended(this) then
helperProc2 = CreateHelperProcess(this);
ResetToCurrentValue(helperProc2, wrOp);
if Suspended(this) != Suspended(helperProc2) then
RecordSyncPair(wrOp, rdOp);

endif
end if
Terminate(this, helperProc2);//Kill helper processes

end if
end
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Algorithm 2 Backward Test

In the following cases, the differences of a threads continuousBBVswill be small.
The thread is (1) blocked by a system call, (2) has exited or (3) spinning on a code
segment. In the first two cases, the thread is no longer executing, and will not build
BBVs, and all the elements of its BBVs are 0.The differences of its BBVs are 0.

When a thread exits its suspended state, it starts to execute other code seg-
ments. So, if we find a thread executes blocks different from those in the sus-
pended state, it has exited its previous suspended state.

T0 T1

flag=1

while(!flag);

PTO

PTO

Long
Latency
Op.

Missed

Fig. 3. Motivation of Backward test

Set: flag = 0

Init: flag=0

while(!flag);

flag=1

(Testing
Thread)

(Executing
Thread)

Main Process Helper Process

while(!flag);

Create
Process

Fig. 4. Schematic of Backward Test
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2.2 Backward Test

Algorithm 1 can identify many sync pairs. However, in some special cases, it may
miss some sync pairs. For example, in Fig.3, “flag=1” and “while(!flag)” form
a sync pair. Assume there is a long latency operation (LLO) in T1. We refer to
an operation as a LLO if it lasts for several time quanta and can continue to
execute without being triggered by other threads. When T1 is executing a LLO,
Algorithm 1 may mistake T1 as entering a suspended state and miss this sync
pair. To counter this difficulty, we propose a backward test.

Note that the forward test suspends the testing thread at each potential trig-
gering operation. It allows executing threads to run ahead of the testing thread
and enter suspended states. However, LLOs can distort it. The proposed back-
ward test targets sync pairs whose triggering operations execute before the wait-
ing operations. The sync pair shown in Fig.3 can be identified if we use a backward
test and select T1 as the testing thread.

If triggering operation executes before waiting operation, the waiting oper-
ation will not spin or be blocked. This is because the triggering operation has
removed the wait condition. Therefore, when a shared variable is read by the
main program or library, we restore the shared variable to its previous value.
If this thread is blocked or spinning on a shared variable, we treat the corre-
sponding library routine (or code segment) and the operation that performs the
previous store to the shared variable as a sync pair.

However, restoring a shared variable to its previous value will cause errors to
the programs execution. Therefore, we perform such a test in a separate process,
called helper process. Helper processes are created (by fork() syscall in Linux)
when we encounter read operations to shared variables or library calls. They
communicate with the main process via pipes. Because they need to inherit the
current context of the main process, they can’t be created in advance.

This is called a backward test. Fig.4 is its schematic, and Algorithm 2 is its
details. Note that Algorithm 2 defines the backward test pair in Line 21.

Helper Process Isolation. Helper processes inherit the context of the main
process. They share some resources with the main process, such as file descriptors
and shared memory. If they access these resources, they will interfere with the
execution of main process. Hence we need to handle system calls and shared
memory in helper processes appropriately.

We classify system calls into 3 types and handle them in helper processes
differently. (Type 1) System calls that don’t access such shared resources, invoke
them as usual, e.g. gettimeofday(), futex(); (Type 2) System calls that get data
from shared resources only, e.g. read(), get these data from the main process.
(Type 3) System calls that store data or change status of shared resources, ignore
them and get their return values from main process, e.g. open(), write().

Processes may use shared memory to communicate with other processes. We
transform shared memory in the helper process into private. We back up the
data in shared memory, detach it and then map private one. The range of shared
memory can be got by system call instrumentation in main process.
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2.3 Perturbation Elimination

Long Latency Operations (LLOs). Take the forward testing as an exam-
ple. When an executing thread enters a LLO, our scheme may misidentify the
executing thread as entering a suspended state. When the testing thread exe-
cutes a potential triggering operation, if this executing thread happens to exit its
misidentified suspended state, the forward test will mistakenly identify the LLO
as a waiting operation. A false sync pair will be identified, i.e. a false positive.

The key to distinguish a LLO from a true waiting operation is the manner
it exits the suspended state. A LLO can exit the suspended state by itself after
finishing its work. But a waiting operation cannot exit the suspended state until
another thread executes its corresponding triggering operation.

Fig.5 shows how to distinguish LLOs in forward test (Line 21 & 25 Algo-
rithm 1). When testing thread (T0) encounters a potential triggering operation
(flag=1;), a helper process is created by the executing thread (T1). Note that
the helper process does not interact with the testing thread (i.e. ‘flag’ is always
0 in the helper process). After the testing thread has executed “flag=1;”, we
compare the state of T1 and helper process. If T1 and the helper process both
exits the suspended state (Fig.5(b)), it means that the operation that made T1
enter a suspended state is a LLO. Otherwise we find a real sync pair (Fig.5(a)).

In the backward testing (Line 28-30 Algorithm 2), we take a similar approach
to handle LLOs. When the helper process enters a suspended state, we create
a second helper process using the first helper processs context. In the second
helper process, we reset the value of the shared variables restored by the first
helper process to the same as that in main process. If one helper process exits
the suspended state while the other dose not, it means that there is a helper
process waiting for the new values of these shared variables. We could treat this
backward test pair as a sync pair.

Lock/Unlock Operations. When the helper process tests a lock operation
in backward test, it restores the values of the lock variables to those before an
unlock operation. These values make the helper process have held the lock and
will be blocked by this lock operation. In order to avoid identifying lock/unlock
operations as sync pairs, when we encounter a library routine at the first time,
we create a helper process to test whether it is a lock operation or not. This
helper process creates two threads and each of them invokes this library routine
with the same arguments. From the definitions of ABI, we will know where the
arguments are (e.g. register or stack). If one of these two threads is blocked and
the other is not, this library routine is treated as a lock operation and will not
form sync pairs. (LockOp() in Line 15 Algo.2)

2.4 Efficiency Issues

Efficiency is always a concern in testing multi-threaded programs. There are two
ways to improve it. One is to reduce the number of testing threads, and the
other is to reduce the number of testing points in testing threads. Testing points
include potential triggering operations and backward test pairs.
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flag = 0

Init: flag=0

while(!flag);

flag=1

T0 T1

Main Process Helper Process

(Unsuspended)

Create
Process while(!flag);

flag = 0

Init: flag=0

For( )

flag=1

T0 T1

Main Process Helper Process

Create
Process For( )

(Suspended)

(a) Synchronization Pair (b) Long Latency Operation

(Unsuspended) (Unsuspended)

Fig. 5. Handling LLOs in forward test

Reducing Testing Threads. To reduce the number of testing threads, we
divide the threads in a program into groups. If two threads are similar in their
executions, the sync pairs they executed are likely to be the same. Hence, we
put such two threads in a group. In each group, we select only one thread as
testing thread (ThreadGroup() in Line 7 Algo.1 and Line 4 Algo.2).

In order to group threads, we calculate the difference between the BBVs of
their executions. If the difference is smaller than a threshold, the executions of
the two threads are likely to be similar. They are put into the same group.

This is heuristic. To reduce the probability of missing sync pairs due to thread
grouping, we build a sync-op set. It contains triggering and waiting operations
of sync pairs we found and their calling contexts. After all testing threads are
tested, if we find that a thread executes an operation in the sync-op set with
a different calling context and this operation doesn’t belong to a sync pair, we
select this thread as testing thread and do another pass of test.

T0
foo();
x++;
flag = 1;

T1

while(!flag);

(a) Irrelevant PTO and
PWO

T1
for( )
cond_wait();

T0
for( )
cond_signal();

T0
foo();

barrier();

T1

barrier();

T0
barrier();

while(!flag);

T1
flag = 1;
barrier();

(b) Routines never
form a Sync Pair

(c) Sync Pairs in loops (d) Impossible backward
test pair

Fig. 6. Cases to reduce number of testing points

Reducing Testing Point. Fig.6 shows some cases, in which we can reduce the
number of testing points. We propose the following schemes targeting them.

(1)Match the type/address of synchronization operations. (Type-
Matching() in Line 18 Algo.1 and LastWriteOp() in Line 14 Algo.2)

In Fig.6(a), the waiting operation and triggering operation of a modularized
sync pairs should be library routines, while an ad-hoc sync pair should consist
of a spin loop and a store operation. So, when we encounter a library call, we
can skip testing store operations to shared variable, and vice versa.

Furthermore, for an ad-hoc sync pair in the forward test, its waiting operation
and triggering operation should access the same shared variable. According to
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the shared variables read by executing threads during a suspended state, we can
skip store operations that access other shared variables in the testing thread.

(2)Use history of routines. (RepeatOp() in L.17 Algo.1 & L.15 Algo.2)
After analyzing various popular library routines, we found that a library rou-

tine with blocking function can only be unblocked by a few specific library rou-
tines. If a pair of library routines is tested for several times and they never form
a sync pair, as shown in Fig.6(b), it is most likely that they are not a sync pair
at all. So, when we encounter the same library pair, skip the test on them.

(3)Accelerate test in loops. (RepeatOp() in L.17 Algo.1 & L.15 Algo.2)
There exist sync pairs that are in loops as shown in Fig.6(c). Such sync pairs

appear in every iteration and we need not to test them every time.
If a sync pair is found repeatedly, we assume it is in a loop. In forward test,

we record the potential triggering operations (excluding its triggering operation)
appear between two occurrences of its waiting operation, and skip them when
the waiting operation appears again. In the backward test, we skip testing it.

(4)Use results of the forward test. (MatchHappenBefore() in L.15 Algo.2)
Sync pairs define happens-before relations between code segments. We can

utilize sync pairs identified in a forward test to reduce testing points in a back-
ward test. The happen-before relation defined by barrier() in Fig.6(d) ensures
that the store (flag=1;) in a backward test pair executes before its corresponding
read (while(!flag);). Then the read can’t get the old value before the store and
we don’t need to test such cases in a backward test.

3 Evaluation

SyncTester is implemented using Pin [16]. It uses Pins API to instrument in-
structions that may access shared variables, code blocks, library routines and
system calls. It then collects information and controls the execution of target
programs. For example, SyncTester instruments store instructions and syscalls.
It then records a shared variables previous value for the backward test.

We evaluated SyncTester on a series of multi-threaded programs. The test
programs are from benchmark suites, such as SPLASH2 [10] and STAMP [11],
or applications, such as PBZIP2, PFSCAN, and Apache Httpd. We con-figured
SPLASH2 using POSIX thread library and configured STAMP with a simple
software TM provided by its web site. Our experiments are run on a server with
two 2.27GHz Intel Xeon E5520 quad-core processors and 8GB DRAM.

3.1 Effectiveness

In order to evaluate SyncTesters effectiveness, we compare it with two exist-
ing dynamic test schemes, ISSTA08 and Helgrind+. We implement ISSTA08’s
algorithm [7] and use Helgrind+’s newest version. These two approaches are de-
signed to identify ad-hoc sync pairs. So, we compare them only for ad-hoc sync
pairs. The results show that SyncTester found more sync pairs than ISSTA08
and Helgrind+ did, and it introduced very few false positives as shown in Table
1. In fact, SyncTest covered all sync pairs found by ISSTA08 and Helgrind+.
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Table 1. ‘All’ column shows the number of identified sync pairs. ‘FP’ column shows
the number of false positives and we verify them manually. The results of SyncTester
are in the form of X(modularized)/Y(ad-hoc). FT and BT columns show the results of
forward test and backward test, respectively.

Benchmarks
ISSTA08 Helgrind+ SyncTester Pruned LLOs Pruned Lock/

UnlockAll FP All FP All FP FT BT FT BT
BARNES 1 0 2 2 5/2 3 5/2 5/1 4 235 4

FMM 4 0 8 2 10/8 1 10/4 10/5 12 197 23
OCEAN-C 0 0 0 15 20/0 0 20/0 20/0 0 0 6
OCEAN-NC 0 0 0 40 19/0 0 19/0 19/0 0 0 6
RADIOSITY 0 0 0 7 3/2 0 3/2 3/0 3 11 10
RAYTRACE 0 0 0 9 1/0 1 1/0 1/0 0 0 3
VOLREND 2 0 2 5 5/2 0 5/2 5/1 5 16 5
WATER-S 0 0 0 15 7/0 0 7/0 7/0 0 0 7
WATER-N 0 0 0 5 9/0 0 9/0 9/0 0 0 9
INTRUDER 1 1 2 5 3/2 0 3/0 0/2 3 0 3
LABYRINTH 0 0 1 3 2/1 0 2/0 0/1 2 0 3

PFSCAN 0 0 1 3 3/2 0 3/0 0/2 0 0 4
PBZIP2 0 0 0 0 5/5 0 5/0 0/5 17 0 13

Apache Httpd 0 0 * * 1/7 1 1/2 0/5 0 0 21

* Maybe the version of Apache HTTPD is not fit for Helgrind+, Helgrind+ exits unexpectedly
during our test to Apache Httpd. So we don’t get such data.

FPs in Helgrind+ are probably because it searches for spinning loops on binary
codes statically. And it is not accurate enough. For SyncTester, backward test
restores a shared variable’s value and don’t know the relationship among different
shared variables. This inconsistency brings FPs in some regular loops. And no
FP is found in forward test.

The last 3 columns of Table 1 shows the results of perturbation elimination.
In those experiments, we found that LLOs include some long loops and library
routines. We can prune both of them no matter how they are implemented.

However, because we can’t restore the states of system kernel, the backward
test may miss some modularized sync pairs due to system calls, e.g. pthread kill()
and sigwait(). Such cases can be found by the forward test.

3.2 Efficiency Issues

Reducing the Number of Testing Threads. We set a threshold on the
difference of BBVs in thread grouping. Different thresholds will result in different
thread groupings, as shown in Table 2. “Real Thread Groups” column shows the
best groupings found manually. It gives the minimum number of testing threads.
We check the results in Table 2 and find that if the number of thread group is
no fewer than this amount, the testing threads selected will contain all threads
in the “Real Thread Groups”. This happens to be the most prevalent case. It
shows that our thread grouping scheme is quite effective. Finally, we choose 0.4
as the threshold. It is chosed as a tradeoff between accuracy and efficiency. In
this case, labyrinth misses a sync pair, but it is found in the sync-op set.

The last 4 columns of Table 2 shows the results of thread grouping when the
number of worker threads changes. For programs with many threads, it is likely
that most threads execute similar codes, and this scheme will also reduce the
number of testing threads. If we test a program with different testing threads,
these tests can run concurrently. This will also save testing time.
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Reducing the number of Testing Points. Table 3 is the results of testing
point reduction. It shows that there are not many testing points in most pro-
grams. It also shows the number of testing points pruned by optimizations. For
most benchmarks, more than 97% testing points can be pruned. If we have to
test all of them, the efficiency of SyncTester will become quite unacceptable. In
the backward test, we perform test in helper processes. Because helper processes
can run concurrently, this can reduce the time overhead caused by them.

Table 2. Results of Thread Grouping

Benchmarks #ths

# thread groups under
different threshold

Real
Thread
Groups

#total
threads

# worker threads
(threshold = 0.4)

0.1 0.2 0.3 0.4 0.5 1 4 8 16
BARNES 4 1 1 1 1 1 1 1 N 1 1 1

FMM 4 4 4 2 2 2 1 1 N 2 6 4
OCEAN-C 4 2 1 1 1 1 1 1 N 1 1 1

OCEAN-NC 4 1 1 1 1 1 1 1 N 1 1 1
RADIOSITY 4 4 3 1 1 1 1 1 N 1 2 3
RAYTRACE 4 4 2 2 1 1 1 1 N 1 2 4
VOLREND 4 3 2 2 2 2 1 1 N 2 2 4
WATER-S 4 2 1 1 1 1 1 1 N 1 1 1
WATER-N 4 2 2 2 1 1 1 1 N 1 1 2
INTRUDER 4 3 3 2 2 1 1 2 N 2 3 3
LABYRINTH 4 1 1 1 1 1 1 2 N 1 1 1

PFSCAN 5 4 4 4 4 4 4 2 1+N 4 4 6
PBZIP2 8 6 6 6 6 6 5 5 4+N 6 5 5

Apache HTTPD 7 4 4 4 4 4 4 4 3+N 4 4 4

Table 3. Testing Points Reduction. Columns 2 and 3 are the real testing points during
tests. Columns 4 to 7 are testing points pruned by our 4 schemes.

Benchmarks
Testing Points Pruned Testing Points

% Pruned
FT BT

Type
Match

RTN
History

Loop
Accel

Use FTs
Results

BARNES 36 412 160K 27K 153K 3.8M 99.9892%
FMM 63 463 39K 2363 53K 125K 99.7608%

OCEAN-C 105 250 360K 1798 1186 36K 99.9110%
OCEAN-NC 146 251 364K 808 1157 53K 99.9055%
RADIOSITY 23 74 25 47 31 0 51.5000%
RAYTRACE 2 4 102K 514 0 0 99.9941%
VOLREND 41 33 25K 34 39 26K 99.8557%
WATER-S 111 21 230K 352K 0 2.26M 99.9980%
WATER-N 48 75 70K 1828 14K 3.61M 99.9975%
INTRUDER 60 6 87K 158K 0 379 99.9731%
LABYRINTH 156 15 22K 461 0 4735 99.3833%

PFSCAN 53 11 41 15K 0 0 98.2511%
PBZIP2 151 38 7062 51 0 0 97.4117%

Apache HTTPD 90 224 1566 385 0 0 86.1369%

3.3 Running Time

Finally, we measured the running time of SyncTester, which is shown in Fig.7.
Among these benchmarks, Apache HTTPD is a server. It is not easy to mea-
sure its running time. So we instead measure its throughput, i.e. the number of
processed requests per second. On average, the slowdown factor is 32X.

ISSTA08 claims that its slowdown factor is 9X [7]. Although SyncTester is
slower, it identifies more sync pairs. And SyncTester can identify ad-hoc sync
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pairs whose triggering operations execute before waiting operations and modu-
larized sync pairs.Helgrind+ is a race detector. It identifies ad-hoc sync pairs to
prune false races. For SPLASH2 benchmarks, its slowdown factor is more than
2000X. However, we don’t compare it with our results because its main function
is to detect data races, not sync pairs.

Fig. 7. Running Time of SyncTester

4 Related Work

ISSTA08[7] treats spinning reads and remote stores as a common pattern of ad-hoc
synchronizations. However, if a remote store is executed before a spinning read,
the spinning read will execute only once and it will miss such synchronizations.
Helgrind+[8] tries to overcome suchweaknesses of ISSTA08[7]. It searches for spin-
ning loops whose exit conditions depend on loop invariant variables in the binary
code and remote stores on the fly. However, in some complex cases, it may be diffi-
culty to find spinning loops in binary codes. There is also a hardware scheme [15]. It
uses some hardware buffers and detects spinning loops on the fly. SyncFinder [12]
searches for loops with loop-invariant exit conditions. It is a static approach. All of
its analysis is done on source code. It uses constant propagation to identify remote
stores. Because the source codes are not always available, and pointer analysis is
often not very precise, it may introduce some false positives and false negatives.

ATDetector [13] finds that address transfer (i.e. passing memory blocks’ ad-
dress between threads) also imposes implicit happens-before relation and could
prune false races. Address transfer ensures that accesses to the memory block in
the address sending thread happen before accesses in receiving thread.

5 Conclusion

In this paper, we showned that if a thread was held up in a synchronization by an-
other thread, the code it executes during the wait is very different from that after
the completion of the synchronization. From this observation, we propose a new
approach to identify sync pairs in multi-threaded programs, called SyncTester.
SyncTester can identify both modularized and ad-hoc sync pairs. It doesn’t de-
pend on the details of their codes and software implementation. Therefore, it has
a great flexibility and is often more accurate than many existing approaches. Ex-
perimental results show that SyncTester is quite effective and practical.
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Abstract. Full-system execution-driven simulators are essential tools in
the development of supercomputers, such as IBM Blue Gene/Q. They
enable software teams to develop and run code before the real system be-
comes available, typically a few years after the beginning of the project.
Functional simulators support early software development. The addition
of timing information allows for early performance assessment of appli-
cations to provide feedback on the hardware and system design. The
techniques employed to implement a timing model for Blue Gene/Q,
built on top of the functional model, are presented. Our simulator runs
several orders of magnitude faster than traditional cycle-accurate simu-
lators. The experiments with micro-kernels from the Sequoia Benchmark
Suite demonstrate that our simulator provides the timing accuracy be-
tween 3 to 17% of the actual measurement from the real Blue Gene/Q
machine. We also present some architecture design exploration and its
performance implications.

1 Introduction

A full-system simulator is an essential tool in the development process of a su-
percomputer. Cycle-accurate models are important for hardware validation and
verification of the architecture being designed before spending all the cost and
time building a chip. Those models also help in power consumption and reliabil-
ity analysis. Since the level of detail needed to be simulated is very high, cycle-
accurate models are both time-consuming to develop and very slow to run in
software-based simulators (often a mere 10-100 processor cycles per second [1]).

On the other hand, functional models are faster to develop, run faster, and can
be built before all the hardware details are fully specified, providing support for
the system software, compiler, and applications teams to start developing and
testing their softwares long before any hardware prototype becomes available.
That alleviates the dependencies among teams, allowing them to work in parallel,
and consequently reducing the overall development cycle, although not much can
be done using the purely-functional simulator to assure that the performance
of those “components” (system software, compiler, and applications) will be
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satisfactory. Due to that, a large optimization effort usually takes place after the
hardware becomes available, leading to either unnecessary delays to deliver the
system or a poor performance when the system is initially delivered.

It is common to have a cycle-accurate model developed for software-based
simulators as soon as the hardware is fully specified, as such simulation is used
for hardware verification. Nevertheless, it does not provide much value for the
software teams, because the time it takes just to boot the firmware and kernel
is already prohibitive, and often it is not feasible to run any applications with
minimally useful problem sizes. Consequently, the use of cycle-accurate software-
based simulations in any optimization effort is extremely hard.

Alternatively, FPGA-based VHDL simulators can be used to provide reason-
ably fast cycle-accurate simulation. Although these simulators are important for
running the validation tests faster, and even to run, test and optimize software,
they take longer to be available due to the need for complete VHDL code, and are
not as versatile as software-based simulators, since to change its behavior, one
would have to alter the VHDL, which is usually non-parametrical. Additionally,
FPGA simulators are expensive and typically in short supply.

Contrarily, software-based simulators are usually extremely flexible through
parameterization, allowing a large variety of experiments to be performed through
parameter exploration. A list of contributions from this work is itemized below:

– Methodology to build a timing model on top of a functional model, extending
previous work [2] to model multi-threaded processors;

– Implementation of a timing model for the Blue Gene/Q (BG/Q) hardware,
reasonably accurate for application performance analysis;

– Support architectural design decisions through parameter exploration, com-
paring the performance in different scenarios before writing any VHDL; and

– Fine-grained performance information about application execution without
the need for instrumenting the applications.

In Section 2 the BG/Q system is briefly described, followed by a description of
the Mambo simulator and the BG/Q functional model. Our proposed timing
model is presented in Section 3, with validation of the model in Section 4. The
simulation execution speeds of the different models (with increasing level of
detail) are shown in Section 5, and some use cases of our full-system event-driven
performance simulator, both in terms of profiling and what-if experiments, are
shown in Section 6. Finally, Section 7 concludes this work.

2 Blue Gene/Q model on Mambo Simulator

This section briefly describes the BG/Q system itself, followed by a description
of the functional model implemented on Mambo to simulate the system.

2.1 BlueGene/Q System Overview

The BG/Q system [8, 10] comprises compute racks with two midplanes. Each
midplane has 16 node cards, with 32 nodes assembled on each card. That adds
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up to 1024 nodes per rack, providing a dense concentration of processing power.
A five-dimensional (5D) torus network connects the compute nodes, providing
node-to-node communication and integrating hardware-assisted barrier and col-
lectives functionality onto the same network [4].

Each node contains 18 IBM PowerPC A2 cores, of which 16 are used to run
application code, one is used to offload services provided by the lightweight kernel
operating system CNK (Compute Node Kernel) [7], and one is a spare core used
for increasing the yield during the chip manufacturing process. Figure 1 shows
a block diagram of the A2 core components and the relationships among them.
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Fig. 1. BG/Q A2 core block diagram

These 1.6GHz cores have four in-order execution hardware threads each, that
combined can issue up to two instructions per cycle: one integer instruction to
the eXecution Unit (XU) and one floating-point instruction to the Auxiliary
eXecution Unit (AXU). The Instruction Unit (IU) is responsible for fetching
instructions into each thread instruction buffer, predicting branches direction,
checking for register dependencies, and arbitrating between the threads that
have an instruction ready to be issued.

The AXU is a 4-way Quad-vector Processing Unit (QPU), that implements
the Quad Processing eXtension (QPX) to the Power ISA [6]. Due to the QPU,
four multiply-and-add double-word floating-point operations can be executed in
a SIMD (Single Instruction Multiple Data) way, providing 8 flops/cycle per core,
summing up 204.8 Gflop/s of peak performance on each compute node.
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As for the memory subsystem, each A2 core has its own private L1 instruction
and data caches (16KB each). The node has a shared L2 cache of 32MB that
is connected to 16GB of physical main memory. Additionally, each core has a
prefetcher engine (L1P) with 32 entries of 128 bytes that sits between the L1
and L2 to prefetch data and to serve as a write-back buffer.

2.2 Functional Model of Blue Gene/Q on Mambo

The Mambo simulator [3] currently provides support for modeling and simulat-
ing the execution of a multitude of systems, including PowerPC, Cell, A2, and
embedded processors, among others. Its modular and configurable design pro-
vides building blocks that can be re-used, as well as a scheduling mechanism that
efficiently handles the context switch between any sort of tasks one can create
(to handle processors, threads, and any other types of resources). This design
allows focusing on the system characteristics instead of the simulation platform
when modeling a system.

The purely functional model of BG/Q on Mambo comprises the A2 core model
(its instruction set running on four hardware threads) combined with the in-
struction set provided by the QPX. All the instructions are implemented in an
architecturally-accurate manner, providing bit-accurate results. Additionally, a
memory subsystem with all the cache levels of the BG/Q system (private L1
cache and L1P prefetcher, shared L2 cache, and main memory) can be enabled,
providing a first set of performance metrics in the form of hit/miss rates through
the different cache levels. When the memory hierarchy model is enabled in the
simulator, we say that it is running in warmup mode.

Even though the hardware threads are implemented in the functional model,
each with its register file and instruction pointer, there is no notion of the exe-
cution pipelines or contention in instruction issue for resources that are shared
among the threads. One instruction from each thread can be issued at every
cycle, respecting only locks and barriers for the correctness of the execution.

Consequently, even though the memory subsystem with the cache hierarchy is
implemented, providing statistics regarding hit/miss rates, these may be inaccu-
rate since the execution time of the instructions is not respected. That can cause
differences in cache behavior, since the four threads inside a core interfere with
each other at the L1 and L1P level, and the seventeen cores inside a node share
the L2 cache. The next section describes our model that not only solves this issue,
but also provides a large variety of additional information about the simulated
execution, allowing a better understanding of application performance.

3 Timing Model for Blue Gene/Q

On top of the purely functional model and the memory subsystem previously
described, and based on previous work about tracking resource dependencies for
a pseudo-cycle-accurate timing model for Blue Gene/L [2], a timing model for
the BG/Q compute node was developed extending the previous work twofold:
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First, extending the framework to support multi-threaded cores, since the A2
core has four hardware threads as opposed to the single-threaded PowerPC 440
on BG/L, and second, considering in our model the resources that mostly impact
system performance, such as the thread instruction-fetch sequencer, the instruc-
tion buffer and the dynamic branch predictor from the Instruction Unit, and the
Load Miss Queue (LMQ) and Store Queue (SQ) from the memory subsystem.

The proposed timing model relies on three main factors: time-stamping the
most relevant resources (e.g. scalar, floating-point, and special-purpose register
files; XU and QPU execution units); checking time-stamps of dependent re-
sources before issuing instructions (waiting until all the resources are available);
and updating time-stamps of all used resources after executing an instruction
with the corresponding time when each resource becomes available.

This mechanism guarantees that an instruction will be issued if and only if the
register dependencies are satisfied and the necessary execution unit is available,
limiting the instruction execution rate by the two most restrictive requirements.
The update of dependent resources after an instruction is executed is based on:

1. Instruction latency: Number of cycles needed between instructions that have
register dependencies, i.e. that use a register that was a target in a previous
instruction (for BG/Q, usually 1 or 2 cycles for XU instructions and 6 to 8
cycles for QPU instructions). Time-stamps of target registers are updated
to reflect the instruction latencies.

2. Instruction throughput : Specified as the number of cycles in which a unit
will be busy for the execution of a given instruction. Time-stamps of the XU
or QPU execution unit will be updated accordingly (usually available in the
next cycle, except for instructions that are not fully pipelined), e.g. some
multiply instructions and micro-coded instructions).

The write-back latencies (i.e., the interval from when the instruction is issued un-
til the resulting value is written back to the register) for arithmetic and logic in-
structions are usually directly dependent on the number of stages in the pipeline,
except for instructions that re-enter the pipeline (e.g. multiply), and micro-coded
instructions (e.g. divide), while the write-back latencies for load instructions de-
pend on the memory subsystem. To avoid the need for a cycle-accurate memory
subsystem, which would slow down the whole simulation and defeat the initial
goal of having a really fast performance simulator, our model uses the average
latencies to each cache level and to main memory. For every load, the average
latency corresponding to the level of the hierarchy in which the data is located
(i.e. L1, L1P, L2, or main memory) is used to estimate the load latency. The re-
sults in Section 4 show that using this approximation regarding the load latency
still allows reasonable accuracy simply by modeling the cache hierarchy and the
contention caused by the LMQ and SQ.

Additionally, since the execution units are shared among the four hardware
threads, which may be competing for the same unit, their use have to be con-
strained respecting the round-robin policy for threads with the same priority.
By incrementing the time-stamp of the XU or QPU according to the instruction
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throughput and using the Mambo simulator infrastructure to schedule the next
events in two steps, firstly the threads that are waiting for dependencies, and
secondly the threads that just executed, the round-robin policy is respected.

Moreover, the thread instruction-fetch sequencer and instruction buffer were
implemented in our model to correctly handle the timing implications of fetching
instructions ahead of time. In the A2 core, each thread has an instruction buffer
that can hold up to eight instructions (32 bytes). At each cycle, the Instruction
Unit can begin fetching instructions for one thread. A group of four instructions
(16 byte-aligned bytes) is fetched, and instructions will be discarded in case the
address to fetch is not at the beginning of this group. Additionally, instructions
after a branch will also be discarded if the group contains a predicted-taken
branch. The thread that will fetch instructions in a given cycle is chosen in a
round-robin manner, and a thread has high priority if its instruction buffer is
completely empty and there is no fetch request in flight.

Furthermore, the branch prediction mechanism was also implemented in the
model to correctly reflect misprediction penalties in the execution time. On
BG/Q, conditional branches with a hint are statically predicted via their hints,
and all the other conditional branches are predicted using a gshare-like dynamic
branch prediction mechanism that remembers prior branch directions using a
Branch History Table (BHT). The BHT contains 1024 entries, 2 bits each, that
are incremented for taken branches (saturating at three) and decremented for
not-taken branches (saturating at zero). A branch is predicted as taken if the
counter is two or three, and not-taken otherwise. Finally, to index the BHT,
the lowest address bits of the instruction are XORed with a per-thread Global
Branch History Register (GBHR), which helps in correctly predicting interleaved
branches. In the event of a mispredicted branch, a flush is generated in the
pipeline and there will be a minimum of 13 cycles from when the branch in-
struction is fetched (or issued) until the correct target is fetched (or issued).

Lastly, the LMQ and SQ are also important points of contention in the BG/Q
node that had to be modeled for timing correctness, since they can cause threads
to stall. Each core has an eight-entry LMQ, shared among the four threads, that
holds load misses and non-cacheable loads while they are outstanding to the L2,
allowing the thread to continue issuing instructions (provided that the target
register from the load is not used). Additionally, a thread will stall if issuing a
load request that misses the L1 when the LMQ is full.

Regarding store instructions, there are no store buffers in the A2 core. Stores
are sent directly to the L1P, where they are queued and wait for arbitration in the
L2 crossbar switch (having priority over load requests during the arbitration).
Additionally, while in the L1P, two stores (8 bytes each) to adjacent and aligned
memory locations can be combined to improve memory bandwidth. If the SQ
is full, a thread issuing a store request will stall until one entry is successfully
consumed by the crossbar switch. The SQ on BG/Q has 20 entries, modeled in
our timing model to reflect contention caused due to store instructions.

The parameters in the timing model (e.g. latency to caches and memory,
depth of pipelines, number of execution pipelines, sizes of LMQ and SQ) can
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be configured, providing a way to quickly experiment with what-if scenarios.
The next sections show the accuracy of the implemented model for BG/Q, its
simulation speed compared to the purely functional model, and results from use
cases, including advanced profiling and what-if experiments.

4 Timing Model Validation

In order to validate themodel,we ran experimentswith themicrokernels (UMTmk,
AMGmk, IRSmk, SPhotmk, andCrystalmk) from the SequoiaBenchmark suite [9]
to covermultiple applications with different characteristics (e.g., different instruc-
tion mixes, memory access patterns, and SIMD utilization). These microkernels
were developed at LawrenceLivermoreNational Lab to represent some of the main
attributes of applications that make use of their supercomputers, providing mean-
ingful performance numbers in more realistic scenarios than just the LINPACK
(LINear algebra PACKage) benchmark [5] and others.

All the microkernels were used to validate the single-thread accuracy of the
timing model. Additionally, since AMGmk has OpenMP support, we validated
the accuracy of our model for the entire BG/Q node running it using up to
16 cores and 64 hardware threads. It is worth mentioning that for measuring
the accuracy of our timing model, the absolute performance of the codes was
not relevant. Thus, we simply used the reference benchmark codes without any
optimization other than optimizations provided by the compiler.

Figure 2a shows the accuracy of our model for each of the five Sequoia mi-
crokernels. Time reported by our Mambo timing model for each of them is nor-
malized to the time measured running the application using BG/Q hardware.
Accuracy of the model for these benchmarks vary from -3% (AMGmk) up to
-17% (SPhotmk). Additionally, Figure 2b illustrates the accuracy of our model
when running the OpenMP version of the AMGmk while varying the number of
threads. Across the different configurations, accuracy stays within 5% for each
of the three phases of this microkernel (MATVEC, Relax, and Axpy).

����� ����� 	
��� ���������������
��

���

���

���

���

����

���

��� �

(a)

������������������������������	���������
����������	�
�
�
�
�
�

����������� ������������ ��������������
���������� ����������� �������������

��	

�

�
�

(b)

Fig. 2. Mambo timing model accuracy for the Sequoia microkernels (a) and time spent
on each phase of AMGmk varying the number of OpenMP threads (b)

Note also that the AMGmk benchmark parallelizes loops both in theMATVEC
and Relax phases through the use of OpenMP pragmas, decreasing the time spent
in each phase when increasing the number of threads (i.e. 4, 8, 16, 32, and 64
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threads). Contrarily, time spent in the Axpy phase is constant independently of
the number of OpenMP threads, because the reference code does not specify any
parallelism in that phase.

5 Timing Model Execution Performance

As mentioned and shown earlier in this paper, our timing model allows developers
to obtain reasonably accurate performance information before all the hardware
details are completely specified and any VHDL is written. Additionally, it is
much faster than software-based cycle-accurate models, and more flexible than
FPGA-based simulators.

Table 1 illustrates the average simulation execution speed for the Sphotmk
benchmark running in a single thread (except for the MESA cycle-accurate value,
which is a reference value). It compares the speed among the different models
and different levels of detail, and also the real hardware.

It is worth mentioning that the row named “profiler enabled” shows the slow-
down in the simulation when enabling our profiling functionality. Also, speed
comparison should be done on an instruction-per-second basis, otherwise one
would get the impression that our timing model is actually faster than the purely
functional model, because it simulates more “cycles per second”. That is only
an artifact due to some instructions advancing the cycle counter by multiple
cycles because of different dependencies and contention. Additionally, while the
A2 core in the real BG/Q hardware runs at 1.6 GHz, all the other values are
averages measured over the simulation executions, because different instructions
take different amounts of time to simulate.

Table 1. Simulation execution speed for the different models

Average simulation execution speed
cycles / sec instructions / sec

Real BG/Q hardware (1.6 GHz) (375,434,609)
Purely functional 1,682,411 1,077,807
Warmup (cache hierarchy) 1,501,073 961,636
Proposed timing model 2,570,047 677,792
Profiler enabled 1,793,757 473,063
MESA cycle-accurate simulator [1] (10-100) (2-20)

Note that in the purely functional mode and the warmup mode, the difference
between the number of cycles and the number of instructions is simply due to the
fact that you can specify the maximum possible throughput for each instruction,
with some instructions taking multiple cycles to execute. Nevertheless, it does
not take into account any of the register and load dependencies, instruction
buffering, branch misprediction penalties or anything else, basically allowing the
issue of one instruction per thread per cycle at all times, thus leading to an
extremely optimistic CPI (Cycles Per Instruction) value.

Additionally, when the application uses multiple cores in a single node, there
is a near-linear slowdown in the simulation speed (cycles/sec), because there
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is more work to be simulated, except for the MESA cycle-accurate simulator,
since it is always simulating the full node (all the cores), even when there are
no instructions being issued on any of the other cores, because it is an accurate
representation of the hardware based on the VHDL, simulating the propagation
of every clock cycle through the entire node. Looking into the number of in-
structions executed per second in each mode, the warmup mode is verified to
have slowed the simulation by 11%, while the slowdown due to the timing model
was 37%. Enabling the profiler slowed the simulation a total of 56%. Neverthe-
less, the slowdown is minimal when compared with the simulation speed of the
software-based cycle-accurate simulator (MESA), which is four to five orders of
magnitude slower in this case (single-threaded application). Even comparing the
speed when using all 64 threads, the cycle-accurate simulation is still 3 to 4
orders of magnitude slower than our timing model.

6 Use Cases for the Timing Model

In this section, two use cases enabled by the proposed timing model are illus-
trated: application profiling and what-if experiments. The first allows developers
to obtain performance information as fine-grained as they would like, since the
application execution is not disturbed by the collection of information. The sec-
ond allows hardware architects to assess the impact of different architectural
decisions, providing performance information for hypothetical scenarios.

6.1 Application Profiling

The functional model of the simulator provides some basic profiling capabilities,
allowing the collection of the instruction mix from applications. Enabling the
cache hierarchy model allows additionally collecting hit/miss rates at the differ-
ent cache levels, but since each thread may execute one instruction per cycle in
that mode without any contention due to the execution units, memory access,
register dependencies, or anything else, the hit/miss rates might be inaccurate
for some applications (e.g. unbalanced multi-threaded applications).

The timing model proposed herein adds new profiling capabilities to the sim-
ulator, therefore allowing the collection of fine-grained performance information
without the need for instrumenting the application in ways that could alter its
behavior (since fine-grained instrumentation often generates a prohibitive level
of overhead and disturbance in the application).

To illustrate the profiling capabilities our timing model adds to the simulator,
Figure 3a shows the IPC (Instructions Per Cycle) values for a section of the
AMGmk benchmark, in both the XU and QPU execution units, and Figure 3b
shows the percentage of time the application stalled due to a load request that
misses the L1 when the LMQ is full (almost zero for this benchmark) and due to
a store request when the SQ is full (as high as 16.7%, i.e., 16,700 cycles stalled
due to SQ full in a 100,000 cycles sampling).

Developers can easily track the performance of an application with the in-
formation provided by our timing model, gaining insight into the parts of the
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Fig. 3. Average IPC over each sample interval (a) and percentage of time stalled due
to LMQ or SQ full (b) throughout the application execution

applications that should be optimized, and the causes that are leading to poor
performance (e.g. what sections of the application saturate the memory, filling
up the LMQ or SQ, and what sections saturate one of the execution pipelines).

6.2 What-if experiments

Another interesting use case for our timing model is the possibility to exper-
iment with slightly different architectural designs, assessing their performance
implications. This helps evaluating tradeoffs during the concept phase of the
project. Since the compiler has not been changed to take advantage of the differ-
ent architectural designs being explored, the performance results shown in this
subsection might be underestimated. Nevertheless, they are still noteworthy.

Figure 4a evaluates the impact of having multiple integer execution pipelines
(iPipes), simulating the execution of the AMGmk benchmark, using 4 OpenMP
threads, configuring the A2 core model to have 1, 2 or 4 iPipes.
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(b) AMGmk OMP64 timing

Fig. 4. Impact on timing if A2 core had multiple integer pipelines

Note that adding a second iPipe in the A2 core would lead to a performance
gain both in the ‘Relax’ and ‘MATVEC’ phases of AMGmk, achieving a 20%
reduction in the total execution time. The reason is that a second iPipe would al-
leviate stalls allowing concurrent instruction issue by multiple threads. However,
the experiment shows that more than 2 iPipes would not help. Nonetheless, it is
also interesting to note that when using 16 cores for the application (having 64
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OpenMP threads), the benefits of having multiple iPipes would disappear due
to other bottlenecks, as shown in Figure 4b.

Another experiment evaluates the impact of different store queue sizes on
AMGmk performance. Figure 5 shows that if a store queue with half the size of
the current queue in the system (i.e. 10 entries instead of 20 entries) was used,
the total execution time of the benchmark would increase by more than 50% and
the time spent on the MATVEC phase alone would more than double. On the
other hand, if we had twice as many entries in the store queue (i.e. 40 entries),
the performance gain would be minimal (only 3%) for this benchmark.
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Fig. 5. Impact on AMGmk OMP4 timing if A2 had different store queue sizes

7 Conclusions

During the early phases of a supercomputer architecture definition, or any new
processor architecture design, a full-system execution-driven performance simu-
lator can provide fairly accurate information about the applications performance
in such new hardware. Additionally, it allows design space exploration over dif-
ferent architectural parameters (e.g. number of execution units inside the core,
size of queues and buffers, cache hierarchy and memory latencies), providing
data to help evaluate tradeoffs (e.g. chip cost, area and power consumption vs.
performance gain).

After the architecture is defined and the hardware starts to be produced, the
timing model can provide valuable fine-grained information regarding the execu-
tion, allowing not only the analysis of subsections of the application without the
need to instrument it, which would possibly alter its behavior, but also provid-
ing detailed information of where exactly the application is stalling due to busy
execution units, register dependencies, load dependencies, or full load-miss or
store queues. In that way, we augmented the capabilities provided by the BG/Q
performance counters, allowing the simulator to collect performance information
that cannot otherwise be collected by the hardware without interfering with the
execution.

All the fine-grained information provided by our timing model, added to
the reasonably fast simulation speed (tens of thousands times faster than the
software-based cycle accurate simulator), makes it also a very helpful tool for
optimizing application performance.
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Topic 2: Performance Prediction and Evaluation

(Introduction)

Adolfy Hoisie, Michael Gerndt, Shajulin Benedict,
Thomas Fahringer, Vladimir Getov, and Scott Pakin

Topic Committee

In recent years, a range of novel methodologies and tools have been developed for
the purpose of evaluation, design, and model reduction of existing and emerging
parallel and distributed systems. At the same time, the coverage of the term
”performance” has constantly broadened to include reliability, robustness, en-
ergy consumption, and scalability in addition to classical performance-oriented
evaluations of system functionalities. Indeed, the increasing diversification of
parallel systems, from cloud computing to exascale, being fueled by technolog-
ical advances, is placing greater emphasis on the methods and tools to address
more comprehensive concerns. The aim of the Performance Prediction and Eval-
uation topic is to bring together system designers and researchers involved with
the qualitative and quantitative evaluation and modeling of large-scale parallel
and distributed applications and systems to focus on current critical areas of
performance prediction and evaluation theory and practice.

The three papers selected for the topic area reflect the broadening perspective
of parallel performance involving automatic comparison of performance traces,
assessment of the uncertainty in performance prediction through simulation, and
performance tuning for NUMA architectures.

The paper ”Alignment-Based metrics for Trace Comparison” uses sequence-
alignment algorithms to align events across two traces obtained from perfor-
mance analysis tools to identify which events were added or removed or took a
different amount of time to complete.

The uncertainty of Extreme-Scale HPC simulation is assessed in the pa-
per ”Validation and Uncertainty Assessment of extreme-Scale HPC Simulation
through Bayesian Inference”. The paper takes a statistical approach to quantify
the uncertainty involved in predicting performance via simulation.

The third paper on ”Dynamic thread Pinning for Phase-Based OpenMP Pro-
grams” investigate the impact of adjusting thread pinning (affinity) dynamically
for each parallel region of an OpenMP program. The authors perform a dy-
namic analysis of memory accesses and calculate a gain function between pairs
of threads, which is in turn used to generate a recursive partitioning of threads
on shared memory spaces.
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Abstract. Due to the complexity of today’s architectures and appli-
cations, performance analysis and optimization are essential, and trace-
based techniques have proven to be a powerful approach. However, a
manual comparison of traces is difficult and time consuming because
of the large volume of detailed data and the need to correctly line up
trace events. Our solution is a set of techniques that automatically align
traces so they can be compared, along with novel metrics that quantify
the differences between traces, both in terms of differences in the event
stream and timing differences across events. Further, we introduce vi-
sualization techniques that highlight and facilitate understanding of the
sources of the differences. We demonstrate the effectiveness of our solu-
tion by showing automatically detected performance and code differences
across different versions of two real-world applications.

1 Introduction

Today’s complex architectures and applications make it challenging to fully
exploit the performance of high performance computing (HPC) machines. Un-
derstanding the root cause of application performance problems requires sophis-
ticated performance analysis techniques. A key operation required by nearly all
these techniques is a comparison of performance data from multiple measure-
ments, because there is not sufficient information to understand the performance
properties of an application without baseline measurements for comparison. Typ-
ical examples for such comparisons are before/after comparisons when apply-
ing optimizations or changing code versions; comparisons of runs on different
platforms to study performance portability; or contrasting the performance of
different ranks in an MPI program to study load balance.
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article for publication, acknowledges that the United States Government retains a
non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the
published form of this article or allow others to do so, for United States Government
purposes. LLNL-CONF-586852.
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While such comparisons are straightforward for the aggregated data in per-
formance profiles, no good solutions exist for comparing highly-detailed event
traces. An event trace is a record of application behavior as a series of events,
such as function entry and exit, or message passing. Each event consists of a time-
stamp along with relevant data, e.g., function name, or bytes of data transmit-
ted. The information in traces can be used to detect many performance problems
on HPC systems, e.g., the causes of synchronization delays. However, the level
of detail in traces also presents a challenge because it implies a large amount
of data from a single run, even exceeding hundreds of megabytes for a single
process [13]. Thus, manually aligning event traces for comparison is extremely
challenging and error prone, since the event stream may not be equal across
application runs or MPI ranks, and events will not occur at exactly the same
time across executions.

Although several efforts have been made for comparing performance across
application runs [2,8,10,12,15–17], to the best of our knowledge, no tool supports
automatic comparison of event traces. We address this gap with a technique for
automatic trace comparison of two arbitrary event traces.1 We use an hierarchi-
cal alignment algorithm that performs event-wise comparison and alignment of
traces, from prior work [18]. In this paper, we make several contributions:

– We extend our alignment algorithm through an adaptive hybrid scheme,
improving performance by nearly 8×.

– We develop novel metrics for comparative analysis of event traces.
– We integrate visualization support for trace comparison into the Vampir

tracing tool [5] for intuitive understanding of the differences between traces.
– We present case studies of two real-world applications AMG [6] and ParaDiS

[3], showcasing the viability of our method.

2 Alignment Algorithm for Trace Comparison

Our work builds on an hierarchical alignment algorithm presented in prior work
[18]. In this work, we extend the algorithm and significantly reduce analysis
times, which makes it feasible to use this approach for analyzing large traces.

2.1 Base Hierarchical Alignment Algorithm

In order to compare two traces, we borrow techniques from gene sequence align-
ment approaches in bioinformatics. We align traces with a dynamic programming
algorithm that finds the optimal alignment for arbitrary sequences [4,7,14]. The
algorithm separates the full pairwise alignment problem into independently op-
timizable sub-problems and then evaluates alignments with scores. It finds the
optimal alignment of sub-problems with a recursive scoring scheme.

1 Although we motivate and apply our technique to function call traces, our approach
is general and can support any kind of event trace, e.g., memory traces or I/O traces.
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Fig. 1. Constructed alignment of sequence A and B

Although the dynamic programming approach is functional, the quadratic
time complexity leads to long alignment times. We employ a modification pro-
posed by Hirschberg [9] that computes the optimal alignment with quadratic
time complexity but with only linear memory complexity with respect to the
longest sequence. We also augment the algorithm with an hierarchical compari-
son approach based on the call tree structure of the execution that shortens the
event sequence length for individual comparisons.

We show an example alignment of sequence A: m c a c m a m with sequence
B: m c a c b c m b m in Figure 1. Using the algorithm, we mark portions of
traces as equal (shown in yellow in Figure 1) if they have the same sequence of
function calls in both traces, omitting for now the timing information associated
with events.2 We label portions of traces as different (red in Figure 1) if they
contain different function calls at the same sequence position. For instance, if a
call to function a in the first trace is replaced by a call to b in the second trace,
these calls would be recognized as different. A gap (blue in Figure 1) is a missing
section in one trace file, which occurs if some functions are executed during the
generation of one trace and not the other, e.g., if a new code section is added to
the application, or MPI ranks follow different execution paths.

2.2 Extended Hierarchical Alignment Algorithm

While this algorithm provides a suitable alignment, its performance and memory
consumption prevents its use on larger event traces. To overcome this challenge,
we extend the approach in this work by adaptively using both the Needleman-
Wunsch [14] and the Hirschberg [9] algorithms for the alignment. Since the
Hirschberg algorithm needs to recompute erased values it runs slower, but re-
quires less memory. Thus, we use the faster Needleman-Wunsch algorithm, with
quadratic memory complexity, for small alignments that fit into memory and use
the Hirschberg algorithm, with linear memory complexity, only for larger ones
that would otherwise not fit. This can speed up the alignment for large parts
of the traces. In our experiments, using an Intel Xeon 5660 node running at 2.8
GHz with 24 GB RAM, the extended alignment algorithm ran nearly 8× faster

2 Omitting timing information eliminates problems caused by the inherent jitter in
timing measurements caused by timer inaccuracy, OS noise, or network traffic. The
sequence of functions calls, on the other hand, is likely to be the same for large parts
of the trace and hence can be used as anchors for the alignment process.
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Table 1. Alignment Algorithm Performance

Application Base Alignment Extended Alignment Performance Improvement

ParaDiS 11min 38s 214ms 1min 30s 986ms 7.67
AMG2006 4min 56s 533ms 38s 667ms 7.67

than the base algorithm. Table 1 shows the times needed to align the complete
application traces shown in Section 5.

3 Visualization of Trace Comparison

We integrate support for visualizing compared traces into the Vampir tracing
toolset [5] that provides users with a visualization of the similarities, differences,
and gaps across traces, as well as visualizations of the timing differences. This
goes beyond our prior work, where the visualization only showed a flat view of
all traced events at any given time point, simply depicting the current state of
the trace comparison at a time point — either equal, different, or gap.

In particular, we implement a hierarchical display of the trace differences
based on the call tree. This hierarchical display facilitates understanding of trace
differences, because it is easier to identify the root of those differences. For
example, if additional function calls are made in one trace and not the other,
it is easy to locate the enclosing function to further investigate the changes.
Additionally, we now differentiate the origin of gaps. We introduce two gap
states (GAP A and GAP B), which indicate if a gap occurs in trace A or B.

4 Trace Comparison Metrics

Intuitive displays of aligned traces alone are not sufficient to help users under-
stand the differences between traces. For this purpose, we introduce new trace
comparison metrics. We design these metrics to aid the developer in identifying
differences in function structure and timing behavior between multiple execu-
tions or event traces. While we assume that the user intends to compare two
traces of similar behavior, our approach can be applied to a wide range of sce-
narios such as before/after comparison for optimizations, comparisons between
MPI ranks or between threads, to study changes in code versions, or to under-
stand the impact of OS-level runtime events on individual applications.

4.1 Similarity Metric

We base our metric for trace similarity on the alignment algorithm described in
Section 2. The algorithm is based on the following scoring scheme, which we use
to derive a metric stating the similarity of two traces:
Match Score: σequal = 2, Mismatch Score: σdiff = −1, Gap Score: σgap = −1.

Using the raw score, however, is problematic. In an alignment, each function
pair, dependent on its state—equal, different, or gap—represents the score de-
fined in the scoring scheme. The sum of all scores, Scoreactual , results in positive
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Table 2. Trace comparison metrics

Metric Definition

Scoremax σequal ∗max(M,N)

Scoremin σdiff ∗min(M,N) + σgap ∗ |M −N |
Ratio Scoreactual

Scoremax

Similarity Ratio+0.5
1.5

scores for equal areas and penalizes differences and gaps with negative scores.
Thus, the higher the total score, the higher the similarity between the processes.
However, the actual value of the total score also depends on the length of the
compared sequences, M and N . This renders the total score impractical as a
metric for the direct comparison of the similarity of multiple process pairs.

We note that in every comparison of two traces, there is a maximal and
minimal total score, Scoremax and Scoremin in Table 2. Two completely equal
traces achieve the maximal score. To compute the minimum score, we first insert
gaps for missing events in the shorter trace. Then, using penalties of −1 for all
gaps and differences in the traces, the total score decreases as an equal (positive)
scoring pair is replaced by a difference/gap (negative) scoring pair. This results
in a minimum score that aligns both sequences with differences and necessary
gaps in case of unequal sequence length.

Using these minimum and maximum scores as a value range, we can now begin
to derive our similarity metric. First, we compute how close the actual total
score of an alignment is to its maximum, Ratio in Table 2. Ratio has a range of
[−0.5, 1]. To define a more intuitive metric, we scaled the value to a range between
[0, 1]. Thus, we define Similarity as given in Table 2. Similarity presents a means
to objectively evaluate and compare the similarity of processes. Similarity = 1
means the processes are completely equal whereas Similarity = 0 means they
are completely different.

4.2 Dissimilarity Timeline Metric

The Dissimilarity Timeline metric indicates how the similarity between two
traces changes over time. This is useful for identifying regions of the trace that
exhibit high dissimilarities for further inspection. Also, visualizing the metric
along with the traces can help pinpoint periodic differences in the traces.

To compute the metric, we start the alignment process and then sample the
alignment over time. In this process, we produce a series of data values at equal-
distant time points indicating similarity for locations in the aligned traces. Once
we have the alignment and data values, we apply a sliding window and sum up
the score under the window. In our analysis, a window width of 10% of the entire
alignment length produced good results for all experiments. We found that it
balances temporal granularity with the ability to capture context information
around points with increased changes avoiding misleading “spikes of differences”.
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Fig. 2. Dissimilarity timeline Fig. 3. Runtime skew timeline

Several strategies are possible for summing up the values in a window. For
example, one could sum up the total score of all pairs, or could sum the score
of all equal pairs. The latter would result in a metric representing the similarity
of the sequences at the window position. Since we generally compare relatively
similar applications and want to detect the dissimilarities, we use a slightly
different approach. We sum the scores of all difference and gap pairs under the
window to give a metric representing the dissimilarity of the traces over time.
To make the metric comparable between alignments, we normalize it to a value
range of [0, 1]. A dissimilarity of 1 means all pairs in the window are different or
gaps, while a dissimilarity of 0 means all pairs are equal.

Figure 2 shows a Dissimilarity Timeline for a simple example. Sampled mea-
surement points are depicted as red dots. The vertical axis at the top represents
the function call depth. The timeline visualization makes it easy to detect areas
with high dissimilarity. For example, at the beginning of the alignment shown
there are four Gap A areas (blue) that result in high dissimilarity. However, the
areas that are equal (all yellow) have a dissimilarity of 0. In Section 5, we will
demonstrate the usefulness of this metric, as it is very challenging to pick out
the dissimilarities of real application traces and alignments without it.

4.3 Runtime Skew Timeline Metric

For comparative performance analysis, it is important to understand the behav-
ior of applications over time. Event traces are especially useful for this purpose,
because they retain the time-stamp of each event occurrence. However, it is ex-
tremely challenging for users to gain this understanding manually. It involves
attempting to line up iterations from traces and visually determine the timing
differences between them. To aid in this process, we developed the Runtime Skew
Timeline metric. In Section 5, we show that this metric is valuable for analyzing
performance differences across traces, including the impact of code changes.

Note that our alignment algorithm introduces artificial virtual timings into
the visualization of the traces; i.e., functions that appear to line up according
to time in the visualization do not necessarily occur at the same time relative
to the beginning of the execution. These artificial virtual timings arise because
our alignment algorithm does not account for event timings, and only considers
function names. For instance, the introduction of gap areas changes the appar-
ent runtime of events. Also, aligning short running functions with long running
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functions alters the displayed runtime. In such cases, successive function calls
are shifted back in time by the difference between the durations of the aligned
functions. Figures 4 and 5 show examples of unaligned and aligned visualizations
of the same traces. Hence, looking at an arbitrary pair of functions in an aligned
trace does not allow one to draw conclusions about the real runtime behavior of
the processes. Thus, we created the Runtime Skew Timeline metric, so that the
user can understand the relative timing behavior across the aligned traces.

Figure 3 depicts a visualization of the Runtime Skew Timeline metric for an
example alignment. In the alignment both processes are equal except for four
functions only executed in process B, shown as gaps in blue in the figure. These
four functions delay process B by 20ms per function. Thus, the value for the
metric decreases with time, because process B is delayed 20ms in each iteration.

4.4 Function Time Difference Table

We give relative timing information in the Function Time Difference table. To
generate the table, we sum the time differences for all invocations of each event.
This shows the overall time that was gained or lost within each event. In general,
it is unlikely that a particular event will exclusively either gain or lose time over
the execution. It is more likely that the duration of the event will be sometimes
faster or slower compared to the aligned event in the other trace. This table
clearly presents this information. For each event, it shows the number of times
that it was faster (No. +) or slower (No. −) in trace A than in trace B, and the
overall time gained (Δ+) or lost (Δ−) (See Table 3).

5 Case Studies

Here, we demonstrate the effectiveness of our approach with two real-world ap-
plications, AMG and ParaDiS. We conducted our experiments on a Linux cluster
with 864 quad-socket AMD Quad-Core Opteron nodes. The 13,824 cores run at
2.3 GHz and each node has 32 GB RAM. We used the Intel compiler version
12.1 and the MVAPICH2 MPI library. Our analysis and comparison tool is built
on top of the OTF trace library [11]. We use it to capture the traces and then
we compare two OTF traces by applying our alignment methods. The resulting
differential trace is written in OTF format. We visualize the trace in Vampir [5].

5.1 AMG2006

AMG2006 [1,6] is a parallel algebraic multigrid solver for linear systems arising
from problems on unstructured grids. We compared the default version of AMG
with an optimized version that performs less coarsening. This new version does
more overall work, but avoids a lot of expensive communication. We compared
both versions solving a Laplace problem using 64 processes on 4 nodes.

Figure 4 shows the unaligned traces for rank 0 (first process of the 64 MPI
processes) from both versions of AMG. The numbers on the left side indicate the



36 M. Weber et al.

Fig. 4. Unaligned rank0 processes of the default and optimized AMG version

call level, i.e., sub-functions are drawn one level below the calling function, e.g.,
HYPRE BoomerAMGSetup (level 4) calls hypre BoomerAMGSetup (level 5). The op-
timized version is faster and finishes about 1.25 seconds earlier than the original
version. Note that it is difficult to see the reasons for the performance differences
from looking at the raw traces. Our analysis techniques make this task straight-
forward. In Figure 5, the first two timelines show the aligned traces for rank 0
for both versions. The third timeline shows the alignment state between both
traces. The optimized version spends less time in initialization, identified by the
blue gap area (7.0s− 7.6s) at the beginning of the run. Also, the optimized ver-
sion saves work in each computation step, indicated by the repeating blue gap
areas starting at the middle of the run (9.0s− 12.7s).

The Dissimilarity Timeline is represented by the set of colored bars in the
fourth timeline of Figure 5. Blue/cold colors mean processes are equal, while
red/hot colors indicate differences. The differences agree with the alignment of
the rank 0 comparison. The red area indicates the big gap in the initialization
and the green areas from the middle to the end indicate the smaller gaps occur-
ring at each compute iteration. The differences are nearly the same throughout
all processes, except for a few outliers indicated by horizontal green lines. The
slightly higher dissimilarity in these processes is also highlighted using our Simi-
larity metric (not shown). Most process pairs achieved similarity values between
0.45−0.53, while the few outliers achieved similarity values between 0.28−0.40.

The Runtime Skew Timeline is shown in the bottom two timelines in Fig-
ure 5. The upper graph depicts the runtime skew for rank 0 and the color-coded
timeline depicts the runtime skew for all 64 process comparisons. The optimized
version achieves a large speed gain in initialization. However, in the later stages
of initialization (7.5s−8.5s), it performs slower than the original version. Yet, the
speed gain in the beginning overshadows this slow down. During the iterations
of the main body of the code, the optimized version performs faster again. In
this case the speed gains are not consistent from iteration to iteration. The gains
level off in the middle of the execution and rise again at the end. Additionally,
the color-coded Runtime Skew Timeline shows that this behavior is consistent
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Fig. 5. Similarity and runtime skew between the default and optimized AMG versions

across all processes, but shows that performance on one node (second block of
lines from the top) is slightly shifted.

5.2 ParaDiS

ParaDiS [3] models the dynamics of dislocation lines as they interact and move
in response to the forces imposed by external stress and inter-dislocation inter-
actions. We compared two versions of ParaDiS, v2.2.3 and v2.3.5.1, with release
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Fig. 6. Comparison of two iterations of ParaDiS versions 2.2.3 and 2.3.5.1

Table 3. ParaDiS function difference table for rank0

Function Name No. + Δ + No. - Δ -

MkTaylor 49817 41ms 542us 114230 71ms 586us

ComputeForces 315896 21ms 938us 46280 4ms 92us

MPI Waitall 1035 5ms 274us 1178 3ms 517us

dates about two years apart. Version 2.3.5.1 includes bug fixes, improvements
and corrections, as well as advanced load balancing. We ran both versions with
8 processes, solving the same example problem: “tests/fmm 8cpu.ctrl”.

Figure 6 shows a comparison of two representative iterations of both versions.
In the beginning of each iteration, the function structure is the same. However,
at the end of each iteration, blue gap areas in the bottom timeline indicate new
functions. These additional functions come from added capability in v2.3.5.1.
The Runtime Skew Timeline at the bottom of Figure 6 shows that this change
comes at the cost of higher runtime. The runtime difference for the whole traces
is depicted in Figure 7. ParaDiS v2.3.5.1 runs consistently slower than v2.2.3.

Added functionality is not the only cause of differences. The bottom timeline
in Figure 7 shows that dissimilarity varies across the processes. This variation
is caused by the changes to the load balancer in v2.3.5.1. Figure 7 also shows
that process pairs for ranks 1 and 6 are more similar than the other compared
processes. This is reflected in the Similarity metric as well, with ranks 1 and 6
having similarity values of 0.40, while the other ranks have values of 0.29.

Table 3 is the Function Time Difference table for selected functions of rank 0.
MkTaylor shows the most inconsistent behavior. Due to added functionality,
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Fig. 7. Similarity and runtime skew analysis between ParaDiS versions 2.2.3 and 2.3.5.1

MkTaylor runs slower in v2.3.5.1 for 114,230 invocations, which adds 71ms 586μs
to the execution time over v2.2.3. Yet, in 49,817 cases MkTaylor in v2.3.5.1 was
faster than that of v2.2.3, reducing the execution time by 41ms 542μs. In a
normal profile these times would have been aggregated, resulting in a single
potentially misleading reading of 30ms 044μs time lost in MkTaylor in v2.3.5.1.

6 Conclusions and Future Work

In this work we introduced a set of novel metrics and visualizations that help
highlight the differences between traces. We applied our techniques to two appli-
cations and showed how they facilitate the identification of differences between
code versions. Our metrics exposed differences that otherwise would have been
hard or even impossible to find. Our techniques provide detailed insight into the
performance of applications and will be of substantial help in optimizing them.

In the future, we plan to parallelize the alignment algorithm. Pairwise trace
comparisons do not depend on other traces; thus, comparing runs with large pro-
cess counts is embarrassingly parallel. Further, we plan to extend our approach
to allow the alignments of more than two processes as well as to provide improved
comparison visualizations and statistics. We will also evaluate the potential for
automated detection of irregular performance behavior within traces.
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Abstract. Simulation of high-performance computing (HPC) systems
plays a critical role in their development - especially as HPC moves to-
ward the co-design model used for embedded systems, tying hardware
and software into a unified design cycle. Exploring system-wide trade-
offs in hardware, middleware and applications using high-fidelity cycle-
accurate simulation, however, is far too costly. Coarse-grained methods
can provide efficient, accurate simulation but require rigorous uncertainty
quantification (UQ) before using results to support design decisions. We
present here SST/macro, a coarse-grained structural simulator providing
flexible congestion models for low-cost simulation. We explore the accu-
racy limits of coarse-grained simulation by deriving error distributions of
model parameters using Bayesian inference. Propagating these uncertain-
ties through the model, we demonstrate SST/macro’s utility in making
conclusions about performance tradeoffs for a series of MPI collectives.
Low-cost and high-accuracy simulations coupled with UQ methodology
make SST/macro a powerful tool for rapidly prototyping systems to aid
extreme-scale HPC co-design.

x1 Introduction

Next-generation extreme-scale systems pose numerous challenges in exploiting
massively increased parallelism and advancing in reliability, fault tolerance and
power efficiency [1]. Despite intertwined design constraints, hardware and soft-
ware are often developed independently. Only after next-generation systems are
deployed does application software begin to adapt. These orthogonal develop-
ment phases are not sustainable. System-wide tradeoffs in hardware and software
must likely be considered in tandem to achieve exascale.

Simulation enables rapid evaluation of design considerations for both system
architects and application programmers. Simulators span a range of fidelities.
At low cost/low fidelity are analytic models which abstract away details, rely-
ing on parameterization to account for dynamic effects such as congestion [2].
Alternatively, high-fidelity, cycle-accurate treatments capture low-level details,
but incur high computational cost [3,4,5]. A cost/accuracy compromise between
these extremes is needed to rapidly and accurately prototype HPC systems.

F. Wolf, B. Mohr, and D. an Mey (Eds.): Euro-Par 2013, LNCS 8097, pp. 41–52, 2013.
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Coarse-grained structural simulation can often achieve good accuracy with
minimal cost [6]. However, some confidence interval on the approximate results
must be established. This poses a difficult problem: how do you estimate simu-
lation uncertainty for a machine that does not yet exist? In this work, we ap-
ply Bayesian inference to the coarse-grained simulator SST/macro (Structural
Simulation Toolkit for Macroscale) [7]. We avoid the computationally infeasible
task of expensive parameter sweeps on large (exascale) simulations to do un-
certainty quantification (UQ). Instead, the simulator is exhaustively calibrated
for small benchmarks against “correct” results from an actual machine or high-
fidelity simulator. Once calibrated, we can predict confidence bounds for large
simulations with manageable computational effort. Here we compare SST/macro
simulations of modestly-sized (500 node) MPI collectives to Cray XE6 results.
Propagating the UQ treatment through large simulations, we predict confidence
bounds for SST/macro on large Cray XE6 runs. For future machines which do
not yet exist, high-fidelity simulations can easily replace Cray XE6 results in the
calibration step. SST/macro and corresponding UQ therefore provide flexible
tools for exploring what-if scenarios in the HPC design space.

2 Related Work

The literature, dating back to at least the early 1990’s, is replete with HPC
simulators designed with various accuracy/cost tradeoffs. They span a spectrum
from constitutive models based on simple bandwidth/latency formulas to cycle-

Table 1. Survey of analytic HPC simulators. Computation may be time-dependent
trace, performance counter convolution (PerfCtr), direct execution, or coarse-grained.

Simulator Ref no. On/Off-line Computation Congestion Language

LogGOPS [2] Trace Model Yes DSL (GOAL)
BSIM [6] On-line Coarse Model Yes Native
Mambo/Seshat [8] On-line Cycle-Acc No Native
PSINS [9] Trace Time-dependent Yes n/a
MPI-SIM [10] On-line Direct No Native
Dimemas [11] Trace PerfCtr No n/a
WARPP [4] Trace PerfCtr Yes Native

Table 2. Survey of structural HPC simulators. Computation may be time-dependent
trace, performance counter convolution (PerfCtr), or coarse-grained model.

Simulator Ref no. On/Off-line Computation Network Language

BigSim [12,13] Both PerfCtr/Model Packet Native
SIMGRID [14,15] Both PerfCtr Flow Native
MARS [16] Trace Time Packet n/a
MPI-NeTSim [17] On-line Direct Packet Native
PACE [18] Both Abstract Abstract DSL (CHIP3S)
SST/macro [19] Both PerfCtr/Model Packet/Flow Native
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accurate simulation. We attempt a concise summary. Features for some (but not
all) literature examples are given in Tables 1 and 2.

On-line simulators usually emulate an API such as the MPI [20] and link to
application code, intercepting function calls to estimate elapsed time. Off-line
simulators instead perform post-mortem analysis of application traces. Compu-
tation time modeling in on-line simulators span full cycle-accurate simulation [8]
to simple coarse-grained analytic models [19]. SST/macro focuses on broader,
system-level experiments, using coarse-grained models. For off-line simulation,
time-dependent traces collect the compute time between communication events,
but are limited to simulating a single architecture. Time-independent traces in-
stead collect architecture-independent hardware counters that can be convolved
with machine-parameters to replay on different node architectures [11,15]. For
estimating communication time, simulators can generally be either structural or
use a fixed analytic function. Structural simulators simulate discrete events on
each switch and link as messages traverse the network. Analytic functions often
ignore contention, but some formulas do incorporate congestion [2].

The closest simulators to SST/macro are BSIM, BigSim, and SIMGRID.
While the BSIM work in [6] also emphasizes coarse-grained modeling, the com-
munication is modeled via an analytic function. BigSim is structural and large
simulations incorporating congestion and statistical computation modeling
have been performed [21]. However, BigSim performs packet modeling via its
BigNetSim module while SST/macro also provides flow-based congestion models
(Section 4). Like SST/macro, BigSim can be an on-line network emulator, per-
forming full execution of a parallel code, or on-line simulator estimating elapsed
time without actually performing the computation [13]. SIMGRID is also de-
signed primarily as an on-line simulator with various bindings (including MPI),
but it is based on a flow congestion model [14].

3 SST/macro

SST/macro includes both a tracing utility (DUMPI) and MPI bindings for sim-
ulating native Fortran/C/C++ applications on-line. On-line simulation provides
much greater flexibility in scaling to arbitrary machines and problem sizes. SST/-
macro is both an emulator and a simulator. Payloads in matching send/recv
calls are delivered, producing computation identical to a full MPI library. With
minimal modification, any existing MPI code can be compiled as-is and run
within SST/macro. To reduce memory overhead, payloads can be ignored, run-
ning SST/macro purely as an MPI simulator.

In reaching extreme-scale, both communication and computation must be
coarse-grained. Compute-intensive code must be wrapped in function calls that
can be intercepted by SST/macro to estimate elapsed time via performance
models rather than actually computing. The “control-flow” portions of the code
are usually lightweight and can be unmodified.
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SST/macro is a structural simulator. Messages are explicitly simulated pass-
ing through NICs, switches and links. SST/macro provides a large set of default
network topologies, including torus, dragonfly, or fat tree. It also provides flexi-
bility in routing algorithms, congestion models, and RDMA vs TCP protocols. x

4 Congestion Models

xBoth packet and flow models are common for network discrete event simulation.
Packet models perform flow-control for an entire packet, ignoring flit-level details.
Though packet size is often small in HPC systems (≈100 bytes for Hopper Cray
XE6), coarse-grained models often use large packets (e.g. 1 KB), leading to a
serialization latency error. In addition, packet simulations allow only one packet
per physical link. In a real system, 1 KB of data might be multiplexed, containing
500 B from two distinct messages.

A common alternative is the flow model, which treats messages as a fluid flow
between network endpoints. Network congestion is solved as a fluid mechanics
problem based on sharing bandwidth between flows. Flow update events are
generated when new flows begin or stop on congested links. Without congestion,
the flow model is a constant cost regardless of message size. The flow model
can rapidly become expensive with congestion, however. For packet simulation,
discrete events are intrinsically local within a link or router. In contrast, flow
congestion is not locally isolated. Flow updates are propagated across competing
flows causing bandwidth changes on far-away links - a “ripple effect” that rapidly
increases computational cost [22]. For exascale, this is problematic.

In SST/macro we employ a hybrid approximation that employs both dis-
cretized, packet-like modeling with a fluid-like approach. Messages are discretized
into packets, but packets are arbitrated as a flow, allowing messages to be multi-
plexed on a shared link. Because messages are “packetized,” flow updates occur
only within a link and do not propagate into a ripple effect.

5 Hopper Cray XE6 and Validation Tests

We examine Hopper, a Cray XE6 with the Gemini interconnect [23]. Nodes use
AMD MagnyCours processors with a non-uniform memory (NUMA) architec-
ture with four dies each with six cores. Here we focus on the interconnect. The
network interface controller (NIC) is connected via HyperTransport to the L3
cache of one die. The Gemini NIC provides two separate paths. The fast memory
access (FMA) path is optimized for low-latency 8- to 64-byte puts/gets. FMA is
intended for small messages as it still requires source-side synchronization. Spe-
cial short message (SMSG) mailboxes can also be configured for very-low latency
transfers on FMA. The block transfer engine (BTE) has higher latency, but pro-
vides fully asynchronous RDMA and is optimized for transferring large blocks
directly to memory. The Gemini NIC shares a 48-port tiled YARC router with
an adjacent (twin) Gemini NIC. Each router-router link provides 2.9 GB/s with
two links in the X,Z directions. Packets are arbitrated both at the tile switch
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and output port. We therefore have four congestion points, each with associated
latency and bandwidth: FMA, BTE, router switch, and router outport.

We limit experiments to rendezvous RDMA transactions involving the BTE.
RDMA posts are explicitly coded in the native Cray GNI interface, ensuring
that dimension-order, minimal routing is used. This not only removes adaptive
routing as a variable but also worsens network contention, providing a more
stringent test of our congestion models. Discrepancies between simulation and
Hopper trials can therefore be mainly attributed to the coarse-graining rather
than subtle differences between Hopper and SST/macro in, e.g., use of eager
buffers, adaptive routing, or RDMA memory registration.

We focus onMPI collectives (MPI Allgather,MPI Scatter, andMPI Gather) to
validate communication modeling. We avoid mixed computation-communication
modeling since less insight would be gained from a compute-bound applica-
tion. Collectives range from N(node) = 128− 4096. We assume OpenMP paral-
lelism within node and therefore report N(node), not N(cpu), which ranges from
N(cpu) = 3072 − 98304. Collectives were reimplemented in Cray GNI to en-
sure that the SST/macro MPI and Hopper use the same algorithm and topology.
MPI Allgather uses a ring pattern while MPI Scatter and MPI Gather use a tree
algorithm [24]. Simulation is performed on-line, intercepting MPI calls in a C++
code. No code modifications - only changes to include path and linkage flags - were
made when compiling for Hopper or the simulator.

The Cray XE6 defines a potentially high-dimensional parameter space
(Table 3). Small ping-pong benchmarks were performed to estimate bandwidth
and latencies. Unexpectedly, the maximum bandwidth for a single message was
not equal to the total link bandwidth. With minimal routing, only 1.8 GB/s
was achieved despite a theoretical peak of 2.9 GB/s. Max BW (Table 3) there-
fore apples to single messages while Link BW affects congestion. In ping-pong
benchmarks with congestion, large variance was observed for total link band-
width (Table 3). For other parameters, literature values are given [23]. An initial
sensitivity analysis (see Section 7) was performed to indicate important param-
eters. Changes in SMSG latency had little effect on simulated runtime, and
we therefore fix it at a nominal value. Only Max BW, Link BW, and Inj BW
were relevant for MPI Scatter and MPI Gather. For MPI Allgather, Max BW,

Table 3. Parameters used in SST/macro models of MPI collectives

Parameter Abbreviation Nominal Value

Maximum single message bandwidth Max BW 1.8 GB/s
Total link bandwidth Link BW 2.0 − 2.9 GB/s
Hop latency Hop Lat 100 ns
RDMA injection latency Inj Lat 0.6 μs
RDMA injection bandwidth Inj BW 7 GB/s
SMSG injection latency 0.5 μs
SMSG injection bandwidth 8 GB/s
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Link BW, Inj Lat, and Hop Lat had significant effects on simulated runtime.
Rather than 7-dimensions, we therefore solve more modest 3- and 4-dimensional
problems.

6 Uncertainty Quantification

Model validation is viewed from a probabilistic perspective. We consider la-
tency/bandwidth parameters as marginal probability distributions with certain
values having a higher probability of being “correct.” While uncertainty in model
parameters often stems from experimental noise, here uncertainty derives largely
from model imperfections. A narrow distribution indicates a tightly constrained
parameter we are “certain of.” A broad distribution indicates several parameter
values of equivalent accuracy. In SST/macro, any single data point can be re-
produced by tweaking parameters. Only an exact model with exact parameters
reproduces all data points. In coarse-grained models, different effective band-
widths provide better results depending on the MPI collective N(node) and
buffer size. The probability distributions reflect this model uncertainty.

Given a model (SST/macro) and parameters (latency, bandwidth), we infer
probability distributions for the parameters in light of data from Hopper tests
described in Section 5. Then, armed with this data-informed, probabilistic rep-
resentation of inputs, we propagate them through the SST/macro model and
its associated statistical discrepancy model to produce predictive probability
distributions for simulation results [25]. The discrepancies between simulation
and Hopper trials are associated both with the background noise present during
tests and SST/macro model imperfection. Since exhaustive UQ is not possible on
extreme-scale simulations, we derive predictive probability distributions on small
simulations assuming that they inform error estimates on larger simulations.

Model parameter inference relies on Bayes’ formula [26]

p(λ|D) ∝ p(D|λ)p(λ), (1)

which relates the posterior probability distribution p(λ|D) to the prior dis-
tribution p(λ) for the input parameter vector λ = (λ1, λ2, . . . , λd) in light of
experimental data D = {Tn,r}1≤n≤N,1≤r≤R. Here we test three different MPI
collectives where N labels the number of nodes N(node) and buffer size. For
MPI Allgather, we have N = 5 × 4 = 20 tests corresponding to N(node) =
128, 192, 256, 384, 512 and buffer sizes 8 KB, 16 KB, 24 KB, and 32 KB. For
MPI Scatter and MPI Gather, we have N = 7 × 4 = 28 tests with N(node) =
1024 and 2048 also included. Here the experimental data are Hopper runtimes
with R = 20 replicas for each case.

The prior distribution p(λ) encapsulates any prior knowledge about the pa-
rameters. We use uniform prior distributions across the range of “realistic” values
for bandwidth/latency parameters. A priori there is no bias towards any spe-
cific value as long as it belongs to the given range. The key quantity in Bayes’
formula (1) is the likelihood function LD(λ) = p(D|λ) that measures an exper-
iment’s goodness-of-fit to model predictions. We use a Gaussian model (2) for
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this discrepancy, relying on the Central Limit Theorem, as both background
noise in the system and the uncertainties associated with model deficiencies are
contributed by many unknown sources.

logLD(λ) = −NR

2
log(2πσ2)−

N∑
n=1

R∑
r=1

(Tn,k −Mn(λ))
2

2σ2
(2)

Here Mn(·) is the model (SST/macro simulation time) of the n-th test. The
variance parameter, σ2 can either be fixed or inferred together with λ as a hy-
perparameter. External noise can result physically from many sources, including
random differences in congestion arbitration, OS jitter, or small bandwidth vari-
ations with time. Hopper is also a shared machine, and, despite allocating most
of the nodes, congestion from other jobs was sometimes observed. These points
were usually severe outliers, though, and easily discarded.

The posterior probability distribution p(λ|D) from (1) is generally difficult to
compute due to the high-dimensionality of the vector λ. We therefore applied
the adaptive Markov chain Monte Carlo (AMCMC) technique [27,28]. AMCMC
travels the input parameter space of λ, accepting or rejecting samples with prob-
abilities according to the goodness-of-fit (2) and the prior distribution p(λ) until
a converged p(λ|D) is obtained. The SST/macro model, Mn(λ) must be sim-
ulated at each AMCMC step. In addition, each step depends on the previous
result, forcing AMCMC to proceed in serial. Each simulation takes only 5 − 60
minutes, but many samples (thousands) are needed for a converged p(λ|D). We
therefore prepared an analytic, polynomial Sn(λ) that accurately estimates each
SST/Macro model Mn(λ). Multivariate Legendre polynomials Ψk(·) are used to
approximate the model behavior as a function of input bandwidth/latency pa-

rameters, λ, S(λ) =
∑K

k=0 ckΨk(ξ) in terms of rescaled parameters, ξ, in the
range [−1, 1]. Surrogates are constructed by performing a large but manage-
able parameter sweep, which “embarrassingly” parallelizes SST/macro across
independent runs. We used a third order basis set and found the polynomial
fit parameters ck with a 1296-point (Allgather) and 216-point (Scatter/Gather)
parameter sweep. The serial AMCMC is then quickly performed using the inex-
pensive but still accurate surrogate S(λ). For 100 validation points, the surrogate
was within approximately 1% relative error to the true model.

The polynomial surrogate allows efficient global sensitivity analysis of the
model output. The variance-based sensitivity indices, or Sobol indices [29,30],

Sei =

∑
k∈Ii

c2k〈Ψ2
k 〉∑K

k=0 c
2
k〈Ψ2

k 〉
, for i = 1, . . . , d, (3)

represent the fraction of output variance due to the i-th input. Here Ii denotes
basis terms involving the i-th input only. This decomposes the simulation un-
certainty into contributions from individual latency and bandwidth terms.

To estimate uncertainties for simulations outside the calibration range - large
N(node) - we simulate 100 parameter combinations chosen randomly according
to the parameter posterior distribution. Better converged results can be obtained
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with more simulations, but we suggest 100 is a good compromise for expensive
(exascale) runs. Propagating input parameter distributions through the model,
together with the model discrepancy size σ, yields the posterior predictive dis-
tribution [25], which provides a semi-quantitative error estimate for the large
SST/macro simulation. After exhaustive calibration on small simulations, we
can bracket the error on a large simulation by repeating only a modest number
of times. We apply this technique on a simulation with 65,000 nodes.

7 Results

The simulated vs. actual runtimes are demonstrated in Figs 1−3 using the nom-
inal parameters from Table 3. In general, SST/macro correctly reproduces the
performance trends and even the correct congestion behavior.
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Fig. 1. (A) Hopper runtimes (N=20 replicates) and simulation runtimes for
MPI Scatter for N(node) = 128− 512 (B) Sensitivity analysis of MPI Scatter

We first consider MPI Scatter (Figure 1). To isolate effects for individual
nodes, we report the time needed by rank 0 (root) rather than the whole col-
lective. The simulation times are shown against a scatter plot of 20 Hopper
replicates for varying buffer sizes and N(node). In general, the simulated run-
times lie within the observed range of Hopper runtimes. The sensitivity analysis
partitions the total uncertainty into a percent contribution from each parameter.
The line slope closely matches an ideal (uncongested) performance model with
bandwidth 1.8 GB/s (Max BW), indicating only mild network contention. Max
BW therefore shows a higher sensitivity value than Link BW. All data originates
from the root node and performance is therefore partially limited by injection.
The corresponding sensitivity value is therefore significant but small.

For MPI Gather (Figure 2), excellent agreement is again observed. In contrast
to MPI Scatter, Inj BW has a negligible sensitivity value. Even though the root
receives all data, the receives are staggered over a longer period of time. Again,
Max BW dominates most cases. However, for N = 192, heavy congestion occurs
on some links, making Link BW more significant.
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Fig. 2. (A) Hopper runtimes (N=20 replicates) and simulation runtimes for
MPI Gather for N(node) = 128− 512 (B) Sensitivity analysis of MPI Gather

 0

 5

 10

 15

 20

 150  200  250  300  350  400  450  500

Ti
m

e(
m

s)

N(node)

8 KB
16 KB
24 KB
32 KB

Hopper Mean
SST/macro

SST/macro Uncertainty

(A)

 0

 0.2

 0.4

 0.6

 0.8

 1

8 16 24 32 8 16 24 32 8 16 24 32 8 16 24 32 8 16 24 32

S
en

si
tiv

ity

Size (KB)

Link BW
Inj Lat

Hop Lat
Max BW

 0

 0.2

 0.4

 0.6

 0.8

 1

N=128 N=192 N=256 N=384 N=512

 0

 0.2

 0.4

 0.6

 0.8

 1

N=128 N=192 N=256 N=384 N=512

 0

 0.2

 0.4

 0.6

 0.8

 1

N=128 N=192 N=256 N=384 N=512

 0

 0.2

 0.4

 0.6

 0.8

 1

N=128 N=192 N=256 N=384 N=512

(B)

Fig. 3. (A) Hopper runtimes (N=20 replicates) and simulation runtimes for
MPI Allgather for N(node) = 128 − 512 (B) Sensitivity analysis of MPI Allgather

The ideal performance model for the ring MPI Allgather (Figure 3) is linear
in N(node) since the algorithm involves N(node)−1 neighbor exchanges of data
of constant size [24]. Many medium-sized messages are sent, making both latency
and bandwidth terms important. Sensitivity analysis again matches the expected
physics since Max BW, Inj Lat, and Hop Lat all have significant values. As the
buffer size increases, uncertainty shifts to the bandwidth terms. At N = 512, the
curve slope in Figure 3A shifts upward, suggesting network contention starts to
contribute - an effect reproduced by SST/macro. The sensitivity value for Link
BW therefore becomes large.

From the extensive calibration for N(node) ≤ 512, we can now propagate
uncertainties. Validation jobs were run on Hopper and in SST/macro (Figure
4) outside the calibration range (N = 1024 for MPI Allgather; N = 4096 for
MPI Scatter and MPI Gather). SST/macro error bars for 90% confidence in-
tervals are derived from the posterior predictive distributions (Section 6). For
MPI Allgather (Figure 4A), despite heavy congestion, SST/macro shows good
agreement. While SST/macro underestimates slightly for large buffer sizes, the
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Hopper results still lie within the SST/macro error bounds. Calibrating param-
eter uncertainties with modest benchmarks therefore works well in bracketing
errors at larger problem sizes. For MPI Gather (Figure 4B), the agreement is
particularly good. The error bounds are too small to appear as distinct lines,
suggesting (a priori) the simulation should be essentially exact.
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Fig. 4. Hopper runtimes (N=20 replicates) and simulation runtimes with propagated
90% confidence intervals. (A) MPI Allgather at N(node) = 1024. (B) MPI Gather at
N(node) = 4096. (C) MPI Scatter at N(node) = 4096.

For MPI Scatter (Figure 4C), the agreement is quite poor, especially given the
good agreement observed in calibration. Given the node layout on the Hopper
torus, large messages sent from the root do not traverse the same links and should
see little congestion. Small benchmarks suggest BTE (RDMA injection) perfor-
mance may deteriorate with many simultaneous RDMA transactions. Our model
assumes constant injection bandwidth, but better models may show gradually
decreasing bandwidth with high offered load. N = 4096 may therefore represent
a crossover to injection limited performance. External noise from other jobs may
also contribute. Given the good agreement in calibration, estimated error bars
are small (again barely visible). While MPI Gather and MPI Allgather show suc-
cesses, MPI Scatter shows the potential pitfall. Congestion effects not included
in the calibration do not propagate to the uncertainty estimate. MPI Scatter
calibration did not stress RDMA injection, leaving error estimates too opti-
mistic. Our UQ procedure is therefore not completely black-box since bench-
marks should be prudently constructed to stress the coarse-grained models.

We repeated the uncertainty propagation for a theoretical machine with 65,536
nodes. Using the Hopper calibration, we propagate uncertainties for MPI Gather.
The simulation assumes a scaled-out version of Hopper, posing the question: if in-
terconnects do not improve, what performance can be expected for MPI Gather
at larger scales? Running the 100 parameter samples produces Table 4. Given the
excellent agreement observed in calibration, we predict SST/macro can estimate
MPI Gather times very precisely.
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Buffer Size (KB) Simulation Time (ms)

8 287.1 ± 0.97
16 574.0 ± 1.93
24 860.9 ± 2.90
32 1147.9 ± 3.87

Table 4. Simulated runtimes for single
MPI Gather on a theoretical scaled-out
Hopper/XE6 with N(node) = 65, 536 in-
cluding estimated 90% confidence intervals

8 Conclusions

We have presented SST/macro, a coarse-grained simulator designed to explore
macroscale performance tradeoffs in the co-design space of hardware, middleware
and applications. High accuracy is observed for simulation of MPI collectives -
even for runs exhibiting heavy network congestion. Most importantly, we have
presented a rigorous UQ methodology based on Bayesian inference. The critical
UQ step is calibrating simulation input parameter uncertainties against “correct”
results from either actual machines or high-fidelity simulators. SST/macro can
therefore simulate both existing and future extreme-scale machines. Although
addition of parallel discrete event simulation to SST/macro is underway, the
UQ methods are already highly parallel. Given the ease of compiling native
codes directly into the simulator, we suggest SST/macro as a flexible tool in
supporting co-design of extreme scale systems.
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Abstract. Thread affinity has appeared as an important technique to improve the
overall program performance and for better performance stability. However, if we
consider a program with multiple phases, it is unlikely that a single thread affinity
produces the best program performance for all these phases. If we consider the
case of OpenMP, applications may have multiple parallel regions, each with a dis-
tinct inter-thread data sharing pattern. In this paper, we propose an approach that
allows to change thread affinity dynamically (thread migrations) between parallel
regions at runtime to account for these distinct inter-thread data sharing patterns.
We demonstrate that as far as cache sharing is concerned for SPEC OMP01, not
all the tested OpenMP applications exhibit a distinct phase behavior. However,
we show that while fixing thread affinity for the whole execution may improve
performance by up to 30%, allowing dynamic thread pinning may improve per-
formance by up to 40%. Furthermore, we provide an analysis about the required
conditions to improve the effectiveness of the approach.

Keywords: OpenMP, thread level parallelism, thread affinity, multicores.

1 Introduction

Multicore architectures are nowadays the state of the art in the industry of processor
design for desktop and high performance computing. With this design, multiple threads
can run simultaneously exploiting thread level parallelism and consequently, improve
overall program performance of the system. Unfortunately, the growing gap between
processor performance and memory performance has led manufacturers to propose
highly hierarchical machines to alleviate this problem. The common architectural de-
sign consists of two or more cores sharing some levels of memory caches, memory
buses, prefetchers or memory nodes. As the memory hierarchy of these machines is
becoming increasingly complex, achieving better program performance of parallel ap-
plications on these modern architectures is more challenging.

A hierarchy of memory caches allows to exploit data sharing between threads run-
ning on such platforms. Of course, to exploit that, a multi-threaded application has to
meet two conditions. First, threads have to access common data. Second, the reuse dis-
tance has to be short enough to effectively exploit these shared data across multiple
threads. In this context, thread affinity has appeared as an important technique to ex-
ploit data sharing and to accelerate program execution times [15,12,6,18,9]. Another
advantage of fixing thread affinity is for better performance stability [9].

F. Wolf, B. Mohr, and D. an Mey (Eds.): Euro-Par 2013, LNCS 8097, pp. 53–64, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Using thread affinity enhances inter-thread data locality. If two threads make exten-
sive accesses to common data in memory, it is better to place them on cores sharing
the same L2/L3 cache, or the same NUMA node. Doing so, we decrease the number
of cache misses. Indeed, if one thread brings a data element to some cache level, the
second thread accessing the same data element will avoid unnecessary cache misses.
Furthermore, binding threads to cores by considering the machine architecture may
help hardware prefetching of frequently accessed shared regions.

In this paper, we focus on cache sharing, and study the impact of a phase-based
or dynamic thread pinning. It it based on the control flow graph (CFG) of a parallel
execution in a given program. A node in this CFG can be defined using different granu-
larities: a sequence of some instructions, a function call, etc. Since OpenMP programs
may implement multiple parallel regions which are called multiple times iteratively, we
consider the CFG as a graph representing a sequence of calls to distinct parallel regions
in an OpenMP program. This also means that we define an OpenMP phase as the exe-
cution of a parallel OpenMP region. In this study, we consider that the parallel region
represents a good trade-off between a better sharing patterns identification accuracy and
a low overhead incurred by a smaller number of thread migrations.

A previous research study [9] has showed that fixing thread affinity during the whole
execution provides better performance improvements on NUMA machines than on
SMP ones. Nevertheless, we think that it is possible to further enhance the performance
gain using thread affinity by exploiting phase-based behavior in OpenMP programs. We
made an extensive performance evaluation of multiple thread pinning strategies on four
distinct machines. Among them, four strategies are application dependent: they rely on
the characteristics (data sharing) of the application, and they set a distinct thread place-
ment for each parallel region. Three strategies are application independent: they apply
the same thread affinity for the whole execution and for each application. We show that
dynamic thread pinning can improve performance by up to 40% compared to the Linux
OS scheduler. Furthermore, we show the amount of inter-thread data sharing and the
granularity of the parallel regions are main factors influencing most the effectiveness of
dynamic thread pinning.

This article is composed as follows. Section 2 a synthetic example aiming to show
the effectiveness of using per-parallel regions thread affinity within OpenMP programs.
Section 3 presents the method we use to compute a distinct thread affinity for each paral-
lel region. Section 4 describes our experimental setup and methodology (test machines,
running methodology, statistical significance analysis). Section 5 shows our experimen-
tal results and analysis. Related work is presented in Sect. 6, then we conclude.

2 Motivation and Problem Description

We define an OpenMP phase as a unique and distinct OpenMP parallel region. In
OpenMP, each structured code started by the construct #pragma omp parallel
in C/C++ or !$omp parallel in Fortran is a new parallel region. That is, each
OpenMP parallel region translates into distinct OpenMP phases.

To illustrate the benefit of changing thread pinning between consecutive OpenMP
parallel regions, we use a synthetic micro-benchmark. This benchmark implements two
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OpenMP parallel regions, each with a distinct sharing pattern. The benchmark uses a
single large rectangular (the width is much greater than the height) matrix which is sub-
divided into equal parts among all the intervening threads. The benchmark is designed
so that in parallel region 1, data sharing is between (T1, T5), (T2, T6), (T3, T7) and
(T4, T 8) thread pairs. Similarly, in parallel region 2, data sharing is between (T1, T2),
(T3, T4), (T5, T6) and (T7, T8) thread pairs. Cache lines sharing between threads is im-
plemented by allowing for each pair of threads to access common cells from the portion
of the array that has been assigned to them. For each assigned portion from the array,
each thread performs simple computations like additions and multiplications.

Each thread accesses to the same amount of data. Moreover, the amount of shared
data blocks is equal between each pair of threads, of course with different sharing pat-
terns across the two parallel regions. To analyze how the amount of inter-thread data
sharing can influence the effectiveness of allowing thread migrations across parallel re-
gions, we fix the same inter-thread data sharing in the first parallel region, and vary the
amount of data sharing in the second. We consider in these experiments the 0%, 25%,
75% and 100% amounts of data sharing cases in the second parallel region.
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Fig. 1. Speedup of the median of the tested thread affinities for the synthetic benchmark using
multiple matrix sizes and running with 8 threads on the Nehalem machine

We run the micro-benchmark multiple times and using multiple thread pinnings on
top of an 8 cores Intel Nehalem machine1. Figure 1 shows the obtained speedups. We
consider the no affinity strategy as the base comparison configuration. Speedups
are reported according to the amount of data sharing in the second parallel region (four
configurations) and the tested thread affinities. Reading from left to right, the first group
represents the case of 100% data sharing, the second represents the case of 75% data
sharing, the third represents the case of 25% data sharing and the last group represents
the case of 0% data sharing.

First, it is clear that using a per parallel region thread affinity helps to improve per-
formance compared to application-wide thread pinning strategies. Second, we observe
that as the amount of data sharing in the second parallel region is reduced, the perfor-
mance of the icc scatter and the per parallel region thread affinity strategies are
close. This is due to two reasons: 1) since these two strategies are able to exploit the data
sharing of the first parallel region, the obtained performance for that parallel region is

1 More details about the machine can be found in Sect. 4.



56 A. Mazouz, S.-A.-A. Touati, and D. Barthou

similar, and 2) when there is no sharing at the second parallel region, the precise thread
pinning is not important, so we obtain these observed program performance. From this
simple experiment, we can conclude that changing the affinity between OpenMP paral-
lel phases is beneficial and can lead to non negligible performance improvement over a
fixed affinity for the whole program or a no affinity strategy.

3 Parallel OpenMP Phases Extraction and Thread Pinning

We focus on data sharing to compute effective thread pinnings. Instead of computing an
application-wide thread affinity (apply the same affinity for the whole execution), we
compute a thread pinning for each distinct parallel region in the OpenMP program. We
use a profile guided method which consists of multiples steps that we detail below.

In OpenMP programs, computing a thread affinity for each parallel region requires
to detect the entry and exit events of that region. For this purpose, we use the OPARI
[10] instrumentation tool. The objective of OPARI is to provide a performance and
measurement interface for OpenMP. It is a source-to-source translation tool which au-
tomatically adds function calls to a POMP runtime measurement library. This library is
used to collect runtime performance data for OpenMP applications. OPARI supports
C/C++ and Fortran programming languages. The idea behind the concept is to detect
each OpenMP pragma/directive and add function calls to the POMP library. This method
allows us to be compiler and runtime independent. In our approach, we do not use the
POMP library for performance measurement. Instead, we have made changes in order
to achieve dynamic thread pinning for each parallel region.

After the OPARI instrumentation, we make a memory tracing of OpenMP applica-
tions using the PIN [8] binary instrumentation framework. We fix a number of threads
per application, and we collect for every thread and for each distinct parallel region (PR)
all the accesses to all memory addresses (which are transformed to accesses to memory
cache lines). In addition, we are able to deduce the parallel regions control flow graph
PRCFG. It is a directed valued graph where the vertices represent the distinct PRs of the
program and the edges represent the predecessor and the successor relationship between
them. As reported before, an edge between a PRi and PRj is valued by the number of
times the execution of the PRi is followed by the execution of PRj .

The collected memory trace profile is used to build an affinity graph for each parallel
region in the program. Each affinity graph in the application is an undirected valued
graph Gp = (T , E , α) ∀p ∈ P . T is the set of application threads, E = T × T ,
α : E 	→ N is a gain function applied to every pair of threads and P is the set of parallel
regions implemented in the application.

The gain function α(Ti, Tj) models the attraction factor between two threads. Since
we rely on data sharing between threads to compute an affinity graph, the gain function
represents the number of common accesses to common memory caches lines accessed
by both the Ti and Tj threads for a given parallel region. Let us precisely define α for
an application with a fixed number of threads n = ‖T ‖ and for a given parallel region
p ∈ P . The collected memory trace profile contains the information Ap(Ti, b) which is
the number of accesses of thread Ti to data block b at parallel region p. If we consider
Bp

i,j as the set of all data blocks accessed by the pair of threads (Ti, Tj) at parallel
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region p, then we can compute α(Ti, Tj) using Equation 1. We call this method the
simple model or SM.

αp(Ti, Tj) =
∑

b∈Bp
i,j

min (Ap(Ti, b), Ap(Tj , b)) (1)

We define another method to compute α. We call it the read/write model or RWM. We
added this method because we consider that from the performance perspective, it is
important to separate read and write accesses. The reason for that is that we consider
a shared region of data wherein accesses are dominated by reads will have less impact
on performance than a shared region of data wherein the read and write accesses are
balanced. In fact, when the shared data are accessed only in a read mode, duplicating
these data on multiple caches may not harm the performance in a great extent. Since we
distinguish between reads and writes, then we exactly haveRDp(Ti, b) andWRp(Ti, b)
which is the number of reads and writes respectively performed by thread Ti to data
block b and where Ap(Ti, b) = RDp(Ti, b) + WRp(Ti, b). Given these constraints,
Equation 2 defines the function α(Ti, Tj) for the read/write model.

αp(Ti, Tj) =
∑

b∈B
p
i,j

(
min (RDp(Ti, b),WRp(Tj , b)) +

min (WRp(Ti, b), RDp(Tj , b)) + min (WRp(Ti, b),WRp(Tj , b))
) (2)

Once all the affinity graphs are constructed for an application and for a given number of
threads, we can use them to investigate multiple thread pinning strategies. The idea is
based on graph partitioning methods [5]. The affinity graphs must be decomposed into
disjoint subsets, named a partition. A partition V = {V1, V2, · · · , Vk} has the property
that

⋃
1≤l≤k Vl = T and Vl ∩ Vm = ∅, where l �= m and l,m ∈ [1, k]. Every subset

Vl ∈ V contains a set of nodes representing threads that have to be placed on adjacent
cores sharing the same cache level (L2 or L3, depending on the target machine). If we
have k shared caches on the system, then we compute a partition with k subsets [5].
The global objective function is to maximize

∑
(Ti,Tj)∈Vl×Vl

α(Ti, Tj) the sum of the
gains between threads belonging to the same partition. This optimization problem is a
classical NP-complete problem, so we have to use heuristics such as in [5]. Fortunately,
we have a special polynomial case. Indeed, if we are given a machine architecture where
a cache level is shared between two adjacent cores, then the problem becomes to seek
for partitions with a size equal to 2 (‖V ‖ = 2). It is easy to see that in the case of seeking
partitions of size 2 the problem is equivalent to computing a set of thread pairs sharing
a common cache while maximizing a global gain. In this special case, the optimization
problem can be solved with a simpler maximum-weight matching in general graphs
[2]. Precisely, it can be polynomially and optimally solved thanks to the algorithm of
Edmonds in O(‖T ‖2.‖E‖) [2].

On a parallel machine with a memory hierarchy, the graph partitioning problem can
be applied to reflect data reuse at each level of shared caches. We define two application
dependent thread pinning strategies, corresponding to the application of heuristics for
solving the graph k-partitioning problems:

1. LPGP strategy. After an initial step of optimal computation of thread pairs, we
proceed by a graph k-partitioning [5]. It is a hierarchical strategy, where threads are
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first paired and pinned on shared L2 or L3 cache then thread pairs are partitioned
and placed on the different sockets according to their affinity.

2. GPLP strategy. It is a hierarchical strategy. It starts by an initial graph k-partitioning
to fix threads on sockets, then perform an optimal polynomial algorithm to compute
thread pairs sharing L2 or L3 cache levels.

In addition to the application dependent strategies presented above, we consider in our
evaluation, the following application independent strategies:

1. No affinity. This strategy lets the OS decide about thread placement. This
strategy allows thread migration between cores during application execution.

2. icc compact. This strategy assigns successive OpenMP threads to cores as
close as possible in the topology map of the platform.

3. icc scatter. This strategy distributes OpenMP threads as evenly as possible
across the entire sockets (one thread per socket if possible).

4 Experimental Setup and Methodology

Our experiments have been conducted using all SPEC OMP01 [14]. We used the ref
data input with SPEC OMP012 whether for memory tracing or for performance eval-
uation. We tested multiple numbers of threads for every application according to the
available number of cores. We tested various thread placement strategies for every ap-
plication, thread number, input data set. For statistical significance, each measure was
repeated 31 times and special care has been taken to limit any external interference on
performance measures. The benchmarks have been compiled using Intel compiler (icc
11.1) with flag -O3 -openmp. To set a per parallel region thread affinity, we focus
only on hot parallel regions which dominate the total execution time. This methodol-
ogy helps to avoid setting a thread affinity for infrequently called or too short parallel
regions, thus lowering the number of unnecessary thread migrations. No more than one
application was executed at a time. The execution of each benchmark was repeated 31
times for each software configuration and machine. This high number of runs allows us
to report statistics with a high confidence level [11,17]. The dynamic voltage scaling
was disabled to avoid core frequency variation. Depending on the test machine, we run
each benchmark with 8, 16 or 32 threads. When we plot speedups, only statistically
significant ones are reported.

We conducted all our experiments on four platforms:

1. The Nehalem (8 cores) machine. It is an Intel NUMA machine with 2 processors.
Each processor (Nehalemmicro-architecture) has 4 cores (2 hardware threads per
core) sharing an inclusive L3 cache of 8 MB. The core frequency is 2.93 GHz.

2. The Nehalem-EX (32 cores) machine. It is an Intel NUMA machine with 4 proces-
sors. Each processor (Nehalem micro-architecture) has 8 cores sharing an inclu-
sive L3 cache of 18 MB. The core frequency is 2.0 GHz.

3. The Shanghai (8 cores) machine. It is an AMD NUMA machine with 2 Opteron
processors. Each processor (K10 micro-architecture) has 4 cores sharing an exclu-
sive L3 cache of 6 MB. The core frequency is 2.4 GHz.

2 We also tested NAS Parallel Benchmarks (NPB) [3]. For lack of space, we limit our analysis
to OMP01.
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4. TheBarcelona (16 cores) machine. It is an AMDNUMAmachine with 4Opteron
processors. Each processor (K10 micro-architecture) has 4 cores sharing an exclu-
sive L3 cache of 2 MB. The core frequency is 1.9 GHz.

5 Experimental Evaluation of Phase-Based Thread Pinning

This section presents a performance evaluation and analysis about the effectiveness of
the per parallel region thread affinity strategy for SPEC OMP01 benchmarks. We used
four NUMA machines:Nehalem,Nehalem-Ex,Shanghai and Barcelona. Each
benchmark has been executed with 8, 16 and 32 threads with respect to the maximal
number of physical cores. We report the obtained speedups using the icc compact,
icc scatter, LPGP(RWM), GPLP(RWM), LPGP(SM) and GPLP(SM) strategies
compared to the default no affinity. Figures 2 and 3 show the overall sample
speedups of every tested thread pinning strategy on the Nehalem, Nehalem-EX,
Shanghai and BarcelonaNUMA machines using bar plots. We report the speedups
of the average and median execution times of all SPEC OMP01 applications running
with 8, 16 and 32 threads.
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Fig. 2. Overall sample speedups of the tested thread affinities with SPEC OMP01 benchmarks
running on the Intel Nehalem and Nehalem-EX NUMA machines
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Fig. 3. Overall sample speedups of the tested thread affinities with SPEC OMP2001 benchmarks
running on the AMD Shanghai and Barcelona NUMA machines
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On the Barcelona and Nehalem-EX machines, running OMP01 with 16 and
32 threads respectively with thread affinity enabled leads to non-negligible speedups
and slowdowns (Barcelona). On the Shanghai machine, fixing thread affinity for
OMP01 running with 8 threads leads to marginal speedups. On Nehalem, when run-
ning OMP01 with 8 threads, we observe non-negligible speedups for all the tested
strategies. On Nehalem, the experiments were performed with HT enabled. This op-
tion increases the number of OS scheduling possibilities. Moreover, the number of in-
voluntary thread migrations is increased which lead to the observed poor performance.

Even if the difference in terms of speedups is not significant, we observe that
the LPGP(SM) and the GPLP(SM) perform slightly worse than LPGP(RWM) and
GPLP(RWM) strategies. As a reminder, the SM strategies are computed from affinity
graphs that do not consider the read/write model. Regarding the test machines, we do
not observe any important difference, in terms of speedups, between the tested thread
affinity strategies. This situation may suggest that there in no benefit of enabling a per
parallel region thread affinity. Moreover, it is possible to conclude that this approach is
not effective for SPEC OMP01 benchmarks.

As noticed earlier, from our experiments, we made two main observations which
are highly related. First, the relative poor performance of strategies computed upon a
model which does not consider the RWM. The observed overall sample speedup of the
median for that strategies is in the range [0.972 − 1.23]. On the other hand, strategies
that do consider the RWM have an overall sample speedup of the median in the range
[1.033− 1.28]. Second, the non clear benefit of using per parallel region thread affinity.
If we compare the best overall sample speedup of the median obtained by application
independent and application dependent strategies for each tested configuration (tested
machine, number of threads), we observe that while application independent strate-
gies have speedups in the range [1.033 − 1.26], application dependent strategies have
speedups in the range [1.022−1.261]. Indeed, regarding these speedups, it is possible to
conclude that per parallel region affinity is not effective compared to application-wide
(application independent) strategies.

To understand the presented experimental results, we first show in Table 1 the total
number of times for which the computed per parallel region thread affinity (theLPGP and
GPLP strategies computed using whether an aware or an unaware read/write model) con-
sists of an application-wide thread affinity. This means, that the computed thread affinity
is exactly the same for all the parallel regions in the program (Tables 2 reports the num-
ber of parallel regions in all the tested benchmarks), or at least for the detected most time
consuming parallel regions. From Table 1, we can observe that using LPGP(RWM) and
GPLP(RWM) strategies, at least 80% (on theNehalem-EX,apsi andequake bench-
marks run with a per parallel region thread affinity) of the benchmarks were executed with
a single (application-wide) thread affinity. Moreover, the computed single application-
wide strategies are similar to icc compact. On the other hand, the LPGP(SM) and
GPLP(SM) strategies do not seem to reflect the same behavior. Indeed, for the SM strate-
gies, we can observe that almost all the computed per parallel region thread affinity strate-
gies have a thread affinity computed for at least two parallel regions.

In the light of the previous observations, we can say as a first conclusion, that
thread affinity strategies computed from affinity graphs that do consider the RWM better
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Table 1. Number of benchmarks where the
computed per-parallel region thread affin-
ity consists of setting a single-global-wide
thread affinity. Each benchmark is executed
using 8 16 and 32 threads on the Nehalem,
Nehalem-EX,Shanghai and Barcelona
machines.

#Threads Machine LPGP (RWM) GPLP (RWM) LPGP (SM) GPLP (SM)
8 Nehalem 10/10 10/10 3/10 3/10
8 Shanghai 10/10 10/10 3/10 3/10

16 Barcelona 10/10 10/10 4/10 5/10
32 Nehalem-EX 8/10 9/10 4/10 4/10

Table 2. Number of parallel regions in SPEC
OMP01 benchmarks running with the ref
data input. For each benchmark, the number
of iterations of the first hot parallel region is
reported.

Benchmarks #Parallel regions #Iterations
wupwise 10 402

swim 8 1198
mgrid 12 18250
applu 22 50
galgel 32 117
equake 11 3334

apsi 24 50
fma3d 30 522

art 4 1
ammp 10 202

Table 3. Observed median execution times at
each parallel region of the swim benchmark on
the Nehalem-EX machine

Median execution time (seconds)
Parallel region icc compact icc scatter LPGP (SM) GPLP (SM)

PR 1 0.074634 0.074699 0.074282 0.07463
PR 2 0.069234 0.068776 0.068575 0.068885
PR 3 0.103967 0.103331 0.103097 0.103642
PR 4 18.08301 18.08452 19.33687 18.59277
PR 5 20.71075 20.72176 20.7149 23.32227
PR 6 4.972871 4.984532 4.974599 4.972682
PR 7 0.019681 0.019674 0.019683 0.030159
PR 8 23.53141 23.52575 43.52616 34.09414

Remote memory accesses ratio 3% 3% 55% 68%
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Fig. 4. The observed median speedups on the
Nehalem-EX machine. Only statistically sig-
nificant speedups are reported.

capture the sharing behavior of threads at the parallel region level than strategies that do
not consider the RWM. Consequently, thread pinnings computed with the later strate-
gies are likely to compute misleading thread affinity strategies which may hurt overall
performance. Moreover, since almost all the per parallel region thread affinity strategies
computed with a RWM tend to be application-wide strategies, explains why we observe
that the performance of the RWM strategies is close to the performance of strategies
like icc compact or icc scatter. Consequently, this observation suggests that
SPEC OMP01 applications do not exhibit distinct phase behavior.

Unlike all the majority of the tested benchmarks, the apsi application does exhibit
distinct inter-thread sharing patterns across parallel regions (more than 30% of data
sharing (ammp has also more than 40% of shared accesses, but in a single region.). Fig-
ure 4 reports the statistically observed median speedups on the Nehalem-EXmachine
for OMP01 running with 32 threads. We can observe for the apsi benchmark that
while application-wide strategies achieve up to 30% performance improvement com-
pared to the Linux no affinity strategy, per parallel region thread affinity strategies
achieve up to 45% performance improvement.

Now, we have to understand why strategies that exhibit distinct thread pinnings for
distinct parallel regions are less effective compared to application-wide strategies for
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the tested applications. There are mainly two reasons for this performance behavior.
First, the poor inter-thread data sharing exhibited by the distinct parallel regions for
the tested benchmarks. Thus, applying a dynamic thread affinity technique on OMP01
benchmarks is not effective. Unfortunately, this is true because of: 1) the uniform distri-
bution of the working set between running threads and 2) the presence of non-uniform
data sharing patterns is rare. Second, the ratio between the number of times each parallel
region is called, and the elapsed execution time in a single iteration of a given parallel
region is very low (as noticed before in Tables 2). This means that threads are frequently
migrated across too short parallel regions. Consequently, the small granularity of the se-
lected hot parallel regions leads to lower the benefit from that migrations. Moreover, the
small amount of inter-thread data sharing can exacerbate in a non-negligible extent the
performance degradation due to NUMA effects: unnecessary remote memory accesses.

To illustrate the influence of poor inter-thread data sharing and unnecessary
thread migrations on the overall performance, we report in Table 3 the observed
execution times at each parallel region of the swim benchmark running with 32
threads on the Nehalem-EX machine (we do not report execution times for the
LPGP(RWM) and GPLP(RWM)) because these strategies compute a
thread pinning similar to icc compact. Even if the LPGP(SM) and
GPLP(SM) compute a phase-based thread pinning strategy (for parallel regions 4,5
and 8), we observe that they behave poorly compared to icc compact or icc
scatter. Moreover, while the later strategies exhibit at most 3% of remote mem-
ory accesses, the former exhibit more than 50% of remote memory accesses. If we run
swim with an application-wide strategy by considering only parallel region 8 or 5, then
we observed that the obtained performance is similar to icc compact. In fact, this
benchmark does not exhibit an important amount of inter-thread data sharing (less than
1%), an exact thread affinity is not important. Consequently, applying a phase-based
technique on this benchmark leads to frequent thread migrations impacting negatively
the locality of data (NUMA accesses), thus the observed poor program performance.

6 Related Work and Discussion

Most of the thread affinity studies on multicores focus on data locality and cache sharing
in parallel applications. Zhang et al. [18] conducted a measurement analysis to study the
influence of CMP cache sharing on multi-threaded performance applications using the
PARSEC [1] benchmarks. Through measurement they suggest that cache sharing has
very limited influence on the performance of the PARSEC applications. However, they
do not conclude that cache sharing has no potential to be explored for multi-threaded
programs. Tam et al. [15] proposed threads clustering to schedule threads based on data
sharing patterns detected on-line using hardware performance monitoring units. The
mechanism relies on cross-chip communication performance impact.

Klug et al. [6] proposed autopin, a framework to automatically determine at run-
time the thread pinning best suited for an application based on hardware performance
counters information. The work is achieved by evaluating the performance of a set of
different scheduling affinities and select the best one. The tool requires that the user
provides an initial set of good thread placements. Terboven et al. [16] examined the
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programming possibilities to improve memory pages and thread affinity in OpenMP
applications running on ccNUMA architectures. They provided a performance analysis
of some HPC codes which may suffer from ccNUMA architectures effects.

Song et al. [13] proposed an affinity approach to compute application-wide thread
affinity strategies. It relies upon binary instrumentation and memory trace analysis to
find memory sharing relationships between user-level threads. Like us, they build an
affinity graph to model the data locality relationship. Then, they use hierarchical graph
partitioning to compute optimized thread placements. While their affinity graph is based
on the number of addresses shared among threads, our affinity graphs are built upon the
number of accesses to common cache lines reflecting real cache activity.

Some studies have addressed the data cache sharing at the compiler level. They fo-
cused on improving the data locality in multicores based on the architecture topology.
Lee et al. [7] proposed a framework to automatically adjust the number of threads in
an application to optimize system efficiency. The work assumes a uniform distribution
of the data between threads. Kandemir et al. [4] discussed a compiler directed code
restructuring scheme for enhancing locality of shared data in multicores. The scheme
distributes the iterations of a loop to be executed in parallel across the cores of an on-
chip cache hierarchy target.

Our work differs from the last efforts in two main points. First, we focus on the study
of the impact on performance of dynamic thread pinning to exploit the inter-thread data
sharing. Moreover, unlike other studies, we perform a statistical performance evaluation
(running multiple times, we fix the experimental setup, data analysis through a rigorous
statistical protocol [17]), we experiment multiple thread placement strategies and mul-
tiple machine architectures. Second, when it comes to compute a scheduling affinity,
we rely on a profile-guided method. Using dynamic binary instrumentation, we fully
analyze optimized binaries regardless of the compiler. Furthermore, we believe, that
extracting all data dependencies and data sharing at compile time may not be sufficient,
because these information depend on the working set which is known only at runtime.

7 Conclusion

We have presented an approach to exploit phase-based behavior in OpenMP programs
using thread affinity. The presented technique relies on the control flow graph of the
parallel OpenMP regions. The control flow graph gives for each parallel region its pre-
decessor and successor in the execution flow. In other words, it is the graph represent-
ing the execution flow of distinct parallel regions. We have extended an existing tool
to instrument the OpenMP constructs. Using a binary instrumentation tool, we build an
affinity graph for each parallel region in the program. After that, we compute multiple
thread pinning strategies for each parallel region.
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Topic Committee

Despite significant effort parallel and distributed systems available today are
still not fully utilized and exploited. Scheduling and load balancing techniques
remain crucial for implementing efficient parallel and distributed applications
and for making best use of existing parallel and distributed systems. The need
for such techniques intensifies with the foreseen advent of exa-scale computer sys-
tems with many core and accelerator architectures. Similarly, cloud computing
became a viable paradigm for some applications. Scheduling includes planning
and optimization of the resource allocation as well as coping with the dynamics
of the systems. These topics have been subject for research for many decades
but remain one of the core topics in parallel and distributed computing.

The scheduling techniques play a role either at the application level or at the
system level, and both scenarios are of interest for this topic area at the Euro-Par
conference series. At the application level, we consider the mapping of distributed
and parallel applications onto infrastructures and the development of dynamic
load balancing algorithms which are able to exploit particular characteristics
of the underlying system. At the system level, particular areas of interest were
the support of modern many-core architectures as well as virtual systems like
Cloud infrastructures. The optimization goals are getting more sophisticated
by including criteria beyond the common minimization of execution times and
increasing utilization.

Euro-Par has considered this topic for several years. This year’s iteration
gathered again many submissions and the selection process for this topic area
was highly competitive. All papers were reviewed by at least four independent
reviewers. Eventually, eight papers have been selected. These papers provide a
very good coverage of these different perspectives. In the following, you will find
contributions which focus on theoretical aspect and on practical implications.
Similarly, we can see scheduling on application and on system level; locally, clus-
tered, and distributed. We see the trend to include optimization goals like energy
efficiency. Constraints like network communication are taken into consideration.
Especially workflow scheduling has been tackled by two paper contributions.

We would like to thank all the reviewers, for their valuable time and effort,
who helped us in the selection process. At the same time, we would like to thank
all authors who helped to maintain Euro-Par as one of the premier scientific
conferences at which innovative scheduling concepts for parallel and distributed
systems are presented.
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Abstract. While previous work on energy-efficient algorithms focused
on assumption that tasks can be assigned to any processor, we initially
study the problem of task scheduling on restricted parallel processors.
The objective is to minimize the overall energy consumption while speed
scaling (SS) method is used to reduce energy consumption under the
execution time constraint (Makespan Cmax). In this work, we discuss
the speed setting in the continuous model that processors can run at
arbitrary speed in [smin, smax]. The energy-efficient scheduling problem,
involving task assignment and speed scaling, is inherently complicated
as it is proved to be NP-Complete. We formulate the problem as an
Integer Programming (IP) problem. Specifically, we devise a polynomial
time optimal scheduling algorithm for the case tasks have an uniform
size. Our algorithm runs in O(mn3logn) time, where m is the number of
processors and n is the number of tasks. We then present a polynomial
time algorithm that achieves an approximation factor of 2α−1(2 − 1

mα )
(α is the power parameter) when the tasks have arbitrary size work.

1 Introduction

Energy consumption has become an important issue in the parallel processor
computational systems. Dynamic Speed Scaling (SS) is a popular approach for
energy-efficient scheduling to reduce energy consumption by dynamically chang-
ing the speeds of the processors according to the work they need to perform. The
well-known relationship between speed and power is the cube-root rule, more pre-
cisely, that is the power of a processor is proportional to s3 when it runs at speed
s [1, 2]. Most research literatures [3, 4, 5, 6, 7, 8, 9, 10] have assumed a more
general power function sα, where α > 1 is a constant power parameter. Note
that it is a convex function of the processor’s speed. Obviously, energy consump-
tion is the power integrated over duration time. Higher speeds allow for faster
execution, at the same time, result in higher energy consumption. In the past
few years, energy-efficient scheduling has received much attention from single
processor to parallel processors environment. In algorithmic, the approaches can
(in general) be categorized into the following two classes for reducing the energy
usage [5, 7]: (1) Dynamic speed scaling and (2) Power-down management. Our
paper focuses on energy-efficient scheduling via dynamic speed scaling strategy.
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In this policy, the goals of scheduling are either to minimize the total energy con-
sumption or to trade off the conflicting objectives of energy and performance.
The main difference is the former reduces the total energy consumption as long
as the timing constraint is not violated, while the later seeks the best point
between the energy cost and performance metric (such as makespan and flow
time).

Speed scaling has been widely studied to save energy consumption initiated
by Yao et al. [3]. The previous work consider that a task can be assigned to
any processor. But it is natural to consider the restricted scheduling in modern
computational systems. The reason is that the systems evolve over time, such as
cluster, then the processors of the system differ from each other in their function-
ality (For instance, the processors have different additional components). This
leads to the task can only be assigned to the processors, which has the task’s
required component. I.e., it leads to different affinities between tasks and pro-
cessors. In practice, certain tasks may have to be allocated for certain physical
resources (such as GPU) [11]. It is also pointed out that some processors whose
design is specialized for particular types of tasks, then tasks should be assigned
to a processor best suited for them [12]. Furthermore, when considering tasks and
input data, tasks need to be assigned on the processors containing their input
data. In other words, a part of tasks can be assigned on processors set Ai, and
a part of tasks can be assigned on processors set Aj , but Ai �=Aj , Ai∩Aj �=∅. An-
other case in point is the scheduling with processing processor restrictions aimed
at minimizing the makespan has been studied extensively in algorithmic (See [13]
for an excellent survey). Therefore, it is significant to study the scheduling with
processor restrictions from both of practical and algorithmic requirements.

Previous Work: Yao et al. [3] were the first to explore the problem of scheduling
a set of tasks with the smallest amount of energy on single processor environment
via speed scaling. They proposed an optimal offline greedy algorithm and two
bounded online algorithms named Optimal Available and Average Rate. Ishihara
et al. [4] formulated the minimization-energy of dynamical voltage scheduling
(DVS) as an integer linear programming problem when all tasks were ready
at the beginning and shared common finishing time. They showed that in the
optimal solution a processor only runs at two adjacent discrete speeds when it
can use only a small number of discrete processor speeds.

Besides studying variant of the speed scaling problems on single processor, re-
searchers also carried out studies on parallel processors environment. Chen et al.
[6] considered energy-efficient scheduling with and without task migration over
multiprocessor. They proposed approximation algorithm for different settings of
power characteristics where no task was allowed to migrate. When task migration
is allowed and migration cost is assumed being negligible, they showed that there
is an optimal real-time task scheduling algorithm. Albers et al. [7] investigated
the basic problem of scheduling a set of tasks on multi-processor settings with an
aim to minimize the total energy consumption. First they studied the case that
all tasks were unit size and proposed a polynomial time algorithm for agreeable
deadlines. They proved it is NP-Hard for arbitrary release time and deadlines
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and gave a αα24α-approximation algorithm. For scheduling tasks with arbitrary
processing size, they developed constant factor approximation algorithms. Aupy
et al. [2] studied the minimization of energy on a set of processors for which
the tasks assignment had been given. They investigated different speed scaling
models. Angel et al. [10] consider the multiprocessor migratory and preemptive
scheduling problem with the objective of minimizing the energy consumption.
They proposed an optimal algorithm in the case where the jobs have release
dates, deadlines and the power parameter α > 2.

There were also some literatures to research the performance under an en-
ergy bounded. Pruhs et al. [8] discussed the problem of speed scaling to opti-
mize makespan under an energy budget in a multiprocessor environment where
the tasks had precedence constraints (Pm|prec, energy|Cmax, m is the number
of processors). They reduced the problem to the Qm|prec|Cmax and obtained
a poly-log(m)-approximation algorithm assuming processors can change speed
continuously over time. Greiner et al. [9] studied the trade off between energy
and delay, i.e., their objective was to minimize the sum of energy cost and de-
lay cost. They suggested a randomized algorithm RA for multiple processors:
each task was assigned uniformly at random to the processors, then a single
processor algorithm A was applied separately by each processor. They proved
that the approximation factor of RA was βBα without task migration when
A was a β-approximation algorithm (Bα is the α-th Bell number). They also
showed that any β-competitive online algorithm for a single processor yields a
randomized βBα-competitive online algorithm for multiple processors without
migration. Using the method of conditional expectations, the results could be
transformed to a derandomized version with additional running time. Angel et
al. [10] also extended their algorithm, which considered minimizing the energy
consumption, to obtain an optimal algorithm for the problem of maximum late-
ness minimization under a budget of energy.

However, all of these results were established without taking into account the
restricted parallel processors. More formally, let the set of tasks J and the set
of processors P construct a bipartite graph G = (J + P , E), where the edge
of E denotes a task can be assigned to a processor. The previous work study
G is a complete bipartite graph, i.e., for any two vertices, v1∈J and v2∈P , the
edge v1v2 is in G. We study the energy-efficient scheduling that G is a general
bipartite graph, i.e., v1v2 may be not an edge of G.

Our Contribution: In this paper, we address the problem of task Scheduling
with the objective of Energy Minimization on Restricted Parallel Processors
(SEMRPP). It assumes all tasks are ready at time 0 and share a common deadline
(a real-time constraint) [2, 4, 6, 7]. In this work, We discuss the continuous speed
settings that processors can run at arbitrary speed in [smin, smax]. In Section 2,
we provide the formal description of model. Section 3 discusses some preliminary
results and reformulate the problem as an Integer Programming (IP) problem.
In Section 4, we devise a polynomial time optimal scheduling algorithm in the
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case where the tasks have an uniform size. For the general case that the tasks
have non-uniform computational work, in Section 5, we present a 2α−1(2− 1

mα )-
approximation algorithm, where α is the power parameter and m is the number
of processors. Finally we conclude the paper in Section 6. To the best of our
knowledge, our work may be the initial attempt to study energy optimization
on the restricted parallel processors.

2 Problem and Model

We model the SEMRPP problem of scheduling a set J = {J1, J2, ..., Jn} of n
independent tasks on a set P = {P1, P2, ..., Pm} of m processors. Each task Jj
has an amount of computational work wj which is defined as the number of the
required CPU cycles for the execution of Jj [3]. We refer to the set Mj ⊆ P
as eligibility processing set of the task Jj , that is, Jj needs to be scheduled on
one of its eligible processors Mj(Mj �= φ). We also say that Jj is allowable
on processor Pi ∈ Mj, and is not allowed to migrate after it is assigned on a
processor. A processor can process at most one task at a time and all processors
are available at time 0.

At any time t, the speed of Jj is denoted as sjt, and the corresponding pro-
cessing power is Pjt = (sjt)

α. The amount of CPU cycles wj executed in a time
interval is the speed integrated over duration time and energy consumption Ej is
the power integrated over duration time, that is, wj =

∫
sjtdt and Ej =

∫
Pjtdt,

following the classical models of the literature [2, 3, 4, 5, 6, 7, 8, 9, 10]. Note that
in this work we focus on speed scaling and all processors are alive during the
whole execution, so we do not take static energy into account [2, 8]. Let cj be the
time when the task Jj finishes its execution. Let xij be an 0− 1 variable which
is equal to one if the task Jj is processed on processor Pi and zero otherwise.
We note that xij = 0 if Pi /∈Mj . Our goal is to schedule the tasks on processors
to minimize the overall energy consumption when each task could finish before
the given common deadline C and be processed on its eligible processors. Then
the SEMRPP problem is formulated as follows:

(P0) min

n∑
j=1

∫
Pjtdt

s.t. cj ≤ C ∀Jj ,
m∑
i=1

xij = 1 ∀Jj ,

xij∈{0, 1} ∀Jj , Pi ∈ Mj,

xij = 0 ∀Jj , Pi /∈ Mj.
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3 Preliminary Lemma

We start by giving preliminary lemmas for reformulating the SEMRPP problem.

Lemma 1. If S is an optimal schedule for the SEMRPP problem in the continuous
model, it is optimal to execute each task at a unique speed throughout its execution.

Proof. Suppose S is an optimal schedule that some task Jj does not run at a
unique speed during its execution. We denote Jj ’s speeds by sj1, sj2, ..., sjk,
the power of each speed i is (sji)

α, i = (1, 2, ..., k), and the execution time
of the speeds are tj1, tj2, ..., tjk, respectively. So, its energy consumption is∑k

i=1 tji(sji)
α. We average the k speeds and keep the total execution time un-

changed, i.e., s̄j = (
∑k

i=1 sjitji)/(
∑k

i=1 tji). Because the power function is a
convex function of speed, according to convexity [14] (In the rest of paper, it
will use convexity in many place but will not add reference [14]), we have

k∑
i=1

tji(sji)
α=(

k∑
i=1

tji)(

k∑
i=1

tji∑k
i=1 tji

(sji)
α)

≥(
k∑

i=1

tji)(

k∑
i=1

tjisji∑k
i=1 tji

)α = (

k∑
i=1

tji)(s̄j)
α=

k∑
i=1

tji(s̄j)
α

So the energy consumption by unique speed is less than a task run at different
speeds. I.e. , if we do not change Jj ’s execution time and its assignment processor
(satisfying restriction), we can get a less energy consumption scheduling, which
is a contradiction to that S is an optimal schedule.

Corollary 1. There exists an optimal solution for SEMRPP in the continuous
model, for which each processor executes all tasks at a uniform speed, and finishes
its tasks at time C.
All tasks on a processor run at a unique speed can be proved like Lemma 1.
If some processor finishes its tasks earlier than C, it can lower its speed to
consume less energy without breaking the time constraint and the restriction.
Furthermore there will be no gaps in the schedule [8].

Above discussion leads to a reformulation of the SEMRPP problem in the
continuous model as following:

(P1) min

m∑
i=1

(
n∑

j=1

xijwj)
α

Cα−1

s.t.
n∑

j=1

xijwj ≤ smaxC ∀Pi, (1)

m∑
i=1

xij = 1 ∀Jj , (2)

xij∈{0, 1} ∀Jj , Pi ∈ Mj, (3)

xij = 0 ∀Jj , Pi /∈ Mj. (4)
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The objective function is from that a processor Pi runs at speed
ΣJjonPi

wj

C =
Σn

j=1xijwj

C , that is each task on Pi will run at this speed, and Pi will complete all
the tasks on it at time C (It assumes that, in each problem instance, the compu-
tational cycles of the tasks on one processor is enough to hold the processor will
not run at speed si < smin. Otherwise we are like to turn off some processors).
Constraint (1) follows since a processor can not run at a speed higher than smax.
Constraint (2) relates to that if a task has assigned on a processor it will not be
assigned on other processors, i.e, non-migratory. Constraint (3) and (4) are the
restrictions of the task on processors.

Lemma 2. Finding an optimal schedule for SEMRPP problem in the continuous
model is NP-Complete in the strong sense.

Lemma 3. There exists a polynomial time approximation scheme (PTAS) for
SEMRPP problem in the continuous model, when Mj = P and smax is fast
enough.

Note that we give detailed proofs (Due to the space limit, we omit the proof.
See our report [15] for details) of Lemma 2 and Lemma 3 that were similarly
stated as observations in the work [7], and we mainly state the conditions when
they are established in the restricted environment. (such as the set of restricted
processors and the upper speed smax that we discuss below in the paper)

4 Uniform Tasks

We now propose an optimal algorithm for a special case of SEMRPP problem
in which all tasks have equal execution cycles (uniform) (denoted as ECSEM-
RPP Algo algorithm). We set wj = 1, ∀Jj and set C = C/wj in (P1) without
loss of generality. Given the set of tasks J , the set of processors P and the sets of
eligible processors of tasks {Mj}, we construct a network G = (V,E) as follow:
the vertex set of G is V = J ∪ P ∪ {s, t} (s and t correspond to a source and a
destination, respectively), the edge set E of G consists of three subsets: (1)(s, Pi)
for all Pi∈P ; (2)(Pi, Jj) for Pi∈Mj ; (3)(Jj , t) for all Jj∈J . We set unit capacity
to edges (Pi, Jj) and (Jj , t), (s, Pi) have capacity c (initially we can set c = n).
Define L∗ = min{max{Li}}(i = 1, 2, ...,m), Li is the load of processor Pi and
it can be achieved by Algorithm 1 .

Lemma 4. The algorithm BS Algo solves the problem of finding minimization
of maximal load of processor for restricted parallel processors in O(n3logn) time,
if all tasks have equal execution cycles.

Its proof can mainly follow from the Maximum-flow in [16]. The computational
complexity is equal to the time O(n3) to find Maximum-flow multiple logn steps,
i.e, O(n3logn).

We construct our ECSEMRPP Algo algorithm (Algorithm 2 ) through find-
ing out the min-max load vector l that is a strongly-optimal assignment defined
in [17, 18].
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Algorithm 1. BS Algo(G,n)

input : (G,n)
output: L∗, Pi that have the maximal load, the set Ji of tasks that load on Pi

1: Let variable l = 1 and variable u = n;
2: If l = u, then the optimal value is reached: L∗ = l, return the Pi and Ji, stop;
3: Else let capacity c = � 1

2
(l+ u)�. Find the Maximum-flow in the network G. If

the value of Maximum-flow is exact n, namely L∗≤c, then set u = c and keep
Pi, Ji by the means of the Maximum-flow. Otherwise, the value of
Maximum-flow is less than n, namely L∗ > c, we set l = c+ 1. Go back to 2.

Algorithm 2. ECSEMRPP Algo

1: Let G0 = G(V, E), PH = φ, JH = {φ1, ..., φm};
2: Call BS Algo(G0, n);
3: Set maximal load sequence index i = i+ 1. According to the scheduling
returned by step 2, we denote the processor that has actual maximal load as
PH
i and denote the tasks set assigned on it as JH

i . EH
i corresponds to the

related edges of PH
i and JH

i . We set G0 = {V \PH
i \JH

i , E\EH
i },

PH = PH∪{PH
i }, φi = JH

i . If G0 �=φ, go to step 2;

4: We assign the tasks of JH
i to PH

i and set all tasks at speed
Σ

Jj∈JH
i

wj

C
on

PH
i . Return the final schedule H .

Definition 1. Given an assignment H denote by Sk the total load on the k most
load of processors. We say that an assignment is strongly-optimal if for any other
assignment H

′
(S

′
k accordingly responds to the total load on the k most load of

processors) and for all 1≤k≤m we have Sk≤S
′
k.

Theorem 1. Algorithm ECSEMRPP Algo finds the optimal schedule for the
SEMRPP problem in the continuous model in O(mn3logn) time, if all tasks
have equal execution cycles.

Proof. First we prove the return assignment H of ECSEMRPP Algo is a
strongly-optimal assignment. We set H = {L1, L2, ..., Lm}, Li corresponds to the
load of processor Pi in non-ascending order. Suppose H

′
is another assignment

that H
′ �=H and {L′

1, L
′
2, ..., L

′
m} corresponds to the load. According to the EC-

SEMRPP Algo algorithm, we know that H
′
can only be the assignment that Pi

moves some tasks to Pj(j < i), because Pi can not move some tasks to Pj′ (j
′
>i)

otherwise it can lower the Li which is a contradiction to ECSEMRPP Algo al-
gorithm. We get Σi

k=1Li≤Σi
k=1L

′
i, i.e., H is a strongly-optimal assignment by

the definition. It turns out that there does not exist any assignment that can
reduce the difference between the loads of the processors in the assignment H .
I.e., there are not other assignment can reduce our aim as it is convexity. So the
optimal scheduling is obtained.

Every time we discard a processor, so the total cost time is m×O(n3logn) =
O(mn3logn) according to Lemma 4, which completes the proof.
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5 General Tasks

As it is NP-Complete in the strong sense for general tasks (Lemma 2), we aim
at getting an approximation algorithm for the SEMRPP problem. First we relax
the equality (3) of (P1) to

0≤xij≤1 ∀Jj , Pi∈Mj (5)

After relaxation, the SEMRPP problem transforms to a convex program. The
feasibility of the convex program can be checked in polynomial time to within
an additive error of ε (for an arbitrary constant ε > 0) [19], and it can be
solved optimally [14]. Suppose x∗ be an optimal solution to the relaxed SEMRPP
problem. Now our goal is to convert this fractional assignment to an integral one
x̄. We adopt the dependent rounding introduced by [18, 20].

Define a bipartite graph G(x∗) = (V,E) where the vertices of G are V = J∪P
and e = (i, j)∈E if x∗

ij>0. The weight on edge (i, j) is x∗
ijwj . The rounding

iteratively modifies x∗
ij , such that at the end x∗

ij becomes integral. There are
mainly two steps as following:

i. Break cycle:
1.While(G(x∗) has cycle C = (e1, e2, ..., e2l−1, e2l))
2.Set C1 = (e1, e3, ..., e2l−1) and C2 = (e2, e4, ..., e2l).
Find minimal weight edge of C, denoted as eCmin and its weight

ε = mine∈C1||e∈C2
e;

3.If eCmin∈C1 then every edge in C1 subtract ε and every edge in C2 add ε;
4.Else every edge in C1 add ε and every edge in C2 subtract ε;
5.Remove the edges with weight 0 from G.
ii. Rounding fractional tasks:
1.In the first rounding phase consider each integral assignment if x∗

ij = 1, set
x̄ij = 1 and discard the corresponding edge from the graph. Denote again by G
the resulting graph;

2.While(G(x∗) has connected component C)
3.Choose one task node from C as root to construct a tree Tr, match each

task node with any one of its children. The resulting matching covers all task
nodes;

4.Match each task to one of its children node (a processor) such that Pi =
argminPi∈PΣx̄ij=1x̄ijwj , set x̄ij = 1, and x̄ij = 0 for other children node re-
spectively.

We denote above algorithm as Relaxation-Dependent-Rounding. Next we anal-
yse the approximation factor it can find.

Theorem 2. (i) Relaxation-Dependent-Rounding finds a 2α−1(2 − 1
pα )-

approximation to the optimal schedule for the SEMRPP problem in the con-
tinuous model in polynomial time, where p = maxMj |Mj |≤m. (ii) For any
processor Pi, ΣJ x̄ijwj < ΣJ x∗

ijwj +maxJ :x∗
ij∈(0,1)wj, x∗

ij is the fractional task

assignment at the beginning of the second phase. (i.e., extra maximal execution
cycles of linear constraints are violated only by maxJ :x∗

ij∈(0,1)wj)
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Proof. (i) Denote the optimal solution for the SEMRPP problem as OPT ,H∗ as
the fractional schedule obtained after breaking all cycles and H̄ as the schedule
returned by the algorithm. Moreover, denote byH1 the schedule consisting of the
tasks assigned in the first step, i.e., x∗

ij = 1 right after breaking the cycles and
by H2 the schedule consisting of the tasks assigned in the second rounding step,
i.e., set x̄ij = 1 by the matching process. We have ‖H1‖α≤‖H∗‖α≤‖OPT ‖α1,
where the first inequality follows from H1 is a sub-schedule of H∗ and the second
inequality results from H∗ being a fractional optimal schedule compared with
OPT which is an integral schedule. We consider ‖H1‖α≤‖H∗‖α carefully. If
‖H1‖α = ‖H∗‖α, that is all tasks have been assigned in the first step and the
second rounding step is not necessary, then we have ‖H1‖α = ‖H∗‖α = ‖OPT ‖α.
Such that the approximation is 1. Next we consider ‖H1‖α < ‖H∗‖α, so there
are some tasks assigned in the second rounding step, w.l.o.g., denote as J1 =
{J1, ..., Jk}. We assume the fraction of task Jj assigned on processor Pi is fij
and the largest eligible processor set size p = maxMj |Mj |≤m. Then we have

(‖H∗‖α)α =
m∑
i=1

(ΣJj :x∗
ij=1wj +ΣJj∈J1fij)

α

≥
m∑
i=1

(ΣJj :x∗
ij=1wj)

α +

m∑
i=1

(ΣJj∈J1fij)
α

= (‖H1‖α)α +

m∑
i=1

(ΣJj∈J1fij)
α≥(‖H1‖α)α +

m∑
i=1

k∑
j=1

(fij)
α

= (‖H1‖α)α +

k∑
j=1

m∑
i=1

(fij)
α≥(‖H1‖α)α +

k∑
j=1

(

∑m
i=1 fij
p

)α

= (‖H1‖α)α +
1

pα

k∑
j=1

(wj)
α

(6)

From the fact that H2 schedules only one task per processor, thus optimal inte-
gral assignment for the subset of tasks it assigns and certainly has cost smaller
than any integral assignment for the whole set of tasks. In a similar way we have

(‖H2‖α)α =

k∑
j=1

(wj)
α≤(‖OPT ‖α)α (7)

So the inequality (6) can be reduced to

(‖H∗‖α)α≥(‖H1‖α)α +
1

pα
(‖H2‖α)α (8)

1 In H1 schedule, when the loads of m processors is {lh11 , lh12 , ..., lh1m }, ‖H1‖α means

((lh11 )α + (lh12 )α + ...+ (lh1m )α)
1
α .
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then

(‖H̄‖α)α = (‖H1 +H2‖α)α≤(‖H1‖α + ‖H2‖α)α

= 2α(
‖H1‖α + ‖H2‖α

2
)α≤2α(1

2
(‖H1‖α)α +

1

2
(‖H2‖α)α)

≤2α−1((‖H∗‖α)α −
1

pα
(‖H2‖α)α + (‖H2‖α)α)

≤2α−1(2− 1

pα
)(‖OPT ‖α)α

So
(‖H̄‖α)α

(‖OPT ‖α)α
≤2α−1(2− 1

pα
)

Which concludes the proof that the schedule H̄ guarantees a 2α−1(2 − 1
pα )-

approximation to optimal solution for the SEMRPP problem and can be found
in polynomial time.

(ii) Seen from above, we also have

ΣJj∈J x̄ijwj < ΣJj∈J x∗
ijwj +maxJj∈J :x∗

ij∈(0,1)wj , ∀Pi

Where the inequality results from the fact that the load of processor Pi in H̄
schedule is the load of H∗ plus the weight of task matched to it. Because we
match each task to one of its child node, i.e., the execution cycle of the adding
task w̄j < maxJj∈J :x∗

ij∈(0,1)wj .

Now we discuss the smax. First we give Proposition 1 to feasible and violation
relationship.

Proposition 1. If (P1) has feasible solution for the SEMRPP problem in the
continuous model, we may hardly to solve (P1) without violating the constraint
of the limitation of the maximal execution cycles of processors.

Obviously, if (P1) has a unique feasible solution, i.e., the maximal execution
cycles of processors is set to the OPT solution value. Then if we can always solve
(P1) without violating the constraint, this means we can easily devise an exact
algorithm for (P1). But we have proof that (P1) is NP-Complete in the strong
sense. Next, we give a guarantee speed which can be regarded as fast enough on
the restricted parallel processors scheduling in the dependent rounding.

Lemma 5. Dependent rounding can get the approximation solution without vi-
olating the maximal execution cycles of processors constraint when
smaxC≥maxPi∈PLi +maxJj∈Jwj, where Li = ΣJj∈Ji

1
|Mj |wj, Ji is the set of

tasks that can be assigned to processor Pi.

Proof. First we denote a vector H = {H1, H2, ..., Hm} in non-ascending sorted
order as the execution cycles of m processors at the beginning of the second step.
We also denote a vector L = {L1, L2, ..., Lm} in non-ascending sorted order as
the execution of m processors that Li = ΣJj∈Ji

1
|Mj |wj . Now we need to prove
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H1≤L1. Suppose we have H1 > L1, w.l.o.g., assume that the processor P1 has
the execution cycles of H1. We denote the set of tasks assigned on P1 as JH

1 .
LetMH

1 be the set of processors to which a task, currently fractional or integral
assigned on processor P1, can be assigned, i.e., MH

1 =
⋃

Jj∈JH
1
Mj. Similarly

we denote the set of tasks can process on MH
1 as JH and the set of processors

MH for every task in Pi∈MH
1 can be assigned. We have MH =

⋃
Jj∈JH Mj .

W.l.o.g, we denote MH as a set {h1, h2, ..., hk}(1≤k≤m) and also denote a set
{l1, l2, ..., lk}(1≤k≤m) as its corresponding processors set in L. According to the
convexity of the objective, we get Hh1 = Hh2 = ... = Hhk

. By our assumption,
Hhp > Llq ,∀p, ∀q. Then

ΣpHhp > ΣqLlq (9)

Note that each integral task (at the beginning of the second step) in the left
part of inequality (9) can also have its respective integral task in the right part,
but the right part may have some fractional task. So ΣqLlq − ΣpHhp≥0, i.e.,
ΣpHhp≤ΣqLlq , a contradiction to inequality (9). The assumption is wrong, we
have H1≤L1. By Theorem 2’s the maximal execution cycles of dependent round-
ing H̄max, we have following process to finish the proof:

H̄max < H1 +maxJj∈J :x∗
ij∈(0,1)wj≤L1 +maxJj∈J :x∗

ij∈(0,1)wj

≤L1 +maxJj∈Jwj = maxiLi +maxJj∈Jwj .

6 Conclusion

In this paper we explore algorithmic instruments leading to reduce energy con-
sumption on restricted parallel processors. We aim at minimizing the sum of
energy consumption while the speed scaling method is used to reduce energy
consumption under the execution time constraint (Cmax). We first assess the
complexity of scheduling problem under speed and restricted parallel proces-
sors settings. We present a polynomial-time approximation algorithm with a
2α−1(2 − 1

pα )-approximation (p = maxMj |Mj |≤m) factor for the general case
that the tasks have arbitrary size of execution cycles. Specially, when the tasks
have an uniform size, we propose an optimal scheduling algorithm with time
complexity O(mn3logn). (We omit the evaluation results here due to the space
limit, see our report [15] for details.)
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Abstract. We consider the problem of Scheduling parallel Jobs in

heterogeneous Platforms: We are given a set J = {1, . . . , n} of n
jobs, where a job j ∈ J is described by a pair (pj , qj) of a processing
time pj ∈ Q>0 and the number of processors required qj ∈ N. We are
also given a set B of N heterogeneous platforms P1, . . . , PN , where each
Pi contains mi processors for i ∈ {1, . . . , N}. The objective is to find a
schedule for the jobs in the platforms minimizing the makespan. Unless
P = NP there is no approximation algorithm with absolute ratio strictly
better than 2 for the problem. We give a (2 + ε)-approximation for the
problem improving the previously best known approximation ratio.

1 Introduction

This paper considers the problem of Scheduling parallel Jobs in hetero-

geneous Platforms (SPP): We are given a set J = {1, . . . , n} of n jobs,
where a job j ∈ J is described by a pair (pj , qj) of a processing time pj ∈ Q>0

and the number of processors qj ∈ N that are required to execute j. We are also
given a set B of N platforms P1, . . . , PN , where each Pi contains a set Mi of
|Mi| = mi processors for i ∈ [N ] := {1, . . . , N}. In general we assume that the
numbers mi may be different, that are heterogeneous platforms. If all values mi

are equal we have identical platforms. For heterogeneous platforms we may as-
sumem1 ≥ . . . ≥ mN . A schedule is an assignment a : J →

⋃N
i=1 2

Mi×Q≥0, that
assigns every job j to a starting time tj and to a subset Aj ⊂Mi of the proces-
sors of a platform Pi with |Aj | = qj . Obviously, a job j can only be scheduled in
platform Pi if mi ≥ qj . A schedule is feasible if every processor in every platform
executes at most one job at any time. The objective is to find a feasible schedule

with minimum makespan maxi∈[N ] C
(i)
max, where C

(i)
max = max{j|Aj⊂Mi} tj + pj

denotes the local makespan for platform Pi. We denote with OPTSPP(J ,B)
� Research supported by German Research Foundation (DFG) project JA612/12-2.
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the optimum value for the makespan of a schedule for the jobs in J into the
platforms in B.

By reduction from 3-Partition it follows that SPP is strongly NP-hard even
for identical platforms. Moreover, there exists no approximation algorithm with
absolute ratio strictly better than 2, unless P = NP .

For N = 1 the problem is equal to Scheduling parallel Jobs, in the rel-
evant literature denoted with P |sizej|Cmax. This problem is strongly NP-hard
even for a constant number of processors m ≥ 5 [7]. By reduction from Parti-

tion it can be shown that there is no approximation algorithm for P |sizej|Cmax

with ratio strictly less than 1.5, unless P = NP . If we constrain the co-domain
of the assignment a further and assume identical platforms the problem is equiv-
alent to Strip Packing (for N = 1) and Multiple Strip Packing(N ≥ 2):

In addition to Aj ∈
⋃N

�=1 2
M� we postulate that Aj is equal to a set of consec-

utively numbered processors for every job j ∈ J . Every job then corresponds
to a rectangle of width qj and height pj . In general because of this contiguity
constraint, algorithms for SPP cannot be directly applied to Multiple Strip

Packing, since rectangles may be cut. But the optimal value for Multiple

Strip Packing is an upper bound for the optimal value for the corresponding
SPP problem with identical platforms. Interestingly, fractional versions of both
problems coincide and therefore a solution of fractional (Multiple) Strip

Packing gives a fractional solution for SPP with identical platforms.

1.1 Related Work

There are several approximation algorithms for Scheduling parallel Jobs.
If the number of processors is bounded by a constant, the problem admits a

PTAS [1]. In case that the number of machines is polynomially bounded in the
number of jobs, a (1.5 + ε)-approximation for the contiguous problem (where a
job has to be executed on processors with consecutive adresses) and a (1 + ε)-
approximation for the non-contiguous problem were given in [12]. Recently, for
an arbitrary number of processors a tight approximation algorithm with absolute
ratio 1.5 + ε was achieved [10].

Also for an arbitrary number of processors the contiguous case of P |sizej|Cmax

is closely related to Strip Packing. A vast number of approximation algorithms
for Strip Packing have been developed during the last decades.

One of the most powerful results for Strip Packing is an asymptotic fully
polynomial time approximation scheme given by Kenyon and Rémila based on
a linear program relaxation for Bin Packing [13]. For any accuracy ε > 0 their
algorithm produces a (1 + ε)-approximative packing plus an additive height of
O(1/ε2)hmax, where hmax denotes the height of the tallest rectangle. Recently,
we showed that the additive term can be reduced to O(1/ε log(1/ε))hmax using
a more sensitive rounding technique [5]. We will use the algorithm in [13] as a
subroutine and refer to it as the KR algorithm.

Multiple Strip Packing was first considered by Zhuk [23], who also showed
that there is no approximation algorithm with absolute approximation ratio
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better than 2. Meanwhile, several approximation algorithms forMultiple Strip

Packing and Scheduling parallel Jobs in Platforms have been devel-
oped. Some of them can be applied to both problems achieving the same approx-
imation ratio. However, due to different underlying techniques used for designing
those algorithms, some of them are only suitable for one of the problems or re-
quire even more constraints on the jobs (rectangles) and platforms. In Table 1 we
give an overview about the different kinds of algorithms and their approximation
ratios.

Table 1. Known approximation algorithms and their ratios

Platforms Jobs Rect. Ratio Constraints

Tchernykh et al. [20] 2005 het. � � 10 none
Schwiegelshohn et al.[18] 2008 het. � no 3 non-clairvoyant
Ye et al. [22] 2009 ident. � � 2ρ ρ makespan of

P ||Cmax

Pascual et al. [16] 2009 ident. � no 4 none
Tchernykh et al. [21] 2010 het. � � 2e+ 1 release dates
Quezada-Pina et al. [17] 2012 het. � no 3 qj ≤ mini mi

Bougeret et
al.

[5] 2009 ident. no � 2 none
[3] 2010 ident. � no 2.5 none
[4] 2010 het. � no 2.5 qj ≤ mini mi

[5] 2011 het. � � AFPTAS none
[6] 2012 ident. � no 2 maxj qj ≤ m/2

1.2 New Result

Currently, the best known absolute ratio for an approximation algorithm di-
rectly applicable to SPP is 3 given in [18]. Remark that in [18], processing times
are not available to the scheduler. In this article we present a polynomial time
algorithm with absolute ratio (2+ε). Moreover, we nearly close the gap between
the inapproximability bound of 2 and the currently best absolute ratio.

Theorem 1. For any accuracy ε > 0 there is an algorithm that for a set J
of n parallel jobs and a set B of heterogeneous platform generates a schedule
for J into the platforms in B with makespan at most (2 + ε)OPTSPP(J ,B).
The algorithm has running time g(1/ε) · nO(f(1/ε)) for some functions g, f with
g(1/ε), f(1/ε) = 2O(1/ε log(1/ε)).

1.3 Methods and Overview

To obtain a simpler structure for the set of platforms B we use a new tech-
nique to group and round the platforms by the number of processors: Initially,
we partition the platforms into a set B0 containing a constant number of the
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largest platforms, and a set B1 containing the remaining smaller platforms with
less processors. For a certain number L the platforms in B1 are grouped and
rounded obtaining a set B̃1 that contains L groups B̃1, . . . , B̃L of equal constant
cardinality, so that the platforms in each group B̃� are identical, see Section 2.1.
Later we convert a solution for the rounded platforms B0 ∪ B̃1 into one for the
original ones in B = B0 ∪ B1, see Figure 1.

B0

1 +O(ε)

B̃1 B̃2 B̃L

1

2

B1 BL−1 BL

2

Fig. 1. Converting the schedule

Using gap creation [11] we simplify the structure of an optimum solution
in B0, see Section 2.2 and Figure 2. Then we allocate a subset of jobs with
large processing time jobs in B0. The main difficulty here is to place the correct
subset of large narrow jobs, that have large processing time and require only few
processors, since we cannot enumerate an assignment for them in polynomial
time. Instead we guess an approximate gap structure for them.

With a skillful linear program relaxation (refer to Section 2.6) we fractionally
assign a subset of large narrow jobs to the guessed gaps in B0, subsets of jobs
with small and medium processing time to B0, and the remaining jobs to B̃1. In
this new approach we have both, horizontal and vertical fractions of large narrow
jobs, which are related by a nice covering constraint. Interestingly, we can apply
a result for scheduling unrelated machines [15] to round those fractions to inte-
gral jobs producing only a small error even though there are different kinds of
fractions. The Linear Program in 2.6 also produces a fractional schedule for B̃1.
Here, the crucial part is to round the fractional schedule to an integral one with-
out loosing too much. Therefore, the jobs involved in that fractional schedule
have harmonically rounded processing times, see Section 2.5. That is, relatively
large processing times are rounded up to the next value of the form 1/q, q ∈ N.
We use the harmonically rounded processing times for rounding the fractional
schedule in B̃1 to an integral one using an idea by Bansal et al. [2] based on
the fact that any integer can be represented as a multiple of 1/q, see [8]. Again
the large narrow jobs are difficult as for one large narrow job we may produce
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fractions referring to different processing times in B0 and B̃1. This problem is
also cleverly modelled and solved in our LP-relaxation. An overview about the
algorithm is given in Algorithm 1.

1.4 Principles and Notations

First we define some notations and recall some well-known packing and schedul-
ing principles. For j ∈ J we define the size of a job as qjpj and SIZE(J ) :=∑

j∈J qjpj for a set of jobs. With pmax := maxj∈J pj we denote the largest pro-
cessing time of a job. A rectangle is a pair r = (wr, hr) of width wr ∈ Q>0 and
height hr ∈ Q>0. The size of r is defined as wrhr. The size of a set of rectangles
R is SIZE(R) :=

∑
r∈Rwrhr. A two-dimensional bin of width x and height

y will be denoted with b(x, y). In this context a strip is a bin of width 1 and
infinite height b(1,∞). We also use the notation b(x,∞) for a strip of width x.
If x ∈ N a strip b(x,∞) corresponds to a platform with x processors.

Geometric Rounding: For a set Rwide of rectangles r = (wr, hr) we obtain
the geometrically rounded set Rsup with onlyM different widths in the following
way: Order the rectangles by non-increasing width and stack them left aligned on
top of each other, starting with the widest rectangles. Let H denote the height
of the stack. Then draw horizontal lines at heights (iH)/M for i = 0, 1, . . . ,M
through the stack. For i = 0, 1, . . . ,M − 1 group together those rectangles that
lie completely with their interior between the ith and (i + 1)th line or intersect
with their interior the (i+1)th line. In every group round up the width of every
rectangle to the width of the widest rectangle contained in this group.

Fractional Strip Packing: For a set of rectangles R with wr ∈ (0, w] for r ∈ R
a fractional strip packing of height h > 0 into a strip b(w,∞) corresponds to
a feasible solution of a linear program of the form min{

∑
i xi|

∑
i:Ci(r)=1 xi ≥

hr r ∈ R, xi ≥ 0} with cost at most h. The variable xi denotes the height (or
length) of a configuration Ci : R → {0, 1}, that is a function that represents a
subset of rectangles that can be placed next to each into the strip b(w,∞), i.e.∑

{r∈R|Ci(r)=1}wr ≤ w. If xi > 0, for every rectangle with Ci(r) = 1 a fraction
of height xi and width wr is placed into the strip. If forR there exists a fractional
strip packing of height h, we say R fits fractionally into b(w, h). The content of
the following Lemma is given in [13].

Lemma 1. Let R be a set of rectangles r = (wr, hr) with width wr ∈ (0, w] and
heights hr ∈ (0, 1]. Let ε′ > 0 and M := 1/ε′2 and let Rwide := {r ∈ R|wr > ε′w}
and Rnarrow := R\Rwide. If Rwide fits fractionally into a bin b(w, h), then Rsup

fits fractionally into bin b(w, h(1+ε′)). Moreover, R can be packed integrally into

a strip b(w,∞) with height at most (1+ε′)h
1−ε′ + (4M + 1)maxr∈R hr.

2 Algorithm

Our algorithm considers two main scenarios for the shape of the platforms given
by the input. For ε > 0 with 3/18 ≥ ε and γ = 8

3N1, where N1 = O(1/ε4)
(specified in the end of Section 2.6) we distinguish:
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1. For all i ∈ [N ] we have m1

mi
≤ γ.

2. There is a number K ∈ [N ] with m1

mi
≤ γ for all i ≤ K and m1

mi
> γ for all

i > K.

In this section we give a detailed description of the algorithm for the first scenario
from which the algorithm for the second scenario is derived. Details for the second
scenario can be found in our technical report [8].

2.1 Platform Rounding

For N0 = 2(2N1 + 1) we partition the set of platforms B into L + 1 groups
B0, B1, . . . , BL by L−times collecting the N1 smallest platforms where L :=

max
{
0, �N−N0

N1
�
}
. Let B0 = B0 := {P1, . . . , PN−LN1} and for � ∈ [L] de-

fine B� := {PN−(L−(�−1))N1+1, . . . , PN−(L−�)N1
} and B1 =

⋃L
�=1 B�. Therefore,

group B1 is further partitioned into several groups B� of equal constant cardi-
nality. Each group B� ⊆ B1 contains exactly N1 platforms. Group B0 contains a
constant number of platforms, moreover we have 5N1+2 = N0+N1 > |B0| ≥ N0.
In each group B�, � ∈ [L], we round the number of processors of each platform
up to the number of processors m̃� := mN−(L−(�−1))N1+1 of the largest plat-

form PN−(L−(�−1))N1+1 contained in this group and denote with B̃� the group

of rounded platforms. We compute a schedule for B0 ∪ B̃1, where B̃1 =
⋃

� B̃�,
and later convert this solution into a solution for B0 ∪ B1 applying a shifting
argument, see Figure 1.

2.2 Simplifying the Structure of an Optimum Solution in B0

Via binary search in the interval
[
SIZE(J )/(

∑N
i=1 mi), npmax

]
we find a can-

didate T for the makespan. By scaling we may assume T = 1. Now consider an
optimum solution with makespan 1 and denote with J �(B0) the set of jobs
that are scheduled in B0 by the optimum solution. In the following we use
the gap creation technique [11] to find a subset of jobs with medium process-
ing time J �

medium(B0) ⊆ J �(B0) and small total load. We can remove these
medium jobs from the instance and schedule them later on top only slightly
increasing the makespan. Define σ0 = ε

20 and σk+1 = σ5
k and sets Jk = {j ∈

J |pj ∈ (σk, σk−1]} for k ≥ 1. Let J �
k (B0) and J �

k (B1) denote those jobs in Jk

that are scheduled by an optimum algorithm in B0 and B1, respectively. We

have
∑

k≥1

∑
j∈Jk(B0)

pjqj ≤
∑|B0|

i=1 mi ≤ |B0|m1. Using the pigeonhole prin-

ciple we proof the existence of a set J �
τ (B0) with τ ∈ {1, . . . , |B0|

ε } so that∑
j∈Jτ (B0)

pjqj ≤ εm1: If not, we have
∑|B0|/ε

k≥1

∑
j∈Jk(B0)

pjqj > |B0|m1 which is

a contradiction. Then we choose δ = στ−1 and may assume that ε−1 is an integer

and thus δ−1 =
(

ε
20

)−(5τ−1)
=

(
20
ε

)5τ−1

is an integer (if not, we choose the next

smaller value for ε). Furthermore, note that in the worst case δ−1 =
(
20
ε

) |B0|
ε −1

.
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We partition the jobs into small jobs Jsmall := {j ∈ J |pj ≤ δ5}, medium jobs
Jmedium := Jτ = {j ∈ J |pj ∈ (δ5, δ]} and large jobs with Jlarge := {j ∈ J |pj ∈
(δ, 1]}.

Algorithm 1. (2 + ε)-Algorithm

Input: J , ε > 0
Output: A schedule of length (2 + ε)OPTSPP(J )
1: For a certain constant N1 = O(1/ε4) partition the set of platforms into L + 1

groups B0, B1 . . . , BL and let B1 :=
⋃L

�=1 B�.

2: Round the number of processors of the platforms in each group B� and obtain B̃1

containing groups B̃� of N1 similar platforms

3: for a candidate value for the makespan T ∈
[
SIZE(J )∑N

i=1 mi
, npmax

]
do

4: for k ∈ {1, . . . , |B0|
ε

} do
5: Let δ := σk−1 where σ0 = ε/20, σk+1 = σ5

k for k ≥ 1.
6: For δ distinguish small, medium, and large jobs
7: Round the processing times and possible starting times of large jobs to

integral multiples δ2.
8: For α = δ4/16 distinguish wide and narrow large jobs.
9: Enumerate an assignment vector V of large wide jobs to B0 and let

Jla−wi(B0) denote the selected jobs.
10: for an assignment vector V of large wide jobs do
11: Approximately guess the total load Π of large narrow jobs for each

starting time and height in every platform of B0 and block corresponding gaps.
12: for a guess Π do
13: Compute free layers of height δ2 in B0.
14: Round the processing times pj of the jobs J ′ = J \ Jla−wi(B0)

harmonically.
15: Compute a solution of the LP in 2.6
16: if There is no feasible solution then
17: Discard the guess Π and take another one and go back to Step

13. If all guesses have failed discard V , take another and go back to Step 11. If all
pairs (V,Π) have failed, increase k and go to Step 5.

18: end if
19: Round the solution of the LP using a result of Lenstra et al. [15] and

obtain an almost integral assignment of
– a subset of the small jobs to the free layers in B0

– a subset of the large narrow jobs to the gaps Π in B0

– the remaining jobs to the groups B̃� in B̃1.
20: Pack small jobs with Strip Packing subroutine into the layers.
21: Schedule medium jobs in Jτ (B0) in P1.
22: for 
 = 1, . . . , L do
23: Pack the jobs assigned to B̃� into at most 2N1 bins b(m̃�, 1)
24: end for
25: end for
26: end for
27: end for
28: end for
29: Convert the schedule for B0 ∪ B̃1 into a schedule for B0 ∪ B1
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Scheduling the medium jobs in J �
τ (B0) in the end on top of the largest plat-

form P1 using List Schedule [9] increases the makespan by at most

2max
{
(1/m1)

∑
j∈Jτ (B0)

pjqj ,maxj∈Jτ pj

}
= 2max

{
εm1

m1
, δ

}
≤ 2max{ε, δ} ≤

2ε.
For B0 we can now simplify the structure of the starting times and different

processing times of large jobs. We round up the processing time of each job
with processing time pj > δ to p̄j = hδ2, the next integer multiple of δ2 with
(h − 1)δ2 < pj ≤ hδ2 = p̄j , for h ∈ { 1

δ + 1, . . . , 1
δ2 }. Since there can be at

most 1/δ jobs with height > δ on each processor within each platform this
increases the makespan in B0 by only δ2/δ = δ. The number of different large
jobs sizes H is bounded by 1

δ2 − (1δ +1)+ 1 ≤ 1
δ2 . In a similar way we round the

starting time of each large job in B0 to aδ2. This increases the makespan again
by at most δ to 1 + 2δ. Therefore the large jobs have starting times aδ2 with
a ∈ {0, 1, . . . , 1+2δ

δ2 − 1} and the number of different starting times is A = 1+2δ
δ2 .

An optimum schedule for J �(B0) \J �
τ (B0) in B0 with rounded processing times

p̄j and rounded starting times for the large jobs has length at most 1 + 2δ.

Let τ ∈ {1, . . . , |B0|
ε } be the current iteration step for finding Jτ with the

desired properties and δ = στ−1. We enumerate the set of large wide jobs and
approximately guess the structure of large narrow jobs in B0 that correspond to
a good solution for the jobs with rounded processing times p̄j . We distinguish
between wide and narrow large jobs as follows. Assume that mN ≥ 32/δ4, other-
wise the number of different platform sizes is a constant depending on γ and 1/δ.
We choose α = δ4/16. Then α satisfies αmN ≥ 2, implying �αmN� ≥ αmN−1 ≥
αmN/2. A job j ∈ J is called wide if qj ≥ �αmN� and narrow otherwise. Fur-
thermore distinguish large narrow jobs Jla−na := {j ∈ Jlarge|qj ≤ �αmN�} and
large wide jobs Jla−wi := {j ∈ Jlarge|qj > �αmN�}.

2.3 Assignment of Large Wide Jobs in B0

The number of large wide jobs, that fit next to each other within one platform,
is bounded by m1

	αmN 
 ≤ m1

αmN−1 ≤ m1

(αmN )/2 ≤ (2γ)/α. Since large jobs have

processing times > δ, at most 1+2δ
δ rounded large jobs can be finished on one

processor before time 1+2δ. Therefore, the number of large wide jobs that have
to be placed in every Pi ∈ B0 is bounded by 2γ

α · 1+2δ
δ . Furthermore, in every

platform large jobs can have A different starting times. Each possible assignment
of large wide jobs to platform and starting time can be represented by a tuple

of vectors V = (v1, . . . , v|B0|) ∈
(
([n] ∪ {0})A·2γα · 1+2δ

δ

)|B0|
. The running time of

a dynamic program to compute such an assignment is equal to the number of

possible vectors which is bounded by (n+1)|B0|·A· 2γα · 1+2δ
δ . Let Jla−wi(B0) denote

the set of large wide jobs selected and let J ′ := J \ Jla−wi(B0).

2.4 Gaps for Large Narrow Jobs in B0

In every platform Pi ∈ B0 we approximately guess the total load Π�
i,a,h of jobs

with height hδ2 starting at time aδ2. Note that we only need to consider those
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triples (i, a, h) with hδ2 + aδ2 ≤ (1 + 2δ). Therefore we compute a vector Π =
(Πi,a,h) with Πi,a,h = b · �αmN�, b ∈ {0, 1, . . . , 2γ

α } and Πi,a,h ≤ Π�
i,a,h ≤

Πi,a,h + �αmN �. Here the condition αmN − 1 ≥ αmN/2 guarantees that 2γ
α ·

�αmN� ≥ 2γ
α ·(αmN −1) ≥ m1. There is only a constant number (1+ 2γ

α )|B0|·A·H

of different vectors Π . For every triple (i, a, h) we block a gap of Πi,a,h+ �αmN�
(not necessary contiguous) processors for large narrow jobs with p̄j = hδ2. Later
we will place large narrow jobs with p̄j = hδ2 total width ≥ Π�

i,a,h into them.
This will be done using linear programming and subsequent rounding. Let G
denote the total number of gaps, clearly G ≤ |B0| ·A·H . Since γ, |B0| = O(N1) =
O(1/ε3 log(1/ε)) and δ−1 = 2O(1/ε log(1/ε)), the steps described above take time
g(1/ε) · nO(f(1/ε)) for some function g and f(1/ε) = 2O(1/ε log(1/ε)).

In Figure 2 an allocation of the enumerated large wide jobs and a guess Π for
the gaps reserved for the large narrow jobs in B0 are illustrated. We compute
the free layers of height δ2 that correspond to the empty space between and next
to the gaps and the large wide jobs. Let L1, . . . , LF denote the free layers, each
having mf processors for f ∈ [F ].

gaps for large narrow jobs

large wide jobs

free layers

P1 P2 P|B0|

1 + 2δ

aδ2

Fig. 2. Simplified structure of large jobs in B0

2.5 Rounding Jobs in B̃1

Let J �(B1) ⊂ J ′ be the subset of jobs scheduled in B1 in an optimum solution.
Let k := 20

ε . We assign to every job J �(B1) its harmonically rounded processing
time p̃j := hk(pj) ∈ [0, 1], where hk : [0, 1] −→ [0, 1] is defined as in [2] via
hk(x) = 1/q for x ∈ (1/(q+ 1), 1/q], q = 1, . . . , k− 1 and hk(x) = x for x ≤ 1/k.
Since ε ≤ 1/6, we have k = 20

ε ≥ 120. In fact, we only modify the processing
times of large jobs in J �(B1), because the small and medium jobs have processing
times pj ≤ δ ≤ ε/20 = 1/k. Consequently, for all small and medium jobs we
have p̃j = pj. It might also be possible that there are large jobs with processing
time 1/k ≥ pj > δ for which we have pj = p̃j. The following Lemma can be
derived from the fact that for a sequence of numbers x1, . . . , xn with values in
(0, 1] and

∑n
i=1 xi ≤ 1 we have

∑n
i=1 hk(xi) ≤ T∞ [2,14] together with a result

of Seiden and van Stee [19] (where T∞ is a constant � 1.691, see [2]).

Lemma 2. If the processing times of the jobs in J �(B1) are rounded harmon-

ically, an optimum schedule of the rounded jobs into B1 (and therefore in B̃1)
has makespan at most T∞.
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2.6 Linear Program for the Remaining Jobs J ′

We give a linear programming relaxation for the following problem:

– place a set of small jobs Jsmall(B0) ⊂ Jsmall into the layers L1, . . . , LF

– select large narrow jobs Jla−na(B0) ⊂ Jla−na to be placed into the gaps Π ,

– fractionally place the remaining jobs into B̃1.

We think of every group B̃� as a single strip b(m̃�,∞) and introduce a set C� of
feasible configurations C� : J ′ → {0, 1}. Let q(�) denote the number of different

configurations for B̃�. In the LP below the variable x�
i indicates the length of

configuration C�
i for i ∈ [q(�)]. In a similar way, we think of each layer Lf in B0 as

a strip b(m̃f ,∞) and introduce a set Cf of feasible configurations Cf : Jsmall →
{0, 1} of small jobs and denote with q(f) the number of different configurations

for Lf . The variable xf
i indicates the length of configuration Cf

i for i ∈ [q(f)].

For every job j ∈ Jla−na we introduce variables yi,a,hj ∈ [0, 1], that indicate the

vertical fraction of job j (with p̄j = hδ2) that is assigned to a gap Πi,a,h in

B0. For every group B̃� we need a constraint that guarantees that the length
of the fractional schedule in b(m̃�,∞) corresponding to a feasible LP-solution
does not exceed length NT∞. Since we have N platforms in B̃� this gives a
fractional schedule of length T∞ in every platform. In a similar way we have
one constraint for every layer Lf . For each gap Πi,a,h a constraint guarantees
that the total load of large narrow jobs (fractionally) assigned to the gap does
not exceed Πi,a,h + �αmN�. To guarantee that all jobs are scheduled we have
covering constraints.

For every small job we have a covering constraint combined from heights of
configurations in Lf and in B̃�. Furthermore, we have a covering constraint for
each large wide job that is not placed in B0, i.e. j ∈ Jla−wi \ Jla−wi(B0). Every
large narrow job j ∈ Jla−na is covered by a clever area constraint: The total

fractional width of job j assigned to B0 multiplied with its height p̃j in B̃1 plus

the fraction of the area of this job covered by configurations in B̃1 should be at
least p̃jqj . For the medium jobs Jτ the last constraint ensures that the total area

of uncovered medium jobs is small, i.e. less than εm1. Finally we add xf
i , x

�
i ≥ 0

and yi,a,hj ∈ [0, 1].

∑q(�)
i=1 x

�
i ≤ N1T∞ � ∈ [L]∑q(f)

i=1 xf
i ≤ δ2 f ∈ [F ]∑

{j∈Jla−na|p̄j=hδ2} y
i,a,h
j · qj ≤ Πi,a,h + �αmN � i ∈ [|B0|], a ∈ [A], h ∈ [H ]∑F

f=1

∑
{i∈[q(f)]|Cf

i (j)=1} x
f
i +

∑L
�=1

∑
{i∈[q(�)]|C�

i (j)=1} x
�
i ≥ p̃j(= pj) j ∈ Jsmall∑L

�=1

∑
{i∈[q(�)]|C�

i (j)=1} x
�
i ≥ p̃j j ∈ Jla−wi \ Jla−wi(B0)∑L

�=1

∑
{i∈[q(�)]|C�

i (j)=1} x
�
i · qj + p̃j ·

∑
i,a,h:p̄j=hδ2 y

i,a,h
j · qj ≥ p̃j · qj j ∈ Jla−na∑

j∈Jτ
pjqj −

∑
j∈Jτ

∑L
�=1

∑
{i∈[q(�)]|C�

i (j)=1} x
�
iqj ≤ εm1

xf
i , x

�
i ≥ 0, yi,a,hj ∈ [0, 1]
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If the LP has no feasible solution either the enumerated set Jla−wi(B0) was not
correct, the choice of Π does not fit or the choice of δ, moreover the choice of τ ,
was not correct. We can compute an approximate solution of the linear program
above by solving approximately a Max-Min Resource Sharing problem.

A solution ((xf ), (x�), (yi,a,hj )) of the LP can be transformed into a fractional
solution of a general assignment problem. This assignment problem corresponds
to scheduling n jobs on |B0| · A ·H + (F + L)(M + 1) + 1 unrelated machines,
for M = 1/ε′2, ε′ = ε/(4 + ε). Using a result by Lenstra et al. [15] a fractional
solution of this problem can be rounded to an almost integral one with only one
fractionally assigned job per machine.

Different job manipulations are then described in [8] to assign those fraction-
ally assigned jobs integrally to parts of B0 or in some gaps, without increasing the
makespan. Then using a rounding technique for strip packing with harmonically

rounded rectangles presented in [2], we show in [8] using N1 = (3M(k+1)+2)k
2k−(k+1)(1+ε)T∞

,

how to produce a schedule with makespan 2 +O(ε) of all jobs in J in the plat-

forms of B0 ∪ B̃1. The schedule is finally converted into one for B0 ∪ B1 with a
shifting procedure illustrated in Figure 1.

3 Conclusion

We have obtained an Algorithm that constructs a schedule of a set J of n parallel
jobs into a set B of N heterogeneous platforms with makespan at most (2 +
ε)OPT(J ,B). We assume that it is also possible to find an algorithm that packs
a set of n rectangles into N strips of different widths. Many of the techniques
used also apply to rectangles. The main difficulties will be the selection and
packing process of the large narrow rectangles for B0 as the gaps provided by
our algorithm might contain non-contiguous processors.
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12. Jansen, K., Thöle, R.: Approximation algorithms for scheduling parallel jobs. SIAM
Journal on Computing 39(8), 3571–3615 (2010)

13. Kenyon, C., Rémila, E.: A near-optimal solution to a two-dimensional cutting stock
problem. Mathematics of Operations Research 25(4), 645–656 (2000)

14. Lee, C.C., Lee, D.T.: A simple on-line bin-packing algorithm. Journal of the
ACM 32(3), 562–572 (1985)

15. Lenstra, J.K., Shmoys, D.B., Tardos, É.: Approximation algorithms for scheduling
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Abstract. This paper considers the problem of maximizing the through-
put of jobs wherein each job consists of multiple tasks. Consider a system
offering a uniform capacity of a resource (say unit bandwidth). We are
given a set of jobs, each consisting of a sequence of at most r tasks. Each
task is associated with a window (specified by a release time and a dead-
line) within which it can be scheduled; each task also has a processing
time and a bandwidth requirement. Each job has a profit associated with
it. A feasible solution must choose a subset of jobs and schedule all the
tasks for these jobs such that at any point of time, the total bandwidth
requirement does not exceed the capacity of the resource; furthermore,
the schedule must obey the precedence constraints (tasks of a job must
be scheduled in order of the input sequence). The goal is to compute the
feasible solution having maximum profit.

Prior work has studied the problem without the notion of windows;
furthermore, the algorithms presented therein require that the band-
widths of all the tasks of a job are uniform. Under these two restrictions,
O(r)-approximation algorithms are known. Our main result presents an
O(r)-approximation algorithm for the general case wherein tasks can
have windows and bandwidths of tasks within the same job may be
non-uniform.

1 Introduction

Scheduling of jobs arises in diverse areas such as parallel and distributed com-
puting, workforce management and energy management. In particular, consider
a compute environment (such as a grid, cloud, etc.) offering resources as a service
for executing jobs. The resources offered may be computational nodes, storage,
network bandwidth, etc. The aim of the service provider owning the environ-
ment is to schedule jobs that maximize its profit subject to the availability of
resources. Typically jobs do not require all the resources during their entire ex-
ecution time and may have different requirements of the resources at different
points in time. Suppose that the jobs can specify the time range and the dura-
tions during which they require the resources. This enables the service provider
to schedule the jobs more optimally, thereby accommodating more jobs as well as
increasing their profits. Motivated by this, we consider a setting in which a job is
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decomposed into multiple tasks, where each task specifies the time range, dura-
tion and quantity of the resource required. The problem also finds applications
in computational biology, multimedia streaming and computational geometry
(see Bar-Yehuda and Rawitz [4] for more details). We use the phrase bandwidth
as a generic term for resources.

Illustration. Figure 1(a) illustrates the problem. Consider a system offering a
uniform bandwidth of one unit. We have three jobs A, B and C, each containing
3 tasks. Each task has a requirement for the bandwidth, as shown in the figure.
For example, the three tasks of the job A have requirements 0.75, 0.5 and 0.4.
A feasible solution must select a subset of jobs such that at any point of time,
the sum of bandwidth requirements of the scheduled tasks must not exceed the
bandwidth offered (i.e., one unit). We see that a feasible solution cannot pick
both A and B, because the combined bandwidth requirement of the overlapping
tasks (A, 1) and (B, 1) is 1.25. On the other hand, we can see that A and C can
be picked together, since the combined bandwidth requirement does not exceed
one unit at any point of time.

Problem Statement. Motivated by applications mentioned above, we first
define the basic version, the SplitJob problem. Then we discuss a natural gen-
eralization of the problem.

Basic SplitJob Problem: We assume that time is divided into discrete times-
lots {1, 2, . . . , T }. Consider a system offering a uniform bandwidth of say 1 unit
throughout the span [1, T ]. The input consists of a set of n jobs
J = {J1, J2, . . . , Jn}. Each job J ∈ J consists of a sequence of (at most) r tasks;
each task is specified by a segment (or interval), given by a starting timeslot and
an ending timeslot; Each task a ∈ J also has a bandwidth requirement or height.
We require that for any job, the r tasks constituting the job are non-overlapping.
Every job J ∈ J is associated with a profit p(J). A set of jobs S ⊆ J is said to
be a feasible solution, if at any timeslot 1 ≤ t ≤ T , the sum of the heights for
all the jobs selected by S does not exceed 1; we call this the bandwidth constraint.
The profit of the solution S is defined to be the sum of profits of the jobs in S. The
SplitJob problem is to find a feasible solution S having the maximum profit.

SplitJob Problem with Windows: In the SplitJob problem, each task is speci-
fied by a fixed interval where it must be scheduled. However, in realistic applica-
tions, a task can specify a window within which it can be executed. To capture
these scenarios we define a generalization of the SplitJob problem.

In this setup, each job J is specified by a sequence of tasks a1, a2, . . . , ar.
Each input task a is specified by a window [rt(a), dl(a)], where rt(a) and dl(a)
are the release time and the deadline for the task, respectively. Each task is also
associated with a processing time ρ(a) and a height h(a). The task can be sched-
uled on any segment of length ρ(a) contained within its window. In addition to
choosing a set of jobs, a feasible solution must also decide in which segment to
schedule the tasks of the chosen jobs. Apart from satisfying the bandwidth con-
straint, we also require that the solution must satisfy the precedence constraint:
the segment where ai is scheduled must finish before the segment for ai+1 starts
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(a) Illustration for the SplitJob Problem (b) Illustration for Windows.

Fig. 1. Illustrations

(in other words, the execution of ai should end before the execution of ai+1

starts). As before, the goal is to choose a feasible solution of maximum profit.
We call this the SplitJob problem with windows. Notice that the windows of
the tasks of a specific job may overlap, however a feasible solution must choose
non-overlapping segments for them.

The SplitJob problem with windows includes as special case the following
interesting version of the problem. In the new setup, the windows are associated
with jobs, instead of tasks. Each job has a release time and deadline; each task
is specified only by a processing time and a height. A task can be scheduled in
any segment contained within the window of the job. A feasible solution must
respect both the bandwidth constraints and the precedence constraints.

Special Cases. Prior work has addressed the following special cases of the basic
SplitJob problem (without windows).

– Single Task Case: Here, each job consists of only one task (i.e., r = 1).
– Unit Height Case: All tasks of all jobs have height 1 (the bandwidth avail-

able). In this scenario, no two overlapping jobs can be scheduled.
– Uniform Height Case: In this case, for any job J ∈ J , all the tasks of the

job have the same height. Thus, the notion of height can be associated with
the job itself, rather than with individual tasks. Note that different jobs are
however allowed to have different heights.

All the above special cases also apply to the SplitJob problem with windows.

Prior Work. Bar-Noy et al. [2] studied the case of the single tasks (r = 1)
and presented a 3-approximation algorithm using the local ratio technique (this
algorithm can also handle the concept of windows and the approximation ratio
becomes 5). Independently, Calinescu et al. [7] also designed a 3-approximation
algorithm, via rounding linear program solutions. The problem has been gen-
eralized to the setup where the available bandwidth varies over time and it is
known as the unsplittable flow problem on line (UFP), for which constant factor
approximation algorithms are known (see [6]).

The unit height case of the basic SplitJob problem has been addressed in the
context of finding maximum weight independent sets in r-interval graphs (e.g.
[1,5]). Working under this framework, Bar-Yehuda et al. [3] presented a (2r)-
approximation algorithm; in this context, they introduced the fractional local
ratio paradigm. They also proved a hardness result: it is NP-hard to approximate
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the problem within a factor of O(r/ log r). Thus, their approximation ratio is
near-optimal.

Building on the techniques of Bar-Yehuda et al. [3], Bar-Yehuda and Rawitz
[4] studied the uniform case of the basic SplitJob problem (without windows)
and derived a (6r)-approximation algorithm. Their algorithm also utilizes the
fractional local ratio technique.

Our Main Result. To the best of our knowledge, when r ≥ 2, the prior work
does not address two important aspects: (i) the concept of windows; (ii) non-
uniform heights (i.e., the tasks of the same job may have different heights). The
goal of this paper is to design an algorithm that handles both these aspects.

We present an approximation algorithm for a practically important special
case of the problem, where no task requires more than half the bandwidth avail-
able; that is for any task a, its height h(a) ≤ 1/2. Our main result is as follows:

Theorem 1. There exists a randomized (8r)-approximation algorithm for the
SplitJob problem with windows (with non-uniform tasks) when all the input
tasks have height at most 1/2. The running time of the algorithm is polynomial
in n, T and r ( n is the number of jobs and T is the number of timeslots).

An interesting question here is whether we can design an algorithm having an
constant approximation ratio (independent of the number of tasks r). However,
this would imply NP=P, as discussed next. We can show that the basic SplitJob
problem (without windows) includes as a special case the multi-dimensional
knapsack problem, for which Chekuri and Khanna [9] derived certain hardness
results. Using their results, we can prove that it is NP-hard to approximate the
SplitJob problem (without windows) within factor of O(r1/3−ε), even when all
the tasks have height at most 1/2.

Other Results. We also prove these additional results.

– The main result can be generalized to the case where the task heights are
bounded by a fixed constant. For any fixed constant α < 1, we derive a
randomized algorithm for the case where all the tasks have height at most
α and the approximation ratio is (4r)/(1 − α) (the main result corresponds
to the value α = 1/2).

– Our approach can also handle the case of uniform and unit height tasks and
the approximation ratios obtained for these cases are 4r and 12r respectively.

– The algorithms claimed in the main result and the above two scenarios can
handle the notion of windows and run in time polynomial in n, T and r.
We note that in all the three cases, if we consider the corresponding basic
versions without windows, then the algorithm can be made to run in time
polynomial in n and r (i.e., the dependency on T can be removed).

– The main result deals with the case where all the tasks have height at most
1/2. It is an interesting open problem to obtain an O(r)-approximation al-
gorithm for the SplitJob problem (with or without windows), where the
height of tasks can be arbitrary. In this context, we point out a difficulty
in extending our algorithm for this general case. The (8r)-approximation
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algorithm for the case of small tasks is based on rounding a natural lin-
ear program. We prove that this linear program has an integrality gap of
Ω(2r), even without windows. This shows that solving the open problem
must involve a different strategy.

Due to lack of space, we will present only the main result in this paper and defer
the details of the other results to the full version of the paper.

Proof Techniques and Discussion. Recall that Bar-Yehuda et al. [3] pre-
sented a (2r)-approximation algorithm for the scenario where all the tasks have
unit height (unit height case). Extending their algorithm, Bar-Yehuda and Rawitz
[4] presented a (6r)-approximation algorithm for the scenario where all the tasks
of a job have the same height (uniform height case). Both these algorithms are
based on the fractional local ratio paradigm, which involves rounding a linear
program solution using the local ratio technique. Our goal is to design an algo-
rithm than can solve the more general problem having two additional features:
(i) the notion of windows; (ii) allow the tasks of the same job to have different
heights (non-uniform case). We handle the notion of windows by considering an
exponential sized linear program and solving it using a separation oracle. We
note that the procedures of Bar-Yehuda et al. [3] and Bar-Yehuda and Rawitz
[4] can be extended by incorporating our separation oracle to handle the con-
cept of windows, as long as the tasks have unit or uniform heights, respectively.
However, the notion of non-uniform heights poses more interesting challenges.
To the best of our efforts, we could not extend their algorithms to handle the
non-uniform scenario. In this paper, we overcome the issue by taking a different
approach, namely randomized rounding. Thus, at a technical level, the main
contribution of this paper is to show that randomized rounding offers an alter-
native method for dealing with scheduling multi-task jobs and furthermore, this
approach can also deal with the case of non-uniform tasks.

Our algorithms are inspired by work of Chakrabarti et al. [8], who study the
unsplittable flow problem (UFP) on line. Generalizing the work of Bar-Yehuda
et al. [3] suitably for the case of non-uniform heights so as to apply the fractional
local ratio technique is left as an interesting open question.

Remark: In the our problems, a job is allowed to have at most r tasks. However,
we can assume without loss of generality that every job has exactly r tasks; this
can be easily accomplished by introducing dummy tasks. So, in the rest of the
paper, we assume that every job has exactly r tasks.

2 Main Result: LP Formulation and Solution

We say that a task a is small, if h(a) ≤ 1/2. Our goal is to establish the main
result of the paper, by designing a randomized (8r)-approximation algorithm
for the special case of the SplitJob problem with windows, wherein all the
tasks all small. Meaning, the algorithm outputs a solution S such that the ex-
pected profit of S is within a factor of 8r of the optimum solution Opt (i.e.,
E[p(S)] ≥ p(Opt)/(8r)). The algorithm goes via formulating a LP and rounding
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the fractional LP optimum solution. In this section, we present the LP formula-
tion and discuss a duality based method for solving it. The rounding procedure is
described in the next section. The following notations are useful for this purpose.

Notations. Let J be the set of n jobs, where each job J ∈ J consists of a
sequence of r tasks. Each task a is specified by a window [rt(a), dl(a)], a pro-
cessing time ρ(a) and a height h(a). The task a can be scheduled in any segment
[s, e] of length ρ(a) contained within the window [rt(a), dl(a)]. For each such
segment u, its height is defined to be h(u) = h(a). Such a segment u is said to
be active at a timeslot t, if t ∈ [s, e]; this is denoted u ∼ t. Let U be a set of
segments (arising from multiple jobs/tasks) and let t be a timeslot. We define
ht(U) to be the sum of heights of all segments from U active at the timeslot t:
ht(U) =

∑
u∈U : u∼t h(u).

LP Formulation. Let J be a job consisting of a sequence of tasks a1, a2, . . . , ar.
For each task ai with an associated window [rt(ai), dl(ai)], the number of possible
segments is q(ai) = dl(ai)−ρ(ai)− rt(ai)+2. The total number of combinations
for choosing segments for all the r tasks of the job J is q = Πr

i=1q(ai). For a
combination to be valid, it must satisfy the precedence constraint: namely, for
1 ≤ i ≤ r − 1, the segment chosen for ai must end before the segment chosen
for ai+1 starts. Discard the invalid combinations and let Inst(J) denote the set
of remaining valid combinations. The number of valid combinations for the job
J is at most T r, where T is the total number of timeslots. We call each valid
combination present in Inst(J) as a job instance of J . Each such job instance
consists of a set of r segments each specified by a start time, end time and a
height such that the segments are non-overlapping. Let I denote the union of
job instances over all the jobs. For a job J and job instance I ∈ Inst(J), we
define the profit of I to be p(I) = p(J). We say that a job instance I ∈ I is
active at a timeslot t, if one of its segments is active at the timeslot; we denote
this as I ∼ t. In this case, let ht(I) denote the height of the (unique) segment of
I active at the timeslot (we call this the height of I at the timeslot t).

max
∑
I∈I

y(I) · p(I)

∑
I∈I : I∼t

y(I)ht(I) ≤ 1 for all time-slots 1 ≤ t ≤ T (1)

∑
I∈Inst(J)

y(I) ≤ 1 for all jobs J ∈ J (2)

y(I) ∈ {0, 1} for all jobs J ∈ J

The integer program (IP) given above arises from the following equivalent for-
mulation of a feasible solution. A feasible solution selects a subset of instances
F ⊆ I such that the following requirements are satisfied: (i) Bandwidth con-
straint: for any timeslot t,

∑
I∈F : I∼t ht(I) ≤ 1; (ii) For any job J , at most

one job instance from Inst(J) is included in F . Our goal is to choose a feasible
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solution having the maximum profit. In the IP, for each instance I ∈ I, we in-
troduce a variable y(I) that denotes whether or not I is chosen in the solution.
Constraints (1) and (2) encode the above requirements. We get a linear program
by relaxing the integrality constraints as y(I) ≥ 0, for all I ∈ I.

The main issue with the above LP is that it has exponential number of vari-
ables. The LP has one variable for each job instance and so, the total number of
variables is |I|, which can be as large as T r. In our setup, r is assumed to be an
arbitrary input and so, the number of variables could be exponential. Hence, a
polynomial time algorithm cannot even afford to explicitly write down the above
LP and directly solve it. However, notice that number of constraints in the above
LP is T+n, which is polynomial in the input length. This means that an optimal
basic feasible solution (BFS) will set at most T +n variables to non-zero values.
Our goal is to find these non-zero variables and their values in time polynomial
in T , n and r. We achieve this above goal by constructing a separation oracle
for the dual LP, as discussed next.

Solving the LP. Consider the dual LP. We introduce dual variables α(t) cor-
responding to the set of constraints (1) and β(J) corresponding to the set of
constraints (2). The dual includes a constraint corresponding to each primal
variable y(I). For an instance I ∈ I, let JI denote the job to which it belongs.
Then, the dual LP is as follows:

min
∑

t∈[1,T ]

α(t) +
∑
J∈J

β(J)

β(JI) +
∑

t : I∼t

α(t) · ht(I) ≥ p(I) for all job instances I ∈ I

The dual also includes non-negativity constraints: α(t) ≥ 0 and β(J) ≥ 0. The
dual has T +n variables and |I| constraints (excluding the trivial non-negativity
constraints); the number of variables is polynomial, whereas the number of con-
straints is exponential.

We shall construct a separation oracle for the dual. Recall that such a pro-
cedure takes as input a vector specifying values for all the dual variables and
outputs whether or not the vector is a feasible solution; moreover, if the vector
is not feasible, then the procedure must also output a constraint which is vio-
lated. Given such an oracle, the ellipsoid algorithm can solve the dual LP and
find the optimum solution in polynomial time, even though the number of con-
straints is exponential. Our separation oracle procedure works using a dynamic
programming approach.

The separation oracle is described next. Let α(·) and β(·) be the input vectors
specifying values assigned to the variables. We say that a job instance I is vio-
lated, if the dual constraint corresponding to I is violated by the input vectors.
The goal is to find if there exists a job instance I which is violated. Towards
that goal, we consider the jobs in J iteratively and for each job J , we determine
if one of the job instances of J is violated.
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Fix a job J ∈ J . For a job instance I ∈ Inst(J), let λ(I) denote the sum∑
t : I∼t α(t)ht(I). Let I∗ be the job instance having the minimum value of

λ(I), among all the job instances in Inst(J). All the instances I ∈ Inst(J) have
identical value β(JI) and p(I). So, if there exists a instance I ∈ Inst(J) which is
violated, then the job instance I∗ will also violated. Thus, it suffices if we find
the job instance I∗ and the value λ(I∗).

We shall find I∗ and λ(I∗) using dynamic programming. Let a1, a2, . . . , ar be
the sequence of tasks contained in the job J . Fix an integer 1 ≤ k ≤ r. By a
k-partial job instance of J , we mean a sequence of segments u1, u2, . . . , uk such
that ui is a segment of ai and ui finishes before ui+1 starts. The notion of λ(·)
can be naturally extended to k-partial job instances P . Namely, P is said to
be active at a timeslot t, if one of the segments of P is active at t and in this
case, ht(P ) is defined to be the height of the segment of P active at t; then,
λ(P ) =

∑
t : P∼t α(t)ht(P ). For a timeslot t ∈ [1, T ] and an integer 1 ≤ k ≤ r,

letM [t, k] denote the minimum value λ(P ) achieved by any k-partial job instance
of J satisfying the property that all the segments of P are contained within [1, t].
Notice that due to the release time and deadline constraints of the tasks, no such
k-partial job instance may exist; in this case, we define M [t, k] be ∞. The value
λ(I∗) that we wish to compute is given by the entry M [T, r].

The table M [·, ·] can be computed using the recurrence relation described
below. We consider all possible segments of the task ak which are contained
within [1, t] and for each such possibility, we consider the best way of selecting
segments for a1, a2, . . . , ak−1. Then, among these possibilities we choose the one
yielding the minimum λ(·) value. The recurrence relation is as follows:

M [t, k] = min
rt(ak)≤t̃≤t−ρ(ak)+1

⎛⎝M [t̃− 1, k − 1] +

t̃+ρ(ak)−1∑
i=t̃

α(i) · h(ak).

⎞⎠ .

For the base case, we define M [t, 0] = 0, for all timeslots t ∈ [1, T ]. Using the
above recurrence relation, we can compute all the entries of M . In particular,
we can find I∗ and λ(I∗).

The separation oracle runs in time polynomial in n, T and r. Given the ora-
cle, the ellipsoid algorithm can compute the optimum solution to the dual LP.
Furthermore, it can also output the optimum solution to the primal LP. As men-
tioned earlier, only n+T primal variables will have non-zero value in the primal
(basic feasible) optimum solution. Using the ellipsoid algorithm, in conjunction
with the separation oracle, we can find these non-zero variables and their values
in time polynomial in n, T and r. We refer to the book by Grötschel et al. [10]
for more details.

3 Rounding the LP Solution

The algorithm discussed in the previous section yields the optimum fractional
solution to the primal LP, denoted by y. In this section, we describe a procedure
for rounding the solution. Let Ĩ be the set of job instances that receive non-zero
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value under y. Recall that only n+ T primal variables will have non-zero value
in the primal (basic feasible) optimum solution. Thus, the number of instances

in Ĩ is at most n+ T .
For a job J , let x(J) denote the sum of y(I) over all job instances of J that

receive non-zero value under y. Intuitively, this is the value assigned by the LP
solution to the job J . Let J̃ denote the set of jobs having non-zero value for
x(J). The profit of the LP solution is then given by p(y) =

∑
J∈J̃ x(J)p(J).

Clearly, the optimum integral solution satisfies p(Opt) ≤ p(y). We shall present
a randomized rounding procedure which outputs a (integral) feasible solution S
such that the expected profit satisfies E[p(S)] ≥ p(y)/(8r).

The basic idea behind the rounding procedure is as follows. A natural rounding
strategy is to select each job with probability x(J). But, it is difficult to argue
that such a procedure will output a feasible solution with high profit. However,
we shall show that if we “scale down” the selection probability by a factor 1/(cr),
then we can get a solution with high profit (where c is a suitable constant). We
note that the above idea of scaling down the probabilities has been successfully
used in other contexts in prior work (see for example, [7], [8]). The rounding
procedure is explained in detail next.

The rounding procedure proceeds in four phases:

– Job Selection Phase: Consider each job J ∈ J̃ and select it with probability
x(J)/(4r). The jobs are selected independently at random. Let Jsel denote
the set of selected jobs.

– Job Instance Selection Phase: Consider each selected job J ∈ Jsel. Select
exactly one job instance from Inst(J), where an instance I ∈ Inst(J) is chosen
with probability y(I)/x(J). Let Isel be the set of job instances selected.

– Segment Selection Phase: Consider the set of all the segments belonging
to the selected job instances. Arrange all these segments in the increasing
order of their starting timeslots. Let U = ∅. For each segment u in the above
ordering , select u if u can be added to U without violating the bandwidth
constraint (i.e., h(u) + ht(U) ≤ 1, for all timeslots t in the span of u). Let
Usel denote the set of selected segments.

– Output Phase: Construct a set Iout as follows. For each job instance I ∈ Isel,
include I in Iout, if all the r segments of I are found in Usel. Consider a job
J ∈ Jsel and let I be the unique job instance selected for J . Output the job
J , if I is included in Iout. Let S be the set of all jobs output. The set S is
the solution output by the procedure.

Regarding the second phase, for any job J ∈ Jsel,
∑

I∈Inst(J) y(I)/x(J) = 1.

So, we will select exactly one job instance from Inst(J). In the fourth phase, for
any job J ∈ S, the corresponding job instance I included in Iout specifies where
the tasks of J must be scheduled. Thus, S constitutes the full description of a
feasible solution. We next analyze the rounding procedure.

Lemma 1. Suppose all the input tasks are small. Then, E[p(S)] ≥ p(y)/(8r).

Proof: Consider any job instance I ∈ Ĩ. The probability that I is output is :

Pr[I ∈ Iout] = Pr[I ∈ Isel] · Pr[I ∈ Iout | I ∈ Isel]. (3)
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Fig. 2. Illustration for Proof of Lemma 1

Consider the first term in the RHS. Let J be the job to which I belongs. Then,

Pr[I ∈ Isel] = Pr[J ∈ Jsel] · Pr[I ∈ Isel | J ∈ Jsel] =
x(J)

4r
× y(I)

x(J)
=

y(I)

4r
. (4)

Now consider the second term in the RHS of (3). Let the segments contained in
I be u1, u2, . . . , ur. Then,

Pr[I ∈ Iout | I ∈ Isel] = Pr[∀u ∈ I, u ∈ Usel | I ∈ Isel]
= 1− Pr[∃u ∈ I, u /∈ Usel | I ∈ Isel] ≥ 1−

∑
u∈I

Pr[u /∈ Usel | I ∈ Isel], (5)

where the last statement follows from the union bound. Let us derive a bound
on each term of the summation in the last line.

We refer to Figure 2(a). Consider any segment u ∈ I. Let t be the starting
timeslot of u. Let U be the set of segments that have already been selected
when u was considered in the segment selection phase. Suppose u is not selected
to be included in Usel. This implies that inclusion of u violates the bandwidth
constraint at some timeslot t′ in the span of u, meaning ht′(U) + h(u) > 1.
Recall that all segments are assumed to be small. In particular, h(u) ≤ 1/2 and
so ht′(U) ≥ 1/2. The segments are considered in the increasing order of their
starting timeslots. Thus all segments of U active at the timeslot t′ must also be
active at the timeslot t. It follows that ht(U) ≥ ht′(U) ≥ 1/2. Hence,

Pr[u /∈ Usel | I ∈ Isel] ≤ Pr[ht(U) ≥ 1/2 | I ∈ Isel]. (6)

We next derive a bound on the random variable ht(U).
Let U be the union of all segments1. For a segment v ∈ U , let Iv be the job

instance to which v belongs. Let Cseg be the set of all segments from U which are
active at the timeslot t and considered earlier than u in the ordering considered
in the segment selection phase (excluding u); we call Cseg as the conflict segment
set of u. The expectation of the random variable ht(U) can be expressed as:

E[ht(U)] =
∑

v∈Cseg

Pr[v ∈ Usel]h(v) ≤
∑

v∈Cseg

Pr[Iv ∈ Isel]h(v),

1 Notice that U is multi-set, since a segment v belonging to a task a of a job J ′ may
be added multiple times in U by the different job instances of J ′.
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where the second statement follows from the fact that a segment v can belong
to Usel, only if Iv belongs to Isel. A similar argument shows that

E[ht(U) | I ∈ Isel] ≤
∑

v∈Cseg

Pr[Iv ∈ Isel | I ∈ Isel]h(v).

For any job instance I ′ belong to the same job as I, Pr[I ′ ∈ Isel | I ∈ Isel] = 0.
On the other hand for any job instance I ′ belonging to a different job than that
of I, the two events “I ′ ∈ Isel” and “I ∈ Isel” are independent (since jobs are
includes in Jsel independently at random). It follows that

E[ht(U) | I ∈ Isel] ≤
∑

v∈Cseg

Pr[Iv ∈ Isel]h(v).

We can now appeal to Equation (4):

E[ht(U) | I ∈ Isel] =
∑

v∈Cseg

y(Iv)

4r
h(v) =

∑
v∈Cseg

y(Iv)

4r
ht(Iv)

≤
∑

I′ : I′∼t

y(I ′)

4r
ht(I

′) ≤ 1/(4r).

The first statement follows from Equation (4); the third statement follows from
the fact that all the segments in Cseg are active at timeslot t; the last statement
follows from the bandwidth constraint of the primal LP. By Markov’s inequality,
Pr[ht(U) ≥ 1/2 | I ∈ Isel] ≤ (1/2r). Substituting in (6), we get that Pr[u /∈
Usel | I ∈ Isel] ≤ 1/(2r). Substituting in (5), we have that Pr[I ∈ Iout | I ∈
Isel] ≥ 1/2. (since each job instance has r segments). It now follows from (3)
and (4) that Pr[I ∈ Iout] ≥ y(I)/(8r).

Consider any job J . The job J will be included in S, if the job instance chosen
for J is included in Iout. We see that

Pr[J ∈ S] =
∑

I∈Inst(J)

Pr[I ∈ Iout] ≥
(

1

8r

) ∑
I∈Inst(J)

y(I) =
x(J)

8r
.

We can now compute E[p(S)], by appealing to linearity of expectation.

E[p(S)] =
∑
J∈J

Pr[J ∈ S]p(J) ≥
(

1

8r

) ∑
J∈J

x(J)p(J) =
p(y)

8r
.

This completes the proof of the lemma. ��
We have established the main result of the paper (Theorem 1).

4 Conclusions and Open Problems

We presented a randomized O(r)-approximation algorithm for the SplitJob

problem with windows, when all the tasks have height at most 1/2. We showed
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that when the tasks can have arbitrary heights, the natural LP has an integral-
ity gap of Ω(2r). Overcoming this issue and designing an O(r)-approximation
algorithm is an interesting open problem.

Recall that in the introduction, we identified an interesting special case of
the SplitJob problem with windows, wherein the windows are associated with
jobs, rather than tasks. Clearly, our results imply O(r)-approximation algorithms
for this problem. Designing an algorithm with better approximation ratio is an
interesting avenue of research. We note that a constant factor approximation
algorithm is not ruled out for this problem.

Recall that it is NP-hard to approximate the basic SplitJob problem (with-
out windows) within a factor of O(r/ log r), for the unit height case [3]. This
hardness result also holds for the uniform height case. For the case of small
tasks, we showed that it is NP-hard to approximate within r1/3. Improving the
hardness result to O(r/ log r) would be of interest.
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Abstract. Fairly allocating distributed computing resources among
workflow executions is critical to multi-user platforms. However, this
problem remains mostly studied in clairvoyant and offline conditions,
where task durations on resources are known, or the workload and avail-
able resources do not vary along time. We consider a non-clairvoyant,
online fairness problem where the platform workload, task costs and re-
source characteristics are unknown and not stationary. We propose a
fairness control loop which assigns task priorities based on the fraction
of pending work in the workflows. Workflow characteristics and perfor-
mance on the target resources are estimated progressively, as information
becomes available during the execution. Our method is implemented and
evaluated on 4 different applications executed in production conditions
on the European Grid Infrastructure. Results show that our technique re-
duces slowdown variability by 3 to 7 compared to first-come-first-served.

1 Introduction

The problem of fairly allocating computing resources to application workflows
rapidly arises on shared computing platforms such as grids or clouds. It must
be addressed whenever the demand for resources is higher than the offer, that
is, when some workflows are slowed down by concurrent executions. In some
cases, unfairness makes the platform totally unusable, for instance when very
short executions are launched concurrently with longer ones. We define fairness
as in [1,2,3], i.e. as the variability in a set of workflows of the slowdown Mmulti

Mown
,

where Mmulti is the makespan when concurrent executions are present, and
Mown is the makespan without concurrent executions.

Weconsider a software-as-a-serviceplatformwhereusers can,at any time, launch
applicationworkflows thatwill compete for computing resources.Our twomain as-
sumptions are (i) that the problem is online: new workflows can be submitted at
any time, and resourcesmay also join or leave at any time, and (ii) that the problem
is non-clairvoyant : the execution time of a task on a given computing resource is
unknown. Non-clairvoyance comes from the lack of application models in the plat-
form and from the lack of information about the performance of computing and
network resources.We also assume a limited control on the scheduler, i.e. that only

F. Wolf, B. Mohr, and D. an Mey (Eds.): Euro-Par 2013, LNCS 8097, pp. 102–113, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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task priorities can be changed to influence scheduling. These conditions are rep-
resentative of a large set of platforms, for instance the Virtual Imaging Platform
(VIP [4]) and other science gateways [5,6,7] deployed on the European Grid In-
frastructure (EGI1). These gateways offer applications deployed as workflows on
shared computing platforms, but they have no information about when users will
launch them and how long each task will last on a given resource.

Fairness among workflow executions has been addressed in several studies
which, however, mostly assume clairvoyant conditions. For instance, the works
in [2,1,3,8,9,10] either directly minimize the slowdown (which assumes that
makespans can be predicted) or use heuristics assuming that task durations
and resources are known. A notable exception is found in [11], where a non-
clairvoyant algorithm is proposed: nevertheless, it is purely offline, assuming
that the tasks and resources are known and do not vary.

In this work, we propose an algorithm to control fairness on non-clairvoyant
online platforms. Based on a progressive discovery of applications’ character-
istics on the infrastructure, our method dynamically estimates the fraction of
pending work for each workflow. Task priorities are then adjusted to harmonize
this fraction among active workflows. This way, resources are allocated to appli-
cation workflows relatively to their amount of work to compute. The method is
implemented in VIP, and evaluated with different workflows, in production con-
ditions, on the EGI. We use the slowdown as a post-mortem metric, to evaluate
our method once execution times are known. Contributions of this paper are:

1. A new instantiation of our control loop [12] to handle unfairness, consisting
of (i) an online, non-clairvoyant fairness metric, and (ii) a task prioritization
algorithm.

2. Experiments demonstrating that this method improves fairness compared
to a first-come-first-served approach, in production conditions, and using 4
different applications.

The next section details our fairness control process, and section 3 presents
experiments and results.

2 Fairness Control Process

Workflows are directed graphs of activities spawning sequential tasks for which
the executable and input data are known, but the computational cost and pro-
duced data volume are not. Workflow graphs may include conditional and loop
operators . Algorithm 1 summarizes our fairness control process. Fairness is con-
trolled by allocating resources to workflows according to their fraction of pending
work. It is done by re-prioritising tasks in workflows where the unfairness de-
gree ηu is greater than a threshold τu. This section describes how ηu and τu are
computed, and details the re-prioritization algorithm.

Measuring Unfairness: ηu. Let m be the number of workflows with an active
activity; a workflow activity is active if it has at least one waiting (queued) or

1 http://www.egi.eu

http://www.egi.eu
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Algorithm 1. Main loop for fairness control
1: input: m workflow executions
2: while there is an active workflow do
3: wait for timeout or task status change in any workflow
4: determine unfairness degree ηu

5: if ηu >τu then
6: re-prioritize tasks using Algorithm 2
7: end if
8: end while

running task. The unfairness degree ηu is the maximum difference between the
fractions of pending work:

ηu = Wmax −Wmin, (1)

with Wmin = min{Wi, i ∈ [1,m]} and Wmax = max{Wi, i ∈ [1,m]}. All Wi are
in [0, 1]. For ηu = 0, we consider that resources are fairly distributed among all
workflows; otherwise, some workflows consume more resources than they should.
The fraction of pending work Wi of a workflow i ∈ [1,m] is defined from the
fraction of pending work wi,j of its ni active activities:

Wi = max
j∈[1,ni]

(wi,j) (2)

All wi,j are between 0 and 1. A high wi,j value indicates that the activity has a
lot of pending work compared to the others. We define wi,j as:

wi,j =
Qi,j

Qi,j +Ri,jPi,j
· T̂i,j , (3)

where Qi,j is the number of waiting tasks in the activity, Ri,j is the number of

running tasks in the activity, Pi,j is the performance of the activity, and T̂i,j is

its relative observed duration. T̂i,j is defined as the ratio between the median
duration t̃i,j of the completed tasks in activity j and the maximum median task
duration among all active activities of all running workflows:

T̂i,j =
t̃i,j

maxv∈[1,m],w∈[1,n∗
i ]
(t̃v,w)

(4)

Tasks of an activity all consist of the following successive phases: setup, inputs
download, application execution and outputs upload; t̃i,j is computed as

t̃i,j = t̃setupi,j + t̃inputi,j + t̃execi,j + t̃outputi,j . Medians are progressively estimated as

tasks complete. At the beginning of the execution, T̂i,j is initialized to 1 and all
medians are undefined; when two tasks of activity j complete, t̃i,j is updated

and T̂i,j is computed with equation 4. In this equation, the max operator is
computed only on n∗

i ≤ ni activities with at least 2 completed tasks, i.e. for
which t̃i,j can be determined. We are aware that using the median may be
inaccurate. However, without a model of the applications’ execution time, we
must rely on observed task durations. Using the whole time distribution (or at
least its few first moments) may be more accurate but it would complexify the
method.
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In Eq. 3, the performance Pi,j of an activity varies between 0 and 1. A low
Pi,j indicates that resources allocated to the activity have bad performance for
the activity; in this case, the contribution of running tasks is reduced and wi,j

increases. Conversely, a high Pi,j increases the contribution of running tasks,
therefore decreases wi,j . For an activity j with kj active tasks, we define Pi,j as:

Pi,j = 2

(
1− max

u∈[1,kj ]

{
tu

t̃i,j + tu

})
, (5)

where tu = tsetupu + tinputu + texecu + toutputu is the sum of the estimated durations
of task u’s phases. Estimated task phase durations are computed as the max
between the current elapsed time in the task phase (0 if the task phase has not
started) and the median duration of the task phase. Pi,j is initialized to 1, and
updated using Eq. 5 only when at least 2 tasks of activity j are completed.

If all tasks perform as the median, i.e. tu = t̃i,j , then maxu∈[1,kj ]

{
tu

t̃i,j+tu

}
=

0.5 and Pi,j = 1. Conversely, if a task in the activity is much longer than the

median, i.e. tu � t̃i,j , then maxu∈[1,kj ]

{
tu

t̃i,j+tu

}
≈ 1 and Pi,j ≈ 0. This def-

inition of Pi,j , considers that bad performance results in a few tasks blocking
the activity. Indeed, we assume that the scheduler doesn’t deliberately favor any
activity and that performance discrepancies are manifested by a few “unlucky”
tasks slowed down by bad resources. Performance, in this case, has a relative
definition: depending on the activity profile, it can correspond to CPU, RAM,
network bandwidth, latency, or a combination of those. We admit that this def-
inition of Pi,j is a bit rough. However, under our non-clairvoyance assumption,
estimating resource performance for the activity more accurately is hardly pos-
sible because (i) we have no model of the application, therefore task durations
cannot be predicted from CPU, RAM or network characteristics, and (ii) net-
work characteristics and even available RAM are shared among concurrent tasks
running on the infrastructure, which makes them hardly measurable.

Thresholding Unfairness: τu. Task prioritisation is triggered when the un-
fairness degree is considered critical, i.e ηu > τu. Thresholding consists in cluster-
ing platform configurations in two groups: one for which unfairness is considered
acceptable, and one for which task re-prioritization is needed. We determine τu
from execution traces, for which different thresholding approaches can be used.
For instance, we could consider that x% of the platform configurations are un-
fair while the rest are acceptable. The choice of x, however, would be arbitrary.
Instead, we inspect the modes of the distribution of ηu to determine a threshold
with a practical justification: values of ηu in the highest mode of the distribution,
i.e. which are clearly separated from the others, will be considered unfair.

In this work, the distribution of ηu is measured from traces collected in VIP
between January 2011 and April 2012 [13]. The data set contains 680, 988 tasks
(including resubmissions and replications) of 2, 941 workflow executions executed
by 112 users; task average queueing time is about 36 min. Applications deployed
in VIP are described as GWENDIA workflows [14] executed using the MOTEUR
workflow engine [15]. Resource provisioning and task scheduling are provided by
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Fig. 1. Distribution of sites and batch queues per country in the biomed VO (January
2013) (left) and histogram of the unfairness degree ηu sampled in bins of 0.05 (right)

DIRAC [16]. Resources are provisioned online with no advance reservations.
Tasks are executed on the biomed virtual organization (VO) of the European
Grid Infrastructure (EGI) which has access to some 150 computing sites world-
wide and to 120 storage sites providing approximately 4 PB of storage. Fig. 1
(left) shows the distribution of sites per country supporting the biomed VO.

The unfairness degree ηu was computed after each event found in the data
set. Fig. 1 (right) shows the histogram of these values, where only ηu �= 0 values
are represented. This histogram is clearly bi-modal, which is a good property
since it reduces the influence of τu. From this histogram, we choose τu = 0.2.
For ηu > 0.2, task prioritization is triggered.

Task Prioritization. The action taken to cope with unfairness is to increase the
priority ofΔi,j waiting tasks for all activities j of workflow i where wi,j−Wmin >
τu. Running tasks cannot be pre-empted. Task priority is an integer initialized
to 1. Δi,j is determined so that w̃i,j = Wmin + τu, where w̃i,j is the estimated
value of wi,j after Δi,j tasks are prioritized. We approximate w̃i,j as:

w̃i,j =
Qi,j −Δi,j

Qi,j +Ri,jPi,j
T̂i,j ,

which assumes that Δi,j tasks will move from status queued to running, and
that the performance of new resources will be maximal. It gives:

Δi,j = Qi,j −
⌊
(τu +Wmin)(Qi,j +Ri,jPi,j)

T̂i,j

⌋
, (6)

where �� rounds a decimal down to the nearest integer value.
Algorithm 2 describes our task re-prioritization. maxPriority is the maximal

priority value in all workflows. The priority ofΔi,j waiting tasks is set to maxPri-
ority+1 in all activities j of workflows i where wi,j −Wmin > τu. Note that this
algorithm takes into account scatter amongWi although ηu ignores it (see Eq. 1).
Indeed, tasks are re-prioritized in any workflow i for which Wi −Wmin > τu.

The method also accommodates online conditions. If a new workflow i is sub-
mitted, then Ri,j = 0 for all its activities and T̂i,j is initialized to 1. This leads
to Wmax = Wi = 1, which increases ηu. If ηu goes beyond τu, then Δi,j tasks of
activity j of workflow i have their priorities increased to restore fairness. Simi-
larly, if new resources arrive, then Ri,j increase and ηu is updated accordingly.
Table 1 illustrates the method on a simple example.
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Algorithm 2. Task re-prioritization
1: input: W1 to Wm //fractions of pending works
2: maxPriority = max task priority in all workflows
3: for i=1 to m do
4: if Wi − Wmin > τu then
5: for j=1 to ai do
6: //ai is the number of active activities in workflow i
7: if wi,j − Wmin > τu then
8: Compute Δi,j from equation 6
9: for p=1 to Δi,j do

10: if ∃ waiting task q in activity j with priority ≤ maxPriority then
11: q.priority = maxPriority + 1
12: end if
13: end for
14: end if
15: end for
16: end if
17: end for

3 Experiments and Results

Experiments are performed on a production grid platform to ensure realistic
conditions. Evaluating fairness in production by measuring the slowdown is not
straightforward because Mown (see definition in the introduction) cannot be di-
rectly measured. As described in Section 3.1, we estimate the slowdown from
task durations, but this estimation may be challenged. Thus, Experiment 1 eval-
uates our method on a set of identical workflows, where the variability of the
measured makespan can be used as a fairness metric. In Experiment 2, we add
a very short workflow to this set of identical workflow, which was one of the
configurations motivating this study. Finally, Experiment 3 considers the more
general case of 4 different workflows with heterogeneous durations.

3.1 Experiment Conditions

Fairness control was implemented as a MOTEUR plugin receiving notifications
about task and workflow status changes. Each workflow plugin forwards task
status changes and t̃i,j values to a service centralizing information about all the
active workflows. This service then re-prioritizes tasks according to Algorithms 1
and 2. As no online task modification is possible in DIRAC, we implemented task
prioritization by canceling and resubmitting queued tasks to DIRAC with new
priorities. This implementation decision adds an overhead to task executions.
Therefore, the timeout value used in Algorithm 1 is set to 3 minutes.

The computing platform for these experiments is the biomed VO used to
determine τu in Section 2. To ensure resource limitation without flooding the
production system, experiments are performed only on 3 sites of different coun-
tries (France, Spain and Netherlands). Four real medical simulation workflows
are considered: GATE [17], SimuBloch, FIELD-II [18], and PET-Sorteo [19]; their
main characteristics are summarized on Table 2.

Three experiments are conducted. Experiment 1 tests whether unfairness
among identical workflows is properly addressed. It consists of three GATE work-
flows sequentially submitted, as users usually do in the platform. Experiment 2
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Table 1. Example

Let’s consider two identical workflows composed of one activity with 6 tasks,
and assume the following values at time t:

i Qi,1 Ri,1 t̃i,1 Pi,1 T̂i,1 Wi = wi,1

1 1 3 10 0.9 1.0 0.27
2 6 0 - 1.0 1.0 1.00

Values unknown at time t are noted ’-’. Workflow 1 has 2 completed and 3 running tasks
with the following phase durations (in arbitrary time units):

u tsetup
u tinput

u texec
u toutput

u tu
1 2 2 4 1 9
2 1 2 3 2 8
3 2 3 5 - -
4 2 2 - - -
5 1 - - - -

,
We have t̃setup

1,1 = 2, t̃input
1,1 = 2, t̃exec

1,1 =

4 and t̃output
1,1 = 2. Therefore, t̃1,1 = 10.

The configuration is clearly unfair since workflow 2 has not started tasks.
Eq. 1 gives ηu = 0.73. As ηu > τu = 0.2, the platform is considered unfair and task
re-prioritization is triggered.

Δ2,1 tasks from workflow 2 should be prioritized. According to Eq. 6:

Δ2,1 = Q2,1 −
⌊

(τu+W1)(Q2,1+R2,1P2,1)

T̂2,1

⌋
= 6 −

⌊
(0.2+0.27)(6+0·1.0)

1.0

⌋
= 4

At time t′ > t:
i Qi,1 Ri,1 t̃i,1 Pi,1 T̂i,1 Wi = wi,1

1 1 3 10 0.8 1.0 0.29
2 2 4 - 1.0 1.0 0.33

.

Now, ηu = 0.04 < τu. The platform is considered fair and no action is performed.

tests if the performance of very short workflow executions is improved by the
fairness mechanism. Its workflow set has three GATE workflows launched sequen-
tially, followed by a SimuBloch workflow. Experiment 3 tests whether unfair-
ness among different workflows is detected and properly handled. Its workflow
set consists of a GATE, a FIELD-II, a PET-Sorteo and a SimuBloch workflow
launched sequentially.

