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Preface

CRYPTO 2013, the 33rd Annual International Cryptology Conference, was held
August 18–22, 2013, on the campus of the University of California, Santa Bar-
bara. The event was sponsored by the International Association for Cryptologic
Research (IACR) in cooperation with the UCSB Computer Science Department
and the IEEE Computer Society’s Technical Committee on Security and Privacy.

The program represents the recent significant advances in all areas of cryptol-
ogy. Sixty-one papers were included in the program, a record number for IACR
flagship conferences. This two-volume proceedings contains the revised versions
of all the papers. One pair of papers shared a single presentation slot in the
program. There were also two invited talks. On Monday, Cindy Cohn from the
Electronic Frontier Foundation gave a talk entitled “Crypto Wars Part 2 Have
Begun.”On Wednesday, Adam Langley from Google spoke about “Why the Web
Still Runs on RC4,” in a joint session with CHES 2013. To accommodate the
increase in the number of papers, sessions were held throughout Tuesday and
Thursday afternoons. The rump session took place as usual on Tuesday evening,
and was chaired by Dan Bernstein and Tanja Lange.

For the Best Paper Award, the Program Committee (PC) unanimously se-
lected the paper“On the Function Field Sieve and the Impact of Higher Splitting
Probabilities”by Faruk Gologlu, Robert Granger, Gary McGuire and Jens Zum-
bragel.

This year we also awarded a Best Young-Author Paper Award. To be eligible
for the award, all authors of the paper had to either be full-time students or
have received their PhDs in 2011 or later. The award was given to the paper
“Counter-Cryptanalysis: Reconstructing Flame’s New Variant Collision Attack”
by Marc Stevens.

Faced with a large number of high-quality submissions, the PC decided to
significantly increase the number of papers in the program from last year’s 48
papers, at the price of making the program longer and keeping the paper presen-
tations short (20 minutes per paper, including questions and answers). Another
option that was seriously considered was to move to parallel sessions on some of
the days of the conference. This would have allowed for somewhat longer paper
presentations, and an early adjourn on Thursday. In the end, we opted to retain
the single-session format, with the hope of keeping the community more unified
by allowing participants to attend all talks.

The papers were reviewed by a PC consisting of 40 leading researchers in the
field, in addition to the two co-chairs. Each PC member was allowed to submit
one paper, plus an additional one if co-authored with a student. PC-authored
papers were held to higher standards during the review process. Papers were
reviewed in a double-blind fashion. Initially, each paper was assigned to three
reviewers (four for PC-authored papers). During the discussion phase, when
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necessary, extra reviews were solicited. As part of the paper discussion phase, we
held a two-day PC meeting on May 2 and 3, at the AT&T building in downtown
Manhattan.

We strived to ensure that all papers received a fair and objective evaluation
by experts as well as a broader group of PC members. The final decisions were
made based on the reviews and discussion, and taking other factors such as
balance of the program into account.

This year we initiated an early review and rebuttal process, where authors
received preliminary reviews on their submissions about midway through the
review period, and were given the option to comment on the reviews within a
window of several days. The authors’ comments were then taken into account in
the discussions within the PC and in the final reviews. This process was labor-
intensive; however, we feel it was worthwhile, as it resulted in a significantly
better understanding of many submissions.

We would like to sincerely thank the authors of all submissions—those whose
papers made it into the program and those whose papers did not. Our sincere
gratitude also goes out to the PC members, who have invested an incredible
amount of work in reviewing papers, interacting with the authors via the re-
buttal mechanism, and participating in so many discussions on papers, their
contribution, and the state of the art in their fields of expertise. We also sym-
pathize with the occasional frustration from seeing decisions go against personal
recommendations and preferences, in spite of the hard work invested.

We are also indebted to the many external reviewers, who significantly con-
tributed to the comprehensive evaluation of papers. A list of PC members and
external reviewers appears after this note. Despite all our efforts, the list of ex-
ternal reviewers may have errors or omissions; we apologize for that in advance.

We would like to thank Helena Handschuh, the General Chair, for working
closely with us throughout the whole process, providing the much-needed support
in every step, including creating and maintaining the website, and taking care
of all aspects of the conference’s logistics.

Special thanks are due to Shai Halevi, who provided us with unlimited sup-
port of his websubrev software, which we used for the whole conference planning,
paper evaluation, and interaction with PC members and authors. Josh Benaloh,
was our IACR point of contact, always providing timely and informative an-
swers to our questions. Alfred Hofmann and his colleagues at Springer provided
a meticulous service for the timely production of this volume.

Finally, we would like to thank Qualcomm, Microsoft, Google, Good Tech-
nologies, and Cryptography Research Inc. for their generous support.

August 2013 Ran Canetti
Juan A. Garay
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Sebastià Mart́ın, Carles Padró, and An Yang
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Practical Bootstrapping in Quasilinear Time�

Jacob Alperin-Sheriff and Chris Peikert

School of Computer Science, Georgia Institute of Technology

Abstract. Gentry’s “bootstrapping” technique (STOC 2009) constructs
a fully homomorphic encryption (FHE) scheme from a “somewhat homo-
morphic” one that is powerful enough to evaluate its own decryption func-
tion. To date, it remains the only knownway of obtaining unboundedFHE.
Unfortunately, bootstrapping is computationally very expensive, despite
the great deal of effort that has been spent on improving its efficiency. The
current state of the art, due to Gentry, Halevi, and Smart (PKC 2012), is
able to bootstrap “packed” ciphertexts (which encrypt up to a linear num-
ber of bits) in time only quasilinear Õ(λ) = λ · logO(1) λ in the security
parameter. While this performance is asymptotically optimal up to loga-
rithmic factors, the practical import is less clear: the procedure composes
multiple layers of expensive and complex operations, to the point where
it appears very difficult to implement, and its concrete runtime appears
worse than those of prior methods (all of which have quadratic or larger
asymptotic runtimes).

In this work we give simple, practical, and entirely algebraic algo-
rithms for bootstrapping in quasilinear time, for both “packed” and
“non-packed” ciphertexts. Our methods are easy to implement
(especially in the non-packed case), and we believe that they will be
substantially more efficient in practice than all prior realizations of boot-
strapping. One of our main techniques is a substantial enhancement of
the “ring-switching” procedure of Gentry et al. (SCN 2012), which we ex-
tend to support switching between two rings where neither is a subring of
the other. Using this procedure, we give a natural method for homomor-
phically evaluating a broad class of structured linear transformations,
including one that lets us evaluate the decryption function efficiently.

1 Introduction

Bootstrapping, a central technique from the breakthrough work of Gentry [8, 7]
on fully homomorphic encryption (FHE), converts a sufficiently powerful “some-
what homomorphic” encryption (SHE) scheme into a fully homomorphic one.

� This material is based upon work supported by the National Science Foundation un-
der CAREER Award CCF-1054495, by the Alfred P. Sloan Foundation, and by the
Defense Advanced Research Projects Agency (DARPA) and the Air Force Research
Laboratory (AFRL) under Contract No. FA8750-11-C-0098. The views expressed
are those of the authors and do not necessarily reflect the official policy or position
of the National Science Foundation, the Sloan Foundation, DARPA or the U.S. Gov-
ernment.

R. Canetti and J.A. Garay (Eds.): CRYPTO 2013, Part I, LNCS 8042, pp. 1–20, 2013.
c© International Association for Cryptologic Research 2013
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(An SHE scheme can support a bounded number of homomorphic operations on
freshly generated ciphertexts, whereas an FHE scheme has no such bound.) In
short, bootstrapping works by homomorphically evaluating the SHE scheme’s de-
cryption function on a ciphertext that cannot support any further homomorphic
operations. This has the effect of “refreshing” the ciphertext, i.e., it produces
a new one that encrypts the same message and can handle more homomorphic
operations. Bootstrapping remains the only known way to achieve unbounded
FHE, i.e., a scheme that can homomorphically evaluate any efficient function
using keys and ciphertexts of a fixed size.1

In order to be “bootstrappable,” an SHE scheme must be powerful enough
to homomorphically evaluate its own decryption function, using whatever ho-
momorphic operations it supports. For security reasons, the key and ciphertext
sizes of all known SHE schemes grow with the depth and, to a lesser extent,
the size of the functions that they can homomorphically evaluate. For instance,
under plausible hardness conjectures, the key and ciphertext sizes of the most
efficient SHE scheme to date [3] grow quasilinearly in both the supported mul-
tiplicative depth d and the security parameter λ, i.e., as Õ(d · λ). Clearly, the
runtime of bootstrapping must also grow with the sizes of the keys, ciphertexts,
and decryption function. This runtime is perhaps the most important measure
of efficiency for FHE, because bootstrapping is currently the biggest bottleneck
by far in instantiations, both in theory and in practice.

The past few years have seen an intensive study of different forms of de-
cryption procedures for SHE schemes, and their associated bootstrapping oper-
ations [8, 7, 18, 10, 4, 9, 3, 13]. The first few bootstrapping methods had mod-
erate polynomial runtimes in the security parameter λ, e.g., Õ(λ4). Brakerski,
Gentry, and Vaikuntanathan [3] gave a major efficiency improvement, reducing
the runtime to Õ(λ2). They also gave an amortized method that bootstraps
Ω̃(λ) ciphertexts at once in Õ(λ2) time, i.e., quasilinear runtime per ciphertext.
However, these results apply only to “non-packed” ciphertexts, i.e., ones that
encrypt essentially just one bit each, which combined with the somewhat large
runtimes makes these methods too inefficient to be used very much in prac-
tice. Most recently, Gentry, Halevi, and Smart [12] achieved bootstrapping for
“packed” ciphertexts (i.e., ones that encrypt up to Ω̃(λ) bits each) in quasilinear
Õ(λ) runtime, which is asymptotically optimal in space and time, up to poly-
logarithmic factors. For this they relied on a general “compiler” from another
work of theirs [13], which achieved SHE/FHE for sufficiently wide circuits with
polylogarithmic multiplicative “overhead,” i.e., cost relative to evaluating the
circuit “in the clear.”

Bootstrapping and FHE in quasi-optimal time and space is a very attractive
and powerful theoretical result. However, the authors of [13, 12] caution that
their constructions may have limited potential for use in practice, for two main

1 This stands in contrast with leveled FHE schemes, which can homomorphically eval-
uate a function of any a priori bounded depth, but using keys and ciphertexts whose
sizes depend on the bound. Leveled FHE can be constructed without resorting to
bootstrapping [3].
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reasons: first, the runtimes, while asymptotically quasilinear, include very large
polylogarithmic factors. For realistic values of the security parameter, these poly-
logarithmic terms exceed the rather small (but asymptotically worse) quasilinear
overhead obtained in [3]. The second reason is that their bootstrapping oper-
ation is algorithmically very complex and difficult to implement (see the next
paragraphs for details). Indeed, while there are now a few working implementa-
tions of bootstrapping (e.g., [10, 6]) that follow the templates from [8, 7, 18, 3],
we are not aware of any attempt to implement any method having subquadratic
runtime.

Is quasilinear efficient? The complexity and large practical overhead of the
constructions in [13, 12] arise from two kinds of operations. First, the main
technique from [13] is a way of homomorphically evaluating any sufficiently
shallow and wide arithmetic circuit on a “packed” ciphertext that encrypts a
high-dimensional vector of plaintexts in multiple “slots.” It works by first using
ring automorphisms and key-switching operations [4, 3] to obtain a small, fixed
set of “primitive” homomorphic permutations on the slots. It then composes
those permutations (along with other homomorphic operations) in a log-depth
permutation network, to obtain any permutation. Finally, it homomorphically
evaluates the desired circuit by combining appropriate permutations with rela-
tively simple homomorphic slot-selection and ring operations.

In the context of bootstrapping, one of the key observations from [12] is that
a main step of the decryption procedure can be evaluated using the above tech-
nique. Specifically, they need an operation that moves the coefficients of an en-
crypted plaintext polynomial, reduced modulo a cyclotomic polynomial Φm(X),
into the slots of a packed ciphertext (and back again). Once the coefficients are
in the slots, they can be rounded in a batched (SIMD) fashion, and then mapped
back to coefficients of the plaintext. The operations that move the coefficients
into slots and vice-versa can be expressed as O(log λ)-depth arithmetic circuits
of size O(λ log λ), roughly akin to the classic FFT butterfly network. Hence they
can be evaluated homomorphically with polylogarithmic overhead, using [13].
However, as the authors of [12] point out, the decryption circuit is quite large
and complex – especially the part that moves the slots back to the coefficients,
because it involves reduction modulo Φm(X) for an m having several prime
divisors. This modular reduction is the most expensive part of the decryption
circuit, and avoiding it is one of the main open problems given in [12]. However,
even a very efficient decryption circuit would still incur the large polylogarithmic
overhead factors from the techniques of [13].

1.1 Our Contributions

We give a new bootstrapping algorithm that runs in quasilinear Õ(λ) time per
ciphertext with small polylogarithmic factors, and is algorithmically much sim-
pler than previous methods. It is easy to implement, and we believe that it will
be substantially more efficient in practice than all prior methods. We provide a
unified bootstrapping procedure that works for both “non-packed” ciphertexts
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(which encrypt integers modulo some p, e.g., bits) and “packed” ciphertexts
(which encrypt elements of a high-dimensional ring), and also interpolates be-
tween the two cases to handle an intermediate concept we call “semi-packed”
ciphertexts.

Our procedure for non-packed ciphertexts is especially simple and efficient.
In particular, it can work very naturally using only cyclotomic rings having

power-of-two index, i.e., rings of the form Z[X ]/(1 + X2k), which admit very
fast implementations. This improves upon the method of [3], which achieves
quasilinear amortized runtime when bootstrapping Ω̃(λ) non-packed ciphertexts
at once. Also, while that method can also use power-of-two cyclotomics, it can
only do so by emulating Z2 (bit) arithmetic within Zp for some moderately large
prime p, which translates additions in Z2 into much more costly multiplications
in Zp. By contrast, our method works “natively” with any plaintext modulus.

For packed ciphertexts, our procedure draws upon high-level ideas from [13,
12], but our approach is conceptually and technically very different. Most impor-
tantly, it completely avoids the two main inefficiencies from those works: first,
unlike [13], we do not use permutation networks or any explicit permutations of
the plaintext slots, nor do we rely on a general-purpose compiler for homomor-
phically evaluating arithmetic circuits. Instead, we give direct, practically effi-
cient procedures for homomorphically mapping the coefficients of an encrypted
plaintext element into slots and vice-versa. In particular, our procedure does
not incur the large cost or algorithmic complexity of homomorphically reducing
modulo Φm(X), which was the main bottleneck in the decryption circuit of [12].

At a higher level, our bootstrapping method has two other attractive and
novel features: first, it is entirely “algebraic,” by which we mean that the full
procedure (including generation of all auxiliary data it uses) can be described as
a short sequence of elementary operations from the “native instruction set” of
the SHE scheme. By contrast, all previous methods at some point invoke rather
generic arithmetic circuits, e.g., for modular addition of values represented as
bit strings, or reduction modulo a cyclotomic polynomial Φm(X). Of course,
arithmetic circuits can be evaluated using the SHE scheme’s native operations,
but we believe that the distinction between “algebraic” and “non-algebraic” is
an important qualitative one, and it certainly affects the simplicity and concrete
efficiency of the bootstrapping procedure.

The second nice feature of our method is that it completely decouples the
algebraic structure of the SHE plaintext ring from that which is needed by the
bootstrapping procedure. In previous methods that use amortization (or “batch-
ing”) for efficiency (e.g., [17, 3, 12]), the ring and plaintext modulus of the SHE
scheme must be chosen so as to provide many plaintext slots. However, this struc-
ture may not always be a natural match for the SHE application’s efficiency or
functionality requirements. For example, the lattice-based pseudorandom func-
tion of [1] works very well with a ring Rq = Zq[X ]/(Xn + 1) where both q and
n are powers of two, but for such parameters Rq has only one slot. Our method
can bootstrap even for this kind of plaintext ring (and many others), while still
using batching to achieve quasilinear runtime.
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1.2 Techniques

At the heart of our bootstrapping procedure are two novel homomorphic oper-
ations for SHE schemes over cyclotomic rings: for non-packed (or semi-packed)
ciphertexts, we give an operation that isolates the message-carrying coefficient(s)
of a high-dimensional ring element; and for (semi-)packed ciphertexts, we give
an operation that maps coefficients to slots and vice-versa.

Isolating coefficients. Our first homomorphic operation is most easily explained
in the context of non-packed ciphertexts, which encrypt single elements of the
quotient ring Zp for some small modulus p, using ciphertexts over some cy-
clotomic quotient ring Rq = R/qR of moderately large degree d = deg(R/Z) =
Õ(λ). We first observe that a ciphertext to be bootstrapped can be reinterpreted
as an encryption of an Rq-element, one of whose Zq-coefficients (with respect to
an appropriate basis of the ring) “noisily” encodes the message, and whose other
coefficients are just meaningless noise terms. We give an simple and efficient ho-
momorphic operation that preserves the meaningful coefficient, and maps all the
others to zero. Having isolated the message-encoding coefficient, we can then ho-
momorphically apply an efficient integer “rounding” function (see [12] and the
full version) to recover the message from its noisy encoding, which completes the
bootstrapping procedure. (Note that it is necessary to remove the meaningless
noise coefficients first, otherwise they would interfere with the correct operation
of the rounding function.)

Our coefficient-isolating procedure works essentially by applying the trace
function TrR/Z : R → Z to the plaintext. The trace is the “canonical” Z-linear
function from R to Z, and it turns out that for the appropriate choice of Z-basis
of R used in decryption, the trace simply outputs (up to some scaling factor) the
message-carrying coefficient we wish to isolate. One simple and very efficient way
of applying the trace homomorphically is to use the “ring-switching” technique
of [11], but unfortunately, this requires the ring-LWE problem [15] to be hard
over the target ring Z, which is clearly not the case. Another way follows from the
fact that TrR/Z equals the sum of all d automorphisms of R; therefore, it can be
computed by homomorphically applying each automorphism and summing the
results. Unfortunately, this method takes at least quadratic Ω(λ2) time, because
applying each automorphism homomorphically takes Ω(λ) time, and there are
d = Ω(λ) automorphisms.

So, instead of inefficiently computing the trace by summing all the automor-
phisms at once, we consider a tower of cyclotomic rings Z = R(0) ⊆ R(1) ⊆ · · · ⊆
R(r) = R, usually written as R(r)/ · · · /R(1)/R(0). Then TrR/Z is the composition

of the individual trace functions TrR(i)/R(i−1) : R(i) → R(i−1), and these traces

are equal to the sums of all automorphisms of R(i) that fix R(i−1) pointwise, of
which there are exactly di = deg(R(i)/R(i−1)) = deg(R(i)/Z)/ deg(R(i−1)/Z).
We can therefore compute each TrR(i)/R(i−1) in time linear in λ and in di;
moreover, the number of trace functions to apply is at most logarithmic in
d = deg(R/Z) = Õ(λ), because each one reduces the degree by a factor of
at least two. Therefore, by ensuring that the degrees of R(r), R(r−1), . . . , R(0)
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decrease gradually enough, we can homomorphically apply the full TrR/Z in

quasilinear time. For example, a particularly convenient choice is to let R(i) be
the 2i+1st cyclotomic ring Z[X ]/(1+X2i) of degree 2i, so that every di = 2, and
there are exactly log2(d) = O(log λ) trace functions to apply.

More generally, when bootstrapping a semi-packed ciphertext we start with
a plaintext value in Rq that noisily encodes a message in Sp, for some subring
S ⊆ R. (The case S = Z corresponds to a non-packed ciphertext.) We show that
applying the trace function TrR/S to the Rq-plaintext yields a new plaintext
in Sq that noisily encodes the message, thus isolating the meaningful part of
the noisy encoding and vanishing the rest. We then homomorphically apply a
rounding function to recover the Sp message from its noisy Sq encoding, which
uses the technique described next.

Mapping coefficients to slots. Our second technique, and main technical inno-
vation, is in bootstrapping (semi-)packed ciphertexts. We enhance the recent
“ring-switching” procedure of [11], and use it to efficiently move “noisy” plain-
text coefficients (with respect to an appropriate decryption basis) into slots for
batch-rounding, and finally move the rounded slot values back to coefficients.
We note that all previous methods for loading plaintext data into slots used the
same ring for the source and destination, and so required the plaintext to come
from a ring designed to have many slots. In this work, we use ring-switching to
go from the SHE plaintext ring to a different ring having many slots, which is
used only temporarily for batch-rounding. This is what allows the SHE plaintext
ring to be decoupled from the rings used in bootstrapping, as mentioned above.

To summarize our technique, we first recall the ring-switching procedure of [11].
It was originally devised to provide moderate efficiency gains for SHE/FHE
schemes, by allowing them to switch ciphertexts from high-degree cyclotomic rings
to subrings of smaller degree (once enough homomorphic operations have been per-
formed to make this secure). We generalize the procedure, showing how to switch
between two rings where neither ring need be a subring of the other. The procedure
has a very simple implementation, and as long as the two rings have a large com-
mon subring, it is also very efficient (e.g., quasilinear in the dimension). Moreover,
it supports, as a side effect, the homomorphic evaluation of any function that is
linear over the common subring. However, the larger the common subring is, the
more restrictive this condition on the function becomes.

We show how our enhanced ring-switching can move the plaintext coefficients
into the slots of the target ring (and back), which can be seen as just evaluating
a certain Z-linear function. Here we are faced with the main technical challenge:
for efficiency, the common subring of the source and destination rings must be
large, but then the supported class of linear functions is very restrictive, and
certainly does not include the Z-linear one we want to evaluate. We solve this
problem by switching through a short sequence of “hybrid” rings, where adjacent
rings have a large common subring, but the initial and final rings have only the
integers Z in common. Moreover, we show that for an appropriately chosen
sequence of hybrid rings, the Z-linear function we want to evaluate is realizable
by a sequence of allowed linear functions between adjacent hybrid rings. Very
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critically, this decomposition requires the SHE scheme to use a highly structured
basis of the ring for decryption. The usual representation of a cyclotomic ring
as Z[X ]/Φm(X) typically does not correspond to such a basis, so we instead
rely on the tensorial decomposition of the ring and its corresponding bases, as
recently explored in [16]. At heart, this is what allows us to avoid the expensive
homomorphic reduction modulo Φm(X), which is one of the main bottlenecks in
previous work [12].2

Stepping back a bit, the technique of switching through hybrid rings and bases
is reminiscent of standard “sparse decompositions” for linear transformations
like the FFT, in that both decompose a complicated high-dimensional trans-
form into a short sequence of simpler, structured transforms. (Here, the simple
transforms are computed merely as a side-effect of passing through the hybrid
rings.) Because of these similarities, we believe that the enhanced ring-switching
procedure will be applicable in other domain-specific applications of homomor-
phic encryption, e.g., signal-processing transforms or statistical analysis.

Organization. Due to space restrictions, this version of the paper omits much
of the algebraic background, several proofs, and some lower-level descriptions
of our procedures; see the full version for complete details. Section 2.1 recalls
some of the algebraic background required for our constructions, and Section 2.2
recalls a standard ring-based SHE scheme and some of its natural homomorphic
operations. Section 3 defines the general bootstrapping procedure. Sections 4
and 5 respectively fill in further details of the two novel homomorphic operations
used in the bootstrapping procedure.

The full version also documents a folklore transformation between two es-
sentially equivalent ways of encoding messages in SHE schemes (namely, the
“least/most significant bit” encodings), describes an integer rounding procedure
that simplifies the one given in [12], and gives some concrete choices of rings
that our method can use in practice.

Acknowledgments. We thank Oded Regev for helpful discussions during the
early stages of this research, and the anonymous CRYPTO’13 reviewers for their
thoughtful comments.

2 Preliminaries

For a positive integer k, we let [k] = {0, . . . , k−1}. For an integer modulus q, we
let Zq = Z/qZ denote the quotient ring of integers modulo q. For integers q, q′,
we define the integer “rounding” function �·�q′ : Zq → Zq′ as �x�q′ = �(q′/q) ·
x� mod q′.

2 The use of more structured representations of cyclotomic rings in [16] was initially
motivated by the desire for simpler and more efficient algorithms for cryptographic
operations. Interestingly, these representations yield moderate efficiency improve-
ments for computations “in the clear,” but dramatic benefits for their homomorphic
counterparts!
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2.1 Algebraic Background

Throughout this work, by “ring” we mean a commutative ring with identity. For
two rings R ⊆ R′, an R-basis of R′ is a set B ⊂ R′ such that every r ∈ R′

can be written uniquely as an R-linear combination of elements of B. For two
rings R,S with a common subring E, an E-linear function L : R→ S is one for
which L(r + r′) = L(r) + L(r′) for all r, r′ ∈ R, and L(e · r) = e · L(r) for all
e ∈ E, r ∈ R. It is immediate that such a function is defined uniquely by its
values on any E-basis of R.

Cyclotomic Rings. For a positive integer m called the index, let Om = Z[ζm]
denote the mth cyclotomic ring, where ζm is an abstract element of order m
over Q. (In particular, we do not view ζm as any particular complex root of
unity.) The minimal polynomial of ζm over Q is the mth cyclotomic polynomial
Φm(X) =

∏
i∈Z∗

m
(X − ωi

m) ∈ Z[X ], where ωm = exp(2π
√
−1/m) ∈ C is the

principal mth complex root of unity, and the roots ωi
m ∈ C range over all the

primitive complexmth roots of unity. Therefore,Om is a ring extension of degree
n = ϕ(m) over Z. (In particular, O1 = O2 = Z.) Clearly, Om is isomorphic to
the polynomial ring Z[X ]/Φm(X) by identifying ζm with X , and has the “power
basis” {1, ζm, . . . , ζn−1

m } as a Z-basis. However, for non-prime-powerm the power
basis can be somewhat cumbersome and inefficient to work with. In Section 2.1
we consider other, more structured bases that are essential to our techniques.

If m|m′, we can view the mth cyclotomic ring Om as a subring of Om′ =
Z[ζm′ ], via the ring embedding (i.e., injective ring homomorphism) that maps

ζm to ζ
m′/m
m′ . The ring extension Om′/Om has degree d = ϕ(m′)/ϕ(m), and also

d automorphisms τi (i.e., automorphisms of Om′ that fix Om pointwise), which
are defined by τi(ζm′) = ζim′ for each i ∈ Z∗

m′ such that i = 1 (mod m). The
trace function Tr = TrOm′/Om

: Om′ → Om can be defined as the sum of these
automorphisms:

TrOm′/Om
(a) =

∑
i

τi(a) ∈ Om.

Notice that Tr is Om-linear by definition. If Om′′/Om′/Om is a tower of ring ex-
tensions, then the trace satisfies the composition property TrOm′′/Om

=
TrOm′/Om

◦TrOm′′/Om′ .
An important element in the mth cyclotomic ring is

g :=
∏

odd prime p|m
(1− ζp) ∈ Om. (1)

Also define m̂ = m/2 ifm is even, otherwise m̂ = m, for any cyclotomic index m.
It is known that g|m̂ (see, e.g., [16, Section 2.5.4]). The following lemma shows
how the elements g in different cyclotomic rings, and the ideals they generate,
are related by the trace function. (See the full version for a proof.)

Lemma 2.1. Let m|m′ be positive integers and let g ∈ R = Om, g
′ ∈ R′ =

Om′ and m̂, m̂′ be as defined above. Then TrR′/R(g
′R′) = (m̂′/m̂) · gR, and in

particular, TrR′/R(g
′) = (m̂′/m̂) · g.
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Later on we use the scaled trace function (m̂/m̂′)TrR′/R, which by the above
lemma maps the ideal g′R to gR, and g′ to g.

Tensorial Decomposition of Cyclotomics. An important fact from algebraic
number theory, used centrally in this work (and in [16]), is the tensorial decompo-
sition of cyclotomic rings (and their bases) in terms of subrings. Let Om1 ,Om2

be cyclotomic rings. Then their largest common subring is Om1 ∩ Om2 = Og

where g = gcd(m1,m2), and their smallest common extension ring, called the
compositum, is Om1 + Om2 = Ol where l = lcm(m1,m2). When considered as
extensions of Og, the ring Ol is isomorphic to the ring tensor product of Om1

and Om2 , written as (sometimes suppressing Og when it is clear from context)

Ol/Og
∼= (Om1/Og)⊗ (Om2/Og).

On the right, the ring tensor product is defined as the set of all Og-linear com-
binations of pure tensors a1⊗ a2, with ring operations defined by Og-bilinearity
and the mixed-product property (a1 ⊗ a2) · (b1 ⊗ b2) = (a1b1) ⊗ (a2b2). The
isomorphism with Ol/Og then simply identifies a1 ⊗ a2 with a1 · a2 ∈ Ol. Note
that any a1 ∈ Om1 corresponds to the pure tensor a1 ⊗ 1, and similarly for any
a2 ∈ Om2 .

The following simple lemma will be central to our techniques.

Lemma 2.2. Letm1,m2 > 0 be integers and g = gcd(m1,m2), l = lcm(m1,m2).
Then for any Og-linear function L̄ : Om1 → Om2 , there is an (efficiently com-
putable) Om2-linear function L : Ol → Om2 that coincides with L̄ on the subring
Om1 ⊆ Ol.

Proof. Write Ol
∼= Om1 ⊗ Om2 , where the common base ring Og is implicit.

Let L : (Om1 ⊗ Om2) → Om2 be the Og-linear function uniquely defined by
L(a1 ⊗ a2) = L̄(a1) · a2 ∈ Om2 for all pure tensors a1 ⊗ a2. Then because
(a1 ⊗ a2) · b2 = a1 ⊗ (a2b2) for any b2 ∈ Om2 by the mixed-product property,
L is also Om2 -linear. Finally, for any a1 ∈ Om1 we have L(a1 ⊗ 1) = L̄(a1) by
construction.

Ideal Factorization and Plaintext Slots. In the full version we recall the
unique factorization of prime integers into prime ideals in cyclotomic rings, and,
following [17], how the Chinese remainder theorem can yield several plaintext
“slots” that embed Zq as a subring, even for composite q.

In brief, for any prime integer p and cyclotomic ring R, the ideal pR factors
as pR =

∏
i p

e
i for some distinct prime ideals pi and some e ≥ 1. Moreover, for

any power q = pr where r ≥ 1, the quotient ring R/prei embeds Zq as a subring.
By the Chinese Remainder Theorem (CRT), the natural ring homomorphism
from Rq to the product ring

⊕
i(R/p

re
i ) is an isomorphism. When the natural

plaintext space of a cryptosystem is Rq, we refer to the quotient rings R/prei as
the plaintext “Zq-slots” (or just “slots”), and use them to store vectors of Zq-
elements via the CRT isomorphism. With this encoding, ring operations in Rq

induce “batch” (or “SIMD”) component-wise operations on the corresponding
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vectors of Zq elements. We note that the CRT isomorphism is easy to compute
in both directions. In particular, to map from a vector of Zq-elements to Rq

just requires knowing a fixed “mod-q CRT set” C = {ci} ⊂ R for which ci =
1 (mod prei ) and ci = 0 (mod prej ) for all j �= i. Such a set can be precomputed
using, e.g., a generalization of the extended Euclidean algorithm.

Product Bases. Our bootstrapping technique relies crucially on certain highly
structured bases and CRT sets, which we call “product bases (sets),” that arise
from towers of cyclotomic rings. Let Om′′/Om′/Om be such a tower, let B′′ =
{b′′j′′} ⊂ Om′′ be any Om′ -basis of Om′′ , and let B′ = {b′j′} ⊂ Om′ be any
Om-basis of Om′ . Then it follows immediately that the product set B′′ · B′ :=
{b′′j′′ · b′j′} ⊂ Om′′ is an Om-basis of Om′′ .3 Of course, for a tower of several
cyclotomic extensions and relative bases, we can obtain product bases that factor
with a corresponding degree of granularity.

In the full version we show that the “powerful” and “decoding” bases of cyclo-
tomic rings R, as defined in [16], admit “finest-possible” product structures, cor-
responding to any desired tower R/ · · · /Z of cyclotomic rings. (Other commonly
used bases of Om, such as the power Z-basis, do not admit such factorizations
unless m is a prime power.) Similarly, we show how to construct CRT sets that
have finest-possible factorizations.

2.2 Ring-Based Homomorphic Cryptosystem

Here we recall a somewhat-homomorphic encryption scheme whose security is
based on the ring-LWE problem [15] in arbitrary cyclotomic rings. For our pur-
poses we focus mainly on its decryption function, though below we also recall its
support for “ring switching” [11]. For further details on its security guarantees,
homomorphic properties, and efficient implementation, see [15, 5, 3, 14, 11, 16].

Let R = Om ⊆ R′ = Om′ be respectively the mth and m′th cyclotomic
rings, where m|m′. The plaintext ring is the quotient ring Rp for some integer
p; ciphertexts are made up of elements of R′

q for some integer q, which for
simplicity we assume is divisible by p; and the secret key is some s ∈ R′. The
case m = 1 corresponds to “non-packed” ciphertexts, which encrypt elements
of Zp (e.g., single bits), whereas m = m′ corresponds to “packed” ciphertexts,
and 1 < m < m′ corresponds to what we call “semi-packed” ciphertexts. Note
that without loss of generality we can treat any ciphertext as packed, since R′

p

embeds Rp. But the smaller m is, the simpler and more practically efficient our
bootstrapping procedure can be. Since our focus is on refreshing ciphertexts that
have large noise rate, we can think of m′ as being somewhat small (e.g., in the
several hundreds) via ring-switching [11], and q also as being somewhat small
(e.g., in the several thousands) via modulus-switching. Our main focus in this
work is on a plaintext modulus p that is a power of two, though for generality
we present all our techniques in terms of arbitrary p.

3 Formally, this basis is a Kronecker product of the bases B′′ and B′, which is typically
written using the ⊗ operator. We instead use · to avoid confusion with pure tensors
in a ring tensor product, which the elements of B′′ ·B′ may not necessarily be.
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A ciphertext encrypting a message μ ∈ Rp under secret key s′ ∈ R′ is some
pair c′ = (c′0, c

′
1) ∈ R′

q ×R′
q satisfying the relation

c′0 + c′1 · s′ =
q

p
· μ+ e′ (mod qR′) (2)

for some error (or “noise”) term e′ ∈ R′ such that e′ · g′ ∈ g′R′ is sufficiently
“short,” where g′ ∈ R′ is as defined in Equation (1).4 Informally, the “noise rate”
of the ciphertext is the ratio of the “size” of e′ (or more precisely, the magnitude
of its coefficients in a suitable basis) to q/p.

We note that Equation (2) corresponds to what is sometimes called the
“most significant bit” (msb) message encoding, whereas somewhat-homomorphic
schemes are often defined using “least significant bit” (lsb) encoding, in which p
and q are coprime and c′0+c′1s

′ = e′ (mod qR′) for some error term e′ ∈ μ+pR′.
For our purposes the msb encoding is more natural, and in any case the two
encodings are essentially equivalent; see the full version for details.

Decryption. At a high level, the decryption algorithm works in two steps: the
“linear” step simply computes v′ = c′0 + c′1 · s′ = q

p · μ + e′ ∈ R′
q, and the

“non-linear” step outputs �v′�p ∈ Rp using a certain “ring rounding function”
�·�p : R′

q → Rp. As long as the error term e′ is within the tolerance of the
rounding function, the output will be μ ∈ Rp. This is all entirely analogous
to decryption in LWE-based systems, but here the rounding is n-dimensional,
rather than just from Zq to Zp.

Concretely, the ring rounding function �·�p : R′
q → Rp is defined in terms of

the integer rounding function �·�p : Zq → Zp and a certain “decryption” Z-basis

B′ = {bj} of R′, as follows.5 Represent the input v′ ∈ R′
q in the decryption

basis as v′ =
∑

j v
′
j · b′j for some coefficients v′j ∈ Zq, then independently round

the coefficients, yielding an element
∑
�v′j�p · b′j ∈ R′

p that corresponds to the
message μ ∈ Rp (under the standard embedding of Rp into R′

p).

Changing the Plaintext Modulus. We use two operations on ciphertexts
that alter the plaintext modulus p and encrypted message μ ∈ Rp. The first
operation changes p to any multiple p′ = dp, and produces an encryption of

4 Quantitatively, “short” is defined with respect to the canonical embedding of R′,
whose precise definition is not needed in this work. The above system is equivalent to
the one from [16] in which the message, error term, and ciphertext components are all
taken over the “dual” fractional ideal (R′)∨ = (g′/m̂′)R′ in them′th cyclotomic num-
ber field, and the error term has an essentially spherical distribution over (R′)∨. In
that system, decryption is best accomplished using a certain Z-basis of (R′)∨, called
the decoding basis, which optimally decodes spherical errors. The above formulation
is more convenient for our purposes, and simply corresponds with multiplying every-
thing in the system of [16] by an m̂′/g′ factor. This makes e′ · g′ ∈ g′R′ = m̂′(R′)∨)
short and essentially spherical in our formulation. See [15, 16] for further details.

