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Abstract. Gentry’s “bootstrapping” technique (STOC 2009) constructs
a fully homomorphic encryption (FHE) scheme from a “somewhat homo-
morphic” one that is powerful enough to evaluate its own decryption func-
tion. To date, it remains the only known way of obtaining unbounded FHE.
Unfortunately, bootstrapping is computationally very expensive, despite
the great deal of effort that has been spent on improving its efficiency. The
current state of the art, due to Gentry, Halevi, and Smart (PKC 2012), is
able to bootstrap “packed” ciphertexts (which encrypt up to a linear num-
ber of bits) in time only quasilinear O(X) = X - log®® X in the security
parameter. While this performance is asymptotically optimal up to loga-
rithmic factors, the practical import is less clear: the procedure composes
multiple layers of expensive and complex operations, to the point where
it appears very difficult to implement, and its concrete runtime appears
worse than those of prior methods (all of which have quadratic or larger
asymptotic runtimes).

In this work we give simple, practical, and entirely algebraic algo-
rithms for bootstrapping in quasilinear time, for both “packed” and
“non-packed” ciphertexts. Our methods are easy to implement
(especially in the non-packed case), and we believe that they will be
substantially more efficient in practice than all prior realizations of boot-
strapping. One of our main techniques is a substantial enhancement of
the “ring-switching” procedure of Gentry et al. (SCN 2012), which we ex-
tend to support switching between two rings where neither is a subring of
the other. Using this procedure, we give a natural method for homomor-
phically evaluating a broad class of structured linear transformations,
including one that lets us evaluate the decryption function efficiently.

1 Introduction

Bootstrapping, a central technique from the breakthrough work of Gentry [8| [7]
on fully homomorphic encryption (FHE), converts a sufficiently powerful “some-
what homomorphic” encryption (SHE) scheme into a fully homomorphic one.
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(An SHE scheme can support a bounded number of homomorphic operations on
freshly generated ciphertexts, whereas an FHE scheme has no such bound.) In
short, bootstrapping works by homomorphically evaluating the SHE scheme’s de-
cryption function on a ciphertext that cannot support any further homomorphic
operations. This has the effect of “refreshing” the ciphertext, i.e., it produces
a new one that encrypts the same message and can handle more homomorphic
operations. Bootstrapping remains the only known way to achieve unbounded
FHE, i.e., a scheme that can homomorphically evaluate any efficient function
using keys and ciphertexts of a fixed size[l

In order to be “bootstrappable,” an SHE scheme must be powerful enough
to homomorphically evaluate its own decryption function, using whatever ho-
momorphic operations it supports. For security reasons, the key and ciphertext
sizes of all known SHE schemes grow with the depth and, to a lesser extent,
the size of the functions that they can homomorphically evaluate. For instance,
under plausible hardness conjectures, the key and ciphertext sizes of the most
efficient SHE scheme to date [3] grow quasilinearly in both the supported mul-
tiplicative depth d and the security parameter A, i.e., as O(d - A). Clearly, the
runtime of bootstrapping must also grow with the sizes of the keys, ciphertexts,
and decryption function. This runtime is perhaps the most important measure
of efficiency for FHE, because bootstrapping is currently the biggest bottleneck
by far in instantiations, both in theory and in practice.

The past few years have seen an intensive study of different forms of de-
cryption procedures for SHE schemes, and their associated bootstrapping oper-
ations [8, [7, 18, 10, 4, @, [B 13]. The first few bootstrapping methods had mod-
erate polynomial runtimes in the security parameter \, e.g., O()\4). Brakerski,
Gentry, and Vaikuntanathan [3] gave a major efficiency improvement, reducing
the runtime to O()\Q). They also gave an amortized method that bootstraps
f)()\) ciphertexts at once in O()\Q) time, i.e., quasilinear runtime per ciphertext.
However, these results apply only to “non-packed” ciphertexts, i.e., ones that
encrypt essentially just one bit each, which combined with the somewhat large
runtimes makes these methods too inefficient to be used very much in prac-
tice. Most recently, Gentry, Halevi, and Smart [I2] achieved bootstrapping for
“packed” ciphertexts (i.e., ones that encrypt up to £2(\) bits each) in quasilinear
O()\) runtime, which is asymptotically optimal in space and time, up to poly-
logarithmic factors. For this they relied on a general “compiler” from another
work of theirs [I3], which achieved SHE/FHE for sufficiently wide circuits with
polylogarithmic multiplicative “overhead,” i.e., cost relative to evaluating the
circuit “in the clear.”

Bootstrapping and FHE in quasi-optimal time and space is a very attractive
and powerful theoretical result. However, the authors of [I3] [12] caution that
their constructions may have limited potential for use in practice, for two main

! This stands in contrast with leveled FHE schemes, which can homomorphically eval-
uate a function of any a priori bounded depth, but using keys and ciphertexts whose
sizes depend on the bound. Leveled FHE can be constructed without resorting to
bootstrapping [3].
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reasons: first, the runtimes, while asymptotically quasilinear, include very large
polylogarithmic factors. For realistic values of the security parameter, these poly-
logarithmic terms exceed the rather small (but asymptotically worse) quasilinear
overhead obtained in [3]. The second reason is that their bootstrapping oper-
ation is algorithmically very complex and difficult to implement (see the next
paragraphs for details). Indeed, while there are now a few working implementa-
tions of bootstrapping (e.g., [10, [6]) that follow the templates from [8], [7] 18] [3],
we are not aware of any attempt to implement any method having subquadratic
runtime.

Is quasilinear efficient? The complexity and large practical overhead of the
constructions in [I3| 12] arise from two kinds of operations. First, the main
technique from [I3] is a way of homomorphically evaluating any sufficiently
shallow and wide arithmetic circuit on a “packed” ciphertext that encrypts a
high-dimensional vector of plaintexts in multiple “slots.” It works by first using
ring automorphisms and key-switching operations [4], 3] to obtain a small, fixed
set of “primitive” homomorphic permutations on the slots. It then composes
those permutations (along with other homomorphic operations) in a log-depth
permutation network, to obtain any permutation. Finally, it homomorphically
evaluates the desired circuit by combining appropriate permutations with rela-
tively simple homomorphic slot-selection and ring operations.