For each experiment, a workflow set using our fairness mechanism (Fairness
– F) is compared to a control workflow set (No-Fairness – NF). No method
from the literature could be included in the comparison because, as mentioned
in the introduction, they are either non-clairvoyant or offline. Fairness and
No-Fairness are launched simultaneously to ensure similar grid conditions.
For each task priority increase in the Fairness workflow set, a task in the
No-Fairness workflow set task queue is also prioritized to ensure equal race
conditions for resource allocation. Experiment results are not influenced by the
re-submission process overhead since both Fairness and No-Fairness experi-
ence the same overhead. Four repetitions of each experiment are done, along a
time period of four weeks to cover different grid conditions. Grid conditions vary
among repetitions because computing, storage and network resources are shared

Table 2. Workflow characteristics (→ indicate task dependencies)

Workflow #Tasks CPU time Input Output
GATE (CPU-intensive) 100 few minutes to one hour ∼115 MB ∼40 MB
SimuBloch (data-intensive) 25 few seconds ∼15 MB < 5 MB
FIELD-II (data-intensive) 122 few seconds to 15 minutes ∼208 MB ∼40 KB
PET-Sorteo (CPU-intensive) 1→80→1→80→1→1 ∼10 minutes ∼20 MB ∼50 MB
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with other users . We use MOTEUR 0.9.21, configured to resubmit failed tasks
up to 5 times, and with the task replication mechanism described in [12] acti-
vated. We use the DIRAC v6r5p1 instance provided by France-Grilles2, with a
first-come, first-served policy imposed by submitting workflows with decreasing
priority values.

Two different fairness metrics are used. The unfairness μ is the area under
the curve ηu during the execution:

μ =

M∑
i=2

ηu(ti) · (ti − ti−1),

where M is the number of time samples until the makespan. This metric mea-
sures if the fairness process can indeed minimize its own criterion ηu. In addition,
the slowdown s of a completed workflow execution is defined by:

s =
Mmulti

Mown

where Mmulti is the makespan observed on the shared platform, and Mown is the
estimated makespan if it was executed alone on the platform. In our conditions,
Mown is estimated as:

Mown = max
p∈Ω

∑
u∈p

tu,

where Ω is the set of task paths in the workflow, and tu is the measured duration
of task u. This assumes that concurrent executions only impact task waiting time,
not performance. For instance, network congestion or changes in performance
distribution resulting from concurrent executions are ignored. We use σs, the
standard deviation of the slowdown to quantify the unfairness. In Experiment 1,
the standard deviation of the makespan (σm) is also used.

3.2 Results and Discussion

Experiment 1 (identical workflows): Fig. 2 shows the makespan, unfairness de-
gree ηu, makespan standard deviation σm, slowdown standard deviation σs and
unfairness μ for the 4 repetitions. The difference among makespans and unfair-
ness degree values are significantly reduced in all repetitions of Fairness. Both
Fairness and No-Fairness behave similarly until ηu reaches the threshold value
τu = 0.2. Unfairness is then detected and the mechanism triggers task prioritiza-
tion. Paradoxically, the first effect of task prioritization is a slight increase of ηu.
Indeed, Pi,j and T̂i,j, that are initialized to 1, start changing earlier in Fairness

than in No-Fairness due to the availability of task duration values to compute
t̃i,j . Note that ηu reaches similar maximal values in both cases, but reaches them
faster in Fairness. The fairness mechanism then manages to decrease ηu back
under 0.2 much faster than it happens in No-Fairness when tasks progressively
complete. Finally, slight increases of ηu are sporadically observed towards the
end of the execution. This is due to task replications performed by MOTEUR:

2 https://dirac.france-grilles.fr

https://dirac.france-grilles.fr
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Fig. 2. Experiment 1 (identical workflows). Top: comparison of the makespans; middle:
unfairness degree ηu; bottom: makespan standard deviation σm, slowdown standard
deviation σs and unfairness μ.
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Fig. 3. Experiment 2 (very short execution). Top: comparison of the makespans; mid-
dle: unfairness degree ηu; bottom: unfairness μ and slowdown standard deviation.

when new tasks are created, the fraction of pending work W increases, which
has an effect on ηu. Quantitatively, the fairness mechanism reduces σm up to a
factor of 15, σs up to a factor of 7, and μ by about 2.

Experiment 2 (very short execution): Fig. 3 shows the makespan, unfair-
ness degree ηu, unfairness μ and slowdown standard deviation. In all cases, the
makespan of the very short SimuBloch executions is significantly reduced for
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Table 3. Experiment 2: SimuBloch’s makespan, average wait time and slowdown

Run Type m (secs) w̄ (secs) s

1
No-Fairness 27854 18983 196.15
Fairness 9531 4313 38.43

2
No-Fairness 27784 19105 210.48
Fairness 13761 10538 94.25

3
No-Fairness 14432 13579 182.68
Fairness 9902 8145 122.25

4
No-Fairness 51664 47591 445.38
Fairness 38630 27795 165.79
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Fig. 4. Experiment 3 (different workflows). Top: comparison of the slowdown; middle:
unfairness degree ηu; bottom: unfairness μ and slowdown standard deviation.

Fairness. The evolution of ηu is coherent with Experiment 1: a common ini-
tialization phase followed by an anticipated growth and decrease for Fairness.
Fairness reduces σs up to a factor of 5.9 and unfairness up to a factor of 1.9.

Table 3 shows the execution makespan (m), average wait time (w̄) and slow-
down (s) values for the SimuBloch execution launched after the 3 GATE. As it
is a non-clairvoyant scenario where no information about task execution time
and future task submission is known, the fairness mechanism is not able to give
higher priorities to SimuBloch tasks in advance. Despite that, the fairness mech-
anism speeds up SimuBloch executions up to a factor of 2.9, reduces task average
wait time up to factor of 4.4 and reduces slowdown up to a factor of 5.9.

Experiment 3 (different workflows): Fig. 4 shows slowdown, unfairness degree,
unfairness μ and slowdown standard deviation σs for the 4 repetitions. Fairness
slows down GATE while it speeds up all other workflows. This is because GATE is
the longest and the first to be submitted; in No-Fairness, it is favored by resource
allocation to the detriment of other workflows. The evolution of ηu is similar to
Experiments 1 and 2. σs is reduced up to a factor of 3.8 and unfairness up to a
factor of 1.9.
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In all 3 experiments, fairness optimization takes time to begin because the
method needs to acquire information about the applications which are totally
unknown when a workflow is launched. We could think of reducing the time
of this information-collecting phase, e.g. by designing initialization strategies
maximizing information discovery, but it couldn’t be totally removed. Currently,
the method works best for applications with a lot of short tasks because the first
few tasks can be used for initialization, and optimization can be exploited for the
remaining tasks. The worst-case scenario is a configuration where the number
of available resources stays constant and equal to the number of tasks in the
first submitted workflow: in this case, no action could be taken until the first
workflow completes, and the method would not do better than first-come-first-
served. Pre-emption of running tasks should be considered to address that.

4 Conclusion

We presented a method to address unfairness among workflow executions in an
online and non-clairvoyant environment. We defined a novel metric ηu quantify-
ing unfairness based on the fraction of pending work in a workflow. It compares
workflow activities based on their ratio of queuing tasks, their relative durations,
and the performance of resources where tasks are running. Performance is de-
fined from the variability of task duration in the activity: good performance is
assumed to lead to homogeneous task durations. To separate fair configurations
from unfair ones, a threshold on ηu was determined from platform traces. Unfair
configurations are handled by increasing the priority of pending tasks in the least
performing workflows. This is done by estimating the number of running tasks
that these workflows should have to bring ηu under the threshold value.

The method was implemented in the MOTEUR workflow engine and deployed
on EGI with the DIRAC resource manager. We tested it on four applications
extracted from VIP, a science gateway for medical simulation used in production.
Three experiments were conducted, to evaluate the capability of the method to
improve fairness (i) on identical workflows, (ii) on workflow sets containing a
very short execution and (iii) on different workflows. In all cases, results showed
that our method can very significantly reduce the standard deviation of the
slowdown, and the average value of our metric ηu.

The work presented here is a step in our attempt to control computing platforms
where very little is known about applications and resources, and where situations
change over time. Our works in [12,20] consider similar platform conditions but
they target completely different problems, namely fault-tolerance and granularity
control. We believe that results of this paper are the first ones presented to control
fairness in such conditions which are often met in production platforms. Future
work could include task pre-emption in the method, and a sensitivity analysis on
the influence of the relative taskduration (Ti,j) andof theperformance factor (Pi,j).
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Abstract. Work Stealing has proved to be an effective method for load
balancing regular divide-and-conquer (D&C) applications on heteroge-
neous distributed systems, but there have been relatively few attempts
to adapt it to address irregular D&C applications. For such applications,
it is essential to have a mechanism that can estimate dynamic system
load during the execution of the applications. In this paper, we evaluate a
number of work-stealing algorithms on a set of generic Unbalanced Tree
Search (UTS) benchmarks. We present a novel Feudal Stealing work-
stealing algorithm and show, using simulations, that it delivers consis-
tently better speedups than other work-stealing algorithms for irregular
D&C applications on high-latency heterogeneous distributed systems.
Compared to the best known work-stealing algorithm for high-latency
distributed systems, we achieve improvements of between 9% and 48%
for irregular D&C applications.

Keywords: Irregular Parallelism, Work Stealing, Divide-and-Conquer,
Heterogeneous Systems.

1 Introduction

Work stealing [4], where idle “thieves” steal work from busy “victims”, is one
of the most appealing load-balancing methods for distributed systems, due to
its inherently distributed and scalable nature. Several good work-stealing algo-
rithms have been devised for distributed systems with non-uniform communica-
tion latencies [2,3,14,15,13]. Most of these algorithms are, however, tailored to
regular Divide-and-Conquer (D&C) applications. In scientific computations, for
example, it is very common to encounter irregular D&C applications, where the
structure of parallelism for different application tasks varies quite significantly.

We previously showed [10] that in order to obtain good speedups for irregu-
lar D&C applications, it is essential to use dynamic system load information as
part of a work-stealing algorithm. In this paper, we consider several algorithms
that can be used to obtain suitable load information. In particular, we compare
centralised (where this information is kept on a fixed set of nodes), distributed
(where this information is exchanged in a peer-to-peer way between all nodes)

F. Wolf, B. Mohr, and D. an Mey (Eds.): Euro-Par 2013, LNCS 8097, pp. 114–125, 2013.
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Fig. 1. Example task graph for an irregular D&C application

and hybrid (a combination of the two) methods for obtaining load informa-
tion. We also describe a novel Feudal Stealing algorithm, a new algorithm that
exploits dynamic load information, but which significantly outperforms other
similar work-stealing algorithms in terms of the speedups that are obtained.
This paper makes the following specific research contributions:

– We present a novel Feudal Stealing algorithm, which uses hybrid dynamic
load information approach;

– We evaluate representative state-of-the-art work-stealing algorithms that use
centralised, distributed and hybrid dynamic load information on the Unbal-
anced Tree Search (UTS) benchmark of irregular D&C applications;

– We show, using simulations, that our new Feudal Stealing algorithm delivers
notably better speedups on irregular D&C applications than the other state-
of-the-art algorithms we consider.

2 Work Stealing for Divide-and-Conquer Applications

Divide-and-conquer (D&C) applications can be represented by task trees, where
nodes in the tree represent tasks, and edges represent parent-child relationships.
One especially interesting class is that of irregular D&C applications, whose task
trees are highly unbalanced (see Fig. 1), and which frequently occur in scientific
computations (e.g. Monte-Carlo Photon Transport simulations [7], implementa-
tions of the Min-Max algorithm and Complex Polynomial Root Search [6]). They
are also frequently used as benchmarks for evaluating load-balancing algorithms
(e.g. the Unbalanced Tree Search [12] and Bouncing Producer-Consumer [5]
benchmarks). We focus on load balancing irregular D&C applications on widely
distributed systems, which comprise a set of clusters communicating over high-
latency networks. Each cluster comprises a set of processing nodes, where nodes
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from the same cluster are connected by fast, local-area networks. Such systems
correspond to grid-like or cloud-like server farms. They are typically highly het-
erogeneous both in terms of the characteristics of the individual nodes (process-
ing power, memory characteristics etc.) and the networks that connect clusters
(communication latency, bandwidth etc.). This paper focuses on how to deal
with heterogeneous communication latencies in such systems.

Each processing node stores the tasks that it creates in its own task pool. Load
balancing between nodes uses work stealing. In such a setting, when a node’s task
pool becomes empty, that node becomes a thief. The thief sends a steal attempt
message to its chosen target node. If the target has more than one task in its
task pool, it becomes a victim and returns one (or more) tasks to the thief.
Otherwise, the target can either forward the steal attempt to some other target
or, alternatively, it can send a negative response to the thief, which then deals
with it in an appropriate way (either by initiating another steal attempt or by
delaying further stealing). To make our discussion more focused, we assume that
only one task is sent from the victim to the thief, and that any targets that do
not have any work will always forward the steal attempt to some other target.
In addition, following the usual practice in work stealing for divide-and-conquer
applications, we assume that the victim always sends the oldest task from its task
pool to the thief. In divide-and-conquer applications, this usually corresponds to
the largest task, that also generates the most additional parallelism. Finally, we
assume that execution starts with one node executing the main task (the root
of the task tree), and all other nodes are thieves that start stealing immediately.

In order to hide the potentially high communication latencies that can occur
in distributed systems, it is essential that work-stealing algorithms employ good
methods for selecting targets. This serves to minimise the number of wasted mes-
sages. Work-stealing algorithms can be divided into two broad classes, according
to the type of information that they use for the target selection: i) algorithms
that only use static information about network topology; and ii) algorithms that
also use dynamic load information.

2.1 Algorithms That Use Only Network Topology Information

The most important algorithms that use only network topology information are:

– Random Stealing [3], where a thief always selects a random target.
– Hierarchical Stealing [2], where nodes are organized into a tree, according to

communication latencies. A thief first tries stealing from closer nodes (i.e.
its descendants in the tree). If it fails to obtain any work there, it attempts
to steal from its parent, which then repeats the same procedure.

– (Adaptive) Cluster-Aware Random Stealing (CRS) [14], where each node
divides the set of all other nodes into two sets: i) nodes from the same cluster
(local nodes), and ii) those outside of it (remote nodes). A thief attempts to
steal in parallel from a random local node and a random remote node.In this
way, thieves hope to obtain work locally, but remote stealing will prefetch
work. In the adaptive variant, thieves prefer closer clusters.
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We have previously shown [10] that these algorithms perform well for regular
D&C applications, but that they run into problems for highly-irregular appli-
cations. In such applications, all the tasks may be concentrated on relatively
few nodes, and the semi-randomised way of selecting targets that is employed
by these algorithm can consequently perform badly. We have also shown that
it would be beneficial to extend them with mechanisms for obtaining and using
dynamic load information. Our main objective in the rest of the paper is to de-
scribe and compare different methods for obtaining and using load information
in work-stealing, in order to discover the methods that give the best estimation
of system load and the best overall speedups. We discuss existing methods in
the next section, our novel Feudal Stealing method is described in Section 3.

2.2 Algorithms That Use Dynamic Load Information

Some work-stealing algorithms use dynamic load information to estimate the
size of node task pools, and so inform the choice of target. In algorithms with
centralised load information, a fixed set of nodes is responsible for managing load
information. These nodes act as routers for steal attempts, forwarding them to
targets. There are two basic ways to do this:

1. Fully Centralised methods, where all nodes periodically send their load infor-
mation to a single central node. A thief sends a steal attempt to the central
node, and this is forwarded to the victim that is nearest to the thief1.

2. Hierarchical Load-Aware Stealing (HLAS) [11], analogous to Hierarchical
Stealing. Each node periodically sends its load information to its parent.
Based on its load information, a thief then attempts to steal from a child
with non-zero load. If all children have zero load, the steal attempt is sent to
the thief’s parent, which then repeats the same procedure for finding work.

The main appeal of such algorithms is that load information is updated reg-
ularly, and it will therefore be relatively accurate. However, this also means
that significant strain may be placed on the central nodes, since they have to
communicate frequently with the rest of the system. For high-latency networks
with fine-grained tasks, this information may also be inaccurate. In contrast, for
algorithms using distributed load information, each node holds its own approx-
imations of the load of all other nodes. A representative example is the Grid-
GUM Stealing algorithm [1]. In this algorithm, timestamped load information
is attached to each stealing-related message (steal attempts, forwarding of steal
attempts etc.). The recipient of a message compares this information against its
own load information, and updates both the information that is contained in the
message (if the message is to be forwarded further) and its own load information.
Provided that nodes frequently exchange load information, they will then obtain
good approximations to the system load. In algorithms with distributed load in-
formation, work-stealing is still fully decentralised, and no significant overheads

1 We also considered a variant of this algorithm where the thief forwards the steal
attempt to a random target with work, rather than to the closest one. This variant,
however, delivered consistently worse speedups, so we will not consider it further.
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Fig. 2. The work-stealing algorithms that this paper considers

are introduced in approximating system load [1]. However, the accuracy of the
load information that a node has (and, conversely, that the rest of the system
has about that node) depends on how often it communicates with the rest of
the system. An isolated node can easily have outdated load information, and the
rest of the system may also have outdated information about its load. Hybrid
algorithms combine both types of algorithms in order to overcome the disad-
vantages of each approach. We present one such method here, Cluster-Aware
Load-Based Stealing (CLS) [14], before introducing our novel extension, Feudal
Stealing. Like the CRS algorithm, the CLS algorithm considers only two levels
of communication latencies (local and remote). In each cluster, one node is nom-
inated as a central node, and every other node in the cluster periodically sends
its load information to this node. All nodes in the cluster, apart from the central
node, perform only (random) local stealing. When the central node determines
that the load of the cluster has dropped below some threshold, it initiates remote
stealing from a randomly selected remote node. This approach has several draw-
backs. Firstly, tasks that are stolen remotely are always stored on central nodes,
which means that additional messages are needed to distribute these tasks to
their final destinations. Secondly, as with CRS, when all tasks are concentrated
on a few nodes, random remote stealing may be unacceptable. Fig. 2 gives an
overview of the work-stealing algorithms that we consider in this paper.

3 Feudal Stealing

Feudal Stealing represents an attempt to combine the best features of the CRS,
CLS and Grid-GUM Stealing algorithms while avoiding their drawbacks. Its
basic principle is similar to the CRS algorithm. A thief initiates both (random)
local and remote stealing in parallel. Remote stealing is done via central nodes
(one for each cluster, as in the CLS algorithm). The thief sends a remote-steal
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Fig. 3. Overview of Feudal Stealing

message to its central node, which then forwards it to some other, appropriately
chosen, central node. When a central node receives a remote-steal message, it
forwards it either to some node in its own cluster or to some other central node,
depending on the cluster load. When a node is found that has work, one task
from its task pool is returned to the original thief via the central nodes.

Fig. 3 gives an overview of Feudal Stealing. Here, the grey node is a thief,
which initiates remote and local stealing attempts. The local stealing message,
whose path is shown by red arrows, visits random local nodes, looking for work.
In this case, a suitable local node is found in the second hop, and the work is
immediately returned to the thief. The remote stealing message, whose path is
shown by blue arrows, starts by visiting the central node of the local cluster,
h0. It is then forwarded to the other central nodes, until one whose cluster has
work is found (the third hop in the figure, h2 ). It is then forwarded to the node
within the cluster that has work (hop 4), which returns the work to h0 (hop 5).
This forwards the work to the original thief (hop 6).

In Feudal Stealing, as with the CLS algorithm, central nodes keep load in-
formation for their cluster. However, they also keep load information for other
clusters, and this information is used when a central node needs to decide where
to forward a remote-steal message. The remote-steal message is forwarded to
a random central node, with respect to estimated loads of central nodes. Load
information is exchanged between central nodes in a similar way to Grid-GUM
Stealing. The central node’s load approximation is attached to each message
that is sent (or forwarded) from that node. Each central node updates its own
load information from the messages that it receives (see Fig. 4).

4 Simulation Experiments

For our simulation experiments, we use the publically-available highly-tunable
SCALES2 work-stealing simulator [8]. SCALES has been shown to accurately
simulate realistic runtime systems [8,9]. It models irregular D&C applications

2 Source code is available at http://www.cs.st-andrews.ac.uk/jv/SCALES.tar.gz

http://www.cs.st-andrews.ac.uk/jv/SCALES.tar.gz
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Fig. 4. Exchanging load information between a central node and a message

on systems consisting of inter-connected groups of clusters. We have chosen
to use simulations for our experiments, rather than implementation in a real
runtime-system, solely in order to abstract from the details of specific runtime
systems. This enables us to ignore some specific overheads (e.g. task and thread
creation, message processing) that certain runtime systems impose, and which
can obstruct the results we are trying to obtain.

Our main benchmark is Unbalanced Tree Search (UTS) [12], which simulates
state space exploration and combinatorial search problems. UTS is commonly
used as a benchmark to test how a system copes with load imbalance. It models
a traversal of an implicitly constructed tree, parameterised by shape, depth, size
and imbalance. In binomial UTS trees, which we denote by UTS(m,q, rootDeg,
S), each node has m children with probability q, and has no children with prob-
ability 1− q. rootDeg is the number of children of the root node. When qm < 1,
this process generates a finite tree with an expected size of 1

1−qm . The product
qm also determines how unbalanced the UTS tree is. As this product approaches
1, the variation in the sizes of subtrees of the nodes increases dramatically. S de-
notes the cost (in miliseconds) of processing a node. In order to keep the number
of experiments manageable, we have decided to model one specific distributed
system consisting of 8 clusters, with 8 nodes in each cluster, giving a total of
64 nodes, as shown in Fig. 5. Each cluster is split into two continental groups
of clusters, with an inter-continental latency of 80ms. Each continental group
is further split into two country groups, with an inter-country latency of 30ms.
The latency between clusters that belong to the same country group was set
to be 10ms, and the latency between nodes from the same cluster to be 0.1ms
This models the latencies of a system where clusters from different continents,
countries and sites within countries are connected into one large supercomputer.
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Fig. 5. The model of a system used in simulations

4.1 Results

This section evaluates the speedups that can be obtained by work-stealing al-
gorithms that use dynamic load information. We define speedup to be the ra-
tio of the simulated runtime of an application on a one-node system node to
that on the distributed system. In our first set of experiments, we consider the
UTS(7, q, 3000, 5ms) applications, where q takes values 0.08, 0.09.0.1, 0.11, 0.12,
0.13 and 0.14. This represents applications with a large number of tasks (ap-
proximately 7011, 8246, 9223, 13044, 18751, 33334 and 150000 respectively),
and with increasing irregularity (where as q increases, so the tree becomes more
unbalanced). Fig. 6 shows the speedups of these applications under all of the
algorithms that we have considered. We observe that for less irregular applica-
tions, Feudal Stealing, Grid-GUM Stealing and Fully Centralised Stealing have
approximately the same performance. However, for more irregular applications,
Feudal Stealing notably outperforms all the other algorithms. We can also ob-
serve that algorithms that use distributed load information (Feudal Stealing and
Grid-GUM Stealing) generally outperform those that mostly rely on centralised
load information. The improvements in speedup that Feudal Stealing brings over
the next best algorithm (Grid-GUM) vary from 9% for UTS(7, 0.11, 3000, 5ms)
(qm = 0.77) to 48% for UTS(7, 0.14, 3000, 5ms) (qm = 0.98).

Fig. 7 helps explain these results. We focus here on the three algorithms that
deliver the best speedups (Fully Centralised, Grid-GUM Stealing and Feudal
Stealing), and on the highly-irregular applications. The left part of the figure
shows the percentage of successful steal attempts (i.e. those that manage to
locate work). As expected, we can see that, for more irregular applications, the
fully-centralised algorithm has the highest success rate. Feudal Stealing also has
a very high success rate, whereas Grid-GUM is noticeably worse than the other
two. The right part of the figure shows the average time that it takes for a
node to obtain work (i.e. the average time between the initiation of a successful
steal attempt and the arrival of the work to the thief). We can see that the
time it takes to locate work is greatest for fully centralised stealing. This is
expected, since all steal attempts need to go via the central node. This makes the
steal attempts quite expensive for nodes that are further away from the central
node. In Feudal Stealing and Grid-GUM, nodes are able to obtain work much
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Fig. 6. Speedups for the UTS(q,7,3000,5ms) applications
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Fig. 7. Percentage of successful steal attempts (left) and average time it takes to suc-
cessfully complete a steal (right) for the UTS(q,7,3000,5ms) applications

faster. Together, these two figures show why Feudal Stealing outperforms other
algorithms. Central nodes are able to obtain relatively accurate load information,
resulting in good selection of stealing targets, and the stealing messages are
routed in such way that they quickly reach the targets with work, resulting in
rapid response to the steal attempts. Grid-GUM and Fully Centralised stealing
sacrifice one of these two features (accurate load information for Grid-GUM and
rapid response to steal attempts for the Fully Centralised stealing) in order to
make the other as good as possible.

Similar conclusions can be obtained when we look at the other examples of the
UTS applications. For example, Fig. 8 shows the speedups of the UTS(15,q,3000,
10ms) applications, for q ∈ {0.062, 0.063, 0.064.0.065.0.066}. This represents
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Fig. 8. The speedups of the UTS(q,15,3000,10ms) applications

applications with larger number of more coarse-grained tasks, with the high de-
gree of irregularity (qm ∈ {0.93, 0.945, 0.96, 0.975, 0.99}). In these applications,
the probability of a node having children is lower than for the UTS(7,q,3000,5ms)
applications; however, each such node generates more children. Also, the se-
quential tasks are larger. We can see from the figure that Feudal Stealing and
Grid-GUM give the best speedups (with Feudal Stealing performing best), and
that both algorithms significantly outperform all other algorithms. The improve-
ments in speedup of Feudal Stealing over the next best algorithm (Grid-GUM
Stealing) range from 11% for UTS(15, 0.062, 3000, 10ms) (qm = 0.93) to 20%
for UTS(15, 0.066, 3000, 10ms (qm = 0.99).

5 Conclusions and Future Work

In this paper, we have proposed a novel Feudal Stealing work stealing algorithm
that uses a combination of centralised and distributed methods for obtaining dy-
namic system load information.We compared, using simulations, the performance
ofFeudal Stealing against the performance of algorithms that use centralised, fully-
distributed, and a combination of both methods for obtaining dynamic load infor-
mation. We have shown that Feudal Stealing outperforms all of these algorithms
on heterogeneous distributed systems for the Unbalanced Tree Search benchmark,
which models irregular divide-and-conquer (D&C) applications. Our previous re-
sults (reported in Janjic’s PhD thesis [8]) have demonstrated that Feudal Stealing
also outperforms state-of-the-art work-stealing algorithms that do not use load
information on heterogeneous systems, and that it delivers comparable speedups
to them on homogeneous systems and for regular D&C applications. Collectively,
these results show that Feudal Stealing is the method of choice for load balancing
the D&C applications on various different classes of systems (high-performance
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clusters of multicore machines, grids, clouds, skies etc.). Furthermore, we believe
that this algorithm is also applicable to other classes of parallel applications (e.g.
applications with nested data-parallelism and master-worker applications).

As future work, we plan to test the implementation of Feudal Stealing in a real-
istic runtime system (e.g. the Grid-GUM runtime system for Parallel Haskell [1],
or the Satin system for distributed Java [16]) and to evaluate its performance
on larger scale parallel applications. We also plan to incorporate information
about the sizes of parallel tasks in the definition of the load for each node. This
information has been shown to be important for selecting the task to offload
in response to a steal attempt [9],. We envisage it can further improve stealing
target selection, and hence speedup. Finally, we plan to introduce a measure of
heterogeneity of a computing system, and to investigate “how heterogeneous”
a system needs to be for Feudal Stealing to outperform other state-of-the-art
work-stealing approaches.
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Abstract. High-Performance Computing systems (HPCs) have grown
in popularity in recent years, especially in the form of Grid and Cloud
platforms. These platforms may be subject to periods of overload. In
our previous research, we found that the Projected-SLR list scheduling
policy provides responsiveness and a starvation-free scheduling guaran-
tee in a realistic HPC scenario. This paper extends the previous work to
consider networking delays in the platform model and inaccurate esti-
mates of execution times in the application model. P-SLR is shown to be
competitive with the best alternative scheduling policies in the presence
of network costs (up to 400% computation time) and where execution
time estimate inaccuracies are within generous error bounds (<1000%)
while still giving starvation-free behaviour.

1 Introduction

High-Performance Computing systems (HPCs) made up of a large number of
parallel processors have become increasingly popular. To increase the available
computing power, geographically-distributed networks of such clusters have been
created, and these are known as grids [1]. These grids are often heterogeneous,
with machines of varying capacity and architecture. The geographic distribution
of the clusters in the grid gives rise to network delays when transferring data.

The pieces of work run on grids are rarely run in isolation, but instead form
part of workflows, with dependencies between different computational tasks [2,3].
Each self-contained workflow is known as a job, made up of non-pre-emptible
multicore tasks with dependencies.

Organisations that own grid or HPC capacity as well as cloud providers have
an interest in providing Quality of Service (QoS) to their users. A particularly
important aspect of QoS for many users is responsiveness. It is almost inevitable
for grids and clouds to experience significant variations in demand, which can
lead to transient periods of overload where some jobs have to wait. Industrial
users interviewed by the authors indicated their desire for response times of jobs
to be proportionate to the jobs’ execution times. Furthermore, users desire fair
treatment of their jobs. An example of a particularly unfair situation is if some
jobs experience starvation (unbounded waiting time) under overload.

Previous work on fair scheduling for workflows with dependencies has been
performed for offline [4] and batching [5] schedulers. These are ineffective when
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there is a wide variation in runtimes [6,7,8] because the response times required
of the smallest tasks (hours) are orders of magnitude smaller than the execution
times of the largest tasks (months), so no batch size will suit both. Effective
prioritisation by the scheduler is required to keep the system responsive for the
smallest tasks but avoid starvation for the largest ones.

In previous work [6], the authors developed an online list scheduling policy for
dependent tasks called P-SLR that achieves responsiveness for small tasks and
also provides a guarantee that no task will ever starve. P-SLR gave statistically
indistinguishable responsiveness and fairness when compared to the best alter-
native scheduler, Shortest Remaining Time First (SRTF), even though SRTF is
not starvation-free.

The P-SLR scheduler requires an estimate of the task execution time. The
previous work [6] assumed that these times were known exactly. However, it is
an ongoing field of research to accurately predict task execution times before
they run, and they will always have their limitations [9]. Although users can
provide hints about their task execution times, these are also far from accurate
[10]. This paper describes how the models of the original work were extended to
include these. The performance of the P-SLR scheduler is evaluated as to the
impact of these inaccurate estimates.

Network delays also have an effect on scheduling. These can be described
using the communication to computation ratio (CCR) value [11]. In the original
analysis, only a single value of CCR was considered, using a network with a single
central router. We extend the network model to a hierarchical architecture, and
investigate the impact of changing CCR on the responsiveness and fairness of
the P-SLR scheduling policy.

The context and models which define the scenario considered are presented
in section 2. The considerations of measuring responsiveness and fairness, along
with the P-SLR scheduling policy are defined in Section 3. Section 4 will de-
scribe the experimental method used to evaluate P-SLR against the alternative
scheduling policies, and Section 5 will present the results of this evaluation.

2 Models

2.1 Application Model

A non-preemptible piece of work to be executed on one or more processors con-
currently will be known as a task, denoted T i. A set of tasks with dependencies
is a job, denoted Jk. A set of jobs will be known as a workload W . Dependen-
cies will be in the form of a directed acyclic graph (DAG), following [2]. Each
task has an associated architecture, which defines which resources in the grid are
available for it to execute on. The following terms define the attributes of tasks
and jobs.

– Task execution time : T i
exec ∈ N�

– Task cores required : T i
cores ∈ N�

– Task start time: T i
start ∈ N0
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– Task finish time: T i
finish = T i

start + T i
exec

– Task dependendents/successors: T i
succ

– Task upward rank: T i
R = T i

exec +max(T j
R ) • ∀T j ∈ T i

succ

– Job arrival time (not necessarily the same as start time): Jk
arrive ∈ N0

– Job start time: Jk
start = min

(
T i
start

)
• ∀T i ∈ Jk

– Job finish time: Jk
finish = max

(
T i
finish

)
• ∀T i ∈ Jk

– Job response time: Jk
response = Jk

finish − Jk
arrive

– Job total execution time: Jk
exec =

∑(
T i
exec × T i

cores

)
• ∀T i ∈ Jk

– Job critical path: Jk
CP = max

(
T i
R

)
• ∀T i ∈ Jk

2.2 Inaccurate Estimates of Execution Times

In a realistic system, it is assumed that an estimate of execution time, albeit
inaccurate, will be available from the user or from an automated job profiler.
In simulation, however, the exact execution times are known in advance, so
inaccuracies need to be introduced into the model. In this work, two possible ways
are considered to convert exact execution times (eorig) into inaccurate estimates,
in order to evaluate the impact these inaccuracies have on the schedule quality:

Normal Error

This creates an estimate by sampling a normal distribution, shown in Equation
1, with a parameter N to vary the standard deviation, and hence the inaccuracy,
of the estimate. The evaluation considers a wide range of values for N, between
1 % and 108 %.

eest =

⌈
normal(μ = eorig,σ = eorig ×

N

100
)

⌉
(1)

Log Rounding

This form of inaccuracy (Equation 2) reflects the expertise of users in know-
ing whether a job will take minutes, hours or days, but without much greater
precision. M is the base of the logarithm used, with smaller values giving larger
numbers of possible classes. The evaluation considers bases between 1 (no round-
ing) and 107 (all are in the same class).

eest = M �logM (eorig)� (2)

2.3 Platform Model

The resources in the grid are grouped into homogeneous clusters. These are
connected together in a tree structure with a router at each node and a cluster
at each leaf. Network delays are only considered between clusters, as delays inside
a cluster are assumed to be negligible.

Jobs are submitted to the root of the tree and are randomly cascaded down
the tree until a cluster is reached. Tasks from a single job that share the same
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architecture are kept together and are allocated to the same cluster, to avoid
unnecessary network costs. The detailed scheduling decisions are then made by
a list scheduler executing on the clusters.

2.4 Network Delay Model

Fig. 1. Thin Tree Net-
work Diagram

The network model is considered to be that of a thin
tree [12]. This is where nodes at lower levels of the tree
have greater communication speed between them than
nodes higher in the tree. This reflects what is seen in
geographically distributed networks, where nodes further
apart tend to have slower connections. This can approxi-
mate a real network, because all fully connected networks
possess a spanning tree [13].

The aim of this network model is to provide an ac-
ceptable model to investigate the effects of network de-
lays on scheduling while adding minimal computational
overhead. The network speed is calculated by using the
fact that the network is tree structured. Therefore, any
two clusters will share a common parent node, and the
number of nodes in between a cluster and the common
parent is measured in levels. The speed equation takes a
parameter p to vary how much slower the higher levels of
the network become.

N speed = (max_levels_to_common (C1, C2))
p (3)

To find the data volume to transfer, the communication to computation ratio
parameter (CCR) is used [11], along with the execution time of the task T i

exec,
as shown in Equation 4.

T i
data =

T i
exec

CCR
∗ (1− CCR) (4)

The time taken to transfer data between two tasks is determined by dividing the
data volume required by the speed of the network between them.

T i
net_delay =

T i
data

Nspeed

(5)

3 Metrics and the P-SLR Scheduler

In order to evaluate the responsiveness and fairness achieved by scheduling poli-
cies, appropriate metrics are required. We suggested in [6] that the most infor-
mative metric for measuring responsiveness is the Schedule Length Ratio (SLR)
[3], when applied to each job in a workload. The critical path of a job is the
longest path through the job’s dependency graph and defines the minimum time
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Algorithm 1. Projected SLR ordering algorithm
projected_slr(T i, Jk, curr_time, Q) =(

T i
R + curr_time+ 1

)
− Jk

arrive

Jk
CP

+

⌊
curr_time− Jk

arrive

max (Jn
CP • Jn ∈ Q))

⌋2

that the job can be executed in even if the number of processors was unbounded
[14]. The SLR of a job is its response time relative to the length of its critical
path.

Fig. 2. Classes of prioritisation by
execution time

We proposed using the distribution of
SLR values to measure fairness [6], of which
three kinds can be described (Figure 2).
Class 1 is where the responsiveness of longer
jobs is prioritised over that of short jobs,
with Class 2 being the opposite case. Class
3 is where there is equal prioritisation of
responsiveness with respect to execution
times.

The common scheduling policy First In
First Out (FIFO) falls into Class 1 because
on average, each job will wait in the queue
for the same length of time. This waiting
time is proportionately larger relative to ex-
ecution time for smaller tasks, penalising the
SLR of short-running jobs. This pattern is true for any policy not considering
execution times. The Longest Remaining Time First (LRTF) scheduler also falls
into Class 1. The Shortest Remaining Time First (SRTF) scheduler is of Class
2. The authors designed the P-SLR scheduler to exhibit Class 3 behaviour, and
demonstrated this in [6].

In order to make use of execution time estimates, LRTF, SRTF and P-SLR use
the concept of Upward Rank introduced by [3]. Upward Rank is defined for each
task, and is the length of the critical path that remains to be completed after
the task has executed. LRTF and SRTF sort the list of tasks by decreasing and
increasing Upward Rank, respectively. These policies can suffer from starvation
under overload, because the shortest (LRTF) or longest (SRTF) tasks may never
reach the head of the queue (Q).

P-SLR uses the upward rank to calculate a forward projection of the job finish
time and hence SLR if the considered task was run immediately (Algorithm 1).
The task where the P-SLR is largest (is most ‘late’) is run first, letting small
jobs ‘jump’ the queue as their SLRs are more sensitive to waiting time. This
is distinct from the approach used by [5] which uses the downward rank (looks
backward) to calculate a partial value for SLR based on the tasks that have
already completed.
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P-SLR is starvation-free because the projected SLR rises for all jobs as they
wait, which means all jobs will eventually run, as long as overloads are tran-
sient. In the case of extreme overload where the work queue continually grows
unboundedly, the waiting time term (the second part of the equation in Al-
gorithm 1) comes to dominate, reverting the ordering to that of FIFO, thus
avoiding starvation in all cases.

4 Evaluation Method

The evaluation method will seek to investigate two principal hypotheses:
1: Projected-SLR delivers better responsiveness and fairness than schedulers

which do not use execution time estimates, even when the estimate inac-
curacy is significant. P-SLR is competitive with scheduling policies that do
make use of execution time estimates.

2: Projected-SLR delivers competitive responsiveness and fairness metrics in-
dependent of communication to computation ratios.

4.1 Simulation Details

The evaluation will be run using the simulation framework developed and vali-
dated in [6] which implements the models and extensions described above. The
platform used is the one shown in Figure 1, with each cluster having 400 cores,
and Cluster 1,3,4 being of architecture Kind1, whereas Cluster 2 is of archi-
tecture Kind2. These values have been chosen to reflect those we observed in
industry. Because there are elements of randomness in the allocation and in the
workloads used, numerous simulation trials will be run for each experiment.

Responsiveness will be measured using the median value of the worst-case
SLRs observed in each trial. The worst-case SLR is used because of the desire
for high responsiveness to be achieved for all users. Using the median value
instead of the mean will prevent any truly pathological cases from biasing the
results.

Fairness will be measured using the median of the Gini Coefficients [15] cal-
culated for the SLRs in each trial. The Gini Coefficient (GC) is a measure of
the inequality of resources allocated to a given population. In this instance, it is
the allocation of responsiveness to jobs by the scheduler. The GC takes a value
between 0 (completely fair) and 1 (completely unfair).

Statistical significance will be tested using a repeated measures t-test because
the workloads are the same, meaning the job SLRs can be directly compared.
The threshold for statistical significance is set at 5%.

4.2 Scheduling Policies

Several common policies will be used as a basis for comparison with P-SLR. The
random ordering policy simply chooses a random task to run. While it does not
guarantee to be starvation-free, the probability of a task starving forever tends
towards zero as time passes. The FIFO Task policy runs tasks in the order that
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they become ready, which is starvation-free. FIFO Job is an alternative to FIFO
Task that runs tasks in the order that their jobs arrived on the HPC . This avoids
a problem with FIFO Task where tasks that have just become ready are added
to the tail of the queue, which means that jobs with many levels of dependencies
can end up waiting the length of the queue multiple times.

The Fair Share ordering policy [16] is based on the user who submitted a job.
Each user is a member of a group, which has a certain share of the resources of
the HPC. The share of these groups is organised in a tree. The priority of tasks is
not static, but depends on the instantaneous number of resources already being
consumed by the user and their parent groups divided by their allocated share.

Simulation of an overload situation is necessary so that some jobs will have to
wait, and the ability of the schedulers to keep responsiveness and fairness high
can be compared. The overload rate can be defined as a percentage of the arrival
rate of jobs compared to the maximum processing rate achievable, and a figure
of 120% is used.

5 Results

5.1 Inaccurate Execution Times

For all the results with inaccurate execution times, the Random, FIFO Task,
FIFO Job and FairShare policies are not affected by the inaccurate estimates,
because they do not make use of these estimates.
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Fig. 3. Responsiveness
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Responsiveness. With normally distributed inaccuracies (Figure 3a), the P-
SLR policy dominates by having the lowest worst-case SLR values until the
standard deviation is 1000% of the value of the exact time. It is reasonable to
assume that virtually all real-world estimates will have ranges less than 1000%.

The difference between P-SLR and SRTF in this range is not statistically
significant, which shows the strength of the P-SLR policy as it adds the guarantee
of non-starvation. The divergence after 1000% is due to this guarantee because
SRTF is letting the largest tasks starve. The largest tasks have SLRs which are
least sensitive to waiting time, keeping the worst-case SLR fairly low.

Once the estimation error gets sufficiently large, the estimates become ef-
fectively random. Therefore, the worst-case SLR of the P-SLR orderer rises to
similar levels as the schedulers that do not make use of execution time estimates.

Similar results are apparent where estimates are log-rounded (Figure 3b).
Where execution times are rounded to the nearest power of 10 or below, P-SLR
dominates the worst-case SLR values, although it is not statistically distinguish-
able from SRTF. Still, it is to be expected that users could give a good indication
of their job taking closer to 1, 10, 100, etc., minutes.

As the estimates get yet more coarse above a base of 10, SRTF provides better
worst-case responsiveness than P-SLR. This is to be expected, because inaccurate
estimates move the behaviour of schedulers closer to Class 1 behaviour. As P-
SLR with accurate estimates exhibits Class 3 behaviour, any perturbation to
this will make it tend towards Class 1 behaviour. Whereas for SRTF, because
it shows Class 2 behaviour, perturbations will initially make its behaviour more
like Class 3, although eventually it too will exhibit Class 1.

The LRTF orderer, as expected, shows poorer worst-case responsiveness than
any of the policies that do not consider execution time. This is because it makes
the smallest tasks starve, and these tasks are the ones whose SLR is most sen-
sitive to waiting time. LRTF is useful, though, because it gives an upper bound
on how poor responsiveness can get because it shows the most extreme Class 1
style behaviour.

These results show that up to a threshold value of 103, the P-SLR and SRTF
policies have statistically insignificant differences in responsiveness. Responsive-
ness for P-SLR approaches that of the schedulers that do not include execution
time estimates when the error for either normal standard deviation percentage
and log rounding is around 107. These values are far above the maximum levels
of inaccuracy of around 100% found by [10]. This would suggest that in reality,
the P-SLR scheduler could be considered most favourable for practical schedul-
ing, because it gives a guarantee of non-starvation, unlike SRTF, and leads to
an improvement in responsiveness performance over that of schedulers that do
not consider execution time estimates.

Fairness. As with the results for responsiveness, the fairness results for normally
distributed error (Figure 4a) are dominated by P-SLR at the lowest values, al-
though they are also statistically indistinguishable from SRTF up to a threshold
of 100%. This is to be expected, as P-SLR is designed to show Class 3 behaviour,
which emphasises fairness. Above this threshold, P-SLR exhibits progressively
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Fig. 4. Fairness

more Class 1-like behaviour, as poor estimates for small tasks cause their re-
sponsiveness to fall. SRTF causes the largest jobs to starve, but because their
SLRs are less sensitive to waiting time, the SLR distribution remains closer to
Class 3.

The normally-distributed inaccurate estimator was not able to introduce suf-
ficient error below a standard deviation percentage of 108 to cause significant
impact on the fairness of the SRTF policy. If the estimation errors are normally
distributed, therefore, SRTF may provide better fairness than P-SLR when the
standard deviation of the errors is above 100%.

With the log rounding estimator (Figure 4b), other than the case where there
was no inaccuracy, the SRTF orderer was statistically significantly more fair,
according to the Gini Coefficients, than for P-SLR. As before, this is due to the
SRTF causing the largest jobs to starve, but this not having a large effect on
those jobs’ SLR values. P-SLR immediately starts to exhibit Class 3 behaviour
in the presence of inaccurate estimates, whereas SRTF moves from Class 2, then
to Class 3, before eventually showing Class 1 at a rounding power of 107 .

The LRTF policy shows the worst-case unfairness, as it is the most extreme
example of Class 1 behaviour. The bound on how unfair it makes things improve
as estimates get worse, because it is not as able to achieve the worst case.

The fairness results show that for small inaccuracies in execution time esti-
mates, P-SLR and SRTF show similar results. However, for larger inaccuracies,
SRTF gives fairer results as it shows more of a Class 3 behaviour profile, although
this is due to the largest jobs being starved of resources.

Hypothesis 1 stated thatP-SLRwoulddeliver better responsiveness and fairness
than schedulers that do not use execution times, even when the estimate accuracy
is significant. This has been shown to be the case, with better responsiveness and
fairness when the standard deviation inaccuracy percentage is less than 107 and
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when the log rounding base is less than 108, all extremely high levels of inaccu-
racy. P-SLR has been shown to be competitive with SRTF in responsiveness up to
a threshold inaccuracy of 10 times the value of the original estimate. In fairness, P-
SLR is competitive at small inaccuracies, but SRTF dominates above this, refuting
a part of the hypothesis. It is then a tradeoff for a grid owner to decide whether, if
estimates of execution time have large inaccuracies, absolute fairness (SRTF) or an
absence of starvation (P-SLR) is more important.

5.2 Networking Delays

Responsiveness. A pronounced feature (Figure 5a) is that there is an improve-
ment in worst-case responsiveness when network costs become present at a CCR
of 0.2. This is because any network costs will increase the length of the critical
path, which means CPU resources are no longer the single bottleneck.
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Fig. 5. Network Delays

Throughout the range of network delays examined, P-SLR and SRTF showed
similar levels of responsiveness. SRTF was slightly better when there were no
network delays, but P-SLR was slightly better when there were delays present.
However, P-SLR and SRTF were not statistically significantly different.

The LRTF policy again shows the worst case bound of responsiveness because
it tends to starve the smallest tasks.

Fairness. The results in Figure 5b also show greater fairness in the presence of
network delays, because of the improvements in overall responsiveness. However,
in this case, P-SLR is stasticically significantly more fair than SRTF, except
where the CCR takes a value of 0.2. As CCR is increased, the unfairness increases
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more slowly for P-SLR than for SRTF. This is because although their worst case
values are similar (Figure 5a), P-SLR shows more Class 3 behaviour, giving a
better balance of SLR values overall.

The LRTF scheduler is the least fair at low values of CCR, but converges to a
similar level of fairness as those schedulers that do not consider execution times
at higher network costs. All the schedulers other than SRTF are very unfair
across the space of network delays when compared to P-SLR.

Hypothesis two considered whether P-SLR delivers competitive responsiveness
and fairness across the range of CCRs. P-SLR dominated all schedulers other
than SRTF in responsiveness, although it was statistically indistinguishable from
SRTF. In fairness, it dominated all other schedulers, except for SRTF where CCR
was 0.2. As network costs increased, the rate of decrease in fairness was lower
for P-SLR than for SRTF. This confirms this hypothesis, showing that across
the space of network costs, P-SLR provides equal or better responsiveness and
fairness than the best alternative scheduler, SRTF, but does so while in addition
providing a guarantee that no job will ever starve.

6 Conclusion

This paper revisited the work of [6], and investigated the robustness of the P-SLR
scheduling policy in the presence of networking delays and inaccurate execution
times.

The responsiveness and fairness performance of the P-SLR scheduler was
found to be robust to network delays. P-SLR provides equal or better respon-
siveness (measured by worst-case SLR) and fairness (measured by the Gini Co-
efficient of SLRs) in the presence of network delays than the best alternative
scheduler, SRTF, but does so while in addition providing a guarantee that no
job will ever starve.

The responsiveness performance of P-SLR was found to be robust below a
certain threshold of execution time inaccuracy. This threshold was 10 times
the original execution time of the task. Above this threshold, SRTF was able
to provide better responsiveness. P-SLR was not able to give the best fairness
compared to SRTF once any significant estimation inaccuracies were present,
because SRTF is better at keeping SLRs low for small tasks whose SLRs are
more sensitive to longer waiting times. However, P-SLR still dominated all other
alternative policies, showing that where estimates of execution time are available,
it can make good use of them, even where the inaccuracies are large.

Acknowledgements. We would like to thank the EPSRC (grant number EP/
F501374/1) for funding this research through the UK’s Large-Scale Complex IT
Systems (LSCITS) programme.

References

1. Albodour, R., James, A., Yaacob, N.: High level QoS-driven model for grid appli-
cations in a simulated environment. Future Generation Computer Systems 28(7),
1133–1144 (2012)



Scheduling HPC Workflows for Responsiveness and Fairness 137

2. Maheswaran, M., Braun, T.D., Siegel, H.J.: Heterogeneous distributed comput-
ing. In: Encyclopedia of Electrical and Electronics Engineering, pp. 679–690. John
Wiley (1999)

3. Topcuoglu, H., Hariri, S., Wu, M.Y.: Performance-effective and low-complexity
task scheduling for heterogeneous computing. IEEE Transactions on Parallel and
Distributed Systems 13(3), 260–274 (2002)

4. Zhao, H., Sakellariou, R.: Scheduling multiple dags onto heterogeneous systems. In:
20th International Parallel and Distributed Processing Symposium, IPDPS 2006,
p. 159 (2006)

5. Hirales-Carbajal, A., Tchernykh, A., Yahyapour, R., González-García, J., Röblitz,
T., Ramírez-Alcaraz, J.: Multiple workflow scheduling strategies with user run time
estimates on a grid. Journal of Grid Computing 10(2), 325–346 (2012)

6. Burkimsher, A., Bate, I., Indrusiak, L.S.: A survey of scheduling metrics
and an improved ordering policy for list schedulers operating on workloads
with dependencies and a wide variation in execution times. Future Genera-
tion Computer Systems (in press, published online December 27, 2012), doi:
http://dx.doi.org/10.1016/j.future.2012.12.005

7. Chiang, S. H., Vernon, M.K.: Characteristics of a large shared memory production
workload. In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 2001. LNCS, vol. 2221,
pp. 159–187. Springer, Heidelberg (2001)

8. Feitelson, D.G., Nitzberg, B.: Job characteristics of a production parallel scien-
tific workload on the nasa ames ipsc/860. In: Feitelson, D.G., Rudolph, L. (eds.)
IPPS-WS 1995 and JSSPP 1995. LNCS, vol. 949, pp. 337–360. Springer, Heidelberg
(1995)

9. Sonmez, O., Yigitbasi, N., Iosup, A., Epema, D.: Trace-based evaluation of job
runtime and queue wait time predictions in grids. In: Proceedings of the 18th ACM
International Symposium on High Performance Distributed Computing, HPDC
2009, pp. 111–120. ACM, New York (2009)

10. Bailey Lee, C., Schwartzman, Y., Hardy, J., Snavely, A.: Are user runtime estimates
inherently inaccurate? In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.)
JSSPP 2004. LNCS, vol. 3277, pp. 253–263. Springer, Heidelberg (2005)

11. Schoneveld, A., de Ronde, J.F., Sloot, P.M.A.: On the complexity of task allocation.
Complex 3(2), 52–60 (1997)

12. Navaridas, J., Miguel-Alonso, J., Ridruejo, F.J., Denzel, W.: Reducing complexity
in tree-like computer interconnection networks. Parallel Computing 36(2-3), 71–85
(2010)

13. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction To Algorithms. MIT
Press (2001)

14. Kwok, Y.K., Ahmad, I.: Benchmarking and comparison of the task graph schedul-
ing algorithms. Journal of Parallel and Distributed Computing 59(3), 381–422
(1999)

15. Litchfield, J.A.: Inequality methods and tools. In: School of Economics (1999)
16. Platform Computing Corporation: Fairshare scheduling (2008),

http://www.cisl.ucar.edu/docs/LSF/7.0.3/admin/fairshare.html

http://dx.doi.org/10.1016/j.future.2012.12.005
http://www.cisl.ucar.edu/docs/LSF/7.0.3/admin/fairshare.html


FLEX-MPI: An MPI Extension for Supporting

Dynamic Load Balancing on Heterogeneous
Non-dedicated Systems

Gonzalo Mart́ın1, Maria-Cristina Marinescu2, David E. Singh1,
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Abstract. This paper introduces FLEX-MPI, a novel runtime approach
for the dynamic load balancing of MPI-based SPMD applications run-
ning on heterogeneous platforms in the presence of dynamic external
loads. To effectively balance the workload, FLEX-MPI monitors the ac-
tual performance of applications via hardware counters and the MPI
profiling interface—with a negligible overhead and minimal code modifi-
cations. Our results show that by using this approach the execution time
of an application may be significantly reduced.

Keywords: Dynamic load balancing, distributed computing, heteroge-
neous systems, hardware counters.

1 Introduction

The work described in this paper focuses on the efficient distribution of program
workloads on heterogeneous platforms composed of processors with the same
instruction set architecture (ISA) but with different performance. This work
targets parallel applications based on the SPMD (Single Program Multiple Data)
paradigm. A large proportion of these applications are iterative and alternate
phases of computation and communication; linear system solvers such as Jacobi
and Conjugate Gradient from NPB [1] are good representatives of this class of
applications and are used as benchmarks in our evaluation. We also evaluated
our approach on EpiGraph [2], a significantly more complex HPC application.

We introduce FLEX-MPI, an MPI extension which monitors the performance
of an application and uses this information to make decisions with respect to
the distribution of the workload and the data between processes. We focus on
an adaptive strategy for balancing the workload of applications that run on non-
dedicated systems, in which several applications run concurrently and share the
computing resources, e.g. CPU, memory, and cache. Sharing resources means
that applications have external loads which degrade their performance.

We consider both burst and long-term external loads. Burst loads correspond
to short-duration external loads which do not significantly affect the application
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performance. Long-term external loads reduce the application’s CPU usage af-
fecting its performance. FLEX-MPI is able to discriminate between these two
kinds of loads and flexibly apply different load balance policies depending on
their magnitude. One of the advantages of this approach is that it does not
require prior knowledge about the underlying architecture. We use hardware
counters and the MPI profiling interface to directly measure performance met-
rics at runtime. The main contributions of this work are:

– A precise, flexible dynamic load balancing technique based on monitoring
the actual performance of the applications via hardware counters and the
MPI profiling interface.

– A powerful, decentralized approach that works for homogeneous and het-
erogeneous systems which can be either dedicated or non-dedicated.

– A low overhead, generic method for integrating dynamic load balancing
into existing MPI-based SPMD applications.

The rest of the paper is organized as follows. Section 2 discusses related work.
Section 3 introduces FLEX-MPI. Before concluding in Section 5, we present an
extensive performance evaluation in Section 4.

2 Related Work

Dynamic load balancing for heterogeneous systems is a topic of great interest
since current distributed computing systems—mainly grid and cloud, but also
cluster—are becoming predominantly heterogeneous [3]. An efficient approach,
originally designed for homogeneous systems, consists in adapting the parallel
code by software techniques which balance the load depending on the compu-
tational power of each computing unit. But to adapt parallel code to run on a
heterogeneous system requires prior knowledge about the characteristics of the
architecture [4], which is not always feasible.

The basic approach for dynamic load balancing in heterogeneous systems
is based on a theoretical model of the system. Belikov et al. [5] present an
architecture-aware cost modeling technique based on theoretical CPU speed,
cache, RAM, and latency. However, theoretical values do not always match the
performance achieved when running a real application and do not consider the
external load introduced by other processes running on the same processor.

Several projects propose approaches based on collecting performance metrics
at runtime. Galindo et al. [6] present a model based on the relative computing
power, a metric which is obtained by measuring the execution time invested by
a processor in performing a given computation. The computation is measured
as the number of rows of a dense matrix, an inaccurate model when it comes to
sparse data structures. Their approach only considers executions on dedicated
systems. ALBIC [7] is a system based on [6] which measures the system load by
collecting performance metrics at runtime. However, this technique is intrusive
since to collect this data and feed it to the monitoring system they add a specific
module in the Linux kernel. A similar approach is Dyn-MPI [8], a dynamic MPI



140 G. Mart́ın et al.

implementation which targets parallel applications running on non-dedicated
architectures. Dyn-MPI requires a daemon running in each computing node to
extract performance metrics. It is highly code intrusive since many of the calls,
including standard MPI functions, must be instrumented.

Bohn et al. [9] measure the performance of compute nodes by extracting infor-
mation from files of the Linux OS and benchmarking both the processor and the
memory, operations which are usually expensive. HeteroMPI [10] is anMPI exten-
sionwhichwas specifically designed for programming on heterogeneous systems. It
canmeasure processor performance by using a benchmarking function whose code
must be provided by the programmer. HeteroMPI requires a significant intrusive
instrumenting, even for simple parallel programs. AdaptiveMPI [11] is an adap-
tive implementation of MPI built on top of the CHARM++ runtime environment
which supports dynamic load balancing through processor virtualization. It only
offers full compatibility with the MPI-1.1 features and MPI standard programs
need to be significantly modified.

Hardware counters have been demonstrated to be an effective way of mea-
suring computer performance [12]. FLEX-MPI introduces a novel dynamic load
balancing algorithm which flexibly adapts to external load in heterogeneous non-
dedicated systems. Our approach is based on collecting precise system perfor-
mance metrics at runtime via hardware counters and can be integrated in existing
MPI-based SPMD applications with minimal code modifications.

3 FLEX-MPI

FLEX-MPI is an MPI extension which integrates three functionalities: monitor-
ing, load balancing (LB), and data redistribution. We implemented FLEX-MPI
as a library on top of the MPICH-2 implementation. This makes it fully com-
patible with the MPI-2 features and allows it to easily link with any existing
MPI-based application. FLEX-MPI’s API is described in detail in [13].

3.1 Monitoring

The purpose of the monitoring functionality is to collect performance metrics for
each process of the parallel application during its execution. The applications
we target are iterative and alternate computation and communication phases.
We monitor computation by means of hardware counters (via PAPI [14]) and
communication by using the MPI profiling interface (PMPI), which allows to
profile the communications without modifying the source code of the application.

FLEX-MPI targets SPMD applications using one-dimensional domain decom-
position with distributed data, a parallelization method used by a large number
of scientific parallel applications. In these applications the portion of the domain
assigned to a process is usually expressed as a combination of a count—which
represents the number of elements, rows, or columns assigned to the process—
and a displacement. Fig. 1 illustrates an example of a SPMD application using
the FLEX-MPI library, in which the data structure managed by the application
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#include <mpi.h>
#include <xmpi.h>
int main (int argc, char *argv[]) {

MPI_Init (argc, argv);
XMPI_Get_wsize(size,&displ,&count);
Load_data (&A,displ,count);
XMPI_Register (&A,“vector”,size);
for (it=0; it<maxit; it++) {

XMPI_Monitor_init ();
//Parallel computation
for(i=displ; i<displ+count; i++){

A[i] = ...A[i]...;
}

MPI_Allreduce (...);
XMPI_Monitor_end(&displ,&count);

}

MPI_Finalize ();
}

FLEX-MPI
library

MPI library
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Fig. 1. Structure and runtime calls of a parallel code linked with the FLEX-MPI library

(vector A) is distributed between the processes. Each process operates in parallel
(L10-12) on a different subset of the data structure. The parallel code is instru-
mented with a set functions to get the initial partition of the domain assigned
to every process (L5), register the data structure managed by the application
(L7), enable monitoring (L9), and rebalance the load as needed (L14). The moni-
toring functionality dynamically collects performance metrics provided by PAPI
(arrow labeled 2) and the MPI library through the PMPI interface (arrow la-
beled 3). When a program iteration finishes (at line L14) these metrics are fed
to the LB functionality (arrow labeled 1), which computes the new distribution
of the workload. In our work, we consider each of the computing cores of modern
multiprocessors as an independent processing element (PE). After a new work-
load distribution has been decided, the data redistribution functionality moves
the data to the processes that will need it (arrow labeled 4). A more detailed
description of the instrumentation process can be seen in [13].

Our implementation uses low level PAPI interfaces to track the number of
floating point operations FLOP , the real time Treal (i.e. the wall-clock time),
and the CPU time Tcpu (i.e. the time during which the processor is running in
user mode). These metrics are collected for each process of the parallel appli-
cation, and they are preserved during context switching. The FLOP is needed
to effectively track and measure the performance at the granularity of each pro-
cessing element, while the real time and CPU time allow us to identify if there
exists external application load. In our model, we assume floating-point based
applications which exhibit a linear correlation between the FLOP and the work-
load size, which is reasonable for many parallel applications (e.g. linear system
solvers). An initial calibration is required because in heterogeneous systems the
events counted by hardware counters are processor specific. This calibration is
carried out by performing a microbenchmark with a negligible overhead before
starting the computation of the application.
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3.2 Load Balancing

The load balancing functionality receives as input the per-process values for the
performance metrics measured via monitoring. When load imbalance is detected,
the algorithm decides the new distribution of workload based on the per-process
performance metrics. Although monitoring can be performed at every iteration
we trigger load balancing only every sampling interval—consisting of a fixed
number of iterations—to reach a trade-off between the overhead of this operation
and the performance gain as result of it.

To decide how much workload to re-assign to each process, the load balancing
algorithm first computes the MFLOPS that each process i executed during the
previous sampling interval. MFLOPSi is defined in Equation 1 as the ratio be-
tween the number of floating point operations FLOPi and the real execution time
Treali during a given sampling interval. The fraction of the workload assigned
to process i is computed in Equation 2 depending on the relative computing
power (RCPi) of a process i, which is computed as the MFLOPSi divided by
the total MFLOPS for all of the p processes. RCP is used to estimate workload
distribution on parallel applications, since it provides a normalized value of the
computational power of a process relative to the computational power of the
whole system [4,7].

MFLOPSi =
FLOPi

Treali
(1)

RCPi =
MFLOPSi

p∑
i=0

MFLOPSi

(2)

Algorithm 1 shows the pseudocode for the load balancing algorithm, which is
evaluated at each sampling interval n. The first step (line 1) detects which of
the processing elements involved in executing the application are dedicated and
which are not. When the difference between the CPU time and the real time of
a processing element is small we can safely assume that it executes only one pro-
cess. When the real time is significantly higher than the CPU time then the pro-
cessing element is being shared between multiple processes - either of the same,
or of a different application. The real time is always a little higher than the CPU
time because of OS interrupts; we use a threshold parameter TH1 to account
for this overhead and mark the difference between dedicated and non-dedicated
processing elements. We consider that values of the real time that surpass the
CPU time by 5% are reasonable for setting the tolerance threshold TH1. Each
process uses a boolean variable dedicated to record whether it uses the process-
ing element in exclusive mode or not. By applying a reduce operation (line 6)
over all processes we know whether there exists any non-dedicated processing el-
ement. The reduction result—stored in the variable global dedicated—is false
if at least one processing element is non-dedicated.

We evaluate whether we should redistribute the workload if either (1) the
processing elements have been used in exclusive mode during the current sam-
pling interval but the application is unbalanced or (2) long-term external load
is detected on any of the processing elements. It is possible that the applica-
tions that share the resources with our application execute during short, iso-
lated bursts which do not affect the overall performance of our application.
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Algorithm 1. Pseudocode for the load balancing algorithm

1: if ((Treali − Tcpui)/Treali) < TH1 then
2: dedicated ← true
3: else
4: dedicated ← false
5: end if
6: global dedicated ← Allreduce(dedicated,AND)
7: buf [n] ← global dedicated
8: external load ← evaluate external load(buf, k)
9: if (global dedicated == true) or (external load == long term) then
10: {FLOP, Treal} = Allgather(FLOPi, T reali)
11: MFLOPS = compute MFLOPS(FLOP, Treal)
12: if (max(Treal)−min(Treal)) > (TH2 ∗max(Treal)) then
13: RCP = compute RCP (MFLOPS)
14: Data redistribution(RCP )
15: end if
16: end if

In contrast, long-term external loads consume a lot of computer resources during
a continuous period of time and significantly degrade the overall performance
of our application. In our algorithm each process stores the value of variable
global dedicated at each sampling interval (n) (line 7). When a processing
element has been running in non-dedicated mode during k consecutive sam-
pling intervals it is considered that long-term external load is present on that
processing element and the workload should be considered to be redistributed.
The function evaluate external load returns long term when any of the pro-
cessing elements have been running in non-dedicated mode during the past k
sampling intervals (line 8). Section 4.2 discusses practical values of k.

If either all of the processing elements are dedicated during the current sam-
pling interval, or long-term external load has been detected (line 9), then the
algorithm analyzes the load balance of the application. Otherwise, when a bursty
external load is detected, the algorithm tolerates it without performing load bal-
ancing for (k − 1) consecutive sampling intervals. In the kth sampling interval
one of two things will happen: (1) either there will be another burst, in which
case it leads to the conclusion that rather than a series of bursts, a long-term
load is present, or (2) the processing elements will run in dedicated mode, in
which case it will also be a candidate for load balancing evaluation. When the
application is evaluated for load balancing, the algorithm gathers and distributes
the FLOP and real time numbers of each process (line 10) to all the other
processes. It then applies Equation 1 to compute MFLOPSi locally by each
process i (line 11). If the difference between the maximum and minimum val-
ues of Treal is larger than the threshold value TH2 * max(Treal) (line 12)
then the application is more unbalanced than what it can tolerate. In our ex-
periments, we empirically set TH2 to 15%. As a result, LB triggers the redistri-
bution of workload based on Equation 2 and the RCP of each process (line 13),
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then uses the new workload distribution to perform the data remapping by
invoking the data distribution functionality (line 14).

The algorithm implemented focuses on balancing computation workloads and
requires precise computation time measurements which do not take into ac-
count the time spent on performing communication operations. Otherwise, the
algorithm would lead to inaccurate workload distributions. For instance, an im-
balanced parallel application where the fastest process spends most of the time
waiting idle for other processes involved in communication operations will have
a low FLOP count and large Treal. By profiling MPI communications we can
compute separately the time spent by each process in performing computation
and communication, enabling a precise load balancing policy.

3.3 Data Redistribution

In SPMD applications the data is usually distributed—rather than replicated—
between processes, which requires redistribution to move the data between pro-
cesses each time a load balance operation is carried out. FLEX-MPI includes a
data redistribution functionality which handles both one-dimensional (e.g. vec-
tors) and two-dimensional (e.g. matrices) data structures, which may be either
dense or sparse.

The user has to register each of the data structures which will need to be
redistributed as result of load balance operations. The registering function
(XMPI Register) receives as input the pointer to the data structure and the
size of the data structure. Depending on the domain decomposition type, the
sizes of the data structures can be provided either as the number of elements,
rows, or columns of the structures. FLEX-MPI can manage several data
structures whenever they have been registered using the same type of domain
decomposition.

Once the load balancing functionality has computed the RCP of each PE
and the new workload distribution has been mapped to a data partition, the
data redistribution functionality (1) computes the range of data associated to
the new workload partition of every process, and (2) moves the data from the
previous to the new owners. XMPI Monitor end returns—on behalf of the data
redistribution functionality—the new count and displacement for the new data
mapping used by each process. MPI standard messages are used to efficiently
move data between MPI processes.

4 Performance Evaluation

We evaluate our approach using three iterative SPMD applications—Jacobi,
Conjugate Gradient, and EpiGraph. Jacobi is an iterative method for solving a
system of linear equations which operates on a symmetric dense matrix. Con-
jugate Gradient (CG) is a linear system solver suited for large sparse matrices.
EpiGraph [2] is a distributed simulator for infectious diseases which iteratively
operates on a sparse matrix which reflects a social interconnection graph.
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For the experiments using Jacobi we generated random square matrices with
different sizes: 5,000, 10,000 and 15,000 rows. For CG we used matrices from the
University of Florida sparse matrix collection [15]. The matrices we selected are
nd24k (size: 72,000, number of nonzero elements (nnz) 28,715,634), ldoor (size:
952,203, nnz 42,493,817), and audikw 1 (size: 943,695, nnz 77,651,847). This
subset is representative of data structures which exhibit regular and irregular
data distribution patterns. We run Jacobi and CG for 10,000 iterations each.
For the experiments using EpiGraph we simulated a population of 1,000,000
people (matrix size: 1,000,000, nnz 38,473,353) for a simulated time span of
20 days (2,880 iterations). The sampling interval is problem dependent and we
experimentally set it to 100 iterations in our experiments.

Table 1 describes our target platform, a heterogeneous cluster consisting of 10
compute nodes of four different classes. All the compute nodes run under Linux
Ubuntu Server 10.10 with 2.6.35-32 kernel and MPICH-2 (v.1.4.1p1), and are
interconnected by a Gigabit Ethernet network.

4.1 Heterogeneous Dedicated System

We first evaluate FLEX-MPI by executing Jacobi, CG, and EpiGraph exclusively
on heterogeneous configurations running 4, 8, 16, 32, and 64 processes. Table 2
describes the heterogeneous configurations of the cluster.

Table 3 shows the execution times for Jacobi and CG while Table 4 shows the
execution times for EpiGraph. In our experiments we show the overall execution
time (of the application and FLEX-MPI), including the computation and com-
munication times of the application as well as the overhead of the monitoring,
load balancing, and data redistribution of FLEX-MPI. The reference scenario
(which execution time is Tpar) employs an equal-size block distribution of the

Table 1. Heterogeneous cluster with number of nodes (N), sockets per node (S), and
processing elements (PE) per socket for each class

Class N S PE Processor Frequency RAM

A 4 1 4 Intel Xeon E5405 2.00 GHz 4 GB

B 2 2 6 Intel Xeon E5645 2.40 GHz 24 GB

C 2 2 6 AMD Opteron 6168 800 MHz 64 GB

D 2 4 6 Intel Xeon E7-4807 1.87 GHz 128 GB

Table 2. Heterogeneous configurations, where n(p) stands for the number of nodes (n)
and the number of processes (p) running per node

Config. Class A Class B Class C Class D

HTC1-4 1 (1) 1 (1) 1 (1) 1 (1)

HTC2-8 1 (2) 1 (2) 1 (2) 1 (2)

HTC3-16 1 (4) 1 (4) 1 (4) 1 (4)

HTC4-32 2 (4) 1 (8) 1 (8) 1 (8)

HTC5-64 4 (4) 2 (8) 2 (8) 2 (8)
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data without load balancing. Results show a significant improvement of up to
44% when executing the application with dynamic load balancing. Note that for
64 processes, the communication/computation ratio increases due to low work-
load per process. This produces performance degradation for the applications,
and reduces the efficiency of the load balancing.

Fig. 2 illustrates a typical execution of Jacobi and EpiGraph when using
FLEX-MPI. Jacobi is a regular application in which the amount of work done
in each iteration is the same. This leads to very small variations over time in
the execution time per iteration. In contrast, EpiGraph is an irregular applica-
tion which exhibits a highly variable workload per iteration. When executing on
a heterogeneous dedicated system, Jacobi requires a single data redistribution
operation to balance the workload. It is triggered during the first sampling in-
terval, in which the workload imbalance is larger than the imbalance tolerated
by the algorithm. From that moment on the application is balanced and no fur-
ther data redistribution operations are necessary. However, even on dedicated
systems, irregular applications such as EpiGraph require several data redistri-
bution operations to balance the workload.

Table 3. Heterogeneous dedicated system with: execution time of the application
(Tpar), execution time of the dynamic load balanced application - with FLEX-MPI
(TFLX), percentage of the time saved when executing with FLEX-MPI (Tsav)

Jacobi CG
Config. Matrix Tpar(sec) TFLX(sec) Tsav(%) Matrix Tpar(sec) TFLX(sec) Tsav(%)

HTC1-4
5,000 805 517 35.77 nd24k 1247 998 19.96
10,000 3259 2071 36.45 ldoor 2634 2285 13.24
15,000 7324 4683 36.05 audikw 1 4860 3537 27.22

HTC2-8
5,000 414 269 35.02 nd24k 682 538 21.11
10,000 1665 1070 35.73 ldoor 1751 1676 4.28
15,000 3707 2396 35.36 audikw 1 3562 2222 37.61

HTC3-16
5,000 208 151 27.40 nd24k 381 302 20.73
10,000 843 698 17.20 ldoor 1387 1327 4.32
15,000 1894 1384 26.92 audikw 1 2336 1789 23.41

HTC4-32
5,000 116 95 18.10 nd24k 220 188 14.54
10,000 421 332 21.14 ldoor 1253 1234 1.51
15,000 978 706 27.81 audikw 1 1844 1104 40.13

HTC5-64
5,000 108 100 7.40 nd24k 147 146 0.68
10,000 580 446 23.10 ldoor 841 815 3.09
15,000 880 756 16.40 audikw 1 1124 911 18.95

Table 4. Results of EpiGraph on heterogeneous dedicated system

EpiGraph
Config. Matrix Tpar(sec) TFLX(sec) Tsav(%)

HTC1-4 1,000,000 356 270 24.16
HTC2-8 1,000,000 222 156 29.73
HTC3-16 1,000,000 202 113 44.06
HTC4-32 1,000,000 161 102 36.65
HTC5-64 1,000,000 165 112 32.12
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Fig. 2. Jacobi (a) and EpiGraph (b) on heterogeneous dedicated system. Right Y axis is
the Overall execution time per iteration. Left Y axis shows both the difference between
the maximum and minimum Treal (for all of the running processes for each sampling
interval), and the Threshold value tolerated by the algorithm.

4.2 Heterogeneous Non-dedicated System

The following experiment evaluates how well the load balancing algorithm per-
forms when external applications with workload that vary over time are sharing
the underlying architecture for execution. We run Jacobi, CG, and EpiGraph
for a heterogeneous configuration with 1 node Class A and 1 node Class B, each
running 4 processes per node. We artificially introduce an external load which
simulates an irregular computing pattern. This load consists of two processes
which are simultaneously executed on the Class A node together with the appli-
cation. The external load consists of a burst of short computing intervals followed
by a single long computing interval which lasts until the end of the execution.

Table 5 shows the execution times for the benchmarks on the heterogeneous
non-dedicated configuration we described above. We evaluated different values
of k and their impact on the execution time. Tpar stands for the execution time
(in seconds) of the application when it runs without adapting to changes in
performance due to the dynamic external load; Tk=n stands for these execution
times when the application does adapt to the external load, for different values
of k. The execution time is reduced by up to 39.31% when the applications
adapts to the external load. Results confirm our intuition to show that the most

Table 5. Jacobi, CG, and EpiGraph on heterogeneous non-dedicated system

Problem Matrix Tpar(sec) Tk=1(sec) Tk=3(sec) Tk=5(sec)

Jacobi 10,000 1652 1162 1162 1148

CG nd24k 1076 688 665 653

EpiGraph 1,000,000 272 195 179 169
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Fig. 3. Adaptive execution of Jacobi on a heterogeneous non-dedicated system for
different values of k: (a) k = 1, (b) k = 3, and (c) k = 5. The external load (left Y axis)
corresponds to the percentage of real time of the processing element consumed by the
external load, while the process FLOP (right Y axis) corresponds with the number of
FLOP performed by the process.

promising approach is to tolerate short external loads as to avoid the cost of
re-balancing too eagerly.

Fig. 3 shows what happens on processing element P0 when we run Jacobi
using FLEX-MPI and we introduce a dynamic external load on a subset of the
processing elements. The workload redistribution triggered by the load balancing
algorithm leads to a different number of FLOP performed by the process (in red
in the figure). The amount of data which needs to be redistributed depends on
the magnitude of the external load (in blue) and the value of k. We can observe
that for k = 1 the application adapts immediately to changes in the performance
of the processing element, performing load balance for every external load burst.
With k = 3 the first three smaller bursts are discarded, while larger values of k
lead to discarding all the bursts but considering the long-term load.

5 Conclusions

We presented FLEX-MPI, an MPI extension for supporting dynamic load bal-
ancing of SPMD applications running on heterogeneous platforms in the pres-
ence of dynamic external workload. The extension we provide does not require
prior knowledge about the underlying architecture, does not require dedicated
resources, and it is based on precise runtime monitoring with negligible overhead.
Our results show that by using FLEX-MPI the execution time of an application
may be significantly reduced.

There are two main directions for future work that are of particular interest
to us. The first extension we plan on developing is to improve FLEX-MPI by
considering other types of hardware events, which are used to monitor other
performance metrics. This is particularly useful for parallel applications which
do not exhibit a linear correlation between the FLOP and the workload size, or
applications based on integer operations. The second direction for future work is
to improve FLEX-MPI by integrating the dynamic process management features
of MPI-2 such that processes could be started or turned off on demand, based
on a cost model and the performance goals of the application.
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Abstract. Distributed software transactional memory is an emerging,
alternative concurrency control model for distributed systems promising
to alleviate the difficulties of lock-based distributed synchronization. We
consider the multi-versioning (MV) model to avoid unnecessary aborts.
MV schemes inherently guarantee commits of read-only transactions, but
limit the concurrency of write transactions. In this paper we propose CRF
(Commutative Requests First), a new scheduler tailored for enhancing
concurrency of write transactions. CRF relies on the notion of commuta-
tive transactions, namely conflicting transactions that leave the state of
the shared data-set consistent even if validated and committed concur-
rently. CRF is responsible to detect conflicts among commutative and
non-commutative write transactions and then schedules them according
to the execution state. We assess the goodness of the approach by an
extensive evaluation of a fully implementation of CRF. The tests reveal
that CRF improves throughput over a state-of-the-art DTM solution.

1 Introduction

Lock-based concurrency control suffers from programmability, scalability, and
composability challenges [13]. Transactional memory (TM) promises to allevi-
ate these difficulties sparing the programmers from the pitfalls of conventional
manual lock-based synchronization, drastically simplifying the development of
parallel and concurrent applications. As TM code is composed of read/write
operations on shared objects, it is organized as memory transactions, which op-
timistically execute while logging changes on accessed objects. When two trans-
actions conflict, a contention manager is responsible to resolve the conflict by
aborting one of them, yielding (the illusion of) atomicity. Aborted transactions
are typically re-started, after rolling-back the changes. The contention manager
can be supported by the transactional scheduler, that is responsible to determine
an ordering among concurrent transactions so that conflicts are either avoided
or minimized, thereby reducing abort rate and improving performance.

Originally proposed to simplify concurrent programming in centralized en-
vironments, TM systems are being growingly employed in distributed settings
(Distributed TM or DTM), motivated as an alternative to the more challenging
distributed, lock-based, concurrency control. Thanks to the simple distributed
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programming model provided by DTM, the programmers can focus on the im-
plementation of the application logic putting the charge of distributed synchro-
nization into the hands of DTM [14,15].

With a single copy for each object, i.e., single-version STM (SV-STM), when
a read/write conflict occurs between two transactions, the contention manager
resolves the conflict by aborting one and allowing the other to commit, thereby
maintaining the consistency of the (single) object version. SV-STM is simple,
but suffers from large number of aborts [17]. In contrast, with multiple versions
for each object, i.e., multi-versioning STM (MV-STM), unnecessary aborts of
transactions, that could have been committed without violating consistency, are
avoided [16]. Unless a conflict between operations to access a shared object
occurs, MV-STM allows the corresponding transactions to read the object’s old
versions, enhancing concurrency.

MV-STM has been extensively studied for multiprocessors [17,9] and also for
distributed systems [26]. MV-STM uses snapshot isolation (SI), which is weaker
than serializability [20]. A transaction executing under SI operates on a snapshot
taken at the start of the transaction. The transaction successfully commits if the
objects updated by the transaction have not been changed externally since the
snapshot was taken, guaranteeing that all read transactions will see a consistent
snapshot. Many works [20,21,15] used SI for improving performance in central-
ized and distributed TM environments. Even though SI allows more concurrency
among transactions respect to with serializability, a write-write transaction’s
conflict under SI causes the transaction to abort. In write-intensive workloads,
this conflict cannot be avoided because the concurrency of write transactions
may violate SI.

In this paper, we address the problem of permitting multiple conflicting trans-
actions to commit concurrently, in order to enhance concurrency of write trans-
actions without violating SI in multi-version DTM for high performance. We
propose a transactional scheduler that enables concurrency of write transactions,
called Commutative Requests First (CRF). In order to do that, CRF exploits
the notion of commutative operations. Two operations are named commutative
if applying them sequentially in either order, they leave the objects accessed in
the same state and both return the same values. A very intuitive example of
commutativity is when two operations, call1(X) and call2(X), accessing both
to the same object X but different fields of X (see Section 1(b)).Thus, CRF
checks whether write operations are commutative and lets them to validate and
commit simultaneously. Unlike past STM works, that exploit high concurrency
based on the commutativity property [10], CRF maintains a scheduling queue
to identify commutative and non-commutative transactions, and could decide to
allow all commutative transactions to commit first than the others, maximiz-
ing their concurrency. However, despite the significant performance obtained by
adopting the idea of commutativity transactions of CRF, there could be appli-
cations that do not admit such kind of commutativity. CRF addresses this issue
by permitting the developer to explicitly specify non-commutative operations.
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We implemented a full-working prototype of CRF in the Scala DTM frame-
work, called HyFlow [24], and conducted extensive experimental studies using
micro benchmarks (LinkedList and SkipList [18], as well as a real application
benchmark (TPC-C [5]) typically used for assessing the performance of DTM.
Our studies reveal that transactional throughput is improved by up to 5× over
a state-of-the-art DTM solution(DecentSTM [2]).

The rest of the paper is organized as follows. We outline the preliminaries
and the system model in Section 2. We describe the CRF scheduler in Section 3.
Implementation and experimental studies are reported in Section 4. We discuss
the related work in Section 5 and Section 6 concludes the paper.

2 Preliminaries and System Model

We consider a distributed system which consists of a set of nodes N = {n1,
n2, · · · } that communicate with each other by message-passing links over a
network.

Distributed Transactions. A set of distributed transactions T = {T1, T2, · · · }
is assumed that share objects O = {o1, o2, . . .}, which are distributed in the
network. An execution of a transaction is a sequence of timed operations, reads
and writes. An execution ends by either a commit (success) or an abort (failure).
Each transaction has a unique identifier, and it is invoked by a node.

We consider data flow DTM model [11] where transactions are immobile and
objects move to the node invoking transactions. Each node has a TM proxy that
provides interfaces to the local application and to proxies at other nodes. When
a transaction Ti at node ni requests object oj , the TM proxy of ni first checks
whether oj is in its local cache. If the object is not present, the proxy invokes a
distributed cache-coherence protocol (e.g., [6,11]) to fetch oj from the network.
oj may have multiple versions. The initial value of oj is denoted by o0j . Let the

version set of oj be {o0j , o1j , · · · }. Node nk, holding the version set, checks whether
the requested object version is in use by a local transaction Tk when it receives
the request for oj from ni. If so, nk’s TM proxy invokes a contention manager
to manage the conflict between Ti and Tk for the object version of oj .

Atomicity, Consistency, and Isolation. We use the Transactional Forward-
ing Algorithm (TFA) [23] to provide early validation of remote objects, guarantee
a consistent view of shared objects among distributed transactions, and ensure
atomicity for object operations in the presence of asynchronous clocks. With
early validation we refer to the fact that a transaction has already successfully
validated its accessed objects before committing. A validation in distributed
systems includes global registration of object ownership.

3 Commutative Requests First in MV-TFA

Multi-Version TFA. In this section we present multi-version MV-TFA, our
extension of TFA supporting SI. The basic idea is to record an event whenever
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requesting and acquiring an object. Let ni denote a node invoking a transac-
tion Ti. We define two types of events: (1) Request(Req(ni, oj)) representing the
request of object oj from node ni; (2) Acquisition(Acq(ni, oj)) indicating when
node ni acquires object oj . Figure 1(a) shows an example execution scenario
of MV-TFA. We use the same style in the figure as that of [22]. The solid cir-
cles indicate write operations and the empty circles represent read operations.
Transactions’ evolution is represented on horizontal lines with the circles. The
horizontal line corresponding to the status of each object describes the time
domain. The dotted line indicates which node requests an object from where.

(a) Example of MV-TFA (b) Specification of a Set

Fig. 1.

Assume that transactions T0 and T1 invoked on nodes n0 and n1 commit after
writing o01 and o02, respectively. Let transactions T2, on node n2, and T3, on node
n3, request objects o1 and o2 from nodes n0 and n1, respectively. Node n1 holds
the list of versions of o2. After that, T3 requests o1 from n0 and subsequently
T4 requests o2 from n1. Thus, n1 records the events Acq(n3, o

0
2) and Acq(n4, o

0
2).

Then T4 updates o2 creating a new version o12. When T4 validates o12 to commit,
Acq(n4, o

0
2) is removed from the events log of n3, and T3 has forced to abort

because in the n3’s log there is another request (Acq(n3, o
0
2)) on the same object

o2. The presence of this entry in the log means that T3 has not yet completed,
so T4 definitively commits before that T3 validates o2, invalidating the object
o02 accessed by T3. As a consequence of T4 commitment, node n4, which invokes
T4, receives the versions o02 and o12 of object o2. Now, after the commit of T4,
T2 requests o2 with the value | t4 - t2 | from n4. It replies with the version o02
instead of the newly o12 because o02 has been updated at time t1 to T2, because
| t4 − t3 | < | t4 - t2 | < | t4 − t1 |. Using this mechanism, T2 can access to a
consistent snapshot that is not affected by a write operation by T4, instead of
being aborted due to T4 ’s write. This is how MV-TFA ensures SI.

CRF Scheduler Design. MV-TFA shows how to enhance performance in case
of workload characterized by mostly read transactions, exploiting multi-versions.
In this subsection we focus on how to schedule write transactions concurrently
minimizing the abort rate and increasing the parallelism. When a transaction
T1 at node n1 needs object o1 for an operation, it sends a request to the o1’s
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object owner. If the operation is read, a version of o1 is sent to n1. If the oper-
ation is write, we consider two possible cases in terms of o1. (A) The first case
happens when other transactions may have requested o1 but no transaction has
validated o1. In this case, a version of o1 is sent to n1 and T1’s request moves
into the scheduling queue of the o1’s owner. (B) The second case is when an-
other transaction T2 is validating o1. In this case, unless T2 and T1 commute,
T1 will abort and T1’s request also moves to the scheduling queue. If T2 and T1

commutes, o1 is sent to n1 and T1’s request moves to the scheduling queue. The
o1’s owner maintains the scheduling queue to execute commutative transactions
concurrently. Accordingly, non-commutative transactions is executed serially.

To better assess CRF, we use it to implement the specification of a Set pro-
vided by [10]. We recall that a Set is a collection of items without duplica-
tions in which the following operations are provided: add(x), remove(x) and
contains(x) where x is the item of the Set accessed. Figure 1(b) summarizes Set
operations’ commutativity according to [10]’s definition. In the specification
illustrated in Figure 1(b), operations insert(x), insert(y), and insert(z) com-
mutes if x �= y �= z. Multiple write transactions may be invoked concurrently
on the Set. CRF identifies commutative and non-commutative transactions and
gives to the commutative transactions a chance to validate concurrently an ob-
ject first. However, if we consider the specification of the Set, in which the are
no commutative operations declared, and we encapsulate the Set into an object
(o1) and we consider the above operations as transactions, then typical concur-
rency control does not permit to validate and commit concurrently more than
one transaction performing an update on the object (namely updating the Set).
Conversely, by Figure 1(b) is clear that multiple update transactions can be
validated concurrently whether they access to different items in the set. The
scheduling queue holds requests for those operations. If multiple transactions
have requested the same version of o1, CRF allows the commutative transac-
tions to concurrently validate o1. Meanwhile, many commutative transactions
may validate o1. This could bring non-commutative transactions to “starve” on
o1. Thus, CRF alternates between periods (called epochs), in which it privileges
the validation of a group of commutative transactions, with others in which
it prefer to validate the non-commutative ones. In this way, CRF handles con-
flicts between commutative and non-commutative transactions. Although epochs
contain commutative transactions, these transactions do not commute with the
transactions of the next epoch in the chronological sequence. The terminology
“commutative” and “non-commutative” epoch distinguishes between these two
epochs. Thus, in commutative epoch, commutative transactions validate o1 and
then in the next (i.e., non-commutative) epoch, non-commutative transactions,
excluded in the previous commutative epoch, can validate o1. If a transaction
starts validating o1, its commutative transactions are also allowed to validate o1
but its non-commutative transactions abort. The non-commutative transactions
will resume after the commutative transactions commit.

CRF checks for whether different operations commute at the level of seman-
tics. Even when commutative operations concurrently update the object, the
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object preserves a consistent state, ensuring SI. There are two purposes for
processing commutative requests first. MV-TFA ensures concurrency of read
transactions, and CRF is responsible to detect conflicts among commutative
and non-commutative write transactions, reducing the number of conflicts. This
leads to higher concurrency. Second, CRF alleviates contention when many
write transactions are invoked. Even though a conflict between two write trans-
actions occurs, all subsequent commutative transactions are scheduled first.
Non-commutative transactions restart simultaneously after the commutative
transactions complete, so CRF avoids further conflicts, decreasing contention.

(a) Requests of Five Transactions and Validation of Two Transactions for Object o1.

(b) Scheduling Queue Located in o1 Object Owner. The scheduling queue consists of two rows:

Enqueued Transactions and State of the Transactions. V (Validation), A (Abort), and E (Execution)

Fig. 2. A Scenario of CRF

Illustrative Example. Figure 2 shows a scenario of CRF. The write transactions
T1=insert(x), T2=remove(x), T3=insert(y) and T4=remove(y) request concur-
rently o1 from its owner. The transactions obtain the version of o1. The state of
the scheduling queue at t1, illustrated in Figure 2(b), shows that the transactions
are all executing. At t2, T2 starts validating o1. Consequently, T1 aborts because
T1 and T2 do not commute. Conversely, T3 and T4 can still execute because they
are commutative with T2. Then T5=remove(x) requests o1 during the validation
of T2 and immediately aborts because T5 and T2 do not commute. At t3, T4 starts
validating o1 and T3 aborts because T3 and T4 do not commute. Thus, T2 and T4

concurrently validate o1. When T2 ends validation (i.e., commits) at t4, the ver-
sion updated by T2 is sent to the non-commutative transaction T1, and T1 starts
executing. Even though T5 is a non-commutative transaction of T2, only T1 starts
to avoid a conflict between non-commutative transactions. Finally, the version up-
dated by T4 at t5 is sent to T3. T1 and T3 may validate o1 concurrently because
they commute.

Figure 3(a) shows that the validation of commutative transactions may not
be completely overlapping, so the period of validation may be stretched. This
may lead to the deferred execution of non-commutative transactions. To prevent
this, we define a new parameter, called depth of validation, namely the number
of transactions involved in the validation. Figure 3(a) indicates 3 for that depth,
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(a) Epoch and Depth of Validation. (b) Epochs of Validation

Fig. 3. Epoch-based CRF

meaning that the commits of three transactions mark the end of the epoch. Non-
commutative transactions will start after the epoch. Figure 3(b) illustrates the
relationship of epochs. In each epoch, commutative transactions concurrently
participate in validation. At the end of the epoch, their non-commutative trans-
actions held in a scheduling queue, restart. Non-commutative transactions will
validate in the next epoch.

4 Implementation and Experimental Evaluation

Implementation. We implemented CRF on MV-TFA using Scala’s actor model
for Java Virtual Machine. The actor model prohibits sharing memory by encap-
sulating mutable state inside light-weight sequential constructs called actors.
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Fig. 4. Throughput Varying Thresholds

Commutativity of Benchmarks. We assess the performance of CRF us-
ing LinkedList and SkipList as micro-benchmarks and a TPC-C [5] as real-
application benchmark. Regarding the commutativity in micro-benchmarks, the
Set (see Section 3) can be implemented with LinkedList and SkipList [10], so we
rely on the definition of commutativity in Figure 1(b). Regarding TPC-C, the
write transactions consist of update, insert, and/or delete operations accessing
a database of nine tables maintained in memory. Each row in the tables has
a unique key. Multiple operations commute if they access to a row (or object)
with the same key and modify different columns. We rely on explicit annotations
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Fig. 5. Throughput of CRF, MV-TFA, and DecentSTM Using LinkedList

provided by the programmer, indicating the fields accessed by each transaction
profile. We configured the benchmark with a limited number of warehouses (#4)
in order to generate high conflicts. We recall that, in data flow model, objects
are not bound on fixed nodes but move, increasing likelihood of conflicts.

Experimental Setup. Our test-bed consists of 10 nodes connected via a
switched 1 Gigabit network connection. Each node is comprised of 12 Intel Xeon
1.9GHz processor cores. We use the Ubuntu Linux 10.04 server OS. We mea-
sured the transactional throughput (number of committed transactions per sec-
ond). To manage garbage collection, versions that are no longer accessible, need
to be marked. Unlike multiprocessors, determining old versions for live transac-
tions in distributed systems incurs communication overheads. Thus, we consider
a threshold-based garbage collector [4], which checks the number of versions and
disposes the oldest if the number of versions exceeds a pre-defined threshold. We
consider threshold 4 for measuring the basic event model’s throughput, because
the observed that the speed-up is relatively less increased after the threshold.

Finding a Depth. The large number of concurrent validations may lead to a
significant scheduling overhead due to delayed non-commutative transactions.
For the balance of commutative and non- requesting transactions, we consider
a threshold-based control, switching the next epoch when either a depth or a
number of non-commutative transactions enqueued meets a predefined thresh-
old, called MaxD. Figure 4 shows throughput moving the MaxD from 1 to 50.
By the plot is clear that CRF’s throughput is not improved after MaxD=10
for LinkedList and MaxD=5 for TPC-C due to the increasing number of non-
commutative transactions aborted. With the previous values of MaxD, CRF
reaches its maximum throughput, so we used those for the experiments.
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Fig. 6. Throughput of CRF, MV-TFA, and DecentSTM Using TPC-C

Evaluation. Figures 5,7 show the throughput of CRF, MV-TFA and DecentSTM
using LinkedList(Figure 5) and SkipList(Figure 7) benchmarks. The legend has
to be considered for all the plots and shows the colors differentiate for number of
running threads. Each micro-benchmark has been evaluated using two workloads
representative of read intensive (10% writes and 90% reads) and write intensive
(90% writes and 10% reads) scenarios. The tests have been performed varying
the number of nodes and the number of threads per node. Each thread submits
requests to the distributed system.

Summarizing, we span scenarios from 2 up to 120 concurrent threads in the
system. This allows to exhaustive assess the behavior of CRF. The comparison
between CRF and MV-TFA shows how much CRF enhances the concurrency
of write transactions. For the LinkedList and SkipList, the new value to add or
delete is randomly selected using a uniform distribution. According to the in-
creasing number of threads and nodes, CRF performs better due to the detection
of a large number of commutative operations. Even though the throughput of
CRF is slightly better than MV-TFA in scenario characterized by most read-only
transactions (due to the limited number of commutative write operations), the
maximum gain of CRF against competitors is reached in write-intensive workload
where CRF exploits the ability to validate and commit concurrently conflicting
transactions. In additional the plot reveals that, in write dominated workload,
CRF scales better than MV-TFA and DecentSTM. In fact, in contrast with
CRF, their performance stall when increasing the number of concurrent threads
in the system. This is also confirmed by the plots in Figure 7(a) and 7(b) where
CRF outperforms MV-TFA by as much as 2×.

As a competitor, DecentSTM [2] is based on a snapshot isolation algorithm,
which requires searching the history of objects to find a valid snapshot. This
algorithm incurs a significant overhead. Thus, we observe that the transactional
throughput of DecentSTM is not improved as long as requesting nodes increase.

Our evaluations reveal that CRF improves throughput over MV-TFA and De-
centSTM by as much as (average) 2× and 3× under 10% read transactions, re-
spectively. Further, our evaluations show that MV-TFA outperforms DecentSTM
in throughput as much as 2×. Figure 6 shows the throughput of CRF, MV-TFA,
and DecentSTM using TPC-C benchmark. We used the amount of read and
write transactions that the specification of TPC-C recommends. TPC-C bench-
mark accesses large tables to read and write values. Due to the non-negligible
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transaction execution time, scheduling commutative operations highly impacts
the overall performance. In fact, the conflicting transactions generated by the
benchmark are well managed by CRF and this results observing that CRF per-
forms better than DecentSTM as much as 5× over 10 nodes.
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Fig. 7. Throughput of CRF, MV-TFA, and DecentSTM Using SkipList

5 Related Work

Transactional scheduling has been explored in a number of multiprocessor STM
efforts [8,1,25,7]. In [8], is described an approach that dynamically schedules
transactions based on their predicted read/write access sets. In [1], the au-
thors discuss the Steal-On-Abort transaction scheduler, which queues an aborted
transaction behind the non-aborted transaction, and thereby prevents the two
transactions from conflicting again. In [25] is presented Adaptive Transaction
Scheduler (ATS), that adaptively controls the number of concurrent transac-
tions based on the contention intensity: when the intensity is below a threshold,
the transaction begins normally; otherwise, the transaction stalls and does not
begin until dispatched by the scheduler. CAR-STM scheduling approach [7] uses
per-core transaction queues and serializes conflicting transactions by aborting
one and queueing it on the other’s queue, preventing future conflicts. In [3]
has been proposed the Proactive Transactional Scheduler (PTS). This scheme
detects hot spots of contention that can degrade performance, and proactively
schedules affected transactions around the hot spots.
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Steal-On-Abort, CAR-STM, and BIMODAL enqueue aborted transactions to
minimize future conflicts in SV-STM. In contrast, CRF only enqueues
non-commutative transactions that conflict with commutative transactions. The
purpose of enqueuing is to prevent contending transactions from requesting all
objects again. Thus, CRF also minimizes conflicts, but the overhead of CRF’s
scheduling is lower than the others because the number of enqueued transac-
tions is smaller. ATS and PTS determine contention intensity and use it for
contention management. Unlike these schedulers which are designed for mul-
tiprocessors, CRF maintains contention monitoring only between commutative
and non-commutative write transactions, alleviating some of the overhead of con-
tention management. In terms of commutativity, in [12] has been used a similar
approach of CRF in order to run in parallel independent parts of the code.

It is important to note that, MV-STM has been extensively studied for multi-
processors and for distributed systems. In [19] is presented a dependency-aware
transactional memory (DATM) for multiprocessors, where transaction execution
is interleaved, and show substantially more concurrency than two-phase locking.

6 Conclusions

We presented a commutativity-based transactional scheduler for multi-version
DTM, called CRF. CRF focuses on how to enhance concurrency of write trans-
actions in multiversioning schemes ensuring SI, where write transactions are
exposed to a high probability of conflicts. Our key idea is to detect a conflict
between commutative and non-commutative write transactions and allow the
first ones to commit concurrently before the others. CRF’s design shows how
commutativity-based scheduling impacts throughput in DTM. Our experimen-
tal evaluation shows that CRF enhances throughput over a state-of-the-art DTM
solution, by 3 and 5× using micro-benchmarks and real-application.

Acknowledgements. This work is supported in part by US National Science
Foundation under grants CNS 0915895, CNS 1116190, CNS 1130180, and CNS
1217385.
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Topic Committee

The topic ”High Performance Architectures and Compilers” deals with architec-
ture design and compilation for high performance systems. The areas of interest
range from microprocessors to large-scale parallel machines (including multi-
core, possibly heterogeneous, architectures); from general-purpose platforms to
specialized hardware (e.g., graphic coprocessors, low-power embedded systems);
and from hardware design to compiler technology.

On the compilation side, topics of interest include programmer productivity
issues, concurrent and/or sequential language aspects, program analysis, pro-
gram transformation, automatic discovery and/or management of parallelism
at all levels, and the interaction between the compiler and the rest of the sys-
tem. On the architecture side, the scope spans system architectures, processor
micro-architecture, memory hierarchy, and multi-threading, and the impact of
emerging trends.

The papers submitted to this topic were thoroughly reviewed and discussed.
For each of the papers we obtained four reviews. We would like to thank all
reviewers who helped in this process. Finally, four papers were accepted which
are summarized below.

The paper ”Adaptive Granularity Control in Task Parallel Programs using
Multiversioning” by Peter Thoman, Herbert Jordan, and Thomas Fahringer in-
troduces a method to adapt dynamically the granularity of fine-grained parallel
programs. The method has two stages: first a set of versions of the input program
are generated by a compiler, basically this compilation relies on the unrolling
techniques to generate versions of the code with different granularity, then, the
optimal granularity is adapted dynamically at run time using a simple algo-
rithm based in heuristics. The evaluation mostly uses benchmarks from BOTS
and compares the approach with Cilk, Intel ICC and GCC with OpenMP. The
experimental results show that the method is effective to increase the efficiency
of recursive parallel programs.

The paper ”Adaptive Snoop Granularity in Hardware Transactional Memory”
by Ehsan Atoofian presents an approach to reduce the coherency traffic in a
Hardware transactional memory (HTM) system. The idea relies on remembering
regions of conflicts in a snoop granularity table and filtering out subsequent
snoops if it is known that the region is not conflicting with others. The evaluation
shows that this approach is effective and also reduces the energy consumption
of the bus.
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The paper ”Towards Efficient Dynamic LLC Home Bank Mapping with NoC-
Level Support” by Mario Lodde, José Flich, and Manuel E. Acacio proposes a
new approach for optimizing the use of shared last level caches in tiled CMPs.
The principle is to dynamically determine a home bank, taking into account the
topology of the CMP and the occupation of each LLC. A migration mechanism
is included in order to better locate shared blocks. In the context of tiled CMPs,
this addresses an important issue concerning scalability and performance.

Finally, the paper ”Online Dynamic Dependence Analysis for Speculative
Polyhedral Parallelization” by Alexandra Jimborean, Philippe Clauss, Juan
Manuel Martinez, and Aravind Sukumaran-Rajam presents a runtime depen-
dence analysis for speculative parallelization, based on VMAD, a framework for
program analysis and instrumentation. The dependence analysis used is a combi-
nation of range and GCD test, using dependence distance vector as abstraction.
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Abstract. Task parallelism is a programming technique that has been
shown to be applicable in a wide variety of problem domains. A central
parameter that needs to be controlled to ensure efficient execution of
task-parallel programs is the granularity of tasks. When they are too
coarse-grained, scalability and load balance suffer, while very fine-grained
tasks introduce execution overheads.

We present a combined compiler and runtime approach that enables
automatic granularity control. Starting from recursive, task parallel pro-
grams, our compiler generates multiple versions of each task, increasing
granularity by task unrolling and subsequent removal of superfluous syn-
chronization primitives. A runtime system then selects among these task
versions of varying granularity by tracking task demand.

Benchmarking on a set of task parallel programs using a work-stealing
scheduler demonstrates that our approach is generally effective. For fine-
grained tasks, we can achieve reductions in execution time exceeding a
factor of 6, compared to state-of-the-art implementations.

Keywords: Compiler, Runtime System, Parallel Computing, Task Par-
allelism, Multiversioning, Recursion.

1 Introduction

Task-based parallelism is one of the most fundamental parallel abstractions in
common use today [1]. While relatively easy to implement and use, achieving
good efficiency and scalability with task parallelism can be challenging. A cen-
tral feature of every task-based parallel program that significantly affects both
efficiency and scalability is task granularity [8]. The granularity of tasks is de-
fined by the length of the execution time of a single task between interactions
with the runtime system, such as spawning new tasks.

Very fine-grained, short-running tasks lead to a loss in efficiency compared
to sequential execution due to the runtime overhead associated with generating
and launching a task, as well as synchronizing its completion with other tasks
in the system. On the other hand, coarse-grained, long-running tasks minimize
overhead, but are hard to schedule effectively and may therefore fail to scale
well on large parallel systems. Previous work in this area has focused mostly on
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runtime systems or user-controlled cutoffs to manage granularity (see Section 5).
Conversely, we propose an approach that combines a multiversioning compiler
with a runtime system which adaptively selects from the generated versions.
Our goal is to maximize efficiency by increasing task granularity – and thus
decreasing overheads – without negatively affecting load balance or scalability.

We implemented our method for OpenMP [17] tasks within the Insieme com-
piler and runtime system [11], but the idea is equally applicable to any other
task parallel language. Our concrete contributions are the following:

– A compile-time multiversioning transformation that generates a set of task
implementations of increasing granularity by recursive task unrolling and
subsequent elimination of superfluous synchronization primitives. This trans-
formation is applicable to both simple recursion and N -ary mutual recursion.

– A runtime heuristic for the dynamic adaptation of granularity based on the
concept of task demand, which automatically choses the code version to
execute at each task spawning point.

– Evaluation and analysis of the performance of our method on a number
of well-known task parallel benchmarks. We compare with other OpenMP
implementations, our own implementation without the multiversioning op-
timization and Cilk [2] versions which represent the state of the art in fine-
grained task parallelism.

The remainder of this paper is structured as follows. In Section 2 we provide
some initial results that motivated our work. We then describe our method in
detail in Section 3 and evaluate its performance in Section 4, followed by an
overview of related work in Section 5. Finally, Section 6 concludes the paper.

2 Motivation

Figure 1(a) shows single-threaded execution times measured for the Barcelona
OpenMP Tasks Suite (BOTS) [7] N-Queens benchmark with N = 13. For details
on the hardware, compiler versions and programs used refer to Section 4.
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Fig. 1. Initial Experiments, N-Queens N = 13
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The lowest execution time amongst the OpenMP versions is achieved by our
compiler and runtime system (Insieme), however, this time is still 28% higher
than purely sequential execution. Even the Cilk version, while more efficient than
any OpenMP implementation, is 19% slower than the sequential version. Our
multiversioning method is designed to address this inefficiency. Throughout this
paper, when we refer to inefficient execution, we mean execution which takes
longer than executing purely sequential code (assuming perfect scaling).

Note that the OpenMP runtime systems of ICC [12] and GCC [19] perform
special case handling when only a single worker thread is used. This is visible
in Figure 1(b), which shows their performance degrading when switching from
one to two threads. Further experiments in Section 4 confirm this behavior,
with scaling starting after some initial performance degradation when activating
multi-threaded execution. The OpenMP version compiled with Insieme and the
Cilk version do not suffer from this issue, however they still induce a relative
overhead of about 20% compared to ideal linear scaling from the sequential
version. We identified the following potential causes for this inefficiency:

1. Task generation overhead. This includes generating a task structure, popu-
lating it with values and enqueuing it.

2. Synchronization primitive overhead (e.g. taskwait). At the very least, this
involves keeping track of all the subtasks launched by each task, and signaling
when they are complete.

3. Task library calls. The runtime methods required for tasking are generally
implemented in a separate library, and the overhead for their invocation is
incurred even if they perform no actual work.

4. Non-inlineable, indirect program function calls. Since the program function
implementing a given task needs to be called by the tasking library, a pointer
to it is usually passed to the library function. Even if the runtime library
decides to directly execute the call, this prevents the benefits – improved
instruction scheduling and a reduction in overhead – associated with inlining.

Issues 1 and 2 can be mitigated by a pure runtime approach, e.g. the runtime li-
brary can dynamically decide whether to generate a full task structure or directly
call the task function. This method is usually referred to as lazy task creation
[14]. However, the basic overhead of library function calls (issue 3) and the fact
that indirectly called functions in the original program can not be inlined (issue
4) can not be changed at runtime and need to be handled at compile time. This
limitation of pure runtime systems motivates our compiler-aided multiversioning
approach.

All four potential causes for inefficient execution identified above are directly
related to and influenced by the granularity of tasks. The more often individual
tasks are generated and synchronized, the higher the impact of the associated
overheads on execution time. However, simply increasing the granularity of all
tasks is not a solution: such an approach will lead to load imbalance, increasing
the probability of workers idling. Therefore, our goal is the generation of different
implementations for each task.



Adaptive Granularity Control in Task Parallel Programs 167

Task 1 

Task 2 

Task 3 

OpenMP  
program 

Insieme compiler 

Unroll 

Simplify 

Each task 

Sequentialize 

Encode versions 

IRT 
program 

Task 1 

Task 2 

Task 3 

Insieme runtime system 

Task invocation 

Check demand 

Check queue length 

Ver.0 Ver.1 Ver.2 

Select version 

Fig. 2. Overview of our Method

3 Method

Figure 2 provides an overview of our proposed method. Starting from an OpenMP
program with parallel tasks, our compiler generates an IRT (Insieme Runtime)
program in which multiple different implementation versions of each task are
encoded. During execution of the program, whenever a specific task is invoked,
the Insieme runtime system selects and launches a version of this task.

3.1 Compile-Time Multiversioning

During compilation our goal is to generate multiple versions of each parallel
task, with varying granularity. As depicted in Figure 2 this involves a three step
process, which may be applied multiple times to further increase the task size.
The individual steps are as follows:

1. Task unrolling. Replaces each task invocation site with a direct call to
the task function, which is subsequently inlined. This can be thought of as
a context and parallelism-aware recursive function inlining step. The name
task unrolling is adapted from Rugina’s usage of recursion unrolling [18].

2. Sequentialization. This step focuses on identifying which synchronization
primitives – if any – were rendered superfluous by the partial elimination
of parallel task invocations due to task unrolling, and removing them. It is
described in more detail below.

3. Simplification. The unrolling and sequentialization may have generated
code that can be simplified by basic operations such as arithmetic simpli-
fication, constant propagation or dead code elimination. Thus, these are
performed before any further processing.

The number of generated versions depends on the granularity of the initial tasks
and the largest granularity desired. The versions are generated and encoded into
the target program in the following order.

1. Original. The original version from the input program.
2. N times unrolled versions. Starting from N = 1. In these versions,

only partial sequentialization is performed. Outer task spawning points are
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removed, but the innermost spawning location is kept. This process is illus-
trated in detail in a code example in Figure 4, described below.

3. Fully sequentialized version. In this version all task spawning points are
removed and replaced with plain function calls.
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Fig. 3. Version Generation and Control Flow

Figure 3 illustrates the result of generating 3 versions for a mutually recursive
task set consisting of two functions F1 and F2. The original program thus has
two task spawning locations, A (which spawns F1) and B (spawning F2). To
improve the clarity of the illustration, these task spawning points have been
replicated in the figure, however they are still all referring to the same task.

Version (1) is identical to the original program, except that at each spawning
point there is now a choice between 3 distinct implementations of each function.
In version (2), consisting of F1′ and F2′, each recursive task invocation was
unrolled once, forming tasks of increased granularity. Clearly, if this version is
used, more work is performed between individual task invocations and interac-
tions with the runtime library. Finally, version (3), comprising F1′′ and F2′′, is
fully sequentialized. Once this version is invoked, no further parallel tasks will
be spawned on this branch of the recursive descent.

Code Example. Figure 4 illustrates the effect of the steps taken during com-
pilation to generate a task version that has been unrolled once. A pseudo-code
formulation is used for reasons of clarity and size. It is C-like, but without the
need for explicit type specification, and with two additional keywords: spawn
implies the generation of a new parallel task (corresponding to #pragma omp

task untied), while merge all waits for the completion of all launched sub-
tasks (equivalent to #pragma omp taskwait).

In (a), the original input code is shown. Moving on to (b), first-level task invo-
cations are removed and replaced with in-place calls of the associated functions.
Context-sensitive inlining of these calls results in (c). Finally, redundant appli-
cations of the merge all operation are removed and arithmetic simplification is
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applied. The final generated code for this version is listed in (d). This process
can be repeated N times to generate increasingly larger task sizes.

After all the versions are generated, each version needs to be modified to
enable runtime selection. Figure 5 contains the final code for the original version
with task selection (a), the unrolled version as discussed previously (b) and a fully
sequentialized version (c). The pick keyword implies a possible choice between
semantically equivalent versions, which is deferred to the runtime system.

Partial Sequentialization. In most parallel programs there will be some su-
perfluous synchronization statements after task unrolling. Since the execution
has been partially sequentialized, instructions that wait for the completion of
a task that was unrolled are no longer necessary and should be removed. The
transformation eliminating unnecessary synchronization acts as follows on a task
version T , effectively removing all merge all operations for which there is no
possibility of any task being spawned between them and a previous merge all:

fib(n) = { 
  if(n<2) return n; 
  a = spawn(fib(n-1)); 
  b = spawn(fib(n-2)); 
  merge_all(); 
  return a + b; 
} 

fib(n) = { 
  if(n<2) return n; 
  a = (n’){ 
    if(n’<2) return n’; 
    a = spawn(fib(n’-1)); 
    b = spawn(fib(n’-2)); 
    merge_all(); 
    return a + b; 
  }(n-1); 
  b = […]; 
  merge_all(); 
  return a + b; 
} 

fib(n) = { 
  if(n<2) return n; 
  if(n-1<2) a = n-1; 
  else { 
    a’ = spawn(fib(n-1-1)); 
    b’ = spawn(fib(n-1-2)); 
    merge_all(); 
    a = a’ + b’; 
  } 
  […]; 
  merge_all(); 
  return a + b; 
} 

fib(n) = { 
  if(n<2) return n;  
  if(n<3) a = n-1; 
  else { 
    a’ = spawn(fib(n-2)); 
    b’ = spawn(fib(n-3)); 
    merge_all(); 
    a = a’ + b’; 
  } 
  […];  
  return a + b; 
} 

(a) 
Input code 

(b) 
Unrolled 

(c) 
Inlined 

(d) 
Simplified 

merge_all dropped 

Fig. 4. Example task transformation - Fibonacci - Version generation

1. Determine the set S of all merge all invocations in T .
2. For each merge all M ∈ S:

(a) Compute the set of all execution paths F from the entry point of T to
M .

(b) Reverse the paths in F .
(c) If no path in F encounters a spawn before reaching a merge all, remove

M from T .

3.2 Runtime Version Selection

The previous section outlined how multiple versions with different granularities
and trade-offs are generated in the compiler. This provides the runtime system
with an opportunity of making a version choice every time a task is spawned.
Making the wrong choice can result in not gaining the desired increase in effi-
ciency, or, at worst, greatly diminishing parallelism – e.g. in case a fully sequen-
tialized version is chosen too early. We considered the following design goals and
observations when developing our version selection method:
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fib(n) = { 
  if(n<2) return n; 
  a = spawn( pick( 
    fib(n-1), 
    fib_u1(n-1), 
    fib_seq(n-1) ) ); 
  b = spawn( pick( 
    fib(n-2), 
    fib_u1(n-2), 
    fib_seq(n-2) ) ); 
  merge_all(); 
  return a + b; 
} 

fib_u1(n) = { 
  if(n<2) return n;  
  if(n<3) a = n-1; 
  else { 
    a’ = spawn( pick( 
      fib(n-2), 
      fib_u1(n-2), 
      fib_seq(n-2) ) ); 
    b’ = spawn(pick(…)); 
    merge_all(); 
    a = a’ + b’; 
  } 
  […];  
  return a + b; 
} 

fib_seq(n) = { 
  if(n<2) return n;  
  if(n<3) a = n-1; 
  else { 
    a’ = fib_seq(n-2); 
    b’ = fib_seq(n-3); 
    a = a’ + b’; 
  } 
  […];  
  return a + b; 
} 
 

(a) 
Original 

(b) 
Unrolled Once 

(c) 
Fully Sequentialized 

Fig. 5. Example task transformation - Fibonacci - Generated versions

– At the start of the program, the original (most fine-grained) version of the
tasks should be used, since the parallelism available in the system is not yet
fully leveraged and load-balancing is a priority.

– The impact of conservative behavior – i.e. using more fine-grained tasks –
causes more gradual performance degradation than using tasks that are too
coarse grained, potentially leading to some worker threads idling.

– The decision procedure needs to be simple and not introduce large overheads
on its own, otherwise it could negate any benefits from multiversioning.

– The decision making process should be distributed – no new synchronization
points between worker threads should be introduced to facilitate version
selection.

Taking these points into account led to the development of a distributed version
selection heuristic based on two parameters that are tracked for each individual
worker thread. The first is task demand, which keeps track of other worker’s
unfulfilled attempts to steal tasks from the local worker. The second parameter
is the queue length of each worker, or how many tasks it currently has available
to be executed or stolen.

Task demand is tracked in a surprisingly simple, but effective, manner. The
demand is stored as an integer which starts at a positive value equal to the
maximum task queue length. Whenever a task is generated by a worker thread,
it reduces its own task demand by 1. When a worker attempts to steal from
another which has no tasks available, that target worker’s demand value is reset
to the starting value.

Our version selection heuristic is described in Figure 6. In conjunction with
the demand tracking outlined above, it has the following desirable properties:

– Evaluating the selection function only takes a few dozen cycles, assuming
that all the required values are cached.

– The way in which task demand is completely reset if any stealing operation
fails, but is only reduced gradually during normal execution, mirrors the
earlier observation about the negative performance impact of wrong gran-
ularity selection. It makes the expensive case of idle workers unlikely by
reacting very strongly to failed stealing attempts.
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queue length current queue length
task demand current task demand
num versions number of versions generated for current task
MAX QUEUE maximum queue length (fixed)

output: 0 ⇔ original task
N = 1 . . . num versions − 2 ⇔ unrolled N times

num versions − 1 ⇔ fully sequentialized

1: version = num versions − �(task demand/MAX QUEUE) ∗ num versions�
2: if version >= num versions − 1 then
3: if queue length == MAX QUEUE then
4: return num versions − 1
5: end if
6: return num versions − 2
7: end if
8: return version

Fig. 6. Version Selection Algorithm

– Selecting the fully sequentialized version is a step that should only be taken
after careful consideration, since it will prevent any further parallelism from
being generated on this branch of the recursive descent. Therefore, the
heuristic only takes this step if there has been no demand for additional
tasks over a large number of spawn points and the queue is full.

The choice of the MAX QUEUE parameter has an impact on the effectiveness of this
approach. Experimental evaluation has shown that generally, a longer queue
is beneficial on systems with a larger number of cores. For the evaluation in
Section 4, MAX QUEUE was set to 32.

4 Evaluation

In this section we will evaluate the performance impact of our optimization on
multiple benchmark programs. Subsection 4.1 details our measurement method-
ology and the experimental setup used. We will perform an in-depth evalua-
tion of one program in Subsection 4.2, and then proceed with an overview of
the results of a number of other codes in order to provide a balanced overall
impression.

4.1 Experimental Setup

For our experiments we used an Intel-based parallel system, incorporating 4 Xeon
E7-4870 processors, each comprising 10 physical cores (20 hardware threads) and
3 levels of cache. Table 1 summarizes the configuration of this system.
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Table 1. Hardware and software platform for experimental evaluation

Sockets/ Cache Software
Cores L1d/i L2 L3 OS Kernel GCC ICC Insieme

4/40 32K/32K 256K 30M CentOS 6.3 2.6.32 4.6.3 12.1 g4614502

When running experiments using a subset of cores, all involved threads were
bound to individual physical cores such that the resources of one chip are fully
utilized before involving an additional processor. All experimental runs were
repeated five times, and the median runtime is reported.

While the most important comparison for our evaluation is between our com-
piler with and without our multiversioning method, we also included the results
obtained by other platforms to provide a reference for comparison. Table 1 in-
cludes the exact version number of the compilers used in these comparisons. ICC
was used as the backend compiler for the Insieme source to source infrastructure,
and its built-in Cilk Plus support was employed to compile Cilk programs. The
optimization flag “-O3” was enabled for all calls to GCC and ICC.

4.2 A Detailed Evaluation

The first program we will evaluate is the N-Queens benchmark included in
BOTS [7]. Each task in N-Queens spawns 0 to N child tasks, and the depth
of its task invocation trees varies from 1 to N , while not following any simple
pattern. The size of individual tasks is relatively small.

Figure 7 shows the performance of N-Queens using a variety of compilers and
implementations. Four OpenMP versions are shown: GCC, ICC and Insieme with
and without task optimization. Additionally, we included the results of a Cilk
version and a fully sequential version without any parallel language primitives.
The execution time is presented in a log-log plot to improve readability. The
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efficiency plot compares the execution times of the parallel versions against ideal
scaling from the sequential version.

In terms of OpenMP results, it is clear that the task granularity in this bench-
mark is too small to be handled effectively by GCC’s GOMP implementation.
ICC shows the same behavior that was already partially observed in Section 2 –
execution time increases when going from a single-threaded to a multi-threaded
setup. However, starting from two threads performance scales relatively well up
to 40. Since both of these OpenMP implementations seem ill-equipped to handle
very fine-grained tasking well, we also included a Cilk version, which has pre-
viously been shown to provide better scaling for fine-grained tasks [15]. Indeed,
this implementation performs better in the single-threaded case and scales more
smoothly to multiple cores than the GCC and ICC OpenMP versions.

Using Insieme to compile the OpenMP input program results in performance
that is comparable to Cilk for up to 16 cores, and scales slightly better be-
yond this amount. However, a comparison with the fully sequential version in-
dicates that even the Insieme OpenMP version and the Cilk version lose around
20% of performance to overheads incurred due to parallelization. When our task
optimization is activated, this overhead is effectively avoided. Even more im-
portantly, this significant reduction in overhead is achieved without negatively
affecting the scalability of the program. Performance compared to our implemen-
tation without task optimization is improved by 22% to 28% across all measured
core counts, with a 25% increase at the full 40 cores.

Compared to the fully sequential version, our approach achieves an efficiency
above 99% up to 8 cores, 97% at 16 cores, 85% with 32 cores and 80% at 40
cores. Using the full system (40 cores), our implementation with task optimiza-
tion improves N-Queens performance by 56% compared to the best competing
implementation (Cilk).

4.3 Further Benchmarks

Table 2 summarizes our benchmark results. It includes measurements for the N-
Queens benchmark presented above, as well as a number of additional programs.

Sort. Is the sort benchmark included in BOTS.
Strassen. Also from BOTS, matrix multiplication using the Strassen algorithm.
Fib. The BOTS fibonacci benchmark, remarkable for its very small task size.
Stencil. A task based 2D stencil computation using the cache-oblivious algo-

rithm presented by Frigo and Strumpen [10]. We included this benchmark
to represent an important category of cache-oblivious divide-and-conquer
algorithms.

Floorplan. The BOTS floorplan benchmark. For this application, the binary
generated by ICC 12.1 repeatably caused a segmentation fault within ICC’s
OpenMP library, regardless of the number of threads used. Therefore we are
unable to present ICC results for this benchmark.

FFT. A parallel fast fourier transform included in BOTS.
QAP. A branch and bound solver for quadratic assignment problems.
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Table 2. Benchmark Results

cores 1 2 5 10 20 40 cores 1 2 5 10 20 40

Queens, N = 13 - seq: 7.42 Fib, N = 48 - seq: 31.09
gcc 10.23 36.29 148.28 308.16 545.22 725.98 gcc 1960.35 17093.63 >15000 >15000 >15000 >15000
icc 10.49 16.04 6.45 3.81 1.60 0.91 icc 1379.84 2705.65 1135.29 569.15 286.41 157.70
ins 8.69 4.35 1.74 0.87 0.46 0.27 ins 742.40 456.95 247.91 196.59 169.50 155.29
opt 6.79 3.41 1.48 0.69 0.36 0.21 opt 27.06 13.77 6.37 3.30 1.93 1.03
imp 27.92% 27.52% 17.78% 26.64% 25.35% 24.91% imp 26.43× 32.17× 37.90× 58.15× 86.69× 150.36×
Sort, N = 227 - seq: 21.51 Strassen, N = 8192 - seq: 158.15
gcc 21.98 11.80 7.20 17.17 29.43 42.29 gcc 159.74 92.45 39.20 22.10 15.36 19.94
icc 23.87 12.36 5.04 2.80 1.85 1.56 icc 164.43 89.94 39.12 21.81 15.69 19.27
ins 22.94 12.00 4.90 2.71 1.93 1.53 ins 168.84 85.97 37.51 21.98 12.94 8.72
opt 20.81 11.18 4.61 2.52 1.72 1.41 opt 154.27 79.80 35.46 19.81 12.03 8.11
imp 5.61% 5.47% 6.43% 7.47% 7.88% 8.11% imp 3.54% 7.72% 5.77% 10.08% 7.55% 7.52%

Stencil, N = 2048 - seq: 18.90 Floorplan, input.20 - seq: 17.86
gcc 46.82 62.09 138.51 398.05 576.83 840.61 gcc 27.36 31.04 133.30 352.94 514.51 759.20
icc 30.17 24.65 15.63 14.64 13.84 12.04 icc * * * * * *
ins 32.49 18.48 9.27 6.31 7.50 9.67 ins 23.53 12.48 5.05 2.53 1.72 1.58
opt 24.96 13.84 6.66 4.26 5.15 7.54 opt 17.20 9.51 4.12 2.09 1.43 1.24
imp 20.87% 33.49% 39.17% 47.97% 45.50% 28.29% imp 36.76% 31.25% 22.62% 21.06% 20.52% 27.68%

FFT, N = 229 - seq: 184.78 QAP, chr18a - seq: 237.28
gcc 222.27 132.66 95.88 276.81 420.00 482.07 gcc 488.97 931.43 7471.11 >15000 >15000 >15000
icc 189.73 112.13 55.95 37.44 22.64 16.03 icc 785.36 2539.80 823.00 319.87 179.58 114.93
ins 187.36 104.85 51.39 36.46 21.01 16.96 ins 578.57 294.13 112.80 78.65 70.97 60.71
opt 183.97 100.02 49.66 35.08 19.07 12.03 opt 231.62 110.76 40.24 21.88 15.18 9.90
imp 1.84% 4.84% 3.48% 3.93% 10.16% 33.21% imp 2.11× 2.66× 2.80× 3.59× 4.68× 6.13×

For every benchmark, the table contains five rows. The results achieved using
the GCC and ICC OpenMP implementations are listed in the “gcc” and “icc”
rows, respectively. The “ins” row contains the results of our Insieme compiler
and runtime without the task multiversioning optimization presented in this
paper, while it is enabled for the measurements listed in the “opt” row. Finally,
the values in the “imp” row represent the relative improvement achieved using
adaptive granularity control, compared to the best result among the other three
versions. The columns labeled 1 to 40 correspond to the number of cores used
for the computation. All times are given in seconds, and the improvement is
provided in percent, except in the case of the Fibonacci and QAP benchmarks
where improvement factors are listed instead of very large percentages.

As a frame of reference, the purely sequential time for each benchmark com-
piled with ICC is provided in each header (“seq”). Note that this time falls
between the Insieme time without optimization and the optimized version in
most cases, except in the stencil test. Here, the restructuring performed by our
compiler prevents some of the low-level sequential optimizations performed by
ICC. However, our optimized version executed with one thread is still closer to
the sequential performance than any other implementation.

A general trend visible throughout all the benchmark results is the relation-
ship between default task granularity, scaling in GCC and the degree of improve-
ment possible using adaptive task multiversioning and selection. The fibonacci
and QAP benchmarks have the most fine grained tasks, and consequently the
worst scaling in GCC and the largest improvement with our optimization. On
the other end of the spectrum, the FFT, strassen and sort benchmarks fea-
ture built-in cutoff values that inherently control task granularity by prevent-
ing very small tasks from being generated, resulting in more modest, but still
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significant, performance improvements with multiversioning. Floorplan, stencil
and N-queens fall in between these extremes.

One interesting behavioral pattern which merits some explanation occurs in
FFT. Our multiversioning implementation does not result in any significant im-
provement up to 10 cores, however at 40 cores the measured improvement is
33%. This is due to the FFT benchmark consisting of two separate phases: coef-
ficient calculation and FFT computation. These phases exhibit distinct scaling
behaviour, and one of them is affected more significantly by adaptive granular-
ity optimization than the other. Thus, with a larger number of cores, the phase
with bad scaling starts to take up a larger portion of the execution time, and
the effect of multiversioning on overall performance increases.

5 Related Work

Much previous work on parallel tasks has focused on runtime systems [3] or
scheduling policies [16]. As described in section 2, pure runtime modifications
are incapable of dealing with all the causes for inefficiency that our combined
compiler and runtime approach covers. Moreover, our proposed multiversioning
scheme is orthogonal to scheduling decisions and can be combined with any
scheduling policy.

A common approach towards dealing with task granularity issues is having
the user provide thresholds or cut-off values [8]. In our work, task granularity is
controlled entirely by the compiler and runtime system, without requiring man-
ual programmer support. Duran et al. [6] describe an adaptive cut-off method
which does not require manual adjustment, but their pure runtime approach
does not offer the performance benefit of full sequentialization in the compiler.

Inlining of recursive functions has been previously performed in sequential
program transformation [9], even with the express purpose of improving per-
formance in divide and conquer programs by reducing overheads [18]. However,
these works do not deal with parallelism, while our approach focuses primarily on
minimizing the overhead incurred by parallel task creation and synchronization.

Some recent publications have used compiler multiversioning in a parallel set-
ting [4][13], but they focused exclusively on loop-based data parallelism. Con-
versely, our multiversioning approach is designed for task-parallel, recursive
programs.

Very recently, Deshpande and Edwards used recursion unrolling to improve
opportunities for parallelism in Haskell programs [5]. Unlike our method, they
do not use multiversioning or version selection at runtime, and their compiler
transformations are designed for the Haskell functional language while we process
input programs written in C with OpenMP.

6 Conclusion

We have presented a fully automatic, adaptive approach to parallel task gran-
ularity control which goes beyond what can be achieved by improving either
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just a runtime system or focusing only on compilation. By combining a compiler
which performs task multiversioning with a runtime system that adaptively se-
lects from these versions, we were able to minimize parallel runtime overhead
even for very fine grained tasks. Our method uses a novel combination of com-
piler transformations to build an optimized set of semantically equivalent task
versions which differ in granularity. The availability of this set of implementa-
tions in the compiled program in turn enables our runtime heuristic to adjust the
amount of tasks generated, while incurring even less overhead than a traditional
lazy task creation system with cut-offs.

Evaluating our proposed method across a set of eight benchmarks has shown
that our optimization is widely applicable, and that the magnitude of these im-
provements is related to the task granularity of the input program. For programs
with relatively coarse-grained tasks, execution times are reduced by 5% - 10%,
while we can achieve improvements of a factor of 6 or more compared to the
best competing implementations in fine-grained test cases. Benchmark results
also demonstrate that our runtime selection heuristic successfully ensures that
scalability (up to 40 cores) is not negatively affected by adaptive task granu-
larity adjustment. Crucially, our adaptive granularity control scheme improves
performance in all tested benchmarks and for any given number of cores.
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Abstract. In tiled Chip Multiprocessors (CMPs) the banks of the built-
in last level cache (LLC) are usually distributed among the tiles and
logically shared. A static mapping of cache blocks to the LLC banks
leads to poor efficiency since a block can be mapped to a bank far away
from the tiles which actually access it. Partially dynamic policies have
been proposed, which however rely on the static mapping of blocks to a
set of banks (D-NUCA) or rely on the OS to dynamically load pages to
statically mapped addresses (first-touch).

We propose a new dynamic approach where the LLC home bank is
determined at runtime in hardware, with the memory controller in charge
to perform the block mapping when fetched from main memory. To speed
up the home bank lookup process, we use simple and lightweight NoC
optimizations. When compared with alternative solutions (S-NUCA, D-
NUCA, first touch, private LLCs) results with PARSEC and SPLASH-2
applications indicate improvement in locality of LLC blocks in the same
tile (56.2% from 5.8%) and more than 33% reduction in load and store
miss latencies. This leads to an average reduction of 24% in application’s
execution time compared to static mapping.

1 Introduction

Chip multiprocessor systems (CMPs) usually employ a shared memory program-
ming model, thus requiring a cache coherence protocol to keep data consistency
along the cache hierarchy. The on-chip cache is organized hierarchically, with
small low-latency caches at the highest level and larger caches with higher access
times at the lower levels. This provides high on-chip storage capacity without the
high access latency a single, large cache would have. Without losing generality,
in this work we assume the tiled CMP system shown in Figure 1 with a two-level
cache. Each tile includes a core, separate L1 caches for instructions and data, a
bank of L2 cache and a switch to connect the tiles through a 2D mesh.

L1 caches are private to the core in the tile. For the L2 cache, different policies
can be implemented, but the common choices are two. The first is to use each
L2 cache bank as a private cache to the tile, extending its private cache capacity.
This is the best option if the working set of the application fits in the L2 cache
bank, since all cached data can be accessed without sending requests over the
NoC. If the working set does not fit, this policy generates many L2 cache line
replacements, and therefore, off-chip requests. Furthermore, shared blocks are
replicated in different L2 cache banks. The second option is to consider the L2
banks as a shared but distributed L2 cache. Data replication is avoided and

F. Wolf, B. Mohr, and D. an Mey (Eds.): Euro-Par 2013, LNCS 8097, pp. 178–190, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Fig. 1. Tiled CMP system Fig. 2. Gather control network for tile 0

cache resources are used efficiently, but the latency of retrieving a cached data
in case of L1 miss will be higher and variable depending on the location of the
L1 cache and the L2 bank. Thus, the mapping of blocks to L2 banks is a crucial
design parameter for this approach. In this paper we follow this policy.

The L2 bank that hosts a block is called the home bank. There are two main
design options when deciding which L2 bank is the home for a block. On the
one hand, block mapping can be done statically (S-NUCA): the address space is
divided in subsets and all the blocks of a subset are statically mapped to a bank.
This policy is very simple to implement but can be inefficient as blocks may be
mapped to banks which are far away from L1 requestors. The second option is to
perform the mapping dynamically (D-NUCA) [11], where each subset of blocks
is mapped to a group of banks, or bank set, and blocks can migrate within a
bank set to move as close as possible to the requestor’s tile. This policy has lower
miss latencies but is more complex to implement. Furthermore, the process of
finding a block within a bank set leads to a tradeoff between access time and
NoC traffic since all the banks of a bank set must be accessed, leading to either
high latency (sequential search) or more traffic (parallel search).

In this work we propose Runtime Home Mapping (RHM), a new dynamic
approach where the LLC home bank is determined at runtime in hardware by
the memory controller. While in D-NUCA the mapping is partially static, in
RHM a block can be mapped to any L2 cache bank, enabling future optimization
strategies such as virtualization, where the home banks can be bounded to the
region of the chip running a given application, and increased efficiency of thread
migration, where migrated threads can attract data to their closest L2 cache
banks. Since the home bank is not known a priori, a search must be performed
each time an L1 miss occurs. Conversely to previous approaches to home location,
based on the use of limited-size tables, and therefore prone to costly overflows
[1], we combine three different NoC mechanisms to optimize the search phase:

– An efficient home search method where a broadcast message is triggered to
query the home. Then, a lightweight and simple dedicated control network
is used to collect acknowledgments generated in the discovering process.

– Parallel access of L2 tags. We highly couple tag array of L2s into the current
NoC router design. At the same time the broadcast message enters the router,
the tag array is accessed.
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– A router mechanism aimed to reduce the broadcast messaging. On an L2
tag hit, the broadcast message is removed from the router before leaving it,
thus reducing traffic by chopping broadcast branches.

In addition, we propose a migration strategy similar to the one of D-NUCA
caches but without the bank set constraint: a block can migrate to any bank.
Results show RHM is effective in placing the block near the core using it, reducing
the average number of hops per request by 60% on average compared to static
mapping, which leads to reductions of more than 30% in terms of cache miss
latency and 27% in execution time. NoC and LLC energy consumption is also
reduced by 40% and 23% on average, respectively.

The rest of the paper is organized as follows: in Section 2 we show RHM and
its NoC-level support. In Section 3 we present the router with support for the
parallel L2 tag access. In Section 4 we show the evaluation results. In Section 5
we describe related work. In Section 6 we describe future work and conclusions.

2 Runtime Home Mapping with NoC-Level Support

RHM aims to map blocks to L2 banks at runtime, in order to allocate them as
close as possible to the requesting cores, possibly in the L2 bank of the local
tile. The mapping is performed by the memory controller each time it receives a
request. Thus, if a block is removed from the chip, it can be mapped to a different
L2 bank the next time depending on the requestor and L2 cache availability.

In case of an L1 miss, a request is sent to the local L2 bank in the same tile.
On a miss, a broadcast is sent to all other L2 banks. When a bank receives this
broadcast request, it checks its tag array. In case of a hit, it sends the data back
to the requestor. In case of a miss, an acknowledgement (ACK) is sent to the L2
which issued the broadcast. If all the L2 banks send an ACK to that L2 bank,
it means the block is not cached on chip, so the bank sends a request to the
memory controller (MC), which in turn fetches the block from main memory.
The MC keeps track of the utilization of each L2 bank, so while waiting for
the data it decides which L2 bank will be its home depending on the requestor
location, utilization statistics and the mapping policy (explained in Section 2.2).

Once a bank is chosen as the home for a particular block, the MC notifies the
bank so it can start replacing a cache line, if needed, and allocating a line to the
incoming block while the MC is still waiting for the block. When the block is
received at the MC, it is sent to the chosen home bank, which in turn will send
the block to the requestor L1 cache.

The L2 home search policy just described above has high network resources
demand: every time a request misses in the local L2 bank, a broadcast is issued.
Also, all other banks must answer to the broadcast with an ACK or with the data.
The first can be attenuated by implementing a tree-based broadcast mechanism
within the NoC: a broadcast is sent injecting a single message, that replicates
at switches to reach every L2 bank. This reduces NoC traffic and eliminates the
serialization of multiple copies of the same request (one per destination). ACKs
however still represent a big problem: they are indeed sent roughly at the same
time and will probably serialize in the network and, most important, all of them
must reach the same L2 cache bank (i.e., the one that initiated the broadcast).
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2.1 Gather Control Network

To solve the problems introduced by ACK messages our proposal uses a simple
and fast dedicated control network.1 This network, called Gather Control Net-
work (GCN), can be logically seen as 16 one-bit wide subnetworks, one per tile.
Each subnetwork is a tree of AND gates, connecting the destination tile (the
root) with all other tiles (located at the leaves of the AND tree).

Figure 2 shows the subnetwork with root in tile 0. A one-bit subnetwork
(darker arrows) is added to the regular NoC (bidirectional arrows). If a request
misses in the L1 and L2 caches of tile 0 (L1-0 and L2-0 from now on), L2-0
broadcasts the request to all other L2 banks through the regular NoC. When an
L2 bank receives this request, it triggers the output signal of the GCN for tile
0. Once all L2 banks have triggered their output signals, the output of the AND
tree will notify the L2-0 and thus acts as a global ACK. Sending ACKs through
the GCN highly reduces NoC traffic and power consumption and the ACKs
transmission latency. Indeed, the GCN does not require routing, flow control
nor arbitration at each hop and eliminates message serialization at destination.

The GCN we assume in this work has the same logic behavior of the AND trees
but is implemented with sequential logic, which reduces wiring requirements. An
extensive discussion on the sequential GCN is published in [4].

2.2 Mapping Algorithm

Each time the MC receives a request, a mapping algorithm chooses the home
bank for the requested block, in parallel with the access to main memory, de-
pending on the requestor’s tile and current L2 banks utilization. The MC takes
statistics about cache utilization, which are stored in a table (alloc table) with
N ×M entries, where N is the number of L2 cache banks and M the number
of L2 sets. Each entry contains the number of allocations performed in set m of
L2 bank n. If the associativity of L2 sets is Z, the table has to store at mini-
mum N ×M × log2 Z bits. However, the table will double the bits in each entry.
For a 4 × 4 tile system with 16-way 256KB bank sets, the minimum memory
requirements for this single table is 2KB (m = 16, M = 256, Z = 16). With the
increased size, the table will grow to 4KB (to allow 256 allocations per set). The
following pseudocode describes the simple algorithm we implemented:

int function allocate(int r, address a) {
banklist n; bank b; set s; bank h;

s = get_set(a);
if(alloc[r,s]<num_ways) {alloc[r, s]++; return r;}

for(int h = 1; h <= MaxHops; h++){
n = BanksReachable(r, h);
for (int i = 0; i < size(n); i++){
b = SelectBankClockWise(n, i);
if (alloc[b,s]<num_ways) {alloc[b,s]++; return b;}

}

1 This control network is similar to the one proposed in previous works [2],[3] to collect
ACKs generated by Hammer and Directory coherence protocols.
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}

for(int h = 1; h <= MaxHops; h++){
n = BanksReachable(r, h);
for (int i = 0; i < size(n); i++){
b = SelectBankClockWise(n, i);
if (alloc[r,s] - alloc[b,s] > UtilThr) {alloc[b,s]++; return b;}

}
}

alloc[r, s]++; return r;
}

If there is room in the set in the local L2 bank (r tile), then the home is the
local tile of the requestor. Otherwise, the algorithm scans the neighbor banks in
distance order (first for loop) to avoid triggering a replacement if the current line
can be allocated to a distant bank. This search is performed until the threshold
MaxHops is reached, which can be equal to the physical threshold forced by the
system size (number of hops from the requestor to the furthest tile) or lower.

If all the L2 banks are full (alloc higher than num ways), the algorithm tries
to balance the number of allocations (thus, replacements) in all banks (second
for loop). A threshold (UtilThr) is used. If the difference between the number
of allocations in the local tile’s bank and a neighbor bank is higher than the
threshold, then the neighbor bank is selected as the home bank.

If all the banks are balanced, then the block is mapped to the requestor’s
tile. Notice that this does not imply that RHM defaults to private L2 caches.
With private caches all the data accessed by a core must be present in the L2
bank of the same tile, while in RHM this does not apply. For instance, a shared
block will be replicated in all L2 caches if they are private, while in RHM it
will be present only in the home tile. The proposed policy defaults to private
caches only if all L2 banks are full, each core is requesting private blocks and all
banks are uniformly used. In this case, very unlikely in a parallel application, all
blocks are allocated in the requestor tile, which indeed is the best choice since
it minimizes the data access latency.

2.3 Block Migration

If the initial home allocation performed by the MC results sub-optimal, block
migration can be enabled to further reduce the number of hops between an L1
cache and the L2 bank. Notice that a sort of migration mechanism is implicit in
RHM, since each time a block is replaced from an L2 bank and then requested
again it may be mapped to another L2 bank, but this may not always be effective.

We propose a migration scheme similar to the one used in D-NUCA but
without the constraint of being limited within a bank set: in RHM a block
is allowed to migrate to any L2 bank. However, since the migration process
introduces an overhead in terms of traffic and energy, it should be performed
only if it actually leads to a benefit in terms of miss latency reduction.

Solutions in D-NUCA reduce unnecessary migrations and avoid the ping-pong
effect by using a saturating counter for each direction to which a block can move.
A counter is updated each time a request comes from a node located in the
counter’s direction; when the counter saturates, the migration process towards
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that direction is triggered. In our case a block may migrate in any direction, so
four counters are needed, one per direction. Each time a request hits in an L2
block, the counters associated to the requested cache line are updated adding
the distance in hops from the requestor. When a counter is incremented, the one
in the opposite direction is decremented. When a counter saturates, it starts the
migration process: the block migrates to the L2 bank located in the same tile of
the L1 which sent the request that triggered the migration. Counters are reset
after a migration and when a request is received from the local core.

3 Parallel Tag Access

Built-in NoC broadcast support and the GCN highly reduce the NoC traffic
generated during the home search phase. However, traffic can still be reduced
by eliminating useless broadcast branches. In Figure 3.a a request misses in the
local L2 bank and is broadcast to all other banks. Since the data is found in L2-2,
there is no need to propagate the broadcast through east and south directions.
We propose a mechanism to allow parallel access to the L2 tags while a broadcast
message is crossing the NoC router pipeline. This way, in case of an L2 hit, the
broadcast branch can be cropped before the message reaches the crossbar stage
of the switch. Figure 4.a shows a basic 4-stage router modified to enable Parallel
Tag Access (PTA). As the flit exits the input buffer to enter the routing stage,
it is also sent to the L2 tag array to perform the lookup. In case of a hit, the
CHOP signal dismisses the flit (the flit is converted to a bubble). In case of a
miss, MISS signal allows the flit to cross and replicate. Those signals are also
used to generate a global ACK signal in the GCN module of the tile where the
broadcast is cropped, as shown if Figure 3.b.

(a) Example of broadcast branch
cropping.

(b) Modification of the GCN to support
broadcast branch cropping

Fig. 3. Parallel Tag Access: motivation and implementation

Theoretically, the L2 cache must be able to trigger one of the signals within
2 cycles, while the flit is crossing the routing and the VA/SA stages. To limit
power consumption and allow a fast cache lookup, a sequential access to the
L2 bank must be implemented: the tag array is accessed first and then, in case
of hit, the data array is accessed. If the tag access latency is still higher than
two cycles, the L2 bank can be partitioned in sub banks until the size of the
tag array allows a 2-cycles lookup. Alternatively, the L2 bank may require more
cycles than the flit to cross the router (case of a shorter pipeline design as shown
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in Figure 4.b). In this case, the flit gets blocked at the VA/SA stage until the L2
tag access is performed, then the flit either advances through the crossbar (in
case of a miss) or it is dismissed (in case of a hit). Notice that only broadcast
request messages, which are single-flit messages, have to wait for the L2 bank to
access the tag array. Also, with the obtained high locality of data in the local
L2 bank (seen in the evaluation), the effect of this delay is negligible.

Fig. 4. 4-stages (left) and 3-stages (right) switches modified to allow parallel tag access

We implemented the basic 4-stage switch using the 45nm technology Nangate
[5] library with Synopsys DC. The modifications needed to couple the switch
and the L2 tags in order to allow PTA resulted in a negligible area overhead.

4 Evaluation

We evaluate RHM and compare it with other proposed NUCA configurations. In
the baseline (S-NUCA) blocks are statically mapped to L2 banks using the less
significant bits of the block address. In D-NUCA, blocks are statically mapped
to a bank-set depending on their addresses. The matrix of L2 banks is divided in
four bank-sets, one per column of tiles. Blocks are inserted in the L2 bank located
in the same row of the requestor and then can migrate within the bank-set, one
hop each time a migration is triggered. A third configuration uses private LLCs.
Finally, we consider an S-NUCA configuration in which the blocks are mapped
to the L2 banks using a first touch policy [6]. These configurations are compared
to RHM, with and without block migration.

Table 1. Network and cache parameters

Routing XY Coherence protocol Directory (MESI)
Flow control credits L1 cache size 16 + 16 kB (I + D)

Flit size 8 byte L1 tag access latency 1 cycle
Switch model 4-stage pipelined L1 data access latency 2 cycles
Switching virtual cut-through L2 bank size 256 kB
Buffer size: 9 flit deep L2 tag access latency 1 cycle

Virtual channels: 4 L2 data access latency 4 cycles
GCN delay 2 cycles Cache block size 64 B

The cache coherence protocol for each configuration, the NoC with broadcast
support and the GCN have been implemented and simulated using our flit-
level cycle-accurate network and cache hierarchy simulator. We embedded it in
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Graphite[7], capturing the memory accesses of Graphite’s simulated cores and
using our tool for cache hierarchy and NoC timing. Different applications of the
SPLASH-2 and PARSEC benchmark suites have been run on the 16-core system
considered throughout this paper. Network and cache parameters are shown
in Table 1. Cache latencies have been obtained using Cacti [8]. One memory
controller is placed at the top left corner of the chip. For the sake of fairness, we
have used also the broadcast support and the GCN in the D-NUCA approach.

Fig. 5. Avg hop distance between L1 requestors and the tile where the data is found

Figure 5 shows the average hop distance from the requestor to the home tile.
For S-NUCA, the block is found on average at a distance of 2.85 hops. This
distance is roughly the same for most applications as blocks are uniformly dis-
tributed among the L2 banks. With other configurations, however, since blocks
are dynamically mapped and/or moved from a bank to another, the distance
is quite variable depending on the application. For Barnes, dynamic techniques
are not so effective, and the average value is always higher than 2 hops, while
for other applications, e.g. Ocean, those techniques achieve a large reduction in
the average number of hops. On average, RHM locates the data closer to the
requestor than the other configurations, and this distance is further reduced if
block migration is enabled. Indeed RHM MIGR achieves a locality close to that
of PRIVATE L2.

Fig. 6. Percentage of hits in the L2 bank located in the tile’s requestor

Figure 6 shows the percentage of requests which hit in the L2 bank located
in the same tile of the requestor over the total number of L2 hits. Again, re-
sults when using S-NUCA do not depend on the application due to the uniform
mapping of the blocks, and this percentage is quite low (6% on average). This
percentage increased to 16% for D-NUCA, but is still much lower when com-
pared to First Touch (33%), RHM (49%), RHM with block migration (56%) and
Private L2 (72%). Thus, the most effective dynamic method is RHM.
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Fig. 7. Normalized execution time (L2 256KB L1 16KB)

Figures 7 shows the normalized execution time with the six different con-
figurations (PTA is not enabled in this evaluation). We can observe how exe-
cution time is largely reduced with average factors ranging between 12% and
24% when using First Touch and RHM (with and without migration enabled).
RHM achieves lower execution time due to its achieved higher locality in L2.
Also, the migration policy helped in further reducing execution time. Contrary
to this, D-NUCA is not able to achieve large reductions when compared to S-
NUCA. The use of private caches achieves large execution time reductions but
its effectiveness depends on the size of the working set of every application.

Let’s now enable the PTA and see how it impacts performance. Figure 8.a
shows the normalized reduction in number of broadcast messages received with
PTA. On average, PTA helps in reducing the number of received messages by
10%, saving link and router traversals and L2 tag accesses. The average number
of messages saved per broadcast is 3.41 (without chopping, the number of mes-
sages per broadcast is 15). PTA improves the performance of RHM in two ways:
first, as broadcast branches are cropped, the block search phase is faster; second,
at the destination tile messages are delivered directly to the L2 bank without
having to cross the 4 pipeline stages of the switch. These two effects combined
lead to a further average reduction of execution time of 5% (12% for Ocean-nc).

Figure 9 shows the average load and store miss latency, respectively, for the
evaluated configurations, normalized to the S-NUCA approach. RHM reduces
these latencies more than 35% on average and up to 80% (FFT store miss la-
tency) or even 90% (Radix load miss latency). Again, the effectiveness of RHM
in reducing the miss latency depends on the memory access pattern of each

(a) Broadcast messages (b) Execution time

Fig. 8. Normalized reduction in broadcasts and execution time when using PTA
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application. Streamcluster shows a high percentage of blocks which are first
accessed by a tile and then by different tiles during different phases of the ap-
plication. In this case, a first touch policy has the negative effect of overloading
the tile where blocks are mapped, and the migration mechanism can effectively
move the blocks to the correct tiles.

Fig. 9. Normalized load and store miss latency

To conclude performance analysis, it should be observed, that RHM performs
better than FirstTouch. Although FirstTouch is a simple mechanism not re-
quiring any hardware assistance, it should be noted RHM allows finer-grained
assignments (blocks vs pages) and also more effective thread migration as blocks
can be effectively migrated along with threads.

4.1 Energy

Figure 10 shows the normalized dynamic and total energy consumed by the NoC
with the six configurations. Resource access (input buffer read/write, routing,
switch allocation, crossbar traversal and link traversal) have been accounted and
fed into Orion 2.0 [9]. If the request misses in the local L2 bank, RHM consumes
more energy than the other schemes, due to the broadcasts. However, the high
percentage of hits in the local L2 leads to less network activity compared to
an S-NUCA. This, combined with the reduced execution time, leads to average
energy reductions of 32%. Energy consumption is further reduced by 55% on
average when migration is enabled (RHM MIGR).

Figure 11 shows the normalized energy consumed by the L2 cache. We used
Cacti [8] to obtain the dynamic energy and the leakage per bank. Due to the
broadcast access, RHM consumes more dynamic energy than other proposals
(50% more energy on average), but the leakage component, reduced by the lower
execution time, dominates over the dynamic energy for the configuration we
choose. On average, energy consumption with RHM is reduced by 29% without
block migration and 31% when block migration is enabled.

The area overhead and the power consumption of the LLC utilization table at
the memory controller are a minimal fraction of the overall chip area and power
requirement, due to its very small size compared to the on-chip cache and to the
limited number of accesses compared to L1 and L2 accesses (the table is only
accessed in case of L2 miss).
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Fig. 10. NoC’s energy consumption

Fig. 11. LLC’s energy consumption

5 Related Work

To overcome the wire-delay problem [10], the LLC in CMP systems is usually
banked; this configuration is commonly called a Non-Uniform Cache Access ar-
chitecture (NUCA), initially proposed by Kim et al. for a single core system [11]
and then extended to many cores and CMPs [12], [13], and in turn offers many
options when implementing the mapping of the blocks on each bank, the home
bank search policy [15] [16] and the potential migration [11] or replication [14] of
blocks. Both private and shared LLCs have their advantages and drawbacks, so
hybrid configurations have been proposed to exploit the benefits of both design
choices, such as ESP-NUCA [17] and CloudCache [18]. CMP-NuRAPID [19]
decouples tags and data to allow data placement and replication in any LLC
bank. Reactive-NUCA [14] also allows block replication. CMP-NuRAPID how-
ever requires an additional bus, while Reactive-NUCA is optimized for use on
a 2D torus topology, and therefore it could perform poorly in a 2D mesh-based
system. OS-based techniques to achieve a better mapping of the cache blocks to
the LLC banks have been proposed by Cho et al.[6], Ros et al. [20], Das et al.
[22] to achieve dynamic mapping through OS-level page allocation. Cuesta et al.
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[21] deactivate the coherence protocol for blocks which are detected as private by
the OS. Compile-time and data-based techniques have also been proposed in [23]
and [24]. OS- and compiler-based techniques however rely on static mapping at
hardware-level and can’t support block migration or replication. Finally, Ham-
moud et at. [1] propose to implement blocks placement strategies at the memory
controller(s) to prevent placing a block at an exceedingly pressured local set. To
locate cache blocks at the LLC a CTCT [25] policy is assumed, which introduces
3-way communications in some cases, thus increasing the latency of L1 misses.
RHM, differently from previous proposals, allows efficient block search between
L2 banks in the whole chip. The optimizations/support at the NoC level allow
for a aggressive data placement policy requiring only a small table at the mem-
ory controller, and avoiding the 3-way communication of some of the previous
solutions, or the static assumption of private caches or OS-level solutions.

6 Conclusions and Future Work

In this work we have proposed Runtime Home Mapping (RHM) of the cache
blocks to the LLC banks performed at the memory controller with NoC level
support. Different improvements and designs at the NoC level enable fast and ef-
ficient location of data. The aim is to allocate L2 home blocks as close as possible
from requestors. Results indicate a large span of improvement both in execution
time and in reduced miss latencies. The current work can be extended in many
directions, potentially leading to further improvements. Indeed, in this paper we
applied baseline methods for different critical design choices of the method. As a
first thing, we have plans to evaluate how the search phase behaves with different
broadcast implementations and different network topologies. Second direction is
the definition of smart mapping strategies located in the memory controller to
address power management and fault tolerance at the LLC level. We also would
like to evaluate the performance of dynamic home mapping combined with vir-
tualization where the memory controller cooperates with the OS hypervisor to
optimize the partitioning of chip resources to applications. Another future work
direction is the replication of shared data blocks in more than one L2 bank. Fi-
nally, we plan to extend RHM to use it in a system with more than one memory
controller and to reduce scalability issues.
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Abstract. We present a dynamic dependence analyzer whose goal is
to compute dependences from instrumented execution samples of loop
nests. The resulting information serves as a prediction of the execution
behavior during the remaining iterations and can be used to select and
apply a speculatively optimizing and parallelizing polyhedral transforma-
tion of the target sequential loop nest. Thus, a parallel lock-free version
can be generated which should not induce any rollback if the prediction
is correct. The dependence analyzer computes distance vectors and linear
functions interpolating the memory addresses accessed by each memory
instruction, and the values of some scalars. Phases showing a changing
memory behavior are detected thanks to a dynamic adjustment of the
instrumentation frequency.

The dependence analyzer takes part of a whole framework dedicated
to speculative parallelization of loop nests which has been implemented
with extensions of the LLVM compiler and an x86-64 runtime system.

Keywords: Dynamic online dependence analysis, polyhedral transfor-
mations, speculative, parallelization, optimization, runtime.

1 Introduction

Speculative parallelization is a classic strategy for automatically parallelizing
codes that cannot be handled at compile-time due to the use of dynamic data and
control structures. However, since this parallelization scheme requires on-the-fly
semantics verification, it is in general difficult to perform advanced transfor-
mations for optimization and parallelism extraction. Most speculative systems
dedicated to loop nest parallelization launch slices of the original sequential
outermost loop in parallel threads, without handling any other code transfor-
mations. Thus, verification consists merely in monitoring concurrent updates of
the same memory locations using a centralized data structure – which is an im-
portant performance bottleneck – and in validating the ones occurring at the
earliest iteration according to the original loop indices. However, as soon as the
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outermost loop carries a dependence, this parallelization strategy fails in nu-
merous rollbacks. Also, it does not consider the current execution context or
other factors that impact performance, such as data locality. Hence, more ad-
vanced parallelizing and optimizing transformations are required, comparable to
the ones applied at compile time when possible. But a new verification strat-
egy is required, ensuring that not only memory writes, but also reads, have to
be performed in a semantically correct order. This requires the computation of
dependences between memory accesses and the verification of their constancy
during the speculatively parallel execution of loop nests.

In this paper, we present a dynamic dependence analyzer of loop nests which
incurs a minimal time overhead, such that its results can be used online, in
the attempt of speculatively optimizing and parallelizing the code. It is based
on a code instrumentation system specifically dedicated to loop nests, which is
applied on small execution samples. This loop sampling mechanism relies on a
multiversioning scheme, in which instrumented and non-instrumented versions
of each target loop are generated at compile time. Additionally, it embeds a
switching mechanism allowing to alternate the execution of instrumented and
non-instrumented loop bodies. The instrumented bodies contain instructions de-
voted to collect the addresses that are accessed by the memory instructions and
the values that are assigned to some specific scalars called basic scalars. From
the collected information, the dependence analyzer computes distance vectors
and linear functions interpolating the memory addresses and the values assigned
to the basic scalars in order to allow their privatization when parallelizing.

The dependence analyzer is supported by a runtime system which alternates
the execution of different versions of the target loop nest. Thus, phases showing
a changing memory behavior are detected by launching instrumented versions at
some execution points. The frequency in which they are launched can be either
fixed or adjusted according to the constancy of the memory behavior. Since the
dependence analysis is performed based on instrumenting execution samples, it
serves as a prediction for the remaining iterations of the loop nest. Based on
its results, the runtime system selects and applies a speculatively optimizing
and parallelizing polyhedral transformation, generating a lock-free parallel code,
which does not induce any rollback, if the prediction is correct. When paral-
lelizing speculatively, the associated verification system consists in verifying the
constancy of the linearly interpolating functions, instead of monitoring concur-
rent memory accesses, which is the classical approach in speculative systems.
Hence, verification is completely distributed among the threads, and does not
require any centralized data structure.

We show on a set of benchmarks that our analyzer is successful in identifying
dependences across the iterations of a loop nest with a negligible runtime over-
head. This property makes it insensitive to any variations of the input data or
to program phases, since it can be applied repeatedly during one execution of
the application, preceding the runtime optimizations.
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2 Description of the Framework

This proposal focuses on the advanced dynamic dependence analysis we propose
as part of the TLS framework [4], called VMAD, designed to apply polyhedral
transformations at runtime, such as tiling, skewing, interchange, etc., by spec-
ulating on the linearity of the loop bounds, of the memory accesses and of the
values taken by specific variables, the basic scalars. Speculations are guided by
online profiling phases. The instrumentation and analysis processes are thor-
oughly described in our previous work [6]. The current proposal extends the
dependence analyzer described previously [6], with the computation of the exact
distance vectors, which are employed in validating more complex loop transfor-
mations, rather than straightforward parallelization.

A key aspect is instrumentation by sampling, in which the execution of instru-
mented and non-instrumented loop versions are alternated. The instrumented
version is executed for a small number of consecutive iterations of each loop in
the nest to collect sufficient information for performing the dynamic dependence
analysis. Next, a non-instrumented version is launched, to limit the overhead.
Instrumentation is re-launched with a varying frequency, in the view of detecting
new phases characterized by a different pattern of the memory accesses. When
there is a change of phases, the runtime system triggers a new instrumentation.
This guarantees that the minimal amount of instrumentation is performed dur-
ing the execution of the loop nest, but sufficient to characterize each new phase.
Please note that in case the system detects frequent changes of phases (i.e. an
instable behavior of the nest), it aborts the instrumentation and the attempt to
speculatively parallelize the nest, since the speculations would most probably be
invalidated. Hence, the system is able to self-control its overhead.

Using the chunking mechanism presented in Fig. 1(a), we slice the iteration
space of the outermost loop into successive chunks, as detailed in our previous
work [4]. Each chunk represents a subset of consecutive iterations of the outer-
most loop and can embed a different loop version (either instrumented, original
or optimized). Note that chunking is performed at the level of the outermost loop
only, nevertheless, during the execution of the profiling chunk, the instrumented
and non-instrumented versions of the innerloops alternate, as presented in [6], to
incur a minimal overhead. Following the results of the profiling, the dependence
analysis validates a suitable polyhedral transformation for each loop phase. In
this paper we focus on the process of computing the cross-iteration data depen-
dences and validating polyhedral transformations, addressing the reader to our
previous work [4] for more details regarding the TLS framework which applies
the results of the dependence analyzer. During the speculative execution, the
predictions are verified, initiating a rollback upon a misspeculation and resum-
ing the execution with a sequential chunk. Misspeculations indicate a change
of phase and they trigger a new instrumentation and analysis phase, after the
faulty iterations are reexecuted sequentially. If validation succeeds, a new paral-
lel chunk is launched. The process is depicted in Fig. 1(a). The implementation
of VMAD consists of two parts: a static part, implemented in the LLVM com-
piler [10], designed to prepare the loops for instrumentation and parallelization,
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(b) Alternate execution of different
versions during one loop nest’s run

Fig. 1. Multiversioning

and a dynamic part, in the form of an x86-64 runtime system whose role is
to build interpolating functions, to perform dynamic dependence analysis and
transformation selection and to guide the execution.

Static Component. Our modified LLVM compiler generates customized versions
of each loop nest of interest: original, instrumented and several parallel code
patterns, together with a mechanism for switching between the versions. The
patterns represent parameterized code versions, instantiated at runtime based
on the results of the dependence analysis. To complete the loop’s execution
and adapt to the current phase, we automatically link at runtime the different
versions of the original code. Each version is launched in a chunk to execute a
subpart of the loop which is followed by the others, as in relay races. The support
for chunking the outermost loop and linking distinct versions is illustrated in
Fig. 1(b). The instrumented, original and two parallel code patterns are built at
compile time. At runtime, one or another version is automatically selected to be
executed for a number of iterations.

Dynamic Component. The runtime system collaborates tightly with the static
component. During the instrumentation phase, it retrieves the accessed memory
locations, the values assigned to the basic scalars, and computes interpolating
linear functions of the enclosing loop indices. Instrumentation is performed on
samples to limit the time overhead and is followed by the dependence analysis
which evaluates whether a polyhedral transformation can be efficiently applied. If
successful, this information can be useful in speculatively executing an optimized
and parallelized version of the loop.

3 Dynamic Dependence Computation

A dedicated pragma allows the user to mark interesting loop nests in the source
code. We have implemented dedicated extensions to the LLVM compiler that
generate automatically, for our instrumentation purposes, two different versions
of each target loop nest: instrumented and non-instrumented.
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Instrumentation. The instrumented version associates to each memory instruc-
tion additional code which collects the target memory address and writes it in
a buffer that will be read by the runtime system. Similarly, other instrumenting
instructions are associated to monitor some specific scalars, called basic scalars.
They have the interesting property of being at the origin of the computations of
all other scalars used in the loop bodies, as for instance the target address compu-
tations. The basic scalars are identified at compile-time, being defined in the loop
bodies as φ-nodes, since the intermediate representation of the LLVM compiler
is in static single assignment form (SSA). They also carry dependences, since
their values in a given iteration depend on the values they have been assigned
in previous iterations. Hence, the opportunity for applying loop transformations
and parallelizations depends on the possibility of privatizing them by predicting
their values at each iteration. For this purpose, in the parallel code patterns, the
basic scalars are initialized using the predicting linear functions (depending only
on the indices of the transformed loops, and not on their value in the previous
iterations). Straightforward examples of such basic scalars are the loop indices
of for-loops, which are incremented at each iteration.

Since any kind of loops – for, while, do-while – are targeted, the instrumented
and non-instrumented versions generated at compile-time contain one new iter-
ator per loop, initialized with zero and incremented with a step of one. These
iterators are injected by the compiler and used in the computation of the inter-
polating linear functions, as detailed in [5,6].
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(b) Online distance vector computation

Fig. 2. Instrumentation by sampling and computation of distance vectors

Dedicated Sampling. Executions of the instrumented versions of the target loop
nests are obviously more time-consuming than the original versions. However,
these versions are run for small slices of the outermost loops of the target nests
using the chunking mechanism presented in the previous section. Additionally, we
implemented a dedicated sampling system allowing to instrumented only slices of
each loop composing the nest. Thus, instrumentation activation does not depend
only on the current loop, but also on the parent loops, making instrumented
and non-instrumented bodies alternate, as illustrated in figure 2(a). Sizes of the
instrumented slices can be either fixed or adjusted at runtime.

Polyhedral Transformations. The dynamic dependence analyzer is designed to
compute distance vectors, and then verify if these distance vectors characterize
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completely the memory behavior observed during the run of the instrumented
version. This latter verification is achieved using an address value range analysis
and a GCD test, as explained below. If the computed distance vectors conve-
niently characterize the target code, then they are used to select an optimizing
parallelizing transformation of the loop nest, which results in the generation of a
lock-free multithreaded version that should not induce any rollback if the mem-
ory behavior remains stable.Transformations that may be applied are polyhedral
transformations [2] that change the order in which the iterations are scanned,
such that at least one parallel loop is exhibited and the iteration schedule is op-
timized to address important issues, like data locality. Such a transformation is
defined by a unimodular matrix T , applied to the space of the loop indices. T is
valid w.r.t. any dependence distance vector d if the transformed vector T ·d = d′

is lexicographically positive, i.e., if its first non-null component is positive. This
component gives the depth of the loop which carries the associated dependence,
therefore this loop cannot be parallelized. The outermost parallel loop is then
the outermost loop which does not carry any dependence, considering all the
transformed distance vectors.

Distance Vectors Computation. The runtime system reads the values communi-
cated through the buffer and, when possible, builds linear interpolating functions
for each memory instruction or basic scalar assignment, whose variables are the
loop indices. It also computes linear functions to interpolate the loop bounds
of the inner loops. Simultaneously, the collected memory addresses are used to
compute online dependence distance vectors. The addresses are stored in a table
whose entries also contain the access type (Read or Write), the loop index val-
ues at which the memory access occurred and the memory instruction identifier.
Each time a new entry is created, a table look-up finds the previous accesses at
the same address, computes the corresponding distance vectors and removes the
entries that are becoming useless. The implemented algorithm is shown in the
first part of table 1 and illustrated by figure 2(b).

Since only a sample of the execution tracks the memory accesses, the so-
computed distance vectors may not entirely characterize the dependences that
may occur during the whole execution of the target loop nest. If the instrumenta-
tion is performed on a loop slice of size S, a dependence whose distance is greater
than S can obviously occur. We handle this issue by considering each couple of
memory instructions, where at least one is a write, and for which no distance vec-
tor has been computed. Their associated interpolating linear functions are then
used to verify if any dependence may occur between these instructions. First, a
value range analysis is performed. For each linear function, their maximum and
minimum reached values are computed using the interpolated loop bounds. If the
respective ranges of touched addresses overlap, then a dependence may occur. In
this case, a second analysis is performed through the GCD test, concluding if there
may be a solution when considering the integer equation where both functions are
equal. The algorithm is shown in the second part of table 1. These latter depen-
dence tests are obviously less time-consuming than exact solving of integer equa-
tions, which would induce an overhead unacceptable for a dynamic parallelization
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system. Moreover, an empty solution of these tests guarantees that the computed
distance vectors entirely characterize the dependences, which allows one to vali-
date the correctness of polyhedral transformations with a high probability, for a
significant part of the execution.

Table 1. Dependence analysis algorithms

Distance vector computation algorithm.

create an entry in the table
if the current access is a write

look for all reads at the same address, until finding a write
for each found read, compute a distance vector which characterizes
an anti-dependence

if a write has been found, compute a distance vector which characterizes
an output dependence

remove all these entries excepting the current one
if the current access is a read

look for a previous write at the same address
if a write has been found, compute a distance vector which characterizes
a flow dependence

Value range and GCD tests application algorithm.

build the couples of memory instructions not characterized by distance vectors,
where at least one instruction is a write

for each couple
compute their respective ranges of touched addresses by computing
the extreme values reached by their associated linear functions

if their ranges overlap
perform the GCD test on the corresponding integer equation
if the test fails (empty solution), the couple does not carry any dependence
else, the couple may carry a dependence

else, the couple does not carry any dependence

4 Experiments

Experiments were conducted on the Polybench benchmark suite [12]. For each
program, we selected the most time-consuming loop nest. Although these codes
can be analyzed statically to detect dependences, we stressed our system to
extract dependences at runtime, in order to show its accuracy and ability in
deducing speculative parallelizations. To test the ability of our system in de-
tecting dependence phases, we modified the Polybench codes by introducing
if-statements in the innermost loop body in order to alternate between three
successive phases, each being characterized by slightly modified memory accesses
that may introduce dependences. For instance, for a nest whose outermost loop
ranges from 0 to N , we inserted if-statements that induce different memory be-
haviors for each subset of N/3 iterations. We modified the memory references for
two of the three subsets by adding some integer constants to the original array
references.
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Our measurements are presented in table 2, where the kernel loop nest of
each program is analyzed. The left part of the table shows the measurements
performed on the original programs of the Polybench suite, while the right part
shows the measurements performed on the modified programs exhibiting phases
with different dependences. The second column shows the size of the instru-
mented chunks. For each program, we execute successively three instrumented
runs with different instrumented chunk sizes (3, 10, 20) in order to compare the
accuracy of the analyses, relatively to the number of instrumented iterations,
as well as their respective overheads. The third column shows the percentage of
time-overhead induced by instrumenting execution samples and determining de-
pendences, computed as: (instrumentationTime - originalTime)/originalTime.
The original codes were compiled using Clang-LLVM 3.0 with flag O3, on an
AMD Opteron 6172, 2.1 Ghz, running Linux 3.2.0-27-generic x86 64.

For the experiments reported in this paper, the number of instrumented
chunks launched by the runtime system depends on the number of iterations
of the outermost loop, following the strategy: the first instrumented chunk is
followed by a non-instrumented chunk of 100 iterations. Then again an instru-
mented chunk is launched. If the result of the dependency is equal to the result
obtained from the previous instrumentation, then a non-instrumented chunk of
100 × 2 = 200 iterations is launched. Thus, the size of the non-instrumented
chunk is doubled continuously as long as the dependences remain the same. If
the dependences change, then the size of the non-instrumented chunk is reset to
100, as a new phase is detected. Please note that this strategy is devoted solely
to the goal of performing online dependence analysis. In a complete speculatively
parallelizing system, it is the speculation verification performed by the specula-
tively parallel code which would detect new phases and provoke the launching
of an instrumented chunk. Additional experiments indicate that adjusting the
frequency of the instrumentation based on phases detected at runtime by the
TLS system, reduces the overhead of the analyzer to 15% at most, since it is
performed only once for each phase, and the number of instrumented iterations
is small, relative to the total number of iterations. However, this is out of the
scope of the current article.

The fourth and fifth columns show the number of instrumented memory in-
structions and base scalar assignments, respectively; the sixth column shows the
computed distance vectors for each phase and their types; finally, the seventh
column suggests speculative parallelizations that could be applied considering
the distance vectors and the results of the GCD tests.

The right part of the table illustrates the results on the modified programs
exhibiting dependence phases. A new column shows the number of detected
phases, and only one row per phase is presented for some instrumented chunk
sizes, due to space constraints. For the same reason, although we successfully
analyzed the dependences of all Polybench codes, it is impossible to show the
results obtained for all of them. Only some representative ones are selected.
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Results in the table obviously show that larger instrumented chunks yield
larger time overheads. In particular, one can observe a change of scale when
considering chunks of size 20. However, since the accuracy of the dependency
analysis is not significantly better with such large chunks, it argues to limit
chunk sizes to at most 10. We observed that a high accuracy is often achieved
with the smallest size of the instrumented chunk, 3. This is also due to the reg-
ularity of the handled benchmarks whose dependences are constant. In general,
10 iterations are sufficient to obtain a good accuracy, with a relatively low over-
head. For the smallest instrumented chunk size, the overheads vary from -14%
to 226%. Speed-ups can be explained by beneficial side-effects of chunking, or
different optimizations triggered on our code versions compared to the ones gen-
erated by Clang on the original codes. When the time-overhead is the highest,
it still remains acceptable: less than 3.5× with sizes 3 and 10, since paralleliza-
tion should provide speed-ups that would substantially hide this overhead. With
size 20, the overhead can become dangerously high in some cases, showing that
instrumentation by sampling must remain under a relatively small threshold.

Our experiments also indicate that some codes require more advanced trans-
formations than just parallelizing the original loops. It often occurs that every
loop carries dependences. A standard TLS system would continuously rollback
in such cases. On the other hand, a loop transformation, as the ones suggested
by the transformation matrices in the table, would yield a semantically equiva-
lent nest with at least one dependence-free loop that can be parallelized. This
emphasizes the need of relatively accurate dependence analysis for TLS systems.

5 Related Work

Dependence analysis is an essential aspect in systems designed to perform au-
tomatic optimizations. However, previous research works focused on performing
dynamic dependence analysis dedicated to an offline usage, thus, the overhead in-
curred by such profilers varies from 3×[13] to 70×[9]. Traditional TLS
systems either rely on the results of such profilers or perform an optimistic, sim-
ple, straightforward parallelization of the outermost loop, for which no advanced
dependence analysis is required. In contrast, we developed an ultra-fast dynamic
dependence analyzer that can be used online and applied repeatedly during one
execution, to adapt to different phases. This has been made possible thanks to
a specific instrumentation system dedicated to loop nests, and able to switch be-
tween instrumented and non-instrumented code following a counter of the number
of instrumented iterations. A similar approach to reduce the cost of instrumented
code is presented in [1]. Our instrumentation system has two major differences.
It is dedicated to loop nests and thus includes specific sampling management to
coordinate loop levels as a whole. It also includes a different sampling mechanism
provided by the chunking system to instrument only a small slice of the outermost
loop. In the following, we review various state of the art techniques, however they
are expected to be used offline, due to their large overhead.

Kim et al. [8] describe the fragility of static analysis, pleading for specula-
tive parallelization, by speculating on some memory or control dependences.
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Statically, a PDG (program dependence graph) is built. All dependences occur-
ring less frequently than a certain threshold are speculatively removed from the
PDG and the code is parallelized. Nevertheless, the dependence analysis is very
simple and cannot be employed in validating aggressive code transformations,
other than straightforward parallelization. The work of Praun et al. [14] identi-
fies potential candidates for speculative parallelization by analyzing the density
of runtime dependences in critical sections, w.r.t. the total number of executed
instructions. Similarly to our proposal, the model can adapt to different program
phases, and detect the ones suitable for speculative parallelization. No informa-
tion regarding the profiler’s overhead is presented, thus we conclude that the re-
sults of the analysis are used offline. The recent work of Vanka et al. [13] proposes
a form of dependence analysis based on set operations using software signatures.
In contrast to other works relying on sampling to achieve better performance,
they group dependent operations into sets, and operate on relationships between
sets, instead of considering pair-wise dependences. Additionally, they only pro-
file queries relevant to the optimization being performed, rather than all possible
queries. Thus, the profiler is highly accurate and well performing in comparison
to previous works, introducing a 2.97× slowdown in average. Similarly, Oancea
and Mycroft [11] propose a dynamic analysis for building dependence patterns.
They map dependent iterations on the same thread, such that no dependence
violations occur. Mapping is based on congruences of sets, computed from the
dependence pattern. Still, the system incurs a considerable overhead.

Ketterlin and Clauss propose a system called Parwiz [7] that empirically builds
a data dependence graph, after instrumenting samples or complete executions
of an application with several representative inputs. Their goal is to identify
potentially parallel regions of sequential programs and provide hints to the pro-
grammer. Similar tools analyze the data dependences across one execution and
suggest parallelization strategies. Embla [3] performs an offline dynamic analysis
and reports all occurring dependences, exhibiting parallelization opportunities.
SD3 [9] performs dynamic dependence analysis to provide suggestions to the
developer on which modifications are desirable, such that the code becomes suit-
able for parallelization. SD3 shows a 70× slowdown on average. Alchemist [15]
is designed to identify dependences across loop iterations, loop boundaries and
methods. It can be used offline by speculative systems, as it provides a very
precise dependence analysis, analyzing complex data. Nevertheless, it induces a
large overhead and it is not aimed for a runtime usage.

6 Conclusion

The increasing usage complexity of multi-core architectures require to shift ad-
vanced parallelization techniques from static to dynamic. Related to this pur-
pose, we presented a dynamic dependence analyzer for loop nests dedicated to
capture cross-iteration dependences, with a minimal time-overhead. Thus, it can
be integrated in a TLS system for an online usage and even invoked repeatedly to
characterize each new phase. The analyzer relies on instrumentation by sampling
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and computes distance vectors, which can be employed in validating polyhedral
transformations for each phase of the nest.
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Abstract. Transactional Memory (TM) is an appealing abstraction for increas-
ing productivity of programmers and making parallel programming accessible 
to a wide community of non-experts. In TM systems, conflict detection is an  
essential element in maintaining correctness of transactions. Hardware Transac-
tional Memories (HTMs) rely on cache coherence protocols to detect and re-
solve conflicts. In HTMs, when a transactional write misses in a cache, it 
broadcasts a snoop request asking remote caches for sharing information. While 
this method detects conflicts at the earliest possible time it is not efficient in 
term of power. We found that a significant fraction of transactional snoops in 
cache coherence protocols are unnecessary and waste power of interconnect and 
caches. Furthermore, many transactional snoops occur in coarse regions of 
memory. In this work, we introduce Variable Granularity Transactional Snoop 
(VGTS) which dynamically changes snoop granularity for transactions. VGTS 
monitors transactions and dynamically matches snoop granularity to the trans-
actions’ address patterns. Our simulation results reveal that VGTS is effective 
and reduces power of interconnect up to 44% and eliminates unnecessary cache 
snoops up to 43%. 

Keywords: Hardware Transactional Memory, Synchronization, Cache Cohe-
rence Protocol, Power. 

1 Introduction 

Chip Multiprocessors (CMPs) are becoming mainstream in server, desktop, and even 
embedded systems to overcome power wall and other constrains in single-core pro-
cessors. While CMPs reduce power and cost of cooling systems, they bring some 
unprecedented challenges. Software developers can no longer rely on next year’s 
processor to hide the cost of new features in sequentially written software packages 
and gain speedup. In order to maintain pace of performance improvement in software 
applications, programmers need to develop parallel programs. The traditional method 
for parallel programming is lock. However, this approach entails difficult trade-offs: 
performance vs. complexity. Parallel programming with coarse-grain locking is sim-
ple but results in poor performance. On the other side, fine-grain locking yields better 
performance but is error-prone and difficult to understand and maintain. 
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Transactional Memory (TM) [1] is a promising programming model which ad-
dresses the problems of lock-based programming by providing the potential for per-
formance of fine-grain locking with simplicity of coarse-grain locking. A transaction 
is a sequence of instructions that should execute atomically. In a TM program, a pro-
grammer just marks sections of the program as transactions and the underlying system 
guarantees atomicity. As such, in TM systems, programmers specify what should be 
done atomically, leaving the system determining how this is achieved. This relieves 
programmers from burden of worrying about synchronization bugs such as deadlock 
and convoying.  

TM systems can be broadly classified into three categories: 1) Hardware Transac-
tional Memory (HTM) [2], 2) Software Transactional Memory (STM) [14], or 3) Hybr-
id Transactional Memory (HyTM) [7]. STMs entail significant overhead and there is 
growing interest in transactional support in hardware to improve performance. HTM 
research has caught the attention of industry and some companies proposed extension 
for their architectures to support TM, such as Intel’s Transactional Synchronization 
Extensions (TSX) [6], and the AMD Advanced Synchronization Facility (ASF) [15]. 

TM systems utilize resources in CMPs by execution multiple transactions  
concurrently. To maintain consistency of concurrent transactions, only conflict-free 
transactions commit successfully. A conflict happens when two or more number of 
transactions accesses a memory location and at least one of them writes into the 
memory location. In the event of conflict, only one transaction can commit and the 
rest should abort and restart or stall in the hope that the conflict is resolved later [2].  

HTMs exploit cache coherence protocols to detect and resolve conflicts [2]. When 
a transaction writes to a memory address, it broadcasts a snoop request to invalidate 
cache blocks of other transactions that have accessed the same memory address. If a 
transaction finishes without having had any of its entries invalidated by remote cach-
es, then the transaction commits by writing back its dirty entries in the cache (or write 
buffer) to the memory in lazy policy [17] or discarding its log buffer in eager policy 
[2]. On the other side, if another thread invalidates a transactional entry in the cache, 
the transaction aborts and restarts.  

We find that cache coherence protocols dissipate a significant fraction of their 
power on unnecessary snoops when running transactional applications. Many transac-
tions access disjoint memory regions and so a significant portion of transactional 
snoops result in cache misses. Therefore, the vast majority of the transactional snoops 
are unnecessary as they fail to find sharers in remote caches. In this work, we propose 
Variable Granularity Transactional Snoop (VGTS) to reduce unnecessary snoops 
generated by transactions. When a transaction executes, VGTS monitors transactional 
reads and writes and determines granularity of snoop requests generated by the trans-
action. Later, if the same transaction executes and broadcasts a snoop request, in addi-
tion to the requested address, we may ask remote cores to snoop a region of addresses. 
The responses received from remote cores are stored in a local filter and used for 
future snoops. In future, if a snoop request is found in the local filter, then the request 
is not broadcasted as none of the remote cores have the request. As such, VGTS 
avoids needless snoop broadcasts and reduces power of interconnection network and 
caches. 
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The rest of the paper is organized as follows. Section 2 provides background on 
how cache coherence protocols work in HTMs and motivates the need for adjusting 
snoop granularity per transaction. Section 3 discusses the implementation details and 
presents the hardware design of VGTS. Section 4 describes the evaluation methodol-
ogy and presents quantitative results. Section 5 discusses related work and Section 6 
concludes the paper. 

2 Background 

In this work, we use an HTM system similar to LogTM [2]. LogTM is an implemen-
tation of HTM which requires moderate augmentation of existing hardware and uses 
software support to restore state of a processor in the event of abort. LogTM imple-
ments eager version management by creating a per-thread transaction log in private 
caches, which holds the old values of all transactional writes. To detect transactional 
conflicts, LogTM uses a modified version of MOESI cache coherence protocol [10].  

In LogTM, each cache block has two additional state bits: read and write bits. 
These bits are set if a transaction reads/writes a cache block. LogTM detects conflicts 
using MOESI and read/write bits. If a transactional read misses in a local cache, then 
the cache broadcasts a snoop request asking remote caches for the missed address. If 
the missed address exists in a cache of a remote node, then the remote node responds 
to the snoop request. If read bit of the remote cache block is set, then the two transac-
tions can proceed without conflict. However, if the write bit of the remote cache block 
is set, then the two transactions conflict and at least one of them should abort. Similar-
ly, if a transactional write results in a cache miss, then a snoop request is broadcasted 
on the interconnection network. If the address exists in a remote cache and the corres-
ponding read or write bit is set, then a conflict happens and one of the two transac-
tions should abort. To resolve the conflict, the transaction which initiates snoop aborts 
and the other transaction proceeds. In LogTM, a software handler walks through the 
transaction log and restores register and memory values in the event of abort. 

LogTM broadcasts a snoop request to all cores on a cache miss. If all of the cores 
are caching the missed address, the broadcast would not be wasteful. However, in 
some applications, a significant part of snoop requests misses in remote caches. Fig-
ure 1 shows the percentage of transactional coherence requests that are redundant in 
Stamp v0.9.10 benchmark suite (please refer to Section 4.1 for methodology and con-
figuration). A redundant coherence request is one that does not exist in any of the 
remote caches, thus unnecessarily wastes processor resources. We found that more 
than 75% of coherence requests are redundant across all benchmarks and thus unne-
cessarily consume network power, while also resulting in redundant snoop-induced 
cache look-ups. 

3 Implementation 

VGTS dynamically adjusts snoop granularity for transactions. When a transaction 
executes, VGTS monitors addresses generated by the transaction. If the transaction 
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accesses consecutive memory locations then VGTS sets the snoop granularity to the 
size of the region accessed by the transaction. If the transaction accesses multiple 
disjoint regions, then VGTS sets the snoop granularity to the size of the smallest re-
gion to avoid wasting network bandwidth. To provide better insight into snoop granu-
larity found by VGTS, we discuss part of a code region taken from Labyrinth. Figure 
2.a shows part of the Labyrinth program. This benchmark finds shortest paths be-
tween pairs of starting and ending points for a given maze. gridPtr is a pointer to the 
shortest paths found in this benchmark. Figure 2.b shows address of cache blocks 
generated by the program in 2.a. Note that the granularity of snoops in cache cohe-
rence protocols is cache block. So, VGTS analyses addresses in the granularity of 
cache blocks not bytes. The sequence of addresses in 2.b forms three disjoint regions. 
The size of the smallest region is two cache blocks (15, 16). So, VGTS sets granulari-
ty of the transaction in 2.a. to two. 

 

Fig. 1. Redundant snoops in Stamp v0.9.10 benchmark suite. In each benchmark, the number of 
threads changes between two and 16. 

VGTS is a speculative approach and relies on the most recent execution of a trans-
action to decide on snoop granularity. VGTS is effective only if snoop granularity of a 
transaction does not change over time. To investigate pattern of snoop granularities in 
transactions, we measure locality of snoop granularity in Stamp benchmarks. Locality 
of snoop granularity shows how often snoop granularity of a transaction is the same in 
two consecutive executions. Figure 3 shows locality of snoop granularity in Stamp 
benchmarks [7]. For each benchmark, the number of threads varies from two to 16. 
The locality is measured by counting the number of times snoop granularity is the 
same in two consecutive executions of transactions and dividing by the total number 
of transactional commits. The locality changes from 63% in Labyrinth to 99.9% in 
Ssca2. This Figure proves that snoop granularity of transactions is predictable. 
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TM_BEGIN(); 

… 
TMGRID_ADDPATH(gridPtr, …); 
… 

TM_END(); 
 
 
                    a)                                       b) 

Fig. 2. a) Part of the Labyrinth program. b)  Memory addresses (in granularity of cache block) 
pointed by gridPtr in Labyrinth. 

 

Fig. 3. Locality of snoop granularity in Stamp v0.9.10 benchmarks. For each benchmark, the 
number of threads changes from two to 16. 

VGTS relies on Snoop Granularity Tables (SGTs) to keep record of snoop granu-
larities of transactions (Figure 4). Each core has its own SGT. Each entry in SGT 
comprises two fields: snoop granularity and valid bit. When a transaction commits, 
VGTS writes snoop granularity of the transaction in to SGT. When a transaction 
starts, VGTS indexes SGT using starting address of the transaction. If a valid entry 
exists, then VGTS uses the corresponding snoop granularity for the transaction.  

 
 
 
 
 
 
 

Fig. 4. Snoop Granularity Table (SGT) 

address 

8, 9, 8, 10,11 

15, 16 

21, 22, 22, 

23, 24 

… 

addr. of 1st inst. in a TX 

snoop granularity v 
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VGTS exploits filters to reduce redundant coherence requests. The filter sits along-
side the last-level private cache and maintains local region-level sharing information. 
Figure 5 shows the structure of the filter. The filter is a simple table with entries com-
prising the starting block address of a region, size of the region, and a valid bit. If a 
transactional instruction experiences a cache miss for the first time, then the cache 
controller broadcasts a snoop request asking other nodes to provide sharing informa-
tion for the region determined by SGT. If the region is not shared by any other nodes, 
then the cache controller allocates an entry in the filter and sets block address, size, 
and valid bit. Prior to issuing a snoop request, each node looks up the local filter and 
if a matching entry exists, then the cache controller knows that forwarding the request 
is redundant. The filter entries are evicted either as a result of limited space or when 
the cache controller receives a snoop request for a matching region. 

 
 
 
 
 
 
 
 
 
 

Fig. 5. Structure of a filter 

4 Evaluation 

In this section we evaluate VGTS. We describe our simulation environment in section 
4.1. Then, in section 4.2, we present results for VGTS. 

4.1 Experimental Setup 

For all our evaluations, we perform full-system simulation using Gem5 [8].We model 
a CMP based on Alpha 21264 architecture. Each core has a private instruction cache 
and data cache. Table 1 shows configuration of the processor. We used Orion 2.0 [9] 
to estimate power consumption in bus. We also model the extra region links and the 
power consumed by these links. To estimate the overhead of filters, we used CACTI 
[16]. The technology node that we assumed is 65 nm. 

We use Stamp v0.9.10 benchmark suite [7] to evaluate VGTS. We evaluated 
VGTS against baseline scheme. To find out the appropriate filter size, we explored a 
design with infinite table entries (Oracle) and four designs with 16, 32, 64, and128 
entries, respectively. 

We use an 8-entry SGT in our evaluations. We found that aliasing in a tag-less 
SGT with 8-entry is close to zero and increasing the size of SGT beyond 8 does not 
improve VGTS further. 

blk. addr. size v 

  

  

  

blk. addr. 
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Table 1. Configuration of Processors Modeled by Gem5 Full System Simulator 

Benchmarks Input Parameters 

Processors 2-16 cores Alpha ISA, 2GHz 

L1 I&D Caches 
64kB, 2-way associative, 64-byte line size, 1 
cycle latency 

Interconnect Shared bus running at 1GHz 

Orion Parame-
ters 

65 nm, Vdd: 1-V 

L2 Cache 
Shared 2MB, 8-way associative, 64-byte line 
size, 10 cycles latency 

Main Memory 2048MB, 100 cycles latency 

4.2 Results 

Figures 6 shows the normalized bus power (smaller is better) in VGTS with filter 
sizes being infinite (Oracle), 16, 32, 64, and 128 entries. The number of threads in 
benchmarks is eight. All values are normalized to bus power in the baseline scheme. 
By filtering redundant snoops, VGTS is able to reduce bus power. The figure shows 
that on average, VGTS reduces bus power by 14%, 16%, 17%, and 22% for filter 
sizes of 16, 32, 64, and 128, respectively. It can also be seen that even with an infinite 
filter table size, the bus power can be reduced by 24%, on average. This shows that 
VGTS with 128 entries filters is reasonably close to what an Oracle filter implementa-
tion would achieve. 
 

 

Fig. 6. Bus power reduction in VGTS relative to the baseline scheme when the number of 
threads is 8. For each benchmark, we use filters with infinite, 16, 32, 64, and 128 entries. 
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Figure 7 shows energy of snoop induced tag lookups in VGTS relative to the base-
line scheme (smaller is better) when the number of threads is eight. The energy over-
head of filters is included in Figure 7. In a CMP, both the processor and the bus 
access the L1 cache. With only one tag array, if both processor and bus need to access 
tag array simultaneously, one side has to stall which will degrade the overall perfor-
mance. To address this problem we use two mirror tag arrays [10], one for the proces-
sor side and one for the bus side. Figure 7 shows energy reduction in the tag array on 
the bus side. On average, VGTS reduces energy of snoop induced tag lookups from 
14% to 21% when the filter size varies between 16 and 128. An oracle filter elimi-
nates snoop induced tag lookups by 25% which is close to a filter with 128 entries. 

 
Fig. 7. Energy of snoop induced tag lookups avoided by VGTS when the number of threads is 
8. For each benchmark, we use filters with infinite, 16, 32, 64, and 128 entries. 

To study the scalability of our filtering proposal, we performed the above experi-
ments for 2, 4, 8, and 16 threads. All parameters, as shown in Table 1, remain the 
same except the number of cores. The number of cores increases and is equal to the 
number of threads. Figure 8 shows the normalized bus power consumption (smaller is 
better) in the system with filter size equal to 64. In most of the benchmarks, power of 
bus changes negligibly with the number of threads. This shows that VGTS is able to 
maintain its power efficiency across different number of cores.   

To provide better insight, we compare VGTS with RegionScout [11]. RegionScout 
[11] exploits coarse-grain data sharing information to reduce power of bus and snoop-
induced tag lookups. In RegionScout, memory is statically divided into a number of 
regions. The hardware keeps record of non-shared regions and avoids broadcasting 
unnecessary snoops. The main limitation of RegionScout is that region size is deter-
mined statically. On the other side, VGTS adjusts snoop granularity dynamically and 
based on applications’ behavior. Figure 9 shows power of bus and number of snoop-
induced tag lookups in RegionScout. We change region size from 2KB to 16KB [11]. 
The number of threads is 8 and filter size is 128-entry in both RegionScout and 
VGTS. While RegionScout improves power of bus (Figure 9.a.) it increases  
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snoop-induced tag lookups significantly (Figure 9.b.). In Labyrinth, RegionScout 
increases snoop-induced tag lookups up to 461 times. The main reason that RegionS-
cout falls behind VGTS is that RegionScout decides on snoop granularity once and 
uses it across all applications. However, VGTS dynamically changes snoop granulari-
ty based on pattern of addresses generated by transactions and is able to reduce both 
power of bus and snoop-induced tag lookups.   

 

Fig. 8. Power of bus in VGTS relative to the baseline scheme. For each benchmark, the number 
of threads varies between two and 16. 

In the interest of space, we do not show a Figure for runtime in VGTS. VGTS reduces 
runtime of Stamp applications by 3.1% on average with maximum slowdown of 0.4%.   

5 Related Work 

Ferri et al. [19] proposed an energy efficient transactional memory design for embed-
ded processors.   They used a fully-associative Transactional Cache (TC) to hold 
speculative values generated in transactional sections. In the event of overflow in TC, 
the system enters an inefficient serial mode to allow the transactions complete. To 
reduce power consumption of memory hierarchy, they embedded a new mechanism in 
the memory hierarchy. When the mechanism is triggered, the contents of the TC are 
flushed into the traditional cache hierarchy allowing TC to power down. In a subse-
quent work, Ferri et al. [18] investigated alternative cache architecture for transac-
tional values. This architecture aims at reducing the likelihood of cache overflow with 
the additional goal of reducing overall energy consumption. L1 cache is the primary 
storage space for holding both transactional data and non-transactional data. In addi-
tion, a small victim cache holds transactional data evicted from the L1 cache due to 
conflict misses. They show that the victim cache reduces pressure from sharing and 
improves energy-delay product.  
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a) 

 
b) 

Fig. 9. a) Bus power in RegionScout and VGTS relative to the baseline scheme. b) Snoop in-
duced tag lookups in RegionScout relative to the baseline scheme. In both RegionScout and 
VGTS, number of threads is 8 and size of filters is 128-entry. 

Gaona-Ramirez et al. [4] compared performance and energy of two well-known 
HTM systems: LogTM-SE [3] and TCC [17]. These two HTMs employ opposite poli-
cies for data versioning and conflict management. LogTM-SE uses eager policy and 
TCC use lazy policy for data versioning and conflict management. Gaona-Ramirez et al. 
showed that although on average TCC beats LogTM-SE, there are considerable devia-
tions in performance depending on the particular characteristics of each application. 
Contention in LogTM-SE results in a large number of either stalled or aborted transac-
tions depending on their write sets interactions. This behavior increases network traffic 
due to the persistent stall process. On the other side, TCC guarantees that at least one 
transaction will be able to commit in the presence of contention. 
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VGTS is different from all the above work since it focuses on cache coherence pro-
tocol to improve power consumption in HTMs. 

A number of prior mechanisms relied on the tendency of coherence requests to re-
duce power in shared memory multiprocessors. Moshovos et al. proposed Jetty [12] to 
reduce power consumption in L2 cache. They exploited a filter between L2 cache and 
bus to skip snoops that would miss in L2 caches. VGTS is different since it focuses on 
regions of consecutive addresses to optimize power of interconnect and caches.  

Ballapuram et al. [13] exploited the semantics of variables in a program to optim-
ize snoops in a shared memory environment. Stacks are local to threads and they are 
not visible to the outside world. Conventional cache coherence protocols do not diffe-
rentiate private and shared data. Ballapuram et al. proposed two techniques to elimi-
nate snoop probes for stacks: Selective Snoop Probe (SSP) and Essential Snoop Probe 
(ESP). SSP is implemented in hardware and ESP is implemented in compiler. The 
advantage of using the SSP is that previously compiled binaries can benefit from this 
technique without recompilation. However, as there is no information provided by the 
software, the energy savings achieved is limited. On the other hand, the ESP tech-
nique lets the compiler takes full advantage of programs semantics to achieve higher 
energy savings. SSP and ESP can be combined with VGTS to reduce snoop power 
associate with stack regions. 

Lotfi-Kamran et al. [5] investigated power of coherence directories when running 
commercial server and scientific workloads. They found that a significant fraction of 
directory power is dissipated on unnecessary lookups. They proposed TurboTag, a 
filtering mechanism to skip unnecessary directory lookups. VGTS is different since a 
requesting node can determine in advance that a request would miss in all the other 
nodes. With TurboTag, every node still broadcasts snoop requests to remote nodes. 
Advance knowledge of global region misses allows optimization of bus power that is 
impossible with TurboTag. 

6 Conclusion 

In this paper, we proposed and evaluated VGTS which is a novel snoop filtering me-
chanism for HTMs. We observed that many transactional snoop requests not only do 
not hit in any remote caches but also do not find any other blocks in a much larger 
surrounding region. VGTS is a speculative approach and monitors transactional reads 
and writes to decide on snoop granularity. VGTS exploits a set of filters to keep track 
of non-shared regions. These filters are transparent to the programmers and do not 
impose any limits on content of caches. We evaluated the design of VGTS in a full-
system simulator and found that VGTS reduces power of bus and avoids many unne-
cessary cache snoops. 
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Abstract. The field of similarity search on metric spaces has been
widely studied in the last years, mainly because it has proven suitable
for a number of application domains such as multimedia retrieval and
computational biology, just to name a few. To achieve efficient query ex-
ecution throughput, it is essential to exploit the intrinsic parallelism in
respective search algorithms. Many strategies have been proposed in the
literature to parallelize these algorithms either on shared or distributed
memory multiprocessor systems. More recently, GPUs have been pro-
posed to evaluate similarity queries for small indexes that fit completely
in GPU’s memory. However, most of the real databases in production are
much larger. In this paper, we propose multi-GPU metric space tech-
niques that are capable to perform similarity search in datasets large
enough not to fit in memory of GPUs. Specifically, we implemented a
hybrid algorithm which makes use of CPU-cores and GPUs in a pipeline.
We also present a hierarchical multi-level index named List of Superclus-
ters (LSC ), with suitable properties for memory transfer in a GPU.

Keywords: Similarity Search, Metric Spaces, GPU, Range queries.

1 Introduction

Similarity search has been widely studied in recent years and it is becoming
more and more relevant due to its applicability in many important areas [6]. It
is often undertaken by using metric-space techniques on large databases whose
objects are represented as high-dimensional vectors. A distance function exists
and operates on those vectors to determine how similar the objects are to a given
query object. A range search with radius r for a query q, represented as (q, r), is
the operation that obtains from the database the set of objects whose distance
to the query object q is not larger than the radius r.

Efficient range searches, which are usually dominated by expensive distance
evaluations, are crucial for the success of many applications. In fact, the range
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search operation can be considered as a basic search kernel since it is a com-
monly used component of more complex search operations, such as the nearest
neighbors search. In the current technological context, one of the most promising
alternatives for the acceleration of this operation is the exploitation of its intrin-
sic parallelism on Graphics Processing Units (GPUs). Range searches exhibit
different levels of parallelism: we can process in parallel many queries, many
distances from a given query or even exploit the parallelism in the distance op-
eration itself. This feature matches well with the architecture of the GPU and
Multi-GPU systems. However, these architectures have complex memory hier-
archies and it has been empirically shown that their efficient exploitation is one
of the key elements for the acceleration of many applications.

Previous related work, which focuses on search systems devised to solve large
streams of queries, has shown that conventional parallel implementations for
clusters and multi-core systems, that exploit coarse-grained inter-query paral-
lelism, are able to improve query throughput by employing index data struc-
tures constructed off-line upon the database objects [8]. These index structures
are used to perform an efficient filtering on the database and reduce the search
space. However, their use introduces a complex and irregular memory access
pattern in the search algorithm, making it very inefficient for the GPU memory
system. The cost of the additional data transfers introduced by using the index
can hide the benefits of keeping the database objects smartly indexed.

In this paper we propose the development of two efficient pipeline strategies
for coordinating the CPU and the GPU, which is able to hide most of the CPU-
GPU data transfer latency. We also propose a new hierarchical index (LSC ),
which fits very well into these pipelined strategies: the CPU discards elements
at the top level of hierarchy and the GPU completes the work using the low level
of the index hierarchy. In addition, we have analyzed the impact of the index
structure that we used, and the size and nature of the database.

The remaining of the paper is as follows. Section 2 gives some background
on similarity search and metric-space databases, and summarizes some previous
related work. In Section 3 we describe our proposals to deal with large databases
on a multi-GPU platform. Section 4 present the experimental results of our
analysis, and finally Section 5 summarizes the main conclusions of this work.

2 Similarity Search Background and Related Work

Searching similar objects from a database to a given query object is a problem
that has been widely studied in recent years. The solutions are based on the use
of a data structure that acts as an index to speed up the processing of queries.
Similarity can be modeled as a metric space as stated by the following definitions:

Metric Space [13]: A metric space (X, d) is composed of an universe of valid
objects X and a distance function d : X × X → R+ defined among them.
The distance function determines the similarity between two given objects and
holds several properties such as strict positiveness (d(x, y) > 0 and if d(x, y) = 0
then x = y), symmetry (d(x, y) = d(y, x)), and the triangle inequality (d(x, z) ≤
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d(x, y)+d(y, z)). The finite subset U ⊂ X with size n = |U|, is called the database
and represents the collection of objects of the search space. There are two main
queries of interest, kNN and range queries.

Range Query [6]: The goal is to retrieve all the objects u ∈ U within a radius
r of the query q (i.e. (q, r)d = {u ∈ U/d(q, u) ≤ r}).
The k Nearest Neighbors (kNN): The goal is to retrieve the set kNN(q) ⊆ U
such that |kNN(q)| = k and ∀u ∈ kNN(q), v ∈ U− kNN(q), d(q, u) ≤ d(q, v).

The solution of range queries are used as basis to solve kNN queries, and
because of this, the present paper is focused on solving range queries. To avoid
as many distance computations as possible, many indexing approaches have
been proposed. We have focused on the List of Clusters (LC ) [5] index, since
(1) it is one of the most popular non-tree structures that are able to prune the
search space efficiently and (2) it holds its index on dense matrices which are
very convenient data structures for mapping algorithms onto GPUs. We are not
affirming that this index is the most suitable for GPU, but its properties make it
a good candidates to become it. Besides, finding the best metric index for GPU
is not a target of this paper; we mainly want to show the high performance
achieved using a metric index on GPU compared to sequential and traditional
multi-core approaches.

In [11,2] the authors propose solutions for similarity search using a GPU card.
All these papers take the initial assumption that the whole index fits on GPU
memory, with capacity of a few GiB. In this paper we propose solutions to deal
with large databases, which is usually the real case, where the databases fit just
partially on the GPU memory.

In the following subsections we explain the construction of the LC index and
is described how range queries are solved using it.

2.1 List of Clusters (LC)

This index [4,5] can be implemented dividing the space in two different ways:
taking a fixed radius for each partition or using a fixed size. In this paper, to
ensure good load balance in a parallel platform, we consider partitions with a
fixed size of K elements, thus the radius rc of a cluster with center c is the
maximum distance between c and its K-nearest neighbor.

The LC data structure is formed from a set of centers (objects). The construc-
tion procedure (illustrated in Figure 1(a)) is roughly as follows. We (randomly)
chose an object c1 ∈ U which becomes the first center. This center determines a
cluster (c1, r1, I1) were I1 is the set kNNU(c1,K) of K-nearest neighbors of c1
in U and r1 is the distance between the center c1 and its K-nearest neighbor in
U (r1 is called covering radius). Next, we choose a second center c2 from the set
E1 = U− (I1 ∪{c1}). This second center C2 determines a new cluster (c2, r2, I2)
where I2 is the set kNNE1(c2,K) of K-nearest neighbors of c2 in E1 and r2 is the
distance between the center C2 and its K-nearest neighbor in E1. Let E0 = U,
the process continues in the same way choosing each center cn (n > 2) from the
set En−1 = En−2 − (In−1 ∪ {cn−1}), till En−1 is empty.
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Fig. 1. List of Cluster (LC)

Note that, a cluster created first during construction has preference over the
following ones when their corresponding covering radius overlap. All the elements
that lie inside the cluster corresponding to the first center c1 are stored in it,
despite that they may also lie inside the subsequent clusters (Figure 1(a)). This
fact is reflected in the search procedure. Figure 1(b) illustrates all the situations
that may arise between a range query (q, r) and a given cluster.

During the processing of a range query (q, r), the idea is that if the first cluster
is (c1, r1, I1), we evaluate d(q, c1) and add c1 to the result set if d(q, c1) ≤ r. Then,
we scan exhaustively the objects in I1 only if the range query (q, r) intersects the
cluster with center c1 and radius r1, i.e. only if d(q, c1) ≤ r1+r (q1 in Figure 1(b)).
Next, we continue with the remaining set of clusters following the construction
order. However, if a range query (q, r) is totally contained in a cluster (ci, ri, Ii),
i.e. if d(q, ci) ≤ ri−r, we do not need to traverse the remaining clusters, since the
construction process of the LC ensures that all the elements that are inside the
query (q, r) have been inserted in Ii or in a previous clusters in the building order
(q2 in Figure 1(b)). In [5], authors analyzed different heuristics for selecting the
centers, and showed experimentally that the best strategy is to choose the next
center as the element that maximizes the sum of distances to previous centers.
This is the heuristic used in our work.

2.2 List of Superclusters (LSC)

We propose a hierarchical multi-level LC, named List of Superclusters (LSC )
that takes into account the organization of the GPU memory.

The construction of the LSC has two steps. First, based on the construction
procedure of the LC with fixed size of K elements, we get N clusters of size
K. Each i-th cluster is composed by its center Ci, covering radius ri and the K
nearest elements to Ci (kNNU(Ci,K)). These N clusters are named superclusters
and integrate the first level of the hierarchy. In the second step, we create a LC
index into each supercluster with their own elements following the construction
procedure of the LC (Section 2.1).

To process a range query (q, r) we have to calculate the distances d(Ci, q), i ∈
[1, N ] between the centers of the superclusters and the query. We add the center
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Ci to the result set if d(Ci, q) ≤ r. Using triangle inequality we try to discard each
supercluster (i.e. if d(Ci, q) ≤ ri + r), and for each non-discarded supercluster,
we apply the searching procedure of the LC over its elements.

If we think in the clusters as unit of transfers to device memory in the GPU,
the LSC makes better use of the bandwidth, because each non-discarded super-
cluster is a set of clusters that must be processed. The Figure 1(c) shows an
example of a LSC index.

3 Strategies to Process Similarity Queries

In this section we describe our proposed methods to process range queries on
a multi-GPU platform. All the following strategies are designed assuming that
the database does not fit in device memory, i.e. just a subset of the clusters can
be loaded at a time. Thus, for every batch of queries, the whole database may
be (potentially) loaded to the GPU to perform the search.

In all the following strategies the kernels are launched with one CUDA Block
per query. Each CUDA Block processes a different query, which has several
advantages, such as, to be able to synchronize the threads that solve the same
query, to exploit coarse-grained parallelism solving a batch of queries in parallel,
or to exploit fine-grained parallelism solving a query with a set of threads.

3.1 1-Stage Strategy

In [2], assuming that the whole dataset fits into device memory, a multi-GPU
strategy was proposed, using the LC index, and called 1-Stage. We used the
1-Stage strategy as baseline, but in this case we load in device memory just a
percentage of the clusters at a time. The aim of this strategy is to solve each
query in just one kernel in the GPU, avoiding to launch consecutive kernels and
copying data to communicate them.

We used one CPU-thread per GPU, each one controls a different GPU. The
centers, covering radius and their respective clusters are distributed among the
GPUs (in a circular manner), and because of this, each query must be processed
by all the GPUs.

The discard of clusters and searching on them is performed inside the kernel,
composed by two steps. (1) Each thread performs a distance evaluations between
a different center and the query (corresponding to the current CUDA Block),
and stores in shared memory a variable indicating if the cluster is discarded.
(2) According to the variables in shared memory, all the non-discarded clus-
ters are distributed (in a circular manner) among the threads, and each thread
calculates the distance between an element and the query in the same kernel.

Due to the memory restrictions of space in the GPU, we load N centers and Q
queries in device memory, and we process them iteratively. In the first iteration
we process a batch of Q queries with N clusters, in the second iteration we load
the next N cluster and process the same Q queries, and so on, until all clusters
were loaded. The same process is repeated with all the batches of queries.
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3.2 List of Superclusters on GPU

We created the LSC index with the method described in Section 2.2. We set the
parameters of the LSC to create versions with N and N/2 clusters per super-
cluster, where N is the maximum number of cluster allowed in device memory.
After loading a complete supercluster, a kernel is launched with Q CUDA Blocks
(Q is the quantity of queries of the current query batch) to search into it.The
kernel is composed of three steps as follows. (1) The first D threads cooperate to
get the distance d between the center of the supercluster and the query, where D
is the dimension of the elements. (2) As we described in Section 2.2, we use the
distance d and the triangle inequality property to try to discard the supercluster.
(3) If the supercluster is not discarded, then we search in the LC index inside
the supercluster, with the method used by 1-Stage strategy (Section 3.1).

The Figure 2 shows results in sequential computation of the LSC against the
LC, using the datasets described in Section 4. The Figure 2(a) compares the
average of distance evaluations between the LSC and LC, where the LC always
takes advantage. To try to know the efficiency for discarding of the LSC, the
Figure 2(b) exposes the average of the percentage of discarded superclusters,
processing query batches of different sizes (represented by Q in the graph). In
this figure a supercluster is considerd discarded just if its covering radius does
not intersect any of the Q queries of the current batch query. Therefore, the
larger the Q, the less the probability of discarding a cluster. We observe that
trying to discard superclusters taking account query batches of size 98 or higher,
the LSC is able to discard less than 2% of the superclusters. The Figure 2(a)
represents values with Q=1, and we can observe in the Figure 2(b) that the LSC
reaches 69% of discard for Q=1 with the database of 500,000 elements, but even
with this, the LC performs less distance evaluations. This is because the low
discard of elements in the non-discarded superclusters by the LSC, close to 17%.
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Despite the total number of distance evaluations increases, in Section 4 we
show that our implementation of LSC in GPU outperforms the LC one. This
counterintuitive behavior is largely explained due to the higher transfer efficiency
of the LSC. The minimum unit of discarding in the LC is a cluster and in the
LSC is a supercluster, which also are the minimum unit of transfer. Therefore,
the layout of the data to be transfered from CPU to GPU gets much more
irregular when using LC, and the available bandwidth is poorly exploited.

3.3 Building a CPU-GPU Pipeline

To minimize the number of transfers to GPU and in order to increase the degree
of parallelism, we developed a hybrid pipeline between CPU and GPU, where
the CPU helps to discard some elements to avoid them to be transfered to the
GPU. We used P CPU-threads, where P is the quantity of CPU-cores of the
machine, and from those P the first G threads (G < P ) manage a different GPU.

Considering that N is the allowed quantity of clusters in device memory, and
Q is the quantity of the current batch query, the steps of the pipeline are as
follows. (1) In CPU, we try to discard N clusters of the LC just using the
center and covering radius of the clusters. For this we distribute (circularly) the
clusters among the threads, and each thread discards its cluster if its covering
radius does not intersect with any of the Q queries. (2) We load in GPU just
the non-discarded clusters according to the previous step, and we process the
queries with them. (3) While the second step (with the first G threads) is in
execution, the first step (with the rest of the threads) is in execution too, but
attempting to discard the next N clusters.

We implemented this pipeline for both LC and LSC indexes. In the case of
the LC the threads that run on CPU cores try to discard clusters, and in the
LSC they try to discard superclusters. As result, with this pipeline we get to
load less quantity of clusters (or superclusters) in GPU.

3.4 Exploiting CUDA Asynchronous Copies

cudaMemcpyAsync allows to perform transfers to (and from) device memory while
a kernel is in execution. This is possible by using CUDA streams, where each
CUDA stream can contain a sequence of instructions. Copies and kernels from
different streams can be executed at the same time.

Starting from the base non-pipelined implementation, we exploit the asyn-
chronous copies for both LC and LSC indexes. If N is the quantity of clusters
allowed in device memory, then we create two CUDA streams, and each stream
is composed of the following instructions. (1) To copy N/2 clusters to device
memory, and in the case of the LSC to copy one supercluster of N/2 clusters.
(2) launch a kernel to process the queries with the loaded clusters (or super-
cluster). We create just two CUDA streams and not more, because this quantity
makes a good balance in running time between copies and kernels, which effec-
tively builds a two stage transfer - kernel pipeline.
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We always copy the clusters of the LC or supeclusters of the LSC with just
one cudaMemcpyAsync because the elements of a cluster or a supercluster are
contiguous in the database; this is key to efficiently exploit the huge bandwidth
between CPU and GPU, since short transfers cannot hide the initial latency.

3.5 Multi-pipeline Strategy

Our final proposal combined the two previous strategies in one multi-pipeline
strategy. We use the LSC index (Section 3.2), and we create P CPU threads, one
per CPU-core (Section 3.3), leaving G threads in charge of G GPUs (G < P ).
Each GPU create two CUDA streams to build a pipeline between copies and
kernels (Section 3.4). The Figure 3 shows a scheme of this strategy, which is
composed by three steps separated by OpenMP barriers, the steps are as follows.
(1) Discard of superclusters with threads running on CPU-cores. (2) To copy
the ID of the non-discarded superclusteres to be read by the threads in charge
of GPUs. (3) Each GPU create two CUDA streams, and each stream copy to
device memory one supercluster per cudaMemcpyAsync, and after a supercluster
is loaded in device memory, immediately is launched a kernel to search on it.
The steps 1 and 3 are executed on the same time, because the pipeline method
described in Section 3.3.

KernelCopy HtoD

Copy HtoD

Copy HtoD

Kernel

KernelCopy HtoD

Copy HtoD

Copy HtoD

Kernel

Discarding in CPU

Index

CPU Threads

Barrier

Stream 1

Stream 2

Stream 1

Stream 2

Barrier

GPU 2

GPU 1

Copying IDs of
non−discarded clusters

Step 2Step 1 Step 3

Fig. 3. Scheme of the multi-pipeline strategy

4 Experimental Results

All our GPU experiments were carried out on two NVIDIA Tesla M2070, and
each one is shipped with 14 multiprocessors, 32 cores per multiprocessor, 48KB
of shared memory and 5GB of device memory. The host CPU is a 2xIntel Quad-
Xeon processor of 2.66GHz with 16 GB of RAM.

We have used as reference database the CoPhIR (Content-based Photo Image
Retrieval) dataset [3]. This consists of metadata extracted from the Flickr photo
sharing system. It is a collection of 106 million images containing for each image
five MPEG-7 visual descriptors, specifically Scalable Colour, Colour Structure,
Colour Layout, Edge Histogram, and Homogeneous Texture. For the purposes
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of this paper, we just used the Colour Structure MPEG-7 image feature, which
represents a 64 dimensional vector for each image. We used the Euclidean dis-
tance as a distance measure. As in previous papers [7,9], the radii used were
those that retrieve on average the 0.01%, 0.1% and 1% of the elements of the
database per query.

To our knowledge, there is not a public and real query log for similarity
search in images. But recently, a public website was presented in [10]. It applies
the MUFIN [12] search engine for images of CoPhIR dataset and is used by
many users all round the world. From this website, we got our query log, which
represents the processed queries by several days. We used 30,000 queries that
are represented by its Colour Structure MPEG-7 image feature of dimension 64.
We have made this query log public [1].

The Figures 4(a), 4(b) and 4(c) presents the running time of all the strategies
described in Section 3. The first column stands for the 1-Stage strategy (Sec-
tion 3.1), which is implemented using the LC index. After loading N clusters
a kernel is launched to search on them (N is the number of clusters allowed in
device memory). The second column (1-Stage Pipe) stands for the 1-Stage strat-
egy, but using two CUDA streams (Section 3.4), therefore after loading N/2
clusters in device memory we launch a kernel to search on them. The third col-
umn (1-Stage Pipe CPU-GPU ) is similar to the second one, but implementing
the pipeline CPU-GPU (Section 3.3), where the threads that run on CPU-cores
try to discard clusters of the LC in parallel with the GPUs processing of the
previous batch query. The fourth column (LSC N-C ) stands for the LSC index
(Section 3.2), with N clusters per supercluster, and after loading a supercluster
a kernel is launched. The fifth column (LSC N/2-C Pipe) stands for the LSC
index with N/2 clusters per supercluster, and using two CUDA streams (Sec-
tion 3.4), therefore after loading a supercluster by a stream, a kernel is launched
by using the same stream to search on it. The last column (LSC N/2-C Pipe
CPU-GPU ) stands for the Multi-pipeline Strategy described in Section 3.5.

In all our experiments we always set the cluster size equal to 256, because
it has been empirically proved a good parameter. Therefore each supercluster
of the LSC index is composed by clusters of size 256. We set the clusters al-
lowed in device memory in N=32, and we just copy the results from GPU when
a batch query is completely processed. In all the strategies, we copy a clus-
ter of the LC (or supercluster in case of LSC ) with one cudaMemcpy, or one
cudaMemcpyAsync in the columns labeled with Pipe. All the strategies that im-
plement the asynchronous copies pipeline (Section 3.4), use page-locked (pinned)
memory to transfer data. This memory allows copies to device memory in par-
allel with kernel processing, and also decrease the time of the copies. Therefore,
to be fair we use pinned memory for the transfers in all the strategies.

Each bar in the figures represents the running time of the corresponding strat-
egy. For example, in the first bar of Figure 4(a), the running time of the 1-Stage
strategy, processing the queries in batches of Q=28 is 46.4 seconds, with Q=98
is 16.2 seconds, and with Q=154 is 11.7 seconds. We process the queries in
batches of 28, 98 and 154, because these numbers are multiples of 14, which is the



Multi-level Clustering on Metric Spaces Using a Multi-GPU Platform 225

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52

R
un

ni
ng

 T
im

e 
(s

ec
.)

 

0.01 0.1 1

1−Stage

1−Stage Pipe

1−Stage Pipe CPU−GPU

LSC N−C

LSC N/2−C Pipe

LSC N/2−C Pipe CPU−GPU

1−Stage

1−Stage Pipe

1−Stage Pipe CPU−GPU

LSC N−C

LSC N/2−C Pipe

LSC N/2−C Pipe CPU−GPU

1−Stage

1−Stage Pipe

1−Stage Pipe CPU−GPU

LSC N−C

LSC N/2−C Pipe

LSC N/2−C Pipe CPU−GPU

Q=28
Q=98

Q=154

(a) DB Size = 500,000

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

 

0.01 0.1 1

1−Stage

1−Stage Pipe

1−Stage Pipe CPU−GPU

LSC N−C

LSC N/2−C Pipe

LSC N/2−C Pipe CPU−GPU

1−Stage

1−Stage Pipe

1−Stage Pipe CPU−GPU

LSC N−C

LSC N/2−C Pipe

LSC N/2−C Pipe CPU−GPU

1−Stage

1−Stage Pipe

1−Stage Pipe CPU−GPU

LSC N−C

LSC N/2−C Pipe

LSC N/2−C Pipe CPU−GPU

Q=28
Q=98

Q=154

(b) DB Size = 1,000,000

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170

R
un

ni
ng

 T
im

e 
(s

ec
.)

 

0.01 0.1 1

1−Stage

1−Stage Pipe

1−Stage Pipe CPU−GPU

LSC N−C

LSC N/2−C Pipe

LSC N/2−C Pipe CPU−GPU

1−Stage

1−Stage Pipe

1−Stage Pipe CPU−GPU

LSC N−C

LSC N/2−C Pipe

LSC N/2−C Pipe CPU−GPU

1−Stage

1−Stage Pipe

1−Stage Pipe CPU−GPU

LSC N−C

LSC N/2−C Pipe

LSC N/2−C Pipe CPU−GPU

Q=28
Q=98

Q=154

(c) DB Size = 1,700,000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

 

0.01 0.1 1

1−Stage DB in M
emory

LSC N/2−C Pipe CPU−GPU

1−Stage DB in M
emory

LSC N/2−C Pipe CPU−GPU

1−Stage DB in M
emory

LSC N/2−C Pipe CPU−GPU

Q=28
Q=98

Q=154

(d) 1-Stage loading all the data in device
memory, using the database of 500,000
elements

Fig. 4.Running time of the LC and LSC indexes combined with the pipelines described
in Section 3

number of multiprocessors in our GPUs, and taking account that we are process-
ing each query with a different CUDA Block, a multiple of 14 improves the load
balance of CUDA Blocks across multiprocessors. Note that, in the worst case (if
no discard is performed at the CPU level), the complete DB must be transferred
from the CPU to the GPU for every batch query: 195 times for Q=154, 307
times for Q=98 and 1072 times for Q=28. It is imperative to efficiently hide this
latency to attain good results.