5 In our formulation, the basis B′ is (m̂′/g′) times the decoding basis of (R′)∨. See
Section 2.1 and Footnote 4.
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some μ′ ∈ R′
p′ such that μ′ = μ (mod pR′). To do this, it simply “lifts” the

input ciphertext c′ = (c′0, c
′
1) ∈ (R′

q)
2 to an arbitrary c′′ = (c′′0 , c

′′
1) ∈ (R′

q′)
2

such that c′′j = c′j (mod qR′), where q′ = dq. The second operation applies to an
encryption of a message μ ∈ Rp that is known to be divisible by some divisor d
of p, and produces an encryption of μ/d ∈ Rp/d. The operation actually leaves
the ciphertext c′ unchanged; it just declares the associated plaintext modulus to
be p/d (which affects how decryption is performed).

Ring Switching. We rely heavily on the cryptosystem’s support for switching
ciphertexts to a cyclotomic subring S′ of R′, which as a side-effect homomorphi-
cally evaluates any desired S′-linear function on the plaintext. Notice that the
linear function L is applied to the plaintext as embedded in R′

p; this obviously
applies the induced function on the true plaintext space Rp.

Proposition 2.3 ([11], full version). Let S′ ⊆ R′ be cyclotomic rings. Then
the above-described cryptosystem supports the following homomorphic operation:
given any S′-linear function L : R′

p → S′
p and a ciphertext over R′

q encrypting
(with sufficiently small error term) a message μ ∈ R′

p, the output is a ciphertext
over S′

q encrypting L(μ) ∈ S′
p.

The security of the procedure described in Proposition 2.3 is based on the hard-
ness of the ring-LWE problem in S′, so the dimension of S′ must be sufficiently
large. The procedure itself is quite simple and efficient: it first switches to a
secret key that lies in the subring S′, then it multiplies the resulting ciphertext
by an appropriate fixed element of R′ (which is determined solely by the func-
tion L). Finally, it applies to the ciphertext the trace function TrR′/S′ : R′ → S′.
All of these operations are quasi-linear time in the dimension of R′/Z, and very
efficient in practice. In particular, the trace is a trivial linear-time operation
when elements are represented in any of the bases we use. The ring-switching
procedure increases the effective error rate of the ciphertext by a factor of about
the square root of the dimension of R′, which is comparable to that of a single
homomorphic multiplication. See [11] for further details.

3 Overview of Bootstrapping Procedure

Here we give a high-level description of our bootstrapping procedure. We present
a unified procedure for non-packed, packed, and semi-packed ciphertexts, but
note that for non-packed ciphertexts, Steps 3a and 3c (and possibly 1c) are null
operations, while for packed ciphertexts, Steps 1b, 1c, and 2 are null operations.

Recalling the cryptosystem from Section 2.2, the plaintext ring is Rp and
the ciphertext ring is R′

q, where R = Om ⊆ R′ = Om′ are cyclotomic rings
(so m|m′), and q is a power of p. The procedure also uses a larger cyclotomic
ring R′′ = Om′′ ⊇ R′ (so m′|m′′) to work with ciphertexts that encrypt elements
of the original ciphertext ring R′

q. We can choose m′′ however we like, subject
to the constraints below.
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To obtain quasilinear runtimes and exponential security under standard hard-
ness assumptions, our procedure imposes some mild conditions on the indices
m, m′, and m′′:

– The dimension ϕ(m′′) of R′′ must be quasilinear, so we can represent ele-
ments of R′′ efficiently.

– For Steps 2 and 3, all the prime divisors of m and m′ must be small (i.e.,
polylogarithmic).

– For Step 3, m and m′′/m must be coprime, which implies that m and m′/m
must be coprime also. Note that the former condition is always satisfied
for non-packed ciphertexts (where m = 1). For packed ciphertexts (where
m = m′), the latter condition is always satisfied, which makes it easy to
choose a valid m′′. For semi-packed ciphertexts (where 1 < m < m′), we can
always satisfy the latter condition either by increasingm (at a small expense
in practical efficiency in Step 3), or by effectively decreasing m slightly (at a
possible improvement in practical efficiency); see the full version for details.

The input to the procedure is a ciphertext c′ = (c′0, c
′
1) ∈ (R′

q)
2 that encrypts

some plaintext μ ∈ Rp under a secret key s′ ∈ R′, i.e., it satisfies the relation

v′ = c′0 + c′1 · s′ =
q

p
· μ+ e′ (mod qR′)

for some small enough error term e′ ∈ R′. The procedure computes a new encryp-
tion of �v�p = μ (under some secret key, not necessarily s′) that has substantially
smaller noise rate than the input ciphertext. It proceeds as follows (explanatory
remarks appear in italics):

1. Convert c′ to a “noiseless” ciphertext c′′ over a large ring R′′
Q that encrypts a

plaintext (g′/g)u′ ∈ R′
q′ , where g

′ ∈ R′, g ∈ R are as defined in Equation (1),
q′ = (m̂′/m̂)q, and u′ = v′ (mod qR′). This proceeds in the following sub-
steps (see Section 3.1 for further details).
Note that g′/g ∈ R′ by definition, and that (g′/g)|(m̂′/m̂).
(a) Reinterpret c′ as a noiseless encryption of v′ = q

p · μ + e′ ∈ R′
q as a

plaintext, noting that both the plaintext and ciphertext rings are now
taken to be R′

q.
This is purely a conceptual change in perspective, and does not involve

any computation.
(b) Using the procedure described in Section 2.2, change the plaintext (and

ciphertext) modulus to q′ = (m̂′/m̂)q, yielding a noiseless encryption of
some u′ ∈ R′

q′ such that u′ = v′ (mod qR′).
Note that this step is a null operation if the original ciphertext was

packed, i.e., if m = m′.
Weneed to increase theplaintextmodulus becausehomomorphically com-

putingTrR′/R in Step 2 below introduces an m̂′/m̂ factor into the plaintext,
which we will undo by scaling the plaintext modulus back down to q.

(c) Multiply the ciphertext from the previous step by (g′/g) ∈ R′, yielding
a noiseless encryption of plaintext (g′/g)u′ ∈ R′

q′ .
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The factor (g′/g) ∈ R′ is needed when we homomorphically compute
TrR′/R in Step 2 below. Note that g′/g = 1 if and only if every odd prime
divisor of m′ also divides m, e.g., if m = m′.

(d) Convert to a noiseless ciphertext c′′ that still encrypts (g′/g)u′ ∈ R′
q′ ,

but using a large enough ciphertext ring R′′
Q for some R′′ = Om′′ ⊇ R′

and modulus Q� q′.
A larger ciphertext ring R′′

Q is needed for security in the upcoming
homomorphic operations, to compensate for the low noise rates that will
need to be used. These operations will expand the initial noise rate by a
quasipolynomial λO(log λ) factor in total, so the dimension of R′′ and the
bit length of Q can be Õ(λ) and Õ(1), respectively.

The remaining steps are described here only in terms of their effect on the plain-
text value and ring. Using ring- and modulus-switching, the ciphertext ring R′′

and modulus Qmay be made smaller as is convenient, subject to the security and
functionality requirements. (Also, the ciphertext ring implicitly changes during
Steps 3a and 3c.)

2. Homomorphically apply the scaled trace function (m̂/m̂′)TrR′/R to the en-
cryption of (g′/g)u′ ∈ R′

q′ , to obtain an encryption of plaintext

u =
m̂

m̂′ · TrR′/R

(g′
g
· u′
)
=
q

p
· μ+ e ∈ Rq

for some suitably small error term e ∈ R. See Section 4 further details.
This step changes the plaintext ring from R′

q′ to Rq, and homomorphically
isolates the noisy Rq-encoding of μ. It is a null operation if the original
ciphertext was packed, i.e., if m = m′.

3. Homomorphically apply the ring rounding function �·�p : Rq → Rp, yield-
ing an output ciphertext that encrypts �u�p = μ ∈ Rp. This proceeds in
three sub-steps, all of which are applied homomorphically (see Section 5 for
details):
(a) Map the coefficients uj of u ∈ Rq (with respect to the decryption basis B

of R) to the Zq-slots of a ring Sq, where S is a suitably chosen cyclotomic.
This step changes the plaintext ring from Rq to Sq. It is a null operation
if the original ciphertext was non-packed (i.e., if m = 1), because we can
let S = R = Z.

(b) Batch-apply the integer rounding function �·� : Zq → Zp to the Zq-slots
of Sq, yielding a ciphertext that encrypts the values μj = �uj�p ∈ Zp in
its Zp-slots.

This step changes the plaintext ring from Sq to Sp. It constitutes
the only non-linear operation on the plaintext, with multiplicative depth
�lg p� · (logp(q)− 1) ≈ log(q), and as such is the most expensive in terms
of runtime, noise expansion, etc.

(c) Reverse the map from the step 3a, sending the values μj from the Zp-
slots of Sp to coefficients with respect to the decryption basis B of Rp,
yielding an encryption of μ =

∑
j μjbj ∈ Rp.
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This step changes the plaintext ring from Sp to Rp. Just like step 3a,
it is a null operation for non-packed ciphertexts.

In the full version we describe a few minor variants and practical optimizations
of our basic procedure.

3.1 Obtaining a Noiseless Ciphertext

Step 1 of our bootstrapping procedure is given as input a ciphertext c′ = (c′0, c′1)
over R′

q that encrypts (typically with a high noise rate) a message μ ∈ Rp under
key s′ ∈ R, i.e., v′ = c′0 + c′1 · s′ = q

p · μ+ e′ ∈ R′
q for some error term e′. We first

change our perspective and view c′ as a “noiseless” encryption (still under s′)
of the plaintext value v′ ∈ R′

q, taking both the plaintext and ciphertext rings to
be R′

q. This view is indeed formally correct, because

c′0 + c′1 · s′ =
q

q
· v′ + 0 (mod qR′).

Next, in preparation for the upcoming homomorphic operations we increase the
plaintext (and ciphertext) modulus to q′, and multiply the resulting ciphertext
by g′/g. These operations clearly preserve noiselessness. Finally, we convert the
ciphertext ring to R′′

Q for a sufficiently large cyclotomic R′′ ⊇ R′ and modulus
Q� q that is divisible by q. This is done simply by embedding R′ into R′′ and
introducing extra precision, i.e., scaling the ciphertext up by a Q/q factor. It is
easy to verify that these operations also preserve noiselessness.

4 Homomorphic Trace

Here we show how to perform Step 2 of our bootstrapping procedure, which
homomorphically evaluates the scaled trace function (m̂/m̂′)TrR′/R on an en-
cryption of (g′/g)u′ ∈ R′

q′ , where recall that: g′ ∈ R′, g ∈ R are as defined in
Equation (1), and (g′/g) divides (m̂′/m̂); the plaintext modulus is q′ = (m̂′/m̂)q;
and

u′ = v′ =
q

p
· μ+ e′ (mod qR′),

where e′ · g′ ∈ g′R′ is sufficiently short. Our goal is to show that:

1. the scaled trace of the plaintext (g′/g)u′ is some u = q
p · μ+ e ∈ Rq, where

e · g ∈ gR is short, and
2. we can efficiently homomorphically apply the scaled trace on a ciphertext c′′

over some larger ring R′′ = Om′′ ⊇ R′.

4.1 Trace of the Plaintext

We first show the effect of the scaled trace on the plaintext (g′/g)u′ ∈ R′
q′ . By

the above description of u′ ∈ R′
q′ and the fact that (g′/g)q divides q′ = (m̂′/m̂)q,

we have

(g′/g)u′ = (g′/g)v′ = (g′/g)
(
q

p
· μ+ e′

)
(mod (g′/g)qR′).
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Therefore, letting Tr = TrR′/R, by R-linearity of the trace and Lemma 2.1, we
have

Tr((g′/g)u′) = Tr(g′/g) · q
p
· μ+Tr(e′ · g′)/g

=
m̂′

m̂

(
q

p
· μ+ e

)
(mod q′R),

where e = (m̂/m̂′)Tr(e′ · g′)/g ∈ R. Therefore, after scaling down the plaintext
modulus q′ by an m̂′/m̂ factor (see Section 2.2), the plaintext is q

p · μ+ e ∈ Rq.

Moreover, e · g = (m̂/m̂′)Tr(e′ · g′) ∈ gR is short because e′ · g′ ∈ g′R′ is
short; see, e.g., [11, Corollary 2.2]. In fact, by basic properties of the decod-
ing/decryption basis (as defined in [16]) under the trace, the coefficient vector
of e with respect to the decryption basis of R is merely a subvector of the co-
efficient vector of e′ with respect to the decryption basis of R′. Therefore, e is
within the error tolerance of the rounding function on Rq, assuming e′ is within
the error tolerance of the rounding function on R′

q.

4.2 Applying the Trace

Now we show how to efficiently homomorphically apply the scaled trace function
(m̂/m̂′)TrR′/R to an encryption of any plaintext in R′

q′ that is divisible by (g′/g).
Note that this condition ensures that the output of the trace is a multiple of
m̂/m̂′ in Rq′ (see Lemma 2.1), making the scaling a well-defined operation that
results in an element of Rq.

First recall that TrR′/R is the sum of all ϕ(m′)/ϕ(m) automorphisms of R′/R,
i.e., automorphisms of R′ that fix R pointwise. So as mentioned in the introduc-
tion, one way of homomorphically computing the scaled trace is to homomor-
phically apply the proper automorphisms, sum the results, and scale down the
plaintext and its modulus. While this “sum-automorphisms” procedure yields
the correct result, computing the trace in this way does not run in quasilinear
time, unless the number ϕ(m′)/ϕ(m) of automorphisms is only polylogarithmic.

Instead, we consider a sufficiently fine-grained tower of cyclotomic rings

R(r)/ · · · /R(1)/R(0),

where R′ = R(r), R = R(0), and each R(i) = Omi , where mi is divisible by mi−1

for i > 0. E.g., for the finest granularity we would choose the tower so that every
mi/mi−1 is prime. Notice that the scaled trace function (m̂/m̂′)TrR′/R is the
composition of the scaled trace functions (m̂i−1/m̂i)TrR(i)/R(i−1) , and that g′/g
is the product of all g(i)/g(i−1) for i = 1, . . . , r, where g(i) ∈ R(i) is as defined
in Equation (1). So, another way of homomorphically applying the full scaled
trace is to apply the corresponding scaled trace in sequence for each level of
the tower, “climbing down” from R′ = R(r) to R = R(0). In particular, if we
use the above sum-automorphisms procedure with a tower of finest granularity,
then there are at most log2(m

′/m) = O(log λ) levels, and since we have assumed



Practical Bootstrapping in Quasilinear Time 17

that every prime divisor of m′/m is bounded by polylogarithmic in the security
parameter λ, the full procedure will run in quasilinear Õ(λ) time.

In the full version we give all the details of the sum-automorphisms procedure
sketched above, as well as an alternative procedure using ring-switching that is
preferable in certain cases.

5 Homomorphic Ring Rounding

In this section we describe how to efficiently homomorphically evaluate the “ring
rounding function” �·�p : Rq → Rp, where R = Om is the mth cyclotomic ring.
Conceptually, we follow the high-level strategy from [12], but instantiate it with
very different technical components. Recall from Section 2.2 that the rounding
function expresses its input u in the “decryption” Z-basis B = {bj} of R, as u =∑

j uj ·bj for uj ∈ Zq, and outputs �u�p :=
∑

j�uj�p ·bj ∈ Rp. Unlike with integer
rounding from Zq to Zp, it is not clear whether this rounding function has a low-
depth arithmetic formula using just the ring operations of R. One difficulty is
that there are an exponentially large number of values in Rq that map to a given
value in Rp, which might be seen as evidence that a corresponding arithmetic
formula must have large depth. Fortunately, we show how to circumvent this
issue by using an additional homomorphic operation, namely, an enhancement
of ring-switching. In short, we reduce the homomorphic evaluation of the ring
rounding function (from Rq to Rp) very simply and efficiently to that of several
parallel (batched) evaluations of the integer rounding function (from Zq to Zp).

Suppose we choose some cyclotomic ring S = O� having a mod-q CRT set
C = {cj} ⊂ S of cardinality exactly |B|. That is, we have a ring embedding from

the product ring Z|B|
q into Sq, given by u �→

∑
j uj · cj . Note that the choice

of the ring S is at our convenience, and need not have any relationship to the
plaintext ring Rq. We express the rounding function Rq → Rp as a sequence of
three steps:

1. Map u =
∑

j uj · bj ∈ Rq to
∑

j uj · cj ∈ Sq, i.e., send the Zq-coefficients of u
(with respect to the decryption basis B) to the Zq-slots of Sq.

2. Batch-apply the integer rounding function from Zq to Zp to the slot values uj ,
to get

∑
j�uj�p · cj ∈ S2.

3. Invert the map from the first step to obtain �u�p =
∑

j�uj�2 · bj ∈ R2.

Using batch/SIMD operations [17], the second step is easily achieved using the
fact that Sq embeds the product of several copies of the ring Zq, via the CRT
elements cj . That is, we can simultaneously round all the coefficients uj to Zp,
using just one evaluation of an arithmetic procedure over S corresponding to
one for the integer rounding function from Zq to Zp.

We now describe one way of expressing the first and third steps above, in
terms of operations that can be evaluated homomorphically. The first simple
observation is that the function mapping u =

∑
j uj · bj to

∑
j uj · cj is induced

by a Z-linear function L̄ : R → S. Specifically, L̄ simply maps each Z-basis
element bj to cj . Now suppose that we choose S so that its largest common
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subring with R is Z, i.e., the indices m, 
 are coprime. Then letting T = R+S =
Om�

∼= R ⊗ S be the compositum ring, Lemma 2.2 yields an S-linear function
L : T → S that coincides with L̄ on R ⊆ T , and in particular on u. The ring-
switching procedure from Proposition 2.3 can homomorphically evaluate any
S-linear function from T to S, and in particular, the function L. Therefore, by
simply embedding R into T , we can homomorphically evaluate L̄(x) = L(x) by
applying the ring-switching procedure with L.

Unfortunately, there is a major problem with the efficiency of the above ap-
proach: the dimension (overZ) of the compositum ring T is the product of those of
R and S, which are each at least linear in the security parameter. Therefore, repre-
senting and operating on arbitrary elements in T requires at least quadratic time.

Efficiently Mapping from B to C. In hindsight, the quadratic runtime of
the above approach should not be a surprise, because we treated L̄ : R → S as
an arbitrary Z-linear transformation, and B,C as arbitrary sets. To do better,
L̄, B, and C must have some structure we can exploit. Fortunately, they can—if
we choose them carefully. We now describe a way of expressing the first and third
steps above in terms of simple operations that can be evaluated homomorphically
in quasilinear time.

The main idea is as follows: instead of mapping directly from R to S, we
will express L̄ as a sequence of linear transformations L̄1, . . . , L̄r through several
“hybrid” cyclotomic rings R = H(0), H(1), . . . , H(r) = S. For sets B and C with
an appropriate product structure, these transformations will respectively map
A0 = B ⊂ H(0) to some structured subsetA1 ⊂ H(1), then A1 to some structured
subset A2 ⊂ H(2), and so on, finally mapping Ar−1 to Ar = C ⊂ H(r). In
contrast to the inefficient method described above, the hybrid rings will be chosen
so that each compositum T (i) = H(i−1) +H(i) of adjacent rings has dimension
just slightly larger (by only a polylogarithmic factor) than that of R. This is
achieved by choosing the indices of H(i−1), H(i) to have large greatest common
divisor, and hence small least common multiple. For example, the indices can
share almost all the same prime divisors (with multiplicity), and have just one
different prime divisor each. Of course, other tradeoffs between the number of
hybrid rings and the dimensions of the compositums are also possible.

The flip side of this approach is that using ring-switching, we can homomor-
phically evaluate only E(i)-linear functions L̄i : H

(i−1) → H(i), where E(i) =
H(i−1) ∩ H(i) is the largest common subring of adjacent hybrid rings. Since
each E(i) is large by design (to keep the compositum T (i) small), this require-
ment is quite strict, yet we still need to construct linear functions L̄i that se-
quentially map B = A0 to C = Ar. To achieve this, we construct all the sets
Ai to have appropriate product structure. Specifically, we ensure that for each
i = 1, . . . , r, we have factorizations

Ai−1 = Aout
i−1 · Zi, Ai = Ain

i · Zi (3)

for some set Zi ⊂ E(i), where both Aout
i−1 and Ain

i are linearly independent

over E(i). (Note that for 1 ≤ i < r, each Ai needs to factor in two ways over
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two subrings E(i−1) and E(i), which is why we need two sets Ain
i and Aout

i .)
Then, we simply define L̄i to be an arbitrary E(i)-linear function that bijectively
maps Aout

i−1 to Ain
i . (Note that Aout

i−1 and Ain
i have the same cardinality, because

Ai−1 and Ai do.) It immediately follows that L̄i bijectively maps Ai−1 to Ai,
because

L̄i(Ai−1) = L̄i(A
out
i−1 · Zi) = L̄i(A

out
i−1) · Zi = Ain

i · Zi

by E(i)-linearity and the fact that Zi ⊂ E(i).
Summarizing the above discusion, we have the following theorem.

Theorem 5.1. Suppose there are cyclotomic rings R = H(0), H(1), . . . , H(r) =
S and sets Ai ⊂ H(i) such that for all i = 1, . . . , r, we have Ai−1 = Aout

i−1 · Zi

and Ai = Ain
i ·Zi for some sets Zi ⊂ E(i) = H(i−1)∩H(i) and Aout

i−1, A
in
i that are

each E(i)-linearly independent and of equal cardinality. Then there is a sequence
of E(i)-linear maps L̄i : H

(i−1) → H(i), for i = 1, . . . , r, whose composition
L̄r ◦ · · · ◦ L̄1 bijectively maps A0 to Ar.

So far we have described how our desired map between plaintext rings R and S
can be expressed as a sequence of linear maps through hybrid rings. In the
context of bootstrapping, for security these plaintext rings typically need to be
embedded in some larger ciphertext rings, because the dimensions of R,S are
not large enough to securely support the very small noise used in bootstrapping.
For example, following Step 2 of our bootstrapping procedure (Section 3), we
have a ciphertext over the ring R′′ where R′′ = Om′′ ⊇ R for some m′′ of our
choice that is divisible bym. We need to choose the sequence of hybrid ciphertext
rings so that they admit suitable linear functions that induce the desired ones
on the corresponding plaintext rings. Achieving this is easy; see the full version
for details.

Construction. In the full version we construct hybrid cyclotomic rings R =
H(0), H(1), . . . , H(r) = S and sets Ai ⊂ H(i) (where A0 = B and Ar = C) to
satisfy the following two properties for each i = 1, . . . , r:

1. Each compositum T (i) = H(i−1) +H(i) is not too large, i.e., its dimension is
quasilinear.

2. The sets Ai−1, Ai factor as described in Equation (3).

The main ideas are as follows: view R as the top level of a fine-grained cyclotomic
tower, and choose a target ring S as the top level of a fine-grained tower that has
sufficiently many Zq-slots at each level. Consider finest-possible factorizations of
the decryption basis B of R, and of a mod-q CRT set C of S. Then to define the
hybrid rings and sets Ai−1, Ai, for each successive hybrid ring we “tear down”
a level from the top of the R-tower and the corresponding component of B, and
“build up” another level from the bottom of the S-tower and the corresponding
component of the CRT set C.
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Abstract. The Short Integer Solution (SIS) and Learning With Errors
(LWE) problems are the foundations for countless applications in lattice-
based cryptography, and are provably as hard as approximate lattice
problems in the worst case. An important question from both a practical
and theoretical perspective is how small their parameters can be made,
while preserving their hardness.

We prove two main results on SIS and LWE with small parameters.
For SIS, we show that the problem retains its hardness for moduli q ≥
β · nδ for any constant δ > 0, where β is the bound on the Euclidean
norm of the solution. This improves upon prior results which required
q > β ·

√
n log n, and is close to optimal since the problem is trivially

easy for q ≤ β. For LWE, we show that it remains hard even when
the errors are small (e.g., uniformly random from {0, 1}), provided that
the number of samples is small enough (e.g., linear in the dimension n
of the LWE secret). Prior results required the errors to have magnitude
at least

√
n and to come from a Gaussian-like distribution.

Keywords: Lattice cryptography, Computational hardness, SIS, LWE.

1 Introduction

In modern lattice-based cryptography, two average-case computational problems
serve as the foundation of almost all cryptographic schemes: Short Integer So-
lution (SIS), and Learning With Errors (LWE). The SIS problem dates back to
Ajtai’s pioneering work [1], and is defined as follows. Let n and q be integers,
where n is the primary security parameter and usually q = poly(n), and let
β > 0. Given a uniformly random matrix A ∈ Zn×m

q for some m = poly(n),
the goal is to find a nonzero integer vector z ∈ Zm such that Az = 0 mod q
and ‖z‖ ≤ β (where ‖·‖ denotes Euclidean norm). Observe that β should be set
large enough to ensure that a solution exists (e.g., β >

√
n log q suffices), but
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that β ≥ q makes the problem trivially easy to solve. Ajtai showed that for ap-
propriate parameters, SIS enjoys a remarkable worst-case/average-case hardness
property: solving it on the average (with any noticeable probability) is at least
as hard as approximating several lattice problems on n-dimensional lattices in
the worst case, to within poly(n) factors.

The LWE problem was introduced in the celebrated work of Regev [26], and
has the same parameters n and q, along with a “noise rate” α ∈ (0, 1). The prob-
lem (in its search form) is to find a secret vector s ∈ Zn

q , given a “noisy” random

linear system A ∈ Zn×m
q , b = AT s + e mod q, where A is uniformly random

and the entries of e are i.i.d. from a Gaussian-like distribution with standard
deviation roughly αq. Regev showed that as long as αq ≥ 2

√
n, solving LWE on

the average (with noticeable probability) is at least as hard as approximating
lattice problems in the worst case to within Õ(n/α) factors using a quantum algo-
rithm. Subsequently, similar results under classical (i.e., non quantum) hardness
assumptions were proved in [23,7].

A significant line of research has been devoted to improving the tightness
of worst-case/average-case connections for lattice problems. For SIS, a series of
works [1,8,16,21,13] gave progressively better parameters that guarantee hard-
ness, and smaller approximation factors for the underlying lattice problems. The
state of the art (from [13], building upon techniques introduced in [21]) shows
that for q ≥ β · ω(

√
n logn), finding a SIS solution with norm bounded by β is

as hard as approximating worst-case lattice problems to within Õ(β
√
n) factors.

(The parameter m does not play any significant role in the hardness results,
and can be any polynomial in n.) For LWE, Regev’s initial result remains the
tightest, and the requirement that q ≥

√
n/α (i.e., that the errors have mag-

nitude at least
√
n) is in some sense optimal: a clever algorithm due to Arora

and Ge [2] solves LWE in time 2Õ(αq)2 , so a proof of hardness for substantially
smaller errors would imply a subexponential time (quantum) algorithm for ap-
proximate lattice problems, which would be a major breakthrough. Interestingly,
the current modulus bound for LWE is in some sense better than the one for
SIS by a Ω̃(

√
n) factor: there are applications of LWE for 1/α = Õ(1) and hence

q = Õ(
√
n), whereas SIS is only useful for β ≥

√
n, and therefore requires q ≥ n

according to the state-of-the-art reductions.
Further investigating the smallest parameters for which SIS and LWE remain

provably hard is important from both a practical and theoretical perspective. On
the practical side, improvements may lead to smaller cryptographic keys without
compromising the theoretical security guarantees, or may provide greater con-
fidence in more practical parameter settings that so far lack provable hardness.
Also, proving the hardness of LWE for non-Gaussian error distributions (e.g.,
uniform over a small set) makes applications easier to implement. Theoretically,
improvements may eventually shed light on related problems like Learning Par-
ity with Noise (LPN), which can be seen as a special case of LWE for modulus
q = 2, and which is widely used in coding-based cryptography, but which has no
known proof of hardness based on worst-case complexity assumptions.
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1.1 Our Results

We prove two complementary results on the hardness of SIS and LWE with small
parameters. For SIS, we show that the problem retains its hardness for moduli
q nearly equal to the solution bound β. For LWE, we show that it remains hard
even when the errors are small (e.g., uniformly random from {0, 1}), provided
that the number m of noisy equations is small enough. This qualification is
necessary in light of the Arora-Ge attack [2], which for large enough m can solve
LWE with binary errors in polynomial time. Details follow.

SIS with small modulus. Our first theorem says that SIS retains its hardness with
a modulus as small as q ≥ β · nδ, for any δ > 0. Recall that the best previous
reduction [13] required q ≥ β · ω(

√
n logn), and that SIS becomes trivially easy

for q ≤ β, so the q obtained by our proof is close to optimal. It also essentially
closes the gap between LWE and SIS, in terms of how small a useful modulus
can be. More precisely, the following is a special case of our main SIS hardness
theorem; see Section 2 for full details.

Theorem 1 (Corollary of Theorem 4). Let n and m = poly(n) be integers,
let β ≥ β∞ ≥ 1 be reals, let Z = {z ∈ Zm : ‖z‖2 ≤ β and ‖z‖∞ ≤ β∞},
and let q ≥ β · nδ for some constant δ > 0. Then solving (on the average, with
non-negligible probability) SIS with parameters n,m, q and solution set Z \ {0}
is at least as hard as approximating lattice problems in the worst case on n-
dimensional lattices to within γ = max{1, β · β∞/q} · Õ(β

√
n) factors.

Of course, the 
∞ bound on the SIS solutions can be easily removed simply
setting β∞ = β, so that ‖z‖∞ ≤ ‖z‖2 ≤ β automatically holds true. We include
an explicit 
∞ bound β∞ ≤ β in order to obtain more precise hardness results,
based on potentially smaller worst-case approximation factors γ. We point out
that the bound β∞ and the associated extra term max{1, β ·β∞/q} in the worst-
case approximation factor is not present in previous results. Notice that this term
can be as small as 1 (if we take q ≥ β ·β∞, and in particular if β∞ ≤ nδ), and as
large as β/nδ (if β∞ = β). This may be seen as the first theoretical evidence that,
at least when using a small modulus q, restricting the 
∞ norm of the solutions
may make the SIS problem qualitatively harder than just restricting the 
2 norm.
There is already significant empirical evidence for this belief: the most practically
efficient attacks on SIS, which use lattice basis reduction (e.g., [12,9]), only find
solutions with bounded 
2 norm, whereas combinatorial attacks such as [5,27]
(see also [22]) or theoretical lattice attacks [10] that can guarantee an 
∞ bound
are much more costly in practice, and also require exponential space. Finally, we
mention that setting β∞ � β is very natural in the usual formulations of one-way
and collision-resistant hash functions based on SIS, where collisions correspond
(for example) to vectors in {−1, 0, 1}m, and therefore have 
∞ bound β∞ = 1,
but 
2 bound β =

√
m. Similar gaps between β∞ and β can easily be enforced

in other applications, e.g., digital signatures [13].

LWE with small errors. In the case of LWE, we prove a general theorem offering a
trade-off among several different parameters, including the size of the errors, the
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dimension and number of samples in the LWE problem, and the dimension of the
underlying worst-case lattice problems. Here we mention just one instantiation
for the case of prime modulus and uniformly distributed binary (i.e., 0-1) errors,
and refer the reader to Section 3 and Theorem 6 for the more general statement
and a discussion of the parameters.

Theorem 2 (Corollary of Theorem 6). For any integers n and m = n ·
(1+Ω(1/ logn)), and all sufficiently large polynomially bounded (prime) moduli
q ≥ nO(1),1 solving LWE with parameters n,m, q and independent uniformly
random binary errors (i.e., in {0, 1}) is at least as hard as approximating lattice
problems in the worst case on Θ(n/ logn)-dimensional lattices within a factor
γ = Õ(

√
n · q).

We remark that our results (see Theorem 6 and discussion following it) apply to
many other settings, including error vectors e ∈ X chosen from any (sufficiently
large) subset X ⊆ {0, 1}m of binary strings, as well as error vectors with larger
entries. Interestingly, our hardness result for LWE with very small errors relies
on the worst-case hardness of lattice problems in dimension n′ = O(n/ log n),
which is smaller than (but still quasi-linear in) the dimension n of the LWE
problem; however, this is needed only when considering very small error vectors.
Theorem 6 also shows that if e is chosen uniformly at random with entries
bounded by nε (which is still much smaller than

√
n), then the dimension of the

underlying worst-case lattice problems (and the number m−n of extra samples,
beyond the LWE dimension n) can be linear in n.

The restriction that the number of LWE samples m = O(n) be linear in
the dimension of the secret can also be relaxed slightly. But some restriction
is necessary, because LWE with small errors can be solved in polynomial time
when given an arbitrarily large polynomial number of samples. We focus on
linear m = O(n) because this is enough for most (but not all) applications in
lattice cryptography, including identity-based encryption and fully homomorphic
encryption, when the parameters are set appropriately. (The one exception that
we know of is the security proof for pseudorandom functions [3].)

We remark that state-of-the-art reductions from worst-case lattice problems
[21,13,26,7] are not tight enough to provide useful estimates on the concrete
security of lattice cryptography, and they are best interpreted as qualitative
results showing that there is no structural flaw in cryptographic construc-
tions/instantiations. Still, these reductions are very valuable because even small
changes in parameters can easily lead to new avenues of attack, like the polyno-
mial time algorithm of [2] to LWE with binary errors. Likewise, our work also

1 Making the asymptotic notation explicit, the theorem asserts that for any constant
c1 > 0 there is a constant c2 > 0 such that if m = n · (1 + c1/ log n) and q ≥ nc2 ,
then LWE with binary errors is hard. Notice that this dependency of the modulus q
on the number of samples m is necessary for the theorem to be nontrivial. In fact,
the LWE function with binary errors maps log qn + m input bits to log qm output
bits. When m = n · (1 + c1/ log n) and q = nc2 the LWE function stretches the
input by log qm − (log qn +m) = (c1c2 − 1− o(1))n bits, and for the theorem to be
useful/nontrivial (and give, e.g., a pseudorandom generator) one needs c1c2 > 1.
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provides results that are primarily qualitative, showing that SIS and LWE are
asymptotically secure even when q ≈

√
n and the errors are small (provided the

number of samples is suitably restricted). The evaluation of the concrete level of
security/efficiency offered by SIS and LWE for specific small parameter values
still requires careful cryptanalysis, and consideration of the best known attacks.
(See, for example, [22,15,9].)

1.2 Techniques and Comparison to Related Work

Our results for SIS and LWE are technically disjoint, and all they have in com-
mon is the goal of proving hardness results for smaller values of the parameters.
So, we describe our technical contributions in the analysis of these two problems
separately.

SIS with small modulus. For SIS, as a warm-up, we first give a proof for a spe-
cial case of the problem where the input is restricted to vectors of a special form
(e.g., binary vectors). For this restricted version of SIS, we are able to give a self-
reduction (from SIS to SIS) which reduces the size of the modulus. So, we can
rely on previous worst-case to average-case reductions for SIS as “black boxes,”
resulting in an extremely simple proof. However, this simple self-reduction has
some drawbacks. Beside the undesirable restriction on the SIS inputs, our reduc-
tion is rather loose with respect to the underlying worst-case lattice approxima-
tion problem: in order to establish the hardness of SIS with small moduli q (and
restricted inputs), one needs to assume the worst-case hardness of lattice prob-
lems for rather large polynomial approximation factors. (By contrast, previous
hardness results for larger moduli [21,13] only assumed hardness for quasi-linear
approximation factors.) We address both drawbacks by giving a direct reduction
from worst-case lattice problems to SIS with small modulus. This is our main SIS
result, and it combines ideas from previous work [21,13] with two new technical
ingredients:

– All previous SIS hardness proofs [1,8,16,21,13] solved worst-case lattice prob-
lems by iteratively finding (sets of linearly independent) lattice vectors of
shorter and shorter length. Our first new technical ingredient (inspired by
the pioneering work of Regev [26] on LWE) is the use a different intermediate
problem: instead of finding progressively shorter lattice vectors, we consider
the problem of sampling lattice vectors according to Gaussian-like distribu-
tions of progressively smaller widths. To the best of our knowledge, this is
the first use of Gaussian lattice sampling as an intermediate worst-case prob-
lem in the study of SIS, and it appears necessary to lower the SIS modulus
below n. We mention that Gaussian lattice sampling has been used before to
reduce the modulus in hardness reductions for SIS [13], but still within the
framework of iteratively finding short vectors (used in [13] to generate fresh
Gaussian samples for the reduction), which results in larger moduli q > n.

– The use of Gaussian lattice sampling as an intermediate problem within the
SIS hardness proof yields linear combinations of several discrete Gaussian
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samples with adversarially chosen coefficients. Our second technical ingre-
dient, used to analyze these linear combinations, is a new convolution the-
orem for discrete Gaussians (Theorem 3), which strengthens similar ones
previously proved in [24,6]. Here again, the strength of our new convolution
theorem appears necessary to obtain hardness results for SIS with modulus
smaller than n.

Our new convolution theorem may be of independent interest, and might find
applications in the analysis of other lattice algorithms.