In the context of bootstrapping, one of the key observations from [12] is that
a main step of the decryption procedure can be evaluated using the above tech-
nique. Specifically, they need an operation that moves the coefficients of an en-
crypted plaintext polynomial, reduced modulo a cyclotomic polynomial &,,(X),
into the slots of a packed ciphertext (and back again). Once the coefficients are
in the slots, they can be rounded in a batched (SIMD) fashion, and then mapped
back to coefficients of the plaintext. The operations that move the coefficients
into slots and vice-versa can be expressed as O(log \)-depth arithmetic circuits
of size O(Alog A), roughly akin to the classic FFT butterfly network. Hence they
can be evaluated homomorphically with polylogarithmic overhead, using [13].
However, as the authors of [12] point out, the decryption circuit is quite large
and complex — especially the part that moves the slots back to the coefficients,
because it involves reduction modulo @,,(X) for an m having several prime
divisors. This modular reduction is the most expensive part of the decryption
circuit, and avoiding it is one of the main open problems given in [I2]. However,
even a very efficient decryption circuit would still incur the large polylogarithmic
overhead factors from the techniques of [13].

1.1 Owur Contributions

We give a new bootstrapping algorithm that runs in quasilinear O()\) time per
ciphertext with small polylogarithmic factors, and is algorithmically much sim-
pler than previous methods. It is easy to implement, and we believe that it will
be substantially more efficient in practice than all prior methods. We provide a
unified bootstrapping procedure that works for both “non-packed” ciphertexts
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(which encrypt integers modulo some p, e.g., bits) and “packed” ciphertexts
(which encrypt elements of a high-dimensional ring), and also interpolates be-
tween the two cases to handle an intermediate concept we call “semi-packed”
ciphertexts.

Our procedure for non-packed ciphertexts is especially simple and efficient.
In particular, it can work very naturally using only cyclotomic rings having
power-of-two index, i.e., rings of the form Z[X]/(1 + X2"), which admit very
fast implementations. This improves upon the method of [3], which achieves
quasilinear amortized runtime when bootstrapping f)()\) non-packed ciphertexts
at once. Also, while that method can also use power-of-two cyclotomics, it can
only do so by emulating Zs (bit) arithmetic within Z,, for some moderately large
prime p, which translates additions in Zs into much more costly multiplications
in Z,. By contrast, our method works “natively” with any plaintext modulus.

For packed ciphertexts, our procedure draws upon high-level ideas from [I3],
12], but our approach is conceptually and technically very different. Most impor-
tantly, it completely avoids the two main inefficiencies from those works: first,
unlike [I3], we do not use permutation networks or any explicit permutations of
the plaintext slots, nor do we rely on a general-purpose compiler for homomor-
phically evaluating arithmetic circuits. Instead, we give direct, practically effi-
cient procedures for homomorphically mapping the coefficients of an encrypted
plaintext element into slots and vice-versa. In particular, our procedure does
not incur the large cost or algorithmic complexity of homomorphically reducing
modulo &,,,(X), which was the main bottleneck in the decryption circuit of [12].

At a higher level, our bootstrapping method has two other attractive and
novel features: first, it is entirely “algebraic,” by which we mean that the full
procedure (including generation of all auxiliary data it uses) can be described as
a short sequence of elementary operations from the “native instruction set” of
the SHE scheme. By contrast, all previous methods at some point invoke rather
generic arithmetic circuits, e.g., for modular addition of values represented as
bit strings, or reduction modulo a cyclotomic polynomial @,,(X). Of course,
arithmetic circuits can be evaluated using the SHE scheme’s native operations,
but we believe that the distinction between “algebraic” and “non-algebraic” is
an important qualitative one, and it certainly affects the simplicity and concrete
efficiency of the bootstrapping procedure.

The second nice feature of our method is that it completely decouples the
algebraic structure of the SHE plaintext ring from that which is needed by the
bootstrapping procedure. In previous methods that use amortization (or “batch-
ing”) for efficiency (e.g., [I7, B, [12]), the ring and plaintext modulus of the SHE
scheme must be chosen so as to provide many plaintext slots. However, this struc-
ture may not always be a natural match for the SHE application’s efficiency or
functionality requirements. For example, the lattice-based pseudorandom func-
tion of [I] works very well with a ring R, = Z4[X]/(X™ + 1) where both ¢ and
n are powers of two, but for such parameters R, has only one slot. Our method
can bootstrap even for this kind of plaintext ring (and many others), while still
using batching to achieve quasilinear runtime.
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1.2 Techniques

At the heart of our bootstrapping procedure are two novel homomorphic oper-
ations for SHE schemes over cyclotomic rings: for non-packed (or semi-packed)
ciphertexts, we give an operation that isolates the message-carrying coefficient(s)
of a high-dimensional ring element; and for (semi-)packed ciphertexts, we give
an operation that maps coefficients to slots and vice-versa.

Isolating coefficients. Our first homomorphic operation is most easily explained
in the context of non-packed ciphertexts, which encrypt single elements of the
quotient ring Z, for some small modulus p, using ciphertexts over some cy-
clotomic quotient ring R, = R/qR of moderately large degree d = deg(R/Z) =
O()\) We first observe that a ciphertext to be bootstrapped can be reinterpreted
as an encryption of an R,-element, one of whose Z,-coefficients (with respect to
an appropriate basis of the ring) “noisily” encodes the message, and whose other
coefficients are just meaningless noise terms. We give an simple and efficient ho-
momorphic operation that preserves the meaningful coefficient, and maps all the
others to zero. Having isolated the message-encoding coefficient, we can then ho-
momorphically apply an efficient integer “rounding” function (see [12] and the
full version) to recover the message from its noisy encoding, which completes the
bootstrapping procedure. (Note that it is necessary to remove the meaningless
noise coefficients first, otherwise they would interfere with the correct operation
of the rounding function.)

Our coefficient-isolating procedure works essentially by applying the trace
Junction Trg,z: R — 7Z to the plaintext. The trace is the “canonical” Z-linear
function from R to Z, and it turns out that for the appropriate choice of Z-basis
of R used in decryption, the trace simply outputs (up to some scaling factor) the
message-carrying coefficient we wish to isolate. One simple and very efficient way
of applying the trace homomorphically is to use the “ring-switching” technique
of [II], but unfortunately, this requires the ring-LWE problem [I5] to be hard
over the target ring Z, which is clearly not the case. Another way follows from the
fact that Trg/z equals the sum of all d automorphisms of R; therefore, it can be
computed by homomorphically applying each automorphism and summing the
results. Unfortunately, this method takes at least quadratic 2(\?) time, because
applying each automorphism homomorphically takes 2(\) time, and there are
d = 2(\) automorphisms.