Our baseline implementation, labeled as 1-Stage strategy and described in
section 3.1, achieves the worst performance in all the databases for all Q. The
1-Stage Pipe strategy outperforms the previous one, because it reduces latency
of the copies to device memory by using the pipeline described in Section 3.4,
implemented with CUDA streams. The 1-Stage Pipe CPU-GPU strategy outper-
forms the previous two, because the reduction in the quantity of clusters copied
to device memory. This reduction is made by the threads running on CPU cores
that calculate the distances between the centers and the batch query, avoiding
to copy the discarded clusters.
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The next three bars show the results for the proposed index, List of super-
clusters. The LSC N-C corresponds with the strategy explained in section 3.3
applied to the LSC index. As shown previously, this index finally performed more
distance evaluations than the simpler LC ; however, its final execution time is
most of the times because the bandwidth is more efficiently managed: in each
copy to device memory is transferred contiguous data of size N clusters to de-
vice memory (N is the number of clusters allowed in device memory). Next ,the
LSC N/2-C Pipe strategy achieves better performance than the previous ones,
because the implementation of the pipeline using CUDA streams, and the unit
of transfers is a supercluster of N/2 cluster. This strategy is copying data while
a kernel is in execution, hiding transfers latency. Finally, the strategy labeled as
LSC N/2-C Pipe CPU-GPU (named as multi-pipeline strategy in Section 3.5)
achieves the best performance. This strategy is similar to the previous one, but
the threads running on CPU cores try to discard superclusters while the GPUs
are processing the previous batch query.

The advantages of using the CPU-GPU pipeline (Section 3.3) in the LSC is
more evident with Q=28, because the larger Q, the less is the discard of clusters
(Figure 2(b)). This seems to indicate a certain degree of locality in the query
log, which is lost when the batch is made too large. However, the much larger
number of transfers due to a reduce Q does mitigate the benefits of this locality.

To complete our study, we consider the case where the whole DB actually
fits in the GPUs main memory (i.e. the whole DB must just be copied once at
the beginning of the process). Our smallest DB may be distributed amongst the
two available GPUs, so we could compare our best implementation with this
unrealistic scenario.Figure 4(d) shows the results.

Not surprisingly, the all-fit implementation outperforms our proposal when
searching with small radius. Also as expected, in this ideal version, there is almost
no penalty when reducing the Q: it does not entail further transfers, so there is
not huge penalty form that side. However, it is very noticeable that, for the larger
search radius (1% of the DB retrieved) our implementation actually outperforms
the all-fit version for Q=154. With such a large radius, the discard efficiency
is quite low. Thus, kernel execution times are always able to completely hide
transfers penalties. Then, we only pay the latency of transferring one supercluster
per batch of queries. The higher the Q, the lesser the number of batches and,
for this example, we are able to be competitive with the all-fit version. For the
smallest Q value, the number of not-hidden transfers increase too much (and the
kernel work decreases), largely degrading performance.

5 Conclusions

In this paper we have presented a hierarchical multi-level structure, built on
the LC index named List of Superclusters (LSC ), to solve similarity queries in
metric spaces. The LSC, which is composed by superclusters, has been designed
to perform well on GPUs. A supercluster is made by a center, a covering radius
and elements, but with the elements of each supercluster is created a LC index.
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Grouping clusters in superclusters allows for a fast discard at CPU level and,
using it as the minimal CPU-GPU transfer unit, ensures that the bandwidth is
always efficiently exploited.

To study the index efficiency, we have implemented a pipelined hybrid CPU-
GPU version of both the LC and LSC indexes. The CPUs perform a first round
of discards for a batch query Qi while the GPUs are finishing the processing
of the previous batch, Qi−1. Moreover, the CPU-GPU transfers and the GPU
kernels execution is further pipelined using streams and asynchronous copies.
The transfer latency is almost completely hidden that way; indeed, even if the
complete list of clusters is copied for each batch query (except those clusters
discarded by the CPU), the total exposed latency may be even lower than the
experienced when transferring the complete DB just once.

Our study with a real query log for similarity search in images, shows that
there exits a locality amongst queries: i.e. the sets of clusters accessed by two
consecutive queries have a non null intersection. This motivates further explo-
ration to reduce transfers by carefully scheduling queries.
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1 IRISA, Université de Rennes 1, France
2 NICTA and University of Sydney, Australia

3 Institut Universitaire de France
tyler.crain@inria.fr, vincent.gramoli@sydney.edu.au,

raynal@irisa.fr

Abstract. This paper proposes a new lock-based concurrent binary tree using
a methodology for writing concurrent data structures. This methodology limits
the high contention induced by today’s multicore environments to come up with
efficient alternatives to the most widely used search structures.

Data structures are generally constrained to guarantee a big-oh step complex-
ity even in the presence of concurrency. By contrast our methodology guarantees
the big-oh complexity only in the absence of contention and limits the contention
when concurrency appears. The key concept lies in dividing update operations
within an eager abstract access that returns rapidly for efficiency reason and a
lazy structural adaptation that may be postponed to diminish contention. Our
evaluation clearly shows that our lock-based tree is up to 2.2× faster than the
most recent lock-based tree algorithm we are aware of.

Keywords: Binary tree, Concurrent data structures, Efficient implementation.

1 Introduction and Related Work

Today’s processors tend to embed more and more cores. Concurrent data structures,
which implement popular abstractions such as key-value stores [1], are thus becoming
a bottleneck building block of a wide variety of concurrent applications. Maintaining
the invariants of such structures, like the balance of a tree, induces contention. This is
especially visible when using speculative synchronization techniques as it boils down
to restarting operations [2]. In this paper we describe how to cope with the contention
problem when it affects a non-speculative execution or technique.

As a widely used and studied data structure in the sequential context, binary trees
provide logarithmic access time complexity given that they are balanced, meaning that
among all downward paths from the root to a leaf, the length of the shortest path is
not far apart the length of the longest path. Upon tree update, if the height difference
exceeds a given threshold, the structural invariant is broken and a rebalancing is trig-
gered to restructure accordingly. This threshold depends on the considered algorithm:
AVL trees [3] do not tolerate the longest length to exceed the shortest by 2 whereas
red-black trees [4] tolerate the longest to be twice the shortest, thus restructuring less
frequently. Yet in both cases the restructuring is triggered immediately when the thresh-
old is reached to hide the imbalance from further operations. In a concurrent context,
slightly weakened balance requirements have been suggested [5], but they still require
immediate restructuring as part of update operations to the abstractions.
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We introduce the contention-friendly tree as a tree that transiently breaks its balance
structural invariant without hampering the abstraction consistency in order to reduce
contention and speed up concurrent operations that access (or modify) the abstraction.
More specifically, we propose a partially internal binary search tree data structure im-
plementing a key-value store, decoupling the operations that modify the abstraction (we
call these abstract operations) from operations that modify the tree structure itself but
not the abstraction (we call these structural operations). An abstract operation either
searches for, logically deletes, or inserts an element from the abstraction where in cer-
tain cases the insertion might also modify the tree structure. Separately, some structural
operations rebalance the tree by executing a distributed rotation mechanism as well as
physically removing nodes that have been logically deleted.

Context. On the one hand, the decoupling of update and rebalancing dates back from the
70’s [6] and was exclusively applied to trees, including B-trees [7], {2,3}-trees [8], AVL
trees [9] and red-black trees [10] (resulting in largely studied chromatic trees [11, 12]
whose operations cannot return before reaching a leaf). On the other hand, the decou-
pling of the removals in logical and physical phases is more recent [13] but was applied
to various structures: linked lists [13,14], hash tables [15], skip lists [16], binary search
trees [2, 17] and lazy lists [18]. Our methodology generalizes both kinds of decoupling
by distinguishing an abstract update from a structural modification.

The guarantees of some data structures, like list-based stack, are relaxed to tolerate
the high concurrency induced by multicores [19]. This idea is quite different from ours.
It aims at avoiding performance of some highly contended structures to drop below
sequential ones whereas we aim at designing highly-concurrent structures that lever-
age multi-/many-cores. Finally, the corresponding solution lies in trading off atomicity
for quiescent consistency, guaranteeing that the last-in-first-out policy of an access is
only with respect to preceding calls when no other accesses execute concurrently. By
contrast, our solution guarantees atomicity even in concurrent executions.

We have recently observed the performance benefit of decoupling accesses while
preserving atomicity within speculative executions (specifically transactional memory).
Our recent speculation-friendly tree splits updates into separate transactions to avoid a
conflict with a rotation from rolling back the preceding insertion/removal [2]. While it
benefits from the reusability and efficiency of elastic transactions [20], it suffers from
the overhead of bookkeeping accesses with software transactional memory. The goal
was to bound the asymptotic step complexity of speculative accesses to make it compa-
rable to the complexity of pessimistic lock-based ones. Although this complexity is low
in pessimistic executions, our new result shows that the performance of a lock-based
binary search tree greatly benefits from this decoupling.

Content of the Paper. We present a contention-friendly methodology which lies essen-
tially in splitting accesses into an eager abstract access and a lazy structural adaptation.
We illustrate our methodology with a contention-friendly binary search tree. In partic-
ular, we compare its performance against the performance of the most recent practical
binary search tree we are aware of [21]. Although both algorithms are lock-based binary
search trees, ours speeds up the other by 2.2×.
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2 Overview

In this section, we give an overview of the Contention-Friendly (CF) methodology by
describing how to write contention-friendly data structures as we did to design a lock-
free CF skip-list [22, 23]. The following section will describe how this is specifically
done for the binary search tree.

The CF methodology aims at modifying the implementation of existing data struc-
tures using two simple rules without relaxing their correctness. The correctness criterion
ensured here is linearizability [24]. The data structures considered are search structures
because they organize a set of items, referred to as elements, in a way that allows to
retrieve the unique position of an element in the structure given its key. The typical
abstraction implemented by such structures is a collection of elements that can be spe-
cialized into various sub-abstractions like a set (without duplicates) or a map (that maps
each element to some value). We consider insert, delete and contains operations that,
respectively, inserts a new element associated to a given key, removes the element as-
sociated to a given key or leaves the structure unchanged if no such element is present,
and returns true if there is element associated to a given key or false if such an element
is absent. Both inserts and deletes are considered updates, even though they may not
modify the structure.

The key rule of the methodology is to decouple each update into an eager abstract
modification and a lazy structural adaptation. The secondary rule is to make the re-
moval of nodes selective and tentatively affect the less loaded nodes of the data struc-
ture. These rules induce slight changes to the original data structures that result in a
corresponding data structure that we denote using the contention-friendly adjective to
differentiate them from their original counterpart.

2.1 Eager Abstract Modification

Existing search structures rely on strict invariants to guarantee their big-oh (asymptotic)
complexity. Each time the structure gets updated, the invariant is checked and the struc-
ture is accordingly adapted as part of the same operation. While the update may affect
a small sub-part of the abstraction, its associated restructuring can be a global modifi-
cation that potentially conflicts with any concurrent update, thus increasing contention.

The CF methodology aims at minimizing such contention by returning eagerly the
modifications of the update operation that make the changes to the abstraction visible.
By returning eagerly, each individual process can move on to the next operation prior
to adapting the structure. It is noteworthy that executing multiple abstract modifications
without adapting the structure does no longer guarantee the big-oh step complexity of
the accesses, yet, as mentioned in the Introduction, such complexity may not be the
predominant factor in contended executions.

A second advantage is that removing the structural adaption from the abstract mod-
ification makes the cost of each operation more predictable as operations share similar
cost and create similar amount of contention. More importantly the completion of the
abstract operation does not depend on the structural adaptation (like they do in existing
algorithms), so the structural adaptation can be performed differently, for example, us-
ing global information or being performed by separate, unused resources of the system.
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2.2 Lazy Structural Adaptation

The purpose of decoupling the structural adaptation from the preceding abstract modi-
fication is to enable its postponing (by, for example, dedicating a separate thread to this
task, performing adaptations when observed to be necessary), hence the term “lazy”
structural adaptation. The main intuition here is that this structural adaptation is in-
tended to ensure the big-oh complexity rather than to ensure correctness of the state of
the abstraction. Therefore the linearization point of the update operation belongs to the
execution of the abstract modification and not the structural adaptation and postponing
the structural adaptation does not change the effectiveness of operations.

This postponing has several advantages whose prominent one is to enable merging
of multiple adaptations in one simplified step. Only one adaptation might be necessary
for several abstract modifications and minimizing the number of adaptations decreases
accordingly the induced contention. Furthermore, several adaptations can compensate
each other as the combination of two restructuring can be idempotent. For example,
a left rotation executing before a right rotation at the same node may lead back to
the initial state and executing the left rotation lazily makes it possible to identify that
executing these rotations is useless. Following this, instead of performing rotations as
a string of updates as part of a single abstract operation, each rotation is performed
separately as a single local operation, using the most up to date balance information.

Although the structural adaptation might be executed in a distributed fashion, by each
individual updater thread, one can consider centralizing it at one dedicated thread. Since
these data structures are designed for architectures that use many cores, performing the
structural adaptation on a dedicated single separate thread leverages hardware resources
that might otherwise be left idle.

Selective Removal. In addition to decoupling level adjustments, removals are preformed
selectively. A node that is deleted is not removed instantaneously but is marked as
deleted. The structural adaptation then selects among these marked nodes those that
are suitable for removal, i.e., whose removal would not induce high contention. This
selection is important to limit contention. Removing a frequently accessed node requires
locking or invalidating a larger portion of the structure. Removing such a node is likely
to cause much more contention than removing a less frequently accessed one. In order
to prevent this, only nodes that are marked as deleted and have at least one of their
children as an empty subtree are removed. In addition, marked deleted nodes that have
not been physically removed can then be added back into the abstraction by simply
unmarking them during an insert operation. This leads to less contention, but also means
that certain nodes that are marked as deleted may not be removed. In similar, partially
external/internal trees, it has already been observed that only removing such nodes [2],
[21] results in a similar sized structure as existing algorithms.

3 The Contention-Friendly Tree

The CF tree is a lock-based concurrent binary search tree implementing classic
insert/delete/contains operations. Each of its nodes contains the following fields: a
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key k, pointers l and r to the left and right child nodes, a lock field, a del flag indicat-
ing if the node has been logically deleted, a rem flag indicating if the node has been
physically removed (note that the rem flag an additional third state (by-left-rot) which
evaluates to true) , and the integers left-h, right-h and local-h storing the estimated
height of the node and its subtrees used in order to decide when to perform rotations.

This section will now describe the CF tree algorithm by first describing three specific
CF modifications that reduce contention during traversal, followed by a description of
the CF abstract operations.

3.1 Avoiding Contention during Traversal

Each abstract operation of a tree is expected to traverse O(logn) nodes when there is no
contention. During an update operation, once the traversal is finished a single node is
then modified in order to update the abstraction. In the case of delete, this means setting
the del flag to true, or in the case of insert changing the child pointer of a node to point
to a newly allocated node (or unmarking the del flag in case the node exists in the tree).
Given then, that the traversal is the longest part of the operation, the CF tree algorithm
tries to avoid here, as often as possible, producing contention. Traditionally, concurrent
data structures often require synchronization during traversal (not even including the
updates done after the traversal). For example, performing hand-over-hand locking in a
tree helps ensure that the traversal remains on track during a concurrent rotation [21],
or, using optimistic strategy (such as transactional memory), validation is done during
the traversal, risking the operation to restart in the case of concurrent modifications [18,
25, 26]. The following paragraphs describe the modifications made to the algorithm in
order to allow avoiding contention during traversal.

Physical Removal. As previously mentioned, the algorithm attempts to remove only
nodes whose removal incurs the least contention. Specifically, removing a node n with
a subtree at each child requires finding its successor node s in one of its subtrees, then
replacing n with s. Therefore precautions must be taken (such as locking all the nodes)
in order to ensure any concurrent traversal taking place on the path from n to s does
not violate linearizability. Instead of creating contention by removing such nodes, they
are left as logically deleted in the CF tree; to be removed later if one of their subtrees
becomes empty, or to be unmarked if a later insert operation on the same node occurs.

In the CF tree, nodes that are logically deleted and have less than two child sub-
trees are physically removed lazily (cf. Algorithm 1). Since we do not want to use
synchronization during traversal these removals are done slightly differently than by
just unlinking the node. The operation starts by locking the node n to be removed and
its parent p (line 6). Following this, the appropriate child pointer of p is then updated
(lines 12-13), effectively removing n from the tree. Additionally, before the locks are
released, both of n’s left and right pointers are modified to point back to p and the rem
flag of n is set to true (lines 14-15). These additional modifications allow concurrent
abstract operations to keep traversing safely without using synchronization as they will
then travel back to p before continuing their traversal, much like would be done in a
solution that uses backtracking.
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Algorithm 1. Remove and rotate operations
1: remove(parent, left-child)p:
2: if parent.rem then return false
3: if left-child then n← parent.�
4: else n← parent.r

5: if n =⊥ then return false
6: lock(parent); lock(n);
7: if ¬n.del then return false // release locks

8: if (child ← n.�) �⊥ then
9: if n.r �⊥ then

10: return false // release locks

11: else child ← n.r
12: if left-child then parent.�← child
13: else parent.r ← child

14: n.�← parent; n.r ← parent;
15: n.rem← true;
16: // release locks

17: update-node-heights();
18: return true.

19: right-rotate(parent, left-child)p:
20: if parent.rem then return false
21: if left-child then n← parent.�
22: else n← parent.r

23: if n =⊥ then return false
24: �← n.�;
25: if �=⊥ then return false
26: lock(parent); lock(n); lock(�);
27: �r ← l.r; r ← n.r;
28: // allocate a node called new

29: new.k ← n.k; new.�← �r;
30: new.r ← r; �.r ← new;
31: if left-child then parent.�← �
32: else parent.r ← �

33: n.rem← true; // by-left-rot if left rotation

34: // release locks

35: update-node-heights();
36: return true.

Rotations. Rotations are performed to rebalance the tree so that traversals execute in
O(logn) time once contention decreases. As described in Section 2, the CF tree uses
localized rotations in order to minimize conflicts. Methods for performing localized
rotation operations in the binary trees have already been examined and proposed in
several works such as [5]. The main concept used here is to propagate the balance
information from a leaf to the root. When a node has a ⊥ child pointer then the node
must know that this subtree has height 0 (the estimated heights of a node’s subtrees are
stored in the integers left-h and right-h). This information is then propagated upwards
by sending the height of the child to the parent, where the value is then increased by
1 and stored in the parent’s local-h integer. Once an imbalance of height more than 1
is discovered, a rotation is performed. Higher up in the tree the balance information
might become out of date due to concurrent structural modifications, but, importantly,
performing these local rotations will eventually result in a balanced tree [5].

Apart from performing rotations locally as unique operations, the specific CF ro-
tation procedure is done differently in order to avoid using locks and aborts/rollbacks
during traversals. Let us consider specifically the typical tree right-rotation operation
procedure. Here we have three nodes modified during the rotation: a parent node p, its
child n who will be rotated downward to the right, as well as n’s left child � who will be
rotated upwards, thus becoming the child of p and the parent of n. Consider a concur-
rent traversal that is preempted on n during the rotation. Before the rotation, � and its
left subtree exist below n as nodes in the path of the traversal, while afterwards (given
that n is rotated downwards) these are no longer in the traversal path, thus violating cor-
rectness if these nodes are in the correct path. In order to avoid this, mechanisms such
as hand over hand locking [21] or keeping count of the number of operations currently
traversing a node [5] have been suggested, but these solutions require traversals to make
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Algorithm 2. Restructuring process
1: background-struct-adaptation()p:
2: while true do
3: // continuous background restructuring

4: restructure-node(root)s.

5: propagate(n)s:
6: if n.� �⊥ then n.left-h← n.�.localh
7: else n.left-h← 0

8: if n.r �⊥ then n.right-h← n.r.localh
9: else n.right-h ← 0

10: n.localh←max(n.left-h,n.right-h)+1.

11: restructure-node(node)s:
12: if node =⊥ then return
13: restructure-node(node.�)s;
14: restructure-node(node.r)s;
15: if node.� �⊥∧node.�.del then
16: remove(node, false)

17: if node.r �⊥∧node.r.del then
18: remove(node, true)

19: propagate(node);
20: if |node.left-h−node.right-h|> 1 then
21: // Perform appropriate rotations.

themselves visible at each node, creating contention. Instead, in the CF tree, the rotation
operation is slightly modified, allowing for safe, concurrent, invisible traversals.

The rotation procedure is then performed as follows as shown in Algorithm 1: The
parent p, the node to be rotated n, and n’s left child � are locked in order to prevent
conflicts with concurrent insert and delete operations. Next, instead of modifying n
like would be done in a traditional rotation, a new node new is allocated to take n’s
place in the tree. Thus, the key, value, and del fields of new are set to be the same as n’s.
The left child of new is set to �.r and the right child is set to n.r (these are the nodes that
would become the children of n after a traditional rotation). Next �.r is set to point to
new and p’s child pointer is updated to point to � (effectively removing n from the tree),
completing the structural modifications of the rotation. To finish the operation n.rem is
set to true (or by-left-rot, in the case of a left-rotation) and the locks are released. There
are two important things to notice about this rotation procedure: First, new is the exact
copy of n and, as a result, the effect of the rotation is the same as a traditional rotation,
with new taking n’s place in the tree. Second, the child pointers of n are not modified,
thus all nodes that were reachable from n before the rotation are still reachable from n
after the rotation, thus, any current traversal preempted on n will still be able to reach
any node that was reachable before the rotation.

3.2 Structural Adaptation

As mentioned earlier, one of the advantages of performing structural adaptation lazily
is that it does not need to be executed immediately as part of the abstract operations.
In a highly concurrent system this gives us the possibility to use processor cores that
might otherwise be idle to perform the structural adaptation, which is exactly what
is done in the CF tree. A fixed structural adaption thread is then assigned the task
of running the background-struct-adaptation operation which repeatably calls the
restructure-node procedure on the root node, as shown in Algorithm 2, taking care of
balance and physical removal. restructure-node is simply a recursive depth-first proce-
dure that traverses the entire tree. At each node, first the operation attempts to physically
remove its children if they are logically deleted. Following this, it propagates balance
values from its children and if an imbalance is found, a rotation is performed.
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While here we have a single thread constantly running, other possibilities such as
having several structural adaptations threads, or distributing the work amongst applica-
tion threads can be used. It should be noted that, in a case where there can be multiple
threads performing structural adaptation, we would need to be more careful on when
and the order in which the locks are obtained (for example they could be obtained in a
global order based on their key).

Algorithm 3. Abstract operations

1: contains(k)p:
2: node← root;
3: while true do
4: next ← get next(node,k);
5: if next =⊥ then break
6: node ← next;
7: result ← false;
8: if node.k = k then
9: if ¬node.del then result ← true

10: return result.

11: insert(k)p:
12: node← root;
13: while true do
14: next ← get next(node,k);
15: if next =⊥ then
16: lock(node);
17: if validate(node,k) then break

18: unlock(node);
19: else node ← next
20: result ← false;
21: if node.k = k then
22: if node.del then
23: node.del ← false; result ← true
24: else // allocate a node called new

25: new.key← k;
26: if node.k > k then node.r ← new
27: else node.�← new
28: result ← true;
29: unlock(node);
30: return result.

31: delete(k)p:
32: node← root
33: while true do
34: next ← get next(node,k);
35: if next =⊥ then
36: lock(node);
37: if validate(node,k) then break

38: unlock(node);
39: else node ← next
40: result ← false;
41: if node.k = k then
42: if ¬node.del then
43: node.del ← true; result ← true
44: unlock(node);
45: return result.

46: get-next(node,k)s:
47: rem← node.rem;
48: if rem = by-left-rot then next ← node.r
49: else if rem then next ← node.�
50: else if node.k > k then next ← node.r
51: else if node.k = k then next ←⊥
52: else next ← node.�
53: return next.

54: validate(node,k)s:
55: if node.rem then return false
56: else if node.k = k then return true
57: else if node.k > k then next ← node.r
58: else next ← node.�
59: if next =⊥ then return true
60: return false.

3.3 Abstract Operations

The abstract operations are shown in Algorithm 3. Each of the abstract operations begin
by starting their traversal from the root node. The traversal is then performed, without
using locks, from within a while loop where each iteration of the loop calls the get-next
procedure, which returns either the next node in the traversal, or ⊥ in the case that the
traversal is finished.
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The get-next procedure starts by reading the rem flag of node. If the flag was set to
by-left-rotate then the node was concurrently removed by a left-rotation. As we saw
in the previous section, a node that is removed during rotation is the node that would be
rotated downwards in a traditional rotation. Specifically, in the case of the left rotation,
the removed node’s right child is the node rotated upwards, therefore in this case, the
get-next operation can safely travel to the right child as it contains at least as many
nodes in its path that were in the path of the node before the rotation. If the flag was set
to true then the node was either removed by a physical removal or a right-rotation, in
either case the operation can safely travel to the left child, this is because the remove
operation changes both of the removed node’s child pointers to point to the parent and
the right-rotation is the mirror of the left-rotation. If the rem flag is false then the key
of node is checked, if it is found to be equal to k then the traversal is finished and ⊥ is
returned. Otherwise the traversal is performed as expected, traversing to the right if the
node.k is bigger than k or to the left if smaller.

Given that the insert and delete operations might modify node, they lock it for safety
once⊥ is returned from get-next. Before the node is locked, a concurrent modification
to the tree might mean that the traversal is not yet finished (for example the node might
have been physically removed before the lock was taken), thus the validate operation
is called. If false is returned by validate, then the traversal must continue, otherwise
the traversal is finished. Differently, given that it makes no modifications, the contains
operation exits the while loop immediately when ⊥ is returned from get-next.

The validate operation performs three checks on node to ensure that the traversal is
finished. First it ensures that rem = false, meaning that the node has not been physically
removed from the tree. Then it checks if the key of the node is equal to k, in such a
case the traversal is finished and true is returned immediately. If the key is different
from k then the traversal is finished only if node has ⊥ for the child where a node with
key k would exist. In such a case true is returned, otherwise false is returned. Once the
traversal is complete the rest of the code is straightforward. For the contains operation,
true is returned if node.k = k and node.del = false, false is returned otherwise. For the
insert operation, if node.k = k then the del flag is checked, if it is false, then false is
returned; otherwise if the flag is true it is set to false, and true is returned. In the case
that node.k � k, a new node is allocated with key k and is set to be the child of node.
For the delete operation, if node.k � k, then false is returned. Otherwise, the del flag is
checked, if it is true then false is returned, otherwise if the flag is false, it is set to true
and true is returned.

Linearization. Given that the insert and delete operations that return false do not
modify the tree and that all other operations that modify nodes only do so while owning
the node’s locks, these failed insert and delete operations can be linearized at any
point during the time that they own the lock of the node that was successfully validated.
The successful insert (i.e., the one that returns true) operation is linearized either at the
instant it changes node.del to false, or when it changes the child pointer of node to point
to new. In either case, k exists in the abstraction immediately after the modification.
The successful delete operation is linearized at the instant it changes node.del to true,
resulting in k no longer being in the abstraction.
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The contains operation is a bit more difficult as it does not use locks. To give an
intuition of how it is linearized, first consider a system where neither rotations nor
physical removals are performed. In this system, if node.k = k on line 8 is true, then
the linearization point is when node.del is read (line 9). Otherwise if node.k � k, then the
linearization point is either on line 50 or 52 of the get-next operation where ⊥ is read
as the next node (meaning at the time of this read k does not exist in the abstraction).

Now, if rotations and physical removals are performed in the system, then a contains
operation who has finished its traversal might get preempted on a node that is removed
from the tree. First consider the case where node.k = k, since neither rotations nor re-
movals will modify the del flag of a node, then in this case the linearization point is
simply either on line 50 or 52 of the get-next operation where the pointer to node was
read. Now consider the case where node.k � k. First notice that when false is not read
from node.rem (line 47 of get-next) then the traversal will always continue to another
node. This is due to the facts that after a right (resp. left) rotation, the node removed
from the tree will always have a non-⊥ left (resp. right) child (this is the child rotated
upwards by the rotation) and that a node removed by a remove operation will never have
a⊥ child pointer. Therefore if the traversal finishes on a node that has been removed from
the tree, it must have read that node’s rem flag before the rotation or removal had com-
pleted. This read will then be the linearization point of the operation. In this case, for the
contains operation to complete, the next node in the traversal must be read as ⊥ from
the child pointer of node, meaning that the removal/rotation has not made any structural
modifications to this pointer at the time of the read (this is because rotations make no
modifications to the child pointers of the node they remove, and removals point the re-
moved node’s pointers towards its parent). Thus, given that removals and rotations will
lock the node removed meaning no concurrent modifications will take place, effectively
the contains operation has observed the state of the abstraction immediately before the
removal took place.

4 Evaluation
We compare the performance of the contention-friendly tree (CF-tree) against the most
recent lock-based binary search tree we are aware of (BCCO-tree [21]) on an Ultra-
SPARC T2 with 64 hardware threads. For each run, we present the maximum, mini-
mum, and averaged numbers of operations per microsecond over 5 runs of 5 seconds
executed successively as part the same JVM for the sake of warmup. We used Java SE
1.6.0 12-ea in server mode and HotSpot JVM 11.2-b01 for both tree algorithms.

Figure 1 compares the performance of the practical BCCO tree against performance
of our binary search tree with 212 (left) and 216 elements (right) and on a read-only
workload (top) and workloads comprising up to 20% updates (bottom). The variance of
our results is quite low as illustrated by the relatively short error bars we have. While
both trees scale well with the number of threads, the BCCO tree is slower than its
contention-friendly counterpart in all the various settings.

In particular, our CF tree is up to 2.2× faster than its BCCO counterpart. As expected,
the performance benefit of our CF tree increases generally with the level of contention.
(We observed this phenomenon at higher update ratios but omitted these graphs for the
sake of space.) First, the performance improvement increases with the level of concur-
rency on Figures 1(c), 1(d), 1(e) and 1(f). As each thread updates the memory with
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(f) 216 elements, 20% update

Fig. 1. Performance of our contention-friendly tree and the practical concurrent tree [21]

the same (non-null) probability the contention increases with the number of concurrent
threads running. Second, the performance improvement increases with the update ratio.
This is not surprising as our tree relaxes the balance invariant during contention peaks
whereas the BCCO tree induces more contention to maintain the balance invariant.

5 Concluding Remarks

To conclude, lock-based data structures can greatly benefit from the contention-friendly
methodology on multicore architectures. In particular the decoupling of accesses allow
the CF tree to scale with a reasonably large number of hardware threads. An interesting
future work would be to experimentally assess the performance gain due to applying
contention-friendliness to other data structures. Additionally, a contention metric that
complements the traditional asymptotic step complexity seems to be necessary to cap-
ture the cost of a multicore data structure.
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5. Bougé, L., Gabarro, J., Messeguer, X., Schabanel, N.: Height-relaxed AVL rebalancing: A
unified, fine-grained approach to concurrent dictionaries. Technical Report RR1998-18, ENS
Lyon (1998)

6. Guibas, L.J., Sedgewick, R.: A dichromatic framework for balanced trees. In: FOCS, pp.
8–21 (1978)

7. Bayer, R., McCreight, E.: Organization and maintenance of large ordered indices. In: Proc. of
the ACM SIGFIDET Workshop on Data Description, Access and Control, pp. 107–141 (1970)

8. Huddleston, S., Mehlhorn, K.: A new data structure for representing sorted lists. Acta Inf. 17,
157–184 (1982)

9. Kessels, J.L.W.: On-the-fly optimization of data structures. Commun. ACM 26(11), 895–901
(1983)

10. Nurmi, O., Soisalon-Soininen, E.: Uncoupling updating and rebalancing in chromatic binary
search trees. In: PODS, pp. 192–198 (1991)

11. Nurmi, O., Soisalon-Soininen, E.: Chromatic binary search trees. A structure for concurrent
rebalancing. Acta Inf. 33(6), 547–557 (1996)

12. Boyar, J., Fagerberg, R., Larsen, K.S.: Amortization results for chromatic search trees, with
an application to priority queues. J. Comput. Syst. Sci. 55(3), 504–521 (1997)

13. Mohan, C.: Commit-LSN: a novel and simple method for reducing locking and latching in
transaction processing systems. In: VLDB, pp. 406–418 (1990)

14. Harris, T.L.: A pragmatic implementation of non-blocking linked-lists. In: Welch, J.L. (ed.)
DISC 2001. LNCS, vol. 2180, pp. 300–314. Springer, Heidelberg (2001)

15. Michael, M.M.: High performance dynamic lock-free hash tables and list-based sets. In:
SPAA, pp. 73–82 (2002)

16. Fraser, K.: Practical lock freedom. PhD thesis, Cambridge University (September 2003)
17. Ellen, F., Fatourou, P., Ruppert, E., van Breugel, F.: Non-blocking binary search trees. In:

PODC, pp. 131–140 (2010)
18. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming, p. 528. Morgan Kaufmann

(2008)
19. Shavit, N.: Data structures in the multicore age. Commun. ACM 54(3), 76–84 (2011)
20. Felber, P., Gramoli, V., Guerraoui, R.: Elastic transactions. In: Keidar, I. (ed.) DISC 2009.

LNCS, vol. 5805, pp. 93–107. Springer, Heidelberg (2009)
21. Bronson, N.G., Casper, J., Chafi, H., Olukotun, K.: A practical concurrent binary search tree.

In: PPoPP (2010)
22. Crain, T., Gramoli, V., Raynal, M.: Brief announcement: A contention-friendly, non-blocking

skip list. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 423–424. Springer,
Heidelberg (2012)

23. Crain, T., Gramoli, V., Raynal, M.: No hot spot non-blocking skip list. In: ICDCS (2013)
24. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent objects.

ACM Trans. Program. Lang. Syst. 12, 463–492 (1990)
25. Herlihy, M.P., Lev, Y., Luchangco, V., Shavit, N.: A simple optimistic skiplist algorithm.

In: Prencipe, G., Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 124–138. Springer,
Heidelberg (2007)

26. Raynal, M.: Concurrent Programming: Algorithms, Principles, and Foundations. Springer
(2013)



Topic 6: Grid, Cluster and Cloud Computing

(Introduction)

Erwin Laure, Odej Kao, Rosa M. Badia, Laurent Lefevre,
Beniamino Di Martino, Radu Prodan, Matteo Turilli, and Daniel Warneke
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Grid and cloud computing have changed the IT landscape in the way we ac-
cess and manage IT infrastructures. The use of computing resources has become
essential for many applications in various areas. Both technologies provide easy-
to-use and on-demand access to large-scale infrastructures. The high number
of submissions to ”Topic 6: Grid, Cluster and Cloud Computing” reflected the
importance of the research area. The papers addressed key challenges regard-
ing design, deployment, operation and use of Grid and cloud infrastructures.
Moreover, several innovative algorithms and methods for fundamental capabil-
ities and services that are required in a heterogeneous environment, such as
adaptability, scalability, reliability and security, and to support applications as
diverse as ubiquitous local services, enterprise-scale virtual organizations, and
internet-scale distributed supercomputing were proposed. Finally, many exper-
imental evaluations and use-cases delivered an insight into the deployment in
real-world scenarios and showed interesting future application domains. Each
submission was reviewed by at least four reviewers and, finally, we were able to
select nine high-quality papers. The papers were grouped in four sessions that
are briefly summarized in following.

The first 3 papers discuss various aspects of cloud scheduling, from application
centric resource provisioning for Amazon EC2 spot instances, online-optimization
of workflow activity granularity, to on-demand reserved cloud instances.

Aspects of cloud deployment and MapReduce are being discussed in the
second 3 papers, particularly optimization of Pig analytics, job ordering op-
timization in MapReduce workloads, and content exchange for on-demand VM
multi-deployments.

The last papers finally focus on energy- and carbon-efficient VM placement,
and improvements in quality of service through market mechanisms and dynam-
ically adjusting parallelism degrees in distributed parallel applications.

We would like to take the opportunity of thanking the authors who submitted
a contribution, as well as the Euro-Par Organizing Committee, and the external
referees with their useful comments, whose efforts have made this conference and
this topic possible.
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Abstract. Deploying applications in leased cloud infrastructure is in-
creasingly considered by a variety of business and service integrators.
However, the challenge of selecting the leasing strategy — larger or faster
instances? on-demand or reserved instances? etc.— and to configure the
leasing strategy with appropriate scheduling policies is still daunting for
the (potential) cloud user. In this work, we investigate leasing strate-
gies and their policies from a broker’s perspective. We propose, CoH, a
family of Cloud-based, online, Hybrid scheduling policies that minimizes
rental cost by making use of both on-demand and reserved instances. We
formulate the resource provisioning and job allocation policies as Inte-
ger Programming problems. As the policies need to be executed online,
we limit the time to explore the optimal solution of the integer program,
and compare the obtained solution with various heuristics-based policies;
then automatically pick the best one. We show, via simulation and us-
ing multiple real-world traces, that the hybrid leasing policy can obtain
significantly lower cost than typical heuristics-based policies.

1 Introduction

A growing number of applications are running in the cloud. Academia [1–7]
and industry [8] are both increasingly using cloud resources as infrastructure
to serve their users, due to the elastic, flexible, and pay-as-you-go features of
Infrastructure-as-a-Service (IaaS) clouds. Cloud brokers need to lease resources
from IaaS clouds cheaply, yet execute the users’ jobs in time. To achieve this,
cloud brokers must use scheduling policies that match diverse requirements.
Finding scheduling polices that can schedule diverse workloads with zero waiting
time yet cheaply is the focus of this work

IaaS clouds offer their users various types of machine configurations: different
amount of CPU cores, memory, and disk. It is non-trivial for a cloud broker
to determine the combination of machine configurations for user demands. This
situation is complicated by the current IaaS pricing models: machines configura-
tions are not priced linearly with their performance. For example, an EC2 large
instance can serve more web requests per core than the small instance, but their
price per core is the same [9]. Moreover, for the same machine configuration, the
clouds offer different billing options on-demand-, reserved-, and spot-instances,

F. Wolf, B. Mohr, and D. an Mey (Eds.): Euro-Par 2013, LNCS 8097, pp. 242–254, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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which are charged differently. Scheduling enough resources to meet user demands
yet keep the cost low while adapting to workload changes remains challenging,
despite recent research efforts [9–11].

In this work, we present a Cloud-based, online, Hybrid scheduling policy
(CoH ), which keeps the rental cost of cloud resources low by finding the best
combination of machine configurations and billing options. At the core of this
policy are its provisioning and allocation strategies. We formulate these strate-
gies as Integer Programming Problems (IPP). As CoH needs to be executed
online, the time to obtain a decision should be low. We limit the time to solve
the IPP, and run simultaneously various heuristics. The CoH compares the result
of IPP and heuristics, and picks the best one as its scheduling decision. Thus,
a novel aspect of CoH is its portfolio-based scheduling strategy [12] adapted to
IaaS clouds. Further, we devise, CoH-R, an extension of CoH to also makes use
of reserved instances, which can lead to significant cost reduction compare to
policies that use on-demand instances only.

The major contributions of this work are three-fold.

1. A novel online scheduling policy, CoH, which makes scheduling decision using
a portfolio of IPP and heuristics-based approaches (Section 3).

2. A policy extended from CoH, CoH-R, which also makes use of reserved in-
stances to reduce rental cost (Section 4).

3. An evaluation of our policies for two broad application domains, grid com-
puting and online game hosting, using trace-based simulation (Section 5).

2 System Model

2.1 Workload and Resource Model

The workload model in this work is a set of independent jobs. The resource
requirements and the runtime of each job are known when the job arrives in
the system. Once started, jobs run to completion, so we do not consider task
preemption or migration during execution.

Each job can be described by a tuple (ri, ai, di), where ri is the resource
requirement of job i, ai is the arrival time of job i, and di is its departure time.
We assume that a computer can host one or multiple jobs. This model is similar
to the work of Stillwell et al [13]. This kind of jobs is common: a compute
node can run multiple MapReduce tasks; an online game hoster may consolidate
several game servers on the same machine; etc. The resource requirements of
each job, ri, could be a vector indicating multiple resource requirements (e.g.,
CPU and Memory), or a scalar value (e.g., CPU only). We focus on the CPU
requirement. In practice, ri can be obtained though profiling [9, 14] or can be
provided by the user.

We model the operation and billing model of cloud providers based on the real
case of Amazon EC2. We assume that clouds have infinite capacity. Each newly
provisioned VM needs serval minutes to be booted [10, 14]. An VM is charged
per hour; even a factional consumption of less than one hour is counted as one
hour. An VM indexed by j, has capacity denoted by wj and hourly cost cj .
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2.2 Scheduling Model

In our scheduling model, all machines are provisioned exclusively from clouds.
The cloud broker has pre-configured and stored in the cloud all the necessary
VM images to run users’ jobs. All the incoming jobs are enqueued into a queue.
A system-level scheduler, running on a dedicated system, manages all the jobs
and a pool of machines, and decides whether to provision new VM from clouds
and/or to allocate jobs to VMs.

The scheduler is executed periodically (e.g., every 10 seconds). At each schedul-
ing moment, the scheduler performs five tasks: (1) Predicting future incoming
workloads; (2) Provisioning necessary VMs in advance, from clouds; (3) Allo-
cating jobs to VMs, (4) Releasing idle VMs (which don’t have job running on
them) if its Billing Time Unit (BTU) is close to increase (e.g., 10 second before
the leased hour). (5) If the wait time of un-allocated jobs is high, starting the
necessary number of VMs. We design in the next section a scheduling policy,
CoH to perform tasks (3) and (4). We further extend this policy in Section 4
to also use reserved cloud instances. As workload prediction is not the focus
of this paper, we assume that there exists a predictor that can achieve perfect
prediction of future workload. Relatively good predictor [15] already exists for
the type of workload we target in this work.

3 Scheduling Using On-Demand Instances

This section describes CoH, a Cloud-based, online, Hybrid scheduling policy
using on-demand instances. The strategy of CoH is presented in Section 3.1.
CoH needs to take both provisioning and allocation decisions, that is, to find a
combination of VMs, and a mapping between jobs and VMs. We formulate the
above problem as an Integer Programming Problem (IPP) in Section 3.2 and
then select various heuristics to assist CoH in Section 3.3.

3.1 Policy Overview

CoH actively provisions VMs before they are needed, and maps jobs to already
provisioned VMs according to the best mapping it can find. CoH finds the combi-
nation of VMs and the mapping by solving an online scheduling problem through
solving (partially) one IPP and by using several heuristics, independently and
simultaneously. As an online scheduler, CoH needs to take scheduling decisions
within limited amounts of time; thus, it limits the time used to solve IPP, and
compares the result of the IPP and heuristics. CoH acts as a portfolio-based
scheduler, in which multiple strategies are considered simultaneously at each
scheduling moment. The strategy that has the best objective value (defined in
formula (1)) is picked as the scheduling decision. Heuristics are needed because
the solution of IPP under limited time may be suboptimal or even infeasible
(CoH may not find a feasible solution of the IPP in limited time).
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Table 1. Overview of notations in Section 3

xijk
whether job i is assigned to jth VM of type k, xikj ∈ {0, 1}

yjk whether jth VM of type k is to-be-provisioned, ykj ∈ {0, 1}
zij whether job i is assigned to jth running VM, zij ∈ {0, 1}
ck hourly cost of VM of type k

cj hourly cost of running VM j

wj capacity of running VM j

fck full capacity of VM type k

ri resource consumption of job i

di departure/end time of job i

sj The start time of VM j: the time when it started to boot

ldj latest departure time: the time that the final running job finish in VM j

ct current time

M number of newly arrived jobs, M = {1, ...,M}
N number of running VMs, N = {1, ..., N}
K number of types of VMs, K = {1, ..., K}
�t� math operation, divide time t by 3600 and get its ceil value.

3.2 Formalization of the Scheduling Problem

CoH needs to provision enough number of VMs to support all the incoming jobs,
and to allocate all the jobs smartly such that the rental cost is minimized. An
VM that has jobs running on it cannot be shut down, so it will still incur cost.
Unnecessary cost will be incurred if long-running, low-resource requiring jobs are
assigned to expensive VMs. We formulate the scheduling problem as follows. The
goal of the scheduling problem, as defined in formula (1), is to minimize the cost
while ensuring enough VMs for the incoming jobs. All the notations used in this
section are listed in Table 1. An VM to-be-provisioned is identified by its identifier
j and its type k, while a running VM is identified only by its identifier j.

Minimize

K∑
k=1

M∑
j=1

(yjk × !max
i∈M

(di × xijk
)− ct" × ck) +R (1)

R =

N∑
j=1

(!(max{max
i∈M

(di × zij), ldj} − sj)" × cj)

subject to M∑
i=1

zij × ri ≤ wj ∀j ∈ N (2)

K∑
k=1

M∑
i=1

xijk
× ri ≤ fck × yjk ∀j ∈ M (3)
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N∑
j=1

zij +

K∑
k=1

M∑
j=1

xijk
= 1 ∀i ∈M (4)

xijk
≤ yjk ∀i, j ∈ M, ∀k ∈ K (5)

The cost of scheduling consists two parts: the cost of to-be-provisioned VMs and
the cost of running VMs (defined by R). Each to-be-provisioned VM is charged
between the current time (ct) and the latest departure time of its allocated
jobs. The sum of the cost of running VMs, denoted by R, is defined similarly:
each running VM is charged between the time it was started (sj) and the latest
departure time of its jobs (jobs that are running on VM and the jobs to-be-
allocated to it).

This IPP is subject to a few constrains, which we describe in turn. Constraint
(2) ensures that the allocated jobs in each VM cannot exceed the running VMs’
capacity. Constraint (3) ensures that the allocated jobs in each to-be-provisioned
VM can not exceed the VM’s capacity. Constraint (4) ensures that each job
is only allocated to one VM. Constraint (5) ensures that each job will not be
allocated to a VM that will not be provisioned. The decision variables xijk

and
ykj are binary. If the result of this IPP is that ykj = 0, ∀k ∈ K, ∀j ∈ M, there
will be enough VM capacity left to allocate all the future jobs. Otherwise, more
VMs are needed. If xijk

= 1 , job i will be allocated to the to-be-provisioned
VM with identifier j type k.

3.3 Scheduling Heuristics

We explore for CoH a large class of scheduling heuristic algorithms. They work
as follows. While there are un-allocated jobs, each algorithm performs a loop
consisting of four steps. Firstly, the algorithm sorts all the un-allocated jobs
using job selection criteria and sorts all the VMs using VM selection criteria.
Secondly, the algorithm picks the first un-allocated job. Thirdly, it picks the first
VM which should have enough capacity left for the job. And then allocate the
job to the selected VM. If such an VM does not exist, a new VM is provisioned
according to VM type selection criteria and the job will be allocated in the next
loop.

This general class of heuristic algorithms uses three criteria: job selection,
VM selection, and VM type selection criteria. All job selection and VM selection
criteria used in this work are listed in Tables 2 and 3. For VM type selection,
we use a Cost-Efficient heuristic, which always chooses the VM with the largest
capacity/cost value.

Most of the selection criteria we use in this work are simple, which allows them
to be run online. We describe some of the criteria below. Latest arrival time (LA)
sorts the VM according to the latest arrival time of jobs in each VM in decreasing
order. Opposite to LT, Earliest arrival time (EA) sorts the VM by earliest arrival
time of jobs in increasing order. Similar to LT, Latest departure time (LD) picks
the VM which has the job that has the latest departure time; Earliest departure
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time (ED) does the opposite. The latest average arrival time (LAA) and earliest
average arrival time (EAA) sorts VMs according to the average arrival time of
their jobs in decreasing and increasing order, respectively. Close to full hour
(CFH) makes use of the billing model of EC2; it always puts jobs on VM whose
Billing Time Unit (BTU) is closest to be increased, while Far from Full Hour
(FFH) is the opposite. In this work, the scheduling heuristic method specified by
its job and VM selection criteria is uniquely identified as {job selection}-{VM
selection}. For example, the FCFS-Rnd heuristic uses First-Come-First-Server
(FCFS) for job selection, random (Rnd) for VM selection and the cost-efficient
criteria for VM type selection.

Table 2. Job selection criteria

Name Description

FCFS First-come-first-server

RR round-robin

LJF Largest job first

SJF Smallest job first

LTJF Longest run-Time job first

STJF Shortest run-Time job first

Table 3. VM selection criteria

Name Description

Rnd Random

LM Largest capacity VM first

SM Smallest capacity VM first

LA Latest arrival time

EA Earliest arrival time

LD Latest departure time

ED Earliest departure time

LAA Latest average arrival time

EAA Earliest average arrivial Time

CFH Close to Full Hour

FFH Far from full hour

4 Scheduling Using Reserved and On-Demand Instances

Cloud providers allow their users to reserve VM instances, long-term, for reduced
cost. For instance, Amazon offers reserved instance, which can be rented for 1-3
years for a lower price than their on-demand counter-parts. When using reserved
instead of on-demand instance, for the same VM configuration, users can pay a
higher upfront cost (UFi) for a lower hourly cost (Ci). Currently, there are three
types of reserved instances supported in EC2: lightly utilized, medium-utilized,
and heavily utilized reserved instances. For the lightly utilized and medium-
utilized instances, users need to pay an upfront cost and pay for each hour
the VM is running. For the heavily utilized instances, users need to pay an
upfront cost and pay for each hour during the reserved term even if the VM
is not running. The hourly cost of Amazon EC2 instances are listed in Table
5. We present CoH-R, an extension of CoH, which uses reserved instances to
reduce the operational cost. We describe the strategy of CoH-R in Section 4.1,
then describe the method used to determine the number and types of reserved
instances to be used in Section 4.2.
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4.1 Policy Overview

Assuming that it is given an arbitrary amount of reserved instances, CoH-R
makes use of these reserved instances as follows: the heavily utilized instances
are always on, while the medium and lightly utilized instances are shut-down
when they do not have any jobs running on them before their Billing Time Unit
(BTU) is about to increase (m seconds before the BTU increases). Whenever
CoH plans to start a new VM of type k, CoH-R firstly looks at medium-utilized
instances of type k, and starts one of them if any is off. If no medium-utilized
instance of type k exists, CoH-R tries to use a lightly utilized instance of type
k. As a last resort, CoH-R uses on-demand instance of type k.

Having too few reserved instances will not benefit much from the reduced
price; while reserving too much may actually increase operational cost. We do
not seek to find the optimal number of reserved instances, because obtaining the
optimal solution requires exact workload information of the entire reservation
period (e.g., one year). Even if we can know the workload of the upcoming time
period, obtaining the optimal solution via solving an IPP that takes the exact
workload as input is computationally infeasible.

4.2 Determining the Reservation Plan

CoH-R only requires the workload distribution instead of exact information of
the number of VMs needed at each time interval. For simplicity of analysis, we
assume VM start-up and shut-down time are instantaneous (In experiment, we
set the start-up time as two minutes.). Assuming the number of VMs (resource
demand) needed for the current time interval t is Dt, we can obtain the cost
needed at each interval B(Dt) as follows. If Dt is lower than the number of
heavily-utilized instances (N3), no other VMs will be needed, as the heavily
utilized instances can provide enough computing resources. IfDt is high thanN3,
but lower than the total number of heavily and medium-utilized instances (Dt ≤
N3+N2), CoH-R needs to provision Dt−N3 medium-utilized instances. If Dt is
higher than the sum of heavily and medium-utilized instances (Dt > N3 + N2)
but lower than the total number of reserved instances, CoH-R needs to provision
all the heavily and medium-utilized instances and Dt−(N3+N2) lightly utilized
instances. Last, if Dt is higher than the sum of all reserved instances, CoH-R
needs all the reserved instances and Dt− (N1 +N2 +N3) on-demand instances.

CoH-R obtains the number of reserved VMs needed, of each type, via
finding the combination of number of reserved instances (Ni) that minimizes∑T

t=1 B(Dt) +
∑

k∈K
(UFk ×Nk), where T is the number of intervals (e.g, hour)

of a time period (e.g, year or month). Further, if the resource demand of each
interval does not affect the other time intervals (in practice, most of the jobs’
runtime is short, in the order of tens of minutes), the goal can be reformulated
via only using the probability of VMs needed at each time interval as below,
(
∑M

i=0 Pr(D = i) × B(i)) × T +
∑

k∈K
(UFk × Nk), where Pr(D = i) is the

probability distribution of demand, and K is the set of reserved type, and M is
the maximal number of VM needed.
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We extend the above method which deal with one machine configuration only,
to allow it to deal with multiple machine configurations. The goal is to find the
number of reserved instances (Njk) of machine configuration j and reserved type
k, needed, to minimize the cost defined in formula (6).

(
M∑
i=0

Pr(D = i)×B(i))× T +
∑
j∈J

∑
k∈K

(UFjk ×Njk) (6)

In formula (6), J is the set of machine configurations and UFjk is the upfront cost
of reserved instance of machine configuration j and reserved type k. The billing
function B(D) need to be changed to be the lowest cost to meet the demand
D via finding the combination of reserved and on-demand instances to be used.
B(D) ={Minimize

∑
j∈J

∑
k∈K

(njk×cjk)+
∑

j∈J
(nod

j ×coj)} , where njk and cjk
are the number and the cost of the reserved instance with machine configuration
j and reserved type k, respectively. nod

j and coj are the number and the cost of
the on-demand instances of machine configuration j, respectively. The capacity
offered by njk reserved instances and nod

j on-demand instances should be enough
to satisfy demand D.

5 Experimental Results

In this section, we evaluate the performance of our proposed approaches using
multiple real-world traces corresponding to two separate but popular domains:
grid computing and online game hosting. Firstly, we compare CoH against var-
ious commonly used heuristics. Then, we evaluate CoH-R, which uses reserved
instances to further reduce cost, and compare it to CoH. Our results indicate
that our proposed approaches can lead to significant lower cost than heuristics.

5.1 Experimental Setup

We conduct experiments using three real-world workloads LCG, Grid5000, and
Dotalicious which are taken from public workload archives [16–18]. LCG and
Grid5000 contain information about the computing activities of two grids while
DotaLicious contains workload information of a game platform. We use the first
year traces Grid5000 and Dotalicious, and the full trace of LCG (13 days) as
our input workloads. The common data we find in the above traces are, for each
recorded job, its job id, the arrival time, and the departure time. The basic
statistics of these workloads are listed in Table 4. Notably, the gaming server
have similar runtime (CPU requirement) to Grid5000 jobs in the order of tens
of minutes. Game servers are also computationally intensive, a result of having
to perform virtual world physical simulation.

As not all the traces contain resource requirements for each job, we generate
for each job resource requirements using 3 different methods: Heterogeneous,
Constant-100, and Constant-10. For Heterogeneous workload, we generate each
jobs’s resource requirements as ten times a random number which is between 1 to
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10. For Constant-100 method, each job’s resource required is 100. For Constant-
10 method, each job’s resource required is 10. We only consider two instance
types: small and large. We model a small EC2 instance’s capacity as 100 and
a large instance’s capacity is 410. Large instance is more cost efficient than
small instance. Their cost1 are summarized in Table 5.

As running all the heuristics online is time consuming, we evaluate the heuris-
tics by running simulation and pick the heuristics that have good performance
as alternative method to compete with the solution obtained by solving IPP. We
find that none of heuristics can perform always best, across all scenarios, and
find that the job selection criteria does not have a significant impact on cost but
VM selection criteria does have an important impact on cost. We pick FCFS-SM
when the input workload is heterogeneous, and use FCFS-LD and FCFS-CFH
when the workload is homogeneous (Constant-10 and Constant-100).

All the experiments are conducted using our own simulator2 and repeated
at least 10 times. We set the acquisition time of an VM to two minutes and
the scheduler is executed every 10 seconds. We use IBM CPLEX to solve the
formulated IPP when the number of jobs to be scheduled is lower than 50 and
set the time limited as two seconds. As our methods have proactively provision
VMs for all the jobs, the wait time of each job is zero. We evaluate one metric,
the rental cost. The rental cost is the price paid to cloud providers for all the
rented computing resource. We focus on cost because it is a major barrier for
cloud adoption.

For calculation of the utility of all the methods, we compare the lower-bound
for cost against actually paid cost. The lower bound for cost is calculated by
assuming that we have an ideal computer that it can vertically scale to the
any of the desired capacity. The vertical scaling takes zero time and the VM is
charged by its actual usage of resource which scales linearly with its capacity. So
the optimal cost can be computed as [

∑N
i=1 ri × (di − ai)]÷ wk × ck, ∀i ∈ N,

where N is the total number of jobs, and wk and ck are the capacity and the
cost of the most cost-efficient VM, respectively.

Table 4. Overview of traces

Trace #jobs average runtime [s] duration source

Grid5000 200,450 2728 May 2004 - May 2004 Grid workload archive [17]

LCG 188,041 8971 Nov 2005 - Dec 2005 Parallel workload archive [16]

DotaLicious 109,251 2231 Apr 2010 - Apr 2011 Game trace archive [18,19]

Table 5. Overview of cost of EC2 instances: Small and Large

Small (hourly, upfront) [$] Large (hourly, upfront) [$]

On demand (0.065, 0) (0.26, 0)

Lightly utilized (0.039, 69) (0.156, 276)

Medium utilized (0.024, 160) (0.096, 640)

Heavily utilized (0.016, 195) (0.064, 780)

1 http://aws.amazon.com/ec2/pricing/
2 http://www.pds.ewi.tudelft.nl/~siqi/simulator.htm

http://aws.amazon.com/ec2/pricing/
http://www.pds.ewi.tudelft.nl/~siqi/simulator.htm
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Fig. 1. Cost of various scheduling methods: Grid5000 (Left) and LCG (Right)

Fig. 2. Effect of using reserved instances: Dotalicious (Left) and Grid5000 (Right)

5.2 Results

We first evaluate CoH against various heuristic methods. Figure 1 shows the
average experiment results using Grid5000 and LCG datasets, respectively. The
error bars are the standard deviation. Figure 1 shows the lower bound for cost
(LB), and results for FCFS-SM, FCFS-CFH, FCFS-LD, and CoH, from left to
right; grouped by type of workloads. We find that CoH performs better than
any of the heuristics. For the Grid5000 dataset, CoH can obtain about 20% to
40% lower cost than any heuristic. For the LCG dataset, CoH can obtain 5% to
20% lower cost. This indicates that CoH can find better combinations of VMs,
and better mapping between jobs and VMs.

The cost obtained through CoH is about 1.1 to 1.6 times higher than LB.
The utilization of CoH, that is, the average use of leased VMs, ranged from 90%
to 63%. We identify three reasons why CoH is higher than the lower bound
(LB): Firstly, our scheduler is run online, thus not having all the necessary in-
formation. Secondly, the billing model of the cloud: a fractional consumption
of a VM’s capacity is charged as the fully busy VM. Thirdly, the boot-up time
of VM is not negligible. One possible way to lower the gap between LB and CoH
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is to allow the jobs to wait for better scheduling opportunity, so that scheduler
can pack more jobs in the same VM instead of starting a VM for each short job.
This approach would be particularly effective during bursts in the workload.

We evaluate CoH-R using the Dotalicious and Grid5000 datasets. The results
are shown in Figure 2. We do not evaluate LCG dataset because it lasts for
only 13 days (less than the minimal reservation period of EC2). We compare
in Figure 2: FCFS-CFH, CoH, CoH-oneType, and CoH-R. CoH-oneType is a
variation of CoH-R which only uses heavily-utilized instance. For the Dotalicious
dataset, CoH-R and CoH-oneType obtain lower cost than CoH. CoH-R can
obtain lower cost than CoH-oneType, because it takes advantage of the cost
reduction and flexibility provided by different reserved types. The result obtained
by CoH-R using the Dotalicious dataset is about 13% to 20% lower than CoH
and about 30% to 60% lower than FCFS-CFH. For the Grid5000 dataset, the
performance of CoH-R obtain about 3% to 5% lower cost than CoH, but still
about 20% to 50% lower cost than the heuristic. The reason why CoH-R only
obtains a small improvement on Grid5000 is because Grid5000 contains busty
workloads with short jobs, and some very long jobs. As CoH-R always schedules
jobs to VMs as soon as the jobs arrive in the system, this cause some long
jobs to run on on-demand instances instead of the cheaper reserved instances.
In summary, CoH-R can obtain about 20% and up to 60% lower cost than the
heuristic. CoH-R can obtain significantly lower cost than heuristics which use
on-demand instances only.

6 Related Work

A significant body of work has already focused on cloud resource scheduling
from a cloud provider’s perspective [20–23]. In this context, the common goals
are to reduce the storage/electricity cost and to improve platform utilization. In
contrast, in this study we schedule resources from a broker’s perspective, with
the goal to minimize the rental cost.

Previous studies have focused on provisioning and allocation of cloud re-
sources, under various constraints. In contrast to these studies, which we de-
scribe in the following, we consider multiple instance types, billing models and
heterogeneous workload. Closest to our work, Genaud and Gossa [24] evaluate
provisioning heuristics for on-demand resources. Villegas et al. [11] conduct a
performance-cost analysis of scheduling policies for IaaS Cloud. Deng [25] et al
develop a portfolio scheduler. Oprescu and Kielmann [26] schedule bag-of-tasks
on clouds focusing on budgets and runtime. They formulate the provisioning
problem as a Bounded Knapsack Problem and allocate jobs to VMs round-robin.
Mao et al. [27] propose a linear program for provisioning, and allocate jobs ran-
domly to VMs. Sharma et al. [9] use on-demand instances and use migration but
only for homogeneous workloads.

Hong et al [28] use a method to determine number of reserved instances of
one reservation type. We show in our experiments that it is necessary to use
multiple reserved instance types to reduce cost. Chaisiri [29] propose an algo-
rithm to determine the number and types of reserved VM to be used by solving
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a stochastic IPP to minimize expected cost. They limit the on-demand instances
can be only provisioned in specific provision phase, while we proactively provi-
sion VM at any necessary time. Ostermann and Prodan [30], and Song et al. [31]
use spot-instance to reduce cost. Their work complement ours.

7 Conclusion

It is challenging to select among machine configurations and billing options of-
fered by clouds to fit user demand while reducing operational cost. In this work,
we propose CoH, a Cloud-base, online, Hybrid scheduling policy which make uses
of multiple machine configurations to plan enough capacity for users with less
cost. We formulate the resource provisioning and the job allocation problems as
Integer Programming Problems (IPP). To obtain the scheduling decision online,
CoH limits the time of exploration for a solution and only obtains an intermedi-
ate IPP solution. CoH makes scheduling decision by picking the best among the
solution of IPP and various heuristics; thus, CoH operates as a portfolio sched-
uler. Further, we propose CoH-R, a policy that makes use of both on-demand
and reserved instances to reduce cost. Via simulation using real-world traces, we
show that our approaches can lead to significant lower cost than heuristics while
operating online. We plan to investigate the wait-time and rental cost trade-off
for bursty workload comprised of many short jobs.
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Abstract. Controlling the granularity of workflow activities executed
on widely distributed computing platforms such as grids is required to
reduce the impact of task queuing and data transfer time. Most exist-
ing granularity control approaches assume extensive knowledge about
the applications and resources (e.g. task duration on each resource), and
that both the workload and available resources do not change over time.
We propose a granularity control algorithm for platforms where such
clairvoyant and offline conditions are not realistic. Our method groups
tasks when the fineness degree of the application, which takes into ac-
count the ratio of shared data and the queuing/round-trip time ratio,
becomes higher than a threshold determined from execution traces. The
algorithm also de-groups task groups when new resources arrive. The ap-
plication’s behavior is constantly monitored so that the characteristics
useful for the optimization are progressively discovered. Experimental
results, obtained with 3 workflow activities deployed on the European
Grid Infrastructure, show that (i) the grouping process yields speed-ups
of about 2.5 when the amount of available resources is constant and that
(ii) the use of de-grouping yields speed-ups of 2 when resources progres-
sively appear.

1 Introduction

Software-as-a-service (SaaS) platforms deployed on production grids, for instance
the Virtual Imaging Platform (VIP [1]) and other science gateways [2,3,4], usu-
ally have no a-priori model of the execution time of their applications because (i)
task costs depend on input data with no explicit model, and (ii) characteristics of
the available resources, in particular network and RAM, depend on background
load. Modeling application execution time in these conditions requires cumber-
some experiments which cannot be conducted for every new application in the
platform. As a consequence, such SaaS platforms operate in non-clairvoyant
conditions, where little is known about executions before they actually happen.
Such platforms also run in online conditions, i.e. users may launch or cancel
applications at any time and resources may appear or disappear at any time
too. Our ultimate goal is to control the behavior of these non-clairvoyant, on-
line platforms to limit human intervention required for their operation. In other

F. Wolf, B. Mohr, and D. an Mey (Eds.): Euro-Par 2013, LNCS 8097, pp. 255–266, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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works, we address error recovery [5] and fairness of resource allocation [6] among
executions. This paper focuses on task granularity optimization.

The low performance of lightweight (a.k.a. fine-grained) tasks is a common
problem on widely distributed platforms where the communication overhead and
queuing time are high, such as grid systems. To address this issue, fine-grained
tasks are commonly grouped into coarse-grained tasks [7,8,9,10,11], which re-
duces the cost of data transfers when grouped tasks share input data [7] and
saves queuing time when resources are limited [8]. However, task grouping also
limits parallelism and therefore should be used sparingly.

We consider such a granularity problem in a SaaS platform executing work-
flows on a grid. Workflows are compositions of activities that consist only of
a program description. At runtime, activities receive data and spawn tasks for
which the executable name and input data are known, but the computational
cost and produced data volume are not. We propose an algorithm to optimize
the granularity of workflow activities on non-clairvoyant online grid platforms.
Our algorithm progressively discovers the characteristics of the running applica-
tions to compute a metric quantifying the fineness degree of a task group. This
fineness metric includes measured task queuing times, and median-based esti-
mations of task running times and transfer time of shared input data. Tasks are
grouped when the fineness metric goes beyond a threshold learned from platform
traces. In addition, a de-grouping mechanism is triggered when parallelism losses
are detected, i.e. when the number of queued tasks is lower than the number of
running tasks. The method is implemented in VIP, and evaluated with differ-
ent applications, in production conditions, on the European Grid Infrastructure
(EGI1). The contributions of this work are the following:

– We propose a new metric to quantify workflow activity fineness in online and
non-clairvoyant conditions;

– We design task grouping and de-grouping algorithms that are triggered by
the fineness metric in the control loop described in [5];

– We show, on 3 different applications, that the method provides significant
speed-up in production conditions, on the European Grid Infrastructure.

To the best of our knowledge, this algorithm is the first example of task gran-
ularity control in a non-clairvoyant online context. The next Section gives an
overview of the related work, Section 3 details the granularity control process,
Section 4 reports experiments and results, and the paper closes with a discussion
and conclusions.

2 Related Work

Muthuvelu et al. [9] proposed an algorithm to group bag of tasks based on their
granularity size – defined as the processing time of the task on the resource.

1 http://www.egi.eu

http://www.egi.eu
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Resources are ordered by their decreasing values of capacity (in MIPS) and
tasks are grouped up to the resource capacity. This process continues until all
tasks are grouped and assigned to resources. Then, Keat et al. [10] and Ang et
al. [11] extended the work of Muthuvelu et al. by introducing bandwidth in the
scheduling framework to enhance the performance of task scheduling. Resources
are sorted in decreasing order of bandwidth, then assigned to grouped tasks
downward ordered by processing requirement length. The size of a grouped task
is determined from the task cost in millions instructions (MI).

Later, Muthuvelu et al. [12] extended [9] to determine task granularity based
on QoS requirements, task file size, estimated task CPU time, and resource
constraints. Meanwhile, Liu & Liao [13] proposed an adaptive fine-grained job
scheduling algorithm (AFJS) to group lightweight tasks according to process-
ing capacity (in MIPS) and bandwidth (in Mb/s) of the current available re-
sources. Tasks are sorted in decreasing order of MI, then clustered by a greedy
algorithm. To accommodate with resource dynamicity, the grouping algorithm
integrates monitoring information about the current availability and capabil-
ity of resources. Afterwards, Soni et al. [14] proposed an algorithm to group
lightweight tasks into coarse-grained tasks (GBJS) based on processing capa-
bility, bandwidth, and memory-size of the available resources. Tasks are sorted
into ascending order of required computational power, then, selected in first
come first serve order to be grouped according to the capability of the resources.
Zomaya and Chan [15] studied limitations and ideal control parameters of task
clustering by using genetic algorithms. Their algorithm performs task selection
based on the earliest task start time and task communication costs; it converges
to an optimal solution of the number of clusters and tasks per cluster.

Although the reviewed works significantly reduce communication and pro-
cessing time, neither of them are non-clairvoyant and online at the same time.
Recently, Muthuvelu et al. [16,7] proposed an online scheduling algorithm to
determine the task granularity of compute-intensive bag-of-tasks applications.
The granularity optimization is based on task processing requirements, resource-
network utilisation constraint (maximum time a scheduler waits for data trans-
fers), and users QoS requirements (user’s budget and application deadline).
Submitted tasks are categorised according to their file sizes, estimated CPU
times, and estimated output file sizes, and arranged in a tree structure. The
scheduler selects a few tasks from these categories to perform resource bench-
marking. Tasks are grouped according to seven objective functions of task gran-
ularity, and submitted to resources. The process restarts upon task arrival.
Although this is an online approach, the solution is still clairvoyant.

3 Task Granularity Control Process

Algorithm 1 describes our task granularity control composed of two processes:
(i) the fineness control process groups too fine task groups for which the fineness
degree ηf is greater than threshold τf , and (ii) the coarseness control process
de-groups too coarse task groups for which the coarseness degree ηc is greater
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Algorithm 1. Main loop for granularity control
1: input: n waiting tasks
2: create n 1-task groups Ti

3: while there is an active task group do
4: wait for timeout or task status change
5: determine fineness degree ηf

6: if ηf >τf then
7: group task groups using Algorithm 2
8: end if
9: determine coarseness degree ηc

10: if ηc >τc then
11: degroup coarsest task groups
12: end if
13: end while

than threshold τc. This section describes how ηf , ηc, τf and τc are computed,
and details the grouping and de-grouping algorithms.

3.1 Fineness Control

Fineness Degree ηf . Let n be the number of waiting tasks in a workflow
activity, and m the number of task groups. Tasks related to an activity are
assumed independent, but with similar execution times (bag of tasks). This
hypothesis is critical for our method. Initially, 1 group is created for each task
(n = m). Ti is the set of tasks in group i, and ni is the number of tasks in Ti.
Groups are a partition of the set of waiting tasks: Ti

⋂
i�=j Tj = ∅ and

∑m
i=1 ni =

n. The activity fineness degree ηf is the maximum of all group fineness degrees
fi:

ηf = max
i∈[1,m]

(fi). (1)

All ηf are in [0,1], and high fineness degrees indicate fine granularities. We use
a max operator in this equation to ensure that any task group with a too fine
granularity will be detected. The fineness degree fi of group i is defined as:

fi = di · ri, (2)

where di is the ratio between the transfer time of the input data shared among
all tasks in the activity, and the total execution time of the group:

di =
t̃ shared

t̃ shared + ni(t̃− t̃ shared)
,

where t̃ shared is the median transfer time of the input data shared among all
tasks in the activity, and t̃ is the sum of its median task phase durations cor-
responding to application setup, input data transfer, application execution and
output data transfer: t̃ = t̃ setup+ t̃ input+ t̃ exec+ t̃ output. Median values t̃ shared

and t̃ are computed from values measured on completed tasks. When less than 2
tasks are completed, medians remain undefined and the control process is inac-
tive. This online estimation makes our process non-clairvoyant with respect to
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the task duration which is progressively estimated as the workflow activity runs.
Yet, it assumes that all tasks in an activity have similar durations.

In equation 2, ri is the ratio between the max of the task current queuing times
qi in the group (measured for each task individually), and the total round-trip
time (queuing+execution) of the group:

ri =
maxj∈[1,ni] qj

maxj∈[1,ni] qj + t̃ shared + ni(t̃− t̃ shared)

Group queuing time is the max of all task queuing times in the group; group
execution time is the time to transfer shared input data plus the time to execute
all task phases in the group except for the transfers of shared input data. Note
that di, ri, and therefore fi and ηf are in [0, 1]. ηf tends to 0 when there is little
shared input data among the activity tasks or when the task queuing times are
low compared to the execution times; in both cases, grouping tasks is indeed
useless. Conversely, ηf tends to 1 when the transfer time of shared input data
becomes high, and the queuing time is high compared to the execution time;
grouping is needed in this case.

Threshold Value τf . The threshold value for ηf separates configurations where
the activity’s fineness is acceptable (ηf ≤ τf ) from configurations where the
activity is too fine (ηf >τf ). We determine τf from execution traces, inspecting
the modes of the distribution of ηf . Values of ηf in the highest mode of the
distribution, i.e. which are clearly separated from the others, will be considered
too fine.

We use traces collected from VIP [1] between January 2011 and April 2012,
made available through the science-gateway workload archive [17]. The data set
contains 680, 988 tasks (including resubmissions and replications) linked to ac-
tivities of 2, 941 workflows executed by 112 users; task average waiting time is
about 36 min. Applications deployed in VIP are described as workflows exe-
cuted using the MOTEUR workflow engine [18]. Resource provisioning and task
scheduling are provided by DIRAC [19] using so-called “pilot jobs”. Resources
are provisioned online with no advance reservations. Tasks are executed on the
biomed virtual organization (VO) of the European Grid Infrastructure (EGI)2

which has access to some 150 computing sites world-wide and to 120 storage sites
providing approximately 4 PB of storage. Fig. 1 (left) shows the distribution of
sites per country supporting the biomed VO.

The fineness degree ηf was computed after each event found in the data set.
Fig. 1 (right) shows the histogram of these values. The histogram appears bi-
modal, which indicates that ηf separates platform configurations in two distinct
groups. We assume that these groups correspond to “acceptable fineness” (lowest
mode) and “too fine granularity” (highest mode), and thus we choose τf = 0.55.
For ηf ≥ 0.55, task grouping will therefore be triggered.

2 http://www.egi.eu

http://www.egi.eu
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Fig. 1. Distribution of sites and batch queues per country in the biomed VO (January
2013) (left) and histogram of fineness incident degree sampled in bins of 0.05 (right)

Task Grouping. We assume that running tasks cannot be pre-empted, i.e.
only waiting tasks can be grouped. Algorithm 2 describes our task grouping.
Groups with fi > τf are grouped pairwise until ηf ≤ τf or until the amount
of waiting groups Q is smaller or equal to the amount of running groups R.
Although ηf ignores scattering (Eq. 1 uses a max), the algorithm considers it
by grouping tasks in all groups where fi > τf . Ordering groups by decreasing
fi values tends to equally distribute tasks among groups. The grouping process
stops when Q ≤ R to avoid parallelism loss. This condition also avoids conflicts
with the de-grouping process described in the next sub-section.

Algorithm 2. Task grouping
1: input: f1 to fm //group fineness degrees, sorted in decreasing order
2: input: Q, R // number of queued and running task groups
3: for i = 1 to m − 1 do
4: j = i + 1
5: while fi > τf and Q > R and j ≤ m do
6: if fj > τf then
7: Group all tasks of Tj into Ti

8: Recalculate fi using Equation 2
9: Q = Q − 1

10: end if
11: j = j + 1
12: end while
13: i = j
14: end for
15: Delete all empty task groups

3.2 Coarseness Control

Condition Q > R used in Algorithm 2 ensures that all resources will be exploited
if the number of available resources is stationary. In case the number of available
resources decreases, the fineness control process may further reduce the number
of groups. However, if the number of available resources increases, task groups
may need to be de-grouped to maximize resource exploitation. This de-grouping
is implemented by our coarseness control process.

The coarseness control process monitors the value of ηc defined as:

ηc =
R

Q+R
. (3)

The threshold value τc is set to 0.5 so that ηc > τc ⇔ Q < R.
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Table 1. Example

Let’s consider a workflow composed of one activity with 10 tasks initially split in 10 groups, and
assume that task input data are shared among all tasks (i.e. t̃ shared = t̃ input).
Let t̃ = 10 and t̃ shared = 7 (in arbitrary time units) obtained from two completed task groups.
At time t, we assume R = 2 and Q = 6 with the following values for waiting task groups:

i maxj∈[1,ni]
qj di ri fi

5 50 0.70 0.83 0.58
6 48 0.70 0.82 0.58
7 45 0.70 0.81 0.57
8 43 0.70 0.81 0.57
9 41 0.70 0.80 0.56
10 40 0.70 0.80 0.56

Eq. 1 gives ηf = 0.58. As ηf > τf = 0.55 and Q > R, the activity is considered too fine and
task grouping is triggered. Groups with fi > τf are grouped pairwise until ηf ≤ τf or Q ≤ R:

i maxj∈[1,ni]
qj di ri fi

11 [5,6] 50 0.53 0.79 0.42
12 [7,8] 45 0.53 0.77 0.41
13 [9,10] 41 0.53 0.76 0.40

Groups 5 and 6, 7 and 8, and 9 and 10 are grouped into groups 11, 12, and 13.

Let’s consider that at time t′ > t, group 11 starts running, thus Q = 2 < R = 3.
Eq. 3 gives ηc = 0.6. As ηc > τc = 0.5, the activity is consider too coarse and task de-grouping
is triggered. Then, group 13 is de-grouped to balance ηc.

When an activity is considered too coarse, its groups are ordered by increasing
values of ηf and the first groups (i.e. the coarsest ones) are split until ηc < τc.
Note that de-grouping increases the number of queued tasks, therefore tends to
reduce ηc. Table 1 illustrates the method on a simple example.

4 Experiments and Results

The experiments presented hereafter evaluate the fineness control process under
stationary load, and the interest of controlling coarseness under non-stationary
load in a production environment.

4.1 Experiment Conditions

The granularity control process was implemented as a plugin of the MOTEUR
workflow manager, receiving notifications about task status changes and task
phase durations. The plugin then uses this data to group and de-group tasks
according to Algorithm 1, where the timeout value is set to 2 minutes.

The target computing platform for these experiments is the biomed VO where
the traces used to determine τf were acquired (see Section 3.1). To ensure re-
source limitation without flooding the production system, experiments are per-
formed only on 3 sites of different countries. Tasks generated by MOTEUR are
submitted to the biomed VO of EGI using the DIRAC scheduler.

Three workflow activities, implementing different kinds of medical image sim-
ulation, are used in the experiments. SimuBloch [20] is a very short activity made
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of 25 concurrent tasks; task CPU time is of a few seconds; input data size is about
15 MB and output is less than 5 MB; t̃ shared is about 90% of the execution time.
FIELD-II [21] consists of 122 data-intensive concurrent tasks ranging from a few
seconds to 15 minutes of CPU time (tasks have the same cost, but their duration
is resource-dependent); it transfers 208 MB of input data and outputs about 40
KB of data; t̃ shared ranges from 40% to 60% of the execution time. PET-Sorteo/
emission [22] has 80 tasks of 2 CPU minutes; input data size is about 20 MB and
output is about 50 MB; t̃ shared ranges from 50% to 80% of the execution time.

Two sets of experiments are conducted, under different load patterns.
Experiment 1 evaluates the fineness control process only under station-
ary load. It consists of separated executions of SimuBloch, FIELD-II, and
PET-Sorteo/emission. A workflow activity using our task grouping mechanism
(Fineness) is compared to a control activity (No-Granularity). Resource con-
tention on the 3 execution sites is maintained high and constant so that no
de-grouping is required.

Experiment 2 evaluates the interest of using the de-grouping control pro-
cess under non-stationary load. It uses activity FIELD-II. An execution using
both fineness and coarseness control (Fineness-Coarseness) is compared to
an execution without coarseness control (Fineness) and to a control execution
(No-Granularity). Executions are started under resource contention, but the
contention is progressively reduced during the experiment. This is done by sub-
mitting a heavy workflow before the experiment starts, and canceling it when
half of the experiment tasks are completed.

For both experiments, control and tested executions are launched simultane-
ously to ensure similar grid conditions. As no online task modification is possible
in DIRAC, we implemented task grouping by canceling queued tasks and sub-
mitting grouped tasks as a new task. For each grouped task resubmitted in the
Fineness or Fineness-Coarseness executions, a task in the No-Granularity

is resubmitted too to ensure equal race conditions for resource allocation, and
that each execution faces the same re-submission overhead. Five repetitions of
each experiment are performed, along a time period of 4 weeks to cover different
grid conditions. We use MOTEUR 0.9.21, configured to resubmit failed tasks
up to 5 times, and with the task replication mechanism described in [5] acti-
vated. We use the DIRAC v6r6p2 instance provided by France-Grilles3. Results
could not be compared to other grouping/de-grouping methods due to the lack
of non-clairvoyant, online method available in the literature (see Section 2).

4.2 Results and Discussion

Experiment 1: Fig. 2 shows the makespan of SimuBloch, FIELD-II, and
PET-Sorteo/emission executions. Fineness yields a significant makespan
reduction for all repetitions. Table 2 shows the makespan (M) values and the
number of task groups. The task grouping mechanism is not able to group all
SimuBloch tasks in a single group because 2 tasks must be completed for the
process to have enough information about the application (i.e. t̃ shared and t̃

3 https://dirac.france-grilles.fr

https://dirac.france-grilles.fr
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can be computed). This is a constraint of our non-clairvoyant conditions, where
task durations cannot be determined in advance. FIELD-II tasks are initially
not grouped, but as the queuing time becomes important, tasks are consid-
ered too fine and grouped. PET-Sorteo/emission is an intermediary case where
only a few tasks are grouped. Results show that the task grouping mecha-
nism speeds up SimuBloch and FIELD-II executions up to a factor of 2.6, and
PET-Sorteo/emission executions up to a factor of 2.5.

SimuBloch FIELD−II PET−Sorteo/emission
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Fig. 2. Experiment 1: makespan for Fineness and No-Granularity executions for the
3 workflow activities under stationary load

Experiment 2: Fig. 3 shows the makespan (top) and evolution of task groups
(bottom). Makespan values are reported in Table 3. In the first three repeti-
tions, resources appear progressively during workflow executions. Fineness and
Fineness-Coarseness speed up executions up to a factor of 1.5 and 2.1. Since
Fineness does not benefit of newly arrived resources, it has a lower speed up
compared to No-Granularity due to parallelism loss. In the two last repeti-
tions, the de-grouping process in Fineness-Coarseness allows to reach similar
performance than No-Granularity, while Fineness is penalized by its lack of
adaptation: a slowdown of 20% is observed compared to No-Granularity.

Table 3 also shows the average queuing time values for Experiment 2. The
linear correlation coefficient between the makespan and the average queuing time
is 0.91, which indicates that the makespan evolution is indeed correlated to the
evolution of the queuing time induced by the granularity control process.

Our task granularity control process works best under high resource con-
tention, when the amount of available resources is stable or decreases over time
(Experiment 1). Coarseness control can cope with soft increases in the number
of available resources (Experiment 2), but fast variations remain difficult to han-
dle. In the worst-case scenario, tasks are first grouped due to resource limitation,
and resources suddenly appear once all task groups are already running. In this
case the de-grouping algorithm has no group to handle, and granularity control
penalizes the execution. Task pre-emption should be added to the method to
address this scenario.
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Table 2. Experiment 1: makespan (M) and number of task groups for SimuBloch,
FIELD-II and PET-Sorteo/emission executions for the 5 repetitions

SimuBloch FIELD-II PET-Sorteo
M (s) Groups M (s) Groups M (s) Groups

1
No-Granularity 5421 25 10230 122 873 80
Fineness 2118 3 5749 80 451 57

2
No-Granularity 3138 25 7734 122 2695 80
Fineness 1803 3 2982 75 1766 40

3
No-Granularity 1831 25 9407 122 1983 80
Fineness 780 4 4894 73 1047 53

4
No-Granularity 1737 25 6026 122 552 80
Fineness 797 6 3507 61 218 64

5
No-Granularity 3257 25 4865 122 1033 80
Fineness 1468 4 3641 91 831 71

Table 3. Experiment 2: makespan (M) and average queuing time (q̄) for FIELD-II

workflow execution for the 5 repetitions

Run 1 Run 2 Run 3 Run 4 Run 5
M (s) q̄ (s) M (s) q̄ (s) M (s) q̄ (s) M (s) q̄ (s) M (s) q̄ (s)

No-Granularity 4617 2111 5934 2765 6940 3855 3199 1863 4147 2295
Fineness 3892 2036 4607 2090 4602 2631 3567 1928 5247 2326
Fineness-Coarseness 2927 1708 3335 1829 3247 2091 2952 1586 4073 2197
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Fig. 3. Experiment 2: makespan (top) and evolution of task groups (bottom) for
FIELD-II executions under non-stationary load (resources arrive during the experi-
ment)

In addition, our method is dependent on the capability to extract enough
accurate information from completed tasks to handle active tasks using median
estimates. This may not be the case for activities which execute only a few tasks.
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5 Conclusion

We presented a method to address task granularity in distributed workflows in
an online and non-clairvoyant environment. We defined a metric ηf for online
determination of task fineness based on queue waiting time and estimated data
transfer time of shared input data. For high ηf values, tasks are considered too
fine and task grouping is triggered. Queued tasks are grouped pairwise as long
as the number of queued tasks is greater than the number of running tasks and
ηf is considered too fine. We also define a metric ηc for online determination of
task coarseness based on the ratio of the number of queued tasks related to the
number of running tasks. This metric aims at maximizing resource exploitation
by de-grouping tasks groups when the number of available resources increases.

The task granularity control strategy was implemented in the MOTEUR work-
flow engine and deployed on EGI with the DIRAC resource manager. We tested
it on three applications extracted from the Virtual Imaging Platform, a science
gateway for medical simulation. Two experiments were conducted, to evalu-
ate the fineness control process only under stationary load and the fineness and
coarseness control process under non-stationary load. Results showed that under
stationary load, our fineness control process significantly reduces the makespan
of all applications. Under non-stationary load, task grouping is penalized by its
lack of adaptation, but our de-grouping algorithm corrects it in case variations in
the number of available resources are not too fast. In our future work, task pre-
emption will be added to the method to further improve the handling of resource
dynamicity. A comparative study against pilot job approaches and clairvoyant
methods will also be considered. We will also study the impact of task duration
variability on the proposed method.
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Abstract. In late 2009, Amazon introduced spot instances to offer their unused
resources at lower cost with reduced reliability. Amazon’s spot instances allow
customers to bid on unused Amazon EC2 capacity and run those instances for
as long as their bid exceeds the current spot price. The spot price changes pe-
riodically based on supply and demand of spot instances, and customers whose
bid exceeds it gain access to the available spot instances. Customers may expect
their services at lower cost with spot instances compared to on-demand or re-
served. However the reliability is compromised since the instances (IaaS) provid-
ing the service (SaaS) may become unavailable at any time without any notice to
the customer. In this paper, we study various checkpointing schemes to increase
the reliability over spot instances. Also we devise a novel checkpointing scheme
on top of application-centric resource provisioning framework that increases the
reliability while reducing the cost significantly.

Keywords: resource provisioning, spot instances, checkpointing.

1 Introduction

The era of cloud computing provides high utilization and high flexibility of managing
the computing resources. The elasticity and on demand availability features of cloud
computing ensure high utilization of resources. Furthermore, resources can be availed
from templates that enforce standards so that resources can be used with best manage-
ment considerations without prior knowledge. Therefore, flexibility of managing the
computing resources is also high in a cloud environment. The cloud computing service
models incorporate Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and
Software as a Service (SaaS). IaaS provides raw computing resources with different
capacity in the form of Virtual Machines (VM). Cloud Service Providers (CSP), like
Google [16], Amazon [15] etc. provide these services and charge prices against these
services from the Cloud Service Users (CSU). Among many such providers, Amazon
defines the capacity of resources in the form of different instance types [11] based on
storage, compute unit and I/O performance. The cost of these instance types depends on
the purchasing models [12] defined by Amazon namely on-demand, reserved and spot.

On− demand instances let one pay for compute capacity by the hour with no long-
term commitments or upfront payments. However, with on-demand instances one may
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not have access to the resources immediately due to high demand for a specific instance
type in a specific availability zone. On the other hand, reserved instances facilitate
the client to make a low, one-time, upfront payment for an instance, reserve it and get
significant discount on hourly charge over on-demand instances. Reserved instances are
always available for the duration for which the clients reserve. In contrast with the above
two policies, where rates are fixed, spot instances provide the ability for customers to
purchase compute capacity with no upfront commitment and at a variable hourly rate
with a customer-defined upper bound (bid) on the rate. Spot instances are available only
during the time when the spot price is below the customer defined bid.

Thus spot instances make the resources unreliable in nature and inappropriate for
long running jobs like image processing, gene sequence analysis etc. At the same time,
they offer the opportunity to accomplish such jobs at a much lower cost than on demand
or reserved policies. Clearly, checkpointing (saving partially completed jobs to be re-
sumed latter) may be a good option to make a tradeoff between the cost and reliability.
Again, the time of taking a checkpoint and the frequency of taking the checkpoints di-
rectly affect the cost and reliability. Sufficient research effort is needed to properly set
the time and frequency of taking the checkpoints.

The rest of the paper is organized as follows. A brief review of the related works
is presented in Section 2. An overview of the application centric resource provision-
ing framework is given in Section 3. Section 4 deals with the existing checkpointing
schemes for spot instances while a proposed checkpointing scheme for the application
centric resource provisioning framework is described in Section 5. A simulated result
for comparing the proposed checkpointing scheme with existing ones is presented in
Section 6. Finally, we conclude with a direction of future work in Sections 7.

2 Related Work

During the last couple of years, a lot of works [1] [8]-[9] concentrate on the cloud
management aspect from the economic point of view. Most of them adapt a middle-
ware based (broker) approach to optimize the resource requirement for a given cloud
application. In our previous work [1], we provide a novel framework for such a mid-
dleware. It identifies the key components of the middleware for auto deploying, auto
scaling, providing robustness and availability of heterogeneous cloud applications. A
model for optimal cloud resource scheduling based on stochastic integer programming
technique is proposed in [8]. A similar technique is also used in [9] to optimize the
resource requirement of a cloud application. This work tries to minimize the total pro-
visioning cost by adjusting the tradeoff between the reserved and on-demand resource
provisioning plans.

Some research works [2]-[6] also consider Amazon EC2 spot instances [13] for pro-
viding economic benefit to cloud service users considering availability and reliability.
Various checkpointing techniques have been discussed in [2] to provide reliability with
Amazon spot instances at lower cost. In this paper, we study some of these techniques
and evaluate their performances. We also investigate the effectiveness of application
centric resource provisioning framework [1] for actively monitoring the deployed spot
instances for an application and for taking necessary actions as the spot intances be-
come unavailable or the spot price changes. Finally, we propose and evaluate a novel
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checkpointing scheme for the application centric resource provisioning framework that
outperforms all the checkpointing schemes defined in [2].

3 Application-Centric Resource Provisioning Framework

An Application-centric resource provisioning framework along with the unified defi-
nition of an application is proposed in [1]. A brief description of functioning of the
application centric resource provisioning framework is depicted in Figure 1. The frame-
work consists of two key subsystems namely Provisioning subsystem and Monitoring
subsystem.

Fig. 1. Resource provisioning algorithm

3.1 Provisioning Subsystem

The provisioning subsystem determines optimal provisioning of virtual resources for
an application A) satisfying the policies (P) specified for it. The application’s required
service level is stored in the policy (P). The provisioning subsystem queries various
providers to get information about their offered services (Sinfo). Sinfo consists of
provider id, service id, QoS id and the associated cost. The provisioning subsystem
uses P (desired service level), Sinfo and an optimization algorithm to find the optimal
resource requirement for the application while maintaining the desired service level.
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3.2 Monitoring Subsystem

The Monitoring subsystem implements a feedback system to inform the provisioning
subsystem about the current state of the deployed application. The monitoring sub-
system actively monitors the state of the deployed application and generates various
events [1] to designate a change in the application state. Once an event is generated, the
monitoring subsystem sends the event to the provisioning subsystem. Once an event(E)
is received, the provisioning subsystem analyzes the event and uses E, P, Sinfo and an
optimization algorithm for reprovisioning the application onto appropriate resources.

4 Checkpointing Schemes for Amazon EC2 Spot Instances

In this paper multiple providers of application centric resource provisioning are not
considered. Instead, we consider the spot market of Amazon EC2 public CSP only. The
concept can be generalised to any CSP supporting spot model.

As discussed earlier, the variable price of spot instances makes them an important
consideration for optimizing resource requirement for an application. However, their
volatile nature makes them inherently unreliable and hence the optimization algorithms
become more challenging than the other instances.

4.1 Characteristics of Spot Instances

Before dealing with the challenges of optimizing the use of spot instances, let us sum-
marize the characteristics of Amazon EC2 spot instances [13] as listed below:

Fig. 2. Resource provisioning algorithm

– Spot instances are available when the user’s bid exceeds the current spot price (refer
Fig. 2).

– Spot instances are terminated (becomes unavailable) without any notification to the
user whenever the current spot price exceeds the user’s bid.

– The price per instance-hour for a spot instance is set at the beginning of each
instance-hour. Any change to the spot price will not be reflected until the next
instance-hour begins.

– Amazon will not charge the last partial hour if the spot instance is terminated due to
out-of-bid situation. However Amazon will charge the full hour if the user terminate
the instance forcefully.

– Amazon provides the history of spot prices of a spot instance at a specific availabil-
ity zone for the last 3 months free of cost.
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4.2 Existing Checkpointing Schemes for Spot Instances

The characteristics of spot instances make them appealing for long running jobs with
divisible workloads [10]. Clearly, taking checkpoints at regular interval increases the
utilization of spot instances. Various existing checkpointing schemes can be adopted
for saving the completed tasks and resuming the remaining tasks as and when the spot
instances become available. The checkpointing schemes proposed in [2] are briefly de-
scribed below:

1. No Checkpointing (NONE): Checkpoints are not taken and all the partially com-
pleted tasks for a job are required to be repeated after every out-of-bid events.

2. Optimal Checkpointing (OPT): Checkpoints are taken just prior to the out-of-bid
events. Clearly, it will save the maximum number of tasks out of each available interval
for a given instance type and a user’s bid.

3. Hourly Checkpointing (HOUR): Checkpoints are taken just prior to the beginning
of next instance hour. Since Amazon is not charging any partial hour, this scheme will
save as much tasks as the user is paying.

4. Rising edge-driven Checkpointing (EDGE): Checkpoints are taken after every
increase (rising edge) of the current spot price.

5. Adaptive Checkpointing (ADAPT): Checkpoints are taken or skipped at regular
intervals based on the expected recovery time for skipping (Rskip) or taking (Rtake) a
checkpoint. The estimation of Rskip and Rtake is given in the equations 1 and 2. Here r
is the task recovery time, tp is the present time, f(t) is the probability density function of
out-of-bid events, tr is the time needed to complete a job, tc is the time needed to take
a checkpoint and T (t, tp) is the expected execution time for a job of length t started at
time tp. Checkpoints are taken when Rskip is greater than Rtake.

Rskip(t, tp) =

tr−1∑
k=0

(k + r + T (t, tp)) f(k + tp) (1)

Rtake(t, tp) =

tr−1∑
k=0

(k+r)) f(k+tp)+tc

∞∑
k=tr

f(k+tp)+T (t, tp−t)

tc−1∑
k=0

f(k+tp) (2)

T (t, tp) = (t

∞∑
k=t

f(k + tp) +

t−1∑
k=0

(k + r) f(k + tp))/(1−
t−1∑
k=0

f(k + tp)) (3)

Out of the above five checkpointing schemes, NONE and OPT provide two extreme
results without any practical value. They are used to provide comparative study of the
other realistic checkpointing schemes.

5 A Novel Checkpointing Scheme over Application-Centric
Resource Provisioning Framework

In this section, we propose a novel checkpointing scheme for spot instances on top of
application-centric resource provisioning framework. For the purpose, we devise a new
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event generation scheme that deals with spot instances. The new checkpointing scheme
is targeted to achieve performance comparative to OPT checkpointing scheme described
above. Before describing the scheme, we introduce a modified event generation scheme
for our application-centric resource provisioning framework.

5.1 Event Generation Scheme for Spot Instances

The event generation schemes proposed in [1] is extended to include new events that
support spot instances. As discussed in Section 4.1, the availability of spot instances
depends on the current spot price and the user defined bid. Also, spot instances become
unavailable without prior notification to the clients that makes them inherently unreli-
able. The reliability can be increased by taking checkpoints (saving completed tasks)
during the available periods. However, the time and frequency of taking checkpoints
affect the reliability as well as job completion time and cost.

Accordingly, in this paper we propose a new event generation scheme to handle spot
instances. Three events are proposed, namely Eckpt, Eterminate and Elaunch. Eckpt

is used for taking checkpoint, Eterminate is used to terminate a spot instance force-
fully and Elaunch is used to relaunch a previously terminated spot instance. We define
two bid values for the purpose - one for the application (Abid) and other for the spot
instance (Sbid). Sbid is sufficiently large and is used in the request for spot instance.
Clearly, the value is maintained at such a high level, that Amazon will never terminate
the spot instances due to out-of-bid situation. On the other hand, Abid is used by the
monitoring subsystem to maintain user’s budget.

The monitoring subsystem actively monitors the current spot price and generates
the two events, Eckpt and Eterminate, for the provisioning subsystem. On the basis
of these two events, the provisioning subsystem either takes a checkpoint or terminate
the corresponding spot instance respectively. However, to increase the performance, the
monitoring subsystem will query the current spot price only at specific points of time
called decision points. Since the cost of spot instance is not changed during an instance
hour and is fixed at the beginning of that instance hour, the decision points should be
relative to the beginning of the next instance hour. Accordingly, we define two decision
points just prior to each hour boundary as follows:

tcd = th − tc − tw (4)

ttd = th − tw (5)

where tcd and ttd are the decision points for checkpointing and terminating a spot in-
stance. th is an hour boundary, tc is the time needed to take a checkpoint and tw is
the waiting time to get the current spot price. The monitoring subsystem will generate
Eckpt at tcd if the current spot price exceeds Abid and will generate Eterminate at ttd if
the current spot price is still above the Abid. It will generate Elaunch at the start of each
available period of a spot instance with respect to Abid.
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5.2 The Application-Centric Checkpointing Scheme

In this section, we propose a checkpointing scheme on top of the application centric re-
source provisioning framework, called Application Centric Checkpointing(ACC). ACC
is based on the event generation scheme discussed in the previous subsection and is
described by the sequence diagram shown in Fig. 3.

The following unified definition can be used for an application with divisible work-
loads to be run on spot:

A = (T,R,Rm, P, U,M) (6)

where T = {t1}
R = {r1, r2}, r1.provider = ec2, r1.type = spot instance,

r1.size = < instance type >
r2.provider = ec2, r2.type = EBS, r2.size = 1GB

Rm = { r1 → t1, r2 → t1 }
P = { sla }

M = (E,W,Em,Wm) (7)

where E = {Eckpt, Eterminate, Elaunch}, threshold for all events =< Abid >
Elaunch.bid =< Sbid >

W = {Wstart, Wckpt, Wterminate, Wlaunch}
Wstart = { Launch spot; Mount EBS; Copy job to EBS; Start job },
Wckpt = {Save results to EBS},
Wterminate = {Terminate spot} &
Wlaunch = { Launch spot; Mount EBS; Resume tasks },

Em = {Eckpt → r1, Eterminate → r1,Elaunch → r1})
Wm = {Wckpt → Eckpt,Wterminate → Eterminate,Wlaunch → Elaunch}

The Elastic Block Storage (EBS) [14] is used to save the completed tasks during check-
point. The parameters instance type, Abid and Sbid can be set either manually by the
end user or by some optimization or greedy algorithms.

The provisioning subsystem starts an application (job) by executingWstart workflow
for that application. The Wstart workflow launches a spot instance as per the specifica-
tion of the resource r1 and an EBS volume as per the specification of the resource r2.
The workflow then mounts the EBS volume to the spot instance, copy the job from the
application repository to the EBS and starts the job.

Once the application is deployed, EC2 starts charging for the resources. The moni-
toring subsystem calculates tcd and ttd as per Equ. 4 & 5 for the current hour boundary.
At tcd the monitoring subsystem retrieves the current spot price(P). If P exceeds Abid,
it generates Eckpt event for the provisioning subsystem. On receiving Eckpt event, the
provisioning subsystem executes Wckpt workflow. The Wckpt workflow just saves the
results (the completed tasks) to the EBS volume. The monitoring subsystem also re-
trieves the current spot price(P) at ttd. If P still exceeds Abid, it generates Eterminate

event for the provisioning subsystem. On receiving Eterminate event, the provisioning
subsystem executes Wterminate workflow. The Wterminate workflow terminates the
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Fig. 3. Application Centric Checkpointing Scheme

spot instance forcefully. The monitoring subsystem repeats the above procedure till P
does not exceed Abid at ttd for all the subsequent hour boundaries.

If the instance is terminated at some ttd, the monitoring subsystem will have to query
for the current spot price to determine the next available period at some specific in-
stance of time(t*). However, the frequency of making the query is defined by the end
user which may affect the job completion time slightly. At the start of the new avail-
able duration, the monitoring subsystem generates Elaunch event for the provisioning
subsystem. On receiving Elaunch event, the provisioning subsystem executes Wlauch

workflow. TheWlaunch workflow launches a new spot instance as specified in r1, mount
the existing EBS volume to that instance and resume the remaining tasks of the job.

Fig. 4. Decision Points for Event Generation

The novelty of the scheme is illustrated in Fig. 4. ACC will generate neither Eckpt

nor Eterminate for the hour boundary th1 since the current spot price is bellow Abid at
both the decision points. That means, it will neither take a checkpoint nor terminate the
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spot instance at th1. It will generate Eckpt but not Eterminate for the hour boundary th2
since the current spot price is above Abid at tcd2 and below Abid at ttd2. That means, it
will take a checkpoint but will not terminate the spot instance at th2. Similarly, for the
hour boundary th3, it will generate both Eckpt and Eterminate since the user will have
to pay above Abid for the next hour. So, it will take a checkpoint as well as terminate
the spot instance at th3. Clearly availability is increased and more continuous in ACC
compared to other checkointing schemes as shown in Fig. 4.

6 Implementation and Evaluation

In this section we analyze and compare our proposed ACC checkpointing scheme with
the existing checkpointing schemes. The experiments have been carried out on 64 spot
instance types using the same data set, parameters, algorithms and assumptions used in
the simulator [26].

We obtain the simulation result for job completion time, total monetary cost and
the product of monetary cost x completion time for all the EC2 instance types. To
simplify the discussion, we present the result of a linux based extra large (m1.xlarge) in-
stance type in the eu-west-1 region. We concentrate on the performance of our proposed
ACC checkpointing scheme compared to the theoritical optimal checkpointing scheme,
OPT. We also include NONE, HOUR, EDGE and ADAPT checkpointing schemes in
our result for completeness.

Fig. 5. Total monetary cost of Job completion

Fig 5 shows the comparison of total monetary cost needed to complete a job of length
500 minutes under different user’s bid(Abid) from $0.401 to $0.441. The result shows
that ACC reduces the job completion cost significantly over the other realistic check-
pointing schemes. However the cost is increased by 5.94% on average (min 0.33%, max
10.30%) compared to OPT scheme. This is because the OPT scheme guarantees pay-
ment of the actual progress of the job as well as executing some fraction of the job free
of cost for the partial hours.
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Fig. 6. Job completion time

In Fig. 6 we illustrate the comparison of various checkpointing schemes for the met-
ric job completion time. Here we observe that ACC scheme outperforms all the check-
pointing schemes including OPT. This is because ACC allows the job to continue even
when the current spot price exceeds Abid in between a ttd and the previous hour bound-
ary (refer to Fig. 4). With OPT, the available duration is fragmented as shown in Fig. 2
while ACC allows the spot instance to be continuously available till ttd3 a shown in
Fig. 4 without affecting the job completion cost. That means the interruption to job ex-
ecution is much less in ACC compared to OPT. In fact the ACC scheme reduces the job
completion time by an average value of 10.77% over the OPT scheme.

We plot the comparative study for the product of monetary cost x completion
time in Fig. 7. Here also we observe that the ACC scheme reduce this metric by an
average value of 5.56% over the OPT scheme.

Fig. 7. Product of total cost and completion time

To gain confidence in our result, we have computed the average values of the above
mentioned metrics for different bid values on all the 64 instance types. A sample of 15
difference instance types for the metric product of monetary cost x completion time
is shown in Fig. 8. For these 15 instance types, a gain of 4.03% for ACC over OPT is
observed. We also observe that such percentage gain is increased for costly instance
types.
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Fig. 8. Product of cost and completion time for different instance types

In the previous research work [2], the authors conclude that OPT is the optimal
checkpointing scheme and none of the practical schemes can perform better than OPT.
That is true only if we use the same bid values for launching the spot instance and
executing the checkpoint. However, our proposed ACC checkpointing scheme perform
very close to OPT or even better than OPT (for time and product metrics) by separating
these two bid values. Thus ACC outperforms all the existing checkpointing schemes
for spot instances. ACC achieves such performance gain by increasing availability at
the same cost as shown in Fig. 4.

7 Conclusion and Future Work

Checkpointing plays an important role in reliability of job execution over EC2 spot in-
stances. In this paper, we propose a checkpointing scheme on top of application-centric
resource provisioning framework that not only increases the reliability but also reduces
the cost significantly over the existing checkpointing schemes. The job completion cost
under the proposed scheme is very close to the optimal checkpointing scheme. It per-
forms better than all the practical checkpointing schemes for spot instances. In future,
we want to investigate more on finding the optimal bid (Abid) and the corresponding
instance type for a given job.
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Abstract. Pig, a high-level dataflow system built on top of Hadoop
MapReduce, has greatly facilitated the implementation of data-intensive
applications. Pig successfully manages to conceal Hadoop’s one input
and two-stage inflexible pipeline limitations, by translating scripts into
MapReduce jobs. However, these limitations are still present in the back-
end, often resulting in inefficient execution.

Stratosphere, a data-parallel computing framework consisting of
PACT, an extension to the MapReduce programming model and the
Nephele execution engine, overcomes several limitations of Hadoop
MapReduce. In this paper, we argue that Pig can highly benefit from
using Stratosphere as the backend system and gain performance, with-
out any loss of expressiveness.

We have ported Pig on top of Stratosphere and we present a process
for translating Pig Latin scripts into PACT programs. Our evaluation
shows that Pig Latin scripts can execute on our prototype up to 8 times
faster for a certain class of applications.

1 Introduction

Large-scale data management and analysis is currently one of the biggest chal-
lenges in the area of distributed systems. Industry, as well as academia, is in
urgent need of data analytics systems, capable of scaling up to petabytes of data.
Such systems need to efficiently analyze text, web data, log files and scientific
data. Most of the recent approaches use massive parallelism and are deployed
on large clusters of hundreds or even thousands of commodity hardware.

MapReduce [1], proposed by Google, is the most popular framework for large-
data processing; its open-source implementation, Hadoop1, is nowadays widely
used. However, it has several limitations, including the limitation on the number
of input datasets (only one input set) and the limitation on a structure of a
program that must follow a static fixed pipeline pattern of the form split-map-
shuffle-sort-reduce. This pipeline is suitable for simple applications, such as log-
file analysis, but severely complicates the implementation of relational queries or

1 http://hadoop.apache.org/
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graph algorithms. These limitations have led researchers to develop more general-
purpose systems, inspired by MapReduce [2–6]. One of them is Stratosphere
[6], which consists of a programming model, PACT (Parallelization Contracts),
and the Nephele execution engine. The system is essentially a generalization of
MapReduce and aims to overcome the limitations mentioned above.

Both models, MapReduce and PACT, require significant programming ability
and in-depth understanding of the systems’ architectures. Applications usually
lead to complex branching dataflows which are low-level and inflexible. In or-
der to save development time and make application code easier to maintain,
several high-level languages have been proposed for these systems. Currently,
high-level platforms on top of Hadoop include JAQL [7], Hive [8] and Pig [9].
Pig Latin, which is the language of the Pig platform [10], offers the simplicity
and declarativeness of SQL, while maintaining the functionality of MapReduce.
Pig compiles Pig Latin into MapReduce jobs which are executed in Hadoop. Pig
hides Hadoop’s one-input and two-stage dataflow limitations from the program-
mer and provides built-in functions for common operations, such as filtering,
join and projection. It also directly benefits from Hadoop’s scalability and fault-
tolerance. However, even if not obvious to the users, the limitations and inflexi-
bility of Hadoop are still present in the Pig system. The translation of relational
operators for the static pipeline of Hadoop produces an inefficient execution plan
since data have to be materialized and replicated after every MapReduce step.

The goal of Pig was to make MapReduce accessible to non-experts and re-
lieve the programmer from the burden of repeatedly coding standard operations,
like joins. Another goal was to make Pig independent of any particular backend
execution engine. However, Pig was developed on top of Hadoop, ended up solv-
ing specific Hadoop problems and became highly coupled with its execution
engine. The Stratosphere data-parallel computing framework offers a superset
of MapReduce functionality, while overcoming some of the major weaknesses of
the MapReduce programming model. It allows data pipelining between execution
stages, enabling the construction of flexible execution strategies and removing
the demand for materialization and replication in every stage. Moreover, the
PACT programming model of Stratosphere supports multiple inputs.

In this paper, we present PonIC (Pig on Input Contracts), an integration of
the of Pig System with Stratosphere. We have analyzed the internal structure of
Pig and have designed a suitable integration strategy. In order to evaluate the
benefits of the integration, we have developed a prototype implementation. The
current prototype supports a subset of the most common Pig operations and
it can be easily extended to support the complete set of Pig Latin statements.
Thus, we show that it is possible to plug a different execution engine into the
Pig system and we identify the parts of Pig that can be reused. With our Pig to
PACT translation algorithm and our prototype, we show that Stratosphere has
desirable properties that significantly simplify the plan generation. We have de-
veloped a set of basic scripts and their native MapReduce and PACT equivalents
and we provide a comparison of PonIC with Pig, as well as the corresponding
native programs. We observe that Stratosphere’s relational operators are much
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more efficient than their MapReduce equivalents. As a result, PonIC has a great
advantage over Pig on Hadoop and often executes faster than native Hadoop
MapReduce. The main contributions of this paper are as follows.

– Our integration is entirely transparent to Pig’s end-users and existing Pig
Latin applications can be executed on PonIC without any modification. The
syntax and the semantics are completely unchanged.

– We show that Pig can be harnessed to alternative execution engines and
present a way of integration.

– We identify the features of Pig that negatively impact execution time.
– We show that Pig can be integrated with Stratosphere and gain performance.
– We propose a complete translation process of Pig Logical Plans into Strato-

sphere Physical Plans and we present and evaluate PonIC.

The rest of this paper is structured as follows. In Section 2, we provide the
necessary background on the Pig and Stratosphere systems. Section 3 discusses
the restrictions that MapReduce poses on Pig’s current implementation and
presents our Pig-to-Stratosphere translation process. In Section 4, we discuss
our prototype implementation in detail. Section 5 contains the evaluation of
PonIC against Pig on Hadoop, native Hadoop MapReduce and native PACT
Stratosphere. In Section 6, we comment on related work, while we provide our
conclusions, open issues and vision for the future in Section 7.

2 Background

In this section, we provide the essential background. We briefly discuss the
MapReduce programming model, the Pig system and the Stratosphere system.

2.1 The MapReduce Programming Model

MapReduce is a data-parallel programming model. Its architecture is inspired
by functional programming and consists of two second-order functions, Map and
Reduce, which form a static pipeline. Data are read from an underlying dis-
tributed file system and are transformed into key-value pairs, which are grouped
into subsets and processed by user-defined functions in parallel. Data distribu-
tion, parallelization and communication are handled by the framework, while the
user only has to write the first-order functions wrapped by the Map and Reduce
functions. However, this abstraction comes with loss of flexibility. Each job must
consist of exactly one Map function followed by one Reduce function and no
step can be omitted or executed in a different order. Moreover, if an algorithm
requires multiple Map and Reduce steps, these can only be implemented as sep-
arate jobs, and data can only be passed from one job to the next through the
file system. This limitation can frequently add a significant overhead to the ex-
ecution time. MapReduce was initially proposed by Google and its open-source
implementation, Hadoop and HDFS [11] are nowadays widely used.



282 V. Kalavri, V. Vlassov, and P. Brand

2.2 Pig

Pig consists of a declarative scripting language, Pig Latin, and an execution
engine that allows the parallel execution of data-flows on top of Hadoop. The Pig
System takes a Pig Latin program as input and produces a series of MapReduce
jobs to be executed on the Hadoop engine. Compilation happens in several steps.
First, the parser transforms a Pig Latin script into a Logical Plan. Each Logical
operator is compiled down to one or more Physical Operators. The Physical
Plan is then passed to the compiler that transforms it into a DAG of MapReduce
operators. MapReduce operators are topologically sorted and connected between
them using a store-load combination, producing the MapReduce Plan as output.
The generated jobs are finally submitted to Hadoop and monitored by Pig.

2.3 Stratosphere

Stratosphere is a parallel data-processing framework, which consists of a pro-
gramming model, PACT (Parallelization Contracts), and an execution engine,
Nephele, capable of executing dataflow graphs in parallel. Nephele is an exe-
cution engine designed to execute DAG-based data flow programs. It manages
task scheduling and setting up communication channels between nodes. More-
over, it supports dynamic allocation of resources during execution and fault-
tolerance mechanisms. The PACT programming model is a generalization of the
MapReduce programming model. It extends the idea of the Map and Reduce
second-order functions, introducing the Input Contracts. An Input Contract is
a secondary function that accepts a first-order user-defined function and one or
more data sets as inputs. Input Contracts do not have to form any specific type
of pipeline and can be used in any order that respects their input specifications.
In the context of the PACT programming model, Map and Reduce are Input
Contracts. The following three more Contracts are defined in PACT:

– The Cross Input Contract accepts multiple inputs of key value pairs and pro-
duces subsets of all possible combinations among them, building a Cartesian
product over the input.

– The Match Contract operates on two inputs and matches each pair of the
first input with one pair of the second input that has the same key value.

– The CoGroup Contract creates independent subsets by combining all pairs
that share the same key.

3 Plan Compilation

As explained in the previous section, a Pig Latin script is parsed and transformed
into a graph of logical operators, each corresponding to one command. This
graph, the Logical Plan, is then translated into a Physical Plan, a graph of
physical operators, which defines how the logical operations will be executed.
Multiple strategies can be used to map logical operators to physical ones and
it’s the system’s compiler job to choose a strategy, depending on the underlying
execution engine’s capabilities, dataset characteristics, hints provided by the
developer, etc. The translation process in Pig is briefly explained next.
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3.1 Plan Compilation in Pig

Pig’s compiler translates logical to physical operators, with the additional restric-
tion that each physical operator needs to be expressed in terms of MapReduce
steps or parts thereof. The compiler keeps track of the current phase during
translation and knows if it is a map or a reduce step. For each operator, it
checks if it can be merged into the current phase. If communication is required,
the current phase is finalized and a new phase is started in order to compile the
operator. If the current phase is a map, a reduce phase will be initiated; other-
wise, a new MapReduce job needs to be created and store-load combination is
required to chain the jobs. We explain the translation process using an example
from a slightly modified query of the PigMix benchmark2 shown below:

Example Query 1

A = load ’page_views’ as (user, timestamp, revenue);

B = foreach A generate user, revenue;

alpha = load ’users’ as (name, phone, address, city);

beta = foreach alpha generate name;

C = join beta by name, B by user;

D = group C by $0;

E = foreach D generate group, SUM(C.revenue);

store E into ’out’;

The simple Example Query 1 loads two datasets, performs a join on a com-
mon attribute to find the set of users who have visited some webpages, groups
the resulting dataset and generates the estimated revenue for each user. Figure
1(a) shows the simplified Logical Plan for the above script, whereas Figure 1(b)
shows the generated Physical Plan. Note that the join operator is replaced by
four new operators and the group operator is translated into three physical op-
erators similarly. The Physical Plan is then translated into a MapReduce Plan,
as shown in Figure 1(c). First, a map phase is created and as the Physical Plan
is traversed, operators are added to it. When the global rearrange operator is
reached, shuffling is required, therefore the map phase is finalized and a reduce
phase is initiated. When a new MapReduce job is created, a store-load pair is
added in between to set the output of the first as the input of the second.

Our example shows that even for a small script, generated plans can be long
and cumbersome. If the generated Logical Plan does not fit well the MapReduce
static pipeline, performance might degrade. Adding store-load combinations and
materialization of results in between jobs is also a source of inefficiency.

In contrast to MapReduce, using Stratosphere as the backend for Pig signifi-
cantly simplifies the translation process. Input Contracts can be greatly exploited
to generate shorter and more efficient plans, without any extra effort from the
programmer. We present our translation algorithm next.

2 http://cwiki.apache.org/PIG/pigmix.html

http://cwiki.apache.org/PIG/pigmix.html
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(a) Logical Plan (b) Physical Plan (c) MapReduce Plan

Fig. 1. Pig Plans for Example Query 1

3.2 Pig to PACT Plan Translation

Pig Latin offers a large set of commands that are used for input and output,
relational operations, advanced operations and the declaration of user-defined
functions. We chose the most common and useful ones and we describe here how
they are be translated into PACT operators. A more detailed description of the
translation process we followed can be found in [12].

Input/Output. Pig provides the LOAD and the STORE commands for data
input and output. These two logical operators can be mapped directly to the
GenericDataSource and the GenericDataSink Input Contracts of Stratosphere.
In our implementation, we only support input and output from and to files,
so we have based our implementation on the more appropriate Contracts, File-
DataSource and FileDataSink. The generic Contracts can be easily extended to
support other kinds of input and output sources.

Relational Operators. PACTs support most of the common relational opera-
tions. The FILTER and FOREACH statements correspond to a Map Contract.
The GROUP logical operator naturally maps to the Reduce Input Contract,
while INNER and OUTER JOIN operations can be implemented using the Match
and CoGroup Input Contracts. Pig’s ORDER BY operator can sort the input
records in ascending or descending order, specifying one or more record fields as
the sorting key. Pig realizes the ORDER BY operation by creating two MapRe-
duce jobs. With PACTs, the same functionality can be offered in a much simpler
way using the GenericDataSink Contract.
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Advanced Operators. From the set of the advanced Pig operators, we choose
CROSS and UNION. The CROSS operator can be directly mapped to the Cross
Input Contract, while the Map Input Contract can be used to realize UNION.
The Map Contract (Stratosphere 0.2) offers a method, which provides the func-
tionality we need to implement UNION.

Our translation consists of two stages. At the first stage the Logical Plan is
translated into a plan of PACT operators. This PACT Plan is the equivalent
of Pig’s Physical Plan. The second stage translates the PACT Plan into actual
Input Contracts and submits the PACT Plan to the Nephele execution engine.

The Plan generation for the Example Query 1 is shown in Figure 2(a). There
is an one-to-one mapping of logical operators to PACT operators and conse-
quently Input Contracts, which makes the graph and the translation process
much simpler. The resulting graph can be further optimized, by merging filter
and foreach operators into the preceding Contracts, as shown in Figure 2(b).

(a) Initial Plan (b) Optimized Plan

Fig. 2. PACT Plans for Example Query 1

3.3 Discussion

Even though we have considered only a subset of Pig operators, it is important to
stress that the completeness of our proposal is guaranteed. The PACT program-
ming model is a generalization of the MapReduce programming model. Since
every Pig Latin program and Logical Plan can be translated into a MapReduce
Plan, it can therefore also be translated into a PACT Plan.

Using Stratosphere and Input Contracts as the backend results into a more
straightforward translation process. The one-to-one Pig-to-PACT mapping re-
quires less communication, due to less shuffling. Data is pipelined between Input
Contracts, eliminating the need for frequent materialization. Also, the execu-
tion plan benefits from optimizations of the Logical Plan by Pig’s Logical Plan
optimizer and of the PACT Plan by Stratosphere’s optimizer3.

3 http://stratosphere.eu/wiki/doku.php/wiki:pactcompiler

http://stratosphere.eu/wiki/doku.php/wiki:pactcompiler
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4 Implementation

PonIC has been implemented as an extension to the Pig system and reuses Pig
functionality where possible. Pig classes or wrappers are used in order to make
them compatible with the new features. The source code is publicly available4.

We have identified the parts of the Pig software stack that are not tightly
coupled to the Hadoop execution engine, namely the parser and the Logical
Plan layer. The underlying layers have been replaced with our compilation layer
that tranforms the Logical Plan into a Stratosphere execution plan.

Pig’s Logical Plan is traversed in a depth-first fashion. The traversal starts
from the plan’s roots and a visit() method is responsible for recognizing the
operator type and creating the appropriate PACT operator, according to the
mappings of Table 1. It is also responsible for setting the correct parameters, such
as data types, operator alias, result types, as well as connecting the newly created
operator to its predecessors. This way, a graph of PACT operators is gradually
constructed. When the PACT Plan has been created, it is submitted to Nephele
for execution. Table 1 summarizes the Pig to PACT translation mappings for
the subset of the Pig operators considered in this study.

Table 1. Pig to PACT operators mapping (for the chosen subset of Pig operators)

Pig Operator Input Contract

LOAD FileDataSource

STORE FileDataSink

GROUP Reduce

INNER JOIN Match

OUTER JOIN / COGROUP CoGroup

UNION Map

FILTER / FOREACH Map

ORDER FileDataSink

The most significant extensions made to the Pig codebase are:

– An additional execution mode to allow starting Pig in Stratosphere execution
mode with the command pig -x strato.

– An extension of Pig’s HExecutionEngine class as an engine for Stratosphere.
– A re-implementation os the relational and expression operators to support

the new APIs.
– A LogToPactTranslationVisitor class, based on Pig’s

LogToPhyTranslationVisitor class, as the first-level compiler.
– A package of PACT operators, based on Pig’s physical operators.
– A PactCompiler class, as the second-level compiler.
– Stratosphere-specific load and store functions.
– A contractsLayerand a stubsLayer packages, which contain wrapper classes

of Stratosphere’s Input Contracts and Stub classes.

4 http://github.com/PonIC/PonIC

http://github.com/PonIC/PonIC
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5 Evaluation

We conducted our experiments on an OpenStack cluster, using 10 ubuntu Virtual
Machines (VMs), each having 4 VCPUs, 90GB of disk space and 8GB of RAM.
We deployed Hadoop version 1.0.0, Pig version 0.10.0 and Stratosphere version
0.2. Hadoop’s NameNode and JobTracker, as well as Stratosphere’s JobManager
run on a dedicated VM, while the remaining 9 VMs serve as slave nodes. Default
parameters were used for HDFS block size and replication factor.

We used the PigMix data generator to create a page views dataset of 10
million rows (approximately 15GB) and the corresponding users table. We de-
veloped five scripts for evaluation, namely a Load/Store operation, a Filter script
which filters out 50% of the input, a Group operation, a Join of the page views

and the users dataset and a Mixed query, corresponding to the Example Query
1, containing a combination of Load, Group, Join and Store operators. Each test
was executed 5 times and the results presented here have a standard deviation
of less than 1% in all cases. The test applications were developed in Pig Latin
(executed both on Pig and PonIC), native MapReduce and PACT.

5.1 Implementation Overhead

Whenever using high-level languages, there is an overhead users have to pay in
exchange for the abstraction offered. This overhead is one of the factors defining
the value of the abstraction. Figure 3(a) shows the performance overhead for the
Pig system over the corresponding native Hadoop MapReduce implementations
and for PonIC over PACT. For Pig, this overhead includes setup, compiling,
data conversion and plan optimization time. The results for Pig confirm already
published results [9]; Pig is around 1.2 to 2 times slower than a native MapReduce
application. Figure 3(a) also shows that PonIC’s overhead is significantly lower
and smaller than 1.6 in all cases. We believe that the smaller overhead is mainly
due to the more efficient translation process. Since PonIC only supports a subset
of Pig’s features, the overhead could increase in a complete implementation.
However, as we described in Section 3.3, in the worst case, an operator could be
translated into PACT, using only the Map and Reduce Contracts. Such a naive
translation would result into an overhead comparable to Pig’s overhead.

In order to have a better idea on how the overhead changes depending on the
dataset size, we ran the Group query for three different sizes of the page views

dataset. The results in Figure 3(b) show that the overhead caused by setup and
compilation time has a heavier influence on smaller datasets.

5.2 Comparison with Pig and Hadoop MapReduce

Figure 4(a) shows the execution time ratio of Pig and native Hadoop MapReduce
over PonIC. Y axis is in logarithmic scale. PonIC matches Pig’s execution time
for the Load/Store and the Filter queries, while it is significantly faster in the rest
of the cases. When compared to native MapReduce, PonIC is also faster, except
from the Load/Store and Filter operations, for which setup and data conversion
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Fig. 3. Evaluation Results: Overhead

times are dominant. In the case of Mixed query, PonIC is 8 times faster than
Pig. The MapReduce Plan that Pig creates for this query contains two MapRe-
duce jobs in order to implement the join and the group operations, involving a
materialization step in between them. On the other hand, PonIC can execute
faster, exploiting Stratosphere’s data pipelining between Input Contracts. The
main reason why PonIC is generally faster than Pig is demonstrated in Figure
4(b), which is a comparison between the execution time of native MapReduce
and PACT implementations. It shows that, in all the cases except Load/Store,
Stratosphere is faster than native MapReduce.

��������	
 ���
	 �	��� ���� ���
�
���

�

��

������
	�
�����

����
���
�
��
	������

�
�


�
�
�
�
�
�
�
�
�
�


�
�
�
�
�
�

(a) PonIC vs. Pig/MapReduce

��������	
 ���
	 �	��� ���� ���
�
���

�

��

�
�


�
�
�
�
�
�
�
�
�
�


�
�
�
�
�
�

(b) Native MapReduce vs. PACT

Fig. 4. Evaluation Results: Execution Time Comparison

6 Related Work

Among the supported high-level languages for MapReduce, Hive is probably the
most popular and has been used in work similar to ours. Hive has been integrated
with the ASTERIX system [5]. ASTERIX provides a data-agnostic algebra layer,
which allows Hive to run on top of the Hyracks runtime. Hive execution plans
are translated to ASTERIX algebra plans and better performance is achieved
without any changes in the HiveQL queries. To our knowledge, no published
evaluation measurements exist to support this claim.

The Shark system [13] allows HiveQL queries to execute on top of Spark
[4], in an analogous way to ours with Pig and Stratosphere. However, Shark’s
goal is to provide a unified system where both SQL queries and iterative ana-
lytics applications can co-exist and execute efficiently. Our work and the Shark
project share some discoveries regarding the limitations of the MapReduce-based
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execution engines, which result in inefficient execution, namely the expensive
data materialization and inflexibility of static pipelines over general DAGs.

There has been recent work in integrating JAQL with the Stratosphere system
[14], which led to the creation of Meteor [15]. Meteor is a high-level language
inspired by JAQL and lies on top of a relational algebra layer, Sopremo. Meteor
programs are translated into Sopremo operators, which are then compiled into
Input Contracts, in a way similar to our work. However, Meteor, like JAQL,
only supports the JSON data model and no performance measurements are yet
available, as far as we know. With our work, we benefit both Pig and Strato-
sphere users. Pig developers can gain improved performance without changing
their applications, while Stratosphere users can now exploit the expressiveness
of the Pig Latin language to develop applications faster and execute them on
the Nephele execution engine, with only minimal compilation overhead.

7 Conclusions and Future Work

Existing programming models for Big Data analytics, such as MapReduce and
PACT, have been a great contribution and are widely used. However, in order
to fully exploit the possibilities provided by the increasing amounts of data
in business and scientific applications, data analysis should become accessible
to non-experts, who are used to work with higher-level languages. Therefore,
improving the performance of systems like Pig is of great importance.

In this paper, we examined the feasibility of integrating Pig with Strato-
sphere. We show that Pig can highly benefit from using Stratosphere as the
backend system and gain performance, without any loss of expressiveness. We
concluded that, even though Pig is tightly coupled to the Hadoop execution en-
gine, integration is possible by replacing the stack below the Logical Plan layer.
The translation algorithm and prototype integration of Pig with Stratosphere al-
lows execution of Pig Latin scripts in the Stratosphere execution engine, without
modifying the scripts, while offering improved performance.

Several issues remain unexplored and are interesting for further investigation.
We certainly believe that creating a system that fully supports Pig Latin and
generates Stratosphere jobs is not the limit of this research. Several optimizations
can now be added to Pig because of the underlying Nephele execution engine.
For example, Pig Latin could be extended to include keywords corresponding to
Output Contracts or PACT’s compiler hints. Since Stratosphere now offers its
own high-level language, Meteor, it would also be very interesting to compare
its expressiveness, usability and performance against Pig.
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Abstract. MapReduce has become a widely used computing model for large-
scale data processing in clusters and data centers. A MapReduce workload gen-
erally contains multiple jobs. Due to the general execution constraints that map
tasks are executed before reduce tasks, different job execution orders in a MapRe-
duce workload can have significantly different performance and system utiliza-
tion. This paper proposes a prototype system called MROrder to dynamically
optimize the job order for online MapReduce workloads. Moreover, MROrder
is designed to be flexible for different optimization metrics, e.g., makespan and
total completion time. The experimental results show that MROrder is able to im-
prove the system performance by up to 31% for makespan and 176% for total
completion time.

1 Introduction

MapReduce [1] is a popular computing paradigm for large-scale data intensive process-
ing. A map-reduce job computation generally contains two phases: 1) a map phase,
consisting of many map tasks, and 2) a reduce phase, consisting of many reduce tasks.
Apache Hadoop, an open source framework of MapReduce, has been widely deployed
on large clusters consisting of thousands of machines by companies such as Facebook,
Amazon, and Yahoo. Generally, MapReduce and Hadoop are used to support batch
processing for multiple large jobs (i.e., MapReduce workloads). Despite many research
efforts have been devoted to improve the performance of a single MapReduce job (e.g.,
[1,2]), there is relatively little attention that has been paid to the system performance
of MapReduce workloads. Therefore, this paper attempts to improve the system perfor-
mance of MapReduce workloads.

The job execution order in a MapReduce workload is important for the system perfor-
mance. To show the importance of job ordering, Figure 1 gives an example illustrating
that the performance can differ by nearly 100% for two varied job submission orders for
a batch of jobs. However, the job ordering optimization for MapReduce workloads is
challenging, due to the following facts: (i). There is a strong data dependency between
the map tasks and reduce tasks of a job, i.e., reduce tasks can only perform after the map
tasks, (ii). map tasks have to be allocated with map slots and reduce tasks have to be
allocated with reduce slots, (iii). Both map slots and reduce slots are limited computing
resources, configured by hadoop administrator in advance [3].

F. Wolf, B. Mohr, and D. an Mey (Eds.): Euro-Par 2013, LNCS 8097, pp. 291–304, 2013.
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Map Phase : 
Reduce Phase : 

Map Phase : 

Reduce Phase : 

1 2 3 4J J J J

4 3 2 1J J J J

( ).a

( ).b

1 2 34
1 2 3 4

43 2 1
4 3 21

Fig. 1. Performance comparison for a batch of jobs under different job submission orders

The job ordering optimization for MapReduce workloads is important as well as
challenging, due to the following facts: (i). There is a strong data dependency between
the map tasks and reduce tasks of a job, i.e., reduce tasks can only perform after the map
tasks, (ii). map tasks have to be allocated with map slots and reduce tasks have to be
allocated with reduce slots, (iii). Both map slots and reduce slots are limited computing
resources, configured by hadoop administrator in advance [3].

In this paper, we propose a prototype system MROrder1 that can perform job or-
dering automatically for arriving jobs queued in Hadoop FIFO buffer. There are two
core components for MROrder, namely, policy module and ordering engine. The policy
module decides when and how to perform job ordering. The ordering engine, consisting
of two approaches (i.e., simulation-based ordering approach and algorithm-based order-
ing approach), gives the job ordering. MROrder is designed to be flexible for different
performance metrics, such as makespan and total completion time.

We evaluate our MROrder system using both synthetic workloads. Both makespan
and total completion time are considered. Experimental results show that there is about
11–31% performance improvement based on MROrder system, depending on the char-
acteristic of testbed workloads. Moreover, for synthetic Facebook workloads which
contain lots of small-size jobs, the MROrder can improve the performance of the to-
tal completion time up to 176%.

2 Related Work

The batch job ordering optimization has been extensively researched in HPC litera-
ture [4]. In those studies, parallel tasks can be classified into three types: rigid (the
number of processors to execute the task is fixed a priori), moldable (the number of
processors to execute the task is not fixed but determined before the execution) and
malleable (the number of processors for a task may change during the execution) [5]. In
contrast, the malleable task is the most popular and widely studied. Its has been proved
to be NP-hard for makespan optimization [4], and a number of approximation and
heuristic algorithms (e.g., [5,10]) were proposed. Meanwhile, there are some bi-criteria
optimization algorithms proposed for optimizing makespan and total completion time
simultaneously, such as [6].

1 MROrder is open source and available at http://sourceforge.net/projects/
mrorder/

http://sourceforge.net/projects/mrorder/
http://sourceforge.net/projects/mrorder/
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The previous optimization works in HPC are implicitly targeted at the single-stage
parallelism. In contrast, MapReduce is an interleaved parallel and sequential compu-
tation model [7]. It is close to the two-stage hybrid flow shop (HFS) [8]. Specifically,
when each job contains only one map task and one reduce task, the MapReduce job or-
dering problem turns to be a two-stage HFS. The makespan optimization for two-stage
HFS is strongly NP-hard when at least one stage contains multiple processors [11].
There has been a large body of approximation and heuristic algorithms (e.g., [12,13])
for it. Besides, for HFS, there are also works (e.g., [15,14]) targeted at the bi-criteria
optimization of both makespan and total completion time.

However, a MapReduce job runs multiple map/reduce tasks concurrently in each
phase, which is different from the traditional HFS that allows only at most one task
to be processed at a time. The MapReduce is more similar to the two-stage Hybrid
flow shop with multiprocessor tasks (HFSMT) [16,17], which allows a task at each
stage to be processed on multiple processors simultaneously. However, there is a strict
requirement for HFSMT that a task at each stage can only be scheduled to execute
only when there are enough idle processors for the task [17]. In contrast, the number of
running map/reduce tasks for a MapReduce job is dynamically scaling up and down at
runtime by allocating the tasks with available map/reduce slots.

In summary, this paper has taken into account all of these similarities to HFS as well
as differences for MapReduce jobs. The most related work to us for MapReduce are
[3,18]. Moseley et al. [3] presented a 12-approximation algorithm for the offline work-
loads of minimizing the total flow time, which is the sum of the time between the arrival
and the completion of each job. Verma et al. [18] proposed two algorithms for makespan
optimization of offline jobs. One is a greedy algorithm based on Johnson’s Rule. The
other one is a heuristic algorithm called BalancedPool. They evaluated their strength
experimentally. In contrast, our work considers both makespan and total completion
time optimization for online recurring MapReduce workloads, where jobs arrive over
time and perform recurring computations in different time windows. Particularly, pre-
vious study showed that 75% of queries from Microsoft are recurring workloads [24].
MROrder is designed to optimize the performance for such scenarios.

3 Definition and Performance Metrics

Variable Definition. In an Hadoop cluster, letM denote the map phase andR denote the
reduce phase. Let its slot configuration beS � �SM,SR�, where SM denotes the set of
map slots andSR denotes the set of reduce slots. Therefore, the map task capacity is �SM�
and the reduce task capacity is �SR�. For a batch of online jobs J � �J1, J2, ..., Jn�, let
tai denote the arriving time. Let tMi be the average processing time of a map task and tRi
be the average processing time of a reduce task for each job Ji. Moreover, the set of its
map tasks is denoted as JM

i and the set of its reduce tasks is denoted as JR
i . Then the

number of map tasks for Ji is �JM
i � and the number of reduce tasks is �JR

i �.

Performance Metrics. There are several classical performance metrics for job order-
ing optimization, e.g., makespan, total completion time and total flow time. Let ci denote
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the completion time of the job Ji. The makespan for the whole jobs J is defined as
the maximum completion time of any job, i.e., Cmax � max�ci�. The total completion
time (TCT) for the whole jobs J is defined as Ctct �

�
ci.

Problem Definition. Our goal is to minimize makespan and total completion time. That
is, how to order the online arriving jobs automatically such that the makespan (or the
total completion time) for all the jobs is minimized?

4 MROrder System

This section describes the design and implementation of the MROrder system.

4.1 System Overview

Figure 2 presents the overall design architecture for MROrder system. It gives the job
order for arriving jobs, which can be submitted by a user or from other softwares such
as Pig, Hive, Mahout, Oozie, etc. Particularly, the jobs are submitted in an ad hoc man-
ner from users. We do not have assumption for the arrival order as well as arrival rate
of jobs. There is a JobDispatchingQueue for queueing arriving jobs before submit-
ting them to the MapReduce cluster. The MROrder job ordering manager handles the
job ordering for arriving jobs queued in JobDispatchingQueue automatically. For each
MapReduce job, the MROrder system needs to know the following information, i.e., the
number of map (or reduce) tasks, the average time for each map (or reduce) task, and
its arriving time. There are two key components for MROrder job ordering manager,
namely, Policy Module and Ordering Engine. The policy module determines when and
how to perform job ordering for MapReduce jobs. Once a policy command is issued,
the ordering engine then deals with the job ordering work automatically. The specific
description for each component is detailed in the following sections.

JobDispatchingQueue MROrder Job Ordering Manager  

MapReduce 
cluster 

Pig  Hive  Mahout  Oozie  

Client 2  Client 3  Client 4 Client 5  

b O

Simulation-based 
Approach 

Algorithm-based 
Approach 

(1) Job subm
ission  

MROrder System   
(2) Policy module decides when and how to      perform job ordering  

atchin

su j gp( ) y s g

(3) Ordering Engine performs the job ordering  

(4)  Return  job’s result  

Policy 
Module 

Ordering 
Engine 

Fig. 2. The overall architecture for MROrder system



MROrder: Flexible Job Ordering Optimization for Online MapReduce Workloads 295

4.2 Policy Module

The policy module is invoked when there are arriving jobs queued in the JobDispatch-
ingQueue, pending to be dispatched to the MapReduce cluster. It determines a good
job ordering strategy to optimize target performance metrics (e.g., makespan or to-
tal completion time). The strategy is a combination of the choice of job ordering ap-
proach, the policy for the number of jobs for ordering and time policy (when to perform
job ordering). It chooses the job ordering approaches (e.g., simulation-based approach,
algorithm-based approach) based on their accuracy and efficiency characteristics (Sec-
tion 4.3). Particularly, since simulation-based job ordering is a brute-force method, it
can provide an optimal result but its efficiency is quite low, indicating that it is suitable
for a small number of jobs. In contrast, the algorithm-based job ordering approach is
efficient but it can only provide a sub-optimal result, which is suitable for a large num-
ber of jobs. Furthermore, the policy for the number of ordering jobs (PNJ) and time
policy (TP) are correlated. We need to consider them together. We have the following
two solutions:

PNJ-Dominated Solution. The user sets a threshold (n0) for the number of jobs re-
quired to perform ordering. The ordering engine is triggered automatically when the
number of arriving jobs reaches that threshold (n � n0). The TP completely depends
on the PNJ. It can be dynamically determined and computed by subtracting the latest-
round job ordering time (or the starting time) by the current time.

TP-dominated Solution. Given a time interval Δt, the ordering engine is invoked at
the time t � Δt � t

�

, where t
�

is the latest-round time when the ordering engine was
activated (or the starting time). The number of jobs n is thus equivalent to the num-
ber of arriving jobs during this time interval. The TP-dominated solution is shown in
Algorithm 1.

Algorithm 1. TP-dominated Solution with Fixed Time Interval (TP-FTI)

1. Assume that MapReduce cluster start at the time tcurr � 0. For each arriving job Ji, it will
be first queued in the JobDispatchingQueue. There is a boolean attribute orderflagi for
each Ji. It is initialized to be orderflagi � false by default.

2. The MROrder job ordering manager waits for a time interval Δt until the current time
tcurr � tcurr � Δt. The policy module checks the arriving jobs queued in the JobDis-
patchingQueue to filter out sub-set JA, where JA � �Ji��Ji � J� � �tai 	 tcurr� �
�orderflagi � false�
. Thus the number of jobs at this job ordering round is �JA�.

3. The job ordering engine is triggered by the policy module. It does job ordering and marks
orderflagi � true for jobs in JA.

4. The MROrder system dispatches those jobs Ji with orderflagi � true in the JobDispatch-
ingQueue and goes back to step 2.

Given Δt � 60 sec configured by the user, for example, the MROrder job ordering
engine is activated every 60 secs, ordering the arriving jobs queued in the JobDispatch-
ingQueue and dispatching them into MapReduce cluster. The value of Δt has a big
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impact on the whole performance. Too small value of Δt can make the MROrder job
ordering engine work so frequently that there may be a very few jobs available (e.g., 0,
1 or 2 jobs at each job ordering round) in the JobDispatchingQueue at each job ordering
round, losing the effect of job ordering. However, too large value of Δt will make Job-
DispatchingQueue hold lots of jobs without distributing it to the MapReduce cluster,
causing MapReduce cluster keep idle without running jobs and in turn have a adverse
effect on the performance. Moreover, even we have a fine configuration for Δt, it is
still inflexible and not adapted to the job arrival rate. We further propose an adaptive TP
solution to solve this problem, as shown in Algorithm 2.

Algorithm 2. TP-dominated Solution with Adaptive Time Interval (TP-ATI)

1. Let MapReduce cluster start at the time tcurr � 0. For each arriving job Ji, it will be first
queued in the JobDispatchingQueue. There is a boolean attribute orderflagi for each Ji. It
is initialized to be orderflagi � false by default. Initially, let twait � Δt.

2. The MROrder job ordering manager waits for a time interval twait until the current time
tcurr � tcurr � twait. The policy module checks the arriving jobs queued in the JobDis-
patchingQueue to filter out sub-set JA, where JA � �Ji��Ji � J� � �tai 	 tcurr� �
�orderflagi � false�
. Thus the number of jobs at this job ordering round is �JA�.

3. The job ordering engine is triggered by the policy module. It does job ordering and marks
orderflagi � true for jobs in JA.

4. The MROrder system dispatches those jobs Ji with orderflagi � true in the JobDispatch-
ingQueue.

5. The policy module updates twait as follows: twait � max
�
Δt, TA

�
, where TA �

max1�k��JA�

��k
i�1

�JM
i ��tMi
�SM�

�
��JA�

i�k
�JR

i ��tRi
�SR�

�
.

6. Go back to Step 2.

The rationale for the adaptive waiting time adjustment based on the algorithm TP-
ATI is that, user provides a relatively small threshold Δt for waiting time. The policy
module adjusts it dynamically according to the estimated running time TA of those
workloads JA that have been distributed to MapReduce cluster at the previous dis-
patching round. The MROrder tries to queue as many jobs as possible in the JobDis-
patchingQueue at each job ordering round while keeping the MapReduce cluster busy.

4.3 Ordering Engine

The ordering engine (OE) is triggered according to the policies in the policy module.
The MROrder system provides two types of job ordering approaches, i.e., simulation-
based ordering approach and algorithm-based ordering approach. The policy module
is responsible for selecting the suitable ordering engine dynamically based on the num-
ber of jobs at each job ordering round. The basic idea is that the simulation-based order-
ing approach is chosen when there are a small number of jobs (e.g., 7 jobs), considering
that it can produce an optimal result but is time-consuming. The algorithm-based order-
ing approach is selected for a large number of jobs.
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Simulation-Based Ordering Approach (SIM). To enable simulation-based job order-
ing, we developed a Hadoop simulator named HSim. It is a tailored simulator aiming
to evaluate the performance of varied job orders with a file input consisting of jobs
information each with five arguments: job’s ID, the number of map tasks, the number
of reduce tasks, the average running time of a map task, the average running time of
a reduce task. We build our simulation-based ordering approach based on HSim. It is
a brute-force method that can enumerate all possible job orders to explore the optimal
job order for a given performance metric (e.g., makespan, total completion time). Note
that there are n! possible job orders for n jobs. For example, there are 9! � 362880
possible job orders for n � 9 jobs, which however takes 97.179 sec (refer to Table 2)
for enumerating all job orders. It indicates that the simulation-based ordering approach
is only feasible for a small number of jobs in practice. Moreover, instead of searching
the whole space of all job orders, one might consider the Monte Calo method combined
with HSim for suboptimal (rough) results by searching the partial space statistically for
a large number of jobs (e.g., 50 jobs, 100 jobs). However, we argue that it is still not
meaningful for a large number of jobs in practice. For example, assume that we want
to control the maximum execution time of simulation not exceeding 97.179 sec (i.e.,
our sample space of job orders is 362880). When it comes to 20 jobs, it can only cover

362880
20!�2432902008176640000 � 1.49� 10�13, which is very tiny and unmeaningful. There-
fore, there is a need to explore an efficient solution for a large number of jobs in the
following subsection.

Algorithm-Based Ordering Approach (ALG). We develop an algorithm-based order-
ing approach to deal with the job ordering for MapReduce workloads with a large number
of jobs. It contains some job ordering greedy algorithms for different performance met-
rics. Particularly, we incorporate a greedy algorithm MK based on Johnson’s Rule [9], as
shown in Algorithm 3for makespan optimization. It is an optimal and efficientO�n logn	
job ordering algorithm for the makespan optimization for the two-stage flow shop with

Algorithm 3. Greedy algorithm based on Johnson’s Rule (MK)

1. For each job Ji, we first estimate its map-phase processing time TM
i and reduce-phase pro-

cessing time TR
i by using the following formula:

�
TM
i , TR

i

�
�
�	 �JM

i �

�SM�
� tMi ,

�JR
i �

�SR�
� tRi


�.

2. We order jobs in J based on the following principles:
a). Partition jobs set J into two disjoint sub-sets JA and JB :

JA � �Ji��Ji � J� � �TM
i 	 TR

i �
, JB � �Ji��Ji � J� � �TM
i � TR

i �
.

b). Sort all jobs in JA from left to right by non-decreasing TM
i . Order all jobs in JB from

left to right by non-increasing TR
i .

c). Make an ordered jobs set J
�

by joining all jobs in JA first and then JB in order, i.e.,
φ1 : J

�

� ��JA
, �JB

.
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one processor per stage. The details of Johnson’s rule is as follows. Divide the jobs
set J into two disjoint sub-sets JA and JB . Set JA consists of those jobs Ji for which
TM
i 
 TR

i . Set JB contains the remaining jobs (i.e. J�JA). Sequence jobs in JA in
non-decreasing order of TM

i and those in JB in non-increasing order of TR
i . The opti-

mized job order is obtained by appending the sorted set JB to the end of sorted set JA.
Moreover, we also include a greedy algorithm TCT for the total completion time opti-
mization, as shown in Algorithm 4, based on shortest processing time first. In compar-
ison to the simulated-based ordering approach, the algorithm-based ordering approach
is much more efficient, but it can only produce the sub-optimal result. Moreover, to sup-
port user’s job ordering algorithms, MROrder system also provides a user interface in
the algorithm-based ordering approach. Therefore, based on our MROrder system, user
can extend the algorithm-based ordering approach for other’s performance metrics.

Algorithm 4. Greedy algorithm based on Shortest Processing Time First (TCT)

1. For each job Ji, we first compute its processing time Ti by using the formula below:

Ti � TM
i � TR

i �
�JM

i �

�SM�
� tMi �

�JR
i �

�SR�
� tRi .

2. Order all jobs in J from left to right by non-decreasing Ti.

4.4 Implementation

We have developed a prototype of the MROrder system. The prototype implements
all components of the MROrder job ordering manager. The policy module provides
users with all policy solutions mentioned above for choices and adopts TP-ATI by de-
fault. Several user’s arguments are provided, including the optimization targets (e.g.,
makespan, total completion time), the threshold for waiting-time interval as well as the
maximum number of jobs allowed at each job ordering round. The MROrder system
automates the corresponding job ordering policy in runtime based on user’s argument
configuration. Moreover, our prototype adopted our simulator HSim as the computing
component of the MapReduce cluster to simulate the computation process of online
MapReduce batch jobs. The current prototype primarily aims to study various auto-
mated policy solutions for online workloads under different performance metrics. It
remains as ongoing work to incorporate it into Hadoop framework for practical use.

Data Skew. In our MROrder system, we assume that the sizes and processing time of
all data blocks are the same, i.e., there is no data skew among data blocks. For the case
of data skew, user can use the model provided by [26] to diminish it.

Overhead. The overhead of MROrder mainly comes from the ordering engine to per-
form job ordering. The detailed results are given in Section 5.3. Generally, SIM takes
longer time than ALG, but it provides better performance result. Thus, there is a trade-
off between the performance result and overhead for the dynamic choice of job ordering
approach.
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5 Experimental Evaluation

In this section, we evaluate MROrder prototype and its associated policies. The detailed
evaluation method is that: first, we discuss and compare the effectiveness of proposed
policy solutions (e.g., TP-FTI, TP-ATI). Then we evaluate and discuss the suitable value
of threshold (of the number of jobs) as the condition for switching of job ordering
approach. Third, we evaluate the performance for MROrder with regard to makespan as
well as total completion time. Finally, we evaluate the accuracy of our simulator Hsim
adopted by MROrder experimentally.

5.1 Workloads

Our experiment consists of two types of synthetic workloads. One is the synthetic Face-
book workload, generated based on [19,20]. Specifically, the number of map/reduce
tasks as well as the arriving time for each job are based the input/output data sizes of
workloads provided by [19]. We estimate the running time of map and reduce tasks
per job based on the map and reduce durations in Figure 1 of [20]. More precisely, we
follow the LogNormal distribution [21] with LN(9.9511,1.6764) for map task duration
and LN(12.375,1.6262) for reduce task duration that fits best the Facebook task dura-
tion, given and demonstrated by [22]. It contains lots of small-size jobs (more than 58%
in the number of jobs) [20]. We use it primarily to evaluate the total completion time
for MROrder system.

Our second workload is a testbed workload. In contrast to synthetic Facebook work-
load, most of its jobs are large-size. The makespan is seriously affected primarily by the
positions of large-size jobs. We use it mainly to evaluate the makespan for MROrder
system.

5.2 Evaluation and Analysis of Policy Solutions

Recall that in the policy module of MROrder system, we provided several policy so-
lutions to determine when and how to perform job ordering dynamically. Table 1 il-
lustrates the comparison results of two policy solutions TP-FTI and TP-ATI for their
suitable threshold Δt and the corresponding performance improvement of total com-
pletion time under varied sizes of synthetic Facebook workloads. Particularly, we eval-
uate different Δt from 10 sec, 20 sec, 30 sec till to 400 sec. We can observe that, (1).
the suitable value of Δt for TP-FTI, TP-ATI is 230 � 350 sec, and 10 � 30 sec,
respectively. It indicates that the threshold for the fixed-time interval method TP-FTI
should be large, whereas it should be small for the adaptive method TP-ATI, relying on
its adaptive mechanism to change the waiting time interval between two successive job
ordering dynamically; (2). Under the suitable value of Δt, we note that the performance
improvement of TP-ATI is much better than that of TP-FTI. This is because the TP-ATI
is smarter than TP-FTI. Therefore, we take TP-ATI as the policy solution for the policy
module in the following experiments.
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Table 1. The comparison results of two different policy solutions for their suitable threshold
Δt and the corresponding performance improvement of total completion time (PITCT) under
varied sizes of synthetic Facebook workloads. The PITCT is a normalized ratio of performance
improvement with MROrder to the unoptimized one.

JobNum
TP-FTI TP-ATI

Δt�sec� PITCT (%) Δt (sec) PITCT (%)

50 230 41.91 10 44.31
100 230 14.81 10 28.30
150 230 9.28 30 14.13
200 230 6.98 30 10.83
250 310 24.08 30 123.74
300 350 19.49 30 186.29
350 350 13.11 20 89.7
400 350 9.81 20 56.91

5.3 Switching Threshold for the Number of Jobs for Job Ordering Approach

In our MROrder prototype, we provide two types of job ordering approaches, namely,
SIM and ALG. There is a tradeoff between the accuracy and overhead (i.e., the erased
time it takes.) for these two ordering approaches (See Section 4.3 for details).

Table 2. Performance and overhead comparison of ALG versus SIM

JobNum
Makespan
for ALG

(sec)

Makespan
for SIM

(sec)

Total Completion
Time for ALG

(sec)

Total Completion
Time for SIM

(sec)

Erased
Time for

ALG (sec)

Erased
Time for
SIM (sec)

1 45 45 45 45 0.001 0.002
2 170 170 240 240 0.001 0.003
3 200 198 456 453 0.003 0.003
4 338 324 799 796 0.003 0.003
5 399 394 1342 1274 0.003 0.028
6 399 396 1450 1363 0.003 0.123
7 440 437 1766 1736 0.003 0.952
8 475 471 2107 2050 0.003 9.305
9 573 564 2728 2596 0.004 97.179

Table 2 presents the comparison results under different numbers of jobs (e.g., 1-9)
from our testbed workload. It consists of three parts. Column 2 and 3 give the results for
makespan. Column 4 and 5 show the results for total completion time. Column 6 and 7
give the overheads for ALG and SIM ordering engines. We can observe that, (1). The
results based on SIM ordering engine are better (more minimal) than that of ALGs for
both makespan and total completion time. This is because SIM is a brute-force method
that searches all possible job orders to get an optimal one, whereas ALGs are greedy
algorithms that can only produce suboptimal results. (2). The results produced by ALG
are close to SIM results, especially for makespan produced by algorithm MK. (3). The
erased time (i.e., the overhead) consumed by ALG is very small and does not grow much
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as the number of jobs increases. However, the erased time for SIM grows exponentially
as the number of jobs increases, especially when the number of jobs equals to 9 (e.g.,
97.179 sec). It is because ALGs are n logn algorithms, whereas SIM is an n! brute-
force method. Based on the experimental erased time and performance results, we set
the threshold for the number of jobs to be 7 as a threshold for the dynamical choice of
job ordering engines.

5.4 Performance Evaluation of MROrder System

We evaluate the performance of MROrder system by considering two metrics (i.e.,
makespan, and total completion time) and two kinds of workloads (e.g., Facebook
workloads and testbed workloads). In our MROrder, we take TP-ATI for the policy
module with Δt of 10 sec.

Figure 3 presents optimized performance results based on MROrder system, under
varied sizes of online workloads. Specifically, the results for testbed workloads are
shown in Figure 3 (a) and Figure 3 (b). The results for synthetic Facebook workloads
are shown in Figure 3 (c) and Figure 3 (d). There is about 11%  31% makespan im-
provement for testbed workloads in Figure 3 (a), whereas there is only 3% for Facebook
workloads on average in Figure 3 (c). It is because that the makespan is affected primar-
ily by the position of large-size jobs. The testbed workloads contain lots of large-size
jobs. In contrast, the Facebook workloads consist of a large number of small-size jobs.
On the other hand, for total completion time, Figure 3 (d) illustrates that the maximum
performance improvement can be up to 176% for synthetic Facebook workloads. In
contrast, there is a maximum of 24% performance improvement for total completion
time of testbed workloads. The reason is that the total completion time is primarily
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Fig. 3. The optimized performance results for MROrder system under different sizes of testbed
workloads and synthetic Facebook workloads
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dominated by the positions of small-size jobs. The total completion time might be poor
when there are lots of small-size jobs in a workload, e.g., Facebook workload.

5.5 Accuracy Evaluation for Hsim

We validate the accuracy of our Hsim by comparing the simulation results with the
experimental results of a MapReduce workload. We generate our MapReduce workload
by using three representative applications, i.e., wordcount application (computes the
occurrence frequency of each word in a document), sort application (sorts the data in
the input files in a dictionary order) and grep application (finds the matches of a regex
in the input files). We take Wikipedia article history dataset2 of 10GB, as application
input data. We ran experiments in Amazon’s Elastic Compute Cloud(EC2) [23]. Our
EC2 Hadoop cluster consists of 20 nodes each belonging to a ”Extra Large” VM. We
configure one node as master and namenode, and the other 19 nodes as slaves and
datanodes. Each ”Extra Large” instance has 4 virtual cores with 2 EC2 compute units
each [23]. We configure 3 map and 1 reduce slots per slave node.

We consider the makespan as well as total completion time for all possible job orders
of the MapReduce workload. Figure 4 (a) and Figure 4 (b) present the results for all 4! �
24 job orders of a batch of 4 jobs. We note that the simulated results of both makespan
and total completion time are very close (errors within 8%) to the experimental results,
which validates the accuracy of our Hsim.
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Fig. 4. Simulated results versus experimental results for a MapReduce workload

6 Conclusion and Future Work

This paper proposed a prototype system named MROrder to perform job ordering opti-
mization automatically for online MapReduce workloads. Several policy solutions were
presented and evaluated to dynamically determine when and how to do job ordering.
The MROrder system is designed to be flexible for different optimization metrics. It has
implemented several algorithms to support the job ordering optimization for makespan
and total completion time. It also provides an interface for users to add their job ordering
algorithms into MROrder for optimization of other performance metrics.

2 http://dumps.wikimedia.org/enwiki/

http://dumps.wikimedia.org/enwiki/
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We are integrating MROrder into Hadoop framework. Moreover, our prototype for
MapReduce only supports FIFO scheduling. In future, we will consider other schedulers
such as Fair Scheduler [20], and heterogeneous environments such as [25].
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Abstract. A critical feature of IaaS cloud computing is the ability to deploy, boot
and terminate large groups of inter-dependent VMs very quickly, which enables
users to efficiently exploit the on-demand nature and elasticity of clouds even for
large-scale deployments. A common pattern in this context is multi-deployment,
i.e., using the same VM image template to instantiate a large number of VMs
in parallel. A difficult trade-off arises in this context: access the content of the
template on-demand but slowly due to I/O bottlenecks or pre-broadcast the full
contents of the template on the local storage of the hosting nodes to avoid such
bottlenecks. Unlike previous approaches that are biased towards either of the ex-
tremes, we propose a scheme that augments on-demand access through a collab-
orative scheme in which the VMs aim to leverage the similarity of access pattern
in order to anticipate future accesses and exchange chunks between themselves
in an attempt to reduce contention to the remote storage where the VM image
template is stored. Large scale experiments show improvements in read through-
put between 30%-40% compared to on-demand access schemes that perform in
isolation.

1 Introduction

Infrastructure-as-a-Service (IaaS) cloud computing has matured over the years up to
the point where it represents a potentially cost-effective solution with low entry barrier
even for workloads that require huge amounts of computational resources, such as large
scale scientific or data-intensive computations.

One of the main features that has contributed to the growing popularity of IaaS is
the elastic on-demand provisioning of virtual machines (VMs). Users can bring up a
whole virtual cluster and reconfigure it dynamically with a simple click of a button [1].
However, as the user interface grows simpler and the types of workloads diversify [2],
achieving efficient on-demand VM provisioning is a non-trivial task.

A particularly difficult challenge in this context is the multi-deployment pattern, i.e.,
provisioning a large number of inter-dependent VMs concurrently from the same VM
image template, which is often needed to deploy large-scale HPC and data-intensive
applications. Obviously, there is a need minimize the provisioning time and guaran-
tee scalability despite a growing number of VMs, otherwise users do not perceive IaaS
as truly on-demand and lose interest, while at the same time cloud providers lose po-
tential profit by not efficiently leveraging their computational resources. This issue is
especially important in the context of spot instances [3]: users can bid for idle cloud
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resources at lower than regular prices, however with the risk of their VM being termi-
nated at any moment without notice when other users bid higher. Given such a context,
long provisioning time is not only inconvenient for the user, but actually leads to loss
of computational time and resources that could have been otherwise leveraged at a low
price.

Despite widespread need for multi-deployments, little effort has been undertaken to
improve their scalability. Current techniques often pre-copy the full VM image locally
on the compute nodes before launching the VM instances, which can take in the order of
tens of minutes or even hours [4], not counting the time to boot the guest operating sys-
tem and deploy the application itself. Although on-demand techniques have matured
(e.g., locally derived copy-on-write images [5] that use a remotely stored VM image
template as a backing file) and they have been shown to generate little overhead on ap-
plication performance compared to the case when a local copy is available [6], they saw
comparatively little attention for multi-deployments due to the fact that they generate
I/O contention to the repository where the VM image template is stored.

This paper contributes with a novel technique that aims to alleviate the aforemen-
tioned issue and improve the scalability of multi-deployments by enabling efficient
decentralized on-demand access that avoids bottlenecks caused by competition to the
repository. To achieve this, we leverage the fact that the VMs of the group typically have
highly similar access patterns (e.g., during the boot phase they access the same chunks
of the virtual disk in the same order [7]) in order to build a collaborative scheme where
VMs exchange chunks between themselves in anticipation of expensive concurrent I/O
accesses to the remote repository that would follow, which thus can be avoided. Our
approach can dynamically adapt to the access pattern: it increases the rate of exchanges
when remote accesses were successfully avoided, and backs off when the success rate
starts dropping due to diverging access patterns. We summarize our contributions as
follows:

– We introduce a collective content exchange scheme that optimizes the multi de-
ployment pattern by enabling efficient sharing of virtual disk image templates in
an on-demand fashion and show how to integrate this approach in a typical IaaS
architecture (Sections 3.1 and 3.3).

– We propose a hypervisor-transparent implementation of this scheme as an indepen-
dent FUSE module that can mount a raw remote backing file locally as a mutable
snapshot. This is functionally equivalent to the broadcast technique but completely
removes the broadcast overhead (Section 3.4).

– We experimentally evaluate the benefits of our approach on the Grid5000 [8] testbed
by performing multi-deployments on dozens of nodes (Section 4).

2 Related Work

Approaches that enable multi-deployment broadly fall into two major categories: pre-
broadcast and on-demand access.
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Pre-broadcast techniques fully copy the VM disk image template locally on all com-
pute nodes before launching the VM instances themselves. This enables high I/O disk
access performance inside the VM instances, because no remote access to the image
repository or I/O competition with other VM instances is present. However, the broad-
cast step has an high overhead both in execution time and network traffic, which reduces
the attractiveness of IaaS for short-lived jobs and is expensive for the provider (in terms
of lost resources that could otherwise be charged for). Thus, reducing the broadcast
overhead has been an active area of study, with proposals ranging from multi-cast [9]
and application level broadcast-trees [10] to peer-to-peer protocols [4, 11].

At the other extreme are on-demand access approaches: VMs are instantiated on-
the-fly by keeping the remote virtual disk image template read-only and storing all
modifications locally using copy-on-write, which is natively supported by many hy-
pervisors [5]. While this eliminates the broadcast step, it introduces I/O competition
between VM instances because they share a single disk content source. Obviously, a
centralized repository generates the highest contention, but is still a very popular choice
due to simplicity [12]. Using a decentralized storage solution (such as a parallel file sys-
tem [13–15] or a dedicated repository [16]) reduces contention thanks to striping, but
is only partially effective in our case, because the VM instances often access the same
chunks in the same order. In our previous work [7], we show how to alleviate this issue
by means of adaptive prefetching, however I/O contention to the repository is still a
potential problem for scalability.

Another emerging direction that relates to multi-deployment is user-level virtualiza-
tion [17]. The idea here is to use a minimally configured OS and virtual disk on top of
which application packages and configuration files are applied on-the-fly during boot
time. In this context, the same content propagation principles that apply at low level
(i.e., virtual disk chunks) can be used for higher level contents (i.e., packages and con-
figuration files).

Finally, there are several ways to complement multi-deployments with additional
optimizations. A straightforward optimization is to use the local storage available on
the compute nodes as a caching layer for VM images [18]. While this does not im-
prove first-time deployments, given the dynamicity of the cloud, many VM images pass
through the same compute node during its lifetime, effectively increasing the chance to
avoid a first time accesses for certain members of the multi-deployment group. How-
ever, given the large variety of VM image templates in a cloud, it is highly probable
to quickly run out of local storage if full caching is attempted. Luckily, VM images
share a large amount of content between each other, which makes de-duplication [19]
an effective tool to leverage local storage more efficiently.

Our own approach tries to leverage the best trade-off between VM disk content
broadcast and on-demand access. Much like on-demand techniques we distribute only
the needed content on-the-fly, but at the same time we avoid remote I/O contention and
access latency by involving the VM instances in a collaborative chunk exchange proto-
col in a manner similar to peer-to-peer approaches. To the best of our knowledge, we
are the first to explore this direction.
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3 Our Approach

3.1 Design Principles

Copy-on-Reference Local Mirroring: To facilitate on-demand VM disk image ac-
cess, we leverage copy-on-reference, initially introduced for process migration in the
V-system [20]. To this end, our approach exposes a private local view of the virtual disk
image stored remotely on the VM repository to the hypervisor. We call this local view
a mirror. From the perspective of the hypervisor, the local mirror behaves like the orig-
inal and it is functionally equivalent to a local copy using pre-broadcast. The mirror is
logically partitioned into fixed-sized chunks. Whenever the hypervisor needs to read a
region of the image, all chunks covered by the region that are not already locally avail-
able are fetched remotely from the original source and copied (i.e., “mirrored”) locally.
Once all contents is available locally, the read can proceed. Writes behave in a similar
fashion, except for those chunks that are totally overwritten: in this case no remote fetch
is necessary.

Preventive Peer-to-Peer Content Exchange: As explained in Section 2, on-demand
access has a serious disadvantage as it generates I/O access contention to the remote
repository where the VM disk image is stored. Although copy-on-reference limits this
effect to first-time reads only (because the local mirror gradually becomes populated),
by itself this is often not enough, as most access patterns need to read data only once
(e.g., read configuration files during the boot process or sweep through an input data set
in order to perform a computation). Thus, optimizing first-time reads becomes a prime
concern. Since the VM instances of multi-deployments often follow a similar access
pattern, a natural idea in this context is to enable the VM instances to talk to each other
and “help” each other out in order to reduce the pressure on the remote repository.
Based on the observation that I/O contention leads to jitter [7] (i.e., slight differences in
time when the same chunk is accessed), we propose to organize the VM instances in a
peer-to-peer topology where each VM has a set of neighbors, with whom it “gossips”
about the chunks that should be fetched on-demand. Based on this information, VMs are
able to anticipate future trends in access pattern and obtain chunks from their neighbors
before they are actually needed, effectively preventing costly remote accesses if the
anticipation was successful.

Access Pattern Aware Content Exchange Throttling: Preventive peer-to-peer con-
tent exchange however is not without drawbacks. Although the performance overhead
of exchanging chunks can be masked by decoupling it from on-demand access and run-
ning it as a background process, it invariably leads to network bandwidth utilization.
This steals away bandwidth from the application running inside the VM instance and
might even impact the on-demand access bandwidth. Therefore, it is crucial to “focus
the gossiping” such that it maximizes the prediction rate, and thus minimizes the band-
width wasted on obtaining chunks that were never needed. To this end, we propose to
monitor the success rate in terms of number of chunks that were fetched locally but
not yet accessed (which we refer to as unmatched). When the number of unmatched
chunks reaches a predefined threshold, we assume the VM has started to exhibit an ac-
cess pattern that diverges from the rest of the neighborhood and as such it will avoid
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sending chunks until the number of unmatched chunks falls below the threshold. Using
this scheme, each VM dynamically adapts to the access pattern in relationship to the
other VMs, nurturing its collaborations when it senses a common pattern, and backing
off when it senses a divergence. To avoid the case when VMs converge again without
lowering the amount of unmatched chunks accumulated in the past, one solution is to
automatically eliminate unmatched chunks older than a predefined time window. For
simplicity, we opted not to address this case for the purpose of this work.

3.2 Algorithmic Description

In this section, we zoom on the design principles presented in Section 3.1 by providing
an algorithmic description. For simplicity, we insist only on the most important aspects,
in particular how a read and a write is performed and how to decouple the peer-to-peer
preventive exchange scheme from on-demand access and perform it asynchronously in
the background.

Algorithm 1. Read the range (offset, size) into buffer from disk image
1: function READ(buffer, offset, size)
2: for all chunk ∈ Image|chunk ∩ (offset, size) �= ∅ do
3: if ChunkState[chunk] = REMOTE then
4: fetch chunk from repository and mirror it locally
5: if unmatched < THRESHOLD then
6: HintQueue ← HintQueue ∪ {chunk}
7: end if
8: ChunkState[chunk] ← READ
9: else if ChunkState[chunk] = LOCAL then

10: unmatched ← unmatched− 1
11: ChunkState[chunk] ← READ
12: end if
13: end for
14: return read (offset, size) into buffer from Mirror
15: end function

Each chunk of the virtual disk image can be in one of the four possible states (de-
noted ChunkState): REMOTE (the chunk was not yet locally fetched), LOCAL
(the chunk was obtained through gossiping and is locally present, but was not yet
needed), READ (the chunk was requested by a read operation) and WRITTEN (the
chunk was overwritten either totally or partially).

The READ operation is detailed in Algorithm 1. In a nutshell, it determines all
chunks that are missing locally and fetches them from the remote repository, after which
it redirects the read request to the local mirror. If any chunk triggered on-demand access
(i.e., was in the REMOTE state), it is scheduled to be sent to the neighbors through
HintQueue, which is then used by the preventive exchange. This happens only if the
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number of unmatched chunks is lower than the threshold. On the other hand, if any
chunk is already available locally thanks to preventive exchange, the number of un-
matched chunks is decremented. In both cases, ChunkState transitions into READ,
in order to reflect the new state.

Algorithm 2. Write the range (offset, size) from buffer to disk image
1: function WRITE(buffer, offset, size)
2: for all chunk ∈ Image|chunk ∩ (offset, size) �= ∅ do
3: if ChunkState[chunk] = REMOTE and chunk �⊂ (offset, size) then
4: fetch chunk \ (offset, size) from repository and mirror it locally
5: end if
6: ChunkState[chunk] ← WRITTEN
7: end for
8: return write (offset, size) from buffer to Mirror
9: end function

The WRITE operation, depicted in Algorithm 2 simply needs to make sure that there
are no missing chunks that are only partially overwritten and thus will generate gaps. If
this is not the case, it fetches the missing content from the remote repository in order to
fill those gaps. In either case, it marks all involved chunks as WRITTEN and finally
redirects the write to the mirror.

Algorithm 3. Asynchronous preventive chunk exchange with other peers
1: procedure BACKGROUND EXCHANGE
2: while true do
3: if chunk received from neighbor and ChunkState[chunk] = REMOTE then
4: mirror chunk locally
5: ChunkState[chunk] ← LOCAL
6: unmatched ← unmatched+ 1
7: end if
8: if HintQueue �= ∅ then
9: chunk ← POP FRONT(HintQueue)

10: if ChunkState[chunk] �= WRITTEN then
11: send chunk to all neighbors
12: end if
13: end if
14: end while
15: end procedure

Finally, the preventive chunk exchange scheme is performed asynchronously inside
BACKGROUND EXCHANGE, detailed in Algorithm 3. In a nutshell, it listens for
gossips about new chunks from all its neighbors and whenever it receives one that cor-
responds to a chunk that is missing locally, it fetches that chunk and mirrors it locally,
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Fig. 1. Cloud architecture that integrates our approach (dark background)

incrementing the number of unmatched chunks. At the same time, if the READ oper-
ation enqueued any hints about on-demand chunks inside HintQueue and the corre-
sponding chunks were not overwritten in the mean time, then it informs all its neighbors
about these new chunks.

Note that we opted for an optimistic scheme based on push, which improves latency
compared to sending just the chunk id and waiting for a pull request. This technique
favors the setting we explored in this work: small neighborhoods with a simple ring
topology (See Section 4). However, with increasing neighborhood size it is more likely
that a VM receives the same chunk from multiple sources, thus a push approach might
unnecessarily waste bandwidth and create more overhead. Nevertheless, our algorithms
require minimal changes to support a pull approach.

3.3 Architecture

We depict a simplified IaaS cloud architecture that integrates our approach in Figure 1.
For better clarity, the building blocks that correspond to our own approach are empha-
sized with a darker background.

The VM image repository is the storage service responsible to hold the VM disk
image templates used as the source of multi-deployments. The only requirement for the
VM image repository is to be able to support random-access remote reads, which gives
our approach high versatility to adapt to a wide range of options: centralized approaches
(e.g., NFS server), parallel filesystems or other dedicated services that specifically target
VM storage and management [16, 21].

The cloud client has direct access to the VM image repository and is allowed to
upload and download VM images from it. Furthermore, the cloud client also interacts
with the cloud middleware through a control API that enables launching and terminating
multi-deployments. In its turn, the cloud middleware will interact with the hypervisors
deployed on the compute node to instantiate the VM instances that are part of the multi-
deployment.

Each hypervisor interacts with the local mirror of the VM disk image as if it were a
full local copy of the VM disk image template. To facilitate this behavior, the mirroring
module acts as a proxy that traps all reads and writes of the hypervisor and takes the
appropriate action: it populates the local mirror on-demand only in a copy-on-reference



312 B. Nicolae and M.M. Rafique

fashion while using the peer-to-peer chunk exchange protocol described in Section 3.1
to pre-populate regions that are likely to be accessed in the future based on the collective
access pattern trend.

3.4 Implementation

We implemented the mirroring module as file system in userspace on top of FUSE [22].
This has several advantages in our context: (1) it is transparent to the hypervisor (and
thus portable); (2) it enables easy interfacing with any remote storage repository (since
it is a userspace implementation) and (3) it is easy to integrate into existing cloud mid-
dleware, as it enables us to emulate a behavior that is functionally equivalent to pre-
broadcast.

To facilitate efficient on-demand access and copy-on-write support at kernel level,
we map the remote VM disk image template into the memory of the host using the
mmap system call. Since the kernel automatically manages memory page faulting and
implicitly fetches any missing remote content, reads and writes are greatly optimized as
they effectively translate to simple memory copy operations. Similarly, any chunks that
were obtained through the preventive chunk exchange scheme can be mirrored locally
again by simple memory copy operations.

The preventive copy-on-write chunk exchange scheme runs in its own thread, which
communicates with the main FUSE thread through the data structures presented in Sec-
tion 3.2. The communication between the mirroring modules is implemented on top of
Boost ASIO [23], a high performance asynchronous event-driven library which is part
of the Boost C++ collection of libraries. Since the preventive peer-to-peer exchange
scheme is not a pre-condition for correctness (i.e. our approach works even when no
exchange is happening), we have opted for a lightweight solution that performs gos-
siping through UDP sockets. This has the potential to significantly reduce networking
overhead at the cost of unreliable communication, which is a perfectly acceptable trade-
off in our case, as we can afford to occasionally lose hints about chunks.

4 Evaluation

This section evaluates the scalability of our approach experimentally for a series of
multi-deployment scenarios.

4.1 Experimental Setup

The experimental platform used to run our experiments is Grid’5000 [8]. For the pur-
pose of this work, We reserved 100 nodes of the graphene cluster. The nodes are outfit-
ted with x86 64 CPUs offering hardware support for virtualization, local disk storage
of 277 GB (access speed�55 MB/s) and 16 GB of RAM. The nodes are interconnected
with Gigabit Ethernet (measured: 117.5 MB/s for TCP sockets with MTU = 1500 B with
a latency of �0.1 ms). The hypervisor running on all compute nodes is QEMU/KVM
1.2.0, while the operating system is a recent Debian Sid Linux distribution. For all ex-
periments, a 4 GB raw disk image file based on the same Debian Sid distribution was
used.
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Fig. 2. Scalability of multi-deployments: throughput under concurrent on-demand access when
reading 512 MB of the virtual disk using dd

4.2 Methodology

We compare our approach (presented in Section 3.4) to the most widely used on-
demand access technique in practice: local copy-on-write files that are derived from
a shared backing file that is stored remotely. To enable copy-on-write, we rely on the
QCOW2 [5] image format, which is part of standard QEMU/KVM distribution. The
backing file is shared through a NFS server. In order to deploy a VM instance, we create
a fresh qcow2-derived file on the local disk of the compute node where the hypervisor
is running and use this file as the VM disk image. For the rest of this paper, we denote
this approach nfs−qcow2. Our approach uses the same backing file for local mirroring.
With respect to the peer-to-peer topology, we opted for a ring: each mirroring module
is linked to the mirroring module that is deployed on next compute node in a predefined
ordering of all compute nodes. The Threshold was fixed at 128, while the chunk size
is fixed at 32 KB. We denote this setting our−approach.

The experiments consist in deploying an increasing number of VM instances concur-
rently, each on a dedicated compute node. Each VM instance boots and then reads the
first 512 MB of its virtual disk (dd if =/dev/sda of=/dev/ null count=1M). This sim-
ulates a read-intensive data access pattern (e.g. as sweeping through an input file) that
is exhibited by all members of the multi-deployment in parallel and that generates high
contention to the remote repository. We record the throughput of dd for every VM in-
stance, as well as various other statistics gathered during the runtime of our−approach
that relate to its internal workings.

4.3 Results

Figure 2 depicts the throughputs of the fastest and respectively the slowest VM instance
for an increasing multi-deployment size. As can be observed, the fastest instance in the
case of nfs−qcow2 experiences a significant drop in throughput with increasing number
of VM instances (Figure 2(a)). This is expected because of increasing I/O pressure on
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the NFS server. Our approach on the other hand achieves the exact opposite: not only
does it start better (showing that preventive chunk exchange successfully avoids access
to the NFS server even in a group of 2), but it also exhibits a dramatic increase in
throughput as the number of VM instances is growing (showing that more VMs provide
better chunk exchange opportunities). At the other extreme, even the slowest instance
(Figure 2(b)) benefits from chunk exchange, albeit at lesser extent.

To put these results in perspective, Figure 3(a) depicts the average throughput
achieved by the VM multi-deployment group as a whole. As expected, the increas-
ing I/O pressure on the NFS server leads to a noticeable drop in both cases. However,
when increasing the multi-deployment size beyond two, a stable gain of at least 30%
more throughput is noticeable for our−approach when compared to nfs−qcow2.

To better understand the contribution of preventive chunk exchange to this result,
we illustrate in Figure 3(b) the total size corresponding to how many chunks were
unmatched (i.e., exchanged but never needed for a read), successful (i.e., exchanged
and later contributed to avoid a remote NFS access) and too−late (i.e., exchanged but
arrived too late to avoid a remote NFS access during an on-demand read). It can be ob-
served that due to high similarity in the access pattern, almost all chunks are matched to
a later read. This is observable by inspecting unmatched, which maintains a negligible
level (less than �10 MB) even for a large 100 node multi-deployment. Combined with
a steady increasing trend for successful , this effectively explains the why the average
throughput has a steady gain itself. However, it can also be noted that too−late is larger
than successful , which shows that under high read pressure (as is our case) there is a
high chance that a chunk is needed before it can be exchanged.

5 Conclusions

This paper introduced a novel multi-deployment technique based on augmented on-
demand remote access to the VM disk image template. Being on-demand, it avoids an
expensive full pre-broadcast, while at the same time it pioneers the idea of exchanging
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chunks between multi-deployment members on-the-fly, in an effort to anticipate and
prevent bottlenecks due to concurrent access to the remote repository where the VM
disk image template is stored.

Our scheme is highly scalable, maintaining on the average a steady 30-40% improve-
ment in read throughput compared to simple on-demand schemes in which the members
of the multi-deployment are independent of each other. This is possible thanks to jitter
between the VM instances, which enables the faster instances to effectively forward
their chunks to slower instances in order to help them out. The results of this effect
are dramatic: some instances become up to 4x faster compared to simple on-demand
access.

Thanks to these encouraging results, we plan to further investigate the potential ben-
efits of collaborative chunk exchange. In particular, we experienced a high number of
chunks that arrived too late to be of use and thus an interesting direction to explore is
how to avoid such chunks. Furthermore, as discussed in Section 3.2, we did not explore
how to choose the optimal neighborhood size / topology and whether a pull scheme
(i.e. push only chunk id as hint to others and prefetch chunk contents from others)
might work better under the right circumstances. We plan to perform a deeper analysis
in these areas.
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of Research through the ACI GRID incentive action, INRIA, CNRS and RENATER
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Abstract. Due to the increasing use of Cloud computing services and
the amount of energy used by data centers, there is a growing interest
in reducing energy consumption and carbon footprint of data centers.
Cloud data centers use virtualization technology to host multiple vir-
tual machines (VMs) on a single physical server. By applying efficient
VM placement algorithms, Cloud providers are able to enhance energy
efficiency and reduce carbon footprint. Previous works have focused on
reducing the energy used within a single or multiple data centers without
considering their energy sources and Power Usage Effectiveness (PUE).
In contrast, this paper proposes a novel VM placement algorithm to
increase the environmental sustainability by taking into account dis-
tributed data centers with different carbon footprint rates and PUEs.
Simulation results show that the proposed algorithm reduces the CO2

emission and power consumption, while it maintains the same level of
quality of service compared to other competitive algorithms.

Keywords: Cloud computing, Data center, Energy efficiency, Carbon
footprint, Virtual machine placement.

1 Introduction

The information and communication technology industry (ICT) consumes an
increasing amount of energy and most of it is consumed by data centers [8]. A
major consequence of this amount of energy consumption by data centers is a
significant increase in ecosystem carbon level. According to Gartner, the ICT
industry produces 2% of global CO2 emission, which places it on par with the
aviation industry [22]. Therefore, reducing even a small fraction of the energy
consumption in ICT, results in considerable savings in financial and carbon
emission of the ecosystem.

Cloud computing offers a wide range of services and applications to its users.
Three main services that Clouds provide are infrastructure, platform, and soft-
ware as a service. Infrastructure as a service (IaaS) allows users to run their ap-
plications in form of virtual machines (VMs) on a shared infrastructure. Cloud
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data centers take advantage of virtualization technology [7] to share a physi-
cal server’s resources among multiple VMs. Each VM has its own characteristics
and depending on the resource usage, it consumes energy and leaves carbon foot-
print. By the arrival of each VM request, the Cloud manager selects the physical
resource to instantiate the request. VM placement in Cloud computing system
is a complex task and if cannot be done effectively, it leads to high energy usage
and high carbon footprint.

Thus, wisely taking into account parameters that affect VM placement and
physical server selection result in less energy consumption and less carbon foot-
print. Distributed Cloud data centers, alongside with bringing high availability
and disaster recovery, provide the opportunity to have different energy sources.
Carbon footprint rate of energy sources is an important parameter, since data cen-
ters use electricity driven by these sources to run VMs. By having different energy
sources in different data center sites or within a data center site, Cloud providers
should increase the use of more clean and off-grid renewable energies [24]. Power
usage effectiveness (PUE) is coined by the Green Grid consortium [14] and in-
dicates the energy efficiency of a data center. PUE is a ratio of total power con-
sumed by the data center to its power consumed by IT devices. Providers can
consider PUE as a parameter to performVM placement among different data cen-
ter sites. Proportional power is another parameter that can be taken into account
for VM placement. Server proportional power has a cubic relation with CPU fre-
quency [17]. Therefore, considering the increase in CPU frequency, which is related
to increase in CPU utilization upon new request arrival, will have a great impact
on the amount of energy consumption in data centers.

This paper proposes a VM placement algorithm by considering distributed
Cloud data centers with the objective of minimizing carbon footprint. Our pro-
posed Cloud computing system, Energy and Carbon-Efficient (ECE) Cloud ar-
chitecture, benefits from distributed Cloud data centers with different carbon
footprint rates, PUE value, and different physical servers’ proportional power.
ECE Cloud architecture places VM requests in the best suited data center site
and physical server. The main contributions of this paper are: an Energy and
Carbon-Efficient Cloud architecture, based on distributed Cloud data centers;
an efficient VM placement algorithm that integrates energy efficiency and car-
bon footprint parameters; a comprehensive comparison on carbon footprint and
power consumption for different VM placement algorithms with respect to qual-
ity of service (number of rejected VMs).

The reminder of the paper is organised as follows. In Section 2 the related
work is discussed. Section 3 presents the proposed Cloud architecture with its
components, VM placement algorithm, and formulates the objective. The per-
formance evaluation results and the experimental environment are presented in
Section 4. Section 5 concludes the paper and presents future works.

2 Related Work

There is a growing body of literature that aims to reduce the amount of carbon
dioxide of Cloud services in data centers. Most of the works in this area focus
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on reducing the energy consumption in a single data center or considering the
data center hardware aspects [6] [5]. Well-known technologies that data centers
benefit from by applying virtualization technology [7] are VMs migration [15] and
consolidation [23]. The main problem with migration and consolidation is that
they are complex and, due to the need for resuming and suspending VMs cause
overhead to the system [10]. Moreover, these technologies act reactive whereas
applying preventive technologies are more efficient.

As idle servers consume almost half of the power when they are in the peak
power state [4], work by Lin et al. [18] uses a dynamic right-sizing on-line algo-
rithm to predict the number of active servers that are needed for the arriving
workload to the data center. Based on their experiments, dynamic right-sizing
can achieve significant energy savings in the data center, but it requires servers
to have different power levels and be able to transit to different states. A similar
work done by Lefevre et al. [16] proposes Green Open Cloud (GOC) architec-
ture, with advance resource reservation for users to improve the prediction of
the arrival requests.

The above mentioned technologies are adopted within a data center and in-
tend to reduce the energy consumption, whilst they do not particularly consider
carbon emission. Reducing data center energy consumption does not necessar-
ily lead to reduce in carbon footprint. Works by Aksanli et al. [3] and Goiri
et al. [12] consider the availability of both non-polluting (green) and pollut-
ing (brown) energy sources in a single data center. They use prediction-based
scheduling algorithms to increase usage of green energy sources.

Liu et al. [19] consider reducing the carbon footprint of data centers by con-
sidering multiple data center sites. They proposed an algorithm to efficiently
use the renewable energies, such as wind and solar, in different places. This
algorithm uses the idea of geographic diversity of data center sites and unpre-
dictability of renewable energies to find the optimal percentage of wind/solar
energies in order to reduce the brown energy consumption. Garg et al. [11] also
consider reducing carbon footprint of Cloud data center sites. They proposed
a novel carbon-aware green Cloud architecture, which uses two directories for
Cloud providers to register their offered services.

Our work is different from the previous works, since we address the problem
of increase in carbon footprint of the Cloud data centers by performing efficient
VM placement. Our proposed method accommodates VM requests by consider-
ing distributed data center sites of a Cloud provider, with various energy sources
and carbon footprint rates. Moreover, we consider data centers’ PUE, physical
servers’ proportional power usage, and user VM requests of different types. Fi-
nally, we present an energy and carbon-efficient algorithm that uses two level
decision making for VM placement.

3 System Model

In this section, Energy and Carbon-Efficient (ECE) Cloud architecture is de-
scribed. This architecture assures system quality of service, while minimizing
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the Cloud carbon footprint by applying an energy and carbon-efficient heuristic
for VM placement.

3.1 ECE Cloud Architecture

The proposed architecture is represented in Figure 1. The system consists of the
following components and symbols used in this paper are presented in Table 1:

Table 1. Description of Symbols

Symbol Description Symbol Description

d Number of Data Center Sites P Proportional Power

c
Number of Clusters at each
Data Center

Pfixed
Server Power Consumption in Idle
State

h Number of Hosts at each Cluster Pf
Server Power Consumption at
Frequency f

cf
Data Center/Cluster Carbon
Footprint Rate

fu
CPU Operating Frequency at
Utilization u

CF Cloud Total Carbon Footprint type Virtual Machine Instance Type

ht Virtual Machine Holding Time core, pu
CPU Cores and Total Processing
Unit

ram,storage RAM and Storage bw Network Bandwidth

Cloud Users: Cloud Users send their VM requests based on predefined re-
quirements to the Cloud provider. Virtual machine types and configurations
are inspired by Amazon Elastic Compute Cloud (EC2) [1]. The expected re-
quirements for each VM are specified by its predefined configurations in terms
of required number of cores, processing unit of each core, storage, RAM, and
network bandwidth. In addition, holding time of a VM depends on the appli-
cation runs on that VM. We consider two types of applications in this paper:
bag-of-tasks and web-requests. Every requested VM by users has the following
requirements: (ht, type), where each type consists of the following components:
{cores, pu, ram, storage, bw}. Cloud computing system load at time t, according
to the running VMs, is represented as:

load =
d∑

i=1

c∑
j=1

h∑
k=1

vm(i,j,k,t).

Cloud Provider: A Cloud provider has several geographically distributed data
center sites. Each data center is composed of several clusters with various hetero-
geneous physical servers. Physical servers are characterised by CPU cores, CPU
processing unit, amount of RAM, storage, and network bandwidth. In addition
to the physical servers configuration, each data center has its own energy-related
parameters, shown by PUE and proportional power. Moreover, each data center
can have one or more energy sources with different carbon footprint rates.

ECE Cloud Information Service: Each data center site registers its charac-
teristics in the ECE Cloud information service (ECE-CIS) and they keep their
information updated. This information includes available physical resources and
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Fig. 1. Energy and Carbon-Efficient (ECE) Cloud Architecture

energy related parameters; such as data center PUE, energy source(s), carbon
footprint rate, and physical servers’ current utilization and power consumption.
Cloud broker uses this information to perform ECE VM placement in Cloud
computing environment.

ECE Cloud Broker: ECE Cloud Broker is the Cloud provider’s interface with
Cloud users. It receives user requests and schedules them based on their prede-
fined requirements. Despite users request scheduling, broker should also ensure
energy efficient data centers with minimum carbon footprint for Cloud providers.

Resources on the Cloud provider are physical servers in the clusters within
each data center. The broker receives the current status of data centers’ phys-
ical resources and their energy information from ECE-CIS, and based on this
information, assigns the VM to a physical server in a data center site. Based
on [25], in today’s Internet and core networks design, average number of hops a
packet passes from source to destination is between 12-14 hops. Therefore, we
can have data center site selection without considering network distance; espe-
cially for sites that are located in a region, such as different states in USA, as
we considered in this paper.

3.2 Placement Decision

As stated before, the broker makes the placement decision based on the data
centers’ power usage effectiveness (PUE), energy sources carbon footprint rate,
and proportional power.

The PUE indicates the energy efficiency of a data center and is a metric to
compare different data center designs in terms of electricity consumption. Data
center’s PUE is calculated as:
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PUEi =
DatacenteriTotalPowerConsumption

DatacenteriITDevicesPowerConsumption
,

where the total power consumption is sum of power drawn by cooling, lightening,
and IT equipment. PUE is a value larger than 1 (PUE ≥ 1). PUE of 1.0 means
100% of the data center’s electricity goes to the IT part and is ideal for any data
center, but is unattainable pragmatically. In other words, the smaller the PUE,
the more energy efficient the data center.

Data center proportional power is the next important metric in physical server
selection. According to the experiments by Lien et al. [17] server’s power con-
sumption depends on the system base power and the CPU frequency, and the
CPU frequency itself depends on the CPU utilization. The data center propor-
tional power, also known as dynamic power, is calculated as: P = Pfixed+Pf×f3

u.
The power consumption for a VM on physical server k in cluster j of data center
i at time t is modeled as: P (vm(i,j,k,t)).

According to the above mentioned metrics the objective is to minimize to-
tal carbon footprint of the Cloud provider, CF , for time interval [0, T ], and is
computed as follows:

CF =

T∑
t=1

d∑
i=1

(PUEi ×
c∑

j=1

(cfj ×
h∑

k=1

(P (vm(i,j,k,t))× ht))),

subject to following constraints:

d∑
i=1

c∑
j=1

h∑
k=1

vmcore
(i,j,k) ≤ hostcore(i,j,k),

d∑
i=1

c∑
j=1

h∑
k=1

vmpu
(i,j,k) ≤ hostpu(i,j,k),

d∑
i=1

c∑
j=1

h∑
k=1

vmram
(i,j,k) ≤ hostram(i,j,k),

d∑
i=1

c∑
j=1

h∑
k=1

vmstorage
(i,j,k) ≤ hoststorage(i,j,k) .

The above mentioned constraints ensure that allocated resources to the VMs on
a physical server do not exceed the total capacity of the server.

3.3 Energy and Carbon-Efficient (ECE) Heuristic for VM
Placement

By the arrival of each VM request the broker has (d × c × h) different VM
placement options. The VM placement problem can be seen as a bin-packing
problem with different bin sizes (physical servers). Therefore, we propose the
Energy and Carbon-Efficient (ECE) VM placement algorithm (Algorithm 1),
which is a derivation of the best-fit heuristic to place the VMs in the data cen-
ter, cluster, and host with the minimum carbon footprint, PUE, and minimum
increase in physical server’s power consumption.
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Algorithm 1. Energy and Carbon-Efficient (ECE) VM Placement Algorithm

Input: datacenerList, clusterList, hostList
Output: destination
while vmRequest do1

Get data centers’ Information from ECE-CIS;2

foreach datacenter in datacenterList do3

Add clusterList into aggregateClusterList;4

Sort aggregateClusterList in an ascending order of (PUE × cf);5

foreach cluster in aggregateClusterList do6

foreach host in hostList do7

P1 ← Get current hostDynamicPower;8

P2 ← Calculate hostDynamicPower after initiating the vm;9

�P ← P2 − P1;10

Sort hostList in an ascending order of �P ;11

foreach host in hostList do12

if host is suitable for vm then13

destination ← (datacenter, cluster, host);14

return destination;15

destination ← null; //rejection of request;16

return destination;17

The broker receives a VM request and selects the best physical server for
the VM. Its objective is to minimize the data centers’ carbon footprint and ac-
cordingly power consumption. Therefore, ECE placement algorithm gets data
centers’ resources and energy status from ECE-CIS, upon the arrival of a new
VM request (Line 2). According to the received information, ECE adds the clus-
ters of all the data centers into an aggregated cluster list (Lines 3-4), and sorts
the new list based on the minimum (PUE× cf) (Line 5). By receiving the data
centers and clusters status, ECE calculates the amount of power consumption
that will be added to each host after initiating the new VM (Lines 8-10). Af-
terwards, ECE sorts the hosts list based on the estimated $P (Line 11), and if
the host has enough resources for the VM (Line 13), it submits the VM to the
selected data center, cluster, and host.

In order to show the time complexity of Algorithm 1, we consider v VM
requests. Line 3-4 take O(d), and the sort function at Line 5 can be done in
O(dc log(dc)). Lines 7-9 need O(h) time, and the sort function for hosts at Line 11
needs O(h log(h)) to be done. Lines 12-15 take O(h), in the worst case. Thus, the
total running time of the algorithm is O(v(d+dc log(dc)+dc(h+h log(h)+h))).
Since there are small number of data center sites and clusters (dc) for a Cloud
provider, the complexity of this algorithm is dominated by the number of VM
requests and hosts sort function. The total time complexity of the algorithm is
O(vdch log(h))).
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4 Performance Evaluation

We use the CloudSim toolkit [9] to evaluate the Cloud computing virtualized
environment. We have extended CloudSim to enable energy and carbon-efficient
VM placement simulations. Apart from being aware of data center’s PUE, carbon
footprint rate, and dynamic power, the extended package has the ability to
simulate dynamic VM requests with different instance types.

In order to evaluate the proposed algorithm, we modeled an IaaS provider
with 4 data center sites, and each site with 90 heterogeneous physical servers.
Each data center has a unique PUE value and 2 clusters with different carbon
footprint rates. Table 2 shows data centers’ PUE value and carbon footprint rate
for different group of clusters. The PUE value is based on the work by Green-
berg et al. [13], and is in the range [1.56, 2.1]. Data centers’ carbon footprint
rates, the last column of Table 2, are extracted based on the information from
US Department of Energy, Appendix F, Electricity Emission Factors [2]. In this
simulation, we use 5 different physical servers whose characteristics are given in
Table 3. According to the linear relationship between CPU utilization and fre-
quency, and the cubic relation between CPU frequency and system proportional
power, the following is the power models for the platforms:

CPU Frequency(in GHz): {f(u) : (1.4, 1.57, 1.74, 1.91, 2.08, 2.25, 2.42, 2.6, 2.77, 2.94, 3.11)}
Power Model1(in Watt): {Pf : (60, 63, 66.8, 71.3, 76.8, 83.2, 90.7, 100, 111.5, 125.4, 140.7)}

Power Model2(in Watt): {Pf : (41.6, 46.7, 52.3, 57.9, 65.4, 73, 80.7, 89.5, 99.6, 105, 113)}

VM characteristics are inspired by Amazon EC2 instance types given in Table
4. The physical resources to the VMs are allocated based on the VM resource
requirements and all the VMs are considered to perform at the maximum uti-
lization during their lifetime. The VM type and the number of VMs requested
by users depend on the user type (bag-of-tasks or web-requests), and are based
on the related probabilities. The VM type related probability is shown in the
last column of Table 4 and is derived from the work by Mills et al. [21].

In order to generate the workload, we need VM requests arrival rate and
holding time. The Lublin-Feitelson [20] workload model is employed to generate
the bag-of-tasks VM requests. We take benefit of Lublin to set arrival request
parameters, including simulation duration, number of requests, requests arrival
time, and request holding time. We consider each generated request in Lublin as a
VM request. In order to generate VMs with longer holding time, we increased the
first parameter of the Gamma distribution and left other Lublin parameters with
their default value. To generate the web-requests, we use the same arrival time
model of bag-of-tasks requests, and for the holding time we use a hyper gamma
distribution with expectation value 73 and variance 165. For both workloads, we
omit 5% of created requests at the start (warm-up period) and end (cool-down
period) of the simulation to get a steady environment. We apply 240-hour long
workload with different number of requests. Finally, for the purpose of accuracy,
each experiment is repeated 30 times and the mean is reported for measured
values for experimental results.
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Table 2. Data Centers Characteristics

Data Center Site PUE
Carbon Footprint Rate
(Tons/MWh)

DC1 -Oregan, USA 1.56 0.124, 0.147
DC2 -California, USA 1.7 0.350, 0.658
DC3 -Virginia, USA 1.9 0.466, 0.782
DC4 -Dallas, USA 2.1 0.678, 0.730

Table 3. Platform Types Characteristics

Platform
Type

Number
of Cores

Core
Speed
(GHz)

Memory
(GB)

Storage
(GB)

Network
Bandwidth
(Mbps)

Bits
Power
Model

Platform1 2 2 16 2000 1000 B32 PowerModel1
Platform2 4 4 32 6000 1000 B64 PowerModel1
Platform3 8 4 32 7000 2000 B64 PowerModel2
Platform4 8 8 64 7000 4000 B64 PowerModel2
Platform5 8 16 128 9000 4000 B64 PowerModel2

4.1 Results

We use the described workload data to compare the proposed VM placement
algorithm with respect to carbon and power efficiency with four competing algo-
rithms. The first algorithm is a version of ECE, that its data center and cluster
selection is same as ECE, and uses first-fit bin-packing for host selection. We
refer to this algorithm as Carbon-Efficient First-Fit (CE-FF). The other group
of algorithms are three bin-packing heuristics that use first-fit heuristic for data
center/cluster selection, without considering carbon footprint parameters. First-
Fit Power-Efficient (FF-PE) uses power-efficient policy for host selection (same
as ECE host selection). First-Fit Most-Full First (FF-MF) selects the physi-
cal server with least available resources. Finally, the last algorithm uses first-fit
heuristic for data center, cluster, and host selection (FF-FF).

Figure 2a illustrates the carbon footprint of ECE in comparison with other
placement algorithms under different number of VM requests. Based on the
experiments, as the number of VMs increases, the system utilization increases
as well to the point that system performs with highest utilization and reaches
to the saturation point. Therefore, increase in system load leads to increase
in the total carbon footprint in data centers. Based on the Figure 2a, ECE
in comparison to CE-FF (carbon-efficient) and other heuristics (non carbon-
efficient) reduces carbon footprint with an average of 10% and 45% respectively.
The same behaviour can be seen for the data centers’ power consumption in
Figure 2b. The ECE algorithm has lower power consumption in comparison to
the other algorithms and consumes on average 8% and 20% less power than
CE-FF and other heuristics placement algorithms respectively. Considering the
differences between algorithms behaviour in both figures, we can infer that just
considering power-efficient parameters is not enough to reduce the data centers’
carbon footprint. However, taking into consideration data centers’ energy and
carbon rate parameters, at the same time, leads to significant reduction in terms
of Cloud computing system carbon footprint and consumed power.
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Table 4. VM Types and Simulated User Types; (Bag-of-Task Users (BT) and Web-
Request Users (WR))

VM Type
Number
of
Cores

Core
Speed
(GHz)

Memory
(MB)

Storage
(GB)

Network
Bandwidth
(Mbps)

Bits
Probability
and
UserType

Standard
Instances

M1Small 1 1 1740 160 500 B32 0.25-BT

M1Large 2 4 7680 850 500 B64
0.12-WR
0.25-BT

M1XLarge 4 8 15360 1690 1000 B64 0.08-WR
High Memory
Instances

M2XLarge 2 6.5 17510 420 1000 B64 0.12-WR
M22XLarge 4 13 35020 850 1000 B64 0.08-WR

High CPU
Instances

C1Medium 2 5 1740 320 500 B32 0.1-BT
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(b) Power Consumption

Fig. 2. Comparison of ECE Algorithm with other VM Placement Algorithms

Table 5. SLA Violation for Different VM Placement Algorithms

VM Placement
Algorithm

SLA Violation Under Different VM Requests
1000 1200 1400 1600 1800 2000

ECE 0.0% 0.05% 0.4% 2.9% 8.6% 13.0%
CE-FF 0.0% 0.0% 0.3% 0.7% 6.0% 11.4%
FF-PE 0.0% 0.0% 0.3% 2.5% 9.4% 15.3%
FF-MF 0.0% 0.0% 0.2% 2.5% 9.7% 15.3%
FF-FF 0.0% 0.0% 0.1% 2.6% 9.7% 15.3%

Table 5 shows the SLA violation under different system loads for different
VM placement algorithms. It shows that, the SLA violation (number of rejected
VMs) under low system load for ECE is slightly higher than the other algorithms.
However, by increasing system load, ECE will have lower SLA violation. Overall,
all the VM placement algorithms have close values for violation, while ECE
considerably reduces carbon footprint and power consumption.

5 Conclusion and Future Work

In this paper, the problem of VM placement to reduce Cloud computing en-
ergy consumption and carbon footprint is investigated. We used ECE Cloud
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information service (ECE-CIS), as part of next generation Cloud computing en-
vironment. ECE-CIS obtains energy and carbon related information from data
centers and enables the broker to carry out carbon and power-efficient VM place-
ment. We introduced the energy and carbon-efficient (ECE) VM placement al-
gorithm, and compared it with a carbon-efficient algorithm (CE-FF) and three
other heuristic algorithms (FF-PE, FF-MF, FF-FF). We performed the simula-
tions by extending CloudSim and used different VM instance types with different
holding times for the system workload. Based on the experiment results, ECE
can on average save up to 10% and 45% carbon footprint in the ecosystem in
comparison to CE-FF and three other heuristics respectively, while keeping SLA
violation level as the same. Moreover, ECE reduces the power consumption in
data centers by an average of 8% and 20% in comparison to CE-FF and other
three algorithms respectively; which illustrates the importance of considering
data centers’ carbon footprint rate and PUE to reduce Cloud computing carbon
footprint.

In the future, we plan to study the impact of different user applications and
VM holding times on the VM placement policies. Moreover, we want to explore
the effect of inter-data centers network distance and data locality on the Cloud
computing system carbon footprint.
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Abstract. Distributed parallel applications executed on heterogeneous
and dynamic environments need to adapt their configuration (in terms
of parallelism degree and parallelism form for each component) in re-
sponse to unpredictable factors related to the physical platform and the
application semantics. On emerging Cloud computing scenarios, recon-
figurations induce economic costs and performance degradations on the
execution. In this context, it is of paramount importance to define smart
adaptation strategies able to achieve properties like control optimality
(optimizing the application global QoS) and reconfiguration stability,
expressed in terms of number of reconfigurations and the average time
for which a configuration is not modified. In this paper we introduce a
methodology to address this issue, based on Control Theory and Opti-
mal Control foundations. We present a first validation of our approach
in a simulation environment, outlining its effectiveness and feasibility.

Keywords: Distributed Parallel Computations, Reconfigurations, Au-
tonomic Computing, Model-based Predictive Control.

1 Introduction

With the emergence of computational paradigms like Grid and Cloud Com-
puting, properties like reconfigurability and adaptiveness have gained more
importance [1,2]. In scenarios characterized by variable workload conditions and
dynamic execution environments the achievement of the desired Quality of Ser-
vice (QoS) requires to adapt the application configuration expressed in terms of
component identification, mapping onto physical resources, and proper selection
of a parallelism degree and a parallelism form (e.g. farming and data-parallelism
paradigms) for each component [3]. Such choices need to be applied to compu-
tations by performing run-time reconfiguration activities.

Reconfiguration processes can induce costs on the execution [3]. During a
switching from a configuration to another, it is important to take into account
several factors, such as the cost of the newly selected configuration (e.g. in
a pay-per-use execution environment dependent on the classes of dynamically
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provisioned computing resources [1]). The reconfiguration cost can also be pro-
portional to the ”amplitude” of the switch [2], i.e. a monetary charge and/or a
performance overhead proportional to the amount of allocated/deallocated com-
puting resources. Consequently, it is clear that reconfigurations do not come for
free, but they should be executed only when real benefits in terms of QoS can be
achieved.

Over the last years, many studies [3,4] about adaptiveness for distributed par-
allel applications have focused on providing run-time supports to dynamic recon-
figurations with the minimum impact on the computation performance (often
assuming dedicated execution environments). On the other hand, the problem
of defining powerful Adaptation Strategies is still an open research issue which
requires innovative approaches to performance modeling, to the achievement of
agreements between control decisions of different controllers, and to ensure the
minimization of operating costs related to the application execution.

In this paper we propose a novel approach based on a control-theoretic strat-
egy known as Model-based Predictive Control [5]. We control the parallelism
degree of distributed parallel computations organized as graphs of parallel com-
ponents. Each component features a local control sub-problem and cooperates
with the others in order to reach the optimal application QoS (expressed in
terms of effective performance and resource utilization cost). The cooperation is
enforced using the Distributed Subgradient Method [6]. We propose different for-
mulations of the adaptation strategy and we show interesting results in terms of
reconfiguration stability. This property is expressed as the amount of performed
reconfigurations and the average time for which a newly selected configuration
is not modified.

This paper is organized as follows. The next section reviews research work
on adaptiveness for distributed parallel computations. Section 3 presents our
methodology. Section 4 shows a first evaluation of our approach developed in a
simulation environment. Finally, Section 5 gives the conclusion of this work.

2 Related Work

Providing computing systems with run-time supports to dynamic reconfigura-
tions has been the subject of several researches in different fields like Mobile,
Grid and Cloud Computing. On such environments, it is of great importance
to dynamically provide computing resources to applications featuring variable
QoS requirements and characterized by irregular workload conditions. Examples
are described in [7], in which provisioning mechanisms of virtual machines are
provided to accelerate compute-intensive jobs submitted into Cloud platforms.

Besides efficient run-time supports [3,4], emerging computing environments
raise critical problems related to when reconfigurations should be executed in
order to optimize performance and economic aspects. Therefore, adaptation
strategies have gained much attention. The pro-active adaptation to future work-
load variations goes in the direction of defining powerful strategies able to op-
timize performance requirements and operating costs by avoiding unnecessary
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reconfigurations. Despite the existence of first activities in this area [8], this
research direction is open and still lacks from systematic approaches.

Along this line, this paper introduces an approach based on the application
of Control Theory and Optimal Control foundations.

3 Methodology and Problem Statement

The control problem of distributed parallel applications can be decomposed into
a set of sub-problems associated with each application module (we use module
as a synonym of component). The distributed control logic should be organized
in order to state how individual solutions of local control problems are combined
and directed towards a solution that optimizes the application global QoS.

The core element of our methodology is the concept of adaptive parallel module
(i.e. shortly ParMod), an active unit featuring a parallel computation and an
adaptation strategy to respond to dynamic execution conditions. A ParMod is
structured into two interconnected parts following a closed-loop control scheme:

– the Operating Part performs the functional logic of the module, i.e. a
parallel computation that instantiates a structured parallelism pattern (e.g.
task-farm and data-parallel schemes) [3,4]. The computation is activated by
receiving tasks from input data streams. Results are transmitted onto output
data streams directed to specific destinations;

– the Control Part (controller) observes the Operating Part execution and
performs reconfiguration activities. The Control Part implements the adap-
tation strategy that drives the reconfiguration selection.

At discrete time intervals (called control steps), the Operating Part exchanges
measurements representing the actual behavior of the parallel computation (e.g.
memory usage, resource utilization, service time and computation latency) with
the Control Part. In order to take effective reconfiguration decisions, at each
control step Control Parts of different ParMods (belonging to the same applica-
tion) exchange control information in order to reach specific agreements between
control decisions. The result is a set of reconfigurations able to change the par-
allel computation, e.g. modifications of the current parallelism degree (number
of threads/processes of the current implementation).

3.1 Distributed Model-Based Predictive Control

An important precondition to apply control-theoretic techniques is the existence
of a mathematical model of the controlled system. For each application module
Mi we identify a local model involving the following set of variables:

– QoS variables (xi(k) ∈ Rn) are metrics describing the current behavior
of the parallel computation, such as the performance, memory usage and
resource consumption assumed at the beginning of control step k;

– control variables (ui(k) ∈ Ui) are parameters that identify the ParMod
configuration used throughout the k-th control step;
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– disturbances (di(k) ∈ Rm) model exogenous uncontrollable factors influ-
encing the relationship between control and QoS variables (e.g. the arrival
rate from external sources).

A formal representation of the local model can be described by the following
discrete-time expression:

xi(k + 1) = Φi

(
xi(k), di(k), ui(k), uj �=i(k)

)
(1)

The model allows Control Part to predict future values assumed by local QoS
variables as a function of local control inputs, disturbances and (in dynamic
models) present values of QoS variables. Furthermore, the next QoS of each sub-
system is still related to the remaining control variables of the other sub-systems
(or a sub-set of them). Therefore the control problem of the whole application
can be viewed as a set of coupled sub-problems.

In this paper we present adaptation strategies based on a control-theoretic
technique named Model-based Predictive Control (shortly MPC) [5] . MPC is a
method in which the current reconfiguration decision is taken by solving, at the
beginning of each control step, a finite-horizon optimal control problem using the
current value of QoS variables and statistical multiple-step ahead predictions of
future disturbances. To be robust in dynamic and uncertain environments, only
the first element of the optimal reconfiguration sequence (trajectory) is passed
to the Operating Part, and the same procedure is repeated at the next control
step.

Distributed MPC schemes can be applied to control large-scale systems such
as distributed computations. In this case the optimization problem is composed
of a set of coupled sub-problems each one formed by a local objective function,
a local model and a set of local constraints. In a cooperative scenario, the goal of
the decomposition is to reach a sequence of globally optimal control decisions, i.e.
the solutions of the sub-problems should optimize the following global problem:

argmin
U1(k),...,UN (k)

JG =

N∑
i=1

wi Ji

(
Xi(k + 1), U i(k), U j �=i(k)

)
(2)

s.t.

xi(k + 1) = Φi

(
xi(k), di(k), ui(k), uj �=i(k)

)
i = 1, 2, . . . , N

ui(k) ∈ Ui i = 1, 2, . . . , N

where JG is the global objective function, defined as the weighted sum of local
objectives (wi is a positive weight), and an uppercase overlined letter represents
a trajectory over a prediction horizon of h future control steps.

3.2 Addressing the Stability of Control Decisions

In dynamic execution contexts, distributed parallel applications should adapt
the amount of used resources to provide acceptable levels of performance and a
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reasonable resource utilization cost. For each ParMod Mi, the configuration pa-
rameter (control input) is the current parallelism degree ni(k) ∈ Ui (number of
used computing nodes), where Ui is the closed interval [1, nmax

i ] of integers. Dis-
turbances are parameters that may change due to environmental or application-
dependent reasons. Examples are the mean calculation time per task Tcalc-i(k)
and the probabilities of task transmission between modules, i.e. pi,j(k) is proba-
bility to transmit a task from ParModMi to Mj during control step k. The mean
ideal service time of a module must be defined as a function of its parallelism
degree, e.g. TSi(k) = Tcalc-i(k)/ni(k) (perfect scalability assumption).

The interaction between distributed modules usually follows the message-
passing paradigm. Communications resort on blocking mechanisms to address
the finiteness of the input buffers. If a message attempts to enter a full capacity
destination queue upon the completion of a service at M , it is forced to wait
in that component until the destination has a free position. We call the mean
inter-departure time, the steady-state average time between two successive result
departures. We denote with TDi(k) the QoS variable representing the mean inter-
departure time of Mi at the beginning of control step k (it refers to the average
value assumed during the last step k − 1).

To exemplify our approach, we adopt a simple yet powerful performance model
already discussed in [9]. The method is valid for a large class of computation
graphs, i.e. acyclic graphs with a single source module. The main result is sum-
marized by the following theorem (the proof can be found in [9]):

Theorem 1 (Steady-State Analysis). Given a single source acyclic graph G
of N modules, the inter-departure time TDi from Mi can be expressed as:

TDi(k + 1) = max
{
fi,1

(
TS1(k)

)
, fi,2

(
TS2(k)

)
, . . . , fi,N

(
TSN (k)

)}
(3)

Each term fi,j with j = 1, 2, . . . , N expresses the inter-departure time of Mi if
module Mj is the bottleneck of the graph. fi,j is defined as a function of the
service time of Mj:

fi,j
(
TSj(k)

)
= TSj (k)

∑
∀π∈P(M1→Mj)

( ∏
∀(s,d)∈π

ps,d(k)

)
∑

∀π∈P(M1→Mi)

( ∏
∀(s,d)∈π

ps,d(k)

) (4)

where M1 denotes the source, P(M1 → Mi) is the set of all the paths starting
from M1 and reaching Mi, and (s, d) is an edge of the path π. Since we do not
know which module will be the bottleneck, the inter-departure time is calculated
by taking the maximum between the functions fi,j for j = 1, . . . , N .

We study two different formulations of the MPC strategy. In the first one we do
not model any abstract term related to the reconfiguration cost (we refer to this
as Non-Switching Cost Formulation for brevity):
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Definition 1 (Non-Switching Cost Formulation). Each parallel module
has a local cost function defined over a horizon of one future step:

Ji(k) = αi TDi

(
k + 1

)︸ ︷︷ ︸
performance cost

+ βi ni(k)︸ ︷︷ ︸
resource cost

(5)

The performance cost discourages configurations that compromise the capability
to process incoming tasks. The second part expresses a cost proportional to the
number of used nodes. αi and βi are two positive coefficients establishing the
desired trade-off between the two contrasting aspects of the cost function.

In Grid and Cloud environments the reconfiguration process can induce costs
on the computation, both in terms of a performance degradation (e.g. parallel
modules could be blocked waiting for the reconfiguration process to complete)
as well as in terms of a monetary charge due to the dynamic provisioning of
resources. In the second formulation we account for an abstract cost term:

Definition 2 (Switching Cost Formulation). The local cost function of each
ParMod Mi is defined over a prediction horizon of h control steps (with h ≥ 1):

Ji(k) =

k+h−1∑
q=k

αi · TDi(q + 1)

︸ ︷︷ ︸
performance cost

+

k+h−1∑
q=k

βi · ni(q)︸ ︷︷ ︸
resource cost

+

k+h−1∑
q=k

γi ·Δi(q)
2

︸ ︷︷ ︸
switching cost

(6)

where Δi(k) = ni(k)−ni(k−1). The switching cost term is defined as a function
of the square of parallelism degree variations over the horizon (γi is a positive
coefficient), and binds control decisions between consecutive steps allowing to
express formulations with a parametric horizon length.

This formulation is aimed at improving the reconfiguration stability by discour-
aging reconfigurations with large amplitude and avoiding fluctuating behaviors
due to disturbances with high variance and featuring trend patterns.

We solve the cooperative distributed MPC problem using the Distributed
Subgradient Method, originally proposed in [6] for multi-agent environments.
The method addresses the problem of optimizing in a distributed fashion the sum
JG(k) =

∑
Ji(k) of non-smooth convex functions known only by their agents.

This method suits particularly well our needs, since:

– each Control Part knows only its local cost function and the model to predict
the steady-state performance of its Operating Part;

– in both of our formulations each local cost is expressed by a non-differentiable
convex function (we recall that the inter-departure time is defined as the
point-wise maximum of a set of convex functions fi,j);

– Control Parts are directly interconnected only between neighbors.

Each Control Part computes and maintains a local estimate of the optimum
strategy profile matrix S(k) ∈ Rh×N , where each column i corresponds to
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the reconfiguration trajectory of ParMod Mi (parallelism degrees are considered
real values for feasibility reasons). Neighboring controllers iteratively exchange
their local estimates and compute the next estimate using the following rule:

S(q+1)
[i] (k) = PU∫

⎡⎣ N∑
j=1

(
W [i, j]S(q)

[j] (k)
)
− a(q) Gi

⎤⎦ (7)

where q is the current iteration, a(q) > 0 is the step-size and Gi is a subgradient

of Ji at point S(q)
[i] (k)

1. PU∫ is the Euclidean projection onto the convex set of

admissible strategy profiles defined by: U∫ = Uh
1 × Uh

2 × . . .× Uh
N .

Each controller maintains a set of weights representing the importance given
to the estimates received by the controllers (zero is assigned to non-neighbor
controllers). To prove the convergence to the global optimum, in [6] the authors
state a condition about how the weights should be assigned: the weight matrices
W ∈ RN×N should be doubly stochastic, i.e. all the columns and rows sum to 1.

The MPC strategy based on the Distributed Sub-gradient Method consists in
a sequence of actions performed by the controllers at each control step k:

– each controller acquires monitoring information from its Operating Part and
calculates statistical predictions of disturbances over the prediction horizon;

– each controller uses a specific initial estimate of the strategy profile matrix
and applies the iterative protocol for a fixed number of iterations;

– at each iteration, controllers receive the local estimates from their neighbors,
apply the update rule (7) and transmit the next estimate;

– after the last iteration, each controller knows its optimal reconfiguration
trajectory and applies the first element of that trajectory (properly rounded
to the nearest integer) as the new parallelism degree for control step k.

This method allows us to consider also non-ideal performance behaviors of paral-
lel modules, providing that the ideal service time is modeled as a convex function
of the parallelism degree. An example is when the service time stops to decrease
or even increases using parallelism degrees larger than a specific value.

4 Evaluation of the Approach

We have developed a ParMod simulation environment based on the OmNeT++
discrete event simulator. A ParMod is simulated by two OmNeT components
modeling the Operating Part and the Control Part. The Operating Part im-
plements a queue logic in which buffered elements represent input tasks. To
reproduce a blocking semantics, we have implemented a communication proto-
col based on the transmission of send and ack messages. The Operating Part
can adopt two working logics: (i) a task-farm semantics, in which at most p
tasks in parallel can be executed, where p is the current parallelism degree; (ii)
a data-parallel semantics, in which only one task at a time is processed with an
execution time equal to the calculation time divided by the parallelism degree.

1 The subscript [i] denotes that S(q)

[i] (k) is the estimate of the i-th controller.
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Fig. 1. Computation graph of the experiment

We consider the computation graph depicted in Figure 1. The source module,
implementing a sequential computation, transmits tasks with a variable rate to
ParMod 1 and 2 according to the same probability. ParMods need to dynamically
adapt their parallelism degree in order to sustain the current arrival rate and to
avoid using computing nodes unnecessarily. To exemplify a dynamic situation,
Figure 2 shows a time-series of the ideal service time (the inverse of the service
rate) of the source module, which is modeled as a measured disturbance.

In order to apply the distributed MPC strategy, we need multiple-step ahead
predictions of disturbances. We exploit the well-known Holt-Winters filtering
technique [10], an effective method accounting for time-series featuring non-
stationarities such as trends and seasonal patterns. In this example we achieve
accurate predictions: over the entire execution the mean relative error between
the real trajectories and the predicted ones at each control step is of 8.83%,
9.38%, 10.06% and 10.77% with a horizon length equal to 1, 2, 3 and 4 steps.

We compare the Non-Switching Cost Formulation with the strategy in which
we consider a switching term in the local cost functions. Moreover, in order to
have a performance upper-bound, we consider the static case (named MAX) in
which ParMods do not perform any reconfiguration, but they are configured to
use their maximum parallelism degree for the entire execution. Table 1 shows
a set of user-defined parameters representing the importance of the different
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Table 1. Configuration parameters of the experiment

Source ParMod 1 ParMod 2 ParMod 3 ParMod 4

Tcalc Fig. 2 90 sec. 25 sec. 70 sec. 35 sec.
α 20 20 20 20 20
β 0.5 0.3 0.8 0.3 0.4
γ - 1.5 1.2 1.5 1.2

nmax
i 1 64 48 64 48

control objectives (performance vs. resources), the mean calculation times and
maximum parallelism degrees.

Figure 3 shows the reconfiguration sequence of ParMod 1. For the sake of
space we omit the results of the other modules (which are qualitatively similar).
The reconfiguration sequence with the Non-Switching Cost Formulation follows
the behavior of the source module. Execution phases in which the arrival rate to
ParMod 1 decreases (i.e. from step 150 to 300) correspond to time intervals in
which the module releases computing resources (its parallelism degree is over-
sized). The opposite behavior can be noticed after control step 300: due to a
decreasing trend of the source service time, ParMod 1 starts to increase its
parallelism degree. After control step 370 it reaches nmax

1 (64 nodes), i.e. it can
not acquire any other resource and becomes the graph bottleneck.

As we consider the switching cost, we achieve smoother reconfiguration se-
quences. The switching cost acts as a disincentive to reconfigurations : i.e. during
execution phases in which the workload is lighter, it slows down the release of
computing resources, while in phases of heavy workload it slows down the allo-
cation of new resources. With longer horizons, controllers have a better degree of
foresight and can more precisely evaluate if the acquisition/release of resources is
effectively useful (e.g. avoiding to release/re-acquire them nearly in the future).
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This justifies a more rapid capability of longer-horizon strategies to respond to
a pronounced change in the disturbance trend. Moreover, in execution phases
characterized by a high level of uncertainty, the Switching Cost Formulation
avoids many small reconfigurations of little amplitude (as happens from step 0
to 300). Therefore, we can say that the switching cost acts also as a stabilizer in
presence of disturbances with a significant variance.

The horizon length has also important consequences on the efficiency of re-
source utilization, measured as the ratio between the ideal service time of a
ParMod and its inter-departure time. An efficiency smaller than 1 means that
the parallelism degree is over-sized. Figure 4 outlines the efficiency of ParMod 1.
The MAX configuration (Figure 4a) suffers from a severe degradation from step 0
to 370. After step 370 the efficiency rises to 1 because the ParMod becomes the
application bottleneck and it begins to fully exploit its maximum parallelism
degree. Extremely interesting is the behavior of the Non-Switching Cost For-
mulation. In this case the efficiency is near to 1 throughout the execution. The
reason is given by the structure of the local cost function (Definition 1): if a
module is adopting an over-sized parallelism degree, it can release some com-
puting resources without affecting its effective performance, but improving the
value of its local cost without making the other cost functions worse off.