LWE with small errors. We now move to our results on LWE. For this problem,
the best provably hard parameters to date were those obtained in the origi-
nal paper of Regev [26], which employed Gaussian errors, and required them
to have (expected) magnitude at least

√
n. These results were believed to be

optimal due to a clever algorithm of Arora and Ge [2], which solves LWE in
subexponential time when the errors are asymptotically smaller than

√
n. The

possibility of circumventing this barrier by limiting the number of LWE samples
was first suggested by Micciancio and Mol [18], who gave “sample preserving”
search-to-decision reductions for LWE, and asked if LWE with small uniform
errors could be proved hard when the number of available samples is sufficiently
small. Our results provide a first answer to this question, and employ concepts
and techniques from the work of Peikert and Waters [25] (see also [4]) on lossy
(trapdoor) functions. In brief, a lossy function family is an indistinguishable pair
of function families F ,L such that functions in F are injective and those in L
are lossy, in the sense that they map their common domain to much smaller
sets, and therefore lose information about the input. As shown in [25], from the
indistinguishability of F and L, it follows that the function families F and L are
both one-way.

In the full version of this paper [20] we present a generalized framework for
the study of lossy function families, which does not require the functions to have
trapdoors, and applies to arbitrary (not necessarily uniform) input distributions.
While the techniques we use are all standard, and our definitions are minor
generalizations of the ones given in [25], we believe that our framework provides
a conceptual simplification of previous work, relating the relatively new notion
of lossy functions to the classic security definitions of second-preimage resistance
and uninvertibility.

The lossy function framework is used to prove the hardness of LWE with
small uniform errors and (necessarily) a small number of samples. Specifically,
we use the standard LWE problem (with large Gaussian errors) to set up a lossy
function family F ,L. (Similar families with trapdoors were constructed in [25,4],
but not for the parameterizations required to obtain interesting hardness results
for LWE.) The indistinguishability of F and L follows directly from the hardness
of the underlying LWE problem. The new hardness result for LWE (with small
errors) is equivalent to the one-wayness of F , and is proved by a relatively
standard analysis of the second-preimage resistance and uninvertibility of certain
subset-sum functions associated to L.
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Our results, as well as previous work based on lossyness arguments, relies to
some extent on the entropy in the secret vector. For simplicity, we specialize our
analysis to the uniform input distribution (over arbitrary sets of short vectors),
which makes counting arguments and entrody arguments essentially the same.
Our results do generalize without much difficulty to other non-uniform distribu-
tions having sufficient min-entropy (unpredictability) over input sets with small
diameter.

Comparison to related work. In a recent and independent work Döttling and
Müller-Quade [11] also used a lossyness argument to prove new hardness results
for LWE. Beside the use of a similar high level lossyness argument, the technical
details of the proof are quite different, and the results are different as well.
Just like our work, [11] proves hardness for uniformly distributed errors, and
requires the number ofm of samples to be fixed in advance. However, [11] requires
the noise bound to be bigger than

√
n (in fact, at least m

√
n, where m is the

number of samples,) while in our work the errors can be smaller than
√
n, or even

binary. On the other hand, when the magnitude of the errors is large
√
nm �√

n, [11] allows the number of samples m = nO(1) to be an arbitrary large
polynomial, while here we require it to be linear m = Θ(n). Another (more
technical) difference between the two results is that our proof is based on a fairly
general counting argument that allows error distributions that are uniform over
arbitrary sets (of short vectors), while [11] only applies to uniform distributions
over more structured sets, e.g., all vectors within a regularly shaped convex
region of space.

1.3 Notation and Background

We briefly recall the (mostly standard) notation and background used in this pa-
per, and refer the reader to the full version [20] for a more detailed account. We
use standard asymptotic notation O, Õ,Ω, o, ω, and write ωn as an abbreviation
for ω(

√
logn). We write [X ] to denote the support of a probability distribution

X , and U(X) for the uniform distribution over a set X . We assume familiarity
with the notion of computational indistinguishability, and standard notions of
security for function families, like collision resistance, one-wayness, uninvertibil-
ity, second-preimage resistance, and pseudorandomness. A lossy function family
(slightly generalizing the concept of lossy trapdoor functions introduced in [25])
is a pair of computationally indistinguishable probability distributions L,F over
(descriptions of) functions F ⊆ X → Y , such that L is an uninvertible function
family, and F is a second preimage resistant function family, both with respect
to some input distribution X over the domain X . It easily follows from the
definition that both F and L are one-way function families with respect to input
X . A function family L is uninvertible with respect to the uniform distribution
X = U(X) if (and only if) the expectation Ef←L[|f(X)|]/|X | is negligible. More-
over, if F : X → Y is uninvertible (with respect to input distribution X ) and
G : Y → Z is an arbitrary function family, then the composition G ◦ F : X → Z
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(defined in the obvious way, as the result of sampling two functions from G
and F independently at random, and taking their function composition) is also
uninvertible on input X .

An n-dimensional (full rank) lattice is the set Λ of integer combinations of
n linearly independent (basis) vectors b1, . . . , bn ∈ Rn. The (decision version of
the) Shortest Vector Problem, GapSVPγ asks to approximate within a factor
γ the (Euclidean) length of the shortest nonzero vector in the lattice generated
by an input basis B = [b1, . . . , bn]. The Shortest Independent Vectors Problem
SIVPγ asks to find n linearly independent lattice vectors v1, . . . ,vn of length
maxi ‖vi‖ ≤ γλn within a factor γ from the optimum value λn. The Gram-

Schmidt minimum of a lattice Λ is b̃l(Λ) = minB‖B̃‖, where b̃i is projection of
bi orthogonal to span(b1, . . . , bi−1), and B = [b1, . . . , bn] ranges over all possible
bases of Λ.

The Gaussian function ρs(x) = exp(−π‖x‖2/s2) defines a discrete Gaussian
distribution DΛ+c,s over a lattice coset Λ+ c, which samples each element x ∈
Λ+ c with probability ρs(x)/ρs(Λ+ c). For any (typically negligible) ε > 0, the
smoothing parameter ηε(Λ) [21] is the smallest s > 0 such that ρ1/s(Λ

∗\{0}) ≤ ε,
where Λ∗ = {x : ∀y ∈ Λ, 〈x,y〉 ∈ Z} is the dual lattice. The tensor product
of two lattices with bases B,B′ is the lattice with a basis B ⊗ B′ obtained
replacing each entry bi,j of B with the block bi,j ·B′, and it satisfies η(Λ1⊗Λ2) ≤
b̃l(Λ1) · η(Λ2). Sampling DΛ,σ for some σ ≥ 2η(Λ) allows to solve SIVPγ within

a factor γ = Õ(σ
√
n).

The Short Integer Solution function family SIS(m,n, q,X) is the set of all
functions fA(x) = Ax mod q indexed by A ∈ Zn×m

q with domain X ⊆ Zm and
range Y = Zn

q . The Learning With Errors function family LWE(m,n, q,X), is

the set of all functions gA(s,x) = AT s + x mod q indexed by A ∈ Zn×m
q with

domain Zn
q ×X and range Y = Zm

q . We sometimes write SIS(m,n, q, β) for some
real β > 0, to refer to the problem of finding a nonzero vector z ∈ Zm of length
at most ‖z‖ ≤ β such that fA(z) = 0. The SIS input is usually chosen accord-
ing to either the uniform distribution U(X) over the set X = {0, . . . , s − 1}m
or X = {−s, . . . , 0, . . . , s}m, or the discrete Gaussian distribution Dm

Z,s. For the
LWE problem, the input is usually chosen according to distribution U(Zn

q )×X ,
where X is one of the SIS input distributions. This makes the LWE(m,n, q)
and SIS(m,m− n, q) function families equivalent via a lattice duality argument
[17,18]]. The SIS and LWE functions can be shown to be collision resistant,
one-way, uninvertible, pseudorandom, etc., for appropriate parameters and in-
put distributions, based on the assumption that SIVPγ and/or GapSVPγ are
(quantum) hard in the worst case [26,23,7].

2 Hardness of SIS with Small Modulus

As a warm-up, we first give a simplified proof that the SIS(m,n, q, β) func-
tion family is collision resistant for moduli q as small as n1/2+δ, by a reduc-
tion between SIS problems with different parameters. Previous hardness results
based on worst-case lattice assumptions require the modulus q to be at least
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β · ω(
√
n logn) [13, Theorem 9.2], and β ≥

√
n log q is needed to guarantee that

a nontrivial solution exists. For such parameters, SIS is collision resistant assum-
ing the hardness of approximating worst-case lattice problems to within ≈ β

√
n

factors.
The intuition behind our proof for smaller moduli is easily explained. We

reduce SIS with modulus qc and solution bound βc (for any constant integer
c ≥ 1) to SIS with modulus q and bound β. Then as long as (q/β)c ≥ ω(

√
n logn),

the former problem enjoys worst-case hardness, hence so does the latter. Thus we
can take q = β ·nδ for any constant δ > 0, and c > 1/(2δ). Notice, however, that
the underlying approximation factor for worst-case lattice problems is ≈ βc

√
n ≥

n1/2+1/(4δ), which, while still polynomial, degrades severely as δ approaches 0. In
the next subsection we give a direct reduction from worst-case lattice problems
to SIS with a small modulus, which does not have this drawback.

The above discussion is formalized in the following proposition. For technical
reasons, we prove that SIS(m,n, q,X) is collision resistant assuming that the
domain X has the property that all SIS solutions z ∈ (X − X) \ {0} satisfy
gcd(z, q) = 1. This restriction is satisfied in many (but not all) common set-
tings, e.g., when q > β is prime, or when X ⊆ {0, 1}m is a set of binary vectors.
For simplicity, we describe the reduction assuming an SIS oracle that finds col-
lisions with overwhelming probability. The reduction can be easily adapted to
oracles that solve SIS with only nonnegligible probability using standard repe-
tition/amplification techniques.

Proposition 1. Let n, q, m, β and X ⊆ Zm be such that gcd(x−x′, q) = 1 and
‖x − x′‖ ≤ β for any distinct x,x′ ∈ X. For any positive integer c, there is a
deterministic reduction from collision-finding for SIS(mc, n, qc, βc) to collision-
finding for SIS(m,n, q,X) (in both cases, with overwhelming advantage). The
reduction runs in time polynomial in its input size, and makes fewer than mc

calls to its oracle.

Proof. Let A be an efficient algorithm that finds a collision for SIS(m,n, q,X)
with overwhelming advantage. We use it to find a nonzero solution for
SIS(mc, n, qc, βc). Let A ∈ Zn×mc

qc be an input SIS instance. Partition the

columns of A into mc−1 blocks Ai ∈ Zn×m
qc , and for each one, invoke A to

find a collision modulo q, i.e., a pair of distinct vectors xi,x
′
i ∈ X such that

Aizi = 0 mod q, where zi = xi − x′
i and ‖zi‖ ≤ β.

For each i, since gcd(zi, q) = 1 and Aizi = 0 mod q, the vector a′
i =

(Aizi)/q ∈ Zn
qc−1 is uniformly random, even after conditioning on zi and

Ai mod q. So, the matrix A′ ∈ Zn×mc−1

qc−1 made up of all these columns is
uniformly random. By induction on c, using A we can find a nonzero solu-
tion z′ ∈ Zmc−1

such that A′z′ = 0 mod qc−1 and ‖z′‖ ≤ βc−1. Then it is
easy to verify that a nonzero solution for the original instance A is given by
z = (z′1 · z1, . . . , z

′
mc−1 · zmc−1) ∈ Zmc

, and that ‖z‖ ≤ ‖z′‖ · maxi ‖zi‖ ≤ βc.

Finally, the total number of calls to A is
∑c−1

i=0 m
i < mc, as claimed. ��



30 D. Micciancio and C. Peikert

Direct Reduction. As mentioned above, the large worst-case approximation fac-
tor associated with the use of Proposition 1 is undesirable, as is (to a lesser
extent) the restriction that gcd(X − X, q) = 1. To eliminate these drawbacks,
we next give a direct proof that SIS is collision resistant for small q, based on
the assumed hardness of worst-case lattice problems. The underlying approxi-
mation factor for these problems can be as small as Õ(β

√
n), which matches the

best known factors obtained by previous proofs (which require a larger modu-
lus q). Our new proof combines ideas from [21,13] and Proposition 1, as well as a
new convolution theorem for discrete Gaussians which strengthens similar ones
previously proved in [24,6].

Our proof of the convolution theorem is substantially different and, we believe,
technically simpler than the prior ones. In particular, it handles the sum of
many Gaussian samples all at once, whereas previous proofs used induction
from a base case of two samples. With the inductive approach, it is technically
complex to verify that all the intermediate Gaussian parameters (which involve
harmonic means) satisfy the hypotheses. Moreover, the intermediate parameters
can depend on the order in which the samples are added in the induction, leading
to unnecessarily strong hypotheses on the original parameters. Due to space
constraints, the proof of the convolution theorem is given in the full version [20].

Theorem 3. Let Λ be an n-dimensional lattice, z ∈ Zm a nonzero integer vec-
tor, si ≥

√
2‖z‖∞ · η(Λ), and Λ + ci arbitrary cosets of Λ for i = 1, . . . ,m.

Let yi be independent vectors with distributions DΛ+ci,si , respectively. Then the
distribution of y =

∑
i ziyi is statistically close to DY,s, where Y = gcd(z)Λ+c,

c =
∑

i zici, and s =
√∑

i(zisi)
2. In particular, if gcd(z) = 1 and

∑
i zici ∈ Λ,

then y is distributed statistically close to DΛ,s.

The convolution theorem implies the following simple but useful lemma, which
shows how to convert samples having a broad range of parameters into ones
having parameters in a desired narrow range.

Lemma 1. There is an efficient algorithm which, given a basis B of some lattice
Λ, some R ≥

√
2, and access to samples (yi, si) where each si ∈ [

√
2, R] · η(Λ) is

arbitrary and each yi has distribution DΛ,si , with overwhelming probability out-
puts a pair (y, s) such that s ∈ [R,

√
2R] ·η(Λ) and y has distribution statistically

close to DΛ,s.

Proof. Let ωn = ω(
√
logn) satisfy ωn ≤

√
n. The algorithm draws 2n2 input

samples, and works as follows: if at least n2 of the samples have parameters
si ≤ R ·η(Λ)/(

√
n·ωn), then with overwhelming probability they all have lengths

bounded by R · η(Λ)/ωn and they include n linearly independent vectors. Using

such vectors we can construct a basis S such that ‖S̃‖ ≤ R · η(Λ)/ωn, and with
the sampling algorithm of [13, Theorem 4.1] we can generate samples having
parameter R·η(Λ). Otherwise, at least n2 of the samples (yi, si) have parameters
si ≥ max{R/n,

√
2} · η(Λ). Then by summing an appropriate subset of those yi,

by the convolution theorem we can obtain a sample having parameter in the
desired range. ��
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The next lemma is the heart of our reduction. The novel part, corresponding to
the properties described in the second item, is a way of using a collision-finding
oracle to reduce the Gaussian width of samples drawn from a lattice. The first
item corresponds to the guarantees provided by previous reductions.

Lemma 2. Let m,n be integers, S = {z ∈ Zm \ {0} | ‖z‖ ≤ β ∧ ‖z‖∞ ≤ β∞}
for some real β ≥ β∞ > 0, and q an integer modulus with at most poly(n)
integer divisors less than β∞. There is a probabilistic polynomial time reduction
that, on input any basis B of a lattice Λ and sufficiently many samples (yi, si),
where each si ≥

√
2q · η(Λ) may be arbitrary and each yi has distribution DΛ,si ,

and given access to an SIS(m,n, q, S) oracle (that finds a solution z ∈ S with
nonnegligible probability) outputs (with overwhelming probability) a sample (y, s)
where min si/q ≤ s ≤ (β/q) ·max si, and y ∈ Λ is such that:

– E[‖y‖] ≤ (β
√
n/q) ·max si, and for any fixed subspace H ⊂ Rn of dimension

at most n− 1, we have Pr[y �∈ H ] ≥ 1/10.
– Moreover, if each si ≥

√
2β∞q ·η(Λ), then the distribution of y is statistically

close to DΛ,s

Proof. Let A be the SIS oracle. Without loss of generality, we can assume that
whenever A outputs a valid solution z ∈ S, we have that gcd(z) divides q. This
is because for any integer vector z, if Az = 0 mod q then also A((g/d)z) =
0 mod q, where d = gcd(z) and g = gcd(d, q). Moreover, (g/d)z ∈ S holds true
and gcd((g/d)z) = gcd(z, q) divides q. Let d be such that A outputs, with non-
negligible probability, a valid solution z satisfying gcd(z) = d. Such a d exists
because gcd(z) is bounded by β∞ and divides q, so by assumption there are
only polynomially many possible values of d. Let q′ = q/d, which is an integer.
By increasing m and using standard amplification techniques, we can make the
probability that A outputs such a solution (satisfying z ∈ S, Az = 0 (mod q)
and gcd(z) = d) exponentially close to 1.

Let (yi, si) for i = 1, . . . ,m be input samples, where yi has distribution
DΛ,si . Write each yi as yi = Bai mod q′Λ for ai ∈ Zn

q′ . Since si ≥ q′η(Λ)
the distribution of ai is statistically close to uniform over Zn

q′ . Let A = [a1 |
· · · | am] ∈ Zn×m

q , and choose A′ ∈ Zn×m
d uniformly at random. Since A is

statistically close to uniform over Zn×m
q′ , the matrix A + q′A′ is statistically

close to uniform over Zn×m
q . Call the oracle A on input A + q′A′, and obtain

(with overwhelming probability) a nonzero z ∈ S with gcd(z) = d, ‖z‖ ≤ β,
‖z‖∞ ≤ β∞ and (A + q′A′)z = 0 mod q. Notice that q′A′z = qA′(z/d) =
0 mod q because (z/d) is an integer vector. Therefore Az = 0 mod q. Finally,
the reduction outputs (y, s), where y =

∑
i ziyi/q and s =

√∑
i(sizi)

2/q.
Notice that ziyi ∈ qΛ+B(ziai) because gcd(z) = d, so y ∈ Λ.

Notice that s satisfies the stated bounds because z is a nonzero integer vector.
We next analyze the distribution of y. For any fixed ai, the conditional distri-
bution of each yi is Dq′Λ+Bai,si , where si ≥

√
2η(q′Λ). The claim on E[‖y‖]

then follows from [21, Lemma 2.11 and Lemma 4.3] and Hölder’s inequality.
The claim on the probability that y �∈ H was initially shown in the preliminary
version of [21]; see also [26, Lemma 3.15].
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Now assume that si ≥
√
2β∞q ·η(Λ) ≥

√
2‖z‖∞ ·η(q′Λ) for all i. By Theorem 3

the distribution of y is statistically close to DY/q,s where Y = gcd(z) · q′Λ +
B(Az). Using Az = 0 mod q and gcd(z) = d, we get Y = qΛ. Therefore y has
distribution statistically close to DΛ,s, as claimed. ��

Building on Lemma 2, our next lemma shows that for any q ≥ β · nΩ(1), an SIS
oracle can be used to obtain Gaussian samples of width close to 2ββ∞ · η(Λ).
Lemma 3. Let m,n, q, S as in Lemma 2, and also assume q/β ≥ nδ for some
constant δ > 0. There is an efficient reduction that, on input any basis B
of an n-dimensional lattice Λ, an upper bound η ≥ η(Λ), and given access
to an SIS(m,n, q, S) oracle (which finds a solution z ∈ S with nonnegligi-
ble probability), outputs (with overwhelming probability) a sample (y, s) where√
2β∞ · η ≤ s ≤ 2β∞β · η and y has distribution statistically close to DΛ,s.

Proof. By applying the LLL basis reduction algorithm [14] to the basis B, we

can assume without loss of generality that ‖B̃‖ ≤ 2n ·η(Λ). The main procedure,
described below, produces samples having parameters in the range [1, q]·

√
2β∞·η.

On these samples we run the procedure from Lemma 1 (with R =
√
2β∞q · η) to

obtain samples having parameters in the range [
√
2, 2] ·β∞q ·η. Finally, we invoke

the reduction from Lemma 2 on those samples to obtain a sample satisfying the
conditions in the Lemma statement.

The main procedure works in a sequence of phases i = 0, 1, 2, . . .. In phase i,
the input is a basis Bi of Λ, where initially B0 = B. The basis Bi is used in the
discrete Gaussian sampling algorithm of [13, Theorem 4.1] to produce samples

(y, si), where si = max{‖B̃i‖ · ωn,
√
2β∞η} ≥

√
2β∞η and yi has distribution

statistically close to DΛ,si . Phase i either manages to produce a sample (y, s)
with s in the desired range [1, q] ·

√
2β∞η, or it produces a new basis Bi+1 for

which ‖B̃i+1‖ ≤ ‖B̃i‖/2, which is the input to the next phase. The number of
phases before termination is polynomial in n, by hypothesis on B.

If ‖B̃i‖·ωn ≤
√
2qβ∞η, then this already gives samples with si ∈ [1, q]

√
2β∞η

in the desired range, and we can terminate the main phase. So, we may assume
that si = ‖B̃i‖ ·ωn ≥

√
2qβ∞η. Each phase i proceeds in some constant c ≥ 1/δ

number of sub-phases j = 1, 2, . . . , c, where the inputs to the first sub-phase are
the samples (y, si) generated as described above. We recall that these samples
satisfy si ≥

√
2qβ∞η. The same will be true for the samples passed as input

to all other subsequent subphases. So, each subphase receives as input samples
(y, s) satisfying all the hypotheses of Lemma 2, and we can run the reduction
from that lemma to generate new samples (y′, s′) having parameters s′ bounded
from above by si · (β/q)j , and from below by

√
2β∞η. If any of the produces

samples satisfies s′ ≤ q
√
2β∞η, then we can terminate the main procedure with

(y′, s′) as output. Otherwise, all samples produced during the subphase satisfy
s′ > q

√
2β∞η, and they can be passed as input to the next sub-phase. Notice

that the total runtime of all the sub-phases is poly(n)c, because each invocation
of the reduction from Lemma 2 relies on poly(n) invocations of the reduction in
the previous sub-phase; this is why we need to limit the number of sub-phases
to a constant c.
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If phase i ends up running all its sub-phases without ever finding a sample
with s′ ∈ [1, q]

√
2β∞η, then it has produced samples whose parameters are

bounded by (β/q)c ≤ si ≤ si/
√
n. It uses n2 of these samples, which with

overwhelming probability have lengths all bounded by si/
√
n, and include n

linearly independent vectors. It transforms those vectors into a basis Bi+1 with

‖B̃i+1‖ ≤ si/
√
n ≤ ‖B̃‖iωn/

√
n ≤ ‖B̃i‖/2, as input to the next phase. ��

We can now prove our main theorem, reducing worst-case lattice problems with
max{1, ββ∞/q} · Õ(β

√
n) approximation factors to SIS, when q ≥ β · nΩ(1).

Theorem 4. Let m,n be integers, S = {z ∈ Zm \ {0} | ‖z‖ ≤ β ∧ ‖z‖∞ ≤ β∞}
for some real β ≥ β∞ > 0, and q ≥ β · nΩ(1) be an integer modulus with at most
poly(n) integer divisors less than β∞. For some γ = max{1, ββ∞/q} · O(β

√
n),

there is an efficient reduction from SIVPη
γ (and hence also from standard

SIVPγ·ωn) on n-dimensional lattices to solving the collision-finding problem
SIS(m,n, q, S) with non-negligible advantage.

Proof. Given an input basis B of a lattice Λ, we can apply the LLL algorithm to
obtain a 2n-approximation to η(Λ), and by scaling we can assume that η(Λ) ∈
[1, 2n]. For i = 1, . . . , n, we run the procedure described below for each candidate
upper bound ηi = 2i on η(Λ). Each call to the procedure either fails, or returns
a set of linearly independent vectors in Λ whose lengths are all bounded by
(γ/2) · ηi. We return the first such obtained set (i.e., for the minimal value of i).
As we show below, as long as ηi ≥ η(Λ) the procedure returns a set of vectors
with overwhelming probability. Since exactly one ηi ∈ [1, 2) ·η(Λ), our reduction
solves SIVPη

γ with overwhelming probability, as claimed.
The procedure invokes the reduction from Lemma 3 with η = ηi to obtain

samples with parameters in the range [
√
2β∞,

√
2ββ∞] · η. On these samples we

run the procedure from Lemma 1 with R = max{
√
2q,

√
2ββ∞} to obtain sam-

ples having parameters in the range [R,
√
2R] ·η. On such samples we repeatedly

run (using independent samples each time) the reduction from Lemma 2. After
enough runs, we obtain with overwhelming probability a set of linearly indepen-
dent lattice vectors all having lengths at most (γ/2) · η, as required. ��

3 Hardness of LWE with Small Uniform Errors

In this section we prove the hardness of inverting the LWE function even when
the error vectors have very small entries, provided the number of samples is
sufficiently small. We proceed similarly to [25,4], by using the LWE assumption
(for discrete Gaussian error) to construct a lossy family of functions with respect
to a uniform distribution over small inputs. However, the parameterization we
obtain is different from those in [25,4], allowing us to obtain pseudorandomness
of LWE under very small (e.g., binary) inputs, for a number of LWE samples
that exceeds the LWE dimension.
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Our results and proofs are more naturally formulated using the SIS function
family. So, we will first study the problem in terms of SIS, and then reformulate
the results in terms of LWE by lattice duality [17,18]. All statements in this
section are proved by relatively simple counting arguments, and the reader is
referred to the full version [20] for details. We recall that the main difference
between this section and Section 2, is that here we consider parameters for which
the resulting functions are essentially injective, or more formally, statistically
second-preimage resistant. The following lemma gives sufficient conditions that
ensure this property.

Lemma 4. For any integers m, k, q, s and set X ⊆ [s]m, the function family
SIS(m, k, q) is (statistically) ε-second preimage resistant with respect to the uni-
form input distribution U(X) for ε = |X | · (s′/q)k, where s′ is the largest factor
of q smaller than s.

Proof. Let x ← U(X) and A ← SIS(m, k, q) be chosen at random. We want to
evaluate the probability that there exists an x′ ∈ X \ {x} such that Ax = Ax′

(mod q), or, equivalently, A(x− x′) = 0 (mod q). Fix any two distinct vectors
x,x′ ∈ X and let z = x− x′. The vector Az (mod q) is distributed uniformly
at random in (dZ/qZ)k, where d = gcd(q, z1, . . . , zm). All coordinates of z are
in the range zi ∈ {−(s − 1), . . . , (s − 1)}, and at least one of them is nonzero.
Therefore, d is at most s′ and |dZk

q | = (q/d)k ≥ (q/s′)k. By union bound (over
x′ ∈ X \ {x}) for any x, the probability that there is a second preimage x′ is at
most (|X | − 1)(s′/q)k. ��

We remark that, as shown in Section 2, even for parameter settings that do not
fall within the range specified in Lemma 4, SIS(m, k, q) is collision resistant, and
therefore also (computationally) second-preimage-resistant. This is all that is
needed in the rest of this section. However, when SIS(m, k, q) is not statistically
second-preimage resistant, the one-wayness proof that follows (see Theorem 5)
is not very interesting: typically, in such settings, SIS(m, k, q) is also statistically
uninvertible, and the one-wayness of SIS(m, k, q) trivially follows. So, below we
focus on parameter settings covered by Lemma 4. We prove the one-wayness of
F = SIS(m, k, q,X) with respect to the uniform input distribution X = U(X) by
building a lossy function family (L,F ,X ) where L is an auxiliary function family
that we will prove to be uninvertible and computationally indistinguishable from
F . Due to space limitations, we only provide a sketch of the construction and
analysis of the lossy function family, followed by formal statement of our main
result, and description of some notable instantiations. The reader is referred to
the full version [20] for more details.

Outline. The idea behind our construction and proof is easily explained. The
functions in our family F are defined by uniformly chosen random matrices
F ∈ Zk×m

q . We define the auxiliary function family L by choosing the first 
 < m

colums of L = [A | . . .] ∈ Zk×m
q uniformly at random, and setting the remaining
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columns to AY where Y ∈ Z�×m
q is a random matrix with discrete gaussian

entries of small width σ >
√
n. It follows from previous worst-case to average-case

reductions [26,23,7], search-to-decision reductions and standard lattice duality
results (e.g., see [18],) that the matrix L = [A | AY] is pseudorandom. So, F
and L are computationally indistinguishable. We already know from Lemma 4
that F is second preimage resistant. In order to conclude that (F ,L,X ) is a
lossy function family (and therefore, one-way, see Section 1.3,) it only remains
to prove that L is uninvertible with respect to input distribution X . To this
end, express L as a product L = A[I | Y]. Notice that L is the composition
of (linear) functions [I | Y] and A. The first function [I | Y] is uninvertible
with respect to input distribution X because its matrix has small entries and
necessarily maps small input vectors X to a small set of short output vectors.
The composition of an uninvertible function with an arbitrary function remains
uninvertible. Therefore also L = [A | AY] is uninvertible. The rest of the proof
is standard, and follows the general lossy function approach of [25]: the function
F is uninvertible because any efficient inverter for F would allow to distinguish
F from the uninvertible function L, and contradict the pseudorandomness of
L. Since F is both uninvertible and second-preimage resistant, it is also one-
way. (See Section 1.3 and full version [20].) Finally, using the search-to-decision
reduction of [18] we conclude that F is not only one-way, but pseudorandom.

Main result. We begin by defining our uninvertible function family consisting of
matrices with small entries.

Definition 1. For any probability distribution Y over Z� and integer m ≥ 
, let
I(m, 
,Y) be the probability distribution over linear functions [I | Y] : Zm → Z�

where I is the 
× 
 identity matrix, and Y ∈ Z�×(m−�) is obtained choosing each
column of Y independently at random from Y.
The next lemma shows that, for appropriate parameter values, this is indeed an
uninvertible function family.

Lemma 5. Let Y = D�
Z,σ be the discrete Gaussian distribution with parameter

σ > 0, and let X ⊆ {−s, . . . , s}m. Then I(m, 
,Y) is ε-uninvertible with respect
to U(X), for ε = O(σms/

√

)�/|X |+ 2−Ω(m).

Proof. It is enough to bound the expected size of f(X) when f ← I(m, 
,Y)
is chosen at random. Remember that f = [I | Y] where Y ← D

�×(m−�)
Z,σ .

Since the entries of Y ∈ R�×(m−�) are independent zero-mean subgaus-
sians with parameter σ, by a standard bound from the theory of random
matrices, the largest singular value s1(Y) = max0 �=x∈Rm ‖Yx‖/‖x‖ of

Y is at most σ · O(
√

 +

√
m− 
) = σ · O(

√
m), except with proba-

bility 2−Ω(m). We now bound the 
2 norm of all vectors in the image
f(X). Let u = (u1,u2) ∈ X , with u1 ∈ Z� and u2 ∈ Zm−�. Then

‖f(u)‖ ≤ ‖u1 + Yu2‖ ≤ ‖u1‖ + ‖Yu2‖ ≤
(√


+ s1(Y)
√
m− 


)
s ≤(√


+ σ ·O(
√
m)

√
m− 


)
s = O(σms). The number of integer points in the
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-dimensional zero-centered ball of radius R = O(σms) can be bounded by a
simple volume argument, as |f(X)| ≤ (R +

√

/2)nV� = O(σms/

√

)�, where

V� = π�/2/(
/2)! is the volume of the 
-dimensional unit ball. Dividing by the
size of X and accounting for the rare event that s1(Y) is not bounded as above,
we get that I(m, 
,Y) is ε-uninvertible for ε = O(σms/

√

)�/|X |+ 2−Ω(m). ��

We can now prove the one-wayness of the SIS function family by defining and
analyzing an appropriate lossy function family. The parameters below are set
up to expose the connection with LWE, via lattice duality: SIS(m,m − n, q)
corresponds to LWE in n dimensions (given m samples), whose one-wayness we
are proving, while SIS(
 = m − n + k,m − n, q) corresponds to LWE in k ≤ n
dimensions, whose pseudorandomness we are assuming.

Theorem 5. Let q be a modulus and let X ,Y be two distributions over Zm and
Z� respectively, where 
 = m− n+ k for some 0 < k ≤ n ≤ m, such that

1. I(m, 
,Y) is uninvertible with respect to input distribution X ,
2. SIS(
,m− n, q) is pseudorandom with respect to input distribution Y, and
3. SIS(m,m− n, q) is second-preimage resistant with respect to input distribu-

tion X .

Then F = SIS(m,m − n, q) is one-way with respect to input distribution X .
In particular, if SIS(
,m − n, q) is pseudorandom with respect to the discrete
Gaussian distribution Y = D�

Z,σ, then SIS(m,m − n, q) is (2ε + 2−Ω(m))-one-
way with respect to the uniform input distribution X = U(X) over any set X ⊆
{−s, . . . , s}m satisfying (C′σms/

√

)�/ε ≤ |X | ≤ ε · (q/s′)m−n, where s′ is the

largest divisor of q that is smaller than or equal to 2s, and C′ is the universal
constant hidden by the O(·) notation from Lemma 5.

In order to conclude that the LWE function is pseudorandom (under worst-case
lattice assumptions) for uniformly random small errors, we combine Theorem 5
with previous hardness results [26,23,7] and search-to-decision reductions [18,19].
For simplicity, we focus on the important case of a prime modulus q. Nearly
identical results for composite moduli (e.g., those divisible by only small primes)
are also easily obtained.

Theorem 6. Let 0 < k ≤ n ≤ m − ω(log k) ≤ kO(1), 
 = m − n + k, s ≥
(Cm)�/(n−k) for a large enough universal constant C, and q be a prime such
that max{3

√
k, (4s)m/(m−n)} ≤ q ≤ kO(1). For any set X ⊆ {−s, . . . , s}m of

size |X | ≥ sm, the SIS(m,m−n, q) (equivalently, LWE(m,n, q)) function family
is one-way (and pseudorandom) with respect to the uniform input distribution
X = U(X), under the assumption that SIVPγ and GapSVPγ are (quantum) hard
to approximate, in the worst case, on k-dimensional lattices to within a factor
γ = Õ(

√
k · q).

Example parameters. We conclude the section with a few notable instantia-
tions of the last theorem. We remark that the condition |X | ≥ sm in Theorem 6 is
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not essential, and the same proof yields similar results also with weaker lower
bounds on |X |. To obtain pseudorandomness for binary errors, we need s = 2
and X = {0, 1}m. For this value of s, the condition s ≥ (Cm)�/(n−k) can be
equivalently be rewritten as m ≤ (n − k) · (1 + 1/ log2(Cm)), which can be
satisfied by taking k = n/(C′ log2 n) and m = n(1+1/(c log2 n)) for any desired
c > 1 and a sufficiently large constant C′ > 1/(1 − 1/c). For these values, the
modulus should satisfy q ≥ 8m/(m−n) = 8n3c = kO(1), and can be set to any
sufficiently large prime p = kO(1).2

Notice that for binary errors, both the worst-case lattice dimension k and the
number m − n of “extra” LWE samples (i.e., the number of samples beyond the
LWEdimensionn) are sublinear in the LWEdimensionn: we have k = Θ(n/ log n)
andm−n = O(n/ logn). This corresponds to both a stronger worst-case security
assumption, and a less useful LWE problem. By using larger errors, say, bounded
by s = nε for some constant ε > 0, it is possible to make both the worst-case lattice
dimension k and number of extra samplesm−n into (small) linear functions of the
LWE dimension n, which may be sufficient for some cryptographic applications
of LWE. Specifically, for any constant ε < 1, one may set k = (ε/3)n and m =
(1+ε/3)n, which are easily verified to satisfy all the hypotheses of Theorem 6 when
q = kO(1) is sufficiently large. These parameters correspond to (ε/3)n = Ω(n)
extra samples (beyond the LWE dimension n), and to the worst-case hardness
of lattice problems in dimension (ε/3)n = Ω(n). Notice that for ε < 1/2, this
version of LWE has much smaller errors than allowed by previous LWE hardness
proofs, and it would be subject to subexponential-time attacks [2] if the number
of samples were not restricted. Our result shows that if the number of samples is
limited to (1 + ε/3)n, then LWE maintains its provable security properties and
conjectured exponential-time hardness in the dimension n.

One last instantiation allows for a linear number of samples m = c · n for
any desired constant c ≥ 1, which is enough for most applications of LWE in
lattice cryptography. In this case we can choose (say) k = n/2, and it suffices to
set the other parameters so that s ≥ (Cm)2c−1 and q ≥ (4s)c/(c−1) ≥ 4c/(c−1) ·
(Ccn)2c+1+1/(c−1) = kO(1). (We can also obtain better lower bounds on s and q
by letting k be a smaller constant fraction of n.) This proves the hardness of LWE
with uniform noise of polynomial magnitude s = nO(1), and any linear number
of samples m = O(n). Note that for m = cn, any instantiation of the parameters
requires the magnitude s of the errors to be at least nc−1. For c > 3/2, this is
more noise than is typically used in the standard LWE problem, which allows
errors of magnitude as small as O(

√
n), but requires them to be independent

and follow a Gaussian-like distribution. The novelty in this last instantiation of
Theorem 6 is that it allows for a much wider class of error distributions, including
the uniform distribution, and distributions where different components of the
error vector are correlated.