So, instead of inefficiently computing the trace by summing all the automor-
phisms at once, we consider a tower of cyclotomic rings Z = RO cCRrRMc...C
R = R, usually written as R")/--- /R /R(®) Then Trg/z is the composition
of the individual trace functions TrR(i)/R(i—l) : RO — R(ifl), and these traces

are equal to the sums of all automorphisms of R that fix R~ pointwise, of
which there are exactly d; = deg(R®/R(~V) = deg(R™W /7Z)/deg(R—Y) /7).
We can therefore compute each Trpe JRG-D in time linear in A and in d;;
moreover, the number of trace functions to apply is at most logarithmic in

d = deg(R/Z) = O()\), because each one reduces the degree by a factor of
at least two. Therefore, by ensuring that the degrees of R, R"=D R
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decrease gradually enough, we can homomorphically apply the full Trg,z in
quasilinear time. For example, a particularly convenient choice is to let R he
the 2i+1st cyclotomic ring Z[X]/(1+ X?") of degree 27, so that every d; = 2, and
there are exactly log,(d) = O(log \) trace functions to apply.

More generally, when bootstrapping a semi-packed ciphertext we start with
a plaintext value in R, that noisily encodes a message in S}, for some subring
S C R. (The case S = Z corresponds to a non-packed ciphertext.) We show that
applying the trace function Trg,s to the R,-plaintext yields a new plaintext
in S, that noisily encodes the message, thus isolating the meaningful part of
the noisy encoding and vanishing the rest. We then homomorphically apply a
rounding function to recover the S, message from its noisy S; encoding, which
uses the technique described next.

Mapping coefficients to slots. Our second technique, and main technical inno-
vation, is in bootstrapping (semi-)packed ciphertexts. We enhance the recent
“ring-switching” procedure of [I1], and use it to efficiently move “noisy” plain-
text coefficients (with respect to an appropriate decryption basis) into slots for
batch-rounding, and finally move the rounded slot values back to coefficients.
We note that all previous methods for loading plaintext data into slots used the
same ring for the source and destination, and so required the plaintext to come
from a ring designed to have many slots. In this work, we use ring-switching to
go from the SHE plaintext ring to a different ring having many slots, which is
used only temporarily for batch-rounding. This is what allows the SHE plaintext
ring to be decoupled from the rings used in bootstrapping, as mentioned above.

To summarize our technique, we first recall the ring-switching procedure of [11].
It was originally devised to provide moderate efficiency gains for SHE/FHE
schemes, by allowing them to switch ciphertexts from high-degree cyclotomic rings
to subrings of smaller degree (once enough homomorphic operations have been per-
formed to make this secure). We generalize the procedure, showing how to switch
between two rings where neither ring need be a subring of the other. The procedure
has a very simple implementation, and as long as the two rings have a large com-
mon subring, it is also very efficient (e.g., quasilinear in the dimension). Moreover,
it supports, as a side effect, the homomorphic evaluation of any function that is
linear over the common subring. However, the larger the common subring is, the
more restrictive this condition on the function becomes.

We show how our enhanced ring-switching can move the plaintext coefficients
into the slots of the target ring (and back), which can be seen as just evaluating
a certain Z-linear function. Here we are faced with the main technical challenge:
for efficiency, the common subring of the source and destination rings must be
large, but then the supported class of linear functions is very restrictive, and
certainly does not include the Z-linear one we want to evaluate. We solve this
problem by switching through a short sequence of “hybrid” rings, where adjacent
rings have a large common subring, but the initial and final rings have only the
integers Z in common. Moreover, we show that for an appropriately chosen
sequence of hybrid rings, the Z-linear function we want to evaluate is realizable
by a sequence of allowed linear functions between adjacent hybrid rings. Very
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critically, this decomposition requires the SHE scheme to use a highly structured
basis of the ring for decryption. The usual representation of a cyclotomic ring
as Z[X]/®,(X) typically does not correspond to such a basis, so we instead
rely on the tensorial decomposition of the ring and its corresponding bases, as
recently explored in [16]. At heart, this is what allows us to avoid the expensive
homomorphic reduction modulo &é,,,(X), which is one of the main bottlenecks in
previous work [12]@

Stepping back a bit, the technique of switching through hybrid rings and bases
is reminiscent of standard “sparse decompositions” for linear transformations
like the FFT, in that both decompose a complicated high-dimensional trans-
form into a short sequence of simpler, structured transforms. (Here, the simple
transforms are computed merely as a side-effect of passing through the hybrid
rings.) Because of these similarities, we believe that the enhanced ring-switching
procedure will be applicable in other domain-specific applications of homomor-
phic encryption, e.g., signal-processing transforms or statistical analysis.

Organization. Due to space restrictions, this version of the paper omits much
of the algebraic background, several proofs, and some lower-level descriptions
of our procedures; see the full version for complete details. Section 2] recalls
some of the algebraic background required for our constructions, and Section
recalls a standard ring-based SHE scheme and some of its natural homomorphic
operations. Section [J] defines the general bootstrapping procedure. Sections M
and Bl respectively fill in further details of the two novel homomorphic operations
used in the bootstrapping procedure.

The full version also documents a folklore transformation between two es-
sentially equivalent ways of encoding messages in SHE schemes (namely, the
“least/most significant bit” encodings), describes an integer rounding procedure
that simplifies the one given in [I2], and gives some concrete choices of rings
that our method can use in practice.

Acknowledgments. We thank Oded Regev for helpful discussions during the
early stages of this research, and the anonymous CRYPTO’13 reviewers for their
thoughtful comments.

2 Preliminaries

For a positive integer k, we let [k] = {0, ..., k—1}. For an integer modulus ¢, we
let Z, = Z/qZ denote the quotient ring of integers modulo ¢. For integers ¢, ¢/,
we define the integer “rounding” function [-],:Zq — Z¢ as 2], = [(¢'/q) -
z] mod ¢'.

2 The use of more structured representations of cyclotomic rings in [I6] was initially
motivated by the desire for simpler and more efficient algorithms for cryptographic
operations. Interestingly, these representations yield moderate efficiency improve-
ments for computations “in the clear,” but dramatic benefits for their homomorphic
counterparts!
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2.1 Algebraic Background

Throughout this work, by “ring” we mean a commutative ring with identity. For
two rings R C R’, an R-basis of R is a set B C R’ such that every r € R’
can be written uniquely as an R-linear combination of elements of B. For two
rings R, S with a common subring F, an E-linear function L: R — S is one for
which L(r 4+ ") = L(r) + L(+’) for all r,7’ € R, and L(e-r) = e- L(r) for all
e € E,r € R. Tt is immediate that such a function is defined uniquely by its
values on any F-basis of R.