By introducing the switching cost we have a break that causes a slower re-
lease of computing resources. This induces a slight degradation of the efficiency
from step 150 to 370. Using longer horizons (providing that the disturbance pre-
dictions are sufficiently accurate) we are able to mitigate this effect, and the
efficiency tends to 1 again as Figure 4f depicts. To compare different strategies
in terms of their reconfiguration stability, we introduce the following metric:
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Definition 3. We denote as Mean Stability Index (shortly MSI) the average
number of control steps for which a reconfiguration remains active.

Table 2 shows the total number of reconfigurations and the number of tasks
that leave the system. The global MSI is the average of the individual indices of
each module. With the MAX configuration we are able to maximize the number
of completed tasks at the expense of a big waste of computing resources during
the first part of the computation. With the Non-Switching Cost strategy the
difference in completed tasks (the ”no delay” column) is only of 8.25% but with
a significant benefit in terms of efficiency. The Switching Cost Formulation has a
large degree of configurability: with short horizons it heavily reduces the number
of reconfigurations and the stability index with a small loss in terms of completed
tasks. As we use longer horizons, the performance difference becomes negligible
(only 0.5% of tasks reduction) but with a great improvement (34%) in terms of
reconfigurations with a horizon of four steps. We conclude that the Switching
Cost strategy is extremely powerful: it makes it possible to significantly reduce
the number of reconfigurations with a negligible performance reduction.

Table 2. Number of reconfigurations, completed tasks and Mean Stability Index

Strategy Reconf. MSI
Compl. Tasks
(no delay)

Compl. Tasks
(with delay)

MAX - - 144,403 144,403
Non-Switch. Cost 870 2.77 132,482 123,643
Switch. Cost h = 1 389 6.28 129,560 124,898
Switch. Cost h = 2 524 4.65 131,176 124,911
Switch. Cost h = 3 559 4.34 131,641 125,030
Switch. Cost h = 4 574 4.25 131,808 125,823

When a performance overhead is introduced, performing fewer reconfigura-
tions could be useful also from the performance viewpoint. To prove this insight
we modify our simulator: every time a ParMod applies a reconfiguration, it sus-
pends to process incoming tasks for an amount of time modeled by a random vari-
able delay. In order to reproduce a Cloud scenario, in which the time-to-deploy
of a virtual machine can reach tens of seconds [1], we repeat the simulations
using a delay of 30 seconds. Now we have a different tendency in terms of com-
pleted tasks (the ”with delay” column): using the Switching Cost Formulation
we achieve better performance saving a consistent number of reconfigurations.

We conclude by pointing out the feasibility of our approach. Although the
subgradient method can be rather slow, we can limit the number of iterations
(we used 125 iterations per step). This can be done by considering two aspects: (i)
firstly each Control Part applies an integer rounding of the parallelism degree,
thus a high precision is not necessary actually; (ii) since between consecutive
control steps optimal solutions are likely close, we use as starting estimate the
optimal strategy profile matrix calculated at the previous step. In this way we can
drastically reduce the number of iterations maintaining an acceptable precision.
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5 Conclusion

This paper provides a description of our approach. The control logic of each
module consists of a performance model and a local cost function. Reconfigura-
tions are applied following the receding horizon principle and the MPC strategy.
Controllers cooperate to reach globally optimal decisions using the Distributed
Subgradient Method. In order to enforce the stability of control decisions, and
measuring the impact of stability w.r.t QoS goals, we evaluate different MPC
formulations. Simulation results show the effectiveness of our approach. In the
future we plan to apply our techniques in real-world distributed environments.
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Abstract. Virtualization provides increased control and flexibility on
how resources are allocated to applications. However, common resource
provisioning mechanisms do not fully use these advantages; either they
provide limited support for applications demanding quality of service,
or the resource allocation complexity is high. To address these issues we
developed Themis, a market-based application management platform.
By limiting the coupling between the applications and resource manage-
ment, Themis can support diverse types of applications and performance
goals while ensuring maximized resource usage. In this paper we present
the performance of Themis when users execute batch applications with
different Service Level Objectives such as deadlines.

1 Introduction

Cloud computing is attractive to execute increasingly dynamic and complex ap-
plications on a High Performance Computing infrastructure. An organization
can efficiently share its physical resources between different application types
(e.g., MapReduce, MPI, or other legacy applications) by allowing each appli-
cation to run in its own virtual cluster (a set of virtual machines configured
with the software packages needed by the user) with limited interference from
the infrastructure’s administrator. Recent Platform-as-a-Service solutions, both
commercial [1, 8] and research [16] hide the complexity of deploying and configur-
ing these virtual clusters, providing users with support to develop and run their
applications with no concerns regarding infrastructure’s resource management
complexities.

However, a remaining challenge is the design of resource management policies
to share resources fairly between applications, in terms of their priority and
user-specified Service Level Objectives (SLOs). The common cloud resource-
provisioning model is ”on-demand” virtual machine (VM) provisioning. This
model relies on a First-Come-First-Served policy to schedule virtual machines.
This would not be a problem if the infrastructure capacity were enough for all
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user requests in the highest demand periods. Nevertheless, this is rarely the
case, as expanding the resource pool is expensive. Thus, it is preferable to solve
the contention periods when they appear, around deadlines (e.g., conference or
project deliverable), rather than acquiring more resources.

To address this challenge we proposed Themis [10], a platform for applica-
tion and resource management. To allocate VMs to applications, Themis uses a
proportional-share market on top of a virtualized infrastructure. VMs are bought
from the market at a (user or application) specified cost (i.e. bid) while the CPU
time and memory amount allocated to each of them varies in time according to
the total resource demand and the costs of other VMs. To keep the correct CPU
and memory amounts allocated to each VM, Themis migrates them between
physical nodes. We evaluated the resource allocation algorithms of Themis when
applications compete for CPU time [10] and implemented it in a real prototype.

In this paper we analyze the performance of the implemented proportional-
share market when applications buy amounts of different resources (i.e., CPU
and memory) to meet different SLOs. Simulations with a real workload trace
show that even with simple adaptation policies and using only current knowledge,
the system behaves well in terms of application performance and number of VM
operations (e.g., migrations, suspend/resume).

This paper is organized as follows. Section 2 presents the context of our work
and introduces Themis. Section 3 details the proposed resource management
policies. Section 4 describes the evaluation of the proposed resource management
policies and Section 5 concludes the paper.

2 Context

This Section describes the context of our work. We first introduce the application
model considered in this paper. Then we give an overview of Themis.

2.1 Application Model

Although Themis supports a wide variety of applications, in this paper we focus
on batch applications composed of a fixed number of tasks. Each task requires
one CPU core and a specified amount of memory. We don’t model the commu-
nication between tasks. To finish their execution, applications need to perform
a certain computation amount (e.g. 1000 iterations). There is a large number
of iterative applications that follow this model, for example scientific simulators
(e.g., Code Saturne [9]). These applications have a relatively stable iteration
execution time. The iteration execution time can be tuned by modifying the
resource allocation received by each task. For example, if each task receives one
full core, one iteration can take 1 second. If the resource allocation drops at half,
the same iteration can take 2 seconds.

2.2 Themis Overview

We previously developed Themis, a market-based platform for application and
resource management on clouds [10]. A variety of solutions were proposed to use
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Fig. 1. Themis eco-system

a market to schedule jobs on clusters [11, 21, 20, 7, 22, 6, 3, 19], to schedule
jobs on grids [4] or to run parallel applications [17]. Market-based systems force
users to assign throughful priorities to their applications as they have to pay for
their execution. If the system is too loaded, a user that doesn’t need to run her
application immediately will postpone its execution until a less loaded period,
as the execution cost is lower. Works that apply market mechanisms focus on
providing better user satisfaction than traditional resource management systems,
usually batch schedulers. However, these systems neither consider application
adaptation, nor user SLOs.

Figure 1 gives an overview of Themis. Users receive budgets of credits from a
central banking service and use them to run their applications on the cloud. In
Themis, applications are funded at a rate established by users, representing the
maximum execution cost supported by the user, i.e., budget.

Themis regulates the resource allocation between applications by using a
proportional-share market [13, 7, 14, 18]. Applications provision VMs from this
market by specifying bids for them. Users are charged for the cost of used re-
sources, i.e., the VM bids, at each scheduling period. In Themis resources (i.e.
CPU and memory) are allocated to VMs by using a proportional-share allo-
cation rule. With the proportional-share scheduling mechanisms, each VM i is
assigned a bid bi and receives a share of bi/Σb of the infrastructure resources.
For example, let’s take two VMs A and B that want to use the CPU resource of
a physical node. The VM A has a bid of 1 and the VM B has a bid of 2. In this
case, A receives 33% CPU time and B receives 66%. This mechanism is already
supported by current hypervisors and achieves good system utilization through
fine-grained resource allocation.

Themis runs each application in a private virtual cluster and allows the ap-
plication to adapt its resource demand by changing the number of VMs or the
resource allocation (i.e., CPU and memory) for each VM by changing the VM
bids. Applications individually adapt their resource demand to meet their SLOs
(e.g. deadlines) and to react to fluctuations in the resource prices.
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VMAllocationontheProportional-ShareMarket. Weapply the proportio-
nal-share market to allocate to each VM a fraction of CPU time and physical
memory on a physical node. Themis periodically applies the proportional-share
allocation rule system-wide. For simplicity, we consider that the storage capacity
is sufficient to accommodate all the VM images.

As the system load or the bids change in time, to ensure an allocation corre-
sponding to the submitted bids, VMs might need to be migrated between nodes.
To limit the number of migrations, each VM is allowed to have a certain allo-
cation error. To explain what the allocation error is, we introduce the following
terms. We define ari as the maximum resource allocation a VM receives for a
resource r from the capacity of its current node proportional to the bids of all
the VMs running on this node. We define arh as the resource allocation the VM
would receive for a resource r if the total infrastructure capacity is considered.
Then, if the VM is not migrated, its allocation error is the maximum error over
all resources:maxr(er), where er =

ari−arh

ari
. The goal of the migration algorithm

is to ensure that each VM has an allocation error below a given threshold (e.g.
10%). To select the VMs to be migrated at each scheduling interval, Themis uses
a tabu-search heuristic [12]. Tabu-search is a local-search method for finding the
optimal solutions of a problem. The heuristic runs for a specific number of iter-
ations. At each iteration the heuristic tries to move the VM with the maximum
allocation error that is not in the tabu list to the physical node that minimizes
it. The heuristic stops if it cannot improve the VM allocation error for the last
iterations (i.e. 100 iterations) or if reaching a better solution involves a number
of migrations higher than a threshold.

Application Resource Demand Adaptation Policy. On top of the propor-
tional-share market, applications can adapt in two ways: (i) by changing their
resource demand (i.e. number of virtual machines) to cope with modifications in
their workload (e.g. changes of computation algorithms, additional started mod-
ules, etc.); (ii) by changing their bids (which are re-considered at each scheduling
period) to cope with fluctuations in price. In this paper we focus on the last case,
for which we developed a simple policy. The application uses only information
regarding its current CPU and memory allocation and resource prices. Based on
this information, the application tries to keep the value for its remaining exe-
cution time, or the predicted time for the next iteration, close to a user-defined
reference metric. For this we use simple heuristics: the application decreases the
bids for its resources when its performance value drops below the given target
(i.e. the predicted execution time becomes smaller than the remaining time to
deadline) and it increases them otherwise.

In this paper we extend our previous work in several ways. First, we extend
the resource allocation algorithms to support for multiple resource allocation.
Second, we define a set of adaptation policies for different deadline-based SLOs.
These policies use the current application resource allocation and resource price
to adapt the application’s bids for VMs and obtain the desired resource allocation
for meeting the application’s SLO (they vertically scale the VMs). Finally, we
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show how Themis can support these different user SLOs and how its resource
allocation algorithms cope with both CPU and memory dynamic allocation.

3 SLO Policies on the Proportional-Share Market

In this section we define a set of SLOs users typically require for their applications
and a set of policies to adapt the application resource demand to these SLOs.

User and SLO Modeling. After studying the needs of HPC users from an
organization (e.g. at Electricité de France), we determined two classification cri-
terias: the required time of their application results and the required application
results.

Based on the required time of their application results, we found that there
are two classes of users:

- deadline users: they want the application results by a specific deadline.
For example, a user needs to send her manager a simulation result by 7pm.

- performance users: they want the results as soon as possible but they are
also ready to accept a bounded delay. This delay is defined by the application
deadline too. For example, a developer wants to test a newly developed algo-
rithm. She wants the results as fast as possible, but if the system is not capable
to provide them, she might be willing to wait until the morning.

Based on the required application results, we found two classes of preferences:
- strict results: to provide useful results the application needs to finish all

its computation before its deadline.
- partial results: some users might value partial application results at their

given deadline; for example, for a user who implemented a scientific method and
needs to run 1000 iterations of her simulation to test it, finishing 900 iterations
is also sufficient to show the good method behavior.

We combined these classes and obtained four user types: (i) deadline-strict; (ii)
deadline-partial; (iii) performance-strict; (iv) performance-partial. We think that
these categories can be representative for other organizations as well.

Additional Mechanisms. Besides adapting their bids, to minimize the exe-
cution cost applications can apply two policies: (i) delay their execution if the
price is too high; (ii) suspend their execution when the price becomes too high,
and resume it later when the price drops.

Algorithm 1 describes the conditions the application uses to start, resume or
suspend its execution. The suspend policy is run at each scheduling interval by
the application. The start/resume policies are run by Themis on behalf of the
application, if the application hasn’t started or is suspended.

The StartResume policy computes the initial payment for nvms VMs with
Talloc allocated resources by using the current market price. If this payment is
greater than the maximum afforded budget, bidmax, then the application post-
pones its execution/resume with a random amount of time bounded by twait.
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Algorithm 1 . Application Start/Resume/Suspend Policies

1: StartResume(bidmax, nvms, Talloc, pricecurrent, twait)
2: bid = compute initial payment(price current, Talloc, nvms)
3: start = False
4: if bid[CPU ] + bid[memory] < bidmax then
5: start = True
6: if start = False then
7: wait random time period between now and twait

8:
9: Suspend(value, T, bid, bidmax)
10: if ( value < T ) and

bid[CPU ] + bid[memory] < bidmax then
11: if suspend iterations < max iterations then
12: suspend iterations = suspend iterations + 1
13: suspend = False
14: else
15: suspend = True

The Suspend procedure describes the conditions the application uses to suspend
its execution. To minimize the execution cost, the application suspends itself
when its performance metric, value, is bigger than the reference T and the ap-
plication cannot afford to improve it. To avoid cases in which all applications
would suspend at the same time, before suspending its execution, the application
waits for a random number of scheduling periods, defined by max iterations.

Application Policies. We derive a set of application specific policies that
consider the types of users and goals previously presented. These policies run
periodically during the application execution. To ensure the best chance to finish
its execution before a deadline, an application starts as soon as the price drops
enough so the application can afford a minimum allocation for each VM (e.g.
25% of CPU time). Then, during its execution it applies the different policies
according to its SLO. These policies are the following:

- deadline-strict: Applications start when the price is low enough to ensure
a good allocation (i.e. 75% CPU time). During their execution they adapt their
bids to keep a low price in low utilization periods and to use as much resource
as their SLO allows in high utilization periods. If the application cannot pay for
the resources needed to meet its SLO it suspends its execution. In this way it
leaves resources for other applications and avoids wasting credits for nothing. The
application resumes if the price drops enough to allow it to finish its execution
within the deadline. If, during its execution, the application sees it cannot miss
the deadline it stops.

- deadline-partial: This policy is similar to the previous policy. Neverthe-
less, there are two differences: (i) the application suspends only when a minimum
allocation cannot be ensured (e.g. 30% cpu time or 30% physical allocated mem-
ory); (ii) as any work done at the deadline is useful, the application does not
stop its execution when it sees it cannot meet its deadline anymore.

- performance-strict: The policy is similar to the deadline-strict policy
and it follows the same algorithm. However, during its execution, the applica-
tion, instead of tracking a performance reference metric, tries to keep a maximum
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allocation given its budget. When the application cannot have a minimum allo-
cation at the current price, the application suspends.

- performance-partial: This policy is similar to the previous one but is used
by users accepting partial results. However, as for the deadline-partial policy, the
application does not terminate before the deadline is reached.

4 Evaluation

This section describes the evaluation of our proposed resource management poli-
cies. With our evaluation we seek an answer to the following two questions:

– How does the system perform in terms of user satisfaction when their appli-
cations behave strategically and adapt their resource demands?

– What is the performance overhead of the application adaptation, considering
that application adaptation leads to VM operations?

4.1 Implementation

Themis is implemented in CloudSim [5], a Java event-based cloud simulator.
CloudSim can be used to model applications, workload submission scenarios and
varios resource management policies. The simulated environment is composed
of a datacenter, its VM allocation policy that runs periodically, and multiple
applications, created dynamically during the simulation run. Applications are
created according to their submission times, taken from a workload trace, and are
destroyed when they finish their execution. During its lifetime, each application
runs the resource demand adaptation policy and interacts with the datacenter
to change the bids for its VMs. We extended our previous implementation [10]
by introducing dynamic memory allocation and overheads for VM boot and
suspend/resume operations; then we implemented the proposed policies.

4.2 Evaluation Metrics

The performance of a resource management system can be measured in different
ways. Traditional metrics include application wait time, resource utilization or
number of missed deadlines. Nevertheless, these metrics do not reflect accurately
the total user satisfaction, which represents an important metric in showing how
well resources are managed. To quantify the total user satisfaction, the aggregate
user satisfaction can be used. We model the user satisfaction as a function of
the budget assigned by the user to its application and the application execution
time, i.e., a utility function. As there are four different user types, we obtain
four utility functions.

Nevertheless, before discussing the signification of utility functions, we define
the following terms. texec is the application execution time. tdeadline is the time
from the submission to deadline. tideal is the ideal execution time, i.e., if the
application runs on a dedicated infrastructure. workdone represents the num-
ber of iterations the application managed to execute until it was stopped and
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Table 1. Utility functions

User Utility Function

Deadline-strict B, if texec ≤ tdeadline, 0 otherwise
Deadline-partial B if texec ≤ tdeadline, B · work done

work total
otherwise

Performance-strict max(0, B · (tdeadline−texec)
(tdeadline−tideal)

)

worktotal represents the total number of iterations. B is the application’s budget
per time scheduling period and per task. B is assigned by the user and reflects
the application’s importance.

Table 1 summarizes the used utility functions. The deadline-strict user values
the application execution at her budget rate if the application finishes before
deadline, otherwise she assigns a value of zero. The deadline-partial user is sat-
isfied with the amount of work done until the deadline. Thus the value of the
application execution is proportional with this amount. The performance-strict
user becomes dissatisfied proportional to her application execution slowdown.
We bound the value of her dissatisfaction at zero. The utility function for the
performance-partial user is a combination between the deadline-partial and the
performance-strict functions.

4.3 VM Operations Modeling

We implemented in CloudSim a model for several VM performance overheads:

- resource allocation. We assume pessimistically that the application’s per-
formance degrades proportionally with the allocated memory fraction, when this
fraction is less than the demanded memory.

- VM boot/resume. We simulate the VM boot and resume times sepa-
rately. The VM boot time is modeled by sending the application a message that
the VM was created with a delay of 30 seconds. The VM resume time is modeled
by assigning to the VM a processing capacity of 0 for 30 seconds.

- VM migration. We compute the migration time as the time to transfer
the VM memory state by using the available network bandwidth of the current
host. We assume that the bandwidth is shared fairly between all the requests.
The available network bandwidth is computed by considering all the suspend and
resume operations that occur on the considered host at the current scheduling
period. We model the migration performance overhead as 10% of CPU capacity
used by the virtual machines in which the application is running. We chose
this overhead as previous work found that migration brings 8% performance
degradation for HPC applications [15].

4.4 Workload Modeling

To evaluate the system performance we use a real workload trace as it reflects
the user behavior in a real system. Such traces are archived and made publicly
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available [2]. As a workload trace, we chose the HPC2N file as it has detailed in-
formation regarding memory requirements of the applications. This file contains
information regarding applications submitted to a Linux cluster from Sweden.
The cluster has 120 nodes with two 240 AMD Athlon MP2000+ processors each.
We assigned to each node 2 GB of memory. For applications with no memory
information, we assigned a random memory amount, between 10% and 90% of
the node’s memory capacity. We ran each experiment by considering the first
1000 jobs, which were submitted over a time period of 18 days. We scaled the
inter-arrival time with a factor between 0.1 and 1 and we obtained 10 traces
with different contention levels. A factor of 0.1 gave a highly contended system
while a factor of 1 gave a lightly loaded system.

We consider that all applications have a deadline and a re-chargeable budget.
As we couldn’t find any information regarding application deadlines, we assigned
synthetic deadlines to applications. The budgets assigned to applications are
inversely proportional to the application’s deadline factor.

4.5 Results

Figure 2(a) describes the total satisfaction that the system provides to users
when applications use the strict-deadline policy compared to well-known algo-
rithms like FCFS and EDF. We selected this policies as we wanted to use the
same comparison criteria as in previous work [10] and this policy performed good
in terms of user SLO satisfaction. We didn’t include the other three policies due
to lack of space. To see the behavior of our algorithms when both CPU and
memory need to be dynamically allocated, we measure the total user satisfac-
tion when the memory is enough for all the requests and when the memory is
constrained at 2GB RAM per physical node. We notice that when both CPU and
memory need to be allocated our market out-performs FCFS much more than
in the case of CPU only allocation. The proportional-share mechanism allows
applications to run with a less than required amount of resources.

Compared to EDF, we notice a performance degradation that increases with
the system load. As the inter-arrival time decreases, EDF is capable to take
better scheduling decisions: more applications with smaller deadlines, and in
the same time higher budgets, get to run on time. This provides better user
satisfaction than our system and FCFS. Then, our system is decentralized: each
application acts selfishly and independently to meet its own application SLO
while with EDF, the central scheduler sorts applications by their deadline and
executes the application with the smallest deadline first.

Figure2(b) describes the total satisfaction that the system provides to users
when applications use different policies. Themis allocates both CPU and mem-
ory. In this scenario, each application selects a policy randomly from the four
ones we provide. We notice a performance degradation compared to the case
when all applications use a strict-deadline policy. Applications using a policy
like strict-performance spend all their budget to try to receive a maximum allo-
cation, leading to other applications to miss their own deadlines. In the case of
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Fig. 2. Proportional share market performance in terms of total user satisfaction in
two cases: (a) when the strict-deadline policy is considered and (b) when all the policies
are considered
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Fig. 3. Performance of VM allocation algorithm in terms of (a) average number of
migrations per hour (b) average number of suspend/resume operations per hour and
(c) total number of applications suspended and resumed

the strict-deadline policy, applications are cost effective, leaving a larger share
of resources for other applications.

Figure 3 describes the number of VM operations performed by the VM allo-
cation algorithms and the total number of applications suspended/resumed dur-
ing the experiment. To perform this experiment we selected the strict-deadline
policy, but any other policy would have been appropriate too. We make two
observations: (i) the number of VM operations decreases when the system is
highly loaded; (ii) the number of VM operations when there are multiple al-
located resources is significantly higher than in the case of one resource. The
first observation is explained by the fact that when there is a high load, more
applications don’t start or resume their execution. The second observation is
intuitive: applications adapt their bids for multiple resources, leading to more
errors in VM allocations and thus, more migrations.
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To conclude our results, we need to stress that each application that runs on
Themis adapts individually to the market condition and its SLO (e.g. deadline).
This selfish application behavior leads to a performance degradation (or also
known as the Price of Anarchy), compared to when applications collaborate
or when they operate under strict, centralised control. To illustrate why this
uncoordinated behavior can be bad, let us take the case of suspend/resume
at price fluctuations. When multiple applications suspend, the other running
applications receive a higher resource allocation and drop their bids. This creates
a favorable condition for the suspended applications to resume again. However,
when the other applications resume, the price increases leading them to another
suspend. The performance degradation is the ”price” payed by the nature of our
system, that allows applications to behave selfishly.

5 Conclusions

In this paper we analyzed the performance of a proportional-share market mech-
anism implemented in Themis, an application and resource management plat-
form. In Themis, applications autonomously adapt their resource demand to
meet their SLOs, disregarding the other infrastructure occupants.

We extended Themis with multi-resource allocation algorithms and we sim-
ulated the application behavior by considering four SLO-driven resource de-
mand adaptation policies. Our simulation results show the efficiency of the
proportional-share market. Our policies behave reasonably in terms of appli-
cation performance and number of VM operations. When the system is lightly
loaded our policies lead to a better system performance than well-known schedul-
ing schemes. As each application adapts autonomously to its own SLO, it is
intuitive that the system’s performance degrades in high load periods.

As future work we plan to implement a resource regulation mechanism in
which applications can be more aware of the other infrastructure occupants.
For example, when there are not enough free resources to satisfy all arriving
applications we can use a double auction in which applications already running
on the infrastructure can sell their resources to more urgent applications. We
also plan to do more experiments with Themis on a real testbed.
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In Peer-to-peer (P2P) systems computers form an overlay network and share
their resources (storage, CPU, bandwidth) to implement a service on top of the
Internet. P2P computing has a great potential for creating systems that are self-
organizing, efficient, and scalable, but it also faces many challenges: dynamic
peer arrivals and departures, which may be correlated (e.g., flash crowd effects,
or software failures), high variability of resources, and resource heterogeneity.
This topic provides a forum for researchers to present new contributions to P2P
systems, technologies, middleware, and applications that address key research
issues and challenges.

This year, one paper, which was evaluated by four referees, has been ac-
cepted for publication in the peer-to-peer track: ”Design and Implementation
of a Scalable Membership Service for Supercomputer Resiliency-Aware Run-
time”, by Yoav Tock, Benjamin Mandler, Jose Moreira and Terry Jones from
IBM Haifa Research Laboratory, IBM T.J. Watson Research Center and Oak
Ridge National Laboratory. The paper presents the design and implementation
of two services for ultra-large HPC systems: a node membership service and an
attribute replication service. For such services, the design uses techniques from
Peer-to-Peer computing. To deal with the very large number of nodes, the design
is based on a hierarchical structure of the nodes and uses an eventual consistency
model. The proposed approach also supports versioning.
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Abstract. As HPC systems and applications get bigger and more complex, we
are approaching an era in which resiliency and run-time elasticity concerns be-
come paramount. We offer a building block for an alternative resiliency approach
in which computations will be able to make progress while components fail, in
addition to enabling a dynamic set of nodes throughout a computation lifetime.
The core of our solution is a hierarchical scalable membership service provid-
ing eventual consistency semantics. An attribute replication service is used for
hierarchy organization, and is exposed to external applications. Our solution is
based on P2P technologies and provides resiliency and elastic runtime support at
ultra large scales. Resulting middleware is general purpose while exploiting HPC
platform unique features and architecture. We have implemented and tested this
system on BlueGene/P with Linux, and using worst-case analysis, evaluated the
service scalability as effective for up to 1M nodes.

1 Introduction
Current trends dictate increasing complexity and component counts on supercomputers
and mainstream commercial systems alike [1]. This trend exposes weaknesses in the
underlying clustering infrastructure needed for continuous availability, maximizing uti-
lization, and efficient administration of such systems [2]. These issues can properly be
tackled by having a resiliency supportive run-time for ensuring continuous availability
and elastic run-time support for utilization maximization through proper jobs placement
and load balancing. System elasticity can be an important factor also for the conserva-
tion of power which is a growing concern in the HPC world. The issue of resiliency has
been identified as one of the big future challenges in the HPC world [3].

Current HPC execution environments do not provide the hosted parallel applications
with a fault-free guarantee. Rather, developers need to specifically take appropriate ac-
tions in the presence of such faults (for example by using checkpoint-restart). Moreover,
the most popular programming paradigm for HPC, MPI, assumes all interruptions, in-
cluding single core failures, are fatal to the entire parallel application [4]. It has been
identified that as systems grow, failure rates will reach a level that will render current
resiliency models ineffective [5].

� This research received funding from the U.S. DoE under award No. DE-SC0002107; the Euro-
pean Community’s FP7/2007-2013 Programme under grant agreement No. 317862; and used
resources of the Oak Ridge Leadership Computing Facility at ORNL, which is supported by
the U.S. DoE Office of Science under Contract No. DE-AC05-00OR22725.
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We propose a step to alleviate these problems by providing a highly scalable clus-
tering infrastructure for supporting a resiliency-aware elastic runtime and the hosted
applications (see Fig. 1-A). The most important service a clustering infrastructure must
provide is a membership service, which delivers to every node, or a select subset of the
nodes, a view of the all the nodes that belong to the cluster. The membership service
must detect failures of members, and support leave, join, and discovery functions. Al-
though membership services were widely investigated, the characteristics of HPC pose
unique requirements:

Ultra Large Scale: To deal with 1M nodes, we apply two principles: (1) use of a relaxed
consistency model, namely eventual consistency, and (2) a hierarchical architecture.

Coupling: HPC workloads are mostly tightly coupled. That is, a single failure may
cause a huge amount of other nodes to wait for recovery. Such parallel computations
require fast failure detection in order for the failed computation to migrate to a new
location with minimal disruption to the entire computation. To accommodate that we
expedite failure notification to certain privileged “high priority monitors”.

Churn: Current HPC workloads are characterized by static, a-priori defined groups.
Even programming models that theoretically permit dynamic membership [6], are
currently implemented in a way that assumes static a-priori membership. Dynamic mem-
bership is primarily needed to deal with faults, yet opens up the possibility to dynami-
cally shrink and expand a computation. The expected churn rate in HPC is lower than
in Internet or data-center settings. However, the dense integration of modern machines
increases the likelihood of correlated failures, where a failure of one component (e.g.
IO-node) causes cascading failures (e.g. of compute nodes). This requires a membership
service that tolerates concurrent failures without significant loss of performance.

Failure Model: Recent advancements in HPC resiliency support include CIFTS and
MPI3 [7], which are based on a failure model assuming fail-stop failures, no network
partitions, and a perfect failure detector. Our system takes it a step further by removing
these restrictions on the failure model.

In order to support resilient and elastic HPC runtime and applications we expose
several services: (1) a membership service, (2) an attribute replication service, and (3)
group communication services [8]. The runtime will be able to take advantage of this
suite of services in order to achieve, among other aspects, adequate tasks placement,
scheduling, load balancing, migration, and performance monitoring.

In this paper we concentrate on the membership and the attribute replication services,
which form the foundation on which other group communication services are built. The
contribution of this paper is centered around the design, implementation, and evaluation
of these services. The system was evaluated to reach a higher scale than known methods
(see Sec. 6), while achieving good results both for massive start-up as well as for failure
detection, while assuming a general non restrictive failure model. Using worst case
analysis, a full implementation of these services was evaluated as effective for up to
a million nodes. Both the architecture and the membership and attribute replication
services present innovations that facilitate this achievement.

In the remainder of the paper, Sec. 2 provides an overview of the system architecture,
while Sec. 3 & 4 dive deeper into the major components of the system. Section 5 details
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Fig. 1. (A) The software stack of a fault tolerant, elastic parallel runtime. (B) A fault tolerant
hierarchy with redundant connectivity, and the data structure distribution along the two levels.

a thorough evaluation of the system, related work is in Sec. 6, and concluding remarks
are presented in Sec. 7.

2 System Architecture

The requirements and characteristics of HPC systems, detailed in the previous section,
led us to a hierarchical peer-to-peer design (see Fig. 1-B). The basic building block
of the system is that of a zone. Within a zone, full membership is maintained with an
eventual consistency semantic (detailed in Sec. 3). In addition, an attribute replication
service allows each node to write a key-value table, which is then replicated to all other
nodes. This allows each node to communicate its state to every other node in the zone.
This design scales to zones consisting of approximately a few thousand members. In
order to achieve the 1M nodes target, the membership and attribute replication services
are used as building blocks of a two layers hierarchy, composed of base-zones federated
by a management-zone (see Fig. 1-B). On Blue Gene/P [9] for example, zone affilia-
tion be can derived from the “personality” of each node, organizing the compute nodes
of a rack into a base-zone, selecting IO-nodes for the management zone, and assign-
ing co-located IO-nodes to the respective base-zones. Each base zone elects, using the
attribute service, delegates to connect to the management zone’s appropriate supervi-
sor. An active delegate sends the supervisor updates about the base-zone membership.
A supervisor shares information with its peers, using the attribute replication service,
publishing the names of guarded base-zones, the number of active delegates per such
zone, and the view size of each base-zone (see Fig. 1-B). This enables each member
of the management zone to have a “system census”, which is an up-to-date eventually
consistent summary view of the entire cluster. In addition, if further details are needed,
there are mechanisms in place which enable every management node to obtain more
specific information regarding each base zone, such as the detailed full membership of
that zone. Since components, including delegates, supervisors, and the links between
them can fail, the hierarchy contains redundancy in each of these elements. Whenever
a component fails, it is immediately and automatically replaced, so that the integrity of
the hierarchy is maintained at all times.

In order to ensure fast failure detection, the active delegate in each zone serves as the
zone’s “high priority monitor” (HPM). Failure detection information is sent to the HPM
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node directly, although possibly using unreliable communication, in addition to the
reliable yet relatively slow gossip-based dissemination mechanism. These notifications
traverse the hierarchical structure as well. Thus, a single monitor or a hierarchy thereof
can take fast actions such as re-spawning the failed computation.

3 Zone Membership

In this section we describe in detail the membership protocol implemented in both
base and management zones. Each node n is associated with an ID, which carries
the node name and network endpoints. Each ID is accompanied by a version Ver =
〈inc,minor〉, where: (1) inc identifies different incarnations of the same node, sepa-
rated by crash failures or restarts, and is strictly increasing; and (2) minor starts from
1 on every incarnation and is incremented by n according to the protocol described
below. The local membership View is a map ID → Ver, where Viewn[m] is the most
current Ver of node m known to n. Changes to the view are delivered differentially:
NOTIFY-JOIN(〈p, v〉) is invoked when node p with version v joins the overlay or after a
network partition heals; NOTIFY-LEAVE(〈p, v〉) is invoked when 〈p, v〉 leaves, fails, or
is behind a network partition. The semantic is that of eventual consistency: ∀m,n that
remain in the same group, Viewn = Viewm, some finite time after no more nodes join
or leave, and the network is stable.

Bootstrap & History: When a node starts, it is given a set B of IDs to bootstrap from.
The history map H contains the IDs of nodes which were recently removed from the
View, along with their removal time and version when removed. If a node re-enters the
view, it is removed from H (i.e. H ∩ View = ∅). The history map is used to identify
stale messages, that arrive after a node fails. In case the history map H grows beyond a
certain limit, it is pruned by removing nodes older than some threshold.

Discovery: The discovery task selects target m ∈ {B \ View ∪H} randomly, and sends
a discovery-request message that contains its own ID and Ver, as well as a boot flag
that encodes whether the target m was selected from B or from H. The discovery-reply
consists of the full view of the target m, and the flag boot. For both request and reply,
in case ¬boot, the receiver p performs Verp.min← Verp.min+ 1, and then processes
each pair of 〈ID,Ver〉 from the message using PROCESSALIVE(〈ID,Ver〉) (see Alg. 1).
This process both heals partitions and discovers new peers. The discovery targets are not
kept as permanent neighbors. The discovery task is performed frequently at bootstrap,
and as time passes its frequency decreases.

Topology: As the view begins to fill up, the topology component starts choosing and
connecting to long-term neighbors. The topology built from the view has two ingredi-
ents: (1) a robust ring where each node is connected to Ks successors (ring order based
on SHA1 of ID), and (2) Kr random neighbors. The ring ensures that eventually all
failed nodes will be discovered by their predecessor(s). This ensures eventual complete-
ness of the view [10]. The random nodes are selected according to a protocol which
approximates a Kr-connected random graph [11], yielding a robust and well connected
overlay.
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Algorithm 1. Processing of Alive, Leave, and Suspicion events, at node n
1: procedure PROCESSALIVE(ID p,Ver v)
2: if (p /∈ Viewn) ∧ ((p /∈ Hn) ∨ (p ∈ Hn ∧ v > Hn[p].Ver)) then � join
3: Viewn[p] ← v; remove p from Hn; add 〈p, v〉 to Δ.A; NOTIFY-JOIN(〈p,v〉);
4: if (p ∈ Viewn) ∧ (v > Viewn[p]) then � newer version
5: add 〈p, v〉 to Δ.A;
6: for all r ∈ Sn[p], Sn[p][r] < v do � prune refuted suspicions remove r from Sn[p];

7: if Viewn[p].inc = v.inc then Viewn[p] ← v;
8: else � new incarnation
9: NOTIFY-LEAVE(〈p,Viewn[p]〉); Viewn[p] ← v; NOTIFY-JOIN(〈p,v〉);

10: procedure PROCESSLEAVE(ID p,Ver v)
11: if (p ∈ Viewn) ∧ (v ≥ Viewn[p]) then � in-view leave
12: remove p from Viewn and Sn; Hn[p] ← 〈v, time〉; add 〈p, v〉 to Δ.L;
13: NOTIFYLEAVE(〈p,v〉);
14: if (p /∈ Viewn) ∧ (p ∈ Hn) ∧ (v > Hn[p].Ver) then � out-of-view leave
15: Hn[p] ← 〈v, time〉; add 〈p, v〉 to Δ.L;

16: procedure PROCESSSUSPICION(ID r,ID s,Ver v)
17: if s = n then � refute suspicion on self
18: Vern.min ← Vern.min+ 1; add 〈n,Vern〉 to Δ.A;
19: else if s ∈ Viewn ∧ v ≥ Viewn[s] then
20: if r /∈ Sn[s] ∨ Sn[s][r] < v then � valid, new suspicion
21: Sn[s][r] ← v; add 〈r, s, v〉 to Δ.S ;
22: if |Sn[s]| ≥ Θ then � enough evidence! correction for small views omitted
23: remove s from Viewn and Sn; H [s] ← 〈v, time〉; NOTIFYLEAVE(〈s,v〉);

Failure Detection and Orderly Leaves: Failure detection is based on neighbors mon-
itoring each other using heartbeats. Node r creates a failure suspicion report on node
s if (1) an established connection between r and s fails, or (2) a heartbeat timeout is
reported on s, or (3) s is member of r’s successor list, and a connect attempt from r
to s fails. The last condition ensures the view’s eventual completeness [10]. A suspi-
cion report consists of the tuple 〈r, s, v〉 for the reporter’s ID, the suspect’s ID, and
suspect’s Ver. The reporter calls PROCESSSUSPICION(r, s,Viewr[s]) in order to spread
the report further (see Alg. 1). Adjacent to Viewn[m] is the suspicion repository 2D map
Sn[s][r] → v, which stores every unique suspicion report received. Note that suspicion
reports with a version lower than the version of the suspect in the view are discarded.
In order to decrease the false detection rate, a node is declared as “failed” only after the
number of reporters suspecting the same node exceeds a threshold, Θ. To ensure even-
tual completeness, Ks ≥ Θ must hold. When a node orderly leaves the overlay, it sends
all its neighbors a leave message, which contains the node ID and Ver (and possibly an
exit code). Upon reception leave messages are processed by PROCESSLEAVE(ID,Ver)
and added to the update database for further dissemination.

Membership Updates: Node membership information is disseminated over the Kr +
Ks long-term overlay links. When node n acquires a new neighbor m, it will send m a
membership message that contains: (1) the entire Viewn, and (2) all the current suspi-
cions (all the tuples 〈r, s, Sn[s][r]〉). After the first “base-view message” a neighbor is
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sent only “update” messages, which differentially capture the difference from the base-
view. The update-database Δ contains the following three sets: (1) A – The 〈ID,Ver〉
of nodes on which fresh Alive information was received (may include the current node);
(2) S – received suspicion reports 〈r,s,v〉 ; (3) L – The 〈ID,Ver〉 of received Leave mes-
sages. The update database starts empty and accumulates alive, leave, and suspicion
events (see Alg. 1). A membership update message is sent to all neighbors after a con-
figurable aggregation interval (τ ) from the first such event that hits an empty Δ. After
Δ is sent to all the neighbors, it is cleared. Upon receiving a membership message (base
or update), every 〈p, v〉 ∈ L, every 〈p, v〉 ∈ A, and every 〈r, s, v〉 ∈ S is processed by
Alg. 1 #10,#1,#16, respectively. This order minimizes the chance of notifying a false
suspicion.

High Priority Monitoring: In the protocol described above, membership updates are
expected to propagate to all nodes in time proportional to τ and the overlay diameter,
which is O(logKr

N) [11]. In many applications there is only a single or a small number
of monitors that take decisions based on membership events. It is possible to decrease
the monitor’s failure detection time by sending the original suspicion reports directly
to the monitor (e.g. using UDP), in addition to the reliable propagation mechanism
described in Alg. 1. We allow a small number of selected nodes to declare themselves
(automatically or programmatically) as monitors using the attribute replication service.
This lets every node in the zone know who the monitors are. When node n suspects
the failure of a neighbor m with version v, it will immediately send the monitors a
membership message containing suspicion 〈n,m, v〉. This message is processed just
like any other suspicion (see Alg. 1). A monitor will receive up to Kr + Ks such
messages on every failure.

4 Attribute Replication Service

Each node n has an attribute map An of key-value pairs it can write to. Each key-value
pair 〈k,t〉 is associated with a version number u ∈ N, such that newer values of the
same key carry larger version number. The goal is to replicate the attribute map An of
node n to all other nodes. Let us denote by Mn(m) the map replica of node m, that
node n holds. Thus, node n holds one map it can write to directly Mn(n) ≡ An, and
read-only replicas of the maps of every other node Mn(m), ∀m �= n. Thus, the ul-
timate goal is to reach Mn = Mm, ∀n,m (some finite time after the end of writes).
When node n learns about the attribute changes of node p, it notifies the user by invok-
ing NOTIFY-ATTCHANGE(Mn(p)). The attribute dissemination protocol is inspired by
Anti-Entropy (AE) protocols [12,13], where in every round a node reconciles its state
with a randomly selected gossip peer. The disadvantage is that on every AE round, the
entire membership of node n (O(|Viewn|)) has to be transmitted. This step has to be
repeated periodically even if no updates to the map were made, consuming bandwidth
even in idle state. Moreover, running AE reconciliation with two peers in parallel carries
the cost of potentially getting duplicate copies of the same data entries. In our topol-
ogy each node has a stable set of neighbors, connected by reliable connections. Thus,
remembering what was exchanged in the last round and transmitting just the difference
can save a lot of bandwidth. We therefore designed an improved protocol, which: (1)
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Algorithm 2. Attribute replication message handlers: received at n, sent from m

1: procedure UPON-ATTUPDATE(Λupdate)
2: Λn ← ∅
3: for all 〈p, u〉 ∈ update do
4: if u > Mn(p).u ∧ u > Mn(p).u pend then
5: Λn ← Λn ∪ 〈p,Mn(p).u〉; Mn(p).〈u pend, trg pend〉 ← 〈u,m〉;
6: if Λn �= ∅ then send AttRequest(Λn, false) to m;

7: procedure UPON-ATTREQUEST(Λrequest, push)
8: AttDatan ← ∅;
9: for all 〈p, u〉 ∈ request do

10: if u < Mn(p).u then
11: for all 〈k, t, u′〉 ∈ Mn(p) : u′ > u do AttDatan ← AttDatan ∪ 〈p, k, t, u′〉;
12: else if ¬push then AttDatan ← AttDatan ∪ 〈p,⊥,⊥,⊥〉;
13: send AttReply(AttDatan) to m

14: procedure UPON-ATTREPLY(AttData data)
15: Λn ← ∅;
16: for all dm(p, k, t, u) ∈ data do
17: if u = ⊥ then
18: Λn ← Λn ∪ 〈p,Mn(p).u〉;
19: Mn(p).〈u pend, trg pend〉 ← 〈Mn(p).u, ∅〉;
20: else if Mn(p)[k] = ∅ ∨Mn(p)[k].u < u then
21: Mn(p)[k] ← 〈t, u〉; Mn(p).u ← max(Mn(p).u, u);

22: if Λn �= ∅ then send AttRequest(Λn, true) to all neighbors;

23: for all Mn(p).u > Mn(p).u notified do
24: NOTIFY-ATTCHANGE(Mn(p)); Mn(p).u notified ← Mn(p).u;

avoids sending full O(|Viewn|) sized messages in each reconciliation; (2) lets traffic
reduce to zero when there are no writes and the overlay is stable; and (3) minimizes the
reception of duplicate data updates.

An entry in the map is An[k] = 〈t, u〉. The map itself has a version number An.u ∈
N which starts at 0 when the map is empty. The map is written one key at a time. Every
time a key is written the version number of the map is incremented, and the version
of the corresponding 〈k, t〉 entry is set to An.u. Thus no two entries carry the same
version, and An.u equals the maximal version number in the map. This versioning
scheme permits a protocol with per source sequential consistency, meaning that writes
to An are delivered in the same order in every other node p. The tables Mn(p) are
augmented with the following fields:

1. Mn(p).u = max{u : 〈k, t, u〉 ∈Mn(p)} – the last version of Ap known to n;
2. Mn(p).u sent – the version sent by n to all its neighbors during the last round;
3. Mn(p).pend trg – the neighbor ID to which a request was sent;
4. Mn(p).u pend – a version known to Mn(p).pend trg to which a request was sent;
5. Mn(p).u notified - the last version delivered to the application.

In every round, node n will reconcile its state with its overlay neighbors, so that even-
tually Mn = Mm for every neighbor m. Let a digest Λn be a list of identifier and table
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version pairs 〈p,Mn(p).u〉; and let AttDatan be list data entries dn(p, k, t, u), where
each entry is a single key-value-version tuple from Mn(p). The reconciliation protocol
has three stages – Update, Request, and Reply. (1) In the Update stage, node n will pre-
pare, at configurable periodic intervals, a differential digest of its state, containing tables
that changed since the last round: Λn ← {〈p,Mn(p).u〉 : Mn(p).u > Mn(p).u sent}.
If Λn �= ∅, it will be sent to all n’s neighbors, and the tables will be marked as sent:
∀〈p, u〉 ∈ Λn,Mn(p).u sent ← u. (2) In the Request stage (Alg. 2 #1), after process-
ing an update digest from m, node n sends m a request containing a digest of its parts
of the state that are less recent than those of m. The validity of the request w.r.t. the
preceding update is given special care (Alg. 2 #12,17-19). (3) In the Reply stage (Alg. 2
#7), node n sends to node m the data entries that are more recent than what node m
declared it knows and needs. (4) Finally, when node n receives the reply (Alg. 2 #14),
it merges the incoming data into the existing tables, and notifies the application on the
respective attribute changes.

When node n acquires a new neighborm, the full digest Λn ← {〈p,Mn(p).u〉, ∀p ∈
Viewn} is sent to m. In case a neighbor m disconnects (fails, leaves, or changes neigh-
bors), its ID is searched in all the Mn(p).pend trg fields. If found, it means that a re-
quest sent to it will not be answered. Thus, the pending request (i.e. 〈p,Mn(p).u〉) will
be resent to all neighbors. The attribute map of a node is valid to other nodes only when
the node is “alive”. Thus, when a node p leaves the overlay, all Mn(p), ∀n �= p, are
deleted. When a node joins the overlay, an empty replica is initialized in all other nodes.
As it acquires new neighbors, the joining node will push its state digest to its neighbors,
and vice versa. Key deletion is translated into a write An[k] ← 〈⊥, An.u + 1〉, which
is a kind of “death-certificate” for the key (see [12]).

5 Evaluation
Developing hardware and software for much larger systems than presently available has
always posed difficult challenges for those who must assess performance before full
scale measurements are possible. Our design lends itself to encapsulated component
performance testing even though supercomputers with one million nodes do not exist
yet. We divide our entire system into three components: management zone, base zones,
and the communication links between them (see Fig. 1-B). We isolated the required
relevant performance metrics for each component. Then we are able to devise tests
for each component at the required performance to achieve successful systems of one
million nodes. We fully implemented the hierarchical membership and attribute services
in C++. Our test bed was a rack of Blue Gene/P1. We used regular Linux on compute
nodes, rather than CNK2. The version we used provides full TCP/IP functionality on
all the networks, including the torus. We set out to test whether our system is up to the
task of managing the target scale by first testing a single zone to its full scale. Then we
test a hierarchical system that has the full number of base zones and management nodes
although with “stub” base zones. Each “stub” base zone is represented by a single node,
which injects in to the management zone the same traffic as a full base-zone. We used

1 Which includes 1024/64 compute/IO nodes, 32 bit integer, 850MHz, 4GB RAM [9].
2 Version 2.6.29.1 with IBM modifications for Blue Gene/P, available: http://git.anl-
external.org/bg-linux.repos/linux-2.6.29.1-BGP.git/

http://git.anl-external.org/bg-linux.repos/linux-2.6.29.1-BGP.git/
http://git.anl-external.org/bg-linux.repos/linux-2.6.29.1-BGP.git/
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Fig. 3. Average time for a view with nodes joining and leaving, as a function of zone size and
number of concurrent joins/leaves

τ = 200ms, Θ = 1, Kr = 3, Ks = 1 in all the experiments. The metrics chosen for
measuring our system‘s performance are biased towards the HPC use case. The main
difference between this use case and traditional (Internet and data-center) scenarios is
the way in which the system is brought up, the frequency of nodes joining and leaving
(churn), and the coupling between the nodes.

5.1 Boot Time

Unlike conventional Internet-scale or data-center based systems in which the nodes
gradually join until the system gains size, a supercomputer or a partition of a supercom-
puter, usually boots all its nodes at once. Thus we want to make sure that the time it
takes to form a stable view upon boot is reasonable, in line with the time it takes for the
other processes that happen during boot (daemon startup, file system mount, etc).
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First, we measure the time to a stable view of a single base zone, versus the number
of nodes (32-2048), assuming all the nodes boot at once (Fig. 2-Left). Results indicate
that a 2048-node zone yields a stable view in TBoot

Base(n = 2048) ≈ 5.7s (we used 2
processes per machine, with 1 process per machine results are approximately ≈ 30%
better). This tests the performance of the membership protocol. The results indicate
that the boot time for a single zone is linear in the number of nodes. This is to be
expected because every node has to get at least a single “alive” indication from every
other node, directly or indirectly. Next, we measure the time to a stable view of a 2-
layer setup with the number of base zones increasing from 16 to 1024, with 1 nodes in
each base zone serving as a stub, and 1 supervisor per base zone (Fig. 2-Left). Results
indicate that a 1024-node supervisor zone with 1024-base zones (1 stub node) boots in
TBoot
Sup (m = 1024, n = 1) ≈ 9.7s. The boot stabilization time of the management zone

includes: (1) stabilization of the management zone membership view and topology, (2)
connecting with the base zone delegates, (3) receiving the views of the base-zones,
and (4) distributing the summaries to all the members of the management zone using
the attribute service. This takes longer than the stabilization time of a base zone with
the same number of nodes, and shows linear scaling as well. These two measurements
allow us to make a worst-case estimate of the full system stabilization time, for different
combinations of management zone size (m) and base zone size (n), by making the
following worst case assumptions: (1) that the stabilization time of a stub base zone is
negligible, and (2) that the management zone starts after the base zones have stabilized.
This results in TBoot

Sup (m,n) � TBoot
Sup (m, 1) + TBoot

Base(n). Figure 2-Right shows that a
1M system with 2048-node base-zones and a 512-node management zone would boot
in ≈ TBoot

Sup (512, 1)+TBoot
Base(2048) ∼ 10.3s. Figure 2-Right also shows what would be

the optimal configuration of a management- and base-zones, for every system size, in
terms of boot time.

5.2 Leave-Join Performance

We evaluate the leave-join performance by first booting a zone, and then forcing a num-
ber of nodes to fail concurrently. The victim nodes concurrently rejoin after a while.
In both cases we measure the average time to a stable view; in case of leaves this in-
cludes failure detection time. The time to stable view (Fig. 3, top 6 curves) measures the
propagation time of concurrent membership changes using the normal membership and
attribute dissemination protocol. Membership stabilization time follows a logarithmic
relation with zone size, since our topology creates a graph with logarithmic diameter
and average path length. (We verified that ∀N the diameter is≤ logKr

N ). The number
of nodes leaving or joining has hardly any effect, since as long as the ratio of tran-
sient nodes to total zone size is not too high, the topology retains its desirable robust
“logarithmic” features (diameter, average path length) in the face of churn [11]. Join
events take exactly 1 aggregation delay (τ ) longer than leaves, since the joining node
takes one round to discover peers before it spreads its identity, in an attempt to build
a “good” topology right away. Membership events are propagated as node-census at-
tribute events in the supervisor zone. The propagation time follows the same rule as
in base zones, since it is influenced by the (identical) topology of the overlay and the
aggregation time. Therefore we can estimate the stabilization time of a full system, as



364 Y. Tock et al.

in Sec. 5.1, by adding the stabilization times of the base- and supervisor-zones, ac-
cording to their respective sizes. For example, in a 1M node system with a 512/2048
supervisor/base-zone configuration, a leave event would propagate to all the supervisors
in ≈700ms.

5.3 High Priority Monitoring

Figure 3 (bottom 3 curves) displays the time it takes an HPM node to reach a stable view
after leave events (same experiment as above). The delay is almost independent of zone
size, and is ≈30ms for almost all cases. The round-trip delay between any node in Blue
Gene/P is below 1ms; we therefore conclude that this time is mainly failure detection
time, which is independent of size. When the ratio of failed nodes to the zones size is
too large (e.g. 16 out of 32), detection time grows because of the likelihood that some
failed node X would have all its neighbors failing as well. The failure of node X is then
discovered by some surviving node that tries to connect to it as a successor, and fails.

6 Related Work

Membership services present a wide spectrum of semantics [14], which vary from con-
sistent views like Virtual Synchrony [15], to eventual consistency [16] as implemented
in Cassandra [17], and to partial views either randomized as in SCAMP [18] or struc-
tured as in Chord [19]. Scalability increases as semantics become less strict, from hun-
dreds in VS, thousands in eventual consistency, and tens of thousands for partial views.
An important class of these services relies on “gossip” protocols [20], where peers pe-
riodically exchange parts of their state with a random selection of peers. Gossip based
protocols are extremely robust. However, they are slow to detect failures [10], and gen-
erate traffic even when no membership changes occur. Overlay networks in which peers
have stable connections retain similar robustness by choosing peers such that the result-
ing overlay network remains well connected in the face of failures, as is Araneola [11]
and Symphony [21]. The advantages of stable peers are (1) efficient distributed fail-
ure detection [10,22]; (2) the ability to minimize “OS jitter” [23]; and (3) the ability
to implement additional functions like a publish-subscribe service [8], and a key-value
store [19,17]. Hierarchical membership schemes were proposed by HiSCAMP [24],
where the focus is on a dynamic self organizing hierarchy, and more recently by Cen-
sus [25] where the focus is on self-organization reflecting the geographic distribution
of the nodes, and on delivering consistent views. Our implementation focuses on scala-
bility and is an order of magnitude greater than Census and HiScamp (1M vs. 10K and
50K, resp.); and fast failure detection, which at 1M nodes is less than 100ms for the
HPM and takes around 800ms to form a consistent view (Census [25] chooses to pro-
vide a consistent view every 30 seconds for a system of 10K nodes). An early attempt to
develop a membership service specifically for HPC introduced a flat tree-based mem-
bership algorithm for MPI environments, and was evaluated only up to 1024 nodes [4].
More recently the CIFTS project (e.g [7]) was devoted to fault-tolerance in HPC sys-
tems. Our approach adopts a much more general failure model than the one adopted by
CIFTS, and therefore uses a different overlay topology (expander vs. tree) and different
algorithms.
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7 Conclusions

We demonstrated that membership services can scale effectively to upcoming HPC sys-
tem sizes, supporting continuous availability, for a next generation of HPC run-time
support, and system administration. We believe that ExaScale size deployments can
be made resiliency aware by employing this work. We are currently working to inte-
grate our membership and attribute replication services with Charm++ [6], in order to
demonstrate a true fault tolerant, elastic, parallel runtime.
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Distributed Computing is becoming more and more led by technological and
application advances. Many works consider new computing models compared to
the classical closed model with a fixed number of participants and strong hy-
pothesis on communication and structuration. Indeed, it is hard to imagine some
application or computational activity and process that falls outside Distributed
Computing. Internet and the web (e.g. social networks, clouds) are becoming
the main application field for distributed computing. In addition to the classical
challenges that developers have to face (asynchrony and failures) they have to
deal with load balancing, malicious and selfish behaviors, mobility, heterogeneity
and the dynamic nature of participating processes.

Topic 8 of Euro-Par (Distributed Systems and Algorithms) makes a good mix
between research and development. Papers submitted to Topic 8 gave a good
overview of the spectrum of Distributed Systems. They focussed on a range
of interesting research areas, such as web oriented applications, data manage-
ments (data bases) and fault-tolerance. The accepted papers also represent this
diverse research landscape, thus making Topic 8 of Euro-Par a good forum to
discuss both novel approaches and connections between sub-areas of research in
Distributed Systems.

This year five papers were accepted. The paper “Gunther: Search-Based Auto-
tuning of MapReduce”, by Guangdeng Liao, Kushal Datta and Theodore Willke
proposes a novel approach to parameter optimization in Hadoop clusters based
on global search algorithms. Namely, the authors present a tool (Gunther) for
automatically finding suitable values for some of the more than 200 configurable
parameters in Hadoop. Their approach uses trial execution of Hadoop applica-
tions and based on these trial executions they use Genetic Algorithms for finding
suitable parameter values.

The paper “Multi-criteria checkpointing strategies: optimizing response-time
versus resource utilization”, by Aurelien Bouteiller, Franck Cappello, Jack Don-
garra, Amina Guermouche, Thomas Herault and Yves Robert, discusses the
optimization of system utilization during exhaustive checkpoint rollback oper-
ations, with a specific focus on Exascale computing. In uncoordinated check-
pointing, when one process rolls-back due to exception, the other cooperating
processes need not; however they can be blocked from making progress until the
rollback and subsequent restoration are complete. The presented work prevents
this by running another application in the meantime so that resource usage is
maximized.
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The paper “Efficient event prewarning for sensor networks with multi mi-
croenvironments”, by Yinglong Li, describes an approach for structuring sensor
networks into communication clusters for better performance behavior. To this
respect, it proposes an algorithm that eliminates erroneous data by identifying
outliers. The paper also proposes a spatial correlation algorithm for generating
prewarnings as a function of the location where it was sensed and assesses its
efficiency by comparing it with an idealized protocol. In order to improve the
quality of these prewarnings the authors suggest spacial correlation analysis.

The paper “On the Scalability of Snapshot Isolation”, by Masoud Saeida
Ardekani, Pierre Sutra, Nuno Preguica and Marc Shapiro, presents an impos-
sibility result, namely, the proof that genuine partial replication (GPR) cannot
be achieved whilst guaranteeing snapshot isolation (SI) consistency as strategies
for transaction performance improvements. For this purpose, the authors prove
that snapshot isolation (a consistency property) can be broken down into four
properties. Then, they show that two of these properties conflict with the prop-
erty genuine partial replication (GPR). This means that SI and GPR can not
be obtained in the same system.

Finally, the paper “Efficient Parallel Block-Max WAND Algorithm”, by
Veronica Gil Costa, Oscar Rojas and Mauricio Marin, proposes different ways
of increasing the performance of web searches (top-k service) through parallel
execution on a Master/Slave architecture. The authors consider three different
approaches: a distributed two-stage algorithm, and two multi-threaded algo-
rithms using different synchronization schemes (called local and shared heap).
The two-stage algorithm is targeted for clusters of distributed computers and
the multi-threaded versions are targeted for multi-core computers. This means
that the distributed approach and the multi-threaded approaches could be used
together if one is using clusters of multiprocessors.

We would like to take this opportunity to thank all authors who submitted
their work to Topic 8 of Euro-Par 2013, all external referees who assisted us,
and all people involved in organizing the review process for their hard work.
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Abstract. Many distributed applications require transactions. However,
transactional protocols that require strong synchronization are costly in
large scale environments. Two properties help with scalability of a trans-
actional system: genuine partial replication (GPR), which leverages the
intrinsic parallelism of a workload, and snapshot isolation (SI), which
decreases the need for synchronization. We show that under standard
assumptions (data store accesses are not known in advance, and transac-
tions may access arbitrary objects in the data store), it is impossible to
have both SI and GPR. Our impossibility result is based on a novel de-
composition of SI which proves that, like serializability, SI is expressible
on plain histories.

1 Introduction

Large scale transactional systems have conflicting requirements. On the one
hand, strong transactional guarantees are fundamental to many applications.
On the other, remote communication and synchronization are costly and should
be avoided.1

To maintain strong consistency guarantees while alleviating the cost of syn-
chronization, Snapshot Isolation (SI) is a popular approach in both distributed
database replications [1–3], and software transactional memories [4, 5]. Under SI,
a transaction accesses its own consistent snapshot of the data, which is unaffected
by concurrent updates. A read-only transaction always commits unilaterally and
without synchronization. An update transaction synchronizes on commit to en-
sure that no concurrent conflicting transaction has committed before it.

Our first contribution is to prove that SI is equivalent to the conjunction of the
following properties: (i) no cascading aborts, (ii) strictly consistent snapshots,
i.e., a transaction observes a snapshot that coincides with some point in (lin-
ear) time, (iii) two concurrent write-conflicting update transactions never both

� This work is partially supported by FCT/MCT projects PEst-OE/E-
EI/UI0527/2011 and PTDC/EIA-EIA/108963/2008, and the European Com-
mission’s Seventh Framework Program (FP7) under grant agreement No. 318809
(LEADS).

1 We address general-purpose transactions, i.e., we assume that a transaction may
access any object in the system, and that its read- and write-sets are not known in
advance.
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commit, and (iv) snapshots observed by transactions are monotonically ordered.
Previous definitions of SI [6, 7] extend histories with abstract snapshot points.
Our decomposition shows that in fact, like serializability, SI can be defined on
plain histories [8].

Modern data stores replicate data for both performance and availability. Full
replication does not scale, as every process must perform all updates. Partial
replication (PR) aims to address this problem, by replicating only a subset of
the data at each process. Thus, if transactions would communicate only over the
minimal number of replicas, synchronization and computation overhead would
be reduced. However, in the general case, the overlap of transactions cannot
be predicted; therefore, many PR protocols perform system-wide global consen-
sus [2, 3] or communication [9]. This negates the potential advantages of PR;
hence, we require genuine partial replication [10] (GPR), in which a transac-
tion communicates only with processes that replicate some object accessed in
the transaction. With GPR, independent transactions do not interfere with each
other, and the intrinsic parallelism of a workload can be thus exploited.

Our second contribution is to show that SI and GPR are incompatible. More
precisely, we prove that an asynchronous message-passing system supporting
GPR, even if it is failure-free, cannot compute monotonically ordered snapshots,
nor strictly consistent ones.

This paper proceeds as follows. We introduce our system model in Section 2.
Section 3 presents our decomposition of SI. Section 4 shows that GPR and SI are
mutually incompatible. We discuss implications of this result and related work
in Section 5. Section 6 closes this paper. Due to space constraints, some proofs
are deferred to our companion technical report [11].

2 Model

This section defines the elements in our model and formalizes SI and GPR .

2.1 Objects and Transactions

Let Objects be a set of objects, and T be a set of transaction identifiers. Given
an object x and an identifier i, xi denotes version i of x. A transaction Ti∈T
is a finite permutation of read and write operations followed by a terminating
operation, commit (ci) or abort (ai). We use wi(xi) to denote transaction Ti

writing version i of object x, and ri(xj) to mean that Ti reads version j of
object x. In a transaction, every write is preceded by a read on the same object,
and every object is read or written at most once.2 We note ws(Ti) the write set
of Ti, i.e., the set of objects written by transaction Ti. Similarly, rs(Ti) denotes
the read set of transaction Ti. The snapshot of Ti is the set of versions read by
Ti. Two transactions conflict when they access the same object and one of them
modifies it; they write-conflict when they both write to the same object.

2 These restrictions ease the exposition of our results but do not change their validity.
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2.2 Histories

A complete history h is a partially ordered set of operations such that (1) for
every operation oi appearing in h, transaction Ti terminates in h, (2) for every
two operations oi and o′i appearing in h, if oi precedes o′i in Ti, then oi <h o′i,
(3) for every read ri(xj) in h, there exists a write operation wj(xj) such that
wj(xj) <h ri(xj), and (4) any two write operations over the same objects are
ordered by <h. A history is a prefix of a complete history. For some history h,
order <h is the real-time order induced by h. Transaction Ti is pending in history
h if Ti does not commit, nor abort in h. We note &h the version order induced
by h between different versions of an object, i.e., for every object x, and any
two transactions Ti and Tj , xi &h xj = wi(xi) <h wj(xj). Following Bernstein
et al. [12], we depict a history as a graph. We illustrate this with history h1

below in which transaction Ta reads the initial versions of objects x and y, while
transaction T1 (respectively T2) updates x (resp. y).3

h1 = ra(x0) r1(x0).w1(x1).c1

ra(y0).ca r2(y0).w2(y2).c2

When order <h is total, we shall write a history as a permutation of operations,
e.g., h2 = r1(x0).r2(y0).w2(y2).c1.c2.

2.3 Snapshot Isolation

Snapshot isolation (SI) was introduced by Berenson et al. [8], then later gen-
eralized under the name GSI by Elnikety et al. [7]. In this paper, we make no
distinction between SI and GSI.

Let us consider a function S which takes as input a history h, and returns
an extended history hs by adding a snapshot point to h for each transaction in
h. Given a transaction Ti, the snapshot point of Ti in hs, denoted si, precedes
every operation of transaction Ti in hs. A history h is in SI if, and only if, there
exists a function S such that hs = S(h) and hs satisfies the following rules:

D1 (Read Rule)
∀ri(xj �=i), wk �=j(xk), ck ∈ hs :

cj ∈ hs (D1.1)
∧ cj <hs si (D1.2)
∧ (ck <hs cj ∨ si <hs ck) (D1.3)

D2 (Write Rule)
∀ci, cj ∈ hs :

ws(Ti) ∩ ws(Tj) �= ∅
⇒ (ci <hs sj ∨ cj <hs si)

2.4 System

Weconsider amessage-passing distributed systemofn processesΠ = {p1, . . . , pn}.
We shall define our synchrony assumptions later. Following Fischer et al. [13],
an execution is a sequence of steps made by one or more processes. During

3 Throughout the paper, read-only transactions are specified with an alphabet sub-
script, and update transactions are shown with numeric subscript.
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an execution, processes may fail by crashing. A process that does not crash is
said correct ; otherwise it is faulty. We note F the refinement mapping [14] from
executions to histories, i.e., if ρ is an execution of the system, then F(ρ) is the
history produced by ρ. A history h is acceptable if there exists an execution ρ
such that h = F(ρ). We consider that given two sequences of steps U and V , if U
precedes V in some execution ρ, then the operations implemented by U precedes
(in the sense of <h) the operations implemented by V in the history F(ρ).4

2.5 Partial Replication

A data store D is a finite set of tuples (x, v, i) where x is an object (data item),
v a value, and i ∈ T a version. Each process in Π holds a data store such that
initially every object x has version x0. For an object x, Replicas(x ) denotes the
set of processes, or replicas, that hold a copy of x. By extension for some set
of objects X , Replicas(X ) denotes the replicas of X ; given a transaction Ti,
Replicas(Ti ) equals Replicas(rs(Ti) ∪ ws(Ti )).

We make no assumption about how objects are replicated. The coordinator of
Ti, denoted coord(Ti ), is in charge of executing Ti on behalf of some client (not
modeled). The coordinator does not know in advance the read set or the write
set of Ti. To model this, we consider that every prefix of a transaction (followed
by a terminating operation) is a transaction with the same id.

Genuine Partial Replication (GPR) aims to ensure that, when the workload
is parallel, throughput scales linearly with the number of nodes [10]:

– GPR. For any transaction Ti, only processes that replicate objects accessed
by Ti make steps to execute Ti.

2.6 Progress

The read rule of SI does not define what is the snapshot to be read. According
to Adya [6], “transaction Ti’s snapshot point needs not be chosen after the most
recent commit when Ti started, but can be selected to be some (convenient)
earlier point.” To avoid that read-only transactions always observe outdated
data, we add the following rule:

– Non-trivial SI. Consider an acceptable history h and a transaction Ti pend-
ing in h such that the next operation invoked by Ti is a read on some object
x. Note xj the latest committed version of x prior to the first operation of
Ti in h. Let ρ be an execution satisfying F(ρ) = h. If h.ri(xj) belongs to
SI then there exists an execution ρ′ extending ρ such that in history F(ρ′),
transaction Ti reads at least (in the sense of &h) version xj of x.

In addition, we consider that the system provides the following progress guar-
antees on transactions:

4 Notice that since steps to implement operations may interleave, <h is not necessarily
a total order.
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– Obstruction-Free Updates. For every update transaction Ti, if coord(Ti)
is correct then Ti eventually terminates. Moreover, if Ti does not write-
conflict with some concurrent transaction, then Ti eventually commits.

– Wait-Free Queries. If coord(Ti) is correct and Ti is a read-only transac-
tion, then transaction Ti eventually commits.

3 Decomposing SI

This section defines four properties, whose conjunction is necessary and sufficient
to attain SI. We later use these properties in Section 4 to derive our impossibility
result.

3.1 Cascading Aborts

Intuitively, a read-only transaction must abort if it observes the effects of an
uncommitted transaction that later aborts. By guaranteeing that every version
read by a transaction is committed, rules D1.1 and D1.2 of SI prevent such
a situation to occur. In other words, these rules avoid cascading aborts. We
formalize this property below:

Definition 1 (Avoiding Cascading aborts). History h avoids cascading
aborts, if for every read ri(xj) in h, cj precedes ri(xj) in h. ACA denotes the
set of histories that avoid cascading aborts.

3.2 Consistent and Strictly Consistent Snapshots

Consistent and strictly consistent snapshots are defined by refining causality into
a dependency relation as follows:

Definition 2 (Dependency). Consider a history h and two transactions Ti

and Tj. We note Ti � Tj when ri(xj) is in h. Transaction Ti depends on trans-
action Tj when Ti �∗ Tj holds.5 Transaction Ti and Tj are independent if neither
Ti �∗ Tj, nor Tj �∗ Ti hold.

This means that a transaction Ti depends on a transaction Tj if Ti reads an
object modified by Tj, or such a relation holds by transitive closure. To illustrate
this definition, consider history h3 = r1(x0).w1(x1).c1.ra(x1).ca.rb(y0).cb. In h3,
transaction Ta depends on T1. Notice that, even if T1 causally precedes Tb, Tb

does not depend on T1 in h3.
We now define consistent snapshots with the above dependency relation. A

transaction sees a consistent snapshot iff it observes the effects of all transactions
it depends on [15]. For example, consider the history h4 = r1(x0).w1(x1).c1.r2(x1)
.r2(y0).w2(y2).c2.ra(y2).ra(x0).ca In this history, transaction Ta does not see a

5 We note R∗ the transitive closure of some binary relation R.
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consistent snapshot: Ta depends on T2, and T2 also depends on T1, but Ta does
not observe the effect of T1 (i.e., x1). Formally, consistent snapshots are defined
as follows:

Definition 3 (Consistent snapshot). A transaction Ti in a history h ob-
serves a consistent snapshot iff, for every object x, if (i) Ti reads version xj, (ii)
Tk writes version xk, and (iii) Ti depends on Tk, then version xk is followed by
version xj in the version order induced by h (xk &h xj). We write h ∈ CONS
when all transactions in h observe a consistent snapshot.

SI requires that a transaction observes the committed state of the data at some
point in the past. This requirement is stronger than consistent snapshot. For
some transaction Ti, it implies that (SCONSa) there exists a snapshot point
for Ti , and (SCONSb) if transaction Ti observes the effects of transaction Tj ,
it must also observe the effects of all transactions that precede Tj in time. A
history is called strictly consistent if both SCONSa and SCONSb hold.

To illustrate this, consider the following history: h5 = r1(x0).w1(x1).c1.ra(x1)
.r2(y0).w2(y2).c2.ra(y2).ca. Because ra(x1) precedes c2 in h5, y2 cannot be ob-
served when Ta takes its snapshot. As a consequence, the snapshot of trans-
action Ta is not strictly consistent. This issue is disallowed by SCONSa. Now,
consider history h6 = r1(x0).w1(x1).c1.r2(y0).w2(y2).c2.ra(x0).ra(y2).ca. Since
c1 precedes c2 in h6 and transaction Ta observes the effect of T2 (i.e., y2), it
should also observe the effect of T1 (i.e., x1). SCONSb prevents history h6 to
occur.

Definition 4 (Strictly consistent snapshot). Snapshots in history h are
strictly consistent, when for any committed transactions Ti, Tj, Tk �=j and Tl,
the following two properties hold:

- ∀ri(xj), ri(yl) ∈ h : ri(xj) �<h cl (SCONSa)
- ∀ri(xj), ri(yl), wk(xk) ∈ h :

ck <h cl ⇒ ck <h cj (SCONSb)

We note SCONS the set of strictly consistent histories.

3.3 Snapshot Monotonicity

In addition, SI requires what we call monotonic snapshots. For instance, although
history h7 below satisfies SCONS, this history does not belong to SI. Indeed,
since Ta reads {x0, y2}, and Tb reads {x1, y0}, there is no extended history that
would guarantee the read rule of SI.

h7 = ra(x0) r1(x0).w1(x1).c1 rb(x1).cb

rb(y0) r2(y0).w2(y2).c2 ra(y2).ca

SI requires monotonic snapshots. However, the underlying reason is intricate
enough that some previous works [4, for instance] do not ensure this property,
while claiming to be SI. Below, we introduce an ordering relation between snap-
shots to formalize snapshot monotonicity.
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Definition 5 (Snapshot precedence). Consider a history h and two distinct
transactions Ti and Tj. The snapshot read by Ti precedes the snapshot read by
Tj in history h, written Ti → Tj, when ri(xk) and rj(yl) belong to h and either
(i) ri(xk) <h cl holds, or (ii) transaction Tl writes x and ck <h cl holds.

For more illustration, consider histories h8 = r1(x0).w1(x1).c1.r2(y0).w2(y2).
ra(x1).c2.rb(y2).ca.cb and h9 = r1(x0).w1(x1).c1.ra(x1).ca.r2(x1).r2(y0).w2(x2).
w2(y2).c2.rb(y2).cb. In history h8, Ta → Tb holds because ra(x1) precedes c2 and
Tb reads y2. In h9, c1 precedes c2 and both T1 and T2 modify object x. Thus,
Ta → Tb also holds. We define snapshot monotonicity using snapshot precedence
as follows:

Definition 6 (Snapshot monotonicity). Given some history h, if the rela-
tion →∗ induced by h is a partial order, the snapshots in h are monotonic. We
note MON the set of histories that satisfy this property.

According to this definition, both Ta → Tb and Tb → Ta hold in history h7.
Thus, history h7 does not belong to MON.

Non-monotonic snapshots are observed under update serializability [16], that
is when queries observe consistent state, but only updates are serializable.

3.4 Write-Conflict Freedom

Rule D2 of SI forbids two concurrent write-conflicting transactions from both
committing. Since in our model we assume that every write is preceeded by a
corresponding read on the same object, every update transaction depends on a
previous update transaction (or on the initial transaction T0). Therefore, under
SI, concurrent conflicting transactions must be independent:

Definition 7 (Write-Conflict Freedom). A history h is write-conflict free
if two independent transactions never write to the same object. We denote by
WCF the histories that satisfy this property.

3.5 The Decomposition

Theorem 1 below establishes that a history h is in SI iff (1) every transaction in
h sees a committed state, (2) every transaction in h observes a strictly consistent
snapshot, (3) snapshots are monotonic, and (4) h is write-conflict free. A detailed
proof appears in our companion technical report [11].

Theorem 1. SI = ACA ∩ SCONS ∩MON ∩WCF

To the best of our knowledge, this result is the first to prove that SI can be
split into simpler properties. Theorem 1 also establishes that SI is definable on
plain histories. This has two interesting consequences: (i) a transactional system
does not have to explicitly implement snapshots to support SI, and (ii) one can
compare SI to other consistency criterion without relying on a phenomena based
characterization.6

6 Contrary to, e.g., the work of Adya [6].
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4 The Impossibility of SI with GPR

This section leverages our previous decomposition result to show that SI is in-
herently non-scalable. In more details, we prove that none of MON, SCONSa or
SCONSb is attainable in some asynchronous failure-free GPR system Π when
updates are obstruction-free and queries are wait-free. To prove these results, we
first characterize below histories acceptable by Π.

Lemma 1. Let h = F(ρ) be an acceptable history by Π such that a transaction
Ti is pending in h. Note X the set of objects accessed by Ti in h. Only processes
in Replicas(X ) make steps to execute Ti in ρ.

Proof. (By contradiction.) Consider that a process p /∈ Replicas(X ) makes steps
to execute Ti in ρ. Since the prefix of a transaction is a transaction with the same
id, we can consider an extension ρ′ of ρ such that Ti does not execute any addi-
tional operation in ρ′ and coord(Ti ) is correct in ρ′. The progress requirements
satisfied by Π imply that Ti terminates in ρ′. However, process p /∈ Replicas(X )
makes steps to execute Ti in ρ′. A contradiction to the fact that Π is GPR.

We now state that monotonic snapshots are not constructable in Π. Our proof
holds because objects accessed by a transaction are not known in advance.

Theorem 2. No asynchronous failure-free GPR system implements MON

Proof. (By contradiction.) Let us consider (i) four objects x, y, z and u such
that for any two objects in {x, y, z, u}, their replica sets do not intersect; (ii)
four queries Ta, Tb, Tc and Td accessing respectively {x, y}, {y, z}, {z, u} and
{u, x}; and (iii) four updates T1, T2, T3 and T4 modifying respectively x, y, z
and u.

Obviously, history rb(y0) is acceptable, and since updates are obstruction-free,
rb(y0).r2(y0).w2(y2).c2 is also acceptable. Applying that Π satisfies non-trivial SI,
we obtain that history rb(y0).r2(y0).w2(y2).c2.ra(x0).ra(y2) is acceptable. Since
Ta must be wait-free, h = rb(y0).r2(y0).w2(y2).c2.ra(x0).ra(y2).ca is acceptable
as well. Using a similar reasoning, history h′ = rd(u0).r4(u0).w4(u4).c4
.rc(z0).rc(u4).cc is also acceptable. We note ρ and ρ′ respectively two sequences
of steps such that F(ρ) = h and F(ρ′) = h′.

System Π is GPR. As a consequence, Lemma 1 tells us that only processes
in Replicas(x , y) make steps in ρ. Similarly, only processes in Replicas(u, z )
make steps in ρ′. By hypothesis, Replicas(x , y) and Replicas(u, z ) are disjoint.
Applying a classical indistinguishably argument [13, Lemma 1], both ρ′.ρ and
ρ.ρ′ are admissible by Π. Thus, histories h′.h = F(ρ′.ρ) and h.h′ = F(ρ.ρ′) are
acceptable.

Since updates are obstruction-free, history h′.h.r3(z0).w3(z3).c3 is acceptable.
Note U the sequence of steps following ρ′.ρ with F(U) = r3(z0).w3(z3).c3. Ob-
serve that by Lemma 1 ρ′.ρ.U is indistinguishable from ρ′.U.ρ. Then consider
history F(ρ′.U.ρ). In this history, Tb is pending and the latest version of object
z is z3, As a consequence, because Π satisfies non-trivial SI, there exists an ex-
tension of ρ′.U.ρ in which transaction Tb reads z3. From the fact that queries are
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wait-free and since ρ′.ρ.U is indistinguishable from ρ′.U.ρ, we obtain that his-
tory h1 = h′.h.r3(z0).w3(z3).c3.rb(z3).cb is acceptable. We note U1 the sequence
of steps following ρ′.ρ such that F(U1) equals r3(z0).w3(z3).c3.rb(z3).cb.

With a similar reasoning, history h2 = h′.h.r1(x0).w1(x1).c1.rd(x1).cd is ac-
ceptable. Note U2 the sequence satisfying F(U2) = r1(x0).w1(x1).c1.rd(x1).cd.

Executions ρ′.ρ.U1 and ρ′.ρ.U2 are both admissible. Because Π is GPR, only
processes in Replicas(y, z ) (resp. Replicas(x , u)) make steps in U1 (resp. U2).
By hypothesis, these two replica sets are disjoint. Applying again an indistin-
guishably argument, ρ′.ρ.U1.U2 is an execution of Π. Therefore, the history ĥ =
F(ρ′.ρ.U1.U2) is acceptable. In this history, relation Ta → Tb → Tc → Td → Ta

holds. Thus, ĥ does not belong to MON. Contradiction.

Our next theorem states that SCONSb is not attainable. Similarly to Attiya et
al. [17], our proof builds an infinite execution in which a query Ta on two objects
never terminates. We first define a finite execution during which we interleave
between any two consecutive steps to execute Ta, a transaction updating one of
the objects read by Ta. We show that during such an execution, transaction Ta

does not terminate successfully. Then, we prove that asynchrony allows us to
continuously extend such an execution, contradicting the fact that queries are
wait-free.

Definition 8 (Flippable execution). Consider two distinct objects x and y,
a query Ta over both objects, and a set of updates Tj∈�1,m� accessing x if j is
odd, and y otherwise. An execution ρ = U1V2U2 . . . VmUm where,

– transaction Ta reads in history h = F(ρ) at least version x1 of x,
– for any j in �1,m�, Uj is the execution of transaction Tj by processes Qj,
– for any j in �2,m�, Vj are steps to execute Ta by processes Pj, and
– both (Qj ∩ Pj = ∅)⊕ (Pj ∩Qj+1 = ∅) and Qj ∩Qj+1 = ∅ hold,

is called flippable.

Lemma 2. Let ρ be an execution admissible by Π. If ρ is flippable and histories
accepted by Π satisfy SCONSb, query Ta does not terminate.

Proof. Let h be the history F(ρ). In history h transaction Tj precedes transaction
Tj+1, it follows that h is of the form h = w1(x1).c1. ∗ .w2(y2).c2. ∗ . . . , where
each symbol ∗ corresponds to either no operation, or to some read operation by
Ta on object x or y.

Because ρ is flippable, transaction Ta reads at least version x1 of object x in
h. For some odd natural j ≥ 1, let xj denote the version of object x read by Ta.
Similarly, for some even natural l, let yl be the version of y read by Ta. Assume
that j < l holds. Therefore, h is of the form h = . . . wj(xj) . . . wl(yl) . . ..

Note k the value l+1, and consider the sequence of steps Vk made by Pk right
after Ul to execute Ta. Applying the definition of a flippable execution, we know
that (F1) (Ql ∩Pk = ∅)⊕ (Pk ∩Qk = ∅), and (F2) Ql ∩Qk = ∅. Consider now
the following cases:
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(Case Ql ∩ Pk = ∅.) It follows that ρ is indistinguishable from the execution
ρ′′ = . . . Uj . . . VkUlUk . . .. Then from fact F2, ρ is indistinguishable from
execution ρ′ = . . . Uj . . . VkUkUl . . ..

(Case Pk ∩Qk = ∅) With a similar reasoning, we obtain that ρ is indistinguish-
able from ρ′ = . . . Uj . . . UkUlVk . . ..

(Case Pk ∩ (Ql ∪Qk) = ∅.) This case reduces to any of the two above cases.
Note h′ the history F(ρ′). Observe that since ρ′ is indistinguishable from ρ,
history h′ is acceptable. In history h′, ck <h′ cl holds. Moreover, cj <h′ ck holds
by the assumption j < l and the fact that k equals l + 1. Besides, operations
ri(xj), ri(yl) and wk(xk) all belong to h

′. According to the definition of SCONSb,
transaction Ta does not commit in h′. (The case j > l follows a symmetrical
reasoning to the case l > j we considered previously.)

Theorem 3. No asynchronous failure-free GPR system implements SCONSb.

Proof. (By contradiction.) Consider two objects x and y such that Replicas(x )
and Replicas(y) are disjoint. Assume a read-only transaction Ta that reads suc-
cessively x then y. Below, we exhibit an execution admissible by Π during which
transaction Ta never terminates. We build this execution as follows:

[Construction.] Consider some empty execution ρ. Repeat for all i >= 1:
Let Ti be an update of x, if i is odd, and y otherwise. Start the execution of
transaction Ti. Since no concurrent transaction is write-conflicting with Ti in ρ
and updates are obstruction-free, there must exist an extension ρ.Ui of ρ during
which Ti commits. Assign to ρ the value of ρ.Ui. Execution ρ is flippable. Hence,
Lemma 2 tells us that transaction Ta does not terminate in this execution.
Consider the two following cases: (Case i = 1) Because Π satisfies non-trivial SI,
there exists an extension ρ′ of ρ in which transaction Ta reads at least version x1

of object x. Notice that execution ρ′ is of the form U1.V2.s. . . . where (i) all steps
in V2 are made by processes in Replicas(x ), and (ii) s is the first step such that
F(U1.V2.s.) = r1(x0).w1(x1).c1.ra(x1). Assign U1.V2 to ρ . (Case i > 2) Consider
any step Vi+1 to terminate Ta and append it to ρ.

Execution ρ is admissible by Π. Hence F(ρ) is acceptable. However, in this
history transaction Ta does not terminate. This contradicts the fact that queries
are wait-free.

SCONSa disallows some real time orderings between operations accessing dif-
ferent objects. Our last theorem shows that this property cannot be maintained
under GPR.

Theorem 4. No asynchronous failure-free GPR system implements SCONSa.

Proof. (By contradiction.) Consider two distinct objects x and y such that
Replicas(x ) and Replicas(y) are disjoint. Let T1 be an update accessing y, and
Ta be a query reading both objects.

Obviously, history h = ra(x0) is acceptable. Note Ua a sequence of steps
satisfying U = F(ra(x0)). Because Π supports obstruction-free updates, we know
the existence of an extension Ua.U1 of Ua such that F(U1) = r1(y0).w1(y1).c1. By
Lemma 1, we observe that Ua.U1 is indistinguishable from U1.Ua. Then, since
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Π satisfies non-trivial SI and read-only transactions are wait-free, there must
exist an extension U1.Ua.Va of U1.Ua admissible by Π and such that F(Va) =
ra(y1).ca. Finally, since Ua.U1 is indistinguishable from U1.Ua and U1.Ua.Va

is admissible, Ua.U1.Va is admissible too. The history F(Ua.U1.Va) is not in
SCONSa. Contradiction.

As a consequence of the above, no asynchronous system, even if it is failure-free,
can support both GPR and SI. In particular, even if the system is augmented
with failure detectors [18], a common approach to model partial synchrony, SI
cannot be implemented under GPR. This fact strongly hinders the usage of SI
at large scale. In the following section, we further discuss implications of this
result.

5 Discussion

A straightforward corollary of any of the theorems we proved in Section 4 is that
neither strict serializability [19], nor opacity [20] is attainable under GPR. In the
case of opacity, this answers negatively to a problem posed by Peluso et al. [21].

The classical (non-genuine) solution for building strictly consistent monotonic
snapshots is to use total order broadcast (e.g., [2, 3]).

When a transaction declares objects it accesses in advance, a GPR system
can install a snapshot just after the start of the transaction. As a consequence,
such an assumption sidesteps our impossibility result.

A transactional system Π is permissive with respect to a consistency criterion
C when every history h ∈ C is acceptable by Π. Permissiveness [22] measures
the optimal amount of concurrency a system allows. If we consider again his-
tories h1 and h2 in the proof of Theorem 2, we observe that both histories are
serializable. Hence, every system permissive with respect to SER accepts both
histories. By relying on the very same argument as the one we exhibit to close
the proof of Theorem 2, we conclude that no transactional system is both GPR
and permissive with respect to SER. For instance, none of the systems presented
in [10, 23] accept history h10 = r1(x0).w1(x1).c1.r2(x0).r2(y0).w2(y2).c2.

Recent distributed transactional systems (e.g., [9, 24]) support weaker consis-
tency criteria than SI or SER. In particular,Walter [9] supports Parallel Snapshot
Isolation (PSI). PSI is weaker than SI, and allows snapshots to be non-monotonic.
But, it still requires SCONSa to be ensured. Sovran et al. justify the use of PSI in
Walter by the fact that SI is too expensive in a geographically distributed envi-
ronment [9, page 4]. Our impossibility result establishes that, in order to scale, a
transactional system needs supporting both non-monotonic and non-strictly con-
sistent snapshots.

6 Conclusion

Partial replication and genuineness are two key factors of scalability in replicated
systems. This paper shows that ensuring snapshot isolation (SI) in a genuine
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partial replication system is impossible. To state this impossibility result, we
prove that SI is decomposable into a set of simpler properties. We show that
two of these properties, namely snapshot monotonicity and strictly consistent
snapshots cannot be ensured. As a corollary of our results, a GPR system cannot
support neither strict serializability, nor opacity.
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Abstract. Early detecting the approaching events is the primary way
of minimizing their damages in the sensor-based systems. The majority
of existing approaches of event description and detection rely on using
crisp raw sensory data, which requires large amount of data transmis-
sion as well as is memory-consuming, moreover, these approaches are
only applicable to homogeneous sensor networks. This paper describes a
novel efficient framework for event prewarning in sensor networks with
multi microenvironments, which mainly includes a simple and practical
data preprocessing method, Node-level Noteworthy Event (NNE) detec-
tion algorithm, event probability encodings of NNEs and two distributed
Node-level Alert Event (NAE) detection algorithms. We demonstrate
our algorithms by experimentally evaluating their performance in vari-
ous scenarios using real and synthetic data. Our NAE detection algo-
rithm by leveraging spatial correlation only requires a small amount
of data transmission and can detect over 90% of NAEs with few false
negatives.
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level noteworthy event, node-level alert event.

1 Introduction

Sensor networks can be viewed as energy constrained distributed database sys-
tems, and their tasks are monitoring physical environments, processing sensed in-
formation, and forwarding results to base stations (sink). Since data transmission
consumesmost of the energy, a significant challenge for suchkindof systems is to de-
sign reliable, energy-efficient data processing algorithms to maximize the lifetime
of sensor networks.Moreover, the low amount of data transmission also contributes
to quick response time and less signal interference in wireless communication.

Event detection is a common required service in sensor network based appli-
cations such as environmental monitoring [1,2] and object tracking [3,4], which
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has attracted increasing research attention. Various studies on event description
and detection approaches have been reported in the literature [1]-[8]. However,
these approaches rely on using raw sensor measurements, which results in large
data transmission inside the network and long response time. Moreover, the
aforementioned approaches are only applicable to sensor networks with single
microenvironment, while in many sensor network applications, the monitoring
area consists of multi MicroEnvironments (MEs), where the characteristics of
each ME are different. For example, different types of materials with different
ignition points (e.g., burning point of methanol is less than 30◦C and fire point
of turpentine is under 65 ◦C) are placed in different areas of a warehouse, where
each resulting segment (area) will have different tolerance for warehouse fire.
Each of these segments of the warehouse, then, represents a ME as shown in
Fig. 1. When users check the k most likely impending fire locations in such kind

sink
ME-1 (combustible) ME-2 (heat-stable)

ME-3

(28 may lead to a fire)

(93 does not cause a fire)

Fig. 1. An example of three MEs in a warehouse

of sensor networks, if the existing event detection methods (such as the weighted
voting schemes in [7,8] are used, they will lead to erroneous results, since the
small temperature values in the combustible MEs might be the top k results.

In this paper we develop an event prewarning framework for sensor networks
with multi MEs in a scenario of relatively short sampling period, which has not
been studied before. The contributions of this paper are summarized as follows:

– A conceptually simple, yet practically effective data preprocessing approach
is given to eliminate erroneous sensory data.

– The definition of Node-level Noteworthy Event (NNE) and the detection
algorithm of NNE are proposed.

– Two distributed node-level alert event detection algorithms are devised, and
extensive simulations are performed to validate our motivation.

The remainder of the paper proceeds as follows. Our network model is explained
in Section 2, and Section 3 describes the data preprocessing approach. Then,
node-level noteworthy event algorithm is proposed in Section 4. Section 5 details
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two node-level alert event detection algorithms. Meanwhile, simulation results
are presented in Section 6. Finally, Section 7 presents conclusions and future
research direction.

2 Network Model

This section gives an overview of our network model. It also covers the almost
reasonable assumptions.

In our geographical location based clustering networks, there are two types
of nodes which are regular sensor node and Cluster Head (CH) sensor node
respectively in the network. Each node (we use “node” to refer to a regular
sensor node or CH sensor node) has a unique identification (nodeID). Tentative
CH nodes are selected from regular nodes mainly based on their remaining energy
via a non-probabilistic fashion [9]. In addition to collect its own sensory data,
every CH node manages the topology information of all regular nodes within its
cluster, as shown in Fig. 2(a).

Cluster Head
Regular sensor

ME-1

ME-2

ME-3

(a) (b)

CH1

CH2

CH3

Cluster Head
Regular sensor

Fig. 2. (a) Cluster-based network. (b) CH-TAG network with three MEs.

CH nodes communicate with each other hop by hop. We assume that a data
aggregation tree (i.e., TAG [10]) is constructed over these CH nodes, and even-
tually connected to base station, as is shown in Fig. 2 (b). We call the CH nodes
based aggregation tree as CH-TAG. Our network also consists of multi MEs, and
an example of three MEs in a CH-TAG network is shown in Fig. 2(b).

3 Data Preprocessing

Event detection techniques need to prevent erroneous data from influencing the
detection reliability. Most of existing outlier (here mainly refers to errors and
noise) detection [5] approaches relay on using the neighboring information, which
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leads to a large amount of data transmission and is not suitable for energy con-
strained sensor networks. Therefore, we give a node-level erroneous data detec-
tion approach only leveraging the temporal correlation of the local measurements
within the recent sampling periods.

The erroneous sensory data we concentrated here mainly come from FAULTY
(failed) nodes and noisy data in normal working nodes. Therefore, our goal of
data preprocessing is to identify and prune faulty nodes and eliminate noisy data
in functioning nodes.

Definition 1 (FAULTY Node Rule). Most of the data in the FAULTY
node significantly deviate from the normal pattern of sensed data [11]. A simple
and effective method is that we can know whether a sensor node is a FAULTY
node by checking the standard deviation and temporal correlation of the sensor
readings within recent time window. FAULTY nodes should be pruned as early
as possible.

Definition 2 (NOISY Data Rule). In functioning node, smoothing factor [12]
based approach (improved smoothing factor) is used to identify and eliminate
the noisy data, where the improved smoothing factor can be defined as follows:
Given:
• a set of sensor measurements MS
• a dissimilarity function D : D(MS) → R+ , where R+ means positive real

number.

ISF (Mi) = D(MS)−D(MS − {Mi}). (1)

The improved smoothing factor (ISF ) indicates how much the dissimilarity can
be reduce by removing an element (sensor measurement) from the set MS. Ob-
serve that ISF may be negative for some measurement Mi if the dissimilarity of
MS− {Mi} is higher than that of the original set MS.

Example. Let
• the set MS be the set of float values 32.6, 31.9, 11.7, 32.8, 93.5, 33.3;
• the dissimilarity function D : D(MS)→ R+ be the variance of the numbers

in the set, i.e.,
∑n

i=1(xi − x̄)2/n,then we get D(MS) = 646.22

By computing the ISF for each measurement Mi via (1), we get:

Table 1. ISF calculation for each measurement Mi

Mi MS − {Mi} D(MS − {Mi}) ISF (Mi)

32.6 {31.9, 11.7, 32.8, 93.5, 33.3} 764.69 -118.47
31.9 {32.6, 11.7, 32.8, 93.5, 33.3} 762.32 -116.1
11.7 {32.6, 31.9, 32.8, 93.5, 33.3} 592.64 53.58
32.8 {32.6, 31.9, 11.7, 93.5, 33.3} 803.93 -157.71
93.5 {32.6, 31.9, 11.7, 32.8, 33.3} 70.43 575.79
33.3 {32.6, 31.9, 11.7, 32.8, 93.5} 766.82 -120.6
32.6 {31.9, 11.7, 32.8, 93.5, 33.3} 764.69 -118.47
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Thus, the measurement 93.5 has the highest probability to be the noisy data
as its ISF is the largest, followed by the element 11.7, as shown in Table 1. The
measurement whose ISF is over a preset threshold can be eliminated, and the
improved smoothing factor provides tunable accuracy guarantees based on users
requirement that how much noise data should be eliminated.

4 Node-Level Noteworthy Event

Definition 3 (Node-level Noteworthy Event (NNE)). node u is a node-
level noteworthy event once us measurements make the event probability (ep) of
u reach a preset threshold value thrd (usually 0.5).

4.1 NNE Detection Algorithm

After pruning FAULTY nodes and eliminating noisy data in functioning nodes,
each node calculates its ep based on its measurements and ep function, where the
ep function varies in different MEs, or the function parameters are different in
each ME, which can be defined based on empirical or domain knowledge. In the
warehouse fire monitoring system with multi MEs, if two properties (temperature
(t) and humidity (h)) are mainly used for defining fire event, then an example
of ep function can be defined as follows.

ep(t, h) =

⎧⎨⎩
0, t � tas, h...
ω × avg(t)/(tig − tas) + (1− ω)f(avg(h)), tas < t < tig, h...
1, t � tig, h...

(2)

Where avg means getting the average value of measurements. tas means the
absolute safe temperature, which by no means causes a fire, and tig means the
ignition temperature, which varies in different MEs. The first part of (2) demon-
strates that the higher temperature leads to higher probability of fire, and the
f (h) in the second part of (2) is a function of how humidity affect the fire event,
which humidity usually has a negative impact on fire event. ω is a tunable value,
which determines how much temperature and humidity influence the fire event
respectively. Due to the different [tas, tig ] in each ME, (2) can describe the char-
acteristics of fire occurrence in different MEs. Therefore, each node in different
MEs can determine whether it is a NNE by the Algorithm 1.

In Algorithm 1, ep(i) is the event probability of node i, and pF lag(i) is a flag
to determine whether node i can be pruned. If pF lag(i) is “TRUE”, then node
i is not a noteworthy node and should be pruned as early as possible.

4.2 ep Encoding of NNEs

In order to reduce the data transmission, we discretize the ep values and give their
encodings. We use linguistic characters to define the severity grades (GRADE )
of NNEs and each GRADE corresponds to a non-uniform ep sub range *(ep).
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Algorithm 1. NNE Detection

1: for each node i do
2: pF lag ← FALSE;
3: if i is FAULTY node then
4: pF lag ← TRUE;
5: else
6: eliminate the noisy data

using NOISY Data Rule;
7: calculate the ep(i);

8: if ep(i) < thrd then
9: pF lag ← TRUE;
10: else
11: i is a NNE;
12: end if
13: end if
14: end for

When GRADE is closer to the event occurrence threshold, the interval of *(ep)
is smaller.

For example, as shown in Table 2, we define eight GRADEs (‘a’, ‘b’, ‘c’, ‘d ’,
‘e’, ‘f ’, ‘g’ and ‘h’) (the first column, not be fully presented due to the lim-
ited space) whose interpretations are shown in the second column with different
*(ep). The ep sub range interval of GRADE ‘a’ is the smallest as shown in the
last column, and the threshold thrd is 0.5, which means every node whose ep
is below 0.5 (below ‘h’) can be pruned. We also give 3-bits encoding for each
GRADE to reduce the total data transmission, as is shown in the third column
of Table 2.

Table 2. An Example of ep encoding based on non-uniform ep sub ranges

GRADE Interpretation Encoding �(ep)
a Almost happened 000 [0.98, 1.00)
b Very serious 001 [0.95, 0.98)
c Serious 010 [0.91, 0.95)
d Alert 011 [0.86, 0.91)
... ... ... ...
h Noteworthy 111 [0.50, 0.62)

The above non-uniform ep sub ranges *(ep) can be obtained via mathematical
models based on the actual situation of specified application. The accuracy of
event prewarning might be higher if more GRADEs are used.

5 Node-Level Alert Event Detection

Definition 4 (Node-level Alert Event (NAE). A sensor node u belonging
to NNEs becomes a node-level alert event if it has relatively large ep and has at
least one neighboring NNE. Here, the relatively large ep means that the ep of u
meets application-specific threshold, such as 0.86 (‘d ’ ) used later in this paper.

NAEs are the node-level prewarning events that we focus in this paper. And
we propose two following NAE detection approaches.
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5.1 NAE Detection without Considering Spatial Correlation

NAE detection scheduling without considering spatial correlations, denoted as
NAED-noSC, can be described as follows. Each NNE whose GRADE reaches a
predefined threshold (‘d ’ in this paper) is forwarded to the base station as NAE.
The main data in each message packet is “GRADE (Encoding of GRADE )”
and “nodeID”, denoted as “GRADE+nodeID”. The spatial correlation of these
NAEs can be checked to further confirm the approaching events (or event re-
gions) according to the global network topology information at the base station.
The data transmission of NAED-noSC is very small, but there might be false
positives and false negatives.

Accuracy analysis of NAED-noSC. In NAED-noSC, since every NNE
with a “Alert” GRADE (‘d ’) is detected as NAE, there might be isolated NAEs
(without any neighboring NNEs) leading to false positives. While those NNEs
whose GRADEs are little bit smaller than ‘d ’ but have neighboring NNEs might
not be detected as NAEs in NAED-noSC, which leads to false negatives.

5.2 NAE Detection by Leveraging Spatial Correlation

Existence of spatial correlation implies that the readings from sensor nodes geo-
graphically close to each other are expected to be largely correlated. We would
be more confident that there is an actual fire if there are at least two neighboring
nodes reporting high temperature and low humidity readings. There might be
a false positive if there is just one NAE without any neighboring NNE. This
is particularly reasonable in sensor networks where nodes are usually densely
deployed.

The strategy here is that we update the GRADEs of spatial-correlated NNEs,
and the Approach of GRADE Update of spatial-correlated NNEs (AoGU) can
be described as follows. If there are two spatial-correlated NNEs, then both of
their GRADEs are increased to a higher level GRADEs. For instance, there are
three NNEs N1, N2 and N3, and their GRADEs are ‘h’, ‘f ’ and ‘e’ respectively.
If N1 and N2 are spatial-correlated, and N2 is N3’s neighboring NNE, but there
is no spatial correlation between N1 and N3, then their GRADEs after grade
update are ‘g’, ‘d ’ and ‘d ’ respectively. The magnitude of GRADE update is
tunable, which is specified depending on the application scenario.

NAE Detection by Leveraging Spatial Correlations (NEAD-bySC).
Firstly, every CH node gets all the NNEs in its local cluster, and then each leaf
CH node (CH-TAG based network) forwards all the NNEs in its cluster to its
parent CH node. When a non-leaf CH node Q has obtained all the NNEs from
its local cluster and its child clusters, it Checks the Spatial Correlation of these
NNEs and Updates the GRADEs of spatial-correlated NNEs (CSC-UG) based
on AoGU. Finally, all the non-isolated NAEs in Q ’s child clusters are forwarded
to base station as NAEs, and then Q forwards all the NNEs in its local cluster
to its parent cluster, until all the non-leaf CHs finished the CSC-UG and NAE
detection.More details of NAED-bySC are described in Algorithm 2.
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Algorithm 2. NAED-bySC

Step 1. NNEs forwarding

1: for each NNE i do

2: uFlag(i) ← FALSE;
3: i be forwarded to its local CH node;
4: end for

5: for each leaf CH node i do

6: i forwards all the NNEs to its parent
CH node;

7: end for

Step 2. CSC-UG and NAE detection

1: for each non-leaf CH node i do

2: CSC-UG of i’s NNEs is done;

3: if GRADE(NNE j) be updated then

4: uFlag(j) ← TRUE;
5: end if

6: for each NNE k in i do

7: if GRADE(k) � ‘d′&&uFlag(k) ==

TRUE then

8: k is detected as a NAE;
9: end if

10: end for

11: i forward all the NNEs to its parent
CH node;

12: end for

Where uF lag(i) is a flag to demonstrate whether the GRADE of NNE i be
updated, which is used for identifying whether i is an isolated NNE. If uF lag(i)
is “FALSE”, then i is a isolated NNE. In Algorithm 2, the main data structure
of NNE and NAE message packet of line 3 in step 1 and line 8 in step 2 are both
“GRADE + nodeID”, and the main data structure of NNE message packet
in line 11 of step 2 is “GRADE + nodeID + LOCATION ”, where the “LO-
CATION ” is the geographic coordinates which are used for spatial correlation
detection.

Example. As shown in Fig. 3, there are three clusters with cluster head CH1,
CH2 and CH3. Firstly, all NNEs are forwarded to its local CH node, such as
NNE S1, S3 and S5 in CH1 cluster are forwarded to CH1. Then each leaf CH
node forwards their NNEs to its parent CH node, such as CH1 and CH2 forward
their NNEs to CH3. Then CH3 does CSC-UG based on the AoGU. S11 and S3
are spatial-correlated, and S6 is the neighboring node of S5 and S7, as shown the
green dotted lines in Fig. 3. All the GRADEs of these NNEs are updated based
on AoGU, as shown in Fig. 3. S1 is not a NAE because it is an isolated NNE
although it has a high GRADE, and all the non-isolated NAEs in CH3’s child
clusters (cluster CH1 and CH2) are forwarded to base station as NAEs. Finally,
CH3 forwards all the NNEs in its local cluster to its parent cluster, until all the
CHs finishes the NAE detection.

Accuracy Analysis of NAED-bySC. In NAED-bySC, some spatial-correlated
NNEs become NAEs due to their GRADEs update, which reduces the false nega-
tive. For instance, in Fig. 3, the NNE S11(‘e’) in cluster CH3 is spatial-correlated
with S3 in cluster CH1, so the GRADE of S11 is updated to ‘d ’ and S11 becomes
a NAE, while S11 is a false negative in NAED-noSC. All the isolated NNEs will
not be detected as NAEs in NAED-bySC, so there is no false positive in NAED-
bySC. For example, the NNE S1 with GRADE ‘c’ is not detected as NAE since
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d
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Fig. 3. Inter-cluster CSC-UG and NAE detection

it is an isolated NNE without any neighboring NNE. Therefore, the false rate of
NAED-bySC is very low.

Tradeoff. Generally speaking, larger scope of inter-cluster CSC-UG contributes
higher accuracy of NAE detection, but the data transmission will be lager. There
is a tradeoff between data transmission and accuracy. In NAED-bySC, we only
consider the spatial correlation of the nodes from parent-child clusters as well
as the nodes from brother-brother clusters, without other spatial correlation.
Since the spatial correlation we have considered accounts for the most of the
all spatial correlation, NAED-bySC can guarantee high accuracy, while requires
small amount of data transmission. More experimental analysis is given in later
section 6.

6 Performance Evaluations

We use OMNET++ [13] to evaluate our algorithms in terms of data transmission
and accuracy of NAE detection. We use part of real data (Surface Temperature
and Relative Humidity) from LUCE [14] and part of synthetic data which is
generated and injected with outliers via scenarios of other MEs due to lack of
real data of sensor networks with multi MEs.

Owing to the lack of research work on event detection in multi MEs sensor
networks in literature, we performed comparison among three following methods:

– Optimized Conventional Method (OCM)The idea of conventional method
[4, 9, 10, etc.] is that every node uses the information from its neighboring
nodes to check whether it is an event node (or there is an event region).
For a fair comparison, event probabilities instead of raw sensor readings are
used. Since all the spatial correlation is checked, the OCM can get the true
NAEs accurately.

– NAED-bySC (Algorithm 2).
– NAED-noSC.
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6.1 Comparison of Data Transmission

Since data transmission consumes most of the energy in sensor networks, We
evaluate the data transmission of OCM, NAED-bySC and NAED-noSC in four
different networks, where 40, 80, 120 and 160 nodes are randomly deployed
in four regions of 300 × 300 m2, 400 × 400 m2, 500 × 500 m2 and 600 × 600
m2 respectively. The communication radius R is 80 m. ep is a float number,
which requires 4 bytes space (due to the 32-bit simulation platform). LOCATION
consists of x-coordinate and y- coordinate (both float number), and GRADE is
3 bits, and nodeID is short int that requires 16 bits space. We did not consider
the data transmission of other information in message packet, e.g., HEAD.

Among the three methods mentioned above, the data transmission of OCM
is the largest, and the one of NAED-noSC is the smallest in our four networks.
The average data transmission of NAED-noSC is 1.3% of the one of OCM,
and the average data transmission of NAED-bySC is 5.5 percent of the one of
OCM. And the average data transmission of NAED-noSC is 23.89% of the one
of NAED-bySC, as is shown in Fig. 4(a). So our algorithms can reduce the data
transmission greatly compared with OCM. Although the data transmission of
NAED-noSC is the smallest, its accuracy is not satisfactory (more details will
be described in Subsection 6.2).
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Fig. 4. (a) Comparison of data transmission. (b) Accuracy comparison.

6.2 Comparison of Accuracy

Besides good performance on data transmission, another important goal of event
detection is accuracy.We study the accuracy performance of NAED-noSC, NAED-
bySC and OCM based on our four networks mentioned in Subsection 6.1. Here
accuracy is defined as:

1−(numberoffalsepositives+numberoffalsenegatives)/numberoftrueNAEs

As all the spatial correlation is examined for event detection in OCM, there
is no false positive or false negative (accuracy is 100%). There are a few false
positives in NAED-noSC, and the average (Avg.) number (#) of false positives
in our four networks was 1 (the total number of true NAEs is 16.5), shown as in
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Fig. 4(b). However there are relatively large number of false negatives in NAED-
noSC, and the Avg. # of false negatives in the four networks was 6; There
was no false positive in NAED-bySC, however there are a few false positives
in NAED-bySC because that we do not consider all the spatial correlation. The
Avg. # of false negatives of NAED-bySC in our four networks was 1.5, and other
results are shown in Fig. 4(b). These experimental results verify the correctness
of the accuracy analysis of NAED-noSC and NAED-bySC in Subsection 5.1 and
Subsection 5.2.

The accuracies of NAED-bySC in the four networks were 90.9%, 93.75%,
90.91% and 88.89% respectively, and the average accuracy of NAED-bySC was
more than 90% (91.11% actually). The accuracy of NAED-noSC was relatively
lower than NAED-bySC, namely 54.55%, 62.5%, 59.09% and 55.56% respectively
in our four networks, which are shown in Fig. 5(a).
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Fig. 5. (a) Accuracy comparison (R = 80). (b) Accuracy comparison (80 nodes).

With the increase of node density, the accuracy of NAED-noSC decreases.
In our 80 nodes network, with the increase of R (equivalent to the increase
of node density), the accuracy of NAED-noSC decreased, shown as the blue
column chart in Fig. 5(b). This is because the increase of node density leads to
the increase of spatial correlation, thus NAED-noSC will miss more true NAEs.
The variation of node density (or the change of communication radius in the
same network) almost has no effect on the accuracy of NAED-bySC. This is
because that the increase of spatial correlation among nodes contributes to the
increase of true NAEs, meanwhile, more NAEs will be detected in NAED-bySC.
Therefore, there is almost no causal relationship between accuracy and node
density, which is shown as the yellow column chart in Fig. 5(b).

7 Conclusions

This paper presents a novel efficient framework for event prewarning in sensor
networks with multi MEs, which mainly includes a simple and practical data
preprocessing method, NNE detection algorithm, event probability encodings of
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NNEs and two distributed NAE detection algorithms (NAED-noSC and NAED-
bySC). Experimental evaluation demonstrates our approach reduces the data
transmission greatly compared with conventional approaches, and NAED-bySC
guarantees good detection accuracy. When the network situation is bad, namely
when the proportion of NNEs with relatively high GRADEs is large, NAED-
noSC is a more suitable approach with few false negatives. Our on-going work is
to enhance our approach to deal with the phenomenon in which the alert event
enlarges or disappears with time elapsed.

References
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Abstract. Large Web search engines are complex systems that solve
thousands of user queries per second on clusters of dedicated distributed
memory processors. Processing each query involves executing a number
of operations to get the answer presented to the user. The most expen-
sive operation in running time is the calculation of the top-k documents
that best match each query. In this paper we propose the paralleliza-
tion of a state of the art document ranking algorithm called Block-Max
WAND. We propose a 2-steps parallelization of the WAND algorithm
in order to reduce inter-processor communication and running time cost.
Multi-threading tailored to Block-Max WAND is also proposed to exploit
multi-core parallelism in each processor. The experimental results show
that the proposed parallelization reduces execution time significantly as
compared against current approaches used in search engines.

1 Introduction

Large-scale Web search engines are built as a collection of services hosted by the
respective data center. Each service is deployed on a set of processing nodes (pro-
cessors) of a high-performance cluster of computers. Services are software com-
ponents such as (a) calculation of the top-k documents that best match a query;
(b) routing queries to the appropriate services and blending of results coming
from them; (c) construction of the result Web page for queries; (d) advertising
related to query terms; (e) query suggestions, among many other operations.
The service relevant to this paper is the top-k calculation service.

The top-k calculation nodes are assumed to perform document ranking for
queries by using the WAND algorithm [4]. This algorithm is been currently used
by a number of commercial vertical search engines. The concept is that the
document collection is evenly distributed on P processing nodes or partitions,
and for each partition an inverted index is constructed from the respective doc-
uments. The inverted indexes enable the fast determination of the documents
that contain the terms of the query under processing. They contain additional
static and dynamic data to enable the WAND algorithm to reduce the number of
documents that are fully evaluated during the ranking process. The static value,
called upper-bound value, is calculated for each index term at construction time
whereas the dynamic value, called threshold value, starts in zero for each new
query and is updated during the WAND computations across the inverted file.
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To answer a query, a broker machine sends the query to all of the P parti-
tions. Then for each query, the top-k nodes locally compute the most relevant
documents and send them to a broker machine. Later, the broker merges those
P × k document results to obtain the global top-k document results. Hence,
our aim is to reduce the total number of full document evaluations (score cal-
culations) performed during the document ranking process, which in turn leads
to a reduction in the running time required by the WAND algorithm to finish
the ranking process. Also our aim is to reduce the total number of documents
communicated among the top-k calculation nodes and the broker machine. The
big picture is that by doing this one can be able to reduce the total number of
top-k calculation nodes deployed in production.

In this paper we propose to make the top-k calculation service efficient in the
sense of significantly reducing the average amount of computation and commu-
nication per query executed by the processing nodes hosting the service (namely,
the top-k calculation nodes). We propose a 2-steps algorithm which determines
the number of document results that must be sent to the broker by each top-
k calculation node. The algorithm does not lose precision of results. We also
propose a multi-threading strategy to schedule query processing in each of the
top-k calculation nodes by using the Block-Max WAND (BMW) algorithm pro-
posed in [6]. We analyze the effect of running queries with both high and low
computational costs over a cluster of processors supporting multi-threading.

The remaining of this paper is organized as follows. Section 2 reviews related
work and Section 2.1 describes the WAND algorithm. Section 3 describes our
proposal. Section 4 presents a performance evaluation study considering different
metrics and Section 5 presents conclusions.

2 Background and Related Work

To speed up query processing, the top-k calculation service relies on the use of an
inverted index or inverted file) which is a data structure used by all well-known
Web Search Engines. This index enables the fast determination of the documents
that contain the query terms and contains data to calculate document scores for
ranking. The index is composed of a vocabulary table and a set of posting lists.
The vocabulary table contains the set of relevant terms found in the document
collection. Each of these terms is associated with a posting list which contains
the document identifiers where the term appears in the collection along with
data used assign a score to the document. To solve a query, it is necessary to
get from the posting lists the set of documents associated with the query terms
and then to perform a ranking of these documents in order to select the top-k
documents as the query answer.

One important bottleneck in query ranking is the length of the inverted file,
which is usually kept in compressed format. To avoid processing the entire post-
ing lists or reducing the amount of expensive computations performed in each
posting list item like the WAND [4]. Several optimizations have been proposed
in the technical literature for the WAND algorithm. The aim of [8] and [10] is to
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improve performance by computing tighter upper bound scores for each term.
The work in [1] and [2] propose to maintain the posting lists ordered by score
instead of document identifier (docID) in order to retrieve and evaluate first the
documents with the highest scores. But in these cases, compression tends to be
less effective. An optimization of the WAND algorithm named the Block-Max
WAND [6] has been devised to avoid decompressing the entire posting lists.

A number of papers have been published on parallel query processing upon
distributed inverted files (for recent work see [9]). Many different methods for
distributing the inverted file onto P partitions and their respective query pro-
cessing strategies have been proposed in the literature [4]. The different ways of
doing this splitting are mainly variations of two basic dual approaches: document
partition and term partition. In the former, documents are evenly distributed
on P partitions and an independent inverted index is constructed for each of the
P sets of documents. In the last one, a single inverted index is constructed from
the whole document collection to then distribute evenly the terms with their
respective posting lists onto the P partitions.

Also query throughput is further increased by using application caches (for
recent work see [12]). But, to the best of our knowledge, the work presented in
this paper is the first attempt to evaluate and determine the relevant features
that have to be taken into consideration when evaluating the WAND algorithm
in a distributed cluster of processors supporting multi-threading.

2.1 The WAND Query Evaluation Process

The method proposed by Broder et al. [4] assumes a single threaded processor
containing an inverted index. As usual, each query is evaluated by looking for
query terms in the inverted index and retrieving each posting list. Documents
referenced from the intersection of the posting lists allow to answer conjunctive
queries (AND bag of word query) and documents retrieved at least from one
posting list allow to answer disjunctive queries (OR bag of word query).

The ranking is used to compute the similarity between documents and the
query. Then this function returns the top-k documents. There are several ranking
algorithms such as BM25 or the vector model [4]. Ranking algorithms should be
able to quickly process large inverted lists. But the size of these lists tends to
grow rapidly with the increasing size of the Web. Therefore, in practice, these
algorithms use early termination techniques avoiding processing complete lists
[3]. In some early termination techniques the posting lists are sorted so that
most relevant documents are found first. Other ingenious techniques have been
proposed when the posting lists are sorted by docIDs. They reduce running time
avoiding computing the scores of all documents of the posting lists by skipping
document score computations. This is the case of the WAND method proposed
by [4].

The WAND approach uses a standard docID sorted index. It is a query pro-
cessing method based on two levels. In the fist level, some potential documents
are selected as results using an approximate evaluation. Then, in the second
level those potential documents are fully evaluated to obtain their scores. This
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two-steps process uses a heap to keep the current top-k documents where in
the root is located the document with least score. The root score provides a
threshold value which is used to decide the full score evaluation of the remaining
documents in the posting lists associated with the query terms. To this end the
algorithm iterates through posting lists to evaluate them quickly using a pointer
movement strategy based on pivoting. In other words, pivot terms and pivot doc-
uments are selected to move forward in the posting lists which allows skipping
many documents that would have been evaluated by an exhaustive algorithm.

In Figure 1.(a) we show how the WAND algorithm works for a query with
three terms ”tree, cat and house”. First, posting lists of the query terms are
sorted by docIDs upper bounds (UBs) from top to bottom. Then we add the
upper bounds of the terms until we get a value greater or equal to the threshold.
In Figure 1.(a) by adding the UBs of the first two terms we get (2+4 ≥ 6). Thus
cat is selected as the pivot term. We assume that the current document in this
posting list is ”503”. Therefore, this document becomes the pivot document. If
the first two posting lists do not contain the document 503, we proceed to select
the next pivot. Otherwise we compute the score of the document. If the score
is greater or equal to the threshold we update the heap by removing the root
document and adding the new document. This iterative algorithm is repeated
until there are no documents to process or until it is no longer possible for the
sum of the upper bounds to exceed the current threshold.

The work presented in [6] proposes using compressed posting lists organized
in blocks (see Figure 1.(b)). Each block stores the upper bound (Block max) for
the documents inside that block in uncompressed form, thus enabling to skip
large parts of the posting lists by skipping blocks. This drastically reduces the
cost of the WAND algorithm but does not guarantee correctness because some
relevant documents could be lost. To solve this problem, the authors propose a
new algorithm that moves forward and backwards in the posting lists to ensure
that no documents are missed. Independently, the same idea was presented in [5].
In this later work, authors presented an algorithm for disjunctive queries that
first performs pre-processing to split blocks into intervals with aligned boundaries
and to discard intervals that cannot contain any document capable of making
into the top-k results. Multi-threading algorithms for ranking methods different
to WAND have been studies in [11] and [7].

3 Two-Level Ranking on a Distributed Search Engine

In this work we consider a Web search engine in which there is one broker and
P top-k calculation nodes, where P indicates the level of document partitioning
considered in the distribution of the document collection. Each top-k calculation
node has its own inverted index, where the posting lists refer to local documents.
When a new query arrives, the broker sends the query for evaluation to each
node. Then, the nodes work on their inverted indexes to produce query answers
and pass the results back to the broker. Conventionally, search engines use the
standard asynchronous multiple master/slave paradigm to process queries.
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Fig. 2. (a) A distributed WAND query evaluation process. (b) Proposed algorithm.

A WAND-based search engine in this context considers parallel term iteration
over each top-k calculation node. If a document satisfies the threshold condition,
then it is inserted in the heap of the top-k document results. Notice that document
identifiers are kept sorted in posting lists allowing iteration in linear time propor-
tional to the posting list length. Finally, a full document score evaluation is exe-
cuted over the set of candidate documents determined by the WAND algorithm,
and the global top-k results are determined. Figure 2.(a) illustrates this process.

Let us shortly discuss some considerations for the query evaluation process.
There exist two alternatives for WAND scores estimation. As the search engine is
document-partitioned, upper bounds for each term can be calculated considering
each sub-collection, i.e. each processor determines its own term upper bounds. In
this case upper bounds are stored in local inverted indexes and eventually each
term can register P different upper bounds. Another alternative is to calculate
the upper bound for each term considering the full collection, thus upper bounds
correspond to global scores. In this case it is also possible to store these values
in the local inverted indexes, replicating upper bounds across the processors. We
consider that the second alternative is more recommendable because it allows to
skip more documents in the WAND iteration process.
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3.1 Distributed 2-Steps Algorithm

In this section we detail our proposed algorithm which aims to obtain accurate
results while reducing the number of operations (scores calculations) performed
when executing the WAND algorithm, the memory allocated to the heap data
structure and the communication among processors. The algorithm works as
follows: (1) in the first step, the top-k calculation nodes send N = (k/P+α) < k
document results to the broker machine, (2) the broker machine detects and
discards the nodes that do not have more relevant documents, (3) the broker
requests more documents to the remaining nodes. Our hypothesis is that k/P
is the average number of document results retrieved from each top-k calculation
node as the document collection tends to be evenly distributed among the P
partitions. Thus we propose to emulate ranking as a distributed priority queue.

Formally, given a set of top-k nodes P = {p1, p2, . . . , pp} and for each query
q, each node pi ∈ P : 1 ≤ i ≤ p, sends to the broker machine a set of document
results {< d1, sc1 >< d2, sc2 >, . . . , < dN , scN >}, where dj is the document
identifier, scj is the score associated with the document and N is the heap
size (i.e. the number of document results initially requested). Each top-k node
computes a disjoint set of document results.

After the broker machine performs the merge of N × P document results, it
gets a list of tuples: [< dx,1, scx,1, i >, . . . , < dw,N×P , scw,N×P , s >]. The first
component of each tuple represents the document identifier and the position of
the document within the global document result set. For example, dx,1 repre-
sents the most relevant document (i.e. the top-1 document) identified by x. The
second component represents the score of the document using the same nomen-
clature. The third component represents the identifier of the node which sent the
document. Then, the proposed algorithm determines whether to request more
documents results to the top-k nodes as follows (see Figure 2.(b)):

1. If ∃ < dx,t, scx,t >∈ pi with scx,t > scs,k (i.e. the global position of document
x is t > k) then remove pi from the list. In other words, no more document
results are requested to pi.

2. If ∃ < dy,n, scy,n >∈ pi with scy,n < scs,k and scy,n is the least relevant
document sent by pi, then request to pi the next k−n+1 document results.
scs,k is the score of the k-th document in the global set of results. The
upper-bound for those requested documents is given by scy,n and the lower-
bound is given by scs,k. In other words, the broker machine requests to pi
documents with scores in the range of [scs,k, scy,n]. The number of requested
documents is given by k− n+ 1, because k− n is the number of documents
required to get the k-th position and +1 is used to support documents with
the same score.

If we have a set of document results {< da,1, sca,1, 1 >,< db,2, scb,2, 1 >,<
dc,3, scc,3, 2 >,< dd,4, scd,4, 3 >,< de,5, sce,5, 2 >,< df,6, scf,6, 3 >} for P =
{p1, p2, p3} where |P | = 3. In this example k = 4 and α = 1, therefore each
processor sends N = 4/4 + 1 = 2 documents results to the broker machine. In
this case, p2 and p3 are discarded and no more documents are required from
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them because they have sent documents that are located after the k-th global
position. On the contrary, it is necessary to ask to p1 a total of k−2+1 = 3 more
documents, with scores is in the range [scd,4, scb,2]. Recall that the formula uses
+1 to include documents with the same score. As in the first step the broker
sets N = 2, the size of the heap used by the WAND algorithm to store the most
relevant documents at the nodes side is set to N = 2. But in the next step,
the broker machine asks to p1 a total of N = 3 documents results. Therefore
the size of the heap is set to 3. To avoid re-computing all document results
from the beginning, the broker also sends the range [scd,4, scb,2] to p1 to discard
documents with scores outside this range.

The α parameter used to request document results in the first step is dynami-
cally set for each query and for each top-k node as follows. For a period of timeΔi

we warm up the system by running an oracle algorithm which predicts the opti-
mum value of α. In other words, queries are solved in the first step of the proposed
algorithm. Also, every time a query is processed, we store the query terms (ti), the
posting list size of each term (Li) and the optimal α parameter for each top-k node
(qa =< t1, t2, L1, L2, αp1 , . . . αpP >). The optimalα parameter determines the ad-
ditional number of documents each node has to send to the broker machine. This
information is kept in memory for just one interval of time. Then, in the following
intervals of times [Δi+1, . . . Δj−1, Δj ] where Δj is the current period of time, we
estimate the αpi values for a query qa by applying the rules:

1. If qa was processed in Δj−1 we use the value αpi stored in the previous
interval for i = 1 . . . P .

2. We define the set X = qa.terms ∩ qb.terms , ∀qb processed in Δj−1. Then
if X <> ∅, we select the query qb which maximize |X | (i.e. the query with
the greatest amount of terms in X). If more than one query has the same
maximum amount of terms in X , then we select the one which contains the
term with the largest posting list.

3. Otherwise, for each top-k node pi we use the average αpi value registered in
Δj−1.

3.2 Multi-threading Algorithms

In this section we describe our multi-threading algorithms. Our first algorithm
uses a local heap (LH) data structure for each thread. The posting lists are
evenly distributed among threads. In other words, each thread holds a portion
of the inverted file. Then each thread process incoming queries with its own
local inverted file and using a local heap of size k, where k is the top-k docu-
ments retrieved to the user. At the end, the documents identifiers stored in the
local heaps have to be merged. A synchronization barrier is implemented before
computing the merge operation.

Our second approach, named shared heap (SH) inverted files are distributed
among threads as in the LH approach. But query processing is performed using
a global heap of size k. Then, no merge operation is performed at the end of
the query process, but additional locks have to be implemented to guarantee
exclusive access to the threads when updating the heap contents. Our hypothesis
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is that for large collections where queries are more expensive to compute, it
is better to use a single global heap, because the threshold of the heap can
be quickly updated. Achieving the optimal threshold value quickly has several
advantages: (1) we can reduce the number of scores computations and (2) fewer
heap update operations are preformed (reducing the number of locks).

4 Evaluation

4.1 Data Preparation and Experiment Settings

We experiment with a query log of 16,900,873 queries submitted to the AOL
Search service between March 1 and May 31, 2006. We set the term weights
according to the frequency of the term in the query log. Then, we applied these
queries to a sample (1.5 TB) of the UK Web obtained in 2005 by Yahoo!, over
a collection compounded by 26,000,000-terms and a 56,153,990-document in-
verted index. We consider a Web search engine computing top-100 and top-1000
document results. In the case of the top-100 results we considered a sample of
1,000,000 queries.

We divide the following experiments into two groups. First, we evaluate our
proposed 2-steps algorithm in a distributed cluster of 16 processors. We measure
the number of scores computations, number of heap updates, running time and
communication cost. Second, we compute the number of decompressed blocks
performed by the Block-Max WAND (BMW) [6] using the multi-threading LH
and SH approaches. The Block-Max WAND algorithm groups the posting lists
into blocks of fixed size. Each block stores 100 documents in compress form. The
optimal threshold value is quickly reached because each block has its own UBt.
We also measure the speed-up achieved by both multi-threading algorithms. The
results were obtained on a cluster of 16 processors with 32-core AMD Opteron
2.1GHz Magny Cours processors, sharing 32 GB of memory. All experiments
were run using an inverted file of 27Gb in main memory.

4.2 Distributed Algorithm Evaluation

We compare the performance achieved by our proposal against the art base-
line algorithm which always request k document results per query to each node
partition. Figure 3 shows normalized running times and Figures 4 shows commu-
nication cost. We show results normalized to 1 in order to better illustrate the
comparative performance. To this end, we divide all quantities by the observed
maximum in each case.

For a small top-k, our proposal algorithm significantly improves the baseline
performance by 40%. This means that the proposal can reduce the total number
of scores computation performed by the WAND algorithm at the top-k nodes
side and the number of document results communicated to the broker machine.
This claim is confirmed in Figure 4.(a) which shows that the proposal reduces
communication cost logarithmically. Also, Figure 5.(a) shows that the proposal
reduces the average number of score computation by 50% with 16 processors



402 O. Rojas, V. Gil-Costa, and M. Marin

1 2 4 8 16
0

0.2

0.4

0.6

0.8

1

1.2

Processors
(a)       

N
o

rm
al

iz
ed

 t
im

e

 

 

1 2 4 8 16
0

0.2

0.4

0.6

0.8

1

1.2

Processors
(b)       

N
o

rm
al

iz
ed

 t
im

e

 

 

Baseline ProposalBaseline Proposal

Fig. 3. Running time reported for (a) top-100 and (b) top-1000 document results
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Fig. 4. Communication cost for (a) top-100 and (b) top-1000 document results

and Figure 5.(c) shows that for the same number of processors the number of
heap updates is reduced by almost 60%.

With a larger number of document results (Figure 3.(b)) the gain achieved by
the proposal algorithm (in terms of running time) is reduced to 10% in average.
Again, these results are validated in Figure 5.(b) and Figure 5.(d) for the num-
ber of score computation and the number of heap updates respectively. In this
case, the proposal algorithm reports 3% less number of score computations than
the baseline and 25% less heap updates for a total of 16 processors. However,
communication cost is improved by the proposal due to less than k document
results are requested per query per top-k node.

To understand the effect of using a larger value of k we have to remember that
posting lists follow the Zip law [4]. In other words, there are few documents with
high score andmany documents with low score.Moreover, posting lists are in com-
press form organized in blocks and each block has an upper bound named block
max for the documents store inside the block. Therefore, with a larger k the thresh-
old value tends to be small and more score computations are preformed due to less
blocks are discarded when comparing the block max and the threshold.

4.3 Multi-threading Algorithms Evaluation

The total cost of solving a query is determined by three main stages: (1) the
load of parameters, (2) the search algorithm and (3) the merge and sort of



Efficient Parallel Block-Max WAND Algorithm 403

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 4 8 16

A
ve

ra
ge

 N
um

be
r 

of
 S

co
re

s

Processors

Baseline
Proposal

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 4 8 16

A
ve

ra
ge

 N
um

be
r 

of
 S

co
re

s

Processors

Baseline
Proposal

(a) (b)

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 4 8 16

H
ea

p 
U

pd
at

es

Processors

Baseline
Proposal

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 4 8 16

H
ea

p 
U

pd
at

es

Processors

Baseline
Proposal

(c) (d)

Fig. 5. Score computation and heap update operations reported for (a)(c) top-100 and
(b)(d) top-1000 document results

results. The first stage involves the computation of the upper bounds UB for
each block of the posting lists and also the multiplication of each term weight
with the UB. This product is used at running time. In the second stage we
apply the WAND to find the top-k documents for the query. In the last stage we
perform the merge of local heaps and sort the final results. Usually the higher
computational cost is performed by the last two stages. The algorithm that
computes the top-k documents and merge tasks and sort algorithms. Therefore,
we focus on the number of scores, the number of heap updates and number of
blocks decompressed using the Max-Block WAND.

Figure 6 shows the results regarding the number of decompressed blocks.
First we show the average number of blocks required by query per thread. Then
we show the average number of decompressed blocks using both multi-threading
approaches and its relation to the number of heap updates.With a small k value,
the algorithms decompress only the blocks containing the documents that will be
added to the heap. These results show that the SH approach drastically reduces
the number of decompressed blocks which is an essential issue in search engines
where fast access to the information and resource usage optimization is essential.

This because queries are evaluated in parallel and threshold values are ac-
cessed and updated jointly by all threads. The threshold value is the decisive
factor in the speed of the WAND algorithm. It is used to decide whether to
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H10, time > 2.3e+06 ns, 28% of the queries 
H100, time > 3.5e+06 ns, 43% of the queries
H1000, time > 8.2e+06 ns, 58% of the queries

H10, time > 6.01e+06 ns, 4% of the queries 
H100, time > 9.2e+06 ns, 7% of the queries
H1000, time > 2.1e+07 ns, 21% of the queries

H10, time < 4.8e+05 ns, 27% of the queries 
H100, time < 7.3e+05 ns, 15% of the queries
H1000, time < 1.6e+06 ns, 17% of the queries

Fig. 7. (a)Speed-up for expensive queries requiring at least a running time of
{2ms,3ms,8ms}) for a heap size of k = {10, 100, 1000} (b)Speed-up for expensive
queries requiring at least a running time of {6ms,19ms,20ms}) for a heap size of
k = {10, 100, 1000} (c) Speed-up for queries that have a low computational cost requir-
ing a running time less than {0.4ms,0.7ms,1.6ms} for a heap size of k = {10, 100, 1000}

compute a score and whether to access a compress block of the posting list.
Also, regardless of multi-threaded version, this figure shows that the WAND
algorithm is very efficient when unzipping the posting lists. By using a heap of
size k = 100, the worst decompression level is reached with a single thread.

Figures 7.(a) and 7.(b) show the speed-up obtained for queries that are ex-
pensive to compute. Typically, these queries tend to compute a larger number
of scores and make a greater number of updates on the heap. Figure 7.(a) shows
results for a heap of size k = 10 and executing 28% of the queries log. The
sequential average time to run these queries is 2.3e + 06ns. For a heap of size
k = 100 we executed 43% of the query log and for a heap size of k = 100 we
executed 58% of the query log. Figure 7.(b) shows the same experiment but for
queries more expensive to process, requiring at least a sequential processing time
of 6.01e + 06ns for a heap size of k = 10, 9.2e + 06 for a heap size of k = 100
and 2.1e + 07 for a heap size of k = 1000. With this experiment we show that
the performance of the SH approach begins to increase when computing queries
with higher computational cost. Finally, Figure 7.(c) shows results obtained for
queries requiring a low computational cost. In other words, queries that are
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quickly solved with a low number of scores calculations and few heap updates.
The LH approach presents the best performance.

5 Conclusions

We have presented a 2-steps algorithm which aims to reduce computation and
communication cost between top-k nodes and the broker machine. In the first
step, it uses an adjustment parameter which is dynamically set for each query
to request results from each processor. Our experiments show that the proposed
algorithm significantly outperforms the baseline strategy.

We also evaluated the WAND algorithm using two multi-threading strategies.
We performed experiments using queries with both high and low computational
costs. The shared heap (SH) multi-threading approach is less efficient than the
local heaps (LH) approach for low cost queries. In general, SH reduces the num-
ber of decompressed blocks, the number of heap updates and the number of
scores computed to retrieve the top-k documents. However, the gain in these
metrics is not reflected in the execution time for low cost queries. Thus a combi-
nation of both approaches should be used based on a prediction of the running
time cost of queries. In practice, the running time tends to be proportional to
the size of the involved posting lists.
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Abstract. MapReduce has emerged as a very popular programming model for 
large-scale data analytics. Despite its industry-wide acceptance, the open source 
Apache™ Hadoop™ framework for MapReduce remains difficult to optimize, 
particularly in large-scale production environments. The vast search space de-
fined by the hundreds of MapReduce configuration parameters and the complex 
interactions between them makes it time consuming to rely on manual tuning. 
Hence something more is needed. In this paper we evaluate approaches to the 
automatic tuning of Hadoop MapReduce including ones based on cost-based 
and machine learning models. We determine that they are inadequate and in-
stead propose a search-based approach called Gunther for Hadoop MapReduce 
optimization. Gunther uses a Genetic Algorithm which is specially designed to 
aggressively identify parameter settings that result in near-optimal job execu-
tion time.  We evaluate Gunther on two types of clusters with different resource 
characteristics. Our experiments demonstrate that Gunther can obtain near-
optimal performance within a small number of trials (<30), outperforming exist-
ing auto-tuning solutions and industry recommended configurations. We also 
describe a methodology for reducing the dimensionality of the auto-tuning 
problem, further improving search efficiency without sacrificing performance 
improvement. 

Keywords: Hadoop, Genetic Algorithm, Parameter Optimization, Auto-tuning. 

1 Introduction 

MapReduce is a distributed programming model used to process large datasets across 
thousands of machines. It has gained much popularity due to its simple yet expressive 
interface, scalability and fine-grained fault tolerance [5, 9]. Apache™ Hadoop™ [9] 
is an open-source implementation of the MapReduce model and is widely used for 
data mining, log processing and machine learning [7, 16, 17, 18, 22].  Hadoop expos-
es 200+ parameters providing users the flexibility to customize it according to their 
need [26]. Some parameters have significant performance impact. The major chal-
lenge lies in quickly identifying the best parameter settings for a particular application 
on a given cluster [1, 4, 25]. 

The common practice is to tune up Hadoop using rule-of-thumb settings published 
by industry leaders, such as Cloudera and MapR [4, 9, 25], but these recommenda-
tions are too general and fail to capture the specific requirements of a given applica-
tion and resource constraints (i.e., amount of CPU, network and storage) of a given 
cluster. Additionally, the large parameter space, with its complex inter-dependencies, 
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and the sheer scale of many clusters increases the complexity of manual tuning, in 
which a person repeatedly runs jobs in an attempt to identify the best parameter set-
tings using trial-and-error. An efficient, effective and automated approach to parame-
ter optimization is the only viable solution. 

Cost-based auto-tuning is used in database systems [3]. Motivated by this, researchers 
proposed a cost-based approach for Hadoop MapReduce optimization [12, 13]. However, 
it is extremely difficult for simple cost-based models to accurately predict the perfor-
mance of a wide range of Hadoop applications over a wide range of clusters provisioned 
with different CPU, storage, memory and network technologies. Furthermore, cost-based 
models are strictly bound to a particular version of a framework and do not evolve with 
the framework. Machine learning models are another popular approach [3, 15, 24]. In 
contrast to cost-based models they rely on training sets to “learn” model coefficients and 
hence are more adaptive and flexible. Unfortunately, our studies show that it is difficult 
to construct an accurate machine learning model without a large training set involving 
hundreds or potentially thousands of trials. 

In this paper we propose Gunther, a search-based auto-tuner for Hadoop MapReduce 
that addresses these challenges. It employs a search algorithm that iteratively evaluates the 
variation in performance of a MapReduce application for different configuration settings 
and often attains a near-optimal solution. Our method extends to any version of the Ha-
doop framework and different types of clusters and thus is flexible and adaptive. 

We evaluate auto-tuning approaches using the two metrics – (i) efficiency or how fast 
the search can find a good configuration, and (ii) effectiveness which measures the per-
formance improvement achieved. We study the performance of Hadoop on a number of 
clusters and discover that it is a nonlinear and multimodal function of Hadoop’s configura-
tion settings. We evaluate search algorithms that are popular for finding global optima on 
multimodal surfaces and select Genetic Algorithm (GA) as our search strategy [23]. We 
then optimize GA for the Hadoop auto-tuning problem to strike the right balance between 
search efficiency and effectiveness. We evaluate the result on two clusters with different 
resource characteristics for several applications. Our experiments demonstrate that Gunth-
er obtains near-optimal configurations within 30 trials in both types of clusters, and yields 
better performance improvement than configurations recommended by a cost-based ap-
proach and industry rule-of-thumb settings.  Studies of workload characteristics show less 
than 10% of the jobs have runtimes of 5 hours or more [31]. Hence for majority of Ha-
doop users 30 trials is a small price. For larger jobs tuning time is ameliorated when many 
users keep running their applications for years.  

While Gunther is very effective at identifying near-optimal configurations, its efficien-
cy can be further improved by reducing the dimensionality of the search space by ignoring 
parameters that have little performance effect. We propose a methodology that uses job 
counters to classify applications into groups that are sensitive to the same or nearly the 
same subset of parameters. Once applications are classified we limit the search to the sub-
set and achieve near-optimal performance while reducing the search time. 

2 Background and Motivation 

2.1 Hadoop and MapReduce 

In MapReduce, users need only implement map and reduce functions and the rest is han-
dled by the framework. The Hadoop MapReduce framework takes care of task scheduling, 
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2.3 Issues with Manual Tuning 

Hadoop parameter optimization requires domain-specific knowledge of the applica-
tion, the Hadoop framework, and the cluster systems architecture. And manual tuning 
is extremely challenging given explicit and implicit dependencies between different 
configuration parameters and their effect on the different aspects of the system. Figure 
2(a) illustrates a scenario where joint exploration of two parameters, namely the num-
ber of map and reduce slots, results in a complicated non-linear surface representing 
the runtimes of a Sort job. This problem is exacerbated as more parameters are added 
to the exploration. Figure 2(b) presents the performance as a function of the number 
of map slots and reduce slots 2 and 3. Clearly, the optimal number of map slots  
depends on the number of reduce slots. Hence, the parameters need to be examined 
jointly to locate the global optimal configuration. The manual evaluation of all possi-
ble combinations of all performance-related configuration parameters may take 
months, rendering it impractical. These issues motivate auto-tuning approaches. 

3 Approaches to Auto-Tuning 

Performance models are used to automatically tune databases and other complex sys-
tems [3, 8, 15, 21, 24]. The common approaches involve cost-based or machine learn-
ing models. Cost-based models are constructed a priori and calibrated by evaluating 
the costs of various operations. Machine learning models are used similarly but de-
rived by learning from training sets. 

3.1 Cost-Based Models 

Cost-based models are built using domain-specific knowledge. In the context of Ma-
pReduce, researchers at Duke University recently proposed a Hadoop auto-tuner 
called Starfish [1, 11, 12, 13]. In Starfish, cost is measured in terms of CPU cycles of 
different execution phases, such as CPU cost of processing a key-value pair in the 
map function. To the best of our knowledge, Starfish is the first attempt to address the 
Hadoop auto-tuning problem. In this subsection, we use it as a case study and reveal 
its limitations due to model inaccuracy. 

Starfish’s model uses the average CPU and I/O cost of reads and writes to estimate 
average map execution time [11]. These costs are measured by profiling a job with a 
single configuration and the model predicts the same map time as the number of re-
duce tasks is swept from 64 to 256, as shown in Figure 3, even though the actual time 
changes considerably. 

Additionally, we present task execution information for three configurations in Ta-
ble 1. The map times are highly variable, with standard deviations of up to ~90%. 
This complicates task scheduling and could skew the job execution time. The model 
does not consider these effects, thus introducing errors. The above problems  
occur because the contention for hardware resources between map and reduce tasks  
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changes with configurations and this contention largely affects task time. While a 
more complex cost-based model (e.g., one that sensitizes costs to these effects) may 
address these issues, it is challenging to build such a model. 

Fig. 3. Map time for sort with 8 map, 4 
reduce slots, and 64 or 256 reduce tasks 

Table 1. Map task times for three configurations 

 

The other limitation of cost-based modeling is its inability to adapt as frameworks 
evolve. Hadoop MapReduce is a relatively new framework and is evolving at a very 
fast pace. For instance, the next generation framework called YARN [27] has a signif-
icantly different architecture. Hence existing cost-based models may not work and 
need to be redesigned. The same issue arises as clusters evolve with new processors, 
memory, and storage technologies. 

3.2 Machine Learning Models 

Machine Learning (ML) models have been proposed in many fields to estimate the 
performance of complex systems [8, 15, 24]. However, they are impractical for Ma-
pReduce auto-tuning as they require large training sets in order to build an accurate 
model. Our exploration of this method using models like artificial neural network, 
support vector regression, multiple linear regression and M5 decision tree revealed 
that more than 200 evaluations are needed to obtain an accuracy of ~90% with five 
configuration parameters. Since most MapReduce applications involve batch 
processing with long execution times (tens of minutes to hours), collection of training 
sets is slow. Although we can use logs as training sets, they typically capture a small 
number of configurations. This leads to data under-fitting.  

4 Gunther: A Search-Based Auto-Tuner 

To overcome the inadequacies of cost-based and ML models, we propose a search-based 
auto-tuner, called Gunther, to optimize configuration settings in Hadoop MapReduce. 
We perceive auto-tuning as a black-box optimization problem and use search algorithms 
to solve it. The objective of the search is to evaluate candidate solutions with the stimulus 
of different parameters to minimize an objective function. The minimization problem is 
expressed below: 
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where :  is the response function,  denotes the  parameter, D is the num-
ber of parameter dimensions,  is range of the  parameter , and  is  
the optimal configuration for which  attains minimum value. In our case, the 
Hadoop MapReduce configuration parameters define the parameter space and each 
functional evaluation involves measuring the execution time of a Hadoop job. This 
approach offers three ben-
efits. First, we overcome 
modeling inaccuracy since 
we use job execution 
times during search. 
Second, our approach can 
be used to optimize future 
MapReduce frameworks. 
Hence it is more adaptive. 
Third, our approach does 
not require the large train-
ing set, hence, is more 
practical.  

4.1 Gunther Overview 

Gunther’s architecture is illustrated in Figure 4. The search algorithm is implemented 
in the search engine (SE). SE generates a new configuration and asks the driver pro-
gram to run the application through the JobTracker with the new configuration. After 
the run is complete, SE writes log files to the repository and analyzes them to obtain 
execution times. The search terminates after the algorithm meets the convergence 
criteria or reaches a specified number of trials, and we have designed management 
console to facilitate progress monitoring.  

4.2 Evaluation of Search Algorithm 

The effectiveness and efficiency of the search algorithm is critical. To select the right 
search algorithm, we evaluated both local and global search algorithms on Hadoop 
performance surfaces using three parameters: map slots, reduce slots and number of 
reduce tasks. For these, we exhaustively evaluated job execution time. Figure 2 illu-
strates the response surface of Hadoop sort for two dimensions. We do not show data 
for other applications but they exhibit similar behavior. From experiments, we ob-
serve that Hadoop surfaces are non-linear and multimodal, with many local minima.  
Local search techniques widely used for unimodal surfaces, such as Nelder Mead and 
Powell Search, are inadequate for multimodal surfaces because they easily get stuck 
at local minima. We found that Nelder Mead and Powell Search easily settle in local 
minima on our response surfaces, which are 15% worse than the optimal solution in 
most cases. This indicates that global search techniques may be more effective. 

Global search algorithms are classified into gradient-based search, stochastic 
search and evolutionary search. Due to the lack of gradient information, we rule out 

Fig. 4. Gunther Architecture 
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the gradient based techniques. We identify four stochastic and evolutionary search 
methods for evaluation: simulated annealing (SA) [20], genetic algorithm (GA) [23], 
particle swarm optimization (PSO) [19] and recursive random search (RRS) [28]. We 
used Rastrigin function [28] to perform evaluation. This function generates a multi-
modal surface and is challenging due to its large search space and number of local 
minima. We searched the surface using SA, RRS, GA, and PSO on 10-dimensional 
surfaces. We observed that SA exhibits the worst performance and GA is the best, 
followed by PSO. Due to page limits, we do not present detailed results here. 

4.3 Applying Genetic Algorithms to the Auto-Tuning of MapReduce 

The studies in the previous section motivated us to apply GA to our problem. Algo-
rithm 1 describes a typical GA cycle.  The algorithm encodes the potential solutions 
to a problem as candidates. The solutions are evaluated with a fitness (or objective) 
function that is tailored to the problem. Candidates with higher fitness scores are 
deemed better solutions.   

Algorithm 1. Traditional GA 

Input: P0 : A randomly selected initial population of size M 

Output:  
1.   
2. For all  in P do evaluate  3.   
4. For N generations (or while search converges) do 

5. For   1,2, … ,  do 

6.  parents from  
7. With probability  crossover  and  to create candidate  and 

 
8. With probability  mutate  and  
9. Evaluate  and  
10. Update  
11. Recalculate  

GA begins with an initial population of randomly generated candidates. It evolves 
the population during each generation by using the genetic operators select, crossover, 
mutate, and update. A popular selection operator is the Roulette Wheel mechanism. In 
this method, if fitness C is the fitness of candidate C  in the population, its probabili-

ty of being selected is P f C∑ f CM  , where M is population size. This allows 

candidates with good fitness values to have a higher probability of being selected as 
parents. A crossover function is called with a given probability. It is used to cut the 
sequence of elements from two chosen parents/candidates and swap them to produce 
two children/candidates. The mutation function aims to avoid local optima by  
randomly mutating an element with a given probability. Both crossover and mutation 
probabilities are input parameters of GA. At the end of each generation, a new  
population replaces the current population. 
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In our application, each element g  represents a Hadoop parameter. A candidate C  consisting of all parameters, denoted as C g g . . gD, represents a Hadoop job 
configuration, where D is the number of parameters. The fitness of a candidate is 

calculated using fitness C J     . We choose a population of size 

2D.  GA is a generic search strategy and its operators need to be implemented in an 
application-specific manner. We define the operators for our problem as follows. 

Select Operator 

Input: P 

Output: parent  and parent  
1. List L = Sort P in decreasing order of fitness C  
2. AvgP = M ∑ fitness CM  

3. if fitness L AvgP then parent   L   

4. if fitness L AvgP then parent   L  

Select Operator: From experimentation we observe that it is unlikely that two low 
fitness candidates will produce an offspring with high fitness. This is because, in real 
clusters, bad performance is often caused by the improper configuration of a few key 
parameters and these bad settings continue to be inherited. For instance, for an appli-
cation that is both CPU and shuffle-intensive in a cluster with excessive I/O band-
width and limited CPU resources, enabling compression of map outputs would stress 
the CPU and degrade application performance, regardless of others. The selection 
method should eliminate this configuration quickly. We also observe that good candi-
dates are more likely to produce good offspring/candidates.  

The popular Roulette-Wheel selection mechanism has a higher probability of se-
lecting good candidates to be parents than bad ones, but this approach still results in 
too many job evaluations. Therefore, our selection procedure is more aggressive and 
deterministically selects good candidates to be parents. The idea is to quickly elimi-
nate poor candidates from the population. To do this, we calculate the mean fitness of 
the population for each generation and only select parents with fitness scores that 
exceed the mean. 

Update Operator 

Input: child , child , L 

Output: L 

1. k  sizeof L  

2. If fitness child L  then L child  

3. If fitness child L  then L child   

 

Update Operator: In GA, the update operator directly replaces parents with their 
offspring, even if their offspring have lower fitness values. Thus the algorithm does 
not always retain better solutions, which slows convergence. We modify the update 
procedure so that child  and child  only replace poorer solutions, i.e., parents whose 
fitness values are lower than the created candidates in the population. If the offspring 
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are less fit, they are discarded and the parents survive. This directs the search more 
efficiently toward better solutions. 

Mutate: The mutated value of a parameter is randomly chosen from its range. Since 
our select aggressively prunes poor regions, we can use an atypically high mutation 
rate (e.g., p =0.1) without impacting convergence. The value of p  is empirically 
determined. 

Crossover: We use a one-point crossover. A cut point is randomly chosen in each 
parent’s candidate/job configuration and all parameters beyond that point are swapped 
between the two parents to produce two children. We empirically set crossover prob-
ability p  to be 0.7.  

Non-redundancy: Classical GA does not remember prior search and is likely to eva-
luate some regions more than once. We enhanced our GA to remember search to 
avoid duplication. 

5 Performance Evaluation 

5.1 Experimental Setup 

We deployed Gunther with Hadoop 0.20.3 on Cluster1 and Cluster2. Each cluster has 
one master node and 16 slaves. Each node is configured with 16GB memory and one 
Quad Core Intel Xeon processor E3 with HT enabled. The nodes are interconnected 
through a 1GbE switch. Cluster1 was designed to be storage bottlenecked and used 3 
1TB HDDs for HDFS and intermediate data and a separate 1TB HDD for OS, and 
Cluster2 was designed to be network bottlenecked, with 3 240GB Intel SSD (520 
Series) [14] for HDFS and intermediate data. We selected Sort, Nutch, Kmeans and 
Terasort from the HiBench suite as our applications. We use rule-of-thumb (RoT) 
configurations as our baseline.  We used Starfish 3.0 in the comparison. 

Table 2. Hadoop parameters considered 

 

Table 2 shows the ranges and recommended values of the six parameters we tuned. 
Our motivation for exploring these parameters is two-fold. First, these parameters 
affect the utilization of different resources, such as CPU, memory, storage, and  
network. By tuning them, we believe we can achieve better balance among these  

     Parameter Name    Range 
Rule-of- 

Thumb 
Description 

mapred.tasktracker.map.tasks.maximum 2:12::1 8 Maximum number of map tasks for a node 

mapred.tasktracker.reduce.tasks.maximum 2:12::1 4 Maximum number of reduce slots for a node 

  mapred.reduce.tasks 4N:16N:4N 4N # reduce tasks in a job. N is the number of nodes 

io.sort.mb 100:500::50 100 Size (MB) of buffer to use while sorting map output 

mapred.output.compress True/False False Compress the output of the job 

mapred.compress.map.output True/False False Compress the output of each map task 
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resources and improve performance. Second, these parameters impact both task- and 
cluster-level performance. io.sort.mb affects task-level performance and the rest of 
parameters change the distributed system’s data flow and have cluster-level perfor-
mance effects. The second column in the table describes the parameter bounds and 
step sizes explored (e.g., map slots vary between 2 and 12 in steps of 1).  

5.2 Search Effectiveness and Efficiency 

In Figure 5a, we compare the best execution time found by Gunther and Starfish with 
the RoT and best performance for Cluster1. We randomly sampled the space by run-
ning a large number of experiments offline for each application. The best performance 
found is considered best. The figure demonstrates that Gunther achieves near-optimal 
performance and is more effective than Starfish. Compared to RoT, Gunther yields a 
25% performance improvement on average across all workloads. The maximum im-
provement of 30% is achieved for Terasort. Correspondingly, Starfish achieves an 
11% improvement on average, with a maximum improvement of 29%. Figure 5b 
presents results from Cluster2. Starfish shows no improvement compared to RoT. 
This is because Starfish assumes sufficient network bandwidth is available, which 
leads to inaccurate estimation of shuffle time in Cluster2. However, Gunther is able to 
capture the network bottleneck. As a result, Gunther improves performance by up to 
33%, which is close to best. Note that in this cluster RoT is indeed the best configura-
tion for Terasort and there is no opportunity to improve performance. Table 3 enume-
rates the number of trials it took Gunther to converge. It was able to converge within 
30 trials in all cases.   

 

               Fig. 5. a) Comparison on Cluster1   b) Comparison on Cluster2    

Table 3. Number of trials to reach the best performance 

Sort Terasort Nut Kmeans
Cluster1 20 15 14 12
Cluster2 24 10 21 10

5.3 Comparison with Other Algorithms 

Figure 6 shows comparison of Gunther’s modified GA with PSO and RRS on Clus-
ter1 and Cluster2 for all four applications. The figure shows the best execution times 
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achieved for budgets of 20, 30, and 40 trials, normalized to RoT (lower is better). 
Overall, Gunther achieves higher performance than PSO and RRS and also converges 
in ~ 20 trials, whereas PSO and RRS often take more than 40 trials. Our results dem-
onstrate that Gunther is more effective and efficient than PSO and RRS.  

 

Fig. 6. Search algorithms on clusters for (a) Sort, (b) Nutch, (c) Kmeans, and (d) Terasort 
benchmarks 

6 Using Classification to Improve Search Efficiency 

The efficiency of search can be further improved with a minor impact on effective-
ness by selectively reducing the dimensionality of the search space. This is possible 
because some parameters affect performance more than others and the impact de-
pends on what resources are bottlenecked. By profiling an application once with RoT 
settings, we can rule out parameters that affect resources that are not bottlenecked.  

 

Fig. 7. Classification of applications based on m1 and m2  
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In this section, we present an application classification methodology based on two 
metrics that are calculated from five Hadoop job counters. The metric m1 is defined 
as the ratio between the count of spilled records and the sum of counts of map input 
records and reduce input records. Spill records are the number of key-value pairs 
written from memory to storage during the shuffling phase. This metric represents 
shuffle intensity. We can rule out io.sort.mb, mapred.compress.map.output, ma-
pred.reduce.tasks when m1 values are low because they primarily impact shuffle  
performance. The metric m2 is defined as the ratio of the count of hdfs_bytes_written 
to hdfs_bytes_read. These count the amount of data read and written by map and  
reduce tasks, respectively. Low m2 indicates the compression controlled via ma-
pred.output.compress will have small performance effects and can be ruled out.  

We classify applications into four classes (C1, C2, C3, and C4) and results are shown in 
Figure 7. The threshold of 0.5 is derived empirically and in the future we intend to auto-
matically determine its value using a clustering algorithm. Sort, Terasort and Nutch are 
placed into Class C1 with high m1 and m2, indicating that we cannot rule out any parame-
ters. On the other hand, Kmeans is placed into Class C3 with low m1 and m2 because it is 
compute-intensive, with low I/O utilization.  This means we can rule out 4 parameters 
prior to search.  Experimental results in Table 4 are supportive. Limiting the Kmeans 
(Class C3) search to 2 dimensions had a negligible effect on search effectiveness but cut 
the search time in half.  But, when we ruled out the same parameters for Class C1 applica-
tions, both the effectiveness and efficiency were impacted. For example, Sort on Cluster1 
improved only 3.9% when 4 parameters were rule out compared to 29.5% when no para-
meters were ruled out. The improvement on Cluster2 was also impacted. We observe 
similar patterns for Nutch and Terasort. 

Interestingly, applications in C1 are more strongly affected by dimensionality re-
duction on Cluster1 than Cluster2 even though the metrics m1 and m2 are the same.  
This is because our metrics do not reflect differences in dynamic cluster runtime in-
formation (e.g., resource utilization). We believe that developing new metrics consi-
dering dynamic information will improve the selectivity of classification. Moreover, 
our classification only rules out parameters and cannot rule them in. A more powerful 
method would do both. Finally, the current metrics were selected based on domain 
expertise.  In future, we plan to use machine learning-based classifiers (e.g. principal 
component analysis, etc.) to automate the selection process. 

Table 4. Results of dimensionality reduction 

Cluster Workload 
2 Dimensions 6 Dimensions 

Trials Improvement (%) Trials Improvement (%) 

Cluster1 

Sort 14 3.90 20 29.48 

Kmeans 7 24.77 12 25 

TeraSort 14 0 15 30 

Nutch 4 6.77 14 15 

Cluster2 

Sort 10 7 24 11 

Kmeans 5 11.5 12 12 

TeraSort 5 0 10 0 

Nutch 14 25 21 33 
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7 Other Related Work 

7.1 Hadoop Optimization 

Hadoop tuning has been studied [1, 4, 11, 12, 13, 22]. The conventional practice is to 
rely on rules-of-thumb to find good configurations for applications [4]. In contrast to 
rule-based approaches, Starfish [11, 12, 13] leverages a cost-based model to tune 
Hadoop applications. Some studies look beyond Hadoop tuning to library extensions 
and runtime improvements. Manimal [16] performs static analysis of Hadoop  
programs and deploys optimizations to avoid reads of unneeded data. Panacea [22] 
proposes a compiler that performs transformations for Hadoop applications to reduce 
overheads of iterative applications. Twister [7] proposes a new in-memory library to 
improve the performance of iterative MapReduce applications.  

7.2 Auto-Tuning Other Systems 

Cost-based, ML and search-based models are used to auto-tune complex systems [3, 6, 8, 
15, 21, 24, 28, 29].  Most of the work in database systems uses cost-based models to find 
the optimal configuration. For instance, IBM DB2 [21] provides an advisor for setting 
default values for a large number of parameters, which relies on built-in cost models. Si-
milarly, machine learning models are used for auto-tuning many systems. Ganapathi et al. 
[8] proposed KCCA to derive the relationship between configurations and performance. 
The search algorithms evaluated in this paper have been used to identify near-optimal 
configurations for other complex systems. For example, Ye et al. [28] used RRS to tackle 
network configuration. In addition, Zheng et al. [29] constructed a parameter dependency 
graph and applied a simplex search method to find good configurations for web services. 
Duan et al. [6] tuned database parameters by developing adaptive sampling based on a 
Gaussian process. Zhu et al. [30] used an online learning algorithm to adjust the  
parameters of applications and optimize performance.  

8 Conclusion and Future Work 

In this paper, we assessed model-based approaches for Hadoop MapReduce optimiza-
tion and identified major limitations. Our findings motivated us to propose and  
implement Gunther, a search-based auto-tuner. We studied several global search algo-
rithms and selected GA as our search strategy. We modified GA to strike the right 
balance between search efficiency and effectiveness and evaluated the resulting 
search algorithm on two clusters. Experimental results demonstrate that Gunther 
achieves near-optimal performance in a small number of trials (<30) and yields better 
performance improvement than rule-of-thumb settings and a cost-based auto-tuner. 
We also proposed an application classification method that further improves the 
search efficiency of Gunther by ruling out less important parameters. Our preliminary 
results are very encouraging, demonstrating that the number of trials can be reduced 
by half without sacrificing performance. In the future, we intend to extend our classi-
fication method to include both static application characteristics and cluster runtime 
information.   
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Abstract Failures are increasingly threatening the efficiency of HPC
systems, and current projections of Exascale platforms indicate that roll-
back recovery, the most convenient method for providing fault tolerance
to general-purpose applications, reaches its own limits at such scales. One
of the reasons explaining this unnerving situation comes from the focus
that has been given to per-application completion time, rather than to
platform efficiency. In this paper, we discuss the case of uncoordinated
rollback recovery where the idle time spent waiting recovering processors
is used to progress a different, independent application from the sys-
tem batch queue. We then propose an extended model of uncoordinated
checkpointing that can discriminate between idle time and wasted com-
putation. We instantiate this model in a simulator to demonstrate that,
with this strategy, uncoordinated checkpointing per application comple-
tion time is unchanged, while it delivers near-perfect platform efficiency.

1 Introduction

The progress of many fields of research, in chemistry, biology, medicine, aerospace
and general engineering, is heavily dependent on the availability of ever increas-
ing computational capabilities. The High Performance Computing (HPC) com-
munity strives to fulfill these expectations, and for several decades, has embraced
parallel systems to increase computational capabilities. Although there is no
alternative technology in sight, the core logic of delivering more performance
through ever larger systems bears its own issues, and most notably declining re-
liability. In the projections issued by the International Exascale Software Project
(IESP) [1], even if individual components are expected to enjoy significant im-
provements in reliability, their number alone will drive the system Mean Time
Between Failures (MTBF) to plummet, entering a regime where failures are not
uncommon events, but a normal part of applications execution [2].

Coordinated rollback recovery, based on periodic, complete application check-
point, and complete restart upon failure, has been the most successful and usually
deployed failure mitigation strategy. Unfortunately, it appears that coordinated
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checkpoint/restart will suffer from unacceptable I/O overhead at the scale envi-
sioned for future systems, leading to poor overall efficiency barely competing with
replication [3]. In recent years, an alternative automatic rollback recovery tech-
nique, namely uncoordinated checkpointing with message logging [4], has received
a lot of attention [5,6]. The key idea of this approach is to avoid the rollback of pro-
cesses that have not been struck by failures, thereby reducing the amount of lost
computation that has to be re-executed, and possibly permitting overlap between
recovery and regular application progress.Unfortunately, under the reasonablehy-
pothesis of tightly coupled applications (themost common type, whose complexity
often compels automatic fault tolerance), processes that do not undergo rollback
have to wait for restarted processes to catch up before they can resume their own
progression, thereby spending as much time idling than they would have spent re-
executing work in a coordinated approach.

In this paper, we propose to consider the realistic case of an HPC system with
a queue of independent parallel jobs (from a single workflow, or even submit-
ted by different users). Instead of solely focusing on per-application completion
time, which is strongly challenged by numerous failures, the goal of such a sys-
tem is to complete as many useful computations as possible (while still retaining
reasonable per-application completion time). The proposed application deploy-
ment scheme addressed in this paper makes use of automatic, uncoordinated
checkpoint/restart. It overlaps idling time suffered by recovering applications,
by progress made on another application. This second application is loaded on
available resources, meanwhile uncoordinated rollback recovery is taking place on
the limited subset of the resources that needs to re-execute work after a failure.
Based on this strategy, we extend the model proposed in [7] to make a distinc-
tion between wasted computation and processor idle time. The waste incurred
by the individual application, and the total waste of the platform, are both ex-
pressed with the model, and we investigate the trade-offs between optimizing for
application efficiency or for platform efficiency.

The rest of this paper is organized as follows: Section 2 gives an informal
statement of the problem. The strategy that targets platform efficiency is de-
scribed in Section 3. Section 4 presents the model and the scenarios used to
analyze the behavior of the application-centric and platform-centric scenarios.
Section 5 is devoted to a comprehensive set of simulations for relevant platform
and application case studies. Section 6 provides an overview of related work.
Finally we give some concluding remarks and hints for future work in Section 7.

2 Background and Problem Statement

Many approaches have been proposed to resolve the formidable threat that pro-
cess failures pose to both productivity and efficiency of HPC applications. Algo-
rithm Based Fault Tolerance [8], or Naturally Fault Tolerant Methods [9] promise
to deliver exceptional performance despite failures, by tailoring recovery actions
for each particular application. However, the use of intrinsic algorithmic prop-
erties is an application-specific solution that often entails excruciating software
engineering efforts, which makes it difficult to apply to production codes.
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In a sharp contrast, checkpoint/restart rollback recovery strategies can be
provided automatically, without modifications to the supported application. Al-
though the classical coordinated checkpoint approach seems to be reaching its
limits [3], recent optimizations and experimental studies outline that compelling
performance can be obtained from uncoordinated checkpointing [5,6]. Rollback
recovery protocols employ checkpoints to periodically save the state of a parallel
application, so that when a failure strikes some process, the application can be
restored into one of its former states. In a parallel application, the recovery line
is the state of the entire application after some processes have been restarted
from a checkpoint. Unfortunately, not all recovery lines are consistent (i.e. result
in a correct execution); in particular, recovery lines that separate the emission
and matching reception event of a message are problematic. The two main fam-
ilies of rollback recovery protocols differ mostly in the way they handle these
messages crossing the recovery line [4]. In the coordinated checkpoint approach,
a collection of checkpoints is constructed so that consistency threatening mes-
sages do not exist between checkpoints of the collection (using a coordination
algorithm). Since the checkpoint collection forms the only recovery line that is
guaranteed to be correct, all processes have to roll back simultaneously, even if
they are not faulty. As a result, the bulk amount of lost work is increased, and
the strategy is not optimal for a given number of failures. The non-coordinated
checkpoint approach avoids duplicating the work completed by non-faulty pro-
cesses. Checkpoints are taken independently, and only failed processes endure
rollback. Obviously, the resulting recovery line is not guaranteed to be correct
without the addition of supplementary state elements to resolve the issues posed
by crossing messages. Typically, message logging and event logging [4] store the
necessary state elements during the execution of the application. When a process
has to roll back to a checkpoint, it undergoes a managed, isolated re-execution,
where all non-deterministic event outcomes are forced according to the event log,
and messages from the past are served from the message log without rollback of
original senders.

Problem Statement: For typical HPC applications, which are often tightly cou-
pled, the ability of restarting only faulty processes (hence limiting duplicate
computation to a minimum) does not translate into great improvements of the
application completion time. This is illustrated in the instantiations of the model
that we recently proposed [7], which captures the intricacies of advanced unco-
ordinated recovery techniques. Despite being spared the overhead of executing
duplicate work, surviving processes quickly reach a synchronization point where
further progress depends on input from rollback processes. Since the recovered
processes have a significant amount of duplicate work to re-execute before they
can catch up with the general progress of the application, surviving processes
spend a significant amount of time idling; altogether, the overall application
completion time is only marginally improved. Yet, it is clear that, given the
availability of several independent jobs, idle time can be used to perform other
useful computations, thereby diminishing the wasted time experienced by the
platform as a whole.
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3 Strategy to Improve Platform Efficiency

In this paper, we propose a scheduling strategy that complements uncoordinated
rollback recovery, in order to decrease the waste of computing resources during
recovery periods. When a failure occurs (represented as a lightning bolt in Fig-
ure 1), a set of spare processes is used to execute the duplicate work of processes
that have to roll back to a checkpoint (R + ReExec). However, unlike regular
uncoordinated checkpoint, instead of remaining active and idling, the remainder
of the application is stopped, and flushed from memory to disk. The resulting
free resources are used to progress an independent application App2. When the
recovering processes have completed sufficient duplicate work, the supplemen-
tary application can be stopped (and its progress saved with a checkpoint); the
initial application can then be reloaded and its execution resumes normally. In
the next section, we propose an analytical model for this strategy, that permits to
compute the supplementary execution time for the initial application, together
with the total waste of computing resources endured by the platform. This model
extends on previous work [7], which considered only the impact on application
efficiency, and therefore let one of the key advantages of uncoordinated recovery
unaccounted for, in the (reasonable) hypothesis of tightly coupled applications.
We then use the model to investigate the appropriate checkpoint period, and
to predict adequate strategies that deliver low platform waste while preserving
application completion time.
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Fig. 1. The SPlat scenario: a deployment strategy that improves the efficiency of re-
source usage in the presence of failures

4 Model

In this section, we introduce the model used to investigate the performance
behavior of the proposed deployment scheme. We detail two execution scenarios:
a regular uncoordinated checkpoint deployment that uses the whole platform for
a single application; and the aforementioned approach that sacrifices a group of
processors as a spare dedicated to recovery of failed processors, but can use the
remainder of the platform to progress another application during a recovery. The
goal is to compare the waste – the fraction of time where resources are not used
to perform useful work. The minimum waste will be achieved for some optimal
checkpointing period, which will likely differ for each scenario.
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Table 1. Key model parameters

μp Platform MTBF
G or G + 1 Number of groups
T Length of period
W Work done every period
C Checkpoint time
D Downtime
R Restart (from checkpoint) time
α Slow-down execution factor when checkpointing
λ Slow-down execution factor due to message logging
β Increase rate of checkpoint size per work unit

Model Parameters and Notations. The model parameters and notations
are summarized in Table 1.
– The system employs a hierarchical rollback recovery protocol with message-

logging for protection against failures. The platform is therefore partitioned
into G + 1 processor1 groupsthat can recover independently. In the SPlat

scenario, one of these groups is used as a spare, while all G+1 participate to
the execution in the SApp scenario. We let Wasteapp(T ) denote the waste
induced by the SApp scenario with a checkpointing period of T , and T opt

app the

value of T that minimizes it. Similarly, We define Wasteplat(T ), T
opt
plat for

the SPlat scenario.
– Checkpoints are taken periodically, every T seconds. Hence, every period of

length T , we perform some useful work W and take a checkpoint of duration
C. Without loss of generality, we express W and T with the same unit: a
unit of work executed at full speed takes one second. However, there are two
factors that slow-down execution:
• During checkpointing, which lasts C seconds, we account for a slow-
down due to I/O operations, and only αC units of work are executed,
where 0 ≤ α ≤ 1. The case α = 0 corresponds to a fully blocking
checkpoint, while α = 1 corresponds to a fully overlapped checkpoint,
and all intermediate situations can be represented;

• Throughout the period, we account for a slow-down factor λ due to the
communication overhead induced by message logging. A typical value is
λ = 0.98 [5,6];

• Altogether, the amount of workW that is executed every period of length
T is

W = λ((T − C) + αC) = λ(T − (1− α)C) (1)

– We use D for the downtime and R for the time to restart from a checkpoint,
after a failure has struck. We assume that D ≤ C to avoid clumsy expres-
sions, and because it is always the case in practice. However, one can easily
extend the analysis to the case where D > C.

– Message logging has both a positive and a negative impact on performance:

1 Our approach is agnostic of the granularity of the processor, which can be either a
single CPU, or a multi-core processor, or any relevant computing entity.
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• During the recovery, inter-group messages entail no communication as
they are available from the message log, in local memory. This results
in a speed-up of the re-execution (up to twice as fast for some applica-
tions [10]), which is captured in the model by the ρ factor.

• Every inter-group message that has been logged since the last checkpoint
must be included in the current checkpoint. Consequently, the size of the
checkpoint increases with the amount of work per unit. To account for
this increase, we write the equation

C = C0(1 + βW ) (2)

The parameter C0 is the time needed to write this application footprint
onto stable storage, without message-logging. The parameter β quantifies
the increase in the checkpoint time resulting from the increase of the log
size per work unit (which is itself strongly tied to the communication to
computation ratio of the application).

– Combining Equations (1) and (2), we derive the final value of the checkpoint
time

C =
C0(1 + βλT )

1 + C0βλ(1 − α)
(3)

We point out that the same application is deployed on G groups instead of
G+ 1 in the SPlat scenario. As a consequence, when processor local storage
is available, C0 is increased by G+1

G in SPlat, compared to the SApp case.

Computing the Waste. The major objective of this paper is to compare
the minimum waste resulting from each scenario. Intuitively, the period T opt

app

(single application) will be smaller than the period T opt
plat (platform-oriented)

because the loss due to a failure is higher in the former scenario. In the latter
scenario, we lose a constant amount of time (due to switching applications)
instead of losing an average of half the checkpointing period in the first scenario.
We then aim at comparing the four values Wasteapp(T

opt
app), Wasteapp(T

opt
plat),

Wasteplat(T
opt
plat), and Wasteplat(T

opt
app), the later two values characterizing the

trade-off when using the optimal period of a scenario for the other one.
Let Tbase be the parallel execution time without any overhead (no check-

point, failure-free execution). The first source of overhead comes the rollback-
and-recovery protocol. Every period of length T , we perform some useful work
W (whose value is given by Equation (1)) and take a checkpoint. Checkpointing
induces an overhead, even if there is no failure, because not all the time is spent
computing: the fraction of useful time is W

T ≤ 1. The failure-free execution time

Tff is thus given by the equation W
T Tff = Tbase, which we rewrite as

(1−Wasteff )Tff = Tbase, where Wasteff =
T −W

T
(4)

Here Wasteff denotes the waste due to checkpointing and message logging
in a failure-free environment. Now, we compute the overhead due to failures.
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Failures strike every μp units of time in average, and for each of them, we lose
an amount of time tlost. The final execution time Tfinal is thus given by the
equation (1− tlost

μp
)Tfinal = Tff which we rewrite as

(1−Wastefail)Tfinal = Tff , where Wastefail =
tlost
μp

(5)

Here Wastefail denotes the waste due to failures. Combining Equations (4)
and (5), we derive that

(1−Wastefinal)Tfinal = Tbase (6)

Wastefinal = Wasteff +Wastefail −WasteffWastefail (7)

Here Wastefinal denotes the total waste during the execution, which we aim at
minimizing by finding the optimal value of the checkpointing period T . In the
following, we compute the values of Wastefinal for each scenario. The analysis
restricts to (at most) a single failure per checkpointing period. Simulation results
in Section 5 discuss the impact of this hypothesis (which, to that best of our
knowledge, is mandatory for a tractable mathematical analysis).

Scenario SApp. We have Wasteff = T−W
T = T−λ(T−(1−α)C)

T for both scenar-
ios but recall that we enroll G+1 groups in scenario SApp and only G groups in
in scenario SPlat, so that the value of C is not the same in Equation (3). Next,
we compute the value of Wastefail for the SApp scenario.

Wastefail =
1

μp

[
D + R+

T − C

T
× ReExec1 +

C

T
× ReExec2

]
(8)

where ReExec1 =
1

ρ

(
αC +

T − C

2

)
, ReExec2 =

1

ρ

(
αC + T − C +

C

2

)
First, D+R is the duration of the downtime and restart. Then we add the time
needed to re-execute the work that had already completed during the period,
and that has been lost due to the failure. The time spent re-executing lost work
is split into two terms, depending whether the failure strikes when a checkpoint
is taking place or not. ReExec1 is the term when no checkpoint was taking place
at the time of the failure; it is therefore weighted by (T−C)/T , the probability of
the failure striking within such a T −C timeframe. ReExec1 first includes the re-
execution of the work done in parallel with the last checkpoint (of initial duration
C), but no checkpoint activity happens during re-execution, so it takes only αC
time units. Then we re-execute the work done in the work-only area. On average,
the failure happens in the middle of the interval of length T −C, hence the time
lost has an expected value of T−C

2 . We finally account for the communication
speedup during re-execution by introducing the ρ factor. We derive the value of
ReExec2 with a similar reasoning, and weight it by the probability C/T of the
failure striking within a checkpoint interval. After simplification, we derive

Wastefail =
1

μp

(
D +R+

1

ρ

(
T

2
+ αC

))
(9)
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Scenario SPlat. In this scenario, the first G groups are computing for the
current application and are called regular groups. The last group is the spare
group. As already pointed out, this leads to modifying the value of C, and
hence the value of Wasteff . In addition, we also have to modify the value
of Tbase, which becomes G+1

G Tbase, to account for the fact that it takes more
time to produce the same work with fewer processors. We need to recompute
Wastefinal accordingly so that Equation (6) still holds and we derive:

(1−Wastefinal)Tfinal =
G+ 1

G
Tbase (10)

Wastefinal =
1

G+ 1
+

G

G+ 1

(
Wasteff +Wastefail −WasteffWastefail

)
(11)

We now proceed to the computation of Wastefail, which is intricate. See Fig-
ure 1 for an illustration:

– Assume that a fault occurs within group g. Let t1 be the time elapsed since
the completion of the last checkpoint. At that point, the amount of work
that is lost and should be re-executed is W1 = αC + t1. Then:
1. The faulty group (number g) is down during D seconds;
2. The spare group (number G + 1) takes over for the faulty group and

does the recovery from the previous checkpoint at time t1. It starts re-
executing the work until time t2 = t1+R+ReExec, when it has reached
the point of execution where the fault took place. Here ReExec denotes
the time needed to re-execute the work, and we have ReExec = W1

ρ ;
3. The remaining G − 1 groups checkpoint their current state while the

faulty group g takes its downtime (recall that D ≤ C);
4. At time t1 + C, the now free G groups load another application from

its last checkpoint, which takes L seconds, perform some computations
for this second application, and store their state to stable storage, which
takes S seconds. The amount of work for the second application is com-
puted so that the store operation completes exactly at time t2−R. Note
that it is possible to perform useful work for the second application only
if t2 − t1 = R+ReExec ≥ C + L+ S +R. Note that we did not assume
that L = C, nor that S = R, because the amount of data written and
read to stable storage may well vary from one application to another;

5. At time t2−R, the G groups excluding the faulty group start the recovery
for the first application, and at time t2 they are ready to resume the
execution of this first application together with the spare group: there
remains W −W1 units of work to execute to finish up the period. From
time t2 on, the faulty group becomes the spare group.

To simplify notations, let X = C + L+ S +R and Y = X −R. We rewrite the
condition t2 − t1 = R + ReExec ≥ X as ReExec ≥ Y , i.e., αC+t1

ρ ≥ Y . This is
equivalent to t1 ≥ Z, where Z = ρY − αC. So if t1 ≥ Z, the first G groups lose
X seconds, and otherwise they lose R + ReExec seconds. Since t1 is uniformly
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distributed over the period T , the first case happens with probability T−Z
T and

the second case with probability Z
T . As for the second case, the expectation of

t1 conditioned to t1 ≤ Z is E[t1|t1 ≤ Z] = Z
2 , hence the expectation of the

time lost is E[R + ReExec|t1 ≤ Z] = R + Y
2 + αC

2ρ . Altogether the formula for
Wastefail is:

Wastefail =
1

μp

(
T − Z

T
×X +

Z

T
× (R +

Y

2
+

αC

2ρ
)

)
(12)

– if the failure strikes during the first Z units of the period, which happens
with probability Z

T , there is not enough time to load the second application,
and the regular groups all waste E[R+ReExec|t1 ≤ Z] seconds in average

– if the failure strikes during the last T −Z units of the period, which happens
with probability T−Z

T , then the regular groups all waste X units of time,
and they perform some useful computation for the second application in the
remaining time that they have before the spare group catches up.

5 Results

We instantiated the proposed waste model with different scenarios. Due to lack
of space, we present here only two representative scenarios that illustrate the
proposed approach. Parameters are set in accordance to target system specifica-
tions, and using experimentally observed values for message logging cost. Details
for all parameters, as well as supplementary scenarios, consistent with the exam-
ples presented here, are available in the companion technical report [11]. The first
scenario shown in Fig. 2, instantiates the model with features of the K-Computer
([12]); the checkpoint growth rate (β) is set according to a matrix-matrix multi-
ply operation. The results present the waste from the platform perspective (green
lines) and from the application perspective (red lines). The optimal checkpoint
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period is computed by minimizing the model-computed waste. Because it is im-
possible to account for simultaneous failures in a closed-form formula, we then
simulate an execution according to the model, except that simultaneous fail-
ures are possible; we verify that the model prediction is accurate nonetheless by
comparing it with the best performing period obtained by sampling input peri-
ods in the simulator (dashed lines). Comparing the waste obtained when using
the model-predicted optimal checkpoint period versus the brute force obtained
period in the simulator reveals that the model slightly overestimate the waste,
due to optimizing for the case where no simultaneous failures happen. However,
general trends are respected, and the difference is under 7%.

When comparing the waste incurred on the application versus the waste of
platform resources, this figure demonstrates the huge benefit of introducing a
spare node (and loading a second application) on platform efficiency. Indeed,
while the application waste, due to I/O congestion at checkpoint time, starts
from a relatively high level when the component MTBF is very low (and thus
when the machine usability is low), the platform waste itself is almost negligible.

Figure 3 fixes the MTBF of a single component to 20 years, and study the
impact of choosing the optimal checkpoint interval so as to target either plat-
form efficiency, or application efficiency. To do so, we varied the checkpoint pe-
riod between the Application optimal value, and the Platform optimal value, as
given by the model. To illustrate the diversity of experiments we conducted, the
modeled system is one of the envisioned machines for Exascale systems [1] (the
“Fat” version, featuring heavy multicore nodes), and the modeled application
is a 2D-stencil application that fills up the system memory. Platform-optimal
checkpoint periods are much longer than application-optimal checkpoint periods
on the same machine, and both experiments exhibit a waste that increases when
using a checkpoint period far away from their optimal. However, because the
spare node is so much more beneficial to the general efficiency of the platform
than to the efficiency of the application, it is extremely beneficial to select the op-
timal application checkpoint interval: the performance of the platform remains
close to an efficiency of 1, while the waste of the application can be reduced
significantly.

6 Related Work

An alternative approach to accelerate uncoordinated rollback recovery, in the
Charm++ language, is to split and rebalance the re-execution [13]. For pro-
duction MPI codes, written in Fortran/C, accounting for the different data and
computation distribution during recovery periods entails an in depth rewrite
(which may be partially automated by compilation techniques [14]). Even when
such splitting is practical, the recovery workload is a small section of the appli-
cation that is stretched on all resources, which, in accordance with Gustafson
law [15], typically results in lower parallel efficiency at scale.

Overlapping downtime of programs blocked on I/O or memory accesses is
achieved by a wide range of hardware and software techniques that improve
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computational throughput (Hyper-threads [16], massive oversubscription in task
based systems [17], etc.) Interestingly, co-scheduling [18] can leverage checkpoint-
restart to improve communication/computation overlap. However, these have
seldom been considered to overcome the cost of rollback recovery itself. Further-
more, checkpoint-restart modeling tools to assess the effectiveness of compensa-
tion techniques have not been available yet; the work proposed here supersedes
previous models [19,7] in characterizing the difference in terms of platform effi-
ciency when multiple, independent applications must be completed.

7 Conclusion

We have proposed a deployment strategy that permits to overlap the idle time
created by recovery periods in uncoordinated rollback recovery with useful work
from another application. This opportunity is unique to uncoordinated rollback
recovery, since coordinated checkpointing requires the rollback of all processors,
hence generates a similar re-execution time, but without idle time. We designed
an accurate analytical model that captures the waste resulting from failures and
protection actions, both in terms of application runtime and resource usage.
The model results are compatible with experimentally observed behavior, and
simplifications to express the model as a closed formula introduce only a minimal
imprecision, that we have quantified through simulations.

The model has been used to investigate the effective benefit of the uncoor-
dinated checkpointing strategy to improve platform efficiency, even in the most
stringent assumptions of tightly coupled applications. Indeed, the efficiency of the
platform can be greatly improved, even when using the checkpointing period that
is the most amenable to minimizing application runtime. Finally, although repli-
cation (with a top efficiency of 50%) sometime delivers better per-application ef-
ficiency, we point out that a hierarchical checkpointing technique with dedicated
spare nodes, as the one proposed in this paper, is the only approach that can pro-
vide a global platform waste close to zero.

For future works, we notice that the spare group is left unused outside of
recovery period. Since the next activity on this group is a restart, it could be
employed to aggressively prefetch checkpoints. It could also execute compute
intensive yet accurate failure prediction models, to adapt checkpoint frequency
and prefetching according to sensed runtime hardware conditions.
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(Introduction)

José Cunha, Michael Philippsen, Domenico Talia, and Ana Lucia Varbanescu

Topic Committee

This topic provides a forum for presentation of new results and practical experi-
ence in the development of parallel and distributed programs. The development
of high-performance, correct, portable, and scalable parallel programs is a hard
task, requiring advanced algorithms, realistic modeling, adequate programming
abstractions and models, efficient design tools, high performance languages and
libraries, and experimental evaluation. Current challenges in this topic are con-
cerned with improved solutions for conciliating the transparency and expres-
siveness of the programming abstractions and models, with new issues arising in
modern applications with increasing problem size and complexity, and in hetero-
geneous computing infrastructures with varying performance, scalability, failure
and dynamic behaviors. This motivates for example, abstractions for handling
concurrency, parallelism and distribution, and support for predictable perfor-
mance, self-adaptation, fault-tolerance, and large-scale deployment.

This year, a diversity of papers was submitted to this topic, proposing rele-
vant and valuable research contributions. As a result of the reviewing process,
4 papers were accepted for publication. Globally, the accepted papers discuss
the gaps between high-level programming abstractions and the domain experts
and application developers, and present reports of their implementation and
evaluation via concrete applications and performance benchmarks.

One of the papers (by Nanz, West, and Silveira) presents a comparative study
of four approaches with distinct parallel programming abstractions and commu-
nication paradigms, which are then evaluated via a suite of benchmark programs.
Original and revised versions by experts are compared with respect to source
code size, coding time, execution time, and speedup. Two of the papers discuss
structured models of parallelism as ways of easing the parallel programming
tasks. One paper (by Legaux, Hu, Loulergue, Matsuzaki, and Tesson) explores
algorithmic skeletons in conjunction with a notion of list homomorphism in the
context of the bulk synchronous parallelism (BSP) model and reports on its use
for parallel algorithm development in two applications, with an implementation
of BSP homomorphism in a data-parallel algorithmic skeletons library. The other
paper (by Tasci and Demirbas) also explores the BSP model for parallel process-
ing of large-scale graph applications. The paper discusses modifications to the
BSP model and how these were supported with improved performance, on top
of Giraph, an open-source clone of Pregel, Google’s scalable infrastructure for
graph-based mining. Another accepted paper (by Sharp and Morgan) discusses
a critical concern in transactional memory systems, regarding the occurrence of
conflicts that lead to transactions aborting and retrying their execution. The
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paper describes an implementation for determining the scheduling of aborted
transactions, and discusses the effectiveness of the proposal via performance
benchmarks.

We would like to thank all the authors who submitted papers to this topic,
and the external reviewers, for their contribution to the success of the conference.
We also thank the overall coordination and valuable support that was provided
by the conference chairs.
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Abstract. Parallel programming is often regarded as one of the hard-
est programming disciplines. On the one hand, parallel programs are
notoriously prone to concurrency errors; and, while trying to avoid such
errors, achieving program performance becomes a significant challenge.
As a result of the multicore revolution, parallel programming has how-
ever ceased to be a task for domain experts only. And for this reason, a
large variety of languages and libraries have been proposed that promise
to ease this task. This paper presents a study to investigate whether
such approaches succeed in closing the gap between domain experts and
mainstream developers. Four approaches are studied: Chapel, Cilk, Go,
and Threading Building Blocks (TBB). Each approach is used to imple-
ment a suite of benchmark programs, which are then reviewed by notable
experts in the language. By comparing original and revised versions with
respect to source code size, coding time, execution time, and speedup,
we gain insights into the importance of expert knowledge when using
modern parallel programming approaches.

1 Introduction

The belief that “parallel programming is hard, and best left to experts” has
long become a developers’ mantra. Indeed, concurrency makes parallel programs
prone to errors such as atomicity violations, data races, and deadlocks, which are
hard to detect because of their nondeterministic nature. Furthermore, achieving
performance is a significant challenge, as scheduling and communication over-
heads or lock contention may lead to adverse effects, such as parallel slow down.

In spite of these facts, the comfort of leaving parallel programming to do-
main experts is fading away: the industry-wide shift to multicore processors has
made parallelism relevant for mainstream developers. To support their efforts,
a variety of advanced programming languages and libraries have been designed,
promising an improved development experience over traditional multithreaded
programming. The effectiveness of these approaches in practice hinges on their
ability to allow developers to easily achieve good results constructing parallel

� The ideas and opinions presented here are not necessarily shared by my employer.

F. Wolf, B. Mohr, and D. an Mey (Eds.): Euro-Par 2013, LNCS 8097, pp. 434–445, 2013.
© Springer-Verlag Berlin Heidelberg 2013



Examining the Expert Gap in Parallel Programming 435

programs. However, how can one quantify “good results”, and “easily”? This
will clearly depend on what improvements to a parallel program are still left to
be made, and how much effort they require to be implemented.

In this paper, we propose to study these effects by examining the expert gap
in parallel programming. The expert gap is the distance in expertise between an
expert and a competent (though inexperienced in the expert’s domain) developer
of a parallel program. The gap is quantified by the difference in lines of code
used, absolute performance, scalability, and the correction cost (in coding time)
to bring the novice code up to the standards of the expert. This is expressed by
the following research questions:

Q1: To what extent do expert comments reduce code size?
Q2: To what extent do expert comments reduce execution time?
Q3: To what extent do expert comments increase speedup?
Q4: What is the overhead of implementing the experts’ corrections?

To address the research questions, we performed a study with four popular paral-
lel programming approaches: Chapel [5], Cilk [2], Go [8], and Threading Building
Blocks (TBB) [14]. In the study, we asked notable experts in the respective ap-
proaches to review a suite of six parallel benchmark programs [18] implemented
by an experienced developer, who had however no previous expertise in the
approaches. After implementation of their comments, the experts performed a
second review to check that their comments had been addressed appropriately.
We recruited high-profile experts, namely either leaders or prominent members
of the respective compiler development teams:

– Brad Chamberlain, Principal Engineer at Cray Inc., technical lead on Chapel
– Jim Sukha, Software Engineer at Intel Corp., Cilk Plus development team
– Luuk van Dijk, Software Engineer at Google Inc., Go development team
– Arch D. Robison, Sr. Principal Engineer at Intel Corp., TBB chief architect

This process led to a solution pool of 48 programs, i.e. six problems in four
approaches, each before and after expert review. The data also allows the ap-
proaches to be compared with each other, which is an extensive study in
itself [12].

The remainder of this paper is structured as follows. Section 2 provides back-
ground on the four approaches and the benchmark problems used in the study.
Section 3 presents the results of the study for each of the four metrics. Sec-
tion 4 discusses threats to validity. Section 5 presents related work and Section 6
concludes with an outlook on future work.

2 Background

This section provides background on the parallel programming approaches and
the benchmark problems used in this study.
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2.1 Overview of the Approaches

Table 1 summarizes the characteristics of Chapel, Cilk, Go, and TBB, together
with year of appearance, and the corporation currently supporting further devel-
opment. The four approaches were selected in the following way: to ensure the
availability of suitable experts, we required that the approaches are under active
development and have gained popularity; amongst the remaining approaches,
we preferred those that would add to the variety of programming paradigms,
communication paradigms, and/or programming abstractions considered. Well
established approaches such as OpenMP and MPI were not considered, as we
wanted to focus on cutting-edge approaches.

Chapel [5] describes parallelism in terms of independent computation imple-
mented using threads, but specified through higher-level abstractions. It provides
a variety of parallel constructs such as parallel-for (forall), reduce, and scan,
leading to very concise parallel code. Its programming model targets both high-
performance computers as well as clusters and desktop multicore systems.

Cilk [2] exposes parallelism through high-level primitives that are imple-
mented by the runtime system, which takes care of load balancing using dy-
namic scheduling through work stealing. The keyword cilk spawn marks the
concurrent variant of the function call statement, which starts the (possibly)
concurrent execution of a function. The synchronization statement cilk sync
waits for the end of the execution of all the functions spawned in the body of
the current function; there is an implicit cilk sync statement at the end of all
procedures. Lastly, there is an additional cilk for construct. This construct is a
limited parallel variant of the normal for statement, handling only simple loops.

Go [8] is a general-purpose programming language targeted towards systems
programming. Parallelism is expressed using an approach based on Communi-
cating Sequential Processes (CSP) [9]. The statement go starts the execution
of a function call as an independent concurrent thread of control, or goroutine,
within the same address space. Channels (indicated by the chan type) provide
a mechanism for two concurrently executing functions to synchronize execution
and communicate by passing a value of a specified element type; channels can
be synchronous or asynchronous. Few parallel constructs are readily available in
Go, resulting in more verbose code. For example, to construct a parallel-for loop
the work gets dispatched to a channel from one go routine, while a number of
goroutines fetch work from this channel and process it.

Threading Building Blocks (TBB) [14] is a parallel programming template
library for the C++ language. Parallelism is expressed using Algorithmic Skele-
tons [6], and the runtime system takes care of scheduling and load balancing
using work stealing. Similar to Chapel, a variety of parallel constructs are avail-
able, such as parallel_for, parallel_reduce, and parallel_scan.

2.2 Benchmark Problems

We chose the problems suggested in [18] as benchmarks, which comprehend a
wide range of parallel programming patterns. Reusing a tried and tested set
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Table 1. Main language characteristics

Name
Programming
abstraction

Communication
paradigm

Programming
paradigm

Year Corporation

Chapel
Partitioned Global Ad-
dress Space (PGAS)

message passing /
shared memory

object-oriented 2006 Cray Inc.

Cilk Structured Fork-Join shared memory
imperative /
object-oriented

1994 Intel Corp.

Go
Communicating Sequen-
tial Processes (CSP)

message passing /
shared memory

imperative 2009 Google Inc.

TBB Algorithmic Skeletons shared memory C++ library 2006 Intel Corp.

has the benefit that estimates for the implementation complexity exist and that
problem selection bias can be avoided by the experimenter. We chose these par-
ticular benchmark problems to keep the amount of time spent with each problem
reasonably small (experts could devote only a limited amount of time to the re-
view). The problems have been designed for this purpose [18]; in order to be
more representative of large applications, they can also be chained together.

Again to keep the number of implementations manageable, we selected the
following six problems from [18]:

– Random matrix generation (randmat)
– Histogram thresholding (thresh)
– Weighted point selection (winnow)
– Outer product (outer)
– Matrix-vector product (product)
– Chaining of problems (chain)

Note that the last problem, chain, corresponds to a chaining together of the
inputs and outputs of the other five.

3 Results

This section presents and discusses the data collected in the study, which is also
made available in an online repository1. Table 2 provides absolute numbers for
all versions of the code, before and after expert review. The figures in this section
display the relative differences between the expert and non-expert versions.

3.1 Source Code Size

The differences between the non-expert and expert versions with respect to lines
of code are given in Figure 1. Note that the suggestions by the experts were im-
plemented again by the non-expert programmer, such that there is no influence
of different coding styles on the code size. Addressing research question Q1, it

1 https://bitbucket.org/nanzs/multicore-languages

https://bitbucket.org/nanzs/multicore-languages
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Table 2. Measurements for all metrics, before and after expert comments

Problem randmat thresh winnow outer product chain
Version1 nv ex nv ex nv ex nv ex nv ex nv ex

S
o
u
rc
e

co
d
e
si
ze Chapel 33 32 58 61 72 74 55 58 34 36 145 159

Cilk 48 40 119 95 146 139 83 72 65 58 320 251
Go 52 71 141 118 144 191 103 98 89 86 345 330
TBB 52 53 110 98 142 137 83 81 63 62 302 302

C
o
d
in
g

ti
m
e

(m
in
)

Chapel 76 100 121 156 134 155 55 64 43 45 76 137
Cilk 101 154 251 294 112 121 26 39 12 15 77 118
Go 45 76 132 163 92 163 24 31 18 21 56 91
TBB 35 37 196 207 41 43 32 43 23 23 24 26

E
x
ec
u
ti
o
n

ti
m
e

(s
ec
)2

Chapel 18.7 3.1 7.8 13.1 21.4 21.3 1.6 1.6 1.4 1.4 36.0 36.0
Cilk 0.5 0.4 0.9 0.8 0.8 0.7 0.3 0.2 0.3 0.2 2.4 1.7
Go 2.9 0.5 2.1 1.6 2.0 1.3 1.5 2.4 1.1 0.3 177.7 38.4
TBB 0.3 0.2 1.2 0.6 1.0 1.0 0.3 0.3 0.2 0.2 2.8 2.8

S
p
ee
d
u
p
2 Chapel 1.2 2.8 2.8 2.8 2.3 2.1 3.4 3.5 1.7 1.7 2.0 2.1

Cilk 13.6 16.8 13.4 14.9 19.1 20.2 8.1 8.1 4.2 5.8 17.3 20.2
Go 4.1 21.2 8.9 8.1 8.0 11.5 10.4 4.7 1.9 7.5 0.6 1.9
TBB 20.7 21.2 8.1 14.8 9.4 9.5 7.4 7.4 7.2 7.3 12.5 12.6

1 nv: novice; ex: expert 2 average times and speedups are given

is apparent from the figure that suggested changes decreased the source code
size only moderately, and increased it in several cases. On average the code size
decreased, over all languages, by only 1.6% (SD (standard deviation) = 13.9%).

There are differences between the individual languages though. The increases
in size for Chapel, on average by about 4.3% (SD = 4.2%), can be explained
mainly by one requested change from the expert: domain definitions were con-
sistently hoisted outside of parallel regions, which saves them being recomputed.

Cilk solutions decreased in size on average by 14.5% (SD = 6.2%). This
change can be traced back to one of the expert comments to replace cilk spawn
/cilk sync style code with cilk for; according to the expert, cilk for simplifies
the code while doing the same recursive divide-and-conquer underneath, and
should therefore be preferred.

Increases in code size on average by 6.7% (SD = 22.1%) are visible in Go. The
outliers are randmat and winnow with increases of 36.5% and 32.6% on average.
For randmat, this can be explained by a suggested change of data structure;
since the randmat program is small to begin with, this relatively small change
amounts to a seemingly large increase percentage-wise. For winnow, the increase
in performance results from the suggestion of the expert to add parallel merge
sort, which is not part of Go’s standard library; the original sort didn’t parallelize
well, resulting in a performance hit.

TBB code size decreased on average by a very moderate 2.8% (SD = 4.4%).
In summary, while there is a moderate decrease in code size on average,

program restructuring can also lead to moderately increased code sizes (Cilk),
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Fig. 1. Source code size (LoC) difference

and performance considerations may give reason to increase code size by about
one third (Go). Large code size increases tend to indicate an algorithmic change,
as in the case of Go. Large code size decreases indicate that functionality was
duplicated needlessly and can be removed, as in the case of Cilk. Small changes
indicate tweaking, where the code was overall fine, but could use refinement.

3.2 Execution Time

The performance tests were run on a 4 × Intel Xeon Processor E7-4830 (2.13
GHz, 8 cores; total 32 physical cores) server with 256 GB of RAM, running Red
Hat Enterprise Linux Server release 6.3. Language and compiler versions used
were: chapel-1.6.0 with gcc-4.4.6, for Chapel; Intel C++ Compiler XE 13.0 for
Linux, for both Cilk and TBB; go-1.0.3, for Go.

Each performance test was repeated 30 times, and the mean of the results was
taken. All tests use the same inputs, the size-dominant of which is a 4·104×4·104
matrix (about 12 GB of RAM). This size, which is the largest input size all
languages could handle, was chosen to test scalability. The language Go provided
the tightest constraint, while the other languages would have been able to scale
to even larger sizes. An important factor in the measurement is that for all
problems the I/O time is significant, since they involve reading/writing matrices
to/from the disk. In order for the measurements to not be dominated by I/O, all
performance tests were run with input and output code removed (input matrices
were generated on-the-fly instead).

In Figure 2 the differences in execution time are displayed. Addressing research
question Q2, on average expert comments reduced execution time by 18.1% (SD
= 38.3%).

Again, results for the individual approaches show a number of differences.
On average, execution time was reduced by 2.5% (SD = 48.0%) for Chapel.
There is one outlier: in the problem thresh, the expert execution time increases
by about 67.8%. The expert gave comments on a version that was compiled with
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Fig. 2. Execution time difference

version 1.5 of Chapel. After changing to version 1.6 (as suggested by the expert)
for the final measurements, the non-expert version experienced a significant re-
duction in execution time, while the expert version remained the same; this
illustrates the often fragile nature of optimization.

Cilk’s execution times were reduced by 23.0% on average (SD = 7.8%).
Go’s execution times were reduced by 38.6% on average (SD = 55.8%). These

improvements can be attributed to one important change in the way parallelism
was achieved. In the non-expert versions, a divide-and-conquer pattern was fre-
quently used. Instead, the expert recommended a distribute-work-synchronize
pattern. While the divide-and-conquer approach creates one goroutine per task,
the distribute-work-synchronize creates one for each processor core; for fine-
grained task sizes, the overhead of the excessive creation of goroutines then
causes a performance hit. Again, there was an outlier. In the problem outer, the
Go expert had suggested to change the data structure from a one-dimensional
to a two-dimensional array for clarity, without apparent performance differences
on smaller problem sizes on a desktop machine. In the final measurement, it is
however the cause of a 64% increase in execution time in the expert version;
this highlights the fact that program optimizations have to take both the target
machine and the target problem size into account.

TBB’s execution times were reduced by 8.3% on average (SD = 18.2%).
In summary, expert comments reduced execution time by a moderate amount.

Also, there were outliers that increased the execution times, highlighting the fact
that performance profiling is important in addition to expert knowledge.

3.3 Speedup

Figure 3 shows the changes in speedup on 32 cores; the speedup is measured
relative to an execution on a single thread. Addressing research question Q3,
across all languages/problems an average speedup of 1.5 is achieved (SD = 1.1).



Examining the Expert Gap in Parallel Programming 441

0 x

1 x

2 x

3 x

4 x

5 x

randmat thresh winnow outer product chain

C
ha

ng
e 

in
 s

pe
ed

up

Language
Chapel
Cilk
Go
TBB

Fig. 3. Change in speedup

Except for Go, speedup seems to have been influenced little by the expert
comments; most of the time no further speedup (i.e. 1 × speedup) is visible.
Chapel shows on average a speedup of 1.2 (SD = 0.5), Cilk 1.2 (SD = 0.1), and
TBB 1.1 (SD = 0.3).

In Go a more substantial average speedup of 2.5 (SD = 1.9) is visible, which
is due to strong improvements in the case of randmat, product, and chain. This
is most likely caused by the change in concurrency pattern used, as discussed
in Section 3.2. It emphasizes the fact that it is critical in Go to know about
idiomatic patterns to make full use of the performance offered by the language.
A slowdown is visible for the outer problem in Go, which corresponds to the
discussed issue in outer for the execution time difference.

In summary, speedup improvements due to expert comments are moderate in
general. Only in the case of Go, the knowledge of an idiomatic pattern brought
about significant improvements. Go highlights the fact that expertise is more
valuable in approaches where there are fewer prepackaged solutions (such as
parallel-for constructs).

3.4 Correction Time

Figure 4 displays which fraction of the original coding time was spent on imple-
menting the corrections suggested by the experts. Addressing research question
Q4, to implement the expert comments took about 29.9% of the original time
spent on average (SD = 24.6%). Over all languages and problems, a maximum
of 79.4% of the original coding time was spent.

This moderate overhead is reflected consistently by Chapel (29.3%, SD =
26.4%), Cilk (34.8%, SD = 20.2%), and Go (46.1%, SD = 26.0%). Only TBB
has a significantly lower coding time overhead of 9.4% (SD = 12.8%).

In summary, none of the original problems needed to be rewritten completely;
the changes were incremental. This is in accordance with the noted changes in
source code size. Also, in combination with the observations about speedup, it
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Fig. 4. Correction time

is clear that the time spent correcting the Go code translates into a notable
speedup, making the availability of an expert an effective way to increase scala-
bility and performance of the code.

4 Threats to Validity

As a threat to external validity, the study results are not necessarily general-
izable to other languages and libraries. We have simply chosen four popular
approaches, and it is interesting to see that the study results tend towards the
same direction for all of them. But the results do not readily transfer to other
approaches with entirely different programming abstractions and potentially dif-
ferent implementation quality.

Furthermore, it is arguable whether the study results transfer to large ap-
plications, due to the size of the programs used. The modest problem size is
intrinsic to the study: the use of top experts is crucial to reliably answer the
research questions and, unfortunately, this also means that the program size has
to remain reasonable to fit within the review time the experts were able to do-
nate. However, a recent study [13] confirms that the amount code dedicated to
parallel constructs for 10K and 100K LOC programs is between 12 and 60 lines
of code on average; this makes our study programs representative of the parallel
portions of larger programs.

We use one developer (with six years of development experience; working at
Google Inc.), and one expert per language (as listed in Section 1). Each expert
was high-profile, i.e. using another expert or a group of experts would most likely
lead to worse suggestions for improvement. However, the high-profile experts
may not all have devoted the same effort to the task, leading to a suggestions
of different quality; this effect could be mitigated by having groups of experts.
Similarly to the point made above, using a group of developers, while preferable
(e.g. addressing concerns regarding the influence of a learning effect when solving
the same problem in different languages), would make the expert review step
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impossible (too many programs to review). To instead compare many novice
programs with an ideal program is possible, but a markedly different study: an
expert is required to filter out harmless differences between programs. Making
all changes to turn one program into another is not representative of the effort
required to bring the program up to an acceptable level.

Problem selection bias, a threat to internal validity, is avoided in part by using
an existing problem set, instead of creating a new one. The threat that specific
problems could be better suited to some languages than others remains, as it
could already be present in the existing problem set. As a positive indication,
none of the experts criticized the choice of problems.

5 Related Work

Although the claim that parallel programming requires domain experts is of-
ten repeated, few studies investigate the validity of this claim in the context
of modern parallel programming approaches. However, a number of studies on
comparing approaches to parallel programming influenced our work.

Szafron and Schaeffer [17] assess the usability of two parallel programming sys-
tems (a message passing library and a high-level parallel programming system)
using a population of 15 students, and a single problem (transitive closure). Six
metrics were evaluated: number of work hours, lines of code, number of sessions,
number of compilations, number of runs, and execution time. They conclude that
the high-level system is more usable overall, although the library is superior in
some of the metrics; this highlights the difficulty in reconciling the results of
different metrics.

Hochstein et al. [10] provide a case study of the parallel programmer produc-
tivity of novice parallel programmers. The authors consider two problems (game
of life and grid of resistors) and two programming models (MPI and OpenMP).
They investigate speedup, code expansion factor, time to completion, and cost
per line of code, concluding that MPI requires more effort than OpenMP overall
in terms of time and lines of code. Rossbach et al. [15] conducted a study with
237 undergraduate students implementing the same program with locks, moni-
tors, and transactions. While the students felt on average that programming with
locks was easier than programming with transactions, the transactional memory
implementations had the fewest errors. Ebcioglu et al. [7] measure the produc-
tivity of three parallel programming languages (MPI, UPC, and X10), using
27 students, and a single problem (Smith-Waterman local sequence matching).
For each of the languages, about a third of the students could not achieve any
speedup.

Nanz et al. [11] present an empirical study with 67 students to compare the
ease of use (program understanding, debugging, and writing) of two concur-
rency programming approaches (SCOOP and multi-threaded Java). They use
self-study to avoid teaching bias and standard evaluation techniques to avoid
subjectivity in the evaluation of the answers. They conclude that SCOOP is eas-
ier to use than multi-threaded Java regarding program understanding and de-
bugging, and equivalent regarding program writing. Burkhart et al. [3] compare
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Chapel against non-PGAS models (Java Concurrency, OpenMP, MPI, CUDA,
PATUS) in a classroom setting both in terms of productivity (working hours,
parallel overhead, lines of code, learning curve) and performance. Results for
Chapel were favorable on the productivity metrics, but lagged behind other lan-
guages on the performance side. Cantonnet et al. [4] analyze the productivity of
two languages (UPC and MPI), using the metrics of lines of code and conceptual
complexity (number of function calls, parameters, etc.), obtaining results in fa-
vor of UPC. Bal [1] is a practical study based on actual programming experience
with five languages (SR, Emerald, Parlog, Linda and Orca) and two problems
(traveling salesman, all pairs shortest paths). It reports the authors’ experience
while implementing the solutions.

Skillicorn and Talia [16] is an assessment of the suitability for realistic portable
parallel programming of parallel programming models and languages, using six
criteria (ease of programming, presence of a software development methodology,
architecture-independence, ease of understanding, guarantee of performance, and
estimation of cost). It includes a classification of models of parallel computation.

6 Conclusion

In order to make developers embrace parallel programming, the reputation of
parallelism as an arcane art has to be dispelled. Designers of parallel program-
ming approaches work towards this goal, but results supporting their claims of
improved performance and usability are scarce. While it is easy to check that
one approach can offer performance improvements over another, it is entirely
unclear whether a non-expert would ever achieve this performance in practice.

In this paper we presented, to the best of our knowledge, the first study that
explores the alleged gap between expert and non-expert parallel programmers.
The results positively confirm the effectiveness of the design of Chapel, Cilk, Go,
and TBB: all the approaches “work” in the sense that, on average, a top expert
can only to a moderate degree improve programs written by a non-expert; the
study confirms this across four program metrics, namely code size, execution
time, speedup, and coding time.

More studies are needed to investigate the difference between expert and non-
expert usage, and we hope that our study incites more work in this direction.
In particular, our study can be applied to a greater variety of languages, e.g. to
include widely used approaches such as OpenMP and MPI. The most expensive
resources in our study were the experts: the time they were able to spend on
reviewing programs strongly limited the number of programs in the study. In
future work, it would be interesting to replace expert review by comparisons of
expert-written, “ideal” programs with non-expert ones. While such an approach
would not be able to replicate the detailed insights gained by the review, it would
make it easier to obtain more data for the analysis.
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Abstract. Algorithmic skeletons in conjunction with list homomorph-
isms play an important role in formal development of parallel algorithms.
We have designed a notion of homomorphism dedicated to bulk syn-
chronous parallelism. In this paper we derive two application using this
theory: sparse matrix vector multiplication and the all nearest smaller
values problem. We implement a support for BSP homomorphism in the
Orléans Skeleton Library and experiment it with these two applications.

Keywords: Algorithmic skeletons, Constructive algorithms, Bulk syn-
chronous parallelism, All nearest smaller values, Sparse linear algebra.

1 Introduction

Parallel programming needs to be as widespread as parallel machines that now
range from smartphones to supercomputers. Structured models of parallelism
such as algorithmic skeletons [2] or bulk synchronous parallelism [21], ease the
writing and reasoning on parallel programs. Algorithmic skeletons are, or can
be seen as, higher-order functions that capture usual parallel patterns but that
have a semantics identical or close to usual higher-order functions on collections,
in particular lists. The most famous ones are the map and reduce skeletons. Bulk
synchronous parallelism offers an abstract and simple model of parallelism yet
allowing to take realistically into account the communication costs of parallel
algorithms. It has been used in many application domains.

The theory of lists [1] is a powerful tool to systematically develop correct
functional programs. From a specification, or naive implementation of a program,
it allows to derive step-by-step, a more efficient version. Algorithmic skeletons
in conjunction with list homomorphisms (or homomorphisms for short) play an
important role in formal development of parallel algorithms [3, 7, 14].

We have defined a notion of homomorphism dedicated to bulk synchronous
parallelism, and explored its theory [5,17] in the context of the Coq proof assis-
tant [18]. Our SDPP [19] framework allows to derive step-by-step correct par-
allel programs in Coq and then to extract functional parallel programs for the
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OCaml [10] language and the BSML library [11] that can be compiled and run
in parallel. If our long term goal is to provide sufficient automation to use the
Coq proof assistant to ease the development of efficient parallel programs, our
framework still lacks automation and the purely functional programs we can ex-
tract cannot compete yet with high-level C++ hand-written code. Therefore on a
practical side it would be interesting to have a support for BSP homomorphisms
in an efficient library of algorithmic skeletons such as OSL : the C++ Orléans
Skeleton Library [8]. The work presented in this paper provides such a support
and we illustrate its use through the derivation of non-trivial applications.

The main technical contributions of this paper can be summarised as follows.

– We derive two applications in a systematic way using the theory of BSP
homomorphisms: a sparse-matrix vector multiplication and the all nearest
smaller values algorithm;

– We implement support for the execution of BSP homomorphisms in the
Orléans Skeleton Library;

– We experiment with these applications implemented with OSL on parallel
machines.

The organisation of this paper is as follows. We start by reviewing the basic
concepts of homomorphism and recall the definition of the BSP homomorphisms
and their theory (section 2). We then show how to derive BSP homomorphisms
from specifications in section 3. Section 4 is devoted to the Orléans Skeleton
Library, in particular support for BSP homomorphisms with the bh skeleton.
We experiment with the derived applications in section 5. We discuss the related
work in Section 6 and conclude the paper in section 7.

2 BSP Homomorphisms

Our notations are basically based on the programming language Haskell [15].
Functional application is denoted by a space and an argument may be written
without brackets. Thus f a means f(a). Functions are curried, i.e. functions take
one argument and return a function or a value, and the function application
associates to the left. Thus f a b means (f a) b. Infix binary operators will
often be denoted by ⊕, ⊗, ,. Functional application binds stronger than any
other operators, so f a ⊕ b means (f a) ⊕ b, but not f(a ⊕ b). Lists are finite
sequences of values of the same type. A list is either the empty list, a singleton
or a concatenation of two lists. We denote [] for the empty list, [a] for a singleton
list with element a, and x ++ y for a concatenation of two lists x and y. The
concatenation operator is associative. Lists are destructed by pattern matching.

Definition 1 (Homomorphism). Function h is said to be a homomorphism,
if it is defined recursively in the form of

h [ ] = id� h [a] = f a h (x++ y) = h(x), h(y)

where id� denotes the identity unit of ,. Since h is uniquely determined by f
and ,, we will write h = ([,, f ]).
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Definition 2 (BSP Homomorphism (BH)). Given a function k, and two
homomorphisms g1 = ([⊕, f1]), g2 = ([⊗, f2])1, h is said to be a BH, if it is
defined in the following way.⎧⎨⎩

h [] l r = []
h [a] l r = [k a l r]
h (x++ y) l r = h x l (g1 y ⊕ r) ++ h y (l ⊗ g2 x) r

The above h defined with functions k, g1, g2, and associative operators ⊕ and
⊗ is denoted as h = BH (k, ([⊕, f1]), ([⊗, f2])).

Function h is a higher-order homomorphism, which computes on a list and re-
turns a new list of the same length. In addition to the input list, h has two
additional parameters, l and r, which append necessary information to perform
computation on the list. The information of l and r, as defined in the third equa-
tion, is propagated from left and right with functions g2,⊗ and g1,⊕ respectively.
By definition, a BH can be computed in parallel since it is a composition of local
computations and of homomorphisms which can be easily parallelised [3].

Rather than checking directly that a function is a BH we use an indirect
way using the mapAround function. mapAround , compared to map, captures
more interesting independent computations on each element of lists. Intuitively,
mapAround maps a function to each element (of a list) but is allowed to use
information of the sublists on the left and right of the element, e.g.,

mapAround f [x1, x2, . . . , xn]
= [f ([], x1, [x2, . . . , xn]), f ([x1], x2, [x3, . . . , xn]), . . . , f ([x1, . . . , xn−1], xn, [])].

Theorem 1 (Parallelization mapAround with BH). For a function h =
mapAround f , if we can decompose f as f (ls , x, rs) = k (g1 ls , x, g2 rs) where
gi is a composition of a function pi with a homomorphism, gi x = pi(([⊕i, ki]) x),
then

h xs = BH (k′, ([⊕1, k1]), ([⊕2, k2])) xs ι⊕1 ι⊕2

where k′ (l, x, r) = k(p1 l, x, p2 r) holds, where ι⊕1 is the (left) unit of ⊕1 and
ι⊕2 is the (right) unit of ⊕2.

Proof. This can be proved by induction on the input list of h. The detailed proof
in Coq is discussed in [5, 17].

Theorem 1 is general and powerful in the sense that it can parallelize not only
mapAround but also other collective functions, such as scan, to BH [5, 17].

3 Program Derivation Using BSP Homomorphisms

In this section, we demonstrate with two nontrivial examples how to derive
applications using the BH theory. One is the all nearest smaller values problem
and the other is the sparse matrix-vector multiplication.

1 See [17] for a discussion about weaker conditions for the definition of BSP homo-
morphism.
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3.1 All Nearest Smaller Values

The All Nearest Smaller Values (ANSV) problem is as follows:

Let as = [a1, a2, . . . , an] be an array of elements from a totally ordered
domain. For each aj , find the nearest element to the left of aj and the
nearest element to the right of aj that are less than aj . If there is no
such an element, we put −∞ instead.

An example of the input and the output for the function ansv that solves this
problem is as follows.

ansv [3, 1, 4, 1, 5, 9, 2, 6, 5]
= [(−∞, 1), (−∞,−∞), (1, 1), (−∞,−∞), (1, 2), (5, 2), (1,−∞), (2, 5), (2,−∞)]

A direct specification of the ANSV algorithm is as follows:

ansv as = mapAround nsv as
where nsv (ls , x, rs) = (nsvL x ls , nsvR x rs)

nsvL x [ ] = −∞
nsvL x (ls ++ [l]) = if l < x then l else nsvL x ls
nsvR x [ ] = −∞
nsvR x ([r] ++ rs) = if r < x then r else nsvR x rs

where we simply use mapAround to compute on each element and its surround
(left and right arrays) with the function nsv . In the definition of nsv , nsvL x ls
is to compute the rightmost element in ls that is less than x, while nsvR x rs
computes the leftmost element in rs that is less than x.

However, to use the Theorem 1, the computations on the left and right arrays
need to be expressed as homomorphisms independent from the center element
(this precondition derives from the function shape requirement in the theorem).
We can give such a definition where we first select the candidates from the left
and right arrays and then choose a correct one from them. Since the computation
for the left and right is symmetrical, we here discuss the right one.

We are looking for the nearest smaller values, thus we can discard values
that are equal or superior to the previous elements and only retain a sample of
decreasing candidates as shown in Figure 1. Therefore, we can decompose the
definition of nsvR as follows into a homomorphism that removes unnecessary
elements from an array and a function that picks up the nearest smaller value.
Since the result of the homomorphism is a list in which elements are in decreasing
order, the binary operator of the homomorphism just removes elements from the
right list that are larger than the rightmost element.

nsvR v rs = pickupR v (([⊕, id ]) rs)
where (ls++ [l])⊕ rs = ls ++ [l] ++ dropWhile (λx.x > l) rs

pickupR x [ ] = −∞
pickupR x ([r] ++ rs) = if r < x then r else pickupR x rs
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3 [ 4 3 5 4 2 1 4 ]

Fig. 1. The candidates in a right array. The values that keep a decreasing order are
kept as candidates (in black), while the others are discarded (in gray). Here the value
2 will be kept as the final solution since it is the closest candidate that is inferior to
the center value 3 (in white).

We have decomposed nsvR into a function pickupR and a homomorphism ([⊕, id ]);
the function nsvL can be similarly decomposed into pickupL and ([⊗, id ]). Thus
we can rewrite nsv as follows :

nsv (ls, x, rs) = k (([⊗, id ]) ls, x, ([⊕, id ]) rs)
where k (l, x, r) = (pickupL x l, pickupR x r)

This form matches the one needed to apply the Theorem 1 in order to derive
the ANSV into a BH.

3.2 Sparse Matrix-Vector Multiplication

Sparse matrices are often compressed into array representations. We develop a
parallel program to compute the multiplication of a sparse matrix and a vector.

Here we consider an array representation that consists of triples (y, x, a):

– y: the row-index of the nonzero element,
– x: the column-index of the nonzero element, and
– a: the value of the nonzero element.

We assume that elements are sorted with respect to the indices y and x. For
example, the following matrix A is represented by the array as with five triples.

A =

⎛⎝1.1 2.2 0
0 1.3 1.4
0 0 3.5

⎞⎠ as = [(0, 0, 1.1), (0, 1, 2.2),
(1, 1, 1.3), (1, 2, 1.4), (2, 2, 3.5)]

In the matrix-vector multiplication, there is a result element for each row. Let
us put the result on the first element in the row, and clear the other values with
a dummy value denoted as �. For example, multiplying a vector [3.0, 4.0, 1.0] to
the array representation as yields

mult as [3.0, 4.0, 1.0] = [(0, 0, 12.1), (0, 1,�), (1, 1, 6.6), (1, 2,�), (2, 2, 3.5)] .