2 Here we have not tried to optimize the value of q, and smaller values of the modulus
are certainly possible: a close inspection of the proof of Theorem 6 reveals that for
binary errors, the condition q ≥ 8n3c can be replaced by q ≥ nc′ for any constant
c′ > c.
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Abstract. Our main result is a construction of a lattice-based digital
signature scheme that represents an improvement, both in theory and in
practice, over today’s most efficient lattice schemes. The novel scheme
is obtained as a result of a modification of the rejection sampling al-
gorithm that is at the heart of Lyubashevsky’s signature scheme (Eu-
rocrypt, 2012) and several other lattice primitives. Our new rejection
sampling algorithm which samples from a bimodal Gaussian distribu-
tion, combined with a modified scheme instantiation, ends up reducing
the standard deviation of the resulting signatures by a factor that is
asymptotically square root in the security parameter. The implementa-
tions of our signature scheme for security levels of 128, 160, and 192 bits
compare very favorably to existing schemes such as RSA and ECDSA in
terms of efficiency. In addition, the new scheme has shorter signature and
public key sizes than all previously proposed lattice signature schemes.

As part of our implementation, we also designed several novel algo-
rithms which could be of independent interest. Of particular note, is a
new algorithm for efficiently generating discrete Gaussian samples over
Zn. Current algorithms either require many high-precision floating point
exponentiations or the storage of very large pre-computed tables, which
makes them completely inappropriate for usage in constrained devices.
Our sampling algorithm reduces the hard-coded table sizes from linear
to logarithmic as compared to the time-optimal implementations, at the
cost of being only a small factor slower.

1 Introduction

Lattice cryptography is arguably the most promising replacement for standard
cryptography after the eventual coming of quantum computers. The most ubiqui-
tous public-key cryptographic primitives, encryption schemes [18,26] and digital
signatures [24,15], already have somewhat practical lattice-based instantiations.
In addition, researchers are rapidly discovering new lattice-based primitives, such
as fully-homomorphic encryption [10], multi-linear maps [9], and attribute-based
encryption [14], that had no previous constructions based on classical number-
theoretic techniques. Even though the above primitives are quite varied in their

∗ This work was done while the author was at ENS Paris, France.

R. Canetti and J.A. Garay (Eds.): CRYPTO 2013, Part I, LNCS 8042, pp. 40–56, 2013.
c© International Association for Cryptologic Research 2013
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Table 1. Benchmarking on a desktop computer (Intel Core i7 at 3.4Ghz, 32GB RAM)
with openssl 1.0.1c

Security Signature size Sign (ms) Sign/s Verify (ms) Verify/s

BLISS-0 � 60 bits 3.3 kilobits 0.241 4k 0.017 59k
BLISS-I 128 bits 5.6 kb 0.124 8k 0.030 33k
BLISS-II 128 bits 5 kb 0.480 2k 0.030 33k
BLISS-III 160 bits 6 kb 0.203 5k 0.031 32k
BLISS-IV 192 bits 7 kb 0.375 2.5k 0.032 31k

RSA 1024 72-80 bits 1 kb 0.167 6k 0.004 91k
RSA 2048 103-112 bits 2 kb 1.180 0.8k 0.038 27k
RSA 4096 � 128 bits 4 kb 8.660 0.1k 0.138 7.5k

ECDSA1 160 80 bits 0.32 kb 0.058 17k 0.205 5k
ECDSA 256 128 bits 0.5 kb 0.106 9.5k 0.384 2.5k
ECDSA 384 192 bits 0.75 kb 0.195 5k 0.853 1k

functionalities, many of them share the same basic building blocks. Thus an
improvement in one of these fundamental building blocks, usually results in the
simultaneous improvement throughout lattice cryptography. For example, the
recent work on the lattice trapdoor generation algorithm [27] resulted in imme-
diate efficiency improvements in lattice-based hash-and-sign signatures, identity-
based encryption schemes, group signatures, and functional encryption schemes.

In this work, we propose an improvement of another such building block – the
rejection sampling procedure that is present in the most efficient constructions
of lattice-based digital signatures [24,15], authentication schemes [23], blind sig-
natures [31], and zero-knowledge proofs used in multi-party computation [4].
As a concrete application, we show that with our new algorithm, lattice-based
digital signatures become completely practical. We construct and implement
a family of digital signature schemes, named BLISS (Bimodal Lattice Signa-
ture Scheme) for security levels of 128, 160, and 192 bits. On standard 64-bit
processors, our proof-of-concept implementations constitute significant improve-
ments over previous lattice-based signatures and compare very favorably to the
openssl implementations of RSA and ECDSA signatures schemes (see Table 1).

As part of our implementation, we also designed several novel algorithms that
could be of independent interest. Chiefly among them is a new procedure that
very efficiently samples from the Gaussian distribution overZm without requiring
a very large look-up table. The absence of such an algorithm made researchers
avoid using the Gaussian distribution when implementing lattice-based schemes
on constrained devices, which resulted in these schemes being less compact than
they could have been [15].

1.1 Related Work

Rejection Sampling. Rejection sampling in lattice constructions was first
used by Lyubashevsky [22] to construct a three-round identification scheme. A

1 ECDSA on a prime field Fp: ecdsap160, ecdsap256 and ecdsap384 in openssl.
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standard identification scheme is a three round sigma protocol that consists of
a commit, challenge, and response stages. The main idea underlying their con-
structions and security proofs from number theoretic assumptions (e.g. Schnorr
and GQ schemes [2]) is that the value y committed to in the first stage is used
to information-theoretically hide the secret key s in the third stage. This is rel-
atively straight-forward to do in number-theoretic schemes because one can just
commit to a random y and then add it to (or multiply it by) some challenge-
dependent function of s. Since all operations are performed in a finite ring, y
being uniformly random hides s. In lattice constructions, however, we need to
hide the secret key with a small y. The solution is thus to choose y from a
narrow distribution and then perform rejection sampling so that s is not leaked
when we add y to it (we describe this idea in much greater detail in Section
1.2). The improvements in lattice-based identification schemes (and therefore
signature schemes via the Fiat-Shamir transformation) partly came via picking
distributions that were more amenable to rejection sampling.

Lattice Signatures. Early lattice-based signature proposals did not have se-
curity reductions [13,19,17], and they were all subsequently broken because it
turned out that every signature leaked a part of the secret key [12,29,6]. Among
known provably-secure signature schemes, [11,23], [24,27], the most efficient
seems to be that of [24] whose most efficient instantiation has both signature
and key size of the order of 9kb [15] for approximately 80 bits of security.2

1.2 Our Results and Techniques

Rejection Sampling and Signature Construction. To understand our im-
provement of the rejection sampling procedure, we believe that it is useful to first
give an overview of rejection sampling and the most efficient way in which it is
currently used in constructing lattice-based signatures [24]. Rejection sampling
is a well-known method introduced by von Neumann [33] to sample from an
arbitrary target probability distribution f , given a source bound to a different
probability distribution g. Conceptually, the method works as follows. A sample
x is drawn from g and is accepted with probability f(x)/(M · g(x)), where M
is some positive real. If it is not accepted, then the process is restarted. It is
not hard to prove that if f(x) � M · g(x) for all x, then the rejection sam-
pling procedure produces exactly the distribution of f . Furthermore, because
the expected number of times the procedure will need to be restarted is M , it
is crucial to keep M as small as possible, possibly by tailoring the function g so
that it resembles the target function f as much as possible. In particular, since
rejection sampling can be interpreted as sampling a random point (xi, yi) in the
area under the distribution M · g (see Figure 1) and accepting if and only if
yi � f(xi), reducing the area between the two curves will reduce M .

2 In [15], a 100-bit security level was claimed, but the cryptanalysis we use in the full
version of this paper [5], which combines lattice-reduction attacks with combinatorial
meet-in-the-middle techniques [20], estimates the actual security to be around 75-80
bits.
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(a) (xi, yi) is sampled uniformly in
the area under M · g, and accepted
when yi � f(xi)

f
M · g

(b) M can be reduced when g is bet-
ter adapted to f

Fig. 1. Rejection sampling from the distribution of g to get the distribution of f

The digital signature from [24] works as follows (for the sake of this discussion,
we will present the simplest version based on SIS): the secret key is an m ×
n matrix S with small coefficients, and the public key consists of a random
n × m matrix A whose entries are uniform in Zq and T = AS mod q. There
is also a cryptographic hash function H , modeled as a random oracle, which
outputs elements in Zn with small norms. To sign a message digest μ, the signing
algorithm first picks a vector y according to the distribution Dm

σ , where Dm
σ is

the discrete Gaussian distribution over Zm with standard deviation σ. The signer
then computes c = H(Ay mod q, μ) and produces a potential signature (z, c)
where z = Sc+ y. Notice that the distribution of z depends on the distribution
of Sc, and thus on the distribution of S – in fact, the distribution of z is exactly
Dm

σ shifted by the vector Sc.
To remove the dependence of the signature on S, rejection sampling is used.

The target distribution that we want for signatures is Dm
σ , whereas we obtain

samples from the distribution Dm
σ shifted by Sc (call this distribution Dm

Sc,σ).
To use rejection sampling, we need to find a positive real M such that for all (or
all but a negligible fraction) x distributed according to Dm

σ we have Dm
σ (x) �

M ·Dm
Sc,σ(x). A simple calculation (see [24, Lemma 4.5]) shows that

Dm
σ (x)/Dm

Sc,σ(x) = exp

(
−2〈x,Sc〉+ ‖Sc‖2

2σ2

)
. (1)

The value of 〈x,Sc〉 behaves in many ways as a one-dimensional discrete Gaus-
sian, and it can be thus shown that |〈x,Sc〉| < τσ‖Sc‖ with probability 1 −
exp(−Ω(τ2)). Asymptotically, the value of τ is proportional to the square root
of the security parameter. Concretely, if we would like to have, for example,
1−2−100 certainty that |〈x,Sc〉| < τσ‖Sc‖, we would set τ = 12. Thus with prob-

ability 1 − exp(−Ω(τ2)), we have exp
(

−2〈x,Sc〉+‖Sc‖2

2σ2

)
� exp

(
2τσ‖Sc‖+‖Sc‖2

2σ2

)
.

So if σ = τ‖Sc‖, we will have Dm
σ (x)/Dm

Sc,σ(x) � exp
(
1 + 1

2τ2

)
. Therefore

if we set M = exp
(
1 + 1

2τ2

)
, rejection sampling outputs signatures that are

distributed according to Dm
σ where σ = τ‖Sc‖ and the expected number of

repetitions is M ≈ exp(1).3

3 More precisely σ = τ maxS,c ‖Sc‖, since Sc is not known in advance.
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Span{Sc}

(Sc)⊥

(a) In the original scheme of [24]

Span{Sc}

(Sc)⊥

(b) In our scheme

Fig. 2. Improvement of Rejection Sampling with Bimodal Gaussian Distributions. In
blue is the distribution of z, for fixed Sc and over the space of all y in Figure (a) and
all (b,y) in Figure (b), before the rejection step and its decomposition as a Cartesian
product over Span{Sc} and (Sc)⊥. In dashed red is the target distribution scaled by
1/M .

Prior to explaining our technique to improve the scheme, we need to state
how the verification algorithm in [24] works. Upon receiving the signature (z, c)
of μ, the verifier checks that ‖z‖ is “small” (roughly σ

√
m) and also that

c = H(Az − Tc mod q, μ). It is easy to check that the outputs of the signing
procedure satisfy the two requirements. In this work, we show how to remove
the factor τ (in fact even more) from the required standard deviation. Above, we
described how to perform rejection sampling when we were sampling potential
signatures as z = Sc + y. Consider now, an alternative procedure, where we
first uniformly sample a bit b ∈ {−1, 1} and then choose the potential signa-
ture to be z = bSc + y. In particular z is now sampled from the distribution
1
2D

m
Sc,σ+

1
2D

m
−Sc,σ. If our target distribution is still Dm

σ , then, as above, we need

to have Dm
σ (x)/

(
1
2D

m
Sc,σ(x) +

1
2D

m
−Sc,σ(x)

)
� M . By using Equation (1) and

some algebraic manipulations, we obtain that

Dm
σ (x)/

(
1

2
Dm

Sc,σ(x) +
1

2
Dm

−Sc,σ(x)

)
= exp

(
‖Sc‖2
2σ2

)
/ cosh

(
〈x,Sc〉
σ2

)
� exp

(
‖Sc‖2
2σ2

)
,

where the last inequality follows from the fact that cosh(y) � 1 for all y. Thus
for rejection sampling to work with M = exp(1), as in the previous example, we
only require that σ = ‖Sc‖/

√
2 rather than τ‖Sc‖.

Our improvement is depicted on Figure 2. Part 2(a) shows the rejection sam-
pling as done in [24]. There, the distribution Dm

σ (the dashed red line) must be
scaled by a somewhat large factor so that all but a negligible fraction of it fits under
Dm

Sc,σ. In 2(b), which represents our improved sampling algorithm, the distribu-
tion from which we are sampling is bimodal having its two centers at Sc and−Sc.
As can be seen from the figure, the distribution Dm

σ fits much “better” (i.e. needs
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to be scaled by a much smaller factor) underneath the bimodal distribution and
therefore there is a much smaller rejection area between the two curves. As a side
note, whereas in (a), a negligible fraction of the scaled Dm

σ is still above Dm
Sc,σ, in

(b), all of Dm
σ is underneath the bimodal distribution 1

2D
m
Sc,σ + 1

2D
m
−Sc,σ.

While the above sampling procedure potentially produces much shorter sig-
natures since the Gaussian “tail-cut” factor τ is never used, it does not give
an improved signature scheme by itself because the verification procedure is no
longer guaranteed to work. The verification checks that c = H(Az−Tc mod q, μ)
and so will verify correctly if and only if Ay = Az −Tc = A(bSc+ y)−Tc =
Ay + bTc − Tc, which will only happen if bTc = Tc mod q for b ∈ {−1, 1}.
In other words, we will need Tc = −Tc mod q, which will never happen if q is
prime unless T = 0. 4 Our solution, therefore, is to work modulo 2q and to set
T = qI where I is the n × n identity matrix. In this case Tc = −Tc mod 2q,
and so the verification procedure will always work.

Changing the modulus from q to 2q and forcing the matrix T to always be
qI creates several potential problems. In particular, it is no longer clear how to
perform key generation, and also the outline for the security proof from [24] no
longer holds. But we show that these problems can be overcome. We will now
sketch the key generation and the security proof based on the hardness of the
SIS problem in which one is given a uniformly random matrix B ∈ Zn×m

q , and
is asked to find a short vector w such that Bw = 0 (mod q). To generate the

public and secret keys, we first pick a uniformly random matrix A′ ∈ Zn×(m−n)
q

and a random (m − n) × n matrix S′ consisting of short coefficients. We then
compute A′′ = A′S′ mod q and output A = [2A′|2A′′ + qI] as the public key.
The secret key is S = [S′| − I]T . Notice that by construction we have AS = qI
(mod 2q) and S consists of small entries. The dimensions m and n are picked so
that the distribution of [A′|A′S′ mod q] can be shown to be uniformly random
in Zn×m

q by the leftover hash lemma.
In the security proof, we are given a random matrix B = [A′|A′′] ∈ Zn×m

q by
the challenger and use the adversary that forges a signature to find a short vector
w such that Bw = 0 (mod q). We create the public key A = [2A′|2A′′+qI] and
give it to the adversary. Even though we do not know a secret key S such that
AS = qI (mod 2q), we can still create valid signatures for any messages of the
adversary’s choosing by picking the (z, c) according to the correct distributions
and then programming the random oracle as is done in [24]. When the adversary
forges, we use the forking lemma to create two equations Az = qc (mod 2q) and
Az′ = qc′ (mod 2q). Combining them together, we obtain A(z− z′) = q(c− c′)
(mod 2q). Under some very simple requirements for z, z′, c, and c′, the previous
equation implies that A(z− z′) = 0 (mod q) and z �= z′. This then implies that
2B(z − z′) = 0 (mod q) and since 2 is invertible modulo q, we have found a
w = (z− z′) such that Bw = 0 (mod q).

4 One may think that a possible solution could be to output the bit b as part of the
signature, but this is not secure. Depending on the sign of 〈z,Sc〉, one of the two
values of b is more likely to be output than the other. Therefore outputting the bit
b leaks information about S.
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The above scheme construction and proof work for SIS and equally well for
Ring-SIS, when instantiated with polynomials. As in [24], we can also construct
much more efficient schemes based on LWE and Ring-LWE by creating the ma-
trix A′′ = A′S′ such that (A′,A′′) is not uniformly random, but only computa-
tionally. For optimal efficiency, though, we can create the key in yet a different
manner related to the way NTRU keys are generated. The formal construction
is described in the full version, and we just give the intuition here. We could
create two small polynomials s1, s2 ∈ Z[x]/(xn + 1) and output the public key
as a = q−s2

s1
(mod 2q). Notice that this implies that as1 + s2 = q (mod 2q),

and so we can think of the public key as A = [a,1] and the secret key as
S = [s1, s2]

T . Assuming that it is a hard problem to find small vectors w such
that Aw = 0 (mod 2q), the signature scheme instantiated in the above manner
will be secure. To those readers familiar with the key generation in the NTRU
encryption scheme, the above key generation should look very familiar, except
that the modulus is 2q rather than q. Since we are not sure what happens when
the modulus is 2q, we show in the full version of this paper [5] how to instantiate
our scheme so that it is based on NTRU over modulus q. We then explain how
for certain instantiations, this is as hard a problem as Ring-SIS (using the results
of Stehlé, Steinfeld [32]) and how for more efficient instantiations, it is a weaker
assumption than the ones underlying the classic NTRU encryption scheme and
the recent construction of fully-homomorphic encryption [21].

Gaussian Sampling. There are two generic methods for sampling according to
a discrete Gaussian distribution. The first one uses basic rejection sampling as
follows: choose a uniform integer x ∈ {−τσ, . . . , τσ} (where τ ≈ 12, as in the pre-
ceding discussion) and accept it with probability proportional to exp(−x2/2σ2)
(and restart otherwise). This involves the computation of the exp function to
high precision and requires an average of 2τ/

√
2π ≈ 10 trials, thus wasting a

lot of random bits. The second one involves storing large pre-computed data,
namely the cumulative distribution table of the discrete Gaussian from −τσ
to τσ. While the second method is very efficient when given enough memory,
neither of the two approaches is appropriate for use in constrained devices.

We solve this issue by modifying the first approach to exploit the properties
of discrete Gaussians. We recall that a Bernoulli distribution Bc assigns 1 (True)
with probability c ∈ [0, 1] and 0 (False) with probability 1− c. Overloading the
notation for the sake of clarity, we will denote by Bc both the distribution and
a generic random variable that follows that distribution independently of all
others (thus we may write, for example, Ba⊕Bb = Ba+b−2ab). As a first step, to
avoid explicit computation of exp, we use the simple fact that for an integer x
in binary form x = x1 · · ·xn we have Bexp(−x/f) =

∧
i s.t. xi=1 Bexp(−2i/f). This

allows us to sample according to Bexp(−x/f) using only logarithmically many
precomputed values exp(−2i/f). Similarly, we also design another algorithm to
sample according to B1/ cosh(x/f), using a Markov chain that makes less than two
calls to Bexp(−x/f) on average.
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The second step is to replace the uniform distribution from which one chooses
an integer by a more adapted one to decrease the rejection rate. It is essential,
though, that the rejection rate retains an easily samplable form. To do this, we
build on a specific discrete Gaussian of variance σ2

2 = 1/(2 ln2) for which the

distribution Dσ2(x) is proportional to 2−x2

. This makes it very easily samplable,
and the rejection rate still has the required form exp(·/f). The final algorithm
has bounded repetition rate of 1.5 rather than 2τ/

√
2π ≈ 10. All the operations

are very simple, requiring only small integer arithmetic, and are therefore well-
suited for constrained devices.

Cryptanalysis and Experiments on NTRU Lattices. Previous cryptana-
lytic efforts against schemes based on SIS and LWE mostly involved computing
the Hermite factor of the underlying average-case instance, as in the work of
Gama and Nguyen [8], and making sure that its value is below the level required
for the desired security guarantees. In this work (described in detail in the full
version of this paper [5]) we undertake a more careful cryptanalysis by using the
results on BKZ 2.0 of Chen and Nguyen [3] in combination with other techniques
– namely dual lattice reduction and the combinatorial meet-in-the-middle attack
of Howgrave-Graham [20].

For optimal efficiency, the security of our scheme relies on the hardness of
a type of NTRU problem that has recently (re-)appeared in the literature [21]
and which, we believe, could play a major role in the future of lattice-based
cryptography (see Section 2 for the precise definition of the problem). The only
cryptanalysis of which we are aware of that studies NTRU lattices deals with
instances where the modulus is very close in size to the dimension of the lattice
[8,16]. It is thus unclear as to what roles each of the variables plays when looked
at independently.

In our work, and also in the previously-mentioned work of [21], the modulus is
required to be substantially larger than the dimension. As far as we are aware, no
previous cryptanalysis was done for these types of instances. The most complete
study of the behavior of BKZ in the presence of unusually short vector(s) is due
to Gama and Nguyen [8] who thoroughly analyzed the algorithm’s running time
in the presence of one such vector. Their experiments show that the hardness
of finding this vector depends on the ratio λ2/λ1, that is, the gap between the
second-shortest and the shortest vectors in them-dimensional lattice. In practice,
for BKZ-20, the shortest vector was found when λ2/λ1 > .48 · 1.01m.

We ran similar experiment of BKZ-20 in the case of 2n-dimensional NTRU
lattices where λ1 = . . . = λn. In NTRU lattices, the gap normally occurs be-
tween the n-th and the n+1-st successive minima, and one might think that the
ratio between these two quantities would somehow determine the hardness of
the instance. Our experiments showed that this is not the case, and the shortest
vector was found when

√
qm/2πe

/
λ1 was greater than .40 · 1.012m (see Figure

3). Despite the fact that there is no vector in the lattice having length
√
qm/2πe

this is actually consistent with the results of [8]! The reason is that
√
qm/2πe is
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(a) Shortest vector not found (b) Shortest vector found

Fig. 3. Results BKZ-20 for n ∈ [48, 150], q ∈ [6000, 25000] and binary search on the
λ1-threshold. On horizontal axis is the value of n + random(0,5) and on vertical axis

is
(

1
.40

√
qm
2πe

/
λ1

)1/2n
.

the expected length of the shortest vector according to the Gaussian heuristic,5

and we would also expect λ2 ≈
√
qm/2πe in a random q-ary lattice analyzed

in [8]. Thus one could say that the hardness of finding a short vector in q-ary
lattices depends not on the gap, but rather on the ratio between the Gaussian
heuristic and the actual length of the shortest vector.

Similar to the results in [8], when the ratio was smaller than .40 · 1.012m, the
resulting shortest vector had length about

√
q · 1.012m. In other words, BKZ-20

behaved as if the lattice were truly random. Because of our experiments with BKZ-
20, it seems reasonable to assume that BKZ behaves analogously for larger block
sizes.Thuswe canmeasure its efficacy according to theBKZ2.0methodology in [3].
We would like to stress that we have no explanation for the reason why the ratio
between the Gaussian heuristic and the actual length of the vector seems to dic-
tate the hardness of finding short vectors in NTRU lattices. We are equally unsure
whether this phenomenon implies that these lattices are indeed as hard as the ran-
dom lattices that have been more exhaustively studied [8,3].

The general dearth of lattice cryptanalysis papers stands in contrast to the
vast number of articles proposing theoretical lattice-based constructions. Our
belief is that this lack of cryptanalytic effort is in part due to the fact that
most of the papers with scheme proposals give no concrete targets to attack.
One of the proposed instantiations in the present work is a “toy example” that
we estimate has approximately 60 bits of security. Thus if it turns out that
NTRU lattices are weaker than believed, it is wholly possible that this example
could be broken on a personal computer, and we think this would be of great
interest to the practical community. In addition, it could be argued that we do
not yet know enough about lattice reduction to be able to propose such “fine-
grained” security estimates like 160-bit or 192-bit. But one of the main reasons

5 The Gaussian heuristic says that for certain types of random lattices L, we will have
λ1(L) ≈ det(L)1/m ·

√
m
2πe

[8].
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that we make these proposals is to make it “worthwhile” for cryptanalysts to
work on these problems. In short, one of our hopes is that this work spurs on
the cryptanalysis that is currently much needed in the field.

Acknowledgments. We thank the CRYPTO 2013 reviewers for their careful
reading of the paper and their diligent comments. We also thank Steven Gal-
braith and Pascal Paillier for useful comments on previous versions of this work.

2 Preliminaries

2.1 Notation

For any integer q, we identify the ring Zq with the interval [−q/2, q/2)∩ Z, and
in general for a ring R, we define Rq to be the quotient ring R/(qR). Whenever
working in the quotient ring Rq = Zq[x]/(x

n + 1), we will assume that n is
a power of 2 and q is a prime number such that q = 1 (mod 2n). Vectors,
considered as column vectors, will be written in bold lower case letters. Matrices
will be written in bold upper case letters. For a positive integer n, we write In
to be the identity matrix of dimension n.

We recall that the 
p-norm of a vector v is defined as ‖v‖p = (
∑

i|vi|p)1/p
for p > 0, and its 
∞-norm as ‖v‖∞ = maxi|vi|. By default, we use ‖·‖ for the

2-norm.

We now state a general rejection sampling lemma. The proof of this lemma
is quite standard (cf. [24]).

Lemma 2.1 (Rejection Sampling). Let V be an arbitrary set, and h : V → R
and f : Zm → R be probability distributions. If gv : Zm → R is a family of
probability distributions indexed by v ∈ V with the property that there exists a
M ∈ R such that

∀v ∈ V, ∀z ∈ Zm,M · gv(z) � f(z) ,

then, the output distributions of the following two algorithms are identical:

1. v ← h, z ← gv, output (z, v) with probability f(z)/
(
M · gv(z)

)
.

2. v ← h, z ← f , output (z, v) with probability 1/M .

2.2 Discrete Gaussian Distribution

Gaussian Distribution. The (un-normalized) Gaussian distribution with stan-
dard deviation σ ∈ R and center c ∈ R evaluated at x ∈ R is defined by

ρc,σ(x) = exp
(−(x−c)2

2σ2

)
, and more generally by ρc,σ(x) = exp

(−‖x−c‖2

2σ2

)
for

x, c ∈ Rn. When the center c is 0, we generally omit it from the notation
and simply write ρσ(x). The discrete Gaussian distribution over Z centered
at 0 is defined by Dσ(x) = ρσ(x)/ρσ(Z), and more generally, over Zm by
Dm

σ (x) = ρσ(x)/ρσ(Z)m.
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Tailcutting. It is generally useful to ignore large values which are unlikely to
appear when drawing according to a Gaussian distribution.

Lemma 2.2 ([28]). For any dimension m, σ > 0 and τ > 1, ρσ(Zm \
τσ

√
mB) < 2C(τ)m · ρσ(Z)m, where C(τ) = τ exp

(
1−τ2

2

)
< 1, and B is the

centered 
2 unit ball.

Therefore, to tailcut less than 2−λ of a 1-dimensional Gaussian, one should
choose τ ≈

√
λ · 2 ln 2, the typical value being τ = 12 for λ = 100.

2.3 Hardness Assumptions

All the constructions in this paper are based on the hardness of the generalized
SIS (Short Integer Solution) problem, which we define below.

Definition 2.3 (R-SISK
q,n,m,β problem). Let R be some ring and K be some

distribution over Rn×m
q , where Rq is the quotient ring R/(qR). Given a random

A ∈ Rn×m
q drawn according to the distribution K, find a non-zero v ∈ Rm

q such
that Av = 0 and ‖v‖2 � β.

If we let R = Z and K be the uniform distribution, then the resulting problem
is the classical SIS problem first defined by Ajtai [1] in his seminal paper show-
ing connections between worst-case lattice problems and the average-case SIS
problem. By the pigeonhole principle, if β � √

mqn/m then the SIS instances
are guaranteed to have a solution. Using Gaussian techniques, Micciancio and
Regev [28] improved Ajtai’s result to show that, for a large enough q as a function
of n and β, the SISq,n,m,β problem is as hard (on the average) as the Õ(

√
nβ)-

SIVP problem for all lattices of dimension n.
In 2006, a ring variant of SIS was introduced independently by Peikert and

Rosen [30] and Lyubashevsky and Micciancio [25]. In [25] it was shown that if
R = Z[x]/(xn +1), where n is a power of 2, then the R-SISKq,1,m,β problem is as

hard as the Õ(
√
nβ)-SVP problem in all lattices that are ideals in R (where K

is again the uniform distribution over R1×m
q ).

NTRU Lattices. In the NTRU cryptosystem over the ring Rq = Zq[x]/(x
n +

1) [18], the key generation procedure picks two short secret keys f ,g ∈ Rq

(according to some distribution) and computes the public key as a = g/f .6 When
the norm of f ,g is large enough, it can be shown that a is actually uniformly
random in Rq [32], but even when the secret keys do not have enough entropy,
their quotient still appears to be pseudorandom, although no proof of this fact is
known [21]. In the NTRU cryptosystem (or its more secure modification of [32]
which is based on the Ring-LWE problem), one encrypts a message μ, represented
as a polynomial in Rq with {0, 1} coefficients, by picking two short vectors

6 In the original NTRU scheme, the ring was Zq[x]/(x
n − 1), but lately researchers

have also used Zq[x]/(x
n+1) when n is a power of 2. Indeed, the latter choice seems

at least as secure.
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r, e ∈ Rq and outputting z = 2(ar+ e)+μ. The security of the scheme relies on
the fact that the distribution of (a, z) is pseudo-random in R2

q.
One can define an NTRU version of the SIS problem that is at least as hard as

breaking the NTRU cryptosystem.7 In particular, given an NTRU public key a,
find two polynomials v1,v2 ∈ Rq such that ‖(v1|v2)‖ � β and av1 + v2 = 0 in
Rq. Notice that (f ,−g) is a solution to this problem, but in fact, finding larger
solutions can also be useful in breaking the NTRU cryptosystem. In particular,
notice that for any solution (v1|v2), one can compute zv1 = 2(−rv2+ev1)+μv1.
If β is sufficiently small with respect to ‖(r|e)‖, then z · v1 mod 2 = μv1, and
μ can be recovered. Thus, for certain parameters, the NTRU version of the SIS
problem is at least as hard as breaking the NTRU cryptosystem. As a side-
note, we would like to point out that the NTRU encryption scheme remains
hard even after 15 years of cryptanalysis. The weakness in the NTRU signature
scheme, which uses the same key generation procedure, is due to the fact that
signatures slowly leak the secret key [29,6], but this is provably (i.e. information-
theoretically) avoided in our scheme.

In the full version of this paper [5], we propose a practical instantiation of
our signature scheme inspired by the NTRU key-generation, and analyze the
hardness of the NTRU version of the SIS problem using combinations of lattice
[3] and hybrid attacks [20]. We provide concrete parameters, and the resulting
signature scheme was implemented as a proof-of-concept on a desktop computer
(and yielded the timings of Table 1).

3 BLISS: A Lattice Signature Scheme Using Bimodal
Gaussians

In this section, we present our new signature scheme along with the proof of
correctness. The security of the signature scheme is based on the hardness
of the R-SISKq,n,m,β problem. We mention that this is the “simple” version of
our algorithm, and its more optimized implementation that uses numerous en-
hancements is presented in the full version of this paper [5]. For simplicity, we
present our algorithm for R = Z, but it works in exactly the same way for rings
R = Z[x]/(xn + 1).

3.1 New Signature and Verification Algorithms

Key pairs. The secret key is a (short) matrix S ∈ Zm×n
2q and the public key

is given by the matrix A ∈ Zn×m
2q such that AS = qIn (mod 2q). A crucial

property, for our new rejection sampling algorithm, satisfied by the key pair,
is that AS = A(−S) = qIn (mod 2q). Obtaining such a key pair is easy and
can be done efficiently. In the full version of this paper [5], we explain the key-
generation procedure which results in a scheme whose security is based on the

7 A way to state the NTRU SIS problem in terms of the R-SISK
q,1,2,β problem is to set

R = Z[x]/(xn + 1) and let K be the distribution that picks small f ,g and outputs
the public key A = (a,1) ∈ R1×2

q for a = g/f .
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classic SISq,n,m,β problem and we present an “NTRU-like” variant of the key
generation which yields a more efficient instantiation of the signature scheme.

Random Oracle Domain. We model the hash function H as a random oracle
that has uniform output in Bn

κ, the set of binary vectors of length n and weight
κ. Such a mapping can be found in [7] but its complexity is quadratic in n; in
the full version of this paper, we provide an efficient construction.

Algorithm 1. Signature Algorithm

Input: Message μ, public key A ∈ Zn×m
2q , secret key S ∈ Zm×n

2q , stand. dev. σ ∈R
Output: A signature (z, c) of the message μ
1: y ← Dm

σ

2: c ← H(Ay mod 2q, μ)
3: Choose a random bit b ∈ {0, 1}
4: z ← y + (−1)bSc

5: Output(z, c) with probability 1
/(

M exp
(
− ‖Sc‖2

2σ2

)
cosh

(
〈z,Sc〉

σ2

))
otherwise

restart

Algorithm 2. Verification Algorithm

Input: Message μ, public Key A ∈ Zn
2q , signature (z, c)

Output: Accept or Reject the signature
1: if ‖z‖ > B2 then Reject
2: if ‖z‖∞ � q/4 then Reject
3: Accept iff c = H(Az+ qc mod 2q, μ)

The Signature Algorithm. The signer, who is given a message digest μ, first
samples a vector y from the m-dimensional discrete Gaussian distribution Dm

σ

and then computes c ← H(Ay mod 2q, μ). He then samples a bit b in {0, 1} and
computes the potential output z ← y + (−1)bSc. Notice that z is distributed
according to the bimodal discrete Gaussian distribution 1

2D
m
Sc,σ + 1

2D
m
−Sc,σ. At

this point we perform rejection sampling and output the signature (z, c) with

probability 1
/(

M exp
(
− ‖Sc‖2

2σ2

)
cosh

(
〈z,Sc〉
σ2

))
, whereM is some fixed positive

real that is set large enough to ensure that the preceding probability is always
at most 1. We explain how to set M in accordance with the standard deviation
σ in the next section. If the signing algorithm did not output the signature, then
it is restarted and repeated until something is output. The expected number of
iterations of the signing algorithm is M .

The Verification Algorithm. The verification algorithm will accept (z, c) as the
signature for μ if the following three conditions hold:

1. ‖z‖ � B2

2. ‖z‖∞ < q/4
3. c = H(Az+ qc mod 2q, μ)
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The signer outputs signatures of the form (z, c) where z is distributed according
to Dm

σ , thus the acceptance bound B2 should be set a little bit higher than√
mσ, which is the expected value around which the output of Dm

σ is tightly
concentrated; denoting B2 = η

√
mσ, one can set η so that ‖z‖ � B2 is verified

with probability 1−2−λ [24, Lemma 4.4] for the security parameter λ (in practice,
η ∈ [1.1, 1.4]). For technical reasons in the security proof, we also need that
‖z‖∞ < q/4, but this condition is usually verified whenever the first one is and
does not restrict the manner in which we choose the parameters for the scheme.
Condition 3 will also hold for valid signatures because

Az+ qc = A(y + (−1)bSc) + qc = Ay +
(
(−1)bAS

)
c+ qc = Ay + (qIn)c + qc

= Ay mod 2q.

3.2 Rejection Sampling: Correctness and Efficiency

We now explain how to pick the standard deviation σ and positive real M so
that the signing algorithm in the preceding section produces vectors z according
to the distribution Dm

σ . Because y is distributed according to Dm
σ , it is easy

to see that in Step 4 of the signing algorithm, z is distributed according to
gSc = 1

2D
m
Sc,σ + 1

2D
m
−Sc,σ for fixed Sc and over the space of all (b,y). Thus for

any z∗ ∈ Rm, we have

Pr[z = z∗] =
1

2
Dm

Sc,σ(z
∗) +

1

2
Dm

−Sc,σ(z
∗)

=
1

2ρσ(Zm)
exp

(
−‖z∗ − Sc‖2

2σ2

)
+

1

2ρσ(Zm)
exp

(
−‖z∗ + Sc‖2

2σ2

)

=
1

2ρσ(Zm)
exp

(
−‖z∗‖2

2σ2

)
exp

(
−‖Sc‖2

2σ2

)(
e−

〈z∗,Sc〉
σ2 + e

〈z∗,Sc〉
σ2

)

=
1

ρσ(Zm)
exp

(
−‖z∗‖2

2σ2

)
exp

(
−‖Sc‖2

2σ2

)
cosh

(
〈z∗,Sc〉
σ2

)
.

The desired output distribution is the centered Gaussian distribution f(z∗) =
ρσ(z

∗)/ρσ(Zm). Thus, by Lemma 2.1, one should accept the sample z∗ with
probability:

pz∗ =
f(z∗)

MgSc(z∗)
= 1
/(

M exp

(
− ‖Sc‖2

2σ2

)
cosh

(
〈z∗,Sc〉
σ2

))
,

where M is chosen large enough so that pz∗ � 1. Note that cosh(x) � 1 for any
x, so it suffices that

M = e
1

2α2 (2)

where α is such that σ � α · ‖Sc‖.
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Bound on ‖Sc‖. Notice that if we fix the repetition rate M , then the standard
deviation of the signature z, and therefore also its size, only depend on the
maximum possible norm of the vector Sc. For this reason, it is important to
obtain a bound as tight as possible on this product. Several upper bounds on
‖Sc‖ can be used such as ‖Sc‖ � ‖c‖1 ·‖S‖ = κ ‖S‖ (as in [24]) or ‖Sc‖ � s1(S)·
‖c‖ = s1(S) ·

√
κ where s1(S) is the singular norm of S. Here we introduce a new

measure of S, adapted to the form of c, which helps us achieve a tighter bound
than with all previous methods. We believe that this norm and the technique
for bounding it could be of independent interest.