Cyclotomic Rings. For a positive integer m called the index, let O,, = Z[(pn)]
denote the mth cyclotomic ring, where (,, is an abstract element of order m
over Q. (In particular, we do not view (,, as any particular complex root of
unity.) The minimal polynomial of ¢,, over Q is the mth cyclotomic polynomial
Pin(X) = [Liez: (X —wp) € Z[X], where wy, = exp(2my/—1/m) € C is the
principal mth complex root of unity, and the roots w?, € C range over all the
primitive complex mth roots of unity. Therefore, O,, is a ring extension of degree
n = @(m) over Z. (In particular, O; = Oy = Z.) Clearly, O,, is isomorphic to
the polynomial ring Z[X]/®,,(X) by identifying (,, with X, and has the “power
basis” {1, (m, - - -, (%1} as a Z-basis. However, for non-prime-power m the power
basis can be somewhat cumbersome and inefficient to work with. In Section 2]
we consider other, more structured bases that are essential to our techniques.
If m|m’, we can view the mth cyclotomic ring O,, as a subring of O,,, =

Z[Cm], via the ring embedding (i.e., injective ring homomorphism) that maps
Cm to (T, /™ The ring extension O, /Oy, has degree d = p(m')/p(m), and also
d automorphisms 7; (i.e., automorphisms of Oy, that fix O,, pointwise), which
are defined by 7;(¢n/) = ¢,/ for each i € Z%,, such that i = 1 (mod m). The
trace function Tr = Tro, ,/0,, Om — O can be defined as the sum of these
automorphisms:
Tro,, /0, (@) = _ 7i(a) € On.
i

Notice that Tr is O,,-linear by definition. If O, /O, /Oy, is a tower of ring ex-
tensions, then the trace satisfies the composition property Tro /0, =

Tro, /0, °Tro . 0,

m m

An important element in the mth cyclotomic ring is

g= ] 1—=¢)e€0n (1)

odd prime p|m

Also define 7 = m/2 if m is even, otherwise /i = m, for any cyclotomic index m.
It is known that g|m (see, e.g., [16l Section 2.5.4]). The following lemma shows
how the elements ¢ in different cyclotomic rings, and the ideals they generate,
are related by the trace function. (See the full version for a proof.)

Lemma 2.1. Let m|m’ be positive integers and let g € R = Op,,9' € R =

O and m,m’ be as defined above. Then Trp r(g'R') = (//m) - gR, and in
particular, Trg r(g") = (' /m) - g.
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Later on we use the scaled trace function (1i2/m’) Trg s p, which by the above
lemma maps the ideal ¢'R to gR, and ¢’ to g.

Tensorial Decomposition of Cyclotomics. An important fact from algebraic
number theory, used centrally in this work (and in [I6]), is the tensorial decompo-
sition of cyclotomic rings (and their bases) in terms of subrings. Let Oy, , O,
be cyclotomic rings. Then their largest common subring is Op,, N O, = Oy
where g = ged(mi, me), and their smallest common extension ring, called the
compositum, i8 O, + O, = O; where | = lem(my, mg). When considered as
extensions of Oy, the ring O; is isomorphic to the ring tensor product of O,,,
and O,,,, written as (sometimes suppressing O, when it is clear from context)

Ol/og = (Oml/og) ® (Omz/og)-

On the right, the ring tensor product is defined as the set of all Oy-linear com-
binations of pure tensors a1 ® az, with ring operations defined by Og4-bilinearity
and the mixed-product property (a1 ® az) - (b1 ® b2) = (a1b1) ® (azbz). The
isomorphism with O;/O, then simply identifies a1 ® as with a1 - a2 € O;. Note
that any a1 € O,,, corresponds to the pure tensor a; ® 1, and similarly for any
ag € OmQ.

The following simple lemma will be central to our techniques.

Lemma 2.2. Let my,ma > 0 be integers and g = ged(my, ma), I = lem(my, ma).
Then for any Oy-linear function L: Oy, — Oy, , there is an (efficiently com-
putable) Op, -linear function L: O — Op,, that coincides with L on the subring
Om, CO;.

Proof. Write O; =2 O,,, ® Oy,,, where the common base ring O, is implicit.
Let L: (Omy, ® Om,) = O, be the Og-linear function uniquely defined by
L(a; ® az) = L(a1) - ag € O,,, for all pure tensors a; ® az. Then because
(a1 ® az) - by = a1 ® (agbs) for any by € O, by the mixed-product property,
L is also Oyp,-linear. Finally, for any a; € O,,, we have L(a; ® 1) = L(a1) by
construction.

Ideal Factorization and Plaintext Slots. In the full version we recall the
unique factorization of prime integers into prime ideals in cyclotomic rings, and,
following [17], how the Chinese remainder theorem can yield several plaintext
“slots” that embed Z, as a subring, even for composite q.

In brief, for any prime integer p and cyclotomic ring R, the ideal pR factors
as pR = [, p§ for some distinct prime ideals p; and some e > 1. Moreover, for
any power ¢ = p” where r > 1, the quotient ring R/p}° embeds Z, as a subring.
By the Chinese Remainder Theorem (CRT), the natural ring homomorphism
from R, to the product ring @,(R/p;¢) is an isomorphism. When the natural
plaintext space of a cryptosystem is R,, we refer to the quotient rings R/p7¢ as
the plaintext “Zg-slots” (or just “slots”), and use them to store vectors of Zg-
elements via the CRT isomorphism. With this encoding, ring operations in R,
induce “batch” (or “SIMD”) component-wise operations on the corresponding
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vectors of Z, elements. We note that the CRT isomorphism is easy to compute
in both directions. In particular, to map from a vector of Zg,-elements to R,
just requires knowing a fixed “mod-¢ CRT set” C' = {¢;} C R for which ¢; =
1 (mod p;¢) and ¢; = 0 (mod p’) for all j # i. Such a set can be precomputed
using, e.g., a generalization of the extended Euclidean algorithm.

Product Bases. Our bootstrapping technique relies crucially on certain highly
structured bases and CRT sets, which we call “product bases (sets),” that arise
from towers of cyclotomic rings. Let Onyr /O /Oy, be such a tower, let B” =
{bl} C Opr be any Oyy-basis of Oy, and let B = {b),} C Oy be any
Om-basis of O,,,. Then it follows immediately that the product set B” - B :=
{b;.’,, . b;.,} C O, is an O,,-basis of (’)muﬁ Of course, for a tower of several
cyclotomic extensions and relative bases, we can obtain product bases that factor
with a corresponding degree of granularity.

In the full version we show that the “powerful” and “decoding” bases of cyclo-
tomic rings R, as defined in [16], admit “finest-possible” product structures, cor-
responding to any desired tower R/ - - /Z of cyclotomic rings. (Other commonly
used bases of O,,, such as the power Z-basis, do not admit such factorizations
unless m is a prime power.) Similarly, we show how to construct CRT sets that
have finest-possible factorizations.