Note that we can apply the array packing [5] to compact the result into the
result vector [12.1, 6.6, 3.5].
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Now we develop the specification of this problem using the mapAround func-
tion. The first and important step is to determine which kind of values are
needed from the left or from the right. To check whether an element is the first
one in the row, we simply compare the row-index of the element with that of
the left element. When we compute the result value, we need the partial sum of
the rightward values in the row, multiplied by the vector. Therefore, the values
passed from the right are the row-index of the right element and the partial sum
in the row (of right element). Based on these insights, we can develop a specifi-
cation with the mapAround function. In the following program, v〈i〉 denotes the
ith element of the vector v.

mult as v = mapAround (f v) as
where f v (ls , (y, x, a), rs) = let yl = gl ls ; (yr, sr) = gr v rs

in if (yl == y) then (y, x,�)
elseif (yr == y) then (y, x, v〈x〉 ∗ a+ sr)
else (y, x, v〈x〉 ∗ a)

Now we give the definition of the auxiliary functions and check that they are
homomorphisms. The function gl just takes the row-index of the last element in
a list. It is a homomorphism

gl = ([�, λ(x, y, a).y]) where a� b = b ,

and any value (here we use −1) is a left unit of the operator �. The function
gr v is a bit more complicated and is defined as follows.

gr v [(y, x, a)] = (y, a ∗ v〈x〉)
gr v [as ++(y, x, a)] = let (y′, s) = gr v as

in (y′, if y′ == y then s+ a ∗ v[x] else s)

This function is indeed a homomorphism as follows.

gr v [(y, x, a)] = (y, a ∗ v〈x〉)
gr v (ls ++ rs) =gr v ls , gr v rs

where (yl, sl), (yr, sr) = if yl == yr then (yl, sl + sr) else (yl, sl)

A right unit of the operator , is (−1, 0).
Now we can apply the Theorem 1 to the specification above and obtain the

following BH.

mult as v = BH (k v, ([,, λ(y, x, a).(y, a ∗ v〈x〉)]), ([�, λ(x, y, a).y])) as
where k v (yl, (y, x, a), (yr, s)) = if y == yl then (y, x,�)

elseif y == yr then (y, x, a ∗ v〈x〉 + s)
else (y, x, a ∗ v〈x〉)

a� b = b
(yl, sl), (yr, sr) = if yl == yr then (yl, sl + sr) else (yl, sl)
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4 BH in the Orléans Skeleton Library

4.1 An Overview of Orléans Skeleton Library

Orléans Skeleton Library is a C++ library of data-parallel algorithmic skeletons.
It is implemented on top of MPI and takes advantage of the expression templates
optimisation techniques [22] to be very efficient yet allowing programming in a
functional style. Programming with OSL is very similar to programming in se-
quential as OSL offers a global view of parallel programs [4]. OSL programs
operate on distributed arrays that are one dimensional arrays such that, at the
time of the creation of the array, data is distributed among the processors. Dis-
tributed arrays are implemented as a template class DArray<T>. A distributed
array consists of bsp_p partitions, where bsp_p is the number of processing ele-
ments of the parallel (BSP) machine. Each partition is an array of elements of
type T.

To give a quick, yet precise, overview of OSL, Fig. 2 presents an informal
semantics for the main OSL skeletons together with their signatures. In this
figure, bsp_p is noted p. A distributed array of type DArray<T> can be seen “se-
quentially” as an array [t0, . . . , tt.size−1] where t.size is the (global) size of the
(distributed) array t (and we use the same notation if t is a C++ vector). But
as with the getPartition skeleton, the user can expose the distribution of the
distributed array, this informal semantics should also indicates how the array is
distributed. We write the distribution as a subscript D of the distributed array.
D is a function from {0, . . . , bsp_p − 1} to N.

The first skeleton, map (and variants such as zip, mapIndex, etc.) is the usual
combinator used to apply a function to each element of a distributed array (or
two for zip). The first argument of both map and zip could be a C++ functor
either extending std::unary_function or std::binary_function, respectively.

Parallel reduction and parallel prefix computation with a binary associative
operator ⊕ are performed using respectively the reduce and scan skeletons. Com-
munications are needed to execute both skeletons.

permute and shift are communication skeletons. The next skeleton only mod-
ifies the distribution of the distributed array, not its content: redistribute dis-
tributes the content of the distributed array according to a vector of integers
representing the target distribution. All the skeletons up to redistribute pre-
serve the distribution. It means that if they are applied to evenly distributed
arrays, the result will be an evenly distributed array. The redistribute skeleton
may thus seems useless. However, some algorithms such as BSP regular sampling
sort, require intermediate and final results that are not evenly distributed. To
implement such algorithms, two additional skeletons are needed: getPartition
and flatten. The getPartition skeleton exposes how a distributed array is dis-
tributed among the processors, while flatten is the inverse operation.

As a very short OSL example program, we can compute the variance∑n−1
i=0 (xi −

∑n−1
j=0 xj

n ) of a sequence of random variables xi:
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Skeleton
Signature

Informal semantics

map
DArray<W> map(W f(T), DArray<T> t)

map(f, [t0, . . . , tt.size−1]D) = [f(t0), . . . , f(tt.size−1)]D

reduce
<T> reduce(T⊕(T,T), DArray<T> t)

reduce(⊕, [t0, . . . , tt.size−1]D) = t0 ⊕ t1 ⊕ . . .⊕ tt.size−1

scan
DArray<T> scan(T⊕(T,T), DArray<T> t)

scan(⊕, [t0, . . . , tt.size−1]D) = [⊕0
i=0ti; . . . ;⊕t.size−1

i=0 ti]D

permute
DArray<T> permute(int f(int), DArray<T> t)

permute(f, [t0, . . . , tt.size−1]D) = [tf−1(0), . . . , tf−1(t.size−1)]D

shift
DArray<T> shift(int o, T f(T), DArray<T> t)

shift(o, f, [t0, . . . , tt.size−1]D) = [f(0), . . . , f(o− 1), t0, . . . , tt.size−1−o]D

redistribute
DArray<T> redistribute(Vector<int> dist, DArray<T> t)

redistribute(dist, [t0, . . . , tt.size−1]D) = [t0, . . . , tt.size−1]dist

getPartition
DArray< Vector<T> > getPartition(DArray<T> t)

getPartition([t0, . . . , tt.size−1]D)
=

[
[t0, . . . , tD(0)−1], . . . , [tji , . . . , tji+D(i)−1], . . . , [tjp−1 , . . . , tt.size−1]

]
Ep

where Ep(i) = 1 and ji =
∑k=i−1

k=0 D(k)

flatten
DArray<T> flatten(DArray< Vector<T> > t)

flatten([a0, . . . , aa.size−1]D)
=

[
a0[0], . . . , a0[a0.size− 1], a1[0], . . . , aa.size−1[aa.size−1.size− 1]

]
D′

where D′(i) =
∑

ji≤k<ji+D(i) ak.size and ji =
∑k=i−1

k=0 D(k)

Fig. 2. OSL Skeletons

double avg = osl::reduce(std::plus<double>(), x) / x.getGlobalSize();

double variance = osl::reduce(std::plus<double>(),

osl::map(boost::bind(std::minus<double>(),avg, _2), x));

4.2 Using the BH Skeleton

The signature of the bh skeleton is:

DArray<typename K::result_type>

bh(K k, Homomorphism<T, L> * hl, Homomorphism<T, R> * hr,

L l, R r, const DArray<T>& temp)

According to Definition 2, a BH is defined by a function k and two homomor-
phisms g1 and g2, which are applied on a list (in the form of a distributed array
temp) with two boundary elements L and R.

k can be easily implemented as a usual functor whose () operator takes three
arguments: the left summary (which will be the result of the application of g1
on the left part of the list), the current element and the right summary. For
g1 and g2, we define a generic virtual base class Homomorphism which defines
the needed function f , operator , and its unit id� (Definition 1). The user can
then implement its own homomorphism by creating a derived class that provides
concrete implementations of those 3 items.

k, g1 and g2 are the first three parameters of our generic BH skeleton. To
apply it to actual data, we need to provide three last arguments: the boundary
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elements L and R, and the list in the form of a DArray. The return value will be
a list of the same size, whose type of elements will be the result type of k.

Implementing for example the computation of the prefix-sum on an array of
integers can be easily done. First, we need the left homomorphism that subse-
quently adds all the values:

class HAdd: public Homomorphism<int, int> {

public:

HAdd() { neutral = 0;}

inline int f(const int& i) {return i;}

inline int o(const int& i1, const int& i2) {return i1+i2;}

};

We do not have any computation to conduct on the right side. However we still
need to provide an homomorphism to the bh skeleton, so we can define one that
always returns the same value. This homomorphism, named HConst, is defined
in a similar way than HAdd but with each operator returning 0.

We now only have to define the k function which will simply add the computed
sum of the left sub-array with the current element:

struct AddLeft {

typedef int result_type;

inline int operator()(int l, int i, int r) const { return l+i; }

};

We can now apply the skeleton to compute the prefix sum on any distributed
array d, using zeros for the boundary values:

DArray<int> result = osl::bh(AddLeft(),new HAdd(), new HConst(), 0, 0, d);

4.3 Implementation of the BH Skeleton

The bh skeleton is implemented with the usual expression template mechanism
of our library, so it can be integrated seamlessly in any OSL expression and
trigger the fusion optimisation when it is relevant. The recursive definition of
homomorphisms provides room for a major optimisation. If we apply the defini-
tion to an array of elements, we can write the third recursive rule as such:

h [x1, . . . , xn] = h [x1, . . . , xn − 1], h [xn] = h [x1, . . . , xn − 1], f (xn).
This allows us to pre-compute locally the application of the homomorphism to
each sub-array in a linear time as we only have to apply f and, once per element.
Without this optimisation, we would have to conduct these operations i times
for each of the n xi elements, thus resulting in a square complexity. Thanks to
the associativity of homomorphisms, we can symmetrically implement the same
optimisation for the right homomorphism that applies on the end of the array.

A disadvantage is that in order to achieve this purpose we have to consider
the local part of the array on each node in its entirety: This forces us to break
the loop fusion mechanism, which is based on the fact that each element of the
array is treated separately. However fusion can still occur on the expression (if
there actually exists one) that produces the input array temp.
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5 Experiments

We implemented programs computing the ANSV and sparse-matrix vector mul-
tiplication using our implementation of the BH skeleton in the OSL library. We
then measured the scalabity of those programs when parallelised over several
cores on two architectures : a shared-memory computer containing 4 processors
with 12 computer cores each (thus a total of 48 cores), and a distributed-memory
cluster of 8 machines each containing 2 processors of 4 cores (for a total of 64
cores). More experiments are currently undergoing on a larger cluster containing
several hundreds cores. Those measures were conducted using a statistical evalu-
ation protocol [20] in order to ensure stability and reproducibility of the results.
ANSV was solved on a 107 elements array. Sparse matrix-vector multiplication
was conducted on a 109 elements matrix with 10% of non-zero elements, leading
to an actual 108 elements of data.

 1
 4
 8

 16

 24

 32

 48

 64

 1  4  8  16  24  32  48  64

S
pe

ed
up

Number of cores

Ideal curve
ANSV

Sparse Matrix-Vector Multiplication

Fig. 3. Distributed memory

 1
 4

 8

 16

 24

 32

 48

 1  4  8  16  24  32  48

S
pe

ed
up

Number of cores

Ideal curve
ANSV

Sparse Matrix-Vector Multiplication

Fig. 4. Shared memory

The ANSV problem scales well although sub-linearly, we may expect its per-
formance to peak at a greater number of cores. This could be explained by
the fact that each processor has to communicate its local array of candidate
elements to every other core. Those arrays can reach a consequent size on big
problems, and the cost of this communication operation may rapidly overcome
the parallelisation gains on larger numbers of cores.

On the other hand, the sparse matrix-vector multiplication is perfectly linear.
As in this problem the processors only have to exchange a pair of numbers, the
communication cost is probably too small to impact the scaling of the algorithm
at this level. We also get super-linear speedups on the distributed architecture
with a large number of cores, which seems to indicate that this particular compu-
tation is limited by the memory bandwidth on the shared memory architecture.

6 Related Work

There are many algorithmic skeletons libraries, for various host languages: [6] is
a recent survey of such libraries. Depending on the supported data structures,
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these libraries could be used to implement programs obtained by systematic
developement based on the theory of lists [3, 14], trees [13] or arrays. However
none support BSP homomorphisms. Compared to BSP implementations of skele-
tons [23] together with usual theories, our theoretical framework and OSL library
allow to derive and implement efficient programs such as the all nearest smaller
values program.

Several researchers worked on formal semantics for BSP computations, for ex-
ample [9,16]. But to our knowledge none of these semantics was used to generate
programs as the last step of a systematic development. LOGS is a semantics of
BSP programs and was used to generate C programs [24]. The main difference
with our approach is that it starts from a local and imperative view of parts of
the program to build a larger one, and we start from a global and functional
view and refine it.

7 Conclusion and Future Work

The theory of bulk synchronous parallel homomorphism allows to derive non-
trivial applications. The support of BSP homomorphism in the Orléans Skeleton
Library through the BH skeleton can be used to implement such applications.
In the SkeTo and OSL libraries, fusion [12] is done by the expression templates
technique. More global optimisations could be done, in particular using the Proto
framework for C++: This is planned. However we still need to investigate the
theory of fusion for BSP homomorphisms before incorporing BH fusion in OSL.
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17. Tesson, J.: Environnement pour le développement et la preuve de correction
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Abstract. Bulk Synchronous Parallelism (BSP) provides a good model
for parallel processing of many large-scale graph applications, however
it is unsuitable/inefficient for graph applications that require coordina-
tion, such as graph-coloring, subcoloring, and clustering. To address this
problem, we present an efficient modification to the BSP model to imple-
ment serializability (sequential consistency) without reducing the highly-
parallel nature of BSP. Our modification bypasses the message queues
in BSP and reads directly from the worker’s memory for the internal
vertex executions. To ensure serializability, coordination is performed—
implemented via dining philosophers or token ring— only for border ver-
tices partitioned across workers. We implement our modifications to BSP
on Giraph, an open-source clone of Google’s Pregel. We show through a
graph-coloring application that our modified framework, Giraphx, pro-
vides much better performance than implementing the application using
dining-philosophers over Giraph. In fact, Giraphx outperforms Giraph
even for embarrassingly parallel applications that do not require coordi-
nation, e.g., PageRank.

1 Introduction

Large-scale graph processing finds several applications in machine-learning [1],
distributed simulations [2], web-search [3], and social-network analysis [4]. The
significance of these applications led to the development of several graph pro-
cessing frameworks recently. Due to the large size of the graphs considered, these
frameworks employ a distributed/parallel execution model; Most adopt the Bulk
Synchronous Parallel (BSP) [8] approach to this end. A popular example is the
Pregel [3] framework from Google. Pregel inspired several open-source projects,
including Apache Giraph [5], Hama [6], and Golden Orb [7], all of which use
the BSP model. Although asynchronous graph processing frameworks such as
GraphLab [1] and PowerGraph [16] were proposed recently, the BSP model is
still used the most due to its simplicity, flexibility, and ease of use.

In the BSP approach to graph processing, the large input graph is partitioned
to the worker machines, and each worker becomes responsible for execution of
the vertices that are assigned to it. Then BSP’s superstep concept is used for
coordinating the parallel execution of the workers. A superstep consists of three
parts. Concurrent computation: Concurrently every participating worker exe-
cutes computations for the vertices they are responsible for. Communication:
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The workers send messages on behalf of the vertices they are responsible for
to their neighboring vertices. The neighboring vertices may or may not be in
the same worker. Barrier synchronization: When a worker reaches this point
(the barrier), it waits until all other workers have finished their communication
actions, before the system as a whole can move to the next superstep. A com-
putation involves many supersteps executed one after the other in this manner.
So, in a superstep, the worker uses values communicated via messages from the
previous superstep, instead of most recent values.

BSP provides good parallelism and yield. However, the max-parallel execution
model used in BSP is not suitable for writing applications that require coordi-
nation between vertices. Consider the graph coloring problem, where the aim
is to find a minimal coloring of the vertices such that no two adjacent vertices
share the same color. A simple program is that, at each superstep a vertex picks
the smallest color not used by any of its neighbors and adopts it as its color.
If executed in a max-parallel manner, this program does not converge: If two
neighboring vertices have the same color at any superstep, they loop on back
and forth changing their colors to be the same. This max-parallel style concur-
rency violations can occur even when the worker has a single thread of control1,
because vertices in a worker communicate via message-passing in queues, and as
such they operate on each other’s previous round states. So, in effect, all vertices
in a worker are executing concurrently for a superstep, even though in reality
the vertices execute in a serial manner since the worker has a single thread.

For developing applications that require coordination, the serializability se-
mantics [9] (also known as interleaving or sequential consistency) is better. Se-
rializability ensures that for every parallel execution, there exists a sequential
execution that produces an equivalent result. This model provides “in effect” the
guarantee that any vertex computation is executed atomically (or in isolation)
with respect to the rest of the system and this gives a cleaner abstraction to
write graph programs.

The problem with serializability, however, is that it may throttle the paral-
lelism/performance of the system, so how serializability is implemented matters.
The straightforward implementation (executing all vertex computations sequen-
tially in the graph and disallowing any parallel execution across workers) is, of
course, very inefficient. It is easy to observe that if two vertices are not neighbors
they can be executed in parallel, and since they do not share state, their execu-
tions do not conflict with each other, and they can be serialized (pretending as if
one occurs before the other). One can implement this restriction using a dining
philosopher program [10] to regulate that no two neighboring nodes execute at
the same superstep. Running the application on top of dining philosophers in
Giraph accomplishes serializability, but with a steep cost (as we show in our
experimental results in Section 4).

Our Contributions. We present a simple extension to achieve serializability
in BSP-based frameworks while keeping the highly-parallel and bulk-efficient

1 This is the case in Giraph. Even when the worker is executed on a multicore machine,
the worker executes as a single thread to keep concurrency issues manageable.
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nature of BSP executions. We implement our extension on the open-source
Apache Giraph framework, and call the extended framework Giraphx. To provide
interworker serializability, we augmented Giraphx with two alternative coordi-
nation mechanisms: dining philosophers and token ring.

We give experimental results from Amazon Web Services (AWS) Elastic Com-
pute Cloud (EC2) with upto 32 workers comparing the performance of Giraphx
with that of Giraph. We show through a graph-coloring application that Gi-
raphx consistently provides better performance than implementing the applica-
tion using dining-philosophers over Giraph. Our experiments use mesh graphs
and Google Web graphs, and show the effects of edge-locality in improved per-
formance (in some cases upto an order of magnitude improvement) of Giraphx
compared to Giraph. The results reveal that while dining-philosopher-based Gi-
raphx performs better for large worker numbers, the token-ring-based Giraphx
is superior for smaller clusters and low edge-locality situations.

Our experiments also show that Giraphx provides better performance than
Giraph even for applications that are embarassingly parallel and do not require
coordination. We show this through running a PageRank [11] application on
both Giraph and Giraphx. The improved performance in Giraphx is due to the
faster convergence it achieves by providing the vertices the ability to read the
most recent data of other vertices in the serializability model.

Overview of our Method. In Giraphx, we categorize vertices as border ver-
tices and internal vertices. If all the neighbors of a vertex are in the same worker
as that vertex, then it is an internal vertex ; else it is called a border vertex.
In order to provide serializability, we modify Giraph to bypass the message
queue and read directly from worker’s memory for the internal vertex execu-
tions (we can have direct memory reads because the vertices are in the same
worker). Since vertices read current values of neighbors (instead of using previ-
ous round values from the messages), interleaving execution, and hence atomic
execution is achieved. In the above example, this modification solves the graph
coloring problem easily and efficiently (without being hampered by running din-
ing philosophers on vertices and slowing execution). When border vertices, par-
titioned across workers, are involved, additional synchronization is needed. For
this, we use dining-philosopher or a worker-based token ring algorithm for syn-
chronizing execution. Giraphx is much cheaper than running dining philosophers
over Giraph because dining philosophers is run only on cross-worker edges of bor-
der vertices (which is generally a small fraction of all the vertices) in Giraphx, so
the overhead comes only on this fraction not on the entire graph as in Giraph.

Outline of the Rest of the Paper. We discuss Giraph and dining philoso-
phers implementation on Giraph in Section 2. In Section 3, we present Giraphx,
and introduce our dining-philosopher-based Giraphx (d-Giraphx) and token-
ring-based Giraphx (t-Giraphx). We present our experiment results from EC2
deployments in Section 4, and related work in Section 5.
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2 Giraph

Giraph leverages Hadoop’s MapReduce framework [12]. The master and all work-
ers in Giraph are started as MapReduce worker tasks. 2 Hadoop’s master-worker
setup readily solves the monitoring/handling reliability of the workers, opti-
mizing performance for communication, deploying distributed code, distributing
data to the workers, and load-balancing.

Writing a Giraph program involves subclassing the BasicVertex class and
overriding the Compute() method. Each worker goes over the graph vertices in
its assigned partitions and runs Compute() for each active vertex once in every
superstep. At each Compute operation, the vertex can read the messages in its
incoming queue, perform computations to update its value, and send messages
to its outgoing edges for evaluation in the next superstep. A Giraph program
terminates when there are no messages in transit and all vertices vote to halt.

2.1 d-Giraph

While Giraph fits the bill for many graph-processing applications, it fails to pro-
vide a mechanism for applications where neighboring vertices need to coordinate
their executions. Also, while the synchronous execution model in Giraph is easy
to use, the inability to read the most recent data may lead to slow convergence.
Consider the graph coloring problem. If two neighboring vertices have the same
color at any superstep, they loop on back and forth changing their colors to be
the same.

To solve this problem, we need to schedule the computation of vertices such
that no conflicting vertices operate at the same superstep. For this purpose, we
developed a serializable Giraph implementation called d-Giraph, that ensures
that in each neighborhood only one vertex can compute at a superstep while
others have to wait for their turn. d-Giraph uses the hygienic dining philosophers
algorithm for vertex coordination [10]. The basic d-Giraph operation consists of
the following steps:

1. At superstep 0, every vertex sends a message containing its id to all outgoing
edges so that at superstep 1 vertices will also learn their incoming edges.

2. At superstep 1, every vertex sends its randomly generated initial fork acquisi-
tion priority to all edges together with its vertex value for initial distribution
of forks in a deadlock-free manner.

3. Computation starts at superstep 2 in which every vertex gathers its initial
forks and learns initial values of neighbors.

4. Then each vertex checks if it has all its forks. If so, it performs vertex com-
putation, otherwise it executes a skip (state is not changed).

5. Each vertex replies incoming fork request messages, and then sends request
messages for its missing forks. New vertex value is sent only if it is updated.

2 Giraph does not have a reduce phase: It uses only the map phase of MapReduce and
this single map phase runs until all supersteps are completed.
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Despite achieving serializability, d-Giraph hurts parallelism significantly by al-
lowing only a small fraction of all vertices to operate at each superstep; a steep
price to pay for serializability.

3 Giraphx

In order to provide efficient serializability, in Giraphx we modify Giraph to by-
pass the message queue and read directly from worker’s memory for the internal
vertex executions (we can have direct memory reads because the vertices are in
the same worker). Since vertices read current values of other vertices’ variables
(instead of using previous round values from the messages), interleaving execu-
tion, and hence atomic execution is achieved. When border vertices, partitioned
across workers, are involved, additional synchronization is needed. A border ver-
tex cannot make direct memory reads for its interworker edges and blocking
remote reads are costly. In this case, we revert to the BSP model and use mes-
saging in tandem with a coordination mechanism for these border edges. We
propose two such mechanisms: a dining philosopher based solution as in Section
2.1 called d-Giraphx and a simpler token-based solution called t-Giraphx.

The only side effect of these modifications to Giraph semantics is the increase
in update frequency of internal vertices compared to border vertices. However
this difference causes no complications in most graph problems.

To ease migration from Giraph, Giraphx closely follows the Giraph API except
small modifications in handling of intra-worker communications. To implement
Giraphx, we added approximately 800 lines of Java code to Giraph (including
the coordination mechanisms). While T-Giraphx has no memory overhead over
Giraph, d-Giraphx uses ∼ 30% more memory primarily for synchronization mes-
sages (i.e. fork exchange) in dining philosophers.

3.1 d-Giraphx

d-Giraphx uses dining philosophers for establishing coordination of the inter-
worker edges in Giraphx. To implement d-Giraphx, d-Giraph is modified as
follows:

1. Each vertex prepares a list that denotes the locality information about the
neighbors. If all neighbors are local then the vertex marks itself as internal,
else as border.

2. If a vertex is internal, it operates at each superstep. If it is a border vertex,
it checks whether it has gathered all forks or not. If yes, it first iterates over
local neighbor list and reads their values and then iterates over its incoming
messages to learn the values of its nonlocal neighbors.

3. Border vertices are also responsible for sending and replying fork exchange
messages while internal vertices skip it.

Since the amount of messaging in d-Giraphx is proportional to the number of
interworker edges and border vertices, partitioning plays an important role in
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improving the performance of the system. In a smartly-partitioned graph, since
the border nodes is a small fraction of the internal nodes, d-Giraphx performs
upto an order of magnitude better than d-Giraph as we show in Section 4.

3.2 t-Giraphx

Despite d-Giraphx is an obvious improvement over d-Giraph, it suffers from
large coordination overhead when the number of border nodes is large (i.e., the
edge-locality is low). To address these low edge-locality situations for which any
smart-partitioning of the input graph does not provide much benefit, a solution
which avoids coordination messages would be preferred. For this purpose, we
implement a token-based version of Giraphx called t-Giraphx.

In t-Graphx, coordination is done at the worker level instead of at the vertex
level. At each superstep one of the workers has the token for computation. When
a worker acquires the token, it runs Compute() on all its vertices whether they
are border or internal. Similar to d-Giraphx, vertices use messaging for inter-
worker neighbors and direct memory reads for same-worker neighbors. When a
worker does not have the token, it can only operate on internal vertices. In a non-
token worker, the border vertices skip computation in this superstep, but they
still broadcast their state to neighboring vertices in other workers by sending a
message. Since t-Giraphx does not have any fork exchange overhead, it uses less
messaging and thus converges faster than d-Giraphx, whenever the number of
workers is sufficiently small.

t-Giraphx does not scale as the number of workers increase. Consider a graph
problem where convergence is acquired after k iterations at each vertex. In a
graph with average vertex degree w, d-Giraphx processes all vertices once in
approximately every w supersteps independent of worker number N , and thus
converges in at most w ∗ k supersteps independent of N . On the other hand,
t-Giraphx will need N ∗ k supersteps, resulting in longer completion times when
N >> w, and shorter completion times when N << w.

Some problems, such as graph subcoloring3, require multi-hop coordination.
While dining philosophers achieves 1-hop neighborhood coordination, it can be
extended to provide multi-hop neighborhood coordination by defining the multi-
hop neighbors as “virtual” neighbors. For example, for 2-hop coordination, this
can be done by adding another superstep in d-Giraphx after superstep 0 in which
vertices send a message containing the ids of all neighbors to every neighbor. This
way, in the following superstep all vertices will have a list of vertices in its 2-hop
neighborhood and then can run dining philosophers on this list. The primary
drawback of these multihop coordination extensions is the significant increase in
the number of edges per vertex, and the resulting increase in the total running
time of the protocol. In applications that require multihop coordination, since w
will grow exponentially, t-Giraphx becomes a better alternative to d-Giraphx.

3 In graph subcoloring, the aim is to assign colors to a graph’s vertices such that each
color class induces a vertex disjoint union of cliques. This requires 2-hop neighbor-
hood coordination.
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4 Experiments

To evaluate the performance of Giraphx, we conducted experiments on EC2
using medium Linux instances, where each instance has two EC2 compute units
and 3.75 GB of RAM. In our experiments, we used up to 33 instances, where
one instance is designated as the master, and the remaining 32 instances are
workers. We used two network topologies for our experiments. First is a planar
mesh network where each node is connected to its 4 neighbors in the mesh
(right, left, top, bottom) plus one of the diagonal neighbors (e.g. right-top).
The second is Google’s web graph dataset [14] in which vertices represent web
pages and directed edges represent hyperlinks between them. The Google web
graph dataset consists of approximately 900,000 vertices and 5 million edges.
This dataset is quite challenging since it has a highly skewed degree distribution
where some vertices have degrees up to 6500.

We used three partitioners in our experiments: a hash partitioner (which as-
signs vertices to workers pseudo-randomly), a mesh partitioner (which assigns
each worker a neighborhood in the mesh), and the metis partitioner (which
smartly-partitions a graph to provide high edge-locality) [13]. For Giraphx, the
cost of learning internal versus border vertices are included in the provided ex-
periment results. In all experiments, the partitioning run times are included in
the results.

4.1 Graph-Coloring Experiments on Mesh Graph

We first fix the number of workers as 16, and perform experiments with in-
creasing the number of vertices in a mesh graph. We use a mesh-partitioner so
the percentage of local vertices in these experiments stays between 94%–99%.
Figure 1 demonstrates that as the size of the graph increases the running time
of d-Giraph increases at a much faster pace than Giraphx-based methods. The
basic reason is the lack of d-Giraph’s ability to make use of the locality in the
graph. Every vertex needs to coordinate with all neighbors causing large delays.
While the local nodes in Giraphx can compute at every superstep, in d-Giraph
vertices have to wait until all forks are acquired to make computation. In con-
trast, d-Giraphx avoids a significant fraction of the messaging in d-Giraph by
incorporating local memory reads for internal vertices.

Figure 1(b)) shows that increase in the graph size does not necessarily increase
the number of supersteps for the three frameworks compared. Since the graph
topology does not change, average vertex degree and hence the number of super-
steps is stable as the graph size changes in d-Giraph and d-Giraphx. Since worker
number does not change, superstep number in t-Giraphx is also stable. We also
see that t-Giraphx takes more supersteps than the other methods, since it takes
16 supersteps for the token to return to a worker. However, t-Giraphx compen-
sates this disadvantage and converges in less time than d-Giraph by avoiding the
coordination delays that dining-philosophers induce for d-Giraph.

Next in Figure 2 we fix the number of vertices as 1 million, and increase the
number of workers to observe the effects of parallelism on the runtime. As long
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Fig. 1. Change in time and superstep number as the graph size increases for 16 workers
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Fig. 2. Change in time and superstep number as the amount of worker machines in-
creases for 1 million vertices

as the edge-locality is high, d-Giraph and d-Giraphx take advantage of every
worker added since the load per worker decreases accordingly. t-Giraphx also
benefits from the increase in computation power. But after 8 workers, adding
more workers hurts t-Giraphx due to the increase in the superstep numbers
proportional to the number of workers.

Finally, in Figure 3, we ran an experiment where we use the hash partitioner on
the mesh network to show the effects of partitioning. While the mesh partitioner
provides an optimal partitioning in a mesh network, using a hash partitioner
causes vertices to lose their locality and most of them become border vertices.
As a result, d-Giraphx loses the performance improvement it gains from internal
vertices, and performs only slightly better than d-Giraph. The performance of
t-Giraphx is not affected too much, since it does not suffer from the increased
coordination cost on border vertices.

4.2 Graph-Coloring Experiments on Google Web Graph

To reveal the performance of the proposed frameworks on a real-world graph,
we ran another set of experiments on the challenging Google web graph. This
graph has a highly skewed degree distribution and it is hard to find a parti-
tioning that will provide good edge-locality. These high-degree vertices cause
communication and storage imbalance on vertices as well as imperfect partition-
ing. In this graph, using the hash partitioner 99% of all vertices become border
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Fig. 3. Computation times with hash versus mesh partitioners for 16 workers and 1M
vertices
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Fig. 4. Results with hash versus metis partitioner on the web graph. Solid lines indicate
hash partitioner, and dashed lines metis partitioner. Time is given in log scale.

vertices, and this hurts parallelism immensely. To prevent the loss of parallelism
and improve the locality, we preprocessed the graph using the metis partitioner.
When metis is used, ratio of border vertices drops to around 6%. However these
vertices are mostly high-degree hubs which have a lot of interworker neighbors.
Therefore even with metis, webgraph still performs worse than the same-sized
mesh-partitioned mesh network.

Figure 4(a) shows a comparison of the three frameworks on the Google web
graph as the number of workers increase. Regardless of whether metis is used
or not, t-Giraphx always performs better than other methods. This is because
t-Giraphx has a predictable number of supersteps independent from the degree
distribution while the number of high-degree vertices adversely affect the number
of supersteps in d-Giraph and d-Giraphx (see Figure 4(b)).4 The skewed degree
distribution leads to a star topology centered on high-degree vertices resulting
in larger fork re-acquisition intervals for d-Giraph and also for d-Giraphx to a

4 In the mesh graph where the maximum degree is 5, the number of supersteps required
for all vertices to compute at least once is around 10. In comparison, in the web graph
where the maximum degree is 6000 the number of supersteps jumps to 50 for metis
partitioning and 70 for hash partitioning.
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degree. d-Giraphx improves with better partitioning in terms of both time and
supersteps, because even the highest degree vertices now have a much higher
number of local neighbors decreasing the size of the subgraph on which coordi-
nation through fork exchange is required.

An interesting result is the increase in runtime as the number of workers
exceeds 16 in metis partitioning. In t-Giraphx, the increase in the number of
supersteps is the dominant reason for this. In case of d-Giraph and d-Giraphx,
after 16 workers the computation power gained by adding new workers is over-
shadowed by the loss of locality.

4.3 Pagerank Experiments on Google Web Graph

Giraphx also provides performance improvements for graph applications that
do not require coordination among vertices. To demonstrate this, we modified
the PageRank implementation in the Giraph framework, and ran it on Giraphx
to compare their performances. PageRank computes the importance of the ver-
tices/webpages iteratively using a weighted sum of neighbor values, and does
not require serializability among vertex computations.
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Fig. 5. Comparison of Giraph and Giraphx on Pagerank application (log scale)

In this experiment we used the Google web graph with metis partitioning.
In our implementation, vertices vote for termination when Δ < 10−9 where
Δ is the total change in vertex values from the previous superstep. Figure 5
shows that Giraphx finishes computation %35 faster than Giraph, for all worker
numbers. The improved performance in Giraphx is due to the faster convergence
it achieves. The experiment logs reveal that convergence takes just 64 supersteps
in Giraphx compared to 117 supersteps in Giraph.

In Giraphx, the internal vertices take advantage of the direct memory reading
feature, and read the most recent data of other vertices, which leads to faster
convergence times. In fact, the same argument is also cited as the main advan-
tage of asynchronous systems (e.g. GraphLab [1]) over the BSP model as we
discuss in Section 5. Giraphx can provide faster convergence as in asynchronous
systems without sacrificing the convenience of the BSP model for application
development and debugging.
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5 Related Work

The alternative approach to synchronous BSP-based systems is to use an asyn-
chronous system which updates the vertices immediately and therefore uses the
most recent data at any point in computation. In addition, asynchronous sys-
tems avoid the barrier synchronization cost. However asynchrony brings along
programming complexity and may require consideration of consistency issues.

Distributed GraphLab [1] is a well-known powerful and flexible asynchronous
framework. Asynchrony helps faster convergence and vertex prioritization but it
requires selection of a consistency model to maintain correct execution in differ-
ent problems. In addition, unlike GiraphX, it does not allow dynamic modifica-
tions to graph structure. PowerGraph [16] proposes a unified abstraction called
Gather-Apply-Scatter which can simulate both asynchronous and synchronous
systems by factoring vertex-programs over edges. This factorization helps reduc-
tion of communication cost and computation imbalance in power-law graphs.
However, it has the same shortcomings as GraphLab. GRACE [15] also provides
a parallel execution engine which allows usage of both execution policies.

Since partitioning plays an important role in efficient placement of graph data
over cluster nodes, some studies focus on partitioning the graph data. A recent
work [18] shows that SPARQL queries can be processed up to 1000 times faster
on a Hadoop cluster by using a clever partitioning, custom data replication
and an efficient data store optimized for graph data. A bandwidth aware graph
partitioning framework to minimize the network traffic in partitioning and pro-
cessing is proposed in [19]. Finally, another recent work [20] shows that using
simple partitioning heuristics can bring a significant performance improvement
that surpasses the widely-used offline metis partitioner.

6 Conclusion

In this paper, we proposed efficient methods to bring serialization to the BSP
model without changing its highly-parallel nature and clean semantics. We
showed how dining philosophers and token ring can be used for achieving co-
ordination between cross-worker vertices. We alleviated the cost of these coor-
dination mechanisms by enabling direct memory reads for intraworker vertex
communication.

We implemented Giraphx on top of Apache Giraph and evaluated it on
two applications using real and synthetic graphs. We showed through a greedy
graph coloring application that Giraphx achieves serialized execution in BSP
model with consistently better performances than Giraph. Our experiment re-
sults showed that while d-Giraphx performs better for large worker numbers,
t-Giraphx performs better for small worker numbers and low edge-locality situa-
tions. Finally we showed that, due to the faster convergence it provides, Giraphx
outperforms Giraph even for embarrassingly parallel applications that do not
require coordination, such as PageRank.



Giraphx: Parallel Yet Serializable Large-Scale Graph Processing 469

References

1. Low, Y., Bickson, D., Gonzalez, J., Guestrin, C., Kyrola, A., Hellerstein, J.M.:
Distributed graphlab: a framework for machine learning and data mining in the
cloud. Proc. VLDB Endow. 5(8), 716–727 (2012)

2. Braun, S.A.: A cloud-resolving simulation of hurricane bob (1991): Storm structure
and eyewall buoyancy. Mon. Wea. Rev. 130(6), 1573–1592 (2002)

3. Malewicz, G., Austern, M.H., Bik, A.J., Dehnert, J.C., Horn, I., Leiser, N., Cza-
jkowski, G.: Pregel: a system for large-scale graph processing. In: Proceedings of the
2010 ACM SIGMOD International Conference on Management of Data, SIGMOD
2010, pp. 135–146. ACM, New York (2010)

4. http://www.facebook.com/about/graphsearch/

5. http://incubator.apache.org/giraph/

6. http://hama.apache.org/

7. http://goldenorbos.org/

8. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8),
103–111 (1990)

9. Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan
Kaufmann Publishers (1993)

10. Chandy, K.M., Misra, J.: The drinking philosopher’s problem. ACM Trans. Pro-
gram. Lang. Syst. 6(4), 632–646 (1984)

11. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.
In: Proceedings of the Seventh International Conference on World Wide Web 7,
WWW7, pp. 107–117 (1998)

12. http://hadoop.apache.org/

13. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM Journal on Scientific Computing 20(1), 359 (1999)

14. http://snap.stanford.edu/data/web-Google.html/

15. Wang, G., Xie, W., Demers, A., Gehrke, J.: Asynchronous large-scale graph pro-
cessing made easy. In: Proceedings of CIDR 2013 (2013)

16. Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: Powergraph: Dis-
tributed graph-parallel computation on natural graphs. In: Proceedings of the 10th
USENIX Symposium on Operating Systems Design and Implementation, OSDI
2012, Hollywood (October 2012)

17. Kyrola, A., Blelloch, G., Guestrin, C.: Graphchi: Large-scale graph computation on
just a pc. In: Proceedings of the 10th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2012, Hollywood (October 2012)

18. Huang, J., Abadi, D.J., Ren, K.: Scalable sparql querying of large rdf graphs.
PVLDB 4(11), 1123–1134 (2011)

19. Chen, R., Yang, M., Weng, X., Choi, B., He, B., Li, X.: Improving large graph pro-
cessing on partitioned graphs in the cloud. In: Proceedings of the Third ACM Sym-
posium on Cloud Computing, SoCC 2012, pp. 3:1–3:13. ACM, New York (2012)

20. Stanton, I., Kliot, G.: Streaming graph partitioning for large distributed graphs.
In: Yang, Q., Agarwal, D., Pei, J. (eds.) KDD, pp. 1222–1230. ACM (2012)

http://www.facebook.com/about/graphsearch/
http://incubator.apache.org/giraph/
http://hama.apache.org/
http://goldenorbos.org/
http://hadoop.apache.org/
http://snap.stanford.edu/data/web-Google.html/


Hugh : A Semantically Aware Universal

Construction for Transactional Memory Systems

Craig Sharp and Graham Morgan

School of Computing Science, Newcastle University
{craig.sharp,graham.morgan}@ncl.ac.uk

Abstract. In this paper we describe an implementation for exploring the
scheduling of aborted transactions within transactional memory systems.
We consider application semantics to be just as important as guarantee-
ing linearizability in arriving at an appropriate execution strategy. Our
approach exploits parallelism to simultaneously create different execution
orderings for rescheduled aborted transactions and chooses the most ben-
eficial for application progression. The overall solution guarantees a lock-
free universal construction if there exists at least one transaction that can
commit. The appropriateness of our approach is demonstrated via micro-
benchmark performance figures.

Keywords: Transactional Memory, Contention Management, Shared
Memory, Concurrency Control, STM.

1 Introduction

Given the current barriers to processor frequency scaling, processor manufac-
turers have focused developments on parallel scaling of processing, in what has
become known as the parallel revolution [1]. Unfortunately, writing concurrent
software and solving problems in parallel is notoriously difficult for a wide class
of problems (particularly in the area of system design). The key to exploiting
parallelism effectively lies in the concurrency control mechanism used to provide
correctness and progress guarantees to the concurrent program.

Transactional Memory has offered programmers a technique which simplifies
the implementation of concurrency control. Atomic blocks allow sections of con-
current code to be composed, in a manner which is trivial in comparison to
locking-based approaches. The problem with Transactional Memory lies in the
occurrence of conflicts which require transactions to abort and retry their ex-
ecution. If conflicts occur regularly and persistently, the Transaction Manager
requires a Contention Management Policy (CMP) to mitigate the degradation
of performance caused by aborted transactions.

From the programmer’s perspective, conflicts fall into two categories: concur-
rent conflicts and semantic conflicts. A concurrent conflict occurs when the reads
and writes of a transaction encounter an inconsistent state of shared memory
and many contention managers combat these types of conflicts. A transaction
may execute without interference however and still need to re-execute because
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semantically, the application cannot progress. For example, a transaction may
need to consume an item from a shared buffer but finds it empty, or a bank
account may have insufficient funds to permit a withdrawal.

Typically, a ‘semantic conflict’ can be dealt with in the application by (i)
letting the transaction commit and re-execute in the future, (ii) or by using
primitives (retry, orElse etc) as provided by Harris et al [2] which essentially
allow ad-hoc coordination of transaction execution. We believe that the former
approach is detrimental for application progression, raising the possibility of
needless future conflicts when transactions re-execute. Meanwhile, the use of
primitives places a burden on the application developer that must be addressed
with an ad hoc solution, (re-introducing a fundamental problem of coordina-
tion with pessimistic concurrency control, which Software Transactional Memory
originally sought to address).

In this paper we present an implementation of a Universal Construction ap-
proach to Contention Management called Hugh, that tackles both concurrent
and semantic conflicts in an atomic object based STM model. We describe a
speculative technique which serializes conflicting transactions to resolve concur-
rent conflicts and a parallel exploration which tackles semantic conflicts. Within
the scope of this paper we consider a semantic conflict as simply the intentional
abortion of a transaction by its own thread, and assume such conflicts can be
avoided by executing the transaction in an alternative schedule.

The remainder of the paper is organized as follows: Section 2 describes the
implementation. Section 3 describes the related work and Section 4 provides an
evaluation of results obtained from an implementation of our technique. Section
5 concludes the paper and describes possible avenues for future work.

2 Implementation

The concept of the Universal Construction (hereafter UC) was first proposed
by Herlihy [3] and allows any sequential data structure to be transformed into a
linearizable representation that can be accessed and updated by n threads. There
are three phases of UC operation: (i) threads prepare and announce a proposed
input to add to the UC, (ii) each announcing thread performs consensus to decide
which input will be added and (iii) a log of inputs is updated by the winning
thread to reflect its input. We begin with an overview of how we use the UC
technique and then provide greater detail in the remainder of this section.

2.1 Overview

We use the UC technique to provide conflict resolution and therefore the threads
which use our implementation consist of the threads of aborted transactions.
Hugh accepts as input a permutation of one or more sequentially executed trans-
actions and decides which permutation will be added to the log.

When some threada encounters a conflict it prepares its input to the UC
by first adding its aborted transaction to a global Transaction Table; after this
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Registration Phase the parameters of threada’s permutation are set. The thread
then enters a Speculative Phase where it re-executes aborted transactions that
have been added to the Transaction Table. We provide threada with a private
cache to hold copies of modified atomic objects, but no transaction is committed.
Transactions are executed sequentially to prevent concurrent interference, but
application semantics may still cause a transaction to abort explicitly (i.e. a
semantic conflict).

During the Speculative Phase of threada, other threads may execute their
own speculative transactions in parallel with threada. Once the Speculative
Phase ends, each participating thread then enters a Commit Phase to decide
which single thread’s cache of modified atomic objects will be committed using
a consensus algorithm. Threads whose transactions are committed return to nor-
mal execution, while those that remain aborted commence another Registration
Phase.

Figure 1 contrasts our approach with a serializing CMP (like [4] for example).
Two hypothetical scenarios, both containing a depositor and withdrawer trans-
action access a shared object. In scenario 1, the CMP reorders transactions to
avoid concurrent conflicts. Although the withdrawer transaction can commit, it
may need to re-execute in future (if deposits must precede withdrawals for ex-
ample). In scenario 2, our approach is illustrated where a semantic abort occurs
and each thread re-executes a different permutation of the aborted transactions.

Fig. 1. In scenario 1 a read/write conflict has occurred between two transactions called
withdraw (w/draw) and deposit. The depositor is aborted and rescheduled to execute
after the withdrawer has committed. In scenario 2, Thread 1 aborts the depositor but
then also aborts because of a semantic conflict caused by attempting to execute a
withdrawal before a deposit. The conflict is resolved by the execution of an ordering
which allows both to commit (deposit then withdraw).
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Fig. 2. In phase 1, threads add their transactions to the Transaction Table. In phase 2,
a thread executes permutations of transactions within the window of the Transaction
Table. In phase 3, transactions perform consensus to decide which permutation will be
committed, and the result is added to the log of the Universal Construction and the
Transaction Table window is advanced.

2.2 Aims and Contribution

Serializing aborted transactions to avoid concurrent conflicts has already been
explored [5,6,4] given that under high contention, serialization can produce bet-
ter throughput than a parallel approach. To our knowledge however, Hugh is the
first to use additional threads to provide multiple serialized executions of aborted
transactions in parallel and does not require the overhead of a thread-pool.

We combine both direct-update and deferred-update approaches in our imple-
mentation; until a transaction aborts, threads modify atomic objects directly
but when transactions are retried, thread-private caches hold updates to ac-
cessed objects (as in the deferred-update model). While the use of direct-updates
(sometimes called encounter time locking) is not a requirement of our approach,
this technique was preferred having been shown to reduce the degree of wasted
transaction execution [7]. Although the use of thread-private caching increases
memory usage, it is hoped that this can reduce the occurrence of ‘cache bouncing’
(this approach was found to be particularly effective in Remote Core Locking [8]).

While the serial execution of aborted transactions tackles the problem of con-
current interference, we address semantic conflict by requiring that each thread
execute different permutations of aborted transactions:

1. The possibility of having to re-execute a transaction because of a semantic
conflict can be minimized given that there is a greater chance some permu-
tation will avoid the semantic conflict;

2. If more transactions are aborted and conflicts are high, then this results in a
greater number of threads available to explore more permutations of trans-
action execution. This in turn increases the possibility of finding an optimal
transaction ordering so that more aborted transactions can be committed;

3. If parallel processing resources are increased, then a greater number of
permutations can be explored in parallel, theoretically increasing the ex-
ploratory capacity of our approach within a shorter time-frame. Concur-
rency control is essentially transformed into a parallel state-space exploration
problem.
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List point 3 suggests our approach would benefit from a policy controlling the
operating system scheduling of threads to processors and a platform with a
plentiful supply of cores. This is beyond the scope of this paper and we confine
our discussion to a purely ‘user-level’ implementation. We now describe each of
the three phases of conflict resolution in detail.

2.3 Registration Phase

In order to re-execute its transaction, a thread is first required to register its
transaction within a global table which we call the Transaction Table. When
the transaction is added to this table it then belongs to the set of transactions
from which permutations may be generated during the Speculative Phase. To
avoid concurrency errors, threads use the synchronization primitive compare-
and-swap to atomically increment an integer variable (called current) and thus
gain a unique entry into the table.

Figure 2(1) shows the layout of the Transaction Table. In addition to cur-
rent, the Transaction Table also maintains two integer variables called start and
cap, which provide a ‘window’ (of size cap minus start) within which a thread’s
transactions must lie before it may execute its Speculative Phase. The window
is the maximum length of the permutation the thread submits to the consensus
algorithm. The first index of the permutation is equal to the threads index in
the Transaction Table and subsequent entries are indices in the Transaction Ta-
ble within the range of the window. For example, suppose some thread6 registers
and takes the 6th entry into the Transaction Table and start = 5 while cap = 9,
then a valid permutation for thread5 is {6, 5, 7, 8} (see Figure 2(2)).

During the commit phase, the window is ‘advanced’ to allow new threads to
begin their Speculative Phase (Figure 2(3)). Note that increasing the size of the
window increases the maximum number of transactions that may commit in a
single commit phase (throughput) but also incurs extra computational overhead,
including the computation of consensus (the maximum number of participants in
the consensus algorithm is equal to the window size). While our own experiments
found that a maximum window size of 16 produced the best performance, an
attractive avenue for future work would be to expand and contract the size of
the window at runtime, based on the level of contention.

2.4 Speculative Phase

Once a thread has registered its aborted transaction, it commences its Speculative
Phase (for brevity, we shall hereafter refer to these threads as speculators). The
speculator executes transactions held in the Transaction Table with the aim of
executing as many transactions to completion as possible. While the speculator
is executing, new speculators may register (causing newly aborted transactions
to appear in the Transaction Table) and begin their own speculative execution.
All speculators must ensure two conditions are met: (i) exclusivity of atomic
objects to ensure any speculative execution is sequentially consistent and (ii)
the Speculative Phase must terminate.
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Consistency. While speculators modify private copies of atomic objects, they
must ensure that no active (non-aborted) thread modifies the original, otherwise
their execution would be inconsistent and could not commit. Speculators must
therefore have exclusive access to any atomic object they update, (as they do
not update the objects directly, they do not require exclusivity from other spec-
ulators). We require that each atomic object has an owner field and that active
transactions have to install themselves as owner of any atomic object they wish
to modify. To support exclusivity, each atomic object also possesses an integer
field denoting its version (version) and a reference to a global clock (clock).
In addition, we provide a global transaction (spec) to denote that an object is
currently owned by a speculator. The procedures for accessing atomic objects
are:

– The first time an atomic object is accessed by a speculator, it checks whether
the object is owned by another speculator (owner = spec). If true, the thread
caches a copy of the object and continues its transaction (subsequent accesses
modify the copy);

– If the object is not owned by a speculator and (version <= clock), it sets
(version = clock+1), aborts the current owner of the object, and installs the
spec transaction as the new owner. Setting the value of version eliminates
the possibility that another thread can repeatedly prevent the speculator
from changing the owner of an atomic object;

– Once consensus has been reached and the winning transactions have been
committed, clock is atomically incremented so that (version ≤ clock) is true,
and any thread may once again own the object.

Before a thread executing an active transaction tries to install itself as the owner
of any atomic object, it first checks whether version ≤ clock. If this evaluates to
false, then the thread knows it must abort because the object is currently being
modified by a speculator. The thread will now register and become a speculator
itself.

Terminating Speculation. Transactions are executed according to the indices
of the speculator’s permutation until either: (i) a transaction aborts, (ii) all
transaction at the indices in the permutation have been executed, (iii) or the next
index in the Transaction Table does not contain a transaction. The maximum
number of transactions any speculator may execute during a single Speculative
Phase is equal to the the size of the window. As each speculator executes a
unique permutation, then for n speculators this means that a maximum of n
permutations may be executed during a single session. Each speculator records
the indices of the transactions it has executed successfully. Once a speculator
has finished its Speculative Phase, it moves onto the Commit Phase.
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2.5 Commit Phase

Once each speculator has completed its Speculative Phase, the log of the UC must
be updated with the permutation of transactions the speculator has executed.
To accomplish this:

1. Each speculator submits its permutation of executed transactions to the
decide method of a consensus protocol;

2. The winner is decided by the permutation with the greatest number of ex-
ecuted transactions. The winning speculator commits the changes to the
atomic objects in its cache and appends the permutation to the log (a linked
list) provided by the UC.

The log provides each speculator with the necessary information to determine
whether its own transaction has been successfully committed. Each speculator
searches for its allocated index into the Transaction Table within the winning
permutation appended to the log. If the permutation contains a speculator’s in-
dex, that speculator’s transaction has been committed. Once the winning spec-
ulator has committed the atomic objects in its cache, it atomically increments
the global clock (such that version ≤ clock is true), indicating that any thread
may once again own any atomic object. The window in the Transaction Table is
then advanced by the winning speculator.

3 Related Work

Implementing an optimum Contention Management Policy (CMP) itself is a
non-trivial task and numerous approaches have been developed. The first CMP
techniques can be categorized by their employment of a wait-based criteria [9]
(such as Greedy, Karma, Polka etc). These approaches were relatively trivial
to integrate with existing STMs, requiring no involvement from the schedul-
ing mechanism of the platform. Heber et al [10] observed an inefficiency with
wait-based approaches given the difficulty in ascertaining the duration that an
aborted transaction should wait before re-executing; too short could cause a
repeat conflict and too long would be inefficient.

Serializing Contention Managers attempt to improve the inefficiency of wait-
based CMPs by rescheduling aborted transactions to execute after a conflicting
transaction and Hugh loosely follows this approach. Bai et al [5] introduced
an approach which used ‘keys’ to predict the likelihood of conflicts between
transactions; such transactions could then be scheduled to execute in sequence to
avoid the possibility of concurrent conflict. Dolev et al introduced CAR-STM [6]
which like Bai’s work predicts the likelihood of conflicts between transactions
and executes those transactions serially. Ansari et al developed an approach
called Steal on Abort [4] where transactions could be ‘stolen away’ from threads
with high workloads and work sharing between transaction executing threads
was facilitated. Hugh differs from these serialising techniques by considering
the effects of semantic conflicts and executing multiple transaction orderings in
parallel.
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Adaptive CMPs have also been developed, Yoo and Lee for example, intro-
duced ATS [11]; a serializing CMP which used a threshold value to dynamically
determine when aborted transactions should be serialized, based on a measure
called the contention intensity and Heber et al provided CBench, a useful bench-
mark for evaluating serializing CMPs [10]. Heber et al identified a phenomenon
they call mode oscillations, (where performance is hurt because the Contention
Manager repeatedly switches between serialization and parallel execution) and
implemented a stabilization algorithm to address the problem. Although adap-
tation has not been explored in our approach, potential future work may involve
varying the window size with respect to contention levels.

Like Hugh, several contributions have approached transaction memory in the
context of building a UC. Wamhoff [12] and Chuong [13] demonstrated how
transactions could be used with a UC to handle failure. More recently Crain et
al [14] developed a UC which in theory could remove the need for programmers to
observe aborts. Unlike previous UC approaches, Hugh uses the UC for contention
management only and submits multiple transactions as input to the consensus
algorithm.

4 Evaluation

In this section we present results from a set of micro-benchmarks performed on
an implementation of our system. The tests were executed on a Dell Alienware
desktop PC featuring 4 x dual-core 3.40GHz Intel(R) processors (i7-2600) with
16GB of RAM, running Windows 7. The Transactional Memory software was ex-
ecuted in Visual Studio 2010 with a C Sharp implementation of the Java DSTM2
benchmark suite [15] (using the obstruction free factory with visible reads). Each
experiment is carried out using an increasing number of threads (from 2 to 12)
and executed 10 times with the average results provided. The Polka Contention
Management Policy [16] has been cited as providing the best performance of
wait-based Contention Managers, and so this was used to provide a comparison
with our implementation (using the default parameters with respect to back-off
time).

Two benchmarks were used to test the performance of our implementation:
a linked list and a hash table. In both benchmarks, threads are divided into
‘producers’ and ‘consumers’ in equal number. Producers and consumers take a
random value and attempt to insert this into the data structure in the case of
the producer, or remove it in the case of the consumer. The highest frequency
of read/write conflicts is expected in the linked list benchmark compared to the
hash table which distributes items in an array of linked lists based on hashes
generated from each item.

Performance results under increasing levels of semantic conflicts are pro-
vided. When there are no semantic conflicts (labelled S-L0), then threads only
abort transactions if there is a read/write conflict. With Level 1 semantic con-
flicts (S-L1), consumer threads explicitly abort their transaction if they attempt
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Fig. 3. Transaction Throughput

to remove an item which is not already present in the data-structure. Using Level
2 semantic conflicts (S-L2) also causes producers to abort their transactions if
they attempt to add an item to a data-structure which is already present.

4.1 Transaction Throughput

Figure 3 illustrates the results for transaction throughput. The Y-axis denotes
the number of transactions committed per millisecond and X-axis shows the
number of threads present. In Graph A, using the list benchmark with S-L0
semantic conflicts we can see that the Polka manager performs better than
Hugh once the number of threads increases beyond 6 due to the increase in
read/write conflicts. One possible explanation is that the serialization of aborted
transactions used by Hugh is less effective in this situation than the Polka policy
and the lack of semantic conflicts means there is little benefit from the execu-
tion of permutations. In Graph B where the hash table reduces the number of
read/write conflicts we see better performance under both policies, though the
greatest increase in throughput is witnessed with Hugh.
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Fig. 4. Transaction Timing (Ticks)

Once semantic conflicts are introduced, Hugh performs markedly better than
Polka under both benchmarks. With S-L1 semantic conflicts, Hugh shows a min-
imum improvement in throughput over Polka by a factor of approximately 4.3
and 4.5 for the list (Graph C) and hash table (Graph D) respectively. With
S-L2 semantic conflicts, Hugh shows a minimum improvement by a factor of
approximately 40 and 18, for the list (Graph E) and hash tables (Graph F)
respectively.

Observe that with the Polka manager, as semantic conflicts are introduced
the type of data structure used has less of an effect on mitigating the presence
of aborts. It seems reasonable to assume that strategies for mitigating conflicts
in transactional memory which rely on more ‘concurrent’ data-structures are of
little benefit if one takes into account the kinds of semantic conflicts generated
in these experiments.

4.2 Average Transaction Execution Time

In Figure 4 the average transaction execution time (ATET) is shown. In each
graph, the Y-axis measures the ATET but note that the scale used is logarithmic
for greater clarity and the maximum value is 105 ticks for all graphs. Each
graph provides the results for a particular contention manager with a particular
benchmark, and each bar shows the performance under a different semantic
conflict level. The time is measured in elapsed ticks, (the fastest unit of time
that can be measured on the platform) and denotes the average time spent
executing a transaction by all threads.
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One would expect that greater throughput generally corresponds to less aver-
age time spent executing a transaction (this is not guaranteed however, as unlike
execution time, throughput also includes time spent outside of transaction exe-
cution). Given that Hugh resolves both concurrent and semantic conflicts, there
should be less time required to execute a transaction when semantic conflicts are
introduced, whereas with the Polka manager, transaction time should increase
if repeated conflicts cause threads to back off (which involves calling the sleep
function).

The performance of the Polka manager is shown in graphs A and C. One may
observe that the ATET increases substantially as the level of semantic conflicts
is increased. Conversely, the performance of Hugh (graphs B and D) does not
exhibit the same degree of increase in ATET as the number of semantic conflicts
is increased. This seems to suggest that the overhead of executing our policy
does not increase substantially as semantic conflicts increase, unlike the Polka
manager.

5 Conclusion and Future Work

This paper presents Hugh, a UC where threads conduct speculative execution
of aborted transactions and ‘commit by consensus’, to mitigate both concurrent
conflicts, and semantic conflicts; where some logical condition in the application
ultimately prevents the progress of threads. We have described how conflicts
can be resolved by a parallel exploration of transaction permutations and pro-
vided initial results which demonstrate increased throughput over a published
contention manager.

The evaluation section presented some encouraging results via micro bench-
marks in a custom scenario. Future work will require further testing with more
sophisticated benchmarks. One issue with existing benchmarks, however, is that
they evaluate performance with respect to concurrent conflicts, rather than the
progress of the application (although this is not surprising given the immense
scope of what can be defined as a semantic conflict).

We believe the most significant contribution made by our approach is the
treatment of transaction conflict resolution as a state space exploration prob-
lem and in future we plan to conduct experiments with transactions of greater
complexity, (nested transactions for instance). We anticipate that far from being
a hindrance, semantic conflicts are useful as they will allow the state space of
aborted transactions to be ‘pruned’ in favour of permutations which actually
provide greater progress to the application.
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The solution of large-scale problems in Computational Science and Engineering
relies on the availability of accurate, robust and efficient numerical algorithms
and software that are able to exploit the power offered by modern computer
architectures. Such algorithms and software provide building blocks for proto-
typing and developing novel applications, and for improving existing ones, by
relieving the developers from details concerning numerical methods as well as
their implementation in new computing environments.

The topic includes many different aspects, ranging from fundamental algorith-
mic concepts, to their efficient implementation on modern parallel architectures,
such as multicore and multi-GPU systems, to their application in design and
prototyping scientific simulation software, as well as to performance analysis.

From the papers submitted to this year’s Euro-Par, the topic of Parallel Nu-
merical Algorithms involving these themes attracted submissions from various
continents. Each paper received at least four reviews and finally five were selected
for presentation following extensive discussions between members of Euro-Par’s
Program Committee.

Kuzmin, Luisier and Schenk describe a parallelization based on techniques
used for sparse direct solvers to compute selected entries of the inverse of a
sparse matrix. The technique is successfully applied in the context of quantum
transport calculation.

Agullo, Buttari, Guermouche and Lopez presents an implementation of the
multifrontal QR factorization based on the StarPU runtime. The parallelism
related to the factorization of each frontal matrix as well as the parallelism
available among different frontal matrices and exposed by the separator tree is
exploited. The authors show that a runtime system as StarPU can be successfully
used to implement sparse/irregularmatrix computations. The paper confirms the
interest of runtime systems, even for sparse computations.

Schindewolf, Rocker, Karl and Heuveline compare different ways of imple-
menting the Conjugate Graduate method (CG) on multi-core CPUs. The au-
thors apply transactional memory technique and show that a ”pipeline” CG
method enables to speedup execution time by reducing communication and syn-
chronization costs.

Lotz, Naumann, Sagebaum, and Schanen explain how to compute the discrete
adjoint, with the Algorithmic Differentiation (AD) tool ”dco”, within the PETSc
framework. Technical work described includes management by AD of the BLAS
and LAPACK used in PETSc, and differentiation of the MPI communications
involved (with a focus on persistent communication). This strategy to obtain
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discrete adjoints targets difficult situations, involving libraries and tools at var-
ious functionality levels (PETSc, BLAS/LAPACK), as well as MPI parallelism.
These situations will occur typically in large, real-life applications. This strategy
makes full use of the versatility of overloading-based AD.

Schreiber, Weinzierl, and Bungartz focus on solvers for partial differential
equations and consider dynamically adaptive grids arising from spacetrees. The
authors use the fact that such grids have an underlying tree formalism and use
it to decompose such grids into clusters on-the-fly. The authors also describe an
approach for dynamically adaptive cluster reordering and skipping. The algo-
rithms are implemented using OpenMP tasks and TBB based on a depth-first
traversal of trees.

These five papers provide a selected overview of recent developments in the de-
sign and implementation of numerical methods on modern parallel
architectures.

It is appropriate, at this time, to thank the authors who submitted papers
to our topic and to congratulate those whose papers were accepted. We are
especially grateful to the referees who provided us with carefully written and
informative reviews. Finally, we thank the conference organizers for providing
the opportunity to the participants to present and discuss the state-of-the-art
in Parallel Processing in the beautiful city of Aachen.
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Abstract. The present paper studies solvers for partial differential equa-
tions that work on dynamically adaptive grids stemming from spacetrees.
Due to the underlying tree formalism, such grids efficiently can be decom-
posed into connected grid regions (clusters) on-the-fly. A graph on those
clusters classified according to their grid invariancy, workload, multi-core
affinity, and further meta data represents the inter-cluster communica-
tion. While stationary clusters already can be handled more efficiently
than their dynamic counterparts, we propose to treat them as atomic
grid entities and introduce a skip mechanism that allows the grid traver-
sal to omit those regions completely. The communication graph ensures
that the cluster data nevertheless are kept consistent, and several shared
memory parallelization strategies are feasible. A hyperbolic benchmark
that has to remesh selected mesh regions iteratively to preserve con-
forming tessellations acts as benchmark for the present work. We discuss
runtime improvements resulting from the skip mechanism and the impli-
cations on shared memory performance and load balancing.

Keywords: dynamic adaptivity, cluster skipping, shared memory load
balancing, space-filling curve.

1 Introduction

Mesh-based solvers for partial differential equations (PDEs) that rely on the
combination of recursive spatial sub-refinement with space-filling curves (SFCs)
are popular in multiple application fields [1,6,13,15,21]. They embed the compu-
tational domain into a geometric primitive or a strip of primitives, and subdivide
the primitives locally and recursively into smaller primitives. Those primitives
are ordered along the SFC. Such a spacetree formalism facilitates dynamically
adaptive grids and parallel mesh processing, as the curve prescribes a unique
total mesh element order that can be cut into equally sized partitions for paral-
lelization. In particular matrix-free solvers with heterogeneous solution smooth-
ness such as explicit schemes for hyperbolic conservation laws resolving shock
fronts benefit from the dynamic adaptivity [11]. They then usually sweep the
grid once per time step and update (partially) the solution in each grid cell
[7,20].
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Fig. 1. Shock wave runs through domain while the grid changes dynamically and
decomposes into clusters. Some of them were removed from the right illustration.

An efficient single compute node grid traversal here is essential. Multiple
spacetree codes report on memory-efficient encodings, while the space-filling
curve implies high memory access locality due to hash tables [9] or stack-based
grid data schemes [1,21,22], e.g. Both ingredients tackle the memory bandwidth
challenge which is expected to be one of the most crucial challenges in upcom-
ing architectures [4]. We refer to [21,22] and remarks therein for measurements.
Skipping coarser levels of the tree and to traverse only its leaves are further
techniques reducing the total workload [2,6] if the geometric multi-scale struc-
ture is not required. Tree cuts developed for geometric multigrid solvers in turn
allow to skip grid regions under-running a given mesh size threshold [21]. To the
best of our knowledge, there is however neither a formalism nor an analysis of a
technique that allows to skip whole grid regions independent of their resolution.

The present paper discusses an approach where multi-scale grid regions are
skipped throughout the subsequent traversal. This speeds up algorithmic phases
where either only spatial subregions are of interest or a holistic mesh processing
does not justify the effort. Examples are meshing traversals reconstructing a
proper 2:1 balancing [17] or local time stepping where regions lagging behind in
time have to be updated prior to other mesh elements [7,20]. An example for
the latter are solvers for linear equation systems that update preferentially sets
of unknowns with significant residuals [16]. While the present work focuses on
triangle-based meshing in combination with the Sierpiński space-filling curve [3],
all paradigms can directly be applied to other SFC-based codes.

Obviously, an on-the-fly choice of spatial subsets handled by the traversal
interplays with the traversal’s concurrency and the parallelization—in partic-
ular if massive numbers of tightly coupled cores have to be handled that are
sensitive to NUMA effects, ill-balancing, latency, and tasking overhead [4,18].
We introduce a shared memory parallelization that does not deteriorate due to
the skipping and compare it to straightforward task-based parallelization. Re-
duced memory access and improved data affinity here compensate the reduced
concurrency level.

The remainder is organized as follows: We first briefly describe the mesh
paradigm and define the term cluster (Sect. 2). In Sect. 3, we then pick up
this formalism to introduce the cluster skip mechanism. Implications of this
mechanism on the shared memory load balancing and communication behavior
are subject of the subsequent section, where we also introduce our affinity-aware
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implementation. Some results for a benchmark exhibit promising performance
properties, before a brief conclusion and outlook in Sect. 7 close the discussion.

2 Grid Construction and Clustering

Our grid follows the spacetree/-forest formalism [1,6,21,22]: The computational
domain is embedded into a triangle or a strip of triangles. For each triangle, we
autonomously decide whether this triangle shall be split once. Such a scheme
yields a binary tree or forest where triangles obtained due to a split are children
of their preimage. Both the splitting rule and the order of the two children fol-
low the construction scheme of the Sierpiński space-filling curve (SFC), i.e. the
curve prescribes which triangle faces may be split, and the curve induces an
order on the children [1,2,18]. The SFC in combination with depth-first defines
a total order on all triangles of all levels. Let the level of a triangle be the mini-
mum number of refinement steps required to construct the triangle. The initial
triangle or the initial triangle strip, respectively, have level zero. Unrefined trian-
gles are leaves. Unknowns are assigned to leaves only. We reiterate from [21,22]
that a depth-first traversal of the spacetree induces an element-wise traversal of
the leaves. Such a depth-first traversal can be formalized and realized as stack
automaton [14,21] triggering in turn a matrix-free solver.

Starting from the notion of a binary triangle tree yielding the adaptive grid
or a binary forest, respectively, we introduce the following notions: A cluster is
a subtree of the binary mesh tree. It is identified by a unique tree node (empty
circle in Fig. 2). If a triangle belongs to a cluster, all its successors, i.e. all finer
triangles covered by it, belong to the same cluster, too. As the SFC defines a
depth-first total order on all triangles, it induces an order on the clusters.

Let C be the set of clusters, and let each cluster have a list of neighbor clusters,
i.e. clusters whose triangles shared at least one face or a part of it with a triangle
from the respective cluster. The following algorithm clusters the spacetree:

– Assign each leaf a weight W = 1 and a marker R = 0.
– Let each cluster in C hold exactly one unrefined triangle and vice versa.

Each cluster has at most three neighbors. The cluster cardinality equals the
number of leaves.

– Run through the spacetree bottom-up:

D
C
B A

D

A B C
Fig. 2. Domain triangulation with clusters marked with thick borders (left). Repre-
sentation of same grid by a binary tree constructed with the Sierpiński SFC (right).
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• Set a refined node’s weight to the sum of the left and the right child,
i.e. W = Wlhs +Wrhs.

• If W ≤ Wjoin being a given threshold, merge the two clusters of the
right and the left child. Replace these two cluster triangles in C by their
parent, i.e. reduce C’s cardinality by one. Also merge the neighbor lists
of the two children. This is an operation with linear complexity.

– Run through the spacetree top-down:

• If a node is the left child of a parent triangle, set R = Rparent.

• If a node is a right child of a parent triangle, set R = Rparent +Wlhs.

The algorithm assigns each leaf to one cluster (Fig. 2). The clusters’ size is
controlled via Wjoin. Each cluster has a distinguished coarsest triangle holding
its W and R value, and each cluster knows all of its neighbor clusters. Once such
a clustering is found, we easily can adopt it whenever the grid changes. For this,
it also does make sense to introduce a split weightWsplit as counterpart ofWjoin.
Whenever a triangle is refined, its two children inherit the cluster affiliation. If a
cluster exceeds the threshold Wsplit, it decomposes into two clusters—each one
represented by the two triangles on the 1st recursion level. There is no need to
construct clusters from scratch several times.

The clusters define a graph on the mesh where each graph node is a cluster.
Two nodes are connected if their clusters shared a common face. This graph is
small compared to the connectivity graph of the original mesh.

Our algorithm refers to a binary tree. An extension to a binary forest is
straightforward. Furthermore, a bottom-up construction of the clusters starting
from the whole tree or forest in practice is not an optimal choice. Instead, it does
make sense to create the binary tree up to given level. The triangles of this initial
level then prescribe an initial clustering. Starting from the initial clustering, the
grid is refined further and the clustering is adopted.

Our cluster analysis and mesh traversal fits to a recursive realization. Though
straightforward, in practice it might make sense to reduce recursion overhead.
One approach is to replace it by an iterative scheme to avoid call-stack overhead
[2,8]. Formally, such a transformation equals recursion unrolling. If recursion
unrolling is applied within clusters only and if clusters hold exclusively totally
balanced subtrees, i.e. all leaves within one particular cluster have the same level,
clustering and non-recursive realization mirror the optimization from [8]. Such
an approach however relies on invariant grid regions and has to be used carefully
if the grid changes frequently. Related work furthermore stores the leaves of the
clusters only and reconstructs the coarser levels of the tree bottom-up [2,15].
Our implementation holds the whole tree and sticks with a recursive realiza-
tion, but case distinctions within the recursive code are eliminated aggressively:
Automaton states together with their possible transitions are rewritten by a
code-generator into specialized functions with a minimal set of case distinctions
[19] severely reducing branching mis-predictions. Argument-controlled context
profiling validates that this pays off [10]. Furthermore, PDE-specific operations
are invoked on the leaves only.
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3 Dynamically Adaptive Cluster Reordering and
Skipping

Let f be a marker operation on triangles that identifies those to be refined or
coarsened next. Our element-wise traversal runs through the grid or tree, re-
spectively, and evaluates f on each triangle. The subsequent mesh sweep then
refines or coarsens which might yield non-conforming grids, i.e. grids with hang-
ing nodes. As we rely on conforming tessellations, the non-conform refinement
or coarsening mark further triangles. We have to traverse the grid multiple times
until the global grid becomes conform again (Fig. 3), i.e. grid modifications might
trigger a cascade of grid traversals propagating the grid updates.

Let each triangle hold a state S ∈ {0, 7} and one marker per face encoded
in a 3-tuple Tf = (000). If f modifies a triangle, it updates its state as well
as the face meta information. The number of possible refinements and meta
information updates is fixed (Fig. 4). From the face meta data adjacent cells
can derive how they have to adopt to make the grid conform. Along the SFC
this information propagation resembles Gauß-Seidel. Otherwise it is a Jacobi-
like information spreading which motivates the fact that multiple sweeps are
typically necessary to make the grid conforming.

The state encodes the triangle’s local state, the incoming marker adjacent
refinement/coarsening information. The following table gives the new triangle
state as well as the marker forwarded to adjacent triangles:

incoming edge marker
state 000 001 010 011 100 101 110 111

no request 0 000,0 100,5 100,6 100,7 000,4 000,5 000,6 000,7
INVALID 1 000,1 000,1 000,1 000,1 000,1 000,1 000,1 000,1

local coarsening request 2 000,2 100,5 100,6 100,7 000,4 000,5 000,6 000,7
local refine request 3 100,4 100,5 100,6 100,7 000,4 000,5 000,6 000,7

refined: hyp 4 000,4 000,5 000,6 000,7 000,4 000,5 000,6 000,7
refined: hyp, left 5 000,5 000,5 000,7 000,7 000,5 000,5 000,7 000,7

refined: hyp, right 6 000,6 000,7 000,6 000,7 000,6 000,7 000,6 000,7
refined: hyp, right, left 7 000,7 000,7 000,7 000,7 000,7 000,7 000,7 000,7

We consider clusters to be atomic entities coupled to other clusters via their
one-dimensional boundary sub-manifold. Let an active cluster be a cluster where
f has marked elements. Obviously, this property can be reduced throughout a
traversal of the cluster tree. If all triangles hold Tf = (000) after the traversal,
the cluster is not active. A cluster’s active flag is an or-combination of all triangle
meta data.

The marker propagation is a face data exchange. It directly implies a marker
semantics on clusters. A cluster without local refinement becomes active if and
only if a neighboring cluster has set a face marker in the iteration along a common
face. As we have the neighborhood relation at hand, this leads to a publish-poll
pattern:
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Fig. 3. From left to right: grid with three triangles A,B, and C. As B is refined, A has
to be refined twice to preserve a conform tessellation.

Fig. 4. Different states from the automaton to form a conforming grid. The dashed
lines are new edges of the refined triangle.

– If a cluster is active, the traversal automaton has to run through its grid.
Marker information from the boundary faces is polled. This might set the
cluster’s state to active again. It also might set markers along the cluster’s
boundary, i.e. publish new markers.

– If a cluster is not active, the traversal automaton runs over the boundary
markers published by the neighbors. If all of them are unset, no grid updates
within the cluster are necessary. If one marker is set, the cluster is active
and is traversed.

With the second case distinction at hand, we are able to skip clusters throughout
the traversal when we know a priori, i.e. when the automaton enters the cluster’s
coarsest triangle, that they are not active. In this case, we continue with grid
elements of another not yet processed cluster. As each sweep polls the marker
information and updates only subregions of the grid, the overall data flow pattern
resembles a petri net on the cluster graph.

For the realization of data exchange along clusters representing fractions of
the SFC, we refer to [1,2,18] and [21,22] for d > 2 with hypercubes instead of
triangles. The SFC distinguishes right from left neighbors uniquely, i.e. the pub-
lished markers’ cardinality is bounded by the surface. As the triangles are lined
up like pearls on a string along the Sierpiński SFC, the cluster partitions are
connected and exhibit a quasi-optimal surface-volume ratio [5]. The SFC fur-
thermore linearizes the left and right boundary uniquely whereas the boundary
fractions of relevance for one particular neighbour are connected, continuous,
and already published in the read order [5,18,21].

Though it can happen that clusters are set active multiple times due to grid
conformity sweeps, we do not observe such a behavior often. Furthermore, if
we assume f to be idempotent on the triangle, the proof is straightforward
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that the marker update mechanism does not induce cycles. While the order for
the refinement and coarsening here is given implicitly, reordering for different
purposes (local time stepping, e.g.) might yield additional benefit.

4 Cluster-Based Parallelization

Without considering parallelization so far, we observe that leaves are coupled
due to their faces to neighbouring triangles. For our present applications, leaves
write data to their common faces in one sweep. At the end of the traversal, both
triangles adjacent to any face have accumulated their data on the face. These
data typically are input parameters to flux computations. In the next iteration,
the data is read within the triangle and the triangle’s values are updated. Such
a data flow mirrors the marker pattern of the previous section.

With cluster based parallelization and by considering clusters to be atomic
grid entities, we can split the data exchange into two phases. First, clusters write
data to their interface faces: faces shared with other cluster. If grid cluster in-
terface faces are duplicated per cluster, this write process is thread-safe. With a
stack- and stream-based approach, the data for each adjacent cluster is consec-
utively stored in memory. We can run length encode which face data are sent to
which neighbour and exchange data belonging to a particular neighbor en block
and efficiently. Then, we can merge the duplicated interfaces explicitly prior to
the next grid traversal. By running the merge operation with consideration of
the order of clusters along the SFC, duplicate flux computations can be avoided
at the cluster interface. Due to the sub-manifold and the minimal surface prop-
erty [5], these merge operations are cheap compared to the overall updates and
the memory overhead is small.

Depth-first traversals of trees are a classic demonstrator for task-based paral-
lelism where a shared data structure’s disjoint subsets are handled by different
threads. No data overhead besides cluster surface communication buffers is in-
duced. We pick up this property to derive two different parallelization schemes.
In combination with skipping, minimal cluster sizes, software-based affinities as
supported by TBB, and the comparison of TBB and OpenMP tasks, this yields
a multitude of different parallel algorithmic flavors.

For our massive tree split approach, we make the traversal automaton traverse
the grid top-down. In each node, it spawns a right and a left task. If a child
identifies a cluster, this subtask is not split up further. As the number of clusters
typically exceeds the number of tasks, the grid traversal floods the system with
tasks, delegates the distribution of tasks to threads to the runtime system, and
relies on work stealing to achieve well-balanced workload. Subdomains handled
by one thread might be discontinuous. Due to nondeterministic work stealing,
the assignment to threads even might change from grid traversal to grid traversal.
We expect data affinity penalties from this property that has to be compensated
by a high concurrency level, and point out that TBB supports a manual choice
of task affinities.

For our owner-computes approach, we analyze the tree attributes: The prop-
erty W on the spacetree’s root determines the total workload on the grid. Given



Cluster Optimization and Parallelization of Simulations 491

Fig. 5. Left image: A cluster size which leads to as many cluster as there are cores
available on the system would lead to a workload imbalance. Right image: Creating
more clusters than there are cores available leads to a better balanced problem even
by considering the tasking overhead marked with dark-yellow boxes.

p threads, a thread i knows that each cluster with R ∈ [iW/p, (i + 1)W/p[ is
to be handled by this thread for a rather balanced work decomposition. Con-
sequently, each thread can run through the tree processing only triangles or
clusters, respectively, fitting into its work interval. This is a concurrent read due
to publish-poll. Such a behavior mirrors the logical merge of multiple subsequent
clusters along the Sierpiński curve for one task.

Traditional SFC parallelization [5,6,9,15,17,18,21] cuts the curve into
equally sized chunks and distributes these chunks among the cores. With thresh-
old based cluster splitting, such an equal balancing is not possible anymore, and
it is obvious that an owner-computes scheme suffers from ill-balancing whereas
flood filling might compensate ill-balancing due to work stealing. We point out
that clusters of size one with an owner-computes scheme mirror a traditional
SFC-based parallelization where the workload is cut into equally sized pieces
along the curve. Our clustering either has to compensate ill-balancing due to an
efficiency gain, or clustering has to tackle potential ill-balancing explicitly.

For the latter approach, we use scan clustering decomposing clusters on-the-
fly into their tree if a cluster overlaps with an optimal SFC partitioning. This
mechanism weakens the clusters’ atomic property, but allows for a fine granular a
priori load balancing. An additional parallization degree of freedom arises if any
cluster exceeding a given size is decomposed automatically, while the big clusters
are preserved for the skip mechanism. We then again rely on work stealing to
tackle ill-balancing (Fig. 5).

5 Benchmark Scenario

A setup based on the shallow water equations (SWE) computing a radial break-
ing damn in a basin acts as benchmark for the present paper. The rectangular
basin has side length of 5000m. It is filled with fluid of a depth of 10m (sea
level). The initial condition is a radial breaking dam with radius 500m around
the point (−2000m, 2500m)T relative to the origin at (0, 0)T . Its height relative
to the sea level is 1m. We apply non-reflecting boundary conditions (Fig. 1).

The system is discretized using discontinuous Galerkin method with 1st order
cell basis functions and 3rd order Gaussian quadrature on each face. An explicit



492 M. Schreiber, T. Weinzierl, and H.-J. Bungartz

Euler time-stepping scheme with Rusanov fluxes acts as time stepping. Through-
out the simulation, we refine each triangle with a water surface displacement rela-
tive to the normal sea level exceeding the threshold 0.1m and allow coarsening for
triangles with a threshold above 0.01m. The refinement is bounded by the max-
imal triangle level 8. Different algorithmic phases realized by grid traversals do
exist: Setup and visualization, time stepping, and consistency traversals recover-
ing the mesh conformity. The latter typically modify only few triangles.

6 Results

All experiments were conducted on an Intel Westmere with 4 Intel Xeon CPUs
(E7-4850@2.00GHz) and 256 GB memory totally available on the platform. This
gives 4×10 physical cores plus hyper-threading. For the parallelization, we have
a TBB and OpenMP realization due to Intel Composer XE (ver. 2013.1.117).
We used affinity bit-masks to hard-limit the number of threads and avoid TBB’s
automatic worker task creation. Thread affinities are set such that they map the
first ten threads to the ten physical cores on the CPU on the first socket. Thread
numbers 41–80 are mapped onto hyper-threading cores.

Prior to algorithmic studies, we first determined for a good cluster size for
both OpenMP and TBB (Fig. 6). It results from extensive search. While TBB
outperforms OpenMP for most settings, 8192 is a natural choice for the cluster
size threshold. This value is used from hereon. We also stick with TBBs.

Next, we studied cluster skipping distinguishing adaptivity traversals, com-
putation traversals, as well as cluster construction (Fig. 7). The construction
time is negligible, the simulation time itself is independent of the skipping. The
skipping however reduces the time spent to make the grid conforming when it
has changed before. We observe that this improvement is the better the fewer
threads are used which is a natural result from the inhomogeneity of the workload
due to splitting, i.e. work balancing gains impact but also introduces overhead.
However, the splitting optimization is robust. A normalization of the run-times
without skipping reveals that the normalized speedup degradation is marginal.

Number of threads

Fig. 6. OpenMP vs. TBB tasking comparing different cluster sizes
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Fig. 7. Detailed timings for each simulation phase. Time taken for clustering phase is
invisible small.

Number of threads Number of threads

Fig. 8. Comparison of different parallelization strategies with an without skipping for
short simulation time with few adaptivity traversals and few skips

For one hundred time steps, we compared different combinations of skipping
and parallelization strategies (Fig. 8). The skipping again pays off and allows us
to obtain linear speedup in some cases, i.e. the algorithmic optimization helps
to close the gap between optimal and observed scaling—however only compared
to non-skipping algorithms. Massive tree splits outperform the other parallel ap-
proaches as long as the cluster size is chosen reasonable (Fig. 6) and does not
hinder the algorithm to exploit all cores. The owner-computes scheme cannot
compete even though we use scan clustering obtaining theoretically almost per-
fectly balanced work decompositions. However, owner-computes with its manual
data affinity yields better performance than TBB’s task affinity feature. For this
experiment, flooding the runtime system with tasks and cluster skipping are the
methods of choice.

With first simulation results for a short run at hand, we studied the same
setup for 15,000 time steps (Fig. 9). Longer observation intervals imply more grid
changes. Cluster splitting still is improved by task affinities, but not significantly.
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Fig. 9. Runtime per time step averaged over all algorithm phases. One measurement
with 100 time steps, three samples with 15,000 time steps.

Though we assume the massive tree splits to yield good balancing due to work
stealing, it is the only strategy that is not robust with respect to simulation time.
We ascribe this to NUMA effects in combination with a touch-first data policy.
In contrast, the owner-computes scheme outperforms the other strategies.

Our experiments reveal that for our setups, a equally balanced workload due to
task stealing, e.g., is essential for the first grid traversals. When the grid changes
significantly and the per-cluster workload as well as cluster distribution become
inhomogeneous as well, affinity effects gain importance. A scheme that fixes
the affinities due to a lack of task concurrency then outperforms task affinities
assigned manually. The better work distribution with task stealing or equally
cutting the SFC cannot compensate this.

7 Outlook

Future work comprises the development of an appropriate cost model antici-
pating skipping, workload inhomogeneity, and affinity issues. Furthermore, the
interplay of the skip mechanism with a distributed memory parallelization is
interesting as skips reduce cluster communication. Finally, we expect a better
support of user-controlled affinity in programming languages and libraries. We
are looking forward to use this or to contribute to this ourselves. Methodologi-
cally, an important locality-aware aspect for Invasive Computing [12] was created
with forced affinities providing better performance for long simulation runs. On
the application side, the present algorithms have to proof of value for implicit
schemes where clusters and skips interplay with equation system solvers.
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A. (eds.) Euro-Par 2009 Workshops. LNCS, vol. 6043, pp. 177–184. Springer, Hei-
delberg (2010)

11. LeVeque, R.J., George, D.L., Berger, M.J.: Tsunami modelling with adaptively
refined finite volume methods. Acta Numerica 20, 211–289 (2011)

12. Bader, M., Bungartz, H.-J., Schreiber, M.: Invasive computing on high performance
shared memory systems. In: Keller, R., Kramer, D., Weiss, J.-P. (eds.) Facing the
Multicore-Challenge III 2012. LNCS, vol. 7686, pp. 1–12. Springer, Heidelberg (2013)

13. March, W.B., et al.: Optimizing the comp. of n-point correlations on large-scale
astronomical data. In: Proc. of the Int. Conf. on High Perf. Comp., Netw., Stor.
and Analysis, SC 2012. IEEE Computer Society Press (2012)

14. Meister, O., Rahnema, K., Bader, M.: A Software Concept for Cache-Efficient Sim-
ulation on Dynamically Adaptive Structured Triangular Grids. In: De Boschhere,
K., D’Hollander, E.H., Joubert, G.R., Padua, D., Peters, F. (eds.) Applications,
Tools and Techniques on the Road to Exascale Computing. Advances in Parallel
Computing, ParCo 2012, Gent, vol. 22, pp. 251–260. IOS Press (May 2012) ISSN:
0927-5452

15. Rahimian, A., Lashuk, I., Veerapaneni, S., Chandramowlishwaran, A., Malhotra,
D., Moon, L., Sampath, R., Shringarpure, A., Vetter, J., Vuduc, R., Zorin, D.,
Biros, G.: Petascale direct numerical simulation of blood flow on 200k cores and
heterog. arch. In: Proc. of the 2010 ACM/IEEE Int. Conf. for HPC, Networking,
Storage and Analysis, SC 2010, pp. 1–11. IEEE Computer Society (2010)
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Abstract. PETSc’s [1] robustness, scalability and portability makes it
the foundation of various parallel implementations of numerical simula-
tion codes1. We formulate a least squares problem using a PETSc imple-
mentation as the model function and rely on adjoint mode Algorithmic
Differentiation (AD) [2] for the accumulation of the derivative informa-
tion. Various AD tools exist that apply the adjoint model to a given
C/C++ code, while none is able to differentiate MPI [3] enabled code.
We solved this by combining dco/c++ and the Adjoint MPI library, lead-
ing to a fully discrete adjoint implementation of PETSc. We want to un-
derline that this work differs from accumulating derivative information
through AD for PETSc algorithms (see e.g. [4]). We compute derivative
information of PETSc itself opening up the possibility of an enclosing
optimization problem (as needed, e.g., by [5]).

1 Motivation

Our case study is the two-dimensional Bratu equation,

∇2u = −λ exp(u), (1)

describing a solid fuel ignition with the parameter 0 < λ < 6 and boundary
conditions

u = bi for x = 0, x = 1, y = 0, y = 1

at the borders of the two dimensional square. For a 4x4 grid, b is of size 12 while
there are only 4 inner points. The Bratu equation is part of the MINPACK-2
test suite [6] as well as an example code of the non-linear solver SNES in PETSc.
It serves as a code base for our least squares problem.

� This work was supported by the Fond National de la Recherche of Luxembourg
under grant PHD-09-145.

1 See Applications/Publications [1].
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The differential equation in (1) is solved by discretization using finite differ-
ence on a two-dimensional grid. We do not take a detailed look at the actual
implementation in PETSc, but rather take a black box perspective of the code.
We now formulate an optimization problem over the original solution to the
Bratu equation.

We distinguish the following grid points:

– the inner computed grid points u
– the n boundary grid points b used in the boundary condition
– and a subset us of m observation points of the inner grid points u, for which

additional observed values uob are assumed to be provided.

The computed values us are a subset of the inner points u dependent on the
boundary conditions. Additionally, we have observed values uob that allow us to
rate the correctness of our model. This fact may be formulated as a least squares
problem where we want to minimize the difference between the computed and
observed values by adapting the approximated or guessed boundary conditions.

S =
1

2

m∑
i=1

(us
i − uob

i )2,

The computation of the cost functional S depending on the boundary conditions

S = F (b) : Rn → R

is implemented in PETSc using its non-linear solver SNES for the computation
of u. We used the code found in example 5 of the SNES tutorials. The addi-
tional implementation of the cost functional S for the least squares problem is
straightforward.

We now describe step by step how we generated an implementation of the
gradient ∇F of PETSc that enables us to feed a gradient based solution method.

In Sect. 2 we present Algorithmic Differentiation (AD) as our method of
choice for the gradient computation. Additionally, we provide a brief overview
of PETSc’s code structure and where challenges arise. In Sect. 3 we provide a
technical description of our AD overloading tool dco/c++. It is used to generate
the adjoint code of PETSc. However, PETSc relies on the BLAS 2 and LAPACK
3 library for the sequential computation. We provide a methodical description
of how we achieved adjoints of these library. Sect. 4 covers the adjoining of the
MPI communication using our in-house developed AMPI library.

2 Background

We resort to a Steepest Descent or Gradient Descent algorithm as a proof of
concept in order to minimize the residual S. As the name hints, it relies on the

2 http://www.netlib.org/blas/
3 http://www.netlib.org/lapack/
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gradient to iteratively compute a better fit of the computed observation point
values us to the actual observations uob by adapting the boundary conditions
according to

bn+1 = bn + α∇F (bn),

where ∇F is the gradient of the aforementioned residual S with respect to the
boundary conditions b. In order to acquire first-order gradient information by
finite difference, one would have to perturb each of the n inputs bi, 0 < i ≤ n.
This requires n + 1 runs of F . Once for each perturbation and once for the
original computation. For n� 1 the gradient accumulation potentially becomes
computationally infeasible.

2.1 Algorithmic Differentiation

AD is the chain rule of differential calculus applied symbolically to each state-
ment of a given code. This can be done automatically by resorting to a compiler
or by overloading the mathematical operations in a source code.

For a multivariate scalar function (e.g. calculation of cost function S) y =
F (x), Rn → R the chain rule may be used in two ways. First, the straightforward
application leading to the tangent-linear model ẏ = ∇F (x) · ẋ, where ẏ is the
directional derivative of the output y with respect to inputs x in direction ẋ.
Notice that in order to accumulate the entire gradient we have to iteratively set
ẋ to each of the n Cartesian basis vector in Rn leading to a runtime cost of
O(n) · cost(F ).

Second, the adjoint model based on the associativity of the chain rule:

x̄ = x̄+∇F (x)
ᵀ · ȳ. (2)

x̄ are called the adjoints of the inputs x, whereas ȳ is the adjoint of the output
y. Notice that the computation of the adjoints is in reverse order of the compu-
tation of the values, thus requiring a complete data flow reversal of a program.
The forward section consists of the computation of the values, whereas the re-
verse section computes the adjoints while using the values saved in the forward
section. Furthermore, it is essential to understand that with one output, the gra-
dient accumulation is achieved by one adjoint computation of the corresponding
adjoint code reducing the runtime complexity to O(1) · cost(F ). Of course, the
constant factor may still be considerable. However, given the independence of
the runtime from the input size n, the adjoint model may end up as the only
feasible solution. All the other options for a gradient accumulation, finite dif-
ference and tangent-linear model, will become computationally too expensive at
some input size n� 1.

The discrete approach with the tangent-linear and adjoint model may be
applied through handwritten code, where the original code is transformed
statement-wise into the derivative code. This work is very tedious and error
prone. AD tools do this mechanical work semi-automatically. Source transfor-
mation tools are similar to the handwritten transformation, whereas operator
overloading tools achieve the same goal by overloading every intrinsic operation.
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Compared to the numerical method of finite difference, there are two advan-
tages. One, we are able to extract exact derivatives with up to machine precision,
whereas the precision of finite difference is largely dependent on the spacing fac-
tor h. Second, a similar method to the adjoint model is not available while using
finite difference. It shifts the complexity from O(n) · cost(F ) to O(m) · cost(F ),
with n and m being the inputs and outputs, respectively. This unique feature
makes the adjoint model crucial for optimizations where the cost function is
scalar, while being influenced by a large number of parameters.

2.2 PETSc

As mentioned above, we use a tutorial example as a test case in PETSc. We chose
tutorial 5 of the SNES solver. It implements a solution of the Bratu differential
equation (1). We had to make a few amendments to the code which will be
explained later in this paper. The source code is available on our website 4.

The parameter λ is set to 6. We used a value of 1.0 in order to have a more sta-
ble system. The other changes are only related to dco/c++ and will be explained
in the next section.

We compiled PETSc with the default options, although we provide a custom
BLAS and LAPACK library described in Sect. 3.1 and 3.2. The MPI calls in
PETSc involving data of type PetscReal and PetscScalar are all replaced by
adjoint MPI calls. The aforementioned MPI calls may be separated in two types.
For one there are several collective invocations of Allreduce. The other one is
the persistent MPI communication in src/vec/vec/utils/vpscat.c. Both will be
dealt with in Sect. 4.

3 Adjoint Model Generation Using dco/c++

dco/c++ is implementing AD by overloading in C++. The range of capabilities
covered by dco/c++ is driven by various applications and research subjects.
Current projects are in the area of financial engineering, atmospheric physics, or
fluid mechanics. dco/c++ is also used in research on the generation of discrete
adjoints using parallel environments, in particular OpenMP and MPI as, e.g.,
used in PETSc.

The objective is to provide an efficient and robust tool for the computation of
projections of derivatives of arbitrary order of a function given as an implementa-
tion in C/C++, while focusing on the adjoint mode. Additionally, the capability
of coupling the robust overloading technique with optimized computer generated
or hand-written external computations of adjoint projections is provided. This
is used extensively for the adjoining of BLAS.

During various collaborative research and development projects, we were able
to compute fast adjoints for real world applications. In some cases [7] we achieved
a factor of roughly 3.5 for the ratio

R =
Run time of one adjoint computation

Run time of one function evaluation
.

4 https://www.stce.rwth-aachen.de/trac/petsc
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For being able to achieve such a factor, we make heavy use of the C++ template
engine and we exploit algorithmical and mathematical insight, e.g., statement-
level preaccumulation.

A standard run for computing adjoints using dco/c++ consists of a so called
forward run being the forward section and generating a tape followed by exactly
one reverse run being the reverse section in case of a scalar cost function. This
structure follows from the requirement of making all computed values available in
reverse order (data flow reversal). The forward run saves all required information
in the tape used during the reverse run. This structure is also applied to the
part of PETSc, which is to be differentiated. As PETSc is using BLAS as well
as LAPACK library routines for numerical methods, we have to deal with those
libraries, too. The treatment is sketched in the following subsections.

3.1 BLAS

BLAS (Basic Linear Algebra Subprograms) [8] is used by PETSc for non-parallel
tasks and is a set of basic routines operating on scalars, vectors and matrices
of type ’double’ including, e.g., scaling of a vector by a scalar, or matrix vector
products. The implementation of those basic operations is typically optimized
for performance by manufacturers for the specific hardware that is running the
computation. It is therefore desirable to stick to the supported BLAS implemen-
tation – at least during the forward run of the overloaded program execution. We
therefore do not overload the original routines to avoid killing cache performance.
Due to the reasonable amount of different routines, we provide hand-written ad-
joint routines of the BLAS routines used in PETSc, which rely on the original
BLAS implementation whenever possible. This includes the computation of the
function values during the forward run. We expect this to produce at least bi-
nary identical results to the non-overloaded function run, which is desirable for
verification purposes. Additionally we expect a better runtime compared to a
reimplementation of the BLAS routines.

3.2 LAPACK

LAPACK (Linear Algebra PACKage) [9] is also used by PETSc for non-parallel
tasks. In contrast to BLAS this library implements algorithms for general linear
algebra problems like linear systems (called, e.g., by PETSc’s SNES) or eigenvalue
problems. The implementation of LAPACK includes calls to BLAS routines for all
basic vector and matrix operations. Because LAPACK comes with a large num-
ber of different specialized functions (in total ca. 1600 routines) we chose this time
to differentiate those routines in a black box way; change the datatypes in LA-
PACK to our dco/c++ datatype. Again, hand-written and optimized derivative
code would yield better performing code. We therefore aim to provide those opti-
mized adjoint routines of LAPACK step by step in a project-driven fashion. As in
BLAS, those hand-written routines should of course reuse the original LAPACK
ones. This is useful for efficiency reasons as well as for keeping the code up-to-date
with the current LAPACK implementation. This will include also the possibility
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of switching to GPU-enabled LAPACK (see e.g. MAGMA [10]) or other LAPACK
implementations.

4 Adjoint MPI and PETSc

The reversal of MPI [11] communication in AD is directly related to the implied
data flow reversal. The adjoint MPI library is specifically designed to reverse
the MPI communication. It is separated from the actual AD tool involved (here
dco/c++) and therefore only traces the communication itself. The actual data
(values and adjoints) is stored through an AMPI interface in the data structures
of the AD tool.

Tracing communications amounts to tracing data dependence in between
the processes’ address space. As a formalism, we apply the PGAS (Partitioned
Global Address Space) notation to the MPI communication.

Table 1. Adjoint communication of an MPI Send and MPI Recv between two pro-
cesses P1 and P2

MPI MPI Send(x,P2), MPI Recv(x,P1)

PGAS P2.x=P1.x

Adjoint PGAS P1.x̄+=P2.x̄; P2.x̄=0

Adjoint MPI MPI Recv(x̄,P2), MPI Send(x̄,P1)

Sending and receiving data are actual assignments in PGAS that need to be
adjoined according to the incremental adjoint model (2). Every communication
is transformed into an incremental communication. The adjoint MPI library
itself as well as the consequences of the incremental communication and the
data flow reversal have been subject to various papers covering blocking, non-
blocking, collective [12] and one-sided communication [13]. The MPI calls in our
PETSc implementation were tracked using a custom MPI header in order to
pinpoint the MPI calls that need to be adjoined. In summary, there were two
types of MPI communication. First, persistent communication consisting of an
MPI Send/Recv init, MPI Start, MPI Wait and MPI Request free. And second
collective communication in the shape of a MPI Allreduce.

4.1 Persistent Communication

The reversal of non-blocking communication has already been subject of several
publications [14,15]. They cover the reversal of Isend/Wait and Irecv/Wait pairs.
In a nutshell, the reversal logic of the blocking send and receive is preserved. The
send becomes a receive and the receive becomes a send. However, the ordering
of the communication pairs Isend/Wait, Irecv/Wait is reversed. In the reverse
section the Wait becomes either an Isend or Irecv whereas the Isend and Irecv
both become a Wait. There are other effects which will not be discussed in this
paper.
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In our PETSc code we do not have pairs of non-blocking Isend/Wait
and Irecv/Wait, but triplets of persistent Recv init/Start/Wait and
Send init/Start/Wait calls. Persistent communication is similar in logic to the
non-blocking pairs. As stated by the MPI standard the purpose of persistent
communication is:

Often a communication with the same argument list is repeatedly exe-
cuted within the inner loop of a parallel computation. In such a situation,
it may be possible to optimize the communication by binding the list of
communication arguments to a persistent communication request once
and, then, repeatedly using the request to initiate and complete mes-
sages.

Thus, an MPI Start may be called several times upon the same initialization us-
ing MPI Send/Recv init. MPI predicts a potential reduction of the communica-
tion overhead due to the persistent request. The requests need to be deallocated
explicitly using MPI Request free as opposed to an implicit deallocation at the
MPI Wait using non-blocking communication. That logic should be preserved
in adjoint MPI. In particular, we want to correctly and efficiently adjoin the
multiple MPI Start calls.

Init(Send or Receive)

Start

Wait

Request free

(a) Forward Communication

Request free

Wait

Start

Init(Receive or Send)

(b) Reverse Communication

Fig. 1. Adjoint communication of a Init, Start, Wait and Request free

As mentioned in the previous section, the core principle of AD by overloading
is that we tape each step of the forward section in order to generate a correct
adjoint section. The same holds for adjoint MPI. We trace each of the involved
routines in the forward section along with its arguments. We now go step by step
through the reverse section for each routine and look at what has to be stored
in the forward section:

Request free. The deallocation of the requests marks the end of the persistent
communication instance. Therefore, in the adjoint section this marks the begin-
ning of the adjoint persistent communication. We allocate the adjoint buffer here
and call MPI Send/Recv init depending on the opcode (Send or Recv) that was
saved during the forward section.
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Wait. The Wait marked the end of a particular communication where the buffer
was either received or sent. That way we will start here the adjoint communi-
cation with interchanged source and target. All this information was saved in
the forward section, conveyed to the MPI Wait through additional information
stored in the request (see non-blocking communication) at the MPI Start.

Start. MPI Start marked the start of actual data communication. In the adjoint
case this amounts to a Wait. We have to make sure, that the adjoints have arrived
at that point, since they may be read from now on.

Init. By symmetry, the MPI Send/Recv init marks the end of the the adjoint
communication. We may release the requests with an MPI Request free.

4.2 Collective Communication

For the reduction of residuals and certain simulation parameters, several re-
duction operations are involved in PETSc. They are all of the Allreduce kind
where the result is accessible on all the processes. The operations are limited to
MPI MAX, MPI SUM.

Maximum Operation

Value Adjoint

(y,m) =
p

max
i=1

xi, x̄m = ȳ; ȳ = 0

with xm = y

For the maximum operation we need to save the process rank m of the element
that is the maximum. Only this element has a non zero partial derivative with
respect to the output. Hence, in the reverse section the adjoint of the result on
all processes is summed up and only sent to the process that had the maximum
value.

Sum Operation

Value Adjoint

y =
p∑

i=1

xi x̄i+ = ȳ; ȳ = 0

In case of a sum, the adjoint has to be propagated to all processes involved. The
adjoint communication amounts to a broadcast.

5 Results

As has been mentioned before, this paper is meant as a proof of concept that
fully discrete adjoints of PETSc are possible with the available tools. However, a
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conclusion on the performance of discrete adjoint must be dismissed at this time.
To understand why, we provide the following benchmarks made on the RWTH
Aachen University cluster. All tests were conducted on the MPI nodes of the
Bull HPC-Cluster. They are 2-socket systems equipped with Intel Westmere EP
processors with 24GB memory each.

Memory Usage Original RT (s) Adjoint Mode RT (s)
1 Process 16GB 0.22 3.8

2 Processes 8GB 0.14 3.45

4 Processes 4GB 0.09 2.3

With a grid of only 128x128 we reach a memory usage of 16GB in adjoint
mode. The time it takes to trace the forward section as well as the adjoint
computation is 3.8s. The problem size is a hard limit. However, with a runtime
of only 3.8s seconds we are far from any real world application. Increasing the
number of processes for the 128x128 to more than 4 is not reasonable either,
since the overhead due the communication takes its toll. Therefore we are quite
limited in the possible benchmarks. In the end they should prove that there is
some speedup and that our method is on the right track.

To remedy the situation, one has two choices. Either apply a checkpointing
scheme [16] or replace the computationally most expensive part, namely the linear
solver. Replacing the linear solver with a continuous computation of the adjoints
similar to the BLAS routines in this paper will considerably reduce the memory
hit. This is the next step outlined in the coming outlook

6 Summary

We proved that the combination of dco/c++ and Adjoint MPI is robust enough
to compute semi-automatic discrete adjoints of PETSc. Four distinct steps were
necessary. First, dco/c++ had to be applied to PETSc by overloading all vari-
ables of type PetscReal and PetscScalar. Second, BLAS had to be continuously
adjoined by writing adjoint BLAS functions by hand. Third, the LAPACK rou-
tines were adjoined using again dco/c++. Finally, the adjoint MPI library was
used to adjoin all the MPI communication.

7 Outlook

While relying on AD tools, discrete adjoints are the straightforward way of ad-
joining a given code. However, they do not always match the desired derivative
information of the simulated phenomenon. They only represent a differentiated
algorithm that models a given phenomenon. Hence, applying for example a con-
tinuously differentiated linear solver in PETSc might yield different results and
runtime behaviour. However these results may better fit the actual simulated
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phenomenon. This requires formulating the adjoint linear system that computes
the adjoints of the original linear system. Unfortunately, this requires consider-
able changes to the PETSc code base, but definitely worth further investigations.
For the time being only the BLAS routines are adjoined continuously.

The current case study should be superseded by a real world application
in the future. The driving application behind this project are discrete adjoints
of PADGE, an adaptive discontinuous Galerkin solver for 3D turbulent flow
developed by the German Aerospace Center (DLR).
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Abstract. Transactional Memory (TM) offers new possibilities for al-
gorithmic design. This paper evaluates TM implementations of two al-
gorithmic variations of the wide-spread conjugate gradients method (CG)
regarding their performance on multi-core CPUs employing TM. Through
applying tools for TM that visualize the TM application behavior, we
show that the main bottleneck for both is the waiting times at barriers
and illustrate the implementation of reduction operations with TM in a
beneficial way. Performance monitoring through using the PAPI inter-
face uncovers the quantity and type of instructions that each algorithms
requires. This basic work is the key for environment-aware numerics as
well as a hint for software developers who plan to use TM.

1 Motivation through Previous Work

Transactional Memory (TM) has been proposed to facilitate the synchronization
of multiple threads in a parallel shared memory program and promises perfor-
mance gains through optimistic concurrency. In previous work [8], we investi-
gated the possibility to apply Software Transactional Memory to the method of
Conjugate Gradients (CG) formulated according to Saad’s algorithm [11] with-
out preconditioning. The method of Conjugate Gradients is a solver for linear
systems of equations that is frequently used for problems in the area of structural
mechanics and computational fluid dynamics. Due to its relevance, we investigate
optimization opportunities through an in-depth analysis of the TM application’s
behavior and explore methods for its optimization in this paper.

Previous experiences with hardware TM systems show that transactions that
include more shared memory updates show a better performance in case the
contention between transactions is low [12]. Since contention has been low in
previous experiments, we searched for a formulation of the CG algorithm in
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the literature that enables larger transaction sizes to transfer the optimization
strategy from HTM to STM and found pipelined CG [10,15].

In this paper we demonstrate the implementation of the pipelinedCG algorithm
with TM and other OpenMP-based synchronization primitives to evaluate and
compare these variants and illustrate the run time behavior in a post-processing
step. In order to achieve this, we apply the components of a framework for the
Visualization and Optimization of TM Applications (VisOTMA) to the resulting
pipelined CG variant and its previous version in order to compare its performance,
convergence behavior, and utilization of the microarchitecture.Comparedwith re-
lated work in tools for Transactional Memory applications, our approach targets
the C programming language and complements TM events with readings of per-
formance counters through the use of the PAPI interface [16]. Through this addi-
tional information, we reveal the cause that restricts performance with TM and
the pipelined CG variant whereas a comparison with the previous version of CG
shows the main differences in utilization of the microarchitecture.

2 Pipelined Conjugate Gradient Solver with OpenMP

Inspired by Meurant’s algorithm [10], Strzodka and Göddeke refine the pipelined
Conjugate Gradient solver to enable mixed precision and pipelined algorithms
that accurately solve partial differential equations with low precision compo-
nents on FPGAs [15]. From these collection of proposed algorithmic variants of
the conjugate gradient method, we select the basic pipelined CG variant with
three reduction operations that should be combined in one transaction. The idea
behind the pipelined CG is that all computations on vector elements should be
done in parallel. With this rearrangement, it becomes feasible to stream a vector
instead of having to store all elements of the vector. First, Strzodka and Göddeke
reorder all vector operations so that these can be performed in parallel [15]:

uk+1 = uk + αkpk, (1)

rk+1 = rk − αkqk, (2)

pk+1 = rk+1 + βkpk, (3)

qk+1 = Apk+1. (4)

The main contribution of this algorithm is to eliminate the requirement to com-
pute all elements of the vector rk+1 in order to compute pk+1. Strzodka and
Göddeke lift this restriction through introducing σk = ρk+1 that does not re-
quire knowledge of rk+1: σk = αk(αkqk ·qk −pk ·qk). Then the scalar products
are computed after the reordered vector operations shown in Equation 1:

ρk+1 = rk+1 · rk+1, (5)

αk+1 =
ρk+1

pk+1 · qk+1
, (6)

σk+1 = αk+1(αk+1qk+1 · qk+1 − pk+1 · qk+1), (7)

βk+1 =
σk+1

ρk+1
. (8)
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This variant is useful in the case of a sparse matrix A that enables to compute
one step of the algorithm in a fully pipelined fashion. The pipelined CG variant is
suited in case the matrix A is sparse and does not require global communication.
Therefore, the pipelined CG is e.g., applicable for solving the stationary heat
equation without heat source.

The main loop of the pipelined CG with OpenMP iterates until |rk+1| <= ε
being the convergence criteria for the algorithm. In the following, we will discuss
the mapping of the algorithm from the Equation 1 and Equation 5 to this im-
plementation. First, uk+1 and rk+1 are both computed according to Equation 1
and Equation 2 in an OpenMP for loop. Then, we compute pk+1 as described in
Equation 3 and reset the vector q. The sparse matrix multiplication, involving
A and p, takes place according to Equation 4. The implementation resets the
scalar variables and performs three reductions to compute the scalar products
rk+1 · rk+1, pk+1 · qk+1, qk+1 · qk+1. In comparison with the CG according
to Saad [11], that demanded two separate reductions, the computation with
pipelined CG requires three reductions. The advantage is that one enlarged crit-
ical section or transaction embraces all three of them. These three reductions
implement the vector operations of Equation 5, 6, and 7. Please note that all of
the above steps except resetting the scalar variables are performed in parallel.
Computing Equation 8 again requires to serialize the execution and compute
the values of αk+1, σk+1, and βk+1. Finally we increment the number of iter-
ations and compute the norm of rk+1. The result is compared with ε in the
while statement. In case the norm of rk+1 already satisfies the condition, the
implementation will output the result and also compute the error. Otherwise,
the algorithm performs another iteration of the loop until reaching convergence.

Our implementation uses OpenMP pragmas to mark parallel for loops and
the single directive to implement the algorithm as described before. Note that
our approach does not take advantage of the fact that pipelined CG supports
the streaming of a vector. Instead our approach aims to implement the reduc-
tion, that can now be made three times larger than before, assuming a constant
vector size. This different reduction pattern enables us to use larger transac-
tions (or critical sections) and to implement them in two different ways. These
different ways of implementing the reduction pattern are compared and ana-
lyzed in the following. The Reduction case uses the OpenMP reduction concate-
nating three reductions in one pragma: #pragma omp for reduction(+:rho)

reduction(+:qq) reduction(+:pq) schedule(static). The three reductions
are implemented in three ways: Fast, Slow Long, and Slow Short. Fast executes
the accumulation with a thread-local variable over a thread private part of the
vector. After finishing this calculation, each thread performs one update to add
the thread-local variable (e.g., pq priv) to the shared memory one (e.g., pq).
Thus, contention between threads stems from a single update of the shared
memory variable. In the following th represents the number of parallel threads
and dim the dimension. Regardless of dim the Fast pattern leads to th updates
of the shared variable which is a huge gain compared to the Slow which updates
the shared variable directly with each computation. Of course, the complexity to
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implement the Fast pattern is slightly higher. The Fast version of pipelined CG
updates all three shared memory variables in one transaction/critical section.
This enlarges the size of the transaction because instead of one update with nor-
mal CG for each of the reduction, there are three updates in pipelined CG. Slow
Long updates the three shared memory locations in one transaction or critical
section and does not use a thread-local variable for storing intermediate results.
Slow Short also does not use thread-local variables to store intermediate results
and performs each update of a shared memory location in a dedicated transac-
tion or critical section. Thus, both Slow variants require the same amount of
updates of the shared variable and differ only in the granularity of the applied
synchronization mechanism. Slow updates the shared variable dim times. If the
work is distributed evenly among th threads, each threads performs dim

th updates.
For dim� th this pattern creates high contention on the shared variable because
each thread accesses it multiple times. In a multi-core system this will result in
coherency traffic that will invalidate the datum in the other caches, leading to
performance loss. With TM, this leads to an increasing number of conflicts and,
hence, rollbacks. For OpenMP atomic, the Fast version uses thread-local vari-
ables whereas the Slow version does not. If possible omp atomicmaps to a native
atomic instruction that updates one memory location without being interrupted
by other processors. This atomicity is limited to one memory location and can
not be extended. Thus, the Atomic Fast uses the thread-local variables to update
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a shared memory location and Atomic Slow updates a shared memory location
for each new value. Since each value must be updated with a separate atomic
instruction, there is no need to distinguish between long and short sections.

The execution time of the pipelined CG method is depicted in Figure 1. The
y-axis holds the average execution time in seconds over 17 runs and the x-axis the
number of threads. Again, the Fast versions of Atomic, Critical, and Reduction
show a nearly identical behavior and are hard to distinguish. Fast STM also has
a slightly higher execution time than e.g., Reduction. The ranking of the slow
variants is as follows: Atomic Slow Long, Critical Slow Long, STM Slow Long,
Critical Slow Short, STM Slow Short. Again, neither slow variant achieves the
run time of the respective single thread. Thus, all slow variants show a slowdown
for the execution with more than two threads.

The interesting insight is that neither of the short variants (STM or critical)
performed as good as or better than a long variant. Thus, enlarging the granular-
ity of critical sections under the given conditions results in a better performance,
but the only way to achieve a speedup is the use of thread-local variables that
avoid frequent updates of the shared memory and hereby reduce contention for
shared locations.

2.1 Comparison of CG and Pipelined CG

Table 1. Parameters for example problem solved
with two implementations of the CG method

Dimension Epsilon Start vector Solution
5 ∗ 106 1 ∗ 10−13 0 1

In order to compare normal CG
and pipelined CG we employ
them to solve the one dimen-
sional stationary heat equation
without heat source which has
been discretized by using finite differences with a 3-point stencil.

The key parameters for the following experiments are shown in Table 1. Both
CG variants execute a loop that iterates over the numerical algorithm. Each
iteration refines the current solution and herewith reduces the error (ek = ‖usol−
uk‖). Usually, the error cannot be computed since the exact solution is unknown.
In our experiments we have chosen the right hand side of the problem Au=b
according to the formula bj =

∑n
i=1 aj,i with A ∈ Rn×n, b, u ∈ Rn and n ∈ N. As

predicted by the theory, the error decreases monotonically. This is not sufficient
to guarantee that both formulations of the CG work correct, but it is a strong
indicator. Hence, we check the computed solution against the known solution to
verify that both CG versions reach the correct result.

In order to compare a more realistic scenario, we have chosen an absolute
stopping criteria for the residual in our experiments. The algorithm iterates as
long as the residual ‖b−Auk‖ is greater than a given epsilon.

In practice the convergence may be perturbed through round-off errors that
affect the numerical stability. Whether an algorithm is suited to find a solution
to a given problem also depends on the algorithmic details as well as the im-
plementation. Thus, a different formulation of the same algorithm may show a
different convergence behavior. Moreover, even implementation details such as
the order of elements when summing up a vector, may have an impact on the
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convergence behavior. Thus, the impact of new technologies, like TM, on the
convergence behavior has to be researched thoroughly. For more experiments
with CG see [8]. We implement both CG variants in the programming language
C and parallelize them, as described earlier, with OpenMP and the described
synchronization mechanisms. GCC in version 4.6.1 generates both executables
with the compiler options -fopenmp -O3 -g3 that affect performance.
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Fig. 2. Aborts with normal and pipelined CG with the number of threads ranging from
1 to 24 on W1

Software Transactional Memory Characteristics – The transactional char-
acteristics of both CG variants are discussed first because these may dominate
the utilization of architectural resources. For example a transaction that per-
forms mainly integer operations and aborts frequently and, thus, repeats these
operations multiple times contributes a larger share of integer operations than
a transaction that successfully commits. Hence, large abort rates may change
the utilization of the functional units. Figure 2 depicts the absolute number of
aborted transactions of all threads for the Fast (left hand side) and the Slow
variants (right hand side) of normal CG and pipelined CG. All of the presented
numbers are averages over 17 runs.

For the Fast version, illustrated in Figure 2(a), the number of aborts is below
100 for up to 16 threads and normal CG and pipelined CG. With 24 threads,
it rises to ≈ 340 for normal CG and ≈ 1800 for pipelined CG. Here, this is the
only configuration for the Fast versions where normal CG has significantly less
aborts than pipelined CG. This is remarkable because pipelined CG executes
three times the number of loads and stores per transaction and herewith should
have a higher probability of conflict. The fact that all of these transactions access
the same three variables in the same order leads to a scenario where a transac-
tion will conflict with another transaction if they both run at the exact same
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time. As pipelined CG requires more time to execute the longer transactions,
this increases the conflict probability because a longer time inside a transaction
although means a longer time in which a second thread may start a transaction
and conflict with the former. This effect is dominating only at 24 threads be-
cause prior to that, both versions of CG perform equal. The relative abort rate
for Fast with 8 threads is ≈ 3.5% for normal CG and ≈ 6% for pipelined CG.

Figure 2(b) demonstrates the reason for the missing performance with the
Slow variants. For only 2 threads, normal CG already has ≈ 460∗106 aborts. For
pipelined CG, the aborts for 2 threads are≈ 440∗106 for the short and≈ 687∗106
for the long variant. The reason for these high aborts are the transactions that
update a single variable (or in the best case three variables) for each iteration of
the loop. Due to these high abort numbers, the threads will not make progress
and, hence have long execution times with the Slow variants.
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(b) Visualization of pipelined CG

Fig. 3. Visualization of normal and pipelined CG with 8 threads on W1. Zoomed to
relate transaction time (in green) with barrier wait time (in orange).

After studying the transactional characteristics in the previous paragraph,
we would like to demonstrate the additional values and the flexibility of the
VisOTMA framework by doing an in-depth analysis of the Fast versions of nor-
mal CG and pipelined CG. When first visualizing the TM application behavior
with Paraver, we found many gaps between extremely small transactions. Thus,
only a high zoom level would allow us to find the aborted transactions. After
investigating these cases and finding that the overall TM performance for Fast
is good (also cf. to previous paragraph), we decided to focus on the blank spots
between the transactions. A code study reveals that, apart from computation,
OpenMP constructs are most likely to consume the missing time in between the
transactions. Both CG variants comprise 5 OpenMP for loops. By default these
for loops come with an implicit barrier at the end of the execution. Thus, the
fastest thread waits for the slowest one to complete its work and reach the bar-
rier. OpenMP enables the programmer to specify the nowait clause to omit this
barrier [4]. On the other hand, there is also the explicit #pragma omp barrier

construct that produces a barrier. These manifold possibilities to generate barri-
ers in OpenMP code and the importance for CG code convinced us to investigate
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the barrier wait times to relate these to the transaction execution times. We ob-
tain the information about TM events through a tracing machinery [13] that
features low intrusiveness and also access to hardware performance counters
through PAPI [16]. The information is analyzed in a post-processing step and
transformed into traces for the Paraver1 tool for visualization. In our particular
setup using the GCC compiler, libgomp is the OpenMP run time system and
GCC does the expansion of OpenMP pragmas and the outlining of functions. In
order to implement timed barriers, we needed to intercept the call to the original
barrier function with one that would record the cycle counter of the processor on
entry and exit of the barrier. These readings are then written to a thread-local
trace file. Using the timed instead of the regular barriers is achieved through
a simple replacement on assembly level. Through simply replacing the call to
GOMP barrier with a call to ote GOMP barrier, we achieved the desired func-
tionality. Thus, ote GOMP barrier records the cycle counter before and after
calling GOMP barrier. Separate additional trace files for tracing these barriers
are necessary because barriers are independent of executing transactions and the
STM may not be initialized when calling a barrier. Thus, a post-processing step
merges the barrier traces with the TM traces. Both trace files have the same time
base and, hence, correlate in time. The visualization of the merged traces requires
to register the new events at the various processing stages, but is straightforward.
Figure 3 shows results of this effort for normal CG and pipelined. The picture is
a timeline view of barriers and transactions executed by 8 threads. The threads,
denoted with T1 to T8, each occupy a slot on the y-axis. The x-axis shows the
progress of time. The orange bars demonstrate the wait time of a particular
thread at a barrier. These orange bars dominate Figure 3(a). Green bars illus-
trate how much time the execution of a transaction with a commit takes. These
bars are present on the right hand side of Figure 3(a) and are extremely small.
Figure 3(b) illustrates the run time behavior of the pipelined CG variant that
exercises a similar execution pattern. Again, transaction times are hardly visible
although these transactions have three times the amount of loads and stores of
those transactions in normal CG. Additionally, we discover that pipelined CG
shows a small perturbation that influences the start time of the transactions. In
Figure 3(a) with normal CG all threads start their transaction at almost exactly
the same point in time, whereas Figure 3(b) reveals that three threads start
executing the transaction before all other threads. This behavior of pipelined
CG is likely the cause for a better conflict rate than expected. Surprisingly, both
figures highlight that the wait times at the barriers (colored in orange) exceed
the execution time of a transaction (shown in green). These findings not only
motivate research to avoid or omit these barriers, but also show that in a very
regular setting, such as with the CG algorithm, TM can not show its strong
side because the effects of optimistic concurrency, which enable some threads to
proceed faster than others, are potentially turned into wait times at the barriers,
waiting for the slowest thread that has been aborted to enable the progress of
the fast threads.

1 Paraver Website http://www.bsc.es/paraver

http://www.bsc.es/paraver
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Fig. 4. Speedup with normal and pipelined CG with the number of threads ranging
from 1 to 24 on W1

Speedup – We compare the achieved speedup of normal CG with that of

pipelined CG. The speedup is computed according to S(n) = T (1)
T (n) , where T (n)

denotes the execution time with n threads and T (1) is the respective single
thread execution time (cf. to [7]). Often Tseq is used instead of T (1) with Tseq

being the serial reference implementation that does not incur the overheads of
a threaded implementation. In these cases, often Tseq < T (1) holds so that the
resulting S(n) would be smaller. Figure 4(a) depicts the speedup for normal CG
whereas Figure 4(b) shows it for pipelined CG (both times on the y-axis). The
x-axis holds the number of threads. Although the plots of the runtimes from
previous sections contain the same information, this plot more evidently shows
a slow down (speedup < 1) for the slow variants and a speedup for the fast
variants. Setting the scale of the y-axis is a compromise to fit all variants on one
plot. This makes identifying the maximum achieved speedup difficult because
of the low resolution in this segment. Therefore, a second plot focuses on
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displaying the results of the fast variants only. Figure 4(c) and Figure 4(d)
show the speedup with a linear scale on the y-axis. This plot illustrates that
the achievable speedup over the respective single thread performance is higher
with pipelined CG, achieving the highest speedup of 2.97 with the regular re-
duction and 24 threads. For normal CG, STM Fast with 8 threads achieves the
best speedup of 2.38. The overhead of the single thread execution has a large
influence on the reported speedups because a larger overhead (e.g., with STM)
leads to a slower execution time. If the speedup is computed relative to this
single thread execution time, this yields a higher speedup because the baseline
is worse. This effect could be avoided by having a fixed serial execution time
for all benchmarked variants. Here, this effect leads to the situation that STM
Fast has a higher speedup for e.g., pipelined CG with 8 threads, but a higher
execution time than e.g., Reduction.

Convergence Behavior – This paragraph presents the results of examining
the convergence behavior of normal CG and pipelined CG applied to a problem
that solves the stationary heat equation without heat source. The parameters
setting is identical with the one that has been shown in Table 1. Both variants
of CG show a consistent convergence behavior across all tested thread counts
and synchronization mechanisms. Normal CG converges after 25 iterations to a
solution that satisfies the criteria. Pipelined CG finds a solution to the prob-
lem that satisfies the convergence criteria after 26 iterations. Therefore, for the
numerical problem solved in this experiment, the choice of the algorithmic vari-
ant has an impact on the convergence behavior. Pipelined CG needs to perform
one additional iteration which is equal to a relative increase of computational
complexity of 4% for the considered problem.
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Fig. 5. Breaking down the total amount of instructions in CG on W1
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Which instruction type contributes the largest share? Figure 5 shows a break-
down of instructions retired into the measured type of instructions. The available
types are: floating point instructions (denoted as PAPI FP INS), branch instruc-
tions (labeled PAPI BR INS), load and store instructions (PAPI LD INS and
PAPI SR INS respectively) and remaining instruction with the label OTHER -
INS. Other instructions have not been measured, but computed as the differ-
ence from the measured ones with the remainder of the retired instructions
(PAPI TOT INS). The Figure has a normalized y-axis that shows 100% of the
retired instructions. Each of the instruction types has a box that represents its
share of the retired instructions. These bars are grouped according to the thread
count and each group shows the used synchronization mechanisms (Reduction,
Critical Fast, STM Fast, and Atomic Fast). The number of threads for each
group is also found below the legend. Figure 5(a) shows the breakdown for nor-
mal CG and Figure 5(b) shows pipelined CG. For both the following trends
can be derived: the share of floating point instructions decreases as the number
of threads increases although the actual number of floating point instruction is
constant. This is due to the fact that the number of other instructions increases
as the number of threads increases. These additional instructions stem from the
spawning/coordinating more threads. For normal CG and Reduction the share
of FP instructions decreases from 22% for 1 thread down to 17% for 16 threads.
Pipelined CG and Reduction yields similar numbers: the FP rate decreases from
25% for 1 thread to 20% for 16 threads. To summarize Figure 5, we conclude
that loads and stores contribute the highest share to the retired instructions
(≈ 40%), floating point instructions contribute ≈ 20% and branch instructions
≈ 15% while other instructions contribute ≈ 25% and become increasingly im-
portant with larger thread counts. The actual number of events varies depending
on the synchronization variants, thread count and algorithmic choice, but the
dominant instructions in our experiments have been loads and stores.

3 Related Work

Different possibilities to realize the concept of Transactional Memory have been
proposed for Software, Hardware, or both [6]. The publications on tool support
for TM are rare. For Software Transactional Memory profiling solutions have
been shown for the programming languages C# [17], Haskell [14], Java [1], and
C [9,2] and for Hardware Transactional Memory for the TCC architecture [3].

In particular, none of these approaches attempted to optimize and evalu-
ate a numerical algorithm through selecting, implementing, and evaluating a
differently formulated variant of the algorithm that promised a higher TM per-
formance. Hence, this work with its insights into the run time behavior and
utilization of the microarchitecture through the two CG variants advances the
state-of-the-art and may inspire other researchers that face the problem of opti-
mizing a numerical algorithms that uses/with TM.
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4 Findings with Variants of CG and Outlook

Our first finding is that the right way of organizing the reductions is key to
performance. A reduction implemented with direct updates of the shared vari-
able, as seen in the Slow synchronization variants, will not yield a speedup over
execution with one thread regardless of the synchronization primitive. Instead
thread-local variables that hold intermediate results, as demonstrated with Fast
synchronization variants, are a requirement to achieve speedups. Moreover, the
pipelined CG with larger transactions is a strong competitor for normal CG be-
cause the number of aborts is modest up to 16 threads. As a downside, pipelined
CG required one more iteration to achieve convergence compared with normal
CG for our example case. For both CG variants, the wait time at the barriers
dominates the time for synchronization in the reduction operations of the Fast
variants. This does not only limit the gains of parallel execution but also masks
the effects of optimizing the TM performance. The regular problem structure
of CG demands that barriers synchronize all threads after a step in the loop.
Thus, a thread that executes a transaction and forces another thread to abort
and execute again, simply waits longer at the next barrier for the remaining
threads. This basic scenario still holds for longer transactions with pipelined CG
and pipelined CG achieves a higher speedup than normal CG. As a result, the
CG algorithm is not suited to demonstrate a performance gain with STM so that
a practical and generic implementation should use the OpenMP reduction for
now. On the other hand, the competitive execution time of pipelined CG with
larger transactions and still moderate contention confirms the basic idea of op-
timizing the TM behavior through employing larger transactions. Moreover, the
large difference in execution time for transactions and barriers suggests that fu-
ture research should target more efficient barrier synchronization or techniques
to elide barriers. Common to both CG variants, we found that higher thread
counts lead to more L2 cache misses that hinder the scalability and that loads
and stores contribute the largest amount to all kinds of instructions retired.

Future work should integrate the profiling of transactions with an existing
profiler for OpenMP applications, e.g., ompP [5], in order to complement the
time spent in transactions and barriers with other OpenMP constructs such as
parallel sections and thread create or destroy. These measurements would com-
plement the performance analysis and a programmer could relate the overheads
associated with STM to those of OpenMP in general.
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Abstract. To face the advent of multicore processors and the ever
increasing complexity of hardware architectures, programming models
based on DAG parallelism regained popularity in the high performance,
scientific computing community. Modern runtime systems offer a pro-
gramming interface that complies with this paradigm and powerful en-
gines for scheduling the tasks into which the application is decomposed.
These tools have already proved their effectiveness on a number of dense
linear algebra applications. This paper evaluates the usability of runtime
systems for complex applications, namely, sparse matrix multifrontal fac-
torizations which constitute extremely irregular workloads, with tasks of
different granularities and characteristics and with a variable memory
consumption. Experimental results on real-life matrices show that it is
possible to achieve the same efficiency as with an ad hoc scheduler which
relies on the knowledge of the algorithm. A detailed analysis shows the
performance behavior of the resulting code and possible ways of improv-
ing the effectiveness of runtime systems.

Keywords: sparse matrices, multifrontal method, QR factorization, run-
time systems, heterogeneous architectures.

1 Introduction

The increasing degree of parallelism and complexity of hardware architectures
requires the High Performance Computing (HPC) community to develop more
and more complex software. To achieve high levels of optimization and fully
benefit of their potential, not only the related codes are heavily tuned for the
considered architecture, but the software is furthermore often designed as a single
whole that aims to cope with both the algorithmic and architectural needs. If
this approach may indeed lead to extremely high performance, it is at the price
of a tremendous development effort and a very poor maintainability: At which
price in terms of code refactoring can we extend a shared-memory software to
handle distributed memory machines if it has been assumed some contiguity
properties on data in memory at the algorithmic level? How to extend the same
software to handle accelerators efficiently if the numerical algorithm itself has
been designed to match a regular data distribution?
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Alternatively, a modular approach can be employed. First, the numerical al-
gorithm is written at a high level independently of the hardware architecture as
a Directed Acyclic Graph (DAG) of tasks where a vertex represents a task and
an edge represents a dependency between tasks. A second layer is in charge of
the scheduling. Based on the scheduling decisions, a runtime system takes care
of performing the actual execution of the tasks, both ensuring that dependencies
are satisfied at execution time and maintaining data consistency. The fourth layer
consists of the tasks code optimized for the underlying architectures. In most
cases, the last three layers need not be written by the application developer.
Indeed, it usually exists a very competitive state-of-the-art generic scheduling
algorithm (such as work-stealing [4], Minimum Completion Time [19]) matching
the algorithmic needs to efficiently exploit the targeted architecture (otherwise,
a new scheduling algorithm may be designed, which will in turn be likely to
apply to a whole class of algorithms). The runtime system only needs to be ex-
tended once for each new architecture. Finally, most of the time, the high-level
algorithm can be cast in terms of standard operations (such as BLAS in dense
linear algebra) for which vendors provide optimized codes. All in all, with such a
modular approach, only the high-level algorithm has to be specifically designed,
which ensures a high productivity. The maintainability is also guaranteed since
the use of new hardware only requires (in principle) third party effort.

The dense linear algebra community has strongly adopted such a modular ap-
proach over the past few years [10,17,1,8] and delivered subsequent production-
level solvers. However, beyond this community, only few research efforts have
been conducted to handle large scale codes. The main reason is that irreg-
ular problems are complex to design with a clear separation of the software
layers without inducing performance loss. On the other hand, the runtime sys-
tem community has strongly progressed, delivering very reliable and effective
tools [6,7,14,5] up to the point that the OpenMP board is reconsidering its task-
ing model 1 with respect to that approach.

This paper evaluates the usability of runtime systems and of the associated
modular approach in the context of complex applications, namely, the multi-
frontal QR factorization of sparse matrices [3], which yields extremely irregular
workloads, with tasks of different granularities and characteristics as well as
a variable memory consumption. For that, we consider a heavily hand-tuned
state-of-the-art solver for multicore architectures, qr mumps [9], we propose an
alternative modular design of the solver on top of the StarPU runtime system [5]
and we present a thorough performance comparison of both approaches on the
architecture for which the original solver has been tuned. The penalty of delegat-
ing part of the task management system to a third party software, the runtime
system, is to be regarded with respect to the impact of the numerical algorithmic
choices; for that purpose, we also discuss the relative performance with respect
to another state-of-the-art multifrontal QR solver for multicore architectures,
the SuiteSparseQR package [11], referred to as spqr.

1 http://openmp.org/wp/presos/SC12/SC12_State_of_LC.2.pdf

http://openmp.org/wp/presos/SC12/SC12_State_of_LC.2.pdf
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2 Multifrontal QR Factorization

The multifrontal method, introduced by Duff and Reid [12] as a method for
the factorization of sparse, symmetric linear systems, can be adapted to the
QR factorization of a sparse matrix thanks to the fact that the R factor of a
matrix A and the Cholesky factor of the normal equation matrix ATA share the
same structure. As in the Cholesky case, the multifrontal QR factorization is
based on the concept of elimination tree [18]. This graph, which has a number
of nodes that is typically one order of magnitude or more smaller than the
number of columns in the original matrix, expresses the dependencies among the
computational tasks in the factorization: each node i of the tree is associated
with ki unknowns of A and represents an elimination step of the factorization.
The coefficients of the corresponding ki columns and all the other coefficients
affected by their elimination are assembled together into a relatively small dense
matrix, called frontal matrix or, simply, front, associated with the tree node.
The multifrontal QR factorization consists in a tree traversal in a topological
order (i.e., bottom-up) such that, at each node, two operations are performed.
First, the frontal matrix is assembled by stacking the matrix rows associated
with the ki unknowns with uneliminated rows resulting from the processing of
child nodes. Second, the ki unknowns are eliminated through a complete QR
factorization of the front; this produces ki rows of the global R factor, a number
of Householder reflectors that implicitly represent the global Q factor and a
contribution block formed by the remaining rows and that will be assembled
into the parent front together with the contribution blocks from all the front
siblings. A detailed presentation of the multifrontal QR method, including the
optimization techniques described above, can be found in Amestoy et al. [3].

The classical approach to the parallelization of the multifrontal QR factoriza-
tion [3,11] consists in exploiting separately two distinct sources of concurrency:
tree and node parallelism. The first stems from the fact that fronts in separate
branches are independent and can thus be processed concurrently; the second
from the fact that, if a front is big enough, multiple processes can be used to
assemble and factorize it. The baseline of this work, instead, is the paralleliza-
tion model proposed by Buttari [9] in the qr mumps software which is based on
the approach presented earlier in related work on dense matrix factorizations
by Buttari et al. [10] and extended to the supernodal Cholesky factorization of
sparse matrices by Hogg et al. [15]. In this approach, frontal matrices are par-
titioned into block-columns, which allows one to decompose the workload into
fine-grained tasks. Each task corresponds to the execution of an elementary op-
eration on a block-column or a front; five elementary operations are defined: 1)
the activation of a front consists in computing its structure and allocating the
associated memory, 2) panel factorization of a block-column, 3) update of a
block-column with respect to a previous panel operation, 4) assembly of the
piece of contribution block in a block-column in the parent front and 5) cleanup
of a front which amounts to storing the factors aside and deallocating the mem-
ory allocated in the corresponding activation. These tasks are then arranged into
a DAG where vertices represent tasks and edges the dependencies among them.
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Figure 1 shows an example of how a simple elimination tree (on the left) can be
transformed into a DAG (on the right); further details on this transition can be
found in the paper by Buttari [9] from which this example was taken.

Fig. 1. An example of how a simple elimination tree with three nodes is transformed
into a DAG in the qr mumps code. Vertical, dashed lines show the partitioning of fronts
into block-columns. Dashed-boxes group together all the tasks related to a front.

The execution of the tasks is guided by a dynamic scheduler which allows
the tasks to work asynchronously. This approach is capable of achieving higher
performance than the classical one thanks to the fact that tree and node types
of parallelism are replaced by a single source, that is, DAG parallelism. This
provides a higher amount of concurrency since dependencies are defined on a
block-column basis rather than a front basis, which for instance allows one to
start working on a front even if its children are not completely factorized. The ex-
ecution mode, moreover, is more suited to multicore based architectures, as also
shown in other related papers [10,15], because, unlike classical approaches [11,3],
it does not suffer from the presence of heavy synchronizations.

3 The Task-Based StarPU Runtime System

As most modern task-based runtime systems, StarPU aims at performing the
actual execution of the tasks, both ensuring that the DAG dependencies are sat-
isfied at execution time and maintaining data consistency. The particularity of
StarPU is that it was initially designed to write a program independently of the
architecture and thus requires a strict separation of the different software layers:
high-level algorithm, scheduling, runtime system, actual code of the tasks. We
refer to Augonnet et al. [5] for the details and present here a simple example
containing only the features relevant to this work. Assume we aim at executing
the sequence fun1(x, y); fun2( x); fun1(z, w), where funi,i∈{1,2} are functions ap-
plied on w, x, y, z data; the arguments corresponding to data which are modified
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Fig. 2. Basic StarPU-like example (left) and associated DAG (right). Arguments cor-
responding to data that are modified by the function are underlined. The id1 → id2 de-
pendency is implicitly inferred with respect to the data hazard on x while the id1 → id3
dependency is declared explicitly.

by a function are underlined. A task is defined as an instance of a function on a
specific set of data. Because of possible data hazards [2] (here on x between fun1

and fun2), a so-called superscalar analysis [2] has to be performed to ensure that
the parallelization does not violate dependencies. While CPUs implement such a
superscalar analysis on chip at the instruction level [2], runtime systems imple-
ment it in a software layer on tasks. A task and the associated input/output data
is declared with the submit task instruction. This is a non blocking call that
allows one to add a task to the current DAG and postpone its actual execution to
the moment when its dependencies are satisfied. Although the API of a runtime
system can be virtually reduced to this single instruction, it may be convenient
in certain cases to explicitly define extra dependencies. For that, identification
tags can be attached to the tasks at submission time and dependencies are de-
clared between the related tags with the declare dependency instruction. For
instance, an extra dependency is defined between the first and the third task in
Figure 2 (left). Figure 2 (right) shows the resulting DAG built (and executed)
by the runtime system. Optionally, a priority value can be assigned to each task
to guide the runtime system in case multiple tasks are ready for execution at a
given moment. In StarPU, the scheduling system is clearly split from the core of
the runtime system (data consistency engine and actual task execution). There-
fore, not only all built-in scheduling policies can be applied to any high-level
algorithm, but new scheduling strategies can be implemented without having to
interfere with low-level technical details of the runtime system.

4 Multifrontal QR Factorization Based on StarPU

The execution of the qr mumps software presented in Section 2 relies on a ad
hoc scheduler which is extremely limited in features, relies on the knowledge of
the algorithm and is, as a result, extremely lightweight. Replacing this sched-
uler with a complex, general purpose runtime system such as StarPU is not an
easy task particularly because of several issues. First the DAG associated to the
factorization of medium to large size matrices can have hundreds of thousands
of tasks. Generating the whole DAG by submitting all the tasks to the runtime
system may overload it and may require too much memory (see, for example,
Lacoste et al. [16]). Second because of contribution blocks, different traversals
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of the DAG may result in a different memory consumption. For this reason, the
activation tasks have to be carefully scheduled in order to avoid an excessive
memory consumption. Third StarPU automatically infers dependencies among
tasks depending on data hazards. Because, for what said above, it is not possible
to allocate at once the memory needed for all the fronts in the tree, the whole
DAG cannot be submitted entirely unless all the dependencies are explicitly
provided to StarPU, which is largely unpractical.

The first and the third issue can be overcome by submitting tasks progressively
by means of other tasks. Because activation tasks are responsible for allocating
the memory of the associated frontal matrices, in our StarPU based implemen-
tation they will also be in charge of submitting the tasks for their assembly
and factorization i.e., panel, update, assembly and cleanup; this is shown in Al-
gorithm 1 (right). The dependencies among these tasks can be automatically
inferred by StarPU. Activation tasks, instead, are submitted all at once at the
beginning of the factorization and their mutual dependencies explicitly specified
to StarPU as shown in Algorithm 1 (left); because they are limited in number,
the runtime system will not be overloaded. As a result of this technique, the size
of the DAG that the runtime system has to handle is only proportional to the
number of active fronts.

Algorithm 1. Task management

Main code
(submit activation tasks):

1: for all n in pre-computed post-order do
2: for all children c of node n do
3: declare dependency(idn ← idc)
4: end for
5: /* submit activation of front fn */
6: submit task(activation, fn, prio.=−n, id=idn)
7: end for

Code of the activation task
(submit other tasks):

1: allocate(fn)
2: for all children c of n do
3: for all block-columns b of fc do
4: /* submit assembly of b inside fn */
5: submit task(assembly, b, fn, prio.=3)
6: end for
7: submit task(cleanup, fc, prio.=4)
8: end for
9:
10: for all block-columns p in fn do
11: /* submit panel factorization of p */
12: submit task(panel, p, prio.=2)
13: for all block-columns u > p in fn do
14: /* submit update of u wrt p */
15: submit task(update, p, u, prio.=1)
16: end for
17: end for

The second issue, instead, can be overcome by conveniently assigning differ-
ent priorities to the submitted tasks according to the idea that, as long as there
is enough work to do on already activated fronts, no other front should be ac-
tivated. This will keep the memory consumption under control while ensuring
that there are always enough tasks for all the working threads. More precisely,
each activation task is assigned a negative priority, whose value depends on a
specific tree traversal order which, in our specific case, has been computed as
the post-order which minimizes the memory consumption [13]. Cleanup tasks are
given the highest priority because they are responsible for freeing the memory
allocated by activation tasks. The other tasks, instead, are given a fixed priority
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which depends on the number of out-going edges in the associated DAG vertex
in order to maximize the degree of concurrency; therefore, assemblies have higher
priority than panels which, in turn, have higher priority than updates.

For the sake of simplicity, in Algorithm 1 we assumed that assembly opera-
tions read a single block-column b but modify an entire front fn but in reality
only a few block-columns of fn are modified. It has to be noted that all the
assembly operations at step 4 of Algorithm 1 (right) are independent from each
other. In fact, even if multiple assemblies write on the same block-column of fn,
their modifications concern disjoint subsets of rows (not necessarily contiguous).
This property is exploited by the qr mumps scheduler, which was designed on
purpose for this algorithm. StarPU, instead, will assume that these assemblies
are dependent from each other. As a result, not only these operations cannot be
performed in parallel but are forced to be executed in the same order as they
have been submitted. As shown by the experimental results of Section 5, this
may entail a slight performance loss.

5 Experimental Results

The native scheduler of the qr mumps software was replaced with the StarPU
runtime system according to the methods described in Section 4, leading to
a software package that will be referred to as qr starpu. This section aims at
evaluating the effectiveness of the proposed techniques as well as the performance
of the resulting code. For this purpose, the behavior of the qr starpu code will
be compared to the original qr mumps one and also, briefly, to the SuiteSparseQR
package (referred to as spqr) released by Tim Davis in 2009 [11].

Table 1. Matrices test set. The operation count is related to the matrix factorization
with COLAMD column permutation.

# Mat. name m n nz op. count # Mat. name m n nz op. count
(Gflops) (Gflops)

1 tp-6 142752 1014301 11537419 277.7 6 Hirlam 1385270 452200 2713200 2401.3
2 karted 46502 133115 1770349 279.9 7 e18 24617 38602 156466 3399.1
3 EternityII E 11077 262144 1572792 566.7 8 flower 7 4 27693 67593 202218 4261.1
4 degme 185,501 659415 8127528 629.0 9 Rucci1 1977885 109900 7791168 12768.1
5 cat ears 4 4 19020 44448 132888 786.4 10 sls 1748122 62729 6804304 22716.6

11 TF17 38132 48630 586218 38209.3

The experiments were conducted on a set of matrices from the the University
of Florida Sparse Matrix Collection2 presented in Table 1. The operation count is
related to the factorization preceded by a COLAMD fill-reducing matrix permu-
tation. The tests were run on the cache coherent Non Uniform Memory Access
(ccNUMA) AMD Istanbul architecture equipped with 24 cores (6×4) clocked at

2 http://www.cise.ufl.edu/research/sparse/matrices

http://www.cise.ufl.edu/research/sparse/matrices
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2.4 GHz. The codes were compiled with the GNU v. 4.4 suite and linked to the
Intel MKL sequential BLAS and LAPACK libraries. All the tests were run with
real data in double precision.

Table 2 shows the factorization times (in seconds) for the matrices of the
test set presented in Table 1 using qr starpu, qr mumps and spqr with different
numbers of cores. Both qr mumps and qr starpu clearly outperform the spqr

Table 2. Factorization times, in seconds, on an AMD Istanbul system for qr starpu

(top), qr mumps (middle) and spqr (bottom). The first row shows the matrix number.

Factorization time (sec.)

Matrix 1 2 3 4 5 6 7 8 9 10 11

th.

qr starpu

1 51.8 49.0 97.5 104.8 137.5 417.6 496.1 733.6 1931.0 3572.0 5417.0
12 6.9 6.2 10.9 12.4 16.2 43.4 50.4 92.4 190.3 439.3 525.8
24 5.7 4.4 8.0 8.5 12.4 28.1 32.9 58.0 122.7 336.3 305.9

speedup 9.1 11.1 12.2 12.3 11.1 14.9 15.1 12.6 15.7 10.6 17.7

qr mumps

1 51.5 48.8 96.9 104.6 137.1 410.8 495.2 729.7 1928.0 3571.0 5420.0
12 5.7 5.2 10.2 10.8 14.2 39.5 46.6 69.4 177.9 392.3 479.0
24 5.0 4.3 7.9 8.0 11.0 26.5 30.5 48.8 120.9 337.0 282.0

speedup 10.3 11.3 12.3 13.1 12.5 15.5 16.2 14.9 15.9 10.6 19.2

spqr

1 52.9 49.9 99.5 111.0 123.3 406.3 538.3 687.5 2081 4276 5361
12 17.0 14.5 26.3 33.0 32.5 85.7 90.5 131.6 468 1644 770
24 17.0 12.3 20.7 26.2 27.8 68.6 74.1 114.2 372 1389 589

speedup 3.1 4.0 4.8 4.2 4.4 5.9 7.3 6.0 5.6 3.1 9.1

package by a factor greater than two thanks to the powerful programming and
execution paradigm based on DAG parallelism. On the other hand, qr starpu is
consistently but only marginally less efficient than qr mumps, by a factor below
10% for eight out of eleven matrices and still only below 20% in the worst case. As
a conclusion, the parallelization scheme impacts performance much more than
the underlying low-level layer, validating the thesis that modular approaches
based on runtime systems can compete with heavily hand-tuned codes.

Memory consumption is an extremely critical point to address when design-
ing a sparse, direct solver. As the building blocks for designing a scheduling
strategy on top of StarPU differ (and are more advanced) than what is avail-
able in qr mumps (which relies on an ad hoc lightweight scheduler) we could not
reproduce exactly the same scheduling strategy. Therefore we decided to give
higher priority to reducing the memory consumption in qr starpu. This can-
not easily be achieved in qr mumps because its native scheduler can only handle
two levels of task priority; as a result, fronts are activated earlier in qr mumps,
almost consistently leading to a higher memory footprint as shown in Table 3.
The table also shows that both qr starpu and qr mumps achieve on average the
same memory consumption as spqr. On three cases out of eleven spqr achieves
a significantly lower memory footprint; experimental results (not reported here)
show that by constraining the scheduling qr starpu and qr mumps can achieve
the same memory consumption as spqr while still being faster.
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Table 3. Memory peak for the
factorization of the test matri-
ces on 24 cores

Mat. Memory peak (MB)
qr starpu qr mumps spqr

1 1108.4 1426.5 1954.8
2 970.7 1016.5 1294.6
3 1315.1 1485.1 1344.5
4 1818.8 2040.2 2618.7
5 3111.2 3114.7 1965.6
6 4418.2 5300.9 7107.5
7 3845.1 3800.9 3535.5
8 10031.0 13608.7 6024.5
9 10070.8 8467.9 11898.7

10 54296.0 53636.8 62021.4
11 26212.7 26232.4 14424.9

In order to explain in more details the performance behavior of qr starpu

and qr mumps, a detailed analysis of the execution times is shown in Figure 3
and Table 4. The figure shows the cumulative times spent by all threads in the
three main phases of the execution of both solvers: the time spent in tasks, the
time for scheduling the tasks (this includes computing the DAG in qr starpu)
and the idle time spent waiting for dependencies to be satisfied; these timings
will be referred to as tc(p), ts(p) and ti(p), respectively, p being the number of
threads (24 in Figure 3). The efficiency e(p) of the parallelization can then be
defined in terms of these cumulative timings as follows:

e(p) =
tc(1)

tc(p) + ts(p) + ti(p)
=

el

tc(1)

tc(p)
·

es

tc(p)

tc(p) + ts(p)
·

ep

tc(p) + ts(p)

tc(p) + ts(p) + ti(p)
.

This expression allows us to decompose the efficiency as the product of three
well identified effects: el which measures the impact of data locality issues on the
efficiency of the tasks, es which measures the cost of the scheduler management
with respect to the actual work done and ep which measures how well the tasks
have been pipelined as a result of the scheduling decisions. Table 4 shows the
corresponding values for our matrix collection.

The cumulative tasks times tc(1) (not reported here for the sake of space)
are nearly identical for the two codes and stay the same when the number of
threads increases as shown in Figure 3 and by the fact that the el values in
Table 4 are comparable. The difference in the overall execution time can be
explained by the higher overhead imposed by the runtime system management
and by the idle time. The overhead imposed by StarPU is higher (inducing a
lower efficiency es) because the dependencies between tasks are inferred based
on the data access modes whereas in qr mumps they are all defined explicitly
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based on the knowledge of the algorithm. However, the cost of the scheduling
grows moderately with the number of threads and only accounts for a very small
part of the overall execution time, especially for large matrices. The increased
cumulative idle time, and the resulting lower pipeline ep efficiency are due to
two factors. First, the constraints imposed in qr starpu to limit the memory
consumption yield slightly lower concurrency (and, therefore, more idle time).
Second, as explained in the previous section, assembly operations are serialized
in qr starpu; although these tasks only account for a small portion of the overall
execution time, their serialization may induce delays in the pipeline that lead
some threads to starvation. This second issue could be overcome by specifying
to the runtime system that assembly tasks can be executed in any order and,
possibly, in parallel, but this feature is not currently available in StarPU.

Finally, Table 5 shows the maximum number of tasks that the runtime system
handles during the factorizationversus the total number of tasks executed.Thefirst

Table 4. Efficiency measures el, ep, es and e for qr starpu and qr mumps (e = el.ep.es)

qr starpu
Matrix 1 2 3 4 5 6 7 8 9 10 11

th.

e l

12 0.816 0.779 0.789 0.820 0.809 0.808 0.865 0.828 0.844 0.822 0.885
24 0.711 0.680 0.669 0.730 0.694 0.666 0.768 0.689 0.733 0.752 0.774

e p

12 0.860 0.856 0.906 0.877 0.876 0.976 0.918 0.797 0.958 0.802 0.952
24 0.621 0.720 0.769 0.744 0.671 0.923 0.792 0.758 0.870 0.575 0.936

e s

1 0.984 0.985 0.994 0.987 0.987 0.990 0.996 0.987 0.998 0.999 0.997
12 0.915 0.930 0.970 0.951 0.953 0.974 0.977 0.966 0.991 0.997 0.993
24 0.863 0.887 0.938 0.921 0.931 0.965 0.976 0.944 0.983 0.996 0.989

12 0.642 0.620 0.693 0.684 0.675 0.768 0.776 0.637 0.801 0.657 0.837

e

24 0.381 0.434 0.482 0.500 0.433 0.593 0.594 0.493 0.627 0.431 0.716

qr mumps
Matrix 1 2 3 4 5 6 7 8 9 10 11

th.

e l

12 0.851 0.844 0.844 0.854 0.832 0.862 0.891 0.850 0.882 0.881 0.921
24 0.711 0.661 0.678 0.716 0.690 0.688 0.780 0.695 0.727 0.737 0.808

e p

12 0.915 0.915 0.898 0.936 0.922 0.977 0.937 0.985 0.963 0.812 0.992
24 0.658 0.727 0.739 0.771 0.747 0.929 0.829 0.880 0.874 0.578 0.957

e s

1 0.998 0.996 0.999 0.997 0.998 0.999 0.999 0.999 1.000 1.000 1.000
12 0.949 0.973 0.989 0.985 0.963 0.977 0.995 0.982 0.997 0.998 0.997
24 0.939 0.937 0.973 0.963 0.939 0.982 0.990 0.959 0.996 0.996 0.993

12 0.739 0.751 0.749 0.787 0.738 0.823 0.830 0.822 0.847 0.714 0.910

e

24 0.439 0.450 0.487 0.532 0.484 0.628 0.640 0.586 0.633 0.424 0.768

Table 5. Maximum DAG size handled by StarPU during the factorization of the test
matrices when using 24 threads

DAG size

Matrix 1 2 3 4 5 6 7 8 9 10 11

Max. 1640 1899 2023 2969 5063 4442 6965 12773 6846 11592 32978
Total 8610 10202 6058 14901 26579 49013 21192 136412 41023 33211 187101
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being between 3 and 11 times smaller than the second, these data prove that the
techniqueproposed inSection4iseffective inreducingtheruntimesystemoverhead.

6 Conclusions and Future Work

The main objective of this work was to evaluate the usability and effectiveness of
general-purpose runtime systems for parallelizing sparse factorization methods
which constitute a complex and irregular workload. This was assessed imple-
menting a new package software, qr starpu, derived from qr mumps by relying
on the StarPU runtime system instead of the original ad hoc scheduler. Due to
the original features of the considered algorithm, special attention had to be
paid to the submission of tasks in order to contain the memory consumption,
to limit the overhead imposed by the runtime system and to circumvent some
limitations of StarPU (common to many other modern runtime environments).
As a result, we managed to achieve an excellent memory behavior (even bet-
ter than the original qr mumps solver) and a very competitive performance, the
overhead on elapsed time being most of the time below 10% and in any case
never higher than 20%. A detailed analysis has revealed that this difference can
be explained with a higher overhead imposed by the runtime system (which,
however, only accounts for a very small part of the total execution time) and a
more conservative scheduling of tasks to achieve a lower memory consumption.

All in all, the marginal performance loss conjugated with the excellent mem-
ory behavior show that general purpose runtime systems are very well suited
for the parallelization of sparse direct methods. These powerful tools, moreover,
provide several features that are likely to offer better performance and porta-
bility on architectures with higher core counts or equipped with accelerating
devices (such as GPUs or MICs). These features has been evaluated in this
paper and their usage is the object of ongoing research. At the same time, this
document provides guidelines for the improvement of both sparse direct methods
and runtime environments. Because, already on 24 cores, a considerable fraction
of time is spent waiting for dependencies to be satisfied, it may be beneficial to
adopt algorithms by tiles [10] for the processing of fronts in order to improve the
amount of concurrency. Runtime systems, instead, can be improved by adding
features that allow to cope with memory-consuming tasks or that allow to infer
dependencies based on the access to memory that has not been allocated yet.

Acknowledgments.We thank Raymond Namyst and Samuel Thibault for their
support with StarPU as well as Mathieu Faverge and Guillaume Sylvand for their
constructive comments on a preliminary version of this document.
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J.: DAGuE: A generic distributed DAG engine for high performance computing.
Parallel Computing 38(1-2), 37–51 (2012)

8. Bosilca, G., Bouteiller, A., Danalis, A., Herault, T., Luszczek, P., Dongarra, J.:
Dense linear algebra on distributed heterogeneous hardware with a symbolic dag
approach. Scalable Computing and Communications: Theory and Practice (2013)

9. Buttari, A.: Fine-grained multithreading for the multifrontal QR factorization of
sparse matrices. To appear on the SIAM Journal on Scientific Computing (2013)

10. Buttari, A., Langou, J., Kurzak, J., Dongarra, J.: A class of parallel tiled linear
algebra algorithms for multicore architectures. Par. Comp. 35(1), 38–53 (2009)

11. Davis, T.A.: Algorithm 915, SuiteSparseQR: Multifrontal multithreaded rank-
revealing sparse QR factorization. ACM Trans. Math. Softw. 38(1), 8:1–8:22 (2011)

12. Duff, I.S., Reid, J.K.: The multifrontal solution of indefinite sparse symmetric linear
systems. ACM Transactions on Mathematical Software 9, 302–325 (1983)

13. Guermouche, A., L’Excellent, J.-Y., Utard, G.: Impact of reordering on the memory
of a multifrontal solver. Parallel Computing 29(9), 1191–1218 (2003)

14. Hermann, E., Raffin, B., Faure, F., Gautier, T., Allard, J.: Multi-GPU and multi-
CPU parallelization for interactive physics simulations. In: D’Ambra, P., Guarra-
cino, M., Talia, D. (eds.) Euro-Par 2010, Part II. LNCS, vol. 6272, pp. 235–246.
Springer, Heidelberg (2010)

15. Hogg, J., Reid, J.K., Scott, J.A.: A DAG-based sparse Cholesky solver for multicore
architectures. Technical Report RAL-TR-2009-004, RAL (2009)

16. Lacoste, X., Ramet, P., Faverge, M., Yamazaki, I., Dongarra, J.: Sparse direct
solvers with accelerators over DAG runtimes. Research report RR-7972, INRIA
(2012)

17. Quintana-Ort́ı, G., Quintana-Ort́ı, E.S., van de Geijn, R.A., Van Zee, F.G., Chan,
E.: Programming matrix algorithms-by-blocks for thread-level parallelism. ACM
Trans. Math. Softw. 36(3) (2009)

18. Schreiber, R.: A new implementation of sparse Gaussian elimination. ACM Trans-
actions on Mathematical Software 8, 256–276 (1982)

19. Topcuoglu, H., Hariri, S., Wu, M.-Y.: Performance-effective and low-complexity
task scheduling for heterogeneous computing. IEEE Transactions on Parallel and
Distributed Systems 13(3), 260–274 (2002)



Fast Methods for Computing Selected Elements
of the Green’s Function in Massively Parallel

Nanoelectronic Device Simulations

Andrey Kuzmin1, Mathieu Luisier2, and Olaf Schenk1

1 Institute of Computational Science, Universita della Svizzera italiana
CH-6900 Lugano, Switzerland

{andrey.kuzmin,olaf.schenk}@usi.ch,@usi.ch
http://www.ics.inf.usi.ch

2 Integrated Systems Laboratory, ETH Zürich, CH-8092 Zürich, Switzerland
mluisier@iis.ee.ethz.ch
http://www.iis.ee.ethz.ch

Abstract. The central computation in atomistic, quantum transport
simulation consists in solving the Schrödinger equation several thousand
times with non-equilibrium Green’s function (NEGF) equations. In the
NEGF formalism, a numerical linear algebra problem is identified re-
lated to the computation of a sparse inverse subset of general sparse un-
symmetric matrices. The computational challenge consists in computing
all the diagonal entries of the Green’s functions, which represent the in-
verse of the electron Hamiltonian matrix. Parallel upward and downward
traversals of the elimination tree are used to perform these computations
very efficiently and reduce the overall simulation time for realistic nano-
electronic devices. Extensive large-scale numerical experiments on the
CRAY-XE6 Monte Rosa at the Swiss National Supercomputing Center
and on the BG/Q at the Argonne Leadership Computing Facility are
presented.

1 Introduction

Ultrascaled nanowire field-effect transistors (NWFETs) [1,2] could become the
next generation logic devices when it will no longer be possible to scale the
dimensions of the currently manufactured fin-shaped field effect transistor (Fin-
FETs) and keep improving their performance. Technology computer aided design
(TCAD) has established itself as a great accelerator for the development of novel
transistors. However, to simulate the characteristics of NWFETs, it is neces-
sary to go beyond classical approximations such as the drift-diffusion model and
to use a quantum transport approach. Energy quantization, quantum confine-
ment, and quantum mechanical tunneling can only be accurately captured if the
Schrödinger equation is directly solved in a full-band, atomistic basis and if open
boundary conditions describing the coupling of the device with its environment
are included [3,4].

F. Wolf, B. Mohr, and D. an Mey (Eds.): Euro-Par 2013, LNCS 8097, pp. 533–544, 2013.
© Springer-Verlag Berlin Heidelberg 2013

http://www.ics.inf.usi.ch
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The non-equilibrium Green’s function formalism (NEGF) is one of the most
efficient techniques for performing this task. It has been widely used to study
the electronic and thermal properties of nanoscale transistors and molecular
switches on massively parallel architectures. The NEGF formalism is used, e.g.,
in the highly successful nanoelectronics modeling tools OMEN 1 [5] and TranSI-
ESTA2 [6]. In these applications, a subset of the entries of the inverse of complex
unsymmetric matrices must be repeatedly computed, which represents a signif-
icant computational burden. This is usually achieved with a so-called recursive
Green’s function (RGF) algorithm [7,8].

The calculation of a subset of the entries of the inverse of a given matrix
also occurs in a wide range of other applications, e.g., in electronic transport
simulation [9,10], the diagonal and sometimes subdiagonal of the discrete Green’s
function are needed in order to compute electron density. It is therefore of utmost
importance to develop and implement efficient scalable algorithms targeting the
diagonal of the inverse that are faster than, e.g., inverting the entire matrix based
on successive application of a sparse direct LU decomposition of A or faster than
the RGF algorithm.

Consider a general sparse unsymmetric matrix A ∈ Cn×n, and assume that
A is not singular so that it can be factorized as A = LU . If the matrix A
is irreducible then A−1 is a dense matrix [11]. In this paper, the problem of
computing selected elements of the inverse A−1 of A is addressed. This subset
of selected elements is defined by the set of nonzero entries in the factorized
matrix. It was proved in [12] that both the subset and the diagonal of A−1 can
be evaluated without computing any inverse entry from outside of the subset.

A fast direct algorithm called fast inverse using nested dissection (FIND)
that was proposed in [9] is used to compute the required components of the
NEGF in the simulations of nanoscale devices. The method is based on the
algorithm of nested dissection. A graph of the matrix is constructed and de-
composed using a tree structure. An upward and downward traversal of the tree
is used to perform the computation efficiently. An alternative method is based
on the Schur-complement method described in [13,14]. The fast sequential algo-
rithm proposed for symmetric indefinite matrices was implemented in the Selinv3

library.

1.1 Contribution

To the best of our knowledge, there is no parallel efficient software package
currently available for computing an inverse subset of a general unsymmetric
sparse matrix. This paper fills this gap by describing an efficient BLAS level-
3 algorithm and its parallel multithreaded implementation. It is available in

1 OMEN was awarded an honorable mention at the 2011 ACM Gordon Bell Prize for
reaching a sustained performance of 1.44 PFlop/s on the Cray-XT5 Jaguar. It is
available at http://nanohub.org/resources/omenwire

2 http://www.icmab.es/dmmis/leem/siesta
3 https://web.math.princeton.edu/~linlin/software.html

http://nanohub.org/resources/omenwire
http://www.icmab.es/dmmis/leem/siesta
https://web.math.princeton.edu/~linlin/software.html
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Fig. 1. (a) Schematic view of a Si ultrascaled NWFET composed of source, channel,
and drain regions. Each single Si atom (red dot) is taken into account. The central
semiconducting nanowire of diameter d is surrounded by an oxide layer of thickness
tox. The gate contact (blue) has a length Lg. Electrons flow from source to drain along
the x-axis. (b) Transfer characteristics Id-Vgs (drain current vs. gate-to-source voltage)
at a drain-to-source voltage Vds=0.6 V of a Si NWFET with d=3 nm, Lg=15 nm,
and tox=1 nm. (c) Number of electrons (solid blue line) and conduction band profile
(dashed green line) along the x-axis of the same Si NWFET as in (b). (d) Electron
transmission probability (solid blue line) and density of states (dashed green line) under
the same conditions as in (c).

the latest version of the PARDISO4 package. Extensive intranode performance
studies were perfromed on Cray XE-6 and IBM BG/Q architectures. The method
is fully integrated into the massively parallel nanoelectronic simulation code
OMEN. Numerical experiments show significant advantage of method over the
RGF approach.

The paper is organized as follows: in Section 2, an overview of the atomistic,
quantum transport simulation approach including its RGF implementation is
given. In Section 3 the idea of selected parallel inversion as an alternative to the
RGF method is described. The performance of our code is finally described and
analyzed in Section 4 before the paper is concluded in Section 5.

2 Overview of the Simulation Approach

2.1 Formulation of the Quantum Transport Problem

Simulating NWFET in a full-band, atomistic basis requires repeatedly solving
the Schrödinger equation with open boundary conditions and dealing with large
4 https://www.pardiso-project.org

https://www.pardiso-project.org
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matrices whose size depends on the number of atoms present in the simulation
domain and on the number of atomic orbitals considered on each atom. A typ-
ical device structure is schematized in Fig. 1(a). The current flowing through
the NWFET at a given gate-to-source (Vgs) and drain-to-source (Vds) voltage
represents the most relevant quantity of interest since it can be compared to ex-
perimental data. An example is given in Fig. 1(b). The electron charge density
is also important since it induces an electrostatic potential through the Poisson
equation, which in turn affects the Schrödinger equation. It must therefore also
be calculated as illustrated in Fig. 1(c). In ballistic simulations, to obtain the
current and charge density, the energy-resolved electron transmission probability
T (E) and density of states (DOS) g(E) must be first evaluated. They are shown
in Fig. 1(d).

In order to calculate T (E) and g(E) and then the electron and charge density,
the following NEGF equation must be solved for each electron energy E:(

EI−H−ΣRS(E)−ΣRD(E)
)
·GR(E) = I. (1)

In Eq. (1), the Hamiltonian matrix H is of size NA × Norb, where NA is the
number of atoms and Norb the number of orbitals in the full-band basis used to
describe the device material properties. Here, a semiempirical, nearest-neighbor
sp3d5s∗ tight-binding model without spin-orbit coupling is employed, which
means that Norb=10 [15]. In many applications, H is block tridiagonal, but
it can also exhibit more complicated structures. The matrix I is the identity
matrix while the self-energy matrices ΣRS(E) and ΣRD(E) refer to the source
and drain open boundary conditions respectively, calculated as in [5]. Only the
upper left corner of ΣRS(E) and lower right corner of ΣRD(E) are different
from 0. In a device with more than two contacts, additional self-energies must
be included in Eq. (1). Here, for simplicity, only a source and drain contact are
accounted for. Finally, GR(E) is the retarded Green’s Function at energy E.

Once GR(E) is calculated, either with a standard approach as in Section 2.2 or
with the new algorithm proposed in Section 3, the electron density of states g(E)
and transmission probability T (E) can be derived. First, g(E) is considered. It
contains as many components as contacts so that

g(E) = gS(E) + gD(E), (2)

where gS(E) and gD(E) refer to the DOS coming from the source and drain,
respectively. It can be demonstrated that [3]

g(E) =
i

2π
diag

(
GR(E)−GR†(E)

)
, (3)

gS(E) =
1

2π
diag

(
GR(E) · ΓS(E) ·GR†(E)

)
, (4)

gD(E) = g(E)− gS(E). (5)

Similarly, the transmission probability T (E) is given by

T (E) = trace
(
GR(E) · ΓS(E) ·GR†(E) · ΓD(E)

)
. (6)
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In both Eqs. (4) and (6), broadening functions ΓS/D(E) are introduced. They
are defined as

ΓS/D(E) = i
(
ΣRS/D(E)−ΣRS/D†(E)

)
. (7)

Based on Eqs. (3)–(6) and on the fact that only the upper left corner of ΣRS(E)
and ΓS(E) is different from 0, it appears that not the entire GR(E) matrix is
needed, but only its diagonal and its first n columns, where n is the size of the
nonzero square block of ΓS(E). This simplification is valid in ballistic simulations
only. As soon as scattering is included, e.g., electron-phonon interactions or
interface roughness, the situation becomes more complicated. However, such
cases are outside the scope of this paper.

With the knowledge of gS(E), gD(E), and T (E), the charge density nel and
current Id can be computed as

nel =

∫
dE

(
gS(E)f(E − EfS) + gD(E)f(E − EfD)

)
, (8)

Id =
q

�

∫
dE

2π
T (E) (f(E − EfS)− f(E − EfD)) , (9)

where f(E) is a distribution function (here Fermi-Dirac), EfS and EfR the
source and drain Fermi levels, q the elementary charge constant, and � the
reduced Planck constant. The electron density nel takes the form of a vector
with different values on each atom. The drain current Id is a scalar.

2.2 RGF Algorithm

When the Hamiltonian matrix H has a block tridiagonal structure, as in most
device simulations, an efficient RGF algorithm can be used to solve Eq. (1) [7,8].
To briefly sketch the functionality of the RGF algorithm, it is assumed that
H contains N diagonal blocks and that Mij is the block with row index i and
column index j in the matrix M. The algorithm involves two recursive steps,
the first one starting at the lower right corner,

gRi =
(
E −Hii −Hii+1g

R
i+1Hi+1i

)−1
C (10)

with

gRN =
(
E −HNN −ΣRD

NN

)−1
, (11)

gR1 =
(
E −H11 −H12g

R
2 H21 −ΣRS

11

)−1
. (12)

The gRi ’s are approximate solutions to Eq. (1) when Hii−1 and Hi−1i are set
to 0. It then becomes clear that the exact Green’s Function GR

11 is equal to gR1 .
Then, in a second phase, two additional recursions can be derived to calculate
the exact diagonal and first column blocks of GR(E) starting from the upper
left corner:

GR
ii = gRi + gRi Hii−1G

R
i−1i−1Hi−1ig

R
i , (13)

GR
i1 = gRi Hii−1G

R
i−11. (14)
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No other system of equations must be solved to evaluate Eqs. (3)–(6). Note finally
that the computational complexity of the RGF algorithm amounts to O(Nn3),
where n is the average block size, and that it cannot be efficiently parallelized.
This becomes a serious issue in large simulation domains, for which the required
memory to solve Eqs. (10)–(14) is larger than the one available on each CPU.

3 A Selected Sparse Inverse Matrix Algorithm (SINV)

3.1 Sparse Inverse Supernodal Factorization

The obvious way to compute selected entries of the inverse is to invert the
entire matrix and than to extract the selected entries. The standard approach
for matrix inversion is to perform the LU factorization first:

A = LU ,

where L and U are unit lower triangular and upper triangular matrices respec-
tively. Using such a factorization, A−1 = (x1, x2, ..., xn) could be obtained by
solving a number of linear systems Axi = ei. Each of the systems is solved using
backward and forward substitution phases, Ly = ej and Uxj = y. Before the al-
gorithm is presented, the process of computing LU factorization is reviewed. Let
A be a nonsingular unsymmetric matrix. Each step of LU factorization produces
the following decomposition:

A =

[
A11 A12

A21 A22

]
,

A =

[
A11 A12

A21 A22

]
=

[
L11

L21 I

] [
I
S

] [
U11 U12

I

]
,

where S = A22 − A21A
−1
11 A12 is the Schur-complement of A11 with respect to

A. In order to simplify the derivation, it is assumed that no row or column
permutation is required during the factorization. The discussion could be easily
generalized for the case of pivoting algorithms used in order to improve stabil-
ity. The main idea of the algorithm is that A−1 could be computed using the
following expression:

A−1 =

[
U−1
11 L−1

11 + U−1
11 U12S

−1L−1
11 L21 −U−1

11 U12S
−1

−S−1L−1
11 L21 S−1

]
.

Using the notation Ũ12 = −U−1
11 U12, L̃12 = −L−1

11 L12 and D̃−1 = U−1
11 L−1

11 this
expression for the inverse can be simplified:

A−1 =

[
D̃−1 + Ũ12S

−1L̃21 Ũ12S
−1

−S−1L̃21 S−1

]
.
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Fig. 2. Example of a supernodal partition for sparse LU factorization and the corre-
sponding supernodal elimination tree

The idea was originally proposed in [16]. The more general approach for un-
symmetric matrices is presented in this paper. This expression suggests that
given the LU factorization, computation of the inverse can be reduced to com-
puting S−1. The computation of A−1 can be organized in a recursive manner
similar to the LU factorization algorithm, but computing the sequence of the
diagonal elements is organized in the opposite direction. The last diagonal el-
ement of the inverse equals a reciprocal of the last diagonal element of the U
factor, A−1

nn = (Unn)
−1. Starting from the last element, which is also the Schur-

complement produced in the last step of the LU factorization algorithm, we
proceed step by step, computing more and more blocks from the lower right
corner to the upper left corner. Thus, more and more entries of A−1 are com-
puted. The complexity of such an inversion algorithm is still O(n3) in the case
of a dense matrix. However, computational cost can be drastically reduced if
the matrix A is sparse. Rigorous consideration of this topic leads to the concept
of sparse matrix elimination tree and its extension to the inverse factorization
case [17,18,19]. As a consequence the complexity of the inversion process can
be reduced to O(n2) for matrices from three-dimensional simulations.

The implementation is built on top of the PARDISO package that uses supern-
odal BLAS level-3 algorithm during the direct factorization phase. The METIS
package is used to produce the fill-in reducing reordering [20]. An example of
such a supernodal partitioning for LU factorization can be seen in Fig. 2. The
nested dissection algorithm allows to reduce significantly the size of diagonal
subblocks compared to RGF method that results in additional performance in-
crease. Nonzero entries of LU factors are stored in dense subblocks, so that each
supernode consists of many dense submatrices that could be used in efficient
dense matrix-matrix multiplication subroutines.
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Fig. 3. Example of a dense subblock gathering during the inverse factorization process.
The scheme on the left-hand side depicts the submatrix that contributes to the update
of the supernode {G,H,I} by the supernode {K,L}. Contribution of the supernode
{N,O,P,Q,R} to {G,H,I} is represented on the right-hand side.

In the implementation, the inverse factorization is computed in place so that
the original LU factorization is overwritten by the entries of the inverse. The
most computationally time consuming operations at this stage are two matrix-
matrix products, namely Ũ12S

−1 and −S−1L̃21 where S−1 is a sparse matrix
with supernodal storage and L̃21, Ũ12 are, in turn, sparse block vectors stored
by contiguous dense subblocks. First the computation of the product Ũ12S

−1 is
considered. It could be split according to the supernodal partition of the Schur-
complement: Ũ12S

−1 = Ũ12S
−1
{A,B} + Ũ12S

−1
{C} + . . .+ Ũ12S

−1
{M,N,O,P,Q,R}, where

S−1
{A,B}, S

−1
{C}, . . . are supernodes of S−1 consisting of a lower and upper triangu-

lar part each. Each of the terms in the sum can be computed in two steps. First
the required entries are gathered into a dense block using indirect addressing
schemes similar to techniques described in [21] (see Fig. 3). Then, the product
is computed using two dense matrix-matrix multiplications. The sum is accu-
mulated in a temporary buffer. After Ũ12S

−1 has been computed, the product
Ũ12S

−1L̃21 = (Ũ12S
−1)L̃21 could be immediately calculated using the xGEMM

function. The product −S−1L̃21 is calculated in a similar manner. Thus, all the
computations were performed using BLAS level-3 subroutines that guarantees
optimal use of vector operations on modern architectures and effecient usage of
their cache hierarchies.

3.2 Intranode Parallelization

Data dependencies in the selected inversion algorithm are represented by the
inverse elimination tree. Therefore, the inversion algorithm permits paralleliza-
tion strategies similar to parallel direct solvers. The level of parallelism mainly
utilized in this case is the tree level parallelism.

Consider the serial inversion algorithm described in the previous section. Fac-
torization for each supernode consists of two parts. The first part could be called
internal inverse factorization (computing Ũ12, L̃21 and D̃−1) since it is done
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independently. The second part (computing Ũ12S
−1
{I} and −S−1

{I}L̃21 for each su-
pernode of S) accumulates external contributions from other supernodes and
could be called the external update phase. In order to parallelize the algorithm,
data dependencies must be maintained. This suggests creation of the global tasks
queue. Each element of the queue is a supernode and the size of the queue is
bounded by the total number of supernodes. Tasks distribution is performed
dynamically: each thread fetches one element Sj from the queue and proceeds
with the internal inversion phase. Computation of external contributions requires
synchronization with threads working on the descendants of SJ , i.e., the thread
waits until the inversion of each of the dependents is finished.

4 Numerical Experiments

4.1 Experimental Testbase

In this section the parallel performance and efficiency of OMEN equipped with
the PARDISO selected inversion implementation for the NEGF equation is re-
ported. Before moving on to the parallel scalability of the atomistic, quantum
transport simulation benchmarks, this section gives a brief description of the
target hardware, namely, IBM BG/Q at the Argonne Leadership Computing
Facility and a Cray XE6 system installed at the Swiss National Supercomputing
Center CSCS. Intranode experiments were performed on one rack of the “Mira”
BG/Q which has a 1.6-GHZ 16-way quad-core PowerPC processor and 16 GB
of RAM. The Cray XE6 “Monte Rosa” compute nodes were used for intranode
performance experiments. The Cray XE6 consists of 2 16-core AMD Opteron
6272 2.1-GHz Interlagos processors, giving 32 cores in total per node with 32
GBytes of memory. The Interlagos CPUs implement AMD’s recent “Bulldozer”
microarchitecture and each Interlagos socket contains two dies, each of which
contains four so-called “modules.”

4.2 Intranode Performance

In this section the results on performance of the inversion algorithm based on
matrices from the NEGF solver implemented in OMEN are presented. Table 1
shows the speedup of the selected inversion over the full inversion algorithm for
the set of 4 Hamiltonian matrices of the size 97900 to 581900 uknowns with
LU factors containing around 106 nonzero elements. The advantage over the full
inversion grows as the problem size increases that makes it practically possible
to solve the problem with more than 106 nonzero elements. The new method is
more than 250 times faster on both architectures for the largest matrix.

Table 2 demonstrates the scalability of the inversion algorithm for the set of 2
largest matrices on one node with 2 to 32 threads compared to the RGF method
that was previously used in OMEN. The observed scalability is comparable to
that of the direct factorization algorithm. The shared-memory parallel efficiency
of the PARDISO-SINV implementation is considerable and compelling for larger
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Table 1. Average time in seconds (and Gflop/s in brackets) in PARDISO and
PARDISO-SINV on 32 cores when computing all diagonal entries of the inverse of
A for four selected OMEN test matrices; n represents the size of the Hamiltonian
matrix

n CRAY XE6 BG/Q
PARDISO PARDISO-SINV PARDISO PARDISO-SINV

97900 (d=2nm) 2434.0 0.8 (51) 4174.0 3.0 (22)
212300 (d=3nm) 4198.0 7.5 (89) 19571.1 8.7 (45)
375100 (d=4nm) 20525.1 42.7 (69) 65847.6 70.7 (63)
581900 (d=5nm) 26657.1 102.1 (119) 62296.7 217.2 (68)

Table 2. Average time in seconds to calculate the density of states and the transmission
probability for one energy point, as indicated by the dashed line in Fig. 1(d), for
nanowire transistors with two different diameters (4 and 5 nm). The first column gives
the Hamiltonian matrix size in Eq. (1), the second the number of cores, the third the
solution time with the RGF algorithm [7,8], while columns 4 to 9 are dedicated to the
new approach proposed in this paper. The times to reorder the Hamiltonian matrix,
factorize it, compute selected elements of its inverse, solve it to obtain GR

N1, and derive
the DOS with Eq. (4) are reported. The last column represents the sum of columns 4
to 8.

n Cores RGF Reordering Factorization SINV GR
N1 Eq. (4) Total

375100
(d=4nm)

IBM
BG/Q

1 4179.1 55.85 601.53 1122.41 1601.13 - 3380.92
2 - 56.01 251.55 463.25 760.15 - 1530.96
4 - 55.63 147.91 300.77 440.86 - 945.17
8 - 54.99 67.60 162.49 237.69 - 522.77
16 - 54.71 37.89 84.72 150.25 - 327.57
32 - 55.85 28.72 67.56 112.17 - 264.3

581900
(d=5nm)

IBM
BG/Q

1 16644.2 92.93 2042.29 3393.81 5057.64 - 10586.67
2 - 93.21 818.52 1799.18 2655.33 - 5366.24
4 - 93.13 460.88 996.35 1790.10 - 3340.46
8 - 91.49 229.03 622.89 1089.41 - 2032.82
16 - 91.61 120.61 328.37 768.19 - 1308.78
32 - 91.86 90.82 217.21 723.23 - 1123.12

375100
(d=4nm)
Cray XE6

1 1393.9 15.6 222.7 392.2 1149.5 390.1 2191.3
2 - 16.6 163.5 311.4 671.4 327.7 1515.6
4 - 16.4 83 171 215.9 165.4 677.3
8 - 17.5 47.1 105.1 108.6 87.7 394.4
16 - 17.5 25.6 64.2 59.6 45.6 242.1
32 - 17 15.5 13.7 51.7 24.1 153.5

581900
(d=5nm)
Cray XE6

1 5548.9 23.5 697.8 1250.5 1466.1 1428.4 4892.7
2 - 25.4 533.5 1033.3 1072.1 1171.7 3865.9
4 - 25.5 270.1 529.2 564.2 609.2 2029.2
8 - 27.6 153.1 333.5 328.6 322.3 1199.4
16 - 27.2 79.2 166.9 302.3 168.2 779.7
32 - 27.7 46.7 99.3 283.7 91.8 587.9
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problems (e.g., d=5 nm). The experiments show that the new implementation
has the performance lower or comparable to RGF method when using 1 or 2
threads; however the RGF implementation has a low potential for scalability
and the new approach is one order of magnitude faster when using 32 threads.
These results show that the selected inversion algorithm can be very efficiently
applied in large-scale computational nanolectronics, significantly reducing the
overall simulation time for realistic devices.

5 Conclusion

The recursive Green’s function algorithm that is typically used in large-scale
atomistic nanoelectronic device engineering has good algorithmic efficiency in
the order of O(Nz · n3), where n = nx · ny is the average block size, but sig-
nificant disadvantages in terms of parallelism. An alternative method based on
parallel selected inversion has been presented in this paper for the NEGF that is
the central computation in atomistic, quantum transport simulations. The com-
plexity of the selected inversion method is in the order of O(N2

z · n2). It is used
to extract all diagonal entries of the inverse of a complex sparse unsymmetric
matrix. The new selected inversion method overcomes the scalabilty barrier of
RGF by using parallel upward and downward traversals of the elimination tree to
solve the NEGF equations very efficiently. The implementation of the inversion
solver showed substantial speedup over the previous approach. PARDISO-SINV
solved realistically sized examples in OMEN in about 5 min compared to over
1.5 hour on the Cray XE6.
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Topic 11: Multicore and Manycore Programming

(Introduction)

Luiz Derose, Jan Treibig, David Abramson, Alastair Donaldson,
William Jalby, Alba Cristina M.A. de Melo, and Tomàs Margalef

Topic Committee

Today’s compute node architectures leverage impressive performance by offering
more parallel resources on the chip as well as on the node level. Among parallel
resources are memory interfaces (ccNUMA), cores, caches and data parallel ex-
ecution units. On the other hand modern multicore designs also exhibit shared
resources such as memory bandwidth on the chip level, last level cache bandwidth
and capacity, and access to the network interface. An additional performance-
limiting factor is the frequently high cost for synchronization. The task to make
full use of parallel resources while keeping an eye on the bottlenecks imposed by
the shared resources is non-trivial. Common programming models often address
issues related to parallel programming in general while not covering topologi-
cal issues introduced by multi- and manycore architectures. The industry is still
pushing forward introducing even more powerful manycore systems like, e.g., the
Nvidia Kepler and Intel MIC architectures.

While multicore chips have been present for some time now their efficient use
by programmers, support of multicore aware programming models, and adapted
operating systems is still in its early stages and offers many opportunities for
research and innovation.

The papers of this topic have been selected based on the recommendations of
four reviewers. The eight accepted papers address a wide range of topics, from
multicore-aware algorithms to programming models, middleware, and operating
systems.

The paper ”Assessing the Performance of OpenMP Programs on the Intel
Xeon Phi” by Dirk Schmidl, Tim Cramer, Sandra Wienke, Christian Terboven,
Dieter An Mey and Matthias S. Müller presents a performance evaluation of
the Intel Xeon Phi manycore chip. The comparisons to an Intel Sandy Bridge
multicore system are based on a selection of microbenchmarks, NAS Parallel
benchmarks, and real application codes.

The paper ”Towards a Scalable Microkernel Personality for Multicore Proces-
sors” by Jilong Kuang, Daniel Waddington and Chen Tian introduces SilicaOS,
a scalable microkernel implementation based on the Fiasco micro kernel, which
is targeted to multicore machines.

The paper ”A hybrid parallel Barnes-Hut algorithm for GPU and multicore ar-
chitectures” by Hannes Hannak, Hendrik Hochstetter and Wolfgang Blochinger
presents a modularized (hybrid) Barnes-Hut implementation which can exploit
modern heterogeneous compute devices using NVIDIA GPUs.

F. Wolf, B. Mohr, and D. an Mey (Eds.): Euro-Par 2013, LNCS 8097, pp. 545–546, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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The paper ”Lightweight Contention Management for Efficient Compare-and-
Swap Operations” by Ilya Mirsky, Danny Hendler and Dave Dice proposes us-
ing lightweight contention management at the compare and swap instruction
level as opposed, or, in concert with, algorithm/data-structure level contention
management.

The paper ”MacroDB: Scaling Database Engines on Multicores” by Joo Soares,
Nuno Preguica and João Loureno proposes MacroDB, an architecture to repli-
cate in memory databases in multicore systems to achieve high throughput in
database applications.

The paper ”Transparent Supports for Partial Rollback in Software Transac-
tional Memories” by Alice Porfirio, Alessandro Pellegrini, Pierangelo Di Sanzo
and Francesco Quaglia presents an approach for the partial rollback of a transac-
tion in software transactional memories (STMs). The approach has been imple-
mented based on TinySTM and its performance is evaluated with benchmarks.

The paper ”An Implementation of the Codelet Execution Model” by Joshua
Suetterlein, Stphane Zuckerman and Guang R. Gao describes an implementation
of the Codelet programming model using DARTS and presents two case studies
to validate its advantages against traditional OpenMP implementations.

The paper ”Generic High-performance Method for Deinterleaving Scientific
Data” by Eric Schendel, Steve Harenberg, Houjun Tang, Venkatram Vishwanath,
Michael Papka and Nagiza Samatova presents a method for deinterleaving sci-
entific data to improve the performance of scientific applications.

We are grateful to all authors for submitting high-quality papers to this topic
and to reviewers for their effort to evaluate submitted papers. Furthermore, we
would like to acknowledge the encouragement and support of the conference
chairs Felix Wolf, Dieter an Mey and Bernd Mohr.
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Abstract. The Intel Xeon Phi has been introduced as a new type of compute
accelerator that is capable of executing native x86 applications. It supports pro-
gramming models that are well-established in the HPC community, namely MPI
and OpenMP, thus removing the necessity to refactor codes for using accelerator-
specific programming paradigms. Because of its native x86 support, the Xeon
Phi may also be used stand-alone, meaning codes can be executed directly on the
device without the need for interaction with a host. In this sense, the Xeon Phi
resembles a big SMP on a chip if its 240 logical cores are compared to a com-
mon Xeon-based compute node offering up to 32 logical cores. In this work, we
compare a Xeon-based two-socket compute node with the Xeon Phi stand-alone
in scalability and performance using OpenMP codes. Considering both as indi-
vidual SMP systems, they come at a very similar price and power envelope, but
our results show significant differences in absolute application performance and
scalability. We also show in how far common programming idioms for the Xeon
multi-core architecture are applicable for the Xeon Phi many-core architecture
and which challenges the changing ratio of core count to single core performance
poses for the application programmer.

1 Introduction

Intel calls the new Intel Xeon Phi a coprocessor instead of using the term accelerator.
Indeed it can be both, an accelerator which is used to speed up scientific applications,
or a standalone SMP on a single chip. In the first case compute-intensive parts of an
application can be executed on the device, as it is known from programming paradigms
like CUDA or OpenCL explicitly designed for accelerators. For the Xeon Phi this can
be achieved with the Intel Language Extensions for Offload (LEO). However, in this
work we will focus on the second scenario and assess the behavior of Xeon Phi as
an SMP machine with many cores. The coprocessor itself is able to run x86 code and
supports many standard parallel programming paradigms like OpenMP or MPI which
is meant to make the rewrite of a kernel or even complete applications unnecessary.
The aim is to reach a much better usability and make the Xeon Phi available for a wider

� Parts of this work were funded by the German Federal Ministry of Research and Education
(BMBF) under Grant No. 01IH11006.

F. Wolf, B. Mohr, and D. an Mey (Eds.): Euro-Par 2013, LNCS 8097, pp. 547–558, 2013.
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range of applications than it is possible with GPUs today. However, the fact that code
optimized for multi-core architectures can run on this new many-core architecture by
just recompiling does not mean that the performance for general-purpose applications
is as desired. We investigate if OpenMP constructs, such as OpenMP tasks and nested
parallel regions, can be used on the Xeon Phi efficiently. This would allow executing
more complex programs natively in contrast to just offloading vector parallel loops as
it is done for other accelerators. We present a performance evaluation with both basic
kernels as well as more complex benchmarks, like a conjugate gradient solver to show
that there are no general reasons which prevents an efficient use of the Xeon Phi as a
SMP system on a chip. Furthermore, we evaluate the performance of the NAS parallel
benchmarks and some real-world application codes, which use different methods to
utilize the coprocessor.

The structure of the paper is as follows: First, we give an overview of related work
done in this field in Sec. 2 and provide an overview of the Intel Xeon Phi architecture
compared to Xeon architecture in Sec. 3. We start the performance evaluation in Sec. 4
benchmarking the memory subsystem, selected OpenMP constructs and CG method.
Then we present the NAS parallel benchmarks and some real-world application codes,
which use different methods to utilize the coprocessor, in Sec. 5 and Sec. 6, before we
conclude this paper in Sec. 7.

2 Related Work

Previous studies show that throughput-oriented processors like GPUs are one way to
fulfill the requirement for more and more compute capabilities. This is not only valid
for dense linear algebra kernels [18], but also for memory-bound kernels like sparse
matrix vector multiplication [2] (depending on the matrix storage format). In order to
benefit from the GPU compute capabilities in general-purpose CUDA applications it
is essential to understand the underlying hardware architecture in addition to the pro-
gramming model [6]. Thus, the effort for porting scientific applications to CUDA or
OpenCL can be much higher compared to directive-based programming models like
OpenMP [19].

While early experiences on Intel Xeon Phi coprocessors revealed that porting sci-
entific codes can be relatively straightforward [15], other studies also show that this
does not necessarily mean that a reasonable performance can be reached without any
architecture-specific optimizations like vectorization, software prefetching, SIMD
intrinsics, large TLB tables, hardware-supported gather or the correct padding and
alignment. [14] showed that the baseline implementation of an compute-intensive radar
computation program can be slightly faster on one Xeon Phi compared to a two-socket
Sandy Bridge (SNB) system, but that 2x speedup can only reached with architecture-
specific optimizations and modifications of the algorithm. [20] gained similar results
for multigrid methods which are widely used to accelerate the convergence of iter-
ative solvers. In their study the baseline implementation of the code is even slower
on one Xeon Phi compared to two Sandy Bridge processors, but also benefits from
the coprocesser after specific optimizations. While [14,20] concentrate on one specific
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Fig. 1. CPU and core architectures of the Intel Xeon processor and the Intel Xeon Phi coprocessor

application, we focus on a wider range of smaller compute kernels as well as real-world
application studies to assess the performance of OpenMP programs.

3 Architecture Comparison

In this section, we compare the architectural differences between the Intel Xeon E5
processors and the Intel Xeon Phi coprocessors.

The Intel Xeon Phi coprocessor provides a shared-memory many-core CPU that is
packed on a PCI Express extension card. The specific version used here has 60 cache-
coherent cores clocked at 1.053 GHz and 8 GB of coprocessor memory. Each core has
32 KB L1 instruction and data cache and a 512 KB L2 cache. A ring network connects
all cores with each other and with memory and I/O devices (see. Fig. 1(a)). Every core
in the SNB system has the same amount of L1 and L2 cache as the Xeon Phi cores,
but there is also a shared 30 MB L3 cache on the SNB chip. The system used for our
experiments consists of two 8-core chips clocked at 2.0 GHz, connected through the
Intel Quick Path Interconnect (QPI) (see Fig. 1(c)). Hence, the two-socket SNB-system
offers a NUMA architecture while the Xeon Phi has a flat memory model.
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Fig. 2. Memory bandwidth on the SNB and the Intel Xeon Phi system, measured with the stream
benchmark

The differences between the micro-architecture of the coprocessor and Xeon proces-
sors are more substantial (see Fig. 1(b) and 1(d)). The cores in the Xeon Phi chip are
designed to deliver a high compute power per consumed watt. They are clocked compa-
rably slowly at 1.053 GHz and execute instructions in-order. The strength of these cores
is the vector unit, which can handle 512 bit vectors.

In contrast the SNB cores use a complex out-of-order engine, which is one contri-
bution to the higher power demand of a single SNB core. However the out-of-order
engine can optimize code execution on the core and depending on the executed instruc-
tion stream this may speedup execution a lot. The SNB cores are clocked at 2 GHz and
support AVX vector operations with 256 bit vectors. Overall the peak performance of
one core is nearly the same, the SNB core can deliver 16 GFLOPS and the Xeon Phi
core 16.8 GFLOPS.

If we ignore the fact that the Xeon Phi needs a host system and look at it as a SMP
system, both investigated systems consume roughly the same amount of power (250 W),
space (one blade) and cost roughly the same amount of money, which makes this com-
parison valuable.

4 Kernel Benchmarks

This section presents some basic performance data for the Xeon Phi and SNB-system.
For all benchmarks and applications investigated porting to the Xeon Phi required only
to set-mmic as a compiler option for the Intel compiler.

4.1 Memory Benchmarks

The memory subsystem on both investigated platforms differs a lot since the SNB sys-
tem uses DDR3 RAM whereas the Intel Xeon Phi is equipped with GDDR5 RAM.
Here, we use simple benchmarks to highlight the differences in memory bandwidth and
latency for both systems.

The stream benchmark [12] is a standard package to measure the available memory
bandwidth on a system. Fig. 2 shows the results for the Triad vector operation (ā =
b̄ + x ∗ c̄) for a memory footprint of roughly 2 GB. A good thread to core mapping
was ensured with the affinity support of the Intel Compiler. We set KMP AFFINITY to
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Fig. 3. Memory latency on the SNB system and the Xeon Phi system for different memory foot-
prints. A random stride is used to walk through the memory to prevent prefetching. The small
stride most probably hits on the same page whereas the large stride always hits on one of the next
pages, causing also a TLB miss.

balanced on the Xeon Phi and to scatter on the SNB system, since these options
delivered best results.

On both systems the bandwidth rises with the number of threads for a low number
of threads. When 8 threads on the SNB or 60 threads on the Phi system are used the
bandwidth reaches 62 GB/s or 150 GB/s, respectively. After this peak the bandwidth
slightly drops down on both systems.

Next, we investigated the latency of the memory. We implemented a pointer chasing
benchmark, similar to the latency test in lmbench [13]. We use a stride with a random
offset to avoid latency hiding by hardware or software prefetching. Fig. 3 shows the
latency for two different strides on both systems. One stride is small enough to hit the
same memory page in most cases, whereas the large stride will always hit the next page
if the memory footprint is large enough. This may cause a TLB miss if the correspond-
ing TLB entry is not cached.

If the memory fits into the caches, the latency slightly rises with every cache level
and the small or large stride does not make any difference since the TLB cache is large
enough to keep all entries in the cache on both systems. With a memory footprint which
only fits into the main memory the results diverge: On the SNB system, the latency is
about 55 ns for the small and about 75 ns for the large stride, whereas it is 130 ns (small
stride) and 400 ns (large stride) on the Xeon Phi. For the small stride the ratio of clock
tick to memory latency is nearly the same on both systems since the Xeon Phi is clocked
at 1 GHz and the SNB at 2 GHz. In contrast for the large stride the ratio is 400 clock
ticks/cache miss and 150 clock ticks/cache miss on the Xeon Phi and SNB, respectively.

Concluding, the memory on the Xeon Phi can deliver a very high bandwidth com-
pared to the SNB system, but the latency is worse for large strides between the data
accesses.

4.2 OpenMP Constructs

The performance of the OpenMP runtime can be essential for the overall scalability
of OpenMP applications. Here, we investigate the overhead of synchronization primi-
tives in the Intel OpenMP runtime. First, we use the syncbench benchmark, which
is part of the EPCC microbenchmarks [4] to measure the overhead of a parallel
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for, a barrier and a reduction operation in OpenMP. Second, we use self-
implemented extensions (see [16]) of the benchmark to investigate the overhead for
OpenMP tasks and for nested parallel regions, the two only ways in OpenMP to express
multi-level parallelism. For nested parallel regions we use an outer parallel region with
two threads and vary the number of threads in the inner region. For tasks we examine
the single-producer (one thread creates all tasks) and the parallelproducer
(all threads create tasks in parallel) patterns for task creation.

Table 1. Overhead in microseconds of OpenMP synchronization constructs without nesting (top),
in an inner nested parallel region (middle) and for OpenMP Tasks (bottom) on the Intel Xeon Phi
and on the SNB system for a different number of threads

Intel Xeon Phi SNB system
EPCC syncbench

#threads Parallel for barrier reduction Parallel for barrier reduction
16 13.81 5.83 21.61 3.47 2.05 5.83
32 15.85 8.21 24.80 24.36 31.78 58.90
60 17.71 9.96 29.56

240 27.56 13.37 48.86
Nested Parallel Regions

#threads Parallel for barrier reduction Parallel for barrier reduction
2 * 8 56.67 5.47 57.83 13.89 1.79 16.86

2 * 16 117.17 7.21 130.68 27.61 2.39 32.13
2 * 30 318.93 7.74 336.03
2 * 120 1774.59 13.14 1824.63

OpenMP Tasks
#threads serial-producer parallel-producer serial-producer parallel-producer

16 81.18 1.67 63.25 0.74
32 165.50 1.78 146.41 4.11
60 294.55 3.54

240 1355.90 8.39

The systems differ in the number of cores which makes a one to one comparison
of the overhead difficult. On the SNB system our experiences have shown that most
applications deliver best performance for 16 (1 thread per core) or 32 threads (1 thread
per hyperthread). On the Xeon Phi it takes 60 or 240 Threads, respectively, to utilize all
cores or hyperthreads. We ensured the usage of one core per thread by thread binding
for 16 and 60 threads on the SNB and Xeon Phi, respectively.

Table 1 shows the measurement results for the SNB system and for the Xeon Phi
across different numbers of threads. For the non-nested constructs the overhead of using
hyperthreads is much larger on the SNB system. If all cores start one thread, the SNB
system is 3-5 times better than the Xeon Phi, whereas the time is nearly identical for
the reduction and parallel for, when all hyperthreads are used.
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For nested parallel regions, the overhead is much larger on the Xeon Phi system,
whereas it is nearly the same (compared to the non-nested regions) on the SNB sys-
tem. A reduction operation with 120 threads in the inner nested region takes 1824 mi-
croseconds, whereas the worst case on the SNB system (16 inner threads) takes only
32 microseconds. This shows that nested parallel regions introduce more overhead on
the Xeon Phi system than on the SNB. For OpenMP tasks on the Xeon Phi, the over-
head for the single-producer pattern is in the same order as for the nested par-
allel regions. Creating one task takes about 1355 microseconds, whereas it only takes
146 microseconds on the SNB system. However, creating tasks in parallel with the
parallel-producer pattern works much better, here one task creation takes about
8 microseconds, which is only 2x more than on the SNB and much less than for the
serial-producer pattern. The reason is that the tasks can be created in separate
task queues with this pattern, whereas the single-producer pattern requires lock-
ing of the task queue when all threads steal tasks out of this queue.

We conclude that the OpenMP runtime on the Phi as SMP system on a single chip
can handle thread and task creation without introducing much more overhead than
on the SNB system although the number of threads is much larger on the Xeon Phi.
If nested parallelism is needed to utilize the large number of threads available, the
parallel-producer pattern with tasks seems to be an appropriate way to express
this parallelism and it should be preferred over nested parallel regions if possible. Gen-
erally, if in a producer-consumer scenario only one thread is responsible for creating
tasks to be executed by the other threads, increasing the core count while decreasing
the single core performance (i.e. clock speed) as on the Xeon Phi may lead to the cre-
ator becoming a bottleneck.

4.3 Sparse-Matrix-Vector-Multiplication in a CG Method

To evaluate the performance of a real-world compute kernel, we use a CG solver [11].
The runtime of the algorithm is dominated by the Sparse-Matrix-Vector-Multiplication
(SpMV), so we concentrate our analysis on this operation. Depending on the sparsity
pattern of the matrix an adequate load balancing is needed. In the case of the CG-
method the optimal load balancing can be reached by using a pre-calculated number of
rows for each thread depending on the number of nonzero values per row, instead of
using a static schedule of an OpenMP work sharing construct. If this is not possible for
some problem class, OpenMP also offers some means for load balancing: The first is
to use a dynamic schedule with an appropriated chunk size for work sharing construct,
the second is to use OpenMP Tasks.

On ccNUMA machines, correct data and thread placement is essential [5]. For that
reason we initialize the data in parallel in the pre-calculated version to distribute the
pages over the sockets and bind the threads to the cores to avoid thread migration.
For the two alternative implementations, an optimal data placement is not possible
because of the dynamic scheduling, so that we use a static schedule for the data ini-
tialization. However, in [16] and [17] we have shown that at least for the tasking ap-
proach the Intel OpenMP runtime works quite well for the parallel-producer
multiple-executors pattern. Since the two test systems differ in amount and
efficient usability of hardware threads, we use different binding strategies, which are
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Fig. 4. SpMV performance (1000 CG iterations) on the SNB and the Intel Xeon Phi system

optimal for this kernel and the corresponding hardware. The matrix represents a com-
putational fluid dynamics problem (Fluorem/HV15R) and is taken from the University
of Florida Sparse Matrix Collection [8]. The matrix is stored in compressed row storage
(CRS) format. The matrix dimension is N = 2, 017, 169 and the number of non-zero
elements is nnz = 283, 073, 458, which results in a memory footprint of approximately
3.2 GB. Hence, the data set does not fit into the caches.

Fig. 4 shows the performance results for the three implementations of the SpMV (1000
CG iterations) on both systems. The version using the pre-calculated distribution of the
non-zeros reaches the same performance and scalability as the tasking version on the
two-socket SNB system because both have been optimized for big shared-memory sys-
tems. The measurements show that the corresponding two unmodified, cross-compiled
Intel Xeon Phi implementation variants also end up at roughly the same performance. In
contrast to the SNB system, the worksharing version using a dynamic schedule works
even better on the Intel Xeon Phi. The reason for the different behavior of the two sys-
tems is that an optimal data distribution cannot be achieved with a dynamic schedule
on ccNUMA machines, which is not an issue on the Xeon Phi. The direct comparison
between the two SMP systems shows that the Xeon Phi can profit from the higher mem-
ory bandwidth for this kernel and reaches a 1.7x better performance than the two Sandy
Bridges. While the peak is reached at about 11 GFLOPS on the SNB system with us-
ing only one hardware thread per core, the maximum performance on the Xeon Phi is at
about 18.8 GFLOPS with 120 threads (2 hardware threads per core). In [7] we showed
with the help of the Roofline Model [21] that this performance is close to the theoretical
maximum taking the memory-bound character of this kernel into account.

The results show that for this kernel benchmark OpenMP tasking, as well as OpenMP
worksharing with different scheduling strategies, run fine on the Intel Xeon Phi without
any special tuning for the architecture.

5 NAS Parallel Benchmarks

The NAS Parallel Benchmarks [1] are a set of benchmarks designed to evaluate the par-
allel performance of parallel computers. We ran the reference implementation without
any code change. On both systems we enabled compiler optimization and used version
13.0 of the Intel Compiler.
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Table 2. Runtime (in seconds) and speedup of the NAS parallel benchmarks on the Xeon Phi and
the SNB system

SNB Xeon Phi
Benchmark 1 Thread 32 Threads Speedup 1 Thread 240 Threads Speedup
IS 23.12 1.38 16.75 192.49 2.46 78.25
EP 186.81 8.11 23.03 1518.42 13.34 113.82
MG 64.04 8.03 7.98 498.94 9.63 51.81
FT 306.11 19.19 15.95 2393.01 53.97 44.34
BT 1241.63 82.61 15.03 9433.52 132.29 71.31
SP 826.25 137.69 6.00 12264.29 164.59 74.51
LU 1109.76 62.23 17.83 9835.09 163.33 60.22

Table 2 shows the runtimes for problem size C of all benchmarks on both systems
with one thread and with best effort performance, which was when all threads were
used. The speedup on the SNB system is between 6 and 24, on the Xeon Phi system
between 44 and 114. This shows that the benchmarks scale well on both systems and
that the Xeon Phi system can deliver a good scalability for standard kinds of applica-
tions. But the serial performance on the Xeon Phi is much lower compared to the SNB
system. With one thread the benchmarks run between 7.5 and 15 times slower on the
Xeon Phi. Given that the theoretical peak performance of one phyiscal core is nearly the
same for both, this is a surprising result. Although the speedup on the Xeon Phi system
is quite impressive with up to 114 on 60 cores, the Xeon Phi system is in total slower
for every benchmark, when all resources are used.

6 Application Case Studies

After studying the performance of kernels and benchmark codes, we investigated the
performance of four real-world codes of the RWTH Aachen University, namely:

iMOOSE: The innovative Modern Object Oriented Solver Environment (iMOOSE) is
a finite elements package developed by the Institute of Electrical Machines1 at RWTH
Aachen University. The native compilation of this heavy C++ code (∼ 300, 000 lines
of code) parallelized with OpenMP worked without any problems using the Intel Com-
piler. In our measurements we investigate a three-dimensional model of permanent-
magnet excited synchronous machine. We only look at the solving process which uses
a CG-solver and dominates the total serial run time on the host system (up to 90 %).

FIRE: The Flexible Image Retrieval Engine (FIRE) [9], developed at the Human Lan-
guage Technology and Pattern Recognition Group of RWTH Aachen University, takes
a set of query images and for each query image it returns a number of similar images
from an image database.

NestedCP: NestedCP [10] is developed from the Virtual Reality Group of the RWTH
Aachen University and is used to extract critical points in unsteady flow field datasets.

1 http://www.iem.rwth-aachen.de

http://www.iem.rwth-aachen.de
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Table 3. Elapsed time for the applications on Intel Sandy Bridge (SNB) and Intel Xeon Phi
Coprocessor

SNB Xeon Phi
Application 1 Thread best (#threads) Speedup 1 Thread best (#threads) Speedup
iMOOSE 104.68 12.20 (16) 8.58 1243.54 15.59 (240) 79.74
FIRE 284.60 16.68 (32) 17.06 2672.71 38.25 (234) 98.02
NestedCP Nested 46.99 3.21 (32) 14.62 845.14 35.58 (240) 23.76
NestedCP Tasking 47.34 2.43 (32) 19.47 848.34 11.14 (240) 76.16
NINA 470.06 61.16 (16) 7.68 1381.94 27.29 (177) 50.64

Critical points are essential parts of the velocity field topologies and extracting them
helps to interactively visualize the data in virtual environments. Two versions of the
code were investigated, first a version parallelized with nested parallel regions and sec-
ond, a version using OpenMP tasks to express the parallelism on the same levels.

NINA: The software package for the solution of Neuromagnetic INverse lArge-scale
problems (NINA) was developed by Bücker, Beucker and Rupp [3] and deals with the
reconstruction of focal activity in the human brain. It includes computations of matrix-
vector products using a matrix of dimensions 128×512000. Here, we use an established
C framework in a simplified version that mimics the original MATLAB approach.

Table 3 shows the runtime of the example applications on the SNB system and the
Xeon Phi. Noticeable is that nearly all applications gain a good speedup on the Xeon Phi
system of 50 to 80. The only exception is the NestedCP version parallelized with nested
parallel regions, the tasking version instead delivers a speedup of 76. This confirms our
assumption from Sect. 4.2 that tasking is a more appropriate way to express multi-
level parallelism on the Xeon Phi system. However, although the scalability is good for
all codes on both systems, the total runtime is higher on the Xeon Phi except for one
code. The reason again is the serial runtime of the Xeon Phi cores. iMOOSE, FIRE
and NestedCP are slower by a factor of 10 to 18 compared to one SNB core. NINA
is only slower by a factor of three with one thread and because of the good scalability
on the Xeon Phi, the system outperforms the SNB system by a factor of 2.2. A profile
for the NINA code showed that roughly 95 % of the kernel execution time is spent
in a dense matrix-vector multiplication which is performed very often. This memory
access pattern and floating point operations of this operation is very similar to the stream
benchmark, where two vectors are multiplied. Since all matrix elements are needed only
once, the operation is memory bandwidth bound and since the accesses are consecutive
in the matrix and the vector, latency is not important. The stream benchmark has shown
that the Xeon Phi can reach a about 2.5 times higher memory bandwidth compared to
the SNB system, this is why the NINA code performs well here. All the other codes do
not have one single hotspot and they do not use dense linear algebra. Our assumption
is that they profit much more from the out-of-order execution capabilities of the SNB
cores and thus the SNB system outperforms the Xeon Phi for all these codes.
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7 Conclusion

We investigated the performance of Intel’s new Xeon Phi coprocessor, if it is used as a
standalone SMP system. There are two basic differences between the Xeon Phi and the
Sandy Bridge system we used for comparison. First, the Xeon Phi offers many more
cores (60) and hardware threads (240) than the SNB system (16 cores / 32 hardware
threads). Second, the design of the Xeon Phi cores is simpler and uses in-order execu-
tion, whereas the Sandy Bridge cores can do out-of-order execution. We find that the
memory bandwidth of the Xeon Phi is about 2.5x higher than the SNB system, but the
memory latency for large strides is much lower on the SNB system. Furthermore, we
measured the overhead of OpenMP synchronization constructs for single and multi-
level parallelism, as well as the overhead introduced by task regions. Our findings are
that the overhead for these constructs are in the same order of magnitude for both sys-
tems, although a much larger number of threads is needed on the Xeon Phi to utilize
all resources of the chip. Thus, the OpenMP runtime should not prevent applications
from scaling to a large number of threads on the new platform. Indeed, the NAS paral-
lel benchmarks and all user applications investigated (iMOOSE, FIRE, NestedCP and
NINA) have shown a good scalability on the Xeon Phi system between 50 and 113.
However, our results also show that the serial performance of one Xeon Phi core is
outperformed by a SNB core by a factor of 8-12 for many applications. This leads to a
better overall performance on the SNB system for most of these applications. NINA was
the only application that delivered a better overall performance on the Xeon Phi where
it was 2.2 times faster than on the SNB system. The code executed dense matrix vector
multiplications in 95 % of the compute-intensive parts. The other codes have less pre-
dictable memory access patterns. We assume that the high memory latency of the Xeon
Phi is an issue here since the in-order engine cannot hide the latency in contrast to the
out-of-order engine of the SNB. According to our experience, if the Xeon Phi is used
as a stand alone SMP, it does not deliver a performance comparable to a Sandy Bridge
system for many applications, because of the poor single core performance. For some
applications, like the NINA code, the performance is fine, but for most of our codes the
SNB system is the platform of choice. Future work is to investigate which kind of ap-
plications can be tuned to perform well on the Intel Xeon Phi system and which tuning
steps are necessary.
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Abstract. Using the Barnes-Hut algorithm as an example we deal with
the design of parallel algorithms that are able to exploit multicore CPUs
and GPUs conjointly. Specifically, we demonstrate how to modularize a
parallel application according to specific aspects of parallel execution.
This allows for a flexible assignment of individual modules to the two
parallel architectures based on their actual performance characteristics.
Furthermore, we discuss a hybrid module for the most time consuming
part of the algorithm that utilizes CPU and GPU simultaneously em-
ploying a novel load balancing heuristic. Our experimental evaluation
shows that our method greatly increases overall efficiency by allowing to
deploy the optimal configuration of modules for each individual computer
system.

1 Introduction

In recent years, GPU-based parallel computing has attained considerable inter-
est. However, most algorithm designs presented so far exclusively exploit the
GPU for executing parallel tasks while the (potentially many) cores of the CPU
are running idle.

In this paper, we discuss a modularized parallel application which enables
a flexible assignment of individual parts of the algorithm for execution on the
GPU, the CPU cores, or on both platforms in parallel. We chose the Barnes-
Hut algorithm as an example for our studies. It computes the evolution of a
large set of particles based on the forces individual particles exert on each other.
In contrast to existing works (e.g. [7,8]), our approach specifically takes into
account that, depending on the actual capabilities of the hosts’ CPU cores and
GPU, different assignments of computational parts of the Barnes-Hut algorithm
to platforms may yield the most efficient solution.

Achieving such a degree of flexibility is especially important when executing
parallel applications (e.g. [6,14]) in highly heterogeneous environments. A typical
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example of this kind are Desktop Grids (e.g. [1,16]) which combine the computing
power provided by volunteers into a global computing grid and are known to
aggregate a huge variety of hardware resources [10]. Also, Cloud Computing
instances exhibit a similar scenario: Even though the user is guaranteed certain
minimal hardware limits, the actual configurations and capabilities can vary
considerably.

2 Preliminaries

2.1 The Barnes-Hut Algorithm

N-Body methods simulate the dynamics occurring in a set of N particles based on
the forces (e.g. gravity) the particles exert on each other. Simulations proceed in
discrete timesteps, each resulting in new particle positions. As exact approaches
consider the forces between each pair of particles, O(N2) calculations are neces-
sary per timestep. To treat larger numbers of particles, approximation methods
have been proposed that considerably decrease the quadratic complexity [17].

One well known hierarchical approach to the N-body problem is the Barnes-
Hut algorithm [2] which exhibits O(N logN) time complexity. It employs a tree
data structure to approximate forces acting on the individual particles. The leaf
nodes of the Barnes-Hut tree hold the positions and masses of single particles
whereas each inner node represents particle equivalents summarizing the posi-
tions and masses of all particles of the subtree rooted at that node. Thus, inner
nodes act as pseudo particles which correspond to a certain area of the simulation
space.
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Fig. 1. Simulation space and corresponding Barnes-Hut tree (same colors denote re-
spective pseudo particles). For clarity we show a two-dimensional space, however, the
same principles hold in 3D, too. We also illustrate the parameters of the opening cri-
terion applied for steering the tree walk for one particle and the resulting tree cut.

The computations of a timestep consist of the following consecutive steps:

S1) Tree Building: The simulation space is recursively divided into equally
sized subspaces until each of them contains at most one particle (cf. Fig. 1).
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These subspaces define the leaf nodes of the Barnes-Hut tree which store the
position and the mass of the contained particle.
S2) Computing Pseudo Particles: For each inner node in the tree, the pseudo
particle data has to be computed. The mass is calculated as the sum of the masses
of the child nodes and the position as the center of mass.
S3) Force Evaluation: Forces are computed for each particle separately by
traversing the tree, starting with the root node (tree walk). To every pseudo-
particle an opening criterion is applied to decide whether it can be used for
force evaluation or if the node must be expanded. The opening criterion is given
by θ < l/d, where θ is a chosen approximation factor, l the length of the sub-
space the node represents and d the distance of the node’s position to the current
particle (cf. Fig. 1). Thus, choosing a smaller value for θ decreases the simula-
tion’s approximation error but increases running time as more interactions have
to be computed. If the opening criterion applies to an inner node, the algorithm
executes recursively on all child nodes and adds up the individual forces. Oth-
erwise, either the pseudo particle data is used to compute forces or, in case of
a leaf node, the particle data. The set of interaction partners define a particle’s
tree cut as that part of the tree that is needed for the particle’s force evaluation.
S4) Particle Update: Once the total force on each particle is known, the al-
gorithm calculates the new positions and velocities of the particles (by applying
Newton’s laws). These serve as input for the next timestep.

2.2 GPGPU Computing

In contrast to CPUs, GPUs consist of a hierarchical combination of many primi-
tive processor cores. On the nVidia platform, e.g., each Streaming Multiprocessor
(SM) comprises a set of simple Streaming Processors (SP) which share a common
program counter and control unit. All SPs within an SM execute instructions
synchronously and thus follow the SIMD architecture model, whereas different
SMs operate independently and follow the MIMD model.

We use nVidia GPUs and the CUDA SDK to speed up the Barnes-Hut algo-
rithm. nVidia GPUs offer hardware support for the scheduling of threads. When
running kernels, the scheduler selects small groups of threads, called warps, for
execution on SMs. If single threads of a warp follow different program paths,
all paths have to be followed one after another as each SM only possesses one
control unit. So, to achieve high efficiency with the computational resources of
GPUs, one must avoid thread divergence as if-then-else constructs have to be
serialized in the SIMD model. Because of this limitation, GPUs are best suited
to compute regularly structured problems.

To attenuate this constraint, modern GPUs introduce warp vote functions to
allow all threads of a warp to evaluate conditions jointly. For a Boolean variable
var, the warp vote function __all(var) returns true in each thread of the warp
if var is true in every thread. If var is false in only one thread, false is returned
in all threads of the warp. Thus, warp vote functions in conditional expressions
ensure coherent program paths within warps and avoid thread divergence which
can greatly increase efficiency.
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3 A Barnes-Hut Method for Hybrid Architectures

To efficiently use the computing power provided by the CPUs and GPUs of
different hosts, we designed a modular method that employs the most suitable
platform for each of the steps of the Barnes-Hut algorithm.

We first describe the structure and organization of the simulation data in Sec-
tion 3.1 followed by the characteristics of the individual steps that lead to our
modularization in Section 3.2. As force evaluation is the most expensive step,
we afterwards focus on the implementation of this module. In Section 3.3 we lay
out how we use the GPU for force evaluation. To exploit the maximum available
computational power, we designed an additional module that runs on both plat-
forms in parallel (hybrid mode) which we discuss in Section 3.4. Furthermore,
we invented a new load balancing mechanism to minimize processor idle time.
We present details and advantages of this method in Section 3.5.

3.1 Data Structures and Data Organization

As described in Section 2.1, the Barnes-Hut algorithm can be divided into a se-
quence of distinct steps each of which depends on the outcome of preceding ones
but can be solved as an independent entity. In our approach modules encapsulate
the functionality of these steps. Depending on its implementation, each module
can be executed in parallel on either one or both platforms. The definition of ex-
plicit interfaces between successive modules allows us to run the algorithm with
an arbitrary assignment of modules to execution platforms. The best configura-
tion for a specific host can be determined by initially performing a benchmark
run evaluating all possible combinations.

In principle, we replicate particle and tree data in the memories of the two
platforms to minimize costly data transfers between CPU and GPU memory
during computations. However, if data that is needed by the subsequent module
has been changed on one platform, e.g. by updating particle positions or tree
building (cf. Tab. 1), it must be transferred if the execution crosses platform
borders. As the resulting memory latencies reduce efficiency, we minimize idle
time by overlapping data transfers with the module execution.

To facilitate modularity and to speed up data transfers and computations, we
introduce two further steps/modules between tree building (S1) and computing
pseudo particles (S2):

S1a) Tree Linearization: To allow for an efficient transfer between platforms
and to speed up tree traversals, we transform the tree data structure into a set of
linear arrays: The tree array reflects the recursive structure of the tree, the next
and more arrays allow for a stack-free tree traversal, and the particle indirection
array allows particles to be accessed according to their spatial position.
S1b) Particle Sorting: Spatial proximity within particles can be exploited in a
number of cases during the computation to speed up execution and memory ac-
cess. As particles close to each other need to interact frequently, keeping them in
close memory positions increases cache efficiency. Thus, we sort particles through
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the particle indirection array using three dimensional space filling Peano-Hilbert
curves.

3.2 Modularization

Each of the steps described above exhibits different characteristics, especially
with respect to data dependencies. In the following paragraphs, we give a detailed
account of the characteristics that determined the parallelization strategy for
each module. Table 1 provides an overview.