Definition 3.1. For any integer κ, we define Nκ : Rm×n → R as:

Nκ(X) = max
I⊂{1,...,n}

#I=κ

∑
i∈I

(
max

J⊂{1,...,n}
#J=κ

∑
j∈J

Ti,j

)
where T = Xt ·X ∈ Rn×n .

The following proposition states that
√
Nκ(S) is also an upper bound for ‖Sc‖.

Proposition 3.2. Let S ∈ Rm×n be a real matrix. For any c ∈ Bn
κ, we have

‖Sc‖2 � Nκ(S).

In practice, we will use this upper bound to bound ‖Sc‖ and derive the pa-
rameters. Some secret keys S will be rejected according to the value of Nκ(S),
which is easily computable. In addition to the gain from the use of bimodal
Gaussians, this new upper bound lowers the standard deviation σ by a factor
≈
√
κ/2 compared to [24].

3.3 Security of BLISS

Any existential forger against our signature scheme can solve the R-SISKq,n,m,β

problem for β = 2B2 where K is the distribution induced by the public-key
generation algorithm.

Theorem 3.3. Suppose there is a polynomial-time algorithm F which makes
at most s queries to the signing oracle and h queries to the random oracle H,
and succeeds in forging with non negligible probability δ. Then there exists a
polynomial-time algorithm which can solve the R-SISK

q,n,m,β problem for β = 2B2

with probability ≈ δ2

2(h+s) . Moreover the signing algorithm produces a signature

with probability ≈ 1/M and the verifying algorithm accepts a signature produced
by an honest signer with probability at least 1− 2m.

The proof of the theorem follows from standard arguments, and is simpler and
tighter than the proof of [24]. In a nutshell, the fact that the distribution of
the signatures in the scheme does not depend on the secret key means that
the simulator can “sign” arbitrary messages without having the secret key by
programming the random oracle. Then when the adversary produces a forgery,
the simulator can extract a solution to the SIS problem. The proof is provided
in the full version of this paper [5].
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Abstract. The learning with rounding (LWR) problem, introduced by
Banerjee, Peikert and Rosen at EUROCRYPT ’12, is a variant of learn-
ing with errors (LWE), where one replaces random errors with deter-
ministic rounding. The LWR problem was shown to be as hard as LWE
for a setting of parameters where the modulus and modulus-to-error
ratio are super-polynomial. In this work we resolve the main open prob-
lem and give a new reduction that works for a larger range of parame-
ters, allowing for a polynomial modulus and modulus-to-error ratio. In
particular, a smaller modulus gives us greater efficiency, and a smaller
modulus-to-error ratio gives us greater security, which now follows from
the worst-case hardness of GapSVP with polynomial (rather than super-
polynomial) approximation factors.

As a tool in the reduction, we show that there is a “lossy mode” for
the LWR problem, in which LWR samples only reveal partial information
about the secret. This property gives us several interesting new applica-
tions, including a proof that LWR remains secure with weakly random
secrets of sufficient min-entropy, and very simple constructions of deter-
ministic encryption, lossy trapdoor functions and reusable extractors.

Our approach is inspired by a technique of Goldwasser et al. from
ICS ’10, which implicitly showed the existence of a “lossy mode” for
LWE. By refining this technique, we also improve on the parameters of
that work to only requiring a polynomial (instead of super-polynomial)
modulus and modulus-to-error ratio.
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1 Introduction

Learning With Errors. The Learning with Errors (LWE) assumption states
that “noisy” inner products of a secret vector with random public vectors,
look pseudorandom. In the last years many cryptosystems have been proven
secure under LWE, including (identity-based, leakage-resilient, fully homomor-
phic, functional) encryption [2–9], pseudorandom functions [10], (blind) signa-
ture schemes [3, 11–13], hash functions [14, 15], oblivious transfer [16], etc..

The LWE assumption with parameters n,m, q ∈ N and a “small” error distri-

bution χ over Z states that for uniformly randomA
$← Zm×n

q , s
$← Zn

q , u
$← Zm

q

and an error vector e ← χm

(A,A · s+ e) is computationally indistinguishable from (A,u).

Sometimes it will be convenient to think of this distribution as consisting of m
“LWE samples” of the form (ai, 〈ai, s〉+ei) ∈ Zn+1

q . One of the main advantages
of the LWE problem is that, for some settings of parameters, we can prove its
security under certain worst-case hardness assumptions over lattices, cf. [2, 17].

One important parameter is the “size” of the error terms e
$← χ which we

denote by β.1 As long as β exceeds some minimum threshold ≈ √
n, the concrete

hardness of the LWE problem mainly depends on the dimension n and on the
ratio of the modulus q to the error-size β. Therefore, we will often be unspecific
about the exact distribution χ, and only focus on the error-size β.

Learning With Rounding. The Learning with Rounding (LWR) problem was
introduced in [10]. Instead of adding a small random error to a sample 〈a, s〉 ∈ Zq

to hide its exact value, we release a deterministically rounded version of 〈a, s〉.
That is, for some p < q, we divide up the elements of Zq into p contiguous
intervals of roughly q/p elements each and define the rounding function �·�p :
Zq → Zp that maps x ∈ Zq into the index of the interval that x belongs to. For
example if q, p are both powers of 2, than this could correspond to outputting
the log(p) most significant bits of x. We can extend the rounding function to
vectors by applying it component-wise. The LWR assumption states that:

(A, �A · s�p) is computationally indistinguishable from (A, �u�p).
Note that if p divides q, then �u�p is itself uniform over Zm

p .
The main advantage of LWR is that one does not need to sample any addi-

tional “errors”, therefore requiring fewer random bits. The assumption has been
used to construct simple and efficient pseudorandom generators and functions
in [10], and deterministic encryption in [18].

Banerjee et al. [10] show a beautifully simple reduction proving the hardness
of the LWR problem under the LWE assumption for some range of parameters.
They observe that if the error size β is sufficiently small and the ratio q/p is
sufficiently big, then �〈a, s〉�p = �〈a, s〉+e�p with overwhelming probability over

1 We will be informal for now; we can think of β as the the standard deviation or the
expected/largest absolute value of the errors.
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random a
$← Zq and e

$← χ. In particular, the only way that the two values
differ is if 〈a, s〉 ends up within a distance of |e| from a boundary between two
different intervals; but since the intervals are of size q/p and the ball around
the boundary is only of size 2|e| this is unlikely to happen when q/p is super-
polynomially bigger than 2|e|. Therefore, one can show that:

(A, �A · s�p)
stat≈ (A, �A · s+ e�p)

comp
≈ (A, �u�p)

where the first modification is statistically close and the second follows immedi-
ately from the hardness of LWE.

Unfortunately, the argument only goes through, when (q/p) is bigger than the
error size β by a super-polynomial factor. In fact, if we want statistical distance
2−λ we would need to set q ≥ 2λβp, where λ is a security parameter. This has
three important consequences: (1) the modulus q has to be super-polynomial,
which makes all of the computations less efficient, (2) the modulus-to-error ratio
q/β is super-polynomial which makes the LWE problem easier and only gives
us a reduction if we assume the hardness of the lattice problem GapSVP with
super-polynomial approximation factors (a stronger assumption), (3) the ratio
of the input-to-output modulus q/p is super-polynomial, meaning that we must
“throw away” a lot of information when rounding and therefore get fewer bits of
output per LWR sample. The work of [10] conjectured that the LWR problem
should be hard even for a polynomial modulus q, but left it as the main open
problem to give a reduction. The conjecture is especially interesting in light of
the recent results of [19] which give the first classical reduction from LWE with
small parameters to GapSVP.

1.1 The New Reduction and Properties of LWR

LWR with Polynomial Modulus. In this work, we resolve the open problem
of [10] and give a new reduction showing the hardness of LWR from that of
LWE for a more general setting of parameters, including when the modulus q
is only polynomial. In particular, instead of requiring q ≥ 2λβp, where λ is a
security parameter as in [10], we only require q ≥ nmβp, where we recall that
n is the dimension of the secret, and m is the number of LWR samples that we
output, β is the size of the LWE errors, and p is the new modulus we round
to. In particular, as long as the number of LWR samples m is fixed a-priori by
some polynomial, we can allow the modulus q (and therefore also the modulus-
to-error ratio q/β, and the input-to-output ratio q/p) to all be polynomial. As
mentioned, this setting provides greater efficiency (computation with smaller
q) and greater security (smaller ratio q/β) allowing for a reduction from the
worst-case hardness of the lattice problem GapSVP with polynomial approxi-
mation factors. In particular, the above efficiency and security improvements for
LWR directly translate into improvements of the PRG and PRF constructions
of [10].
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To be even more precise, our reduction shows the hardness of LWR with
parameters n,m, q, p assuming the hardness of LWE with parameters n′,m, q, β
(note: different dimension n′ vs. n) as long as:

n ≥ log(q)

log(2γ)
· n′ and q ≥ γ(nmβp) (1)

for some flexible parameter γ ≥ 1. For example, setting γ = 1 allows for the
smallest modulus q ≈ nmβp, but requires a larger dimension n ≈ n′ log(q) in
the LWR problem than the dimension n′ of the underlying LWE assumption.
On the other hand, setting γ = qδ for some constant δ ∈ (0, 1) gives a bigger
polynomial modulus q ≈ (nmβp)1/(1−δ) but allow us to set the LWR dimension
n ≈ (1/δ)n′ = O(n′) to be closer to that of the underlying LWE assumption.

It remains as an open problem to improve the reduction further, and especially
to remove the dependence between the modulus q and the number of LWR
samples m that we give out.

LWR with Weak and Leaky Secrets. Another advantage of our reduction
is that we prove the security of the LWR problem even when the secret s is not
necessarily uniform over Zn

q . Indeed, our proof also works when s is uniform over

a smaller integer interval s
$← {−γ, . . . , γ}n ⊆ Zn

q , where the relation of γ ≥ 1
to the other parameters is given by equation (1). Moreover, our reduction works
when the secret s is not even truly uniform over this interval (say, because the
attacker observed some leakage on s, or s was sampled using a weak random
source) as long as s retains some sufficiently high amount of min-entropy k ≈
n′ log(q), where n′ is the dimension of the underlying LWE assumption. Notice
that, no matter how small the entropy k is, we can still prove some level of
security under an LWE assumption with correspondingly smaller dimension n′.

The work of Goldwasser et al. [20] shows similar results for the hardness of
LWE with a weak and leaky secret, at least as long as the modulus q and the
modulus-to-error ratio q/β are super-polynomial. Indeed, we will use a refine-
ment of the technique from their work as the basis of our LWE to LWR reduction.
Our refinement will also allow us to improve the parameters of [20], and show
the hardness of LWE with a weak and leaky secret when the modulus q and the
ratio q/β are polynomial.

The Reduction. As discussed above, the original reduction of [10] required us
to choose parameters so that rounding samples with and without error is almost
always identical: Pr[�〈a, s〉�p �= �〈a, s〉+ e�p] ≤ negl. Therefore LWR outputs do
not provide any more information than LWE outputs. In contrast, in our setting
of parameters, when q is polynomial, there is a noticeable probability that the
two values are different. We therefore need a completely different proof strategy.

Surprisingly, our strategy does not directly convert an LWE instance with
secret s into an LWR instance with secret s. Instead, we rely on the LWE problem
to change the distribution of the coefficient matrix A. In particular, we show

that there is a “lossy” method of sampling a matrix Ã
$← Lossy() such that:
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(a) Under the LWE assumption, Ã
$← Lossy() is computationally indistinguish-

able from A
$← Zm×n

q .

(b) When Ã
$← Lossy(), the values Ã, �Ã·s�p do not reveal too much information

about s. In particular, s maintains a large fraction of its statistical entropy
given Ã, �Ã · s�p.

Before we describe how the Lossy() sampler works in the next paragraph, let
us show that the above two properties allow us to prove the hardness of LWR
problem. We can do so via a hybrid argument where, given many LWR samples,
we replace one sample at a time from being an LWR sample to being uniformly
random. In particular, assume we have m+ 1 LWR samples and let the matrix

A
$← Zm×n

q denote the coefficient vectors of the first m samples, and let a
$← Zn

q

be the coefficient vector of the last sample. Then we can show:([
A
a

]
,

[
�A · s�p
�〈a, s〉�p

])
comp
≈
([

Ã
a

]
,

[
�Ã · s�p
�〈a, s〉�p

])
stat≈([

Ã
a

]
,

[
�Ã · s�p
�u�p

])
comp
≈
([

A
a

]
,

[
�A · s�p
�u�p

])
In the first step, we use the LWE assumption to replace a uniformly random A

by a lossy matrix Ã
$← Lossy(), but still choose the last row a

$← Zn
q at random.

In the second step, we use the fact that inner product is a strong extractor,
where we think of the secret s as the source and the vector a as a seed. In
particular, by the properties of the lossy sampler, we know that s maintains
entropy conditioned on seeing Ã, �Ã · s�p and therefore the “extracted value”

〈a, s〉 is statistically close to a uniformly random and independent u
$← Zq. In the

last step, we simply replace the lossy matrix Ã
$← Lossy() back by a uniformly

random A. This shows that, given the first m LWR samples the last one looks
uniform and independent. We can then repeat the above steps m more times to
replace each of the remaining LWR samples (rows) by uniform, one-by-one.

The Lossy Sampler. The basic idea of our Lossy sampler is taken from the
work of Goldwasser et al. [20]. We sample the lossy matrix Ã ∈ Zm×n

q as

Ã
def
= BC+ F where B

$← Zm×n′
q , C

$← Zn′×n
q , F

$← χm×n

where n′ < n is some parameter and χ is a “small” LWE error distribution. We
now need to show that this satisfies the properties (a) and (b) described above.

It is easy to see that Ã is computationally indistinguishable from a uniformly
random matrix under the LWE assumption with parameters n′,m, q, χ. In par-
ticular, each column i of the matrix Ã can be thought of as an LWE distribution
B · ci + fi with coefficient matrix B, secret ci which is the ith column of the
matrix C, and error vector fi which is the ith column of F. Therefore, using n
hybrid arguments, we can replace each column i of Ã by a uniformly random
and independent one. This part of the argument is the same as in [20].

Next, we need to show that the secret s retains entropy even conditioned on

seeing Ã, �Ã·s�p. Let us first prove this property in the case when s
$← {−1, 0, 1}n
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is itself a random “short” vector.2 All of the information that we give out about
s can be reconstructed from:

– The matrices B,C,F which define Ã and are independent of s on their own.
– The value C · s whose bit-length is n′ log(q).
– A set Z consisting of all pairs (i, vi) ∈ [m] × Zp such that �(BC · s)i�p �=
�(Ã · s)i�p along with the value vi = �(Ã · s)i�p. The subscript i denotes the
ith component of a vector.

Given the three pieces of information above, we can reconstruct Ã, �Ã · s�p by

setting �(Ã·s)i�p := �(BC·s)i�p for every index i not contained in Z, and setting

�(Ã · s)i�p := vi for every i which is in Z. Therefore, we just need to show that
the three pieces of information above do not reveal too much about s. First, we
show that the set Z is small with overwhelming probability. In particular, an
index i is contained in Z if and only if

�(BC · s)i�p �= �(BC · s)i + (F · s)i�p. (2)

Assume that the entries of the error matrix F are all bounded by β in absolute
value with overwhelming probability, and therefore (F · s)i is bounded by nβ
in absolute value.3 Then the event (2) can only occur if the value (BC · s)i
falls within distance nβ of a boundary between two different intervals. Since
each interval is of size ≈ q/p and the ball around each boundary is of size 2nβ,
this happens with (noticeable but small) probability ≤ 2nβp/q ≤ 1/m, when
q ≥ 2nmβp (which gives us the bound of (1)). Therefore, the probability of
any index i being in Z is at most 1/m, the expected size of Z is at most 1,
and because these probabilities are independent, we can use Chernoff to bound
|Z| ≤ n′ with overwhelming probability 1−2−n′

. So in total, Z can be described
by |Z|(logm + log p) ≤ n′ log q bits with overwhelming probability. Therefore,
together, Z,Cs reveal only O(n′ log q) bits of information about s, even given
B,C,F. We can summarize the above as:

H∞(s|Ã, �Ãs�p) ≥ H∞(s|B,C,F,C · s, Z)
≥ H∞(s|B,C,F)−O(n′ log q) ≥ n−O(n′ log q).

Hence, if n is sufficiently larger than some O(n′ log q), the LWR secret maintains
a large amount of entropy given the LWR samples with a lossy Ã. The above
analysis also extends to the case where s is not uniformly random, but only has
a sufficient amount of entropy.

We can also extend the above analysis to the case where s
$← Zn

q is uniformly
random over the entire space (and not short), by thinking of s = s1 + s2 where

s1
$← Zn

q is uniformly random and s2
$← {−1, 0, 1}n is random and short. Using

the same argument as above, we can show that, even given s1, Ã and �Ã · s�p,
the value s2 (and therefore also s) maintains entropy.

2 This proof generalizes to larger intervals {−γ, . . . , γ} and corresponds to the param-
eter γ in equation (1). Here we set γ = 1.

3 Our actual proof is more refined and only requires us to bound the expected absolute
value of the entries.
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Our analysis of lossiness as described above is inspired by [20] but differs from
it significantly. In particular that work considered LWE (not LWR) samples with
the matrix Ã, did not explicitly analyze lossiness, and required super-polynomial
modulus and modulus-to-error ratio. Indeed, in the full version [1] we use the
ideas from the above analysis to also improve the parameters of that work,
showing the robustness of the LWE problem to weak and leaky secrets for a
polynomial modulus and modulus-to-error ratio.

1.2 Applications

Reusable Computational Extractors. By the leftover-hash lemma, the func-
tion Ext(s; a) := 〈s, a〉 is a good randomness extractor taking a secret source

s ∈ Zn
q of min-entropy k ≥ log(q)+2 log(1/ε) and a random public seed a

$← Zn
q ,

and its output will be ε-close to the uniform over Zq. But assume we want to
extract many different mutually (pseudo-)random values from the source s with-
out keeping any long term state: each time we want to extract a new output we
choose a fresh seed and apply the extractor. It is easy to see that the above
inner-product extractor is completely insecure after at most n applications, and
each successive output is easy to predict from the previous ones. The work of [21]
introduced the notion of a reusable computational extractor that remains secure
even after m applications, where m can be an arbitrary polynomial, and gave a
construction under a non-standard “learning-subspaces with noise” assumption.
Our results immediately give us a new simple construction of reusable extractors
defined by Ext(s; a) := �〈a, s〉�p. That is, we just round the output of the stan-
dard inner product extractor! We show that, as long as the LWE assumption
holds with some parameters n′,m, q, β, the source s is distributed over {0, 1}n
and has entropy k ≥ O(n′ log(q)), and the modulus satisfies q ≥ 2βnmp, the
above extractor is secure for m uses. In particular, we can have m� n� k.

Lossy Trapdoor Functions. Lossy trapdoor functions (LTDFs) [22, 23] are a
family of functions fpk(·) keyed by some public key pk, which can be sampled
in one of two indistinguishable modes: injective and lossy. In the injective
mode the function fpk(·) is an injective function and we can even sample pk
along with a secret trapdoor key sk that allows us to invert it efficiently. In
the lossy mode, the function fpk(·) is “many-to-one” and fpk(s) statistically
loses information about the input s. LTDFs have many amazing applications in
cryptography, such as allowing us to output many hardcore bits, construct CCA-
2 public-key encryption [23,24], and deterministic encryption [25]. We construct
very simple and efficient LTDFs using the LWR problem: the public key is a
matrix pk = A and the function is defined as fA(s) = �A · s�p. We can sample
an injective A with a trapdoor using the techniques of Ajtai [26] or subsequent
improvements [27, 28], and one can sample a lossy A using our lossy sampler.
Although prior constructions of LTDFs based on LWE are known [23, 29], our
construction is extremely simple and has the advantage that our lossy mode
loses “almost all” of the information contained in s.
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Deterministic Encryption. Deterministic public-key encryption [25,30–33] is
intended to guarantee security as long as the messages have sufficient entropy.
Although there are black-box constructions of deterministic encryption using
LTDFs [32], we get a very simple direct construction from the LWR problem:
the public key is a matrix pk = A ∈ Zm×n

q , and to encrypt a message s ∈ {0, 1}n,
we simply output �A · s�p. We can sample A with a decryption trapdoor using
the standard techniques [26–28] mentioned previously. Our analysis here is es-
sentially the same as for our reusable extractor – we simply note that whenever
s has sufficient entropy, the output �A · s�p is pseudorandom. We note that
the same construction was proposed by Xie et al. [18], but because the analy-
sis there was similar to [10, 20], they required a super-polynomial modulus and
modulus-to-error ratio. The main advantage of this scheme over other deter-
ministic encryption schemes is that we do not need any fixed threshold on the
entropy of the message s: no matter how low it is we can still prove security
under an LWE assumption with correspondingly degraded parameters.

1.3 Recent Concurrent Work

The work of [34] studies the security of LWE in the case where the error dis-
tribution is uniformly random over a small interval. In appendix B of the full
version [1], we derive a very similar result. As a tool, both works rely on study-
ing a ”lossy mode” of LWE, but the construction and analysis are somewhat
different. The work of [35] also studies LWE in a setting with extremely small
errors uniform over {0, 1} also crucially using the notion of lossiness.

2 Preliminaries

Notation. Throughout, we let λ denote the security parameter. We use bold
lower-case letters (e.g., s, e) to denote vectors, and bold upper-case letters (e.g.,
A,B) to denote matrices. If X is a distribution or a random variable, we write

x
$← X to denote the process of sampling x according to X . If X is a set, we

write x
$← X to denote the process of sampling x uniformly at random over X .

For two distribution ensembles X = {Xλ}, Y = {Yλ}, we write X
comp
≈ Y if for

all probabilistic polynomial time (PPT) distinguishers D there is a negligible
function negl(·) such that: |Pr[D(1λ, Xλ) = 1]− Pr[D(1λ, Yλ)] = 1| ≤ negl(λ).

Bounded Distribution. A distribution χ over R is called β-bounded if E[|χ|] ≤
β.

Probabilistic Notions. We assume that the reader is familiar with some ba-
sic notions from probability, such as statistical distance Δ, (conditional) min
entropy, and the Chernoff bound. We will further rely on the following less stan-
dard definition of smooth min-entropy, which was first introduced by Renner
and Wolf [36]. Intuitively, a random variable has high smooth min-entropy, if it
is statistically close to a random variable with high min-entropy.
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Definition 2.1 (Smooth Entropy). We say that a random variable X has ε-
smooth min-entropy at least k, denoted by Hε

∞(X) ≥ k, if there exists some vari-
able X ′ such that Δ(X,X ′) ≤ ε and H∞(X ′) ≥ k. Similarly, we say that the ε-
smooth conditional min-entropy of X given Y is at least k, denoted Hε

∞(X |Y ) ≥
k if there exist some variables (X ′, Y ′) such that Δ((X,Y ), (X ′, Y ′)) ≤ ε and
H∞(X ′|Y ′) ≥ k.

We will write Hsmooth
∞ (·) to denote Hε

∞(·) for some (unspecified) negligible ε.

2.1 Learning with Errors and Learning with Rounding

Learning With Errors. The decisional learning with errors (LWE ) problem
was first introduced by Regev [2]. Informally, the problem asks to distinguish
slightly perturbed random linear equations from truly random ones.

Definition 2.2 (LWE Assumption [2]). Let λ be the security parameter, n =
n(λ),m = m(λ), q = q(λ) be integers and let χ = χ(λ) be a distribution over

Zq. The LWEn,m,q,χ assumption says that for A
$← Zm×n

q , s
$← Zn

q , e ← χm,

u
$← Zm

q the following distributions are computationally indistinguishable:

(A,A · s+ e)
comp
≈ (A,u).

It has been shown that the LWE-assumption holds for certain error distributions
χ, assuming the worst-case hardness of certain lattice problems. In particular,
this is the case if χ is a discrete Gaussian distribution with appropriate variance,
see, e.g., [2, 17, 35] for precise statements.

Learning With Rounding. The learning with rounding (LWR) problem was
introduced by Banerjee et al. [10]. It can, in some sense, be seen as a de-
randomized version of the LWE-problem. The idea is to compute the error terms
deterministically: instead of perturbing the answer by adding a small error, we
simply round the answer – in both cases we are intuitively hiding the low order
bits.

More formally, the LWR-problem is defined via the following rounding func-
tion for integers q ≥ p ≥ 2:

�·�p : Zq → Zp : x �→ �(p/q) · x�,
where we naturally identify elements of Zk with the integers in the interval
{0, . . . , k − 1}.4 More intuitively, �.�p partitions Zq into intervals of length ≈ q

p
which it maps to the same image. We naturally extend the rounding function to
vectors over Zq by applying it component-wise.

In the presentation of our results we will make use that the probability that
a random element in Zq is close to a step in the rounding function is small. We
therefore define, for any integer τ > 0:

borderp,q(τ)
def
= {x ∈ Zq : ∃y ∈ Z, |y| ≤ τ, �x�p �= �x+ y�p} .

4 The choice of the floor function rather than ceiling or nearest integer is arbitrary
and unimportant.
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We can easily bound the probability of a random element being on the border.
As for the rest of this document, we omit a proof and refer to the full version [1].

Lemma 2.3. For every p, q, τ it holds that Pr
x

$←Zq

[x ∈ borderp,q(τ)] ≤ 2τp
q .

The learning with rounding problem is now defined as follows:

Definition 2.4 (LWR [10]). Let λ be the security parameter, n = n(λ),m =
m(λ), q = q(λ), p = p(λ) be integers. The LWRn,m,q,p problem states that for

A
$← Zm×n

q , s
$← Zn

q , u
$← Zm

q the following distributions are computationally

indistinguishable: (A, �A · s�p)
comp
≈ (A, �u�p).

Notice that when p divides q, the distribution �u�p : u
$← Zq is just the uniform

over Zp. Otherwise, the distribution is slightly skewed with some values in Zp

having probability �q/p
q and others �q/p�

q . However, it is easy to deterministically
extract random bits from such independent samples with an asymptotic rate
of O(log(p)) bits per sample. Therefore, independent samples from the skewed
distribution are often “good enough” in practice.

We also define a variant of the LWR assumption where the secret s can come
from some weak source of entropy and the attacker may observe some partial
leakage about s.

Definition 2.5 (LWR with Weak and Leaky Secrets). Let λ be the security
parameter and n,m, q, p be integer parameters as in Definition 2.4. Let γ =
γ(λ) ∈ (0, q/2) be an integer and k = k(λ) be a real. The LWRWL(γ,k)

n,m,q,p problem
says that for any efficiently samplable correlated random variables (s, aux), where
the support of s is the integer interval [−γ, γ]n and H∞(s|aux) ≥ k, the following
distributions are computationally indistinguishable:

(aux,A, �A · s�p)
comp
≈ (aux,A, �u�p)

where A
$← Zm×n

q , u
$← Zm

q are chosen randomly and independently of s, aux.

3 Lossy Mode for LWR

We now show that, under the LWE assumption, the LWR problem has a ‘lossy
mode’: we can sample a matrix Ã which is computationally indistinguishable
from a uniformly random A such that the tuple (Ã, �Ãs�p) does not reveal too
much information about the secret s.

Definition 3.1 (Lossy Sampler). Let χ = χ(λ) be an efficiently samplable
distribution over Zq. The efficient lossy sampler Lossy() is given by:

Lossy(1n, 1m, 1�, q, χ): Sample B
$← Zm×�

q ,C
$← Z�×n

q ,F
$← χm×n and output

Ã = B ·C+ F.
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Although the matrix Ã computed by the Lossy algorithm is statistically far from
a uniformly random matrix, it is easy to show that it is computationally indis-
tinguishable from one under the LWE�,m,q,χ assumption, where the dimension
of the secret is now 
 instead of n. In particular, we can think of each column
of C as an LWE secrets, the matrix B as the coefficients, and each column of
Ã as the corresponding LWE output. Therefore, the following lemma from [20]
follows by a simple hybrid argument.

Lemma 3.2 ( [20]). Let A
$← Zm×n

q , and let Ã
$← Lossy(1n, 1m, 1�, q, χ). Then,

under the LWE�,m,q,χ assumption, the following two distributions are computa-

tionally indistinguishable: A
comp
≈ Ã.

The following lemma now states that for appropriate parameters, the secret s
maintains high smooth min-entropy (see Definition 2.1) given Ã and �Ã · s�p.

Lemma 3.3. Let n,m, 
, p, γ be positive integers, χ be some β-bounded distri-
bution (i.e., E[|χ|] ≤ β), and q ≥ 2βγnmp be a prime. Then the following holds:

(i) (Uniform Secret) For Ã
$← Lossy(1n, 1m, 1�, q, χ) , s

$← Zn
q we have, for

ε = 2−λ + q−�:

Hε
∞(s|Ã, �Ãs�p) ≥ n log(2γ)− (
 + λ) log(q).

(ii) (High-Entropy Secret) Let (s, aux) be correlated random variables with s ∈
[−γ, γ]n ⊆ Zn, and let Ã

$← Lossy(1n, 1m, 1�, q, χ) be chosen independently.
Then, for ε = 2−λ + q−� and any ε′ > 0 we have:

Hε′+ε
∞ (s|Ã, �Ãs�p, aux) ≥ Hε′

∞(s|aux)− (
 + λ) log(q).

Both parts above also holds when q is not prime, as long as the largest prime
divisor of q, denoted pmax, satisfies GCD(q, q/pmax) = 1, pmax ≥ 2βγnmp. In
this case we get ε = (2−λ + (pmax)

−� + Pr[s = 0n mod pmax]).

The proof is sketched in Section 1.1, and a full proof is given in [1].

4 New “LWR from LWE” Reduction

In the following section we present the main result of this paper, namely sufficient
conditions under which the LWR-assumption holds. As discussed earlier: on the
positive side, we show that the LWR-assumption also holds if one drops a small
fraction of the bits in the rounding function. On the negative side, the size of the
modulus depends on the number of LWR-samples one needs to output, i.e., on
the dimension of the matrix A, and thus this number must be known in advance.
However, as we will show in the subsequent sections, this is not a restriction for
many interesting applications.

Theorem 4.1. Let k, 
, n,m, p, γ be positive integers and q be a prime. Further,
let χ be a β-bounded distribution for some β ∈ R (all parameters are functions
of λ) such that q ≥ 2βγnmp. Under the LWE�,m,q,χ assumption we then get:
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(i) If n ≥ (
+ λ+ 1) log(q)
log(2γ) + 2λ, then the LWRn,m,q,p-assumption holds.

(ii) If k ≥ (
 + λ + 1) log(q) + 2λ, then the weak and leaky LWRWL(γ,k)
n,m,q,p -

assumption holds.

For exact security, if the above LWE assumption is (t, ε)-secure and 
 ≥ λ,
then in both cases the corresponding LWR-problem is (t′, ε′)-secure, where t′ =
t− poly(λ), ε′ = m(2 · nε+ 3 · 2−λ) = poly(λ)(ε+ 2−λ). Both parts of the above
theorem also hold if q is not prime as long as the largest prime divisor of q,
denoted pmax, satisfies GCD(q, q/pmax) = 1, pmax ≥ 2βγnmp. In this case we
still get t′ = t− poly(λ), ε′ = poly(λ)(ε + 2−λ).

The proof is sketched in Section 1.1, and a full proof can be found in [1].

Remark on β-bounded Distributions. In the theorem, we require that the
distribution χ is β-bounded meaning that E[|χ|] ≤ β. A different definition,
which also would have been sufficient for us, would be to require that Pr

x
$←χ

[|x| >
β] ≤ negl(λ). The latter notion of boundedness is used in the work of Banerjee
et al. [10]. Although the two notions are technically incomparable (one does not
imply the other) for natural distributions, such as the discrete Gaussian, it is
easier to satisfy out notion. In particular, the discrete Gaussian distribution Ψσ

with standard deviation σ satisfies E[|Ψσ|] ≤ σ but we can only get the weaker
bound Pr

x
$←Ψσ

[|x| >
√
ω(log(λ))σ] ≤ negl(λ). Therefore, we find it advantageous

to work with our definition.

Remark on Parameters. Notice that in the above theorem, the parameter γ
offers a tradeoff between the size of the modulus q and the secret vector length
n: for a bigger γ we need a bigger modulus q but can allow smaller secret length
n. The following corollary summarizes two extreme cases of small and large γ.

Corollary 4.2. Let Ψσ denote a discrete Gaussian distribution over Zq with
standard deviation σ, and assume that the LWE�,m,q,Ψσ -assumption holds. Then
the LWRn,m,q,p-assumption holds in either of the following cases:

– (Minimize Modulus/Error Ratio.) If q ≥ 2σnmp is a prime, and n ≥ (
 +
λ+ 1) log(q) + 2λ. By setting p = O(1), we can get a modulus-to-error ratio
as small as q/σ = O(m · n).

– (Maximize Efficiency.) If q ≥ (2σnm)3 is a prime, p = 3
√
q and n ≥ 3
 +

5λ+ 3. The efficiency of LWR is now similar to the LWE assumption with
n = O(
) and log(p) = O(log q).

5 Reusable Extractors

The notion of a ‘computational reusable extractor’ was defined by Dodis et
al. [21]. Intuitively, this is a tool that allows us to take some weak secret s that
has a sufficient amount of entropy, and to use it to repeatedly extract fresh pseu-
dorandomness Ext(s; ai) using multiple public random seeds ai. Each extracted
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output should look random and independent.5 The work of [21] constructed
such reusable extractors under a new assumption called “Learning Subspaces
with Noise (LSN)”. Reusable extractors were also implicitly constructed based
on the DDH assumption in the work of Naor and Segev [37].6 Here we give a
new construction based on the LWR problem, with a security reduction from
the LWE assumption.

Definition 5.1 (Reusable Extractor). Let S,D,U be some domains, para-
metrized by the security parameter λ. A function Ext : S ×D → U is a (k,m)-
reusable-extractor if for any efficiently samplable correlated random variables
s, aux such that the support of s is S and H∞(s|aux) ≥ k, we have:

(aux, a1, . . . , am,Ext(s; a1), . . . ,Ext(s; am))
comp
≈ (aux, a1, . . . , am, u1, . . . , um)

where the values {aj $← D}, {uj $← U} are sampled independently.

Theorem 5.2. Let n, p, γ be integers, p′ be a prime, and define q = p ·p′. Then,
assuming that the LWE�,m,q,χ assumption holds for some β-bounded distribution
χ such that p′ > 2βγnmp and k ≥ (
 + λ+ 1) log(q) + 2λ, the function

Ext : [−γ, γ]n × Zn
q → Zp defined by Ext(s; a)

def
= �〈a, s〉�p

is a (k,m)-reusable extractor.

Notice that one nice property of the above reusable extractor is that it has
a graceful degradation of security as the min-entropy k of the source drops.
In particular, there is no hard threshold on the entropy k determined by the
parameters that define the scheme: γ, n, q, p. Instead, as the entropy k drops
we can still reduce security from a correspondingly less secure LWE assumption
with smaller secret size 
. In other words, the scheme designer does not need to
know the actual entropy k of the secret - but the scheme gets gradually less/more
secure as the entropy of the secret shrinks/grows. A similar notion of graceful
security degradation was noted in the work of Goldwasser et al. [20].

6 Lossy Trapdoor Functions

Lossy trapdoor functions (LTDFs) [22,23], are a family of functions fpk(·) keyed
by some public key pk, which can be sampled in one of two indistinguishable
modes: injective and lossy. In the injective mode the function fpk(·) is
injective and we can even sample pk along with a secret trapdoor key sk that
allows us to invert it efficiently. In the lossymode, the function fpk(·) is “many-
to-one” and fpk(s) statistically loses information about the input s. LTDFs have
many interesting applications in cryptography, such as allowing us to output

5 Equivalently, we can think of a reusable extractor as a weak PRF fs(·) for which
security holds for a bounded number of inputs even using a high entropy key s.

6 The function Ext(s;a) =
∏

asi
i is a reusable extractor if s ∈ Zn

q , and the a ∈ Gn for
some DDH group of prime order q.



70 J. Alwen et al.

many hardcore bits, construct CCA-2 public-key encryption [23, 24], and deter-
ministic encryption [25]. In this section, we construct very simple and efficient
LTDFs using the LWR problem, with security based on standard LWE. Our
LTDF function is unusually simple: the public key is a matrix pk = A and the
function is defined as fA(s) = �A · s�p. As we will describe, one can sample
an injective A with a trapdoor using the techniques of Ajtai [26] or subse-
quent improvements [27,28], and one can sample a lossy A using the techniques
we developed in Section 3. Although prior constructions of LTDFs from LWE
are known [23, 29], our construction here has several advantages. Firstly, our
scheme is extremely simple to describe and implement. Secondly, in contrast to
both [22, 29], our lossy mode loses “almost all” of the information contained in
s. In fact, the amount of “lossiness” in our LTDF construction is flexible and
not determined by the parameters of the scheme itself. Even after we fix the
parameters that allow us to sample the injective mode, we have an additional
free parameter that allows us to make the lossy mode progressively more lossy
under under a progressively stronger variant of the LWE assumption.