2.2 Ring-Based Homomorphic Cryptosystem

Here we recall a somewhat-homomorphic encryption scheme whose security is
based on the ring-LWE problem [I5] in arbitrary cyclotomic rings. For our pur-
poses we focus mainly on its decryption function, though below we also recall its
support for “ring switching” [I1]. For further details on its security guarantees,
homomorphic properties, and efficient implementation, see [15] [5] 8], 14}, [T, [16].

Let R = O,, € R’ = O,, be respectively the mth and m’th cyclotomic
rings, where m|m’. The plaintext ring is the quotient ring R, for some integer
p; ciphertexts are made up of elements of R, for some integer g, which for
simplicity we assume is divisible by p; and the secret key is some s € R’. The
case m = 1 corresponds to “non-packed” ciphertexts, which encrypt elements
of Z, (e.g., single bits), whereas m = m/’ corresponds to “packed” ciphertexts,
and 1 < m < m/ corresponds to what we call “semi-packed” ciphertexts. Note
that without loss of generality we can treat any ciphertext as packed, since Rj,
embeds R,. But the smaller m is, the simpler and more practically efficient our
bootstrapping procedure can be. Since our focus is on refreshing ciphertexts that
have large noise rate, we can think of m’ as being somewhat small (e.g., in the
several hundreds) via ring-switching [I1], and ¢ also as being somewhat small
(e.g., in the several thousands) via modulus-switching. Our main focus in this
work is on a plaintext modulus p that is a power of two, though for generality
we present all our techniques in terms of arbitrary p.

3 Formally, this basis is a Kronecker product of the bases B” and B’, which is typically
written using the ® operator. We instead use - to avoid confusion with pure tensors
in a ring tensor product, which the elements of B” - B’ may not necessarily be.
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A ciphertext encrypting a message 4 € R, under secret key s’ € R’ is some
pair ¢ = (¢, ¢y) € Ry, x R, satisfying the relation

cé+c’1-s':z~u—|—e' (mod ¢R') (2)

for some error (or “noise”) term e’ € R’ such that e’ - ¢’ € ¢’R’ is sufficiently
“short,” where ¢’ € R’ is as defined in Equation (EJ)E Informally, the “noise rate”
of the ciphertext is the ratio of the “size” of ¢’ (or more precisely, the magnitude
of its coefficients in a suitable basis) to q/p.

We note that Equation (2)) corresponds to what is sometimes called the
“most significant bit” (msb) message encoding, whereas somewhat-homomorphic
schemes are often defined using “least significant bit” (Isb) encoding, in which p
and ¢ are coprime and ¢+ ¢} s’ = €’ (mod ¢R’) for some error term ¢’ € p+pR’.
For our purposes the msb encoding is more natural, and in any case the two
encodings are essentially equivalent; see the full version for details.

Decryption. At a high level, the decryption algorithm works in two steps: the
“linear” step simply computes v/ = ¢, + ¢} - s = g “p+e € Ry, and the
“non-linear” step outputs [v'| » € R, using a certain “ring rounding function”
'], By — R,. As long as the error term e’ is within the tolerance of the
rounding function, the output will be o € R,. This is all entirely analogous
to decryption in LWE-based systems, but here the rounding is n-dimensional,
rather than just from Z, to Z,.

Concretely, the ring rounding function [-] : Rj — R, is defined in terms of
the integer rounding function || p: Z4 — Z, and a certain “decryption” Z-basis
B' = {b;} of R, as follows [l Represent the input v* € R in the decryption
basis as v’ = y v} - by for some coefficients v} € Zg, then independently round
the coefficients, yielding an element |v}], - b} € R), that corresponds to the
message (1 € I, (under the standard embedding of R, into R}).

Changing the Plaintext Modulus. We use two operations on ciphertexts
that alter the plaintext modulus p and encrypted message p € R,. The first
operation changes p to any multiple p’ = dp, and produces an encryption of

4 Quantitatively, “short” is defined with respect to the canonical embedding of R',
whose precise definition is not needed in this work. The above system is equivalent to
the one from [16] in which the message, error term, and ciphertext components are all
taken over the “dual” fractional ideal (R')Y = (¢’/7/) R’ in the m/th cyclotomic num-
ber field, and the error term has an essentially spherical distribution over (R')Y. In
that system, decryption is best accomplished using a certain Z-basis of (R’)", called
the decoding basis, which optimally decodes spherical errors. The above formulation
is more convenient for our purposes, and simply corresponds with multiplying every-
thing in the system of [16] by an m’/g’ factor. This makes ¢’ - ¢’ € ¢'R’ = m/(R)Y)
short and essentially spherical in our formulation. See [15] [16] for further details.

® In our formulation, the basis B’ is (17//g’) times the decoding basis of (R')Y. See
Section 2.1] and Footnote [l
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some y' € R, such that y' = p(mod pR’). To do this, it simply “lifts” the
input ciphertext ¢ = (cj,¢}) € (R})? to an arbitrary ¢’ = (cf,¢f) € (Ry,)?
such that ¢} = ¢ (mod ¢R'), where ¢ = dgq. The second operation applies to an
encryption of a message it € R, that is known to be divisible by some divisor d
of p, and produces an encryption of /d € R, q. The operation actually leaves
the ciphertext ¢’ unchanged; it just declares the associated plaintext modulus to

be p/d (which affects how decryption is performed).

Ring Switching. We rely heavily on the cryptosystem’s support for switching
ciphertexts to a cyclotomic subring S’ of R’, which as a side-effect homomorphi-
cally evaluates any desired S’-linear function on the plaintext. Notice that the
linear function L is applied to the plaintext as embedded in R;,; this obviously
applies the induced function on the true plaintext space R,,.

Proposition 2.3 ([I1], full version). Let S’ C R’ be cyclotomic rings. Then
the above-described cryptosystem supports the following homomorphic operation:
given any S'-linear function L: R, — S, and a ciphertext over Ry encrypting
(with sufficiently small error term) a message j1 € Ry, the output is a ciphertext
over S, encrypting L(u) € S,

The security of the procedure described in Proposition 2.3]is based on the hard-
ness of the ring-LWE problem in S’, so the dimension of S’ must be sufficiently
large. The procedure itself is quite simple and efficient: it first switches to a
secret key that lies in the subring S/, then it multiplies the resulting ciphertext
by an appropriate fixed element of R’ (which is determined solely by the func-
tion L). Finally, it applies to the ciphertext the trace function Trp /g : R — S'.
All of these operations are quasi-linear time in the dimension of R’/Z, and very
efficient in practice. In particular, the trace is a trivial linear-time operation
when elements are represented in any of the bases we use. The ring-switching
procedure increases the effective error rate of the ciphertext by a factor of about
the square root of the dimension of R’, which is comparable to that of a single
homomorphic multiplication. See [I1] for further details.