Table 1. Modules with interfaces and platforms (C = CPU, G = GPU, H = Hybrid.)

Requires Provides Platform

S1 particle data unsorted tree C
S1a unsorted tree next/more, particle indirection, tree arrays C
S1b particle indirection array, particle data sorted particle data C, G
S2 tree array, sorted particle data pseudo particles C, G
S3 next/more, pseudo particles, sorted particle data forces C, G, H
S4 forces, sorted particle data particle data C, G

The most time consuming steps of the Barnes-Hut algorithm are tree building
(S1) and force evaluation (S3) which both have a time complexity of O(N logN).
All four remaining steps are of linear complexity. Especially particle sorting
(S1b) can be done in linear time as one can determine the actual spatial order
of particles from the tree structure in one traversal.

Concerning data access patterns, tree building (S1), tree linearization (S1a)
and particle sorting (S1b) are the most complex problems. Tree building is real-
ized by inserting particles into a dynamically changing tree. The way in which
the tree is arranged in memory thus depends on the order the particles are
processed in. This usually leads to highly irregular access patterns. During tree
linearization (S1a), the tree data structures are rearranged in the order of a
depth first traversal to speed up succeeding steps. Computing pseudo particles
(S2) and force evaluation (S3) benefit from tree linearization (S1a) and particle
sorting (S1b) in that they have less irregular access patterns traversing the tree
than the steps before. Particle sorting (S1b) allows for regular access patterns
on particle data in later steps but has highly irregular access patterns, itself.

In addition to irregular access patterns, tree building (S1), linearization (S1a),
and computing pseudo particles (S2) suffer from data dependencies. During tree
building (S1), particles are inserted in parallel into a shared tree. Changes to the
tree have to be made atomic through locking mechanisms so that no inconsistent
states of the tree may arise. This limits the amount of parallelism that can
be achieved. Particle sorting (S1b), force evaluation (S3) and particle update
(S4), in contrast, do not involve any data dependencies and thus are trivially
parallelizable.

Our partition of the Barnes-Hut algorithm into a sequence of unique steps was
guided by the characteristics described above. They are summarized in Table 2.
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Although force evaluation dominates the running time in sequential implemen-
tations with 97 %, all steps have to be parallelized. If only force evaluation
was parallelized, following Amdahl’s law a maximum speedup of 33.3 could be
achieved, no matter how many processors were employed. However, implement-
ing different parallelization approaches for each step can be easily accomplished
through our modular design.

Table 2. Properties of the modules of our implementation of the Barnes-Hut algorithm

Access

patterns

Data depen-

dencies

Time

complexity

Sequential CPU

running time (in %)

S1 highly irregular yes O(N log N) ≈ 2
S1a highly irregular yes O(N) < 1
S1b highly irregular no O(N) < 1
S2 irregular yes O(N) < 1
S3 irregular no O(N log N) ≈ 97
S4 regular no O(N) < 1

As GPUs usually use relatively slow, high-bandwidth memory, regular access
patterns are crucial to achieve good performance. If irregular access patterns
occur, compute time is wasted waiting for memory accesses. In contrast, on
CPUs, more sophisticated memory hierarchies with larger and more cache stages
are employed which can better hide latencies if irregular patterns occur. We thus
expect GPUs to perform best in particle update (S4) and force evaluation (S3)
and less well in steps with more irregular access patterns and data dependencies.

Due to the combination of highly irregular access patterns and data depen-
dencies, we expect tree building (S1) and linearization (S1a) to be best suited
for an execution on CPUs. The additional steps of tree linearization (S1a) and
particle sorting (S1b) provide tree and particle data in an order that allows for
more regular memory access patterns, so that the most time consuming step,
the force evaluation (S3), can be parallelized efficiently on both CPU and GPU.

3.3 GPU Based Force Evaluation

As motivated above, GPUs are well suited to perform the force evaluation by
executing one thread per particle. Because we sort particles (S1b), each warp
only processes nearby particles. The force evaluation of nearby particles leads to
very similar tree cuts, so we thereby greatly reduce thread divergence.

To completely avoid thread divergence, interaction lists can be employed in
GPU-based force evaluation [8,4]. This approach groups nearby particles to-
gether. A tree walk computes an interaction list for each group that stores all
particles and pseudo-particles that contribute to the groups’ forces. Forces acting
on the individual particles of a group are computed completely synchronously,
using the interaction list. In contrast, like [7], we use warp vote functions to
achieve a similar effect. During the tree walk, the opening criterion is evaluated
using __all. Approximations thus are only acceptable if all threads of a warp
agree. Else the threads continue the tree walk with the children of the current
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node. So, all threads of a warp access the same node data and don’t diverge.
Evaluating the opening criterion for each particle separately would cause parts
of the tree to be traversed to different depths. Using __all, all threads of a warp
follow the deepest path necessary for any one of the warp’s particles, thereby
increasing accuracy.

Although more interactions are computed using warp vote functions, the re-
duced amount of memory accesses and the absence of thread divergence greatly
improve performance. Additionally, latency hiding through the scheduling hard-
ware can work more effectively with warp vote functions than interaction lists
as the memory bound tree traversal and the compute bound evaluation of inter-
actions are not artificially separated but interleaved.

3.4 Hybrid Force Evaluation

Our modularized approach allows us to combine CPU- and GPU-based imple-
mentations of the force evaluation to yield a hybrid module that utilizes both
platforms in parallel. To balance the workload among CPU and GPU, each pro-
cessor evaluates forces for a subset of particles. The size of the subset depends
on the processor’s computational power.

We model the CPU as a set of equally powerful processors. Because of its
hardware-based thread scheduling we can’t control the GPU’s load balancing. We
thus represent the GPU as a single processor. For the same reason, it is difficult to
predict GPU running times solely from the problem structure. Thus, we exploit
the spatio-temporal stability of N-Body problems. We measure running times of
CPU and GPU computations and adjust the GPU’s computational power pGPU
dynamically in each timestep. That way, we are able to capture the ratio between
the computing power of GPU and CPU and to distribute the load, accordingly.

If computations on the GPU (tGPU) took less time than on the CPU (tCPU),
pGPU is increased to pGPU

(
cinc

tGPU
tCPU

+ (1− cinc)
)

so that the GPU evaluates
more forces. If on the other hand the CPU took less time than the GPU, pGPU

is decreased to pGPU

(
cdec

tGPU
tCPU

+ (1 − cdec)
)
. Else, pGPU remains unchanged.

The constants cinc, cdec and the initial value of pGPU are precomputed in a
benchmark run. cinc and cdec determine how fast pGPU is increased or decreased.
They are chosen in such a way that no work is stolen from the faster platform
due to fluctuations in tGPU or tCPU that may be caused by the different ways in
which CPUs and GPUs operate, the operating system, or the system’s user.

3.5 A Novel Dynamic Load Balancing Scheme for Force Evaluation

To improve the hybrid force evaluation’s load balancing, the varying costs to
evaluate forces acting on different particles must be considered, instead of as-
suming a uniform cost per particle. For particles in dense areas of the simulation
space more interactions have to be computed than for particles in sparse areas.
Due to the spatio-temporal stability of N-body problems, particles move only



566 H. Hannak, H. Hochstetter, and W. Blochinger

 0

 2

 4

 6

 8

 10

 12

 14

 0  100000  200000  300000  400000  500000
 0

 200

 400

 600

 800

 1000

 1200

 1400

tr
ee

−
le

ve
l

in
te

ra
ct

io
ns

particle

Core 1 Core 2 Core 3 Core 4 Core 5 Core 6

particle’s tree−level
number of interactions

Fig. 2. Comparison between our tree-level heuristic and the number of interactions
for one timestep during force evaluation using θ = 0.75. Columns depict the resulting
particle distribution among six CPU cores (gray and white).

slightly between timesteps. Thus, the number of interactions also changes slowly
and provides a good measure for the computational cost to evaluate forces.

A common approach to load balancing is counting the number of interac-
tions for each particle and using the data to distribute work in subsequent
timesteps [17]. As GPUs use hardware-based thread scheduling, this approach
isn’t very well suited for our hybrid module. When counting interactions on the
GPU, more resources are required and less threads can be resident in SMs, which
strongly impairs the scheduling mechanism and the GPU’s performance.

We thus introduce a novel heuristic approach to predict the number of inter-
actions. It uses only data gathered during one traversal of the tree and does not
introduce any overhead into the force evaluation itself. Our method is based on
the tree level l of each particle x which turned out to be a good measure for
the particle density in the region surrounding that particle (cf. Fig. 2). If l is
large, many particles are located close to x and many interactions have to be
considered to evaluate the force acting on x. The tree level thus provides a good
heuristic to approximate the computational cost for a given particle.

To incorporate our heuristic into the force evaluation, we write a cost array
containing the prefix sum of the tree level (and thus cost) of each particle. The
last element of this array holds the total cost C to evaluate all forces. Each
processor i, which may be a CPU core or the GPU, has a computing power pi
that determines the amount of work assigned to it. The system’s total computing
power is ptotal =

∑
i pi. During simulations, each processor i computes forces

for a contiguous subset of particles, the lower and upper indices of which are
the same as the indices of C

∑i−1
k=0 pk

ptotal
and C

∑i
k=0 pk

ptotal
, respectively, in the cost

array which can be determined through binary search. Fig. 2 shows a particle
distribution resulting from our load balancing scheme. Note how, e.g., Core 1 is
assigned a larger particle subset than Core 2, as for most particles assigned to
Core 1 less interactions have to be computed.
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Table 3. Configuration of the node types used for the experimental evaluation

Type CPU (Cores / Threads / Frequency) RAM GPU VRAM

I Intel Core i7 M620 (2 / 4 / 2.67 GHz) 2 GB nVidia GeForce NVS 3100M 256 MB
II AMD Phenom II X6 1055T (6 / 6 / 2.8 GHz) 4 GB nVidia GeForce GTX 660 Ti 2 GB
III Intel Core i7-2670QM (4 / 8 / 2.2 GHz) 4 GB nVidia GeForce GTX 570M 1.5 GB

4 Performance Evaluation

To evaluate our approach we performed test runs on a variety of different hard-
ware (see Table 3). For each run we used two colliding galaxies of equal mass
as input. Each galaxy consisted of a stellar disk surrounded by a dark matter
halo following the Springel-Hernquist model. We used Starscream [5] to create
the galaxies and place them on a parabolic orbit.

We denote the configuration of platforms that execute the simulation steps
as strings of six characters, representing the six modules. Each module is either
executed on the CPU (C), the GPU (G), or in hybrid mode (H) on CPU and
GPU in parallel. Speedups are based on the sequential CPU running time on
the respective test system. Figure 3 shows the speedups obtained using different
combinations of modules on our test systems for varying problem sizes.

In purely CPU-based parallel configurations (CCCCCC), we achieved speedups
of 1.8 (type I), about 5 (type II), and 3.7 (type III). On all three systems, the
speedups of our heuristic load balancing scheme could compete with those of load
balancing based on interaction counting. In the sequential configuration CCC-
CCC, we measured an overhead of 2 % just to count interactions. For GPU-based
force evaluation this introduced an overhead of more than 30 %.

To find the most efficient module combination, we ran all possible combina-
tions on each system. On type I, the best combination turned out to be CCCCHG
which obtained speedups of 6 and above. The most efficient combination for type
II, CCGGGG, achieved speedups close to 60 for the largest problem sizes. This
discrepancy can be explained by the different ratio of GPU to CPU computing
power on the test systems. On type II the GPU outperforms the CPU, whereas
on type I both have similar peak performance. On type III, the best module
combination depended on the problem size. For problem sizes of below 6 · 106
particles, CCCCHG yielded the highest speedups whereas for larger problems
CCCGHG was fastest. We attribute this observation to the fact that GPUs
only reach their maximum performance if all computational resources are fully
utilized. As the GPU on type III is highly capable, this was only achieved for
problems with a higher number of particles. As expected, we obtained different
results among our test systems, and as such a variety of systems is common in,
e.g., Desktop Grids, the results prove our idea of a flexible modular design.

The modern GPU on type II supports the warp vote function __all, which
decreased the time of the force evaluation by over 50 %. Using the hybrid force
evaluation module (CCCCHG) on type I, we measured a speedup of over 20 %
compared to configuration CCCCGG. On type III, CCCGHG was over 50 %
faster than CCCGGG. This shows that combining the computational power of
CPU and GPU is an effective way to increase the performance of simulations.
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Fig. 3. Speedup of different parallel module combinations compared to purely sequen-
tial CPU implementations. Timings averaged over 10 time steps using θ = 0.75.

Memory latencies constituted only about 1 % of the total running time on
type II in configuration CCGGGG. Through our latency hiding approach, we
reduced latencies by 50 % to below 0.5 %. On type I in configuration CCCCHG,
latencies were reduced by over 66 % to less than 0.25 % of the total time.

5 Related Work

In most works, only the computationally most expensive part, the force evalu-
ation, is computed on the GPU, whereas the CPU computes all other steps of
the Barnes-Hut algorithm [15,8]. More recent works run the whole simulation on
GPUs [7,4]. In contrast, our code is completely modularized to allow arbitrary
combinations of CPU- and GPU-based implementations of the individual steps.
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Irregular problems like cloth simulation [12] or the Barnes-Hut tree do not eas-
ily fit the parallel SIMD model of GPU programming. Construction and traver-
sal of trees on GPUs are topics of ongoing research. Two popular approaches to
parallelize construction of trees on GPUs have been proposed in literature: Tree
construction can either be accomplished by inserting particles in parallel into a
dynamically changing shared tree using locks to prevent race-conditions [7] or the
tree can be constructed level by level, which requires particles to be sorted [4].

GPU-based force evaluation can be realized executing one thread per particle.
As recursive functions are not supported on older GPU generations, tree traver-
sals have to be done iteratively. Stack-based tree traversals were used in [8,4,7].
Tree traversals using next and more arrays were first employed in [13] and later
were used on the GPU [15], as in our work. To prevent thread divergence in SMs,
force evaluation can be modified to use interaction lists, as first described in [3].
They were used in GPU-based force evaluation in [8,4]. Instead, like [7], we use
warp vote functions to prevent thread divergence.

Our modular design offers opportunities for latency hiding every time execu-
tion moves to another platform. As most works employ non-modular designs,
little information can be found on this topic. We are aware of only one work dis-
cussing latency hiding between GPU and CPU computations. In [11] the CPU
determines interaction lists and the evaluation of forces is offloaded to the GPU.
However, interaction lists are computed piecewise, so that completed interaction
lists can be sent to the GPU while the CPU computation continues.

6 Conclusion

In this paper we introduced a modularized parallelization of the Barnes-Hut
algorithm. By defining interfaces between modules and carefully choosing data
structures we facilitate efficient module implementations for CPU and GPU that
allow a flexible dynamic assignment to platforms. Through the design of hybrid
modules that combine the computing power of CPU and GPU, we fully utilize
all available computational resources.

Our test results show that for different host systems very different combina-
tions of GPU- and CPU-based modules yield the best overall performance, and
that the best combination depends highly on the underlying hardware. Hence,
by incorporating our modular design, we are able to improve an existing im-
plementation of the Barnes-Hut algorithm for Desktop Grids [9]. The flexibility
and adaptability our modular multi-platform approach offers render it an ideal
model for the design of future algorithms for heterogeneous environments.

References

1. Anderson, D.P.: Boinc: A system for public-resource computing and storage. In:
5th IEEE/ACM International Workshop on Grid Computing, pp. 4–10 (2004)

2. Barnes, J.E., Hut, P.: A hierarchical O(N log N) force-calculation algorithm. Na-
ture 324(6096), 446–449 (1986)



570 H. Hannak, H. Hochstetter, and W. Blochinger

3. Barnes, J.E.: A modified tree code: Don’t laugh; it runs. Journal of Computational
Physics 87(1), 161–170 (1990)

4. Bédorf, J., Gaburov, E., Zwart, S.P.: A sparse octree gravitational n-body code
that runs entirely on the GPU processor. Journal of Computational Physics 231(7),
2825–2839 (2012)

5. Billings, J.J.: Starscream – An open source galaxy modeling and simulation tool,
http://code.google.com/p/starscream/ (accessed in February 2013)

6. Blochinger, W., Dangelmayr, C., Schulz, S.: Aspect-oriented parallel discrete op-
timization on the cohesion desktop grid platform. In: Proc. of the Sixth IEEE
International Symposium on Cluster Computing and the Grid (CCGrid 2006),
pp. 49–56 (2006)

7. Burtscher, M., Pingali, K.: An efficient CUDA implementation of the tree-based
Barnes Hut n-body algorithm. In: Hwu, W.-M.W. (ed.) GPU Computing Gems
Emerald Edition, ch. 6, pp. 75–92. Morgan Kaufmann Publishers Inc. (2011)

8. Gaburov, E., Bédorf, J., Zwart, S.P.: Gravitational tree-code on graphics processing
units: Implementation in CUDA. Procedia CS 1(1), 1119–1127 (2010)

9. Hannak, H., Blochinger, W., Trieflinger, S.: A desktop grid enabled parallel Barnes-
hut algorithm. In: Proceedings of the 31st IEEE International Performance Com-
puting and Communications Conference (IPCCC 2012), pp. 120–129 (2012)

10. Heien, E., Kondo, D., Anderson, D.: A correlated resource model of internet end
hosts. IEEE Transactions on Parallel and Distributed Systems 23(6), 977–984
(2012)

11. Jetley, P., Wesolowski, L., Gioachin, F., Kalé, L.V., Quinn, T.R.: Scaling hierarchi-
cal n-body simulations on GPU clusters. In: Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing, Networking, Storage
and Analysis, pp. 1–11 (2010)

12. Keckeisen, M., Blochinger, W.: Parallel implicit integration for cloth animations
on distributed memory architectures. In: Proc. of Eurographics Symposium on
Parallel Graphics and Visualization 2004, pp. 119–126 (2004)

13. Makino, J.: Vectorization of a treecode. Journal of Computational Physics 87(1),
148–160 (1990)

14. Meißner, M., Hüttner, T., Blochinger, W., Weber, A.: Parallel direct volume ren-
dering on PC networks. In: Arabnia, H.R. (ed.) Proc. of the Intl. Conf. on Parallel
and Distributed Processing Techniques and Applications, PDPTA 1998. CSREA
Press (1998)

15. Nakasato, N.: Implementation of a parallel tree method on a GPU. Journal of
Computational Science 3(3), 132–141 (2012)

16. Schulz, S., Blochinger, W., Held, M., Dangelmayr, C.: Cohesion - a microkernel
based desktop grid platform for irregular task-parallel applications. Future Gener-
ation Computer Systems - The International Journal of Grid Computing: Theory,
Methods and Applications 24(5), 354–370 (2008)

17. Singh, J.P., Holt, C., Totsuka, T., Gupta, A., Hennessy, J.: Load balancing and
data locality in adaptive hierarchical n-body methods: Barnes-hut, fast multipole,
and radiosity. Journal of Parallel and Distributed Computing 27(2), 118–141 (1995)

http://code.google.com/p/starscream/


A Generic High-Performance Method

for Deinterleaving Scientific Data

Eric R. Schendel1,3,4, Steve Harenberg1,4, Houjun Tang1,4,
Venkatram Vishwanath3, Michael E. Papka2,3, and Nagiza F. Samatova1,4,�

1 North Carolina State University, Raleigh, NC 27695, USA
2 Northern Illinois University, DeKalb, IL 60115, USA

3 Argonne National Laboratory, Argonne, IL 60439, USA
4 Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA

samatova@csc.ncsu.edu

Abstract. High-performance and energy-efficient data management ap-
plications are a necessity for HPC systems due to the extreme scale
of data produced by high fidelity scientific simulations that these sys-
tems support. Data layout in memory hugely impacts the performance.
For better performance, most simulations interleave variables in memory
during their calculation phase, but deinterleave the data for subsequent
storage and analysis. As a result, efficient data deinterleaving is critical;
yet, common deinterleaving methods provide inefficient throughput and
energy performance. To address this problem, we propose a deinterleav-
ing method that is high performance, energy efficient, and generic to
any data type. To the best of our knowledge, this is the first deinterleav-
ing method that 1) exploits data cache prefetching, 2) reduces memory
accesses, and 3) optimizes the use of complete cache line writes. When
evaluated against conventional deinterleaving methods on 105 STREAM
standard micro-benchmarks, our method always improved throughput
and throughput/watt on multi-core systems. In the best case, our deinter-
leaving method improved throughput up to 26.2x and throughput/watt
up to 7.8x.

1 Introduction

Emerging extreme-scale high performance computing (HPC) systems enable high
fidelity scientific simulations that generate data at an increasing rate [1]. Yet,
these HPC systems and data-intensive applications they support consume energy
at an ever-increasing amount [2,3]. Thus, the need for performance and energy
efficient data management applications is of utmost importance to maximize
throughput/watt while achieving improved scalability and sustainability [4].

To improve performance during scientific data analysis, which is critical for
gaining insights from the simulations, simulations often have to deinterleave data
variables. Upon deinterleaving, the data set for each variable of the simulation
is contiguous in memory and storage. This deinterleaved layout is beneficial
since most data analyses span multiple time steps of a particular variable [5].
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In contrast, most simulations perform calculations using instances of many vari-
ables from a current/previous time step. Hence, an interleaved layout in memory
provides better data locality during simulation runs by keeping each group of
variables together in memory for the active time steps, see Figure 1.

Deinterleaving data is frequently necessary after the completion of a simu-
lation step before data analysis and storage. For example, simulations such as
FLASH [6], S3D [7] and Nek5000 [8] have variables that are interleaved in mem-
ory while most storage and analysis, such as data compression [9,10] and variable
precision analytics [11], are performed using a deinterleaved layout. Through
performing numerous micro-benchmarks, we found that common deinterleaving
methods have poor throughput and energy performance.

To address this problem, we propose a deinterleaving method that is high
performance, energy efficient, and generic to any variable data type. To the
best of our knowledge, this is the first deinterleaving method that 1) exploits
data cache prefetching, 2) reduces memory accesses, and 3) optimizes the use
of complete cache line writes. As a result, our method increases the throughput
performance, reduces memory latency, and improves energy utilization.

Specifically, we compare the throughput performance and energy utilization
of our deinterleaving method to two common deinterleaving methods. We as-
sessed our method with 105 STREAM standard micro-benchmarks including 84
throughput and 21 energy performance test cases of varying input sizes and data
types. In all cases tested, our method achieved better throughput and energy
performance than the other two methods. In the best case, our method improved
throughput up to 26.2x and throughput/watt up to 7.8x, when compared to the
next best deinterleaving method.

2 Background

Simulations such as FLASH, S3D, and Nek5000 have variables that are inter-
leaved in memory. These interleaved variables can be thought of as a matrix
of data stored in row major format where each column corresponds to a par-
ticular variable. For multidimensional variables, each dimension has a separate
column. Consider an example of FLASH simulation data with a sample of three
variables ρ, P, and T corresponding to gas density, pressure, and temperature,
respectively. The interleaved layout of these variables in memory can be seen in
Figure 1a. Representing this data in matrix form would give an m × 3 matrix
where the three columns correspond to the three variables and the rows corre-
spond to different steps of the simulation, see Figure 1c. With this interpretation,
deinterleaving the data is equivalent to performing a matrix transposition, which
would change the layout of the variables in memory, see Figure 1b.

There are two common techniques for deinterleaving data by performing an
out-of-place matrix transposition. We refer to these techniques as standard trans-
position and strided transposition. These two techniques, along with our proposed
method in the following section, are considered out-of-place due to the use of
an output memory space equal to the size of the original matrix where the el-
ements are copied. In contrast, in-place transposition methods use a bounded
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ρ0 P0 T0 ρ1 P1 T1 ... ρm Pm Tm

(a) variables interleaved in memory

ρ0 ρ1 ... ρm P0 P1 ... Pm T0 T1 ... Tm

(b) variables deinterleaved in memory

ρ0 P0 T0

ρ1 P1 T1

...
...

...
ρm Pm Tm

(c) interleaved matrix format

Fig. 1. FLASH data in interleaved and deinterleaved layouts; each ρf , Pf , and Tf for
f = 0 to m refers to the value of ρ,P, and T of the simulation at the f th matrix row

amount of memory space and, in some cases, can slightly outperform out-of-place
methods. However, in-place methods are often complex and can be performance
constraining for simulations requiring variable interleaving, such as FLASH, S3D
and Nek5000, to continue from where it left off in the calculation phase.

The standard and strided out-of-place transposition methods differ from each
other in how they copy elements into an output memory buffer. The standard
transposition method uses two loops to iterate row-wise and writes out the ele-
ments in a strided manner [12]. Alternatively, the strided transposition method
uses two loops to iterate column-wise and writes out the elements contiguously.

3 Method

Our deinterleaving method performs an out-of-place transposition to transform
a matrix of data stored in row major format to one stored in column major
format. During the transposition process, our method combines the strength of
both the standard transposition and strided transposition techniques.

In this section, we describe our deinterleaving method in detail. The method
section is divided into three subsections corresponding to the three major com-
ponents of our method: 1) cache prefetching on blocks of data, 2) using the
registers as a vector transposition buffer, and 3) optimizing for full cache line
writes. In addition, we provide a simple example for clarity.

3.1 Cache Prefetching on Blocks of Data

The benefit of cache prefetching is to hide latency time sinks associated with
accessing main memory [13]. The standard transposition method, as discussed
in Section 2, is able to take advantage of these benefits due to the sequential
data reads inherent in its method. In contrast, the major weakness of the strided
transposition method is that cache prefetching is not guaranteed and its effec-
tiveness is dependent on the input buffer size. The cache prefetching benefits
of the standard transposition method were the motivation for performing cache
prefetching in our method.

Given an m × n (m rows and n columns) matrix of elements, A, stored in
row major format, the first step of our deinterleaving method is to partition
A into a block matrix where the blocks correspond to submatrices of A that
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A =

e1,1 e1,2 · · · e1,n
e2,1 e2,2 · · · e2,n
...

...
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...
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e(mb+1),1 e(mb+1),2 · · · e(mb+1),n

e(mb+2),1 e(mb+2),2 · · · e(mb+2),n
...

...
. . .

...
e2mb,1 e2mb,2 · · · e2mb,n

...
...

. . .
...

e(M−1)mb+1,1 e(M−1)mb+1,2 · · · e(M−1)mb+1,n

e(M−1)mb+2,1 e(M−1)mb+2,2 · · · e(M−1)mb+2,n
...

...
. . .

...
eMmb,1 eMmb,2 · · · eMmb,n
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Fig. 2. Matrix A being partitioned into M blocks of size mb × n

will be consecutively prefetched into cache. As illustrated in Figure 2, matrix
A is partitioned as an M × 1 block matrix where each block is of size mb × n.
Partitioning A in this manner creates M blocks each of which we label as Bk

for k = 1 to M . The number of rows in each block, denoted mb, is chosen so a
block column can fill the entire cache line, discussed in Section 3.3.

For example, suppose the cache line is size of C bytes, which on most modern
architectures is 64 or 128 bytes [14]. Suppose the elements of matrix A are each
β bytes. Then, for mb elements to fill the cache line as full as possible we want
mbβ = C, and therefore make mb = �C/β�. It is plausible that the last block
will have fewer elements than the other blocks because mb may not evenly divide
the m elements. In this case, M = !m/mb". To process the smaller block, the
matrix can be padded with values that will be disregarded [15].

The blocks, Bk for k = 1 toM , correspond to the submatrices of A that will be
consecutively prefetched into the cache. Block of data Bk+1 will be prefetched
into cache while the block Bk is being further processed, as described in the
following subsections. By prefetching blocks of elements in this manner, our
method can reduce memory latency associated with loading blocks from memory.

3.2 Using the Registers as a Vector Transposition Buffer

Each block Bk can further be partitioned into submatrices using the columns as
dividers, making Bk into a 1 × n block matrix, referred to as a column vector,
as seen in Figure 3a. With both partitions applied, matrix A can be viewed as
a matrix of column vectors as shown in Figure 3b. Each column vector of Bk,
which we denote as V c

k,j for j = 1 to n, consists of elements that are currently
non-contiguous in memory due to the row major storage format of A.

The goal of our deinterleaving method is the elements of the column vectors
to be contiguous in memory or, equivalently, the elements to belong to the same
row in the matrix. To make the elements contiguous, each column vector gets
transposed and temporarily stored in CPU registers until it is written out to a full
cache line. The general notation for each transposed column vector, now referred
to as a row vector, is denoted: V R

k,j = [e(k−1)mb+1,j , e(k−1)mb+2,j , · · · , ekmb,j ].
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(b) Matrix A partitioned into submatri-

ces of column vectors

Fig. 3. Each block of matrix A partitioned into n column vectors

For clarity, consider a specific example. Suppose block B1 is currently being
partitioned into n column vectors, namely V c

1,j for j = 1 to n. The elements
of a column vector V c

1,j consist of the elements e1,j, e2,j , ..., emb,j from A as
seen in Figure 3a. Starting with the first column vector (j = 1), the elements
must be loaded into a buffer of registers and in the next step written into the
extra memory space that was created for the transposition matrix. Using CPU
registers as a buffer to store these elements constitutes a transposition of the
column vector as the elements will now be contiguous instead of strided.

The motivation for using the registers as a temporary buffer is that each
column vector must be transposed into some storage location in order to achieve
full cache line writes, which is the strength of the strided transposition method.
The registers provide the most efficient location to store the row vectors due
to their minimal CPU cycles per operation [16]. In addition, using a buffer of
registers in this manner is a viable option since typically a CPU provides enough
hardware registers where the buffer size is at least equal to the cache line size.

3.3 Optimizing for Full Cache Line Writes

Once the elements of a row vector are loaded into the register buffer, our method
then writes out this data into the memory space that was created for the dein-
terleaved output. During the write process, our method utilizes the full cache
line due to the row vector containing mb elements, where mb was chosen to
fill the cache line. By utilizing full cache line writes, our method emulates the
strength of the strided transposition method [17], while avoiding the inefficient
write process of the standard transposition method.

During the write process, our method must leave enough room for m elements
of A (an entire column) between the start of each column vector, meaning there
will be a stride of m between the memory storage offset of each column vector.
So, for a given row vector V R

k,j , the elements get mapped consecutively into the
new memory storage location offset starting at (k − 1)mb + (j − 1)m.

After this process is completed and all the row vectors have been written,
the process is repeated. The next block, which should already reside in cache, is
partitioned into column vectors that are consecutively loaded into the register
buffer and written out. The entire process is completed for each block Bk for k =
1 to M . Once every block has gone through this process, the output location will
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Fig. 4. The partition and transposition steps of our deinterleaving method performed
on a simple 8× 3 matrix of 8-byte elements optimized for cache line writes of 32 bytes

contain the transpose of matrix A. The entire deinterleaving process is illustrated
by the example given in the following section.

3.4 A Simple Example of Our Deinterleaving Method

For clarity, consider a simple example of 24 data elements consisting of three
different variables interleaved in memory. Figure 4a shows the matrix represen-
tation of these interleaved variables, with each column of the matrix storing data
corresponding to a particular variable. For the sake of this example, suppose the
elements are 8-byte doubles (common in simulation data) and the cache line
size of the system is 32 bytes. The elements of the matrix are initially stored
in row major format, meaning the elements are ordered as e1, e2, e3, e4, ..., e24
in memory. The goal of our deinterleaving method is to obtain the transpose of
the matrix, illustrated in Figure 4e, so that the elements of each column will be
contiguous in memory and thus deinterleaved.

The initial step of our deinterleaving method is to create a new output memory
space to hold the transposed matrix. Next, the matrix is partitioned into two
4 × 3 block matrices, B1 and B2 consisting of elements e1 through e12 and e13
through e24, respectively. The number of rows in each block was chosen asmb = 4
so that each column within a block will entirely fill the cache line, as four 8-byte
doubles is exactly the cache line size of the system.

With the matrix partitioned into two blocks, the next step is to load B1 into
the cache. The block itself is then partitioned into the three column vectors
V C
1 , V C

2 , and V C
3 , as depicted in Figure 4b. After this partition, the first column

vector of B1, meaning the elements e1, e4, e7, and e10, is transposed into a row
vector and temporarily stored in the register buffer, see Figure 4c. The full cache
line is then utilized to write out the elements of the row vector into the output
memory space that was created for the transposed matrix, see Figure 4d. This
process is repeated on the remaining column vectors of B1 until all of them have
been written into the output memory space.

After B1 has finished transposing and writing each of its column vectors, the
same process is repeated on the second block, B2. This block would have been
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prefetched into cache during the time B1 was being processed, thus saving the
time of retrieving B2 from memory. After B2 is processed, the matrix will be
transposed and the variables deinterleaved, as illustrated in Figure 4e.

4 Performance Evaluation

In this section, we present the empirical evaluations of our deinterleaving method
via a set of micro-benchmarks to evaluate throughput and energy performance.
We compare the results of our deinterleaving method against those of the stan-
dard and strided transposition methods. For brevity, we will refer to our Out-
of-Place Deinterleaving method as OPD method in the remainder of the paper.

4.1 Experimental Setup

Performance measurements were collected on the Lens Linux cluster at Oak
Ridge National Laboratory and on a dedicated Intel server. The Lens cluster is
primarily used for data analysis and high-end visualization. Each cluster node
consists of four quad-core 2.3GHz AMD Opteron processors and 128GB of mem-
ory. Each processor has three cache levels: L1 cache is 64KB, L2 cache is 512KB,
and the shared last level cache (LLC) is 5118KB. The Intel server consists of a
quad-core i7 2.93GHz processor and 16GB of memory running CentOS-6.3. The
Intel processor has three cache levels: L1 is 32KB, L2 is 256KB, and LLC is 8MB.
All multi-core evaluations for both the throughput and energy experiments were
done utilizing all available processors and computational cores.

For collecting performance metrics, we added micro-benchmarks of all deinter-
leaving methods into the STREAM [18] framework, compiled with GNU Com-
piler Collection (GCC) version 4.7.1. STREAM is useful for evaluating memory
throughput performance of single- andmulti-core I/O-intensive functions that are
sensitive to system architecture characteristics [19]. We compared the through-
put performance metrics collected from 105 STREAM micro-benchmarks tested
across the AMD and Intel systems. The test cases spanned a diverse set of data
including multiple data types, column sizes, and input buffer sizes. Specifically,
the data types evaluated were bytes, single-precision floating-points, and double-
precision floating-points. For each data type, the variables interleaved (columns)
were 2, 4, 8, and 16. The input buffer sizes ranged from 64, 128, · · · , 4096 kilobytes
per core. To obtain the performance measurements seen in Figure 5 and
Figure 6, eachmicro-benchmarkwas run 100 times for each deinterleavingmethod.
The highest throughput of the 100 runs was recorded.

For our set of micro-benchmarks, we restricted our input buffer size between
64KB and 4096KB. The reason this lower bound was chosen is due to the preci-
sion of the timer used in the STREAM benchmark, which states at what point
the clock measurement becomes unreliable. For input sizes less than 64KB, our
deinterleaving technique ran too fast for a reliable throughput measurement.
However, at sizes of 64KB and higher, the throughput could be measured accu-
rately. The upper bound of 4096KB was chosen to represent an input size that
was beyond the size of the LLC for multi-core evaluations.
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4.2 Deinterleaving Throughput Performance

In all multi-core evaluations, our deinterleaving method performed better than
the standard and strided transposition methods, see Figure 5 and Figure 6. In
the best case, our deinterleaving method performed at a 26.2x faster throughput,
when compared to the next best method. In addition, our method consistently
reported gains of over 40GB/s on smaller input sizes (corresponding to lower
cache levels). The performance gains of our deinterleaving method were more
pronounced on smaller input buffer sizes because memory latency starts to be-
come a significant factor on larger buffer sizes.

Another characteristic seen in our results is that neither the standard trans-
position nor the strided transposition was consistently better than the other. In
some cases, the standard transposition would significantly outperform the strided
transposition and vice versa, irrespective of the instruction set architecture being
used, see Table 1. The performance inconsistency of these two techniques is an-
other strength of our deinterleaving method, as ours consistently outperformed
the other two methods.

Although not depicted in throughput performance figures, our method was
also compared against the other methods when all were utilizing only a single
core of the system. In this case, our method reported similar, but scaled down
trends to those seen in multi-core evaluations. Even in this case, our method
always had better throughput performance than the other two methods.
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Fig. 5. Throughput performance applying STREAM micro-benchmarks when deinter-
leaving single-precision, double-precision floating-point (FP), and byte variables on the
AMD Opteron system utilizing all 16 cores
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Fig. 6. Throughput performance applying STREAM micro-benchmarks when deinter-
leaving single-precision, double-precision floating-point, and byte variables with 16-
variable interleaved data on the Intel i7 system utilizing all cores

Table 1. Instruction set architecture for deinterleaving methods

Data Type Method
Column Size

2 4 8 16

Double
Standard SSE2 x86 64 x86 64 x86 64
Strided x86 64 x86 64 x86 64 x86 64

Float
Standard SSE SSE SSE SSE
Strided SSE x86 64 x86 64 x86 64

Byte
Standard SSE2 SSE2 SSE2 SSE2
Strided x86 64 x86 64 x86 64 x86 64

4.3 Deinterleaving Energy Performance

The energy performance measurements were performed on a dedicated Intel
server connected to a Watts Up Pro meter, which provides a recording of power
measurements (watts) per second during the collection of throughput metrics.
The power was measured for each deinterleaving method on 21 micro-benchmarks
of 16-variable interleaved data of varying input sizes and data types. Energy per-
formance normalization was done for the deinterleaving methods by calculating
gigabytes per joule (throughput/watt) for each test case.

In all cases tested, our deinterleaving had better energy utilization than the
other methods, with throughput/watt improvements up to 7.8x, when compared
to the next best method. The results of our energy experiments can be seen in
Figure 7. The improved energy performance of our method is attributed to the in-
creased throughput (Figure 6), the effective cache utilization similar to the stan-
dard transposition method, and the optimized cache line writes like the strided
transposition method.

5 Related Work

Out-of-place matrix transpositions have been studied extensively in the past.
Majority of these transposition algorithms, initially proposed decades ago, focus
on methodologies for optimizing use of secondary storage (tapes, disks, etc.).
Although these algorithms are not well suited for modern computer systems due
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Fig. 7. Normalized energy performance measurements (throughput/watt) collected
with power meter during STREAM throughput benchmarks on Intel system (Figure 6)

to processor cache inefficiency, we still use these techniques for references since
secondary storage of the past is analogous to RAM in modern systems. A fast
matrix transposing method was given in [20] where the algorithm was specifically
designed for 2n×2n square matrices and it is compared with many other matrix
transposition algorithms. Another algorithm called single radix algorithm was
proposed in [21], and shows better performance in disk seeks and accesses. For
transposing a large arbitrary matrix, PRIM was introduced in [22].

In-place matrix transpositions can be used as an alternative to out-of-place
methods; however, in-place methods are often complex and can be performance
inefficient for simulations requiring interleaved variables to continue with the
calculation phase. Furthermore, in-place methods commonly have constraints
on row and column sizes making them unusable as a generic method for dein-
terleaving scientific data. Six algorithms are investigated in [23] for transposing
a large square matrix in-place. They use 32-bit single-precision floating-point
numbers and have the length of both the row and column equal to 2n. In their
experiments, the non-linear array layout algorithm outperforms other algorithms
as it uses “Morton ordering” [24]. This algorithm also uses recursion to divide the
problem into smaller subproblems, as in [12], but terminates at an architecture-
specific tile size. Even by using a “blocking” and “tiling” technique, a higher
cache efficiency might not be achieved as claimed in [16]; instead, they proposed
a buffer must be used in order to be cache efficient.

Although much attention has been paid to matrix transposition, very few
of the studies focus on the utilization of cache in a specific domain requiring
deinterleaving of variables. Our method applies to any data type and utilizes
full cache line writes to be throughput and energy efficient when deinterleaving
data. Blocking, shuffling, and compression library, Blosc, was introduced in [25],
which uses a high-performance byte deinterleaving technique to reduce activity
on the memory bus. Our approach differs from this technique in that we support
not just byte-level but float- and double-level as well. Moreover, Blosc currently
utilizes 16-byte SSE2 register writes instead of full cache line writes compared
to our deinterleaving method.
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6 Conclusion

We proposed a deinterleaving method that is high performance, energy efficient,
and generic to any data type. Our method has increased throughput and energy
performance by utilizing the system architecture in three ways: 1) improving
data cache prefetching, 2) reducing memory accesses, and 3) optimizing the use
of full cache line writes.

Our method results in better throughput and energy performance when
compared against two common deinterleaving methods during 105 STREAM
standard micro-benchmarks evaluations, which includes 84 throughput and 21
energy performance test cases. When compared to the next best case, our method
improved throughput up to 26.2x and throughput/watt up to 7.8x.
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Abstract. The Software Transactional Memory (STM) paradigm has
gained momentum thanks to its ability to provide synchronization trans-
parency in concurrent applications. With this paradigm, accesses to data
structures that are shared among multiple threads are carried out within
transactions, which are properly handled by the STM layer with no
intervention by the application code. In this article we propose an en-
hancement of typical STM architectures which allows supporting par-
tial rollback of active transactions, as opposed to the typical case where
a rollback of a transaction entails squashing all the already-performed
work. Our partial rollback scheme is still transparent to the application
programmer and has been implemented for x86-64 architectures and for
the ELF format, thus being largely usable on POSIX-compliant systems
hosted on top of off-the-shelf architectures. We integrated it within the
TinySTM open-source library and we present experimental results for the
STAMP STM benchmark run on top of a 32-core HP ProLiant server.

1 Introduction

Software Transactional Memory (STM) [1] stands as a programming paradigm
tailored for the development of concurrent applications. By leveraging on atomic
transactions, STM relieves the programmers from the burden of explicitly writ-
ing complex, error-prone thread synchronization code. In fact, programmers are
only requested to wrap critical-section code within transactions. In STM, data
conflicts are handled by means of conflict detection and management (CDMAN)
algorithms, such as the ones presented in [2–6]. However, most of the proposed
schemes rely on implementations where the rollback of a transaction entails
squashing all the work carried out during its execution, despite the fact that
part of the work can be still valid. To cope with this issue, in this article we
present the design and implementation of a partial rollback scheme that is able to
avoid rolling back an entire transaction, thus allowing portions of the carried-out
transactional work to be saved. This directly provides a reduction on the num-
ber of machine instructions required for finalizing a given transaction instance.
Such a reduction is achieved via minimal housekeeping overhead, in terms of
machine instructions required for supporting the partial rollback scheme, since
we exploit optimized approaches for the management of partial-log operations
(e.g. of automatic variables) during the execution of transactional code blocks.

F. Wolf, B. Mohr, and D. an Mey (Eds.): Euro-Par 2013, LNCS 8097, pp. 583–594, 2013.
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Further, with our partial rollback scheme, mutual consistency of shared data
and thread-private data is automatically and transparently guaranteed. This re-
moves the need for explicitly identifying and annotating the private data (e.g.
the local variables) that need to be rollbackable, as instead is requested when
relying on typical facilities offered by STM implementations [2, 3].

We achieve complete transparency towards the application-level code via an
instrumentation tool, which adds partial log/undo capabilities without requir-
ing any intervention by the programmer. We integrated and tested our proposal
within the TinySTMopen-source library [3], exploiting the Commit-Time-Locking
(CTL) algorithm natively supported by TinySTM. Further, the instrumentation
tool has been tailored to the Executable and Linkable Format (ELF) and to x86-
64 processors, thus allowing supporting partial rollback operations for TinySTM-
based applications run on top of POSIX compliant systems and widely diffused
hardware architectures. Some experimental data highlighting performance advan-
tages fromour proposal, when compared to the traditional case of complete squash-
ing for rolled back transactions, are also reported for the case of the STAMP STM
benchmark [7] run on top of a 32-core HP ProLiant server equipped with 32GB
of RAM memory and running Linux.

The remainder of this paper is structured as follows. In Section 2, related
work is discussed. Details on our algorithmic extensions of CTL aimed at partial
rollback are provided in Section 3. The actual implementation of the support
for partial rollback within TinySTM is presented in Section 4. Performance data
are provided in Section 5.

2 Related Work

Solutions aimed at the reduction of the waste of CPU-time associated with rolled
back STM transactions can be found in [8–10]. The main approaches underlying
these proposals entail (i) (dynamically) regulating the amount of concurrent
threads to a well suited value (see, e.g., [9]), which is expected to avoid thrashing
due to transaction aborts caused by excessive data conflicts, and/or (ii) a-priori
sequentializing transactions when the abort rate exceeds specific thresholds (see,
e.g., [10]). All these proposals are orthogonal to our one since none of them is
tailored to the reduction of the waste of work via partial save of the effects of
the execution of transactions.

Considering partial rollback in STM systems as the specific target, a few so-
lutions have been proposed in [11–13]. Differently from what we present in this
article, the proposal in [11] is limited to the management of partial rollback op-
erations on shared data, thus not supporting rollback of thread-private data. As
a consequence, mutual consistency between shared and private data within the
partial rollback scheme is demanded from the programmer, while our approach
enforces full transparency. The proposals in [12, 13] consist of an architectural
specification of partial rollback supports, which has however not been imple-
mented in any real environment, and has been evaluated only via simulation.
Instead, we provide a real implementation within the TinySTM framework. Ad-
ditionally, the work in [12, 13] bases partial rollback on a traditional approach
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where shared and private objects are marked as updated via dirty-bitmaps and
are logged into per-object undo stacks. Instead, our proposal does not rely on
any explicit management of dirty-bitmaps, and packs log information by cluster-
ing thread-private data via optimized log operations of the thread stack, which
are based on ranges of memory addresses defining target regions for the memory
write instructions executed along the transaction.

3 Partial Rollback

3.1 Target CDMAN: Commit-Time-Locking Plus Read Validation

We target the CTL algorithm, as used in implementations such as TL2 [2] and
TinySTM [3]. The algorithm relies on a global version clock (gvc), namely a
global shared counter, which is atomically incremented (e.g. via Compare-And-
Swap—CAS—operations) by any thread whenever it commits a transaction that
updated shared data. Also, each (size-tunable) set of shared memory objects,
such as memory words for the case of word-based STM, is associated with its own
meta-data consisting of (A) a lock-bit and (B) a timestamp. This association is
supported by means of hash functions taking as input the shared-object memory
address. When a transaction commits, the updated gvc value is reflected as the
new timestamp of the written objects.

Upon (re-)starting a transaction, a thread stores the current value of the gvc
into a local variable called transaction start-timestamp (tst). Upon a transac-
tional read operation from a shared object, the corresponding memory address is
added to the transaction read-set, while, upon a write operation, the destination-
object address and the value to be stored are both added to a transaction write-
set (note that the written value is not yet stored into the actual target location).
In addition, when executing a transactional read operation, it is checked in
advance if the shared object has already been written by the transaction (by
checking the content of the transaction write-set). In the positive case, the value
stored within the write-set is returned. Otherwise, the lock-bit associated with
the object is sampled to check whether it is set to 1, which means that the object
is currently locked by a concurrent transaction. If the lock-bit has value 1, the
reading transaction gets aborted (possibly after waiting for the lock release for a
while). Otherwise, the object value and its timestamp are re-sampled along with
the lock-bit in order to check if (A) the timestamp is less than or equal to the tst
of the reading transaction, and (B) the object is not currently re-locked. If both
the checks succeed, it means that no concurrent transaction has modified the
object in the interval between the start of the current transaction and the actual
read operation, hence the value read is still valid. Otherwise, the transaction
gets aborted and then restarted.

Upon attempting to commit a writing transaction1, the thread tries to acquire
the locks associated with all the objects belonging to the transaction write-set.

1 For read-only transactions the commit operation is unnecessary as no shared objects
have to be updated.
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This is done by attempting to set the lock-bit associated with each of these
objects (e.g via CAS operations). If at least one lock acquisition fails, the trans-
action is aborted and restarted. Otherwise, the transaction read-set gets vali-
dated. Namely, for each object belonging to the read-set, the associated current
timestamp is compared with the tst value in order to check if it was modified
after starting the transaction. Object modifications by concurrent transactions
imply that the object timestamp is greater than tst since it reflects updates in
the gvc, generated by successfully committing transactions. Hence, if the times-
tamp of at least one object has been modified, then the transaction is aborted
and restarted. Otherwise the transaction can successfully commit, thus storing
object-values kept within the transaction write-set in the destination memory
areas and releasing all the acquired locks.

A mechanism used in combination with this scheme is called snapshot ex-
tension. When the thread performs a transactional read from an object that
has been updated by a concurrent transaction (which would lead to an abort)
this mechanism checks if all the object values returned by previously executed
transactional read operations of the transaction (if any) are still valid. If yes,
the snapshot seen by the transaction is still consistent, hence the transaction
is not aborted. In this case, the tst is updated to the value of the gvc sampled
immediately before performing the check.

3.2 The Partial Rollback Scheme

In our partial rollback scheme, we rely on snapshot extension as a basis for
managing the tst. However, we devise an approach where snapshot extension is
exploited according to a sequential validation scheme, which is used to determine
the maximum amount of transactional work that can be considered as still valid
on the basis of the current state of shared data. Specifically, upon the read of an
invalid object-value, the previously executed read operations are revalidated in
order of their occurrence within the transaction, until all of them are found to
be still valid, or validation fails for one of them. The first invalid read operation
along the sequence is the restoration point for our partial rollback scheme, hence
all the subsequent work performed by the transaction (if any) is squashed.

Coherency between read and write sets within the partial rollback scheme has
been achieved by determining causality relations (i.e. temporal ordering) among
transactional read/write operations within each transaction, which are logged
as part of the representation of read/write sets. Hence, all the transactional
write operations that are detected as being causally dependent on invalid read
operations are also squashed from the write set.

As hinted before, we have also devised a scheme for partially rolling back
thread-private data, in a consistent manner with respect to squashing oper-
ations of read and write sets. This is based on identifying the memory up-
per/lower bound for any log/restore operation within the stack, to be used to
correctly manage thread-private data within the partial rollback scheme. On the
other hand, both upper and lower bounds for these operations change over time
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depending on how flow-control and memory updates are materialized across dif-
ferent routines while the transactional code block’s execution is still in progress.

Overall, beyond the already depicted handling of read/write sets (reflecting
the access to shared data), operated while managing incremental snapshot exten-
sions, our partial rollback scheme deals with the management of thread-private
data according to the following actions: (A1) upon invoking TM begin along the
thread, the stack pointer is used to determine the upper and lower bounds of
the stack region (initially empty) to be logged in case updates of thread-private
data occur along the transaction. This region may be enlarged (by moving its
bounds) when a write operation occurs within the stack along the transaction’s
execution. If the write touches data above (resp. below) the upper (resp. lower)
bound, such a bound is moved to the top (resp. bottom) address of the touched
memory area; (A2) upon invocation of any TM read operation along the thread,
a recovery image for the whole memory segment in between the current upper
and lower bounds for the target stack region is created, together with a recovery
image for the processor context; (A3) upon an incremental-snapshot extension
operation (as depicted above), the stack/processor recovery image associated
with the first no more valid TM read along the sequence (as determined in A2)
is restored, using an incremental-restore technique similar to the one proposed
in [14]; (A4) upon successful invocation of TM end along the thread, which deter-
mines actual commitment, the recovery images associated with the transaction
execution path (as determined in A2) are discarded.

The above scheme, in particular in point A3, provides facilities for consistently
rolling back thread-private data even in cases of complete squashing of the per-
formed transactional work (e.g. due to invalidation of the object accessed upon
the first read operation along the transactional code block). This is a relevant
facility along the line of simplifying the development of application code.

Two additional points devise discussion. First, generation of stack frames
restoration images is subject to a set of optimizations which we will depict later
on in Section 4. Second, with the devised approach, we make update operations
occurring within the stack rollbackable even if they occur via pointer-based ac-
cess. Specifically, whenever any routine is started-up within the thread execution
flow, if any pointer is received in input which allows the access to stack memory
locations (namely stack frames) associated with other functions living along the
thread, then any write access is automatically handled via the recovery images
depicted above.

The only case not covered, in terms of ability to rollback, is related to updates
occurring within global data that are inherently outside the control of the STM
layer (e.g. non-transactional global variables). However, with the STM approach,
these are typically avoided since the target is synchronization-transparent man-
agement of global (inherently shared) data structures.

4 Implementation

The logic required for handling partial rollback operations within TinySTM en-
tails: (A) Identifying the execution points where recovery images for the thread
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stack need to be taken; (B) Implementing the actual log/restore logic for the
stack, and combining it with the management of read/write sets. Some parts of
this logic have been implemented via proper modification of TinySTM internals,
while an instrumentation tool [15] has been used in order to provide complete
transparency to the application layer in terms of exploitation of partial roll-
back capabilities. Within the whole code modification/instrumentation process,
both the above targets have been achieved via instrumentation rules that allow
nesting within the code a block of machine instructions to be executed right
before any call from the application software to the TM read function offered by
the TinySTM API. This allows us to transparently take control exactly when
we need to create a stack recovery image, namely before actually accessing the
target transactional object in read mode. If the read operation is invalid, the
additional logic included within the TinySTM layer is used in order to exploit
stack restoration images for supporting partial rollback.

In order to correctly create a recovery image, which includes the current pro-
cessor context right before the call to TM read, the instrumentation tool has
been used to transparently inline within the application ELF a functional block
structured as:
boundaries = recompute_boundaries();

getcontext(&cpu_state);

stm_store_context_in_readset(&cpu_state);

With this approach, stack/processor information associated with the current
state of execution of the function calling TM read is sampled, with no modifi-
cation of stack pointer/content and CPU image performed by the code block.
On the other hand, the creation of the stack recovery image is performed by
stm store context in readset, a function we have added to TinySTM, which
performs an optimized management of stack log operations as we will explain.

Creation of Stack Recovery Images. Our approach to the creation of a
recovery image for the stack of the transactional thread at a given point in the
execution is based on two optimizations. The first one deals with an incremental
approach for the determination of the stack portions that actually need to be
logged in order to correctly achieve a recovery image for the whole stack con-
tent. The second one deals with how to perform the actual copy of the memory
areas required for creation of the restoration image. The two optimizations are
explicitly thought to be used in combination.

As for the first optimization, a snapshot of the stack content at a given point
of execution is built by combining the latter available stack log plus a log of
only those portions that have been modified up to the point of interest. This
is an incremental approach, that has already been exploited in literature, but
typically according to a page-based logging approach (see, e.g., [16]). Instead, we
incrementally build the recovery image of the stack by logging data according
to arbitrary granularity, and by organizing them in a chain (realized in the
read set) as described in [14]. Also, the idea underlying our incremental scheme
is to determine the stack portions to be logged in such a way that they are
finally contained within a single area formed by contiguous memory locations.
This allows nesting the aforementioned second optimization related to efficient
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support for memory copies in case of adjacency of the addresses characterizing
source and destination areas for the copy operation.

To achieve incremental logging, the application level ELF is again transpar-
ently instrumented by allowing the insertion of a code block before any machine-
level memory-write operation (e.g. mov instructions) which, by analysing the
current state of the processor, determines the actual virtual address to be tar-
geted by the update, and the size of the touched memory area. In case the update
falls within the stack (namely the lower address of the area to be touched is not
less than the current stack pointer value), the write operation deals with the
content of the stack, and needs to be made rollbackable. In this case, the inter-
val of virtual addresses [I1, I2] involved in the update is determined, which in
turn identifies a stack portion to be logged upon the creation of the subsequent
recovery image (as the one containing all the memory locations in between the
addresses I1 and I2). We note that for some machine-level memory instructions,
write access to the stack occurs by default, such as for the case of push and
call.

In fact, multiple write operations can occur before the point where the creation
of the stack recovery image occurs. As an example, an additional write may
involve the stack portion in the interval of addresses [I3, I4]. In such a case,
instead of explicitly maintaining the list of stack portions to be logged and
restored, we adopt a clustering approach where we identify the actual area to
be logged as the one between a minimum address value computed as I− =
min(I1, I3) and a maximum address value computed as I+ = max(I2, I4). In
other words, we always log a contiguous segment of the stack, which contains
all the modified stack locations and possibly some non-modified locations. This
is done so that the actual log (namely memory copy) operation can be achieved
by using a single machine instruction, such as the movs instruction of the x86
instruction set. This is the second optimization.

As an additional note, this approach is combined with a check on the actual
top-boundary of the stack such that, when considering an incrementally built
recovery image associated with stack-pointer value x, any memory location
within the stack with address y < x, possibly belonging to the previous recovery
image, is logically marked as non-relevant for the incremental construction of the
current image. Further, we emphasize that our approach, based on a boundary
check on the actual modified region of the stack, up to the transactional read
operation, copes well with common optimizations offered by modern compiling
toolchains. In particular, standard compilers might decide to use, where avail-
able, the stack base registers (e.g. ebx on x86 architectures) as general purpose
ones. This speeds up the program’s execution by enlarging the set of information
which the processing unit is able to maintain within its internal state. On the
other hand, this makes it impossible to determine which is the current function’s
stack frame. Our solution is able to cope with this scenario, since we do not need
to explicitly know the base of the stack zone for any specific function.

Stack Recovery Operations. As mentioned, upon the detection of an incon-
sistent read, instead of relying on the classical rollback scheme, we perform a
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Fig. 1. Stack management within partial rollback

partial rollback operation, which entails restarting the execution of the conflict-
ing transaction from an intermediate point such that every operation before it
is still considered valid. In order to effectively restart from within a transac-
tion, we must restore every aspect of the execution context. If on the one hand
the processor state is restored via the standard System V setcontext library
function—using a previously stored snapshot—in order to successfully cope with
automatic variables we must undo any modification concerning the stack frames
of the functions living along the thread execution. In Figure 1 we show how we
build partial stack logs during the execution of the transaction. In the above
example, upon the execution of READ4, an inconsistency is discovered, and
given the failure of the snapshot extension protocol we trigger our partial roll-
back operation. In the example, READ2 is selected as being the most recent
read operation entailing a still-valid value, therefore the execution is restarted
from READ3. In particular, in READ3’s read set we can find the portion of the
stack which was modified between the execution of READ2 and READ3. This is
restored together with the aforementioned processor context, and together with
other incremental portions of the stack from previous logs, as described in [14].

5 Experimental Results

We present some experimental results achieved with the STAMP STM bench-
mark suite [7], specifically with ssca2 and kmeans applications. The former is a
transactional implementation of the Scalable Synthetic Compact Applications
2 (SSCA2) benchmark [17], where a graph kernel is used to build a directed,
weighted multi-graph using adjacency arrays and auxiliary arrays. In particular,
threads concurrently add nodes to the graph, and transactions are used to syn-
chronize accesses to the adjacency arrays. Data contention in ssca2 is relatively
low, making this benchmark effective for assessing the overhead produced by our
partial rollback implementation with respect to the traditional rollback scheme,
evaluating it mostly for the forward execution. The second one, i.e. kmeans, is
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Fig. 2. Results with ssca2

a transactional implementation of a partition-based clustering method [18]. A
cluster is represented by the mean value of all the objects it contains, and during
the execution of this benchmark the mean points are updated by assigning each
object to its nearest cluster center, based on Euclid distance. This benchmark
relies on threads working on separate subsets of the data and uses transactions
in order to assign portions of the workload and to store final results concerning
the new centroid updates. Given the reduced amount of shared data structures
being updated by transactions, in this benchmark it is more likely to incur in
logical contention when a larger number of threads is used for the computation,
which would allow us to better assess the benefits deriving from our partial roll-
back scheme. Also, we note that this is not a best case for our approach, since
the amount of work saved from partial rollback is reduced, so that the overhead
generated by the CPU/stack state saving/restoring is not completely amortized,
which gives rise to a significative test case.

By the specification of STAMP, both the above applications can be character-
ized by two parameters. One is the size of the dataset, which has been changed in
between ‘+’ (indicating medium) and ‘++’ (indicating large). The second one,
particularly used for the kmeans benchmark, indicates the actual requirements
of the transactions, in terms of, e.g., actual span of the accesses onto the dataset
and, correspondingly, CPU requirements. This parameter is denoted as ‘high’
(indicating high demand) and ‘low’ (indicating reduced demand).

The execution latency that we have observed for ssca2 while varying the
number of threads (namely the number of used CPU-cores) up to 32 is shown
in Figure 2, where each reported sample is the average value across 4 runs. As
hinted before, this benchmark is characterized by relatively simple transactions,
accessing a reduced amount of shared data, which leads the actual transactional
work to be a relatively reduced percentage of the whole work carried out. This
is reflected in that the actual data contention is very reduced, with the obvious
outcome that partial rollback schemes cannot be expected to provide perfor-
mance improvements, given the almost null amount of rolled back transactions.
On the other hand, for this scenario we observe a small amount of overhead from
the support for partial rollback. Specifically, for the case of the ‘+’ configuration,
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Fig. 3. Results with kmeans

we observe an overhead which is on the order of 7% for most of the considered
concurrency levels (namely numbers of threads). Such an overhead is further
reduced when considering the ‘++’ configuration. The increased data set leads to
reduced locality, making the execution slower than ‘+’. This causes the overhead
from the CPU-context/stack logging mechanisms for partial rollback to be less
evident.

In Figure 3 the results observed for the kmeans benchmark are reported, with
each sample expressing again the mean value over 4 runs. In this setting, the
most unfavorable configuration for our partial rollback scheme is ‘high+’, where
the transactions have higher requirements, and access a reduced dataset. This
leads to scenarios of high data conflict, likely occurring in the early phase of a
transaction execution (due to reduced size of the accessed dataset). This leads
the partial rollback scheme to induce a non-minimal amount of logging overhead,
while not allowing a significative save of work for rolling back transactions due
to the fact that rollbacks typically require transactions to resume from the be-
ginning of their execution. This phenomenon is alleviated when considering the
‘high++’ configuration, where the increased size of the dataset leads to scenarios
where at least a portion of the performed transactional work can be successfully
saved, since the dataset largeness gives rise to dynamics where the likelihood of
conflicting in the early phase of transaction execution gets reduced. This leads
the partial rollback scheme to exhibit increased effectiveness, especially with
a higher concurrency level. In such a case, in fact, the partial rollback scheme
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achieves up to 20% reduction of the benchmark execution time on 32 CPU-cores.
The ‘low+’ configuration of kmeans gives rise to execution dynamics that are

not so far from those observable for the ‘high++’ configuration. Specifically,
here transactions conflict while accessing a reduced data set, but they exhibit
reduced resource requirements. Hence, also in this case there is no bias towards
conflicting in the early phase of the execution. As a consequence, the partial
rollback scheme operates effectively, especially when the level of concurrency is
increased. Specifically, it provides reductions of the benchmark execution latency
on the order of 40% as soon as the number of used CPU-cores is greater than
23. On the other hand, for reduced concurrency levels, the impact of transac-
tion rollback gets reduced, which leads to the scenario where the partial rollback
scheme induces logging overhead that does not get compensated by revenues
while partially rolling back transactions. Such an overhead is better absorbed
when running the ‘low++’ configuration (e.g. due to the aforementioned re-
duced locality phenomena within the benchmark). Hence for this scenario, we
observe that partial rollback provides similar performance as the one achievable
by the traditional scheme when the level of concurrency is limited, while it pro-
vides some performance advantages when this level gets increased, which leads
to scenarios where the transaction rollback phenomenon is more relevant, thus
rendering more useful the partial save of transactional work already carried out.

6 Summary

In this article we have presented the design and implementation of a support
for application-transparent partial rollback in STM, tailored to contention man-
agers relying on lazy (i.e. at commit-time) lock acquisition and on read validation
mechanisms. It has been integrated within the open source TinySTM package,
and has been tested on top of a 32-core HP ProLiant machine by running appli-
cations selected from the STAMP benchmark suite. By the data, our proposal
allows for performance improvements in scenarios characterized by non-minimal
data contention.
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Abstract. Many concurrent data-structure implementations use the
well-known compare-and-swap (CAS) operation, supported in hardware
by most modern multiprocessor architectures, for inter-thread synchron-
ization. A key weakness of the CAS operation is the degradation in its
performance in the presence of memory contention.

In this work we study the following question: can software-based con-
tention management improve the efficiency of hardware-provided CAS
operations? Our performance evaluation establishes that lightweight con-
tention management support can greatly improve performance under
medium and high contention levels while typically incurring only small
overhead when contention is low.

Keywords: Compare-and-swap, contention management, concurrent
algorithms.

1 Introduction

Many key problems in shared-memory multiprocessors revolve around the coor-
dination of access to shared resources and can be captured as concurrent data
structures [3,13]: abstract data structures that are concurrently accessed by asyn-
chronous threads. Efficient concurrent data structure algorithms are key to the
scalability of applications on multiprocessor machines. Devising efficient and
scalable concurrent algorithms for widely-used data structures such as counters
(e.g., [11,14]), queues (e.g.,[1,8,18], and stacks (e.g.,[6,8]), to name a few, is the
focus of intense research.

Modern multiprocessors provide hardware support of atomic read-modify-
write operations in order to facilitate inter-thread coordination and synchroni-
zation. The compare-and-swap (CAS) operation has become the synchronization
primitive of choice for implementing concurrent data structures - both lock-based
and nonblocking [15] - and is supported by hardware in most contemporary mul-
tiprocessor architectures. The CAS operation takes three arguments: a memory
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address1, an old value, and a new value. If the address stores the old value, it is
replaced with the new value; otherwise it is unchanged. The success or failure of
the operation is then reported back to the calling thread.

A key weakness of the CAS operation, known to both researchers and practi-
tioners of concurrent programming, is its performance in the presence of memory
contention. When multiple threads concurrently attempt to apply CAS opera-
tions to the same shared variable, typically at most a single thread will succeed in
changing the shared variable’s value and the CAS operations of all other threads
will fail. Moreover, significant degradation in performance occurs when variables
manipulated by CAS become contention “hot spots”: as failed CAS operations
generate coherence traffic on most architectures, they congest the interconnect
and memory devices and slow down successful CAS operations.

To illustrate this weakness of the CAS operation, Figure 1 shows the results of
a simple test, conducted on an UltraSPARC T2 plus (Niagara II) chip, compris-
ing 8 cores, each multiplexing 8 hardware threads, in which a varying number of
Java threads run for 5 seconds, repeatedly reading the same variable and then
applying CAS operations attempting to change its value.2 The number of suc-
cessful CAS operations scales from 1 to 4 threads but then quickly deteriorates,
eventually falling to about 16% of the single thread performance, less than 9%
of the performance of 4 threads. As we show in Section 3, similar performance
degradation occurs on Intel’s Xeon platform.
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Fig. 1. SPARC: Java’s CAS

In this work we study the fol-
lowing question: can software-based
contention management improve the
efficiency of hardware-provided CAS
operations? In other words, can a soft-
ware contention management layer,
encapsulating invocations of hardware
CAS instructions, significantly im-
prove the performance of CAS-based
concurrent data-structures?

To address this question, we con-
duct what is, to the best of our knowl-
edge, the first study on the impact of contention management algorithms on the
efficiency of the CAS operation. We implemented several Java classes that extend
Java’s AtomicReference class, and encapsulate calls to native CAS by contention
management classes. This design allows for an almost-transparent plugging of
our classes into existing data structures which make use of Java’s AtomicRefer-
ence. We then evaluated the impact of these algorithms on the Xeon, SPARC

1 In object-oriented languages such as Java, the memory address is encapsulated by
the object on which the CAS operation is invoked and is therefore not explicitly
passed to the interface to the CAS operation.

2 We provide more details on this test in Section 3.



Lightweight Contention Management 597

and i7 platforms by using both a synthetic micro-benchmark and CAS-based
concurrent data-structure implementations of stacks and queues.3

The idea of employing contention management and backoff techniques to im-
prove performance was widely studied in the context of software transactional
memory (see, e.g., [12,7]) and lock implementations (see, e.g., [2,17,4]). Backoff
techniques are also used at the higher abstraction level of specific data struc-
tures implementations [9,10,18]. However, this approach adds complexity to the
design of the data-structure and requires careful per-data structure tuning. Our
approach, of adding contention management (and, specifically, backoff) mecha-
nisms at the CAS instruction level, provides a simple and generic solution, in
which tuning can be done per architecture rather than per implementation.

Our performance evaluation establishes that lightweight contention manage-
ment support can significantly improve the performance of concurrent
data-structure implementations as compared with direct use of Java’s Atom-
icReference class. Our CAS contention management algorithms improve the
throughput of the concurrent data-structure implementations we experimented
with by up to a factor of 12 for medium and high contention levels, typically
incurring only small overhead in low contention levels.

We also compared relatively simple data-structure implementations that use
our CAS contention management classes with more complex implementations
that employ data-structure specific optimizations. We have found that, in some
cases, applying efficient contention management at the level of CAS operations,
used by simpler and non-optimized data-structure implementations, yields better
performance than that of highly optimized implementations of the same data-
structure that use Java’s AtomicReference objects directly.

Our results imply that encapsulating invocations of CAS by lightweight con-
tention management algorithms is a simple and generic way of significantly im-
proving the performance of concurrent objects.

The rest of this paper is organized as follows. We describe the contention
management algorithms we implemented in Section 2. We report on our experi-
mental evaluation in Section 3. We conclude the paper in Section 4 with a short
discussion of our results.

2 Contention Management Algorithms

In this section, we describe the Java CAS contention management algorithms
that we implemented and evaluated. These algorithms are implemented as classes
that extend the AtomicReference class of the java.util.concurrent.atomic pack-
age. Each instance of these classes operates on a specific location in memory and
implements the read and CAS methods.4

In some of our algorithms, threads need to access per-thread state associated
with the object. For example, a thread may keep a record of the number of CAS

3 We note that the lock-freedom and wait-freedom progress properties aren’t affected
by our contention management algorithms since in all of them a thread only waits
for a bounded period of time.

4 None of the methods of AtomicReference are overridden.
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failures it incurred on the object in the past in order to determine how to proceed
if it fails again. Such information is stored as an array of per-thread structures.
To access this information, threads call a registerThread method on the object
to obtain an index of an array entry. This thread index is referred to as TInd in
the pseudo-code. After registering, a thread may call a deregisterThread method
on the object to indicate that it is no longer interested in accessing this object
and that its entry in this object array may be allocated to another thread.5

Technically, a thread’s TInd index is stored as a thread local variable, using
the services of Java’s ThreadLocal class. The TInd index may be retrieved within
the CAS contention management method implementation. However, in some
cases it might be more efficient to retrieve this index at a higher level (for
instance, when CAS is called in a loop until it is successful) and to pass it as an
argument to the methods of the CAS contention management object.

The ConstantBackoffCAS Algorithm : Algorithm 1 presents the Constant-
BackoffCAS class, which employs the simplest contention management algorithm
that we implemented. No per-thread state is required for this algorithm. The read
operation simply delegates to the get method of the AtomicReference object to
return the current value of the reference (line 2). The CAS operation invokes the
compareAndSet method on the AtomicReference superclass, passing to it the old
and new operands (line 4). The CAS operation returns true in line 7 if the native
CAS succeeded. If the nativeCAS failed, then the thread busy-waits for a platform-
dependent period of time, after which the CAS operation returns (lines 5–6).

The TimeSliceCAS Algorithm : Algorithm 2 presents the TimeSliceCAS
class, which implements a time-division contention-management algorithm that,
under high contention, assigns different time-slices to different threads. Each
instance of the class has access to a field regN which stores the number of
threads that are currently registered at the object.

The read operation simply delegates to the get method of the AtomicRefer-
ence class (line 9). The CAS operation invokes the compareAndSet method on
the AtomicReference superclass (line 11). If the CAS is successful, the method
returns true (line 12). If the CAS fails and the number of registered threads ex-
ceeds a platform-dependent level CONC (line 13), then the algorithm attempts
to limit the level of concurrency (that is, the number of threads concurrently
attempting CAS on the object) at any given time to at most CONC. This is
done as follows. The thread picks a random integer slice number in the range
{1, . . . , !regN/CONC"} (line 14). The length of each time-slice is set to 2SLICE

nanoseconds, where SLICE is a platform-dependent integer. The thread waits
until its next time-slice starts and then returns false (lines 14–17).

The ExpBackoffCAS Algorithm : Algorithm 3 presents the ExpBackoffCAS
class, which implements an exponential backoff contention management

5 An alternative design is to have a global registration/deregistration mechanism so
that the TInd index may be used by a thread for accessing several CAS contention-
management objects.
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Algorithm 1: ConstBackoffCAS
1 public class ConstBackoffCAS<V>

extends AtomicReference<V>;

2 public V read() { return get() }
3 public boolean CAS(V old, V new)
4 if ¬compareAndSet(old,new) then
5 wait(WAITING TIME) ;
6 return false ;

7 else return true ;

Algorithm 2: TimeSliceCAS
8 public class TimeSliceCAS<V>

extends AtomicReference<V>;

9 public V read() { return get() }
10 public boolean CAS(V old, V new)
11 if compareAndSet(old,new) then
12 return true
13 if regN > CONC then
14 int sliceNum =

Random.nextInt(�regN/CONC�)
repeat

15 currentSlice =
(System.nanoTime() >>
SLICE) % �regN/CONC�;

16 until sliceNum = currentSlice;

17 return false ;

Algorithm 3: ExpBackoffCAS

18 public class ExpBackoffCAS<V>
extends AtomicReference<V>;

19 private int[] failures = new int
[MAX THREADS] ;

20 public V read() { return get() }
21 public boolean CAS(V old, V new)
22 if compareAndSet(old,new) then
23 if failures[TInd] > 0 then
24 failures[TInd]−−;
25 return true

26 else
27 int f = failures[TInd]++ ;
28 if f > EXP THRESHOLD then

wait(2min(c·f,m));
29 return false;

Fig. 2. Fairness measures

Normal stdev Jain’s Index
Xeon SPARC Xeon SPARC

Java 0.291 0.164 0.900 0.961
CB-CAS 0.077 0.196 0.992 0.957
EXP-CAS 0.536 0.936 0.761 0.588
MCS-CAS 0.975 0.596 0.563 0.727
AB-CAS 0.001 0.822 1.000 0.638
TS-CAS 0.829 0.211 0.605 0.946

algorithm. Each instance of this class has a failures array, each entry of which –
initialized to 0 – stores simple per-registered thread statistics about the history of
successes and failures of past CAS operations to this object (line 19). The read op-
eration simply delegates to the get method of the AtomicReference class (line 20).

The CAS operation invokes the compareAndSet method on the Atomic-
Reference superclass (line 22). If the CAS is successful, then the CAS operation
returns true (line 25).

If the CAS fails, then the thread’s entry in the failures array is incremented
and if its value f is larger than a platform-dependent threshold, the thread
waits for a period of time proportional to 2min(c·f,m) where c andm are platform-
dependent integer algorithm parameters (lines 27–28), eventually returning false.

The MCS-CAS and ArrayBasedCAS Algorithms : MCS-CAS and Array-
BasedCAS are described here briefly for lack of space. They are much more
complex than the first 3 algorithms we described. Pseudo codes and full de-
scriptions appear in a technical report [5]. MCS-CAS implements a variation of
the Mellor-Crummey and Scott (MCS) lock algorithm [17] to serialize load-CAS
operations. Since we would like to maintain the nonblocking semantics of the
CAS operation, a thread t awaits its queue predecessor (if any) for at most a
platform-dependent period of time. If this waiting time expires, t proceeds with
the read operation without further waiting.

The ArrayBasedCAS algorithm uses an array-based signaling mechanism, in
which a lock owner searches for the next entry in the array, on which a thread
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is waiting for permission to proceed with its load-CAS operations, in order to
signal it. Also in this algorithm, waiting-times are bounded.

3 Evaluation

We conducted our performance evaluation on the SPARC, Intel’s Xeon and i7
multi-core CPUs. The i7 results are very similar to those on Xeon. For lack of
space, they are only described in the technical report [5]. The SPARC machine
comprises an UltraSPARC T2 plus (Niagara II) chip containing 8 cores, each
core multiplexing 8 hardware threads, for a total of 64 hardware threads. It runs
the 64-bit Solaris 10 operating system with Java SE 1.6.0 update 23. The Xeon
machine comprises a Xeon E7-4870 chip, containing 10 cores and hyper-threaded
to 20 hardware threads. It runs the 64-bit Linux 3.2.1 kernel with Java SE 1.6.0
update 25.

Initially we evaluated our CAS contention management algorithms using
a synthetic micro-benchmark and used the results to optimize the platform-
dependent parameters used by the algorithms. We then evaluated the impact
of our algorithms on implementations of widely-used data structures such as
queues and stacks. No explicit threads placement was used.

3.1 The CAS Micro-benchmark

To tune and compare our CAS contention management algorithms, we used the
following synthetic CAS benchmark. For every concurrency level k, varying from
1 to the maximum number of supported hardware threads, k threads repeatedly
read the same atomic reference and attempt to CAS its value, for a period of
5 seconds. Before the test begins, each thread generates an array of 128 objects
and during the test it attempts to CAS the value of the shared object to a
reference to one of these objects, in a round-robin manner.

Using the CAS benchmark, we’ve tuned the parameters used by the algorithms
described in Section 2. The values that were chosen as optimal were those that
produced the highest average throughput of all concurrency levels. 6

Figure 3a shows the throughput (the number of successful CAS operations)
on the Xeon machine as a function of the concurrency level. Each data point is
the average of 10 independent executions. It can be seen that the throughput
of Java CAS falls steeply for concurrency levels of 2 or more. Whereas a single
thread performs approximately 413M successful CAS operations in the course
of the test, the number of successful CAS operations is only approximately 89M
for 2 threads and 62M for 4 threads. For higher concurrency levels, the number
of successes remains in the range of 50M-58M operations.

In sharp contrast, both the constant wait and exponential backoff CAS al-
gorithms are able to maintain high throughput across the concurrency range.
Exponential backoff is slightly better up until 16 threads, but then its through-
put declines to below 350M and falls below constant backoff. The throughput

6 A table with the values of tuned parameters is provided in [5].
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Fig. 3. Benchmark results: throughput as a function of concurrency level

of both these algorithms exceeds that of Java CAS by a factor of more than
4 for 2 threads and their performance boost grows to a factor of between 6-7
for higher concurrency levels. The time slice algorithm is the 3’rd performer in
this test, outperforming Java CAS by a factor of between 3-5.6 but providing
only between 65%-87% the throughput of constant and exponential backoff. The
array based and MCS-CAS algorithms significantly lag behind the simpler back-
off algorithms. More insights into the results of these tests are provided in the
technical report [5].

Figure 3b shows the throughput of the evaluated algorithms in the CAS bench-
mark on the SPARC machine. Unlike Xeon where Java CAS does not scale at
all, on SPARC the performance of Java CAS scales from 1 to 4 threads but
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then quickly deteriorates, eventually falling to about 16% of the single thread
performance, less than 9% of the performance of 4 threads. Java CAS is the
worst performer for concurrency levels 12 or higher and its throughput drops
to about 8M for 64 threads. The exponential backoff CAS is the clear winner
on the SPARC CAS benchmark. For concurrency levels 28 or more, exponential
backoff completes more than 7 times successful CAS operations compared with
Java CAS and the gap peaks for 54 threads where Java CAS is outperformed
by a factor of almost 12. The constant wait CAS is second best. The high over-
head of MCS-CAS and array based CAS manifests itself in the single thread
test, where both provide significantly less throughput than all other algorithms.
For higher concurrency levels, both MCS-CAS and array based CAS perform
between 30M-60M successful CAS operations, significantly more than Java CAS
but much less than the constant and exponential backoff algorithms.

Analysis : As shown by Figures 3a and 3b, whereas the number of successes
in the CAS benchmark on the SPARC scales up to 4 or 8 threads (depending
on the contention management algorithm being used), no such scalability occurs
on the Xeon. In the technical report [5] we provide a detailed explanation of
the architectural reasons for this difference. For lack of space, we only provide a
brief explanation here.

T2+ processors enjoy very short cache-coherent communication latencies rel-
ative to other processors. On an otherwise unloaded system, a coherence miss
can be satisfied from the L2 cache in under 20 cycles. CAS instructions are im-
plemented on SPARC at the interface between the cores and the cross-bar. For
ease of implementation, CAS instructions, whether successful or not, invalidate
the line from the issuer’s L1. A subsequent load from that same address will miss
in the L1 and revert to the L2. The cross-bar and L2 have sufficient bandwidth
and latency, relative to the speed of the cores, to allow load-CAS benchmarks
to scale beyond just one thread, as we see in Figure 3b.

We now describe why such scalability is not observed on the Xeon platform,
as seen by Figure 3a. Modern x86 processors tend to have deeper cache hierar-
chies, often adding core-local MESI L2 caches connected via an on-chip coherent
interconnect fabric and backed by a chip-level L3. Intra-chip inter-core commu-
nication is accomplished by L2 cache-to-cache transfers. In addition to the cost
of obtaining cache-line ownership, load-CAS benchmarks may also be subject
to a number of additional confounding factors on x86 which we describe in the
technical report [5].

Fairness : Table 2 summarizes the fairness measures of the synthetic CAS
benchmarks. We used normalized standard deviation and Jain’s fairness index
[16] to assess the fairness of individual threads’ throughput for each concur-
rency level, and then took the average over all concurrency levels. The widely
used Jain’s index for a set of n samples is the quotient of the square of the
sum and the product of the sum of squares by n. Its value ranges between 1/n
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(lowest fairness) and 1 (highest fairness). It equals k/n when k threads have the
same throughput, and the other n−k threads are starved. We see that CB-CAS
and TS-CAS provide comparable and even superior fairness to Java CAS while
the rest of the algorithms provide less fairness.

3.2 FIFO Queue

To further investigate the impact of our CAS contention management algorithms,
we experimented with the FIFO queue algorithm of Michael and Scott [18] (MS-
queue).7 The queue is represented by a list of nodes and by head and tail atomic
references to the first and last entries in the list, which become hot spots under
high contention.

We evaluated four versions of the MS-queue: one using Java’s AtomicReference
objects (called J-MSQ), and the other three replacing them by ConstantBackoff-
CAS, ExpBackoffCAS and TimeSlice objects (respectively called CB-MSQ, Exp-
MSQ and TS-MSQ). We also compared with the flat-combining queue algorithm
[8]. MCS-CAS and array based CAS were consistently outperformed and are
therefore omitted from the following comparison. We compared these algorithms
with the Java 6 java.util.concurrent.ConcurrentLinkedQueue class.8 The Con-
currentLinkedQueue class implements an algorithm (henceforth simply called
Java 6 queue) that is also based on Michael and Scott’s algorithm. However,
the Java 6 queue algorithm incorporates several significant optimizations such
as performing lagged updates of the head and tail references and using lazy sets
instead of normal writes.

We conducted the following test. For varying number of threads, each thread
repeatedly performed either an enqueue or a dequeue operation on the data
structure for a period of 5 seconds. The queue is pre-populated by 1000 items.
A pseudo-random sequence of 128 integers is generated by each thread indepen-
dently before the test starts where the i’th operation of thread t is an enqueue
operation if integer (i mod 128) is even and is a dequeue operation otherwise.

Figures 3c and 3d show the results of the queue tests on the Xeon and SPARC
platforms. As shown by Figure 3c, CB-MSQ is the best queue implementation on
Xeon, outperforming the AtomicReference-based queue in all concurrency levels
by a factor of up to 6 (for 16 threads). Surprisingly, CB-MSQ also outperforms
the Java 6 queue by a wide margin in all concurrency levels except 1, in spite
of the optimizations incorporated to the latter. More specifically, in the single
thread test Java 6 queue performance exceeds that of CB-MSQ by approximately
15%. In higher concurrency levels, however, CB-MSQ outperforms Java 6 queue
by a factor of up to 3.5. Java 6 queue is outperformed in all concurrency levels
higher than 1 also by EXP-MSQ and TS-MSQ. The FC queue hardly scales
on this test and is outperformed by almost all algorithms in most concurrency
levels.
7 We used the Java code provided in Herlihy and Shavit’s book [13] without any
optimizations.

8 We used a slightly modified version in which direct usage of Java’s Unsafe class was
replaced by an AtomicReference mediator.
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Figure 3d shows the results of the queue tests on the SPARC machine. Here,
unlike on Xeon, the Java 6 queue has the best throughput in all concurrency
levels, outperforming TS-MSQ - which is second best in most concurrency levels
- by a factor of up to 2. It seems that the optimizations of the Java 6 algo-
rithm are more effective on the SPARC architecture. CB-MSQ starts low but its
performance scales up to 22 threads where it almost matches that of EXP-MSQ.

J-MSQ scales up to 12 threads where it performs approximately 35M queue
operations, but quickly deteriorates in higher concurrency levels. For concurrency
levels 50 or higher, J-MSQ is outperformed by CB-MSQ by a factor of 2 or
more. Unlike on Xeon, the FC queue scales on SPARC up to 24 threads, when
its performance almost equals that of the simple backoff schemes.

3.3 Stack

We also experimented with the lock-free stack algorithm of Treiber [19]. The
Treiber stack is represented by a list of nodes and a reference to the top-most
node is stored by an AtomicReferece object. We evaluated the following ver-
sions of the Treiber algorithm: one using Java’s AtomicReference objects (called
J-Treiber), and the other three replacing them by the ConstantBackoffCAS, Exp-
BackoffCAS and TimSliceCAS (respectively called CB-Treiber, Exp-Treiber and
TS-Treiber). We also compared with a Java implementation of the elimination-
backoff stack (EB stack) of Hendler et al. [9].9 The structure of the Stack test is
identical to that of the Queue test.

Figure 3e shows the results of the stack test on Xeon. As with all Xeon test
results, also in the stack test, the implementation using Java’s AtomicReference
suffers from a steep performance decrease as concurrency levels increase. The EB
stack is the winner of the Xeon stack test and CB-Treiber is second-best lagging
behind only slightly. CB-Treiber maintains and even exceeds its high single-
thread throughput across the concurrency range, scaling up from less than 150M
operations for a single thread to almost 200M operations for higher concurrency
levels, outperforming J-Treiber by a factor of more than 10 for high concurrency
levels. TS-Treiber and EXP-Treiber are significantly outperformed by the EB
stack and CB-Treiber algorithms.

Figure 3f shows the results of the stack tests on SPARC. J-Treiber scales up
to 6 threads where it reaches its peak performance. Then its performance dete-
riorates with concurrency and reaches less than 10M operations for 64 threads.
From concurrency level 16 and higher, J-Treiber has the lowest throughput.
TS-Treiber has the highest throughput in most medium and high concurrency
levels, with EXP-Treiber mostly second best. Unlike on Xeon, EB stack is al-
most consistently and significantly outperformed on SPARC by all simple backoff
algorithms.

9 We used IBM’s implementation available from the Amino Concurrent Building
Blocks project at http://amino-cbbs.wiki.sourceforge.net/

http://amino-cbbs.wiki.sourceforge.net/
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4 Discussion

We conduct what is, to the best of our knowledge, the first study on the impact
of contention management algorithms on the efficiency of the CAS operation.
We implemented several Java classes that encapsulate calls to Java’s AtomicRef-
erence class by CAS contention management algorithms. We then evaluated the
benefits gained by these algorithms on the Xeon, SPARC and i7 platforms by
using both a synthetic benchmark and CAS-based concurrent data-structure
implementations of stacks and queues.

Out of the contention management approaches we have experimented with,
the three simplest algorithms - constant backoff, exponential backoff and time-
slice - yielded the best results, primarily because they have very small overheads.
The more complicated approaches - the MCS-CAS and array based CAS algo-
rithms - provided better results than direct calls to AtomicReferece in most tests,
but were significantly outperformed by the simpler approaches.

Our evaluation demonstrates that encapsulating Java’s AtomicReference by
objects that implement lightweight contention management support can improve
the performance of CAS-based algorithms considerably.

We also compared relatively simple data-structure implementations that use
our CAS contention management classes with more complex implementations
that employ data-structure specific optimizations and use AtomicReference ob-
jects. We have found that, in some cases, simpler and non-optimized data-
structure implementations that apply efficient contention management for CAS
operations yield better performance than that of highly optimized implementa-
tions of the same data-structure that use Java’s AtomicReference directly.

Our results imply that encapsulating invocations of CAS by lightweight con-
tention management classes is a simple and generic way of improving the per-
formance of concurrent objects.

This work may be extended in several directions. First, we may have over-
looked CAS contention management algorithms that yield better results. Sec-
ond, our methodology tuned the platform-dependent parameters of contention
management algorithms by using the CAS benchmark. Although the generality
of this approach is appealing, tuning these parameters per data-structure may
yield better results. Moreover, a dynamic tuning may provide a general, cross
data-structure, cross CPU, solution.

It would also be interesting to investigate if and how similar approaches can
be used for other atomic-operation related classes in both Java and other pro-
gramming languages such as C/C++.

Finally, combining contention management algorithms at the atomic opera-
tion level with optimizations at the data-structure algorithmic level may yield
more performance gains than applying only one of these approaches separately.
We leave these research directions for future work.

Acknowledgements. We thank Yehuda Afek, Nir Shavit and Tel-Aviv’s Uni-
versity’s Multicore Computing Group for kindly allowing us to use their servers
for our evaluation.
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MacroDB: Scaling Database Engines

on Multicores�
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Abstract. Multicore processors are available for over a decade, but gen-
eral purpose database management systems (DBMS) still cannot fully
explore the computational resources of these platforms. This paper ex-
plores a simple and easy to deploy approach for improving DBMS perfor-
mance in multicore platforms, by maintaining multiple database engines
running in parallel, rather than a single instance, thus circumventing the
increase in contention due to load interactions. Unlike previous works,
we focus on in-memory DBMS, exploring different design solutions that
combine distributed systems and concurrent programming techniques.
We show that we are able to improve performance over standalone solu-
tions, without modifying either database or application code, by up to 3
times while minimizing response times.

1 Introduction

Multicore processors are now available for over a decade, and still pose chal-
lenges to the design of database management systems (DBMS) [10,17,21,3,7].
Existing studies show that current DBMS engines can spend more than 30% of
time in synchronization-related operations (e.g. locking and latching), even when
only a single client thread is running [11]. Additionally, running two concurrent
database operations in parallel can be slower than running them in sequence
[26], due to workload interference. This is a limiting factor for the scalability of
DBMS in current multicore platforms [19].

Several research solutions have been proposed to improve the use of resources
offered by multicore machines. Some solutions aim at using multiple threads
to execute query plans in parallel, or using new algorithms to parallelize single
steps of the plan, or effectively parallelizing multiple steps [25,26,7,6,3]. Other
solutions try to reuse part of the work done during the execution of multiple
queries [9], or using additional threads to prefetch data that can be needed in the
future [17]. Although some of these solutions start to appear in niche markets,
general purpose DBMSs have been slower to adopt them, since implementing
such solutions requires significant design modifications.

This paper addresses the problem of improving the scalability of DBMS on
multicore machines, focusing on in-memory databases (IMDB). IMDBs provide
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Fig. 1. Scalability of read-only workload

high performance because they do not incur in disk I/O overhead. The high per-
formance and ease of embedding them in applications have made these systems
increasingly popular, being used by a large number of applications and high-
performance transaction processing systems, such as Sprint [4] and H-Store [14].

Scalability issues of in-memory DBMS. Compared todiskbaseddatabases, IMDBs
incur in no overhead or contention in accessing I/O. Thus, we would expect these
systems to scale with the number of cores. To verify if this was true, we have run
the TPC-C benchmark with a 100% read-only workload in popular HSQL and H2
IMDBs on a 16 core Sun Fire X4600 with 32 GBytes of RAM. The results of Fig-
ure 1(a) show that these engines do not scale, even when transactions do not con-
flict with each other. For understanding if the lack of scalability was due to lack of
resources, we concurrently ran an increasing number of pairs client/DB engine in
the samemachine. Figure 1(b) presents the results of such experiment, showing an
increasing aggregate throughput. These results make it clear that the problem lies
in the design of current IMDBs.

1.1 Proposed Approach

In this paper, we explore a simple and easy to deploy mechanism for scaling
IMDB, by relying on database replication and building on knowledge from dis-
tributed and replicated database systems. By treating multicore machines as
an extremely low latency cluster, extended with shared memory, we deploy a
middleware system, MacroDB, as a collection of coordinated IMDB replicas, for
providing scalable database performance on multicores systems.

MacroDB uses a master/slave replication approach, where update transac-
tions execute on the master replica, which holds the primary copy of the database.
The slaves maintain independent secondary copies of the database, receiving
read-only transactions from clients, while updates are asynchronously propa-
gated to them upon commit on the primary. This approach minimizes contention
since: i) Read-only transactions are fully executed on slave replicas, reducing the
number of transactions each replica processes, thus distributing the load among
the available replicas, and ii) update transactions are applied in slave replicas
as sequential batches of updates, leading to no contention among them.

MacroDB provides a scalable data management solution, that does not require
any changes to neither database engines or the applications. Our experiments
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Fig. 2. MacroDB Architecture

show that MacroDB is able to provide performance benefits ranging from 40%
to 180% over standalone database engines in a diverse range of benchmark work-
loads, such as TPC-C and TPC-W, while for write-dominated workloads, such
as TPC-C, MacroDB suffers from only a 5% to 14% overhead over standalone
solutions. Additionally, the memory used by the database replicas is not directly
proportional to the number of replicas, as replicas share immutable Java objects,
thus making MacroDB practical even with large numbers of replicas.

This paper is organized as follows, section 2 describes our system and some of
the prototype considerations. Section 3 presents the evaluation results. Section 4
presents some related work, and section 5 concludes this paper.

2 MacroDB

MacroDB is a middleware infrastructure for scaling IMDBs on multicore ma-
chines. It replicates the database on several engines, all running on the same ma-
chine, while offering a single-copy serializable view of the database to clients [2].

It works independently of the underlying database engine, acting as a trans-
parent layer between applications and the database. Statements received from
the application are passed, without modifications, to the underlying engines.
This makes MacroDB easy to deploy, since it does not require any modification
to existing applications or database engines. This section details the architecture
and algorithms used in the system.

2.1 Architecture

The MacroDB architecture, depicted in Figure 2, is composed by two main
components: the manager, responsible for coordinating transaction execution
in the database replicas; and the database replicas, i.e., the engines responsible
for maintaining copies of the database. Clients remain oblivious of the replicated
nature of MacroDB since it offers them a standard JDBC interface, and provides
them with a single-copy serializable view of the database [2].

Clients do not communicate directly with the database engines, instead they
communicate with the MacroDB manager, a JDBC compliant front-end which
coordinates client queries and the underlying replicas. The manager receives
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statements from clients and forwards them, without modification, to the appro-
priate replica, guaranteeing their ordered execution, and replying to clients the
respective results. Its main function is to: i) route client request to the appro-
priated replica, ii) manage operation execution to guarantee that the system
provides a single consistent serializable view of the replicated database to the
applications, and iii) to detect and recover possible replica failure. In the next
section, we detail transaction execution.

2.2 Transaction Execution

MacroDB uses a master-slave replication scheme [12,23]. The master maintains
the primary copy of the database, while the slaves maintain secondary repli-
cas. Update transactions, received from clients by the manager are executed
concurrently on the primary copy, being asynchronously propagated to the sec-
ondary replicas upon commit. This means that secondary replicas might not
be completely up to date at a given moment. Read-only transactions execute
concurrently on the secondaries.

Each secondary replica maintains: i) an associated version, that maintains
the number of update transactions committed in the replica. This version is
kept in shared memory, as an atomic commit counter, and can be accessed by
any thread running in MacroDB; ii) a list for pending update batches, and iii) a
thread responsible for executing these batches.

We will now detail the steps for executing update and read-only transactions.
We assume the setReadOnly method of the JDBC interface is used for defin-
ing read-only and update transactions. The code for transaction execution is
presented in Figure 3. For simplicity, we omit the code for error handling and
present an explicit begin transaction operation - in the prototype, the code for
begin transaction is executed when the first query or update operation is called
after a commit or rollback.

Update Transactions. For each client connection, when an update transaction
begins, a newly associated batch is created. All statements executed in this
context are executed by the master replica, using the context of the caller thread,
and their results returned to the client. Additionally, if the operation was an
update, it is added to the batch for that transaction.

If the client decides to commit the transaction, the commit is executed in
the master replica, using the caller thread. If the commit succeeds, the version
number associated with the master replica is incremented and the update batch,
stamped with that version number, is inserted into the lists of pending batches
for the secondary replicas. For correct transaction ordering, MacroDB needs to
guarantee that no new transaction starts and commits between the commit of a
transaction and its ordering, thus this it the only operation that requires coor-
dination with other threads. For guaranteeing that the commit does not block,
we require the underlying database engines to use two-phase locking (instead
of commit time certification strategies), which is the case in most in-memory
database systems. If the client decides to rollback or if the underlying engine is
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var global : atomic i n t ve r s i on [ 0 . . num r e p l i c a s ]
Map pendingTx [ 1 . . num r e p l i c a s ]
Connection connB [ 1 . . num r e p l i c a s ]

var per cl ient : Connection conn [ 0 . . num r e p l i c a s ]
Batch txOps
in t txRep l i ca

function begin ( boolean readOnly )
a c t i v e = true
i f readOnly then

txVrs = ve r s i on [ 0 ]
txRep l i ca = Se l e c tRep l i c a ( )
wait until ve r s i on [ txRep l i ca ] >= txVrs

else
txRep l i ca = 0
txOps = new Batch

function execQuery( Statement query )
conn [ txRep l i ca ] . execQuery( query )

function execUpdate( Statement update )
conn [ 0 ] . execQuery( query )
txOps . add ( update )

function commit ( )
i f readOnly then conn [ txRep l i ca ] . commit ( )
else

LOCK REPLICA 0
r e s u l t = conn [ 0 ] . commit ( )
i f NOT r e s u l t then throw CommitFailed
newVrs = ++ve r s i on [ 0 ]

for i := 1 to num secondary r e p l i c a s
pendingTx [ i ] . put ( newVrx , txOps )

function threadLoop ( i n t num)
vrs = ve r s i on [ num]
forever

batch = pendingTx . blockingGetRemove ( vrs + 1)
connB . execBatch ( batch )
LOCK REPLICA num

connB [num ] . commit ( )
vrs = ++ve r s i on [num]

Fig. 3. MacroDB code

unable to commit the transaction, a rollback is executed in the master replica
and the associated batch is discarded.

The thread associated with each secondary replica waits for the next update
batch to be inserted into the associated list, and executes it. Then, it atomically
commits the transaction and advances the version associated with the replica.
Since these updates are performed sequentially, we guarantee that no deadlock
will occur on the secondaries, thus all update batches will commit successfully.
By sequentially executing each commit in the master replica, and advancing the
version counter, we define a correct serialization order for update transactions,
without forcing an a priori commit order. Executing update batches in secondary
replicas in the same order as in the primary guarantees that all replicas evolve
to the same consistent state.
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Read-only transactions. All queries from read-only transactions execute directly
on secondary replicas, being executed in the context of the caller thread. For
providing a single consistent view of the replicated database, MacroDB enforces
that a read-only transaction will only execute on a secondary that is up-to-date,
i.e., when its version is, at least, equal to the version of the primary when that
transaction started. On the beginning of a read-only transaction, the manager
reads the current version of the primary replica. This defines the version for the
secondary replica in which the transaction will execute, waiting, if necessary,
until the selected secondary is up-to-date, i.e., it waits until the version on the
selected secondary is, at least, equal to the version read from the primary. This
guarantees that the selected secondary is not in an old state, which could po-
tentially lead to a violation of causality for the client. Thus, MacroDB provides
clients with a single copy serializable view of the replicated database.

Fault Handling. When a replica fault is detected, an immediate recovery process
is initiated. If the master fails, all currently executing update transactions abort,
and all new update transactions are postponed until a new master is active.
A new master is then selected from the set of secondary replicas, replacing
the previous one after successfully executing all pending update batches. This
guarantees that no update transaction is lost, and that all replicas have the same
consistent state, since all update batches have been executed in all of them. At
the moment of this selection, new read-only transactions are only forwarded to
the remaining secondaries. At this moment the new master becomes active and
the system behaves as if a secondary replica had failed. Whenever a secondary
replica fails, its current transactions abort, and new read-only transactions are
forwarded to the remaining replicas. A new secondary replica is then created
and recovered from a non-faulty one.

2.3 Correctness

For the correctness of the system, it is necessary to guarantee that all replicas
evolve to the same state after executing the same set of transactions. Also, for
guaranteeing that MacroDB provides a single consistent view of the replicated
database, it is necessary to guarantee that a transaction is always serialized after
all update transactions that may precede it commit. This is achieved because
the system enforce the following properties.

Theorem 1. All replicas commit all update transactions in the same, serializ-
able, order.

Proof. At the primary, as commits execute atomically in isolation, the serial-
izable order is defined by the order of each commit. Since secondary replicas
execute update transactions in a single thread, i.e., sequentially, by the same
order, all replicas commit all update transactions in the same order.

Theorem 2. A transaction is serialized after all update transactions that pre-
cede it commit.
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Proof. For update transactions, this is guaranteed by the database engine at
the primary. For read-only transactions, MacroDB enforces this property by
delaying the beginning of a transaction until the secondary replica has executed
all transactions committed at the moment the begin transaction was called.

2.4 Minimizing Contention for Efficient Execution

As presented earlier, the master-slave replication approach used in MacroDB
executes update and read-only transactions in different replicas. Thus, read-only
transactions never block update transactions and vice-versa, since these execute
in distinct replicas. The execution of update transactions in secondary replicas
may interfere with read-only transactions, depending on the concurrency control
scheme used in the underlying database. Both H2 and HSQL support multi-
version concurrency control that allows read-only transaction to not interfere
with update transactions. Since only a single update transaction executes at a
time, in secondary replicas, this approach guarantee serializable semantics.

Read-only transactions still need to wait until the secondary replica is up-to-
date before starting. Our approach, of executing update transaction as a single
batch of updates minimizes the execution time for these transactions, thus also
minimizing waiting time.

We can infer, from the results presented in the introduction, that there is
contention among multiple threads inside the database engine even when trans-
actions do not conflict. We minimize this contention by reducing the number of
transactions that execute in the same replica at the same time - by executing
only a fraction of the read-only transactions in each secondary replica and by
executing update transactions quickly in a single database operation.

3 Evaluation

In this section we evaluate MacroDB performance, comparing it with a single
uncoordinated instance of the database engines (standalone versions), by mea-
suring the throughput of each system. For this comparison we used the TPC-C
benchmark, varying the number of clients and workloads. We also evaluated the
performance impact of varying the number of secondary replicas of MacroDB.
Additionally we also used the TPC-W benchmark.

Prototype Considerations. Our current MacroDB prototype is built in Java,
and includes the necessary runtime system, as well as a custom JDBC driver.
By using this simple approach, developers are able to integrate MacroDB into
their applications by simply adding its library and modifying the URL used to
connect to the database engine, without additional changes to the application
code. The number of replicas and underlying database engines used are defined
in the connecting URL. When the first client connects to the database, replicas
are instantiated and the runtime system is started.
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Setup. All experiments were performed on a Sun Fire X4600 M2 x86-64 server
machine, with eight dual-core AMDOpteronModel 8220 processors and 32GByte
of RAM, running Debian 5 (Lenny) operating system, H2 database engine version
1.3.169 and HSQL engine version 2.2.9, and OpenJDK version 1.6. All MacroDB
configurations use a full database replication scheme.

3.1 TPC-C

We ran the TPC-C benchmark using 4 different workloads, standard (8% reads
and 92% writes), 50-50 (50% reads and 50% writes), 80-20 (80% reads and
20%writes) and 100-0 (100% reads), for 2 minutes, on a 4 gigabyte database.
The number of clients varied between 1 and 10. The results presented are the
average of 5 runs, performed on fresh database copies, disregarding the best and
the worst results, and were obtained from the standalone uncoordinated versions
of HSQL and H2, and MacroDB using HSQL (MacroHSQL) and H2 (MacroH2),
configured with 1, 3 and 4 replicas (Rep1, Rep3 and Rep4, respectively).

Standard Workload. Figures 4(a) and 4(b) present the results obtained run-
ning TPC-C with a standard workload. As expected, under update intensive
workloads, our system is unable to benefit from the additional replicas for load
balancing, since all updates must be executed on the same replica. Thus, the
standalone versions of the database engines outperforms the MacroDB versions.
These results also show an important aspect of MacroDB, its overhead. As put
in evidence, our system is able to impose a fairly reduced overhead, compared to
the standalone versions, ranging between 5% and 14%, even in update intensive
workloads.

50-50 Workload. Figures 4(c) and 4(d) present the results obtained running
TPC-C with a 50% read and 50% write workload. In moderate update workloads,
MacroDB versions of both HSQL and H2 are able to achieve higher through-
put than the standalone versions, offering up to 40% and 70% improvements
over HSQL and H2 respectively. Although MacroDB is able to scale better than
the standalone engines, its scalability is still limited by the nature of the work-
load. The secondary replicas are able to balance read-only transactions, but the
moderate update nature of this workload still imposes great stress at the master
replica, thus limiting scalability. This is put in evidence by the, almost negligible,
performance difference when MacroDB is configured with 3 or 4 replicas, i.e.,
2 or 3 secondary replicas. These results show that, even at considerable update
rates, MacroDB is able to achieve a 70% improvement over standalone engines.

80-20 and 100-0 Workloads. The nature of read intensive workloads allows
MacroDB to take full advantage of its replicated architecture. Both MacroDB
versions achieve higher throughput than their standalone siblings, with an in-
creased performance of 93% and 165%, and 166% and 176% performance in-
crease over HSQL and H2, under an 80% (Figures 5(a) and 5(b)) and 100%
(Figures 5(c) and 5(d)) read workloads, respectively.
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Fig. 4. TPC-C standard and 50-50 workload results

These results put into evidence the benefits of load balancing in reducing
contention, since both MacroDB systems achieve higher performances with ad-
ditional secondary replicas. The performance benefits of MacroDB is only limited
by the number of replicas. As presented next, increasing the number of repli-
cas allows MacroDB to further scale, achieving even higher performance figures.
It also put into evidence that running 4 database replicas (1 primary and 3
secondary) is not sufficient to fully explore the processing power of our current
system. Since current processors offer up to 20 threads per CPU chip [13], current
engines considerably underutilize such platforms.

Also, the overhead measured by running a MacroDB with a single replica
are consistent in all experiments, with a maximum value of 8%, independently
of the nature of the workload, when compared to the standalone DBMS. It is
also important to note the lack of scalability of the standalone versions of both
database engines. These IMDBs scale fairly well up to 2 or 4 clients, but above
that point performance improvements are not significant, in the majority of the
experiments, thus showing that a major redesign is needed to improve DBMS
performance on current multicore processors.

Additional Replicas. To further explore the computational power offered by
our setup, we ran TPC-C, using the 80-20 and 100-0 workloads, on a MacroDB
with 6 replicas (1 primary and 5 secondaries). The obtained results, presented
in Figures 6 for MacroHSQL, show the benefits of increasing the number of
replicas on a MacroDB. This increase allows MacroDB to offer performance
improvements of up to 234% over standalone engines. These results also put
into evidence how current chips are underutilized by current IMDB engines,
since MacroDB was able to successfully improve performance, over standalone
engines, even when running 6 engines on a single machine.
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Fig. 5. TPC-C 80-20 and 100-0 workload results
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Fig. 6. MacroHSQL with 6 replicas

Memory Usage. To measure the practicality of our proposal, we measured the
memory overhead imposed by MacroDB, over the standalone database engines
(Figure 7), varying the number of replicas. Contrarily to what may be expected,
the memory used by MacroDB is not directly proportional to the number of
replicas. This is due to the fact that replicas share immutable Java objects, such
as Strings. The obtained results show that, a MacroDB configured with HSQL
replicas, uses at most 2.5 times more memory than the standalone engine, while
a MacroDB configure with H2 replicas, uses at most 1.7 times more memory than
the standalone engine, when using a 4 replica configurations. This makes deploy-
ing MacroDB practical on single machine multicores, even with large numbers
of replicas.

3.2 TPC-W

As an additional experiment, we compared the results obtained running TPC-
W benchmark on a single, uncoordinated, H2 engine and a MacroDB using
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Replicas

MacroDB 2 3 4

H2 1.53× 1.56× 1.76×
HSQL 1.64× 2.29× 2.56×

Fig. 7. Memory overhead

Workload
Throughput(WIPS)
H2 MacroDB(Rep3)

Browsing Mix 261.6 458.4

Shopping Mix 202 428.6

Fig. 8. TPC-W results

three H2 replicas (Rep3). The results obtained, presented in Figure 8, show the
throughput, in web interactions per second (WIPS), obtained running TPC-W
browsing and shopping mix, on the machine previously described with a database
of 2 gigabytes, for 20 minutes and using 128 emulated browsers, with no thinking
time. The performance improvements of MacroDB over the standalone version
of H2 ranges from 75% to 112%, thus showing the benefits of our system.

4 Related Work

Several works have addressed the issues of database scalability on multicores.
Most of these proposals focus on an engine redesign; on reuse of previous engine
work; or on the addition of threads to automate specific procedures or to prefetch
data [17,21,3,7,26,9]. These works are complementary to ours, since our focus is
to allow existing engines to scale on current hardware without modification.

MacroDB, an example of a Macro-Component [15], follows the path that mul-
ticores should be seen as extremely low latency distributed systems [5,1,19,20],
extended with shared memory. Thus, techniques previously developed for dis-
tributed systems are suitable for re-engineering and deploying on these platforms.

Many database replication studies have proposed solutions for improving ser-
vice availability and performance [18,24,8,16]. Although complementary to our
work, MacroDB builds on some of the techniques from these systems, applying
them to multicore systems.

Multimed [19], an adaptation of Ganymed [18] for multicores, has previously
explored database replication in single multicore machines. Although similar to
our work, MacroDB presents differences that make it unique. First, unlike Mul-
timed, we focus on in-memory databases, which presents different challenges for
providing scalability, by not incurring in I/O overhead. Second, our solution
aims at providing a single-copy serializable view of the database, instead of rely-
ing on weaker snapshot isolation semantics. Finally, by considering a multicore
system as a distributed system extended with shared memory, we explore the
shared memory for efficient communication between replicas and to expose data
for efficient consistency management, load balancing and transaction routing.

5 Final Remarks

In this paper we presented MacroDB, a tool for scaling database systems on mul-
ticore platforms. Designed as a transparent middleware platform, it integrates



618 J. Soares, J. Lourenço, and N. Preguiça

replicas of existing unmodified database engines to offer increased concurrency
and performance over standalone DBMS engines. MacroDB is transparent to
applications, offering a single serializable view of the database, without need
of rewriting the application code, while reducing contention and minimizing re-
sponse times, by dividing and routing transactions according to their nature.

MacroDB is implemented using a custom JDBC driver and a self contained
runtime, and can be used with any JDBC compatible database engine. Thus,
performance improvements are obtained without modification to the database
engine or the application. It is also easy to configure, allowing database engines
and configurations to be specified by the JDBC driver URL.

Our evaluation shows that MacroDB offers 40% to 180% performance im-
provements over standalone in-memory DBMS, for various TPC-C workloads.
Under update intensive workloads (92% update transactions), MacroDB has a
reduced overhead of less than 14% when compared to standalone database en-
gines. For TPC-W workloads, MacroDB is able to achieve improvements of up
to 112%, over standalone in-memory DBMS.

The memory used by the database replicas is not directly proportional to
the number of replicas, as replicas share immutable Java objects, thus making
MacroDB practical even with large numbers of replicas.
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Abstract. With a steady trend from singe-core to multicore processors, scala-
bility has become a significant design issue for the Operating Systems (OS),
as many critical OS functions must be re-designed in order to achieve scalable
performance. While numerous efforts have been made to improve scalability of
monolithic OS kernels, comparatively little work has been done for microkernels.

In this paper, we begin by studying the scalability of Fiasco.OC, a state-of-
the-art microkernel implementation. We then present OmniRE, a new person-
ality for the Fiasco.OC microkernel that is aimed at being multicore scalable.
Compared to L4Re (the vanilla “off-the-shelf” Fiasco.OC personality), OmniRE
aims to eliminate contention by decentralizing resource management, scheduling,
and kernel access. The design also aims to minimize inter-process communica-
tion (IPC) across CPUs by localizing resource functionality such as page-fault
handling. We conduct experiments to compare OmniRE against L4Re as well
as Linux on a 48-core AMD server and a 6-core Intel workstation. Our results
indicate that OmniRE provides better scalability than L4Re and can in fact ex-
ceed absolute performance of Linux in memory page management at higher core
counts.

1 Introduction

Compared to monolithic kernels such as Linux and Windows, microkernel architectures
have unique advantages in simplicity, security, robustness and customization. To date,
research has predominantly focused on improving microkernel uniprocessor perfor-
mance and enriching the feature set. These efforts have lead to third generation micro-
kernels, such as Fiasco.OC[7], NOVA[15], and OKL4 [6]. As microkernel technology
has matured, it has begun to get traction in both mobile platforms (e.g., L4Android [2],
OKL4 [6]) as well as embedded and safety-critical systems. More recently microkernels
have been explored as a more effective platform for HPC-like applications [14] [17].

The move towards multicore processors has driven many OS communities to reex-
amine fundamental internal design decisions in order to improve multicore scalability.
For example, in the Linux kernel, little use of coarse-grained locks remained by version
2.6; most notably code locking had been converted to data locking, advanced “lock-
less” data structures had been applied (e.g., Read-Copy-Update [12]) and schedulers
had been re-implemented to support per-core scheduling queues.

Nevertheless, as of now, not much work has been done for microkernels. Although a
number of research OSes, including Barrelfish [4], Helios [13], FOS [18], and Corey [20],
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have taken an approach based on the concept of multi-kernels to improve OS scalability
on multicore processors, they have shied away from shared-memory kernels due to the
need to partition resources. However, shared-memory kernels provide obvious advantage
with respect to integration and resource sharing across cores. It is for this reason that we
have chosen a shared-memory microkernel, Fiasco.OC [7,10], as the basis of our work.

In this paper, we propose OmniRE, a scalable runtime personality (user-land) for the
Fiasco.OC microkernel. OmniRE is a direct replacement for the L4Re personality from
the Fiasco.OC group [7]. OmniRE incorporates a hierarchical resource management
design that eliminates central points of contention and provides sufficient flexibility to
allow tailoring of the OS to underlying processor, memory and IO topologies. Com-
pared to L4Re, OmniRE offers the following differentiation: 1) It eliminates contention
on resource management by decentralization of memory management, scheduling, and
access to kernel services. 2) It minimizes cross-core IPC on multicore architectures by
forcing resource management, resource access and page-fault handling to be localized
to the same core whenever possible.

The principal contributions and structure of the paper are as follows:

– We study and investigate the scalability potential of the Fiasco.OC microkernel and
examine performance scaling for the L4Re personality (Sections 2 and 3).

– We present a design and implementation of OmniRE, a scalable multicore user-land
based on the Fiasco.OC microkernel that uses a hierarchical arrangement of multi-
threaded services and decentralized resource management to successfully achieve
scalability (Section 4).

– We conduct experiments to empirically compare Fiasco.OC/OmniRE against Fi-
asco.OC/L4Re as well as Linux 3.0 running on a 48-core AMD server and a 6-core
Intel workstation (Section 5).

2 Fiasco.OC and L4Re Overview

As a representative third generation microkernel, Fiasco.OC and its user-land runtime
environment (L4Re), have become increasingly popular due to the availability of ad-
vanced features (e.g., capabilities, multicore support, multi-ISA support, Linux para-
virtualization) and general maturity.

The basic components of an L4Re-based system are:

– Microkernel - provides primitives to execute programs in tasks, to enforce isolation
among them, and to provide means of secure communication in order to let them
cooperate. As the kernel is the most privileged, security-critical, software compo-
nent in the system, it provides only a minimal set of mechanisms that are necessary
to support applications.

– L4 Runtime Environment - L4Re comprises low-level software components that
interface directly with the microkernel. The root pager Sigma0 and the root task
Moe are the most basic components of the runtime environment. Other services
(e.g., for device enumeration) use interfaces provided by them.
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– Applications - run on top of the system and use services provided by the runtime en-
vironment or other applications. Applications include conventional user-local pro-
grams that face the end-user, as well as virtual machine monitors, device drivers
and other system services.

3 Study of Off-the-Shelf L4Re Scalability Characteristics

Although the Fiasco.OC kernel is explicitly designed to support multicore processors [9],
there are scalability limitations in the current L4Re platform. To investigate the L4Re
scalability characteristics, we have developed micro-benchmark applications to test mem-
ory management and thread creation (corresponding to kernel object creation) as key in-
dicators of system scaling. The test platform is a 48-core AMD Magnycours server (see
Section 6 for more details).

Figure 1 shows the memory management results, where each iteration performs a
single page (4K) allocation (via std::malloc API), writes to each integer element in the
page and then frees the memory (via std::free). The results show that memory manage-
ment (allocation, physical-to-virtual mapping and paging) on the L4Re-based platform
degrades significantly from only two cores. Figure 2 shows the thread creation results,
where each iteration creates a new child thread which executes an empty function. The
parent thread (per-core worker) waits for a child thread to complete before starting the
next thread. Similarly, it is evident that L4Re does not scale well with respect to thread
creation.

Fig. 1. L4Re Memory Allocation Scaling Fig. 2. L4Re Thread Creation Scaling

We believe that the current scalability limitations in L4Re-based system are predom-
inantly a result of centralized resource management in the L4Re personality.

4 OmniRE Design

OmniRE is a new personality for the Fiasco.OC microkernel [7,10]. OmniRE directly
replaces the L4Re personality [3]. Key design elements are:

– Decentralized management of memory (physical and virtual), thread/process, IO
and IRQ resources.
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– Minimization of cross-core IPC by localization of page-fault handling and service
access.

– Explicit resource management and quota control for all resources in the system.
Secure access control to resources realized through the microkernel’s capability
feature.

4.1 OmniRE Detailed Design

OmniRE is responsible for managing all of the resources in the system. This includes
controlling allocation of kernel objects (e.g., threads, semaphores, IPC gates) as well
as resources directly used by the application (e.g., memory, I/O ports). The fundamen-
tal basis of OmniRE’s design is that resource management (e.g., allocation, freeing),
resource access (e.g., invocation on an IPC-gate), and page-fault handling should all
be localized to the same processor core whenever possible. Permissions and quotas are
arranged hierarchically and managed locally. Reallocation and resource balancing is
performed at a coarser granularity. The rationale for core-localization is to both mini-
mize cross-core communications and decentralize resource management (reducing con-
tention). Cross-core IPC is approximately ten times slower (see Section 6.1) than same
core IPC. Cross-core data sharing leads to unpredictable levels of degradation due to
serialization on locks and underlying side-effects such as false-sharing.
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Fig. 3. OmniRE High-level Architecture

Our design includes two key elements: 1) Omni-Core and 2) a set of App-Cores.
Omni-Core forms the root of the resource management tree; it manages the highest
level of resource partitioning. App-Cores are localized delegates that are instantiated by
Omni-Core (see Figure 3). Each App-Core is isolated in a separate process. They are
assigned a coarse-grained allocation of resources from Omni-Core, which is dynami-
cally load-balanced across App-Cores as needed. The detailed architecture is given in
Figure 4.

App-Cores are the direct representative of the runtime environment for applications.
They are instantiated by Omni-Core (either at boot time or dynamically) and indirectly
used to load applications. The logical resource partition (i.e., set of quotas) for an appli-
cation is managed by an App-Env (Application environment) that is instantiated inside
the App-Core. Application requests to the App-Env are associated with Service Points
that can be used to further partition the application’s resources on a per-thread basis.
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Service Points are also useful (as a level of indirection) for transferring resources as a
thread migrates between cores or applications.

Resource management in each App-Core is decentralized so that resources that have
non-uniform access properties (e.g., memory, CPUs) can be separated out. To facili-
tate this, each App-Core maintains a number of Service Domain Threads that redirect
resource requests to different Resource Allocators. Resource Allocators exist for each
type of resource in the system (thread, process, memory, IPC gate, semaphore, IRQ ob-
ject). They manage a strict quota of resources, defined by a secure system specification,
that is assigned to the App-Core by Omni-Core during start-up. A key use of Resource
Allocators is to support NUMA memory allocation across multiple memory controllers.

Essential to the design is that both Omni-Core and the App-Cores are part of the
Trusted Computing Base (TCB). This means that the App-Core is trusted to, 1) prevent
violation of quotas agreed with Omni-Core, and 2) not abuse its privilege to directly in-
voke the kernel and request kernel-level resources (e.g., threads). It is the responsibility
of the App-Core to manage the application’s access to resources according to defined
quotas. Applications do not have direct access to either the kernel or to the Omni-Core
process. Doing so would break the security model and open up potential for QoS inter-
ference between applications.

5 Case Study: Physical Memory Management

This section addresses in more detail the hierarchical resource management scheme in
the context of physical memory management, which is one of the most basic functions
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any OS must provide. Different from monolithic kernels (e.g., Linux), where all page-
level memory requests are ultimately handled in kernel mode, microkernels such as
Fiasco.OC have two Physical Memory Allocators (PMA), one in the kernel and another
in user-land.

Kernel functions can directly allocate physical memory through the kernel PMA.
However, by default, the amount of memory managed by the kernel is less than 10%
of the total. The rest of the memory is managed by a user-level PMA, which allocates
memory to applications. We therefore only focus on the user-level PMA design.

Existing PMA Design. Figure 5 shows a typical sequence of operations for allocating
a page in Fiasco.OC. First, a process allocates a stack variable or heap data through a
virtual memory allocator such as malloc (step 1). When the virtual address is touched a
page-fault exception is raised by the processor, which transfers execution to the kernel’s
page-fault handler (step 2). The handler forwards the request to a special user-level
application, Sigma0 (also known as the pager), which by default handles all page-faults
in the system (step 3). In a multicore environment, it is possible to have multiple page-
faults taking place on different cores simultaneously. In this case the kernel page-fault
handler serializes them and forwards the request to Sigma0 one by one. When Sigma0
receives a page-fault notification IPC call, it requests a physical page from its PMA
(steps 4 and 5). The result is then sent back to the kernel (step 6), which then populates
the page table for the faulting process. After that, the kernel page-fault handler switches
back to the faulting instruction so the application process can continue (step 7).

While the entire process is transparent to applications, it involves four context switches
(steps 2, 3, 6 and 7), two of them being IPC calls (step 3 and 6). This is the cost that a
microkernel design must pay for security and reliability.
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Fig. 5. PMA Process in Fiasco.OC Kernel

Scalable PMA Design in OmniRE. The user-level PMA can be arranged globally,
for each NUMA zone, for each core or even for each process. In order to minimize
cross-core IPC we chose a per-core PMA and per-core pager design (see Figure 6).
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The benefit of this design is that it addresses two prominent scalability inhibitors.
First, it reduces pager contention by distributing page handling across cores. Second,
it eliminates all cross-core IPCs of page allocations, as each core now has a pager and
every process can use same-core IPC to communicate with the local pager. All page
requests can be handled on the same core rather than a different core - making the
behavior comparable to that of a monolithic kernel design. The result is that general
performance and scalability of page allocation is largely improved. Furthermore, CPU
utilization can also be maximized because no local physical memory requests interrupt
applications executing on a remote cores.

The implementation of the per-core PMA scheme in OmniRE is to first partition
physical memory and then construct per-core pagers as shown in Figure 7. When Om-
niRE is booted, it first loads Sigma0 as the default pager and then hands off the paging
for applications to Omni-Core. It is necessary to load Sigma0 as this provides paging
for the kernel and Omni-Core itself. As illustrated in Figure 7, Omni-Core first obtains
all physical memory that is made available by the kernel. Management of this memory
is then delegated to App-Cores which are localized with the applications.

To “link” the associated App-Core to each application, the kernel Process Control
Block (PCB) pager field is modified. This effectively enables per-core paging (see Fig-
ure 6).
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6 Experimental Results

The current OmniRE prototype is implemented on a 32-bit x86 platform. Performance
and scalability results are collected from benchmark executions on both a 48-core
(4x12) AMD Opteron-based server platform and a single 6-core Intel Xeon workstation.
Timing measurements are taken using the on-chip time stamp counters. Measurements
for performance and scalability are taken from a series of micro-benchmark applica-
tions. All benchmarks are based on replicated processes (pinned to individual cores) to
remove the effects of contention on a shared page table by threads in a single process.
Table 1 gives additional detail of the two test platforms.

6.1 Fiasco.OC IPC Scalability

In this section, we provides results for the scalability of IPC. We chose to include this
data because of the fundamental importance of IPC performance and its broad effect
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Table 1. Test Platform Specification

L4Re Fiasco.OC Revision 36. x86 32-bit build.

Linux Ubuntu Linux kernel 3.0.0-16 server stock build (x86 64).

Compiler GNU GCC 4.4.6 with optimizations on (O2).

AMD
Magnycours
Server
(Dell R815)

CPU: 4x AMD Opteron 6174 2.2MHz CPU. Each multi-chip module package (processor) combines 2
dies of 6 cores. DVFS is turned off.

L1 cache (64KB data per core, 64KB instruction per core). L2 cache (512KB per core). L3 cache
(12MB per socket).

32GB DRAM; integrated DDR3 with support up to 42.7 GB/s memory bandwidth per CPU.

Four x16 Hypertransport links @ up to 6.4GT/s per link.

Intel Xeon
Workstation

CPU: 1x Intel W3670 3.2GHz 6-core. DVFS is turned off. HT is turned off.

L1 Cache (64KB data per core, 64KB instruction per core). L2 cache (256KB per core). L3 12Mb
shared.

4GB DRAM on single memory controller.

on scaling on the OmniRE personality. In this benchmark processes are arranged in pairs
either on a single core (same-core) or on adjacent separate cores (cross-core). For cross-
core, pairs are built up in clusters on the same die. Each pair exchanged 1 million IPC
messages in a ping-pong fashion. The implementation has identical semantics to the
L4Re functions l4 ipc call and l4 ipc reply and wait. Total time to complete
the exchange is measured and the mean taken across all cores.

Figure 8 shows the IPC scaling results. Same-core performance is approximately
one order of magnitude faster than cross-core. On the AMD platform, mean (per-pair)
performance actually improved by 16% over an increase of 36 cores (6-42). We believe
that this increase in performance is an artifact of the hardware architecture, specifically
the size and design of the Opteron’s cache. A similar trend is observed for the memory
management benchmark on the AMD platform, which we will describe later. On the
Intel platform, the data shows negligible performance change for both cross-core and
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same-core IPC. In summary, Figure 8 validates our design in the following two aspects:
1) Minimizing cross-core IPC on multicore architecture whenever possible has signif-
icant performance gain. 2) Decentralizing resource management is preferable as both
same-core and cross-core IPC are scalable.

6.2 Memory Page Management with L4Re

In this Section, we measure the basic memory page allocation, mapping and freeing
in both OmniRE and L4Re. Each benchmark is executed as a single process running
on a dedicated core. The benchmark performs 100 iterations of a memory allocation
sequence. Each task first allocates a batch of 100 pages (1 page per allocation), then
touches the first byte of each page, which invokes the physical memory allocation,
and finally frees all 100 allocated pages. A coordinator process is used to synchro-
nize the launch of benchmarks after loading to ensure as close as possible start-times.
Similarly, L4Re benchmark uses a sequence of alloc(..), attach(..) followed by
detach(..) and free(..) during each iteration for fair comparison.
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Figure 9 shows the absolute mean time per iteration for L4Re as the number of cores
increases. From this figure we can clearly see that degradation of L4Re for the equiv-
alent benchmark using the alloc, attach, free, detach APIs is measured at 89%
over 40 cores (2.2% degradation per core). We believe that the cause of the degrada-
tion in L4Re is due to contention of the page-fault handler (Sigma0) which is, in this
implementation, single-threaded.

Figure 10 shows a normalized comparison of OmniRE and L4RE memory scaling.
As the number of cores increases up to 48, the normalized time of OmniRE remains
effectively flat; the degradation is only about 5% when 48 cores are used. In the case
of L4Re, however, the performance degrades over 240%. Due to the multi-threaded
page-fault handler in OmniRE, this resource contention is largely eliminated.
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6.3 Memory Page Management Compared with Linux

In this section, we present experimental comparison data for Linux. The benchmark for
OmniRE is the same as described in the previous section, except that we allocate a total
number of 100K pages in batches of 600 pages (2.4MB). Each allocation is still one 4K
page. The Linux implementations of this benchmark use mmap and malloc based APIs.
The mmap API provides a means to eagerly map physical pages so that a page-fault is
not generated. The OmniRE benchmarks also use eager mapping for fair comparison.

The results given in Figure 11 show that for single-page allocations on the AMD
platform, OmniRE’s page management is able to scale almost linearly whilst Linux de-
grades exponentially going from 9000 cycles on a single core to 1.1M on 48 cores (note
the logarithmic y axis scale). Figure 12 shows the single-page allocation data for the In-
tel Xeon platform using 6 cores. The data shows OmniRE degradation of less than 0.8%
over 6 cores and degradation of more than 35.5% for Linux. However, at this low core
count absolute performance of Linux is higher than that of OmniRE, as the OmniRE’s
scalability advantage has yet to offset its inherent microkernel limitations (e.g., doubled
IPC communications between kernel and user-land compared to a monolithic kernel).
In fact, Figure 11 clearly shows that only when core count exceeds 9 does OmniRE
outperform Linux.
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The poor scalability in Linux across 48 cores demonstrates that some critical func-
tions of today’s Linux OS do not scale well for even a few cores. Both Figure 11 and
Figure 12 show significant degradation of memory management as the number of cores
increases. Additional in-house experiments indicate that the cause of this serialization
likely relates to the locking strategy on the LRU (Least-Recently Used) page replace-
ment list. It is worth noting that although our Linux data is congruent with data collected
by other projects (FOS [19,5], Corey [20] and Barrelfish [4]), we speculate that any
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difference in the h/w platform (e.g., BIOS, memory) and/or the kernel build may affect
the performance. The reader should not focus on this work as a criticism of Linux but
simply as a comparison point.

7 Related Work

OmniRE is based on the Fiasco.OC microkernel [7] developed by the Operating Sys-
tems group of TU Dresden. As part of the Fiasco.OC work the team developed the
L4Re user-level personality. However, although the Fiasco.OC kernel has been explic-
itly designed to support multicore processors [9] there are scalability limitations in the
current L4Re mainly relating to the pager Sigma0, the IO server and cross-core IPC.
Furthermore, L4Re does not provide a secure resource management model but allows
applications to directly interact with the kernel and pager, which can potentially result
in QoS crosstalk and denial-of-service issues.

The resource management philosophy of OmniRE is inspired by work done by Feske
et al. in their Bastei Architecture [8]. The basic premise of their approach is to explicitly
manage all resources that are required by both applications and sub-systems. Resources
are securely managed through a parent-child trust relationship. The original concepts
developed in this work have now been carried through into the commercially supported
Genode OS Framework [1]. However, multicore scalability is not currently a primary
concern for the Genode Labs group. The current design incurs many cross-core IPC
invocations and scalability is limited by single-threaded contention points. OmniRE
addresses these concerns at the implementation level and also introduces a different trust
model from the Bastei architecture. Also worth mentioning is the resource container
work done in the K42 OS [16] that also developed approaches to resource management
and donation as a means to alleviate denial-of-service attacks.

The Barrelfish OS [4] developed by Microsoft Research and ETH Zurich Systems
Group was started in 2008. Barrelfish is a multi-kernel design that uses the notion
of User-level RPC (URPC) to facilitate high-performance IPC exchange via shared-
memory region without transitions through the kernel. OmniRE uses a URPC-like
approach for communications between the App-Cores and Omni-Core. As with Fi-
asco.OC, Barrelfish uses a capability model to perform access control to different mem-
ory regions. The current implementation is based on 64-bit x86. Data given in [4] shows
that Barrelfish degradation for the unmap memory operation is approximately 80% at
32 cores on an 8x4 (x8 quad Opteron 8350) AMD platform.

Another prominent OS for multicore processors that is based on a multi-kernel de-
sign is the Factored Operating System (FOS) work from MIT [18] [19]. This work is
driven by their work on scalable multicore MIMD processors and focuses on the use of
spatial distribution to scale OS services including physical resource management, file
systems, network protocols and applications. Each system service is “factored” into a
collection of Internet-inspired servers that communicate via user-level message passing.
The FOS solution is based on a proprietary microkernel and is currently implemented
on 64-bit x86. Results collected from a 48-core AMD platform (quad Opteron 6168) re-
ported in [19] showed that over 20 “clients”, which we assume correlates to individual
processes, FOS’s page allocator performance degraded by 60%.
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Finally, Tessellation OS [11] from UC Berkeley is a more recent effort to develop a
multicore OS that integrates both space and time partitioning to share resources across
system services and applications. The Tessellation OS design uses a hierarchical (two-
level) scheduling scheme to manage global and local (partition) resource management.
As with OmniRE, Tessellation also aims to provide QoS enforcement and minimization
of QoS crosstalk. This OS is still in its early stages and as yet no performance and
scaling results have been published.

8 Conclusions

In this paper we presented OmniRE, a new OS design based on the shared-memory
Fiasco.OC microkernel that uses multi-threaded (per-core) system services and resource
management delegation to eliminate points of contention and thus promote scalability.
We have shown that the Fiasco.OC kernel’s use of per-core data structures and internal
separation, coupled with the OmniRE personality, provide a complete scalable solution.
We implemented and evaluated OmniRE on both AMD and Intel platforms against
L4Re and Linux 3.0. Our experimental data shows that OmniRE is able to successfully
remove contention on memory management and kernel object management across 48
cores, which substantially outperforms Fiasco.OC and, at higher core counts, exceeds
the scaling performance of Linux.
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Abstract. Chip architectures are shifting from few, faster, functionally
heavy cores to abundant, slower, simpler cores to address pressing phys-
ical limitations such as energy consumption and heat expenditure. As
architectural trends continue to fluctuate, we propose a novel program
execution model, the Codelet model, which is designed for new systems
tasked with efficiently managing varying resources. The Codelet model
is a fine-grained dataflow inspired model extended to address the cum-
bersome resources available in new architectures. In the following, we
define the Codelet execution model as well as provide an implementation
named DARTS. Utilizing DARTS and two predominant kernels, matrix
multiplication and the Graph 500’s breadth first search, we explore the
validity of fine-grain execution as a promising and viable execution model
for future and current architectures. We show that our runtime is on par
or performs better than AMD’s highly-optimized parallel library for ma-
trix multication, outperforming it on average by 1.40× with a speedup
up to 4×. Our implementation of the parallel BFS outperforms Graph
500’s reference implementation (with or without dynamic scheduling) on
average by 1.50× with a speed up of up to 2.38×.

Keywords: Execution model, runtime system, manycore, multicore.

1 Introduction

While the advent of many-core chips for mainstream computing is still yet to
come, many-core compute nodes have become common in new supercomputers.
A typical compute node may have 32 to 64 threads (or more), spread across
several sockets. In addition, non-uniform memory access (NUMA) has become
the new standard for shared-memory nodes. As thread counts increase, memory
and even compute resources (such as FPUs) per core are becoming more scarce
as seen in the IBM Cyclops-64 [8]. On-chip and off-chip bandwidth must also be
seen as scarce resources requiring intelligent allocation among computing units.
Furthermore, due to diminishing feature sizes, reducing power consumption has
become a predominant obstacle forcing chip manufacturers to simplify the de-
sign of individual cores, removing power-hungry branch predictors and cache
prefetchers.

The increase in available parallelism found in shared-memory nodes has lead to
hard-to-exploit program execution models (PXMs). These models are still based
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on the sequential Von Neumann model. The semantics of traditional threads
makes it extremely difficult to guarantee correct execution, and race conditions
are the dreaded companion of any parallel programmer [17]. However, there are
PXMs which emphasize properties such as the isolation of execution and the
explicit declaration of producer-consumer relations like the dataflow program
execution models [9].

This paper evaluates an implementation of the codelet model [24], a fine-grain
PXM inspired by dataflow. We implemented the model using a runtime system,
DARTS. We evaluate its usefulness through two case studies comparing DARTS
against OpenMP on square matrix multiplication and the Graph500’s breadth
first search benchmark.

Section 2 provides the necessary background to understand how the codelet
model works, and how DARTS implements it. Section 3 presents our two case
studies, and describe in details how each problem was decomposed. Section 4
presents the related work. We conclude in Section 5.

2 Background

2.1 The Codelet Model

While most prevalent execution models in their current state are struggling to
scale to future machine’s peak performance, we propose the codelet execution
model. The codelet PXM differs fundamentally from its Von Neumann based
competitors, as it draws its roots from the dataflow model.

The Codelet Abstract Machine Model. The codelet abstract machine
model (AMM) consists of many nodes connected together via an interconnec-
tion network. Each node is expected to have several chips containing hundreds of
cores. Interconnects with varying latencies will connect components at multiple
levels. We envision two types of cores. The first is a simple Computation Unit
(CU) which is responsible performing operations. The other is a Synchronization
Unit (SU) which is responsible for steering computation. Figure 1 depicts the
proposed abstract machine model.
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Node Node
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Node
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ClusterCluster ...
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Fig. 1. The codelet abstract machine model
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Codelets: Definition and Operational Semantics

Definition. A codelet is a collection of machine instructions which are scheduled
“atomically” as a non-preemptive, single unit of computation. In the codelet
PXM, Codelets are the principal scheduling quantum. Codelets are expected
(not required) to behave functionally, consuming inputs, working locally, and
producing output leaving (ideally) no state behind. A codelet will only fire when
all of the resources it requires are available. This entails having the necessary data
local prior to execution, eliminating the need to hide latencies due to accessing
remote data.

Operational Semantics. Codelets differs from a traditional task in their invoca-
tion. Similar to a dataflow actor [9], a codelet is fired once all of its dependencies
(or events) are met. An event primarily consists of the data (i.e. arguments)
required by the codelet to perform its operations; however events may include
the requirement of any particular shared resource or condition such as band-
width, power, etc. Each codelet has a requisite number of event which must be
satisfied before execution. A Codelet’s output is not atomic, meaning a codelet
is capable of producing data, signaling other, and continuing execution differing
from macro-dataflow actors.

Codelet Graphs. Codelets are linked together to form a codelet graph (CDG).
In a CDG, each codelet acts as a producer and/or consumer. An initial codelet
may fire, producing a result which multiple codelets can consume, giving way
for more codelets to execute. Since codelets are linked together based on data
dependencies, a CDG may benefit from the same properties as a dataflow graph.
This includes the explicit view of parallelism and determinate execution. Figure
2(a) provides an example of various codelet graph instances. Note that codelets
can signal other codelets outside of their CDG.
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Codelet
Threaded Procedure

(a) Multiple codelet graphs linked together.
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Fig. 2. Examples of codelet graphs (CDGs) and threaded procedures (TPs). TPs are
CDG containers, and allocate the space required to hold inputs, outputs, and interme-
diate results.
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Parallel Constructs

Asynchronous Functions. Asynchronous functions are called Threaded Proce-
dures (or TPs) in the codelet model. They are closely related to EARTH’s [23]
TPs. Much like its ancestor, the codelet model’s TPs are containers for a codelet
graph. A TP also features a frame, which holds the inputs passed to it, the re-
sulting output, and values local to the contained CDG, as illustrated in Figure
2(b). A TP is invoked functionally, and exists in memory until all of the codelets
in the CDG have finished executing. When a TP is instantiated, it is bound to
a single cluster, equally binding the codelets. Prior to instantiation, a TP clo-
sure may be load balanced between clusters. In this way we utilize hierarchical
parallelism, while providing some form of locality.

Loops. Loop parallelism is a crucial form of parallelism and a cornerstone in most
useful parallel execution models. As such the codelet model provides a special
loop construct enabling a CDG to be executed in successive iterations. Loops
without loop-carried dependencies (for all loops) can be executed completely in
parallel.

2.2 A Codelet Runtime

An execution model needs to be enforced to be useful. While using a combination
of hardware and software is preferable to achieve high-performance [15], it is less
time-consuming to implement everything in software that runs on off-the-shelf
hardware. This section presents the Delaware Adaptive Run-Time System –
DARTS.

Objectives. There already exists runtime system implementations of the codelet
model currently under development, such as SWARM [16]. While they reuse the
codelet object as the central unit of computation, they generally tend to stray
from the original specification (see Section 4). Hence, our goal is to build a run-
time system which will be true to the codelet model, but also serve as a research
vehicle to evaluate and advance the model itself.

Faithfulness. DARTS is implemented to be faithful to the base codelet model.
Hence, it employs codelets as the base unit of computation, but it also requires
the use of threaded procedures as the containers for codelets.

Portability and Modularity. DARTS is written in C++. This language is low-
level enough to ensure full control of the underlying hardware, while offering an
object-oriented model which encourages modularity and component reuse. The
latter point is important as we intend to use DARTS to explore and stretch the
limit of the codelet PXM.
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Implementation

The Codelet Abstract Machine. The codelet AMM described in Section 2.1 re-
quires a concrete mapping to a physical machine. We reused the hwloc library [2]
to obtain the topology of the underlying computation node. Once discovered, the
runtime decides how to decompose the hardware resources (processing elements,
caches, etc.) according to the user-programmer’s selection of preset configura-
tions. For example, one can elect a single socket of an SMP system to act as the
AMM’s cluster, and a single core on the socket to act as the synchronization
unit. New mappings can easily be added to the description of the codelet AMM.

As described in the Section 2.1 each cluster contains two types of cores, one
SU and several CUs. Each core runs one of two types of schedulers. Each CU
runs a micro-scheduler, responsible primarily for executing codelets. An SU runs
a Threaded Procedure scheduler (TP scheduler) which is responsible for load
balancing TPs between clusters, instantiating codelets, and distributing codelets
within a cluster. Having designed DARTS with modularity as a guiding principle,
each scheduler is capable of running several different scheduling algorithms. For
the scope of this work, we use a work-stealing policy similar to Cilk [1] to perform
load balancing between TP schedulers. Within a cluster, micro-schedulers use a
centralized queue to get work.

Codelets. The codelet specification is implemented as a Codelet class containing
a synchronization slot (sync slot) and a method called fire. The sync slot is
used to keep track of the outstanding dependencies. The codelet class must
be specialized (i.e. derived) and can be instantiated once the fire method is
expressed. fire is applied on a codelet by a CU’s micro-scheduler when the
codelet is chosen for execution.

Signaling. Each sync slot is initialized with the number of events the codelet
requires to run. Codelets within a TP are known statically and can be accessed
through the TP frame. The address of a codelet is required to signal codelets
outside a TP, and can be provided at runtime. DARTS implements a form of
argument fetching dataflow [10], as the act of signaling is dissociated from passing
data. For this reason data is written first, and then a codelet is signaled.

Asynchronous Functions. DARTS uses TPs as the main way to instantiate por-
tions of the computation graph. They act exactly as explained in Section 2.1.
Much like codelets, threaded procedures are implemented as classes that must
be derived by the programmer. The ThreadedProcedure class embeds an active
codelet counter (to know when all the codelets it contains have finished execut-
ing), a pointer to a parent TP (the one which invoked it), and a member function
to add a new codelet within the TP. The address of the TP frame (in practice,
the pointer to the TP instance) is passed along to codelets so that they can
access shared variables. Once the last codelet of an instantiated TP has finished
running, the TP is deallocated along with all the codelets it contained.
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Loops. Currently, DARTS implements three types of loops, a serial loop, a TP
parallel for loop, and a codelet parallel for loop. Parallel for loops (forall) pro-
hibit loop-carried dependencies, conceptually executing all iterations in parallel.
Practically, the iterations are executed when sufficient hardware is available. The
TP forall creates a TP for each iteration of the loop, permitting the iterations to
run on any cluster. The codelet forall loop adds all the iterations to the invoking
TP, pinning them to a single cluster.

Conceptually, a codelet loop requires two codelets, as shown in Figure 3.
These “loop controllers” act as a source and sink. The source codelet is signaled
normally. Upon execution, the source schedules copies of the enclosed CDG.
After the loop body has finished executing, the “leaf” codelets of each iteration
signal the sink codelet. Once all iterations have completed, the sink codelet
deallocates the copied iterations, and signals the next codelet in the CDG. In
practice, the source and sink codelets which control the loop are merged into one,
to avoid useless memory allocations. Once it has performed its source action, the
loop controller is reset to the number of “leaf” codelets multiplied by the number
of iterations prior to scheduling the loop iterations. This approach is sufficient
for supporting nested loops.

Codelet Dependence Loop BodyTPTPT

Source

Sink

d l D d L

Source

Sink

d

CD
Loop

Fig. 3. Loops in the codelet model

3 Case Studies

We present two case studies, matrix multiplication and Graph 500’s breadth first
search. The kernels significantly differ from each other. DGEMM is compute-
bound and allows for heavy data reuse, while Graph500 is memory-bound and
stresses the memory subsystem with random accesses. Together, they provide
an ideal base for an initial analysis of both the codelet model and DARTS.

3.1 Experimental Testbed

We evaluate our case studies on a 48-core compute node. It embeds four AMD
Opteron 6234 (Interlagos) processors, clocked at 2.4 GHz. The node is equipped
with 4 × 32 GB of DDR3-1333 ECC memory. Each core of the Interlagos have
access to a 16 KB L1 data cache. Two cores share a 2 MB L2 unified cache. A
6 MB unified L3 cache is shared by six cores. Hence there are two L3 caches
per Interlagos processor. One important architectural aspect of this processor is
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Fig. 4. Codelet representation of Matrix Multiply

that one floating-point unit is shared between two cores. It can process up to
four double precision operations at once using AVX instructions.

Our testbed runs Scientific Linux 6. Both the DARTS runtime and kernels
are compiled with GCC version 4.6.2 with -O3. In the following we compare the
performance obtained with DARTS and OpenMP. All OpenMP programs were
run with the threads being pinned as far away from each other as possible, to
ensure they had as much cache memory to themselves as possible.

3.2 Matrix Multiplication

We use dense square matrix multiplication (DGEMM) to observe DARTS’ per-
formance on a common compute-bound kernel. Regular kernels like DGEMM
typically perform well in OpenMP-like environments. In this study, we lever-
age AMD’s Core Math Library (ACML) DGEMM kernel in two ways. First,
we use ACML’s sequential DGEMM kernel as an optimized building block in
our DARTS implementation. Second, we compare our results against ACML’s
parallelized OpenMP DGEMM.

Figure 4 illustrates our decomposition of the DARTS version of DGEMM.
We divide matrix A into rows and matrix B into columns producing a tile of
results stored in the C matrix. We leave the ”inner tiling” to the sequential
ACML kernel. This partitioning is achieved using a TP forall loop to divide
matrix A into even groups of rows. We further divide matrix B into columns
using a codelet forall loop per spawned TP. Each parallel codelet instantiated
will compute a tile in matrix C by calling ACML’s DGEMM.

This partitioning translates well to the implementation of the abstract ma-
chine. A single group of rows of matrix A will be processed by a single cluster (a
group of cores sharing a L3 cache). The cores within a cluster will individually
compute a tile of matrix C, using exclusive groups of columns of matrix B, while
sharing rows of matrix A.

Figure 5 presents our results. We present DGEMM’s strong scaling for 4000×
4000 matrices in Figure 5(a). When the number of cores used is small (i.e. less
than 12) the OpenMP kernel clearly outperforms our DARTS implementation.
As the number of cores grows, the gap becomes much more narrow (≈ 8% in
favor of OpenMP). When the full node is used, DARTS achieves the highest
speedup. As the number of cores increases we observe two phenomena: 1) the
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(a) Strong scalability: N = 4000 (b) Weak scalability: N = 700 to 20,000

Fig. 5. Results for N × N matrix multiplication. The X axis on Figure 5(a) is the
number of cores, and the size of N for Figure 5(b). In both figures, the Y axis shows
the speedup w.r.t. ACML’s sequential DGEMM.

FPU is more contended, as it is shared between two cores, and 2) contention on
the memory banks also increases. Such contention is usually low enough w.r.t.
to the number of active cores that there is no visible added latency. However
with such a high number of cores simultaneously active, the delays accumulate
in the OpenMP version, having a real impact on the final execution time. This
phenomenon is not undocumented [12].

Figure 5(b) shows various results for runs with 48 active cores and dimen-
sion sizes ranging from 700 to 20, 000. The DARTS implementation outperforms
OpenMP in all but two cases. The average relative speedup between OpenMP
and DARTS is 1.40×, while the maximum speedup is 4× when N = 7001.

3.3 The Graph 500 Benchmark

To further evaluate DARTS, we used the Graph 500 parallel breadth-first search
(BFS) algorithm[20]. BFS represents a class of irregular applications as the la-
tencies of the memory accesses are dependent on the input data and subjected
to NUMA effects. Hassaan et al. [13] present various parallel BFS algorithms in
detail.

We compare a DARTS implementation of Graph 500’s second kernel (BFS)
to the OpenMP reference implementation. The kernel performs an in order BFS
search. Each iteration traverses through a search frontier, visiting nodes and
enqueuing their children for the next iteration’s search frontier until all connected
nodes have been visited. The kernel’s output is a spanning tree.

The OpenMP kernel distributes the nodes in a search frontier using a parallel
loop. After exploring a single search frontier, the OpenMP threads enter a barrier
before exploring the next frontier. By default, the reference implementation uses
static scheduling.

The DARTS implementation uses a similar barrier-like approach. A search
frontier is distributed to one or more codelets, and a sink codelet is used upon

1 While we present results ranging from N = 700 to N = 20, 000, the overall experi-
ments started with N = 100. These numbers are included in our averages.
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completion. We however, take advantage of the two-level parallelism inherent
in the codelet model. When the frontier is very small, we use a single codelet
to process the frontier. As the frontier grows, we scale the parallelism using a
codelet loop. This limits the parallelism to a single cluster, reducing the overhead
of useless parallelism and increasing data locality. Once the frontier is large
enough, we partition it into TPs using a TP loop and again into codelets using
a codelet loop. Figure 6(a) illustrates our strategy.
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(a) Codelet representation of BFS. (b) Parallel BFS processing RMAT-
generated graphs.

Fig. 6. Figure 6(a) illustrates the various strategies used to distribute the search fron-
tier among codelets. Figure 6(b) presents our BFS results. The X axis represents the
scale of the graph (2n); the Y axis represents the harmonic mean of several runs re-
ported in TEPS. Higher is better.

Figure 6(b) presents the number of Traversed Edges Per Second (TEPS),
where the greater the number, the faster the implementation. Both implemen-
tations were provided identical graphs generated using the RMAT method [5].
Moreover, we use numactl to interleave memory. This approach was not used
for DGEMM as it provided no performance gains. We did not present results
for OpenMP using dynamic scheduling (creating smaller iteration chunks to in-
crease over-subscription on the machine) as they were significantly worse. For
smaller graph sizes, we see DARTS is able to narrowly outperform the refer-
ence implementation as work is easily balanced. However as the graph grows,
DARTS begins to significantly outperform to the tune of 1.15-2.38×. This is
due to the ease in which DARTS can exploit parallelism, scaling with the size
of the search frontier. Moreover, DARTS balances the workload hierarchically,
first balancing TPs and then codelets. Furthermore by decomposing the machine
such that sockets map to AMM clusters, TPs will be balanced between sockets
ensuring less contended accesses to DRAM. This result is a natural extension
of the Codelet model, where similar approaches are possible, but require much
effort.

4 Related Work

The arrival of multicore and manycore systems has rekindled the interest of effi-
ciently running threads on shared-memory systems beyond the classical Pthread
[19] and OpenMP [7] models.
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Intel Threading Building Blocks [21] is a C++ library which provides several
data structures and lock-free constructs to express parallelism. This includs the
recent addition of augmented flow graphs (similar to a dataflow graph). The
Codelet model differs as it advocates event-driven fine grained parallelism, while
TBB focus on offering various types of parallelism.

Charm++ [14] also uses C++ to provide a parallel, object oriented, pro-
graming environment. Charm++’s goals are close to DARTS’, with respect to
resource management, energy efficiency, etc. However, while DARTS is event-
driven, Charm++ is message-driven.

Cilk and its later iterations [1,18] are languages whose underlying execution
model is more fine grain than classical shared-memory models. However, they
do not implement dataflow features to express computations in terms of data
and/or event dependencies.

Habanero Java [4], a “spin-off” of the X10 language [6], extends the initial
Cilk syntax rendering it more flexible. Despite its recent additions of data driven
constructs [22], its execution model does not rely on dataflow as a foundation
unlike the Codelet model (and runtime implementation).

SWARM [16] is another runtime system which implements the codelet execu-
tion model. SWARM does not respect the basic semantics of individual codelets
as proposed in [11], nor does it implement other advocated features, such as
threaded procedures, loop constructs, etc.

The Concurrent Collections (CnC) family of languages [3] is a coordination
language which is very much inspired by dynamic dataflow. CnC utilizes a sep-
aration of concerns, providing a tuning specification to achieve performance. A
stand alone CnC programmay not represent an event-driven codelet application,
however with a proper tuning specification they could be equivalent.

5 Conclusion

In this paper we have presented an implementation of the fine-grain dataflow in-
spired codelet execution model. We have tested our implementation on a many-
core shared-memory node, using two kernels. Our parallel implementation of
DGEMM yields on average a 1.40× speedup over AMD’s OpenMP-based im-
plementation for matrix sizes ranging from 100 × 100 to 20, 000× 20, 000 with
a maximum speedup of 4×. We also compared ourselves to the reference imple-
mentation of the Graph500 BFS benchmark. On average, we reached a speedup
of 1.50×, with a maximum of 2.38×.

Our future work includes further exploring Graph500 kernels in order to show
how the codelet model eases the expression of parallelism and data dependencies
between tasks. This includes exploring unordered BFS kernels which discard the
barrier found at the end of each forall loop. We also want to further develop
DARTS’ parallel loop constructs applying software pipelining techniques, and
building more general constructs to handle streams. Lastly, we would like to
run our experiments on different compute node architectures, such as Intel’s Ivy
Bridge or other C++-supported general purpose many-core systems.



Codelet Model Implementation 643

Acknowledgments. This work was partly supported by European FP7 project
TERAFLUX, id. 249013. This material is based upon work supported by the
Department of Energy (National Nuclear Security Administration) under the
Award Number DE-SC0008717. We would also like to acknowledge the help of
Tom StJohn for his expertise on the Graph500 benchmark, and Jean-Philippe
Halimi for his work on DARTS.

References

1. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou,
Y.: Cilk: an efficient multithreaded runtime system. SIGPLAN Not. 30(8), 207–216
(1995)

2. Broquedis, F., Clet-Ortega, J., Moreaud, S., Furmento, N., Goglin, B., Mercier,
G., Thibault, S., Namyst, R.: hwloc: A generic framework for managing hardware
affinities in hpc applications. In: 2010 18th Euromicro International Conference on
Parallel, Distributed and Network-Based Processing (PDP), pp. 180–186 (February
2010)
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Parallelism permeates all levels of current computing systems, from single CPU
machines, to large server farms, to geographically dispersed ”volunteers” who
collaborate over the Internet. The effective use of parallelism depends crucially
on the availability of faithful, yet tractable, computational models for algorithm
design and analysis and models of efficient strategies for solving key computa-
tional problems on prominent classes of computing platforms. Equally important
are good algorithmic models of the way the different system components are in-
terconnected. With the development of new genres of computing platforms, such
as multicore parallel machines, desktop grids, clouds, and hybrid GPU/CPU-
based systems, new computational models and paradigms are needed that will
allow parallel programming to advance into mainstream computing. Topic 12
focuses on contributions providing new results on foundational issues regarding
parallelism in computing and/or proposing improved approaches to the solution
of specific algorithmic problems.

This year, papers submitted to Topic 12 covered nearly all subjects indicated
in the call for papers. Among others, subjects included computation and/or
communication complexity issues in various computational models, parallel al-
gorithms and data structures for fundamental problems from various domains,
and energy considerations in multiprocessor systems. Submissions indicated a
significant interest of the parallel computing community towards developing new
sound and solid methods for parallel problem solving in the presence of new
technological challenges such as increasing core numbers per chip, deep memory
hierarchies, complex distributed parallelism, and heterogeneity. Limitations and
correctness of parallelism were also under investigation, for example in case of
using accelerators.

Among all submissions, three high-quality papers were selected for presenta-
tion at the conference. The first paper, ”Efficient Parallel and External Match-
ing”, by Marcel Birn, Vitaly Osipov, Peter Sanders, Christian Schulz, and Nodari
Sitchinava, investigates the local-max algorithm for approximating a maximum
weight matching. The algorithm is shown to run in a logarithmic number of
phases, incurring work linear in the input size. Also, as their main contribution
on parallel aspects of the topic, the authors provide efficient implementations in
several models of computation and show that parallel local-max performs well
in practice.

The second paper, ”Model and complexity results for tree traversals on hy-
brid platforms”, by Julien Herrmann, Loris Marchal, and Yves Robert, analyzes
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scheduling of DAGs in a streaming-like model on hybrid systems with a focus
on memory usage. The employed model assumes that there are two types of ex-
ecution units, where each of those has its own (limited) amount of memory. The
authors provide complexity results for the question whether a given task graph
can be executed given two limited memories, e.g. they show that it is impossible
to approximate the optimal consumption of both memories simultaneously by
any pair of constant factors.

The third paper, ”Splittable Single Source-Sink Routing on CMP Grids:
A Sublinear Number of Paths Suffice”, by Adrian Kosowski and Przemys�law
Uznański, addresses the problem of power consumption for routing communi-
cation messages between cores of a single-chip multiprocessor assembled in a
grid topology. It is shown that (and how) optimal power consumption (within
constant factors) can be achieved by splitting requests into a sublinear number
of paths.
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Abstract We study the complexity of traversing tree-shaped workflows
whose tasks require large I/O files. We target a heterogeneous architec-
ture with two resources of different types, each equipped with its own
memory, such as a multicore node equipped with a dedicated accelera-
tor (FPGA or GPU). Tasks in the workflow are tagged with the type of
resource that is needed for their processing. Besides, a task can be pro-
cessed on a given resource only if all its input files and output files can
be stored in the corresponding memory. At a given execution step, the
amount of data stored in each memory strongly depends upon the or-
dering in which the tasks are executed, and upon when communications
between both memories are scheduled. The objective is to determine an
efficient traversal that minimizes the maximum amount of memory of
each type needed to traverse the whole tree. In this paper, we establish
the complexity of this two-memory scheduling problem, provide inap-
proximability results, and show how to determine the optimal depth-first
traversal. Altogether, these results lay the foundations for memory-aware
scheduling algorithms on heterogeneous platforms.

1 Introduction

Modern computing platforms are heterogeneous: a typical node is composed of
a multi-core processor equipped with a dedicated accelerator, such as a FPGA
or a GPU. Our goal is to study the execution of a computational workflow,
described by an out-tree, onto such a heterogeneous platform, with the objective
of minimizing the amount of memory of each resource needed for its processing.
The nodes of the workflow tree correspond to tasks, and the edges correspond to
the dependencies among the tasks. The dependencies are in the form of input and
output files: each node accepts a (potentially large) file as input, and produces a
set of files, each of them to be processed by a different child node. We consider
in this paper that we have two different processing units at our disposal, such
as a CPU and a GPU. For sake of generality, we designate them by a color
(namely blue and red). Each task in the workflow is best suited to a given resource
type (say a core or a GPU), and is colored accordingly. To execute a task of a
given color, all the input files and the output file of the task must fit within
the corresponding memory. As the workflow tree is traversed, tasks of different
colors are processed, and capacity constraints on both memory types must be
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met. In addition, when a child of a task has a different color than its parent,
say for example that a blue task has a red child, a communication from the
blue memory to the red memory must be scheduled before the red child can be
processed (and again, the input file and all output files of this red child must
fit within the red memory). All these constraints require to carefully orchestrate
the scheduling of the tasks, as well as the communications between memories,
in order to minimize the maximum amount of each memory that is needed
throughout the tree traversal.

Memory-aware scheduling is an important problem that has been the focus
of many papers (see Section 2 for related work). This work mainly builds upon
the pioneering work of Liu, who has studied tree traversals that minimize the
peak amount of memory used on a homogeneous system, hence with a single
memory type. Liu first restricted to depth-first traversals in [5], before dealing
with an optimal algorithm for arbitrary traversals in [5]. The main objective of
this paper is to extend these results to colored trees with two memory types,
and tasks belonging to a given type. Clearly, the traversal, i.e., the order chosen
to execute the tasks, and to perform the communications, plays a key role in
determining which amount of each memory is needed for a successful execution of
the whole tree. The interplay between both memories dramatically complicates
the scheduling: it is no surprise that the complexity of the problem, that was
polynomial with a unique memory, now becomes NP-complete.

In this paper, we concentrate on memory usage, but we are fully aware that
performance aspects are important too, and that even more difficult trade-offs
are to be found between parallel performance and memory consumption. One
could envision a fully general framework, where tasks have different execution-
times for each resource type (instead of being tied to a given resource as in this
paper), and where concurrent execution of several tasks on each resource type
is possible (instead of the fully sequential processing of the task graph that is
assumed in this paper). Altogether, this study is only a first step towards the
design of memory-aware schedules on modern heterogeneous platforms with two
memory types. However, despite the apparent simplicity of the model, our re-
sults show that we already face a difficult bi-criteria optimization problem when
dealing with two different memory types. We firmly believe that the results pre-
sented in this paper will help to lay the foundations for memory-aware scheduling
algorithms on modern heterogeneous platforms such as those equipped with mul-
ticores and GPUs. Indeed, one key contribution of the paper is the derivation
of several complexity results: NP-completeness of the problem, and inapprox-
imability within a constant (α, β) factor pair of both absolute minimum mem-
ory amounts. Here the absolute minimum memory of a given type is computed
when assuming an infinite amount of memory of the other type. Another im-
portant contribution is the determination of the optimal depth-first traversal,
which turns out to minimize both memories simultaneously (among all possible
depth-first traversals).

The rest of the paper is organized as follows. We start with an overview of re-
lated work in Section 2. Then we detail the framework in Section 3. We deal with
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complexity results in Section 4, which constitutes the heart of the paper. Finally
we provide some concluding remarks and hints for future work in Section 5.

2 Related Work

The work presented in this paper builds upon previous results related to memory-
aware scheduling, but its applications are relevant to the field of sparse matrix
factorization and of hybrid computing.

2.1 Sparse Matrix Factorization

Determining a memory-efficient tree traversal is very important in sparse nu-
merical linear algebra. The elimination tree is a graph theoretical model that
represents the storage requirements, and computational dependencies and re-
quirements, in the Cholesky and LU factorization of sparse matrices. In a previ-
ous study, we have described how such trees are built, and how the multifrontal
method organizes the computations along the tree [4]. This is the context of the
founding studies of Liu [5,6] on memory minimization for postorder or general
tree traversals mentioned in Section 1. Recently, still in the context of a sin-
gle memory type, an extension of these results to parallel machines base been
proposed in [7].

2.2 Scientific Workflows

The problem of scheduling a task graph under memory constraints also appears
in the processing of scientific workflows whose tasks require large I/O files. Such
workflows arise in many scientific fields, such as image processing, genomics or
geophysical simulations. The problem of task graphs handling large data has
been identified in [8] which proposes some simple heuristic solutions.

2.3 Pebble Game and Its Variants

On the more theoretical side, this work builds upon the many papers that have
addressed the pebble game and its variants. Scheduling a graph on one processor
with the minimal amount of memory amounts to revisiting the I/O pebble game
with pebbles of arbitrary sizes that must be loaded into main memory before
firing (executing) the task. The pioneering work of Sethi and Ullman [10] deals
with a variant of the pebble game that translates into the simplest instance of the
problem with a unique memory and where all files have weight 1. The concern
in [10] was to minimize the number of registers that are needed to compute
an arithmetic expression. The problem of determining whether a general DAG
can be traversed with a given number of pebbles has been shown NP-hard by
Sethi [9]. However, this problem has a polynomial complexity for tree-shaped
graphs [10].
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2.4 Hybrid Computing

Hybrid computing consists in the simultaneous use of CPUs and GPUs to op-
timize performance for high performance computing. Since CPUs and GPUs
are powerful for specific and different tasks, its is natural to schedule a task
on its “favorite” resource, that is, the resource where its execution time is min-
imal. This has been done successfully to increase performance in linear alge-
bra libraries [11,3]. There also exist software tools that schedule an application
composed of tasks with both CPU and GPU implementations on hybrid plat-
forms: for instance, StarPU [1] optimizes the execution time of an application
by scheduling its tasks on various resources based on predictions of execution
and data transfer times.

3 Framework

As stated above, we deal with tree traversals on a two-memory system where
each task belongs to a specific memory. Dependencies are in the form of input
and output files: each task accepts a file as input from its parent node in the
tree, and produces a set of files to be consumed by each child node.

fj3j1 j2
j3

fj1

fi

fj2

fj3

i

Fig. 1. Illustration of a tree node with its children

The tree work-flow T is composed of n nodes, or tasks, numbered from 1 to
n, where Children(i) denotes the set of the children of i. We consider here out-
trees, where a parent node has to be processed before its children. As illustrated
on Figure 1, each task (or node) i in the tree is characterized by the size fi of
its input file (data needed before the execution and received from its parent),
which is the weight of the edge between the node and its parent, and by its color,
which represents the specific memory where the task has to be executed. We let
color(i) ∈ {red, blue} represent the memory type of task i. If color(i) = red, then
i is a computational node which operates in the red memory, which it uses to
load its input file, execute its program and produce the set of output files for
its children. Similarly, if color(i) = blue, then i is a computational node which
operates in the blue memory. Each communication from one memory to the other
is achieved through a communication node, which is uncolored. Hence, there are
three types of nodes in the tree, red or blue computational nodes (or tasks), and
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uncolored communication nodes. Each time there is a data dependence between
two tasks assigned to different memories, the output file of the source task has to
be loaded from one memory into the other, using a communication node. Thus,
in the model, the tree T does not contain direct edges between blue and red
nodes; memory loads from one memory to the other occur only when processing
a communication node. A valid traversal σ of the tree T is an ordered list of
the nodes of T (including communication nodes) such that all node dependences
in T are enforced by the schedule. Here are further details on the processing of
each node type:
– Computational nodes: they represent a task executed on a specific memory.

During the processing of a computational task i, the associated memory
must contain the input file and its output files. Assuming that i is a blue
task, the amounts of memory BlueMemReq(i) and RedMemReq(i) that are
needed for this processing are thus:

BlueMemReq(i) =

⎛⎝ ∑
j∈Children(i)

fj

⎞⎠+ fi, RedMemReq(i) = 0

After task i has been processed, the input file is discarded, while its output
files are kept in memory until the processing of its children. Thus, for a
traversal σ of T , the actual amounts of memory used to process the blue
node i are:

BlueMemUsed(σ, i) =

⎛⎝ ∑
j∈Children(i)

fj

⎞⎠+ fi +
∑

j∈Sblue\{i}
fj ,

RedMemUsed(σ, i) =
∑

j∈Sred

fj

where Sblue (respectively Sred) denotes the set of files stored in the blue
(respectively red) memory when the scheduler decides to execute task i.
Note that Sblue must contain the input file of task i. After processing the
blue node i, we have:

Sblue ← (Sblue\{i}) ∪ Children(i), Sred ← Sred

Initially, Sblue contains the input file of the root and Sred = ∅ if the root is
a blue node, and conversely if the root is a red node.

– Communication nodes represent communications between one memory and
the other. Each communication node i has an input file of size fi and an
output file of the same size. It loads fi units of memory from one memory
to the other. During the processing of a communication task i from the blue
memory to the red memory, both memories must contain the file of size fi.
Thus, the amount of blue and red memory needed for this processing is fi:

BlueMemReq(i) = fi, RedMemReq(i) = fi
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After i has been processed, the input file from the blue memory is discarded,
while the output file is kept in the red memory until the processing of its
child. Thus, for a traversal σ of T , the actual amounts of memory used to
process the communication node i are:

BlueMemUsed(σ, i) = fi +
∑

j∈Sblue\{i}
fj, RedMemUsed(σ, i) = fi +

∑
j∈Sred

fj

Note that Sblue must contain the input file of task i. Letting j denote the
unique child of communication node i, we have after the execution of i that:

Sblue ← Sblue\{i}, Sred ← Sred ∪ {j}

It is important to stress that a communication node need not be processed right
after the execution of its parent. The only constraint is that its processing must
precede the execution of its unique child. This flexibility in the schedule severely
complicates the search for efficient traversals.

As stated above, we face a multi-criteria optimization problem: how to min-
imize the amount of both memories needed for the tree traversal? The peak
memory is the maximum usage of each memory over the whole schedule σ of
the tree T , and is defined for the blue and the red memory by:

Mσ
blue(T ) = max

i
BlueMemUsed(σ, i), Mσ

red(T ) = max
i

RedMemUsed(σ, i)

Thus, we define the optimal peak for each memory needed to process a tree T
as:

Mopt
blue(T ) = min

σ
Mσ

blue(T ), Mopt
red (T ) = min

σ
Mσ

red(T )

We point out that Mopt
blue(T ) can be seen as the minimum amount of blue memory

required to traverse the tree when there is an unbounded amount of red memory
available: a schedule which reaches Mσ

blue(T ) = Mopt
blue(T ) can use an arbitrary

amount of red memory. Intuitively, one may ask what are trade-offs between the
blue and red memory requirements of feasible schedules. One major objective of
this paper is to provide quantitative answers to this question.

Top-down vs. bottom-up traversals. We conclude this section with two remarks
on the model. First, we can handle the case where a node in the tree needs an
execution file (in addition to input and output files) by adding an extra child
to the node, whose input file has the size of the execution file. Second, there
is a complete equivalence with top-down traversals of out-trees (the problem
addressed in this paper) and bottom-up traversals of in-trees (as used in sparse
matrice factorization). In a nutshell, one only needs to reverse the direction of
the edges, and to execute the schedule backwards, to move form one variant to
another1. In fact, the literature deals with both variants. The seminal paper of
Liu [5] originally deals with post-order bottom-up traversals for in-trees, while
we speak of depth-first top-down traversals for out-trees in this paper, but there
is no actual difference.
1 This equivalence has been formally proven in [4] for single-memory platforms, and
it is straightforward to extend the proof for two-memory systems.
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4 Complexity Results

This section presents several important complexity results. We start with the
NP-completeness of the two-memory minimization problem in Section 4.1. Next
we show in Section 4.2 that the problem reduces to traversing uncolored trees
when one memory is unbounded. Then, we prove in Section 4.3 that it is impos-
sible to approximate both minimum memories within arbitrary constant factors.
Finally, we determine the optimal depth-first traversal (the equivalent of post-
order traversals for in-trees). Due to lack of space, only the inapproximability
proof is detailed in Section 4.3. All other proofs are available in the companion
research report [2].

4.1 Hardness of the Problem

Our first result assesses the complexity of the problem, as formulated in the
following definition.

Definition 1 (TwoMemoryTraversal). Given a tree T with n nodes, and
two fixed memory amounts Mred and Mblue, does there exist a traversal σ of the
tree such that Mσ

blue(T ) ≤Mblue and Mσ
red(T ) ≤Mred?

Theorem 1. The TwoMemoryTraversal problem is NP-complete.

The proof relies on a reduction from the 2-partition problem: consider an instance
of 2-partition with n integers ai of sum S . The reduction uses the tree illustrated
on Figure 2, with maximum memory amounts set to Mred = 3S and Mblue = 2S.

Assuming without loss of generality that Rroot is processed before R
(2)
root, it is

possible to prove that if the processing of the tree does not exceed the prescribed
memory bounds, then a subset I of the Ci such that

∑
i∈I ai = S/2 has to be

processed before Rbig. The detailed proof of this result is available in [2].

4.2 When One Memory is Unbounded

In this section, we focus on the computation of Mopt
red (T ) (or Mopt

blue(T )) which
represents the minimal peak memory reachable when there is no constraint on
the other memory. We show that the computation of Mopt

red (T ) and Mopt
blue(T ) for

a bi-colored tree T reduces to the computation of the minimal peak memory for
an uncolored tree.

Definition 2. Given a bi-colored tree T , we construct the corresponding uncol-
ored (or for convenience, single-colored) tree Tblue by turning every communi-
cation node and red node into a blue node, and by turning every red edge of
weight fi into a blue edge of weight 0. We construct the single-colored tree Tred
in a similar way. We let M∞

blue denote the minimal amount of memory needed
to process Tblue (and similarly, M∞

red for Tred).

The following result is straightforward.

Theorem 2. For any bi-colored tree T , we have M∞
red = Mopt

red (T ) and M∞
blue =

Mopt
blue(T ).
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Fig. 2. Tree used in the proof of Theorem 1

4.3 Joint Minimization of Both Objectives

Since the traversal problem is NP-complete, it is natural to wonder whether there
exist approximation algorithms. In this section, we prove that there does not exist
schedules that approximates both minimum memories Mopt

blue(T ) and Mopt
red (T )

within arbitrary constant factors for any bi-colored tree T . Since the (usually
unfeasible) point of the Pareto diagram with coordinates (Mopt

blue(T ),Mopt
red (T ))

is sometimes called the Zenith, this result amounts to proving that there exists
no Zenith-approximation.

Definition 3. Given a bi-colored tree T , we can construct the corresponding
uncolored tree Tunco by turning every colored node of T into an uncolored node.
We let Mopt

unco(Tunco) be the minimal amount of memory needed to process Tunco.

The following lemma, whose simple proof can be found in [2], is helpful to prove
the following theorem.

Lemma 1. Given a bi-colored tree T with n nodes, consider an arbitrary traver-
sal σ of T that requires an amount of red memory equal to Mσ

red(T ) and an
amount of blue memory equal to Mσ

blue(T ). Then necessarily:

Mσ
red(T ) +Mσ

blue(T ) ≥Mopt
unco(Tunco)

Theorem 3. There exists no algorithm that is both an α-approximation for blue
memory peak minimization and a β-approximation for red memory peak mini-
mization, when scheduling bi-colored trees.
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Fig. 3. Recursive definition of Tn in the proof of Theorem 3

Proof. To establish this result, we proceed by contradiction. We therefore assume
that there is an integer α, an integer β, and an algorithm A that processes any
bi-colored tree T using a blue peak memory that is not greater than α times
the optimal blue peak memory Mopt

blue(T ) and using a red peak memory that

is not greater than β times the optimal red peak memory Mopt
red (T ). To derive

the contradiction, we use the family of tree (Tn)n∈N depicted on Figure 3. Tn is
defined recursively using Tn−1.

We prove the following statements:

– ∀n ≥ 2,Mopt
blue(Tn) = 3

Consider the traversal σblue that processes Tn as follows:
- If n = 0, σblue processes the node B0

- If n > 0, σblue processes the nodes Bn and Cn. Then T (left)
n−1 is processed

recursively. Nodes Rn and C′
n follow. And finally T (right)

n−1 is processed
recursively.

At each step of this process, the traversal σblue does not use more than
3 units of blue memory. Since BlueMemReq(Bn−1) = 3, this proves that
Mopt

blue(Tn) = 3.

– ∀n ≥ 1,Mopt
red(Tn) = 2

Consider the traversal σred that processes Tn as follows. At step k:
- If k = 0, σred processes the node B0

- If k > 0, σred processes the nodes Bk. Then T (left)
k−1 is processed recur-

sively. Nodes Ck, Rk and C′
k follow. And finally T (right)

k−1 is processed
recursively.

At each step of this process, the traversal σred does not use more than 2 units
of red memory. Since RedMemReq(Rn) = 2, this proves that Mopt

red (Tn) = 2.
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– Let T unco
n be the uncolored tree corresponding to Tn as describe in Def-

inition 3 and Mopt
unco(T unco

n ) the minimum amount of memory required to
execute it. We now prove by induction that Mopt

unco(T unco
n ) = n + 2 for

n ≥ 2. As show in [6], depth-first traversals (called post-order traversals
in [6]) traversals are optimal for peak memory minimization of uncolored
trees with unit costs. Besides, all depth-first traversals of T unco

n require the
same amount of memory. Thus Mopt

unco(T unco
n ) = Mopt

unco(T unco
n−1 )+ 1 for n ≥ 2.

Since Mopt
unco(T unco

1 ) = 2, we have the result.

By hypothesis, algorithmA can process any Tn with MA
blue(Tn) ≤ α.Mopt

blue(Tn) =
3α and MA

red(Tn) ≤ β.Mopt
red (Tn) = 2β. Let n0 = !3α+ 2β", we have:

MA
blue(Tn0) +MA

red(Tn0) ≤ 3α+ 2β

< !3α+ 2β"+ 2

= Mopt
unco(T unco

n0
)

This contradicts Lemma 1, which means that such an algorithm A cannot exist.

4.4 Depth-First Traversals

Definition 4. A depth-first traversal is a feasible traversal that processes all
nodes of a tree T by processing the root and, then, recursively processing all
sub-trees. Hence, in a post-order traversal, after processing a node i, the whole
sub-tree rooted at i is completely processed before any other node that does not
belong to this sub-tree. Formally, a feasible traversal σ of the tree T with n nodes
is a depth-first traversal if and only if for each node r ∈ T , with two children
i ∈ Children(r) and j ∈ Children(r), we have:

σ(i) < σ(j)⇒ (∀u ∈ Ti, σ(u) < σ(j))

where Ti is the sub-tree rooted at the node i.

In the context of single-memory trees, depth-first traversals are known to be
sub-optimal [6]: worse, their memory usage can be arbitrarily high as compared
to that of the optimal solution [4]. Clearly, these negative results remain true
in a two-memory framework (simply assume that one memory is infinite). Still,
depth-first traversals are a natural heuristic for traversing tree graphs, and they
enjoy a simple implementation and memory management. As such, they are the
most commonly used traversals in actual sparse solvers. Algorithm 1 computes
the optimal depth-first traversal: when it encounters a blue node (respectively a
red node), it applies the rule for minimizing the blue (resp. red) memory in depth-
first traversals, which does not impact the amount of red (resp. blue) memory. It
turns out that this traversal is optimal among all depth-first traversals for both
memory usages (see proof in [2]).

Theorem 4. Algorithm 1 returns the best depth-first traversal σ of T for both
the blue and the red memories and the amount of memory Mblue and M red used
by σ.
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Algorithm 1: BestDepthFirstTraversal(T )
output: Schedule σ with peak blue memory Mblue and peak red memory M red

root ← the root of T ;
CurrentMem ← 0;

(σ,Mblue,M red) ← ([root] , 0, 0);
for i ∈ Children(root) do

(σi, M
blue
i , M red

i ) ← BestDepthFirstTraversal(Ti);
CurrentMem ← CurrentMem + fi

if color(root) = blue then

for i ∈ Children(root) in the increasing order of Mblue
i − fi do

σ ← [σ;σi];
CurrentMem ← CurrentMem − fi;

Mblue ← max(Mblue,CurrentMem +Mblue
i );

M red ← maxi∈Children(root)M
red
i ;

if color(root) = red then
for i ∈ Children(root) in the increasing order of M red

i − fi do
σ ← [σ;σi];
CurrentMem ← CurrentMem − fi;

M red ← max(M red,CurrentMem +M red
i );

Mblue ← maxi∈Children(root)M
blue
i ;

if the root node is an uncolored communication node then
i ← the unique child of root; σ ← [σ;σi];
if color(i) = blue then

Mblue ← Mblue
i ;

M red ← max(fi,M
red
i );

if color(i) = red then
M red ← M red

i ;

Mblue ← max(fi,M
blue
i );

return (σ, Mblue, M red);

5 Conclusion

In this paper, we have studied the bi-criteria memory minimization problem that
arises when traversing a task tree for a system composed of two different comput-
ing units with their own memory. After relating this problem to the well-studied
one-memory problem, we have proved that the search for an optimal solution is
NP-complete, and that it was impossible to approximate both memories by any
pair of constant factors. In addition, we have determined the optimal depth-first
traversal, which turns out to minimize both memories simultaneously.

Admittedly, the platform model used in this paper is a simplified one, but this
was the key to derive complexity results in this initial study. In future work, the
model should be refined in several directions, so as to more accurately account
for all the characteristics of hybrid platforms (using both CPUs and GPUs);
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however, this is not expected to change the NP-completeness results. A first
step towards a more realistic model would be to include computation times for
the tasks, and to try to minimize both the processing time of the total tree, and
the amount of blue and red memories needed. A second step would consist in
providing each task with two different running times rather than a color, and
to give the ability for the scheduler to choose the computing unit for each task
based on running time and memory. Given the complexity of the problem in
the simple case, we do not expect to find approximation algorithms, but rather
to design simple heuristics (as BestDepthFirst) that may be optimal under
restrictive conditions, either on the traversal type or on the tree structure.
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Abstract. We study a simple parallel algorithm for computing match-
ings in a graph. A variant for unweighted graphs finds a maximal match-
ing using linear expected work and O

(
log2 n

)
expected running time in

the CREW PRAMmodel. Similar results also apply to External Memory,
MapReduce and distributed memory models. In the maximum weight
case the algorithm guarantees a 1/2-approximation. Although the paral-
lel execution time is linear for worst case weights, an experimental eval-
uation indicates good scalabilty on distributed memory machines and on
GPUs. Furthermore, the solution quality is very good in practice.

1 Introduction

A matching M of a graph G = (V,E) is a subset of edges such that no two
elements of M have a common end point. Many applications require the compu-
tation of matchings with certain properties, like being maximal (no edge can be
added to M without violating the matching property), having maximum cardi-
nality, or having maximum total weight

∑
e∈M w(e). Although these problems

can be solved optimally in polynomial time, optimal algorithms are not fast
enough for many applications involving large graphs where we need near linear
time algorithms. For example, the most efficient algorithms for graph partition-
ing rely on repeatedly contracting maximal matchings, often trying to maximize
some edge rating function w. Refer to [13] for details and examples. For very
large graphs, even linear time is not enough – we need a parallel algorithm with
near linear work or an algorithm working in the external memory model [1].

Here we consider the following simple local max algorithm [12]: Call an edge
locally maximal, if its weight is larger than the weight of any of its incident
edges; for unweighted problems, assign unit weights to the edges. When com-
paring edges of equal weight, use tie breaking based on random perturbations of
the edge weights. The algorithm starts with an empty matching M . It repeat-
edly adds locally maximal edges to M and removes their incident edges until no
edges are left in the graph. The result is obviously a maximal matching (every
edge is either in M or it has been removed because it is incident to a matched
edge). The algorithm falls into a family of weighted matching algorithms for
which Preis [24] shows that they compute a 1/2-approximation of the maximum
weight matching problem. Hoepman [12] derives the local max algorithm as a

F. Wolf, B. Mohr, and D. an Mey (Eds.): Euro-Par 2013, LNCS 8097, pp. 659–670, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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distributed adaptation of Preis’ idea. Based on this, Manne and Bisseling [18]
devise sequential and parallel implementations. They prove that the algorithm
needs only a logarithmic number of iterations to compute maximal matchings
by noticing that a maximal matching problem can be translated into a maximal
independent set problem on the line graph which can be solved by Luby’s algo-
rithm [17]. However, this does not yield an algorithm with linear work since it is
not proven that the edge set indeed shrinks geometrically.1 Manne and Bissel-
ing also give a sequential algorithm running in time O(m logΔ) where Δ is the
maximum degree. On a NUMA shared memory machine with 32 processors (SGI
Origin 3800) they get relative speedup < 6 for a complete graph and relative
speedup ≈ 10 for a more sparse graph partitioned with Metis. Since this graph
still has average degree ≈ 200 and since the speedups are not impressive, this
is a somewhat inconclusive result when one is interested in partitioning large
sparse graphs on a larger number of processors.

Parallel matching algorithms have been widely studied. There is even a book
on the subject [16] but most theoretical results concentrate on work-inefficient
algorithms. The only linear work parallel algorithms that we are aware of are
randomized CRCW PRAM algorithms by Israeli and Itai [14] and Blelloch et
al. [4]. We will call them IIM and BFSM, respectively. IIM runs in expected
O(logn) time and BFSM runs in O

(
log3 n

)
time with high probability.

Fagginger Auer and Bisseling [8] study an algorithm similar to [14] which we
call red-blue matching (RBM) here. They implement RBM on shared memory
machines and GPUs. They prove good shrinking behavior for random graphs,
however, provide no analysis for arbitrary graphs.

Our Contributions. We give a simple approach to implementing the local max
algorithm that is easy to adapt to many models of computation. We show that
for computing maximal matchings, the algorithm needs only linear work on a
sequential machine and in several models of parallel computation (Section 2).
Moreover it has low I/O complexity on several models of memory hierarchies.

Our CRCW PRAM local max algorithm matches the optimal asymptotic
bounds of IIM. However, our algorithm is simpler (resulting in better constant
factors), removes higher fraction of edges in each iteration (IIM’s proof shows
less than 5% per iteration, while we show at least 50%) and our analysis is a
lot simpler. We also provide the first CREW PRAM algorithm which performs
linear work and runs in expected O

(
log2 n

)
time.2

In Section 3 we explain how to implement local max on practical massively
parallel machines such as MPI clusters and GPUs. Our experiments indicate
that the algorithm yields surprisingly good quality for the weighted matching
problem and runs very efficiently on sequential machines, clusters with reason-
ably partitioned input graphs, and on GPUs. Compared to RBM, the local max
implementations remove more edges in each iteration and provide better quality

1 Manne and Bisseling show such a shrinking property under an assumption that
unfortunately does not hold for all graphs.

2 While a generic simulation of IIM on the CREW PRAM model will result in a
O
(
log2 n

)
time algorithm, the simulation incurs O(n log n) work due to sorting.
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results for the weighted case. Some of the results presented here are from the
diploma thesis of Marcel Birn [2].

2 Parallel Local Max

Our central observation is:

Lemma 1. Each iteration of the local max algorithm for the unit weight case
removes at least half of the edges in expectation.

Proof. Consider the graph remaining in the currently considered iteration where
d(v) denotes the degree of a node andm the remaining number of edges. Consider
the end point at node v of an edge {u, v} as marked if and only if some edge
incident to v becomes matched. Note that an edge is removed if and only if at
least one of its end points becomes marked. Now consider a particular edge e =
{u, v}. Since any of the d(u)+d(v)−1 edges incident to u and v is equally likely
to be locally maximal, e becomes matched with probability 1/(d(u)+d(v)−1).3

If e is matched, this event is responsible for setting d(u) + d(v) marks, i.e., the
expected number of marks caused by an edge is (d(u)+d(v))/(d(u)+d(v)−1) ≥ 1.
By linearity of expectation, the total expected number of marks is at least m.
Since no edge can have more than two marks, at least m/2 edges have at least
one mark and are thus deleted.4

Métivier et al. [22] uses a similar proof technique to define “preemptive removal”
of nodes for distributed maximal independent set problem.

Assume now that each iteration can be implemented to run with work linear
in the number of surviving edges (independent of the number of nodes). Working
naively with the expectations, this gives us a logarithmic number of rounds and a
geometric sum leading to linear total work for computing a maximal matching.
This can be made rigorous by distinguishing good rounds with at least m/4
matched edges and bad rounds with less matched edges. By Markov’s inequality,
we have a good round with constant probability. This is already sufficient to
show expected linear work and a logarithmic number of expected rounds. We
skip the details since this is a standard proof technique and since the resulting
constant factors are unrealistically conservative. An analogous calculation for
median selection can be found in [20, Theorem 5.8]. One could attempt to show
a shrinking factor close to 1/2 rigorously by showing that large deviations (in the
wrong direction) from the expectation are unlikely (e.g., using Martingale tail
bounds). However this would still be a factor two away from the more heuristic
argument in Footnote 4 and thus we stick to the simple argument.

3 For this to be true, the random noise added for tie breaking needs to be renewed in
every iteration. However, in our experiments this had no noticeable effect.

4 This is a conservative estimate. Indeed, if we make the (over)simplified assumption
that m marks are assigned randomly and independently to 2m end points, then only
one fourth of the edges survives in expectation. Interestingly, this is the amount of
reduction we observe in practice – even for the weighted case.
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There are many ways to implement an iteration which of course depend on
the considered model of computation.

Sequential Model. For each node v maintain a candidate edge C[v], originally
initialized to a dummy edge with zero weight. In an iteration go through all
remaining edges e = {u, v} three times. In the first pass, if w(e) > w(C[u]) set
C[u]:= e (add random perturbation to w(e) in case of a tie). If w(e) > w(C[v])
set C[v]:= e. In the second pass, if C[u] = C[v] = e put e into the matching
M . In the third pass, if u or v is matched, remove e from the graph. Otherwise,
reset the candidate edge of u and v to the dummy edge. Note that except for
the initialization of C which happens only once before the first iteration, this
algorithm has no component depending on the number of nodes and thus leads
to linear running time in total if Lemma 1 is applied.

CRCW PRAM Model. In the most powerful variant of the Combining CRCW
PRAM that allows concurrent writes with a maximum reduction for resolving
write conflicts, the sequential algorithm can be parallelized directly running in
constant time per iteration using m processors.

MapReduce Model. The CRCW PRAM result together with the simulation
result of Goodrich et al. [11] immediately implies that each iteration of local
max can be implemented in O(logM n) rounds and O(m logM n) communication
complexity in the MapReduce model, where M is the size of memory of each
compute node. Since typical compute nodes in MapReduce have at least Ω(mε)
memory [15], for some constant ε > 0, each iteration of local max can be per-
formed in MapReduce in constant rounds and linear communication complexity.

External Memory Models. Using the PRAM emulation techniques for algo-
rithms with geometrically decreasing input size from [5, Theorem 3.2] the above
algorithm can be implemented in the external memory [1] and cache-oblivious [9]
models in O(sort(m)) I/O complexity, which seems to be optimal.

2.1 O(
log2 n

)
Work-Optimal CREW Solution

In this section, we present a O
(
log2 n

)
CREW PRAM algorithm, which incurs

only O(m) work.
Consider the following representation of the graph G = (V,E). Let V be a

totally ordered set, i.e., given two vertices u, v ∈ V we can uniquely determine
whether u < v or not. Let E be an array of undirected edges with each entry E[k]
storing all the information of a single edge {u, v} ∈ E, i.e., vertex endpoints u
and v, its weight or any other auxiliary data. Let A be an array of tuples (v, ek),
where v ∈ V and ek is the pointer to E[k] representing the edge {u, v}. Let A be
sorted by the first entry, i.e. all tuples (v, ek) pointing to the edges incident on
the same vertex v are in contiguous space in A.

Note that any edge E[k] = {u, v} contains two corresponding entries in A point-
ing to it: (u, ek) and (v, ek). During our algorithm, a processor responsible for
(u, ek) might need to find and update entry (v, ek) (and vice versa). The following
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lemma describes how to compute for each entry (u, ek) the index of the correspond-
ing entry (v, ek) in A.

Lemma 2. For every edge E[k] = {u, v} entries A[i] = (u, ek) and A[j] = (v, ek)
of A can compute each other’s index in A in O(1) time and O(|A|) work in the
CREW PRAM model.

Proof. For every E[k] = {u, v} we show how A[j] = (v, ek) can compute the index
of the corresponding entry A[i] = (u, ek) in A for u < v. The indices for the other
half of the entries are computed symmetrically.

The algorithm proceeds in two phases. In the first phase, each entry A[i] =
(u, ek), stores the value i in E[k] = {u, v} iff u < v. In the second phase, each
entry A[j] = (v, ek) reads the stored value i from E[k] = {u, v} iff v > u.

If we assign a separate processor to each entry of A, each processor performs only
O(1) steps. Moreover, there are no concurrent writes because, at each step only
one of the two vertices of the edge ek writes to E[k]. Note, we need a concurrent
read to E[k] = {u, v} to determine the relative order of u and v.

Lemma 3. Using our graph representation, each node v in the graph can apply
an associative operator ⊕ to all edges incident on v in O(log |A|) time and O(|A|)
work on the CREW PRAM model.

Proof. First, we read for each entry (v, ek) ∈ A the value from E[k] on which
to apply the operator. Next, we run segmented prefix sums with ⊕ operator on
these values, where segments are the portions of A representing the neighbors
of a single node and are easily identified from the definition of A. Finally, each
entry of (v, ek) ∈ A applies its result of segmented prefix sums to the edge E[k],
while using the technique of Lemma 2 to avoid write conflicts. Each step of the
algorithm can be implemented inO(log |A|) time usingO(|A|) work.

Now we are ready to describe the solution to the matching problem. We perform
the following in each phase of the local max algorithm.

1. Each edge E[k] picks a random weight wk.
2. Using Lemma 3, each vertex v identifies k′ such that E[k′] is the heaviest

edge incident on v by applying the associative operator max to the edge
weights picked in the previous step.

3. Using Lemma 2, each entry (v, ek′) checks if E[k′] = {u, v} is also the heaviest
incident edge on u. If so, the smaller of u and v adds ek′ to the matching
and sets the deletion flag f = 1 on E[k′].

4. Using Lemma 3, each entry (v, ek′) spreads the deletion flag over all edges
incident on v by applying max associative operator on the deletion flags of
incident edges on v. Thus, if at least one edge incident on v was added to
the matching, all edges incident on v will be marked for deletion.

5. Now we must prepare the graph representation for the next phase by re-
moving all entries of E and A marked for deletion, compacting E and A and
updating the pointers of A to point to the compacted entries of E. To perform
the compaction, we compute for each entry E[k], how many entries E[i] and
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A[i], i ≤ k must be deleted. This can be accomplished using parallel prefix
sums on the deletion flags of each entry in E and A. Let the result of prefix
sums for edge E[k] be dk and for entry A[i] be ri. Then k − dk is the new
address of the entry E[k] and i − ri is the new address of A[i] once all edges
marked for deletion are removed.

6. Each entry E[k] that is not marked for deletion copies itself to E[k − dk].
The corresponding entry (v, ek) ∈ A updates itself to point to the new entry
E[k − dk], i.e., (v, ek) becomes (v, ek−dk

), and copies itself to A[i− ri].

The algorithm defines a single phase of the local max algorithm. Each step of the
phase takes at most O(|A|) = O(m) work and O(log |A|) = O(logm) = O(logn)
time in the CREWPRAMmodel. OverO(logm) phases, each with geometrically
decreasing number of edges, the local max algorithm takes overallO

(
log2 n

)
time

and O(m) work in the CREW PRAM model.

3 Implementations and Experiments

We now report experiments focusing on computing approximatemaximumweight
matchings.We consider the following families of inputs, where the first two classes
allow comparison with the experiments from [19].

Delaunay Instances are created by randomly choosing n = 2x points in the
unit square and computing their Delaunay triangulation. Edge weights are Eu-
clidean distances.

Random graphs with n := 2x nodes, αn edges for α = {4, 16, 64}, and random
edge weight chosen uniformly from [0, 1].

Random geometric graphs with 2x nodes (rggx). Each vertex is a random
point in the unit square and edges connect vertices whose Euclidean distance is
below 0.55 lnn/n. This threshold was chosen in order to ensure that the graph
is almost connected.

Florida Sparse Matrix. Following [8] we use 126 symmetric non-0/1 matrices
from [6] using absolute values of their entries as edge weights, see [3] for the full
list. The number of edges of the resulting graphs m ∈ (0.5 . . . 16)× 106. See [3]
for a detailed list.

Graph Contraction. We use the graphs considered by KaFFPa for partitioning
graphs from the 10’th DIMACS Implementation Challenge [25].

We compare implementations of local max, the red-blue algorithm from [8]
(RBM) (their implementation), heavy edge matching (HEM) [10], greedy, and
the global path algorithm (GPA) [19]. HEM iterates through the nodes (option-
ally in random order) and matches the heaviest incident edge that is nonadjacent
to a previously matched edge. The greedy algorithm sorts the edges by decreas-
ing weights, scans them and inserts edges connecting unmatched nodes into the
matching. GPA refines greedy. It greedily inserts edges into a graph G2 with
maximum degree two and no odd cycles. Using dynamic programming on the
resulting paths and even cycles, a maximum weight matching of G2 is computed.
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Algorithms involving sorting use standard STL Visual Studio 2010 sort
routine.

Sequential and shared-memory parallel experiments were performed on an
Intel i7 920 2.67 GHz quad-core machine with 6 GB of memory. We used a
commodity NVidia Fermi GTX 480 featuring 15 multiprocessors, each containing
32 scalar processors, for a total of 480 CUDA cores on chip. The GPU RAM is
1.5 GB. We compiled all implementations using CUDA 4.2 and Microsoft Visual
Studio 2010 on 64-bit Windows 7 Enterprise with maximum optimization level.

3.1 Sequential Speed and Quality

We compare solution quality of the algorithms relative to GPA. Via the experi-
ments in [19] this also allows some comparison with optimal solutions which are
only a few percent better there. Figure 1 shows the quality for Delaunay graphs
(where GPA is about 5 % from optimal [19]). We see that local max achieves al-
most the same quality as greedy which is only about 2 % worse than GPA. HEM,
possibly the fastest nontrivial sequential algorithm is about 13% awaywhile RBM
is 14 % worse than GPA, i.e., HEM and RBM almost double the gap to optimality
of local max. Looking at the running times, we see that HEM is the fastest (with
a surprisingly large cost for actually randomizing node orders) followed by local
max, greedy, GPA, and RBM. From this it looks like HEM, local max, and GPA
are the winners in the sense that none of them is dominated by another algorithm
with respect to both quality and running time. Greedy has similar quality as lo-
cal max but takes somewhat longer and is not so easy to parallelize. RBM as a
sequential algorithm is dominated by all other algorithms. Perhaps the most sur-
prising thing is that RBM is fairly slow. This has to be taken into account when
evaluating reported speedups. We suspect that a more efficient implementation
is possible but do not expect that this changes the overall conclusion. In [3] we
report similar results for the rgg instances and random graphs.

Looking at the wide range of instances in the Florida Sparse Matrix collection
leads to similar but more complicated conclusions. Figure 2 shows the solution
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sparse matrix instances and running time

qualities for greedy, local max, RBM and HEM relative to GPA. RBM and even
more so HEM shows erratic behavior with respect to solution quality. Greedy
and local max are again very close to GPA and even closer to each other although
there is a sizable minority of instances where greedy is somewhat better than
local max. Looking at the corresponding running times one gets a surprisingly
diverse picture. HEM which is again fastest and RBM which is again dominated
by local max are not shown. There are instances where local max is considerably
faster then greedy and vice versa. A possible explanation is that greedy becomes
quite fast when there is only a small number of different edge weights since then
sorting is quite an easy problem.

Experiments on the graph contraction instances in [2] show local max about
1 % away from GPA. For these instances the average fraction of remaining edges
after an iteration is well below 25 %. Notable exceptions are the graphs add20
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and memplus which both represent VLSI circuits. Nevertheless, none of the
instances considered required more than 10 iterations.

3.2 Distributed Memory Implementation

Our distributed memory parallelization (using MPI) on p processing elements
(PEs or MPI processes) assigns nodes to PEs and stores all edges incident to
a node locally. This can be done in a load balanced way if no node has degree
exceeding m/p. The second pass of the basic algorithm from Section 2 has to
exchange information on candidate edges that cross a PE boundary. In the worst
case, this can involve all edges handled by a PE, i.e., we can expect better
performance if we manage to keep most edges locally. In our experiments, one
PE owns nodes whose numbers are a consecutive range of the input numbers.
Thus, depending on how much locality the input numbering contains we have
a highly local or a highly non-local situation. We have not considered more
sophisticated ways of node assignment so far since our motivating application
is graph partitioning/clustering where almost by definition we initially do not
know which nodes form clusters – this is the intended output. Since Lemma 1
also applies to the subgraph relevant for a particular PE, we can expect that the
graph shrinks fairly uniformly over the entire network.

We performed experiments on two different clusters at the KIT computing
center both using compute-nodes with two quad-core processors each. Refer to
[2] for details. We ran experiments with up 128 compute-nodes corresponding to
1024 cores with one MPI process per core.

Figure 3 illustrates how our distributed local max implementation scales for
the random geometric graphs rgg23 and rgg24 (using random edge weights)
which have fairly good locality. We plot the decrease in running time for suc-
cessive doubling of p, i.e., a value of two stands for perfect relative speedup
for this step and a value below one means that parallelization no longer helps.
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Fig. 3. Scaling results of the parallel local max algorithm on random geometric graphs
with random edge weights. Left: rgg23 (≈63 million edges). Right: rgg24 (≈ 132 million
edges).
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We see values slightly below two for the steps 1→ 2 and 2→ 4 which is typical
behavior of multicore algorithms when cores compete for resources like memory
bandwidth. For p = 8 we start to use two compute-nodes (with 4 active cores
each) and consequently we see the largest dip in efficiency. Beyond that, we have
almost perfect scaling until the problem instance becomes too small. We have
similar behavior for other graphs with good locality. For graphs with poor lo-
cality, efficiency is not very good. However the ratios stay above one for a very
long time, i.e., it pays to use parallelism when it is available anyway. This is the
situation we have when partitioning large graphs for use on massively parallel
machines. Considering that the matching step in graph partitioning is often the
least work intensive one in multi-level graph partitioning algorithms we conclude
that local max might be a way to remove a sequential bottleneck from massively
parallel graph partitioning. See Figure 4 (left) for the absolute timing and refer
to [2] for additional data.

3.3 GPU Implementation

Our GPU algorithm is a fairly direct implementation of the CRCW algorithm.
We reduce the algorithm to the basic primitives such as segmented prefix sum,
prefix sum and random gather/scatter from/to GPU memory. As a basis for our
implementation we use back40computing library by Merrill [21].

Figure 4 (right) compares the running time of our implementation with GPA,
sequential local max, the RBM algorithm parallelized for 4 cores, and its GPU
parallelization from [8]. While the CPU implementation has troubles recovering
from its sequential inefficiency and is only slightly faster than even sequential
local max, the GPU implementation is impressively fast in particular for small
graphs. For large graphs, the GPU implementation of local max is faster. Since
local max has better solution quality, we consider this a good result. Our GPU
code is up to 35 times faster than sequential local max. We may also be able
to learn from the implementation techniques of RBM GPU for small inputs in
future work.



Efficient Parallel and External Matching 669

For random geometric graphs and random graphs, we get similar behavior
(see [3] for details). The results for rgg are slightly worse for GPU local max –
speedup is up to 24 over sequential local max and a speed advantage over GPU
RBM only for the very largest inputs. As for random graphs, the denser the graph
the larger is our speedup over the sequential and GPU RBM implementations.
Thus, for α = 64 our implementation is faster than GPU RBM already for
n = 215. For n = 218 it is 65% faster than GPU RBM and 30 times faster than
the sequential local max.

4 Conclusions and Future Work

The local max algorithm is a good choice for parallel or external computation
of maximal and approximate maximum weight matchings. On the theoretical
side it is provably efficient for computing maximal matchings and guarantees a
1/2-approximation. On the practical side it yields better quality at faster speed
than several competitors including the greedy algorithm and RBM. Somewhat
surprisingly it is even attractive as a sequential algorithm, outperforming HEM
with respect to solution quality and other algorithms with respect to speed.

We have learned about the linear work algorithm by Blelloch et al. [4] from an
anonymous reviewer during the review process. While our algorithm guarantees
better expected asymptotic runtime, the practical results in [4] seem to be quite
promising. However, lack of optimized shared memory implementation of our
algorithm for multicores, use of different compilers and operating systems, and
different set of test cases makes a thorough and fair comparison of the two
algorithms unfeasible in the short period of time and is left for future work.

Many interesting questions remain. Can we omit re-randomization of edge
weights when computing maximal matchings? The result of Blelloch et al. [4]
partially answers this question by performing randomization only once at the
expense of the performance guaratee. Is there a linear work parallel algorithm
with polylogarithmic execution time that computes 1/2-approximations (or any
other constant factor approximation). Can we even do 2/3-approximations with
linear work in parallel [7,23]?
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Abstract. In single chip multiprocessors (CMP) with grid topologies, a signif-
icant part of power consumption is attributed to communications between the
cores of the grid. We investigate the problem of routing communications between
CMP cores using shortest paths, in a model in which the power cost associated
with activating a communication link at a transmission speed of f bytes/second
is proportional to f α , for some constant exponent α > 2.

Our main result is a trade-off showing how the power required for communica-
tion in CMP grids depends on the ability to split communication requests between
a given pair of node, routing each such request along multiple paths. For a pair
of cores in a m× n grid, the number of available communication paths between
them grows exponentially with n,m. By contrast, we show that optimal power
consumption (up to constant factors) can be achieved by splitting each commu-
nication request into k paths, starting from a threshold value of k =Θ(n1/(α−1)).
This threshold is much smaller than n for typical values of α ≈ 3, and may
be considered practically feasible for use in routing schemes on the grid. More
generally, we provide efficient algorithms for routing multiple k-splittable com-
munication requests between two cores in the grid, providing solutions within
a constant approximation of the optimum cost. We support our results with al-
gorithm simulations, showing that for practical instances, our approach using k-
splittable requests leads to a power cost close to that of the optimal solution with
arbitrarily splittable requests, starting from the stated threshold value of k.

1 Introduction

The increase in the level of integration of single chip multiprocessors (CMPs) cre-
ates demand for high-speed communication on-chip, which in turn increases the power
consumption on CMP. This trend is predicted to continue in the future [7]. Numerous
studies concern the optimization of power cost in integrated chip designs, taking into ac-
count that both processors and communication buses may operate at variable frequency,
determining the speed of computations or transmissions (cf. [8,11,13,15]). The increase
of power cost with the third power of workload in such designs is a well-established re-
lation (cf. e.g. [3,6,15]).

A significant part of power in CMPs is consumed by maintaining communications
within the chip, and that makes efficient allocation of communication routes a very im-
portant issue [14]. On CMP grids, links with dynamic frequency and/or voltage scaling
are used ([12,16]), and the dissipated power P on a link is related to the frequency
f and voltage V on it by the following relation supported by both theory and exper-
iments P ∼ f ·V 2 (cf. e.g. [2]). However, for most designs, an increase in operating
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frequency also results in an increase in voltage, roughly according to the relation V ∼ f
(cf. e.g. [16]), which results in the relation between power cost and transmission speed
given as P ∼ f 3 ([4,5]). Such a model of power consumption was recently studied in
the context of splittable Manhattan-path routing by Benoit et al. [4]. They introduced
several routing schemes in an effort to minimize the total power cost, but observed that
this may require the splitting of each communication request, and routing its fragments
along a potentially very large number of communication paths. Splitting a request, tak-
ing care of the route for each part, and merging it at the target imposes additional time
and power overhead.

In this work, our goal in this work is to show how to limit path splitting as much as
possible, without excessively increasing communication power cost. Specifically, we
consider the problem of optimizing the power consumption cost of communication be-
tween two given cores, which may sometimes require the routing of multiple requests.
(Our scenario can also be seen as a rough approximation of the general case of multi-
core communication, under the simplifying assumption that the total communication
rate due to communication between all pairs of cores other than the distinguished pair
may be treated as the same for each link, and so excluded from optimization.) Our
power consumption model assumes that if an edge is transmitting at rate f , the power
cost of maintaining the frequency over an edge is proportional to f α for a given constant
α > 2, identical for every edge. We make the practically-motivated assumption [12,16]
that only the dynamic part (associated with transmission) is dominant for high commu-
nication rate, and static effects need not be considered in optimization.

Outline and Results. Our study concerns routing between a single source-sink pair
of nodes using Manhattan paths on a grid CMP. Communication between these nodes
is assumed to be static, i.e. constant over time, and the cost of a transmission along
an edge is assumed to be proportional to a fixed power of the transmission rate. The
considered model, power cost function, and rules of routing are formally presented
in Section 2. We briefly outline the theory of Manhattan-path routing with arbitrarily
splittable requests (Max-MP). We provide an optimal convex programming formulation
of the problem, leading to a routing scheme denoted as OPT, and recall the properties
of the C routing scheme introduced in [4]. We also provide a convenient formulation of
Manhattan routings in terms of transmission through nodes.

Our main results are given in Section 3. They concern the variant of the Manhat-
tan routing problem in which each request can be satisfied by at most k communica-
tion paths, where k is a parameter of the model (k-MP). We study the value of the
ratio of the cost of the optimal solution in this case, denoted OPTk, to the cost of
the routing scheme OPT with arbitrarily splittable paths. We establish that in general,
cost(OPTk)/cost(OPT) = O(1+ n

kα−1 ), whereas for the special case of d ≥ 1 identical
requests of the same size, this ratio is given precisely as Θ(1+ n

(kd)α−1 ). This means

that for k = o(n1/(α−1)), the requirement that requests can be split into at most k paths
impacts the cost of the routing scheme asymptotically, i.e., increases the cost by an un-
bounded factor for sufficiently large n. On the other hand, for k larger than the threshold
value of Θ(n1/(α−1)), the obtained k-splittable routings are within a constant factor of
the optimal solution to Max-MP.
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The proposed bounds are obtained through the analysis of three efficiently imple-
mentable algorithmic schemes for solving k-MP: Fk routing and Dk routing (for uni-
form requests), and Ak (for non-uniform requests). The latter two are shown to have a
constant approximation ratio with respect to the cost of OPTk for all k, while the for-
mer converges to the cost of OPT as k goes to infinity. The design of such approximate
techniques results from the observation that OPTk is NP-hard.

Finally, in Section 4, we perform a validation, using simulations, of the determined
threshold value of k =Θ(n1/(α−1)), showing the effect of smaller and larger values of k
on the cost of the routing. We also experimentally compare the performance on Fk rout-
ing and Dk routing, studying their convergence to asymptotic behavior for increasing
values of k and different values of the power cost exponent α ≈ 3.

2 Framework

Platform and Power Consumption Model. We model our platform as a grid graph
on a set of m× n uniform nodes Vi, j, with 1 ≤ i ≤ m and 1 ≤ j ≤ n. Without loss of
generality, we assume that m ≥ n. We will also assume for the purpose of analysis that
the sides of the grid are of the same order of magnitude, i.e., m = O(n). Nodes are
connected by bidirectional edges. The horizontal edge Ei, j connects Vi, j and Vi, j+1 (for
1 ≤ i ≤ m, 1 ≤ j ≤ n− 1), and the vertical edge E ′

i, j connects Vi, j and Vi+1, j (1 ≤ i ≤
m− 1, 1≤ j ≤ n), see Fig. 1 for an illustration.

The power consumed on each edge is closely related to the amount of data sent
through this edge in a unit of time. To simplify the analysis of the model, we discard
constant factors, and (following [4]) set the cost of transmission at rate x as C (x) = xα ,
where α > 2 is an absolute constant of the model (it is reasonable to assume α ≈ 3).

Communication and Routing Rules. The study of routing with Manhattan-type paths
(of shortest length) is motivated by practical concerns, in particular, the need to mini-
mize communication latency, and to confine communications between nearby proces-
sors to a local area of the grid. For the purpose of the study of single source-sink com-
munications, it is assumed that the source and target are placed in the opposite corners
of the grid; for communications between a different pair of nodes, considerations can
be restricted to the respective rectangular sub-grid.

A routing R of a single communication request of size s is a weighted set of paths,
{(w1, p1) , . . . ,(wk, pk)}, where each path pi starts at the same source vertex V1,1, and
ends at the same target vertex Vm,n in the opposite corner of the grid. The real-valued
weights wi satisfy wi ≥ 0 and ∑i wi = s. This definition of a routing extends naturally to
a set of d ≥ 1 requests, which may be uniform (with identical request size s = K/d), or
non-uniform (with possibly distinct request sizes s1, . . . ,sd). Given a routing R, we de-
fine R(e) as the size of the transmission going through an edge e, i.e.: R(e) =∑i : e∈pi

wi.
(We will use this notation accordingly for routings denoted by letters different from R.)

The routing policy is expressed by the bound k on the splitability of each request:

– In k-Path Manhattan Routing (k-MP), communication for each request can be split
into any number of k′ ≤ k (partially overlapping) source-sink paths, where k is a
parameter of the model.
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– In Max-Paths Manhattan Routing (Max-MP), the number of paths allowed for each
request is unbounded (k =+∞).

Problem Definition. For a given routing policy with parameter k and power coeffi-
cient α , we define our optimization problem as follows: Given a m× n grid and a set
of requests of sizes (s1, . . . ,sd), with ∑d

i=1 si = K, find a routing R of this set of requests
minimizing the total power cost of transmission through all the edges of the grid, ex-
pressed by the cost function:

cost(R) =
m

∑
i=1

n−1

∑
j=1

R(Ei, j)
α +

m−1

∑
i=1

n

∑
j=1

R
(
E ′

i, j

)α
.

Solution to Max-MP Routing. For Max-MP, the routing policy does not impose a
bound on k. We will denote the optimal solution to Max-MP by OPT and use it as
a reference for k-splittable routing algorithms. The adopted definition of routing cost
leads directly to a convex-programming formulation of Max-MP routing, and thus ap-
plications of convex programming algorithms lead to polynomial-time schemes with
arbitrarily good approximation of OPT (cf. e.g. [1,9] for a discussion of convex pro-
gramming in the context of finding min-cost flows).

We remark on the following lower bound on the size of OPT. Consider any Max-MP
routing which transmits requests of total size K. The edges adjacent to node V1,1, i.e.,
{E1,1,E ′

1,1}, have to transmit requests of size K in total. It follows that:

cost(OPT)≥
(

K
2

)α
=Θ (Kα) . (1)

Remarkably, as shown in [4], this lower bound is tight regardless of the size of the grid,
since it can be achieved using a specific routing scheme. We will provide a definition
of a scheme called C which has equivalent properties, but is described from a different
perspective, based on load balancing on so-called vertex diagonals. We will then use
this scheme as a starting point for schemes solving k-MP.

Our Approach: Load Balancing on Vertex Diagonals. In all of the routing schemes
which we propose in this paper, we will attempt to perform “load balancing” of paths
with respect to transmission through vertices rather than edges. Hence, in a similar
fashion to the notation R(e) for an edge e, we define R(v) as the total transmission size
going through a vertex v in routing R.

We introduce the notion of the l-th vertex diagonal, denoted as DVl (1 ≤ l ≤ n+
m− 1) by splitting the set of vertices according to their distance from the source, as
follows (see Fig. 1 for an illustration): Vi, j ∈DVl , iff i+ j = l+1. Likewise, by the l-th
edge diagonal, denoted DEl (1 ≤ l ≤ n+m− 2), we mean the set of edges connecting
vertices from DVl and DVl+1, namely: Ei, j,E ′

i, j ∈ DEl , iff i+ j = l + 1.
We start by observing that the values of R(v) uniquely determine the values of R(e).

This property will allow us to design routing schemes simply by setting R(v) for all
nodes.

Routing Scheme C for Max-MP. We define the routing scheme C for Max-MP by
putting a limit on the transmission going through vertices. Since each diagonal of ver-
tices has a total transmission of exactly K, we set an equal value of transmission for all
vertices in the layer:
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Fig. 1. Vertex diagonal DVi and edge diagonal DEi

∀v∈DV jC(v) =
K

|DV j| . (2)

To verify that this routing is well-defined, we compute transfers over each edge based
on the transfers on vertices (a complete implementation and analysis is provided in the
Appendix1). Examples of transfers obtained using this algorithm are shown in Fig. 2.

The scheme C corresponds to the differently formulated algorithm studied in [4],
where it was shown that it admits a constant approximation ratio for Max-MP.

Theorem 1 ([4]). cost(C) =Θ (Kα) =Θ(cost(OPT)).

Although such a solution has optimal, up to a constant factor, power cost, it can result in
a single request being split into a large number of paths. Indeed, for a given graph G =
(V,E) and any flow f on G, f can be represented as the union of at most |E| weighted
paths. It follows that both OPT routing (computed through convex optimization) and
C routing require O(nm) splits per request. In the next section, we will show that it is
possible to preserve a constant approximation ratio of the optimal cost, while using a
much smaller number of splits, sublinear in the dimensions of the grid.

3 Schemes for k-Splittable Routing

In this section, we present three schemes for solving the k-Path Manhattan Routing
problem (k-MP). The first two, denoted Fk and Dk, are designed for uniform sets of
requests. As the bound k on the number of allowed paths per request tends to infinity,
these approaches will be shown to converge to the performance of schemes OPT and C

for Max-MP, respectively. The third scheme, denoted Ak, is an extension of Dk which
also works for non-uniform sets of requests.

3.1 1-Splittable Routing with Uniform Requests

We start by considering the 1-MP routing policy, meaning that no splitting of requests is
allowed. We can treat this problem as a discrete version of a continuous Max-MP prob-

1 A full version of the paper is also available at: http://hal.inria.fr/hal-00737611
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lem. First, we will consider uniform requests (of equal sizes); without loss of generality,
we can assume that the input consists of d requests of size 1, each.

This considered problem can be solved by the flow-based F1 routing approach pre-
sented in Algorithm 1. The obtained solution is optimal, i.e., for uniform instances, we
have cost(OPT1) = cost(F1). Moreover, using a classical min-cost flow algorithm, a F1

Algorithm 1. F1 routing scheme {optimal solution to uniform 1-MP}
Input: A set of d unsplittable requests of size s = 1 in a m×n grid.
Solution:

1. Construct a multigraph G′ such that V (G′) =V (G).
2. For every directed edge e ∈ E(G), add d weighted directed edges to G′, having the same

endpoints as e, and weights given as: 1α ,2α −1α , . . . ,dα − (d−1)α .
3. Return the min-cost flow of size d in G′, using the two opposite corners of the grid as the

source and sink.

routing can be found in polynomial time with respect to parameters n, m, and d.
We will now provide asymptotic bounds on the size of the (optimal) solution to the

uniform 1-MP problem. We obtain the lower bound by combining the lower bound for
problem Max-MP (formula (1) with K = d), with an additional factor resulting from the
discrete nature of 1-MP.

Lemma 1. For every R ∈ uniform 1-MP: cost(R) = Ω (dα)+Ω (nd).

(Proofs omitted due to space constraints are provided in the Appendix.)
To provide a complementary upper bound on the size of 1-MP routings, we do not

analyze the optimal scheme F1, but instead propose an approximation scheme called
D1 routing, which turns out to be easier to analyze.

We design the D1 routing through a discretization of the construction of C routing
proposed in the previous section for Max-MP. Similarly to equation (2), we will place
limits on the size of the transfer going through vertices. Consider the vertex diagonal
DVp with 1 ≤ p ≤ n+m− 1, and let i =

∣∣DVp
∣∣. Suppose that the vertices of DVp are

ordered by decreasing first coordinate, as DVp = {v1, . . . ,vi}. Then, for 1 ≤ j ≤ i, we
successively set D1 (v j) so that at each step, the following condition holds: D1 (v1)+

. . .+D1 (v j) = �d · j
i �. This is achieved by setting:

D1 (v j) =
⌊

d · j
i

⌋
−

⌊
d · j−1

i

⌋
. (3)

To verify the correctness of this construction, we deduce transfer values over vertical
and horizontal edges from values over vertices; a formal implementation of D1 routing
is provided in Algorithm 2. An exemplary comparison of the vertex and edge transfers
for C routing and D1 routing is shown in Fig. 2.

We start the analysis of the cost of D1 routing with the following lemma.

Lemma 2. Let DV be an arbitrary vertex diagonal, and let |DV|= i. Then:

∑
v∈DV

D1 (v)
α =

{
i
((

d
i

)α
+O

((
d
i

)α−2
))

, for i < d

d, for i≥ d.
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Algorithm 2. D1 routing scheme {for uniform 1-MP}
Input: A set of d unsplittable requests of size s = 1 in a m×n grid.
Solution: For each diagonal DE j of the grid, 1 ≤ j < n+m, set the flow on its successive hori-
zontal edges ei and vertical edges e′i, 1≤ i≤ j, as follows:

– If 1≤ j < n, set:

D1 (ei) =
⌊

d i
j

⌋
−

⌊
d i

j+1

⌋
, D1

(
e′i
)
=

⌊
d i

j+1

⌋
−

⌊
d i−1

j

⌋
.

– If n≤ j < m, set:
D1 (ei) =

⌊
d i

n

⌋
−

⌊
d i−1

n

⌋
, D1

(
e′i
)
= 0.

– If m≤ j < n+m, set:

D1 (ei) =
⌊

d i
n+m− j

⌋
−

⌊
d i−1

n+m− j−1

⌋
, D1

(
e′i
)
=

⌊
d i

n+m− j−1

⌋
−

⌊
d i

n+m− j

⌋
.

Fig. 2. Comparison of transfer values over one diagonal for a C routing with K = 14 (on the left)
and a D1 routing with d = 14 (on the right)

Using the above lemma, we compute the cost of a D1 routing as cost(D1) =Θ(dα)+
Θ(nd). By Lemma 1, this cost is asymptotically the best possible for 1-MP.

Theorem 2. For a uniform set of d requests (with total size K = d):

cost(D1) =Θ (dα)+Θ (nd) = cost(F1) .

3.2 k-Splittable Routing with Uniform Requests

We now proceed to extend our results from the previous section to the case of k-MP uni-
form routing. We will consider sets of d requests of total size K, i.e., of size K/d each.
A natural generalization of D1 routing, called Dk routing, is presented in Algorithm 3.

Algorithm 3. Dk routing scheme {for uniform k-MP}
Input: A set of d k-splittable requests, of size K/d each, in a m×n grid.
Solution: Split each of the requests into k smaller ones, each of size K

kd . Return the D1 routing of
this new set of requests.
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Since in a Dk routing, we split the transmission of each request equally along its k
paths, the cost of such a routing is the same as that of a D1 routing on the extended
set of kd requests of size K

kd each. Hence, the following result follows directly from
Theorem 2 by a scaling argument: cost(Dk) =Θ (Kα)+Θ(Kα n

(kd)α−1 ). Next, we show

that although Dk only splits requests into paths of equal weight, one cannot achieve
a better asymptotic result by using unequal splits, i.e., for any R ∈ uniform k-MP :
cost(R) = Ω (Kα)+Ω(Kα n

(kd)α−1 ). Combining these results, we obtain the following

theorem, stating the optimality of Dk in the class of k-splittable routings.

Theorem 3. For a uniform set of d requests with total size K: cost(Dk) = Θ(Kα)+

Θ
(

Kα n
(kd)α−1

)
= cost(OPTk), where OPTk denotes the optimal cost solution to the

considered set of requests for k-MP.

Combining the bound on cost(OPTk) in the above Theorem with the bound on
cost(OPT) in Theorem 1 for Max-MP routing, we obtain our main result: the threshold
value of k for which imposing a limit of k into which each request can be split does not
affect the asymptotics of power cost.

Theorem 4. For uniform requests, imposing a routing policy with a split limit of k =

Θ
(

1
d ·n

1
α−1

)
does not affect the power cost, i.e.: cost(OPTk) =Θ(cost(OPT)).