6.1 Entropic LTDFs

Our notion differs somewhat from that of [23] in how we define the “lossy”
property. Instead of requiring that, for a lossy pk, the range of fpk(·) is small, we
require that very little entropy is lost from observing fpk(·). To the best of our
knowledge, our version can be used interchangeably in all of the applications of
LTDFs to date. To avoid confusion, we call our notion entropic LTDF (eLTDF).

Definition 6.1 (eLTDF). A family of l(λ)-entropic lossy trapdoor functions
(eLTDF) with security parameter λ and domain Dλ consists of a PPT sampling
algorithms Gen and two deterministic PPT algorithms F, F−1 such that:

Injective Functions: For any (pk, sk) in the support of Gen(1λ, injective),
any s ∈ Dλ we require that F−1(sk, F (pk, s)) = s.

Lossy Functions: When pk
$← Gen(1λ, lossy), the function F (pk, ·) is lossy.

In particular, for any mutually correlated random variables (s, aux) where the

domain of s is Dλ and for an independently sampled pk
$← Gen(1λ, lossy),

we have: Hsmooth
∞ (s|pk, F (pk, s), aux) ≥ Hsmooth

∞ (s|aux) − l(λ). We call the
parameter l = l(λ) the residual leakage of the LTDF.

Indistinguishability: The distributions of pk as sampled by Gen(1λ, lossy)
and Gen(1λ, injective) are computationally indistinguishable.

We now show how to construct eLTDFs from LWR (and so also from LWE).

Tools. As a tool in our construction, we will rely on the fact that we can sample
a random LWE matrix A along with an inversion trapdoor that allows us to
recover s, e given an LWE sample As + e where the error e is “sufficiently”
short. The first example of such algorithms was given by Ajtai in [26], and
was subsequently improved in [27]. More recently [28] significantly improved the
efficiency of these results, by using a “qualitatively” different type of trapdoor.
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We describe the properties that we need abstractly, and can use any of the
above algorithms in a black-box manner. In particular we need the following
PPT algorithms for some range of parameters (m,n, q, β):

GenTrap(1n, 1m, q): An algorithm which on input positive integers n, q and suf-
ficiently large m samples a matrix A ∈ Zm×n

q and trapdoor T such that A
is statistically close to uniform (in n log q).

Invert(T,A, c): An algorithm which receives as input (A, T ) in the support of
GenTrap(1n, 1m, q) and some value c ∈ Zm

q such that c = As + e for some
s ∈ Zn

q and some error satisfying ||e||2 ≤ β. The algorithm outputs s.
LWRInvert(T,A, c) Takes as input (A, T ) in the support of GenTrap(1n, 1m, q)

and some value c ∈ Zm
p such that c = �As�p for some s ∈ Zn

q and outputs s.

For example [28] shows that there are algorithms (GenTrap, Invert) which work
for n ≥ 1, q ≥ 2, sufficiently large m = O(n log q) and sufficiently small β <
q/O(

√
n log q). Since we can convert LWR samples �As�p into samples A · s+ e

for some short error ||e||2 ≤
√
mq/p, this also implies the following.

Lemma 6.2 (Trapdoors for LWR). For n ≥ 1, q ≥ 2, sufficiently large m ≥
O(n log q) and p ≥ O(

√
mn log q), there exist (GenTrap, LWRInvert) as above.

The Construction. We will rely on the algorithms GenTrap and LWRInvert
described above. We also rely on the lossy sampling algorithm Lossy and its
properties developed in Section 3. The construction is parametrized by integers
n,m, q, p (all functions of the security parameter λ). Furthermore, there will be
two additional parameters 
 and χ which are only needed by the lossy sampler.

Gen(1λ, injective): Sample (A, T )
$← GenTrap(1n, 1m, q). Output pk = A and

trapdoor sk = (A, T ).

Gen(1λ, lossy): Sample A
$← Lossy(1n, 1m, 1�, q, χ). Output pk = A.

F (pk, s): On input s ∈ {0, 1}n and matrix pk = A ∈ Zm×n
q output �As�p.

F−1(sk, c): On input c ∈ Zm
p and sk = (A, T ) output LWRInvert(T,A, c).

The following theorem summarizes the properties of this construction.

Theorem 6.3. Let χ be an efficiently samplable β-bounded distribution and λ
be the security parameter. For any positive integers n ≥ λ, sufficiently large
m ≥ O(n log q), p ≥ O(

√
mn log q) and a prime q ≥ 2βnmp, if the LWE�,m,q,χ

assumption holds then the above construction is an l-LTDF with l = (
+λ) log q.

We refer the interested reader to the full version [1], where we additionally show
how to construct efficient all-but-one trapdoor functions, and how to obtain CCA-
2 secure encryption schemes therefrom.

7 Deterministic Encryption

Deterministic public-key encryption [25,30–33] is intended to guarantee security
as long as the messages have sufficient entropy. Although there are black-box
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constructions of deterministic encryption using LTDFs [32], here we present
a very simple direct construction from the LWR problem. There are several
definitions of deterministic encryption which can be proven equivalent; see [31,
32]. Here, we will use one such simple definition based on indistinguishability of
encrypting messages from two different distributions.

Definition 7.1 (Deterministic Encryption). A triple of PPT algorithms
(Gen,Enc,Dec), where Enc,Dec are deterministic, is a deterministic encryption
scheme with message length n = n(λ), if it satisfies the following properties.

First, it is correct, i.e., for all (pk, sk)
$← Gen(1λ) and all messages s ∈ {0, 1}n,

we have Decsk(Encpk(s)) = s. We further say that the scheme is secure for

all k(λ)-sources if for any two distribution ensembles {S(0)
λ }λ∈N, {S(1)

λ }λ∈N over

{0, 1}n(λ) which are efficiently samplable in poly(λ)-times and have sufficient en-

tropy H∞(S0
λ) ≥ k, H∞(S1

λ) ≥ k, we have (pk,Encpk(s0))
comp
≈ (pk,Encpk(s1)),

where s0
$← S

(0)
λ and s1

$← S
(1)
λ and (pk, sk)

$← Gen(1λ).

Construction. We give a very simple construction of deterministic encryption
based on the LWR assumption. This construction is the same as one given by
Xie et al. [18], except for the setting of parameters. Whereas they required a
super-polynomial modulus and modulus to error ratio by relying on variants of
the analysis of [10,20] we use our improved analysis from Section 4. We will rely
on the LWR trapdoor generation and inversion algorithms GenTrap, LWRInvert
described in Section 6.1 and Lemma 6.2. Our scheme is parametrized by some
n,m, q, p, all functions of the security parameter λ, and has message length n.

Gen(1λ): Choose (A, T )
$← GenTrap(1n, 1m, q). Output pk = A, sk = T .

Encpk(s): For a message s ∈ {0, 1}n, output �A · s�p.
Decsk(c): For a ciphertext c ∈ Zm

p , output LWRInvert(T,A, c).

Theorem 7.2. Let λ be the security parameter, n ≥ λ, 
,m, p be an integers,
q be a prime, and χ be an efficiently samplable β-bounded distribution (all pa-
rameters are functions of λ) such that m ≥ O(n log q), p ≥ O(

√
mn log q) are

sufficiently large and q ≥ 2βnmp. If the LWE�,m,q,χ assumption holds then the
above construction with parameters n,m, q, p is a deterministic encryptions se-
cure for all k sources where k ≥ (
+Ω(λ)) log(q).

One big advantage of our scheme is that the parameters n,m, q, p do not deter-
mine the minimal entropy k. Instead for any k, we can prove security under a
corresponding LWE assumption with dimension 
 < k.

8 Open Problems

We conclude with two interesting open problems. Firstly, is it possible to improve
the reduction and remove the dependence between the modulus q and the number
of samples m? And secondly, is there a related reduction for Ring LWR from
Ring LWE? This does not seem to follow in a straight-forward manner.
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Abstract. We describe a comparatively simple fully homomorphic
encryption (FHE) scheme based on the learning with errors (LWE) prob-
lem. In previous LWE-based FHE schemes, multiplication is a compli-
cated and expensive step involving “relinearization”. In this work, we
propose a new technique for building FHE schemes that we call the ap-
proximate eigenvector method. In our scheme, for the most part, ho-
momorphic addition and multiplication are just matrix addition and
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(we believe) easier to understand.
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keys. Our scheme has no evaluation key. The evaluator can do homo-
morphic operations without knowing the user’s public key at all, except
for some basic parameters. This fact helps us construct the first identity-
based FHE scheme. Using similar techniques, we show how to compile a
recent attribute-based encryption scheme for circuits by Gorbunov et al.
into an attribute-based FHE scheme that permits data encrypted under
the same index to be processed homomorphically.

1 Introduction

Fully homomorphic encryption (FHE) schemes [RAD78, Gen09, Gen10,
vDGHV10] [SV10, GH11b, CMNT11, BV11a, BV11b, GH11a, BGV12, CNT12,
GHS12a,GHS12b] [LATV12,Bra12] “have been simplified enough so that their
description can fit, well, in a blog post” [BB12b,BB12a]. In this paper, we try
to make FHE even simpler.

1.1 Previous FHE Schemes Based on Learning with Errors

Currently, perhaps the simplest leveled1 FHE scheme based on the learning
with errors (LWE) assumption [Reg05] is by Brakerski [Bra12]. In fact, Barak
and Brakerski do give a remarkably clear exposition of this scheme in a blog
post [BB12a]. However, while the scheme’s key generation, encryption, decryp-
tion, and homomorphic addition procedures are easy to describe, they note that
“multiplication is more tricky”.

In Brakerski’s scheme, similar to previous FHE schemes based on LWE
[BV11b, BGV12], the ciphertext c and secret key s are n-dimensional vectors
whose dot product 〈c, s〉 ≈ μ equals the message μ, up to some small “error”
that is removed by rounding. Homomorphic multiplication uses an identity re-
garding dot products of tensor products of vectors: namely, 〈u1⊗u2,v1⊗v2〉 =
〈u1,v1〉 · 〈u2,v2〉. Thus, if ciphertexts c1 and c2 satisfy 〈c1, s〉 ≈ μ1 and
〈c2, s〉 ≈ μ2, then 〈c1 ⊗ c2, s ⊗ s〉 ≈ μ1 · μ2, where c1 ⊗ c2 is interpreted as
the new ciphertext and s ⊗ s as the new secret key, each having dimension
Θ(n2). Since multiplying-by-tensoring blows up the ciphertext size, it can only
be used for a constant number of steps. For efficiency, the evaluator must re-
linearize [BV11b] the ciphertext after tensoring. Relinearization is a procedure
that takes the long ciphertext that encrypts μ1 ·μ2 under the long key s⊗s, and
compresses it into a normal-sized n-dimensional ciphertext that encrypts μ1 ·μ2

under a normal-sized n-dimensional key s′. To relinearize, the evaluator multi-
plies the long ciphertext vector by a special n × Θ(n2) relinearization matrix.

1 “Leveled” FHE is a relaxation of “pure” FHE [Gen09]. For fixed parameters, a
pure FHE scheme can evaluate arbitrary circuits. In a leveled FHE scheme, the
parameters of the scheme may depend on the depth, but not the size, of the circuits
that the scheme can evaluate. We focus on leveled FHE schemes, and typically omit
the term “leveled”. One can transform our leveled FHE schemes to pure ones by
using Gentry’s bootstrapping theorem and assuming “circular security” [Gen09].
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This relinearization matrix is part of the “evaluation key” that the evaluator
must obtain from the public key to perform homomorphic evaluation.

The relinearization step [BV11b] is ingenious and is perhaps the main insight
that led to FHE based on LWE. However, relinearization is not particularly nat-
ural, nor is it easy to give an intuitive description of how and why it works. More-
over, relinearization is expensive. Each relinearization matrix has size Ω(n3), and
the public key must contain L of them to evaluate circuits of maximum mul-
tiplicative depth L. Computationally, relinearization requires Ω(n3) operations,
where each operation has cost polynomial in L.

This situation raises the question: Can we construct a LWE-based FHE scheme
with a natural multiplication procedure? For ciphertexts c1 and c2, can we con-
struct a scheme where homomorphic addition and multiplication are just c1 + c2
and c1 · c2, where ‘+’ and ‘·’ are natural algebraic operations over some ring, and
where the new ciphertexts have the “same form” as the old ones; for example,
c1 · c2 is not a “long” ciphertext? Can we eliminate the need for an “evaluation
key” in general, and the relinearization matrices in particular? If so, LWE-based
FHE might become easier to explain. If we can simplify LWE-based FHE while
also improving its efficiency and supporting new applications, then even better.

1.2 Our Results

Our main results are:

– Conceptually simpler FHE based on LWE: We fully describe our
scheme here in the Introduction, and think our new approach will prove
valuable pedagogically and theoretically.

– Asymptotically faster FHE based on LWE: We eliminate relineariza-
tion and the large relinearization matrices, with their Ω(n3) complexity.
Instead, ciphertexts are matrices that are added and multiplied naturally. In
principle, matrix multiplication uses sub-cubic computation: e.g., Strassen
and Williams achieved n2.807 and n2.3727 respectively [Str69,Wil12].

– Identity-based FHE: We solve an open problem mentioned in previous
works [Nac10, GHV10, Bra12, CHT13] – namely, to construct an identity-
based FHE scheme, in which there are no user-specific keys that must be
obtained by the encrypter or evaluator. Informally speaking, in an identity-
based FHE scheme, a user that has only the public parameters should be
able to perform both encryption and homomorphism operations. The homo-
morphism operations should allow a user to take two ciphertexts encrypted
to the same target identity, and homomorphically combine them to produce
another ciphertext under the same target identity. Previously, only “weak”
identity-based FHE schemes were known, where the evaluator needs a user-
specific evaluation key, and thus the homomorphism is not exploitable by a
user that only has the public parameters. Our scheme solves the problem by
eliminating evaluation keys entirely.

We obtain our identity-based FHE scheme by presenting a “compiler”
that transforms any LWE-based IBE scheme in the literature that satis-
fies certain properties, into a fully homomorphic identity-based encryption
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scheme. Several LWE-based IBE schemes in the literature satisfy the prop-
erties needed for our compiler [GPV08,ABB10a,ABB10b,CHKP10].

– Attribute-based FHE: Recently Gorbunov et al. [GVW13] constructed an
attribute-based encryption (ABE) for circuits based on LWE. Our compiler
for LWE-based IBE also works for their ABE scheme, with relatively minor
modifications. We obtain an ABE scheme in which messages encrypted under
the same index can be processed homomorphically without any evaluation
key in a polynomial depth circuit, and still be decrypted by any party that
was entitled to decrypt the original ciphertexts.2

Our FHE scheme retains advantages of other LWE-based FHE schemes, such as
making bootstrapping optional [BGV12], (with bootstrapping) basing security
on LWE for quasi-polynomial factors versus sub-exponential factors [BGV12],
eliminating “modulus switching” [Bra12], and basing security directly on the
hardness of classical GapSVP [Bra12].

We do not want to oversell our asymptotic result; we now provide some ad-
ditional context: In general, FHE schemes based on LWE have much worse per-
formance (certainly asymptotically) than schemes based on ring LWE (RLWE)
[LPR10,BV11a,GHS12a], and even RLWE-based schemes cannot yet be consid-
ered practical [GHS12b]. Moreover, sub-cubic matrix multiplication algorithms
may not beat cubic ones by much in practice. Rather, we view our asymp-
totic result mainly as evidence of how fundamentally new our techniques are.
We note that it is straightforward to construct an RLWE-based version of
our scheme, but its performance is worse than the best known RLWE-based
schemes [BGV12, Bra12,GHS12a, GHS12b] by log factors. On the other hand,
while our techniques may not reduce evaluation complexity as much as we would
like, they reduce the space complexity significantly (from quasi-cubic to quasi-
quadratic), which is a significant issue for LWE-based FHE schemes in practice.

As with all current FHE schemes without bootstrapping, the parameters and
per-gate complexity of evaluation depend on the multiplicative depth L of the cir-
cuit. “Bootstrapping” [Gen09], together with an assumption of circular security,
remains the only known way of making these performance metrics independent
of L, and while the overhead of bootstrapping is high, it becomes an attractive
option once L passes some threshold. However, our scheme loses some of its ad-
vantages once bootstrapping is used. First, to apply bootstrapping, the evaluator
needs to obtain the user’s secret key encrypted under its public key – in effect,
an evaluation key – and therefore we no longer achieve identity-based/attribute-
based FHE in this context. Second, this encrypted secret key has quasi-cubic size
in our scheme, and while this can be mitigated by public key compression tech-
niques [CNT12], it eliminates the space complexity advantages of our scheme.
Essentially, bootstrapping returns us to the realm of “unnatural” operations,
with all of its disadvantages. It remains a fascinating open problem to find some

2 Independently, Garg et al. [GGH+13b] also recently constructed an ABE scheme for
circuits using multilinear maps [GGH13a,CLT13], but our techniques do not work
as effectively with their scheme.
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“natural” alternative to bootstrapping, and (relatedly) to achieve “pure” FHE
without an assumption of circular security.

1.3 An Overview of Our FHE Scheme

Our main insight is that we can achieve LWE-based homomorphic encryption
where homomorphic addition and multiplication correspond directly to matrix
addition and multiplication.

Homomorphic Operations. Let us skip key generation and encryption for the
moment, and jump directly to the homomorphic operations (and decryption).

In our scheme, for some modulus q and dimension parameterN to be specified
later, a ciphertext C is a N × N matrix over Zq, with “small” entries (much
smaller than q) and the secret key v is a N -dimensional vector over Zq with at
least one “big” coefficient vi. We restrict the message μ to be a “small” integer.
We say C encrypts μ when C ·v = μ ·v+e, where e is a “small” error vector. To
decrypt, we extract the i-th row Ci from C, compute x ← 〈Ci,v〉 = μ · vi + ei,
and output μ = �x/vi�. In a nutshell, the essence of our scheme is that the secret
key v is an approximate eigenvector of the ciphertext matrix C, and the message
μ is the eigenvalue.

Now, let us see why matrix addition and multiplication are correct homomor-
phic operations. Suppose C1 and C2 encrypt μ1 and μ2 in that Ci ·v = μi ·v+ei
for small ei. Let C+ = C1 + C2 and C× = C1 · C2. For addition, we have
C+ · v = (μ1 + μ2) · v + (e1 + e2), where the error likely has grown a little, as
usual in FHE schemes. But assuming the error is still “small”, the sum of the
ciphertext matrices encrypts the sum of the messages. For multiplication, we
have

C× · v = C1 · (μ2 · v + e2) = μ2 · (μ1 · v + e1) + C1 · e2 = μ1 · μ2 · v + μ2 · e1 + C1 · e2

= μ1 · μ2 · v + small

where the final error vector is hopefully “small”, since μ2, C1, e1, and e2 are
all small. If so, the product of the ciphertext matrices encrypts the product of
the messages. Interestingly, C2 ·C1 is also an encryption of μ1 · μ2, even though
matrix multiplication is not commutative.

To simplify further, it might be helpful to imagine an error-free version of the
scheme, where Ci · v = μi · v exactly. In this case, the key v is an (exact) eigen-
vector of ciphertext matrices, and the message μi is the eigenvalue. In general,
if matrices C1 and C2 have a common eigenvector v with eigenvalues μ1 and μ2,
then C1 · C2 and C2 · C1 have eigenvector v with eigenvalue μ1 · μ2.

Of course, in our scheme, the secret key v is only an approximate eigenvector,
not an exact one. Introducing error is necessary to base the security of our scheme
on LWE. The cost of making v only an approximate eigenvector is that certain
terms in our scheme must be “small” to ensure that homomorphic operations
do not disrupt the essential form of the ciphertexts. We call our new approach
to LWE-based (homomorphic) encryption the approximate eigenvector method.
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Bounding the Error and Somewhat Homomorphic Encryption. Al-
though we have not fully specified the scheme, let us go ahead and estimate
how homomorphic it is. The scheme above works correctly until the coefficients
of the error vector begin to approach q in magnitude. How many homomorphic
operations can we perform before that happens?

Suppose C1 and C2 are B-bounded ciphertexts, in the sense that μi and the
coefficients of Ci and ei all have magnitude at most some bound B. Then, C+

is 2B-bounded, and C× is (N + 1)B2-bounded. In short, the error level grows

worse than B2L , doubly exponentially with the multiplicative depth L of the cir-
cuit being evaluated. Alternatively, if one wants to consider the degree (rather
than depth) of functions that can be evaluated, if we evaluate a multivariate
polynomial P (x1, . . . , xt) of total degree d, on B-bounded ciphertexts as input,
the final ciphertext is |P |(N+1)d−1Bd-bounded, where |P | is the 
1-norm of P ’s
coefficient vector. Taking q to comfortably exceed this bound, we (roughly) can
evaluate polynomials of degree logNB q. Since q/B must be subexponential (at
most) in N for security reasons, our scheme-so-far can only evaluate polynomials
of (sublinear) polynomial degree in N (only logarithmic depth). In short, our
scheme-so-far is a somewhat homomorphic encryption (SWHE) scheme [Gen09]
that can evaluate log-depth or polynomial degree. Though not yet fully homo-
morphic, it is by far the most homomorphic LWE-based encryption scheme that
uses only “natural” homomorphic operations.

Flattening Ciphertexts and Fully Homomorphic Encryption. To obtain
a leveled FHE scheme that can evaluate circuits of polynomial depth without
bootstrapping or techniques like relinearization, we need to ensure better bounds
on the growth of the error. Let us say that a ciphertext C is B-strongly-bounded
if its associated μ and the coefficients of C all have magnitude at most 1, while
the coefficients of its e all have magnitude at most B. If we evaluate a NAND
gate on B-strongly-bounded ciphertexts C1, C2 to obtain a new ciphertext C3 ←
IN −C1 ·C2 (where IN is the N -dimensional identity matrix), then the message
remains in {0, 1}, and the coefficients of C3’s error vector have magnitude at
most (N + 1)B. If we could somehow additionally ensure that C3’s coefficients
have magnitude at most 1 so that strong-boundedness is preserved, then we
could evaluate a circuit of depth L while keeping the error magnitude at most
(N + 1)LB. Setting q/B to be subexponential in N , we could evaluate a circuit
of polynomial depth rather than merely polynomial degree. In short, we would
have a leveled FHE scheme.

Here we describe a operation called ciphertext flattening that keeps cipher-
texts strongly bounded, so that we obtain leveled FHE.

Flattening uses some simple transformations from [BV11b, BGV12, Bra12]
that modify vectors without affecting dot products. Let a, b be vectors of some
dimension k over Zq. Let 
 = �log2 q� + 1 and N = k · 
. Let BitDecomp(a) be
the N -dimensional vector (a1,0, . . . , a1,�−1, . . . , ak,0, . . . , ak,�−1), where ai,j is the
j-th bit in ai’s binary representation, bits ordered least significant to most sig-
nificant. For a′ = (a1,0, . . . , a1,�−1, . . . , ak,0, . . . , ak,�−1), let BitDecomp−1(a′) =
(
∑

2j · a1,j, . . . ,
∑

2j · ak,j) be the inverse of BitDecomp, but well-defined even



Homomorphic Encryption from Learning with Errors 81

when the input is not a 0/1 vector. For N -dimensional a′, let Flatten(a′) =
BitDecomp(BitDecomp−1(a′)), a N -dimensional vector with 0/1 coefficients.
When A is a matrix, let BitDecomp(A), BitDecomp−1, or Flatten(A) be the ma-
trix formed by applying the operation to each row of A separately. Finally,
let Powersof2(b) = (b1, 2b1, . . . , 2

�−1b1, . . . , bk, 2bk, . . . , 2
�−1bk), a N -dimensional

vector. Here are some obvious facts:

– 〈BitDecomp(a),Powersof2(b)〉 = 〈a, b〉.
– For any N -dimensional a′, 〈a′,Powersof2(b)〉 = 〈BitDecomp−1(a′), b〉 =
〈Flatten(a′),Powersof2(b)〉.

An interesting feature of Flatten is that it makes the coefficients of a vector
or matrix small, without affecting its product with Powersof2(b), and without
knowing b.

To facilitate ciphertext flattening, we give a special form to our secret key v.
Specifically, we set v = Powersof2(s) for some secret vector s (to be specified
later). This form is consistent with our earlier requirement that v have some
big coefficient vi for decryption; indeed, since v’s coefficients go up by �log2 q�
powers of 2, it must have a big coefficient suitable to recover μ ∈ {0, 1}.

Now, for any N × N matrix C, we have Flatten(C) · v = C · v. So, after
we compute an initial ciphertext C3 ← IN − C1 · C2 for the NAND gate, we
set CNAND = Flatten(C3) to obtain a ciphertext that has 0/1 coefficients and is
strongly bounded. Thus, we obtain leveled FHE without relinearization, under
a fixed approximate eigenvector secret key.

Key Generation, Encryption, and Reduction to LWE. Let us finally
circle back to key generation and encryption. We want to base security on LWE.
So, for key generation, we generate an LWE instance. For suitable parameters
q, n,m = O(n log q), an LWE instance over Zq consists of a m× (n+ 1) matrix
A such that there exists a (n+ 1)-dimensional vector s whose first coefficient is
1 where e = A ·s is a “small” error vector. (See Section 2 for a formal definition
of LWE.) In our scheme, A is public and s is secret. We set our approximate
eigenvector to be v = Powersof2(s), a vector of dimension N = (n + 1) · 
 for

 = �log2 q�+ 1.

To encrypt μ ∈ Zq, the encrypter generates a random N ×m matrix R with
0/1 entries, and sets C = Flatten(μ · IN + BitDecomp(R · A)), where IN is the
N -dimensional identity matrix. Since Flatten does not affect the product with
v, we have:

C · v = μ · v + BitDecomp(R ·A) · v = μ · v +R · A · s = μ · v + small

Flatten ensures that the coefficients of C are small, and therefore that C has the
proper form of a ciphertext that permits our homomorphic operations. Decryp-
tion works as mentioned previously.

To show that security is based on LWE, it is now enough to show that C
is statistically independent of μ when A is a uniformly random m × (n + 1)
matrix over Zq. Let C

′ = BitDecomp−1(C). Recall that C is Flatten’d, and so
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C = Flatten(C) = BitDecomp(C′). Therefore, C reveals nothing more than C′.
But C′ = BitDecomp−1(μ · IN ) +R ·A, and R ·A is statistically uniform by the
leftover hash lemma when m = O(n log q) is chosen appropriately.

1.4 Roadmap

After finishing some preliminaries in Section 2, we describe our new FHE con-
struction more formally in Section 3. In Section 4, we provide an overview of our
identity-based and attribute-based FHE schemes.

2 Preliminaries

2.1 The Learning With Errors (LWE) Problem and GapSVP

The learning with errors (LWE) problem was introduced by Regev [Reg05].

Definition 1 (LWE). For security parameter λ, let n = n(λ) be an integer
dimension, let q = q(λ) ≥ 2 be an integer, and let χ = χ(λ) be a distribution
over Z. The LWEn,q,χ problem is to distinguish the following two distributions:
In the first distribution, one samples (ai, bi) uniformly from Zn+1

q . In the second
distribution, one first draws s ← Zn

q uniformly and then samples (ai, bi) ∈ Zn+1
q

by sampling ai ← Zn
q uniformly, ei ← χ, and setting bi = 〈ai, s〉 + ei. The

LWEn,q,χ assumption is that the LWEn,q,χ problem is infeasible.

Sometimes it is convenient to view the vectors bi‖ai as the rows of a matrix A,
and to redefine s as (1,−s). Then, either A is uniform, or there is a vector s
whose first coefficient is 1 such that A · s = e, where the coefficients of e come
from the distribution χ.

For lattice dimension parameter n and number d, GapSVPγ is the problem
of distinguishing whether a n-dimensional lattice has a vector shorter than d
or no vector shorter than γ(n) · d. The two theorems below capture reductions,
quantum and classical, from GapSVP to LWE for certain parameters. We state
the result in terms of B-bounded distributions.

Definition 2 (B-bounded distributions). A distribution ensemble {χn}n∈N,
supported over the integers, is called B-bounded if Pre←χn [|e| > B] = negl(n).

Theorem 1 ( [Reg05, Pei09, MM11, MP12], stated as Corollary 2.1
from [Bra12]). Let q = q(n) ∈ N be either a prime power or a product of
small (size poly(n)) distinct primes, and let B ≥ ω(logn) ·

√
n. Then there exists

an efficient sampleable B-bounded distribution χ such that if there is an efficient
algorithm that solves the average-case LWE problem for parameters n, q, χ, then:
– There is an efficient quantum algorithm that solves GapSVPÕ(nq/B) on any
n-dimensional lattice.

– If q ≥ Õ(2n/2), then there is an efficient classical algorithm for
GapSVPÕ(nq/B) on any n-dimensional lattice.
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In both cases, if one also considers distinguishers with sub-polynomial advantage,
then we require B ≥ Õ(n) and the resulting approximation factor is slightly larger
than Õ(n1.5q/B).

Theorem 2 (Informal Theorem 1.1 of [BLP+13]). Solving n-dimensional
LWE with poly(n) modulus implies an equally efficient solution to a worst-case
lattice problem (e.g., GapSVP) in dimension

√
n.

2.2 Identity-Based and Attribute-Based Homomorphic Encryption

In a homomorphic encryption scheme HE = (KeyGen,Enc,Dec,Eval), the mes-
sage space is some ring, and Eval homomorphically evaluates arithmetic circuits
over this ring (with addition and multiplication gates). We omit formal defini-
tions and theorems regarding homomorphic encryption, which can be found in
referenced papers.

An identity-based HE scheme IBHE = (Setup,KeyGen,Enc,Dec,Eval) has
all of the properties of a normal IBE scheme IBE = (Setup,KeyGen,Enc,Dec)
[Sha84,BF03]. Setup generates master keys (MSK,MPK), KeyGen(MSK, ID) out-
puts a secret key skID for identity ID, Enc(MPK, ID,m) outputs an encryption
c of m under ID, and Dec(skID, c) decrypts c (if it is under ID). Standard secu-
rity properties apply. For example, an IBE scheme is expected to be collusion-
resistant – in particular, the adversary can ask for many secret keys, as long as
the challenge ciphertext is under an unqueried identity.

For some function family F , IBHE’s procedure c← Eval(MPK, ID, f, c1, . . . , ct)
homomorphically evaluates any f ∈ F on ciphertexts {ci ← Enc(MPK, ID,mi)}
under the same ID. Ultimately, Dec(skID, c) = f(m1, . . . ,mt). We define identity-
based (leveled) fully homomorphic encryption (IBFHE) in the expected way.

The definition of IBHE can be extended to a multi-identity setting – specifi-
cally, Eval could work over ciphertexts under multiple identities. For security to
make sense, Dec would require cooperation of all parties whose identities were
used in Eval. In this paper, we restrict our attention to the single-identity setting.

An attribute-based HE scheme ABHE = (Setup,KeyGen,Enc,Dec,Eval) has
all of the properties of a normal ABE scheme ABE = (Setup,KeyGen,Enc,Dec)
[SW05,GPSW06]. For some relation R, some function family F and any f ∈ F ,
and any ciphertexts {ci ← Enc(MPK, x,mi)} encrypted under common in-
dex x, the ciphertext c ← Eval(MPK, x, f, c1, . . . , ct) can be decrypted (to
f(m1, . . . ,mt)) using a key sky for any y for which R(x, y) = 1. In an ABE
scheme for circuits, R can be a circuit of polynomial depth. We define attribute-
based (leveled) fully homomorphic encryption (ABFHE) in the expected way.

Similar to IBHE, ABHE can be extended so that Eval operates on ciphertexts
under multiple indices x1, . . . , xk. Regarding decryption, there are different
possibilities. For example, the result can only be decrypted using some sky
for which R(x1, y) = · · · = R(xk, y) = 1. Alternatively, the result can be
cooperatively decrypted using sky1 , . . . , sky�

such that for every xi there is some
j such that R(xi, yj) = 1. We restrict our attention to the single-index setting.
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2.3 Other Preliminaries

For n, q, and 
 = �log q�+1, we define the procedures BitDecomp, BitDecomp−1,
Flatten and Powersof2 as described in the Introduction. IN denotes the N -
dimensional identity matrix.

3 Our LWE-Based FHE Scheme

3.1 Basic Encryption Scheme

Here, we formally describe our basic encryption scheme (without homomorphic
operations). This description matches the description outlined in the Introduc-
tion. In our description, we split up KeyGen into three parts Setup, SecretKeyGen
and PublicKeyGen. We provide two decryption algorithms Dec and MPDec. Dec
is sufficient to recover the message μ when it is in a small space (e.g., {0, 1}).
MPDec is an algorithm by Micciancio and Peikert [MP12] that can recover any
μ ∈ Zq.

– Setup(1λ, 1L): Choose a modulus q of κ = κ(λ, L) bits, lattice dimension
parameter n = n(λ, L), and error distribution χ = χ(λ, L) appropriately
for LWE that achieves at least 2λ security against known attacks. Also,
choose parameter m = m(λ, L) = O(n log q). Let params = (n, q, χ,m). Let

 = �log q�+ 1 and N = (n+ 1) · 
.

– SecretKeyGen(params): Sample t ← Zn
q . Output sk = s ←

(1,−t1, . . . ,−tn) ∈ Zn+1
q . Let v = Powersof2(s).

– PublicKeyGen(params, sk): Generate a matrix B ← Zm×n
q uniformly and a

vector e ← χm. Set b = B · t + e. Set A to be the (n + 1)-column matrix
consisting of b followed by the n columns of B. Set the public key pk = A.
(Remark: Observe that A · s = e.)

– Enc(params, pk, μ): To encrypt a message μ ∈ Zq, sample a uniform matrix
R ∈ {0, 1}N×m and output the ciphertext C given below.

C = Flatten
(
μ · IN + BitDecomp(R · A)

)
∈ ZN×N

q .

– Dec(params, sk, C): Observe that the first 
 coefficients of v are
1, 2, . . . , 2�−1. Among these coefficients, let vi = 2i be in (q/4, q/2]. Let Ci

be the i-th row of C. Compute xi ← 〈Ci,v〉. Output μ′ = �xi/vi�.
– MPDec(params, sk, C) (for q a power of 2): Observe that q = 2�−1 and

the first 
 − 1 coefficients of v are 1, 2, . . . , 2�−2, and therefore if C · v =
μ ·v+ small, then the first 
− 1 coefficients of C ·v are μ · g+ small, where
g = (1, 2, . . . , 2�−2). Recover LSB(μ) from μ · 2�−2 + small, then recover the
next-least-significant-bit from (μ−LSB(μ)) · 2�−3 + small, etc. (See [MP12]
for the general q case.)

Dec is a BitDecomp’d version of Regev’s decryption procedure, applied to one
row of the ciphertext, which is a BitDecomp’d Regev ciphertext. (The extra rows
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will come into play in the homomorphic operations). If C is properly generated,
then by the elementary properties of BitDecomp and Powersof2, we have

C · v = μ · v +R · A · s = μ · v +R · e.

Dec only uses the i-th coefficient of the above expression, which is xi = μ · vi +
〈Ri, e〉. The error 〈Ri, e〉 has magnitude at most ‖e‖1. In general, if xi = μ·vi+e′
for some error e′ of magnitude at most q/8, and if vi ∈ (q/4, q/2], then xi/vi
differs from μ by at most (q/8)/vi < 1/2, and Dec uses rounding to output the
correct value of μ. (In the basic scheme, we set χ to ensure that the error is so
bounded with overwhelming probability.)

For the basic scheme (without homomorphic operations), one can take n to
be quasi-linear in the security parameter λ and κ = O(log n). When allowing
homomorphic operations, L represents the circuit complexity of the functions
that the scheme correctly evaluates (roughly, L is the multiplicative depth); we
provide a detailed analysis later of how L affects the other parameters.

3.2 Security

Observe that BitDecomp−1(C) = μ ·G+ R · A, where G = BitDecomp−1(IN ) is
(the transpose of) the “primitive matrix” used by Micciancio and Peikert [MP12]
in their construction of lattice trapdoors, and the rows of R · A are simply
Regev [Reg05] encryptions of 0 for dimension n. Assuming BitDecomp−1(C)
hides μ, C does as well, since C can be derived by applying BitDecomp. Thus,
the security of our basic encryption scheme follows directly from the following
lemma, used to prove the security of Regev’s encryption scheme [Reg05].

Lemma 1 (Implicit in [Reg05]). Let params = (n, q, χ,m) be such that the
LWEn,q,χ assumption holds. Then, for m = O(n log q) and A, R as generated
above, the joint distribution (A,R ·A) is computationally indistinguishable from

uniform over Zm×(n+1)
q × ZN×(n+1)

q .