3 Overview of Bootstrapping Procedure

Here we give a high-level description of our bootstrapping procedure. We present
a unified procedure for non-packed, packed, and semi-packed ciphertexts, but
note that for non-packed ciphertexts, Steps Bal and Bd (and possibly [Id) are null
operations, while for packed ciphertexts, Steps [[D, [[d, and ] are null operations.

Recalling the cryptosystem from Section 2] the plaintext ring is R, and
the ciphertext ring is R;, where R = 0,, € R’ = O,, are cyclotomic rings
(so m|m’), and ¢ is a power of p. The procedure also uses a larger cyclotomic
ring R = Op,v 2 R’ (so m’|m’") to work with ciphertexts that encrypt elements
of the original ciphertext ring R;. We can choose m” however we like, subject
to the constraints below.



Practical Bootstrapping in Quasilinear Time 13

To obtain quasilinear runtimes and exponential security under standard hard-
ness assumptions, our procedure imposes some mild conditions on the indices
m, m', and m’:

— The dimension ¢(m”) of R” must be quasilinear, so we can represent ele-
ments of R” efficiently.

— For Steps 2l and Bl all the prime divisors of m and m’ must be small (i.e.,
polylogarithmic).

— For Step Bl m and m” /m must be coprime, which implies that m and m’/m
must be coprime also. Note that the former condition is always satisfied
for non-packed ciphertexts (where m = 1). For packed ciphertexts (where
m = m'), the latter condition is always satisfied, which makes it easy to
choose a valid m”. For semi-packed ciphertexts (where 1 < m < m'), we can
always satisfy the latter condition either by increasing m (at a small expense
in practical efficiency in Step B]), or by effectively decreasing m slightly (at a
possible improvement in practical efficiency); see the full version for details.

The input to the procedure is a ciphertext ¢ = (¢, ¢}) € (R})? that encrypts
some plaintext p € R, under a secret key s’ € R, i.e., it satisfies the relation

v’:cg—l—c’1~s’:;I)-u—&—e’(modqR’)

for some small enough error term e’ € R’. The procedure computes a new encryp-
tion of [v], = p (under some secret key, not necessarily s') that has substantially
smaller noise rate than the input ciphertext. It proceeds as follows (explanatory
remarks appear in italics):

1. Convert ¢’ to a “noiseless” ciphertext ¢ over a large ring R that encrypts a
plaintext (¢'/g)u’ € R;,, where g’ € R', g € R are as defined in Equation (I,
¢ = (m'/m)q, and v = v" (mod ¢R’). This proceeds in the following sub-
steps (see Section Bl for further details).

Note that ¢’ /g € R' by definition, and that (¢’ /g)|(m' /).

(a) Reinterpret ¢’ as a noiseless encryption of v/ = f} “pt+e € Ry asa
plaintext, noting that both the plaintext and ciphertext rings are now
taken to be R;.

This is purely a conceptual change in perspective, and does not involve
any computation.

(b) Using the procedure described in Section [22] change the plaintext (and
ciphertext) modulus to ¢’ = (1m//m)q, yielding a noiseless encryption of
some u' € R, such that v’ = v (mod qR').

Note that this step is a null operation if the original ciphertext was
packed, i.e., if m =m’.

Weneedtoincrease the plaintext modulus because homomorphically com-
puting Tr g /g in Step[Abelow introduces an1i/ [ factor into the plaintext,
which we will undo by scaling the plaintext modulus back down to q.

(¢) Multiply the ciphertext from the previous step by (¢'/g) € R/, yielding
a noiseless encryption of plaintext (¢'/g)u’ € R, .
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The factor (¢'/g) € R’ is needed when we homomorphically compute
Trg: /g in Step[d below. Note that g'/g = 1 if and only if every odd prime
divisor of m’ also divides m, e.g., if m =m’.

(d) Convert to a noiseless ciphertext ¢’ that still encrypts (¢'/g)u’ € R,
but using a large enough ciphertext ring R¢) for some R"” = Oy 2 R
and modulus Q > ¢'.

A larger ciphertext ring R’é is needed for security in the upcoming
homomorphic operations, to compensate for the low noise rates that will
need to be used. These operations will expand the initial noise rate by a
quasipolynomial \°U°8X) factor in total, so the dimension of R" and the
bit length of Q can be O(X\) and O(1), respectively.

The remaining steps are described here only in terms of their effect on the plain-

text value and ring. Using ring- and modulus-switching, the ciphertext ring R”

and modulus () may be made smaller as is convenient, subject to the security and
functionality requirements. (Also, the ciphertext ring implicitly changes during

Steps Bal and Bd)

2.

Homomorphically apply the scaled trace function (1i2/1') Trg/ /g to the en-
cryption of (¢'/g)u’ € Ry, to obtain an encryption of plaintext

/

u = ,';n/'TI'R//R(g 'U/):q',u‘i'eERq
m g p

for some suitably small error term ¢ € R. See Section M further details.

This step changes the plaintext ring from R;, to Ry, and homomorphically
isolates the noisy Rg-encoding of p. It is a null operation if the original
ciphertext was packed, i.e., if m =m’.

. Homomorphically apply the ring rounding function |-| p' R, — R,, yield-

ing an output ciphertext that encrypts |[u] » = 1 € Rp. This proceeds in

three sub-steps, all of which are applied homomorphically (see Section [ for

details):

(a) Map the coefficients u; of u € R, (with respect to the decryption basis B
of R) to the Z,-slots of a ring S,, where S is a suitably chosen cyclotomic.
This step changes the plaintext ring from Ry to Sy. It is a null operation
if the original ciphertext was non-packed (i.e., if m = 1), because we can
let S=R=127.

(b) Batch-apply the integer rounding function |-]: Z, — Z, to the Z,-slots
of Sy, yielding a ciphertext that encrypts the values y; = [u;], € Z; in
its Z,-slots.

This step changes the plaintext ring from S, to S,. It constitutes
the only non-linear operation on the plaintext, with multiplicative depth
[lgp]-(log,(q) — 1) ~log(q), and as such is the most expensive in terms
of runtime, noise expansion, etc.

(c) Reverse the map from the step Bal sending the values p; from the Z,-
slots of S;, to coefficients with respect to the decryption basis B of R,,
yielding an encryption of y = Zj 1ib; € Rp.



Practical Bootstrapping in Quasilinear Time 15

This step changes the plaintext ring from Sy, to R,. Just like step[3d,
it is a null operation for non-packed ciphertezts.