We end this subsection with a remark on the asymptotic behavior of the considered
routing schemes for uniform instances, when k→+∞. Taking into account Theorems 1
and 3, we obtain:

Proposition 1. For a grid of fixed dimension: limk→+∞ cost(Dk) = cost(C).

Since, in general cost(C)> cost(OPT), it is natural to ask for a different routing schemes
for k-MP with improved limit behavior. A natural candidate is Fk routing, obtained by
a natural generalization of F1 routing, as given by Algorithm 4.

Algorithm 4. Fk routing scheme {for uniform k-MP}
Input: A set of d k-splittable requests, of size K/d each, in a m×n grid.
Solution: Split each of the requests into k smaller ones, each of size K

kd . Return the F1 routing of
the new set of requests.

This algorithm turns out to by asymptotically optimal as k →+∞.

Proposition 2. For a grid of fixed dimension: limk→+∞ cost(Fk) = cost(OPT).

3.3 k-Splittable Routing with Non-uniform Requests

We close our considerations with a discussion of the general (non-uniform) case, where
no assumptions are made about the sizes of the routed requests. We first observe that
the considered problem is computationally hard.

Theorem 5. The following decision version of non-uniform 1-MP routing is NP-
complete: “Given (n,m,K = (K1, . . . ,Ki) ,C,α), decide if it is possible to perform 1-
MP routing with cost ≤C.”
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Despite the hardness of the studied problem, one can try to look for approximate solu-
tions. Note that applying Dk routing naively to a set of non-uniform requests could lead
to excessively large additional cost. However, by applying a careful modification of Dk

routing, called the Ak routing scheme (Algorithm 5), we obtain a good tool for routing
non-uniform requests on the grid.

Theorem 6. For non-uniform requests,Ak finds a solution to k-MP whose cost is within
a constant factor of the optimum k-splittable routing: cost(Ak) =Θ(cost(OPTk)).

Algorithm 5. Ak routing scheme {for non-uniform k-MP}
Input: A set of d k-splittable requests, of given sizes S = (s1,s2, . . . ,sd) (with 1 = s1 ≤ s2 ≤ . . .≤
sd), in a m×n grid.
Solution:

1. Partition the set of request sizes into the union of disjoint subsets, S = S0∪S1∪ . . ., such that
∀s∈Si 2i ≤ s < 2i+1.

2. For all non-empty sets Si:
– Find a Dk routing for the uniform instance consisting of |Si| requests of size 2i+1 each.
– For all 1≤ j ≤ |Si|, route the j-th input request belonging to Si using the paths assigned

to the j-th request in the corresponding Dk routing.

We end this section with a similar threshold theorem as Theorem 4 for the uniform
case, obtaining bounds on value of k for which a split limit of k no longer affects the
asymptotics of the cost of the routing. However, in this case the threshold depends on
the structure of the set of requests, hence we only provide lower and upper bounds.

Theorem 7. For non-uniform requests, imposing a routing policy with a split limit of k:
1. does not affect the asymptotic power cost (i.e. cost(OPTk) =Θ (cost(OPT))) when

k = Ω
(

n
1

α−1

)
,

2. always increases the asymptotic power cost (i.e. cost(OPTk) = ω (cost(OPT)))

when k = o
(

1
d ·n

1
α−1

)
.

4 Simulations Results

In this section we provide the results of experimental evaluation, through simulations, of
the algorithms presented in the previous section. We analyze the effect of n,k and α on
the efficiency of solutions found for k-MP routing of instances with uniform (identical-
size) requests. Throughout the section, we choose the number of requests as d = 1 (for
uniform instances, other values result only in a scaling factor for k in k-MP, and do not
affect Max-MP).

We focus on the approximation ratio, looking at the cost of the routing obtained
using the two schemes designed for uniform k-MP (Dk, Fk), relative to the cost of the
optimal solution OPT to Max-MP, which is treated as the reference solution. In some
graphs, we also provide the cost of the sub-optimal Max-MP routing C as an additional
reference. Keep in mind, that both C and OPT use as much as Θ(nm) routing paths.
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Fig. 3. Effect of k on the cost of Fk and Dk routing for a 30×30 grid

We recall that the value of cost of the optimal solution to Max-MP, cost(OPTk), is
bounded from below by cost(OPT), and from above by both cost(Dk) and cost(Fk).

The implementation and tests were performed within a software package, written by
the authors for this purpose in GNU C++. The min-cost flow subroutines were imple-
mented using the standard cycle-canceling method [10] with some optimizations for
faster performance. The presented results of the tests are deterministic and fully repro-
ducible, independent of the test environment and the details of the implementation of
the flow algorithms.

Impact of k on the Routing Cost. We begin by studying the approximation ratio
of algorithms Fk and Dk for increasing values of k, the allowed number of splits of
each requests. In the first plot (Fig. 3), we fix the dimensions of the grid n,m = 30,
model power cost exponent α = 2.5, plotting the values of cost(Fk)/cost(OPT) and
cost(Dk)/cost(OPT) for k in the range k ∈ [10,100]. For reference, we also provide the
approximation ratio of C routing for the studied instance.

We observe that, as predicted by theory (Propositions 1 and 2), limk→+∞ cost(Fk) =
cost(OPT) and limk→+∞ cost(Dk) = cost(C), and the respective costs converge to their
limits quickly, reaching a point 10% over the respective limit already for k < n. In gen-
eral, the convergence need not be monotone for either of the approximation algorithms,
since partitioning a request into k+ 1 equally-weighted paths may give worse results
than partitioning it into k equally-weighted paths.

In our second plot (Fig. 4), we present more compelling evidence of the relation

k =Θ
(

n1/(α−1)
)

for the threshold split value resulting in asymptotically-optimal cost,

derived theoretically as Theorem 4. Once again, we choose model parameter α = 2.5.
In the experiment, we consider square grids of increasing size in the range n = m ∈
[10,120], testing three different relations between n and k (k =

⌊
2n1/2

⌋
, k =

⌊
3
2 n2/3

⌋
,

k= n). For each of these relations, we plot the approximation ratios cost(Fk)/cost(OPT)
and cost(Dk)/cost(OPT). Based on the plot, we can presume that:

– For the relation k ∼ n1/2, we have in the limit:

cost(Fk)/cost(OPT)→+∞, cost(Dk)/cost(OPT)→+∞.
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Fig. 4. Approximation ratio for Fk and Dk routing with split parameter k ∼ nβ , for β greater,
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– For the relation k ∼ n2/3, we have in the limit:

cost(Fk)/cost(OPT)→ const, cost(Dk)/cost(OPT)→ const.

– For the relation k ∼ n, we have in the limit:

cost(Fk)/cost(OPT)→ 1, cost(Dk)/cost(OPT)→ const.

We remark that the relation k ∼ n2/3 precisely corresponds to the threshold exponent
1/(α − 1) = 2/3 for the considered value of α . Thus, the limit behavior of all the
algorithms is consistent with the theory derived in the previous section. We note that
the cost achieved by both Fk routing and Dk routing is highly satisfactory, and that the
performance of Fk routing proves to be superior to Dk in all of the performed tests.

Effect of Power Exponent α . In auxiliary experiments, we studied the effect of the
power exponent α (which is a constant of the model) on the required threshold value
of split parameter k. We tested the rate of convergence of the approximation ratio
cost(Fk)/cost(OPT) to 1 in a grid of dimensions n=m= 30 for three different values of
the power exponent, α ∈ {2.5,3,3.5}. It was observed that the convergence is faster for

larger values of α . This is consistent with the theoretical threshold, k =Θ
(

n1/(α−1)
)

,

whose growth rate decreases with the increase of α .
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5 Conclusions

The contribution of our study is twofold. On the one hand, we advance the theory of
splitting of requests in Manhattan routing on the grid, and point out that in practice,
only a relatively small number of splits per request will be beneficial from a power-cost
perspective. On the other hand, we propose efficient approximation schemes for such a
k-path routing problem. Simulations provide evidence that corroborates the theoretical
results, showing that the designed algorithms lead to routings with a cost which is, in
practice, even superior to that resulting from our theoretical bounds.

In future work, it would be beneficial to improve the constant bounds on the ap-
proximation ratios of our algorithms, establishing more tightly their dependence on the
power exponent α . Another promising direction of study would extend our results to
routing requests between multiple sources and targets on the grid. Such a study would
have a purely experimental nature, since the thresholds which appear in multi-core com-
munication scenarios are difficult to capture theoretically, depending on the observed
traffic patterns.
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Networks have always been a central component in the realization of parallel
processing. Having multiple processors working concurrently to solve a problem
inherently means that there has to be a reliable and well-performing network over
which the processors can communicate. Ever since the first parallel machines we
have therefore seen research on topics like topologies, switches, links, routing,
device drivers, traffic control, fault tolerance, and congestion control specialized
for parallel machines.

In over the last decade or so, parallel processing has moved out of the dedicated
supercomputers and into main stream computing. This means that the study
of high performance networks and communication as vehicles for parallelism
has become a much broader field. It now ranges from communication solutions
between components on the same chip, via traditional interconnection networks
in clusters and supercomputers, to datacenter networks in cloud facilities, and
finally to nation and continent spanning internet-based protocols.
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Abstract. As InfiniBand clusters grow in size and complexity, the need
arises to segment the network into manageable sections. Up until now,
InfiniBand routers have not been used extensively and little research has
been done to accommodate them. However, the limits imposed on local
addressing space, inability to logically segment fabrics, long reconfigu-
ration times for large fabrics in case of faults, and, finally, performance
issues when interconnecting large clusters, have rekindled the industry’s
interest into IB-IB routers. In this paper, we examine the routing prob-
lems that exist in the current implementation of OpenSM and we intro-
duce two new routing algorithms for inter-subnet IB routing. We evaluate
the performance of our routing algorithms against the current solution
and we show an improvement of up to 100 times that of OpenSM.

1 Introduction

Until recently, the need for routers in InfiniBand (IB) networks was not evident
and all the essential routing and forwarding functions were performed by layer-
2 switches. However, with the increased complexity of the clusters, the need for
routers becomes more obvious, and leads to more discussion about native IB rout-
ing [1,2,3]. Obsidian Research was the first company to see the need for routing
between multiple subnets, and provided the first hardware to do that in 2006 [4].

There are several reasons for using routing between IB subnets with the two
main being address space scalability and fabric management containment. Ad-
dress space scalability is an issue for large installations whose size is limited by
the number of available local identifiers (LIDs). Hosts and switches within a
subnet are addressed using LIDs and a single subnet is limited to 49151 unicast
LIDs. If more end-ports are required, then the only option is to combine multi-
ple subnets by using one or more IB routers. Because LID addresses have local
visibility, they can be reused in the subnets connected by routers, which theo-
retically yields an unlimited addressing space. It is worth observing that there
are multiple suggestions to expand the address space of IB without introducing

F. Wolf, B. Mohr, and D. an Mey (Eds.): Euro-Par 2013, LNCS 8097, pp. 685–698, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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routers. One of the more mature proposals aims at extending the LID addressing
space to 32 bits [5], however, it would not be backward compatible with older
hardware, which limits its usability.

Fabric management containment has three major benefits: 1) fault isolation,
2) increased security, and 3) intra-subnet routing flexibility. First, by dividing a
large subnet into several smaller ones, faults or topology changes are contained
to a single subnet and the subnet reconfiguration will not pass through a router
to other subnets. This shortens the reconfiguration time and limits the impact of
a fault. Second, from a security point of view, segmenting a large fabric into sub-
nets using routers means that the scope of most attacks is limited to the attacked
subnet [6]. Third, from a routing point of view, fabric management containment
leads to more flexible routing schemes. This is particularly advantageous in case
of a hybrid fabric that consists of two or more regular topologies. For example,
a network may consist of a fat-tree part interconnected with a mesh or a torus
part (or any other regular topology). The problem with managing this in a single
subnet is that it is not straightforward to route each part of the subnet sepa-
rately because intra-subnet routing algorithms have a subnet scope. Moreover,
there are no general purpose agnostic routing algorithms for IB that will pro-
vide optimal performance for a hybrid topology. However, if a hybrid topology is
divided into smaller regular subnets then each subnet can be routed using a dif-
ferent routing algorithm that is optimized for a particular subnet. For example, a
fat-tree routing algorithm could route the fat-tree part and the dimension-order
routing could route the mesh part of the topology. This is because each subnet
can run its own subnet manager (SM) that configures only the ports on the local
subnet and routers are non-transparent to the subnet manager.

In this paper, we present two inter-subnet routing algorithms for IB. The first
one, inter-subnet source routing (ISSR), is an agnostic algorithm for intercon-
necting any type of topology. The second one is fat-tree specific and only inter-
connects two or more fat-trees. With these algorithms we solve two problems:
how to optimally choose a local router port for a remote destination and how to
best route from the router to the destination. We compare the algorithms against
the solution that is implemented in OpenSM. Inter-subnet routing in OpenSM
is at the time of writing very limited, the configuration is tedious and the per-
formance is only usable for achieving connectivity - not for high performance
communication between multiple sources and destinations [2]. It is, however, the
only available inter-subnet routing method for IB.

The rest of this paper is organized as follows: we discuss related work in
Sect. 2, and we introduce the IB Architecture in Sect. 3. We follow with a
description of our proposed layer-3 routing for IB in Sect. 4. Next, we continue
with a presentation and discussion of our results in Sect. 5. Finally, we conclude
in Sect. 6.

2 Related Work

Obsidian Strategics was the first company to demonstrate a device marketed as
an IB-IB router (the Longbow XR) in 2006 [4]. That system highlighted the need
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for subnet isolation through native IB-IB routing. The Longbow XR featured a
content-addressable memory for fast address resolution and supported up to 64k
routes. The drawbacks of the router included a single 4x SDR link, and its pri-
mary application was disaster recovery - it was aimed at interconnecting IB sub-
nets spanning large distances as a range extender. Furthermore, the Longbow XR
appears to the subnet manager as a transparent switch, so the interconnected sub-
nets are merged together into one large subnet. When releasing the router, Ob-
sidian argued that while the IB specification 1.0.a defines the router hardware
well, the details of subnet management interaction (like routing) are not fully ad-
dressed. This argument is still valid for the current release of the specification [7].
In 2007, Prescott and Taylor verified how range extension in IB works for campus
area and wide area networks [8]. They demonstrated that it is possible to achieve
high performance when using routers to build IB wide area networks. However,
they did not mention the deadlock issues that can occur when merging subnets,
and they only focused on remote traffic even though local traffic can be negatively
affected by suboptimal routing in such a hybrid fabric. In 2008, Southwell pre-
sented how native IB-IB routers could be used in System Area Networks [1]. He
argued that IB could evolve from being an HPC-oriented technology into a strong
candidate for future distributed data center applications or campus area grids.
While the need for native IB-IB routing was well-demonstrated, Southwell did not
address the routing, addressing and deadlock issues. In 2011, Richling et al. [9] ad-
dressed the operational andmanagement issues when interconnecting two clusters
over a distance of 28 kilometers. They described the setup of hardware and net-
working components, and the encountered integration problems. However, they
focus on IB-IB routing in the context of range extension and not on inter-subnet
routing between local subnets.

When reviewing the literature, we noticed that the studies of native IB-IB rout-
ing is focused on disaster recovery and interconnection of wide area IB networks.
Our work explores the foundations of native IB-IB routing in the context of perfor-
mance and features in inter-subnet routing between local subnets. Furthermore,
we assume full compliance with the IB specification and we deal with issues pre-
viously not mentioned including the deadlock problem and path distribution.

3 The InfiniBand Architecture

InfiniBand is a serial point-to-point full-duplex interconnection network tech-
nology, and was first standardized in October 2000 [7]. The current trend is
that IB is replacing proprietary or low-performance solutions in the high perfor-
mance computing domain [10], where high bandwidth and low latency are the
key requirements. The de facto system software for IB is OFED developed by
dedicated professionals and maintained by the OpenFabrics Alliance [5].

Every IB subnet requires at least one subnet manager (SM), which is respon-
sible for initializing and bringing up the network, including the configuration of
all the IB ports residing on switches, routers, and host channel adapters (HCAs)
in the subnet. At the time of initialization the SM starts in the discovering state
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where it does a sweep of the network in order to discover all switches and hosts.
During this phase it will also discover any other SMs present and negotiate who
should be the master SM. When this phase is completed the SM enters the mas-
ter state. In this state, it proceeds with LID assignment, switch configuration,
routing table calculations and deployment, and port configuration. At this point
the subnet is up and ready for use. After the subnet has been configured, the
SM is responsible for monitoring the network for changes.

A major part of the SM’s responsibility is routing table calculations. Routing
of the network aims at obtaining full connectivity, deadlock freedom, and proper
load balancing between all source and destination pairs in the local subnet.
Routing tables must be calculated at network initialization time and this process
must be repeated whenever the topology changes in order to update the routing
tables and ensure optimal performance. Despite being specific about intra-subnet
routing, the IB specification does not say much about inter-subnet routing and
leaves the details of the implementation to the vendors.

IB is a lossless networking technology, and under certain conditions it may be
prone to deadlocks [11,12]. Deadlocks occur because network resources such as
buffers or channels are shared and because packet drops are usually not allowed in
lossless networks. The IB specification explicitly forbids IB-IB routers to cause
a deadlock in the fabric irrespective of the congestion policy associated with
the inter-subnet routing function. Designing a generalized deadlock-free inter-
subnet routing algorithm where the local subnets are arbitrary topologies is
challenging. In this paper we limit our scope to fat-tree topologies and by making
sure our routing functions use only the standard up/down routing mechanism,
we eliminate the deadlock problem.

3.1 Native InfiniBand Routers

The InfiniBand Architecture (IBA) supports a two-layer topological division. At
the lower layer, IB networks are referred to as subnets, where a subnet consists
of a set of hosts interconnected using switches and point-to-point links. At the
higher level, an IB fabric constitutes one or more subnets, which are intercon-
nected using routers. Hosts and switches within a subnet are addressed using
LIDs and a single subnet is limited to 49151 LIDs. LIDs are local addresses valid
only within a subnet, but each IB device also has a 64-bit global unique identifier
(GUID) burned into its non-volatile memory. A GUID is used to form a GID
- an IB layer-3 address. A GID is created by concatenating a 64-bit subnet ID
with the 64-bit GUID to form an IPv6-like 128-bit address. In this paper, we
when using the term GUID we mean a port GUIDs, i.e. the GUIDs assigned to
every port in the IB fabric.

IB-IB routers operate at the layer-3 of IB addressing hierarchy and their
function is to interconnect layer-2 subnets as shown in Fig. 1(a). A thorough de-
scription of the inter-subnet routing scheme is currently out of scope of the IBA
specification and much freedom is given to the router vendors when implement-
ing inter-subnet routing. The inter-subnet routing process defined in the IBA
specification is similar to the routing in TCP/IP networks. First, if an end-node
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want to send a packet to another subnet, the address resolution makes the local
router visible to that end-node. The end-node puts the local router’s LID address
in the local routing header (LRH) and the final destination address (GID) in the
global routing header fields. When the packet reaches a router, the packet fields
are replaced (the source LID is replaced with the LID of the router’s egress port,
the destination LID is replaced with the LID of the next-hop port, and CRCs are
recomputed) and the packet is forwarded to the next hop. The pseudo code for
the rest of the packet relay model is described in [7] on page 1082. In this paper,
we will only consider topologies similar to that presented in Fig. 1(a), i.e. cases
where one or more subnets are directly connected using routers. Furthermore,
each subnet must be a fat-tree topology and it must be directly attached to the
other subnets without any transit subnets in between.

4 Layer-3 Routing in InfiniBand

Up until now, IB-IB routers were considered to be superfluous. Even the concept
of routing, which in IP networks strictly refers to layer-3 routers, in IB was infor-
mally applied to forwarding done by layer-2 switches that process packets based
only on their LID addresses. With the increasing size and complexity of subnets
the need for routers has become more evident. There are two major problems
with inter-subnet routing: which router should be chosen for a particular des-
tination (first routing phase) and which path should be chosen by the router
to reach the destination (second routing phase). Solving these problems in an
optimal manner is not possible if adhering to the current IB specification: the
routers are non-transparent subnet boundaries (local SM cannot see beyond),
so full topology visibility condition is not met. However, in this paper, by using
regularity features provided by the fat-tree topology, we propose a solution for
these problems. Nevertheless, for more irregular networks where the final des-
tination is located behind another subnet (at least two router hops required)
there may be a need for a super subnet manager that coordinates between the
local subnet managers and establishes the path through the transit subnet. We
consider such scenarios to be future work. In this section we present two new
routing algorithms: Inter-Subnet Source Routing (ISSR) and Inter-Subnet Fat-
Tree Routing (ISFR). ISFR is an algorithm designed to work best on fat-trees
while ISSR is a more generic algorithm that works well on other topologies also.
However, in this paper we only focus on fat-trees and fat-tree subnets as the
deadlock problem becomes more complex when dealing with irregular networks.
Nevertheless, we plan to address deadlock free inter-subnet IB routing in a more
general manner in subsequent publications.

4.1 Inter-subnet Source Routing

We designed ISSR to be a general purpose routing algorithm for routing hybrid
subnets. It needs to be implemented both in the SM and the router firmware.
It is a deterministic oblivious routing algorithm that always uses the same path
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for the same pair of nodes. In general, it offers routing performance comparable
to ISFR algorithm provided a few conditions explained in Sect. 5 are met.

The routing itself consists of two phases. First, for the local phase (choosing an
ingress router port for a particular destination) this algorithm uses a mapping
file. Whereas the find router() function which chooses the local router looks
almost exactly the same (it just matches the whole GID) for ISSR algorithm as
for the OpenSM routing algorithm, the main difference lies in the setup of the
mapping file. In our case, we provide full granularity meaning that instead of only
a subnet prefix as for the OpenSM inter-subnet routing, the file now contains a
fully qualified port GID. This means that we can map every destination end-port
to a different router port while OpenSM routing can only match a whole subnet
to a single router port. In the case of ISSR, an equal number of destinations is
mapped to a number of ports in a round robin manner. In our example, dst gid1
and dst gid3 are routed through port 1 and port 2 on router A, and dst gid2
and dst gid4 are routed through the same ports on router B. Backup and default
routes can also be specified.

Code 1. A high-level example of a mapping file for ISSR and ISFR algorithms

1: dst gid1 router A port 1 guid
2: dst gid2 router B port 1 guid
3: dst gid3 router A port 2 guid
4: dst gid4 router B port 2 guid
5: #default route
6: ∗ router A port 1 guid
7: ∗ router B port 1 guid

Second difference is the implementation of the additional code in the router
firmware. A router receiving a packet destined to another subnet will source
route that packet. The routing decision is based both on the source LID (of the
original source or the egress port of the previous-hop router in a transit subnet
scenario) and the destination LID (final destination LID or the LID of the next-
hop ingress router port). The router knows both these values because it sees the
subnets attached to it. To obtain the destination LID, a function mapping the
destination GID to a destination LID or returning the next-hop LID based on
the subnet prefix located in the GID is required. In our case, this function is
named get next LID (line 2 of the pseudo code in Algorithm 1).

The algorithm calculates a random number based on the source and destina-
tion LIDs. This is done in a deterministic manner so that a given src-dst pair
always generates the same number, which prevents out of order delivery when
routing between subnets and, unlike round-robin, makes sure that each src-dst
always uses the same path through the network. This number is used to select
a single egress port from a set of possible ports. There is a set of possible ports
because a router may be attached to more than two subnets and therefore a two-
step port verification is necessary: first choose the ports attached to the subnet
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Algorithm 1. choose egress port() function in ISSR

Require: Receive an inter-subnet packet
Ensure: Forward the packet in a deterministic oblivious manner
1: if received intersubnet packet() then
2: dstLID = get next LID(dGID)
3: srand(srcLID + dstLID)
4: port set = choose possible out ports()
5: e port = port set[(rand()%port set.size)]
6: end if

(or in the direction of the subnet) in which the destination is located, and then,
by using a simple hash based on a modulo function, choose the egress port.

4.2 Inter-subnet Fat-Tree Routing

As mentioned previously, a problem that needs to be solved is the communi-
cation between SMs that are in different subnets and are connected through
non-transparent routers. Our solution is based on the fact that the IBA speci-
fication does not give the exact implementation for inter-subnet routing, so our
proposal provides an interface in the routers through which the SMs will com-
municate. In other words, we implement handshaking between two SMs located
in neighboring subnets. The algorithm uses the previously defined file format
containing the GID-to-router port mappings in Code 1. The ISFR algorithm is
presented in Algorithm 2. Like the ISSR algorithm, it is also implemented in the
router device. ISFR works only on fat-trees and with fat-tree routing running
locally in every subnet. It will fall back to ISSR if those conditions are not met.

Algorithm 2. query down for egress port() function in ISFR

Require: Local fat-tree routing is finished
Require: Received the mapping file
Ensure: Fat-tree like routing tables throughout the fabric
1: if received mapping files then
2: for all port in down ports do
3: down switch = get node(port)
4: lid = get LID by GID(GID)
5: if down switch.routing table[lid] == primary path then
6: e port = port
7: end if
8: end for
9: end if

Every single router in a subnet receives the port mappings from its local SM
and is thereby able to learn which of its ports are used for which GIDs. Next, for
each attached subnet, the router queries the switches in the destination subnets



692 B. Bogdański et al.

to learn which of the switches has the primary path to that subnet’s HCAs. If
we assume a proper fat-tree (full bisection bandwidth) with routers on the top
of the tree, then after such a query is performed, each router will have one path
per port in the downward direction for each destination located in a particular
subnet. In other words, if we substituted the top routers with switches, the
routing tables for the pure fat-tree and the fat-tree with routers on top would
be the same.

5 Simulations

To perform large-scale evaluations and verify the scalability of our proposal,
we use an InfiniBand model for the OMNEST/OMNeT++ simulator [13]. The
IB model consists of a set of simple and compound modules to simulate an IB
network with support for the IB flow control scheme, arbitration over multiple
virtual lanes, congestion control, and routing using linear routing tables. In each
of the simulations, we used a link speed of 20 Gbit/s (4x DDR) and Maximum
Transfer Unit (MTU) equal to 2048 bytes. Furthermore, we use uniform, non-
uniform and HPCC traffic patterns. We used synthetic traffic patterns to show
baseline performance as these patterns have a predictable and easily understand-
able behavior, and are general rather than specific to a given application. We do
not provide the baseline results for the same topologies implemented as a single
subnet because ISFR routing provides exactly the same performance.

The simulations were performed on three different topologies shown in Fig. 1.
Each of the topologies can be classified as a 3-stage (i.e. having three rout-
ing/switching stages and one node stage) fat-tree with routers placed on top of
the tree (instead of normally placing root switches there). Even though there is a
dedicated fat-tree routing algorithm delivering high performance on almost any
fat-tree, we still decided to subnet a fat-tree fabric. The reason for that is that
we consider the fat-tree topology to be a very good proof-of-concept topology
for inter-subnet routing testing.

The fat-tree topology is scalable and by changing the number of ports we are
able to vary the size of the topologies and show how our algorithms scale with
regards to the number of nodes and subnets that are interconnected. All our sub-
nets are 2-stage fat-trees that are branches in a larger 3-stage fat-tree so we can
use routers and our routing algorithms to demonstrate how to seamlessly inter-
connect smaller fat-tree installations without using oversubscription. We chose a
3-stage 648-port fat-tree as the base fabric because it is a common configuration
used by switch vendors in their own 648-port systems [14,15,16]. Additionally,
such switches are often connected together to form larger installations like the
JuRoPA supercomputer [17].

5.1 Routing Algorithm Comparison

We perform three sets of simulations: with uniform traffic, with non-uniform
traffic and we run the HPCC benchmark. For non-uniform traffic we vary packet
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(a) 2-subnet fabric (b) 3-subnet fabric (c) 6-subnet fabric

Fig. 1. Topologies used for the experiments

length from 84 bytes to 2 kB, keep the message length constant at 2 kB. We also
introduce some randomly preselected hot spots (different for every random seed,
not varying in time): one hot spot per subnet, with a probability of ISP ∗ 0.05
for remote traffic and the same hot spot with a probability of (1 − ISP ) ∗ 0.05
for local traffic. The ISP (Inter-Subnet Percentage) value is the probability that
a message will be sent to the local or the remote subnet. It varies from 0%
(where all messages remain local) to 100% (where all messages are sent to remote
subnets). The non-hot spot destined part of the traffic selects their destination
randomly from all other available nodes. This means that there could be some
other random hot spots that vary in time, and some nodes could also contribute
unknowingly to the preselected hot spots. We express the measured throughput
as the percentage of the available bandwidth for all the scenarios. The parameters
for that traffic pattern were chosen to best illustrate the impact of congestion
on the routing performance, which is a good baseline for algorithm comparison.

Uniform Traffic. The results for this scenario are shown in Fig. 2. When it
comes to uniform traffic, we can establish that the performance of the OpenSM
inter-subnet routing deteriorates in the presence of even a very small amount of
inter-subnet traffic. At ISP equal to 20%, throughput is reduced to 17.5% for
the 2-subnet scenario in Fig. 2(a), 23.46% for the 3-subnet scenario in Fig. 2(c),
and 37.5% for the 6-subnet scenario in Fig. 2(e). The increase in performance for
a larger number of subnets is explained by the fact that traffic is spread across
more routers, i.e. each subnet in the topology uses a different ingress port locally.
ISFR algorithm provides almost constant high performance under uniform traffic
conditions whereas the performance of ISSR algorithm deteriorates slightly for
very high ISP values as shown in Fig. 2(a) and Fig. 2(c). This is caused by the
fact that egress ports from the routers may not be unique as they are chosen
randomly. However, the deterioration is smaller when the number of subnets
increases (12% decrease for the 3-subnet scenario compared to 5% decrease for
the 6-subnet scenario at ISP=100%) as shown in Fig. 2(e). This occurs because
the more subnets we have in the fabric and the higher is the ISP value, the
more inter-subnet traffic pairs are created, so the hash function has a higher
probability to utilize more links from the defined subnet-port-set as there are
more random numbers generated.
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(a) 2-subnet scenario uniform traffic
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(b) 2-subnet scenario non-uniform traffic
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(c) 3-subnet scenario uniform traffic
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(d) 3-subnet scenario non-uniform traffic
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(e) 6-subnet scenario uniform traffic
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(f) 6-subnet scenario non-uniform traffic

Fig. 2. Throughput as a function of ISP with uniform and non-uniform traffic

Non-uniform Traffic. Whereas under uniform traffic our algorithms gave al-
most optimal performance, the situation worsens if some non-uniformity is added
as seen in Fig. 2.

What is first noticeable is the fact that ISFR algorithm is clearly outperformed
by the ISSR algorithm for the middle range of the ISP values (20% to 70%), as
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best seen in Fig. 2(d). Second, we observe that ISSR algorithm deteriorates for
ISP values greater than 40%, which is best seen in Fig. 2(f). ISFR, on the other
hand, becomes stable at ISP values close to 40%. This behavior is explained
by the addition of the hot spots to our traffic pattern, the occurrence of head-
of-line (HOL) blocking, and the migration of the root and the branches of the
congestion trees. For lower ISP values (≤50%) local traffic is dominant and in
every subnet 5% of such traffic is destined to the local hot spot. In such a case
the branches of the congestion tree will mostly influence the local traffic, but
they will also grow through the single dedicated downward link (a thick branch)
to influence the victim nodes in other subnets if the ISFR algorithm is used.
For ISSR, the same will happen, but there is no dedicated downward link and
the branches growing through multiple downward links will be much thinner,
therefore, influencing the local traffic in other subnets to a lesser extent. This
happens because ISSR spreads the traffic destined towards the hot spot across
multiple downward links. This is the reason why ISFR algorithm is outperformed
by ISSR in such a hot spot scenario for almost all ISP values.

For ISFR algorithm, for higher ISP values (≥50%), the root of the congestion
tree will move from the last link towards the destination to the first downward ded-
icated link towards the destination (i.e. a router port), and the congestion tree will
influence mostly the inter-subnet traffic as there will be little or no local traffic,
which is why ISFR algorithm reaches stability at around 50% ISP. For ISSR, for
higher ISP values, the root of the congestion tree will not move and the branches
will grow much thicker (as there is more incoming remote traffic). This will not
only slightly influence the local traffic (that is low for high ISP values) in the con-
tributor’s subnets, but also it will cause HOL blocking for the downward traffic
that uses the same links that the hot spot traffic uses to reach other destinations.
It happens because ISSR does not use dedicated paths for downward destinations.
Such a deterioration can be best observed in Fig. 2(d) or Fig. 2(f).

Another vital observation is the fact that by increasing the number of subnets,
we increase the performance of all the routing algorithms. This is best visible
when comparing Fig. 2(d) and Fig. 2(f). The explanation for that is the seg-
mentation of the hot spot contributors. In other words, the more hot spots there
are, the weaker is the influence of the head-of-line blocking (the congestion tree
branches are thinner).

We also see that OpenSM routing still yields undesirable performance for
every scenario. However, an important observation here is that the congestion
does not originate from the hot spots, but from the utilization of a single ingress
link to transmit the traffic to the other subnet.

HPC Challenge Benchmark. We implemented a ping-pong traffic pattern
that was used to run the HPC Challenge Benchmark [18] tests in the simulator.
We used a message size of 1954KB and kept the load constant at 100%. The tests
were performed on 500 ring patterns: one natural-ordered ring (NOR) and 499
random-ordered rings (ROR) from which the minimum, maximum and average
results were taken. In this test each node sends a message to its left neighbor in
the ring and receives a message from its right neighbor. Next, it sends a message
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Table 1. The HPC Challenge Benchmark results (in MB/s)

Measurement OpenSM ISSR ISFR

NOR BW 1572.49 1572.49 1572.49

ROR BW min/max/avg

2 subnets 528/878/703 847/1166/1001 1064/1314/1187

3 subnets 345/611/482 753/993/867 946/1165/1069

6 subnets 202/343/270 709/875/775 841/1018/933

back to its right neighbor and receives a return message from its left neighbor.
We treated the whole fabric as a continuous ring and we disregarded the subnet
boundaries.

Table 1 presents the HPCC Benchmark results. For any fat-tree the NOR
bandwidth results give the maximum throughput as there is no contention in
the upward or the downward direction. However, when we compare the results
for the ROR, we observe differences between the routing algorithms. For the 2-
subnet scenario, we observe an increase in throughput of 536 MB/s (102%) when
comparing the minimum throughput for the OpenSM and the ISFR algorithms.
Furthermore, we observe that the average throughput for the ISFR algorithm is
higher than the maximum throughput for the ISSR algorithm in all cases. For
the average throughput we observe an increase of 484 MB/s (69%) compared
to OpenSM routing. For the 3-subnet scenario the trend is the same as for the
previous scenario, but we observe that the throughput is lower than for the 2-
subnet scenario. This happens because the larger the topology, the higher the
probability that the destination is chosen from a set of non-directly connected
nodes. For a 144-node fabric, each source can address 143 end-nodes and 23 out
of those end-nodes (15.7%) are reachable through a non-blocking path (11 at the
local switch, 12 at the neighbor switch). For a 216-node fabric, the same number
of nodes is reachable through a non-blocking path, but the overall number of
nodes is larger, which gives only 10.6% of nodes reachable through a non-blocking
path. This means that a ROR pattern in a larger fabric has a lower probability
for reaching a randomly chosen node in a non-blocking manner. Furthermore,
in larger topologies more nodes are non-local, which means that the routing
algorithm uses the longest hop path to reach them (traversing all stages in a
fat-tree), which further decreases the performance. For the 6-subnet scenario,
we observe a similar situation as for the 3-subnet scenario: that there is an
overall decrease in performance. The explanation is the same as for the 3-subnet
scenario: more nodes are used to construct a ROR, but the number of nodes
accessible in a non-blocking manner stays the same, so the generated ROR pairs
have an even lower probability to use a non-blocking path.

The general observation is that for the HPCC benchmark, the ISFR algorithm
delivers the best performance. It is because this traffic pattern does not create
any destination hot spots and the congestion occurs only on the upward links
towards the routers, while the dedicated downward paths are congestion-free.
Despite using the same upward path as the ISFR algorithm, ISSR algorithm may
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not provide a dedicated downward path, which is why there is a performance
difference between these two algorithms.

6 Conclusions and Future Work

Native IB-IB routers will make the network scalable, and designing efficient
routing algorithms is the first step towards that goal. In this paper, we laid
the groundwork for layer-3 routing in IB and we presented two new routing
algorithms for inter-subnet routing: the inter-subnet source routing and the inter-
subnet fat-tree routing. We showed that they dramatically improve the network
performance compared to the current OpenSM inter-subnet routing.

In future, we plan to generalize our solution to be able to support many dif-
ferent regular fabrics in a deadlock-free manner. Another candidate for research
will be evaluating the hardware design alternatives. Looking further ahead, we
will also propose a deadlock-free all-to-all switch-to-switch routing algorithm.
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Abstract. Head-of-Line (HoL) blocking is a well-known phenomenon that may
dramatically degrade the performance of the modern high-performance intercon-
nection networks. Many techniques have been proposed to solve this problem,
most of them based on separating traffic flows into different queues at switch
ports. However, the efficiency of these proposals may vary depending on the net-
work topology or routing algorithm, as many of them are not aware of any spe-
cific network configuration. By contrast, other schemes are tailored to specific
topologies like fat-trees, achieving a greater efficiency than “topology-agnostic”
schemes. In this paper we propose a straightforward queuing scheme intended
to be used in an efficient, recently-proposed hybrid topology. Our proposal sig-
nificantly boosts network performance with respect to other queuing schemes
while requiring similar or fewer resources. Moreover, the implementation of this
scheme in InfiniBand-based networks is elementary thanks to the mapping of
Service-Levels to Virtual-Lanes supported by this specification.

Keywords: Interconnection Networks, Hybrid Topologies, Dimension-Order
Routing, Head-of-line Blocking, InfiniBand.

1 Motivation

High-performance, switch-based interconnection networks are key elements for the dif-
ferent systems currently used for parallel computing: massive parallel processors, clus-
ters of PCs, and Networks-on-Chip. In such environments, the interconnection network
plays a prominent role in the performance achieved by the whole system, especially as
the number of endnodes increases. Indeed, the network may become the system bot-
tleneck if it does not meet the communication needs of the applications. Therefore,
achieving good network performance is an essential issue for interconnect researchers,
designers, and manufacturers.

One of the most dangerous menaces to the performance of current high-performance
interconnection networks is the Head-of-Line (HoL) blocking effect. This well-known
effect may limit switch throughput to about 58% of its peak value [1] in switches that
implement buffer-based queues at input/output ports to store packets waiting to be for-
warded. It is worth pointing out that commercial switches of current high-speed intercon-
nect technologies (InfiniBand [2], Myrinet [3], etc.) support some type of buffer-based
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queuing scheme, thus they may suffer HoL-blocking. Basically, HoL-blocking occurs
when a packet at the head of a queue blocks the rest of packets in that queue, even if they
request access to available ports. As a consequence, average packet latency eventually
increases and network throughput decreases. This effect is strongly related to high traffic
loads and congestion situations [4], although it may happen also in other traffic scenar-
ios. Moreover, especially in congestion situations, HoL-blocking tends to “propagate”,
as HoL-blocked queues fill up and subsequently block (by flow control) other queues
in other switches. This last phenomenon is known as high-order HoL-blocking [5], in
contrast with the “original” HoL-blocking, which is called low-order HoL-blocking.

Taking into account the negative impact of HoL-blocking, many techniques have been
proposed that may help to solve this problem. In general, any solution focused on lim-
iting traffic load in the network or on avoiding or removing congestion situations may
lower HoL-blocking probability, but there exist many techniques specially designed to
reduce HoL-blocking (see Section 2.2). Most of the them are based on dividing the buffer
space at the switch ports into different queues, then mapping packet to queues so that cer-
tain packet flows do not share queues with other flows. Although some of these queuing
schemes prevent HoL-blocking completely [6,7,8], they require expensive and/or ad-
ditional resources that are not supported by current commercial switches. Thus, other,
feasible queuing schemes are far more popular even though they reduce HoL-blocking
just partially [9,10,11]. However, we have found that queuing schemes can be more ef-
ficient in reducing HoL-blocking if they are designed for specific network topologies
and routing algorithms, in this way the use of queues can be optimized. In that sense,
in [12,13] queuing schemes were proposed that exploit the properties of fat-trees with
DESTRO routing algorithm [14] to reduce HoL-blocking more efficiently than more
“generic” schemes that require a higher (or similar) number of queues per port.

Following this approach, in this paper we present a queuing scheme that exploits
the properties of an efficient, recently-proposed hybrid topology [15] to straightfor-
wardly reduce HoL-blocking. Indeed, although this hybrid topology has been reported
as more efficient than others (either direct or indirect topologies, see Section 2.1), its
performance decreases when high traffic loads or congestion situations produce a mas-
sive appearance of HoL-blocking in the network. By contrast, if our proposed queuing
scheme is used in this network topology, HoL-blocking is significantly reduced, as we
show in Section 4. Specifically, our proposal is based on a simple but clever mapping of
packet destinations to queues, so that every queue at every switch port in the network
is used to separate the packet flows that may cross that port. We call this scheme Band-
Based Queuing (BBQ). Moreover, as we explain in Section 3.1, this queuing scheme
could be directly applied to InfiniBand-based networks, as the aforementioned mapping
of packet destinations to queues can be implemented by mapping packets destinations
to Service Levels (SLs), then SLs to Virtual Lanes (VLs).

The rest of the paper is organized as follows: Section 2 offers an overview of both pro-
posed hybrid topologies and existing techniques that prevent or reduce HoL-blocking.
The proposed queuing scheme is described in Section 3, along with some ideas for its
implementation in real hardware. We also evaluate our proposal in Section 4, where sim-
ulation results are shown to compare its efficiency with that of other schemes. Finally,
in Section 5 some conclusions are drawn.
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2 Related Work

2.1 Hybrid Networks

Traditionally, network topologies are classified as either direct or indirect. Examples
of such topologies appear in the TOP500 list, where tori and fat-trees are widely used.
However, these two types of topologies have several drawbacks.

On one hand, direct topologies usually adopt an orthogonal structure, where nodes
are organized in a n-dimensional space and connected in each dimension in a ring or
array fashion. 2D or 3D direct topologies are relatively easy to build as each topol-
ogy dimension is mapped to a physical dimension. Direct topologies with more than
three dimensions imply not only increasing its wiring complexity but also the length of
its links when they are mapped to our 3D physical space, thereby increasing the com-
munication latency and negatively impacting performance. In addition, low dimension
topologies tend to have a large number of nodes per dimension which also leads to an
increase in communication latency.

On the other hand, the most common indirect topologies are multistage intercon-
nection networks (MINs) where switches are organized as a set of stages. Indirect
topologies usually provide better performance for a large number of nodes than di-
rect topologies, at the cost of using a high number of switches and links, and increasing
the wiring complexity, which grows with the size of the network. However, in direct
topologies the complexity grows with the number of dimensions.

Recently, hybrid and hierarchical topologies have been proposed to get the bene-
fits from both direct and indirect topologies. That is, hybrid topologies aim to provide
high-performance as indirect topologies, but at a similar cost to direct topologies. With
this aim in mind, the authors of [16] propose the Flattened-Butterfly, which is a de-
rived topology from the Fat-tree in which all the switches from a column of the fat-tree
are collapsed into a single switch, becoming a generalized hypercube. Extending this
topology to exploit high-radix switches, in [17] the Dragonfly topology is proposed. In
this topology, switches from the same row of the cube are totally connected forming a
group. Groups are connected among them by a parameterizable number of links. The
problem with hierarchical topologies is that they require the same number of switches
than a direct topology with the same number of nodes, but switches are markedly more
complex. So global complexity and cost of the network is noticeably higher than in
direct networks, despite being lower than in indirect ones.

In order to overcome this drawback, k-ary n-direct s-indirect topologies were pro-
posed [15]. In this topology nodes are organized in n dimensions, like in a direct topol-
ogy, but the nodes of a given dimension are not connected as in meshes or tori. Instead,
these nodes are directly connected by means of an indirect network. This indirect net-
work could be even a simple crossbar or switch, as in Fig. 1. If the number of nodes per
dimension exceeds the number of ports of the switches used in the indirect network, a
MIN is required. Therefore, the proposed family of topologies is defined by three pa-
rameters. Two of them are inherited from direct networks: the number of dimensions
n and the number of nodes per dimension k. In addition, there is an extra parameter,
s, the number of stages of the indirect subnet. The number of processing nodes that
this topology can interconnect is given by N = kn. In this paper, we focus on k-ary
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Fig. 1. 2-ary 4-direct 1-indirect topology. The route with Hybrid-DOR from node 0 to node 15 is
highlighted.

n-direct 1-indirect topologies (hereafter hybrid networks), since using a MIN to connect
the nodes of a dimension skyrockets the number of switches of the network.

In [15], the authors also propose a deterministic routing algorithm derived from
Dimension-Order Routing (DOR) for these topologies called Hybrid-DOR. In Hybrid-
DOR, network dimensions are crossed in an established order to guarantee deadlock
freedom as in DOR, specifically the X dimension is crossed first, then the Y dimension
(i.e. a X-Y routing algorithm). However, packets do not perform several hops at each
dimension. Instead, in Hybrid-DOR, nodes directly forward packets through the unique
link that connects them to the dimension through which they have to send a packet.
Then, the packet is received in a crossbar where it is just forwarded through the link
indicated by the destination component of the corresponding dimension, requiring just
another hop to reach the next endnode. For instance, Fig. 1 shows (highlighted) the route
from node 0 (0,0) to node 15 (3,3). As it can be seen, the packet leaves node 0 through
its only link in the X dimension, reaching a switch (sw0) where it is forwarded through
link 3, then reaching node 3 (0,3). Then the process is repeated in the next dimension.
Notice that no matter the distance that a packet has to travel in a dimension, it can be
traversed in just 2 hops. In [15], it is shown that this hybrid topology with Hybrid-DOR
obtains better performance figures of merit than other network configurations, such us
tori, fat-trees or flattened butterflies (provided that size is similar in all the cases).

2.2 Solutions for the HoL-Blocking Problem

As mentioned above, there exist several approaches to solve the problem of HoL-
blocking in high-performance interconnects, but in this section we focus only on those
solutions that address this problem explicitly.

In that sense, probably the most efficient of these solutions are based on the dy-
namic allocation of queues (or Virtual Channels [10]) to isolate the packet flows that
contribute to congestion (usually referred to as “hot flows”), so that the HoL-blocking
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these flows could cause to others (“cold flows”) is prevented. Thus, they assume that the
HoL-blocking between any two cold flows is not significant. These techniques require
some mechanism to detect congestion, in order to identify (then separate) hot flows.
Solutions like [18,19] identify hot flows based on their final destination, while other
solutions [7,8] are able to identify hot flows based on their path towards their final des-
tination (i.e. the former solutions assume that congestion originates only at endpoints
while the latter consider that congestion may originate also at internal points of the
network). Although, as mentioned above, these techniques are quite efficient, they may
have problems when the number of simultaneous hot-spots in the network is greater
than the number of queues available at the ports to isolate hot flows. Most important,
they require some type of control memories at switch ports to keep track of hot-spots,
and also other additional resources and/or control messages, that in general are not sup-
ported by current commercial interconnects.

Other solutions deal with HoL blocking also by mapping packet flows to different
queues, but keeping constant both the number of active queues at each port and the map-
ping policy, that does not depend on traffic conditions. Note this means that, in contrast
with the aforementioned strategies based on the dynamic allocation of queues, these
solutions do not “react” against congestion situations but “statically” separate packet
flows into the available queues so that the impact of HoL-blocking is reduced regard-
less of its origin. This approach results in different “static” queuing schemes based on
simple mapping criteria, that in general do not require additional resources apart from
the set of queues at each port. However, it does not mean that these schemes have al-
ways affordable or feasible implementations. For instance, Virtual Output Queues at
network level (VOQnet) [6] uses at each switch port as many queues as destinations in
the network, so that any packet is mapped to the queue corresponding to its destina-
tion, only sharing that queue with other packets addressed to the same destination. This
scheme totally prevents low- and high-order HoL-blocking, but it is unfeasible due to
the high number of queues per port, as each queue needs a minimum memory space.

By contrast, other static queuing schemes are far more feasible as they just require a
reduced number of queues per port. Among them, Virtual Output Queues at switch level
(VOQsw) [11] uses at each port as many queues as output ports in the switch, so that
each incoming packet is mapped to the queue assigned to its next output port. Hence,
VOQsw totally prevents low-order HoL-blocking, but not the high-order. Other similar
(although not identical) queuing schemes that reduce Hol-blocking only partially are
Dynamically Allocated Multi-Queues (DAMQs) [9], Destination-Based Buffer Man-
agement (DBBM) [20] and Dynamic Switch Buffer Management (DSBM) [21].

In general, the aforementioned static queuing schemes are not aware of the rout-
ing algorithm and network topology. As a consequence, the reduced set of queues
per port is not always efficiently leveraged to reduce Hol-blocking, thus the perfor-
mance of these techniques may drop in certain topologies when HoL-blocking appears.
By contrast, other queuing schemes like Output-Based Queue Assignment (OBQA)
[12,13] and vFTree [22] take into account network topology (specifically, fat-trees) and
routing algorithms (respectively, the ones proposed in [14] and [23]) and exploit their
characteristics to reduce HoL-blocking as effectively as (or better than) schemes such
as VOQsw, while requiring half, or even the quarter, the number of queues per port
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(a) X-axis Switch #0. (b) Y-axis Switch #7.

Fig. 2. Packet destination distribution for BBQ on a 2-ary 4-direct 1-indirect network

required by other schemes. Obviously, neither OBQA nor vFTree are designed for hy-
brid topologies, but the basic idea of a queuing scheme that “fits” this specific topology
to efficiently reduce HoL-blocking as OBQA and vFTree do in fat-trees lead us to pro-
pose BBQ, which is described in the next section.

3 BBQ Description

In this section, we describe our straightforward proposal for HoL-blocking reduction
in k-ary n-direct s-indirect networks that use the Hybrid-DOR routing algorithm. Basi-
cally, our proposal consists in a “static” queuing scheme based on a simple but clever
policy to map packets to queues at each switch port, which significantly reduces HoL-
blocking. Specifically, the proposed mapping policy selects the queue for every packet
according to this formula:

SelectedQueue =
Destination×#Queues

#EndNodes
(1)

Where Destination is the destination of the packet, #Queues is the number of queues
that BBQ configures at each switch port (i.e. the number of queues each port buffer is
divided into), and #EndNodes is the number of endnodes in the network. This queue-
selection policy “virtually” divides the hybrid network in a number of horizontal zones
(bands), each one consisting of one or more consecutive rows of destinations (endnodes)
that result in the same “SelectedQueue” when they are introduced as “Destination” in
the formula. This is the reason to call the proposal Band-Based Queuing (BBQ). Note
that BBQ divides the network into a number of bands equal to the number of queues
configured at each port. For instance, in Figure 1, four queues per port are assumed,
thus the network is divided into four bands, each one consisting in a row of endnodes
as there are four rows in the network.

As a consequence of this mapping policy, at any port of the network, a specific packet
is mapped to the same queue as any other packet whose destination is in the same band,
i.e. packets addressed to the same band are stored in the same queue, and this happens
in the ports of the switches of the X dimension and in the ports of the switches of the Y
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dimension. Moreover, note that, as Hybrid-DOR is assumed, packets addressed to any
band may be present in any port of the switches of the X dimension and also in any port
of the switches of the Y dimension, as all the latter switches are directly connected to
endnodes belonging to any band in the network. Thus, all the queues defined at any port
of the switches may receive packets, so that they are efficiently used to separate packet
flows, i.e. to reduce HoL-blocking probability. Besides, note that packets addressed to
a specific band never share queues with packets addressed to any other band, thus if a
hot-spot appears in one of the bands, only packets addressed to that band may suffer
HoL-blocking caused by the hot flows contributing to that hot-spot.

Fig. 2 shows an example of the internal behavior of BBQ both in switch #0 of Fig. 1
(see Fig. 2a) and in switch #7 of Fig. 1 (see Fig. 2b). Notice that each link is depicted
as an arrow labelled with possible destinations of packets that may cross through that
link in the sense indicated by the arrow, and packets are depicted as squares inside their
corresponding queues and are labelled with their respective destinations. For instance,
packets with destinations 1, 2, and 3 (all in Band 0) are stored in queue 0 at port P0
of switch 0. Note that the only queue that is not used in switch #7 is queue 0, but just
because only 3 destinations are received at port P0. However, note that queue 0 would
be used if band 0 consisted of more than one row, in order to store packets that require
to change rows inside the same band.

In contrast with BBQ, other feasible queuing schemes such as DBBM [20] would
not exploit all the available queues in both dimensions if used in the hybrid topol-
ogy. In particular, DBBM selects the queue to store a packet according to the formula
DestinationMOD #Queues, where#Queues is again the number of queues per port
(i.e. DBBM maps packets to queues by consulting the least-significant log2(#Queues)
bits of the destination ID of each packet). Note this formula divides the network into
vertical zones consisting of non-consecutive columns of endnodes, so that packets ad-
dressed to the same vertical zone are mapped to the same queue. As a consequence, if
DBBM is applied to hybrid networks with Hybrid-DOR, switches in the Y dimension
would not use all the queues at their ports to reduce HoL-blocking, thereby network
performance dropping (as we show in Section 4). For instance, if DBBM were used
(configured with four queues per port) in the same scenario as BBQ in Fig. 2, at port
P0 of switch #7 all the queues but one would be always wasted, as all the packets that
could be received at this port would be always mapped to the same queue.

On the other hand, if either VOQsw [11] or OBQA [12] were used, packets would be
mapped to a queue depending on the output port requested at each switch. This reduces
the impact of low-order HoL-blocking, but note that packet flows share queues with
different flows depending on the current switch. Thus, hot flows contributing to a hot-
spot may cause (high-order) HoL-blocking to many flows, the performance of these
schemes dropping in hot-spot scenarios. By contrast, as explained above, when BBQ is
used only packets addressed to the band where the hot-spot appears are affected.

In conclusion, the BBQ queuing scheme exploits the characteristics of the hybrid
topology and Hybrid-DOR to efficiently reduce HoL-blocking. Note that this queuing
scheme is based on a simple operation, that can be performed even prior to packet
injection into the network. This simplicity can be exploited to easily apply BBQ to real
network technologies such as Infiniband, as it is explained in next Section.
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Table 1. Evaluated Network Configurations

# Network Topology Processing Nodes #Routers (Endnodes) #Switches (indirect network)

1 8-ary 2-direct 1-indirect 64 64 16

2 16-ary 2-direct 1-indirect 256 256 32

3 32-ary 2-direct 1-indirect 1024 1024 64

3.1 BBQ Implementation for InfiniBand

The simplicity of the BBQ queuing scheme permits a straightforward implementation in
InfiniBand, as the band each packet is addressed to can be computed before its injection,
and then the result applied to assign the packet a Service-Level (SL) and a Virtual
Lane (VL), as supported by InfiniBand. Specifically, when each InfiniBand packet is
generated, it is assigned a specific SL that is mapped at each switch to a given VL,
each VL being in practice an independent queue at the buffer of the ports of InfiniBand
switches (i.e. InfiniBand flow-control is performed at VL-level). Thus, packets with
the same SL are always mapped to the same VL, so to the same queue. The specific
SL-to-VL mapping is implemented by tables that are filled by the InfiniBand Subnet
Manager. Taking all that into account, BBQ can be easily implemented in InfiniBand by
assigning each packet an SL equal to the selected queue given by the Formula 1 for the
specific packet destination, and filling the SL-to-VL tables so that VL=SL. In this way,
packets will be assigned to VLs (i.e. to queues) following the BBQ scheme. Indeed, as
a future work, we plan to compute the BBQ formula into the Subnet Manager in a real
InfiniBand-based network, in order to assign SLs to packets before their injection.

4 Evaluation

In this section, we evaluate the BBQ technique based on simulation experiments, in
comparison to other queuing schemes. Next, we describe the simulation model used in
our experiments and discuss the simulation results.

4.1 Simulation Model

The simulation tool [24] used in the experiments has been built from the OMNeT++
platform [25]. Basically, our simulator is able to model several interconnection network
configurations, by means of simple and compound modules. These OMNeT++ modules
define the structure and behavior of the network, supporting the routing algorithms,
queuing schemes, arbitration over multiple queues per switch port and flow control.
This simulation tool has been validated against real systems.

Table 1 shows the different hybrid topologies (i.e. k-ary n-direct s-indirect) that we
have modeled in the simulator with different sizes, in order to test the scalability of the
BBQ proposal. Note that we indicate separately the number of switches in the indirect
network and the number of endnodes.

For all the network configurations, we assume serial full-duplex pipelined links with
2.5 GB/s (20 Gbps) bandwidth, 6 nanoseconds of link propagation delay (i.e. a length
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of 1.2 meters and a delay of 5 ns/m, these values being based on the InfiniBand spec-
ification [2]), both for switch-to-switch and node-to-switch links. Similarly, in all the
cases the switching technique is Virtual Cut-Through, the flow control policy is credit-
based and packet size (i.e. MTU) is 2048B. We also assume the use of the Hybrid-DOR
routing algorithm described in section 2.

Regarding the switch model, we use switches with 8 ports for network configuration
#1, 16 ports network configuration #2 and 32 ports network configuration #31. Besides,
the modeled switch architecture follows an Input-Queued (IQ)-scheme, i.e. RAMs are
present only at switch input ports. RAM organization depends on the queuing scheme.
We have modeled the following queuing schemes for HoL-blocking prevention:

– Single Queue (1Q). This is the simplest case, with only one queue at each input
RAM, whose size is set to 128 KB. Hence, there is no HoL-blocking reduction
policy at all. Particularly, this scheme allows to evaluate the performance achieved
by the Hybrid-DOR algorithm without any technique alleviating HoL-blocking.

– Virtual Output Queues at switch level (VOQsw). 128 KB buffers per input port
are used, statically and equally divided into as many queues as switch output ports,
in order to store each incoming packet in the queue corresponding to its requested
output port. As the number of queues per port is equal to the switch radix, note
that 8 queues are used in network configuration #1, 16 queues are used in network
configuration #2 and 32 queues are used in network configuration #3.

– Virtual Output Queues at network level (VOQnet). The RAM at each input port
is divided into as many queues as destinations in the network, so that two packets
may share a queue only if they have the same destination. VOQnet requires larger
RAMs as each queue needs a minimum size2. Specifically, RAM size for VOQnet is
256 KB, 1024 KB and 4096 KB respectively for network configurations #1, #2 and
#3. Although this scheme is almost unfeasible for medium-size or large networks,
it shows the theoretical maximum effectiveness in HoL-blocking prevention.

– Destination-Based Buffer-Management (DBBM). We assume a buffer of 128
KB per input port, statically and equally divided among 2 or 4 queues. The map-
ping of packet of queues is performed according to the modulo-mapping function
SelectedQueue = Destination MOD #Queues.

– Band-Based Queuing (BBQ). We also assume a buffer of 128 KB per input port,
statically and equally divided among 2 or 4 queues. Each packet is mapped to a
queue according to the formula 1 in section 3.

Endnodes are connected to switches by means of Host Channel Adapters (HCAs),
modeled with as many admittance queues as endnodes in the network, and each gener-
ated packet is stored in the admittance queue assigned to its destination, so that HoL-
blocking is prevented at traffic generation level. Besides, packets are transferred from
admittance queues to injection queues, which are organized following the same scheme
as that established at the switch input ports (e.g. for BBQ, each HCA has 2 or 4 injection
queues). Injection queues are flow-controlled from the switch input ports.

1 Note that these numbers of ports are common in current commercial switches, but we could
also have used switches with a greater radix.

2 Considering flow-control restrictions, packet size, link bandwidth and link delay, the minimum
queue size is 4 KB (i.e. 2 packets).
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(a) Network Configuration #1
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(c) Network Configuration #3

Fig. 3. Packet Latency versus Generated traffic. Traffic case #1 (Uniform)

Regarding traffic modeling, we use two synthetic traffic patterns. The first one fol-
lows a completely uniform (random) distribution, traffic generation rate incrementally
increasing from 0% up to 100% of link bandwidth. The second one is a hot-spot pat-
tern: a percentage of sources (25%) generate traffic addressed to one single (hot-spot)
destination, the rest of the nodes generating only uniform traffic. The generation rate in
the second pattern also increases incrementally from 0% up to 100%.

Finally, among all the metrics that the simulator offers, we base our evaluation on
the metrics commonly used for measuring network performance, such as Normalized
Efficiency (i.e. the average amount of traffic delivered by the network per time unit,
being normalized against the maximum overall amount of traffic that can generate the
endnodes), and the packet latency (in nanoseconds), defined as the average time from
packet generation to packet delivery.

4.2 Uniform Traffic Results

Fig. 3 shows Packet latency results for network configurations #1, #2 and #3 (see Table
1), when the uniform traffic pattern is used. As can be seen, in Figure 3a, the network
saturation point is about 70% when HoL-blocking is not reduced in any way (i.e. 1Q
scheme). DBBM achieves the same results as 1Q, regardless of its number of queues
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per port, due to the drawbacks explained in Section 3. As expected, VOQnet achieves
the highest performance, but requiring 64 queues per port, while VOQsw, which uses
8 queues per port, has nearly the same results. Notice that BBQ needs only 4 queues
per port to achieve similar results to VOQsw. Furthermore, note that BBQ is simpler to
implement than VOQsw, as the former can calculate the queues to store a packet prior
to its injection, while the latter needs to recalculate the queue at each switch along the
packet route. Note also that BBQ significantly outperforms (around 25%) the perfor-
mance achieved by 1Q or DBBM.

Similar conclusions can be extracted from Figs. 3b and 3c. For a network with 256
endnodes (Fig. 3b), BBQ configured with 4 queues per port reaches the saturation point
just about 5% lower than VOQsw. However, VOQsw needs 16 queues per port because
there are more endnodes per dimension. As in the previous scenario, DBBM and 1Q
achieve the worst results. Note that, again, the reason for the poor behavior of DBBM
is that it wastes many queues in the switches of the indirect network. Similarly, Fig.
3c shows the result for an hybrid network with 1024 endnodes. Note that this network
is four times bigger than the previous one. VOQnet, which now needs 1024 queues
per port and uses memories of 4096 KB, achieves the best performance, but VOQsw
configured with just 32 queues per port achieves a similar performance. However, BBQ
with only 4 queues achieves a performance only 8% lower than VOQsw, while the
former using an eighth of the number of queues per port used by the latter. In conclusion,
under uniform traffic scenarios, BBQ achieves nearly the same performance as VOQsw,
while drastically reducing the required number of queues per port.

4.3 Hot-Spot Traffic Results

Fig. 4 shows the Network Efficiency for network configurations #1, #2 and #3 (see
Table 1) when the hot-spot traffic pattern is used. It is worth reminding that in this case
a 25% of endnodes generate traffic addressed to a single destination, whereas the rest
of the traffic is randomly distributed. Thus, a maximum of 75% of network efficiency
can be achieved when complete HoL-blocking prevention is provided.

In Fig. 4a (hybrid network with 64 endnodes), 1Q barely achieves a 9% of network
efficiency when 100% of traffic load is generated, while the ideal network efficiency
achieved by VOQnet is about ≈ 75%. VOQsw also suffers a strong degradation, as its
maximum network efficiency is about 33%. This is because VOQsw suffer specially
the high-order HoL-blocking that arises in hot-spot scenarios, as explained in Section
3. By contrast, notice that DBBM and BBQ using only 2 queues per port achieve better
performance than VOQsw (that requires 8 queues per port), while if they are configured
with 4 queues per port, their network efficiency improves significantly. Besides, note
that BBQ outperforms DBBM in about 10% when high traffic loads are injected in the
network. The reason for this good behavior of BBQ is that it efficiently separates the
hot flows while taking advantage of all the queues available in every switch port. Thus,
the HoL-blocking effect is reduced as it only appears among packets addressed to the
same network band, as explained in Section 3. By contrast, DBBM wastes queues in
the switches in the Y dimension.

Similar conclusions can be drawn from Figs. 4b and 4c. Although VOQnet achieves
almost 20% of improvement over BBQ, note that the latter only uses 4 queues per port
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Fig. 4. Network Efficiency versus Accepted Traffic. Traffic case #2 (Hot-Spot)

to achieve its best results, while the former uses 256 or 1024 queues per port. Note also
that BBQ outperforms DBBM in more than 15% of efficiency (even though they use the
same number of queues per port), and it achieves an 80% of improvement over VOQsw.

Summing up, analysis of hot-spot results leads to similar conclusions than those
obtained from the uniform traffic analysis: BBQ reaches the best performance (except
VOQnet) with a smaller or equal number of queues per port (only 4) than other schemes.

5 Conclusions and Future Work

Head-of-Line (HoL) blocking is a phenomenon that may dramatically degrade the per-
formance of current high-speed interconnection networks if not properly managed. Al-
though many techniques have been proposed to deal with this problem, only some of
them are actually feasible in current switches, mostly based on queuing schemes. Many
of these feasible queuing schemes are not aware of network topology or routing al-
gorithm, thus they do not leverage the available queues in certain scenarios. In this
paper we propose Band-Based Queuing (BBQ), a straightforward queuing scheme that
efficiently reduce HoL-blocking exploiting the properties of networks with a specific
hybrid topology that use Hybrid-DOR as routing algorithm. From the results of this
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paper, we can conclude that BBQ significantly reduces HoL-blocking either in uniform
or hot-spot traffic scenarios while requiring a small number of queues per port (even
in networks with thousands of endnodes), outperforming or matching other queuing
schemes that require more queues per port. Moreover, as BBQ is based on a simple but
smart policy to map packets to queues, it could be easily implemented in real InfiniBand
networks, as we have explained in the paper and as we plan to do in the near future.
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European Commission under the project TIN2012-38341-C04-04 and by the JCCM
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Abstract. In response to the need for faster and fatter networks for
large-scale HPC cluster systems, hybrid optical/electrical networks have
been proposed as an affordable and high-capacity solution. Still, there
is no prior work evaluating the performance of HPC workloads over
such types of networks. To fill this gap, this work presents a hybrid
network architecture comprising commodity-only equipment, shows its
price competitiveness against fat-tree alternatives and presents a pro-
totype implementation. We evaluated several HPC workloads over our
prototype, showing that our hybrid optical/electrical network manages
to significantly accelerate tested workloads, without incurring any extra
cost compared to an all-electronic fat-tree network.

Keywords: high-performance computing, high-speed networks, inter-
connects, distributed systems.

1 Introduction

The increasing compute density in modern High-Performance Computing (HPC)
system as a result of higher-core integration and the use of specialized acceler-
ators is among others pushing the need for high-speed networks that are faster
and with higher capacity across all levels of their hierarchies. The latter require-
ment, especially when seen at large-scale, leads to massive capital and manage-
ment costs, magnifying the contribution of the network to total system cost. In
response to this, prior research has proposed using commercial off-the-shelf op-
tical switches for aggregating traffic between racks, partly or entirely replacing
the multiple hierarchies of electronic networks and leveraging on the interest-
ing features exhibited by such devices, such as lower cost/port and immense
rate/port capability. However, very little is still known about the impact that
hybrid optical/electrical networks have to HPC applications’ performance and
at what cost.
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To address this challenge, we lay out in this paper the architecture of such
a system at scale using commodity-only single-vendor equipment, calculate its
total price using current list prices and compare it against the total investment
for a conventional fat-tree at various capacity levels, showing that our hybrid so-
lution is more affordable, up to 31%. We then present a fully-functional research
prototype of our system architecture, featuring among others: a) a network con-
troller that is capable of accepting workload communication pattern input and
re-configuring the network in a manner that optimizes application execution and
b) an end-system shim-layer to allow compute servers to route over our network
without modifications to running applications or the operating system. The con-
troller implements optimization heuristics presented in our previous work [1][2]
and exposes a high-level programming interface that can be use to try out further
topology optimization algorithms.

We deployed our software stack in a 40-servers/4-rack testbed in our lab and
used our experimental setup to compare the performance of communication-
intensive HPC kernels and pseudo-applications running over our architecture
against the performance obtained over equal-cost fat-tree setups. Our results
manifest that - at equal cost to fat-trees - our hybrid network system implemen-
tation manages to accelerate the workloads tested, yielding roughly up to 35%
faster application execution.

This paper is structured as follows. Section 2 puts past related research in
the context of our work. Section 3 presents our system architecture and its price
competitiveness against fat-trees. We outline in Section 4 the main components
of our system prototype that we used throughout our experimentation to ob-
tain the results reported in Section 5. Section 6 summarizes the findings and
contributions of this work and outlines future work in this field.

2 Related Work

Various hybrid interconnects have been proposed for high-performance clusters
[3] and datacenter architectures [4] [5] [6]. The basic differences among these
proposals can be found in the network level at which optical switching occurs,
in the number and rate of the optical ports per connection point, and in the use
of single vs. multi-hop connections over the optical network. In Helios [4], the
optical network interconnects pods (i.e. sets of racks comprising 1024 servers),
while in c-Through [5] and OSA [6] the basic block is the rack. Both [4] and [5]
report only single-hop transmissions over the optical network, while [6] consid-
ers multi-hop connectivity, however, without including this feature as part of its
topology re-configuration heuristic. It must be noted that including multi-hop
connections in the optimization makes the topology computation quickly unaf-
fordable for large systems and the implementation of the control software more
challenging.

Beyond the architectural features and algorithmic approaches that we inno-
vate on, this paper deviates from related work in the perspective we take on
the problem. That is, in addition to assessing price competitiveness of hybrid
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optical/electrical interconnects, addressing the required system adaptations and
showing viability, our end goal is to deliver on the untouched hypothesis as to
whether such systems lead to better performance for parallel/distributed appli-
cations and to what extent. Our workload-centric approach is reflected in our
work and specifically in this paper by developing a fully-functional prototype
used to evaluate the cost-constrained performance of target parallel workloads.

3 System Architecture and Competitiveness

Incrementally to the architectures mentioned in section 2, we are interested
in exploring the scalability limits posed by the hybrid architecture under the
constraint of using commercially available equipment (cf. section 4), as well as
comparing the cost competitiveness of the approach against currently employed
network solutions.

3.1 Data- and Control-Plane Architecture

We depict a full-scale embodiment of our system architecture in Figure 1, com-
prising 320 server racks and a dual network option: a) a high-speed single-level
circuit-switched network driven by high-speed (10Gbps in this embodiment) Eth-
ernet Top of Rack (TOR) switches (depicted as TOR-X in Figure 1) and b) a
lower-rate, packet-switched Ethernet network driven by lower-rate (1Gbps in this
embodiment) Ethernet TOR switches (depicted as TOR-B-X in Figure 1). The
server integration factor (32 servers/rack) stems from the currently ”standard”
64-port density of high-end 10Gbps Ethernet switches used as TOR switches,
allowing construction of full bisection bandwidth trees for racks of such inte-
gration. The high-speed network is implemented with commodity Micro Electro
Mechanical Systems (MEMS) optical switches that exhibit interesting features
(cost/port, rate-free, protocol-agnostic, low power consumption) to be used as
cluster/datacenter interconnects. The ability to arbitrarily cross-connect any
pair of ports of any MEMS switch enables direct low-latency connectivity be-
tween racks, as opposed to the cumbersome switching and high-latency that
multi-level electronic interconnects suffer from (e.g. fat-trees). Still, MEMS op-
tical switches suffer inherently from high - relative to the transmission time of
a typical packet or message size at 10Gbps - switching latency (in the order of
tenths of milliseconds) and therefore can only be perceived as circuit switching
elements, carrying high-volume, long-lived flows between pairs of racks in our
system. Lower-rate communication (e.g. short messages, barriers, application
signaling), occurs in our system via the lower-end electronic network built out of
inexpensive Ethernet switches that are arranged in a highly over-subscribed tree
topology (bisection bandwidth is 12.5% of the full in the embodiment shown in
Figure 1).

In the control-plane, the low-rate electronic part of our network architecture
can be realized with well-researched solutions (e.g. [7]) for implementing large-
scale networks over redundant topologies of Ethernet switches without applying
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Fig. 1. Cluster architecture comprising a hybrid optical/electrical network spanning
10240 servers at an integration factor of 32 servers/rack

modifications to hardware or protocol standards. We believe that such solutions
have matured, therefore we focus our research and system prototyping efforts on
the control-plane of the optical part of our network architecture. As shown in
Figure 1, all devices comprising the network (MEMS optical switches and TOR
switches) and server racks connect via a low-rate management network to a ded-
icated server hosting specialized software that implements a network controller.
The primary role of the network controller is to periodically, or upon applica-
tion request, configure the optical part of the network in a manner that benefits
the execution of parallel/distributed applications. At a high-level, the controller
delivers this in a three step process: a) ingest input specifying application task
mapping to server racks, b) calculate an optical network topology that maximizes
throughput, constrained on available network resources (spare optical ports) and
c) implement the computed optical network topology by applying correspond-
ing cross-connections to the array of MEMS optical switches and by applying
required state changes to TOR switches facing the optical MEMS switches. We
elaborate further in the workings of our network controller and the specificities
of the control-plane of the optical network part in section 4.

Our previous work [1] proposed efficient algorithms for solving steps a) and
b) of the above process and showed the performance improvement they bring
at various scales via simulation with application traces as input. The present
work closes the loop of this part by addressing step c) of the aforementioned
cycle in commodity systems, as well as by showing system-level feasibility and
performance improvement brought to real workloads in a real system prototype.
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Recognizing that in advance knowledge of the application communication pat-
tern cannot be assumed across all parallel applications, we limit the scope of
this work to a class of applications that we term ”static”. The term static refers
here to the fact that these workloads exhibit per application logic (e.g. mesh
simulations) a logical communication pattern that is invariant over application
executions and that can be profiled through a test execution. Extending the
scope of our research to embrace applications exhibiting dynamic communica-
tion patterns, as well as evaluate the performance impact of their co-existence
with static parallel applications is part of our ongoing work.

3.2 Competitiveness Analysis

Since the changes we are proposing are to a great extent disruptive and not
just incremental to an existing architecture, we assess in the following the es-
timated total list price of our network architecture and compare it against a
conventional electronic packet network of equal nominal bisection bandwidth
performance, namely a fat-tree implemented with top-end Ethernet switches
[7]. The fact that our architecture is employing solely commodity off-the-shelf
equipment is helpfull in assessing the price competitiveness of our approach. We
recognize that list prices can be highly volatile, subject to market demand and
the maturity of technology and therefore the following analysis can only serve
as a snapshot of today that may not endure over time. Still, we contend that
this is the only objective approach for drawing cost-related conclusions, when
it is nearly impossible to scientifically reason about any mid- or long-term price
trends (e.g. we had a hard time validating the cost trends reported in [4], even
two years after their appearance).

We start with pricing our hybrid optical/electrical network solution for a clus-
ter size of 10K server, equivalent to the system depicted in Figure 1. A hybrid
network of this size can be readily built today using commercially available 320-
port MEMS optical switches (e.g. Calient S320), while the rest of the equipment
is commonly used in building high-end clusters and datacenters. We list the
equipment description, corresponding prices per item and symbols used to refer
to each equipment type in Table 1. All list prices used were drawn from publicly
available sources [8], with the exception of the list price of the optical MEMS
switch port, for which we used an averaged representative list price after dis-
cussions we had with respective vendors. Implementing the three levels of the
low-rate electronic part of the hybrid network requires #S11G = 694 48-port 1G
switches, #S21G = 320 24-port 1G switches and #CC = 7680 copper cables. We
then calculate the total price of the optical part of the network, as a function
of the nominal bisection bandwidth of the optical network part. For this, we
use an integer parameter β that denotes the divisor that needs to be applied to
the full bisection bandwidth to derive the nominal bisection bandwidth of the
optical part of the network. For instance, β=1 corresponds to the full-bisection
bandwidth setup shown in Figure 1, while β=4 corresponds to applying 1:4
over-subscription to the network that optically connects racks (or equivalently,
that each server can source/sink at a maximum off-rack traffic rate of 2.5Gbps
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Table 1. List of equipment and corresponding list price/item used in the analysis

Symbol Equipment Name Equipment Description Price/Item [$]

S10G IBM RackSwitch G8264R 10Gbps Ethernet TOR switch 30,000
TLR IBM SFP+ SR Transceiver 10Gbps 850nm Transceiver 665
TSR IBM SFP+ LR Transceiver 10Gbps 1310nm Transceiver 1600
OPT MEMS Switch (96-320 ports) Price per optical port 340
S11G Juniper 48 Port 1Gb EX2200 1Gbps Ethernet Switch 3595
S21G Juniper 24 Port 1Gb EX2200 1Gbps Ethernet Switch 1995
CMM LC-LC 50μm Fiber Cable Multi-mode fiber cable 28
CSM 9μm Fiber Cable Single-mode fiber cable 25
CC Cat5 Copper Cable Copper cable for Gb Ethernet 10

at full network load). We note that over-subscription leads to fewer fiber links
between the TOR switches and the optical array and thus to a reduction in the
number of optical MEMS switches (”optical planes”) required. Following from
the above, implementing the optical part of the network for 10K servers requires
#OPT = 32

β 320-port MEMS optical switches, #TLR = 320·32
β LR-transceivers,

#CSM = 320·32
β single-mode fiber cables, #S10G = 320 10G Ethernet TOR

switches, #TSR = 320·32 SR-transceivers and #CMM = 320·32multi-mode fiber
cables. Next, we breakdown the equipment quantity required to realize a fully
electronic fat-tree (again parametrically to its bisection bandwidth) built out
of 64-port 10G low-latency Ethernet switches (e.g. IBM RackSwitch G8264R)
as in [7]. Due to space limitations, we defer here a concise presentation of the
fat-tree structure and dimensioning and refer the reader to [9]. Parametrically to
β carrying the semantic defined above, implementing an all-electronic fat-tree in
this manner requires three levels and particularly: #S10G = 320+ 320√

β
+ 160

β 10G

64-port Ethernet switches, #TSR = 10240 + 20480√
β

+ 20480
β SR-transceivers and

#TSR = 5120+ 10240√
β

+ 10240
β multi-mode fiber cables. We note that the

√
β factor

comes from the fact that over-subscription is applied in uniform multiplicative
steps as we move from the first to the third level of the fat-tree.

Using the price values listed in Table 1 and the item quantities calculated for
each network separately above, we calculated the total list price of a hybrid (resp.
a fat-tree) network interconnecting a 10K server cluster and plot the results at
various capacity levels in Figure 2. We observe that the hybrid network is by
31% cheaper at maximum capacity and remained cheaper compared to the all-
electronic fat-tree throughout for all capacity levels up to the minimum capacity
that is conceivable for the hybrid network (corresponding to β=32 or 10Gbps
exiting the rack using one optical MEMS switch).

We note here that the cluster size picked for our analysis is the maximum,
for we used the maximum size of MEMS switches that are commercially avail-
able today. Scaling such setups beyond this limit would require either building
denser switches (1024-port MEMS switches have been shown in-vitro [3]) or ex-
perimenting with multi-stage alignments of existing commercial optical switches
(constrained on optical performance requirements). The latter path forms part of
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Fig. 2. List price of a hybrid network (resp. a full-electronic fat-tree) interconnecting
a 10K server cluster at various capacity levels. The parameter β denotes the nominal
bisection bandwidth of the network as the fraction of full bisection bandwidth.

our future agenda for creating wider scale-out designs. Last, we note that there
is potential in enhancing our cost sizing with a sensitivity analysis on prices of
specific equipment. This forms a task of our future work on the problem.

4 Network Control and Host Adaptations

4.1 Network Controller

The role of the network controller is to ingest input expressing the communi-
cation requirements of a mapped workload, compute a ”good” configuration of
the (re-configurable) optical network for the given input and take all necessary
control-plane actions to enforce the computed configuration on all involved de-
vices. We depict a toy but illustrative example showing the steps taken by the
controller upon receiving a request to match the optical infrastructure to an input
workload in Figure 3. The input comes in the form of a traffic matrix, whereby
each matrix element corresponds to the (normalized) volume of communication
between two processing elements (cores). Following a clustering step to derive
the rack-level traffic matrix and given the physical connectivity (wiring between
TORs and optical switches) that the controller discovers during its initialization
phase, the controller computes in the next step a connectivity graph between
the racks involved, aiming at minimizing average traffic load throughout work-
load execution and thus speeding up workload completion. We haved presented
the theoretical and optimization underpinnings of these steps and evaluated the
performance of our topology configuration heuristic via simulation in [1]. We
have implemented these in our network controller prototype for the purpose of
showing viability and to obtain the performance evaluation results reported in
the next section.
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Fig. 3. Steps undertaken by the hybrid network controller to match the optical part
of the hybrid network to the input workload

In the next phase, the controller enforces the computed workload-specific
topology to the physical network. For this, it sends the right set of commands
(via the specialized TCP-based API) to all optical switches involved to cross-
connect the pairs of ports corresponding to the computed connectivity between
TOR switches. In parallel, the controller tags the TOR switch ports with VLAN-
IDs, whereby each circuit is assigned a distinct (in the broadcast domain it
touches) VLAN-ID. The reason we choose to operate our forwarding substrate
using VLANs is to allow parallel links, rings and generally setup of paths that
would otherwise be impossible, had we used Ethernet’s spanning tree routing.
A similar approach has been employed in [10] using static VLAN allocation,
which is though shown not to scale. Instead, we measured that our controller
is capable of installing VLANs for up to 32 TOR switch ports in less than 1.5
seconds and therefore we employ dynamic VLAN allocation for increased scal-
ability. Generally, the multi-threaded implementation of our controller achieves
state installation across all network devices in less than 2 seconds, which is a
negligible overhead compared to the runtime of scaled-out workloads. Last, it is
important to note that unlike alternative solutions, our system is able to utilize
”multi-hop” communication, i.e. have a flow traverse the optical array multiple
times until it reaches its destination TOR. This increases the search space for
good topologies, while we have also been able to obtain better sharing and thus
utilization of the optical resources.

4.2 End-System Support

We leverage on the vast set of configuration tools and networking software avail-
able at commodity servers to send/receive packets to/from the two networks
existing in the hybrid system, in fact without applying any modification to the
underlying operating system or the application(s). For this, we injected a cus-
tom translation shim layer into the network stack of each server. The translation
service uses as input the connectivity information communicated by the network
controller (see last step in Figure 3) and creates the required virtual network in-
terfaces accordingly. Given that each server has two network interfaces (leading
to the optical network or the low-rate electronic network), the shim layer needs
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to decide which interface to pick to forward the packets of a specific workload.
We accomplish this in a manner transparent to applications by having our shim
layer rewrite the IP source/destination header values of each packet using the
NAT feature of iptables. Specifically to the optical network case, the shim layer
rewrites the IP address headers in a way that the packets are routed via the
right VLAN and thus the circuit that leads to the destination rack of the pack-
ets. We defer here due to space limitations a more thorough presentation of the
internal workings of our shim layer, which we plan to report in future public
communication.

5 System Validation and Evaluation Results

We conducted various trials to validate our system prototype and targeted ex-
periments to compare the performance of our solution to that of standard elec-
tronic tree-based solutions. Our testbed comprised 40 servers (12 cores each)
mounted in 4 racks, eight 10G Ethernet ToR switches (IBM RackSwitch G8264)
and one MEMS optical switch with 96 bi-directional ports (Crossfiber Liteswitch
96). Each server connects via a 10G SR-transceiver to each rack’s ToR switch
and each of the 4 ToR switches that have servers attached connects via 10 LR
single-mode transceivers to the MEMS switch. We also used four additional 10G
Ethernet switches to create a slice of an all-electronic fat-tree network. Our net-
work controller ran on a dedicated server that connects via an 1G management
network to the management ports of the TOR switches and the optical switch,
as well as to all servers.

The rationale behind the creation of our experimental scenarios is as follows:
constrained on the scale of our prototype (10 fiber links from each TOR to the
optical switch), our goal was to compare instantiations of our hybrid network
prototype against equal-cost instantiations of an all-electronic fat-tree; and in
fact do so using real parallel workloads. To this end, we used our cost models to
obtain two scenarios, each comprising two equal-cost network instantiations: a)
scenario-1 compares a hybrid network with 6 TOR-to-optical fiber links against
a 1:25 over-subscribed fat-tree and b) scenario-2 compares a hybrid network with
20 TOR-to-optical fiber links against a 1:4 over-subscribed fat-tree.

Our use-case involves a 10K multi-tenant cluster (or datacenter) with 32
servers per rack and a user requesting to execute a parallel job. The user is
effectively allocated the requested number of servers in different racks. To ad-
dress the general case, where this allocation may lead to racks without physical
proximity - due to resource fragmentation or for better resilience against shared
risk failures - we force inter-rack communication in the three-level fat-tree case
to traverse the root of the tree. For scenarios 1 and 2 we assume the use of
10 and 8 servers in each of the 4 racks, respectively, and a uniform bandwidth
allocation to servers in each rack. As such, in both the hybrid and the fat-tree
networks the 10 servers in each rack in scenario-1 are allocated 1/3 of the avail-
able inter-rack bandwidth (8 Gbps and 2x10 Gbps for the tree and the hybrid
respectively), while the 8 servers in scenario 2 are allocated 1/4 of the available
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Fig. 4. Network configurations implementing the two experiment scenarios for the two
network types under test in our testbed

inter-rack bandwidth (2x10 Gbps and 5x10 Gbps for the tree and the hybrid
respectively). Figures 4a and 4b illustrate the instantiations of the fat-tree and
hybrid networks according to the two scenarios outlined above.

We executed the following MPI parallel applications over all four network
configurations: FFTW [11] which is a discrete Fast-Fourier Transform kernel,
the FT (discrete 3D fast Fourier Transform) kernel, the MG (Multi-Grid on a
sequence of meshes) kernel, and the SP (Scalar Penta-diagonal solver) pseudo-
application; the last three are part of the NAS Parallel Benchmarks (NPB)
suite [12]. For scenario-1 (40 servers in total) we used 4 input sizes for the
FFTW ranging from 1296x1296x1296 to 3024x3024x3024, while for scenario-2
(32 servers in total) we used again 4 input sizes ranging from 1152x1152x1152 to
2688x2688x2688 . For FT, MG, SP NAS benchmarks we executed class D and E
problem sizes. In the case of the hybrid network, the parallel execution involved
using our network controller stack and utilizing our VLAN and translation shim-
layer solution. Note that in the hybrid network configurations of both scenarios
the constructed topologies include loops, which would be broken by disabling
one or more link, if standard Ethernet switching was used. Instead, our VLAN-
based routing enabled the loops, thus yielding higher throughput over the same
network configuration.

Figure 5a shows the speedup results obtained in the set of experiments for
scenario-1 that is, for the case of 1:25 tree and the equivalent cost hybrid network
and 40 servers in total. In this context, speedup is defined as the ratio of the
completion time of a single application execution in the tree network over the
completion time in the hybrid network. Results show a measurable acceleration
across all tested workloads, reaching up to 30%. Figure 5b depicts the speedup
results for scenario-2, that is, for the case of 1:4 tree and the equivalent cost
hybrid network and 32 servers in total. The improvements in this scenario are
similar to those observed in the 1:25 case. For small size problems (small fft
problem sizes and NAS class D experiments) accelaration is low, for the capacity
provided to the network in both cases is enough to satisfy the communication
needs of the executed workloads. For large problems though, acceleration was
higher, up to 35%. These workloads are bandwidth demanding and there is a
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Fig. 5. Evaluation results of speedup achieved by the hybrid optical/electrical network
over the all-electronic fat-tree to the various workloads tested in scenario-1(left) and
scenario-2(right)

clear advantage of capacity in favor of the hybrid network, which accelerates the
tested workloads.

6 Conclusions

Despite all the research effort put on system specification, prototyping and eval-
uation of system features for hybrid optical/electrical interconnects in support
of large-scale server co-locations (HPC clusters and datacenters), none of these
efforts has to the best of our knowledge reached production deployment to date.
Although we recognize that the shift from an entirely packet-switched to a hy-
brid circuit-/packet-switched world is per se not easy, we contend that the above
is to a great extent due to the lack of evidence with regard to the benefit that
such a shift can bring to applications. To address this gap, this work presented
essentially a cost/benefit analysis for such systems. In particular, we delivered a
concise price analysis of a hybrid interconnect comprising commodity parts and
showed that it is cheaper compared to its most prominent competitor, namely
a full electronic fat-tree. To deliver on the benefit part, we prototyped a net-
work controller that computes efficient workload-input specific topologies and
is capable of orchestrating the control-planes of the various network devices
and the network stack of end-systems involved to create an optical substrate
transparent to applications using it. We deployed our system prototype in a 4-
rack testbed and showed through real experimentation that in most cases tested
parallel workloads are accelerated at an equal network investment with a state-
of-the-art solution.

Based on these promising findings, we are conducting work on expanding
the range of applications evaluated, as well as scaling-out our testbed to enable
larger-scale experiments. Our future agenda contains also dealing with applica-
tions with dynamically changing communication patterns and evaluating them
in a multi-application scenario.
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Abstract. Obtaining optimal data transfer performance is of utmost
importance to today’s data-intensive distributed applications and wide-
area data replication services. Doing so necessitates effectively utilizing
available network bandwidth and resources, yet in practice transfers sel-
dom reach the levels of utilization they potentially could. Tuning protocol
parameters such as pipelining, parallelism, and concurrency can signif-
icantly increase utilization and performance, however determining the
best settings for these parameters is a difficult problem, as network con-
ditions can vary greatly between sites and over time. In this paper, we
present four application-level algorithms for heuristically tuning proto-
col parameters for data transfers in wide-area networks. Our algorithms
dynamically tune the number of parallel data streams per file, the level
of control channel pipelining, and the number of concurrent file trans-
fers to fill network pipes. The presented algorithms are implemented as
a standalone service as well as being used in interaction with external
data scheduling tools such as Stork. The experimental results are very
promising, and our algorithms outperform existing solutions in this area.

Keywords: Application-level protocol tuning, throughput optimization,
wide-area networks, data-intensive applications, data replication.

1 Introduction

Despite the increasing availability of high-speed wide-area networks and the use
of modern data transfer protocols designed for high performance, file transfers in
practice often only attain fractions of theoretical maximum throughputs, leaving
networks underutilized and users unsatisfied. This fact is often due to a number
of confounding factors, such as underutilization of end-system CPU cores, low
disk I/O speeds, server implementations not taking advantage of parallel I/O
opportunities, traffic at inter-system routing nodes, and unsuitable system-level
tuning of networking protocols.

The effects of some of these factors can be mitigated to varying degrees
through the use of techniques such as command pipelining, transfer-level par-
allelism, and concurrent transfers using multiple control channels. The degree
to which these techniques are utilized, however, has the potential to negatively
impact the performance of the transfer and the network as a whole. Too little
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use of one technique, and the network might be underutilized; too much, and the
network might be overburdened to the detriment of the transfer and other users.
Furthermore, the optimal level of usage for each technique varies depending on
network and end-system conditions, meaning no combination of parameters is
optimal for every scenario.

Dynamic optimization techniques provide a method for determining which
combination of parameters is “just right” for a given transfer. This paper pro-
poses optimization techniques that try to maximize transfer throughput by
choosing optimal parallelism, concurrency, and pipelining levels through file set
analysis and clustering. Our algorithms also re-provision idle control channels
dynamically to improve the performance of “slower” file clusters, ensuring that
resources are effectively utilized.

In this paper, we present four application-level algorithms for heuristically
tuning protocol parameters for data transfers in wide-area networks. Our al-
gorithms can tune the number of parallel data streams per file (for large file
optimization), the level of control and data channel pipelining (for small file
optimization), and the number of concurrent file transfers to fill network pipes
(a technique useful for all types of files) in an efficient manner. The developed
algorithms are implemented as a standalone service as well as being used in
interaction with external data scheduling tools such as Stork [10,12]. The exper-
imental results are very promising, and our algorithms outperform other existing
solutions in this area.

2 Related Work

Liu et al. [14] developed a tool which optimizes multi-file transfers by opening
multiple GridFTP control channels. The tool increases the number of concur-
rent flows up to the point where transfer performance degrades. Their work
only focuses on concurrent file transfers, and other transfer parameters are not
considered.

Globus Online [1] offers fire-and-forget GridFTP file transfers as a service. The
developers mention that they set the pipelining, parallelism, and concurrency
parameters to fixed values for three different file sizes (i.e. less than 50MB, larger
than 250MB, and in between). However, the tuning Globus Online performs is
non-adaptive; it does not change depending on network conditions and transfer
performance.

Other approaches aim to improve throughput by opening flows over multiple
paths between end-systems [17,8], however there are cases where individual data
flows fail to achieve optimal throughput because of end-system bottlenecks. Sev-
eral others propose solutions that improve utilization of a single path by means of
parallel streams [2,6,16,23], pipelining [5,4,3], and concurrent transfers [13,11,14].
Although using parallelism, pipelining, and concurrency may improve through-
put in certain cases, an optimization algorithm should also consider system con-
figuration, since end-systems may present factors (e.g., low disk I/O speeds or
over-tasked CPUs) which can introduce bottlenecks.
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In our previous work [21], we proposed network-aware transfer optimization
by automatically detecting bottlenecks and improving throughput by utilizing
network and end-system parallelism.

We developed three highly-accurate models [24,22,9] which would require as
few as three sampling points to provide accurate predictions for the optimal
parallel stream number. These models have proved to be more accurate than
existing similar models [7,16] which lack in predicting the parallel stream number
that gives the peak throughput. We have developed algorithms to determine the
best sampling size and the best sampling points for data transfers by using
bandwidth, Round-Trip Time (RTT), or Bandwidth-Delay Product (BDP) [20].

3 Dynamic Protocol Tuning

Different transfer parameters such as pipelining, parallelism, and concurrency
play a significant role in affecting achievable transfer throughput. However, set-
ting the optimal levels for these parameters is a challenging problem, and poorly-
tuned parameters can either cause underutilization of the network or overburden
the network and degrade the performance due to increased packet loss, end-
system overhead, and other factors.

Among these parameters, pipelining specifically targets the problem of trans-
ferring a large numbers of small files. In most control channel-based transfer pro-
tocols, an entire transfer must complete and be acknowledged before the next
transfer command is sent by the client. This may cause a delay of more than one
RTT between individual transfers. With pipelining, multiple transfer commands
can be queued up at the server, greatly reducing the delay between transfer
completion and the receipt of the next command. Parallelism sends different
portions of the same file over parallel data streams (typically TCP connections),
and can achieve high throughput by aggregating multiple streams and getting
an unfair share of the available bandwidth. Concurrency refers to sending mul-
tiple files simultaneously using parallel control channels, and is especially useful
for taking advantage of I/O concurrency in parallel disk systems.

The models developed in our previous work [21,24,22,9] lay the foundations of
the dynamic protocol tuning algorithms presented in this paper, where we uti-
lize all three parameters in combination to heuristically determine near-optimal
network throughput.

In this paper, we present four dynamic protocol tuning algorithms:

1. The “Single-Chunk (SC)” approach, which divides the set of files into chunks
based on file size, and then transfers each chunk with its optimal parameters;

2. the “Multi-Chunk (MC)” approach which likewise creates chunks based
on the file size, but, rather than scheduling each chunk separately, it co-
schedules and runs small-file chunks and large-file chunks together in order
to balance and minimize the effect of poor performance of small file transfers;

3. the “Pro-Active Multi-Chunk (ProMC)” approach, which, instead of allo-
cating channels equally among chunks, considers chunk size and type, and
improves the performance if small chunks dominate the dataset; and
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4. the “Max Fair MC (FairMC)” approach, which aims to make use of simulta-
neous chunk transfers but also tries to be fair in terms of network resource
usage by limiting the maximum number of simultaneous chunk transfers.

3.1 Single-Chunk (SC) Algorithm

Files with different sizes need different transfer parameters to obtain optimal
throughput. For example, pipelining and data channel reuse would mostly im-
prove the performance of small file transfers, whereas per-file parallelism would
be beneficial if the files are large. Optimal concurrency levels for different file
sizes would be different as well. Instead of using the same parameter combina-
tions for all files in a mixed dataset, we partition the dataset into chunks based
on file size and Bandwidth Delay Product (BDP), and use different parameter
combinations for each chunk.

As shown in Algorithm 1, we initially partition files into different chunks, then
we check if each chunk has a sufficient number of files using the mergePartitions
subroutine. We merge a chunk with another if it is deemed to be too small to be
treated separately. After partitioning files, we calculate the optimal parameter
combination for each chunk in findOptimalParameters. When calculating the
density of a chunk, we take the average file size of the chunk and find its density
in a similar way we do in mergePartitions.

Pipelining and concurrency are the most effective parameters at overcoming
poor network utilization for small file transfers, so it is especially important to
choose the best pipelining and concurrency values for such transfers. We set the
pipelining values by considering the BDP and average file size of each chunk
(lines 23, 27, 31 and 35); set the parallelism values by considering the BDP,
average file size, and the TCP buffer size (lines 24, 28, 32, and 36); and set the
concurrency values by considering the BDP, average file size, number of files in
each chunk, and the maximum concurrency level (lines 25, 29, 33, and 37) in
Algorithm 1.

As the average file size of a chunk increases, we decrease the pipelining value
since it does not further improve performance, and can even cause performance
degradation by poorly utilizing concurrent control channels. The method of se-
lecting parallelism prevents using unnecessarily large parallelism levels for small
files and insufficiently small parallelism levels for large files. Concurrency is set
to larger values for small files, whereas for large files it is limited to smaller val-
ues, as higher concurrency values might cause unfair usage of end-system and
network resources.

We tested our algorithms with concurrency levels up to 10. Although higher
concurrency levels could possibly further increase throughput, the testing was
performed on a shared testbed where it was against policy to open more than
10 file transfer connections at a time. Presumably many other shared network
environments implement similar policies. Furthermore, throughput gains were
found to experience diminishing returns as the concurrency level was increased.
These factors led us to limit the maximum concurrency level our algorithms
could reach to some safe fixed value – specifically 10.
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Algorithm 1. — Partitioning Dataset and Setting Parameter Values

1: function partitionFiles(allFiles,BDP)
2: Chunk Small, Middle, Large, Huge
3: while allF iles.count() > 0 do
4: Filef = allF iles.pop()
5: if f.size < BDP

10 then

6: Small.add(f)
7: else if f.size < BDP

2 then

8: Middle.add(f)
9: else if f.size < BDP ∗ 20 then
10: Large.add(f)
11: else
12: Huge.add(f)
13: end if
14: end while
15: allChunks.add(Small,Middle,Large,Huge)
16: mergePartitions(allChunks)
17: return allChunks
18: end function

19: function findOptimalParameters(chunk,BDP,bufferSize,concurrency)
20: Density d = findDensityofPartition(chunk)
21: avgFileSize = findAverage(chunk)
22: if d == SMALL then

23: pipelining =
⌈

BDP
avgF ileSize

⌉
− 1

24: parallelism = Min(
⌈

BDP
bufferSize

⌉
,
⌈

avgFileSize
bufferSize

⌉
) + 1

25: concurrency = Min( BDP
avgFileSize , chunk.count(), concurrency)

26: else if d == MIDDLE then

27: pipelining =
⌈

BDP
avgF ileSize

⌉
28: parallelism = Min(

⌈
BDP

bufferSize

⌉
,
⌈

avgFileSize
bufferSize

⌉
) + 1

29: concurrency = Min( BDP
avgFileSize , chunk.count(), concurrency)

30: else if d == LARGE then

31: pipelining =
⌈

BDP
avgF ileSize

⌉
+ 1 � This chunk should have pipelining

32: parallelism = Min(
⌈

BDP
bufferSize

⌉
,
⌈

avgFileSize
bufferSize

⌉
) + 2

33: concurrency = Min(2, chunk.count(), concurrency)
34: else if d == HUGE then

35: pipelining =
⌈

BDP
avgF ileSize

⌉
− 1 � Pipelining will be zero in most cases

36: parallelism = Min(
⌈

BDP
bufferSize

⌉
,
⌈

avgFileSize
bufferSize

⌉
) + 2

37: concurrency = Min(2, chunk.count(), concurrency)
38: end ifreturn pipelining,parallelism,concurrency
39: end function

After deciding the best parameter combination for each chunk, the Single-
Chunk (SC) algorithm transfers each chunk one-by-one.

3.2 Multi-Chunk (MC) Algorithm

In the Multi-Chunk (MC) method, the focus is mainly on minimizing the effect
of small file chunks on the overall throughput. Based on the results obtained
from the SC approach, we deduced that even after choosing the best parameter
combination for each chunk, the throughput obtained during the transfer of
the small file chunks (called Small and Middle in Algorithm 1) is significantly
worse compared to large chunks (Large and Huge in Algorithm 1) due to the
high overhead of reading too many files from disk and underutilization of the
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Algorithm 2. — Pro-Active Multi-Chunk (ProMC) Algorithm

1: function transfer(source,destination,BW,RTT,concurrency)
2: BDP = BW ∗ RTT
3: allF iles = fetchFilesFromServer()
4: chunks = partitionFiles(allF iles, BDP )
5: for i = 0; i < chunks.length; i+ + do
6: if chunks[i] == SMALL then
7: weights[i] = 6 ∗ chunks[i].size
8: else if chunks[i] == MIDDLE then
9: weights[i] = 3 ∗ chunks[i].size
10: else if chunks[i] == LARGE then
11: weights[i] = 2 ∗ chunks[i].size
12: else if chunks[i] == HUGE then
13: weights[i] = 1 ∗ chunks[i].size
14: totalWeight = totalWeight + weights[i]
15: end if
16: end for
17: for i = 0; i < chunks.length; i + + do
18: weights[i] = weights[i]/totalWeight � Calculate proportional weight of each chunk
19: channelAllocation[i] = 	concurrency ∗ weights[i]

20: end for
21: transferChunks(chunks) � Run chunks concurrently
22: end function

network pipe. Depending on the weight of small files relative to the total dataset
size, overall throughput can be much less than the throughput of large file chunk
transfers. Thus, we developed the MC method which aims to minimize the effect
of poor transfer throughput of a dataset dominated by small files.

The MC method distributes data channels among chunks using round-robin in
the order of Huge–Small–Large–Middle. The ordering of chunks provides better
chunk distribution if the number of channels is less than the number of chunks.
After channel distribution is completed, MC schedules chunks concurrently using
the calculated concurrency level for each chunk.

The estimated completion time for each chunk is calculated every five seconds
by dividing the remaining data size by the throughput of the chunk (i.e. the sum
of the throughput for all channels for a given chunk). When the transfer of all
files in a chunk is completed, the channels of the chunk are scheduled for other
chunks based on their estimated completion time.

3.3 Pro-Active Multi-Chunk (ProMC) Algorithm

The way the MC approach distributes channels among chunks might be non-
optimal if the weights of chunks are different. For example, if we have a dataset
dominated by small files, then round-robin scheduling of channels may lead to
sub-optimal channel allocation. This can cause sub-optimal transfer throughput
since large chunks can be transferred more quickly than smaller chunks. The
Pro-Active Multi-Chunk (ProMC) approach concentrates on more effectively
distributing chunks among channels to improve the effectiveness of concurrency
between the small and large chunks.

Channel allocation in the ProMC approach is demonstrated in Algorithm 2.
ProMC also considers the type of a chunk when calculating its weight since the
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Algorithm 3. — Max-Fair Multi-Chunk (FairMC) Algorithm

1: function transfer(BW,RTT,BufferSize)
2: BDP = BW*RTT
3: allFiles = fetchFilesFromServer()
4: chunks = partitionFiles(allFiles,BDP)
5: if chunks contains Huge&Large chunk c then
6: c.channels + + � Allocate a channel for huge&large chunk
7: concurrency − −
8: if chunks contains Small&Middle chunks then
9: allocateChannels(Small,Middle,concurrency); � If there exist Small&Middle chunks

then allocate rest of channels to them
10: else
11: allocateChannel(Large,Huge,1);
12: end if
13: else
14: allocateChannel(Small,Middle,concurrency) � If there is no large chunk, then distribute

given channels among Small&Middle chunks
15: end if
16: transferChunks(chunks) � Run chunks concurrently
17: end function

transfer time of a chunk heavily depends its file distribution. Another way of
achieving fairness among chunks in ProMC is dynamic channel allocation. It
calculates the transfer completion time of each chunk periodically (by default, it
is set to check every five seconds, similar to MC). If a chunk’s completion time
is calculated to be significantly less than another chunk’s completion time for
three consecutive periods, then a channel is taken over by the slow chunk from
the faster chunk. Since channel transfer from one chunk to another is a costly
operation, the threshold must be chosen carefully when comparing completion
time differences. Also, rather than deciding on channel allocation after each
period, ProMC waits three periods to make sure the estimated completion time
difference is not a temporary condition.

3.4 Max-Fair Multi-Chunk (FairMC) Algorithm

The idea behind the Max-Fair Multi-Chunk (FairMC) approach is to make use
of concurrent chunk transfers and to keep network and end-system utilization
at a fair level. FairMC first calculates how many channels are needed for each
chunk. Then, if small and large chunks exist, it opens only one channel for large
chunks and uses the rest of the available channels for small chunks as shown
in lines 5-9 of Algorithm 3. Otherwise, the channels are shared between small
or large chunks as shown in lines 11 and 14. The goal here is to achieve high
performance throughput without violating network fairness policies.

4 Performance Evaluation

We tested our experiments on XSEDE [18] and LONI [15] production-level high-
bandwidth networks. Although both of the networks have 10G network band-
width between sites, XSEDE provides higher throughput in end-to-end (disk-to-
disk) transfers despite the high RTT between its sites. This is mainly due to the
highly tuned and parallelized disk sub-systems at the XSEDE sites.
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Table 1. Network specifications of test environments

Specs XSEDE LONI
(Lonestar-Gordon) (Blacklight-Trestles) (Queenbee-Painter)

Bandwidth 10 Gbps 10Gbps 10 Gbps

RTT 60 ms 71 ms 10 ms

TCP Buffer Size 32 MB 32 MB 16 MB

BDP 75 MB 90 MB 9 MB

On XSEDE, we tested our dynamic protocol tuning algorithms between two
different site pairs – Lonestar-Gordon and Blacklight-Trestles – with specifica-
tions given in Table 1. We also tested our algorithms using two different datasets
where file sizes range between 3MB and 20GB. The datasets differ in the pro-
portion of small files to the total dataset size. In the first one (referred to as
“mixed”), small files are almost 35-40% of the total dataset, whereas they make
up 55-65% of the second dataset (referred to as “small”). The purpose of using
two different datasets is to demonstrate how our algorithms perform when the
dataset is dominated by small or large files.

To analyze the effects of different parameters on the transfer of different file
sizes, we initially conducted experiments for each of the parameters separately,
as shown in Figure 1. We transferred each dataset, only changing one parameter
(i.e., pipelining, parallelism, or concurrency) at a time to observe the individ-
ual effect of each parameter. Then we introduced other parameters one-by-one.
These results show that concurrency is the most influential parameter for all
file sizes on both networks, with parallelism being the second most. For this
reason, we use concurrency as the pivot parameter in the comparison of differ-
ent algorithms in this section. In all of our algorithms, it is assumed that RTT,
bandwidth, and TCP buffer capacities are known beforehand. However, one can
easily obtain RTT and TCP buffer capacity with negligible overhead. Available
bandwidth can also be measured via bandwidth estimator tools (e.g. Iperf) with
the cost of a couple of seconds.

We compared the performance of our four dynamic protocol tuning algorithms
with Globus Online [1], PCP [19], and optimized globus-url-copy (GUC). Globus
Online is a well-known data transfer service which uses a heuristic approach for
transfer optimizations. The heuristic they use is similar to our basic Single-
Chunk (SC) method in terms of dividing the dataset into chunks and running
each chunk sequentially using different parameter sets. However, SC and Globus
Online differ in the way they divide the chunks and in choosing the parameter set
for each chunk. PCP employs a similar divide-and-transfer approach like SC and
Globus Online using its own specific heuristic. For GUC, we set the pipelining to
30, parallelism to 4, and changed concurrency to different values (specifically, 2,
6, and 10) for different runs. We chose the pipelining and parallelism parameters
in a way that they give close-to-best results based on our prior observations.

Results for Globus Online transfers are shown for concurrency level two as
it always uses two channels for every chunk it creates. Although the PCP al-
gorithm does not use a statically defined concurrency level, we observed that it
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Fig. 1. Effect of combining parameters on throughput

generally choses a concurrency level between one and three; we set its perfor-
mance histogram on concurrency level two. When concurrency level is set to two
for all algorithms, almost all of our dynamic tuning algorithms perform better
than PCP, Globus Online, and GUC. As we increase the concurrency level (as
our dynamic algorithms do so), we can see significant performance improvement
for all algorithms. However, SC is unable to improve the performance after con-
currency level six while MC makes use of concurrency more effectively and its
performance continues to increase in proportion to the concurrency level.

FairMC also improves in performance as concurrency increases. However, it
does not perform as well as MC and ProMC, since it limits concurrency levels
for large files and aims for fairness in lieu of maximum performance. ProMC and
MC achieve similar performance in this case, since ProMC plays a significant
role when small files dominate the data set. ProMC and MC perform better
than GUC for all concurrency levels, which is mostly due to the efficient channel
management of these two algorithms.
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Fig. 2. Disk-to-disk transfer performance comparison with the mixed dataset

Figures 2(a) and 2(b) show the performance of optimization methods when
used between different site pairs on XSEDE for the same dataset. Since disk
read/write performance on Blacklight-Trestles is less than that on Gordon-
Lonestar, throughput values obtained between these hosts are relatively smaller.
GUC performance is very low compared to MC, since, when the pipelining is
set in the GUC transfer, it statically sets the pipelining level for each channel
to the number of transfer tasks. This means that it is possible for files to be
assigned to the channels unequally. For example, one channel can be assigned
to transfer the set of files contributing to the dominant portion of total dataset
size. This will cause inefficient usage of channels, since, even if some channels
finish their transfer tasks earlier, they will not be able to help others by sharing
the remaining tasks.

We observed that LONI end-system disk performance is much lower than on
XSEDE sites. This affected the results we obtained from LONI considerably as
shown in Figure 2(c). Although the increased concurrency contributed positively
to the throughput on LONI, the improvement is not as noticeable as it is on
XSEDE.

In Figure 3, we observe that ProMC performed better than MC for almost
all concurrency levels, as it allocates the channels to chunks more efficiently. It
also monitors each chunk’s performance and acts to re-allocate a channel from
one chunk to another to minimize the negative effect of small file transfers on
overall transfer performance.
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Fig. 3. Disk-to-disk performance comparison with the small file dominant dataset

5 Conclusions

We have presented four application-level algorithms for heuristically tuning pro-
tocol parameters for data transfers in wide-area networks. The parameters dy-
namically tuned by our algorithms (parallelism, pipelining, and concurrency
levels) have shown to be very important factors in determining the ultimate
throughput and network utilization obtained by many data transfer applica-
tions. Though determining the best combination for these parameter values is
not a trivial task, we have shown that our algorithms can choose parameter
combinations which yield demonstrably higher throughputs than those used in
unoptimized transfers or chosen by less sophisticated heuristics.

Our algorithms were designed to be client-side techniques and operate en-
tirely in user space, and thus special configurations at the server side or at the
kernel level are not necessary to take advantage of them. The algorithms can be
implemented as standalone transfer clients or as part of an optimization library
or service. We plan to include these (and future algorithms based thereupon)
in the Stork data scheduler [10,12] as well as our new Cloud-hosted transfer
optimization suite, StorkCloud.

Acknowledgments. This project is in part sponsored by NSF under award
numbers CNS-1131889 (CAREER), OCI-0926701 (STCI-Stork), and CCF-
1115805 (CiC-Stork).
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Topic 14+16: High-Performance and Scientific

Applications and Extreme-Scale Computing

(Introduction)

Turlough P. Downes, Sabine Roller, Ari P. Seitsonen, Sophie Valcke,
David Keyes, Marie-Christine Sawley, Thomas Schulthess, and John Shalf

Topic 14 and 16 Committees

As our understanding of the world around us increases it becomes more chal-
lenging to make use of what we already know, and to increase our understanding
still further. Computational modeling and simulation have become critical tools
in addressing this challenge. The requirements of high-resolution, accurate mod-
eling have outstripped the ability of desktop computers and even small clusters
to provide the necessary compute power. Many applications in the scientific
and engineering domains now need very large amounts of compute time, while
other applications, particularly in the life sciences, frequently have large data
I/O requirements. There is thus a growing need for a range of high perfor-
mance applications which can utilize parallel compute systems effectively, which
have efficient data handling strategies and which have the capacity to utilise
current and future systems. The High Performance and Scientific Applications
topic aims to highlight recent progress in the use of advanced computing and
algorithms to address the varied, complex and increasing challenges of modern
research throughout both the “hard” and “soft” sciences. This necessitates being
able to use large numbers of compute nodes, many of which are equipped with
accelerators, and to deal with difficult I/O requirements.

Following seven orders of magnitude improvement in performance on appli-
cations over the past 24 years the road to extreme performance is encounter-
ing different challenges and becoming much steeper. Traditionally, our scientific
computing code base is focused on optimizing floating point operations and im-
proving the execution rate of those that remain, but this will not suffice in the
future. On one hand, diverging exponentials in hardware subsystem performance
require more attention to parallel programming. High concurrency and power-
efficient design of the individual cores bring opposite pressures: greater data lo-
cality and greater freedom to redistribute data and computation. For reasons of
energy efficiency and system acquisition cost, we must now focus on squeezing
out synchronizations, total memory footprint, and limiting memory transfers.
On the other hand, scientific applications are become more complex, for ex-
ample, in order to address multiscale/multiphysics, reinforcing the requirements
for numerical accuracy, synchronization and resiliency. Rethinking programming
models, algorithmic implementations, and even mathematical models preferred
as starting points will therefore be major milestones on the way to extreme
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scale. Topic 16 “Extreme-Scale Computing”1 therefore covers papers charting
the path of extreme simulation and data analytics in science and engineering
onto emerging architectures, at all levels of the modeling chain.

The papers accepted for these topics address issues from scaling to large num-
bers of compute nodes where the algorithm in use makes this an inherently chal-
lenging prospect through to community detection in networked environments.
Two papers are in what might be generally recognised as traditional HPC areas:
ocean modeling and systems biology. A third paper tackles directly the chal-
lenge of getting data efficiently to the relevant compute device within a node
in the context of bioinformatics. The subject matter of the remaining paper in
this track reflects the broadening relevance of high performance computing and
applications and it addresses the problem of identifying communities in online
environments. We believe the collection of papers assembled for this topic are
both excellent and inspiring and we invite you to take part in the growth of high
performance applications through reading and being provoked by the research
of our colleagues.

Hu et al. demonstrate a novel strategy for dramatically improving the scal-
ability of the barotropic mode in the Parallel Ocean Program in “A Scalable
Barotropic Mode Solver for the Parallel Ocean Program”. Their approach
achieves a significant reduction in execution time of the POP. In “Heteroge-
neous Combinatorial Candidate Generation” Khalid et al. present an approach
for enumerating elementary flux modes using compute nodes enabled with GPU
accelerators. The key point here is that while significant advances have been
made in addressing this challenge for shared memory and SMP systems, not
much work has yet addressed accelerating this process in the context of hetero-
geneous compute nodes. Förster and Naumann deal with the issue of using algo-
rithmic differentiation by source transformation in combination with OpenMP
compiler directives in “Solving a Least-Squares Problem with Algorithmic Dien-
tiation and OpenMP”. The exemplar problem, as indicated in the title, is that
of least-squares fitting, which is a widely applicable algorithm. The speed-ups
achieved are significant and the memory footprint of the code is reduced. Cheong
et al. in “Hierarchical Parallel Algorithm for Modularity-Based Community De-
tection using GPUs” make use of GPUs and multiple levels of parallelism in
finding community detection to great effect. In addition to offering a speed-up
of a factor of 5, the proposed algorithm finds higher quality communities. Fi-
nally, in “Streaming Data from HDD to GPUs for Sustained Peak Performance”
Beyer & Bentinesi deal with the difficult problem of shipping large amounts of
data from disk to the desired compute element, in this case one or more GPUs.
The application is in genomics and, as such, the main bottleneck in this prob-
lem is data transport. The method presented shows a significant speed-up in
comparison to an optimised CPU implementation, and also scales well with the
addition of extra GPUs to the compute node.

1 Topic 16 “Extreme-Scale Computing” was introduced for Euro-Par 2013 and did
not receive a significant number of submissions. Therefore, the Program Committee
decided to merge it with Topic 14.



A Scalable Barotropic Mode Solver

for the Parallel Ocean Program

Yong Hu1,2, Xiaomeng Huang1, Xiaoge Wang2, Haohuan Fu1,
Shizhen Xu1,2, Huabin Ruan1,2, Wei Xue1,2, and Guangwen Yang1,2

1 Ministry of Education Key Laboratory for Earth System Modeling,
Center for Earth System Science, Tsinghua University, Beijing, 100084, China

2 Tsinghua National Laboratory for Information Science and Technology (TNList)
{huyong11,xsz12,rhb09}@mails.tsinghua.edu.cn,

{hxm,wangxg,haohuan,xuewei,ygw}@tsinghua.edu.cn

Abstract. This paper represents a novel strategy to improve the scala-
bility of the barotropic mode in the Parallel Ocean Program (POP), by
theoretically analyzing the barotropic communications bottleneck. POP
discretizes the elliptic equations of the barotropic mode into a linear sys-
tem Ax = b and solves it using the Preconditioned Conjugate Gradient
(PCG) method. PCG scales poorly on distributed systems because of
the time-consuming global reductions needed by the inner products in
each iteration. A performance model is developed to quantify the scaling
bottleneck of PCG. Based on this model, the classical Stiefel iteration
(CSI), which was originally supposed to be less efficient than PCG, is
identified as being promising for massive parallelism. In contrast to PCG,
the recurrence parameters of CSI are determined by the spectrum of the
coefficient matrix A instead of the inner product of the residuals in pre-
vious iterations. The Lanczos method is used to resolve the difficulty
of estimating the eigenvalues of the large-scale matrix A. It constructs a
small-scale tridiagonal matrix that has eigenvalues close to A. By replac-
ing PCG with CSI, global reductions and their inherent poor scalability
are eliminated in the barotropic mode. The implementation of CSI in
POP with a 0.1 degree resolution can accerlate one barotropic step by
five times, from 1.23s to 0.26s, on 15,000 cores.

Keywords: Massive Parallelism, Preconditioned Conjugate Gradient,
Classical Stiefel Iteration, Parallel Ocean Program, Barotropic Mode.

1 Introduction

Much research in high performance computing now focuses on how to adapt sci-
entific applications for massive parallelism. Without scalable applications, large
supercomputers cannot provide the application acceleration that leads to scien-
tific progress in many important problems, such as ocean modeling.

Numerical ocean models that run on supercomputers will increase our ability
to simulate and comprehend oceanic processes, monitor and predict the state
of the oceans. The computational requirements of ocean simulation will become
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enormous as the resolution of ocean models increases, so optimization for massive
parallelism is essential in ocean models.

In this paper, we focus on the performance optimization of POP, which is an
important multi-agency ocean model that was developed at Los Alamos National
Laboratory and is used for global ocean modeling. POP has been widely used for
eddy-resolving ocean simulations[1] and coupled ocean-ice and atmosphere-ocean
simulations[2] and was officially adopted as a component of the famous Com-
munity Earth System Model (CESM). POP utilizes three-dimensional primitive
equations with hydrostatic and Boussinesq approximations. To avoid the severe
time step restrictions imposed by fast waves, it divides the time integration into
two parts: the baroclinic mode, which describes the original dynamic process in
three dimensions, and the barotropic mode, which solves the vertically-integrated
momentum and continuity equations[3].

Much attention is currently focused on the performance of POP, especially
the poor scaling of the barotropic mode. Jones et al. [4] tested the portability of
POP 1.4.3 on both vector architectures and commodity clusters and found that
the baroclinic mode is dominated by computation, while the barotropic mode
is dominated by communications overhead, including halo updates and global
reduction operations. Stone et al. [5] found that the time consumption ratio
of the barotropic mode increases from 10% on hundreds of processors to more
than 50% on more than 10,000 processors. Worley et al. [6] and Dennis et al. [7]
tested POP 2.0.1 on nearly 30,000 cores as a component of CESM. They found
that POP is the most expensive component in most production simulations and
confirmed that the performance of POP at large process counts is dominated by
the communications overhead in the barotropic mode.

The main reason for the poor scalability of the barotropic mode is the implicit
solver used for the linear system. The barotropic mode of POP is approximated
as Ax = b, and a typical PCG solver is used to solve this linear system. The
PCG solver involves two inner products in each iteration. When harnessing hun-
dreds of thousands processors, the global communications and synchronization
operations needed by the inner product becomes the main bottleneck. There
are currently many solutions for reducing the negative effect of the PCG solver.
Some solutions attempt to reduce the global communications overhead[8] and to
overlap communication with computation[9]. Other solutions use land elimina-
tion and load-balance strategies[10, 11] to decrease the number of processes and
the associated global reduction overhead.

These solutions are somewhat efficient. However, they are not intended to
eliminate the root of this problem, which is the global reduction overhead. In
this paper, we first construct a performance model of the PCG solver to quanti-
tatively analyze the scalability of the barotropic mode. The model identifies the
gradual increase of global communications as the source of the scalability bot-
tleneck. Accordingly, we design a novel and scalable solver based on the classical
Stiefel iteration (CSI) to break this bottleneck. The recurrence parameters of
CSI are determined by the spectrum of the coefficient matrix A instead of the
communication-intensive inner product of the residuals of previous iterations.
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This feature makes CSI more scalable than PCG on massively parallel architec-
tures due to the elimination of global reduction. The Lanczos method is used
to estimate the eigenvalues of A. The Lanczos method constructs a low-order
tridiagonal matrix T that has eigenvalues close to A and thus resolves the dif-
ficulty of directly obtaining the eigenvalues of A. The extra cost of estimating
the eigenvalues introduced by CSI is as low as one barotropic step. Experiments
show that PCG scales well on fewer than 1,000 cores but that the execution
time of PCG increases when more than 5,000 cores are used. In contrast, CSI
scales well until 10,000 cores are used, and it reduces the execution time of one
barotropic mode from 1.23 seconds to 0.26 seconds on 15,000 cores.

The remainder of this paper is organized as follows. Section 2 reviews the
mathematical model of the barotropic mode of POP and constructs a perfor-
mance model to evaluate the scalability of the iterative methods. Section 3 in-
troduces the design of CSI in POP. Section 4 presents experiments that compare
the scalabilities of PCG and CSI on various numbers of cores. Finally, related
work is described in section 5 and and the conclusion is presented in section 6.

2 Barotropic Mode Review and Bottleneck Analysis

The main procedure of the barotropic mode of POP is to solve an elliptic system
of the sea surface height (SSH) [3]. To damp the computational modes associated
with gravity waves and Rossby waves raised by pure leapfrog discretization, POP
adopts an implicit scheme in the barotropic mode and simplifies the elliptic
equations as a linear system Ax = b.

The implicit elliptic equations of SSH in POP can be expressed as follows:

[∇ ·H∇− φ(τ)]ηn+1 = ψ(ηn, ηn−1, τ) (1)

where H is the depth of the ocean bottom, φ is a function of the timestep τ , ηn

is the SSH at the n-th time step, and ψ represents a function of previous states.
In POP, equation (1) is discretized on a two dimensional grid using a nine-

point stencil, as shown in Fig. 1. A0
i,j , AN

i,j , AE
i,j and ANE

i,j are symmetrical
coefficients between grid point (i, j) and its neighbors, and are determined by
H , τ and the grid lengths. The stencil confined to grid point (i, j) is

A0
i,jηi,j +AE

i,jηi+1,j +AN
i,jηi,j+1 +ANE

i,j ηi+1,j+1 +ANE
i−1,jηi−1,j+1

+AE
i−1,jηi−1,j +ANE

i−1,j−1ηi−1,j−1 +AN
i,j−1ηi,j−1 +ANE

i+1,j−1ηi,j−1 = ψi,j (2)

In the global domain, the stencil becomes Ax = b. A is a block tridiagonal matrix
composed of coefficients A0, AN , AE and ANE , provided that the grid points
are ordered along latitude and longitude. Equation (2) shows that A has only
nine nonzero elements in each row. For massive parallelism, POP divides the
global domain into blocks and distributes them to processes. Each process only
computes the evolution procedures related to the grids in its own block, and
maintains a halo region to update data with its neighbors.
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Fig. 1. Grid domain decomposition of POP

For simplicity, in the remainder of this paper, we assume that the global
domain size is N ×N , and that it is divided into m×m blocks with size of n×n
(n = N/m). Let Ã be the coefficient matrix associated with the block B(k, l).
Ã is a diagonal block matrix of A with a size of n2 × n2 and has at most nine
nonzero elements in each row. Thus, matrix-vector multiplication of Ãx̃ has 9n2

times of float multiplication operations rather than n2 × n2 operations.

2.1 PCG Solver

The classical conjugate gradient method with a diagonal preconditioner M =
Λ(A) is used as the default barotropic solver in POP because of its efficiency in
small-scale parallelism. The procedure of PCG is shown in Algorithm 1.

Algorithm 1. Preconditioned Conjugate Gradient solver

Require: Coefficient matrix Ã, initial guess x0 and b associated with grid block Bi,j

// do in parallel with all processes
1: r0 = b− Ãx0, s0 = 0; β0 = 1, k = 0;
2: while k ≤ kmax do
3: k = k + 1; r′k−1 = M−1rk−1; /* diagonal preconditioning */

4: β̃k = rTk−1r
′
k−1; βk = global sum(β̃k); /* global reduction */

5: sk = r′k−1 + (βk/βk−1)sk−1; s′k = Ãsk; /* matrix-vector multiplication */
6: update halo(s′k); /* boundary communication */
7: α̃k = sTk s

′
k; αk = βk/global sum(α̃k); /* global reduction */

8: xk = x̃k−1 + αksk; rk = rk−1 − αks
′
k;

9: if k%nc == 0 then check convergence;
10: end while

As shown in Algorithm 1, the PCG solver mainly contains three parts: compu-
tation, boundary updating, and global reduction. Computation involves matrix-
vector and vector-vector multiplication and vector scaling. Boundary communi-
cation is needed to update the halo area after the matrix-vector multiplication.
The time-consuming global reduction process occurs during the inner product
operations.
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2.2 PCG Performance Model

Assume that P = m2 processes are used in the barotropic phase and that each
process has exactly one grid block. The total time of the barotropic mode is equal
to the execution time of the PCG solver on any block B(i, j). Set Tc, Tb and
Tg to be the execution time of the computation, boundary updating and global
reduction, respectively, in one solver iteration. In Algorithm 1, the computation
involves four vector scaling operations in steps 3, 5 and 8, two vector-vector
multiplication operations of the inner products in steps 4 and 7, and one matrix-
vector multiplication operation in step 5. Thus, Tc = Θ(4n2 + 2n2 + 9n2) =

Θ(15n2) = Θ(15N2

P ). It is obvious that Tc decreases as the number of processes
increases and has a lower limit of zero.

Boundary updating occurs only between neighbors for each process, and
its time depends on network delay and the volume of the halo regions. The
default halo size is 2; thus, the volume in one boundary communication is
2n and decreases as the number of processes grows. Each process has to ex-
change data with its four neighbors, so the updating time in one iteration is
Tb = 2 × 4Tdelay + Θ(2 × 4 × 2n) = 8Tdelay + Θ(16N√

P
). The updating time also

decreases as the number of processes increases but has a lower bound of 8Tdelay.
The global reduction in one inner product sums up only one number from each

process, so the data transmission time is negligible compared with the time of
the global reduction itself. The reduction time, including the initiation delay and
network blocking, satisfies Tg = Tinit+cg ·G(P ). Here, Tinit and cg are constants
associated with the parallel environment, and G(·) is a function related to the
network topology in the given architecture. For example, G(·) is logarithmic in
an ideal hypercubic network. In all, Tg increases monotonically with the number
of processes P .

Let T0 be the time unit of one floating-point operation and B be the number
of floating-point numbers transmitted by the network per second from process
to process. The execution time of one PCG iteration can be expressed as:

Tpcg = Tc + Tb + Tg = 15T0
N2

P
+ 8Tdelay +

16N

B ·
√
P

+ Tinit + cgG(P ) (3)

The execution time of an entire PCG solver step is tpcg = Kpcg · Tpcg. Here
Kpcg is the number of iterations in one PCG step and does not change with the
number of processes. Equation (3) shows that the time required for computation
and boundary updating decreases as the number of processes increases, while in
contrast the time required for global reduction increases with increasing numbers
of processes. The execution time of the PCG solver will increase when the number
of processors exceeds a certain level.

A series of experiments were conducted with the 1 degree POP (360×240
grids) on a mesoscale cluster – the Explore100 at Tsinghua University. The
Explore100 cluster is comprised of 740 computing nodes that each containing two
2.93 GHz Intel Xeon X5670 6-core processors and share 24/48 GB of memory.
A performance profiling and tracing toolkit of the parallel program –TAU[12]
was used to time the three components of the PCG solver. We compared the
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Fig. 2. Time components of one PCG step in 1 degree POP

average execution time of each component for one barotropic step provided by
the performance model and the experiments. In the performance model, G(·) is
set as a linear function. cg is set to 2× 10−7, T0 is 2.5× 10−9 and B is 5.0× 109.

As shown in Fig.2, the model results agree well with the outcomes of the
actual experiments. The simulated computation time in the barotropic mode
is inversely proportional to the number of processes. The simulated updating
time remains constant when the number of processes exceeds 100 because the
communication volume becomes so small that its transmission time is covered by
network latency. The global reduction increases proportionally with the number
of processes and becomes dominant in the barotropic phase when more than 100
cores are used. The outcome confirms the theoretical conclusion in equation (3)
that the global reduction is the cause of the poor scalability of the PCG solver.

3 Design of the CSI Solver

To address the bottleneck of PCG, the new barotropic solver should involve
as few global reductions as possible. Originally less efficient methods, such as
Chebyshev iteration, were reconsidered in POP. Chebyshev iteration was revis-
ited by Gutknecht [13] in 2002, and was identified as being suitable for massively
parallel computers with high communications costs. Classical Stiefel iteration
(CSI) [14] is one kind of Chebyshev iteration methods.

3.1 Algorithm and Evaluation

In contrast to PCG, CSI does not require inner product operations and thus
eliminates the bottleneck of global reduction. However, it requires preliminary
knowledge about the spectrum of the coefficient matrix A. It is well-known that
obtaining the eigenvalues is more complicated than solving a linear equation. For-
tunately, for real symmetric and positive definite matrices, such as the coefficient
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matrix A in POP, only approximations of the largest and smallest eigenvalues
λmax and λmin are needed to ensure convergence of CSI. These two extremal
eigenvalues can be estimated efficiently by the Lanczos method. The pseudo code
of the CSI algorithm designed for POP is shown in Algorithm 2.

Algorithm 2. Classical Stiefel Iteration solver

Require: Coefficient matrix Ã, initial guess x0 and b associated with grid block Bi,j ;
Estimated eigenvalue boundary [ν, μ];
// do in parallel with all processes

1: α = 2
μ−ν

, β = μ+ν
μ−ν

, γ = β
α
, ω0 = 2

γ
; k = 0;

2: r0 = b− Ãx0; x1 = x0 − γ−1r0; r1 = b − Ãx1;
3: while k ≤ kmax do
4: k = k + 1; ωk = 1/(γ − 1

4α2 ωk−1); /* the iterated function */
5: Δxk = ωkrk−1 + (γωk − 1)Δxk−1;
6: xk = xk−1 +Δxk−1; rk = b− Ãxk;
7: update halo(rk); /* boundary communication */
8: if k%nc == 0 then check convergence;
9: end while

As shown in Algorithm 2, CSI has a similar iteration procedure to PCG but
replace the two inner products and their associated vector-vector multiplications
with an iterated function of the two extremal eigenvalues of A. The computation

time of the CSI solver is Tc = Θ(4n2 + 9n2) = Θ(13n2) = Θ(13N
2

P ). Because
the halo regions are the same in PCG and CSI, the boundary updating time is
still Tb = 8Tdelay + Θ(16 N√

P
). CSI has no global reduction except for checking

convergence; thus, the execution time of one CSI iteration can be expressed as:

Tcsi = Tc + Tb = 11T0
N2

P
+ 8Tdelay +

16N

B ·
√
P

(4)

The execution time of an entire CSI solver step without convergence checking
is tcsi = Kcsi · Tcsi. Kcsi is the number of iterations in one CSI solver step
and it is usually larger than Kpcg under the same convergence tolerances. As
shown in Fig. 3, this model accurately predicts the scalability behavior of CSI.
CSI has a slower convergence speed than PCG, and its execution time may be
longer than PCG on a small number of cores when global reduction is not a
bottleneck. However, as shown in equations (3) and (4), CSI is faster than PCG
in a single iteration because of the elimination of the time-consuming global
reduction operation. The total execution time of PCG exceeds that of CSI at a
threshold number of processes.

3.2 Eigenvalue Estimation

The convergence speed of CSI reaches its theoretical optimum when ν = λmin

and μ = λmax. Accurate values of λmin and λmax are difficult to obtain. In
addition, any transformation of the coefficient matrix A is ill-advised because
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Fig. 3. Time components of one CSI step in 1 degree POP

A was distributed to processes. To utilize the parallism of POP, we employ
Lanczos method [15] to construct a series of tridiagonal matrixes Tm(m = 1, 2, ...)
whose largest and smallest eigenvalues converge to those of A. The procedure of
Lanczos-based eigenvalues estimation is shown in Algorithm 3.

Algorithm 3. Lanczos-based Eigenvalue Estimation

Require: Coefficient matrix Ã and random vector r0 associated with grid block Bi,j ;
// do in parallel with all processes

1: q1 = r0/||r0||; q0 = 0; T0 = ∅; β0 = 0; μ0 = 0; j = 1;
2: while j < kmax do
3: rj = Ãqj − βj−1qj−1; update halo(rj);

4: α̃j = qT
j rj ; αj = global sum(α̃j);

5: rj = rj − αjqj ;

6: β̃j = rTj rj ; βj = sqrt(global sum(β̃j));
7: if βj == 0 then return
8: μj = max(μj−1, αj + βj + βj−1); /* Gershgorin circle theorem */
9: Tj = tri diag(Tj−1, αj , βj); νj = eigs(Tj ,

′ smallest′) ; /* Tridiagonal */
10: if | μj

μj−1
− 1| < ε and |1− νj

νj−1
| < ε then return

11: qj+1 = rj/βj ; j = j + 1;
12: end while

In step 9 of Algorithm 3, Tm is a tridiagonal matrix that contains αi(i =
1, 2, ...,m) as its diagonal entries and βi(i = 1, 2, ...,m−1) as off-diagonal entries.

Tm = tridiag

⎛⎝ β1 • βm−1

α1 α2 • αm

β1 • βm−1

⎞⎠
Let ξmin and ξmax be the smallest and largest eigenvalues of Tm, respectively.
Paige[15] demonstrated that λmin ≤ ξmin ≤ λmin + δ1(m) and λmax − δ2(m) ≤
ξmax ≤ λmax. Here, δ1(m) and δ2(m) vanish in most cases as m increases. Thus,
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the eigenvalue estimation of A is transformed to solve the eigenvalues of Tm. Step
8 in Algorithm 3 employs the Gershgorin circle theorem to estimate the largest
eigenvalue of Tm, that is, μ = max1≤i≤m

∑m
j=1 |Tij | = max1≤i≤m(βi−1+αi+βi).

The efficient QR algorithm [16] with a complexity of Θ(m) is used to estimate
the smallest eigenvalue ν in step 9. As show in Fig. 4, a small number of Lanczos
steps will generate favorable eigenvalue estimates of A, and make CSI converges
at an optimal speed similar to PCG.
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Fig. 4. Relationships between Lanczos steps and eigenvalue estimation

4 Experiments

To ensure that CSI will not introduce inaccuracies into POP, we conducted
an experiment with the 1 degree POP on Explore100, which is described in
section 2. The calculated SSH of POP versions using PCG and CSI are compared
in Table 1. The mean difference between the PCG and CSI versions is small
compared with the largest absolute SSH. It is interesting that large differences
are only present at coastlines, where the sharp boundary causes instabilities
in the difference scheme. The difference between the PCG and CSI versions is
mainly due to the turbulence accumulation in the whole ocean model as the
simulation period extends, rather than the error in each solver step.

Table 1. The SSH differences between the PCG and CSI versions

Time period one step one day one month one season

Step number 1 45 14053 40800
Max relative error 1.5016E-3 2.2181E-5 1.2885E-2 1.4114E-1
Mean relative error 3.0223E-6 5.2424E-7 2.6125E-5 7.8872E-4

To test the scalability, we ran the 0.1 degree POP (3600 × 2400) on the
Sunway BlueLight MPP Supercomputer at the National Supercomputing Center
in China. BlueLight contains 8,704 SW1600 processors, which are connected by
a 40Gb InfiniBand network. Each processor consists of 16 1.1GHz cores that
share 16 GB memory.

We tested PCG and CSI on 100 to 15,000 cores and with convergence tol-
erances that varied from ε = 10−8 to ε = 10−16. The convergence criterion in
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POP is ||r||2 < εā, where ā means the rms of area. A tolerance ε = 10−12 is
recommended in POP. As shown in Fig. 5, PCG and CSI both scale well on less
than 1,000 cores. When more than 1,000 cores are used, the superiority of CSI to
PCG becomes clear. When the tolerance is 10−12, the execution time of CSI is
87% that of PCG on 100 cores, and this ratio decreases to 21% on 15,000 cores.
PCG is less sensitive to convergence tolerance than CSI. As the convergence
tolerance varies from 10−8 to 10−16, the number of iterations per PCG step
increases from 20 to 281, while the number of iterations in CSI increases from
33 to 1,434. However, the strength in convergence speed makes PCG superior
to CSI for the strictest convergence condition(ε = 10−16) and when fewer than
1,000 cores are used. In other cases, the increased global reduction overhead in
PCG can not be matched by the smaller number of iterations. On 15,000 cores,
the execution time of PCG is 4.8 times that of CSI, from 0.24s to 0.05s when
the convergence tolerance is 10−8, 4.7 times that of CSI, from 1.23s to 0.26s
when the convergence tolerance is 10−12, and 3.3 times that of CSI, from 2.41s
to 0.72s when the convergence tolerance is 10−16. Due to the global reduction
bottleneck, the execution time of PCG increases when more than 1,000 cores are
used. In contrast, CSI scales well until 10,000 cores are used.
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Fig. 5. Scalability of PCG and CSI in the 0.1 degree POP

5 Related Work

The barotropic mode makes up a large proportion of the total execution time of
POP, especially when it runs on a large number of cores. Much work has been
done on optimizing the performance of the barotropic mode, most of which has
been related to decreasing the amount of communication between processes and
accelerating the computation of each process. The total costs of global reduction
are proportional to the number of processes , and the communications overhead
becomes increasingly intolerable as the number of processes increasing. OpenMP
parallelism and land elimination are common strategies for reducing the number
of processes and the associated MPI overhead. Worley et al. [6] strongly recom-
mended the OpenMP strategy when a large count of cores are needed for the
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baroclinic phase, but a large number of processes would cause communications
difficulties in the barotropic phase. Dennis [10, 11] proposed a load-balancing
strategy based on newly developed space-filling curve partitioning algorithms.
The strategy not only eliminates land blocks, but also decreases the communi-
cations overhead because of the reduced number of processes. The simulation
rate on approximately 30,000 processors doubles after applying this strategy.
Reducing the frequency of communication also attenuates the overhead in the
barotropic mode. As early as 1997, Beare [9] proposed the performance of paral-
lel ocean general circulation models can be improved by increasing the number
of extra halos and overlapping the communications with the computation.

Another way to break the bottleneck of the barotropic mode is to improve
algorithm and preconditioning of the PCG method. A variant of the standard
conjugate gradient method presented by D’Azevedo [8], called the Chronopoulos-
Gear algorithm, proposed a way to halve the global communication in PCG. It
combines the two separate global reductions into a single global reduction vector
by rearranging the conjugate gradient computation procedure, and achieves a
one third latency reduction in POP. Preconditioning has been highlighted in
the CG method since the 1990s. Many linear systems converge after a few PCG
iterations with a suitable preconditioner. Adamidis et al. [17] implemented an
incomplete Cholesky preconditioner in the global ocean/sea-ice model MPIOM
to improve the scalability and performance of PCG.

The improvement of the methods described above is limited due to the inher-
ent poor data locality and sequential execution of PCG. Some work has been
done to accelerate the PCG solver by employing the developing hybrid accelerat-
ing devices, such as GPUs[18] and FPGAs[19]. GPUs and FPGAs are helpful in
reducing the global overhead. These devices have stronger computational ability
and more memory than common CPU, so fewer devices and less communication
are needed for the same scale computing job.

6 Conclusion

Much work has been done to improve the barotropic mode in POP. However,
most of the methods described above did not eliminate the cause of the poor scal-
ability of the barotropic mode of POP. This paper presents a performance model
of the barotropic mode that quantifies the scalability of PCG. The advantage of
CSI is demonstrated based on the analysis of this model. CSI is implemented in
POP and shows better scalability than PCG. In closing, this paper highlights a
promising complement to PCG with elliptic equations.
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Abstract. Elementary Flux Modes (EFMs) can be used to character-
ize functional cellular networks and have gained importance in systems
biology. Enumeration of EFMs is a compute-intensive problem due to
the combinatorial explosion in candidate generation. While there exist
parallel implementations for shared-memory SMP and distributed mem-
ory architectures, tools supporting heterogeneous platforms have not yet
been developed. Here we propose and evaluate a heterogeneous imple-
mentation of combinatorial candidate generation that employs GPUs as
accelerators. It uses a 3-stage pipeline based method to manage arith-
metic intensity. Our implementation results in a 6x speedup over the
serial implementation, and a 1.8x speedup over a multithreaded imple-
mentation for CPU-only SMP architectures.

1 Introduction

Metabolism is the collection of chemical compounds, called metabolites, trans-
formed via enzymatic reactions to sustain the functions of biochemical systems.
The network structure of metabolism can be characterized by a directed weighted
hypergraph [1] in which directed hyperedges represent reactions and nodes stand
for metabolites. The number of molecules with which a metabolite participates as
a substrate and/or product in a reaction specifies the reaction-specific stoichiom-
etry of the metabolite, rendering the hypergraph node-weighted. The concept of
a steady state, i.e., equilibrium, whereby there is no change in concentrations
of the considered metabolites, is often employed in analyzing the functional be-
havior of (large-scale) metabolic networks [2].

Interestingly, the steady-state behavior of metabolic networks, described only
by the directed weighted hypergraph, can be fully characterized by the mini-
mal subnetworks which operate at equilibrium, referred to as elementary flux
modes [3, 4] (EFMs). Due to the minimality condition, an EFM cannot oper-
ate in a steady state upon removal of any of its components (i.e., reactions or
metabolites). Further, EFMs provide a mathematical definition for the concept of
a biochemical pathway. Since EFMs can capture emergent functions of biochem-
ical systems, they have been used to analyze key systemic properties, including
robustness and flexibility [5]. However, characterization of a system’s behavior
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by means of EFMs requires their enumeration, which involves systematic evalu-
ation of all possible subnetworks with respect to several constraints/conditions
they must satisfy. This process is combinatorial in nature and expensive in terms
of both computational and memory requirements, thus, limiting application to
systems of small size. Therefore, parallelization of the existing approaches for
EFM enumeration is necessary for large-scale networks.

Both shared-memory and distributed-memory parallel approaches have been
developed. A parallel out-of-core implementation [6] was one of the first attempts
at parallelization. Another implementation, the efmtool 1 is targeted towards
shared memory SMP architectures. It is based on the state-of-the-art in algo-
rithmic approach for EFM enumeration [7–9], and has been used by scientists
other than the developers to report important results [10].

The ElMo-Comp tool [11] was designed specifically for distributed memory
architectures. Since the first public release, the tool has been extended to handle
larger networks. The first extension [12] employs the Divide and Conquer strat-
egy, where the complete set of EFMs is partitioned into disjoint subsets that can
be processed independently. In the second extension [13], the concept of Par-
titioned Global Address Space (PGAS) is utilized to enable sharing of memory
resources across the cluster.

Our study builds on ElMo-Comp [11] and extends it to support heterogeneous
architectures with GPUs as accelerators. Our efforts are focused on the compu-
tational bottleneck, which is the memory-bound part of the algorithm we term
combinatorial candidate generation.

The paper is organized as follows: Section 1.1, presents the mathematical
model and algorithm used for EFM enumeration, including the computational
bottleneck. Our approach is presented in Section 2, followed by evaluation in
Section 3. Related work is discussed in Section 4, followed by conclusion and
future work.

1.1 Enumeration of Elementary Modes

Mathematical Model. Consider the hypergraph representation of a paradig-
matic metabolic network presented in Figure 1A (adapted from [14]). Metabolites
in the network are represented by nodes and reactions by hyperedges. Metabo-
lites are divided into two groups internal to the system and external, i.e., in the
systems environment, delineated by the dotted line box in Figure 1A. The reac-
tions that involve both external and internal metabolites are termed exchange
reactions. Moreover, with respect to directionality, reactions are divided into
reversible and irreversible, belonging to the sets Rev and Irr, respectively. In
Figure 1A, reaction r8 is reversible. The information encoded in the directed
weighted hypergraph can be captured by the corresponding stoichiometric ma-
trix. For a metabolic network with m metabolites and q reactions, the stoichio-
metric matrix, S, consists of m rows and q columns. The entry Si,j quantifies
the number of molecules with which metabolite i participates in reaction j, and

1 efmtool - Elementary Flux Mode Tool: http://www.csb.ethz.ch/tools/efmtool
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S=

⎛⎜⎜⎜⎜⎝

r1 r2 r3 r4 r5 r6 r7 r8 r9

A 1 −1 0 0 −1 0 0 0 0
B 0 0 0 0 1 −1 −1 −1 0
C 0 1 −1 0 0 1 0 0 0
D 0 0 1 0 0 0 0 0 −1
P 0 0 1 −1 0 0 2 0 0

⎞⎟⎟⎟⎟⎠

Fig. 1. (A) Metabolic network (B) corresponding stoichiometric matrix

the sign indicates if the metabolite participates as a substrate (negative) or a
product (positive), illustrated in Figure 1B.

Reaction rates, called fluxes, quantify the behavior of reactions transforming
the metabolites in the network. The steady state of a metabolic network spec-
ified by its stoichiometric matrix can be characterized in terms of a q-vector
termed flux vector (or distribution), denoted by v. Reaction rates can be used
to characterize the change in the concentration of metabolites, since dX

dt = Sv,
where X is an m-vector gathering the concentrations of metabolites. In a steady
state, there is no change in concentrations, and the steady-state flux distribution
can be determined by solving the system of linear equations:

Sv = 0, (1)

whereby v belongs to the nullspace of the stoichiometric matrix S. Since the num-
ber of metabolites is usually smaller than the number of reactions, the system in
Eq. (1) is underdetermined and usually results in an infinite number of solutions.
Note that the system of linear equations is homogeneous if all metabolites are
internal; otherwise, the system is inhomogeneous. Moreover, a steady-state flux
distribution is further constrained by the reaction directionalities, so that fluxes
of irreversible reactions must be non-negative, i.e.,

vi ≥ 0, ∀i ∈ Irr (2)

By combining the steady-state and directionality constraints imposed by Eq.(1)
and Eq.(2), respectively, the solution space forms a convex polyhedral cone, P ,
defined as [15]:

P = {v ∈ Rq | Sv = 0, vi ≥ 0, ∀i ∈ Irr}, (3)

where Rq is the q-dimensional vector space in real numbers. Clearly, every vec-
tor that lies in the cone represents a feasible flux distribution in the metabolic
network. With this notation, we need the elementarity constraint to define an
EFM. Let supp(v) = {i | vi �= 0} and let E denote the set of all EFMs, then,
the following holds:

∀v ∈ E, �x ∈ E | v �= x, supp(v) ⊆ supp(x). (4)

If the system consists only of irreversible reactions, the solution space forms a
pointed polyhedral cone [5]. In this case, the set of elementary modes comprises
a unique minimal set of generating vectors for the entire flux space.
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The Nullspace Algorithm. All algorithms for elementary mode enumeration
are based on the Double Description Method [16] for extreme ray enumeration
of a polyhedral cone, well-studied in computational geometry. These algorithms
vary primarily in the order in which the steady-state and reaction reversibility
constraints are processed. Our study is based on the Nullspace algorithm [17]
(see [18] for detailed description). Here, we present a brief sketch, highlighting
only the most relevant steps. The Nullspace algorithm is summarized as follows:

1. The stoichiometric matrix S is compressed using methods specified in [5].
Let the compressed matrix be S′

m×q. Then the nullspace obtained by solving
S′v = 0 is denoted by K ′. Each row in K ′ corresponds to a reaction, and
each column represents a potential EFM. Let I denote the identity matrix.
The compressed nullspace is permuted to obtain the following form:

K ′ =

(
R(1)

R(2)

)
=

(
I

R(2)

)
(5)

where the directionality constraints are already solved for rows in I. Direc-
tionality constraints must now be applied to all rows in R(2).

2. For each row in R(2):
(a) Generate bitwise combinations of selected columns in R(1) to produce

candidate bit vectors. Given a threshold τ , a candidate vector, v,
supp(v) > τ is discarded,

(b) Remove duplicate candidate vectors,
(c) Verify each candidate for elementarity,
(d) Generate algebraic combinations on the current row in R(2),
(e) Convert the current row in R(2) to the corresponding binary representa-

tion and move it to R(1),
(f) Append the generated EFMs as column vectors to the nullspace.

We note that once a row in R(2) is processed, it can be converted to a binary rep-
resentation and moved to R(1) [5]. Moreover, in ElMo-Comp, R(1) is compressed
by a factor equal to the machine word length, i.e., 32 or 64 times. Finally, once
all reactions have been processed, columns of the kernel matrix represent all
EFMs for the given network.

Combinatorial Candidate Generation. The most compute intensive step in
the Nullspace algorithm is the generation of combinations in R(1) (see Algorithm
1). We refer to this step as combinatorial candidate generation. This step being
the computational bottleneck is the primary focus of our work.

Algorithm 1 consists of two core computational operations: a bitwise OR
between two columns that results in a candidate vector (Line 3) and a popcount
on the candidate vector (Line 4). To process a single candidate, we need two
arithmetic and four memory access operations (assuming popcount() is available
as a hardware instruction). Moreover, two read operations are required to fetch
the input columns, and two write operations are required to store the indices
corresponding to the input columns. The data type used for both input and



Heterogeneous Combinatorial Candidate Generation 755

output values is 64-bit unsigned integer. As compared to the 32-bit data types,
this increases the size of the input and output values, halves the throughput
of the two operations, and, thus, results in a very low compute-to-memory-
access ratio. Therefore, combinatorial candidate generation can be classified as
a memory-bound algorithm with low arithmetic intensity.

Algorithm 1: Serial combinatorial candidate generation. Index vectors
contain column indices of the corresponding matrices; OR is the binary
bitwise OR operation; τ is a threshold (as described in Section 1.1)

Input : Bit matrices: MatrixA, MatrixB
Index vectors: IndicesA, IndicesB
Integer: τ

Output: Candidate column index pairs of the form
{(a, b) | a ∈ IndicesA and b ∈ IndicesB}

1 foreach colA: column in MatrixA do
2 foreach colB: column in MatrixB do
3 candidate = MatrixA[colA] OR MatrixB[colA];
4 nonZeros = popcount(candidate);
5 if nonZeros ≤ τ then
6 store index pair (IndicesA[colA], IndicesB[colB ]);
7 end

8 end

9 end

In massively parallel accelerator architectures, like GPUs, most of the chip
area is dedicated to arithmetic and logic units, which results in very small sizes
for fast on-chip memory. Therefore, these architectures are ill-suited for algo-
rithms with low arithmetic intensity. Here, we present an approach that renders
it possible to exploit the massive parallelism of GPUs, leading to significant
speedup despite the memory-bound nature of the combinatorial candidate gen-
eration algorithm.

2 Our Approach

In the rest of the document, we assume all index values to be of type 64-bit
unsigned integer. We refer to the CPU as Host, and the GPU as Device.

Algorithm 1 can be decomposed into two parts: (1) generation of a candidate
vector followed by popcount (Lines 3,4), which results in a Boolean; and (2)
storage of input column indices (Line 6). These two parts can be implemented
as distinct phases — Generate and Map.

Generate Phase. This phase is implemented as the Device kernel (see Algo-
rithm 2). As in the serial version, the two input values are fetched to perform the
bitwise OR (Line 3) and popcount (Line 4) operations. Since the max-non-zero
condition is the final step in this phase, instead of storing two 64-bit integers,
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the kernel stores a single Boolean value (Line 5). This significantly increases the
arithmetic intensity, and hence the kernel performance. Nevertheless, storing a
Boolean value against each possible combination has a disadvantage. For two
matrices A and B of sizes m and n, respectively, the size of the output Boolean
array is m× n. As the number of reactions in the network increases, the size of
the output array becomes too large for the Device memory. This results in large
and frequent Device-to-Host memory transfers that become a serious bottleneck.

Algorithm 2: GPU kernel for combinatorial candidate generation

Input : Matrix A, Matrix B, τ
Output: Result - bit array

1 for 1 to compressionFactor do
2 compute indexMatA, indexMatB, indexResult ; // index algebra

3 candidate = MatrixA[indexMatA] OR MatrixB[indexMatB ];
4 nonZeros = popcount(candidate);
5 result[indexResult ] = (nonZeros ≤ τ);

6 end

We address this problem by introducing a compression factor, which defines
the number of result values generated by each Device thread. Instead of storing
the output in a Boolean variable, we use a single bit. Therefore, a single thread
can generate and store 64 values in a single 64-bit unsigned integer. This reduces
the size of the output array by compression factor, and Device-to-Host transfers
no longer constitute the bottleneck. The data type of the output array is inde-
pendent of the other data types used, and its size merely indicates the maximum
number of results generated by a single thread.

Map Phase. Once kernel execution is complete, the index of each bit in the
result array corresponds to a candidate, and the bit value indicates whether the
candidate should be considered for further processing. The index of each set
bit must then be mapped to the corresponding index pair used to generate the
corresponding value (a candidate is identified by the corresponding pair of input
columns). The Map phase traverses the output bit array, looks for set bits, and
maps their indices to the corresponding input index pairs. This phase is highly
memory-bound, and thus performs better on the Host.

2.1 Concurrent Host–Device Processing

The Generate-Map strategy with compression factor, results in a significant
speedup over both the serial version, and a näıve kernel without compression
factor. In the subsections to follow, we show how pipeline parallelism [19] can be
employed to implement concurrent Device-Host processing for larger speedup.

Two-Stage Pipeline: Device only Due to the combinatorial nature of the
algorithm, a very large number of Device threads are required to compute all
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possible combinations. For NVIDIA GPUs with compute capability up to 2.0,
the maximum number of thread blocks is limited to 65535. Therefore, for larger
input sizes, multiple grid (batches of threads) executions are required. Between
two subsequent grid executions, the result array has to be transferred from Device
to Host, so that enough space is left on the Device to hold the result array for the
next grid in line for execution. Moreover, the Map phase can only begin once
the final Device-to-Host memory transfer is complete. This results in a serial
processing of stages as depicted in Figure 2a.

The NVIDIA CUDA programming model provides API that makes it possible
to overlap kernel execution and memory transfer. Using this feature, one kernel
can be launched after the other without waiting for a Device-to-Host memory
transfer operation to finish. This results in a 2-stage pipeline as depicted in
Figure 2b. To ensure that a memory transfer only begins after the corresponding
kernel computation is finished, an event notification system is employed. Each
kernel executes in its own stream [20], and once the kernel execution is complete,
an event notification is sent from the kernel stream to the corresponding memory
transfer stream. The memory transfer stream begins operation only after the
event notification has been received.

Three-Stage Pipeline: Device and Host The CUDA stream based event
notification system has traditionally been limited to event exchange among De-
vice operations only. With the release of CUDA 5.0 however, it is now possible
to register Host callback functions with Device streams. These callbacks make it
possible for the Device to send stream event notifications to the Host. We utilize
the callback feature to extend the 2-stage pipeline. The Map phase is included
as an additional stage, resulting in a 3-stage pipeline that spans both Host and
Device functions. The concept is illustrated in Figure 2c.

The process starts by calculating the total size of the result array, and splitting
it into multiple segments. For each segment, one or more kernels are launched in
different streams, which we refer to here as grid streams. Events are recorded for
each grid stream, on which the asynchronous memory transfer operation waits.
Once all grids for the current segment have finished execution, the Device-to-
Host memory transfer begins. At the same time, grids are launched for the next
segment. Once the Device-to-Host memory transfer operation is complete, it

(a)

(b) (c)

Fig. 2. Illustration of (a) serial, (b) 2-stage, (c) 3-stage processing of phases. D2H is
Device-to-Host memory transfer
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calls a Host function registered as callback with the memory transfer stream.
The callback function sets a flag, indicating that the memory transfer operation
for a specific segment is complete. The flag serves as a notification for the Map
phase, and triggers the map operation on the segments result. To ensure that the
Generate and Map phases execute not just concurrently but in parallel, these
operations are executed by two separate Host threads that share data structures
for the exchange of event notifications.

The memory size on the Device is generally smaller than that of the Host.
Therefore, it is the programmers responsibility to ensure that all datasets that
fit into the Host memory can also run on the Device. For this purpose, we use
the concept of partition. Maximum partition size depends on the total amount
of global memory available on the Device and the sizes of the input and result
data structures. Large datasets are split into multiple partitions, where each
partition consists of multiple segments. The Device utilizes the 3-stage pipeline
to process one partition at a time. The next partition can start execution only
if the required memory resources have been released by the previous partition.

2.2 Overall Architecture

In order to utilize all available processing resources, the candidate generation
algorithm is processed using two implementations that execute in parallel (as
shown in Figure 3). One is a multithreaded OpenMP based (Host -only) im-
plementation that executes solely on the CPU cores. The other is the 3-stage
Device-Host pipeline as describer in Section 2.1.

A Host thread decomposes the input data structures into two parts for distri-
bution amongst the Host -only implementation and the 3-stage pipeline. These
are passed on to a parallel harness that invokes two threads. The first thread in-
vokes the OpenMP based Host -only multithreaded implementation. The second
invokes the device harness. The device harness defines the data structures to be
shared amongst the Generate and Map phases, and instantiates these phases as
two OpenMP threads. The Generate thread further manages the massively par-
allel execution on the Device. The Map thread listens to memory transfer comple-
tion events and invokes the bit-to-input-index mapping routine. This routine is
also implemented as multithreaded OpenMP code, which helps speedup the map-
ping process. Once both the Host -only code and device harness threads have com-
pleted execution, a reduction operation is performed to consolidate the results.

Fig. 3. Thread hierarchy. Parallel harness spawns device harness and Host-only code.
Device harness spawns the Generate and Map phases.
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3 Evaluation

We present comparative results from three different implementations: the serial
Nullspace program available in ElMo-Comp [11]; our OpenMP based shared-
memory parallel implementation for SMP architectures; and our 3-stage pipeline
implementation for heterogeneous architectures. Both our implementations are
based on the ElMo-Comp code base.

3.1 Test Environment

The machine used for running the reported experiments has 24GB of main mem-
ory, and consists of an Intel Xeon E5620 CPU and an NVIDIA Tesla 2050 GPU.
The Xeon E5620 processor is based on the Nehalem EX architecture, supporting
a 64-bit instruction set with SSE 4.2. It has 4 cores, each supporting 2 hardware
threads. The Tesla 2050 GPU is based on the Fermi architecture, with compute
capability rating of 2.0. The operating system used is Ubuntu SMP 12.04. The
code was compiled using GCC 4.4.3 and NVCC with CUDA 5.0.

3.2 Results

Table 1 summarizes results of three implementations against five real networks
of varying sizes, all capturing E.Coli central metabolism. The candidate gener-
ation step is performed on compressed networks [5]. Accordingly, network sizes
mentioned in the table correspond to compressed networks.

The results show that the utility of the heterogeneous implementation in-
creases with the number of candidate vectors generated during execution. Poor
performance of the heterogeneous implementation against small networks is at-
tributed to the overhead incurred by the transfer of data between Host and
Device memory, as well as coordination between the Generate and Map phases.
For larger networks, the incurred overhead is overshadowed by the performance
gain. The Host -only multithreaded implementation utilizes all 8 threads avail-
able on the processor. The heterogeneous implementation dedicates 2 threads to
the Host -only implementation, and 2 threads to the Map phase. Input data is
distributed amongst the device harness and the Host -only implementation such
that only 1

8 th of the input size is processed by the Host -only code, while the rest
is processed by the device harness.

It is important to properly tune compression factor and maximum segment
size for optimal performance. A higher value of compression factor translates to
more work per Device thread, and lower Device output size. Maximum segment
size defines the maximum result array size for which a memory transfer to the
Host must be initiated. Together these two parameters balance the speed and
coordination between the pipeline stages. For the results presented in Table 1,
compression factor is 64 and the maximum segment size is 60 MB.
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Table 1. Comparative results of three different implementations against five networks.
Execution times (in seconds) are presented against each implementation and network;
m is the number of metabolites, q is the number of reactions.

Network Size #candidates Time (s)
Serial OpenMP Pipelined

26m × 38q 219743731 1.2 0.38 0.39
26m × 40q 130992739 0.77 0.35 0.35
26m × 41q 752482917 4.1 1.6 1.0
27m × 43q 2616975505 14 5.5 2.5
29m × 45q 122559991284 690 150 110

4 Discussion

Related Work. Recently, major vendors from the hardware and software in-
dustries have pointed out the significance of considering arithmetic intensity for
decisions concerning suitable hardware. Empirical results [21] were presented to
show how Floating Point Operations Per Second (FLOPS) is not an adequate
measure for memory-bound algorithms. In addition, the case of Sparse Matrix-
vector Multiplication (SpMV) was used to study accelerator (GPU) performance
for algorithms with low arithmetic intensity [22]. The authors conclude that with
the coming generations of processors, in comparison to GPUs, CPUs are becom-
ing more and more suitable for such problems.

A multitude of scientific applications have been recently designed take advan-
tage of heterogeneous architectures with GPUs as accelerators. These include
linear solvers [23], solvers for path problems in graphs [24], as well as appli-
cations for simulation science [25], to name a few. Moreover, there have been
efforts to increase the arithmetic intensity of certain algorithms [26], so that the
processing resources can be utilized effectively.

Conclusions and Future Work. We presented a novel method to utilize
GPUs for combinatorial candidate generation, a specific memory-bound algo-
rithm, required for EFM enumeration. Our approach focuses on the concurrent,
coordinated, Device-Host pipelined execution model. This approach is feasible
due to the possibility to split the algorithm into two phases, where the phase of
a high arithmetic intensity is executed on a GPU, while the other is executed
concurrently on the Host. The 2-phase computation points to the Map-Reduce
Pattern for Parallel Computation [27]. We conjecture that memory-bound algo-
rithms amenable to this pattern may also benefit from the approach presented
in this paper.

A large number of important combinatorial algorithms (such as those em-
ployed in network analysis on big data [28]) are memory-bound. In order to
effectively utilize accelerators for such algorithms, novel methods for managing
arithmetic intensity must be developed. The approach presented in this paper is
a first step in this direction.
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However, despite its effectiveness, the presented approach has certain draw-
backs. Only limited functionality is available in the CUDA programming model
to facilitate Device-Host pipelining; for instance, Host memory must be page-
locked [20] (which is scarce), and merely a restricted set of operations is permis-
sible within a callback. This complicates Device-Host coordination, and requires
a greater number of parameters to be tuned for optimal performance.

In the future, we intend to tailor the application for execution on heteroge-
neous clusters. This requires support for multi-GPU execution. Also, we have
only presented acceleration of one of the steps in the Nullspace algorithm. Work
is underway to assess the feasibility of heterogeneous implementations for other
steps. In addition to acceleration, efficient memory management is a vital factor
for processing of large networks. The number of EFMs grows almost exponen-
tially with the input size [29], which puts very high demands on memory. We
are currently in the process of devising better compression techniques, as well
as strategies for efficient data distribution on distributed memory architectures.
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Abstract. Least-squares problems occur often in practice, for example,
when a parametrized model is used to describe a behavior of a chem-
ical, physical or an economic application. In this paper, we describe
a method for solving least-squares problems that are given as a large
system of equations. The solution combines the commonly used meth-
ods with algorithmic differentiation and shared-memory multiprocessing.
The system of equations contains model functions that are independent
from each other. This independence enables the usage of a multiprocess-
ing approach. With help of algorithmic differentiation by source trans-
formation, we obtain the derivative code of the residual function. The
advantage of using source transformation is that we can transform the
OpenMP pragmas of the input code into corresponding pendants in
the derivative code. This is, in particular in the adjoint case, not a
straightforward approach. We show the scaling properties of the deriva-
tive code and of the optimization process.

Keywords: Least-Squares Problem, Algorithmic Differentiation, Source
Transformation,HighPerformanceComputing,OpenMP,Shared-Memory
Multiprocessing.

1 Introduction

In science mathematical problems often consist of large systems of equations.
These systems often contain hundreds or even thousands of equations. The associ-
ated computation of solutions possesses inherent parallelism when the equations
do not have dependences among themselves. In other words, a code implementing
the system of equations does not have any data dependences between the equa-
tions. This lack of dependences can either reflect the real behavior of the model,
or it can be a result of a simplification of the underlying mathematical problem. In
either case, the resulting parallelism can be exploited by a numerical implemen-
tation, which uses parallel programming.

Nowadays, most of the software engineers must take parallelism into account,
since the computer architectures consist of a growing number of computational
cores. A relative simple way of exploiting parallelism in C/C++ or Fortran code
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is to use the OpenMP standard [1], which is an API for using shared-memory
parallel programming. The software engineer can, with help of OpenMP compiler
directives, declare code fragments as parallelizable. The underlying OpenMP en-
abled compiler transforms this code into a version that takes care of everything
that previously was in the responsibility of the code developer. For example,
the creation of the threads at the beginning of a parallel region is implicit given
by the standard. Furthermore, it is ensured by OpenMP that the sequential ex-
ecution after the parallel region only continues, when all threads have finished
their work (implicit barrier). All these things, and more, have to be implemented
by the code developer, when using a common thread standard as, for example,
POSIX threads [2]. This abstraction allows the simple development of paral-
lel programs and this is one reason, why OpenMP is nowadays a commonly
accepted standard in most of the high performance computing (HPC) cluster
environments.

In nonlinear optimization, derivative values play an important role [3, ch. 8].
These derivative values can either be approximated by finite differences or they
can be computed with algorithmic differentiation (AD) [4]. The derivative values
provided by AD have the advantage of being accurate up to machine precision.
The manual differentiation of a given code is error-prone and often infeasible for
some reason, for example, because of the code’s size. AD methods often are dis-
tinguished by two main methods, AD by source transformation on the one hand,
and AD by overloading on the other. Both methods have their advantages and
drawbacks. The downside of the overloading approach is that valuable informa-
tion about the code is neglected because this approach is based on overloading
floating-point operations but does not take compiler pragmas into account. The
source transformation, on the other side, must support a certain range of pro-
gramming language to cover most of the codes written as a numerical kernel.
When a software engineer uses fancy features of a recently appeared language
standard, then this will, very likely, not be supported by the source transforma-
tion tool. However, since the complexity of the numerical problems continues to
increase, the software engineer is interested in new language features that exploit
parallelism, for example OpenMP. In the current note we consider AD by source
transformation in difference to related work as described in Section 2.

The least-squares problem is often solved by the Gauss-Newton, or the Leven-
berg-Marquardt method [5,3]. In this work, we will show how these methods can
take advantage of AD together with using multiprocessing programming. The
main contribution of this work is that we show how valuable a consideration of
OpenMP pragmas can be, when using AD by source transformation, not only in
terms of runtime complexity, but also in terms of memory complexity.

The structure of this work is as follows. In Section 2, we show related work,
Section 3 introduces a least-squares problem where the objective function con-
tains OpenMP directives. The least-squares problem is solved with help of AD,
which is introduced in Section 4. Section 5 displays how we apply AD and
OpenMP to the introduced problem, whereby Section 6 presents the experi-
mental results, and Section 7 concludes the work.
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2 Related Work

An approach where a parallelization of the Levenberg-Marquardt method is in-
troduced, can be found in [6]. The approach recommends two levels of paral-
lelization. On the one hand a parallelization across the data sets can be made
when the data sets have no inter-dependences. On the other hand, the approach
uses finite differences to approximate the Jacobian. The finite differences com-
putation uses a lot of calls to the objective function that are independent of
each other and can therefore also be done in parallel. The downside is that the
resulting Jacobian is only an approximation. In the present work, we use AD to
get the Jacobian, which is precise up to machine accuracy. This means we need
the first-order derivative code.

An early approach in coupling AD with OpenMP can be found in [7]. The
approach assumes that a derivative code P ′ is given, that applies the so-called
tangent-linear vector mode to compute the derivative values. In this mode each
scalar variable v from the original code P is associated with a vector representing
the gradient of v. A scalar assignment in P with v on the left-hand side, leads
to a loop in P ′, where the gradient of v is computed. The authors suggest to
put the derivative code inside an OpenMP parallel region, and to distribute the
gradient computation among the threads with help of an OpenMP work-sharing
construct. The computations from the original code P are also present in the
derivative code P ′. To avoid that all threads execute these computations, the
authors suggest to use the #pragma master directive, which defines that only
the master thread should execute these assignments. Since the master construct
does not have an implicit barrier, a possibly occurring race condition must be
prevented by inserting a barrier directive into P ′. This synchronization overhead
cannot be avoided unless the task is embarrassingly parallel.

In [8] the above approach was extended to get better scaling properties. The
extension is, that the original statements are no longer computed only by the
master thread, but also computed in parallel by all the threads. This is realized
through additional thread-local memory such that the different computations do
not interfere with each other. The above mentioned synchronization is therefore
avoided, but paid with more memory consumption. In addition, the last cited
note recommends preprocessed loop bounding scheduling, which is possible since
all the gradient vectors have the same size n, where n is the size of input variables
of the original code P .

The case that the original code P already contains OpenMP directives, is
discussed in [9]. Here, the loops for computing the assignment’s gradient are pre-
ceded by a combined work-sharing construct, as for example#pragma parallel for.
Each thread from the group of threads, that executes the top-level parallel re-
gion, creates another group of threads, each time, when it encounters such a
work-sharing construct. The implicit barrier at the end of each parallel region
suggests that this, again, causes a lot of synchronization overhead. Unfortu-
nately, the author does not present any experimental results, only a formula for
the potential speedup is presented.
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The above work mainly focuses on the tangent-linear vector mode. The vector
mode, which associates each variable from the original P with a gradient vector,
consumes a lot of memory. The advantage is that at the end of the execution
of the derivative code, the whole Jacobian matrix is given. Nevertheless, if the
mathematical problem has a large number of input values, this approach is often
not feasible due to memory constrains. Therefore, in this work the tangent-linear
model and the adjoint model are defined to be projections of the Jacobian. We
will not use the way of parallelizing the computations of the derivatives as it
was done in the above approaches. Instead, we assume that the original code
P is given, containing already an OpenMP parallel region. This parallel region
code is differentiated by applying the tangent-linear model or the adjoint model,
respectively.

In case that the AD user adjusts the original code with macros, before apply-
ing an AD overloading tool to this code, then the fact of an existing parallel region
can be exploited. This approachwas introduced in [10,11]. As mentioned, the over-
loading approach cannot exploit OpenMP directives without adjustments, since
they are defined to be compiler directives and therefore the information is only
retrieved by the processing compiler at compile time and are not accessible at run-
time when the overloaded code is executed. Nevertheless, the macro approach can
be used to transfer the information of an existing parallel region to the overloaded
code, but the user often does not want to adjust the code before applying AD onto
it. Therefore, we want to focus on AD by source transformation.

3 A Least-Squares Problem

A typical mathematical problem is the least-squares problem. This optimiza-
tion problem always occurs whenever observed measurement data should be
described by a mathematical model function, but the exact parameters of the
model function are unknown. In the following we will introduce a least-squares
example. This example should serve as a typical least-squares problem that can
be solved with help of AD and OpenMP.

We consider a simple spring-mass system during a period of time. As men-
tioned in [12], the vibration of this system can mathematically modeled by the
differential equation u′′ + b

mu′ + D
mu = 0, where m is the mass, D is the spring

constant and b is the damping constant. Solutions of this equation have the form

u(t) = x1 exp(−x2t) sin(x3t+ x4), (1)

where the meaning of the parameters x1, x2, x3, x4 are not of interest here, but
any mechanic textbook certainly contains a description. We consider these pa-
rameters as unknown, and the goal is to find the parameter values that minimize
the discrepancy between the model function and the observed data.

The system of equations that we want to consider, consists of n equations,
all having the form (1). This means instead of considering only a single spring-
mass system, we want to approximate parameters for n independent spring-
mass systems. The reason can be independent measurement data or real in-
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dependent systems. Each equation has four parameters that should be approxi-
mated with help of m measurement values. Hence, the residual function maps 4n
parameter values to mn measurement values. The objective function Φ : R4n →
R is

Φ(x) =
1

2
‖F (x1,1, x1,2, x1,3, x1,4, x2,1, . . . , xn,4)‖22 =

1

2

n∑
j=1

m∑
i=1

Fj,i(x)
2 ,

with the residual function F : R4n → Rnm, and

Fj,i(x) := xj,1e
−xj,2tj,i sin(xj,3tj,i + xj,4)− bj,i, j = 1, . . . , n, i = 1, . . . ,m.

The observed measurement value of the jth equation at time tj,i is referred to
as bj,i. The optimization problem is

Φ(x∗) = min
x∈R4n

Φ(x) , (2)

and the gradient of Φ is ∇Φ(x) = (∇F (x))TF (x). The Hessian of Φ is given
by

∇2Φ(x) = ∇F (x)T∇F (x) +

n∑
j=1

m∑
i=1

∇2Fj,i(x)∇Fj,i(x) (3)

The goal is to find a solution x∗ that satisfies ∇Φ(x∗) = 0, and ∇2Φ(x∗) ∈
R4n×4n must be symmetric positive definite. A possible implementation of func-
tion F may be as shown in Listing 1.1.

1 vo id F( const i n t n , const i n t m,
2 double ∗ t , double ∗x , double ∗ b , double ∗ y )
3 // n : number o f e q u a t i on s
4 // m: number o f measurement v a l u e s pe r equa t i on
5 // t : v e c t o r wi th m∗n t imestamps
6 // x : c u r r e n t x v e c t o r wi th 4∗n v a l u e s
7 // b : measurement v a l u e s taken at t imestamps i n t
8 // y : output v e c t o r c o n t a i n i n g m∗n v a l u e s
9 {

10 #pragma omp p a r a l l e l f o r
11 f o r ( i n t j =0; j<n ; j++)
12 {
13 i n t i =0, xbase , mbase ;
14 double yy , x0 , x1 , x2 , x3 , t i , b i ;
15 xbase=j ∗4 ;
16 x0=x [ xbase +0] ; x1=x [ xbase +1] ;
17 x2=x [ xbase +2] ; x3=x [ xbase +3] ;
18 whi le ( i<m) {
19 mbase=j ∗m;
20 t i=t [ mbase+i ] ; b i=b [ mbase+i ] ;
21 yy=x0∗ exp (0.− x1∗ t i ) ∗ s i n ( x2∗ t i+x3 ) ;
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22 y [ mbase+i ]=yy−b i ;
23 i=i +1;
24 }
25 }
26 }

Listing 1.1. Residual function F

The outer loop line 11 iterates through all n equations. After collecting the
four values of x for the current equation (lines 16 to 17), the inner loop computes
all the residuals for the jth equation (line 18). Since the measurements of each
equation are independent of each other, we can parallelize the outer loop. There-
fore, we define the parallel pragma together with the loop construct of OpenMP
in front of the outer loop (line 10). In Section 5, we show how the optimization
problem (2) can be solved with help of AD and the first-order derivative code
of F . The next section shows how we obtain the first-order derivative code of F
with AD.

4 Algorithmic Differentiation

The following definitions are taken from [13]. Nevertheless, we adjust these defi-
nitions to fit our residual function F : R4n → Rnm in terms of input and output
space dimension. The function F (1) : R8n → Rnm, defined as

y(1) = F (1)(x,x(1)) ≡ ∇F (x) · x(1) , (4)

is referred to as the tangent-linear model of F . Hence, the tangent-linear model
is a projection of the Jacobian ∇F (x) into the direction x(1) ∈ R4n. The su-
perscript of F (1) indicates a first-order tangent-linear component. The adjoint
model of F is the function F(1) : R

4n+nm → R4n, defined by

x(1) = F(1)(x,y(1)) ≡ (∇F (x))T · y(1) , (5)

which induces a projection of the transposed Jacobian ∇F (x) into the direction
y(1) ∈ Rnm. The subscript in F(1) displays that this is a first-order adjoint
function. As an example, let us consider the assignment

y=s i n ( x2∗ t i+x3 ) ; .

The right-hand side is a subexpression from line 21 of Listing 1.1. The computa-
tion of the right-hand side can be displayed by a directed acyclic graph (DAG),
see Figure 1a. We associate each node of the DAG with an auxiliary variable v,
as shown in Figure 1b. The DAG in Figure 1b is called linearized, because each
edge is labeled with the local partial derivative of the edge’s target node with
respect to its predecessor. For example, node v5 represents the value sin(v4),
and the partial derivative of v5 with respect to its predecessor v4 is cos(v4).
Therefore, the edge from v4 to v5 is labeled with cos(v4).

When we assume that the derivative code provides the values of the linearized
DAG in the variables v0, v1, . . ., v5, then the tangent-linear assignment of y=sin

(x2∗t i+x3) is
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x2 ti x3

∗

+

sin

(a) DAG

v0 v1 v2

v3

v4

v5

v1 v0

1

1

cos(v4)

(b) Linearized DAG

Fig. 1. The expression sin(x2 · ti + x3) can be represented by a DAG (Figure 1a). The
linearized DAG of this expression is shown in Figure 1b.

t 1 y = t1 x2 ∗( cos ( v4 )∗ v1 )+t 1 t i ∗( cos ( v4 ) ∗v0 )+t1 x3 ∗ cos ( v4 ) ;

where t1 v is the tangent-linear component of the variable v. The adjoint model
looks as

a1 x2 += a1 y ∗( cos ( v4 )∗ v1 ) ;
a 1 t i += a1 y ∗( cos ( v4 )∗ v0 ) ;
a1 x3 += a1 y ∗ cos ( v4 ) ;
a1 y = 0 ;

where a1 v is the adjoint variable associated with v. These listings already indi-
cate that differentiating a given code is error-prone, particularly in the adjoint
model case. Fortunately, there are several tools providing AD by source transfor-
mation, for example OpenAD1, ADOL-C2, Tapenade3, and dcc4. Nevertheless,
none of these tools provide support for source transformation of OpenMP code.
It is ongoing work to enable dcc to support OpenMP [14,15,16]. This concludes
the AD section. Further details can be found in the textbooks [4,13].

5 Solving Least-Squares with AD and OpenMP

Two generally used methods to solve the least-squares problem are the Gauss-
Newton method on the one hand, and the Levenberg-Marquardt method on the
other hand. What both methods have in common is the assumption that the
impact of the second-order derivatives ∇2Fi,j in (3) is small. A good description
of these methods can be found in the textbooks [3,12]. Basically, the algorithms
solve the optimization problem by solving iteratively a linear system of equations:

Ask = −b ,

1 http://www.mcs.anl.gov/OpenAD/
2 https://projects.coin-or.org/ADOL-C
3 http://tapenade.inria.fr:8080/tapenade/index.jsp
4 http://www.stce.rwth-aachen.de/software/dcc.html
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where sk solves the linear system in the kth iteration. The right-hand side is
defined by the negative value of the gradient b = (∇F (x))TF (x) of the objective
function. Matrix A ∈ R4n×4n consists of an approximation of the second-order
derivative of the objective function A = (∇F (xk))T∇F (xk).

We do not compute the whole Jacobian ∇F (x) ∈ Rnm×4n, since the adjoint
model (5) provides exactly what we need for acquiring b. Therefore, we compute
b as follows:

y ← F (x)

b← F(1)(x,y)

We use a combination of the tangent-linear model with the adjoint model to
compute the matrix A column by column:

for i ∈{1, . . . , 4n} :
y(1) ← F (1)(x, ei)

Ai ← F(1)(x,y
(1)) .

First, we compute the ith column of the Jacobian ∇F (x) by calling the tangent-
linear model with x and the ith Euclidean basis vector ei as arguments. After-
wards, we use this result to obtain the ith column of A by calling the adjoint
model. The whole algorithm is presented in Algorithm 1.

Algorithm 1. Gauss-Newton and Levenberg-Marquardt method and using AD
to obtain b and A

Require: x0 ∈ R4, ε ∈ R, μ > 0
Ensure: x∗ = min

x∈R4

1
2
‖f(x)‖22

k ← 0
r ← 2ε
while r > ε do

y ← F (xk)
b ← F(1)(x

k,y)
for all i = 1, . . . , 4n do

y(1) ← F (1)(xk, ei)
Ai ← F(1)(x

k,y(1))
end for
if Levenberg-Marquardt method then

μ ← adjust mu(μ)
A ← A+ μ2I

end if
Solve linear system Ask = −b
xk+1 ← sk + xk

r ← ‖b‖2
k ← k + 1

end while
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Next, we have to clarify why the transformation of the parallel region in the
original code can stay a parallel region in the derivative code. This means in
terms of multiprocessing that the source transformation does not introduce data
dependences that are critical. Critical references are references that are written
by multiple threads at the same time or references that are written by one thread
and simultaneously read by another thread [17].

In case of the tangent-linear source transformation, the data flow of the orig-
inal code is inherited to the tangent-linear code. The floating-point assignments
of the original code are transformed as explained in Section 4. The data flow in
Listing 1.1 is first from memory locations, shared by all threads, to thread-local
variables (line 16 to line 20). The computation takes place (line 21) with thread-
local variables and afterwards the result is written back to a shared memory
location (line 22). The store in line 22 is non-critical because each equation has
its own set of measurement values.

Each shared or thread-local variable in F has its associated tangent-linear
component in t1 F. The tangent-linear components have the same shared or
thread-local status as its original pendant. Hence, the write operation in line 22
to the non-critical reference y[mbase+i] leads to a non-critical write access in the
tangent-linear code to t1 y [mbase+i].

The adjoint model reverses the data flow of the original code. Without going
into details, we have to examine whether or not there are references in the original
code that may be read simultaneously by multiple threads. In this case, this leads
to a critical reference in the adjoint code and therefore to a race condition. In
our example, each equation has its own set of four parameters. For that reason,
no shared reference in line 16 to line 20 is read by multiple threads. Therefore,
the adjoint source transformation can be executed in parallel as well.

6 Experimental Results

To test the approach we used two systems of the center of computing located at
the RWTH Aachen University. On the one hand we used a SUN T5120 node and
on the other hand we ran tests on a Bull Coherent System (BCS) system. Both
systems provide up to 64 cores. To test the scalability of the derivative codes,
we used the Sun T5120 node.

Threads Original Tangent-linear Adjoint
1 304s 686s 1486s
2 154s 340s 735s
4 77s 170s 367s
8 38s 85s 184s
16 22s 43s 106s
32 12s 27s 57s
64 9s 20s 42s

The tangent-linear code is about factor two slower than the original code, whereby
the adjoint code needs around five times longer than the original code. These
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Fig. 2. This figure shows the speedup results of the original code, tangent-linear, and
adjoint code. The original code and the derivative codes scale almost linear up to a
number of threads of 64.

values are comparable with other results we get from derivative codes generated
by source transformation, see for example [13]. Figure 2 indicates that all three
codes scale almost linear up to a number of threads of 64. A small decrease can be
recognized when the number of threads grows over a number being divisible by 16
(16, 32, 48). This is likely connected to the hardware architecture of the T5120.

Another interesting fact that we could exploit through the knowledge of the
parallelism inside the original code is that we form the adjoint code in a way
such that a lot of memory can be saved. For the least-squares example the
memory usage between the sequential adjoint code without using knowledge
about parallelism and the adjoint code where we exploit this fact, this makes a
difference of factor 100 when using 10 threads. This factor decreases when using
more threads because each thread uses thread-local data for the execution of the
adjoint code but this is still an order of magnitude.

Figure 3 shows the speedup results from the least-squares problem where the
number of equations is 1000 and the number of measurement points is 21. The
results show that the Bull machine provides the best speedup with almost 6 with
12 threads. The Sun node yields the best speedup factor of 14 when using all 64
cores. The speedup on the Bull machine decreases when the number of threads is
bigger than 32. This is likely because the node comprises of two connected S6010
machines each equipped with a mainboard with four eight-core CPUs. The con-
nection between these machines is formed by a Bull Coherent Switch (BCS). In
case that the number of threads is bigger than 32, there seems to be too much
overhead between the two nodes to achieve further performance increase.
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Fig. 3. The speedup results from the least-squares problem with 1000 equations and
21 measurement points

7 Conclusion

We showed how a certain least-squares problem can be solved with help of AD
and OpenMP. The usage of OpenMP turns out to be a good way to improve
efficiency of the optimization process, not only in terms of runtime but also in
terms of memory consumption. Both, the tangent-linear code and the adjoint
code reach a speedup value of about 35. The computation of the least-squares
solution could be accelerated by factor 6 on a Bull BCS system and by factor 14
on a Sun T5120 machine.

This work showed that pragmas in the original code can provide valuable in-
formation for the AD source transformation. These methods are not restricted
to OpenMP but rather could be transferred to other pragma based APIs as the
OpenACC standard for GPU computation. Further investigations must be made
to provide a source transformation of OpenMP parallel regions by a compiler. It is
ongoing work to enable our tool dcc to support OpenMP source transformation.
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Abstract. This paper describes the design of a hierarchical parallel algorithm 
for accelerating community detection which involves partitioning a network in-
to communities of densely connected nodes. The algorithm is based on the 
Louvain method developed at the Université Catholique de Louvain, which uses 
modularity to measure community quality and has been successfully applied on 
many different types of networks. The proposed hierarchical parallel algorithm 
targets three levels of parallelism in the Louvain method and it has been imple-
mented on single-GPU and multi-GPU architectures. Benchmarking results on 
several large web-based networks and popular social networks show that on top 
of offering speedups of up to 5x, the single-GPU version is able to find better 
quality communities. On average, the multi-GPU version provides an additional 
2x speedup over the single-GPU version but with a 3% degradation in commu-
nity quality. 

Keywords: Community detection, parallel algorithm, GPU, social networks. 

1 Introduction 

Detecting community structure has attracted increasing attention [1] with the recent 
rise of social networks such as Facebook and Twitter. Community detection involves 
clustering highly connected nodes in a network into communities. For social net-
works, community detection can be applied to online marketing campaigns such as 
recommendation systems and viral marketing strategies. Besides social networks, 
community detection has many applications in other areas such as finding webpages 
that have the same topic in WWW [2], identifying communities for contact tracing in 
the event of infectious disease outbreak [3], and identifying a group of friends in a 
mobile network [4]. 

Nowadays, networks with hundreds of millions of nodes and links are common and 
their sizes continue to increase. Community detection on these huge networks will take 
a large amount of time. This will limit the quality of community information extracted 
due to significant computational complexity. In order to cope with larger networks as 
well as perform more complex analysis with faster response time, there is a need to 
accelerate the performance of the core kernel of the community detection algorithm. 



776 C.Y. Cheong et al. 

Graphics Processing Unit (GPU) acceleration has been the current trend in the high 
performance computing community. Each GPU can have up to 2000 physical 
processing cores running in parallel [5]. On top of these processing cores, tens of 
thousands of software threads are concurrently executed in interleaved fashion to 
maximize the performance. With its massively parallel computing power, GPU is 
potentially a suitable candidate for accelerating community detection algorithms for 
large networks. However, mapping a community detection algorithm to GPU faces 
some challenging problems. Firstly, processing a large graph requires a large amount 
of data communication among different functions of the algorithm but data communi-
cations between CPU and GPU or within GPU memory hierarchy are very expensive. 
Secondly, core computation of the community detection algorithm is quite diversified 
among nodes and communities but GPU execution uses a Single Instruction Multiple 
Threads (SIMT) model. In the SIMT model, all threads execute the same instructions 
at a time step. Finally, there is a need to efficiently utilize the heterogeneous compu-
ting power in GPU, multi-GPU, and multi-core systems. To address the above chal-
lenges, an efficient implementation of the community detection algorithm using GPU 
as accelerator is proposed in this paper. The proposed parallel community detection 
algorithm is based on the highly-cited Louvain method [4]. The key contributions of 
this paper are summarized: 

1. Proposing the first parallel community detection algorithm based on the Lou-
vain method. 

2. Accelerating the parallel Louvain version on single GPU platform. 
3. Further accelerating the parallel Louvain version on a multi-core with multi-

GPU architecture. 
4. Comprehensive experiments on different networks: social networks (Facebook 

[6], Twitter (extracted by Twitter API), Orkut [7], LiveJournal [7], Flickr [8]) 
and web-based networks (uk-2005 [9], webbase-2001 [10]). 

2 Background 

2.1 Modularity-Based Community Detection 

The community detection problem has been well-studied in the literature. Existing 
algorithms can be classified into a few major classes: divisive algorithms [11], mod-
ularity-based methods [12], dynamic methods [13], and spectral methods [14]. A 
more complete summary about community detection algorithms can be found in the 
survey paper [1]. In this paper, the focus is on modularity-based methods which use 
modularity as a measure of the quality of a community. Modularity, proposed by 
Newman [12], is the comparison between the actual density of links in a sub-graph 
(community) and the density one is expected to have in the sub-graph if the vertices 
of the sub-graph were attached arbitrarily. For a directed graph, the modularity Q is 
defined as follows: 

 ∑ , ,  (1) 
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where V is the set of nodes in the network,  is the weight of the link between 
nodes i and j,  and  are the sum of the weights of the outgoing and incoming 
links of i and j, respectively,  is the community that node i is in, the  function ,  is 1 if u is equal to v and 0 otherwise, and m is the sum of the weights of all 
the links in the network. From (1), the modularity of a network ranges between 0 and 
1, with a higher value indicating a stronger community structure. 

Among modularity-based methods, the Louvain method [4] is well-known to be 
able to perform fast community detection. It has been successfully applied on many 
different types of networks [15-17]. Instead of computing modularity for the whole 
network as in (1), which is computationally expensive, the Louvain method intro-
duced the gain in modularity of moving a node i into a community C, which is com-
puted as follows: 

 ∆ , ,  (2) 

where ,  is the sum of the weights of the links from i to the nodes in C, ,  is the 
sum of the weights of the links from the nodes in C to i, and  and  are the 
sums of the weights of the incoming and outgoing links of all the nodes in C, respec-
tively. , , and m are as defined in (1). 

2.2 GPU Computing 

A GPU supports massive parallelism through a number of streaming multi-processors 
(SMs), each consisting of a number of physical processing cores running in SIMT 
mode. Parallel software threads are grouped into thread blocks which run on each of 
the available SMs. There are typically more software threads than there are physical 
processing cores. In order to efficiently schedule the large number of software threads 
on SMs, 32 threads are statically grouped into scheduling units, referred to as warps 
in the NVIDIA literature. Warps execute in lockstep, and if one or more threads in a 
warp wait for data to be ready, the entire warp has to wait as well. A hardware sche-
duler will then select another ready warp for execution. Recently, Soman et al. [18] 
proposed a community detection algorithm based on label propagation and mapped it 
to GPU platform using some standard GPU primitives such as Bitonic sort. 

3 The Louvain Method for Community Detection 

3.1 Description of the Louvain Method 

The Louvain method [4] is a greedy optimization method for community detection.  
It partitions a network into communities by maximizing the modularity of the parti-
tion. In essence, the Louvain method consists of two phases, modularity optimization 
and community aggregation. In the modularity optimization phase, each node of the 
network is initially assigned to its own community, i.e. the number of communities is 
equal to the number of nodes. Each node is then considered, in turn, if it would stay in 
its original community or move to one of its neighboring communities. This is done 
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by removing the node from its original community, computing the gain in modularity 
if the node were inserted into each of its neighboring communities, and moving the 
node to the community with the maximum positive gain. Each cycle of this process 
through all the nodes in the network is referred to as an iteration. The modularity 
optimization phase terminates when no improvement in modularity can be achieved. 
At the end of the modularity optimization phase, the network is partitioned into a 
number of communities. Next, the community aggregation phase involves building a 
new, but smaller, network by aggregating nodes in the original network that belong to 
the same community such that the nodes in the new network are the communities at 
the end of the preceding modularity optimization phase. The weight of the link be-
tween two nodes in this new network is the total weight of the links between the 
nodes of the two corresponding communities in the original network. The links be-
tween the nodes of the same community become self-loops of the corresponding node 
in the new network. With the new network, the modularity optimization phase can 
then be applied again and the two phases iterate until no improvement in modularity 
can be achieved. Each application of the modularity optimization phase followed by 
the community aggregation phase is referred to as a pass.  

3.2 Profiling of the Louvain Method 

In order to identify the computational bottlenecks that should be targeted when paral-
lelizing the Louvain method to speed up its computation, a profiling of the method 
was conducted on a web-based network. The network is a sub-network of the .uk 
domain and it has 16 million nodes and 287 million links. The profiling results are 
shown in Fig. 1. In order to highlight the contribution of this paper, the profiling re-
sults, as well as all subsequent timing results, will only consider the computation time 
spent on community detection, while I/O times are omitted. 
 

 
(a) (b)

Fig. 1. Profiling results: (a) Percentage of computation time spent in each pass and (b) breakdown 
of computation time of each iteration of the modularity optimization phase of the first pass 

Figure 1(a) shows that 94.8% of the computation time is spent in the first pass of 
the Louvain method. This result is expected since all the nodes in the network are 
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considered in the first pass, while the other passes process much smaller networks due 
to the community aggregation phase. Figure 1(a) also shows that 93% of the computa-
tion time is spent in the modularity optimization phase of the first pass. It can be seen 
in Fig. 1(b) that within each of the seven iterations of the modularity optimization 
phase of the first pass, approximately 80% of the computation time is spent on two 
main components of the modularity optimization phase. The first component, referred 
to as Find Neighboring Communities (FNC), involves computing the set of unique 
neighboring communities for each node i. For each neighboring community C, ,  
and , , which are needed for the calculation of the gain in modularity in (2), are also 
computed at the same time. The other component, referred to as Find Best Move 
(FBM), computes the gain in modularity of moving each node into each of its neigh-
boring communities and then moving the node to the community that gives the maxi-
mum positive gain. 

From the profiling results, it is clear that the modularity optimization phase of the 
first pass of the Louvain method is the main computational bottleneck that should be 
targeted when parallelizing the algorithm. In order to speed up the modularity optimiza-
tion phase of the first pass, it is critical to accelerate the computation of FNC and FBM. 

4 Hierarchical Parallel Algorithm 

The hierarchical parallel algorithm for community detection proposed in this paper 
targets three levels of parallelism in the Louvain method to speed up its computation. 

At the highest level, the original network is partitioned into a number of sub-
networks and a set of removed links which consists of the links that join nodes resid-
ing in different sub-networks. The Louvain method can then be applied to solve the 
community detection problem in each of the sub-networks in parallel. After this, the 
resulting networks are combined into a single network using the removed links, and 
then the Louvain method is applied once more on this combined network to obtain the 
final community results. On top of decomposing the original network into sub-
networks and processing them in parallel, the effectiveness of this level of parallelism 
also stems from the fact that the combined network, obtained from the resulting net-
works after processing the sub-networks in parallel, is typically a few orders of mag-
nitude smaller than the original network due to the community aggregation phase of 
the Louvain method. 

 

Fig. 2. Illustration of the second and third levels of parallelism 
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The second level of parallelism involves visiting nodes in parallel during each ite-
ration of the modularity optimization phase. In the original Louvain method, nodes 
are visited sequentially in each iteration, where each node visit involves applying 
FNC to obtain the set of neighboring communities of the node, followed by FBM to 
move the node to the community that results in the maximum positive gain in mod-
ularity. As shown in Fig. 2, this level of parallelism suggests the division of nodes in 
the network into batches, with the nodes in each batch being processed in parallel. It 
is to be noted that the computations for visiting two nodes in a batch may not be inde-
pendent since one of the nodes may be in the neighboring community of the other 
node. While it is possible to find mutually independent batches, it would incur addi-
tional computational cost. In this paper, this inaccuracy is allowed but only atomic 
updates to a node’s community status are permitted. 

The third and lowest level of parallelism involves computing the gain in modulari-
ty of inserting a node into each of its neighboring communities in parallel (See Fig. 
2). This level of parallelism is intuitive and would be effective when a node has a 
large number of neighboring communities. 

5 Mapping to GPU 

This section describes how the three levels of parallelism proposed in the previous 
section for the Louvain method are implemented on the GPU.  

5.1 Mapping of Find Neighboring Communities to GPU 

As described in Section 3.2, Find Neighboring Communities (FNC) performs two 
functions. It not only finds the set of neighboring communities for each node i but for 
each neighboring community C of i, it also computes ,  and  ,  which are 
needed for the calculation of the gain in modularity as given in (2). 

An example to illustrate the mapping of FNC to GPU is shown in Fig. 3. In the 
figure, the current community status of the network is shown. It can also be seen in 
the figure that the network is represented by an array of structures. Each structure 
consists of four elements – the node ID, the neighboring node ID, the outgoing link 
weight, and the incoming link weight. For example, the first column in the data struc-
ture indicates that node 0 has an outgoing link of weight 1 to its neighboring node 1. 
Only five nodes, i.e. node 0 to node 4, are considered in the data structure in the fig-
ure as it is assumed that nodes are processed in batches of five in the second level of 
parallelism as shown in Fig. 2. The data for the five nodes are combined into a single 
array and copied to the host memory of the GPU to reduce communication overhead 
for each memory copy instruction, which can add up to a significant amount due to 
the sheer size of the network.  

GPU kernel 1 performs two functions. Based on the current community status of 
the network, the assigned GPU thread converts each neighboring node ID in the data 
structure to its corresponding community ID. The thread also prepares the key for the 
GPU radix sort in the next step. The GPU radix sort arranges the entire array first in 
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Fig. 3. Example to illustrate mapping of Find Neighboring Communities to GPU 

order of increasing node ID and then in order of increasing neighboring community 
ID for array elements with the same node ID. The radix sort in the Thrust library is 
used in this paper. With the sorted array, each node is being assigned a GPU thread in 
GPU kernel 2. The thread goes down the array elements belonging to the node and 
sums up the weights for adjacent elements with the same neighboring community ID 
to give the final output of FNC. As can be seen in Fig. 3, node 0 has outgoing links to 
communities 0, 1, and 2 and the weights of the links are as shown. 
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The second and third levels of parallelism are considered when mapping Find Best 
Move (FBM) to GPU. As described in Section 4, the second level of parallelism in-
volves dividing the nodes in the network into batches, with the nodes in each batch 
being processed in parallel. In the GPU implementation, the GPU kernel for FBM 
assigns a number of threads to each node in a batch. The threads handle the third level 
of parallelism by computing the gain in modularity of inserting the node into each of 
its neighboring communities in batches. The first thread of the assigned threads is also 
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ing which neighboring community offers the maximum positive gain in modularity 
and moving the node into the community.  
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5.3 Multi-core with Multi-GPU Implementation 

The highest level of parallelism is implemented by using a multi-core with multi-GPU 
architecture as illustrated in Fig. 4 for a four-partition example. A simple partitioning 
scheme, which divides the nodes in the network evenly between the sub-networks 
(SNs) based on their node IDs, is used. The links that join nodes residing in different 
sub-networks are set aside. The Louvain method is then applied to solve the commu-
nity detection problem in each sub-network in parallel. The Louvain method incorpo-
rates the second and third levels of parallelism as described in the previous two  
sections. It is to be highlighted that since the profiling results show that most of the 
computation time is spent in the first pass of the Louvain method, only the FNC and 
FBM in the first pass is offloaded to the GPU. The parts of the Louvain method that 
have been offloaded to the GPU are implemented using a multi-GPU architecture, 
while the serial parts of the Louvain method are implemented as a multi-core architec-
ture. The results obtained for the individual sub-networks are then combined with the 
removed links into a single network. The serial version of the Louvain method is ap-
plied once more on this combined network to obtain the final community results. 

 

Fig. 4. Illustration of multi-core with multi-GPU implementation 

6 Evaluation 

The performance of the hierarchical parallel algorithm for community detection pro-
posed in this paper is evaluated using the networks in Table 1. The considered net-
works include large web-based networks and popular social networks. The results 
reported in this section were obtained on a server with Intel Xeon E5405 2 GHz pro-
cessor and four NVIDIA Fermi C2070 GPUs. All executables have been obtained 
using the ‘-O3’ compiler optimization option. Due to memory limitations of the serv-
er, the original Louvain method was not able to process the larger web-based net-
works, namely uk-2005 and webbase-2001, as a whole. As such, a sub-network of the 
original network was generated using random sampling. 
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Table 1. Details of the networks used in the evaluation 

Network Description 
# Vertices

(M) 
# Links 

(M) 
Degree Reference 

uk-2005 Web network (.uk domain) 15.99 287.20 17.96 [9] 
webbase-2001 Web network 19.97 138.07 6.91 [10] 

twitter Twitter user follow links 3.26 13.13 4.03 Twitter API 
flickr Flickr follow links 2.30 33.14 14.39 [8] 

livejournal LiveJournal social network 5.20 76.94 14.79 [7] 
orkut Orkut social network 3.07 223.53 72.75 [7] 

facebook Facebook social network 2.94 41.92 14.26 [6] 

6.1 GPU Thread Configuration 

The performance of the GPU is generally susceptible to its thread configuration. This 
section seeks to find the optimal thread configuration for the single-GPU implementa-
tion of the hierarchical parallel algorithm. This means that only the second and third 
levels of parallelism are considered. The computation times for the different thread 
configurations obtained on the uk-2005 network are shown in Table 2.  

Table 2. Computation times (in seconds) for different GPU thread configurations on uk-2005 

# Blocks 
per SM 

2 4 6 8 

# Threads 
per block 

# Threads per node # Threads per node # Threads per node # Threads per node 
16 32 16 32 16 32 16 32 

256 181.59 243.99 134.71 182.32 122.22 146.72 118.4 132.66 
512 133.8 183.02 118.02 134.07 110.89 122.72 107.17 119.02 
768 123.6 146.9 112.02 124.37 108.06 118.41 106.94 113.62 

Table 3. Computation times (in seconds) for uk-2005 using different GPU thread 
configurations but fixing the number of nodes that is processed in parallel per SM 

# Nodes processed 
in parallel per SM 

# Threads per node Configuration 

4 8 16 32 
# Blocks 
per SM 

# Nodes 
per block 

32 188.82 192.74 179.81 182.32 4 8 
32 188.54 186.14 181.59 183.02 2 16 
48 150.76 146.96 143.84 146.72 6 8 
48 151.34 148.28 146.43 146.9 2 24 
64 137.32 134.69 131.86 132.66 8 8 
64 137.57 135.47 134.71 134.07 4 16 
96 125.76 123.89 122.22 122.72 6 16 
96 124.42 124.03 121.73 124.37 4 24 
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In Table 2, by fixing the number of blocks per SM and the number of threads in 
each block and then assigning different number of threads to each node, the degrees 
of parallelism in the second and third levels can be controlled. Assigning a larger 
number of threads to each node would increase the degree of parallelism in the third 
level since there are more threads to compute the gain in modularity of inserting the 
node into its neighboring communities. However, this would lead to a corresponding 
decrease in the degree of parallelism in the second level with less nodes being able to 
be processed in parallel. It is clear from Table 2 that assigning 16 threads to each node 
has a performance advantage over assigning 32 threads to each node. This result is 
likely due to the fact that the uk-2005 network has a degree of 17.96 and some of the 
32 threads assigned to each node would be idling.  

To study how the degrees of parallelism in the second and third levels affect com-
putational performance, another set of experiments, whose results are tabulated in 
Table 3, is performed. In these experiments, the number of nodes that are processed in 
parallel per SM, which controls the degree of parallelism in the second level, is fixed 
at 32, 48, 64, and 96. The number of threads assigned to each node, which determines 
the degree of parallelism in the third level, is set at 4, 8, 16, and 32. It can be seen in 
Table 3 that by fixing the number of nodes that are processed in parallel per SM, the 
number of threads assigned to each node has a small, but not negligible, effect on 
computation times. In all settings, assigning 16 threads to each node resulted in the 
lowest computation times. The results in Table 3 also show that the GPU configura-
tion, i.e. the number of blocks per SM and the number of nodes per block, has very 
little effect on computational performance as well. The main parameter that affects 
performance is the number of nodes that are processed in parallel per SM. The larger 
the number of nodes processed in parallel per SM, the better the performance. 

The best configuration is highlighted in bold in Table 2 and is used to obtain the 
rest of the results in this paper. 

6.2 Comparison of Computation Times 

This section assesses the performance, in terms of computation time, of the paralle-
lized Louvain method proposed in this paper. The computation times for three  
versions of the Louvain method are compared in Table 4. In Table 4, Louvain is the 
original Louvain method [4], SingleGPU utilizes the second and third levels of paral-
lelism, and MultiGPU considers the highest level of parallelism as well by splitting 
the original network into four sub-networks. The amount of computational speedups 
SingleGPU has over Louvain and MultiGPU has over both Louvain and SingleGPU 
are also shown in the table. 

The results in Table 4 show that SingleGPU offers varying degrees (3x on average) of 
speedup over Louvain. The highest speedups are achieved on the three largest graphs, i.e. 
uk-2005, webbase-2001, and orkut. On average, MultiGPU offers another 2x speedup 
over SingleGPU. MultiGPU did not perform as well on facebook, only achieving a spee-
dup of 1.27x over SingleGPU. A detailed examination revealed that MultiGPU suffered a 
load balancing problem. For facebook, although the nodes in the network were divided 
evenly between the sub-networks, one of the sub-networks had a disproportionate num-
ber of links, resulting in an uneven distribution of the computational load. 
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Table 4. Computation times (in seconds) for three versions of the Louvain method 

Network Louvain 
SingleGPU MultiGPU 

Time 
Speedup over 

Louvain 
Time 

Speedup over 
Louvain 

Speedup over 
SingleGPU 

uk-2005 497.12 109.94 4.52 56.15 8.85 1.96 
webbase-2001 419.61 105.82 3.97 52.46 8.00 2.02 

twitter 130.54 73.03 1.79 20.97 6.23 3.48 
flickr 113.67 66.04 1.72 27.36 4.15 2.41 

livejournal 273.1 145.72 1.87 83.84 3.26 1.74 
orkut 1683.3 338.13 4.98 100.45 16.76 3.37 

facebook 165.76 51.55 3.22 40.55 4.09 1.27 

6.3 Comparison of Modularity Values 

While the hierarchical parallel algorithm proposed in this paper offers considerable 
speedups over the original Louvain method, two sources of inaccuracy have been 
introduced in the parallel versions. In SingleGPU, the second level of parallelism 
assumes that the computations for visiting any two nodes in a batch are independent, 
which may not be the case since one of the nodes may be in the neighboring commu-
nity of the other node. In addition, inaccuracy is introduced when MultiGPU parti-
tions a network into sub-networks, solves the community detection problem in each 
sub-network independently, and then combines the results. To study the extent to 
which the inaccuracies affect community detection results, a comparison of the mod-
ularity values obtained by the three versions of the Louvain method is provided in 
Table 5. The best result for each network is highlighted in bold. The percentage dif-
ferences in results between the two proposed versions and Louvain are also given. 

Table 5. Modularity values for three versions of the Louvain method 

Network Louvain 
SingleGPU MultiGPU 

Q % difference Q % difference 
uk-2005 0.998 0.998 0 0.998 0 

webbase-2001 0.998 0.998 0 0.998 0 
twitter 0.606 0.598 -1.32 0.583 -3.8 
flickr 0.655 0.665 1.53 0.641 -2.14 

livejournal 0.734 0.756 3 0.701 -4.50 
orkut 0.661 0.682 3.18 0.600 -9.23 

facebook 0.716 0.730 1.96 0.709 -0.98 

 
From Table 5, it can be observed that with the exception of the twitter network, the 

modularity values obtained by SingleGPU are equal, if not better, than those obtained 
by the original Louvain method. It is clear from these empirical results that the inac-
curacy introduced by assuming that the computations for visiting any two nodes in a 
batch are independent does not have a negative impact on the modularity values. 
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However, from the modularity values of the solutions obtained by MultiGPU, it can 
be observed that the inaccuracy introduced by solving the sub-networks rather than 
solving the original network as a whole has caused an average of 3% degradation in 
the modularity values. Given the speedups it offers, MultiGPU would still be useful in 
providing a quick and approximate community detection solution. 

7 Conclusions 

This paper represents the first attempt to accelerate the Louvain method, or modulari-
ty-based methods in general, on the GPU platform. Benchmarking results on several 
large web-based networks and popular social networks show that on top of offering 
speedups, the single-GPU version of the proposed hierarchical parallel algorithm is 
able to find better quality communities. The multi-GPU version provides additional 
speedups over the single-GPU version but with a slight degradation in community 
quality. 

A future work would be to design a more effective method to partition the network 
into sub-networks at the highest level of parallelism. The method should address two 
problems with the current design. Firstly, the computational load for each sub-
network needs to be more balanced. Secondly, the degradation in community quality 
needs to be minimized. The former could be tackled by partitioning the network such 
that the sub-networks have approximately equal number of links. The latter is more 
challenging as it requires the network partitioning problem to be treated as a commu-
nity detection problem so that nodes that would eventually be in the same community 
are placed in the same sub-network. A bigger challenge lies in integrating the two 
solutions as their objectives are potentially conflicting in nature. 
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Abstract. In the context of genome-wide association studies (GWAS),
one has to solve long sequences of generalized least-squares problems;
such a task has two limiting factors: execution time –often in the range
of days or weeks– and data management –data sets in the order of Ter-
abytes. We present an algorithm that obviates both issues. By pipelining
the computation, and thanks to a sophisticated transfer mechanism, we
stream data from hard disk to main memory to GPUs and achieve sus-
tained performance; with respect to a highly-optimized CPU implemen-
tation, our algorithm shows a speedup of 2.6x. Moreover, the approach
lends itself to multiple GPUs and attains almost perfect scalability. When
using 4 GPUs, we observe speedups of 9x over the aforementioned CPU
implementation, and 488x over ProbABEL, a widespread biology library.

Keywords: GWAS, generalized least-squares, computational biology,
out-of-core computation, high-performance, multiple GPUs, data trans-
fer, multibuffering, streaming, big data.

1 GWAS, Their Importance and Current Implementations

In a nutshell, the goal of a genome-wide association study (GWAS) is to find
an association between genetic variants and a specific trait such as a disease [1].
Since there is a tremendous amount of such genetic variants, the computation
involved in GWAS takes a long time, ranging from days to weeks and even
months [2]. In this paper, we look at OOC-HP-GWAS, currently the fastest
algorithm available, and show how it is possible to speed it up by exploiting the
computational power offered by modern graphics accelerators.

The solution of GWAS boils down to a sequence of generalized least squares
(GLS) problems involving huge amounts of data, in the order of Terabytes. The
challenge lies in sustaining GPU’s performance, avoiding idle time due to data
transfers from hard disk (HDD) and main memory. Our solution, cuGWAS,
combines three ideas: the computation is pipelined through GPU and CPU, the
transfers are executed asynchronously, and the data is streamed from HDD to
main memory to GPUs by means of a two-level buffering strategy. Combined,
these mechanisms allow cuGWAS to attain almost perfect scalability with re-
spect to the number of GPUs; when compared to OOC-HP-GWAS and another

F. Wolf, B. Mohr, and D. an Mey (Eds.): Euro-Par 2013, LNCS 8097, pp. 788–799, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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widespread GWAS library, ProbABEL, our code is respectively 9 and 488 times
faster.

In the first section of this paper, we introduce the reader to GWAS and the
computations involved therein. We then give an overview of OOC-HP-GWAS,
upon which we build cuGWAS, whose key techniques we explain in Section 3
and which we time in Section 4. We provide some closing remarks in Section 5.

1.1 Biological Introduction to GWAS

The segments of the DNA that contain information about protein synthesis are
called genes. They encode so-called traits, which are features of physical appear-
ance of the organism –like eye or hair color– as well as internal features of the
organism –like blood type or resistances to diseases. The hereditary information
of a species consists of all the genes in the DNA, and is called genome; this can
be visualized as a book containing instructions for our body. Following this anal-
ogy, the letters in this book are called nucleotides, and determining their order is
referred to as sequencing the genome. Even though the genome sequence of every
individual is different, within one species most of it (99.9% for humans) stays
the same. When a single nucleotide of the DNA differs between two individuals
of the same species, this difference is called a single-nucleotide polymorphism
(SNP, pronounced “snip”) and the two variants of the SNP are referred to as its
alleles.

Genome-wide association studies compare the DNA of two groups of individu-
als. All the individuals in the case group have a same trait, for example a specific
disease, while all the individuals in the control group do not have this trait. The
SNPs of the individuals in these groups are compared; if one variant of a SNP
is more frequent in the case group than in the control group, it is said that the
SNP is associated with the trait (disease). In contrast with other methods for
linking traits to SNPs, such as inheritance studies or genetic association studies,
GWAS consider the whole genome [1].

1.2 The Importance of GWAS

We gathered insightful statistics about all published GWAS [3]. Since the first
GWAS started to appear in 2005 and 2006, the amount of yearly published
studies has constantly increased, reaching more than 2300 studies in 2011. This
trend is summarized in the left panel of Fig. 1, showing the median SNP-count
of each year’s studies along with error-bars for the first and second quartiles.
One can observe that while GWA studies started out relatively small, since 2009
the amount of analyzed SNPs is growing tremendously. Besides the number of
SNPs, the other parameter relevant to the implementation of an algorithm is
the sample size, that is the total number of individuals of both the case and
the control group. What can be seen in Fig. 1b is that while it has grown at
first, in the past four years the median sample size seems to have settled around
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10 000 individuals. It is apparent that, in contrast to the SNP count, the growth
of the sample size is negligible. This data, as well as discussions with biologists,
confirm the need for algorithms and software that can compute a GWAS with
even more SNPs, and faster than currently possible.

0M
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3M

4M

2005 2006 2007 2008 2009 2010 2011

a) median SNP count

0K

10K

20K

30K

40K

2005 2006 2007 2008 2009 2010 2011

b) median sample size

Fig. 1. The median, first and second quartile of a) the SNP-count and b) the sample
size of the studies each year

1.3 The Mathematics of GWAS

The GWAS can be expressed as a variance component model [4] whose solution
ri can be formulated as

ri = (X
T
i M

−1Xi)
−1XT

i M
−1y, i = 1. . .m , (1)

where m is in the millions, and all variables on the right-hand side are known.
This sequence of equations is used to compute in ri the relations between varia-
tions in y (the phenotype1) and variations in Xi (the genotype). Each equation is
responsible for one SNP, meaning that the number m of equations corresponds
to the number of SNPs considered in the study.

Figure 2 captures the dimensions of the objects involved in one such equation.
The height n of the matrices Xi and M and of the vector y corresponds to the
number of samples, thus each row in the design-matrix Xi ∈ Rn×p corresponds
to a piece of each individual’s genetic makeup (i.e. information about one SNP),
and each entry in y ∈ Rn corresponds to an individual’s phenotype.2 M ∈ Rn×n

models the relations amongst the individuals, e.g. two individuals being in the
same family. Finally, an important feature of the matrices Xi is that they can be
partitioned as (XL∣XRi), where XL contains fixed covariates such as age and sex

1 A phenotype is the observed value of a certain trait of an individual. For example,
if the studied trait was the hair color, the phenotype of an individual would be the
one of “blonde”, “brown”, “black” or “red”.

2 In the example of the body height as a trait, the entries of y would then be the
heights of the individuals.
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Fig. 2. The dimensions of a single instance of (1)

and thus stays the same for any i, while XRi is a single column vector containing
the genotypes of the i-th SNP of all considered individuals.

Even though (1) has to be computed for every single SNP, only the right part
of the design-matrix XRi changes, while XL, M and y stay the same.

1.4 The Amount of Data and Computation Involved

We analyze the storage size requirements for the data involved in GWAS. Typ-
ical values for p range between 4 and 20, but only one column varies with m.
According to our analysis in Section 1.2, we consider n = 10 000 as the size of a
study. As of June 2012, the SNP database dbSNP lists 187 852 828 known SNPs
for humans [5], so we consider m = 190 000 000. With these numbers, assuming
that all data is stored as double precision floating point numbers, 3 the size of
y and M is about 80MB and 800MB, respectively; both fit in main memory
and in the GPU memory. The output r reaches 30GB, close to the main mem-
ory of current high-end systems and too big to fit in a GPU’s 6GB of memory.
Weighting in at 14TB, X is too big to fit into the memory of any system in the
foreseeable future and has to be streamed from disk.

In the field of bioinformatics, the ProbABEL [6] library is frequently used
for genome-wide association studies. On a Sun Fire X4640 server with an Intel
Xeon CPU 5160 (3.00 GHz), the authors report a runtime of almost 4 hours for
a problem with p = 4, n = 1500 and m = 220 833, and estimate the runtime with
m = 2 500 000 to be roughly 43 hours4 –almost two days. Compared to the current
demand, m = 2.5 million is a reasonable amount of SNPs, but a population size
of only n = 1500 individuals is clearly much smaller than the present median
(Fig. 1). The authors state that the runtime grows more than linearly with n
and, in fact, tripling up the sample size from 500 to 1500 increased their runtime
by a factor of 14. Coupling this fact with the median sample size of about 10 000
individuals, the computation time is bound to reach weeks or even months.

3 Which may or may not be the optimal storage type. More discussion with biologists
and analysis of the operations is necessary in order to find out whether float is
precise enough. If that was the case, the sizes should be halved.

4 We only consider what the authors called the linear model with the --mmscore
option as this solves the exact problem we tackle.
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2 Prior Work: The OOC-HP-GWAS Algorithm

Presently, the fastest available algorithm for solving (1) is OOC-HP-GWAS [4].
Since our work builds upon this CPU-only algorithm, we describe its salient
features. Other approaches to GWAS on GPU(s) include [10] and [11].

2.1 Algorithmic Features

OOC-HP-GWAS exploits the the symmetry and the positive definiteness of the
matrix M , by decomposing it through a Cholesky factorization LLT

=M . Since
M does not depend on i, this decomposition can be computed once as a prepro-
cessing step and reused for every instance of (1). Substituting LLT

=M into (1)
and rearranging, we obtain

ri = ((L
−1Xi)

�������������������������������

X̃i

T
L−1Xi
���������������

X̃i

)

−1
(L−1Xi)

�������������������������������

X̃i

T
L−1y
�

ỹ

for i = 1. . .m , (2)

effectively replacing the inversion and multiplication of M with the solution of
a triangular linear system (trsv).

The second problem-specific piece of knowledge that is exploited by OOC-
HP-GWAS is the structure of X = (XL∣XR): XL stays constant for any i, while
XR varies; plugging Xi = (XL∣XRi) into (2) and moving the constant parts out
of the loop leads to an algorithm that takes advantage of the structure of the
sequence of GLS shown in Listing 1.1. The acronyms correspond to BLAS calls.
A more detailed derivation can be found in [4].

Listing 1.1. Solution of the GWAS-specific sequence of GLS (1)

1 L ← potrf M (LLT
=M)

2 Xl ← trsm L, Xl (X̃L = L
−1XL)

3 y ← trsv L, y (ỹ = L−1y)

4 rt ← gemv Xl, y (r̃T = X̃
T
L ỹ)

5 Stl ← syrk Xl (STL = X̃
T
L X̃L)

6 for i in 1..m:

7 Xri ← trsv L, Xri (X̃Ri = L
−1XRi)

8 Sbl ← dot Xri, Xl (SBLi = X̃
T
Ri

X̃L)

9 Sbr ← syrk Xri (SBRi = X̃
T
Ri

X̃Ri)

10 rb ← dot Xri, y (r̃Bi = X̃
T
Ri

ỹ)

11 r ← posv S, r (ri = S
−1
i r̃i)

2.2 Implementation Features

Two implementation features allow OOC-HP-GWAS to attain near-perfect ef-
ficiency. First, by packing multiple vectors XRi into a matrix XRb

, the slow
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BLAS-2 routine to solve a triangular linear system (trsv) at Line 7 can be
transformed into a fast BLAS-3 trsm. Second, Listing 1.1 is an in-core algo-
rithm that cannot deal with an XR which does not fit into main memory. This
limitation is overcome by turning the algorithm into an out-of-core one, in this
case using a double-buffering technique: While the CPU is busy computing the
block b of XR in a primary buffer, the next block b+1 can already be loaded into
a secondary buffer through asynchronous I/O using the POSIX libaio. The
full OOC-HP-GWAS algorithm is shown in Listing 1.2. This algorithm attains
more than 90% efficiency.

Listing 1.2. The full OOC-HP-GWAS algorithm

1 L ← potrf M (LLT
=M)

2 Xl ← trsm L, Xl (X̃L = L
−1XL)

3 y ← trsv L, y (ỹ = L−1y)

4 rt ← gemv Xl, y (r̃T = X̃
T
L ỹ)

5 Stl ← syrk Xl (STL = X̃
T
L X̃L)

6 aio read Xr[1]
7 for b in 1..blockcount:
8 aio read Xr[b+1]
9 aio wait Xr[b]

10 Xrb ← trsm L, Xrb (X̃Rb
= L−1XRb

)

11 for Xri in Xr[b]:

12 Sbl ← gemm Xri, Xl (SBLi = X̃
T
Ri

X̃L)

13 Sbr ← syrk Xri (SBRi = X̃
T
Ri

X̃Ri)

14 rb ← gemv Xri, y (r̃Bi = X̃
T
Ri

ỹ)

15 r ← posv S, r (ri = S
−1
i r̃i)

16 aio wait r[b-1]
17 aio write r[b]
18 aio wait r[blockcount]

3 Increasing Performance by Using GPUs

While the efficiency of the OOC-HP-GWAS algorithm is satisfactory, the com-
putations can be sped up even more by leveraging multiple GPUs. With the help
of a profiler, we determined (confirming the intuition), that the trsm at line 10
in Listing 1.2 is the bottleneck. Since cuBLAS provides a high-performance im-
plementation of BLAS-3 routines, trsm is the best candidate to be executed on
GPUs. In this section, we introduce cuGWAS, an algorithm for a single GPU,
and then extend it to an arbitrary number of GPUs.