Concretely, it suffices to take m > 2n log q [Reg05].
Like Brakerski [Bra12], we can also base security on GapSVP via a classical

reduction from LWE [Pei09,BLP+13]. Specifically, Peikert [Pei09] gives a clas-
sical reduction of GapSVP to LWE, with the caveat that q must be exponential
in n. Brakerski notes that exponential q was unusable in previous FHE schemes,
since the ratio of q to the error level B of “fresh” ciphertexts cannot be ex-
ponential in n for security reasons (since LLL [LLL82] could be used to break
such a scheme), and since B must be very small to permit many homomorphic
operations. As in Brakerski’s scheme, we do not have that problem. The error
bound B of fresh ciphertexts in our scheme does not need to be small to per-
mit many homomorphic operations; we only require q/B to be sub-exponential,
and we can therefore permit q to be exponential. Alternatively, we can use a
sub-exponential q and base security on GapSVP via Brakerski et al.’s [BLP+13]
recent classical reduction to LWE that works even for polynomial-size moduli,
with the caveat that, in their reduction, the dimension of the GapSVP instances
may be much smaller than the dimension of the LWE instances.
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3.3 Homomorphic Operations

Recall that we already described some basic “homomorphic” operations
BitDecomp, BitDecomp−1, Flatten, and Powersof2. These will play an impor-
tant role in analyzing the homomorphic operations supported by our scheme.
We remark that BitDecomp could alternatively decompose with respect to bases
other than 2, or according to the Chinese Remainder Theorem.

We provide additional homomorphic operations MultConst, Add, Mult, NAND
as follows.

– MultConst(C,α): To multiply a ciphertext C ∈ ZN×N
q by known constant

α ∈ Zq, set Mα ← Flatten(α · IN ) and output Flatten(Mα ·C). Observe that:

MultConst(C,α) · v = Mα · C · v = Mα · (μ · v + e) = μ · (Mα · v) +Mα · e
= α · μ · v +Mα · e

Thus, the error increases by a factor of at most N , regardless of what ele-
ment α ∈ Zq is used for multiplication. As in “classical” additively homo-
morphic encryption schemes, we could alternatively perform multiplication-
by-constant α by recursively applying Add. But this multiplies the error size
by at least α, whereas MultConst increases the error by at most a factor
of N , regardless of α. An example application of MultConst is that we can
perform homomorphic fast Fourier transformations (FFTs) natively over Zq

without error growth dependent on q. Previously, the error growth depended
on the size of the field underlying the FFT [GHS12a,GHS12b], restricting
the choice of field.

– Add(C1, C2): To add ciphertexts C1, C2 ∈ ZN×N
q , output Flatten(C1 + C2).

The correctness of this operation is immediate. Note that the addition of
messages is over the full base ring Zq.

– Mult(C1, C2): To multiply ciphertexts C1, C2 ∈ ZN×N
q , output Flatten(C1 ·

C2). Observe that:

Mult(C1, C2) · v = C1 · C2 · v = C1 · (μ2 · v + e2) + μ2 · (μ1v + e1) + C1 · e2
= μ1 · μ2 · v + μ2 · e1 + C1 · e2

As in Add, the multiplication operator is over the full base field Zq. In Mult,
the new error depends on the old errors, the ciphertext C1, and the message
μ2. The dependence on the old errors seems unavoidable (and normal for
LWE-based HE schemes), and observe that C1 contributes at most a factorN
blowup of error, since all components of C1 are restricted to {0, 1}. The error
growth based on the message μ2, however, presents a concern. In general,
we must address this concern by using homomorphic operations in a way
that restricts the message space to small messages. One way to do this is to
consider Boolean circuits using only NAND operations: this would restrict
the message space to {0, 1}. We elaborate below.

– NAND(C1, C2): To NAND ciphertexts C1, C2 ∈ ZN×N
q that are known to

encrypt messages μ1, μ2 ∈ {0, 1}, output Flatten(IN −C1 ·C2). Observe that:

NAND(C1, C2) · v = (IN − C1 · C2) · v = (1− μ1 · μ2) · v − μ2 · e1 − C1 · e2
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Note here that the NAND homomorphic operation maintains the invariant
that if the input messages are in {0, 1}, then the output ciphertext will
also encryption of {0, 1}, thus guaranteeing small messages. Note that since
μ2 ∈ {0, 1}, the error is increased by a factor of at most N + 1.

Circuits. By iteratively applying the homomorphic operations above, differ-
ent types of (bounded-depth) circuits may be homomorphically computed while
maintaining correctness of decryption.

The simplest case to analyze is the case of Boolean circuits computed over
encryptions of {0, 1} values. In this case, the circuit can be converted to use
only NAND gates, and through appropriate leveled application of the NAND
homomorphic operation, the final ciphertext’s error will be bounded by (N +
1)L · B, where L is the NAND-depth of the circuit, and B is the original bound
on the error of a fresh encryption of {0, 1}.

More generally, with more care, we may consider arithmetic circuits over Zq

that make use of gates that perform addition, multiplication, or multiplication by
a known constant. However, as we have seen in the case of multiplication gates,
the error growth may depend on the values being encrypted in intermediate
computations. One way to deal with this is to focus on situations where (1) all
input values are known to encrypt values bounded by some value T , and (2)
the arithmetic circuit is chosen to guarantee that all intermediate values are also
bounded by T ′ whenever the circuit inputs are constrained to values bounded by
T . In such a situation, the final ciphertext’s error will be bounded by (N+T ′)L·B,
where L is the depth of the arithmetic circuit, and B is the original bound on
the error of fresh encryptions of values smaller than T . For example, in this way,
we can homomorphically evaluate polynomials of degree d in this large-message-
space variant when the initial messages are bounded by roughly q1/d, achieving a
scheme that is “somewhat homomorphic” [Gen09]. Another example application
would be to convert encryptions of a polynomially bounded set of small values
to encryptions of binary values, by using an appropriate arithmetic circuit for
the conversion. Once converted to encryptions of binary values, a NAND-based
Boolean circuit could be used for further computations.

3.4 Parameters, Performance and Optimizations

Suppose that Flatten’d ciphertexts C1, C2 encrypt μ1, μ2 ∈ {0, 1} under approx-
imate eigenvector v with B-bounded error – that is, Ci · v = μi · v + ei where
|ei|∞ ≤ B. Then CNAND ← NAND(C1, C2) encrypts NAND(μ1, μ2) ∈ {0, 1}
under v with (N + 1)B-bounded error. As long as q/B > 8(N + 1)L, we can
evaluate a depth-L circuit of NANDs over B-bounded ciphertexts to obtain a
q/8-bounded ciphertext, which Dec will decrypt correctly.

As in previous LWE-based FHE schemes, n (hence N) must increase linearly
with log(q/B) to maintain fixed 2λ security against known attacks, so q/B grows
more like exp(L logL). We will brush such issues under the rug and view n as
a fixed parameter. Choosing χ so that B is not too large, and since in practice
there is no reason to have κ = log q grow super-linearly with n, we have κ =
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O(L logN) = O(L(log n+log κ)) = O(L logn), similar to [BGV12,Bra12]. Given
that the NAND procedure is dominated by multiplication of two N×N matrices
for N = O(nκ) = Õ(nL), we have the following theorem to characterize the
performance of our FHE scheme.

Theorem 3. For dimension parameter n and depth parameter L, our FHE
scheme evaluates depth-L circuits of NAND gates with Õ((nL)ω) field operations
per gate, where ω < 2.3727 is the matrix multiplication exponent.

This compares favorably with previous LWE-based FHE schemes, which all have
at least Õ(n3L) field operations per gate [BV11b,BGV12,Bra12].

Theorem 3 hides some factors, both good and bad. On the good size, it hides
the fact that ciphertext matrices in our scheme have 0/1 entries, and therefore
can be multiplied faster than if they were general matrices over Zq. In previ-
ous LWE-based FHE schemes, the field operations involve multiplying a small
number with a general number of Zq, which has complexity Õ(κ) = Õ(L). So,

previous LWE-based FHE schemes have real complexity Õ(n3L2) whereas ours
remains Õ((nL)ω). On the bad side, Theorem 3 hides logarithmic factors in the
dimension of the ciphertext matrices, since N = O(nκ) = O(nL logn). We note
that typically n will dominate L, since for very deep circuits, one would want to
use Gentry’s bootstrapping technique [Gen09] to make the per-gate computation
independent of L.

Since bootstrapping involves homomorphically evaluating the decryption
function, and since Dec is essentially Regev decryption [Reg05], bootstrapping
works as in previous LWE-based FHE schemes. In particular, we can use tech-
niques from [BV11b] to reduce the dimension and modulus-size of the ciphertext
before bootstrapping, so that the complexity of decryption (and hence bootstrap-
ping) is completely independent of the depth L of the circuit that was evaluated
to arrive at that ciphertext. Regev decryption can be evaluated inO(log n) depth.
Due to the logarithmic depth, one can take q/B to be quasi-polynomial in n,
and base security on LWE for quasi-polynomial factors.

4 Our Identity-Based and Attribute-Based FHE Schemes

Identity-based encryption (IBE) [Sha84, BF03] and attribute-based encryption
(ABE) [SW05, GPSW06] are designed to provide more flexible access control
of encrypted data than a traditional public key infrastructure. Traditionally,
IBE and ABE do not offer any computation over the encrypted data. However,
access control of encrypted data remains important even (or especially) when
the data is encrypted homomorphically. (See [CHT13] for a nice discussion of
applications.)

Unfortunately, while there are some IBE schemes that allow simple homo-
morphic operations [GHV10, CHT13], it has remained a stubborn open prob-
lem [Nac10, GHV10, Bra12, CHT13] to construct an IBE scheme that allows
fully or even “somewhat” homomorphic encryption. Previously it was men-
tioned [Bra12,CHT13]) that instead of building an FHE scheme on Regev’s en-
cryption scheme as we do in Section 3, one can alternatively use the “dual-Regev”
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system [GPV08], for which it is known how to generate identity-based keys (see
also [ABB10a,ABB10b,CHKP10]). However, making the encryption/decryption
keys identity-based only solves half of the problem, and yields only a “weak”
form of identity-based FHE. In all previous FHE schemes, there is also an “eval-
uation key” required for homomorphic evaluation. This evaluation key is user-
specific and is not “identity-based”, in the sense that it cannot be computed non-
interactively from the user’s identity. But having to obtain this evaluation key
undermines the main appeal of IBE: its non-interactivity. Thus, identity-based
FHE (IBFHE) has remained wide open, and attribute-based FHE (ABFHE)
seems even more difficult to construct.

Interestingly, however, our new FHE scheme does not have evaluation keys.
To perform evaluation, the evaluator only needs to know some basic parameters
of the scheme (like n, m and 
).

The absence of evaluation keys allows us to construct the first IBFHE scheme.
We describe a simple “compiler” that transforms any LWE-based IBE scheme
(that satisfies certain natural properties) into a IBFHE. All LWE-based IBE
schemes that we know of (e.g., [GPV08, ABB10a, ABB10b, CHKP10]) can be
described so as to have the required properties.

1. Property 1 (Ciphertext and decryption key vectors): The decryption
key for identity ID, and a ciphertext for ID, are vectors sID, cID ∈ Zn′

q for some
n′. The first coefficient of sID is 1.

2. Property 2 (Small Dot Product): If cID encrypts 0, then 〈cID, sID〉 is
“small”.

3. Property 3 (Security): Encryptions of 0 are indistinguishable from uni-
form vectors over Zq (under LWE).

Theorem 4. We can compile an IBE scheme E with the above properties into
a related IBFHE scheme.

Proof. The IBFHE uses E’s Setup and KeyGen algorithms, supplementing E’s
MPK with the basic parameters for our FHE scheme (such asm, 
). Let N = (n+
1) · 
 for 
 = �log q�+1, as usual. To encrypt μ ∈ {0, 1}, the encrypter generates
N encryptions of 0 using E.Enc, sets C′

ID to be the N × (n + 1) matrix whose
rows are these ciphertexts, and outputs CID = Flatten(μ · IN +BitDecomp(C′

ID)).
Suppose sID is the decryption key for ID, as above, and let vID = Powersof2(sID).
The decrypter runs our FHE decryption algorithm Dec(vID, CID) to recover μ.
Homomorphic operations are as in Section 3.3.

Decryption is correct, since CID ·vID = μ·vID+C
′
ID ·sID = μ·vID+small, where

C′
ID · sID is a small vector by Property 2. In this setting Dec recovers μ ∈ {0, 1}.

Any adversary that breaks the semantic security of our IBFHE scheme can
distinguish C′

ID from a uniform matrix over Zq, and therefore distinguish LWE
by Property 3.

For ABFHE, our approach begins by re-interpreting the decryption process in the
Gorbunov et al. (GVW) ABE scheme [GVW13]. To decrypt a ABE ciphertext
under x with sky for which R(x, y) = 1, we view the decrypter as deriving a
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“sub-key” sx,y associated to x. This sub-key will satisfy something similar to
Property 2 above – i.e., if cx encrypts 0 under x, then 〈cx, sx,y〉 is “small”.
Viewing GVW in this way allows us to apply our compiler above.

We provide more details of our identity-based and attribute-based FHE con-
structions in the full version of the paper.
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Abstract. We present a new, more constructive proof of von Neumann’s
Min-Max Theorem for two-player zero-sum game — specifically, an al-
gorithm that builds a near-optimal mixed strategy for the second player
from several best-responses of the second player to mixed strategies of
the first player. The algorithm extends previous work of Freund and
Schapire (Games and Economic Behavior ’99) with the advantage that
the algorithm runs in poly(n) time even when a pure strategy for the first
player is a distribution chosen from a set of distributions over {0, 1}n.
This extension enables a number of additional applications in cryptog-
raphy and complexity theory, often yielding uniform security versions of
results that were previously only proved for nonuniform security (due to
use of the non-constructive Min-Max Theorem).

We describe several applications, including a more modular and im-
proved uniform version of Impagliazzo’s Hardcore Theorem (FOCS ’95),
showing impossibility of constructing succinct non-interactive arguments
(SNARGs) via black-box reductions under uniform hardness assumptions
(using techniques from Gentry and Wichs (STOC ’11) for the nonuniform
setting), and efficiently simulating high entropy distributions within any
sufficiently nice convex set (extending a result of Trevisan, Tulsiani and
Vadhan (CCC ’09)).

1 Introduction

Von Neumann’s Min-Max Theorem (or Linear Programming Duality, finite-
dimensional Hahn-Banach Theorem) has proved to be an extremely useful tool
in theoretical computer science. Consider a zero-sum game between two players
where for every mixed strategy V for Player 1 (as a distribution over his strat-
egy space V), Player 2 has a response W ∈ W that guarantees E [F (V,W )] ≥ 0,
where F (payoff) can be an arbitrary function. The Min-Max Theorem says
that there must exist a Player 2’s mixed strategy W ∗ (as a distribution over his
strategy space W) that guarantees E [F (V,W ∗)] ≥ 0 for all strategies V ∈ V of
Player 1.

� Supported by NSF grant CCF-1116616 and US-Israel BSF grant 2010196. A full
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The Min-Max Theorem gives rise to a number of results in cryptography and
complexity theory such as Impagliazzo’s Hardcore Theorem [Imp], equivalence
of different notions of computational entropy [BSW], the Dense Model Theorem
[RTTV], leakage-resilient cryptography [DP,FR], efficient simulation of high en-
tropy distributions [TTV], impossibility of constructing succinct non-interactive
arguments (SNARGs) via black-box reductions [GW], and simple construction
of pseudorandom generators from one-way functions [VZ1]. In a typical appli-
cation like these, Player 1 chooses V from a convex set V of distributions over
{0, 1}n, and Player 2 chooses W from a set W of (possibly randomized) boolean
functions {0, 1}n → {0, 1} and receives payoff F (V,W ) = E [W (V )] i.e. function
W ’s expected output when input is drawn from the distribution V . For example,
V contains all high entropy distributions over {0, 1}n and W contains all boolean
functions of small circuit size.

A limitation of the Min-Max Theorem is that it is highly non-constructive; it
only asserts the existence of the optimal strategyW ∗ but does not say how it can
be found (algorithmically). Consequently, applications of the Min-Max Theorem
only give rise to results about nonuniform boolean circuits, rather than uniform
algorithms (e.g. we set cryptographic protocols based on nonuniform hardness
rather than uniform hardness assumptions).

To overcome this, we consider the natural algorithmic task of constructing
such an optimal strategy W ∗ for Player 2, given an efficient algorithm for F .
When the sizes of strategy spaces V and W are small (e.g. polynomial) this can
be done by linear programming, for which efficient algorithms are well-known.
However, applications in cryptography and complexity theory such as ones just
mentioned involve exponentially large strategy spaces, and an optimal strategy
W ∗ cannot be found in polynomial time in general. Thus we also require that,
given any mixed strategy V for Player 1, not only does there exist a strategy
W ∈ W for Player 2 with E [F (V,W )] ≥ 0, but such responseW can be obtained
efficiently by an oracle (or an efficient uniform algorithm).

Assuming such an oracle, Freund and Schapire [FS] show how to find an
approximately optimal W ∗ for Player 2 in polynomial time and by making
O((log |V|)/ε2) adaptive oracle queries, using the idea of multiplicative weight
updates. However, their algorithm still falls short in some of aforementioned ap-
plications where V is a set of distributions over {0, 1}n, and thus V can have
doubly-exponentially many vertices. For example, consider the set of distribu-
tions on {0, 1}n of min-entropy at least k; the vertices of V are uniform distri-

butions on a subset of size 2k, and there are
(
2n

2k

)
such subsets.

We present a Uniform Min-Max Theorem that efficiently finds an approxi-
mately optimal strategy W ∗ for Player 2, given an oracle that for any of Player
1’s mixed strategy V ∈ V returns some Player 2’s strategy that guarantees
reasonable payoff, even when V is a (sufficiently nice) set of distributions over
{0, 1}n. Our algorithm is inspired by the proof of Uniform Hardcore Theorem of
Barak, Hardt, and Kale [BHK]. Like [BHK], our algorithm uses “relative entropy
(KL) projections” together with multiplicative weight updates (a technique orig-
inally due to Herbster and Warmuth [HW]). Our contribution is the formulation
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of this algorithm as providing a Uniform Min-Max Theorem. An advantage of
this formulation is that it is more modular, and not specific to the Hardcore The-
orem. Consequently it immediately enables a number of applications, including
deriving uniform versions of many of the aforementioned results, where we now
deal with algorithms rather than nonuniform boolean circuits. Even for the Hard-
core Theorem, where the uniform version was already known [Hol1,BHK], there
are several advantages to deducing it using the Uniform Min-Max Theorem.

Uniform Hardcore Theorem. Impagliazzo’s Hardcore Theorem ([Imp] and later
strengthened in [KS,Hol1,BHK]) is a fundamental result in complexity theory
that says if a boolean function f is somewhat hard on average, then there must
be a subset of inputs (the hardcore) on which f is extremely hard, and out-
side of which f is easy. There are two approaches to proving the theorem.
One is constructive [Imp,KS,Hol1,BHK] and leads to a Uniform Hardcore The-
orem where hardness of f is measured against uniform algorithms, rather than
nonuniform boolean circuits, and has found several applications in cryptography
[KS,Hol1,Hol2,HHR,HRV]. However, the existing proofs turn out to be adhoc
and do not achieve all of the optimal parameters simultaneously for a Uniform
Hardcore Theorem. Another approach due to Nisan [Imp] (and strengthened in
[Hol1]) uses the (non-constructive) Min-Max Theorem and has the advantage of
simplicity, but is restricted to the nonuniform measure of hardness.

In Section 4, we show that by replacing the use of Min-Max Theorem in the
proof of Nisan [Imp] or Holenstein [Hol1] with our Uniform Min-Max Theorem,
we obtain a new proof of the Uniform Hardcore Theorem with the advantages
of (i) optimal hardcore density; (ii) optimal complexity blow-up; and (iii) mod-
ularity and simplicity.

Construction of Pseudorandom Generators from One-Way Functions. Recently,
we [VZ1] obtained a simplified and more efficient construction of pseudorandom
generators from arbitrary one-way functions, building on the work of [HRV]. Key
to the simplification is a new characterization of a computational analogue of
Shannon entropy, whose proof in the nonuniform setting involves the Min-Max
Theorem. Using the Uniform Min-Max Theorem instead, we proved our char-
acterization of pseudoentropy in the uniform setting, and hence obtain (sim-
pler) pseudorandom generator from arbitrary one-way functions that are secure
against efficient algorithms. We refer to the full version [VZ2] for a more detailed
discussion.

Impossibility of Black-Box Construction of Succinct Non-interactive Argument.
A result of Gentry and Wichs [GW] shows that there is no black-box construc-
tion of succinct non-interactive arguments (SNARGs) from any natural cryp-
tographic assumption. Their result relies on the (mild) assumption that there
exist hard subset membership problems, which is equivalent to the existence of
subexponentially hard one-way functions. One limitation is that they need to
assume nonuniformly secure one-way functions, in part due to their use of the
non-constructive Min-Max theorem (in [GW] Lemma 3.1).
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In Section 5, we show how to obtain the analogous result in the uniform setting
by using the Uniform Min-Max Theorem. More specifically, assuming that there
exist subexponentially hard one-way functions that are secure against uniform
algorithms, we show that there is no construction of SNARGs whose security can
be reduced in a black-box way to a cryptographic assumption against uniform
algorithms (unless the assumption is already false).

Simulating Arbitrary Distributions within a Convex Set. In the full version [VZ2],
we apply the Uniform Min-Max Theorem to show a result analogous to the main
result of Trevisan, Tulsiani, and Vadhan [TTV], which (informally) says that any
high min-entropy distributionX is indistinguishable from some high min-entropy
distribution Y of low complexity. It is shown in [TTV] that such results can be
used to deduce (versions of) the Dense Model Theorem [GT,TZ,RTTV], the
Hardcore Theorem [Imp], and the Weak Regularity Lemma [FK], by translating
the problem to a simpler one where the unknown distribution X is replaced
with the low complexity distribution Y that can be efficiently analyzed and
manipulated.

Our result is more general than [TTV] in the sense that we are no longer
restricted to distributions of high min-entropy. We show that for any sufficiently
“nice” convex set of distributions V , any distribution X ∈ V is indistinguishable
from some distribution Y ∈ V where Y has “low complexity” (for several slightly
different definitions of complexity than [TTV]). One application of this result
is a slight strengthening of the Weak Regularity Lemma of Frieza and Kannan
[FK] that achieves better parameters for graphs that are not dense. Another
application is deducing an “efficient” version of a technical lemma of [GW].
(The efficient version has been independently proved by Chung, Lui, and Pass
[CLP] and applied in the context of distributional zero-knowledge). We note that
our result has an average-case variant, which contains as special case a recent
result of Pietrzak and Jetchev [PJ] on leakage-resilient cryptography.

1.1 Paper Organization

Basic notions from information theory including KL projection are defined in
Section 2. In Section 3 we state and prove the Uniform Min-Max Theorem, and
show that it also implies the standard Min-Max Theorem. In Section 4, 5, we
describe two applications of the Uniform Min-Max Theorem (other applications
can be found in the full version [VZ2]).

2 Preliminaries

Notations. For a natural number n, [n] denotes the set {1, . . . , n}, Un denotes
the uniform distribution on binary strings of length n. For a finite set Σ, UΣ de-
notes the uniform distribution on Σ. For a distribution X , supp(X) denotes the
support of X , and x← X means x is a random sample drawn from distribution
X . We write Avga≤i≤b as a shorthand for the average over all i ∈ {a, . . . , b}.
Conv(·) denotes the convex hull.
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For more background on entropy and proofs of the lemmas below, see [CT].

Definition 2.1 (Entropy). For a random variable X, the (Shannon) entropy
of X is defined to be

H(X) = E
x←X

[
log

1

Pr[X = x]

]
.

The min-entropy of X is defined to be

H∞(X) = min
x∈supp(X)

(
log

1

Pr[X = x]

)
.

The notion of KL divergence from random variable A to random variable B is
closely related to Shannon entropy; intuitively it measures how dense A is within
B, on average (with 0 divergence representing maximum density, i.e. A = B, and
large divergence meaning that A is concentrated in a small portion of B).

Definition 2.2 (KL divergence). For random variables A and B, the KL
divergence from A to B is defined to be

KL(A ‖ B) = E
a←A

[
log

Pr[A = a]

Pr[B = a]

]
,

or conventionally +∞ if supp(A) �⊆ supp(B).
For random variables (X,A) and (Y,B), the conditional KL divergence from

A|X to B|Y is defined to be

KL((A|X) ‖ (B|Y )) = E
(x,a)←(X,A)

[
log

Pr[A = a|X = x]

Pr[B = a|Y = x]

]
.

Thus, conditional KL divergence captures the expected KL divergence from
A|X=x to B|Y =x, over x← X . Like Shannon entropy, it has a chain rule:

Proposition 2.1 (Chain rule for KL divergence). KL(X,A ‖ Y,B) =
KL(X ‖ Y ) + KL((A|X) ‖ (B|Y )).

Note however, that the KL divergence is not a metric; it is not symmetric and
does not satisfy the triangle inequality.

Definition 2.3 (KL projection). Let X be a distribution on Σ, and V be
a non-empty closed convex set of distributions on Σ. Y ∗ ∈ V is called a KL
projection of X on V if

Y ∗ = arg min
Y ∈V

KL(Y ‖ X).

A nice property of KL projection is the following geometric structure (see [CT],
Chap 11, Section 6):
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Theorem 2.1 (Pythagorean theorem). Let V be a non-empty closed convex
set of distributions on Σ. Let Y ∗ be a KL projection of X on V. Then for all
Y ∈ V,

KL(Y ‖ Y ∗) + KL(Y ∗ ‖ X) ≤ KL(Y ‖ X).

In particular,
KL(Y ‖ Y ∗) ≤ KL(Y ‖ X).

Assuming KL(Y ∗ ‖ X) is finite, then Pythagorean theorem implies that the
KL projection Y ∗ is unique: for any Y ∈ V which is also a KL projection, the
theorem implies KL(Y ‖ Y ∗) = 0, which holds only when Y = Y ∗.

Finding the exact KL projection is often computationally infeasible, so we
consider approximate KL projection:

Definition 2.4 (Approximate KL projection). We say Y ∗ is a
σ-approximate KL projection of X on V, if Y ∗ ∈ V and for all Y ∈ V,

KL(Y ‖ Y ∗) ≤ KL(Y ‖ X) + σ.

3 A Uniform Min-Max Theorem

Consider a zero-sum game between two players, where the space of pure strate-
gies for Player 1 is V , the space of pure strategies for Player 2 is W , and V is
an arbitrary subset of distributions over [N ]. In this section we present a Uni-
form Min-Max Theorem that efficiently finds an approximately optimal strategy
W ∗ ∈ Conv(W) for Player 2, given an oracle which, when fed any of Player
1’s mixed strategies V ∈ Conv(V), returns a strategy for Player 2 that guaran-
tees good payoff. Our algorithm is inspired by the proof of Uniform Hardcore
Theorem of Barak, Hardt, and Kale [BHK]. Like [BHK], our algorithm uses “rel-
ative entropy (KL) projections” together with multiplicative weight updates (a
technique originally due to Herbster and Warmuth [HW]).

We first state the theorem and mention how it implies standard Min-Max
Theorem.

Theorem 3.1 (A Uniform Min-Max Theorem). Consider a two-player
zero-sum game where the sets of pure strategies for Player 1 and Player 2 are
V ⊆ {distributions over [N ]} and W, and the payoff to Player 2 is defined to
be F (V,W ) = EV [f(V,W )] for some function f : [N ]×W → [−k, k]. Then for
every 0 < ε ≤ 1 and S ≥ maxV ∈Conv(V) KL(V ‖ V (1))/ε2, after S iterations
Algorithm 3.1 (Finding Universal Strategy) always outputs a mixed strategy W ∗

for Player 2 such that

min
V ∈V

F (V,W ∗) ≥ Avg
1≤i≤S

F (V (i),W (i))−O(kε).

(This holds regardless of the arbitrary choice of W (i) and V (i+1) in the algo-
rithm.)

In particular, it suffices to take S ≥ (logN −minV ∈V H(V )) /ε2 if we set
V (1) = U[N ] ∈ Conv(V).
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Choose an initial strategy V (1) ∈ Conv(V) for Player 1
for i← 1 to S do

Obtain an arbitrary strategy W (i) ∈ W for Player 2
Weight Update:

Let V (i)′ be such that Pr[V (i)′ = x] ∝ e−ε·f(x,W (i))/2k · Pr[V (i) = x]
Projection:
V (i+1) ← an arbitrary ε2-approx KL projection of V (i)′ on Conv(V)

end

Let W ∗ be the mixed strategy for Player 2 uniform over W (1), . . . ,W (S)

return W ∗
Algorithm 3.1. Finding Universal Strategy

We now describe how Theorem 3.1 implies the original Min-Max Theorem,
which says

max
W∈Conv(W)

min
V ∈V

F (V,W ) = min
V ∈Conv(V)

max
W∈W

F (V,W ).

For each i, take W (i) to be Player 2’s best response to Player 1’s mixed strategy
V (i), i.e. F (V (i),W (i)) = maxW∈W F (V (i),W ). Theorem 3.1 says for every λ =
O(kε) > 0, by setting an appropriate V (1) and sufficiently large S, there exists
W ∗ ∈ Conv(W) with

min
V ∈V

F (V,W ∗) ≥ Avg
1≤i≤S

F (V (i),W (i))− λ

= Avg
1≤i≤S

max
W∈W

F
(
V (i),W

)
− λ

≥ min
V ∈Conv(V)

max
W∈W

F (V,W )− λ,

where the last inequality holds because for every i, maxW∈W F
(
V (i),W

)
≥

minV ∈Conv(V)maxW∈W F (V,W ). Thus, for every λ > 0,

max
W∈Conv(W)

min
V ∈V

F (V,W ) ≥ min
V ∈Conv(V)

max
W∈W

F (V,W )− λ

Taking λ→ 0 gives the Min-Max Theorem.

Proof (of Theorem 3.1). Consider any V ∈ V . It follows from Lemma A.1 that

KL(V ‖ V (i)′) ≤ KL(V ‖ V (i))− (log e)ε

(
F (V (i),W (i))− F (V,W (i))

2k
− ε

)
.

Since V (i+1) is a σ-approximate KL projection of V (i)′ on Conv(V),

KL(V ‖ V (i+1)) ≤ KL(V ‖ V (i)′) + σ.
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Therefore

KL(V ‖ V (i))−KL(V ‖ V (i+1)) ≥ (log e)ε

(
F (V (i),W (i))− F (V,W (i))

2k
− ε

)
−σ.

Summing over i = 1, . . . , S and telescoping, we obtain

KL(V ‖ V (1))−KL(V ‖ V (S+1))

≥ (log e)ε
S∑

i=1

(
F (V (i),W (i))− F (V,W (i))

2k
− ε

)
− Sσ

= (log e)Sε

(
Avg1≤i≤S F (V (i),W (i))− F (V,W ∗)

2k
− ε

)
− Sσ.

Since KL(V ‖ V (S+1)) ≥ 0, rearranging gives

Avg1≤i≤S F (V (i),W (i))− F (V,W ∗)
2k

≤ KL(V ‖ V (1)) + Sσ

(log e)Sε
+ ε = O(ε)

for σ = ε2, S = KL(V ‖ V (1))/ε2.

Next we describe an average case variant where the set V of strategies for
Player 1 is a set of distributions of the form (X,C) where C may vary, but
the marginal distribution of X is fixed. This is convenient for a number of appli-
cations (e.g. Section 5, and simple construction of pseudorandom generators from
one-way functions [VZ1]) that involve distinguishers on such joint distributions
(X,C).

Theorem 3.2 (Uniform Min-Max Theorem – Average Case). Let V be
a subset of distributions over [N ]× [q] of the form (X,C) where C may vary, but
the marginal distribution of X is fixed. That is, for every (X,C), (X ′, C′) ∈ V
and every x ∈ [N ] we have

∑
c Pr[(X,C) = (x, c)] =

∑
c Pr[(X

′, C′) = (x, c)].
Consider a two-player zero-sum game where the sets of pure strategies for

Player 1 and Player 2 are V and W, and the payoff to Player 2 is defined to be
F ((X,C),W ) = EX,C [f((X,C),W )] for some function f : [N ] × [q] × W →
[−k, k]. Then for every 0 < ε ≤ 1 and S ≥ max(X,C)∈Conv(V)KL(X,C ‖
X,C(1))/ε2, after S iterations Algorithm 3.2 (Finding Universal Strategy – Av-
erage Case) always outputs a mixed strategy W ∗ for Player 2 such that

min
(X,C)∈V

F ((X,C),W ∗) ≥ Avg
1≤i≤S

F ((X,C(i)),W (i))−O(kε).

(This holds regardless of the arbitrary choice of W (i) and C(i+1) in the algo-
rithm.)

In particular, it suffices to take S ≥
(
log q −min(X,C)∈V H(C|X)

)
/ε2 if we

set (X,C(1)) = (X,U[q]) ∈ Conv(V) (where U[q] is independent of X).
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Choose an initial strategy (X,C(1)) ∈ Conv(V) for Player 1
for i← 1 to S do

Obtain an arbitrary strategy W (i) ∈ W for Player 2
Weight Update:
Let C(i)′ be such that ∀x, a,

Pr[C(i)′ = a|X = x] ∝ e−ε·f(x,a,W (i))/2k · Pr[C(i) = a|X = x]
Projection:
(X,C(i+1))

← an arbitrary ε2-approx KL projection of (X,C(i)′) on
Conv(V)

end

Let W ∗ be the mixed strategy for Player 2 uniform over W (1), . . . ,W (S)

return W ∗
Algorithm 3.2. Finding Universal Strategy – Average Case

Proof. Note that Algorithm 3.2 is the same as Algorithm 3.1, except for the
difference that here we update C(i) instead of V (i). We show that the combined
effect of the update and KL projection steps is identical in the two algorithms.
Note that we can write V (i)′ as (X(i)′ , gi(X

(i)′)) for the randomized function gi
where Pr[gi(x) = a] ∝ eε·f(x,a,W

(i))/2k · Pr[C(i) = a|X = x] for every x and a.
For the same function gi, we have (X, gi(X)) = (X,C(i)′). Thus, we can apply
the following lemma.

Lemma 3.1. Let X ′ be a distribution on [N ] with supp(X ′) ⊇ supp(X ′), and
let g : [N ] → [q] be a randomized function. Then the KL projection of (X ′, g(X ′))
on Conv(V) equals the KL projection of (X, g(X)) on Conv(V).

Proof. Consider any (X,C) ∈ Conv(V). We have

KL(X,C ‖ X ′, g(X ′))
= KL(X ‖X ′) + KL((C|X)‖(g(X ′)|X ′)) (by chain rule for KL divergence)

= KL(X ‖X ′) + KL((C|X)‖(g(X)|X)) (by def of conditional KL divergence)

= KL(X ‖X ′) + KL(X,C ‖X, g(X)). (by chain rule for KL divergence)

Thus the KL projections are the same.

4 Application: Uniform Hardcore Theorem

A fundamental result in complexity theory is Impagliazzo’s Hardcore Theorem
[Imp], which, in the strengthened version due to Klivans and Servedio [KS] and
Holenstein [Hol1], says that every function f : {0, 1}n → {0, 1} that is δ-hard
for poly-sized boolean circuits (that is, every poly-sized circuit fails to compute
f on at least δ fraction of inputs) must be extremely hard on a subset of inputs
of density at least 2δ (the hardcore set) (and may be easy elsewhere). In this
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section, we provide a simplified proof of a hardcore theorem with optimal param-
eters, where hardness is defined with respect to uniform algorithms rather than
boolean circuits. Following [Imp], we will deal with hardcore distributions in-
stead of hardcore sets, which are equivalent up to a negligible additive difference
in density, where density of a distribution is defined as follows:

Definition 4.1 (Density of distribution). Let X and Y be distributions over
some finite set Σ. We say X is δ-dense in Y if Pr [Y = x] ≥ δ · Pr [X = x] for
all x ∈ Σ. We say X is δ-dense if it is δ-dense in UΣ (equivalently, having min-
entropy at least log |Σ| − log(1/δ)). We denote by Cm,δ the set of all δ-dense
distributions on {0, 1}m.

The (nonuniform) hardcore theorem with optimal hardcore density 2δ and op-
timal complexity blow-up O(log(1/δ)/ε2), is due to [KS] using techniques from
boosting, and an idea of iteratively increasing hardcore size due to Wigderson.
The theorem can be stated as follows:

Theorem 4.1 (Hardcore Theorem [KS]). Let (X,B)1 be a joint distribution
over {0, 1}n×{0, 1} and ε > 0. Let B be (t, δ)-hard given X, i.e. for every size t
circuit P it holds that Pr[P (X) = B] ≤ 1− δ. Then there is a joint distribution
(X̂, B̂) that is 2δ-dense in (X,B), such that for every size t′ = t/O(log(1/δ)/ε2)
circuit A it holds that Pr[A(X̂) = B̂] ≤ (1 + ε)/2.