In the full version we describe a few minor variants and practical optimizations
of our basic procedure.

3.1 Obtaining a Noiseless Ciphertext

Step [l of our bootstrapping procedure is given as input a ciphertext ¢’ = (cf, ¢})
over R that encrypts (typically with a high noise rate) a message ;1 € R), under
key s € R, ie, v =cy+cy-s' =1 p+e € R for some error term e’. We first
change our perspective and view ¢ as a “noiseless” encryption (still under s’)
of the plaintext value v € Ry, taking both the plaintext and ciphertext rings to
be R;. This view is indeed formally correct, because

cé—l—c’l-s’:qm’—I—O(modqR’).
q

Next, in preparation for the upcoming homomorphic operations we increase the
plaintext (and ciphertext) modulus to ¢’, and multiply the resulting ciphertext
by ¢’/g. These operations clearly preserve noiselessness. Finally, we convert the
ciphertext ring to Ry, for a sufficiently large cyclotomic R O R’ and modulus
Q@ > q that is divisible by ¢. This is done simply by embedding R’ into R” and
introducing extra precision, i.e., scaling the ciphertext up by a Q/q factor. It is
easy to verify that these operations also preserve noiselessness.

4 Homomorphic Trace

Here we show how to perform Step [2] of our bootstrapping procedure, which
homomorphically evaluates the scaled trace function (1i2/7') Trp//p on an en-
cryption of (¢'/g)u’ € Ry, where recall that: ¢’ € R',g € R are as defined in
Equation (), and (¢’/g) divides (ri/ /m); the plaintext modulus is ¢’ = (/' /1h)g;
and

W= =1 ~u+e  (mod qR'),
b

where €' - ¢’ € ¢’ R’ is sufficiently short. Our goal is to show that:

1. the scaled trace of the plaintext (¢'/g)u’ is some u = I ji+ e € Ry, where
e- g € gR is short, and

2. we can efficiently homomorphically apply the scaled trace on a ciphertext ¢’
over some larger ring R” = O,,» 2 R'.

4.1 Trace of the Plaintext

We first show the effect of the scaled trace on the plaintext (¢'/g)u’ € Ry,. By
the above description of u’ € R}, and the fact that (¢'/g)q divides ¢' = (7' /1n)q,
we have

(9'/g)u" = (g'/9)v" = (¢'/9) (Z e+ e’> (mod (¢'/g)qR).
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Therefore, letting Tr = Trg/ /g, by R-linearity of the trace and Lemma 2.1} we
have

Tr((¢'/9)u’) = Tr(g' /) - g p+Te(e - g) /g

Ay
" (q A+ e) (mod ¢'R),
m\p
where e = (m/m’) Tr(e’ - ¢')/g € R. Therefore, after scaling down the plaintext
modulus ¢’ by an 7/ /m factor (see Section 22)), the plaintext is g -p+e€ R,
Moreover, e - g = (m/m') Tr(e’ - ¢') € gR is short because €' - ¢’ € ¢'R’ is
short; see, e.g., [I1, Corollary 2.2]. In fact, by basic properties of the decod-
ing/decryption basis (as defined in [I6]) under the trace, the coefficient vector
of e with respect to the decryption basis of R is merely a subvector of the co-
efficient vector of e’ with respect to the decryption basis of R’. Therefore, ¢ is
within the error tolerance of the rounding function on R, assuming e’ is within
the error tolerance of the rounding function on Ry.

4.2 Applying the Trace

Now we show how to efficiently homomorphically apply the scaled trace function
(/') Trrs /g to an encryption of any plaintext in 12, that is divisible by (¢'/g).
Note that this condition ensures that the output of the trace is a multiple of
m/m' in Ry (see Lemma[2T]), making the scaling a well-defined operation that
results in an element of R,.

First recall that Trg/ /g is the sum of all ¢(m')/p(m) automorphisms of R'/R,
i.e., automorphisms of R’ that fix R pointwise. So as mentioned in the introduc-
tion, one way of homomorphically computing the scaled trace is to homomor-
phically apply the proper automorphisms, sum the results, and scale down the
plaintext and its modulus. While this “sum-automorphisms” procedure yields
the correct result, computing the trace in this way does not run in quasilinear
time, unless the number p(m’)/¢(m) of automorphisms is only polylogarithmic.

Instead, we consider a sufficiently fine-grained tower of cyclotomic rings

R(?")/ ... /R(l)/R(O),

where R’ = R, R = R and each R®) = O,,,,, where m; is divisible by m;_,
for i > 0. E.g., for the finest granularity we would choose the tower so that every
m;/m;_1 is prime. Notice that the scaled trace function (1 /m’) Trgs /g is the
composition of the scaled trace functions (rm;_1/m;) Trre /pe-1, and that g9 /g
is the product of all gV /gt~ for i = 1,...,r, where g € R® is as defined
in Equation (). So, another way of homomorphically applying the full scaled
trace is to apply the corresponding scaled trace in sequence for each level of
the tower, “climbing down” from R’ = R to R = R(©). In particular, if we
use the above sum-automorphisms procedure with a tower of finest granularity,
then there are at most logy(m'/m) = O(log A) levels, and since we have assumed
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that every prime divisor of m'/m is bounded by polylogarithmic in the security
parameter A, the full procedure will run in quasilinear O()\) time.

In the full version we give all the details of the sum-automorphisms procedure
sketched above, as well as an alternative procedure using ring-switching that is
preferable in certain cases.

5 Homomorphic Ring Rounding

In this section we describe how to efficiently homomorphically evaluate the “ring
rounding function” |-] p' R, = R,, where R = O,, is the mth cyclotomic ring.
Conceptually, we follow the high-level strategy from [12], but instantiate it with
very different technical components. Recall from Section that the rounding
function expresses its input u in the “decryption” Z-basis B = {b;} of R, as u =
>_juj-bj foru; € Zy, and outputs |ul, := > |u;],b; € Rp. Unlike with integer
rounding from Z, to Z,, it is not clear whether this rounding function has a low-
depth arithmetic formula using just the ring operations of R. One difficulty is
that there are an exponentially large number of values in R, that map to a given
value in R,, which might be seen as evidence that a corresponding arithmetic
formula must have large depth. Fortunately, we show how to circumvent this
issue by using an additional homomorphic operation, namely, an enhancement
of ring-switching. In short, we reduce the homomorphic evaluation of the ring
rounding function (from R, to R,) very simply and efficiently to that of several
parallel (batched) evaluations of the integer rounding function (from Z, to Z,).