Before the trsm can be executed on a GPU, the algorithm has to transfer
the necessary data. Since the size of L is around 800 MB, the matrix can be sent
once during the preprocessing step and kept on the GPU throughout the entire
computation. Unfortunately, the whole XR matrix weights in at several TB, way
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more than the 2 GB per buffer limit of a modern GPU. The same holds true for
the result X̃Rb

of the trsm, which needs to be sent back to main memory. Thus,
there is no other choice than to send XR in a block-by-block fashion, each block
XRb

weighting at most 2 GB minus the size of L.
When profiled, a näıve implementation of the algorithm displays a pattern

(Fig. 3) typical for applications in which GPU-offloading is an after-thought:
both GPU (green) and CPU (gray) need to wait for the data transfer (orange);
furthermore, the CPU is idle while the GPU is busy and vice-versa.

Fig. 3. Profiled timings of the näıve implementation

Our first objective is to make use of the CPU while the GPU computes
the trsm. Regrettably, all operations following the trsm (i.e. the for-loop at
Lines 11–15 in Listing 1.2, which we will call the S-loop) are dependent on its
result and thus cannot be executed in parallel. A way to break out of this de-
pendency is to delay the S-loop by one block, in a pipeline fashion, so that the
S-loop relative to the b-th block of XR is executed on the CPU, while the GPU
executes the trsm with the (b+1)-th block. Thanks to this pipelining, we have
broken the dependency and introduced more parallelism, completely removing
the gray part of Fig. 3.

3.1 Streaming Data from HDD to GPU

The second problem with the aforementioned näıve implementation is the time
wasted due to data transfers. Modern GPUs are capable of overlapping data
transfers with computation. If properly exploited, this feature allows us to elim-
inate any overhead, and thus attain sustained peak performance on the GPU.

The major obstacle is that the data is already being double-buffered from
the hard-disk to the main memory. A quick analysis shows that when targeting
two layers of double-buffering (one layer for disk ↔ main memory transfers and
another layer for main memory ↔ GPU transfers), two buffers on each layer are
not sufficient anymore. The idea here is to have two buffers on the GPU and
three buffers on the CPU.

The double-triple buffering can be illustrated from two perspectives: the tasks
executed and the buffers involved. The former is presented in Fig. 4; we refer
the reader to [7] for a thorough description. Here we only discuss the technique
in terms of buffers.

In this single-GPU scenario, the size of the blocks XRb
used in the GPU’s

computation is equal to that on the CPU. When using multiple GPUs, this
will not be the case anymore, as the CPU loads one large block and distributes
portions of it to the GPUs.

The GPU’s buffers are used in the same way as the CPU’s buffers in the
simple CPU-only algorithm: While one buffer α is used for the computation, the
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Fig. 4. A task-perspective of the algorithm. Sizes are unrelated to runtime.

data is transferred to and from the other buffer β. But at the CPU’s level (i.e.
in RAM), three buffers are now necessary. For the sake of simplicity, we avoid
the explanation of the initial and final iterations and start with iteration b.

With reference to Fig. 5a, assume that the (b−1)-th, b-th and (b+1)-th blocks
already reside in the GPU buffers β, α, and in the CPU buffer C, respectively.
The block b−1 (i.e. buffer β) contains the solution of the trsm of block b−1. At
this point, the algorithm proceeds by dispatching both the read of the second-
next block b + 2 from disk into buffer A and the computation of the trsm on
the GPU on buffer α, and by receiving the result from buffer β into buffer B.
The first two operations are dispatched, i.e. they are executed asynchronously by
the memory system and the GPU, while the last one is executed synchronously
because these results are needed immediately in the following step.

As soon as the synchronous transfer β → B completes, the transfer of the next
block b + 1 from CPU buffer C to GPU buffer β is dispatched, and the S-loop is
executed on the CPU for the previous block b − 1 in buffer B on the CPU (see
Fig. 5b).

As soon as the CPU is done computing the S-loop, its results are written to
disk (Fig. 5c). Finally, once all transfers are done, buffers are rotated (through
pointer or index rotations, not copies) according to Fig. 5d, and the loop con-
tinues with b← b + 1.

3.2 Using Multiple GPUs

This multi-buffering technique achieves sustained performance on one GPU.
Since boards with many GPUs are becoming more and more common in high-
performance computing, we explain here how our algorithm is adapted to take
advantage of all the available parallelism. The idea is to increase the size of the
XRb

blocks by a factor as big as the number of available GPUs, and then split the
trsm among these GPUs. As long as solving a trsm on the GPU takes longer
than loading a large enough block XRb

from HDD to CPU, this parallelization
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Fig. 5. The multi-buffering algorithm as seen from a buffer perspective

strategy holds up for any number of GPUs. Since in our systems loading the
data from HDD was an order of magnitude faster than the computation of the
trsm, the algorithm scales up to more GPUs than were available. Listing 1.3
shows the final version of cuGWAS.5

Listing 1.3. cuGWAS. The black bullet is a placeholder for “all GPUs”.

1 L ← potrf M (LLT
=M)

2 cublas send L → L_gpu
●

3 Xl ← trsm L, Xl (X̃L = L
−1XL)

4 y ← trsv L, y (ỹ = L−1y)

5 rt ← gemv Xl, y (r̃T = X̃
T
L ỹ)

6 Stl ← syrk Xl (STL = X̃
T
L X̃L)

7 gpubs ← blocksize/ngpus
8 for b in -1..blockcount+1:
9 cu trsm wait α

●

(if b in 1..blockcount)
10 cu send wait C

●

→ β
●

(if b in 2..blockcount+1)
11 α

●

← cu trsm async L_gpu
●

, α
●

(if b in 1..blockcount)⤦

� (X̃Rb
= L−1XRb

)

12 aio read Xr[b+2] → A (if b in -1..blockcount-2)

5 The conditions for the first and last pair of iterations are provided in parentheses on
the right.
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13 for gpu in 0..ngpus-1: (if b in 2..blockcount+1)
14 cu recv B[gpu*gpubs..(gpu+1)*gpubs] ← βgpu

15 aio wait Xr[b+1] → C (if b in 0..blockcount-1)
16 for gpu in 0..ngpus-1: (if b in 0..blockcount-1)
17 cu send async C[gpu*gpubs..(gpu+1)*gpubs] → βgpu

18 for Xri in B: (if b in 2..blockcount+1)

19 Sbl ← gemm Xri, Xl (SBLi = X̃
T
Ri

X̃L)

20 Sbr ← syrk Xri (SBRi = X̃
T
Ri

X̃Ri)

21 rb ← gemv Xri, y (r̃Bi = X̃
T
Ri

ỹ)

22 r ← posv S, r (ri = S
−1
i r̃i)

23 aio wait r[b-2] (if b in 1..blockcount+1)
24 aio write r[b-1] (if b in 1..blockcount+1)
25 swap_buffers

4 Results

In order to show the speedups obtained with a single GPU, we compare the
hybrid CPU-GPU algorithm presented in Listing 1.3 using one GPU with the
CPU-only OOC-HP-GWAS. Then, to determine the scalability of cuGWAS, we
compare its runtimes when leveraging 1, 2, 3 and 4 GPUs.

In all of the timings, the time to initialize the GPU and the preprocessing
(Lines 1–7 in Listing 1.3), both in the order of seconds, have not been measured.
The GPU usually takes 5 s to fully initialize, and the preprocessing takes a few
seconds too, but depends only on n and p. This omission is thus irrelevant for
computations that run for hours.

4.1 Single-GPU Results

The experiments with a single-GPU were performed on the Quadro cluster at
the RWTH Aachen University; the cluster is equipped with two nVidia Quadro
6000 GPUs and two Intel Xeon X5650 CPUs per node. The GPUs, which are
powered by Fermi chips, have 6GB of RAM and a theoretical double-precision
computational power of 515GFlops each. In total, the cluster has a GPU peak
of 1.03TFlops. The CPUs, which have six cores each, amount to a total of
128GFlops and are supported by 24GB of RAM. The cost of the combined
GPUs is estimated to about $10 000 while the combined CPUs cost around
$2000.

Figure 6a shows the runtime of OOC-HP-GWAS along with that of cuGWAS,
using one GPU. Thanks to our transfer-overlapping strategy, we can leverage the
GPU’s performance and achieve a 2.6x speedup over a highly-optimized CPU-
only implementation. cuBLAS’ trsm implementation attains about 60% of the
GPU’s peak performance, i.e. about 309GFlops [8]. The peak performance of
the CPU in this system amounts to 128GFlops; if the whole computation were
performed on the GPU at trsm’s rate, the largest speedup possible would be
2.4. We achieve 2.6 because the computation is pipelined: the S-loop is executed
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on the CPU, in perfect overlap with the GPU. This means that the performance
of cuGWAS is perfectly in line with the theoretical peak.

In addition, the figure indicates that the algorithm (1) has linear runtime
in m and (2) allows us to cope with an arbitrary m. The red vertical line in
the figure marks the largest value of m for which two blocks of XR fit into the
GPU memory for n = 10 000. Without the presented multi-buffering technique,
it would not be possible to compute GWAS with more than m = 22 500 SNPs,
while cuGWAS allows the solution of GWAS with any given amount of SNPs.

4.2 Scalability with Multiple GPUs

To experiment with multiple GPUs, we used the Tesla cluster at the Universitat
Jaume I in Spain, since it is equipped with an nVidia Tesla S2050 which contains
four Fermi chips (same model as the Quadro system), for a combined GPU
compute power of 2.06TFlops, but with only 3GB of RAM each. The host CPU
is an Intel Xeon E5440 delivering approximately 90GFlops.

In order to evaluate the scalability of cuGWAS, we solved a GWAS with p = 4,
n = 10 000, and m = 100 000 on the Tesla cluster, varying the number of GPUs.
As it can be seen in Fig. 6b, the scalability of the algorithm with respect to
the number of GPUs is almost ideal: Doubling the amount of GPUs reduces the
runtime by a factor of 1.9.
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Fig. 6. The runtime of our cuGWAS algorithm a) using one GPU compared to OOC-
HP-GWAS (CPU), b) using a varying amount of GPUs

5 Conclusion and Future Work

We have presented a strategy which makes it possible to sustain peak perfor-
mance on a GPU not only when the data is too big for the GPU’s memory, but
also for main memory. In addition, we have shown how well this strategy scales
to multiple GPUs.

As described by the developers of ProbABEL, the solution of a problem
of the size described in Section 1.4 by the GWFGLS algorithm took 4 hours.
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In contrast, with cuGWAS we solved the same problem in 2.88 s. Even account-
ing for about 6 seconds for the initialization and Moore’s Law (doubling the
runtime as ProbABEL’s timings are from 2010), the difference is dramatic. We
believe that the contribution of cuGWAS is an important step towards making
GWAS practical.

Software. The code implementing the strategy explained in this paper
is freely available at http://github.com/lucasb-eyer/cuGWAS and
http://lucas-b.eyer.be.
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Computational accelerators such as GPUs, FPGAs and many-core accelerators
can dramatically improve the performance of computing systems and catalyze
highly demanding applications. Many scientific and commercial applications are
beginning to integrate computational accelerators in their code. However, pro-
gramming accelerators for high performance remains a challenge, resulting from
the restricted architectural features of accelerators compared to general purpose
CPUs. Moreover, software must conjointly use conventional CPUs with acceler-
ators to support legacy code and benefit from general purpose operating system
services. The objective of this topic is to provide a forum for exchanging new
ideas and findings in the domain of accelerator-based computing.

This year, seven papers have been accepted for publication in the GPU and
accelerator computing track. Besides the important theme of scalable paralleliza-
tion of applications on accelerator-based systems, the papers in the track explore
power/performance optimizations, power profiling, and novel use of accelerators
in scientific applications.

Villa, Fatica, Gawande and Tumeo presents a study of power and performance
trade-offs in linear algebra solvers using GPUs in ”Power/Performance Trade-
offs of Small Batched LU Based Solvers on GPUs.” Lang and Rünger introduce
a new method for profiling power consumption of GPUs at high resolution using
low-resolution measurement in ”High-Resolution Power Profiling of GPU Func-
tions Using Low-Resolution Measurement.” Novalbos, Gonzalez, Otaduy, Lopez-
Medrano and Sanchez discuss performance ofmolecular dynamics code running on
multi-GPU accelerator boards in ”On-board Multi-GPU Molecular Dynamics.”
Optimizing convolutions both with GPUs and CPU SSE units is discussed in ”Op-
timizing 3D Convolutions for Wavelet Transforms on CPUs with SSE Units and
GPUs” by Videau, Marangozova-Martin,Genovese and Thierry Deutsch. In addi-
tion to conventional scientific applications, two papers discuss applications GPUs
in data analysis problems. Adinetz, Kraus, Meinke and Pleiter present data clus-
tering using GPUs in ”GPUMAFIA: Efficient Subspace Clustering with MAFIA
on GPUs.” Deveci, Kaya, Ucar and Catalyurek present an acceleration method
for graph processing in ”GPUAccelerated Maximum Cardinality Matching Algo-
rithms for Bipartite Graphs.” Finally, Marques, Paulino, Alexandre andMedeiros
discuss a new skeleton-basedprogrammingmodel for GPUs in ”Algorithmic Skele-
ton Framework for the Orchestration of GPU Computations.”

We wish to thank all authors who submitted a paper to this topic and all
external reviews for delivering quality reviews on time.
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Abstract In order to be able to minimise the energy consumption of an
application program, information about the specific energy consumption
is required. Modern Nvidia graphics processing units (GPUs) measure
their current power consumption and the driver makes the value avail-
able to the application every 20 ms. However, for evaluating the energy
consumption of GPU kernel functions, such a sampling interval might
not be sufficient since the kernels may have a shorter execution time.

This article proposes a method for generating high-resolution power
profiles, which is the power consumption of a specific function depending
on the progress of its execution. The method uses low-resolution measur-
ing instruments offered by GPUs. Power measurements obtained during
several executions of the function are combined into a single power profile.
The resulting power profile contains power values in intervals which are
much shorter than the sampling interval of the hardware driver so that
even short-term power changes can be considered, e.g. for calculating the
energy consumption of a single function. The article also shows how to
extend the approach to an online generation of power profiles. Further-
more, an overview on the power profiles of some important functions,
such as BLAS routines, is given.

Keywords: power profiles, power measurement, GPU computing.

1 Introduction

Energy efficiency of codes will become more and more important in scientific
computing. Especially general-purpose graphics processing units (GPUs) prom-
ise to be a potentially more energy-efficient alternative to CPUs [3,9,21]. Meas-
uring the energy consumption of a hardware is necessary in order to be able to
minimise the energy consumption of an application. For quantifying the energy
consumption of a piece of code, basically two approaches exist: hardware-based
and software-based energy measurement. For hardware-based measurement of
the energy consumption, a measuring device is installed between the power sup-
ply and the computational device. From the current and the voltage measured,
the electrical power P can be computed. By integrating the power over a time
interval, the electrical energy consumption E is determined. The observation of
influences evoked by short sections of code, requires a device with a high sampling
frequency, e.g. 500 Hz [21], 1 kHz [12] or even 50 kHz [7]. For the software-based

F. Wolf, B. Mohr, and D. an Mey (Eds.): Euro-Par 2013, LNCS 8097, pp. 801–812, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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measurement, modern CPUs, such as Intel’s Sandy Bridge or AMD’s Bulldozer
CPUs, offer an interface for retrieving the value of the energy consumption since
some starting time [11, Vol. 3B, Chap. 14.7], [4, Chap. 3.13]. Similarly, the latest
GPUs of the manufacturer Nvidia provide the possibility to read the current
power consumption by software [19].

The Nvidia Management Library (NVML) provides power measurement [19]
for Nvidia GPUs. The power value is updated every 20 ms; this is described in
Sect. 3.2. However, such a sampling interval is not sufficient for a precise evalu-
ation of the energy consumption of a GPU kernel function, especially for those
with a short execution time. Such kernel functions occur in many areas, such as
the solution of linear systems of equations in FEM simulations or Monte Carlo
simulations in the field of numerical mathematics as well as, for example, scan
algorithms in the field of data processing. Therefore, a method is needed which
obtains an accurate, high-resolution power-consumption profile of a GPU func-
tion. Furthermore, the availability of high-resolution power profiles are needed
to extend approaches which use RAPL to verify energy models, such as [20], to
GPUs.

The contribution of this article is to provide such a method for generating
high-resolution power profiles of GPU kernel functions, which is based on the
measurement interface with a low sampling frequency. These profiles can be used
for evaluating and improving the energy consumption of GPU kernel functions.
Both, an offline method and an online method for generating the power profiles,
are presented. The online method has a low overhead so that it can be used
during the actual execution of, e.g., simulation programs which select code paths
depending on the energy consumption of specific routines.

The rest of this article is organised as follows: Section 2 presents related work.
Section 3 gives an overview on measuring the power consumption on Nvidia
GPUs. Section 4 presents the method for generating power profiles from low-
resolution measurements, and Sect. 5 gives some sample profiles. The method is
extended to an online method in Sect. 6, and Sect. 7 concludes the article.

2 Related Work

Measuring and evaluating the energy consumption of GPUs has been in the focus
of research for several years. For example, Huang et al. [9] compare the energy
consumption of a biological code for creating an electrostatic potential map on
a CPU and on a GPU. Rofouei et al. [21] investigate the energy consumption for
some applications from the CUDA SDK executed on a GPU and on a CPU. Both
report that the GPU executes the respective codes more efficiently concerning
the energy. In contrast, Chen and Singh [5] find no huge difference in the energy
consumption for the CPU and the GPU for a document filtering code. Abe et
al. [3] measure the effects of frequency and voltage scaling in CPUs and GPUs.

Nagasaka et al. [16] and Chen et al. [6] propose statistical power consumption
models for GPUs: Both models execute a set of benchmark functions, measure
their power consumption, and record some hardware performance counters of the
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GPU. They derive a model which allows the prediction of the power consumption
of a kernel function by using the values of the hardware performance counters
obtained during its execution. Nagasaki et al. set up this model using linear
regression, Chen et al. use a tree-based method.

Collange et al. [7] analyse the influence of computations and memory ac-
cesses on the power consumptions of different GPUs. Hong et al. [8] develop an
empirical model for predicting the power consumption of a GPU by counting
specifics of the code executed, such as the number of memory accesses, the num-
ber of streaming multiprocessors used or the use of the computational units. Li
et al. [14] extend this model by a possibility to also take streaming multipro-
cessors executing different workload into account. A similar model is proposed
by Kasichayanula et al. [13]: They measure the energy consumption of GPU
components, such as global memory, shared memory, floating point unit, etc.,
and multiply it by the time a given function activates the respective component.
Furthermore, they investigate some of the details of the software interface for
reading the power consumption of Nvidia GPUs. For the sampling frequency f
of the Tesla C2075, they report a value of 62.5 Hz, while the measurements as
presented in Sect. 3.2 of this article, resulted in a value of f = 50 Hz, possibly
due to a different methodology. Weaver et al. from the same research group
report a sampling frequency of “roughly 60 Hz” [22].

Hähnel et al. deal with measuring the energy consumption of functions that
are shorter than the measuring interval [10]. They measure the energy consump-
tion of the CPU using the Intel RAPL machine-specific registers [11]. They
overcome the issue that large sampling intervals might lead to inaccurate res-
ults by starting the function exactly at the beginning of a sampling interval of
1 ms and executing a workload with a well-known energy consumption after its
return until the end of the sampling interval. Compared to the Nvidia NVML
interface, the Intel RAPL has the advantage that the user can retrieve the energy
consumption directly and thus does not need to integrate power values. Further-
more, there is no need for clock synchronisation when only measuring on the
CPU.

All statistical and empirical models described above may deliver a sufficient
temporal resolution for also analysing the energy consumption of short kernel
functions. But if such models are used for cases their designers were not aware of,
the results might become inaccurate: McCullough et al. [15] indicate that power
consumption predictions based on hardware performance counters are inaccurate
in complex situations. Therefore, measuring the real power consumption is essen-
tial. For all users that do not have access to dedicated measurement hardware,
the software-based method proposed in this article might be suitable.

3 Power Consumption of GPUs

Modern GPUs suitable for general-purpose computing implement dynamic fre-
quency scaling in order to save energy in idle mode and to comply with their
specified thermal design powers during phases of energy-demanding computa-
tions [1,2]. For Nvidia’s GPUs of the latest generation, the Nvidia Management
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Library (NVML) [19] offers a software interface for reading the current electrical
power consumption.

3.1 Retrieving the Power Consumption

Figure 1 shows the measuring of power consumptions on Nvidia GPUs: There is a
specific timer which is triggered in intervals of size T , called the sampling interval
in the following. At the beginning of each sampling interval, the GPU driver
reads the current power consumption P and stores the value. The figure shows
the power consumption for the case that the GPU has a power consumption
of 70 W in idle mode and of 130 W when executing the user-specified kernel
function. However, if the user reads the power value from the GPU, he or she
gets data as shown in the line “claimed power consumption”, which does not
reflect the real power consumption of the GPU.

t

measuring clock

T

GPU kernel execution

actual power consumption
70 W

130 W

claimed power consumption
70 W

130 W

Fig. 1. Repeated execution of a GPU kernel function and measuring its power
consumption

The software interface for retrieving the power value is provided
by the routine nvmlDeviceGetPowerUsage(nvmlDevice t device, unsigned

int* power) of the NVML. The value is measured in milliwatts. It reflects the
current electrical power of the whole GPU board including memory, etc. and
has an error of ±5 W [19]. All measurements of this article were conducted on
a Nvidia Tesla C2075 GPU [17] built into a machine with two octacore Sandy-
Bridge CPUs E5-2650 having a clock speed of 2.0 GHz. The machine runs the
Linux kernel version 3.2 with the Nvidia GPU driver version 304.64 and CUDA
version 4.2.9.

3.2 Measuring the Sampling Interval T

The experiment for measuring the sampling interval T of the GPU makes use
of the fact that the power value retrieved is very noisy so that two subsequent
measurements normally differ even if the state of the GPU has not changed:
The measurement algorithm continually retrieves the current power value Pcurr

from the GPU. If Pcurr differs from the power value Plast retrieved before, it can
be inferred that the hardware has updated its power value. Then, the current
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Fig. 2. Illustration of the creation of a power profile from power consumption values
measured during repeated GPU kernel execution

time is taken and the time interval elapsed since the last update is emitted. This
procedure is repeated for 100 000 times so that one gets 100 000 values for the
sampling interval T . In rare cases (0.5‰), the power value Pcurr did not change
in two consecutive periods which resulted in a value two or three times as big
as the other values. These values have been eliminated. T is then calculated as
the arithmetic mean of the remaining values.

For measuring the times, the POSIX function clock gettime is used, which
measures the wall-clock time with an accuracy of 1 ns. A value of T = (20.0082±
0.0008) ms, i.e. a relative error of roughly 0.03‰, has been determined. The
value for the sampling interval of T ≈ 20 ms results in a sampling frequency of
f = 1

T ≈ 50 Hz.

4 The Generation of Power Profiles

For the generation of high-resolution power profiles, i.e. a diagram which shows
the electrical power consumption of the GPU during the execution of one kernel
function, a statistical method is used to overcome the restrictions imposed by
the low sampling frequency of the measurement instrument: The GPU kernel
function to be evaluated is executed a large number of times in the range of
some hundreds, each time starting at a different phase in the sampling interval.
The method is illustrated in Fig. 2: Multiple executions of the kernel function
are performed with a random waiting time twait between them. After starting
the execution, the power value is monitored constantly and for each update, this
value is emitted together with the corresponding update time relative to the
starting time of the function. The two values are used for a step-wise creation of
a diagram as shown at the bottom of the figure. If no power value update happens
during the execution time of the kernel tex, no value is emitted as illustrated in
the last diagram at the bottom.

Using this approach, the generation of power profiles is performed as shown
in Alg. 1: At first, the GPU kernel is executed once in order to determine its
execution time tex (Lines 1 to 5). The algorithm assumes that the execution time
does not vary between two calls, i.e. the kernel should always be called with the
same parameters. Then, the function is called nex times. For the experiments
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1 retrieve current time tstart
2 execute GPU kernel asynchronously
3 wait for GPU kernel to finish
4 retrieve current time tret
5 tex := tret − tstart
6 for k = 1 to nex do
7 wait a random time twait

8 retrieve GPU power Plast

9 execute GPU kernel asynchronously
10 retrieve current time tstart; tcurr := tstart
11 while tcurr < tstart + tdelay + tex + T do
12 retrieve GPU power Pcurr

13 if Pcurr �= Plast then
14 retrieve current time tupdate
15 emit tupdate − tstart, Pcurr

16 Plast := Pcurr

17 retrieve current time tcurr

Algorithm 1: Retrieving power measurements for a GPU kernel function

presented in Sect. 5, nex = 100 was chosen, which results in an average of 100
values per sampling interval, i.e. 5000 values per second. Before the execution of
the GPU kernel, the CPU is halted for a randomly chosen time interval (Line 7)
in order to ensure that the power value is determined at a random point of the
execution of the function. The waiting time twait is distributed uniformly in the
interval T ≤ twait < 2T to avoid that the power value of the previous execution
is read. Then, the GPU kernel is executed asynchronously (Line 9). Experiments,
see Sect. 5, have shown that reading the starting time of the kernel tstart right
after the return of the routine starting the kernel leads to a constant delay of
tdelay ≈ 6 ms between the starting time and the increase of the measured power.
The while loop in Line 11 continually retrieves the power value as long as the
GPU kernel is running. Each time the value Pcurr changes (Line 13), it is emitted
along with the time elapsed since the start of the kernel execution (Line 15).

The output of Alg. 1, i.e. a sequence of pairs (P, t), is then processed further
to create a diagram. The P values are emitted in milliwatts and are in the range
from the long idle power of 35 W [13] to the thermal design power of 225 W
[17]. The t values indicate how many nanoseconds elapsed since the start of the
GPU function. They are in the range from 0 to tex+T . A power profile diagram
comprises the points resulting from all (P, t) pairs of one measurement. Results
obtained with this method are presented in Sect. 5.

The algorithm presented in this section is only suitable for offline generation
as it completely occupies one CPU core in the time interval beginning at the
start of the GPU kernel execution until the power update which succeeds the
termination of the kernel. However, the continual polling of the power value did
not cause any observable effects on the execution of the GPU kernel.
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5 Sample Power Profiles

The diagrams in Fig. 3 (a)–(e) show the power consumptions for various call
configurations of x gemm, wich are matrix-matrix multiply BLAS functions from
the CUBLAS package [18], and one further function, vectid. The vectid routine
performs arithmetic operations and memory accesses in a way such that the GPU
threads have different execution times. Each point in a diagram stands for one
time–power (P, t) pair emitted by Alg. 1.

Splitting up the total power Ptot into static power Pstat and dynamic power
Pdyn as

Ptot = Pstat + Pdyn

is often suggested, e.g. in [14]. For the static power in the diagrams, a value of
Pstat = 76 W can be determined. The dynamic power depends on the specific
workload to be processed on the GPU. For the sgemm call with a matrix size
of 1024× 1024, one can see that the power consumption increases up to 123 W
during the execution of the routine, and then decreases when the routine is
finished. After 5 ms, there is a second peak of roughly the same shape. This
effect is closely related to the staircase effect that can be seen in the 2048× 2048
case: The power consumption increases to 124 W starting at second 6.3 and
then again increases to 172 W starting at second 16.3. The behaviour upon the
termination of the routine is analogous. As all measurements show a similar
effect, it looks as if one half of the power consumption of the GPU might have a
delay of 10 ms in the measurement. This means, that integration over the whole
interval leads to a correct value for the energy; the actual value for Pdyn, however,
is twice as large as suggested by the figure during the first 10 ms of the execution
of a function. Consequently, to compute the actual power consumption for the
two 1024 × 1024 x gemm calls, the dynamic power suggested by the figure has
to be doubled, i.e. for sgemm, the value of Ptot is 172 W instead of 124 W with
Pdyn = 96 W. This corresponds to the 2048× 2048 sgemm case in which Ptot is
172 W as well. For the dgemm cases, the dynamic power is Pdyn = 92 W with a
Ptot of 166 W.

The vectid test function is a hand-written CUDA function. It mainly con-
sists of a for loop running from 0 to 10 · tid , where tid is the thread id of the
CUDA thread in the thread block. There are 32 blocks and 1024 threads per
block. Inside the loop, 5 floating point operations are performed. Furthermore,
two array entries are read from global memory and one is written. The differ-
ent execution times of the different threads create imbalance which results in a
smoother decrease of the power consumption than for the x gemm routines. Such
an effect would not have been visible with measuring methods that have a coarser
resolution.

The values for the dynamic energy consumption Edyn shown in Fig. 3 have
been obtained by integrating the dynamic power consumption using the trapezoid
rule with the values shown in the respective profile. Fig. 3 (f) was obtained by
measuring the electric current flowing through the external PCI Express power
connectors of the GPU card. The current multiplied by the voltage gives the
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Fig. 3. (a)–(e) Power profiles of CUBLAS x gemm and vectid kernels; (f) Power profile
obtained by hardware measurement
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Fig. 4. Creating a power profile using the online method

electric power. Since further current flows through the PCI express socket, the
actual values are inaccurate and they have been omitted. Nonetheless, one can
see an increase in the power consumption for the duration of the execution of
the kernel in the correct time interval.

The thermal design power of 225 W could not be reached with any x gemm

experiment. The CUBLAS dgemm with a matrix size of 14 · 210 × 14 · 210, which
occupies all available streaming processors, consumed only 163 W, or 171 W if
the GPU was pre-heated to roughly 85 °C. This corresponds to the results of
Kasichayanula et al. [13] who report a value of 180 W for the average power
consumption of the MAGMA dgemm kernel with a matrix size of 8192 × 8192,
which is also significantly lower than the thermal design power.

6 Online Generation of Power Profiles

The approach for offline generation of power profiles as presented in Sect. 4 is
adapted in order to allow the online generation of power profiles. This online
method has less CPU usage and does not extend the execution time of the GPU
kernel. The method is illustrated in Fig. 4. If the GPU kernel to be evaluated has
an execution time lower than T , it is sufficient to retrieve one value of the power
Pcurr immediately after the termination of the GPU kernel. One can calculate
the time of the last update of the power value precisely from the base time tsync
of the sampling interval and its period T . If the power value was updated during
the execution of the GPU function, this value can be used for the power profile.
This approach works on the condition that the machine has very precise clocks
so that the times can be calculated exactly.

Experiments, however, have shown that the CPU and the GPU clocks slightly
drift apart: This results in power profiles showing no clear peak unless a re-
synchronisation is performed at least every 0.2 s. If this synchronisation is per-
formed during the execution of a GPU kernel, not too much overhead is added as
often the CPU is not fully occupied during GPU execution. By predicting the be-
ginning of the next sampling interval and the termination time of the GPU kernel,
one can estimate if the next update of the power value occurs during the execution.

The online generation of power consumption profiles is conducted as shown
in Alg. 2: The function syncClocks (Lines 1 to 8) waits for the update of the
power value and then returns the current time. The function main represents
the structure of a general application algorithm of which the GPU energy con-
sumption is to be evaluated. The while loop in Line 19 repeatedly calls the GPU
kernel (Line 22). Before the while loop is started, the time tsync at which the
power value is updated, is determined (Line 16).
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1 function syncClocks()

2 retrieve GPU power Pcurr

3 Plast := Pcurr

4 while Plast = Pcurr do
5 Plast := Pcurr

6 retrieve GPU power Pcurr

7 retrieve current time tcurr
8 return tcurr

9 function syncIfPossible()

10 texpected finish := tstart + βtex

11 tnext update := � tstart−tsync
Δt

+ 1�Δt
12 if texpected finish > tnext update then
13 tsync := syncClocks()

14 nlast sync := ncall

15 function main()

// main algorithm

16 tsync := syncClocks()

17 ncall := 0
18 nlast sync := 0
19 while ... do

// main algorithm

20 ncall := ncall + 1
21 retrieve current time tstart
22 call GPU kernel
23 syncIfPossible()

24 wait for GPU kernel to finish
25 retrieve current time tfinish
26 retrieve GPU power Pcurr

27 tϕ := tnext update − tstart
28 emit tϕ, Pcurr

29 if ncall − nlast sync > γ then
30 tsync := syncClocks()

31 nlast sync := ncall

// main algorithm

Algorithm 2: Online generation of a power profile

The starting time tstart of the GPU kernel is taken in Line 21 and the kernel is
executed asynchronously in Line 22. In the function syncIfPossible, the clock
synchronisation takes place concurrently to the GPU kernel execution: If the
expected termination time of the GPU kernel texpected finish is greater than the
expected next update of the power value at time tnext update, the actual time of
the update is determined by the function syncClocks. For β in Line 10, a value
of 4

5 has been used in order to avoid a synchronisation in the late phase of the
GPU kernel execution. After the termination of the GPU function (Line 24), the
current power value Pcurr is retrieved (Line 26). In Line 27, tϕ, i.e. the phase of
the sampling interval in which the kernel function has been started, is calculated.
Next, the values tϕ and Pcurr are emitted.

As mentioned above, the clocks drift apart too much after roughly 0.2 s. There-
fore, a re-synchronisation is forced in Lines 29 to 31 if there has been no syn-
chronisation in the function syncIfPossible for a while. The value of γ should
be set in a way that the re-synchronisation takes place at least every 0.2 s.

The overhead introduced by the measurement, i.e. the extension of the total
execution time of the algorithm on the CPU, was not above 10% in the test
cases. A profile created using online generation can be seen in Fig. 5. The 1024×
1024 case shows one peak similar to that in Fig. 3(a). Its power consumption
corresponds to that measured in Sect. 5. However, the second peak is not visible,
possibly it occurs too late after the execution of the function. Due to this effect,
currently only GPU functions with an execution time less than 10 ms can be
properly evaluated using the online method.
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Fig. 5. Online-generated power profile

7 Conclusion

The article has presented a method which can generate high-resolution power
profiles for GPU functions even if there are only measurement instruments with
a low temporal resolution available. The sampling interval of the measurement
offered by the NVML has been determined to be 20 ms. The method presented
allows the generation of high-resolution power profiles of GPU functions without
requiring any additional hardware. Such power profiles can for example be used
by developers to optimise the power consumption of their code. By integrating
the power values, the energy consumption of a specific function can be calculated,
which can, e.g., be used for auto-tuning its energy consumption.

The offline method for generating power profiles works very accurately, so that
some interesting effects could be demonstrated at the sample profiles shown,
such as the smooth decrease of the power consumption for unbalanced loads.
The method has been extended to an online method in order to enable the
generation of power profiles during the execution of simulations etc. There is
only a low overhead. Such profiles can, e.g., be used for auto-tuning at runtime.
Restrictions of the online method are that it is currently only suitable for kernels
with an execution time of less than 10 ms and that its accuracy is lower than
the accuracy of the offline method. In general, the method presented is not
restricted to GPUs but can also transferred to other measurement instruments
whose sampling interval is too large for the targeted purpose.
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Abstract. In this paper we propose and analyze a set of batched linear
solvers for small matrices on Graphic Processing Units (GPUs), evaluat-
ing the various alternatives depending on the size of the systems to solve.
We discuss three different solutions that operate with different levels of
parallelization and GPU features. The first, exploiting the CUBLAS li-
brary, manages matrices of size up to 32x32 and employs Warp level (one
matrix, one Warp) parallelism and shared memory. The second works at
Thread-block level parallelism (one matrix, one Thread-block), still ex-
ploiting shared memory but managing matrices up to 76x76. The third
is Thread level parallel (one matrix, one thread) and can reach sizes up
to 128x128, but it does not exploit shared memory and only relies on
the high memory bandwidth of the GPU. The first and second solutions
only support partial pivoting, the third one easily supports partial and
full pivoting, making it attractive to problems that require greater nu-
merical stability. We analyze the trade-offs in terms of performance and
power consumption as function of the size of the linear systems that are
simultaneously solved. We execute the three implementations on a Tesla
M2090 (Fermi) and on a Tesla K20 (Kepler)1.

1 Introduction

Many computer simulations used in hydrology, combustions and atmospheric
modeling require the use of solvers that operate on a large amount of small in-
dependent systems of equations. These models typically operate by computing
at each time step of the simulation the flow, and then the chemical reactions of
fluids and solids in other elements over a large number of locations (or physical
grid nodes). The chemical reactions are described through a set of non-linear
equations. Profiling of typical codes shows that these models spend over 95% of
the time on computing the chemical reactions [7]. A typical simulation involves
from few tens to hundreds of chemical reactions in millions of uniform or non-
uniform grid locations, depending on the geometry and resolution of the problem
solved. A typical method for obtaining a solution for such systems of non linear
equations is the Newton-Raphson technique. The technique involves computing

1 We thank Norbert Juffa (NVIDIA) for the help with the Thread-block level imple-
mentation and the useful discussions on the power/performance trade-offs.

F. Wolf, B. Mohr, and D. an Mey (Eds.): Euro-Par 2013, LNCS 8097, pp. 813–825, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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a Jacobian matrix and a residual vector for each set of equations representing
the reactions for a grid location. The linearized systems are solved iteratively,
until convergence is reached, by performing Gaussian elimination with LU fac-
torization. The LU factorization is performed either using partial or full pivoting
depending on the numerical characteristics of the problem, time-step of the sim-
ulation and ultimately accuracy of the result. Since the Jacobian matrices are
generated starting from the chemical reactions, their sizes is typically a square
function of the number of equations involved in the process. For example, simu-
lation of kinetic chemical reactions in combustion modeling [3] typically involves
matrices up to ≈ 40x40 in sizes, and is usually numerically stable by just us-
ing partial pivoting for the LU decomposition. Reactive transport models for
fluids through the Earth’s crust over multiple phases, instead, require matri-
ces with sizes up to ≈ 100x100 and traditionally use LU decomposition with
full pivoting to increase numerical stability. STOMP [9], HydroGeoChem [10],
PRFLOTRAN [2], and TOUGH [11] use some of these models.

General Purpose computing on Graphic Processing Units (GPGPU) is a very
effective approach for implementing linear solvers [8]. However,GPUs are more ef-
ficient when the number of operations to perform is much larger than the amount
of data involved (flop/byte ratio). Thus, they perform particularly well with ma-
trices of large size. Conventional solvers, such as MAGMA [1] or those provided
by the CUDA library [5], target large matrices with several thousand of elements
per dimension, achieving speedups of one order of magnitude when compared to
CPUs. They exploit parallelism at the level of a single matrix solver, in some cases
exploiting the CPU-GPU interaction by assigning the diagonal blocks and inter-
change of row and columns to CPU cores and reduction and scaling of large sub-
matrices to GPUs [6]. Only recently a combination of the increased parallelism ex-
ploited by GPUs, together with their high bandwidth, made them more attrac-
tive for operations on small matrices. Indeed, the latest version of the CUBLAS
library [4] includes support for a batched LU factorization that can be employed
to construct solvers operating on small independent matrices. The batched factor-
ization exploits Warp-level parallelism (aWarp, composed of 32 threads, operates
in parallel on a matrix) and is therefore limited to matrices of size 32x32.

In this paper we present a set of solutions for batched solvers that operate
on large amounts of small matrices ranging from size 2x2 to 128x128 on Nvidia
GPUs. We initially consider the CUBLAS batched LU factorization to construct
a solver (up to size 32x32) and then we propose two further implementations.
One, exploiting Thread-block level parallelism (a Thread-block works in parallel
on a matrix) and shared memory, can manage matrices up to 76x76 in size. By
supporting partial pivoting, it appears well fit for solvers in combustion mod-
eling. The other, exploiting thread-level parallelism (a thread for each matrix),
can support both partial and full pivoting and manage matrices up to 128x128
in size. Its characteristics make it more amenable for subsurface flow transport
applications over multiple phases. We present the details of the implementa-
tions, discussing the various programming techniques adopted to maximize the
performance depending on the problem constraints. We evaluate all these three
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implementations from the point of view of performance and power consumption
as function of the size of the matrices that are being simultaneously solved. We
discuss trade-offs, suggesting which solution better fits different requirements.
We execute the three implementations on both a Tesla M2090 (Fermi GPU) and
a Tesla K20 (Kepler GPU).

The remainder of this paper is organized as follows. Section 2 provides some pre-
liminaries on the linear solvers and summarizes the significant features of the Fermi
andKeplerGPUarchitectures. Section 3presents the implementationdetails of the
three solvers. Section 4 discusses the experimental evaluation of the three solvers,
also providing power analysis. Finally, Section 5 concludes the paper.

2 Preliminaries

Solver:A solver is a procedure that given a system of linear equations described in
a matricial form as Ax = b finds the solution vector x. For dense and semi-dense
matrices the most efficient method involves finding a decomposition of the matrix
A such that the solution is then obtained by back substitution. The most common
method is based on the LU decomposition (also called LU factorization) of the ma-
trixAwhich is decomposed in a lower triangularmatrixL and an upper triangular
matrixU such that LU = A. However, rounding errors can arise if the magnitude
of the elements significantly differs, causing one ormore elements on the diagonal to
become zero (singularmatrix).A solution to this problem is to interchange the rows
and columns of A to avoid zero and unstable pivot elements. These interchanges
do not affect the solution of the system as long as the permutations are logged and
taken into account during the substitution process. The choice of pivot elements is
referred as pivot strategy. There is not an optimal pivot strategy, but two common
heuristics are partial pivoting and complete pivoting.

When using partial pivoting, the factorization produces matrices L and U,
which satisfy the equation LU = PA, where P is a permutation matrix. Initially,
P is initialized to I, then each row interchange that occurs during the decom-
position of A causes a corresponding row swap in P. Starting from the linear
system of equations Ax = b and pre-multiplying both sides by P, we obtain
PAx = Pb. Substituting PA with LU, we obtain LUx = Pb. Thus, we can
achieve a solution for A by the sequential solution of two triangular systems:
Lc = y, Ux = c, where y = Pb.

When using complete pivoting, factorization produces matrices L and U
,which satisfy the equation LU = PAQ, where P is a row permutation matrix
and Q is a column permutation matrix. Q is derived from column interchanges
in the same way P is derived from row interchanges. The linear system of equa-
tions Ax = b can be solved by the sequential solution of two triangular systems:
Lc = y, Uz = c, with y = Pb and x = Qz.

The computational complexity of the LU factorization is O(2/3 ∗ n3). Par-
tial pivoting contributes for a further O((n2 + n)/2) while full pivoting adds
O(2/3 ∗ n3 + 1/2 ∗ n2 + 1/6 ∗ n). Once the matrix is decomposed, each trian-
gular solver has computational complexity O(n2). Asymptomatically, a solver
with partial pivoting has computational complexity of O(2/3 ∗ n3), while with
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full pivoting complexity is O(4/3 ∗ n3). For this reason, there are significant
trade-offs between the stability of the solution and the time to solution, depend-
ing on the use of the solver and on the data ranges in which it operates. The
discussions of these trade-offs are beyond the scope of the paper, because they
are tightly coupled with the applications in which the solvers are used.

GPU Architectures: for this work, we used two different GPU architectures.
The first is the Fermi architecture, at the base of the Tesla M20 boards. The
second is the new Kepler architecture, with the GK110 design, integrated in the
Tesla K20 boards.

The Fermi architecture exploits a set of Streaming Multiprocessors (SMs) that
include 32 Streaming Processors (SPs), 4 Super Function Units (SFUs), 16 Load/-
Store Units and 64KB of on-chipmemory configurable either as 48 KB of L1 cache
and 16 KB of shared memory or as 16 KB of L1 cache and 48 KB of shared mem-
ory. A Fermi’s SM can simultaneously execute two single precision Warps (group
of 32 threads) and a one double precision Warp in a minimum of 2 clock cycles.
Thus, peak double precision is half of the single precision. Each SM includes a total
of 32,768 registers and can maintain up to 1536 threads in-flight. All the SMs in a
chip interface to a L2 cache of 768KB. The SMs access the global memory through
a crossbar connected to several 64 bits memory controllers. In Fermi, the SMs run
at higher clocks (double) than the rest of the chip.

The Kepler design is radically different. A SM in Kepler, now called SMX, in-
cludes 192 single precision SPs, 64 double precision SPs, 32 SFUs, 32 Load/Store
Units. NVIDIA respectively incremented the number of threads and of registers
per SMX to 2048 and 65536. Kepler can dispatch 8 instructions (2 independent
instructions from 4 Warps) simultaneously and can pair double precision instruc-
tions with other instructions. Each SMX still has 64 KB of configurable shared
memory, which now supports a 32/32 KB split. This results in a higher number
of Warps competing for the same shared memory. An SMX also includes a new
48 KB cache for read-only data. Kepler doubles the L2 cache both in terms of
size (1536 KB) and bandwidth with respect to Fermi. Kepler includes further
new functions such as Hyper-Q and Dynamic Parallelism that however we do
not exploit in our evaluation.

For this work, we used a Tesla M2090 board, which include the Fermi T20a
GPU, with 16 SMs (a total of 512 SPs) at 1.3 GHz and 6 GB of GDDR5 at
1.85 GHz, connected through a 384-bit interface. The peak memory bandwidth
is 177 GB/s. Regarding Kepler, we used a Tesla K20 board with a GPU that
implements 13 SMXes (2496 SPs). The GPU works at 706 MHz, and the board
includes 5 GB of GDDR5 at 2.6 GHz, connected through a 320-bit bus with 5
memory controllers. The peak memory bandwidth is 208 GB/s.

3 Solvers’ Implementation

In this section we present the three different solver implementations. We initially
present the Warp level solution (CUBLAS), then present the Thread-block level
implementation and finally discuss the Thread level solution. The high-level inter-
face exposed by all the implementations is a function dsolve batch() for solving a
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batch ofN different systemswith double-precision.All systemsmust be of the same
dimension n. Besides the batch size and thematrix dimension, the functions expect
pointers to an array of matrices, an array of right hand sides, and an array of solu-
tion vectors. All arrays are assumed to be stored contiguously. By using a define it
is possible to support column or row major layouts.

3.1 Warp Level Parallelism (CUBLAS Based)

This implementation exploits the batched interfaces of the CUBLAS library [4],
provided in CUDA 5.0. It involves four GPU kernel calls for all the matrices as fol-
lows: 1) LU decomposition of A (PA = LU); 2) permutation of array b with the
arrayof pivotsP (y = Pb); 3) solution of the triangular lower system (Lc = y), and
4) solution of the upper system to obtain the final solution (Ux = c). Three kernel
calls are directly provided by two library’s function calls in the form of cublasD-
getrfBatched (i.e.PA = LU), cublasDtrsmBatched (i.e.Lc = y,Ux = c), while we
implemented a simple kernel that performs the permutation of the array b. Apply-
ing the permutation to the array b has negligible execution time when compared
to the LU decomposition and to the solution of the triangular systems.

The batched functions inside the CUBLAS library assign a single Warp (32
threads) to each matrix, and it is limited at most to a size of 32x32. This imple-
mentation heavily relies on shared memory. However, shared memory content is
not preserved across different kernel calls, thus extra work has to be made to
re-cache data in shared memory by each kernel. An advantage of this implemen-
tation is that it relies on a NVIDIA’s well maintained CUDA library, which is
constantly updated as new GPUs become available.

3.2 Thread-Block Level Parallelism

This is a custom implementation (now available on the NVIDIA developer site)
that relies on three mutually exclusive kernels, selected depending on the size of
the input matrices. The high-level dsolve batch() API functions call into a single
templatized function that is parameterized by data type and architecture. For
performance reasons, each system is loaded into shared memory in its entirety.
This means that the maximum dimension of the matrix that can be handled is
limited by the available shared memory. For GPU architectures up to the Fermi
and Kepler, this implementation can handle systems up to dimensions 76x76
(double precision). This solver has been finely tuned for the Fermi architecture.

When loaded into shared memory, the matrix is augmented on the right with
the right hand side vector, allowing both to be manipulated in parallel. The
two-dimensional shared memory layout of the matrix uses padding to minimize
bank conflicts. The amount of padding is optimized for each matrix size via the
configuration class. The number of Thread-blocks in the launch configuration is
identical to the batch size. Therefore, each Thread-block solves a single system.
Two-dimensional Thread-blocks are used, where the x-dimension is configured
for optimal performance by the template class, and the y-dimension is identical
to the number of columns of the augmented matrix. This allows each thread row
to handle one row of the augmented matrix in parallel during the solve.
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The three kernels used are gauss jordan1 (used for dimensions 2 through 9),
gauss jordan2 (used for dimension 10), and gauss2 (for dimensions 10 through
76). The switch-over points were determined empirically. The first two ker-
nels implement the standard Gauss-Jordan algorithm with partial pivoting, and
the third implements straight Gauss elimination with partial pivoting. Exper-
imentally we can see that the absence of a separate back substitution step in
Gauss-Jordan outweighs the smaller count of floating-point operation of Gauss
elimination for small matrices. The two Gauss-Jordan kernels differ in that for
gauss jordan1 the number of thread rows is identical to the number of rows in
the matrix, i.e. each thread handles exactly one element of the augmented ma-
trix, whereas in gauss jordan2 the number of threads is less than the number of
matrix rows, so each thread handles more than one matrix element. The former
approach eliminates some overhead for iteration over the rows of the matrix.

The maximum search in partial pivoting is implemented as a two-stage pro-
cess. In the first stage, a small number of threads search for a maximum in their
respective subset of column elements. In a second stage, these partial results are
reduced to an overall maximum by a single thread. This approach was found
to be more efficient than the traditional binary reduction process. The num-
ber of search threads is fixed at two for the two Gauss-Jordan kernels, but is
configurable for optimal performance via the template class for the Gauss elim-
ination kernel. The number of search threads is generally a small, single digit
number. The row swapping is implemented by physical exchange. This provides
higher performance than an approach that uses an index vector for virtual row
reordering, because it incurs in significant overhead for indexing arithmetic and
consumes additional shared memory.

3.3 Thread Level Parallelism

This is the only implementation that allows using matrices of size 128x128.
Although it can work on larger matrices, we will limit our discussion to the di-
mensions relevant to the problem of interest, as discussed in the Introduction. At
a first glance, this implementation violates basic GPU programming principles,
because it assigns different “tasks” to different threads inside a Warp, which
could result in poor performance due to thread divergence within the Warp.

However, the threads mostly perform the same operations, each on its assigned
matrix.The only source of divergence is the discovery of pivot elements.The keyob-
servation is that, when the matrix is larger than 32x32, the cost of these operations
is much smaller than the cost of updating the lower matrix and back substituting
in the triangular systems. Vice-versa, when the matrix is smaller than 32x32, the
cost of pivoting and row interchange is comparable to the cost of updating the ma-
trices and performing back-substitution, resulting in possible thread divergence.
However this is truewith any other implementation, becausewithmatrices smaller
than 32x32Warps are not fully utilized. Another important issue of this approach
is that the input matricesA and vectors b and x are stored as arrays of structures,
meaning that big arrays contain all the elements of the different matrices and vec-
tors. If each thread is accessing its ownmatrix, the threads in aWarp are accessing
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elements that are strides of the number of elements in the matrix. This results in
un-coalesced accesses to memory, which is a main cause of performance degrada-
tion. To alleviate this problem, we perform a transformation of the matrix A and
of the array b and x before and after the solver phase, such that the resulting data
structure is a structure of arrays. This operation is quite expensive, especially for
the matrices, as the elements need to be accessed at least once in an un-coalesced
manner. However, this procedure has cost O(n2), while the entire computational
complexity of the algorithm is O(n3).

Since we want to preserve the original matrices A (without re-transforming
back after the solver completes), we need to store the transformed matrix in
a temporary space. Unfortunately, the shared memory space is not enough for
this purpose, because we need at least space for a number of matrices equal
to the block size (the effective minimum is 32, as the size of the Warp). For
this reason, we exploit another portion of GPU memory that is allocated and
deallocated on a Thread-block basis by a single thread in the block. We perform
these allocations on a heap space, set during initialization of the device by using
the CUDA library call cudaThreadSetLimit(cudaLimitMallocHeapSize, bytes).

We perform allocations and de-allocations inside the heap space with malloc/
free, which wraps the standard malloc/free and align data to 128 bytes inside
in the heap. We do not need to have a heap space as large as the total dataset,
because a Thread-block can reuse the same heap space released by a previous
Thread-block. For our experiments we set the heap space to 1GB regardless of
the dataset. The pseudo-code of the solver is the following:

1 #define T( id ) ( threadIdx . x + blockDim . x ∗ ( id ) )
2 #define P(x , y ) ( y ∗ n + x)
3
4 g l o b a l void s o l v e r (double ∗A, double ∗B, double ∗X, int n , int num) {
5 int m = block Idx . x ∗ blockDim . x + threadIdx . x ;
6 i f ( m >= num) return ;
7 int i , j , k ;
8 s h a r e d double ∗ tA , ∗tB , ∗tX ;
9 s h a r e d char ∗ P;

10
11 i f ( threadIdx . x == 0) {
12 tA=(double∗) mal lo c ( blockDim . x ∗ n ∗ n ∗ s izeo f (double ) ) ;
13 tB=(double∗) mal lo c ( blockDim . x ∗ n ∗ s i zeo f (double ) ) ;
14 tX=(double∗) mal lo c ( blockDim . x ∗ n ∗ s i zeo f (double ) ) ;
15 P=(char ∗) mal l oc ( blockDim . x ∗ n ∗ s izeo f ( char ) ) ;
16 }
17 sync thr eads ( ) ;
18
19 /∗ c o a l e s c e A and B ∗/
20 for ( j = 0 ; j < n ; j++) {
21 tB [T( j ) ] = B[ m ∗ n + j ] ;
22 for ( i = 0 ; i < n ; i++)
23 tA [T(P( j , i ) ) ] = A[ m ∗ n ∗ n + P( j , i ) ] ;
24 }
25
26 /∗ p e r f o rm LU d e c o m p o s i t i o n and t r i a n g u l a r s o l v e r
27 a s i n s e r i a l c o d e u s i n g T( i d ) and P( x , y ) mac r o s ∗/
28 s i n g l e t h r e a d s o l v e r (tA , tB , tX , n ) ;
29
30 /∗ u n c o a l e s c e X ∗/
31 for ( j = 0 ; j < n ; j++)
32 X[ m ∗ n + j ] = X[T( j ) ] ;
33 sync thr eads ( ) ;
34
35 /∗ f r e e tmp memory ∗/
36 i f ( threadIdx . x == 0) {
37 f r e e ( tA) ; f r e e ( tB ) ; f r e e ( tX) ; f r e e (P) ;
38 }
39 return ;
40 }
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Fig. 1. Percentage of time spent allocating and coalescing on the Tesla K20 with respect
to the total execution time

We note that allocating/de-allocating the temporary memory space, coalesc-
ing A and b and de-coalescing x is part of the total kernel execution, because it
is not performed off-line. Figure 1 shows the cost of this operation on the Kepler
GPU in percentage of the total time as the matrix size increases. Because each
linear system is solved by a single thread, implementing full pivoting is trivial.
In fact, it just adds a few lines of code to the partial pivoting implementation.
With the other implementations, parallelism within the Warp or Thread-block
is disrupted when both rows and columns are interchanged.

4 Experimental Evaluation

In this section we present the experimental evaluation of the three solver im-
plementations. We initially present the performance analysis, and then proceed
with the discussion of the power implications.

4.1 Performance Analysis

Table 1 shows the main characteristics of the three different implementations
while increasing the size of the matrices. We extracted these data with the
NVIDIA profiler on the Tesla K20, but they are similar for the Tesla M2090.
The numbers show that the main limitation for the Thread level implementa-
tion is the number of registers, which is the highest and keeps growing while
increasing the size of the matrices. To balance with the utilization, however, we
set the maximum number of registers per thread to 128. We also see how shared
memory utilization progressively becomes the constraining factor for the Warp
and the Thread Block level implementations, consequently limiting the maxi-
mum size of manageable matrices. The Thread level implementation only uses
the few bytes required to store the shared pointers in the heap space. For the
Thread level implementation, DRAM utilization keeps increasing with the size
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Table 1. Profiling of the three implementations

Dimensions 4 8 16 32 64 76 128

Registers/
Thread

Warp 34 34 34 34
Thread block 26 26 23 23 23 23

Thread 40 62 70 103 128 128 128

Shared
Memory/
Block

Warp 5.25KB 8.5KB 21KB 43.7KB
Thread block 184 608 2.5KB 9KB 35KB 45KB

Thread 32 32 32 32 32 32 32

DRAM
Utilization

Warp 12.36% 15.18% 9.86% 4.44%
(GB/s) 24.53 30.10 19.63 8.90

Thread block 2.8% 4.1% 6.6% 3.2% 1% 0.9%
(GB/s) 5.61 8.12 13.7 6.36 2 1.8
Thread 6.9% 18.7% 49.3% 58.7% 61.9% 62.1% 61.2%
(GB/s) 13.75 37.03 97.79 116.51 122.72 123.17 121.42

Branch
Divergence
Overhead

Warp 78.49% 72.16% 55.24% 21.30%
Thread block 70.38% 62.25% 49.59% 43.04% 28.34% 20.60%

Thread 86.20% 67.40% 40.20% 9.00% 1.60% 1.00% 0.07%

SM
utilization
Achieved

Warp 89.6/95% 69.8/72.13% 24.59/25% 7.69/7.8%
Thread block 24.4/25% 74/75% 49.6/50% 31.2/31.2% 17.2/17.2% 15.6/15.6%

Thread 21.3/25% 20.8/25% 22.2/25% 24/25% 24.3/25% 24.2/25% 24.2/25%

Memory
(MB)

Warp 97 97 127 244
Thread block 131 139 171 303 771 1031

Thread 1179 1187 1219 1341 1819 2079 3675

of the matrices and stabilizes at around 62% of the available bandwidth. For the
other implementations, instead, it remains pretty low because all systems are
solved in the shared memory, and only the initial and the final values are read
and written to memory. For the Warp and Thread level implementation, branch
divergence starts high and remains over 20% even for the highest dimensions.
These implementations have threads of the same Warp or Thread-blocks that
simultaneously operate on different elements of a matrix, and when searching
for the pivots they need to be coordinated. The Thread level implementation
instead shows high divergence with small matrices, which progressively reduces
with bigger dimensions. The reason is that the loop searching for the pivots has
an if statement that selects the largest element in the column, so threads of
the same Warp diverge. The time spent searching the pivot (O(n2)) decreases
with respect to the rest of the algorithm (O(n3)) as the matrix size increases.
The SM utilization for the Warp and Thread Block level implementations is lim-
ited by shared memory occupation, and decreases with larger matrices (because
each Warp/Thread-block uses more shared memory). For the Thread level im-
plementation, instead, it is constrained by the number of registers. The overall
memory occupation of the Thread level solver is the highest, because it employs
a 1 GB dynamically allocated heap and stores original and transposed matrices
to maintain memory access coalescence.

For the performance analysis, we simultaneously solve 20,000 systems of lin-
ear equations of different dimensions. Using 20,000 matrices allows exposing the
full parallelism of the GPU, even in the Thread level implementation. Figure 2
shows the performance of the three solver implementations (Warp level parallel,
Thread-block level parallel and Thread level parallel) on a Tesla M2090 (Fermi).
The Thread level parallel implementation is the slowest, but it can scale to matri-
ces up to 128x128 in size. Full pivoting is slower than partial pivoting because of
the higher computational complexity, but it follows the same behavior. The per-
formance also appears more stable: the execution time increases almost linearly
with the size of the systems to solve. The main limitation for such implemen-
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Fig. 2. Performance of the three implementations on a Tesla M2090 when solving
20,000 systems of linear equations while increasing the number of double precision
elements in each matrix

Fig. 3. Performance of the three implementations on a Tesla K20 when solving 20,000
systems of linear equations while increasing the number of double precision elements
in each matrix

tation is the number of registers used by each thread, which does not allow full
utilization of the SMs. The Warp level implementation with CUBLAS is faster
than the thread level implementation. It is comparable to the Thread-block level
implementation for matrices up to 16x16 in size, but starts diverging with matri-
ces over 20x20 variables. This happens even if the switch points for the different
kernels in the Thread-block level implementation are at lower dimensions (9
and 10 respectively). By exploiting Warp level parallelism, this implementation
is only able to manage matrices up to 32 in size. However, it benefits from the
higher bandwidth provided by the shared memory. The Thread-block level imple-
mentation is the fastest, and manages matrices up to 76x76 elements. However,
its performance shows more significant degradation when increasing the size of
the matrices, in particular over size 56. The reason is that when increasing the
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size of the matrices, occupation of the shared memory increases. This in turn re-
duces the number of simultaneously active Thread-blocks, consequently reducing
SM utilization.

Figure 3 proposes the same performance evaluation on the Tesla K20 (Kepler).
The Thread level implementation remains the slowest in average, but for certain
dimensions now it results faster than both the Warp level and the Thread Block
level implementations. The switch points are dimensions of 16x16 for the Warp
level implementation and 56x56 for the Thread-block level implementations. The
Thread level implementation is near to the memory bandwidth limits and bene-
fits from the increased bandwidth of Kepler. On the other hand, Kepler provides
less bandwidth per active Warp to the shared memory, which makes less effec-
tive the Warp level and Thread-block level implementations. The performance
spread between the Warp level and the Thread-block level implementation with
matrices over sizes of 16x16 is more significant. The Thread level implementa-
tion with full pivoting is the slowest, but it still follows the behavior of same
solution with partial pivoting. This figure also shows that for small matrices the
performance of Kepler with the Thread level implementation is comparable to a
reference x86 implementation (Xeon X5650 at 2.67GHz, 6 Nehalem cores with
12 threads at 12 MB of L3 cache), while for larger matrices it becomes slower.

4.2 Power Analysis

Figure 4 presents the power consumption for the three different solver implemen-
tations on the Tesla M2090. We measured power using the integrated on-chip
power monitoring, which is accessible through the NVIDIA System Management
Interface (nvidia-smi) utility, executing each benchmark for 30 seconds in a loop
and sampling power at the minimum allowed time of 1 second. The power mon-
itoring through nvidia-smi provides the last measured power draw for the entire
board, in watts, and the reading is accurate within +/- 5 watts. For the Tesla
M2090, the idle power consumption is 42 W. For the Thread level implemen-
tation, the power consumption starts at around 100 W for small matrices and
stabilizes around 150 W for matrices with sizes over 20x20. Power consumption
for the Warp level implementation starts higher than the other implementa-
tions at 135 W for matrices 2x2, but becomes lower for matrices bigger than
16x16. The Thread Block level implementation has a more complex behavior.
It starts at 120 W, higher than the Thread level but lower than the Warp level
implementations. At 8x8 elements, it becomes the lowest power consuming im-
plementation until 20x20 elements, where it crosses the power consumption of
the Warp level implementation. Between 20x20 and 36x36 elements its power
consumption is very near to the Thread level implementation. It then decreases
until reaching the maximum dimensions manageable by the implementation. At
56x56 elements, there is a significant decrease in power consumption, correlated
to the drop in performance from Figure 2.

Figure 5 presents the power consumption for the three different solver imple-
mentations on the Tesla K20. Idle power (19W) and maximum power (under
120W) consumed by the three implementations are significantly lower on the
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Fig. 4. Power consumption profile of the three implementations when solving 20,000
linear systems on the Tesla M2090 board while increasing the size of the matrices

Fig. 5. Power consumption profile of the three implementations when solving 20,000
linear systems on the Tesla K20 board while increasing the size of the matrices

Tesla K20 than on the Tesla M2090. Power consumption of the Thread level
implementation is higher than the others implementations starting from matri-
ces of size 12x12. The Thread level implementation stabilizes around 110 W
for sizes over 16x16. Again, as memory traffic increases, power consumption in-
creases comparably, until the bandwidth limit of the application is reached. The
Warp level implementation starts higher than all the other implementations, but
at size 12x12 it becomes the lowest consuming solution. The Thread-block level
implementation starts higher than the Thread level implementation, but follows
its behavior until size 8x8. At the switch points for the three different kernels
in this implementation, power consumption gets lower than the Warp level im-
plementation, but it still keeps slightly increasing, until size of 24x24. It then
decreases until the maximum size managed by the implementation.

5 Conclusions

In this paper we presented and evaluated three solvers for large amounts of small
linear systems on GPUs. We proposed two solvers, one exploiting Thread level
parallelism (one matrix per thread) and one exploiting Thread-block level par-
allelism (one matrix per Thread-block). The first is able to manage matrices
(representing the linear systems) of size up to 128x128 elements. The second
manages matrices up to 76x76 elements, because of the limitations connected to
the available shared memory. We compared these implementations to a batched
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solver built with CUBLAS, which exploits Warp-level parallelism and can man-
age matrices up to 32x32. For each implementation, we evaluated performance
and power consumption. We discussed the various performance trade-offs on the
Tesla M2090 (Fermi) and the Tesla K20 (Kepler) GPU boards, showing how the
Thread level implementation is more general (supports full pivoting for the LU
decomposition and can scale to larger matrices) while the Thread-block level
parallel solution is generally the fastest and consumes less power.
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Abstract. Optimizing convolution operators is an important issue as
they are used in numerous domains including electromagnetic compu-
tations, image processing and nanosimuations. In this paper we present
our optimizations for 3D convolutions in the BigDFT nanosimulation
software. We focus on processors with vector units and on GPU acceler-
ation and experiment with several architectures. Exploiting the relation
between algorithmic specifics and hardware architecture, we obtain per-
formance gains of around x2 on CPU and up to x20 on GPU.

1 Introduction

Obtaining good application performance on a high performance computing (HPC)
platform becomes a real challenge. Indeed, the HPC hardware landscape becomes
very complex and each architecture brings its performance specifics. As a conse-
quence, it is impossible to obtain satisfactory performances on different architec-
tures with the same implementation and optimization of an algorithm.

In this paper we report on the joint work between the Nanosim team of the
LIG laboratory and the L_Sim team of CEA-Grenoble. We study the implemen-
tation, code restructuring and optimization of the BigDFT software [5] which
simulates the properties of future electronic materials. We focus on BigDFT’s
key components: three-dimensional (3D) convolutions.

The goal in the presented work is to study the performances and possible
optimizations of 3D convolutions on two types of architectures: architectures
based on CPUs with vector units and hybrid architectures containing GPUs. In
both cases, we coordinate the specifics of the algorithms and the specifics of the
hardware architecture. Our major optimization issue concerns data locality as
different placements of data in the registers and in the cache may result in very
different performance results. In the case of CPUs with vector units, we provide
a pioneer work, as 3D convolutions with long filter size have never been vector-
ized. We explore the algorithmic opportunities, study the resulting performance
results and show performance gains of around x2. An important contribution is
the definition of locality patterns to be used for memory placement, as well as
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for computation. We conclude on the cost of development and the need of auto-
tuning techniques. In the GPU case, we provided new implementations based on
OpenCL which, by providing efficient cache management strategies, succeed in
bringing a speedup of up to 20.

The remainder of the paper is organized as follows. Setion 2 presents our use
case, BigDFT, and details 3D convolutions. Section 3 explains how our opti-
mization work is different from related projects. Section 4 and Section 5 tackle
optimizations on CPUs with vector units and on GPUs respectively. Finally,
Section 6 concludes and outlines our future works.

2 BigDFT and 3D Convolutions

The BigDFT application [1] provides a novel approach for electronic structure
simulation (nanosimulation) based on the Daubechies wavelets formalism [5][13].
The code is HPC-oriented and hybrid as it uses MPI, OpenMP and GPU pro-
gramming [6]. Characterized by its high precision, efficiency and flexibility, it
has been chosen as an official benchmark for the EU Mont-Blanc project [2].

BigDFT defines nanosimulations in terms of 3D convolution operations. These
convolutions consist in applying cubic filters to 3D zones. One such convolution,
called MagicFilter, is defined by (1), and illustrated in Fig.1a.

Ψ(i1, i2, i3) =

U∑
j1,j2,j3=−L

ωj1ωj2ωj3 in(i1 + j1, i2 + j2, i3 + j3) . (1)

The MagicFilter transforms the three-dimensional array in into an array Ψ . The
dimensions of in and Ψ , n1, n2 and n3, give the dimensions of the BigDFT
simulation domain. To calculate the output values, the transform uses the ωk

values whose number U +L+1 is equal to the order l of the Daubechie wavelet
family. In the BigDFT case, l has been chosen by the physicists to be 16. When
the indexes are outside bounds, the data is used in a circular manner (periodic
boundary conditions).
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(a) Overview

const int L = 7 , U = 8 ;
double W[L+U+1] = {W0, W1, . . . , W15} ;
for ( i 1 = 0 ; i 1 < n1 ; i 1++)

for ( i 2 = 0 ; i 2 < n2 ; i 2++)
for ( i 3 = 0 ; i 3 < n3 ; i 3++) {

double temp = 0 ;
for ( j 1 = −L; j 1 <= U; j 1++)

for ( j 2 = −L; j 2 <= U; j 2++)
for ( j 3 = −L ; j 3 <= U; j 3++)

temp += W[ j 1+L]∗W[ j2+L]∗W[ j3+L]∗
in [ i 1+j1 ] [ i 2+j 2 ] [ i 3+j3 ] ;

p s i [ i 1 ] [ i 2 ] [ i 3 ] = temp ;
}

(b) Direct Implementation

Fig. 1. A 3D Convolution Example
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A direct implementation of this algorithm contains six nested loops (cf. Fig.1b).
The three outer loops scan through the elements of the input array. The three
inner loops apply the filter for the computation of element Ψ(i1, i2, i3) The direct
algorithm incurs n1n2n3l

3 reads, multiplications and additions, as well as n1n2n3

writes.
What is interesting about this 3D convolution is that it is separable as it

can be expressed as a sequence of three independent 1D convolutions of lesser
complexity (cf.Fig. 2a).

f1(i1, i2, i3) =
∑U

j=−L ωjs(i1 + j, i2, i3)

f2(i1, i2, i3) =
∑U

j=−L ωjf1(i1, i2 + j, i3)

Ψr(i1, i2, i3) =
∑U

j=−L ωjf2(i1, i2, i3 + j)

(a) Three Separate 1D Convolutions

F1(i2, i3, i1) =
∑U

j=−L ωjs(i1 + j, i2, i3)

F2(i3, i1, i2) =
∑U

j=−L ωjF1(i2 + j, i3, i1)

Ψr(i1, i2, i3) =
∑U

j=−L ωjF2(i3 + j, i1, i2)

(b) Transposed 1D Convolutions

Fig. 2. Separated and Transposed 3D Convolutions

In order to optimize memory accesses and data locality, the convolutions may
be transposed (cf. Fig. 2b). Indeed, a 1D non-transposed convolution needs
3n1n2n3l reads, multiplications and additions, and 3n1n2n3 writes. However,
if data is allocated in column-major order, the first loop will access elements
sequentially, while the second and the third loops will need elements at distance
of n1 and of n1n2 respectively. Transposing the convolutions [7] prevents such
memory jumps and ensures sequential memory access for the reads, the multipli-
cations and the additions. Only writes keep a stride different than 1 (respectively
n2n3, n3n1 and n1n2).

3 Related Work

From the algorithmic point of view, 3D convolutions may be optimized using the
Discrete Fourier Transform (DFT) or using 1D convolutions and transpositions,
as presented in the previous section. In the DFT approach, the 3D convolution
is calculated by applying the Fourier Transform to each dimension [8]. It has
been used, for example, in the context of the BlueGene machine [12]. The cost
of this solution is, however, prohibitive in our case. Indeed, the complexity of
the algorithm is C ln(n) with C depending on the chosen radixes. For powers of
2, C is commonly accepted as being 5/ ln(2). So, considering a 128 line length,
the cost of the 1D convolution would be about 50 FLOP per element.

When optimizing 3D convolutions using 1D convolutions and transpositions,
the possibilities are to consider 1D+2D or 1D+1D+1D. For the considered size
of the MagicFilter (i.e. 16x16x16), methods working on 2D convolutions are not
applicable as the data size is too big to favour data locality. For this reason,
our solution is based on three 1D convolutions. What is different about our
work is that we take into account the hardware architecture in our optimization
techniques. Our experience has given as the first ideas for auto-tuning strategies.
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From the platform point of view, there are many references considering 2D
convolutions [4][15] but projects focusing on 3D convolutions are rare. For works
considering 3D convolutions with vectorization, we can cite Intel [3] but the filter
is very small (3x3x3) and the data is limited to 16bit data. Gaussian 3D filtering
has also been ported to SSE [17], but in this case the filters are symmetric and
the authors limit the use of buffers. As for 3D convolutions on GPU, Hopf and
al. ([9]) use a 2D+1D method but for very small filter sizes.

4 Optimizing 3D Convolutions by Vectorization

After presenting an initial performance study, we discuss convolution vectoriza-
tion and the obtained performance gains.

4.1 Preliminary Performance Evaluation

The test platform is a Lenovo D20 workstation featuring one quadri-core Intel
Xeon X5550 CPU and 8 GiB of RAM. Hyper-threading and turbo boost are
deactivated and the processor frequency is set to 2.67GHz. As the Nehalem
architecture is capable of providing four double-precision operations per cycle,
each core has a peak performance of 10.6 GFlop/s. The operating system is
Ubuntu10.10 with 2.6.36 Linux kernel. The compilers used are Intel Compiler
Suite version 11.1 and Gnu Compiler Collection version 4.4.5. The used gcc
optimization option is -O2, as -O3 proved harmful to performances. Performance
counters are obtained using PAPI [11].

We have studied several versions of the 3D convolution algorithm. The first
two are the straightforward convolution implementations without (simple) and
with transposition (simple_t). unrolled and unrolled_t are two versions in
which the nested loops for the simple and the simple_t algorithms are unrolled
with a degree of 8 [18]. Finally, the sse_t version is the vectorized one.

The PAPI counter values for these versions are given in Table 1. We give
the mean for 10 runs for convolving an array of 128x126x130 double precision
numbers (16 MiB). We have considered the counters giving the total number
of computation cycles (TOT CYC) and the number of executed instructions (TOT
INS). We also present the cache-related counters reflecting the number of data
cache accesses (DCA) and of data cache misses (DCM) for cache levels 1 and 2.

Table 1. Counter Results for different versions of 3D convolutions

version TOT CYC TOT INS INS/CYC L1 DCA L1 DCM L2 DCM GFlop/s
simple 1500M 2300M 1.53 120M 13.4M 4.68M 0.357
simple_t 1480M 2470M 1.67 211M 7.54M 1.34M 0.361
unrolled 240M 401M 1.67 149M 4.72M 2.06M 2.23
unrolled_t 181M 386M 2.13 137M 2.48M 1.30M 2.96
sse_t 82.2M 175M 2.12 45.4M 3.26M 1.33M 6.52
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The Gflop/s measure is computed using the formula 3 ∗ 32 ∗ n/t. 3 gives
the number of dimensions, 32 results from the length of the filter (16) and the
number of operations per element (one addition and one multiplication), n is
the number of elements and t is the computation time derived from TOT CYC.

The first point to note is that, by reducing the number of instructions by a
factor of 6, unrolling reduces the number of computation cycles. The unrolled
algorithm gains a factor of 6.25, while unrolled_t gains a factor of 8.17.

The second point is that transposed versions of the algorithm present better
instruction throughput. This is especially true for the unrolled version (2.23 →
2.96 i.e. +28% ). This can be explained by comparing the data cache miss results:
transposed versions incur half the L1 cache misses of the non transposed ones.
For L2, this ratio is 3.5 for simple convolutions and 1.6 for unrolled ones.

However, even if the unrolled algorithms are more efficient than the simple
ones, their performance achieves respectively only 21% and 28% of the peak
performance of the core they use.

The total number of floating point operations needed to compute the whole
3D convolution is: 3 ∗ 32 ∗ n = 3 ∗ 32 ∗ 128 ∗ 126 ∗ 130 = 201M . If we add to
this result the number of data accesses (L1 DCA), in the case of the unrolled_t
version we obtain: 201M + 137M = 338M instructions. If we consider the ratio
between these values, it indicates that there has been poor register reuse as
memory operations take about 2/3 of the arithmetic operations. If we compare
this value to the one given in the table (TOT INS 386M), this result leaves about
50M of operations that are not accounted for (eg. loop overheads).

4.2 Vectorization Approach

In this section, we present our vectorization approach in order to reduce the
number of arithmetic operations even further and to optimize the number of
memory accesses through efficient register reuse. We focus on vector instruc-
tions used in the x86 architecture, namely the SSE instruction set [16] and its
extensions SSE2, SSE3 and SSE4. We have taken into account memory align-
ment, register pressure, register reuse and memory access patterns.

We have discarded the possibility to reorder data in memory. Indeed, each step
of the convolution algorithm (cf. (2a)) needs only 32 arithmetic operations (1
multiplication and 1 addition for 16 elements) per element and data reordering is
too costly. Reordering methods are typically useful in the case of general matrix
multiply operations with complexity of O(n) per element and with n big enough.

In order to store data and filter values using registers, we have worked by
separating data (filters and input array) into 2-element vectors. We have adopted
a solution with two filters as illustrated in Fig.3.

0
F F F F

1 14 15Filter A 0
D D D D

1 14 15
D
16

F F F F
0 13 1415Filter UData

Fig. 3. Two-filter computation where data and filters are loaded into registers
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In our first approach, we assume that data is also aligned on 16 byte bound-
aries and design a computation allowing the reuse of data registers.

To illustrate the idea, let us consider the computation of two successive data,
R0 and R1, defined by (2) and (3). The D0 appearing in the equation is the one
shown in Fig.3 and aligned on a 16 byte boundary. ⊗ is the vectorized multipli-
cation operation which obtains a two-element result by respectively multiplying
the first and the second elements of the two-element vector operands.

It can be noted that seven of the eight two-element data vectors can be reused
directly. Only the first one needs to be updated with D16. If we compute several
values in parallel, filter vectors can also be reused.

R0 =

15∑
i=0

DiFi = V00 + V01 where V0 =

7∑
i=0

[D2i, D2i+1]⊗ [FA2i, FA2i+1] (2)

R1 =

15∑
i=0

Di+1Fi = V10 + V11where

V1 =[D16, D1]⊗ [FU0, FU1] +

7∑
i=1

[D2i, D2i+1]⊗ [FU2i, FU2i+1]

(3)

The register reuse is limited by the number of available registers. Indeed, we
need one register per result, half of the registers for data and two registers for
the filters. Given this repartition, computing 8 values in parallel consumes 14
registers (8 results, 2 filters, 4 data). As SSE units provide only 16 registers,
computing more than 8 values in parallel might create register spilling. On the
contrary, using less registers will diminish register reuse and increase the ratio
between memory operations and arithmetic operations.

4.3 Performance Study of the Vectorization Approach

In order to experiment with the presented strategy, we have started without
transposition (cf. Fig.2) and have generated several patterns for computing data
values (cf. Fig.4). The different patterns compute from 2 to 12 values in one pass.
For example, 1*2 computes R0 and R1, while 1*4 and 2*2 compute R0, R1, R2

and R3. The vectorization is done using intrinsic operations, the compiler being
responsible for register allocation and management.

The benchmarks use arrays of 32 columns of 5040 elements. This size is
a multiple of the pattern dimension and fits in the L3 cache of the processor.

2*2 2*4 4*21*81*61*41*2

Fig. 4. Some Data Patterns Used for Computing R0, R1 ... Rn−1
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The column size is much longer than what is used in BigDFT but allows the
measure of asymptotic performances.

The mean results for 20 runs and for all patterns are presented in Table 2.
What we see is that even small patterns present improved performances com-
pared to the non vectorized versions. Indeed, the worst throughput is 7.45
Gflop/s, while the best throughput in Table 1 is 2,96 Gflop/s!

Table 2. Counter results for different versions of convolution kernels

Element computed 2 4 4 6 8 8 8 10 12
pattern column*line 1*2 1*4 2*2 1*6 1*8 2*4 4*2 1*10 1*12
GFlop/s 7.45 8.45 8.03 8.57 8.49 8.43 8.49 8.43 7.77

As the data patterns cannot be used directly for 3D convolutions but need
transposition first, we have chosen among the ones inducing successive memory
writes when transposed i.e 2*2, 2*4, 4*2. The 2*2 pattern has been discarded
because of its inferior performance.

To calculate the transposition, we have simply used the available SSE op-
eration for manipulating vectors. The 4*2 pattern proved faster than the 2*4
pattern (7.14 GFlops/s versus 6.32 GFlops/s). For this reason, it is used as a
basis for the construction of the final vectorized convolution.

4.4 Designing the Final 3D Vectorized Convolution

In order to build the vectorized version of the BigDFT convolution, the chosen
2*4 pattern had to be adapted so as to take into account boundary conditions. In
periodic conditions, column length is always a multiple of 2 and column number
a multiple of 4, so alignment is not a concern. The first 4 and last 4 instantiations
of the pattern have to be modified to load data from the end and the start of
the column respectively. The 1D algorithm is then used 3 times to create the 3D
version.

The performances of this implementation are compared to the previous ones in
Table 1. The SSE version with transposition reaches 6.52 GFlop/s which is more
than twice (factor x2.2) the performances of the unrolled and transposed version.
Indeed, the generated code is more efficient as the total number of instructions
(TOT INS) has been reduced by the same factor while instruction throughput is
the same.

5 Optimizing 3D Convolutions on GPU

Our convolution optimization work has consisted in implementing from scratch
and optimizing OpenCL [10] versions of 3D convolutions for both NVIDIA and
AMD architectures. In the following we start by presenting the principles of the
OpenCL model. We then discuss the algorithmic details for the GPU implemen-
tation and conclude with an analysis of the performance of our implementations.
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5.1 OpenCL GPU Architecture

The GPU device in OpenCL is made of several address spaces and a set of
multiprocessors. OpenCL is aimed at data parallel tasks and describes the com-
putation in terms of workgroups composed of work-items. When executing an
OpenCL function (also called kernel), work-items execute the same code.

The difference between work-items from different workgroups is the visibility
of address spaces. The four address spaces are global, local, private and constant.
The global address space is usually larger and with a higher latency than the
local address space which is private to a workgroup. The first corresponds to
the on-board RAM while the later corresponds to a user managed cache. The
private memory corresponds to the registers of a work-item.

5.2 Convolution Implementation on GPU

In order to optimize GPU memory accesses, global memory accesses should be
done in parallel. The easiest way to achieve this goal while transposing is to use
a padded square buffer in local memory [14].

In BigDFT, data reads are coalesced and, as the GPU processes the last
dimension first, the result is stored transposed in the buffer. As the filter is
16 elements long, each column of a 16*16 buffer needs 15 more elements to be
convoluted. In order for threads to execute the same code, each work-item loads 2
elements in a 32*16 buffer padded to 33*16. Work-items then compute a filtered
value in private memory. The calculated value is finally stored in the result buffer
in global memory. Fig.5 presents an example of work items assignation for a 4*4
block processing a filter of length 5. Buffer is in column major order. Threads
0,i 1,i ... k,i are processed simultaneously.

0,0 0,20,1 0,3 0,0 0,1 0,2 0,3

3,0 3,1 3,2 3,3 3,0 3,1 3,2 3,3

2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3

1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3

2,30,3 3,31,3

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

Fig. 5. Thread allocation: example of a 4*4 block and filter of length 5

It has to be noted that this allocation allows memory accesses to be free
from bank conflicts. This is true not only during the transposition, but also
during the computation of the filtered values. Indeed, consecutive threads access
consecutive elements in the buffer. As using constant memory proved harmful
to performances, filter values are directly inserted into the code.

On more complex kernels found in BigDFT the order of the filtering operations
also had an impact that could not be neglected. Indeed, the order in which
threads access the elements in the buffer has no real impact on performances,
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once the filter has been loaded in local memory. However, trying to use identical
filter coefficients in a grouped manner proved beneficial.

From the GPU parallelism point of view, there is a set of N independent
convolutions to be computed. Each of the lines of n elements to be transformed
is split in chunks of size Ne. Each multiprocessor computes a group of N� different
chunks and parallelizes the computation on its units. After the calculation of the
convolution values, these NeN� elements are copied in the corresponding part of
the output array, which is transposed with relation to the input.

The size of the data fed to each block is identical and chosen to prevent block
dependencies. When N and n are not multiples of N� and Ne, some data treated
by different blocks may overlap. This fact has no double-counting effect since the
overlap is reproduced also in the output array. Fig.6 shows the data distribution
on the grid of blocks during the transposition.

Input

N� N�

Ne

Ne

n

N

(0,0)

(1,0)

(0,1)

(i,j)(i,j)

Output

N�

Ne

(0,0) (1,0)

(0,1)

(i,j)

Fig. 6. Data Distribution for 1D Convolution+Transposition on the GPU. Input data
(left panel) is ordered along the N-axis, while output data (right panel) is ordered
in n-axis direction (cf. Section 2b). When executing GPU convolution kernel, each
block of the execution grid (i,j) is associated to a set of N� (N-axis) times Ne (n-axis)
elements. The filled patterns in the figure indicate the overlap region, i.e. data which
are associated to more than one block. Behind the (i,j) label, in light gray, is indicated
the portion of data which should be copied to the local memory to treat the data in
the block, which contains also the buffers needed for computing the convolution.

The most recent AMD architecture (Radeon HD 69xx) is based on vector
operations of length 2 in double precision. To account for this, the filter multiply
has been vectorized.

5.3 Performance Evaluation of 3D Convolutions on GPU

GPU performance is evaluated on two test computers. Each runs an Ubuntu 11.04
with an unmodified 2.6.38-11 kernel, compiles with Intel 11.1 Compiler Suite and
has a X5550 Xeon CPU with 4 cores and 8GiB of RAM. The setups differ only in
their GPU and graphic drivers. The first one uses an NVIDIA TESLA C2070 using
270.40 drivers, while the second one has a RADEON HD6970 using 11.6 drivers.
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The 3D convolution equals 3 applications of the 1D convolution. The problem
dimensions are 124 x 17160 for 1D problems and 124 x 132 x 130 for 3D problems.
Results are presented in table 3. For the used algorithms and problem sizes, we
observe a slight performance advantage for AMD (10%). This difference is mainly
due to the vectorization of the computation loop.

Table 3. Convolution Performance on NVIDIA and AMD GPU Architectures

Dimension GPU GFlop/s GPU GFlop/s
1D NVIDIA 93 AMD 105
3D 91 101

5.4 Global BigDFT Performance

In this section we consider different configurations of the BigDFT software. We
execute on two hybrid CPU+GPU architectures, varying the number of sequen-
tial processes (MPI) and the GPU architecture (NVIDIA or AMD). We focus
on the execution times of the core loop, as initialization and finalization are
roughly equivalent between NVIDIA and ATI (Table 4). It can be noted that
due to OpenCL’s portability, the same binary is used on both machines.

Table 4. Performance of several configurations of BigDFT, using CPUs + GPUs

MPI+NVIDIA/AMD Execution Time (s) Speedup
1 core 6020 1
4 cores 1660 3.6
1 core + NVIDIA 300 20
4 cores + NVIDIA 160 38
1 core + AMD 347 17
4 cores + AMD 197 30
(4 cores + NV) + (4 cores + AMD) 109 55

The first important thing to note is that BigDFT is not scaling very well
in MPI, due to bandwidth limitation. In our case GPUs bring not only their
computing power, but also their impressive memory bandwidth. The second
interesting trend is that NVIDIA GPU offer better (though comparable) per-
formances than AMD on this problem. The situation is reversed compared to
the unit tests presented in the previous section. As BigDFT is synchronous be-
tween MPI processes, the hybrid case performance is limited by the AMD node.
Speedup is of 1.8 comparing 4 MPI + AMD and (4 MPI + NV) + (4 MPI +
AMD). In this case, GPUs increase by a factor of about 10 the performance of
the respective node .

For both architectures (GPU and CPU with small vector engines) the only way
to increase the computation over memory access ratio and alleviate the memory
bandwidth problem would be to merge different convolutions. This would yield
longer filters but reduce the number of transposition needed. Strategies presented
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here can be adapted to fit those conditions, especially since later GPU OpenCL
devices have more local memory. For the CPU our algorithm is oblivious to the
filter length.

6 Conclusions and Future Work

In this paper we focus on optimizing the basic computational blocks, 3D convo-
lutions, in the BigDFT application. We have considered optimizing 3D convolu-
tions for two types of architectures: CPU architectures using SSE units, as well
as GPU-based architectures. We have optimized BigDFT on three platforms,
featuring respectively CPUs with SSE units, AMD GPUs and NVIDIA GPUs.
For the first, we have explored vectorization techniques, while for the second
we have used intelligent cache management strategies. For both types of work,
the major principle has been data locality. In the case of CPUs, we have defined
access patterns that define different locality groups used to optimize memory
accesses, as well as computation. For GPUs, we have defined blocks of data for
aggressive cache usage. All techniques are reusable in other contexts different
from convolutions.

A pending challenge, raised by the experiments on vectorized convolutions, is
the remaining parameter space to explore in order to find the best convolution
version. The different configurations are meaningful not only from the computa-
tional point of view but also for physicists. Indeed, filters of different sizes have
different properties in terms of convergence and accuracy. For now, the filter
size is fixed, but we could imagine changing this parameter in order to improve
convergence speed and balance this gain with the computational performance
impact.

Our future work will be to build a convolution generator that is able to produce
a library of parametrized convolutions to be used for BigDFT’s performance
evaluation. This tool would allow a broader coverage of SSE versions as those are
tedious to produce by hand, error-prone and difficult to maintain. The generator
could also produce OpenCL kernels and allow better performance studies. These
performance evaluations, studies and experimentations are a necessary step in
understanding the behavior of HPC applications and in being able, one day, to
produce a prediction performance model depending on the target architecture.
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2 Research Computing Center, Lomonosov Moscow State University

3 NVIDIA GmbH, Germany

Abstract. Clustering, i.e., the identification of regions of similar objects
in a multi-dimensional data set, is a standard method of data analytics
with a large variety of applications. For high-dimensional data, subspace
clustering can be used to find clusters among a certain subset of data
point dimensions and alleviate the curse of dimensionality.

In this paper we focus on the MAFIA subspace clustering algorithm
and on using GPUs to accelerate the algorithm. We first present a num-
ber of algorithmic changes and estimate their effect on computational
complexity of the algorithm. These changes improve the computational
complexity of the algorithm and accelerate the sequential version by 1–2
orders of magnitude on practical datasets while providing exactly the
same output. We then present the GPU version of the algorithm, which
for typical datasets provides a further 1–2 orders of magnitude speedup
over a single CPU core or about an order of magnitude over a typical
multi-core CPU. We believe that our faster implementation widens the
applicability of MAFIA and subspace clustering.

1 Introduction

Cluster analysis is a valuable data mining tool. With high-dimensional data oc-
curring in many real applications, traditional all-attribute clustering algorithms
encounter problems. Often data points form a cluster only in some dimensions,
called significant dimensions, while their coordinates in other dimensions show
no correlation. Sets of significant dimensions may differ for different clusters.
This is part of what is commonly referred to as the curse of dimensionality [1].

Subspace clustering algorithms attempt to find clusters that exist only in
subsets of dimensions of the original data, i.e., in subspaces. As they discard in-
significant dimensions, they are especially useful in applications where analysis
of high-dimensional data is required. In biological research, subspace clustering is
used to study gene expression, e.g., to find groups of genes with similar function
or to find individuals with similar gene expression. Customer recommendation
systems use subspace clustering to find groups of individuals with similar pref-
erences. It is also used to find groups of thematically related documents [2].

F. Wolf, B. Mohr, and D. an Mey (Eds.): Euro-Par 2013, LNCS 8097, pp. 838–849, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Here we consider an application to Monte Carlo simulations of protein fold-
ing. Proteins are long chains of amino acids that usually adopt a unique three-
dimensional shape. This shape is necessary to perform their particular function,
e.g., enable an important chemical reaction at body temperature. How these
chain molecules are able to fold reliably into these unique shapes (conforma-
tions) remains an open question. During simulations millions of conformations
are generated and similar conformations have to be grouped into clusters to de-
termine the relative sizes of the clusters. The relative weights relate directly to
the free energy, an important physical quantity that tells us, which is the con-
formation most likely seen in experiments. If the largest clusters are of similar
size, a protein might transition between these different states.

While distance-based clustering works, the complexity of the algorithm makes
it infeasible to do an exhaustive clustering of all data points. Subspace clustering
offers a chance to find the relevant clusters using a d-dimensional state vector
that can be calculated with linear complexity. Nevertheless, these algorithms
can be computationally expensive. For a d-dimensional dataset, there are 2d− 1
possible axis-parallel subspaces. This may result in long run-times. (In practice,
the number of subspaces to consider is often much lower.)

Here we focus on MAFIA (Merging of Adaptive Finite IntervAls) [3], a sub-
space clustering algorithm which applies an adaptive grid method. This reduces
the computational requirements while providing similar quality of cluster search.
We improve MAFIA by, first, using a number of algorithmic techniques, and sec-
ond, providing a GPU implementation.

The contributions of this paper are as follows:

– We present a number of algorithmic improvements to the MAFIA subspace
clustering algorithm, which gives 1–2 orders-of-magnitude performance in-
crease for the use cases considered here while producing the same output.

– We present a GPU port of MAFIA, which gives an additional 1–2 orders-of-
magnitude improvement over a single CPU core, or an order-of-magnitude
improvement over a typical multi-core CPU-only system. To our knowledge,
this is the first implementation of a subspace clustering algorithm on GPU.

– We present performance analysis, which enables us to justify the algorithmic
improvements and parallelization for CPU and GPU architectures.

This paper is organized as follows. Section 2 presents a brief overview of subspace
clustering algorithms together with some performance data. It also provides a
summary of existing GPU implementations of clustering algorithms. MAFIA
is described in section 3 together with an analysis of the operation count. We
present the details of algorithmic improvements and GPU implementation in
section 4. Finally, we analyse and discuss performance improvements in section
5 and present our conclusions in section 6.

2 Related Work

Subspace clustering is a relatively new field of research. The first two algorithms
for finding clusters in subspaces, CLIQUE [4] and PROCLUS [5] were proposed in
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1998 and 1999, respectively. MAFIA [3] was introduced shortly thereafter. For a
parallel verion, pMAFIA, see [6]. Alternative subspace clustering algorithms are:
SeqClus [7], LCM-nCluster [8], Maxncluster [9], and DiSH (Detecting Subspace
cluster Hierarchies) [10]. The latter scales super-linearly with the number of
points. A good survey of existing subspace clustering algorithms can be found
in [2] which, however, does not include a comparison of performance or quality.
This has been done elsewhere. For example, in [11] MAFIA and FINDIT are
compared. In 2004, both required around 10 minutes to process a 20-dimensional
4-million point set with 5 hidden 5-dimensional clusters. [12] indicates that run-
times of SUBCLU can be on the order of several hours even for relatively small
dataset. However, SUBCLU is also better at finding subspace clusters, compared
to CLIQUE. In [9] Maxncluster is compared to MAFIA and STATPC. Another
good survey of subspace clustering performance is [13], which, however, excludes
MAFIA.

As clustering algorithms are generally computationally intensive and paral-
lelizeable, they are prime candidates for implementation on GPUs. K-means is
perhaps the most widely implemented GPU clustering algorithm [14, 15, 16].
CAMPAIGN, an open-source clustering library [17], comprises an implementa-
tion of K-means and other algorithms. Other clustering algorithms implemented
on GPUs include fuzzy clustering [18, 19], multi-level clustering [20] and density-
based clustering [21]. A distinguishing characteristic of MAFIA is that most of
its time is spent in operations on sets of data points, as opposed to the points
themselves. To the best of our knowledge, there is no publicly available GPU
implementation of a subspace clustering algorithm.

3 Algorithm Analysis

MAFIA starts with breaking each dimension into bins, counting points in each
bin, and building windows as part of an adaptive grid approach. Initially, each
window is a candidate dense unit of dimensionality 1 (1-CDU). CDUs that are
dense enough become dense units (DUs). MAFIA then builds CDUs of increasing
dimensionality; an a-CDU is build by merging two (a − 1)-DUs which are the
same in (a − 2) dimensions. (a − 1)-DUs which were not joined into a-DUs are
then added to the list of terminal DUs. Finally, connected groups of DUs of
the same dimensionality are merged into clusters. For a high-level pseudo-code
version of the algorithm see Alg. 1. Note that the collections used are arrays,
not sets, and may therefore contain duplicate elements.

The algorithm can be broken into three phases: the loop over the dimension
of CDUs is the middle phase, and what precedes and follows are the initial and
final phases, respectively. The main kernel of the initial phase is the histogram
construction histogram. During the same phase also the adaptive grid is built
(windows). The kernels of the middle phase are CDU generation (gen), CDU
deduplication (dedup), finding dense CDUs or point counting (pcount), and
check for unjoined DUs (unjoin). For gen, dedup and unjoin, an O(N2) al-
gorithm is used, while for pcount, each point is just checked against bounds of
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Algorithm 1. High-level pseudo-code for MAFIA algorithm

n — number of points, d — number of dimensions
pij — point coordinates, 1 ≤ i ≤ n, 1 ≤ j ≤ d
α — threshold parameter, Nb — min. #bins, NM — max. # windows, Nuw —
#windows for uniform dimensions
for j = 1 → d do

Dj ← max1≤i≤n pij −min1≤i≤n pij
hj ← histogram(p, j, Nb)
W ← W ∪ adaptiveGrid(hj, Nuw, NM )

end for
w ∈ W |tw ← αn(rw−lw)

Djw

CDUs ← {{w} |w ∈ ws}, a ← 1
while DUs �= ∅ ∨ a = 1 do

if a > 1 then
CDUs ← {u1 ∪ u2|(u1, u2) ∈ pairs(DUs) ∧ canMerge(u1, u2)}

end if
CDUs ← dedup(CDUs) � deduplication
u ∈ CDUs|nsu ← ‖{i ∈ 1 → n|∀w ∈ u : lw ≤ pijw < rw}‖ � point counting
newDUs ← {u ∈ CDUs|∀w ∈ u : nsu ≥ tw}
termDUs ← termDUs ∪ {u ∈ DUs| � ∃u1 ∈ newDUs : u ∈ u1} � unjoined check
a ← a+ 1, DUs ← newDUs

end while
G ← {termDUs, {(u1, u2) ∈ pairs(termDU)|haveCommonFace(u1, u2)}}
cs ← connectedComponents(graph)
c ∈ cs|indsc ← {i ∈ 1 → n|pi ∈ c} � index lists

each window belonging to each CDU. The final phase consists of building the
DU graph and finding connected components (graph), as well as building lists
of points belonging to given clusters (list). The graph and windows kernels do
not process large amounts of data, and are ignored in our performance analysis.

We now estimate the computational complexity of the kernels in a special
case. We assume that the dataset consists of n d-dimensional points, from which a
fraction f belongs to m clusters, all of dimensionality k. Furthermore, to simplify
analysis, we assume that clusters are arranged in such a way that (a − 1)-DUs
belonging to different clusters do not merge, i.e., they do not have a common
(a − 2)-sub-DU. If the overlap does occur, the complexity of the middle phase
becomes even higher, and so does the gain from using GPUs.

Table 1 lists the operation counts for each kernel for fixed DU dimensionality a
and the total costs which is obtained by summing over a = 1, . . . , k. We dropped
components with lesser order-of-magnitude and used Stirling’s approximation.
When a-CDUs are being generated, there arem

(
k

a−1

)
(a−1)-DUs. The number of

operations to check any pair for merging is a, which gives the cost of generating
a-CDUs. There arem

(
k
a

)
a-CDUs generated. Each a-CDU is generated a(a+1)/2

times, as this is the number of (a − 1)-DU pairs which merge into this a-CDU,
which gives the cost of deduplication. Points must be counted for each a-CDU,
and a dimensions must be checked for each point, which gives the cost of counting
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Table 1. Operation count for fixed dimensionality a as well as the total costs

Kernel Costs for fixed a Total costs

histogram — O(nd)

gen a
2
m
(

k
a−1

)
(m

(
k

a−1

)
− 1) O(m2

√
k4k)

dedup a
2

ma(a+1)
2

(
k
a

)
(ma(a+1)

2

(
k
a

)
− 1) O(m2k4

√
k4k)

pcount man
(
k
a

)
mnk 2k−1

unjoin am2
(

k
a−1

)(
k
a

)
O(m2

√
k4k)

list — O(nf)

points. For unjoined check, each (a−1)-DU should be checked against all a-DUs,
and the cost of a single check is a.

4 Optimization

We first introduce a number of algorithmic improvements. Kernel costs in Table 1
show that there are two possible performance bottlenecks:

– If the number of points is large and the cluster dimensionality is small then
the pcount kernel will dominate.

– For small to average numbers of points and big cluster dimensionality, kernels
with operation counts independent of the number of points, i.e., gen, unjoin,
and, most importantly, dedup will start to dominate.

We first optimize the dedup kernel by replacing the originally used O(N2)
algorithm by O(N logN) set deduplication, where the set is implemented as a
tree. (N is the number of CDUs at current iteration.) CDU order is defined
as lexicographic order of sequences of dimension and window numbers. We also
merge the kernels dedup and gen: A newly generated CDU will be added to
the set only if there has not been one previously generated.

We then consider the kernels gen and unjoin. For gen, we build a map from
(a − 2)-subsequences to lists of (k − 1)-DUs containing that subsequence. A
(a − 1)-DU belongs to the list only if it contains the subsequence. For unjoin,
we similarly build a set of possible (a−1) subsequences of a-DUs and check each
(a−1)-DU against that set. Both kernels then also have O(N logN) complexity.

The optimizations described are simple but, to the best of our knowledge,
they have never been implemented so far. As will be shown in the next section
the improvement can be large.

For pcount, no point index optimization is possible due to high data di-
mensionality. What MAFIA really needs to do is to compute the intersection of
window point sets, and then calculate its cardinality. We use bit arrays to rep-
resent those sets, and store the sets of dense windows only. The intersection can
now be computed using simple bit-wise and operations. The number of points is
given by the number of enabled bits. The actual operation count thus reduces by
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Table 2. Same as Table 1 but for improved kernels

Kernel Costs for fixed a Total costs Total costs
(optimized) (unoptimized)

bitarray — O(mnk) —

gen (a− 1)am
(

k
a−1

)
log{m

(
k

a−2

)
} O(m(k + logm)k22k) O(m2

√
k4k)

dedup ama(a+1)
2

(
k
a

)
log{m

(
k
a

)
} O(m(k + logm)k32k) O(m2k4

√
k4k)

pcount
man(ka)

32
mnk
64

2k mnk
2

2k

unjoin 2am(a− 1)
(
k
a

)
log{m

(
k

a−1

)
} O(m(k + logm)k22k) O(m2

√
k4k)

about 32× because now 1 operation taking 32-bit operands is sufficient to pro-
cess 32 points. This also reduces memory bandwidth requirements while upfront
costs for building the bit arrays are small.

In Table 2 we show how the algorithmic improvements and the use of bit
arrays improves the operation count. The costs of gen, dedup and unjoin
still grow exponentially with k, but the exponent is reduced from 4 to 2, which
makes the algorithm applicable to datasets with higher k. Costs of point counting
are cut by a factor of 32×, which makes the algorithm applicable to larger
datasets with the same cluster configuration. Note that as a side effect, the
algorithmic improvements also reduced dependency on the number of clusters
of gen, dedup and unjoin kernels from m2 to m logm, which is beneficial for
real-world applications with datasets containing many clusters.

We now consider parallelization and porting of the most performance critical
kernels to the GPU. For CPU parallelization we use OpenMP, GPU kernels are
implemented using CUDA.

In case of the kernel histogram we parallelize both the dimension and point
loops. For the latter, CPU threads compute private histograms, which are then
summed up. On the GPU shared-memory atomics are used. (Further speed-up
may be obtained using warp-synchronous non-atomics operations.)

pcount is a doubly nested loop, the outer over the CDUs and the inner over
bit array words. On the CPU both are parallelized. On the GPU, the loops are
mapped into different dimensions of the CUDA thread-block grid. Each thread
adds up points from several words (128 in the current implementation) of bit
arrays using __popc(), a CUDA built-in function, to count bits in each word, and
global-memory atomics to compute the final point count. We also implemented
precomputing of bit array indices in shared memory, and allocated bit arrays
using cudaMallocPitch(), which cumulatively resulted in a 73% performance
improvement over the initial GPU version.

bitarray is also a doubly nested loop, the outer over windows and the inner
over words or points. Parallelization is thus similar as for pcount. On the GPU
global-memory atomics are used to set individual bits. We found the memory
access pattern to be better for the point-per-thread approach than for using a
separate thread for each word.
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Fig. 1. CPU-only implementation of MAFIA

5 Performance Evaluation and Discussion

We implemented MAFIA as a standalone application. For benchmarking we used
a dual-socket server comprising 2 8-core Intel Xeon E5-X2670 CPUs running at
2.60GHz, plus an NVIDIA Tesla K20X (Kepler) GPU. For the experiments,
hyper-threading and frequency scaling on CPU were turned off, and ECC was
turned on on the GPU.

We first conducted a CPU-only single-core test to evaluate the algorithmic
improvements. For this, we generated a series of datasets, each containing 105

30-dimensional points and a single embedded cluster, whose dimensionality k
varied from 3 to 17. The results of the evaluation are shown in Fig. 1a. For
small k, the cost of building the histograms dominates and optimization has
little effect. For increasing k the algorithmic improvements start to have an
increasingly large effect when the kernels pcount and later dedup start to
dominate execution time. For k = 17 we observe almost two orders of magnitude
speed-up. For further discussion, we consider only the version with all algorithmic
improvements applied.

Fig. 1b shows scaling of MAFIA as a function of the number of OpenMP
threads for 105 10-dimensional points and a single cluster with k = 10. We
observe a large deviation from perfect scaling for increasing number of threads.
Performance improvement does not saturate before all the cores are used.

To investigate acceleration on the GPU as well as CPU parallelization we
generated datasets comprising 107 20-dimensional points and 3 clusters, whose
dimensionality k varied from 3 to 16. The different clusters did not intersect in
any dimension, which ensures their successful detection by MAFIA. In Fig. 2a
and 2b we plot the execution time of each kernel as a function of k for the
CPU-only and the GPU-accelerated version, respectively. Runtime of MAFIA
grows exponentially with k in all cases, approximately doubling for each succes-
sive k, which agrees with operation counts in Table 2. For small k, initial and
final phases take significant part of the overall computing time. For higher val-
ues of k, the exponentially-growing middle phase, and most importantly for this
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parameter combination, point counting, dominate execution time. For CPU,
pcount dominates clearly. With k further increasing, gen, dedup and unjoin
start to play a greater role for both architectures, because their operation count
grows as k42k. For GPU, times spent in pcount and gen + dedup are already
comparable even for mid-range k, as only the former kernel has been ported to
GPU. Both CPU and GPU parallelization give considerable performance im-
provement over sequential version.

The histogram part for GPU time breakup mostly consists of transferring
initial data to device. As actual histogram computation takes only a small frac-
tion of the histogram time, it is not possible to hide data transfer.

For the pcount kernel, as the number of memory reads is known exactly, we
can estimate effective memory bandwidth achieved by the kernel. For K20X, this
is 368 GB/s, much higher than the specification value (250 GB/s) and Stream
benchmark value (180 GB/s). However, the kernel is still memory-bound, and the
high bandwidth achieved is due to sharing of the same windows, and therefore
same bit arrays, between neighboring CDUs, which enables caching to take effect.

Overall execution times are given in Fig. 3. seq stands for sequential version,
par4, par8 and par16 are 4-, 8- and 16-thread parallel versions, respectively,
and k20x is the GPU version. Accelerations for parallel vs. sequential CPU are
given in Fig. 4a, while Fig. 4b gives acceleration of GPU vs. sequential CPU
version. The GPU-accelerated version does outperform the parallel CPU-only
implementation in all the cases. For small k the acceleration is small due to the
time needed to transfer data to the GPU. For larger k, as the relative contribution
of pcount grows, so does the acceleration, peaking at 7× for k = 14. As not all
systems have 16 CPU cores, we believe that for a typical system, GPU will give
at least an order of magnitude acceleration over the parallel CPU version. When
compared to a single CPU core, GPU gives more than two orders of magnitude
acceleration. However, for k > 15 this value starts decreasing, due to increasing
role of sequential gen + dedup kernels.

To test the applicability of MAFIA to protein folding simulations, we used data
from a parallel tempering Monte Carlo simulation of the last 16 residues of pro-
tein G. This simulation produced 160000 independent conformations. For ease of
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visualization, we take only 4 properties of the conformation to form the state vec-
tor: the temperature at which this confirmation was found, the energy of the con-
formation, the fraction of residues that is part of a strand called the strand content,
and the root-mean-square deviation (RMSD) to the native conformation. This
data set is not meant to stress the performance of the algorithm in terms of the
run-time (approximately 1 s). Rather, comparing expected and obtained results
is an additional check of both algorithm and implementation. Furthermore, it al-
lows to test how the parameters need to be adapted to deal with a real world data.
Finally, in combination with our analysis of the algorithm’s complexity the exam-
ple demonstrates that datasets of realistic size could be processed in just O(1)
minutes in case of larger cluster dimensionality k � 10.

Figure 5 shows the clusters that we obtained using 15 windows and α = 0.075.
The density threshold needs to be so small to detect the low energy clusters. At
α = 1.5 MAFIA didn’t detect any clusters. We chose 15 windows since there are
15 discrete values for the strand content.

MAFIA identified several low-energy as well as several high-energy clusters.
While the separation of structures into different clusters is not obvious, the fact
that we retain the original axes makes interpretation of the clusters easier than
interpreting clusters obtained from principal component analysis, for example.



GPUMAFIA: Efficient Subspace Clustering with MAFIA on GPUs 847

Fig. 5. Clusters of conformations from a Monte Carlo protein folding simulation in
the S-R-E subspace including a low-energy and a high-energy 4D cluster (spheres).
The images in the corners of the figure show the reference structure (lower left corner)
and a random selection of conformations from the low-energy (upper left corner) and
the high-energy (upper right corner) 4D clusters. The background contour plots show
the 2D histograms in the corresponding planes. On the right is the 1D histogram of
energy showing the initial fine bins, the 15 initial windows (lines) and the final merged
windows (light blue filled bars).

6 Conclusions

In this paper, we studied porting MAFIA to GPUs. We first performed a number
of algorithmic improvements, and then developed a GPU implementation. The
algorithmic changes resulted in an almost two-orders-of-magnitude improvement.
Porting to GPU accelerated the application by another order of magnitude. Our
results put MAFIA subspace clustering well within the limits of interactivity
even for large datasets with moderate cluster dimensionality (≤ 15).

Our MAFIA implementation can still be improved. The kernels gen, dedup
and unjoin can dominate execution time if the number of points is small. Thus,
parallelizing them should be considered, though it might be difficult, as they all
access a single set for reading and writing. Porting them to a GPU may also be
considered, though this is an even more difficult task. For datasets with larger
number of points, parallelization across multiple GPUs or even across cluster
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nodes is to be considered; as pcount performs only per-point operations, this
should be simple.

Also, as the run-time of the algorithm is significantly improved, I/O, and more
specifically, converting large input text files into data point arrays, which is part
of many work-flows involving MAFIA, becomes a bottleneck. One way to remove
it is to accelerate string-to-double parsing on GPU, and do this in pipelined
fashion. This would enable hiding initial data transfer to GPU, and improve the
overall performance without changing the current workflow. Restructuring the
implementation into a library accepting points from CPU or GPUmemory rather
than reading them from a file is another possibility for performance improvement.
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[2] Kriegel, H.P., Kröger, P., Zimek, A.: Clustering high-dimensional data: A survey
on subspace clustering, pattern-based clustering, and correlation clustering. ACM
Trans. Knowl. Discov. Data 3(1), 1:1–1:58 (2009)

[3] Nagesh, H.S.: High Performance Subspace Clustering for Massive Data Sets. Mas-
ter’s thesis (1999)

[4] Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clus-
tering of high dimensional data for data mining applications. SIGMOD Rec. 27(2),
94–105 (1998)

[5] Aggarwal, C.C., Wolf, J.L., Yu, P.S., Procopiuc, C., Park, J.S.: Fast algorithms
for projected clustering. SIGMOD Rec. 28(2), 61–72 (1999)

[6] Nagesh, H., Goil, S., Choudhary, A.: Parallel Algorithms for Clustering High-
Dimensional Large-Scale Datasets. Kluwer (2001)

[7] Wang, H., Chu, F., Fan, W., Yu, P.S., Pei, J.: A fast algorithm for subspace
clustering by pattern similarity. In: Proceedings of the 16th SSDBM, pp. 51–62
(2004)

[8] Liu, G., Li, J., Sim, K., Wong, L.: Distance based subspace clustering with flexible
dimension partitioning. In: IEEE 23rd International Conference on Data Engineer-
ing, ICDE 2007, pp. 1250–1254 (April 2007)

[9] Liu, G., Sim, K., Li, J., Wong, L.: Efficient mining of distance-based subspace
clusters. Statistical Analysis and Data Mining 2(5-6), 427–444 (2009)
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Abstract. We design, implement, and evaluate GPU-based algorithms
for the maximum cardinality matching problem in bipartite graphs. Such
algorithms have a variety of applications in computer science, scientific
computing, bioinformatics, and other areas. To the best of our knowledge,
ours is the first study which focuses on the GPU implementation of the
maximum cardinality matching algorithms. We compare the proposed
algorithms with serial and multicore implementations from the literature
on a large set of real-life problems where in majority of the cases one of
our GPU-accelerated algorithms is demonstrated to be faster than both
the sequential and multicore implementations.

Keywords: GPU, maximum cardinality matchings, bipartite graphs,
breadth-first search.

1 Introduction

Bipartite graph matching is one of the fundamental problems in graph theory
and combinatorial optimization. The problem asks for a maximum set of vertex
disjoint edges in a given bipartite graph. It has many applications in a variety of
fields such as image processing [18], chemical structure analysis [16], and bioin-
formatics [2] (see also another two discussed by Burkard et al. [4, Section 3.8]).
Our motivating application lies in solving sparse linear systems of equations,
as algorithms for computing a maximum cardinality bipartite matching are run
routinely in the related solvers. In this setting, bipartite matching algorithms
are used to see if the associated coefficient matrix is reducible; if so, substantial
savings in computational requirements can be achieved [7, Chapter 6].

Achieving good parallel performance on graph algorithms is challenging: they
are memory bounded; there are poor localities of the memory accesses; and the
dependencies among the computations are irregular. Algorithms for the matching
problem are no exception. There have been recent studies that aim to improve the
performance of matching algorithms on multicore and manycore architectures.
For example, Vasconcelos and Rosenhahn [19] propose a GPU implementation of
an algorithm for the maximum weighted matching problem on bipartite graphs.
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Fagginger Auer and Bisseling [10] study an implementation of a greedy graph
matching on GPU. Halappanavar et al. [13] also study approximate matching on
GPU. Çatalyürek et al. [5] propose different greedy graph matching algorithms
for multicore architectures. Azad et al. [1] introduce several multicore implemen-
tations of maximum cardinality matching algorithms on bipartite graphs.

We propose GPU implementations of two maximum cardinality matching
algorithms. We analyze their performance and employ further improvements.
We thoroughly evaluate their performance with a rigorous set of experiments
on many bipartite graphs from different applications. The experimental results
conclude that one of the proposed GPU-based implementation is faster than its
existing multicore counterparts.

The rest of this paper is organized as follows. The background material, some
related work, and a summary of contributions are presented in Section 2. Sec-
tion 3 describes the proposed GPU algorithms. The comparison of the proposed
GPU-based implementations with the existing sequential and multicore imple-
mentations is given in Section 4. Section 5 concludes the paper.

2 Background and Contributions

A bipartite graph G = (V1 ∪ V2, E) consists of a set of vertices V1 ∪ V2 where
V1∩V2 = ∅, and a set of edges E such that for each edge, one of the endpoints is
in V1 and other is in V2. Since our motivation lies in the sparse matrix domain,
we will refer to the vertices in the two classes as row and column vertices.

A matchingM in a graph G is a subset of edges E where a vertex in V1∪V2 is
in at most one edge inM. Given a matchingM, a vertex v is said to be matched
by M if v is in an edge of M, otherwise v is called unmatched. The cardinality
of a matching M, denoted by |M|, is the number of edges in M. A matching
M is called maximum, if no other matching M′ with |M′| > |M| exists. For a
matchingM, a path P in G is called anM-alternating if its edges are alternately
in M and not in M. An M-alternating path P is called M -augmenting if the
start and end vertices of P are both unmatched.

There are three main classes of algorithms for finding the maximum cardi-
nality matchings in bipartite graphs. The first class of algorithms is based on
augmenting paths (see a detailed summary by Duff et al. [8]). Push-relabel-
based algorithms form a second class [12]. A third class, pseudoflow algorithms,
is based on a more recent work [14]. There are O(

√
nτ) algorithms in the first

two classes (e.g., Hopcroft-Karp algorithm [15] and a variant of the push rela-
bel algorithm [11]), where n is the number of vertices and τ is the number of
edges in the given bipartite graph. This is asymptotically best bound for practi-
cal algorithms. Most of the other known algorithms in the first two classes and
the ones in the third class have the runtime complexity of O(nτ). These three
classes of algorithms are described and compared in a recent study [17]. It has
been demonstrated experimentally that the champions of the first two families
are comparable in performance and better than that of the third family. Since
we investigate GPU acceleration of augmenting-path-based algorithms, a brief
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description of them is given below (the reader is invited to two recent pa-
pers [8,17] and the original resources cited in those papers for other algorithms).

Augmenting-path-based algorithms follow the same common pattern: given
an initial matchingM (possibly empty), they search for anM-augmenting path
P . If none exists, then M is maximum by a theorem of Berge [3]. Otherwise,
P is used to increase the cardinality of M by setting M = M⊕ E(P) where
E(P) is the edge set of the path P , andM⊕E(P) = (M∪E(P))\ (M∩E(P))
is the symmetric difference. This inverts the membership in M for all edges of
P . Since both the first and the last edges of P were unmatched in M, we have
|M⊕E(P)| = |M|+1. The augmenting-path-based algorithms differ in the way
the augmenting paths are found and the associated augmentations are realized.
They mainly use either breadth-first-search (BFS), or depth-first-search (DFS),
or a combination of them to locate and perform the augmenting paths.

Multicore counterparts of a number of augmenting-path based algorithms are
proposed in a recent work [1]. The parallelization of these algorithms is achieved
by using atomic operations at BFS and/or DFS steps of the algorithm. Although
atomic operations might not harm the performance on a multicore machine, they
might cause a significant performance degradation on a GPU due to the possible
serialization of very large number of concurrent thread executions.

As a reasonably efficient DFS is not feasible with GPUs, we accelerate two
BFS-based algorithms, called HK [15] and HKDW [9]. HK has the best known
worst-case runtime complexity of O(

√
nτ) for a bipartite graph with n vertices

and τ edges. HKDW is a variant of HK and incorporates techniques to improve
the practical runtime while having the same time complexity. Both of these
algorithms use BFS to locate the shortest augmenting paths from unmatched
columns, and then use DFS-based searches restricted to a certain part of the in-
put graph to augment along a maximal set of disjoint augmenting paths. HKDW
performs another set of DFS-based searches to augment using the remaining un-
matched rows. As is clear, the DFS-based searches will be a big obstacle to
achieve efficiency. In order to overcome this hurdle, we propose a scheme which
alternates the edges of a number of augmenting paths with a parallel scheme that
resembles to a breadth expansion in BFS. The proposed scheme offers a high
degree of parallelism but does not guarantee a maximal set of augmentations,
potentially increasing the worst case time complexity to O(nτ) on a sequential
machine. In other words, we trade theoretical worst case time complexity with
a higher degree of parallelism to achieve better practical runtime with a GPU.

3 Methods

We propose two GPU-based algorithms which find the augmenting paths via
BFS, speculatively perform some of them, and fix any inconsistencies that can be
resulting from speculative augmentations. The proposed algorithms exploit the
GPU’s vast number of thread parallelisms by assigning each vertex to a thread.
Then, the threads concurrently perform independent operations for vertices in
each kernel call, even though actual work is done for a portion of the vertices.
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Therefore, the GPU algorithm differs from a multi-core algorithm in which a
shared data structure is used with atomic operations.

The overall structure of the first GPU-based algorithm is given in Algorithm 1,
APsB. It largely follows the common structure of most of the existing sequen-
tial algorithms and corresponds to HK. It performs a combined BFS starting
from all unmatched columns to find unmatched rows, thus locating augmenting
paths. Some of those augmentations are then realized using a function called
Alternate (will be described later). The parallelism is exploited inside the
InitBfsArray, BFS, Alternate, and FixMatching functions. Algorithm 1
is given the adjacency list of the bipartite graph with its number of rows and
columns. Any prior matching is given in rmatch and cmatch arrays as follows:
rmatch[r] = c and cmatch[c] = r, if the row r is matched to the column c;
rmatch[r] = −1, if r is unmatched; cmatch[c] = −1, if c is unmatched.

Algorithm 1: Shortest augmenting paths (APsB)

Data: cxadj, cadj, nc, nr, rmatch, cmatch
1 augmenting path found ← true;
2 while augmenting path found do
3 bfs level ← L0;
4 InitBfsArray(bfs array, cmatch, L0);
5 vertex inserted ← true;
6 while vertex inserted do
7 predecessor ←Bfs(bfs level, bfs array, cxadj, cadj, nc, rmatch,
8 vertex inserted, augmenting path found);
9 if augmenting path found then

10 break;

11 bfs level ← bfs level+ 1;

12 〈cmatch, rmatch〉 ← Alternate (cmatch, rmatch, nc, predecessor);
13 〈cmatch, rmatch〉 ← FixMatching (cmatch, rmatch);

The outer loop of Algorithm 1 iterates until no more augmenting paths are
found, thereby guaranteeing a maximum matching. The inner loop is responsi-
ble from completing the breadth-first-search of the augmenting paths. A single
iteration of this loop corresponds to a level of BFS. The inner loop iterates until
all shortest augmenting paths are found. Then, the edges in these shortest aug-
menting paths are alternated inside Alternate function. Unlike the sequential
HK algorithm, APsB does not find a maximal set of augmenting paths.

By removing the lines 9 and 10 of Algorithm 1, another matching algorithm is
obtained. This method will continue with the BFSs until all possible unmatched
rows are found; it can be therefore considered as the GPU implementation of
the HKDW algorithm. This variant is called APFB.

We propose two implementations of the BFS kernel. Algorithm 2 is the first
one. The BFS kernel is responsible from a single level BFS expansion. That is, it
takes the set of vertices at a BFS level and adds the union of the unvisited neigh-
bors of those vertices as the next level of vertices. Initially, the input bfs array
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Algorithm 2: BFS Kernel Function-1 (GPUBFS)

Data: bfs level, bfs array, cxadj, cadj, nc, rmatch,
vertex inserted, augmenting path found

1 process cnt ← getProcessCount(nc);
2 for i from 0 to process cnt − 1 do
3 col vertex ← i× tot thread num + tid;
4 if bfs array[col vertex] = bfs level then
5 for j from cxadj[col vertex] to cxadj[col vertex+ 1] do
6 neighbor row ← cadj[j];
7 col match ← rmatch[neighbor row];
8 if col match > −1 then
9 if bfs array[col match] = L0 −1 then

10 vertex inserted ← true;
11 bfs array[col match] ← bfs level + 1;
12 predeccesor[neighbor row] ← col vertex;

13 else
14 if col match=−1 then
15 rmatch[neighbor row] ← −2;
16 predeccesor[neighbor row] ← col vertex;
17 augmenting path found ← true;

filled with bfs array[c] = L0 − 1 if cmatch[c] > −1 and bfs array[c] = L0 if
cmatch[c] = −1 by a simple InitBfsArray kernel (L0 denotes BFS start level).

The GPU threads partition the column vertices in a single dimension. Each
thread with id tid is assigned a number of columns which is obtained via the
following function:

getProcessCount(nc)=

{
! nc
tot thread num" if tid < nc mod tot thread num,
� nc
tot thread num� otherwise.

Once the number of columns are obtained, the threads traverse their first as-
signed column vertex. The indices of the columns assigned to a thread differ
by tot thread num to allow coalesced global memory accesses. Threads traverse
the neighboring row vertices of the current column, if its BFS level is equal to
the current bfs level. If a thread encounters a matched row during the traver-
sal, its matching column is retrieved. If the column is not traversed yet, its
bfs level is marked on bfs array. On the other hand, when a thread encounters
an unmatched row, an augmenting path is found. In this case, the match of the
neighbor row is set to −2, and this information is used by Alternate later.

Algorithm 3 gives the description of the Alternate function. This kernel al-
ternates the matched edges with the unmatched edges of the augmenting paths
found; some of those paths end up being augmenting ones and some are only par-
tially alternated. Here, each thread is assigned a number of rows. Since rmatch
of an unmatched row (that is also an endpoint of an augmenting path) has been
set to −2 in the BFS kernel, only the threads whose row vertices’ matches are
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Algorithm 3: Alternate

Data: cmatch, rmatch, nc, nr, predecessor
1 process vcnt ← getProcessCount(nr);
2 for i from 0 to process vcnt − 1 do
3 row vertex ← i× tot thread num+ tid;
4 if rmatch[row vertex] = −2 then
5 while row vertex �= −1 do
6 matched col ← predecessor[row vertex];
7 matched row ← cmatch[matched col] ;
8 if predecessor[matched row] = matched col then
9 break;

10 cmatch[matched col] ← row vertex;
11 rmatch[row vertex] ← matched col;
12 row vertex ← matched row;

Fig. 1. Vertices r1 and c2 are matched; others are not. Two augmenting paths starting
from c1 are possible.

−2 start Alternate. Since there might be several augmenting paths for an
unmatched column, race conditions while writing on cmatch and rmatch arrays
are possible. Such a race condition might cause infinite loops (inner while loop) or
inconsistencies, if care is not taken. We prevent these by checking the predecessor
of a matched row (line-8). For example, in Fig. 1, two different augmenting paths
that end with r2 and r3 are found for c1. If the thread of r2 starts before the
thread of r3 in Alternate, the match of c2 will be updated to r2 (line-10).
Then, r3’s thread will read matched row of c2 as r2 (line-7). This would cause
an infinite loop without the check at line-8. Inconsistencies may occur when
the threads of r2 and r3 are in the same warp. In this case, the if-check will
not hold for both threads, and their row vertices will be written on cmatch
(line-10). Since only one thread will be successful at writing, this will cause
an inconsistency. Such inconsistencies are fixed by FixMatching kernel which
implements: rmatch[r]← −1 for any r satisfying cmatch[rmatch[r]] �= r.

Algorithm 4 gives the description of a slightly different BFS kernel function.
This function takes a root array as an extra argument. Initially, the root array is
filled with root[c] = 0 if cmatch[c] > −1, and root[c] = c if cmatch[c] = −1. This
array holds the root (as the index of the column vertex) of an augmenting path,
and this information is transferred down during BFS. Whenever an augmenting
path is found, the entry in bfs array for the root of the augmenting path is set to
L0−2. This information is used at the beginning of the BFS kernel. No more BFS
traversals is done if an augmenting path is found for the root of the traversed
column vertex. Therefore, while the method increases the global memory accesses
by introducing an extra array, it provides an early exit mechanism for BFS.
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Algorithm 4: BFS Kernel Function-2 (GPUBFS-WR)

Data: bfs level, bfs array, cxadj, cadj, nc, rmatch, root
vertex inserted, augmenting path found

1 process cnt ← getProcessCount(nc);
2 for i from 0 to process cnt − 1 do
3 col vertex ← i× tot thread num + tid;
4 if bfs array[col vertex] = bfs level then
5 myRoot ← root[col vertex];
6 if bfs array[myRoot] < L0 − 1 then
7 continue;

8 for j from cxadj[col vertex] to cxadj[col vertex+ 1] do
9 neighbor row ← cadj[j];

10 col match ← rmatch[neighbor row];
11 if col match > −1 then
12 if bfs array[col match] = L0 −1 then
13 vertex inserted ← true;
14 bfs array[col match] ← bfs level + 1;
15 root[col match] ← myRoot;
16 predeccesor[neighbor row] ← col vertex;

17 else
18 if col match=−1 then
19 bfs array[myRoot] ← L0 − 2;
20 rmatch[neighbor row] ← −2;
21 predeccesor[neighbor row] ← col vertex;
22 augmenting path found ← true;

We further improve GPUBFS-WR by making use of the arrays root and
bfs array. BFS kernels might find several rows to match with the same un-
matched column, and set rmatch[·] to −2 for each. These cause Alternate

to start from several rows that can be matched with the same unmatched col-
umn. Therefore, it may perform unnecessary alternations, until these augmenting
paths intersect. Conflicts may occur at these intersection points (which are then
resolved with FixMatching function). By choosing L0 as 2, we can limit the
range of the values that bfs array takes to positive numbers. Therefore, by set-
ting the bfs array to −(neighbor row) at line 19 of Algorithm 4, we can provide
more information to the Alternate function. With this, Alternate can de-
termine the beginning and the end of an augmenting path, and it can alternate
only among the correct augmenting paths. APsB-GPUBFS-WR (and Alter-

nate function used together) includes these improvements. However, they are
not included in APFB-GPUBFS-WR since they do not improve its performance.

4 Experiments

The proposed implementations are compared against the sequential HK and
PFP implementations [8], and against the multicore implementations P-PFP,
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P-DBFS, and P-HK obtained from [1]. The CPU implementations are tested on
a computer with 2.27GHz dual quad-core Intel Xeon CPUs with 2-way hyper-
threading and 48GB main memory. The algorithms are implemented in C++
and OpenMP. The GPU implementations are tested on NVIDIA Tesla C2050
with usable 2.6GB of global memory. C2050 is equipped with 14 multiprocessors
each containing 32 CUDA cores, totaling 448 CUDA cores. The implementa-
tions are compiled with gcc-4.4.4, cuda-4.2.9 and -O2 optimization flag. For the
multicore algorithms, 8 threads are used. A standard heuristic (called the cheap
matching, see [8]) is used to initialize all algorithms. We compare the runtime of
the matching algorithms after this common initialization. The execution times
of the GPU algorithms exclude memory copy time. But including memory copy
time decreases the reported mean speedups across all data set by at most 6%.

The two main algorithms APFB and APsB can use different BFS kernel func-
tions (GPUBFS and GPUBFS-WR). Moreover, these algorithms can have two
versions (i) CT: uses a constant number of threads with fixed number of grid
and block size (256× 256) and assigns multiple vertices to each thread; (ii) MT:
tries to assign one vertex to each thread. The number of threads used in the
second version is chosen as MT = min(nc,#threads) where nc is the number of
columns, and #threads is the maximum number of threads of the architecture.
Therefore, we have eight GPU-based algorithms.

We used 70 different matrices from variety of classes at UFL matrix collec-
tion [6]. We also permuted the matrices randomly by rows and columns and
included them as a second set (labeled RCP). These permutations usually ren-
der the problems harder for the augmenting-path-based algorithms [8]. For both
sets, we report the performance for a smaller subset which contains those matri-
ces in which at least one of the sequential algorithms took more than one second.
We call these sets O S1 (28 matrices) and RCP S1 (50 matrices). We also have
another two subsets called O Hardest20 and RCP Hardest20 that contain the set
of 20 matrices on which the sequential algorithms required the longest runtime.

Table 1. Geometric mean of the runtime (in seconds) of the GPU algorithms on
different sets of instances

APFB APsB
GPUBFS GPUBFS-WR GPUBFS GPUBFS-WR
MT CT MT CT MT CT MT CT

O S1 2.96 1.89 2.12 1.34 3.68 2.88 2.98 2.27
O Hardest20 4.28 2.70 3.21 1.93 5.23 4.14 4.20 3.13
RCP S1 3.66 3.24 1.13 1.05 3.52 3.33 2.22 2.14
RCP Hardest20 7.27 5.79 3.37 2.85 12.06 10.75 8.17 7.41

Table 1 compares the proposed GPU implementations on different sets. As we
see from the table, using a constant number of threads (CT) always increases
the performance of an algorithm, since it increases the granularity of the work
performed by each thread. GPUBFS-WR is always faster than GPUBFS. This
is due to the unnecessary BFSs in the GPUBFS algorithm. GPUBFS cannot
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(b) Delanuay n23

Fig. 2. The BFS ids and the number of kernel executions for each BFS in APsB and
APFB variants for two graphs. The x axis shows the id of the while iteration at line 2
of APsB. The y axis shows the number of the while iterations at line 6 of APsB.

determine whether an augmenting path has already been found for an unmatched
column, therefore it will continue to explore. This unnecessary BFSs not only
increase the time, but also reduce the likelihood of finding an augmenting path
for other unmatched columns. Moreover, the Alternate scheme turns out to
be more suitable for APFB than APsB, in which case it can augment along more
paths (there is a larger set of possibilities). For example, Figs. 2(a) and 2(b) show
the number of BFS iterations and the number of BFS levels in each iteration for,
respectively, Hamrle3 and Delanuay n23. As clearly seen from the figures, APFB
variants converge in smaller number of iterations than APsB variants; and for
most of the graphs, the total number of BFS kernel calls are less for APFB (as
in Fig. 2(a)). However, for a small set of graphs, although the augmenting path
exploration of APsB converges in larger number of iterations, the numbers of the
BFS levels in the iterations are much less than APFB (as in Fig. 2(b)). Unlike
the general case, APsB outperforms APFB in such cases. Since APFB using
GPUBFS-WR and CT is almost always the best algorithm, we only compare
the performance of this algorithm with other implementations in the following.

Figures 3(a) and 3(b) give the log-scaled speedup profiles of the best GPU
and multicore algorithms on the original and permuted graphs. The speedups
are calculated with respect to the fastest of the sequential algorithms PFP and
HK (on the original graphs HK was faster; on the permuted ones PFP was
faster). A point (x, y) in the plots corresponds to the probability of obtaining
at least 2x speedup is y. As the plots show, the GPU algorithm has the best
overall speedup. It is faster than the sequential HK algorithm for 86% of the
original graphs, while it is faster than PFP on 76% of the permuted graphs. P-
DBFS obtains the best performance among the multicore algorithms. However,
its performance degrades on permuted graphs. Although P-PFP is more robust
than P-DBFS to permutations, its overall performance is inferior to that of P-
DBFS. P-HK is outperformed by the other algorithms in both sets.

Figures 4(a) and 4(b) show the performance profiles of the GPU and mul-
ticore algorithms. A point (x, y) in the plots means that with y probability,
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Fig. 3. Log-scaled speedup profiles

����

���

����

����

����

����

�� � �� �� �� �� �� �� �� ���

��
��
�	


�
	�

��
��
���

��
��

�

����
�����
�������
���	�

(a) Original graphs

	
	�

	
��

	
��

	
�

	
��

�
	�

�� �� �� �� �� � �� �� �� �	�

��
��
��

��
��

���
��

��
	�
��

�


���
�����
�������
���	�

(b) Permuted graphs

Fig. 4. Performance profiles

the corresponding algorithm obtains a performance that is at most x times worse
than the best runtime. The plots clearly mark the GPU algorithm as the fastest
in most cases, especially for the original graphs and for x ≤ 7 for the permuted
ones. In particular, the GPU algorithm obtains the best performance in 61% of
the original graphs, while this ratio increases to 74% for the permuted ones.

Figure 5 gives the overall speedups. The proposed GPU algorithm obtains
average speedup values of at least 3.61 and 3.54 on, respectively, original and
permuted graphs. The speedups increase for the hardest instances, where the
GPU algorithm achieves 3.96 and 9.29 speedup, respectively, on original and
permuted graphs. Moreover, the runtimes obtained by the GPU algorithm are
robust among the repeated executions on a graph instance. We calculated the
standard deviation of the execution times for different repetitions. For the graphs
in O S1 set, the ratios of the standard deviations to the average time are observed
to be less than 10%, 18%, and 47% for 20, 5, and 3 graphs, respectively.

Table 2 gives the actual runtime for O Hardest20 set for the best GPU
and multicore algorithms, together with the sequential algorithms. The com-
pete set of runtimes can be found at http://bmi.osu.edu/hpc/software/

matchmaker2/maxCardMatch.html. As table shows, except six instances among
the original graphs and another two among the permuted graphs, the GPU al-
gorithm is faster than the best sequential algorithm. It is also faster than the
multicore ones in all, except five original graphs.

http://bmi.osu.edu/hpc/software/matchmaker2/maxCardMatch.html
http://bmi.osu.edu/hpc/software/matchmaker2/maxCardMatch.html
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Fig. 5. Overall speedup of the proposed GPU algorithm w.r.t. PFP (left bars) and HK
(right bars) algorithms

Table 2. The actual runtime of each algorithm for the O Hardest20 set

Original graphs Permuted graphs
Matrix name GPU P-DBFS PFP HK GPU P-DBFS PFP HK
roadNet-CA 0.34 0.53 0.95 2.48 0.39 1.88 3.05 4.89
delaunay n23 0.96 1.26 2.68 1.11 0.90 5.56 3.27 14.34
coPapersDBLP 0.42 6.27 3.11 1.62 0.38 1.25 0.29 1.26
kron g500-logn21 0.99 1.50 5.37 4.73 3.71 4.01 64.29 16.08
amazon-2008 0.11 0.18 6.11 1.85 0.41 1.37 61.32 4.69
delaunay n24 1.98 2.41 6.43 2.22 1.86 12.84 6.92 35.24
as-Skitter 0.49 1.89 7.79 3.56 3.27 5.74 472.63 29.63
amazon0505 0.18 22.70 9.05 1.87 0.24 15.23 17.59 2.23
wikipedia-20070206 1.09 5.24 11.98 6.52 1.05 5.99 9.74 5.73
Hamrle3 1.36 2.70 0.04 12.61 3.85 7.39 37.71 57.00
hugetrace-00020 7.90 393.13 15.95 15.02 1.52 9.97 8.68 38.27
hugebubbles-00000 13.16 3.55 19.81 5.56 1.80 10.91 10.03 38.97
wb-edu 33.82 8.61 3.38 20.35 17.43 20.10 9.49 51.14
rgg n 2 24 s0 3.68 2.25 25.40 0.12 2.20 12.50 5.72 31.78
patents 0.88 0.84 92.03 16.18 0.91 0.97 101.76 18.30
italy osm 5.86 1.20 1.02 122.00 0.70 3.97 6.24 18.34
soc-LiveJournal1 3.32 14.35 243.91 21.16 3.73 7.14 343.94 20.71
ljournal-2008 2.37 10.30 360.31 17.66 6.90 7.58 176.69 23.45
europe osm 57.53 11.21 14.15 1911.56 7.21 37.93 68.18 197.03
com-livejournal 4.58 22.46 2879.36 34.28 5.88 17.19 165.32 29.40

5 Concluding Remarks

We proposed a parallel GPU implementation of a BFS-based maximum cardinal-
ity matching algorithm for bipartite graphs. We compared the performance of the
proposed implementation against sequential and multicore algorithms on various
datasets. The experiments showed that the GPU implementation is faster than
the existing multicore implementations. The speedups achieved with respect to
well-known sequential implementations varied from 0.03 to 629.19, averaging
9.29 w.r.t. the fastest sequential algorithm on a set of 20 hardest problems. A
GPU is a restricted memory device. Although, an out-of-core or distributed-
memory type algorithm is amenable when the graph does not fit into the device,
a direct implementation of these algorithms will surely not be efficient. We plan
to investigate matching algorithms for extreme-scale bipartite graphs on GPUs.
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17. Kaya, K., Langguth, J., Manne, F., Uçar, B.: Push-relabel based algorithms for
the maximum transversal problem. Comput. Oper. Res. 40(5), 1266–1275 (2012)

18. Kim, W.Y., Kak, A.C.: 3-D object recognition using bipartite matching embedded
in discrete relaxation. IEEE T. Pattern Anal. 13(3), 224–251 (1991)

19. Vasconcelos, C.N., Rosenhahn, B.: Bipartite graph matching computation on GPU.
In: Cremers, D., Boykov, Y., Blake, A., Schmidt, F.R. (eds.) EMMCVPR 2009.
LNCS, vol. 5681, pp. 42–55. Springer, Heidelberg (2009)



On-Board Multi-GPU Molecular Dynamics

Marcos Novalbos1, Jaime Gonzalez2, Miguel Angel Otaduy1,
Alvaro Lopez-Medrano2, and Alberto Sanchez1

1 URJC Madrid
{marcos.novalbos,miguel.otaduy,alberto.sanchez}@urjc.es

2 Plebiotic S.L.
{jaime.gonzalez,alvaro.lopez-medrano}@plebiotic.com

Abstract. Molecular dynamics simulations allow us to study the be-
havior of complex biomolecular systems. These simulations suffer a large
computational complexity that leads to simulation times of several weeks
in order to recreate just a few microseconds of a molecule’s motion
even on high-performance computing platforms. In recent years, state-of-
the-art molecular dynamics algorithms have benefited from the parallel
computing capabilities of multicore systems, as well as GPUs used as
co-processors. In this paper we present a parallel molecular dynamics
algorithm for on-board multi-GPU architectures. We parallelize a state-
of-the-art molecular dynamics algorithm at two levels. We employ a spa-
tial partitioning approach to simulate the dynamics of one portion of a
molecular system on each GPU, and we take advantage of direct commu-
nication between GPUs to transfer data among portions. We also paral-
lelize the simulation algorithm to exploit the multi-processor computing
model of GPUs. Most importantly, we present novel parallel algorithms
to update the spatial partitioning and set up transfer data packages on
each GPU. We demonstrate the feasibility and scalability of our pro-
posal through a comparative study with NAMD, a well known parallel
molecular dynamics implementation.

1 Introduction

Molecular dynamics simulations [20] are computational approaches for studying
the behavior of complex biomolecular systems at the atom level, estimating their
dynamic and equilibrium properties which can not be solved analytically. Their
most direct applications are related to identifying and predicting the structure
of proteins, but they also provide a tool for drug or material design. These simu-
lations recreate the movements of atoms and molecules due to their interactions
for a given period of time. However, they are limited by size and computational
time due to the current available computational resources. For instance, simu-
lating just one nanosecond of the motion of a well known system with 92 224
atoms (ApoA1 benchmark) using only one processor takes up to 14 days [13].

The simulation times of molecular dynamics can be reduced thanks to al-
gorithms that update atoms in a parallel way. Such algorithms were initially
implemented on multi-CPU architectures, such as multicore processors or com-
puter clusters with several computing nodes connected by a local area network
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(LAN) [2, 6, 14]. More recent alternatives have used hybrid GPU-CPU architec-
tures to provide parallelism [22], taking advantage of the massive parallel capa-
bilities of GPUs. This approach interconnects several computing nodes, each one
with one or more GPUs serving as co-processors of the CPUs [5,9]. The compute
power of this approach is bounded by the cost to transfer data between CPUs
and GPUs and between compute nodes.

Novel GPU architectures support direct communication between GPUs, even
mounted on the same board [21]. These features enable the use of GPUs as the
central compute nodes of parallel molecular dynamics algorithms, and not just
as mere co-processors, thereby reducing the communication load. In this paper,
we present a parallel molecular dynamics algorithm for on-board multi-GPU ar-
chitectures. We parallelize molecular dynamics simulations at two levels. At the
high level, we present a spatial partitioning approach to assign one portion of a
molecular system to each GPU. At the low level, we parallelize on each GPU the
simulation of its corresponding portion. Most notably, we present algorithms for
the massively parallel update of the spatial partitions and for the setup of data
packages to be transferred to other GPUs. We demonstrate our approach on a
multi-GPU on-board architecture, using PCIe for direct GPU-GPU communica-
tion. We show speed-ups and improved scalability over NAMD, a state-of-the-art
multi-CPU-GPU simulation algorithm that uses GPUs as co-processors.

2 Related Work

In computer-driven molecular dynamics simulations, atoms are contained in a
virtual 3D coordinate system that models the real environment inside a specific
volume. In biological systems, the molecules are surrounded by water molecules,
and periodic boundary conditions are imposed on the simulation volume, i.e., the
simulation volume is implicitly replicated infinite times. The simulation time is
divided into steps of very small size, in the order of 1fs = 10−15s. Given atom
positions Xi and velocities Vi at time Ti, the simulation algorithm evaluates the
interaction forces and integrates them to obtain positions Xi+1 and velocities
Vi+1 at time Ti+1. The interaction forces can be divided in:

i) Bonded forces, which can be of several types depending on the number of
atoms involved: single bond, angle, proper and improper dihedral forces. ii) Non-
bonded short-range forces, composed of Van der Waals forces and electrostatic
interactions between atoms closer than a cutoff radius (Rc). iii) Non-bonded
long-range forces, consisting of electrostatic interactions between atoms sepa-
rated by a distance greater than Rc. In the remaining of this paper, we account
only for bonded and short-range non-bonded forces.

The different dynamics of the various types of forces suggest the use of Mul-
tiple Time Stepping integrators (MTS) [8, 23], which use a smaller time step
for bonded forces. Several MTS integrators have been proposed, such as Verlet-
I/r-RESPA [3], MOLLY [19] and LN [1]. Despite the use of more time steps
for bonded forces, most of the integrator’s time is spent calculating non-bonded
forces. The computation of short-range non-bonded forces can be accelerated
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using a regular grid, which is updated at a lower rate than the simulation. This
method is known as cell list [4,12,16]. A more comprehensive description of the
basics of molecular dynamics can be found in [20].

Several authors have proposed ways to parallelize molecular dynamics algo-
rithms on hybrid CPU-GPU architectures [11,25]. NAMD [17] defines work tasks
and then partitions these tasks among the available computing nodes. GPUs are
used as massively parallel co-processors to speed-up the tasks that involve com-
putation of non-bonded short-range forces. GROMACS [5] performs a spatial
partitioning on the molecular system to distribute it on a multi-core architec-
ture, and then the CPUs may use GPUs as co-processors to speed-up force
computations. ACEMD [4] performs GPU-parallel computation of the various
forces in a molecular system, and each type of force is handled on a separate
GPU. This approach exploits on-board multi-GPU architectures, but its scal-
ability is limited because all communications are handled through the CPU.
Very recently, Rustico et al. [18] have proposed a spatial partitioning approach
for multi-GPU particle-based fluid simulation, which shares many features with
molecular dynamics. Our work addresses massively parallel data management
and communication, not discussed by Rustico et al.

3 Algorithm Overview

In contrast to previous parallel molecular dynamics algorithms, we propose a
two-level algorithm that partitions the molecular system, and each GPU handles
in a parallel manner the computation and update of its corresponding portion,
as well as the communications with other GPUs.

To solve the dynamics, we use a generic Verlet/Respa MTS integrator. In our
examples, we have used a time step Δt = 2 fs for short-range non-bonded forces,
and we update bonded forces nStepsBF = 2 times per time step. We accelerate
short-range non-bonded forces using the cell-list method, with a grid resolution
of Rc/2. The cell-list data structure can be updated and visited efficiently on a
GPU using the methods in [24].

We partition the molecule using grid-aligned planes, thus minimizing the
width of interfaces and simplifying the update of partitions. We partition the
simulation domain only once at the beginning of the simulation, and then up-
date the partitions by transferring atoms that cross borders. We have tested two
partitioning approaches with different advantages:

– Binary partition (Figure 1a): we recursively halve molecule portions using
planes orthogonal to their largest dimension. Each portion may have up to
26 neighbors in 3D.

– Linear partition (Figure 1b): we divide the molecular system into regular
portions using planes orthogonal to the largest dimension of the full simula-
tion volume. With this method, each portion has only 2 neighbors, but the
interfaces are larger; therefore, it trades fewer communication messages for
more expensive partition updates.
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(a) Binary Partition (b) Linear Partition (c) Cells at the Interface

Fig. 1. On the left and center, comparison of binary (a) vs. linear spatial partitioning
(b). The striped regions represent the periodicity of the simulation volume. On the
right, the different types of cells at the interface between two portions of the simulation
volume.

Based on our cell-based partition strategy, each GPU contains three types of
cells as shown in Figure 1c:

– Private cells that are exclusively assigned to one GPU.
– Shared cells that contain atoms updated by a certain GPU, but whose data

needs to be shared with neighboring portions.
– Interface cells that contain atoms owned by another GPU, and used for force

computations in the given GPU.

Algorithm 1 shows the pseudo-code of our proposed multi-GPU MTS integra-
tor, highlighting in blue with a star the differences w.r.t. a single-GPU version.
These differences can be grouped in two tasks: update partitions and synchro-
nize dynamics of neighboring portions. Once every ten time steps, we update the
partitions in two steps. First, we identify atoms that need to be updated, i.e.,
atoms that enter shared cells of a new portion. And second, we transfer the posi-
tions and velocities of these atoms. To synchronize dynamics, we transfer forces
of all shared atoms, and then each GPU integrates the velocities and positions
of its private and shared atoms, but also its interface atoms. Again, we carry
out the synchronization in two steps. First, after the cell-list data structure is
updated, we identify the complete set of shared atoms. And second, we transfer
the forces of shared atoms as soon as they are computed.

4 Parallel Partition Update and Synchronization

As outlined above, each GPU stores one portion of the complete molecular sys-
tem and simulates this subsystem using standard parallel algorithms [24]. In
this section, we describe massively parallel algorithms to update the partitions
and to transfer interface forces to ensure proper synchronization of dynamics
between subsystems. We propose algorithms that separate the identification of
atoms whose data needs to be transferred from the setup of the transfer pack-
ages. In this way, we can reuse data structures and algorithms both in partition
updates and force transfers. Data transfers are issued directly between GPUs,
thereby minimizing communication overheads.



866 M. Novalbos et al.

Algorithm 1. Multi-GPU Verlet/r-Respa MTS integrator. The modifications
w.r.t. the single-GPU version are highlighted in blue with a star.

1: procedure Step(currentStep)
2: if currentStep mod 10 = 0 then
3: ∗ identifyUpdateAtomIds()
4: ∗ transferUpdatePositionsAndV elocities()
5: updateCellList()
6: ∗ identifySharedAtomIds()
7: end if
8: integrateTemporaryPosition(0.5 ·Δt)
9: computeShortRangeForces()
10: ∗ transferSharedShortRangeForces()
11: for nStepsBF do
12: integratePosition(0.5 ·Δt/nStepsBF )
13: computeBondedForces()
14: ∗ transferSharedBondedForces()
15: integrateKickV elocity(Δt/nStepsBF )
16: integratePosition(0.5 ·Δt/nStepsBF )
17: end for
18: currentStep = currentStep+ 1
19: end procedure

4.1 Data Structures

The basic molecular dynamics algorithm stores atom data in two arrays:

– staticAtomData corresponds to data that does not change during the simu-
lation, such as atom type, bonds, electrostatic and mechanical coefficients,
etc. It is sorted according to static atom indexes.

– dynamicAtomData that contains position and velocity, a force accumulator,
and the atom’s cell. It is sorted according to the cell-list structure, and all
atoms in the same cell appear in consecutive order.

Both arrays store the identifiers of the corresponding data in the other array
to resolve indirections. Each GPU stores a copy of the staticAtomData of the
whole molecule, and keeps dynamicAtomData for its private, shared, and inter-
face cells. The dynamicAtomData is resorted in each call to the updateCellList
procedure, and the atom identifiers are accordingly reset. Atoms that move out
of a GPU’s portion are simply discarded.

In our multi-GPU algorithm, we extend the dynamicAtomData, and store for
each atom a list of neighbor portions that it is shared with. We also define two
additional arrays on each GPU:

– cellNeighbors is a static array that stores, for each cell, a list of neighbor
portions.

– transferIDs is a helper data structure that stores pairs of neighbor identifiers
and dynamic atom identifiers. This data structure is set during atom identi-
fication procedures, and it is used for the creation of the transfer packages.
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4.2 Identification of Transfer Data

Each GPU contains a transferIDs data structure of size nNeighbors ·nAtoms,
where nNeighbors is the number of neighbor portions, and nAtoms is the num-
ber of atoms in its corresponding portion. This data structure is set at two stages
of the MTS Algorithm 1, identifyUpdateAtomIds and identifySharedAtomIds.
In both cases, we initialize the neighbor identifier in the transferIDs data struc-
ture to the maximum unsigned integer value. Then, we visit all atoms in parallel
in one CUDA kernel, and flag the (atom, neighbor) pairs that actually need to
be transferred. We store one flag per neighbor and atom to avoid collisions at
write operations. Finally, we sort the transferIDs data structure according to
the neighbor identifier, and the (atom, neighbor) pairs that were flagged are
considered as valid and are automatically located at the beginning of the array.
We have used the highly efficient GPU-based Merge-Sort implementation in the
NVidia SDK [15] (5.3ms to sort an unsorted array with one million values on a
NVidia GeForce GTX580).

Algorithm 2. Identification of atoms whose data needs to be transferred, along
with their target neighbor

1: procedure IdentifyTransferAtomIds(transferIDs)
2: for atomID in atoms do
3: for neighborID in cellNeighbors(dynamicAtomData[atomId].cellID) do
4: if MustTransferData(atomID,neighborID) then
5: offset = neighborID · nAtoms+ atomID
6: transferIDs[offset].atomID = atomID
7: transferIDs[offset].neighborID = neighborID
8: end if
9: end for
10: end for
11: Sort(transferIDs,neighborID)
12: end procedure

Algorithm 2 shows the general pseudo-code for the identification of transfer
data. The actual implementation of the MustT ransferData procedure depends
on the actual data to be transferred. For partition updates, an atom needs to
be transferred to a certain neighbor portion if it is not yet present in its list of
neighbors. For force synchronization, an atom needs to be transferred to a certain
neighbor portion if it is included in its list of neighbors.We also update the list
of neighbors of every atom as part of the identifyUpdateAtomIds procedure.

4.3 Data Transfer

For data transfers, we set in each GPU a buffer containing the output data and
the static atom identifiers. To set the buffer, we visit all valid entries of the
transferIDs array in parallel in one CUDA kernel, and fetch the transfer data
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(a) ApoA1 in water (b) C206 in water (c) 400K

Fig. 2. Benchmark molecules

using the dynamic atom identifier. The particular transfer data may consist of
forces or positions and velocities, depending on the specific step in the MTS
Algorithm 1.

Transfer data for all neighbor GPUs is stored in one unique buffer; therefore,
we set an additional array with begin and end indexes for each neighbor’s chunk.
This small array is copied to the CPU, and the CPU invokes one asynchronous
copy function to transfer data between each GPU and one of its neighbors.
We use NVidia’s driver for unified memory access (Unified Virtual Addressing,
UVA) [21] to perform direct memory copy operations between GPUs.

Upon reception of positions and velocities during the update of the partitions,
each GPU appends new entries of dynamicAtomData at the end of the array.
These entries will be automatically sorted as part of the update of the cell-list.
Upon reception of forces during force synchronization, each GPU writes the force
values to the force accumulator in the dynamicAtomData. The received data
contains the target atoms’ static identifiers, which are used to indirectly access
their dynamic identifiers.

5 Evaluation

In order to validate our proposal, we carried out our experiments on a machine
outfitted with Ubuntu GNU/Linux 10.04, two Intel Xeon Quad Core 2.40GHz
CPUs with hyperthreading, 32 GB of RAM and four NVidia GTX580 GPUs
connected to PCIe 2.0 slots in an Intel 5520 IOH Chipset of a Tyan S7025
motherboard. The system’s PCIe 2.0 bus bandwidth for peer-to-peer through-
puts via IOH chip was 9GB/s full duplex, and 3.9 GB/s for GPUs on differ-
ent IOHs [10]. The IOH does not support non-contiguous byte enables from
PCI Express for remote peer-to-peer MMIO transactions [7]. The complete de-
ployment of our testbed architecture is depicted in Figure 3. Direct GPU-GPU
communication can be performed only for GPUs connected to the same IOH.
For GPUs connected through QPI, the driver performs the communication using
CPU RAM [10].

Given our testbed architecture, we have tested the scalability of our proposal
by measuring computation and transmission times for 1, 2, and 4 partitions
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running on different GPUs. We have estimated scalability further by estimating
transmission times for 8 and 16 partitions using the bandwidth obtained with 4
GPUs and the actual data size of 8 and 16 partitions respectively.

We have used three molecular systems as benchmarks (see Figure 2):

– ApoA1 (92,224 atoms) is a well known high density lipoprotein (HDL) in
human plasma. It is often used in performance tests with NAMD.

– C206 (256,436 atoms) is a complex system formed by a protein, a ligand and
a membrane. It presents load balancing challenges for molecular dynamics
simulations.

– 400K (399,150 atoms) is a well-balanced system of 133,050 molecules of water
designed synthetically for simulation purposes.

All our test simulations were executed using MTS Algorithm 1, with a time step
of 2 fs for short-range non-bonded forces, and 1 fs (nStepsBF = 2) for bonded
forces. In all our tests, we measured averaged statistics for 2000 simulation steps,
i.e., a total duration of 4ps (4 · 10−12s).

5.1 Comparison of Partition Strategies

To evaluate our two partition strategies described in Section 3, we have compared
their performance on the C206 molecule. We have selected C206 due to its higher
complexity and data size. Figure 4a indicates that, as expected, the percentage
of interface cells grows faster for the linear partition. Note that with 2 partitions
the size of the interface is identical with both strategies because the partitions
are actually the same. With 16 partitions, all cells become interface cells for
the linear partition strategy, showing the limited scalability of this approach.
Figure 4b shows that, on the other hand, the linear partition strategy exhibits a
higher transmission bandwidth. Again, this result was expected, as the number
of neighbor partitions is smaller with this strategy.

Fig. 3. PCIe configuration of our testbed
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(a) Interface size (b) Bandwidth (c) Sim. times (2000 steps)

Fig. 4. Performance comparison of binary and linear partition strategies on C206

All in all, Figure 4c compares the actual simulation time for both partition
strategies. This time includes the transmission time plus the computation time
of the slowest partition. For the C206 benchmark, the binary partition strategy
exhibits better scalability, and the reason is that the linear strategy suffers a
high load imbalance, as depicted by the plot of standard deviation across GPUs.

Figure 5 shows how the total simulation time is split between computation
and transmission times for the binary partition strategy. Note again that the
transmission times for 8 and 16 partitions are estimated, not measured. Up
to 4 partitions, the cost is dominated by computations, and this explains the
improved performance with the binary strategy despite its worse bandwidth.

The optimal choice of partition strategy appears to be dependent of the un-
derlying architecture, but also of the specific molecule, its size, and its spatial
atom distribution.

5.2 Scalability Analysis and Comparison with NAMD

Figure 6a shows the total speedup for the three benchmark molecules using our
proposal (with a binary partition strategy). Note again that speedups for 8 and
16 GPUs, shown in dotted lines, are estimated based on the bandwidth with
4 GPUs. The results show that the implementation makes the most out of the
molecule’s size by sharing the workload among different GPUs. The speedup of
APOA1 is lower because it is the smallest molecule and the simulation is soon
limited by communication times.

Figure 6b evaluates our combined results in comparison with a well-known
parallel molecular dynamics implementation, NAMD. Performance is measured
in terms of the nanoseconds that can be simulated in one day. The three bench-
mark molecules were simulated on NAMD using the same settings as on our
implementation. Recall that NAMD distributes work tasks among CPU cores
and uses GPUs as co-processors, in contrast to our fully GPU-based approach.
We could not estimate performance for NAMD with 8 and 16 GPUs, as we
could not separate computation and transmission times. All in all, the results
show that our proposal clearly outperforms NAMD for all molecules by a factor
of approximately 4×.
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Fig. 5. Running time (2000 steps) for the binary partition strategy on C206

(a) Speedup (b) Comparison vs. NAMD

Fig. 6. Scalability (left) and performance comparison with NAMD (right), measured
in terms of simulated nanoseconds per day

In terms of memory scalability, our approach suffers the limitation that each
partition stores static data for the full molecule. From our measurements, the
static data occupies on average 78MB for 100K atoms, which means that modern
GPUs with 2GB of RAM could store molecules with up to 2.5 million atoms. In
the dynamic data, there are additional memory overheads due to the storage of
interface cells and sorting lists, but these data structures become smaller as the
number of partitions grows. In addition, interface cells grow at a lower rate than
private cells as the size of the molecule grows.

6 Conclusions and Future Work

This article presents a parallel molecular dynamics algorithm for on-board multi-
GPU architectures. Our approach builds on parallel multiple time stepping in-
tegrators, but achieves further speed-ups through spatial partitioning and direct
GPU-GPU communication. Our results show the benefits of using GPUs as cen-
tral compute nodes instead of mere co-processors.
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Our approach presents several limitations that could motivate future work.
Most importantly, our spatial partitioning supports only bonded and short-range
non-bonded forces, but many complex molecular systems require also the com-
putation of long-range non-bonded forces. Our current solution relies on a static
partitioning, which does not guarantee even load balancing across GPUs. The
experiments indicate that practical molecular systems maintain rather even atom
distributions, but dynamic load balancing might be necessary for finer partitions.
Last, our work could be complemented with more advanced protocols and archi-
tectures to optimize communications between GPUs. Indeed, there are already
architectures that outperform the Intel IOH/QPI interface for the PCIe bridge
used in the experiments.
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Abstract. The Graphics Processing Unit (GPU) is gaining popular-
ity as a co-processor to the Central Processing Unit (CPU). However,
harnessing its capabilities is a non-trivial exercise that requires good
knowledge of parallel programming, more so when the complexity of
these applications is increasingly rising. Languages such as StreamIt [1]
and Lime [2] have addressed the offloading of composed computations to
GPUs. However, to the best of our knowledge, no support exists at library
level. To this extent, we propose Marrow, an algorithmic skeleton frame-
work for the orchestration of OpenCL computations. Marrow expands
the set of skeletons currently available for GPU computing, and enables
their combination, through nesting, into complex structures. Moreover,
it introduces optimizations that overlap communication and computa-
tion, thus conjoining programming simplicity with performance gains in
many application scenarios. We evaluated the framework from a perfor-
mance perspective, comparing it against hand-tuned OpenCL programs.
The results are favourable, indicating that Marrow’s skeletons are both
flexible and efficient in the context of GPU computing.

1 Introduction

The GPU has been maturing into a powerful general processing unit, surpass-
ing even the performance and throughput of multi-core CPUs in some par-
ticular classes of applications. The GPU architecture is specially tailored for
data-parallel algorithms, where throughput is more important than latency.
This makes them particularly interesting for high-performance computing on
a broad spectre of application fields [3]. However, the base parallel computing
frameworks for General Purpose Computing on GPUs (GPGPU), CUDA [4] and
OpenCL [5], require in-depth knowledge of the underlying architecture and of
its execution model, such as the disjointness of the host’s and the device’s ad-
dressing spaces, the GPU’s memory layout, and so on. Consequently, high-level
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(CITI/FCT/UNL) - 2011-2012 and project PTDC/EIA-EIA/102579/2008 - Problem
Solving Environment for Materials Structural Characterization via Tomography.

F. Wolf, B. Mohr, and D. an Mey (Eds.): Euro-Par 2013, LNCS 8097, pp. 874–885, 2013.
© Springer-Verlag Berlin Heidelberg 2013



Algorithmic Skeleton Framework for the Orchestration 875

GPU programming is currently a hot research topic that has spawned several
interesting proposals, e.g. OpenACC [6], Lime [2], Chapel [7] and StreamIt [1].

Nonetheless, as software developers become increasingly familiarised with
GPU computing, and the overall hardware computational power is consistently
growing, the complexity of GPU-accelerated applications is tendentiously higher.
This status quo raises new challenges, namely how to efficiently offload this
new class of computations to the GPU without overburdening the programmer.
High-level programming frameworks will have to split their focus between the
generation of OpenCL or CUDA kernels from higher level constructs, and the
generation of the orchestration required on the host side. Languages such as
StreamIt and Lime expand the use of the GPU beyond the usual offloading of
a single kernel, offering more sophisticated constructs for streaming, pipelining
and iterative behaviours. However, the impact of these constructs is restrained
by the adoption of a new programming language.

To this extent, our proposal is to provide this expressive power at library level.
For that purpose, we build on the concept of algorithmic skeleton to propose
a framework for orchestrating the execution of OpenCL kernels that offers a
diverse set of compoundable data- and task-parallel skeletons. The generation
of OpenCL kernels from source code, namely C++, is orthogonal to this work
and can grow from existing tools, such as the Offload compiler [8].

To the best of our knowledge, SkePU [9], SkelCL [10] and Muesli [11] are the
sole Algorithmic Skeleton Frameworks (ASkFs) to address GPGPU. Nonetheless,
all of them focus on the high-level expression of simple GPU computations, hence
supporting only variants of the map skeleton that apply a user-defined function.

The contributions of this paper are therefore: 1 - the Marrow C++ ASkF for
the orchestration of OpenCL computations (Section 3). Marrow pushes the state
of the art by extending the set of GPU supported skeletons, introducing ones such
as pipeline, stream, and loop, and by allowing these to be nested, thus providing
a highly flexible programming model. Moreover, it is optimized for GPU com-
puting, introducing transparent performance optimizations, specifically through
a technique known as overlap between communication and computation. 2 - A
comparative performance evaluation against OpenCL, whose experimental re-
sults attest the quality of our prototype implementation (Section 4).

2 Related Work

Skeletons are a high level parallel programming model that hide the complexity
of parallel applications, by implicitly performing all the non-functional aspects
regarding parallelization (e.g., synchronization, communication). Additionally,
basic skeletons may be combined (nested) into more complex constructs, adding
structural flexibility to the application. Skeletons are usually made available as
algorithmic skeleton frameworks, analogous to common software libraries.

SkePU [9], SkelCL [10] and Muesli [11] are the only ASkFs to address GPU
computing, using C++. They have many common features, focused solely on
data-parallel skeletons. A Vector concept is used in all three to abstract data
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operations, and to introduce implicit optimizations, such as lazy copying. This
feature postpones data transfers until needed, and allows different skeletons to
access the same data without transferring it back to host memory. None of these
ASkFs support skeleton nesting, thus no compound behaviours can be offloaded
to the GPU. SkePU offers five skeletons: map, reduce, map-reduce, map-overlap,
and map-array. The programmer can decide which is the target execution plat-
form (CPU or GPU) at compilation time, as SkePU supports both CUDA and
OpenCL. Skeleton behavior is specified using a set of predefined macros, al-
though, macro compatibility is not universal among all skeletons. SkelCL sup-
ports four basic skeletons: map, reduce, zip, and scan. It generates OpenCL code
from the aggregation of user-defined functions (supplied as strings) and prede-
fined skeleton code. Muesli is a template library which supports both clusters,
multi-core CPUs (OpenMP) and GPUs (CUDA). Among the multiple skeletons
it supports, only fold, map, scan and zip are allowed on the GPU. More recently,
AMD has announced Bolt [12], a C++ template library that provides OpenCL-
accelerated sort, transform (similar to map) and reduce patterns. Data is defined
through a Vector concept akin to the previous ASkFs, whist user-defined func-
tions are defined through macros encasing a structure with C++ code.

The Lime [2] and StreamIt [13] programming languages provide primitives
close to the ones we are proposing in this work, such as the pipeline. StreamIt
is a stream processing language that enables the creation of disciplined graphs
by combining three kinds of constructs: pipeline, split-join and feedback-loop.
Recently it has been equipped with the CUDA back-end [1]. All the GPU exe-
cution is generated by the compiler, and optimized using a profiling stage. Lime
is a language that supports kernel offloading and streaming constructs (akin to
StreamIt) using a pipeline operator, while maintaining compatibility with the
Java language. Data serialization is required to interface Java with C, presenting
a considerable drawback, as data transfers become expensive.

When compared to our proposal, these languages have a narrower scope, as
complex GPU applications are limited to the algorithms effectively compatible
with the streaming programming model. As Marrow supports the offloading of
complex skeletons compositions and streaming constructs, it breaks away from
the current ASkF’s data-parallel skeletons. This enables the usage of any GPU
computation regardless of the applications’ remaining purposes.

3 The Marrow Algorithmic Skeleton Framework

Marrow is a dynamic, efficient, and flexible C++ ASkF for GPGPU. We suggest
constructs that orchestrate most of the details resulting from the underlying
programming model, leaving the developer to focus on the parallel computations
(kernels). The latter are common OpenCL kernels orchestrated by the skeletons
to achieve a particular parallel application schema.

We are primary interested in skeletons whose execution behaviour is not ham-
pered by the logical, and physical, division between the host and device address
spaces. Skeletons whose execution is based on persistent data schemes are par-
ticularly attractive, since they do not require data transfers when combining
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Fig. 1. Marrow’s execution model

distinct execution instances. In this way, they avoid the overheads associated to
transfers between disjoint memory spaces. Consider, for example, a pipeline; in
a GPU execution the data produced by a stage i does not have to be transferred
back to main memory in order to be available to the subsequent stage (i+1). On
the other hand, we target skeletons that provide functionalities that are useful in
the usual GPGPU utilization domains. For instance, a loop skeleton for iterative
computations is of particular interest to the scientific computing field.

We deem as fundamental the nesting of skeletons, as it enables the construc-
tion of complex executional structures, possibly containing distinct behaviours,
in a simple and efficient manner. This technique is also beneficial performance-
wise, in the sense that it is compatible with a disjoint memory layout. An applica-
tion may apply a successive collection of computations, in the form of skeletons,
to an input dataset, and only carry out memory transfers when: writing the
input to device memory, and reading the results to main memory. Furthermore,
the nesting mechanism embeds the construction of complex structures, allowing
the skeletons to focus simply on particular functional behaviours.

Lastly, we seek to introduce transparent performance optimizations by taking
advantage of the possibility to overlap communication with computation. By
doing so, the skeletons can make better use of the features of modern GPUs,
and increase overall efficiency. The transparent application of such optimization
enables the development of efficient GPU accelerated applications without a large
degree of knowledge of both parallel programming and OpenCL orchestration.

3.1 Execution Model and API

Marrow’s execution model, depicted in Figure 1, promotes the decoupling of the
skeleton computations from application execution. Given that GPU executions
stretch through a somewhat extended period of time, it makes sense to free
up the application to perform additional computations while the device carries
out its task. This execution model can be regarded as master/slave pattern,
on which the application offloads asynchronous executions requests. The sub-
mission of such a request to a skeleton (step 1 in the figure) is not immediately
relayed to the device . Instead, it is queued, an associated future object is created
(step 2) and its reference returned to the application (step 3). The future allows
the application to, not only, query the state of the execution, but also wait until
the results are ready (step 4). As soon as the skeleton becomes available to fulfil
the execution request, it performs the necessary orchestration to properly carry
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out the desired computation on the device (step 5). Subsequently, once the re-
sults are read to the host memory (step 6) the respective future is notified (7),
which, in turn, may wake up the submitting application thread (step 8).

This execution model motivates a rather simple API. Issuing a skeleton exe-
cution is accomplished through an asynchronous write operation that requests
an OpenCL execution, and renders a future object.

3.2 Nesting

A nested skeleton application can be regarded as a composed acyclic graph
(composition tree), on which every node shares a general computational domain.
Each of these nodes can be categorized according to the interactions with its
ancestor/children, the resources it manages, and the types of operations it issues
to the device. The categories are: root node, inner node, and leaf node.

The root node is the primary element of the composition tree. It is responsi-
ble for processing the application’s execution requests, which naturally implies
submitting one or more OpenCL executions. Therefore, it must manage most
of the resources necessary to accomplish such executions, as well as performing
data transfers between host and device memory. Additionally, it prompts execu-
tions on its children, parametrizing them with a specific set of resources, e.g. the
objects on which they must issue executions, or the memory objects that must
use as input and output.

Inner nodes are skeletons whose purpose is to introduce a specific execution
pattern/behaviour to their sub-tree. These nodes might not need to allocate
resources, since they are encased in a computational context created by the root,
but resort to that same context to issue execution requests on their children.

Leaf nodes should not be referred to as skeletons because they export an execu-
tional entity, rather than introducing a specific execution pattern. Consequently,
they are represented by KernelWrapper objects that encapsulate OpenCL ker-
nels, and are used to finalize the construction of the composition tree.

To be compatible with the nesting mechanism, i.e. become an inner-node, a
skeleton must be able to perform its execution on pre-initialized device mem-
ory, issued by its ancestor. Furthermore, it should be able to share an execution
environment with other nodes, even if it adds state (e.g., memory objects, execu-
tional resources) to that environment. By contrast, a skeleton whose executional
pattern requires the manipulation of input/output data on host memory is in-
compatible with the nesting mechanism, and thus can only be used as a root
node. In any case, a skeleton that supports nesting is also eligible to become the
root of a composition tree.

Implementation: One of the main challenges imposed by skeleton nesting is the
standardization of distinct computational entities, in a manner that provides
a cross-platform execution support. The solution must abstract a single entity
from the particularities of others, and yet, provide a simple and well defined
invocation mechanism. Furthermore, there are issues intrinsic to GPU comput-
ing. For instance, the efficient management of the platform’s resources craves
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the sharing of OpenCL structures - command-queues, memory objects, and the
context (upon which skeletons may allocate resources) - between the skeletons
that build up a composition tree.

To tackle these issues, skeleton nesting in Marrow is ruled by the IExecutable
interface that must be implemented by every nestable skeleton, as well as
KernelWrapper. The interface specifies a set of functionalities that together en-
able a multi-level nestable execution schema. These include some core requisites,
such as the sharing of execution contexts, the convey of inner-skeleton execu-
tions, or even the provisioning of executional information to a node’s ancestor.

Another challenge is the management of node communication and synchro-
nization. Even though Marrow’s execution flow runs downward, from the root
to the leafs, nodes at different heights must be synchronized so that their appli-
cation correctly follows the defined execution pattern. For instance, a node with
two children has to ensure that these are prompted in the right order, and that
each has its data dependencies solved before being scheduled to execute. Inter-
node communication must also be taken into account, since it is vital that the
nodes read from, and write to, the appropriate locations. Ergo, both synchro-
nization and communication are seamlessly supported by the nesting mechanism,
allowing skeletons to perform these complex tasks in the simplest way possible.

3.3 Overlap between Communication and Computation

Overlap between communication and computation is a technique that takes ad-
vantage of the GPU’s ability to perform simultaneous bi-directional data trans-
fers between memories (host and device), while executing computations related
to one or more kernels. It reduces the GPU’s idle time by optimizing the schedul-
ing/issuing of operations associated to distinct kernel executions. However, intro-
ducing this optimization in the host’s orchestration adds a considerable amount
of design complexity, as well as requiring a good knowledge of OpenCL program-
ming. For these reasons, it proves ideal to hide this complexity inside a skeleton,
yet letting the developer tweak its parametrization if need be.

Applying concurrency between distinct OpenCL executions is, in itself, a com-
plex exercise. More so, when the mechanism must be general enough to be en-
capsulated in a skeleton. The scheduling mechanism must optimize the device
operation flow. Thus, as the number of skeleton execution requests rises, the
framework must be aware, among others: the state of each request (what com-
putation is being done); the resources allocated to the execution, and; how to
further advance each execution. However, this by itself does not ensure par-
allelism. The fine-grain operations (e.g., reads, writes, executions) have to be
issued to the OpenCL runtime in a manner that allows their parallel execu-
tion. It is not enough simply to launch the operations and expect OpenCL to
schedule them in the best way possible. These previous issues gain complexity
when the skeleton design includes nesting. Not only must the skeletons support
combination between distinct entities, but also, these entities must work together
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to introduce concurrency to the execution requests. Consequently, every single
skeleton must, at least, be supportive of concurrent executions, even if it does
not, by itself, provide the overlap optimization.

Finally, the effectiveness of the overlap is directly proportional to where it is
applied on the composition tree. The higher it is, the more sub-trees it affects.
Hence, in order to maximize performance, it is always applied by the root node.

Implementation: Supporting multiple concurrent device executions implies the
coexistence of multiple datasets in device memory. Therefore, a skeleton must
allocate a number of memory objects that enables it to issue operations as-
sociated to distinct datasets, in an concurrent and independent manner. This
strategy is designated as multiple buffering. Consider a skeleton s, as well as a
kernel k that is parametrized with one buffer as input and another as output.
The configuration of s that uses k to concurrently process three datasets at any
given moment, requires the allocation of three sets of memory objects, totalling
six memory objects.

The issuing of OpenCL operations to the device is performed via command-
queues that offer two execution modes: in-order and out-of-order. The latter
schedules the operations according to the device’s availability, enabling their
parallel execution, as our runtime requires. However, we have ascertained that
not every OpenCL implementation supports such queues. Therefore, we opt to
build our solution on top of in-order queues, one per set of memory objects.
The scheduling responsibility is thus transferred to the Marrow runtime, which
must enqueue the operations in such a way that they can be overlapped. This
scheme can be scaled out as many times as needed, provided that the platform
can supply the resources.

3.4 Supported Skeletons

Marrow currently supports the following set of task and data-parallel skeletons:
Pipeline efficiently combines a series of data-dependant serializable tasks,

where parallelism is achieved by computing different stages simultaneously on
different inputs in an assembly-line like manner. Considering the significant over-
head introduced by memory transfers between host and device memories, this
skeleton is ideal for GPU execution since the intermediate data does not need to
be transferred back to the host in order to become available to next stage. This
execution pattern is suitable for an execution that starts with pre-initialized
device memory objects, and is fully able to compute in a shared execution envi-
ronment. Accordingly, Pipeline supports nesting.

Loop applies an iterative computation to a given dataset. The result of each
iteration is passed as input to the following (without unnecessary data transfers
to host memory), until the final iteration is completed and its results provided
as output. This construct supports two computational strategies: one where the
loop’s condition is affected by data external to the execution domain (a for loop),
and another where the condition is affected by partial results of every iteration
(a while loop). Analogously to the Pipeline, Loop fully supports nesting.
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Stream defines a computational structure that confers the impression of per-
sistence of the GPU computation. It achieves this by introducing parallelism
between device executions associated to distinct datasets by applying the over-
lap technique (Subsection 3.3). To simplify the overall framework design only
Stream provides such functionality. If this behaviour is desirable elsewhere, it
is obtainable via nesting on a Stream, or its direct usage. Given that applying
overlap requires direct control over the input data Stream is only qualified as a
root node, and thus, is not nestable.

Map (andMapReduce) apply a computation to every independent partition
of a given dataset, followed by an optional reduction of the results. Considering
that this construct is designed for GPU computing, its behaviour differs from
the general definition of a map-reduce skeleton. Firstly, a GPU should be used
to process a large amount of data-elements, so as to compensate for its utiliza-
tion overheads. Therefore, the input dataset is split into partitions, instead of
singular data-elements, being the nested composition tree applied dependently
to each of them. Secondly, GPUs are not particularly efficient when reducing a
full dataset into a single scalar value. Instead, it is preferable to reduce part of
the data in the GPU and return N elements to be finally reduced on the CPU,
where N is a power of two larger than a certain threshold (that differs between
devices). Thereupon, by default, this construct performs a host-side reduction.
Nonetheless, it supports the provision of a reduction kernel, which is applied un-
til the previously cited threshold is reached. Overlap may be efficiently applied
between the multiple partition executions, yet, since these skeletons requires
direct control over both input and output data, they do not support nesting.
Therefore, they offer this feature by resorting to Stream internally.

3.5 Programming Example

Marrow’s programming model comprises three major stages: skeleton initial-
ization, prompting of skeleton executions, and skeleton deallocation. The first
stage holds the KernelWrapper’s instantiation and appropriate parametrization,
for their subsequent utilization as input parameters to the skeleton instantia-
tion process. This may include nesting if desired by the programmer. In turn,
the second stage defines how the application issues execution requests. Given
the asynchronism of Marrow’s execution model the application may adapt its
behaviour to accommodate computations that are executed in parallel to the
skeleton requests. Finally, the final stage is trivial. It simply requires the deal-
location of the root node, since the latter manages all other skeleton related
resources (e.g., inner skeletons, KernelWrappers).

Listing 1 illustrates an example that builds a three-staged image filter pipeline
fed by a stream. Due to space restrictions we confine the presentation the dec-
laration of a single kernelwrapper (line 2), to the nesting application (lines 3 to
7) and the prompting of the execution requests (lines 8 to 13). A KernelWrapper
receives as input, the source file, the name of the kernel function, info about the
input and output parameters, and the work size. Pipeline p1 is instantiated with
the first two KernelWrappers - representing the first two stages. Then, Pipeline
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p2 is created and parametrized with p1 along with the last KernelWrapper. Ulti-
mately, the Stream s is instantiated with p2. This scheme creates a composition
tree represented by s(p2(p1)), in which the kernels associated with the innermost
skeleton are computed first. As shown, Marrow’s skeletons do not distinguish
kernels from nestable skeletons, thus standardizing the nesting mechanism. The
prompting of a execution request (line 12) requires the specification of the input
and output parameters, and returns a future object. In this particular applica-
tion, the image is divided into segments and discretely feed to the Stream.

1 // ... instantiate kernel wrappers
2 unique_ptr < IExecutable > gaussKernel (new KernelWrapper( gaussNoiseSourceFile ,

gaussNoiseKernelFunction , inputDataInfo , outputDataInfo , workSize ));
3 // instantiate inner skeletons
4 unique_ptr < IExecutable > p1 (new Pipe l i ne(gaussKernel , solariseKernel ));
5 unique_ptr < IExecutable > p2 (new Pipe l i ne(p1 , mirrorKernel ));
6 // instantiate root skeleton
7 Stream *s = new Stream(p2, 3); // Overlap with 3 concurrent executions
8 // request skeleton executions
9 for(int i = 0; i < numberOfSegments ; i++){

10 inputValues [0] = ... ; // offset in the input image
11 outputValues [0] = ... ; // offset in the output image
12 futures [i] = s->wr i te (inputValues ,outputValues );
13 }
14 // wait for results ; delete s and resources (e.g. the futures )

Listing 1. Stream upon an image filter pipeline

4 Evaluation

The purpose of this study is to measure the overhead imposed by the Marrow
framework relatively to straight OpenCL orchestrations, and the impact of the
overlap optimization on overall performance. For that purpose we implemented
four case-studies in OpenCL (without introducing overlap) and Marrow. All
measurements were performed on a computer equipped with a Intel Xeon E5506
quad-core processor at 2.13GHz, 12GB of RAM, and a NVIDIA Tesla C2050
with 3 GB VRAM. The operating system is Linux (kernel 2.6.32-41) linked with
the NVIDIA CUDA Developer Driver (295.41).

The first case-study applies a Gaussian Noise filter to an image that is split
into non-superimposing segments. The OpenCL implementation processes these
segments sequentially, whist the Marrow version submits then asynchronously for
concurrent processing. Logically, the latter version adopts the Stream skeleton.

The second case-study is a pipelined application of image filters, namely Gaus-
sian Noise, Solarise, and Mirror. Once again, we selected filters that are appli-
cable to non-overlapping segments of an image so as to support an overlapped
execution. Consequently, the application performs equivalently to the preceding
case-study, differing only by applying multiple filters in succession to each slice.
Naturally, the Marrow application uses Pipelines nested in a Stream.

The third case-study applies a tomographic image processing method, denom-
inated as Hysteresis, that iteratively eliminates gray voxels from a tomographic
image, by determining if they should be altered into white or black ones. The
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Table 1. OpenCL case-studies execution times in milliseconds

Gaussian Noise Filter Pipeline Hysteresis N-Body
(pixels) (pixels) (MBytes) (particles)

Input parameter size 10242 20482 40962 10242 20482 40962 1 8 60 1024 2048 4096

Execution Time (ms) 3.18 11.82 46.36 3.34 12.46 48.95 402.98 2952.98 19742.80 37.77 78.23 174.61
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Fig. 2. Speed-up versus OpenCL

algorithm comprises three data-dependent stages, each building upon the results
of its predecessor to refine the elimination process. Once more the source images
are split into segments, to which the processing performed by each stage is ap-
plied independently. However, the size and number of these segments are stage
related, and may differ between stages. In any case, at every given stage the
computations are iteratively applied to a single segment until the results stabi-
lize. In the OpenCL version, segment processing within each stage is performed
sequentially, whist the Marrow version nests a Loop into a Stream to perform the
computation concurrently. Note that the mismatch between corresponding stage
related segments prevented us to assemble the Loops in a pipelined execution.

The final case-study is an implementation of the particle-particle N-Body
simulation algorithm (O(n2)). In contrast with the previous case-studies the
algorithm is not compatible with the partitioning of the input dataset. For that
reason, the Marrow version resorts to a single for variant of the Loop skeleton,
that makes no use of the overlap facility.

Performance Results: Table 1 presents the execution times of the OpenCL ver-
sions. These measurements isolate the time actually spent on the orchestration
and execution of the GPU computation, on an input data of a certain grain,
excluding, thus, the initialization and deallocation stages. The depicted values
reflect the best results obtained by varying the global and local work size config-
uration parameters. In turn, Figure 2 displays the speed-up obtained by Marrow
relatively to the OpenCL baseline, once more for the best work size configura-
tion. The first version, Marrow, does not introduce overlap, and hence assesses
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Table 2. Productivity comparison between distinct versions

Gaussian Noise Filter Pipeline Hysteresis N-Body

OpenCL basic/with overlap 61/261 81/281 165/365 98/298
Marrow 50 59 222 79

the framework’s overhead, while the second, Marrow - Overlap, presents the best
result when tweaking the overlap parameter.

The overhead introduced by the framework is minimum, peeking at 2%. Re-
garding the performance gains brought by the overlap optimization, the first two
case-studies show a very similar behaviour. The balance between computation
and communication is optimal for the application of our optimization at the
medium grain. The Hysteresis’ execution pattern differs from the remainder. Its
execution flow dictates that after each loop iteration, which processes a single
segment, the Loop reads the results to host memory, and subsequently evaluates
them to access its continuity, a process of complexity O(N) where N is the size
of a segment. These two processes are computationally heavy and leave the GPU
available to execute upon other datasets. Consequently, we assert the existence
of a considerable amount of unexplored parallelism between segment executions.
On top of that, the speed-up is incremental given that all three stages intro-
duce it. Hence, it is directly propositional to the amount of overlap, consistently
increasing with the latter, up to the maximum number of segments per stage.

Programming Model Evaluation: It comes as no surprise that our programming
model is simpler, and of higher-level than OpenCL’s, since it orchestrates the
whole execution. To somehow quantify this judgement, Table 2 presents the
number of lines of code for OpenCL, with and without introducing overlap,
and Marrow. To introduce overlap in an OpenCL application we estimated a
minimum increase of two-hundred lines of code, adding to the design complexity
which would surely grow substantially.

Marrow’s programming model productivity trumps the with overlap OpenCL
versions and consistently requires less code per application than the basic ones.
The Hysteresis case-study is an exception, requiring roughly more 40% of code
than the OpenCL version. This increase in program size comes as a result of: a)
the initializion of three Loops nested into three Streams is somewhat verbose,
and b) the use of the Loop skeleton requires the derivation of a base class. Joining
these two factors adds a considerable amount of lines of code to the application,
justifying the discrepancy between OpenCL and Marrow versions.

5 Conclusions

This paper presented Marrow, a ASkF for the orchestration of OpenCL compu-
tations. Marrow distinguishes itself from the existing proposals by: (i) enriching
the set of skeletons currently available on the GPGPU field; (ii) supporting
skeleton nesting, and (iii) empowering the programmer to easily and efficiently
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exploit the ability of modern GPUs to overlap, in time, the execution of one or
more kernels with data transfers between host and device memory.

Compared to the state of the art in ASkFs for GPU computing, Marrow
takes a different approach. It focuses on the orchestration of complex OpenCL
applications rather than the high level expressiveness of simple data-parallel
kernels. This allows for a more flexible and powerful framework, whose kernels
are bound only by OpenCL’s restrictions, and whose skeleton set is richer and
more modular. Naturally, as the programmer must express the parallel (kernels)
in OpenCL, Marrow’s abstraction of the underlying computing model is less
effective than the one offered by the remainder.

The accomplished evaluation attested the effectiveness of these proposals.
Compared to hand-tuned OpenCL applications that do not introduce overlap,
the Stream skeleton consistently boosted performance without compromising
the simplicity of the Marrow programming model. In addition, the remainder
skeletons supply a set of high-level constructs to develop complex OpenCL based
applications with negligible performance penalties.
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Brunheroto, Jose R. 16
Brunst, Holger 29
Bungartz, Hans-Joachim 484
Burkimsher, Andrew 126
Buttari, Alfredo 521
Buyya, Rajkumar 317

Cappello, Franck 420
Carra, Damiano 353
Carretero, Jesús 138
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Vajteršic, Marian 482
Valcke, Sophie 737
Vanneschi, Marco 329
Varbanescu, Ana Lucia 432
Vespa, Emanuele 329

Videau, Brice 826
Villa, Oreste 813
Vishwanath, Venkatram 571
Vlassov, Vladimir 279

Waddington, Daniel G. 620
Wang, Wenwen 4
Wang, Xiaoge 739
Wang, Zhenjiang 4
Warneke, Daniel 241
Weber, Matthias 29
Weinzierl, Tobias 484
West, Scott 434
Wienke, Sandra 547
Wilke, Jeremiah J. 41
Willke, Theodore L. 406
Wu, Chenggang 4

Xu, Di 4
Xu, Shizhen 739
Xue, Wei 739

Yahyapour, Ramin 65
Yang, Guangwen 739
Yebenes Segura, Pedro 699
Yehia, Sami 162
Yew, Pen-Chung 4
Yuan, Xiang 4

Zezula, Pavel 216
Zhang, Fa 66
Zhao, Suyun 382
Zhou, Kun 800
Zuckerman, Stéphane 633


	Preface
	Organization
	Table of Contents
	Invited Talk
	Energy to Solution:A New Mission for Parallel Computing

	Topic 1: Support Tools and Environments
	Topic 1: Support Tools and Environments (Introduction)
	Synchronization Identificationthrough On-the-Fly Test
	1 Instruction
	2 Synchronization Testing
	2.1 Forward Test
	2.2 Backward Test
	2.3 Perturbation Elimination
	2.4 Efficiency Issues

	3 Evaluation
	3.1 Effectiveness
	3.2 Efficiency Issues
	3.3 Running Time

	4 Related Work
	5 Conclusion
	References

	Fast Full-System Execution-Driven PerformanceSimulator for Blue Gene/Q
	1 Introduction
	2 Blue Gene/Q model on Mambo Simulator
	2.1 BlueGene/Q System Overview
	2.2 Functional Model of Blue Gene/Q on Mambo

	3 Timing Model for Blue Gene/Q
	4 Timing Model Validation
	5 Timing Model Execution Performance
	6 Use Cases for the Timing Model
	6.1 Application Profiling
	6.2 What-if experiments

	7 Conclusions
	References


	Topic 2: Performance Prediction and Evaluation
	Topic 2: Performance Prediction and Evaluation
	Alignment-Based Metrics for Trace Comparison
	1 Introduction
	2 Alignment Algorithm for Trace Comparison
	2.1 Base Hierarchical Alignment Algorithm
	2.2 Extended Hierarchical Alignment Algorithm

	3 Visualization of Trace Comparison
	4 Trace Comparison Metrics
	4.1 Similarity Metric
	4.2 Dissimilarity Timeline Metric
	4.3 Runtime Skew Timeline Metric
	4.4 Function Time Difference Table

	5 Case Studies
	5.1 AMG2006
	5.2 ParaDiS

	6 Conclusions and Future Work
	References

	Validation and Uncertainty Assessment of Extreme-Scale HPC Simulation throughBayesian Inference
	Introduction
	2 Related Work
	3 SST/macro
	4 Congestion Models
	5 Hopper Cray XE6 and Validation Tests
	6 Uncertainty Quantification
	7 Results
	8 Conclusions
	References

	Dynamic Thread Pinning for Phase-Based OpenMPPrograms
	1 Introduction
	2 Motivation and Problem Description
	3 Parallel OpenMP Phases Extraction and Thread Pinning
	4 Experimental Setup and Methodology
	5 Experimental Evaluation of Phase-Based Thread Pinning
	6 Related Work and Discussion
	7 Conclusion
	References


	Topic 3: Scheduling and Load Balancing
	Topic 3: Scheduling and Load Balancing(Introduction)
	Energy-Efficient Schedulingwith Time and Processors Eligibility Restrictions
	1 Introduction
	2 Problem and Model
	3 Preliminary Lemma
	4 UniformTasks
	5 General Tasks
	6 Conclusion
	References

	A (2+ε)-Approximationfor Scheduling Parallel Jobs in Platforms
	1 Introduction
	1.1 Related Work
	1.2 New Result
	1.3 Methods and Overview
	1.4 Principles and Notations
	0, for every rectangle with
	= 1 a fraction of height
	and width
	is placed into the strip. If for
	there exists a fractional strip packing of height
	we say
	The content of the following Lemma is given in [13].
	Lemma 1.
	= (
	(0,
	(0, 1].
	0
	:= 1/
	:=
	:=
	1+
	)).
	+ (4M + 1)maxr∈

	2 Algorithm
	2.1 Platform Rounding
	2.2 Simplifying the Structure of an Optimum Solution in B0
	2.3 Assignment of Large Wide Jobs in B0
	2.4 Gaps for Large Narrow Jobs in B0
	2.5 Rounding Jobs in B1
	2.6 Linear Program for the Remaining Jobs

	3 Conclusion
	References

	Scheduling Jobswith Multiple Non-uniform Tasks
	1 Introduction
	2 Main Result: LP Formulation and Solution
	3 Rounding the LP Solution
	4 Conclusions and Open Problems
	References

	Workflow Fairness Control on Online and Non-clairvoyant Distributed ComputingPlatforms
	1 Introduction
	2 Fairness Control Process
	3 Experiments and Results
	3.1 Experiment Conditions
	3.2 Results and Discussion

	4 Conclusion
	References

	How to be a Successful Thief
	1 Introduction
	2 Work Stealing for Divide-and-Conquer Applications
	2.1 Algorithms That Use Only Network Topology Information
	2.2 Algorithms That Use Dynamic Load Information

	3 Feudal Stealing
	4 Simulation Experiments
	4.1 Results

	5 Conclusions and Future Work
	References

	Scheduling HPC Workflows for Responsiveness and Fairness with Networking Delays and Inaccurate Estimates of Execution Times
	1 Introduction
	2 Models
	2.1 Application Model
	2.2 Inaccurate Estimates of Execution Times
	2.3 Platform Model
	2.4 Network Delay Model

	3 Metrics and the P-SLR Scheduler
	4 Evaluation Method
	4.1 Simulation Details
	4.2 Scheduling Policies

	5 Results
	5.1 Inaccurate Execution Times
	5.2 Networking Delays

	6 Conclusion
	References

	FLEX-MPI: An MPI Extension for Supporting Dynamic Load Balancing on HeterogeneousNon-dedicated Systems
	1 Introduction
	2 Related Work
	3 FLEX-MPI
	3.1 Monitoring
	3.2 Load Balancing
	3.3 Data Redistribution

	4 Performance Evaluation
	4.1 Heterogeneous Dedicated System
	4.2 Heterogeneous Non-dedicated System

	5 Conclusions
	References

	Enhancing Concurrency in DistributedTransactional Memory through Commutativity
	1 Introduction
	2 Preliminaries and System Model
	3 Commutative Requests First in MV-TFA
	4 Implementation and Experimental Evaluation
	5 Related Work
	6 Conclusions
	References


	Topic 4: High-Performance Architectures andCompilers
	Topic 4: High-Performance Architectures and Compilers(Introduction)
	Adaptive Granularity Control in Task ParallelPrograms Using Multiversioning
	1 Introduction
	2 Motivation
	3 Method
	3.1 Compile-Time Multiversioning
	3.2 Runtime Version Selection

	4 Evaluation
	4.1 Experimental Setup
	4.2 A Detailed Evaluation
	4.3 Further Benchmarks

	5 Related Work
	6 Conclusion
	References

	Towards Efficient Dynamic LLC Home BankMapping with NoC-Level Support
	1 Introduction
	2 Runtime Home Mapping with NoC-Level Support
	2.1 Gather Control Network
	2.2 Mapping Algorithm
	2.3 Block Migration

	3 Parallel Tag Access
	4 Evaluation
	4.1 Energy

	5 Related Work
	6 Conclusions and Future Work
	References

	Online Dynamic Dependence Analysisfor Speculative Polyhedral Parallelization
	1 Introduction
	2 Description of the Framework
	3 Dynamic Dependence Computation
	4 Experiments
	5 Related Work
	6 Conclusion
	References

	VGTS: Variable Granularity Transactional Snoop
	1 Introduction
	2 Background
	3 Implementation
	4 Evaluation
	4.1 Experimental Setup
	4.2 Results

	5 Related Work
	6 Conclusion
	References


	Topic 5: Parallel and Distributed Data Management
	Topic 5: Parallel and Distributed Data Management(Introduction)
	Multi-level Clustering on Metric SpacesUsing a Multi-GPU Platform
	1 Introduction
	2 Similarity Search Background and Related Work
	2.1 List of Clusters (LC)
	2.2 List of Superclusters (LSC)

	3 Strategies to Process Similarity Queries
	3.1 1-Stage Strategy
	3.2 List of Superclusters on GPU
	3.3 Building a CPU-GPU Pipeline
	3.4 Exploiting CUDA Asynchronous Copies
	3.5 Multi-pipeline Strategy

	4 Experimental Results
	5 Conclusions
	References

	A Contention-Friendly Binary Search Tree
	1 Introduction and Related Work
	2 Overview
	2.1 Eager AbstractModification
	2.2 Lazy Structural Adaptation

	3 The Contention-Friendly Tree
	3.1 Avoiding Contention during Traversal
	3.2 Structural Adaptation
	3.3 Abstract Operations

	4 Evaluation
	5 Concluding Remarks
	References


	Topic 6: Grid, Cluster and Cloud Computing
	Topic 6: Grid, Cluster and Cloud Computing(Introduction)
	Scheduling Jobs in the CloudUsing On-Demand and Reserved Instances
	1 Introduction
	2 SystemModel
	2.1 Workload and Resource Model
	2.2 Scheduling Model

	3 Scheduling Using On-Demand Instances
	3.1 Policy Overview
	3.2 Formalization of the Scheduling Problem
	3.3 Scheduling Heuristics

	4 Scheduling Using Reserved and On-Demand Instances
	4.1 Policy Overview
	4.2 Determining the Reservation Plan

	5 Experimental Results
	5.1 Experimental Setup
	5.2 Results

	6 Related Work
	7 Conclusion
	References

	On-Line, Non-clairvoyant Optimizationof Workflow Activity Granularity on Grids
	1 Introduction
	2 Related Work
	3 Task Granularity Control Process
	3.1 Fineness Control
	3.2 Coarseness Control

	4 Experiments and Results
	4.1 Experiment Conditions
	4.2 Results and Discussion

	5 Conclusion
	References

	Application-Centric Resource Provisioningfor Amazon EC2 Spot Instances
	1 Introduction
	2 Related Work
	3 Application-Centric Resource Provisioning Framework
	3.1 Provisioning Subsystem

	4 Checkpointing Schemes for Amazon EC2 Spot Instances
	4.1 Characteristics of Spot Instances
	4.2 Existing Checkpointing Schemes for Spot Instances

	5 A Novel Checkpointing Scheme over Application-CentricResource Provisioning Framework
	5.1 Event Generation Scheme for Spot Instances
	5.2 The Application-Centric Checkpointing Scheme

	6 Implementation and Evaluation
	7 Conclusion and Future Work
	References

	PonIC: Using Stratosphereto Speed Up Pig Analytics
	1 Introduction
	2 Background
	2.1 The MapReduce Programming Model
	2.2 Pig
	2.3 Stratosphere

	3 Plan Compilation
	3.1 Plan Compilation in Pig
	3.2 Pig to PACT Plan Translation
	3.3 Discussion

	4 Implementation
	5 Evaluation
	5.1 Implementation Overhead
	5.2 Comparison with Pig and Hadoop MapReduce

	6 Related Work
	7 Conclusions and Future Work
	References

	MROrder: Flexible Job Ordering Optimizationfor Online MapReduce Workloads
	1 Introduction
	2 Related Work
	3 Definition and Performance Metrics
	4 MROrder System
	4.1 System Overview
	4.2 Policy Module
	4.3 Ordering Engine
	4.4 Implementation

	5 Experimental Evaluation
	5.1 Workloads
	5.2 Evaluation and Analysis of Policy Solutions
	5.3 Switching Threshold for the Number of Jobs for Job Ordering Approach
	5.4 Performance Evaluation of MROrder System
	5.5 Accuracy Evaluation for Hsim

	6 Conclusion and Future Work
	References

	Leveraging Collaborative Content Exchangefor On-Demand VM Multi-deployments in IaaS Clouds
	1 Introduction
	2 Related Work
	3 Our Approach
	3.1 Design Principles
	3.2 Algorithmic Description
	3.3 Architecture
	3.4 Implementation

	4 Evaluation
	4.1 Experimental Setup
	4.2 Methodology
	4.3 Results

	5 Conclusions
	References

	Energy and Carbon-Efficient Placement of Virtual Machinesin Distributed Cloud Data Centers
	1 Introduction
	2 Related Work
	3 SystemModel
	3.1 ECE Cloud Architecture
	3.2 Placement Decision
	3.3 Energy and Carbon-Efficient (ECE) Heuristic for VMPlacement

	4 Performance Evaluation
	4.1 Results

	5 Conclusion and Future Work
	References

	Reconfiguration Stability of Adaptive Distributed Parallel Applications througha Cooperative Predictive Control Approach
	1 Introduction
	2 Related Work
	3 Methodology and Problem Statement
	3.1 Distributed Model-Based Predictive Control
	3.2 Addressing the Stability of Control Decisions

	4 Evaluation of the Approach
	5 Conclusion
	References

	On the Use of a Proportional-Share Marketfor Application SLO Support in Clouds
	1 Introduction
	2 Context
	2.1 Application Model
	2.2 Themis Overview

	3 SLO Policies on the Proportional-Share Market
	4 Evaluation
	4.1 Implementation
	4.2 Evaluation Metrics
	4.3 VM Operations Modeling
	4.4 Workload Modeling
	4.5 Results

	5 Conclusions
	References


	Topic 7: Peer-to-Peer Computing
	Topic 7: Peer-to-Peer Computing(Introduction)
	Design and Implementation of a Scalable MembershipService for Supercomputer Resiliency-Aware Runtime
	1 Introduction
	2 System Architecture
	3 Zone Membership
	4 Attribute Replication Service
	5 Evaluation
	5.1 Boot Time
	5.2 Leave-Join Performance
	5.3 High PriorityMonitoring

	6 Related Work
	7 Conclusions
	References


	Topic 8: Distributed Systems and Algorithms
	Topic 8: Distributed Systems and Algorithms(Introduction)
	On the Scalability of Snapshot Isolation
	1 Introduction
	2 Model
	2.1 Objects and Transactions
	2.2 Histories
	2.3 Snapshot Isolation
	2.4 System
	2.5 Partial Replication
	2.6 Progress

	3 Decomposing SI
	3.1 Cascading Aborts
	3.2 Consistent and Strictly Consistent Snapshots
	3.3 Snapshot Monotonicity
	3.4 Write-Conflict Freedom
	3.5 The Decomposition

	4 The Impossibility of SI with GPR
	5 Discussion
	6 Conclusion
	References

	Efficient Event Prewarning for Sensor Networkswith Multi Microenvironments
	1 Introduction
	2 NetworkModel
	3 Data Preprocessing
	4 Node-Level Noteworthy Event
	4.1 NNE Detection Algorithm
	4.2 ep Encoding of NNEs

	5 Node-Level Alert Event Detection
	5.1 NAE Detection without Considering Spatial Correlation

	6 Performance Evaluations
	6.1 Comparison of Data Transmission
	6.2 Comparison of Accuracy

	7 Conclusions
	References

	Efficient Parallel Block-Max WAND Algorithm
	1 Introduction
	2 Background and Related Work
	2.1 The WAND Query Evaluation Process

	3 Two-Level Ranking on a Distributed Search Engine
	3.1 Distributed 2-Steps Algorithm
	3.2 Multi-threading Algorithms

	4 Evaluation
	4.1 Data Preparation and Experiment Settings
	4.2 Distributed Algorithm Evaluation
	4.3 Multi-threading Algorithms Evaluation

	5 Conclusions
	References

	Gunther: Search-Based Auto-Tuning of MapReduce
	1 Introduction
	2 Background and Motivation
	2.1 Hadoop and MapReduce
	2.2 Motivation of Para ameter Tuning
	2.3 Issues with Manual Tuning

	3 Approaches to Auto-Tuning
	3.1 Cost-Based Models
	3.2 Machine Learning Models

	4 Gunther: A Search-Based Auto-Tuner
	4.1 Gunther Overview
	4.2 Evaluation of Search Algorithm
	4.3 Applying Genetic Algorithms to the Auto-Tuning of MapReduce

	5 Performance Evaluation
	5.1 Experimental Setup
	5.2 Search Effectiveness and Efficiency
	5.3 Comparison with Other Algorithms

	6 Using Classification to Improve Search Efficiency
	7.1 Hadoop Optimization
	7.2 Auto-Tuning Other Systems

	8 Conclusion and Future Work
	References

	Multi-criteria Checkpointing Strategies:Response-Time versus Resource Utilization
	1 Introduction
	2 Background and Problem Statement
	3 Strategy to Improve Platform Efficiency
	4 Model
	5 Results
	6 Related Work
	7 Conclusion
	References


	Topic 9: Parallel and Distributed Programming
	Topic 9: Parallel and Distributed Programming(Introduction)
	Examining the Expert Gapin Parallel Programming
	1 Introduction
	2 Background
	2.1 Overview of the Approaches
	2.2 Benchmark Problems

	3 Results
	3.1 Source Code Size
	3.2 Execution Time
	3.3 Speedup
	3.4 Correction Time

	4 Threats to Validity
	5 Related Work
	6 Conclusion
	References

	Programming with BSP Homomorphisms
	Programming with BSP Homomorphisms
	1 Introduction
	2 BSP Homomorphisms
	3 Program Derivation Using BSP Homomorphisms
	3.1 All Nearest Smaller Values
	3.2 Sparse Matrix-Vector Multiplication

	4 BHintheOrl´eans Skeleton Library
	4.1 An Overview of Orl´eans Skeleton Library
	4.2 Using the BH Skeleton
	4.3 Implementation of the BH Skeleton

	5 Experiments
	5 Experiments
	6 Related Work
	7 Conclusion and Future Work
	References

	Giraphx: Parallel Yet SerializableLarge-Scale Graph Processing
	Large-Scale Graph Processing
	1 Introduction
	2 Giraph
	2.1 d-Giraph

	3 Giraphx
	3.1 d-Giraphx
	3.2 t-Giraphx

	4 Experiments
	4.1 Graph-Coloring Experiments on Mesh Graph
	4.2 Graph-Coloring Experiments on Google Web Graph
	4.3 Pagerank Experiments on Google Web Graph

	5 Related Work
	6 Conclusion
	References

	Hugh: A Semantically Aware UniversalConstruction for Transactional Memory Systems
	1 Introduction
	2 Implementation
	2.1 Overview
	2.2 Aims and Contribution
	2.3 Registration Phase
	2.4 Speculative Phase
	2.5 Commit Phase

	3 Related Work
	4 Evaluation
	4.1 Transaction Throughput
	4.2 Average Transaction Execution Time

	5 Conclusion and Future Work
	References


	Topic 10: Parallel Numerical Algorithms
	Topic 10: Parallel Numerical Algorithms(Introduction)
	Cluster Optimization and Parallelizationof Simulations with Dynamically Adaptive Grids
	1 Introduction
	2 Grid Construction and Clustering
	3 Dynamically Adaptive Cluster Reordering and Skipping
	4 Cluster-Based Parallelization
	5 Benchmark Scenario
	6 Results
	7 Outlook
	References

	Discrete Adjoints of PETScthrough dco/c++ and Adjoint MPI
	1 Motivation
	2 Background
	2.1 Algorithmic Differentiation
	2.2 PETSc

	3 Adjoint Model Generation Using
	3.1 BLAS
	3.2 LAPACK

	4 Adjoint MPI and PETSc
	4.1 Persistent Communication
	4.2 Collective Communication

	5 Results
	6 Summary
	7 Outlook
	References

	Evaluation of Two Formulations of the Conjugate Gradients Methodwith Transactional Memory
	1 Motivation through Previous Work
	2 Pipelined Conjugate Gradient Solver with OpenMP
	2.1 Comparison of CG and Pipelined CG

	3 Related Work
	4 Findings with Variants of CG and Outlook
	References

	Multifrontal QR Factorization for MulticoreArchitectures over Runtime Systems
	1 Introduction
	2 Multifrontal QR Factorization
	3 The Task-Based StarPU Runtime System
	4 Multifrontal QR Factorization Based on StarPU
	5 Experimental Results
	6 Conclusions and Future Work
	References

	Fast Methods for Computing Selected Elements of the Green’s Function in Massively ParallelNanoelectronic Device Simulations
	1 Introduction
	2 Overview of the Simulation Approach
	2.1 Formulation of the Quantum Transport Problem
	2.2 RGF Algorithm

	3 A Selected Sparse Inverse Matrix Algorithm (SINV)
	3.1 Sparse Inverse Supernodal Factorization
	3.2 Intranode Parallelization

	4 Numerical Experiments
	4.1 Experimental Testbase
	4.2 Intranode Performance

	5 Conclusion
	References


	Topic 11: Multicore and Manycore Programming
	Topic 11: Multicore and Manycore Programming(Introduction)
	Assessing the Performance of OpenMP Programson the Intel Xeon Phi
	1 Introduction
	2 Related Work
	3 Architecture Comparison
	4 Kernel Benchmarks
	4.1 Memory Benchmarks
	4.2 OpenMP Constructs
	4.3 Sparse-Matrix-Vector-Multiplication in a CG Method

	5 NAS Parallel Benchmarks
	6 Application Case Studies
	7 Conclusion
	References

	A Hybrid Parallel Barnes-Hut Algorithmfor GPU and Multicore Architectures
	1 Introduction
	2 Preliminaries
	2.1 The Barnes-Hut Algorithm
	2.2 GPGPU Computing

	3 A Barnes-Hut Method for Hybrid Architectures
	3.1 Data Structures and Data Organization
	3.2 Modularization
	3.3 GPU Based Force Evaluation
	3.4 Hybrid Force Evaluation
	3.5 A Novel Dynamic Load Balancing Scheme for Force Evaluation

	4 Performance Evaluation
	5 Related Work
	6 Conclusion
	References

	A Generic High-Performance Methodfor Deinterleaving Scientific Data
	1 Introduction
	2 Background
	3 Method
	3.1 Cache Prefetching on Blocks of Data
	3.2 Using the Registers as a Vector Transposition Buffer
	3.3 Optimizing for Full Cache Line Writes
	3.4 A Simple Example of Our Deinterleaving Method

	4 Performance Evaluation
	4.1 Experimental Setup
	4.2 Deinterleaving Throughput Performance
	4.3 Deinterleaving Energy Performance

	5 Related Work
	6 Conclusion
	References

	Transparent Support for Partial Rollbackin Software Transactional Memories
	1 Introduction
	2 Related Work
	3 Partial Rollback
	3.1 Target CDMAN: Commit-Time-Locking Plus Read Validation
	3.2 The Partial Rollback Scheme

	4 Implementation
	5 Experimental Results
	6 Summary
	References

	Lightweight Contention Managementfor Efficient Compare-and-Swap Operations
	1 Introduction
	2 Contention Management Algorithms
	3 Evaluation
	3.1 The CAS Micro-benchmark
	3.2 FIFO Queue
	3.3 Stack

	4 Discussion
	References

	MacroDB: Scaling Database Engineson Multicores
	1 Introduction
	1.1 Proposed Approach

	2 MacroDB
	2.1 Architecture
	2.2 Transaction Execution
	2.3 Correctness
	2.4 Minimizing Contention for Efficient Execution
	minimizing waiting time.
	We can infer, from the results presented in the introduction, that there is contention among multiple threads inside the database engine even when trans-actions
	do not conflict. We minimize this contention by reducing the number of transactions that execute in the same replica at the same time - by executing
	only a fraction of the read-only transactions in each secondary replica and by
	executing update transactions quickly in a single database operation.

	3 Evaluation
	3.1 TPC-C
	3.2 TPC-W

	4 Related Work
	5 FinalRemarks
	References

	Towards a Scalable Microkernel Personalityfor Multicore Processors
	1 Introduction
	2 Fiasco.OC and L4Re Overview
	3 Study of Off-the-Shelf L4Re Scalability Characteristics
	4 OmniRE Design
	4.1 OmniRE Detailed Design

	5 Case Study: Physical Memory Management
	6 Experimental Results
	6.1 Fiasco.OC IPC Scalability
	6.2 Memory PageManagement with L4Re
	6.3 Memory Page Management Compared with Linux

	7 Related Work
	8 Conclusions
	References

	An Implementation of the Codelet Model
	1 Introduction
	2 Background
	2.1 The Codelet Model
	2.2 A Codelet Runtime

	3 Case Studies
	3.1 Experimental Testbed
	3.2 Matrix Multiplication
	3.3 The Graph 500 Benchmark

	4 Related Work
	5 Conclusion
	References


	Topic 12: Theory and Algorithms for ParallelComputation
	Topic 12: Theory and Algorithms for Parallel Computation(Introduction)
	Model and Complexity Resultsfor Tree Traversals on Hybrid Platforms
	1 Introduction
	2 Related Work
	2.1 Sparse Matrix Factorization
	2.2 Scientific Workflows
	2.3 Pebble Game and Its Variants
	2.4 Hybrid Computing

	3 Framework
	4 Complexity Results
	4.1 Hardness of the Problem
	4.2 When One Memory is Unbounded
	4.3 Joint Minimization of Both Objectives
	4.4 Depth-First Traversals

	5 Conclusion
	References

	Efficient Parallel and External Matching
	1 Introduction
	2 Parallel Local Max
	2.1 O�log2 nWork-Optimal CREW Solution

	3 Implementations and Experiments
	3.1 Sequential Speed and Quality
	3.2 Distributed Memory Implementation
	3.3 GPU Implementation

	4 Conclusions and Future Work
	References

	Splittable Single Source-Sink Routing on CMP Grids:A Sublinear Number of Paths Suffice
	1 Introduction
	2 Framework
	3 Schemes for k-Splittable Routing
	3.1 1-Splittable Routing with Uniform Requests
	3.2k-Splittable Routing with Uniform Requests
	3.3k-Splittable Routing with Non-uniform Requests

	4 Simulations Results
	5 Conclusions
	References


	Topic 13: High-Performance Networks andCommunication
	Topic 13: High-Performance Networks and Communication(Introduction)
	Making the Network Scalable:Inter-subnet Routing in InfiniBand
	1 Introduction
	2 Related Work
	3 The InfiniBand Architecture
	3.1 Native InfiniBand Routers

	4 Layer-3 Routing in InfiniBand
	4.1 Inter-subnet Source Routing
	4.2 Inter-subnet Fat-Tree Routing

	5 Simulations
	5.1 Routing Algorithm Comparison

	6 Conclusions and Future Work
	References

	BBQ: A Straightforward Queuing Scheme to ReduceHoL-Blocking in High-Performance Hybrid Networks
	1 Motivation
	2 Related Work
	2.1 Hybrid Networks
	2.2 Solutions for the HoL-Blocking Problem

	3 BBQ Description
	3.1 BBQ Implementation for InfiniBand

	4 Evaluation
	4.1 Simulation Model
	4.2 Uniform Traffic Results
	4.3 Hot-Spot Traffic Results

	5 Conclusions and Future Work
	References

	Accelerating Communication-Intensive Parallel Workloads Using Commodity Optical Switchesand a Software-Configurable Control Stack
	1 Introduction
	2 Related Work
	3 System Architecture and Competitiveness
	3.1 Data- and Control-Plane Architecture
	3.2 Competitiveness Analysis

	4 Network Control and Host Adaptations
	4.1 Network Controller
	4.2 End-System Support

	5 System Validation and Evaluation Results
	6 Conclusions
	References

	Dynamic Protocol Tuning Algorithmsfor High Performance Data Transfers
	1 Introduction
	2 Related Work
	3 Dynamic Protocol Tuning
	3.1 Single-Chunk (SC) Algorithm
	3.2 Multi-Chunk (MC) Algorithm
	3.3 Pro-Active Multi-Chunk (ProMC) Algorithm
	3.4 Max-Fair Multi-Chunk (FairMC) Algorithm

	4 Performance Evaluation
	5 Conclusions
	References


	Topic 14+16: High-Performance and ScientificApplications and Extreme-Scale Computing
	Topic 14+16: High-Performance and Scientific Applications and Extreme-Scale Computing(Introduction)
	A Scalable Barotropic Mode Solverfor the Parallel Ocean Program
	1 Introduction
	2 Barotropic Mode Review and Bottleneck Analysis
	2.1 PCG Solver
	2.2 PCG Performance Model

	3 DesignoftheCSISolver
	3.1 Algorithm and Evaluation
	3.2 Eigenvalue Estimation

	4 Experiments
	5 Related Work
	6 Conclusion
	References

	Heterogeneous Combinatorial CandidateGeneration
	1 Introduction
	1.1 Enumeration of Elementary Modes

	2 Our Approach
	2.1 Concurrent Host–Device Processing
	2.2 Overall Architecture

	3 Evaluation
	3.1 Test Environment
	3.2 Results

	4 Discussion
	References

	Solving a Least-Squares Problemwith Algorithmic Differentiation and OpenMP
	1 Introduction
	2 Related Work
	3 A Least-Squares Problem
	4 Algorithmic Differentiation
	5 Solving Least-Squares with AD and OpenMP
	6 Experimental Results
	7 Conclusion
	References

	Hierarchical Parallel Algorithmfor Modularity-Based Community Detection Using GPUs
	1 Introduction
	2 Background
	2.1 Modularity-Based Community Detection
	2.2 GPU Computing

	3 The Louvain Method for Community Detection
	3.1 Description of the Louvain Method
	3.2 Profiling of the Louvain Method

	4 Hierarchical Parallel Algorithm
	5 Mapping to GPU
	5.1 Mapping of Find Neighboring Communities to GPU
	5.2 Mapping of Find Best Move to GPU
	5.3 Multi-core with Multi-GPU Implementation

	6 Evaluation
	6.1 GPU Thread Configuration
	6.2 Comparison of Computation Times
	6.3 Comparison of Modularity Values

	7 Conclusions
	References

	GWAS on GPUs: Streaming Data from HDDfor Sustained Performance
	1 GWAS, Their Importance and Current Implementations
	1.1 Biological Introduction to GWAS
	1.2 The Importance of GWAS
	1.3 The Mathematics of GWAS
	1.4 The Amount of Data and Computation Involved

	2 Prior Work: The OOC-HP-GWAS Algorithm
	2.1 Algorithmic Features
	2.2 Implementation Features

	3 Increasing Performance by Using GPUs
	3.1 Streaming Data from HDD to GPU
	3.2 Using Multiple GPUs

	4 Results
	4.1 Single-GPU Results
	4.2 Scalability with Multiple GPUs

	5 Conclusion and Future Work
	References


	Topic 15: GPU and Accelerator Computing
	Topic 15: GPU and Accelerator Computing(Introduction)
	High-Resolution Power Profiling of GPUFunctions Using Low-Resolution Measurement
	1 Introduction
	2 Related Work
	3 Power Consumption of GPUs
	3.1 Retrieving the Power Consumption
	3.2 Measuring the Sampling Interval T

	4 The Generation of Power Profiles
	5 SamplePowerProfiles
	6 Online Generation of Power Profiles
	7 Conclusion
	References

	Power/Performance Trade-Offs of Small BatchedLU Based Solvers on GPUs
	1 Introduction
	2 Preliminaries
	Solvers’ Implementation
	3.1 Warp Level Parallelism (CUBLAS Based)
	3.2 Thread-Block Level Parallelism
	3.3 Thread Level Parallelism

	4 Experimental Evaluation
	4.1 Performance Analysis
	4.2 Power Analysis

	5 Conclusions
	References

	Optimizing 3D Convolutions for WaveletTransforms on CPUs with SSE Units and GPUs
	1 Introduction
	2 BigDFT and 3D Convolutions
	3 Related Work
	4 Optimizing 3D Convolutions by Vectorization
	4.1 Preliminary Performance Evaluation
	4.2 Vectorization Approach
	4.3 Performance Study of the Vectorization Approach
	4.4 Designing the Final 3D Vectorized Convolution

	5 Optimizing 3D Convolutions on GPU
	5.1 OpenCL GPU Architecture
	5.2 Convolution Implementation on GPU
	5.3 Performance Evaluation of 3D Convolutions on GPU
	5.4 Global BigDFT Performance

	6 Conclusions and Future Work
	References

	GPUMAFIA: Efficient Subspace Clusteringwith MAFIA on GPUs
	1 Introduction
	2 Related Work
	3 Algorithm Analysis
	4 Optimization
	5 Performance Evaluation and Discussion
	6 Conclusions
	References

	GPU Accelerated Maximum CardinalityMatching Algorithms for Bipartite Graphs
	1 Introduction
	2 Background and Contributions
	3 Methods
	4 Experiments
	5 Concluding Remarks
	References

	On-Board Multi-GPU Molecular Dynamics
	1 Introduction
	2 Related Work
	3 Algorithm Overview
	4 Parallel Partition Update and Synchronization
	4.1 Data Structures
	4.2 Identification of Transfer Data
	4.3 Data Transfer

	5 Evaluation
	5.1 Comparison of Partition Strategies
	5.2 Scalability Analysis and Comparison with NAMD

	6 Conclusions and Future Work
	References

	Algorithmic Skeleton Frameworkfor the Orchestration of GPU Computations
	1 Introduction
	2 Related Work
	3 The Marrow Algorithmic Skeleton Framework
	3.1 Execution Model and API
	3.2 Nesting
	3.3 Overlap between Communication and Computation
	3.4 Supported Skeletons
	3.5 Programming Example

	4 Evaluation
	5 Conclusions
	References


	Author Index