Suppose we choose some cyclotomic ring S = O, having a mod-q¢ CRT set
C = {c¢j} C S of cardinality exactly | B|. That is, we have a ring embedding from

the product ring ZLBl into Sq, given by u +— >, u; - ¢;. Note that the choice
of the ring S is at our convenience, and need not have any relationship to the
plaintext ring R,. We express the rounding function R, — R, as a sequence of
three steps:

L. Mapu=73u;-bj € Rgto ) ;uj cj €Sy, ie., send the Zs-coefficients of u
(with respect to the decryption basis B) to the Zg-slots of S,.

2. Batch-apply the integer rounding function from Z, to Z,, to the slot values u;,
to get > ujl, - ¢j € Sa. '

3. Invert the map from the first step to obtain [u], =3 |u;], - b; € Ro.

Using batch/SIMD operations [17], the second step is easily achieved using the
fact that S, embeds the product of several copies of the ring Z,, via the CRT
elements c;. That is, we can simultaneously round all the coefficients u; to Zy,
using just one evaluation of an arithmetic procedure over S corresponding to
one for the integer rounding function from Z, to Z,.

We now describe one way of expressing the first and third steps above, in
terms of operations that can be evaluated homomorphically. The first simple
observation is that the function mapping u =3, u;-b; to 3, u; - ¢; is induced
by a Z-linear function L: R — S. Specifically, L simply maps each Z-basis
element b; to c¢;. Now suppose that we choose S so that its largest common
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subring with R is Z, i.e., the indices m, £ are coprime. Then letting T'= R+ S =
Ome =2 R® S be the compositum ring, Lemma yields an S-linear function
L:T — S that coincides with L on R C T, and in particular on u. The ring-
switching procedure from Proposition 23] can homomorphically evaluate any
S-linear function from T to S, and in particular, the function L. Therefore, by
simply embedding R into T, we can homomorphically evaluate L(x) = L(x) by
applying the ring-switching procedure with L.

Unfortunately, there is a major problem with the efficiency of the above ap-
proach: the dimension (over Z) of the compositum ring T is the product of those of
R and S, which are each at least linear in the security parameter. Therefore, repre-
senting and operating on arbitrary elements in 7" requires at least quadratic time.

Efficiently Mapping from B to C. In hindsight, the quadratic runtime of
the above approach should not be a surprise, because we treated L: R — S as
an arbitrary Z-linear transformation, and B, C as arbitrary sets. To do better,
L, B, and C must have some structure we can exploit. Fortunately, they can—if
we choose them carefully. We now describe a way of expressing the first and third
steps above in terms of simple operations that can be evaluated homomorphically
in quasilinear time.

The main idea is as follows: instead of mapping directly from R to S, we
will express L as a sequence of linear transformations L1, ..., L, through several
“hybrid” cyclotomic rings R = H©, HMV . H) = §. For sets B and C with
an appropriate product structure, these transformations will respectively map
Ag = B € H® to some structured subset 4; C H(l), then A; to some structured
subset Ay ¢ H®, and so on, finally mapping A,_; to A, = C ¢ H"). In
contrast to the inefficient method described above, the hybrid rings will be chosen
so that each compositum 7 = H(=1) 4 H® of adjacent rings has dimension
just slightly larger (by only a polylogarithmic factor) than that of R. This is
achieved by choosing the indices of H=1) H® to have large greatest common
divisor, and hence small least common multiple. For example, the indices can
share almost all the same prime divisors (with multiplicity), and have just one
different prime divisor each. Of course, other tradeoffs between the number of
hybrid rings and the dimensions of the compositums are also possible.

The flip side of this approach is that using ring-switching, we can homomor-
phically evaluate only E(®-linear functions L;: H0~Y — H® where E() =
HO=D N H® is the largest common subring of adjacent hybrid rings. Since
each F() is large by design (to keep the compositum T small), this require-
ment is quite strict, yet we still need to construct linear functions L; that se-
quentially map B = Ay to C = A,. To achieve this, we construct all the sets
A; to have appropriate product structure. Specifically, we ensure that for each
i=1,...,r, we have factorizations

Ay =AM -7, A=Al 7, (3)

for some set Z; C E(®, where both A" and A are linearly independent
over B, (Note that for 1 < i < r, each A; needs to factor in two ways over
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two subrings E(~1 and E®) which is why we need two sets A" and A$"t.)
Then, we simply define L; to be an arbitrary E(¥)-linear function that bijectively
maps A% to A", (Note that A, and A" have the same cardinality, because
A;_1 and A; do.) It immediately follows that L; bijectively maps A;_ 1 to A4;,
because

Li(Ai—1) = Li(A™ - Z;) = Li(A™) - Z; = A" - Z;

by E()-linearity and the fact that Z; c E®.
Summarizing the above discusion, we have the following theorem.

Theorem 5.1. Suppose there are cyclotomic rings R = HO HWL . H) =
S and sets A; € H® such that for alli = 1,...,r, we have Aj_; = Aout . 7,
and A; = A™- Z; for some sets Z; C EW = HO=DNH® and A2, A" that are
each EW -linearly independent and of equal cardinality. Then there is a sequence
of ED-linear maps L;: H=Y — HW  for i = 1,...,r, whose composition
L,o---0l4 bijectively maps Ag to A,.

So far we have described how our desired map between plaintert rings R and S
can be expressed as a sequence of linear maps through hybrid rings. In the
context of bootstrapping, for security these plaintext rings typically need to be
embedded in some larger ciphertext rings, because the dimensions of R, S are
not large enough to securely support the very small noise used in bootstrapping.
For example, following Step [ of our bootstrapping procedure (Section ), we
have a ciphertext over the ring R” where R” = O,,» 2 R for some m’ of our
choice that is divisible by m. We need to choose the sequence of hybrid ciphertext
rings so that they admit suitable linear functions that induce the desired ones
on the corresponding plaintert rings. Achieving this is easy; see the full version
for details.

Construction. In the full version we construct hybrid cyclotomic rings R =
HO H®O  H = 8 and sets A; ¢ H® (where Ay = B and A, = C) to
satisfy the following two properties for each i =1,...,7:

1. Each compositum T = H=D 4 H( is not too large, i.e., its dimension is
quasilinear.
2. The sets A;_1, A; factor as described in Equation (3]).

The main ideas are as follows: view R as the top level of a fine-grained cyclotomic
tower, and choose a target ring S as the top level of a fine-grained tower that has
sufficiently many Zg-slots at each level. Consider finest-possible factorizations of
the decryption basis B of R, and of a mod-g CRT set C' of S. Then to define the
hybrid rings and sets A;_1, A;, for each successive hybrid ring we “tear down”
a level from the top of the R-tower and the corresponding component of B, and
“build up” another level from the bottom of the S-tower and the corresponding
component of the CRT set C.
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