The original paper of Impagliazzo [Imp] contains both a non-trivial constructive
proof, as well as a much simpler, yet non-constructive proof due to Nisan that
uses the Min-Max Theorem. Nisan’s proof has an appealing simplicity: Assume
for contradiction that there is no hardcore distribution of high density. Then,
by the Min-Max Theorem there is a universal predictor A∗ such that for every

(X̂, B̂) that is dense in (X,B) it holds that Pr
[
A∗(X̂) = B̂

]
> (1 + ε)/2. A∗ is

a distribution over circuits of size t, and its prediction probability is taken over
this distribution as well as (X̂, B̂). By subsampling we can assume that A∗ is
uniform over a multiset of S = O(log(1/εδ)/ε2) circuits of size t, while changing
the advantage ε by at most a constant fraction. Given the universal predictor
A∗, one can build a good predictor for B, contradicting the hardness of B given
X , as formalized in Lemma 4.1:

Lemma 4.1 (From universal circuit to predictor [Imp]). Let (X,B) be a
joint distribution on {0, 1}n × {0, 1}. Let A∗ be the uniform distribution over a
multiset of S circuits of size t. Suppose for every joint distribution (X̂, B̂) that

is δ-dense in (X,B) it holds that Pr
[
A∗(X̂) = B̂

]
> (1 + ε)/2. Then there is a

circuit P of size O(S · t) such that Pr [P (X) = B] > 1− δ.
Specifically, we can let P (x) = majority{A(x) : A ∈ A∗}. Equivalently, P (x)

outputs 1 with probability

1

2

(
1 + sign

(
Pr[A∗(x) = 1]− 1

2

))
.

1 The version we state is a slight generalization of the version in [KS], which only
allows B to be a deterministic boolean function of X. However, the more general
version follows readily from almost the same proof.
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Unfortunately, both proofs in [Imp] yield a non-optimal hardcore density of
δ. Following Nisan’s proof using Min-Max Theorem, Holenstein [Hol1] proves
the hardcore theorem with optimal hardcore density of 2δ (Theorem 4.1), by
strengthening the above lemma to Lemma 4.2 below (using a trick from Levin’s
proof of the XOR Lemma).

Lemma 4.2 (From universal circuit to optimal predictor [Hol1]). Let
(X,B) be a joint distribution on {0, 1}n × {0, 1}. Let A∗ be the uniform distri-
bution over a multiset of S circuits of size t. Suppose for every joint distribution

(X̂, B̂) that is 2δ-dense in (X,B) it holds that Pr
[
A∗(X̂) = B̂

]
> (1 + ε)/2.

Then there is a circuit P of size O(S · t) such that Pr [P (X) = B] > 1− (1− ε) δ.
Specifically, we can let P (x) output 1 with probability p(x) truncated at 0 and

1 (i.e. min{max{p(x), 0}, 1}), for

p(x) =
1

2

(
1 +

Pr[A∗(x) = 1]− 1
2

φ

)
where φ is the least number s.t. PrX,B [PrA∗ [A∗(X) = B] ≤ 1/2 + φ] ≥ 2δ.
(WLOG φ is a multiple of 1/S.)

The drawback of these proofs based on the standard Min-Max Theorem is that
they are non-constructive, and that the complexity blow-up is non-optimal (with
non-optimal settings of S due to probabilistic construction of the multiset).

A constructive proof such as the one by Impagliazzo [Imp] can be interpreted
as a hardcore theorem for the uniform setting of hardness, where the hardness is
with respect to efficient algorithms rather than small circuits. (See Theorem 4.2
below for the exact formulation). This Uniform Hardcore Theorem is needed for
several important applications ([KS,Hol1,Hol2,HHR,HRV]). Building on the con-
structive proof in [Imp], Holenstein [Hol1] also shows a uniform hardcore theorem
with optimal hardcore density, but is rather involved and fails to achieve the op-
timal complexity blow-up O(log(1/δ)/ε2). Subsequently, Barak, Hardt, and Kale
([BHK]) gave an alternative proof of uniform hardcore theorem achieving optimal
complexity blow-up of O(log(1/δ)/ε2) (but without optimal hardcore density),
based on ideas of multiplicative weights and Bregman projection.

As an application of the Uniform Min-Max Theorem (which itself is inspired
by [BHK]), we offer a new proof of the Uniform Hardcore Theorem. Essentially,
our proof simply replaces the use of Min-Max Theorem in Holenstein’s proof (of
the non-uniform hardcore theorem, Theorem 4.1) with the Uniform Min-Max
Theorem. Consequently it has the advantages of (i) optimal hardcore density
2δ; (ii) optimal complexity blow-up O(log(1/δ)/ε2); (iii) being more modular
(e.g. compared to [BHK]) and simpler (e.g. compared to Holenstein’s uniform
proof [Hol1]).
Notation. For a distribution Z, let OZ denote the oracle that gives a random
sample from Z when queried.

Theorem 4.2 (Uniform Hardcore Theorem). Let n be a security param-
eter, m = m(n) = poly(n), δ = δ(n), ε′ = ε′(n), q = q(n) all computable in
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poly(n) time, and (X,B) = g(Um) be a joint distribution where g : {0, 1}m →
{0, 1}n×{0, 1} is computable in poly(n) time. Suppose that (X,B) has no hard-
core distribution of density at least 2δ, i.e. there is a time t oracle algorithm A
and infinitely many n, such that for every C ∈ Cm,2δ,

Pr
(x,b)←g(C)

[
AOC (x) = b

]
>

1

2
+ ε′.

Then there is a time poly(t, n, 1/δ, 1/ε′) randomized algorithm P such that for
infinitely many n,

Pr[P (X) = B] > 1− δ.

Moreover, P is computable with O(log(1/δ)/ε′2) oracle queries to A.

Proof (Sketch). (See the full version [VZ2] for a complete proof). We will apply
Theorem 3.1 (Uniform Min-Max Theorem), with

– V = Cm,2δ;
– W = {(deterministic) circuits of size tm+ poly(t)};
– f(z,W ) = I(W (x) = b), where (x, b) = g(z) and I(·) is the indicator func-

tion.

This corresponds to the two-player zero-sum game where Player 1 chooses some
distribution C ∈ Cm,2δ, and Player 2 chooses a tm+poly(t) sized circuitW , with
expected payoff F (C,W ) = E[f(C,W )] = Pr(x,b)←g(C) [W (x) = b] for Player 2.
It turns out that using A, Algorithm 3.1 (Finding Universal Strategy) with KL
projection on the set V = Cm,2δ can be implemented efficiently, such that for
infinitely many n, in each iteration we obtain (from running A) some W with
good prediction probability. This gives us an efficient universal predictor A∗ of
B given X , by the Uniform Min-Max Theorem. From the universal predictor,
we then obtain a (1 − δ)-predictor of B using Lemma 4.2, by searching for the
correct φ.

5 Application: Impossibility of Black-Box Construction
of Succinct Non-interactive Argument

A result of Gentry andWichs [GW] shows that there is no black-box construction
of succinct non-interactive arguments (SNARGs) from any natural cryptographic
assumption (formally, they consider falsifiable cryptographic assumptions: ones
that are defined by a polynomial-time security game). Their result relies on
the (mild) assumption that there exist hard subset membership problems, which
is equivalent to the existence of subexponentially hard one-way functions. One
limitation is that they need to work in the non-uniform setting, in part due to
their use of the Min-Max Theorem (in [GW] Lemma 3.1). In this section we
show how to obtain the analogous result in the uniform setting by using the
Uniform Min-Max Theorem. More specifically, assuming that there exist subex-
ponentially hard one-way functions that are secure against uniform algorithms,
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we show that there is no black-box construction of SNARGs based on cryp-
tographic assumptions where security is measured against uniform algorithms
(unless the assumption is already false).

A succinct non-interactive argument (SNARG) is a non-interactive argument
system where the proof size is bounded by a fixed polynomial, for all instances
and witnesses whose size can be an arbitrarily large polynomial. Formally,

Definition 5.1 (SNARG). Let L be an NP language associated with relation
R. We say that a tuple (G,P, V ) of probabilistic polynomial-time (PPT) algo-
rithms is a succinct non-interactive argument for R if the following properties
hold:

– Completeness: For all (x,w) ∈ R, if we choose (CRS,PRIV) ← G(1n), Π ←
P (CRS, x, w), then

Pr [V (PRIV, x,Π) = 0] = negl(n).

– Soundness: For every PPT algorithm (efficient adversary) A, if we choose
(CRS,PRIV) ← G(1n), (X,Π) ← A(1n,CRS), then

Pr [V (PRIV, X,Π) = 1 ∧X /∈ L] = negl(n).

– Succinctness: For all (x,w) ∈ supp(X,W ) and crs ∈ supp(CRS), the length
of the proof π = P (crs, x, w) is |π| = poly(n)(|x|+ |w|)o(1). We also consider
a weaker variant called slightly succinct, where we require the length of a
proof to be |π| = poly(n)(|x|+ |w|)α + o(|x|+ |w|) for some constant α < 1.2

Our notion of a falsifiable cryptographic assumption is analogous to [GW], except
that the adversary A is a uniform algorithm instead of circuit:

Definition 5.2 (Falsifiable assumption). Given an interactive PPT algo-
rithm Chal (the challenger), the uniform falsifiable (cryptographic) assumption
(associated with) Chal states that for all (uniform) PPT algorithms H, the prob-
ability that Chal(1n) outputs a special symbol win after interacting with H(1n)
is at most negl(n) for all sufficiently large n.

For any randomized (possibly inefficient) function H, we let BreakH(n) denote
the above probability and say that H breaks the assumption if BreakH(n) ≥
1/poly(n) for infinitely many n.

Remark 5.1. An alternative definition of falsifiable assumption allows specifying
a constant β, and says that the probability Chal(1n) outputs win is at most
β + negl(n). However, it turns out that setting β = 0, i.e. our definition above,
is without loss of generality [HH]. We adopt the simpler definition because it is
convenient for our proof.

2 Earlier versions of [GW] contained a minor bug in the definition of slight succinctness.
We use the corrected definition from the current version of their paper.
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Next we define black-box reductions:

Definition 5.3 (Adversary and reduction). For a randomized function A
and a constant c ∈ N, we say (A, c) is a (G,P, V )-adversary if |A(1n, crs)| ≤
nc and A violates the soundness condition infinitely often, i.e. if we choose
(CRS,PRIV) ← G(1n), (X,Π) ← A(1n,CRS), then

Pr [V (PRIV, X,Π) = 1 ∧X /∈ L] ≥ n−c

for infinitely many n. We say (A, c) is an a.e. (G,P, V )-adversary if A violates
soundness for all sufficiently large n.

A uniform black-box reduction showing the soundness of (G,P, V ) based on
a falsifiable assumption Chal is a family of (uniform) probabilistic oracle al-
gorithms {Redc} (one for each c ∈ N) such that for every (G,P, V )-adversary
(A, c), RedAc (1

n) breaks the assumption and runs in time polyc(n) (i.e. a poly-
nomial that depends on c).

For a probabilistic oracle algorithm Red, we say a query (1m, crs) of Red(1n)
has length m. In general, Red(1n) may make queries of various lengths. We say
Red is length-mapping if for all n, all queries of Red(1n) are of the same length
m = m(n); denote this m by queryRed(n). Most reductions in cryptography set
m = n i.e. preserve length; that is, the security parameter of (G,P, V ) is equal
to that of the assumption.

Following [GW], our results assume the existence of hard subset membership
problem.

Definition 5.4 (Uniformly hard subset membership problem). Let n be
a security parameter, L be an NP language associated with relation R. We say
((X,W ), U) is a subset membership problem for R if (X,W ) = (X,W )(n) is a
poly(n)-time samplable joint distribution whose support lies in R, and U = U(n)
a poly(n)-time samplable distribution with Pr[U /∈ L] ≥ n−O(1).

A subset membership problem ((X,W ), U) is a subexponentially hard if X

and U are (2Ω(nδ), 2−Ω(nδ))-indistinguishable for a constant δ > 0. We say it is
exponentially hard if the above occurs and |x| + |w| = O(nδ) for every (x,w) ∈
supp(X,W ).

This is a relatively mild assumption; for subexponentially hard subset member-
ship problems, their existence is equivalent to the existence of subexponentially
hard one-way functions.

Remark 5.2. Our definition of a hard subset membership problem is a variant
of [GW] that is needed in the uniform setting, but also can be used in the
nonuniform setting of [GW]. In [GW], they require that X is indistinguishable
from a (not necessarily samplable) distribution U whose support is disjoint from
L, whereas we require that U is samplable and allow it to hit L with negligible
probability.

We now state the uniform analogue of the main result of [GW]. Compared to
[GW], our Theorem 5.1 makes the weaker assumption of subexponentially hard



A Uniform Min-Max Theorem with Applications in Cryptography 107

subset membership problem with respect to uniform algorithms, with the con-
clusion that a uniform falsifiable assumption cannot be broken also being weaker
(unless the assumption is false).

Theorem 5.1 (Main theorem). Let L be an NP language associated with
relation R that has a subexponentially hard subset membership problem, and
(G,P, V ) be an non-interactive proof system for R that satisfies the completeness
and succinctness properties. Then for every uniform falsifiable assumption Chal,
one of the following must hold:

– The assumption Chal is false, or
– There is no uniform black-box reduction showing the soundness of (G,P, V )

based on Chal.

The same conclusion also holds if we assume an exponentially hard subset mem-
bership problem, and (G,P, V ) is only slightly succinct.

To prove it in the nonuniform setting, the main idea of [GW] is showing that
any SNARG (G,P, V ) has an inefficient adversary A that can be (efficiently)
“simulated” i.e. there exists an efficient algorithm Sim (the simulator) such that
RedA(1n) ≈ RedSim(1n) for all PPT oracle algorithms Red (cf. [GW] Lemma
4.1). Thus, if there were a black-box reduction Red showing the soundness of
(G,P, V ) based on a falsifiable assumption, then RedA would break the falsifiable
assumption (since A is an adversary) and so would RedSim (since RedA(1n) ≈
RedSim(1n)). In other words, the assumption would be false.

To prove it in the uniform setting, we do the same showing that there is an
adversary (A, c) that can be simulated by a uniform algorithm Sim, with several
necessary tweaks:

Lemma 5.1 (Existence of simulatable adversary). Let L be an NP lan-
guage associated with relation R that has a subexponentially hard subset mem-
bership problem ((X,W ), U), and (G,P, V ) be a non-interactive proof system
for R that satisfies the completeness and succinctness properties. Let n be a
security parameter, (PRIV,CRS) = G(1n), ((X,W ), U) = ((X,W ), U)(n), and
Π = P (CRS, X,W ). Let 
 = 
(n) ≥ n be a polynomial bound on the run-
ning time of G(1n) as well as the proof size |Π |, and c be a constant such that
|X |+ |Π | ≤ nc.

Then for every length-mapping PPT oracle algorithm Red such that
queryRed(k) = ω(1), there is a PPT algorithm Sim and randomized function
A satisfying:

– (A, c) is an a.e. (G,P, V )-adversary; and
– Sim simulates A: For all sufficiently large k, w.p. at least 1/poly(k), Sim(1k)

outputs a randomized circuit B such that

BreakRedA(k)− BreakRedB (k) = negl(k).

(WLOG B only takes inputs (1n, ·) where n = queryRed(k).)
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The same conclusion also holds if we assume an exponentially hard subset mem-
bership problem, and that (G,P, V ) is only slightly succinct.

Note that Lemma 5.1 is only stated for length-mapping reductions (unlike [GW]).
We remove this restriction in the full version [VZ2] where we prove the main
theorem (for which we use the fact that the simulatable adversary (A, c) is an
a.e. adversary).

We defer the complete proof of Lemma 5.1 to the full version [VZ2], and offer
an overview below.

Overview of Proof of Lemma 5.1. The proof is set up as follows. Given a
subexponentially hard subset membership problem ((X,W ), U), we can WLOG
assume that X and U are (2d�, 2−d�)-indistinguishable for a sufficiently large
constant d, where 
 = 
(n) is a bound on the length of the proof output by
P (crs, x, w) for (x,w) ∈ supp(X,W ) and crs ∈ supp(CRS). (If X and U are

only (2n
δ

, 2−nδ

)-indistinguishable for some δ > 0, we simply re-index, replac-
ing X(n) with X((d
)1/δ)).) If ((X,W ), U) is exponentially hard, we can also
ensure that X and U are (2d�, 2−d�)-indistinguishable by re-indexing so that

 ≤ poly(n)·(|x|+|w|)α+o(|x|+|w|) = O(|x|+|w|)/d for all (x,w) ∈ supp(X,W )
and crs ∈ supp(CRS).

Consider the joint distribution (CRS, X,Π) where CRS = CRS(n) is the dis-
tribution of common reference string, and Π = Π(n) is the 
-bit proof produced
by P for the instance/witness pair (X,W ). Using the fact that Π is short (by
succinctness), it turns out that the 2−d�-indistinguishability of X and U — and
hence of (CRS, X) and (CRS, U), by samplability of CRS — implies there is no
universal distinguisher D∗ (as a 2O(�) time algorithm) that 2−O(�)-distinguishes
(CRS, X,Π) from all (CRS, U,Π ′), where Π ′ is an 
-bit string arbitrarily jointly
distributed with (CRS, U). This is extracted from the proof of a technical lemma
of Gentry and Wichs ([GW] Lemma 3.1) and doesn’t require the use of the
Min-Max Theorem.

We consider the two-player zero-sum game where Player 1 selects a distribu-
tion Π ′ on {0, 1}� jointly distributed with (CRS, U), then Player 2 selects a small
circuit D and receives (expected) payoff E[D(CRS, X,Π)] − E[D(CRS, U,Π ′)].
Recall that the Uniform Min-Max Theorem – Average Case (Theorem 3.2)
builds a sequence — which we denote by Listn — of Π ′ jointly distributed
with (CRS, U), and says that if for each Π ′ ∈ Listn we can obtain a 2−O(�)-
distinguisher D between (CRS, X,Π) and (CRS, U,Π ′) e.g. by some 2O(�) time
algorithm FindDist, then we can obtain a universal 2−O(�)-distinguisher D∗ (as a
2−O(�) time algorithm) for all possible Π ′. Since such D∗ cannot exist (by pre-
vious discussion), it must be that for every 2O(�) time algorithm FindDist there
is some Π ′ ∈ Listn for which FindDist fails to produce a 2−O(�)-distinguisher D.
Note that Listn actually depends on FindDist (indeed it is obtained by running
Algorithm 3.2 using FindDist to select the actions for Player 2).

We will use FindDist to construct the simulatable adversary A as follows. Con-
sider any Π ′ ∈ Listn for which FindDist fails to produce a 2−O(�)-distinguisher.
We let A be the randomized function such that A(1n,CRS) = (U,Π ′). For an ap-
propriate choice of FindDist, such an A will always be an a.e. adversary. Indeed,
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if A is not an a.e. adversary then (PRIV, U,Π ′) does not pass the soundness test,
whereas (PRIV, X,Π) passes the completeness test, hence we can use the verifier
V to construct a distinguisher between (CRS, X,Π) and (CRS, U,Π ′). Choosing
FindDist to produce this distinguisher yields an a.e. adversary A.

Thus we only need to argue that, for an appropriate choice of FindDist, A
is also simulatable. Our simulation is the algorithm S such that S(1n,CRS) =
(X,Π). If we appropriately construct FindDist from the reduction Red and chal-
lenger Chal, then we can show that

BreakRedA(k)− BreakRedS (k) ≤ 1/poly(k) · 2−O(�),

where 
 = 
(n) for n = queryRed(k). (Otherwise, we could use Red and Chal
to construct a 2−O(�)-distinguisher between (CRS, A(1n,CRS)) = (CRS, X,Π)
and (CRS, S(1n,CRS)) = (CRS, U,Π ′).) This completes the proof provided that
2−O(�) ≤ 1/poly(k), which follows if Red does not make queries that are too
short. If instead 2−O(�) > 1/poly(k), then we construct a simulator for A differ-
ently — by simply outputting a random element of Listn, which will equal A and
be a perfect simulator w.p. 1/|Listn| = 1/2O(�) ≥ 1/poly(k). (Gentry and Wichs
[GW] handle short queries using nonuniformity, by hardcoding all the answers.)

Acknowledgments. We thank Kai-Min Chung for many helpful discussions,
especially on SNARGs.
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A Omitted Lemmas

Lemma A.1 (Multiplicative weight update decreases KL). Let A,B be
distributions over [N ] and f : [N ] → [0, 1] any function. Define random variable
A′ such that

Pr[A′ = x] ∝ eε·f(x)Pr[A = x]

for 0 ≤ ε ≤ 1. Then KL(B ‖ A′) ≤ KL(B ‖ A)−(log e)ε (E[f(B)]− E[f(A)]− ε).

Proof. See the full version [VZ2].
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Abstract. We show that public-key bit encryption schemes which sup-
port weak (i.e., compact) homomorphic evaluation of any sufficiently
“sensitive” collection of functions cannot be proved message indistin-
guishable beyond AM ∩ coAM via general (adaptive) reductions, and
beyond statistical zero-knowledge via reductions of constant query com-
plexity. Examples of sensitive collections include parities, majorities, and
the class consisting of all AND and OR functions.

We also give a method for converting a strong (i.e., distribution-
preserving) homomorphic evaluator for essentially any boolean function
(except the trivial ones, the NOT function, and the AND and OR func-
tions) into a rerandomization algorithm: This is a procedure that con-
verts a ciphertext into another ciphertext which is statistically close to
being independent and identically distributed with the original one. Our
transformation preserves negligible statistical error.

1 Introduction

In this work we revisit the question of basing cryptography on NP-hardness. If
P equals NP then computationally secure encryption is impossible. Is the con-
verse true? Despite considerable efforts, there is no candidate encryption scheme
whose security can be plausibly reduced to the worst-case hardness of some
NP-complete problem. Neither is there conclusive evidence that rules out con-
structions of secure encryption schemes from NP-complete problems, although
several obstacles have been pointed out over the years.

Restricting the encryption. Brassard [Bra79] shows that no public-key encryp-
tion scheme can be proved secure beyond NP ∩ coNP, but under the implicit
assumption that every public key-ciphertext pair (queried by the reduction) can
be decrypted uniquely. Goldreich and Goldwasser [GG98] argue that this as-
sumption is unrealistic by giving examples of encryption schemes that do not
satisfy it. They show that the conclusion holds under the relaxed assumption
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that invalid queries to the decryption oracle can be efficiently certified as such.
(If the reduction is randomized, the limitation weakens to AM ∩ coAM.)

Goldreich and Goldwasser warn that these assumptions are unrealistic as they
do not apply to many known proofs of security. Bogdanov and Trevisan [BT06]
point out the following example of Even and Yacobi [EY80]. They construct a
public key encryption scheme and show how to solve an NP-hard problem using
a distinguishing oracle. Their notion of security is unrealistic, as they require a
perfect distinguishing oracle. However, their example illustrates that the restric-
tions imposed by Brassard and Goldreich and Goldwasser do not capture the
difficulty of basing cryptography on NP hardness.

Akavia, Goldreich, Goldwasser, and Moshkovitz [AGGM06] rule out reduc-
tions from NP-complete problems to inverting one-way functions (the basis of
private-key encryption) assuming that sizes of preimage sets are worst-case cer-
tifiable in NP. The same considerations apply to their argument. There are
natural examples of conjectured one-way functions (for example, Goldreich’s
function [Gol00]) not known to satisfy the aforementioned assumptions.

Restricting the reduction. Another line of works makes restrictive assumptions
about the type of reduction used to prove NP-hardness. Feigenbaum and Fort-
now [FF93] show that a decision problem cannot be proven NP-hard on average
(unless the polynomial hierarchy collapses) by a reduction that is non-adaptive
and each of its queries is uniformly distributed. Bogdanov and Trevisan [BT06]
obtain the same conclusion without restricting the distribution of queries, but
still under non-adaptive reductions. More precisely, they show that if there is
a non-adaptive reduction from a decision problem L to a problem in distribu-
tional NP, then L must be in AM/poly ∩ coAM/poly. In particular their result
applies to the problem of inverting a one-way function. For this important case,
Akavia et al. improve the limitation to AM∩coAM, also assuming the reduction
is non-adaptive.

Haitner, Mahmoody, and Xiao [HMX10] show that collision resistant hash
functions and statistically hiding commitments cannot be proved secure beyond
AM ∩ coAM via reductions that make a constant number of rounds of calls to
the adversary.

Lattice-based cryptography provides examples of encryption schemes whose
insecurity would imply worst-case solutions to conjectured hard problems, like
finding short vectors in lattices [Ajt96]. The reduction of Regev [Reg09], which
gives the most efficient cryptosystems of this kind with a proof of security
(against quantum algorithms), is adaptive. For certain settings of parameters,
these cryptosystems support homomorphic evaluation of a bounded class of
functionalities (and general functionalities under additional security assump-
tions) [Gen09, vDGHV10, BV11].

Our Results

We say a public-key encryption scheme supports weak (i.e. compact) homomor-
phic evaluation of a function f : {0, 1}∗ → {0, 1} if for every n and x1 . . . xn ∈
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{0, 1}n takes as inputs the public key and encryptions of the bits x1, . . . , xn and
produces an output of length polynomially bounded in the security parameter
that decrypts to f(x1 . . . xn). See Section 2 for a formal definition.

Our main theorem (Theorem 1) shows that any public key encryption scheme
that supports efficient weak homomorphic evaluation of any sufficiently “sensi-
tive” collection of functions cannot be proved message indistinguishable beyond
AM ∩ coAM, even under adaptive reductions. Examples of such functions are
parities, majorities, and the collection of all AND and OR functions.

Examples of encryption schemes that our result applies to include El Gamal
encryption [Gam85], Paillier encryption [Pai99], as well as the more recent some-
what and fully homomorphic encryption schemes of Gentry [Gen09], Van Dijk et
al. [vDGHV10], and Brakerski and Vaikuntanathan [BV11] (which build upon
the lattice-based cryptosystems of Regev [Reg09] and Peikert [Pei09]).

In Theorem 2 we show that if the reduction has constant query complex-
ity, then message indistinguishability cannot be proved beyond statistical zero
knowledge (SZK), which is a subclass of AM ∩ coAM.

The reductions we consider are randomized and meet the following definition:
Given an input, the reduction makes arbitrary (adaptive) queries to a distin-
guishing oracle for bit encryptions. We require that for any (not necessarily
efficient) distinguishing oracle, which may depend on the input to the reduction,
the reduction outputs the correct answer. We do not know of any cryptographic
reductions that treat the adversary as a black box which fall outside our defini-
tion.

Lemma 5, which is used in the proofs of Theorems 1 and 2, gives a way
to obtain rerandomization of ciphertexts from any homomorphic evaluator for
the function of interest. While rerandomization has been used in constructions
of homomorphic evaluators [Gen09, vDGHV10], it is not a priori clear that
it is necessary for homomorphic evaluation. Homomorphic evaluation may be
implemented deterministically while rerandomization requires randomness.

The statistical error of the rerandomization in Lemma 5 is noticeable. While
this is sufficient for our main application, a negligible error would be desirable for
most applications of rerandomization in cryptography. In Theorem 3 we show a
transformation of a strong homomorphic evaluator for almost any function into
a rerandomization that preserves negligible statistical error. Essentially the only
exceptions to which our result does not apply are that AND, OR, and NOT
functions.

Our Proof

From homomorphic evaluation to rerandomization (Section 4). To begin with
let’s assume that we have a strong (i.e., distribution-preserving) homomorphic
evaluator H for the majority function majn on n inputs. This is an algorithm
that takes as inputs independent encryptions of x1, . . . , xn and outputs a cipher-
text which is statistically close to an encryption of majn(x1, . . . , xn). We show
that H can be used to obtain an approximate rerandomization Rer: This is a
procedure that takes an encryption as its input and produces an independent
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and identically distributed encryption as its output. Our rerandomization will
be approximate in the sense that the input and output of Rer will be only
statistically close to independent.

One way to obtain rerandomization is as follows: Given a ciphertext C, gener-
ate (n−1)/2 independent encryptions of 0, (n−1)/2 independent encryptions of
1, randomly shuffle them together with C and feed the n resulting ciphertexts to
the homomorphic evaluator for majority. By the strong homomorphic property,
the output of the homomorphic evaluator will be identically distributed with C.
But why should they be independent? From the point of view of the homomor-
phic evaluator, if C is an encryption of b, then it is indistinguishable from the
other (n−1)/2 encryptions of b. Since the output of the homomorphic evaluator
is bounded in length, the evaluator must “forget” most of the information about
most of the ciphertexts it is given as inputs, including C as it is indistinguish-
able from the others. Therefore the output is forced to look almost statistically
independent of C.

In Lemma 5 we generalize this argument to a much wider class of functions
which we call sensitive (see Section 2) and to weak (i.e., compact) homomorphic
evaluators, in which case we obtain a weaker notion of rerandomization.

A strong rerandomization procedure can be used to distinguish encryptions
in statistical zero-knowledge by reduction to the ”statistical distance” problem:
A rerandomized encryption of 0 is statistically close to an encryption of 0, but
statistically far from an encryption of 1. Mahmoody and Xiao’s simulation of
BPPSZK in AM [MX10] can then be used to emulate the reduction by a proof
system. When only weak one-sided rerandomization is available, it is not clear
that encryptions are distinguishable in statistical zero-knowledge, and we con-
struct a somewhat different proof system. For the sake of clarity, however, in the
rest of this discussion we will assume the availability of strong rerandomization.

From rerandomization to a distinguishing protocol (Section 5). To turn a reduc-
tion from distinguishing encryptions to L into a proof system for L, we proceed
as in previous works: The verifier plays the role of the reduction and the prover
plays the role of the distinguishing oracle. The challenge is to force the prover
to give answers that are consistent with a specific, fixed distinguishing oracle.

To illustrate the difficulties in the context of public key encryption, let us point
out the deficiencies of some naive proof systems. Suppose the verifier submits a
public key-ciphertext query (PK,C) to the prover, who is supposed to act as
a distinguishing oracle. A natural attempt is to ask the prover to provide the
message m and randomness R such that C is an encryption of m under public
key PK with randomness R. This fails to account for the possibility that C may
not be a valid ciphertext at all: Perhaps there is no pair (m,R) that encrypts to
C under PK. It is not clear how a prover can certify such a statement. Another
attempt would be to ask the prover for the secret key SK associated to PK.
Again, it is not clear how to achieve completeness in case the public key is invalid
and there is no corresponding secret key, or soundness in case the public key can
be paired with several different secret keys (the choice of which may affect how
different invalid ciphertexts decrypt).
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Our protocol works as follows: Given a query (PK,C), the verifier asks the
prover for the value b that encrypts to C, together with a proof that the reran-
domization of C is statistically close to encryptions of b but statistically far
from encryptions of b. If the pair (PK,C) is properly distributed, this forces
the prover to give a unique correct answer. But since statistical closeness and
statistical farness are both efficiently verifiable [BBM11, SV03], the prover can
now also certify that a pair (PK,C) is not a valid public key-ciphertext pair.
We call this protocol DP (the distinguishing protocol).

One important detail is that the protocols for statistical closeness and sta-
tistical farness are only guaranteed to solve promise versions of these problems:
For a given gap [
, r), they can distinguish distributions that are within statisti-
cal distance 
 from those that are at distance at least r, but give no guarantee
about the outcome for instances that fall inside the gap. Therefore DP is only
complete and sound provided that none of the underlying instances fall inside
the respective gaps.

The proof system (Section 7). Given a reduction R from a decision problem L
to distinguishing encryptions, this suggests the following constant-round proof
system for L: On a given input, the verifier chooses randomness for the reduction
and sends this randomness to the prover. The prover sends back a transcript of
the reduction interacting with a distinguishing oracle, which includes a list of
queries (PKi, Ci) made by the reduction together with an answer ai saying if Ci

encrypts 0 or 1 under PKi, or the pair (PKi, Ci) is invalid (⊥). The verifier and
prover then apply the DP protocol to certify that all the answers ai are correct.

This proof system is complete and sound, given that all inputs (PKi, Ci, ai)
to the DP protocol satisfy its promise. But in general the verifier does not know
in advance if the promise is satisfied or not. We resolve this issue by choosing
the width of the gaps [
, r) to be sufficiently small and by having the verifier
randomize the location of the gaps. This should make it unlikely for any of the
queries to fall inside the promise gap of DP .

This approach was also used by Bogdanov and Trevisan [BT06] in the context
of non-adaptive reductions. An additional twist is required when the reduction
is adaptive because the location of the gaps may affect the answers of the honest
prover. For example, imagine an adaptive reduction that does a “binary search”
for the gap [
, r): If the first answer a is to the right of r, its next query will be
a/2, and so on until it hits the gap. To handle such reductions, we want to make
the location of the gaps in each round independent of the answers of the honest
prover in the previous rounds. On the other hand, the locations of these gaps
must be consistent with a specific, fixed distinguishing oracle that the prover is
required to emulate.

To achieve both objectives we specify a randomized family of distinguishing
oracles, where for each query to the oracle the gap location is random, and the
gap locations among the various queries are q-wise independent, where q is an
upper bound on the number of queries performed by the reduction. In the first
round of the reduction the verifier chooses a random oracle from this family and
sends its (polynomial length) description to the prover. The honest prover is
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then expected to give answers that are consistent with this instantiation of the
distinguishing oracle. By independence, the probability that any of the queries
made by the honest prover falls inside the gap will be small. In Section 6.1 we
develop the relevant complexity-theoretic framework and we prove Theorem 1
in Section 7.1.

To prevent any of the queries from falling into the gaps [
, r), the size of
the gaps needs to be inverse proportional to the number of queries made by the
reduction. Unless the reduction makes a bounded number of queries, this requires
protocols for statistical closeness and statistical farness where the verifier runs
in time inverse polynomial to the size of the gap and the gap can be at an
arbitrary location. Such protocols were developed by Bhatnagar, Bogdanov, and
Mossel [BBM11]1 and we use them in the proof of Theorem 1.2

For reductions that make a constant number of queries, it is sufficient to
have statistical closeness/farness protocols over a constant number of disjoint
gaps [
, r). Sahai and Vadhan [SV03] give implementations of such protocols in
SZK. Using their protocols and the closure properties of SZK which we recall in
Section 6.2, we prove Theorem 2 in Section 7.2.

Better rerandomization from strong homomorphic evaluation. The rerandomiza-
tion procedure we described above comes with a non-negligible statistical error.
It is not difficult to construct examples showing that this error is inherent, even
if the homomorphic evaluation is perfect, i.e. it induces no statistical error. In
Section 8 we show that the statistical error can be reduced exponentially by
iteratively applying the rerandomization on its output, provided f is not “ex-
ceptional”. This proves Theorem 3.

2 Definitions

Homomorphic evaluation and rerandomization. Let (Gen,Enc,Dec) be a bit
encryption scheme. Fix a security parameter s and let (PK, SK) ∼ Gen(1s) the
distribution on key pairs. (We will assume that s is implicit in the public and
secret keys.)

Definition 1. Let f : {0, 1}n → {0, 1} be a boolean function. We say H is
a strong homomorphic evaluator for f with error ε if for all m in the do-
main of f , the random variables (PK,HPK(EncPK(m1), . . . ,EncPK(mn))) and
(PK,EncPK(f(m))) (where all encryptions are independent) are within statis-
tical distance ε.

This definition extends to functions from {0, 1}∗ → {0, 1} in a straightforward
way. We omit the details.

1 Technically their statement is not as strong as the one we need here, but their proof
can be easily adapted. We provide the details in the full version.

2 Similar issues arise in the work of Mahmoody and Xiao [MX10]. They work with
the SZK-complete problem entropy difference. While their proof can be adapted to
our setting, we find it more natural to work directly with instances of statistical
difference.



Limits of Provable Security for Homomorphic Encryption 117

Definition 2. Let f : {0, 1}∗ → {0, 1} be a boolean function. We say H is a
weak homomorphic evaluator for f with error ε if (1) the output length of H is
bounded by a function that depends only on the security parameter and (2) for
all n and m ∈ {0, 1}n in the domain of f ,

Pr[DecSK(PK,HPK(EncPK(m1), . . . ,EncPK(mn))) = f(m)] ≥ 1− ε,

where all encryptions are independent.3

A bit encryption scheme is efficient if Gen,Enc,Dec all run in time polynomial
in the security parameter s. A homomorphic evaluator H is efficient if it is
computable in time polynomial in s and n and its output length is polynomially
bounded in s.

Definition 3. Let Rer be a randomized function that takes as input a public key
and a ciphertext. In the following definitions R and R′ are independent choices
of randomness for Rer.

– We say Rer is a strong rerandomization with error ε if for every m ∈ {0, 1},
the random variables (PK,E,RerPK(E,R)) and (PK,E,E′) where E,E′ ∼
EncPK(m) are independent are within statistical distance ε.

– For b ∈ {0, 1}, we say Rerb is a one-sided weak rerandomiza-
tion with decryption error ε and rerandomization error ρ if for ev-
ery m ∈ {0, 1}, Pr[DecSK(RerbPK(EncPK(m))) = m] ≥ 1 − ε
and the random variables (PK,RerbPK(E,R),RerbPK(E,R′)) and
(PK,RerbPK(E,R),RerbPK(E′, R′)) where E,E′ ∼ EncPK(b) are in-
dependent are within statistical distance ρ.

We say the rerandomization is efficient if it can be evaluated in time polynomial
in the security parameter.

Sensitivity of boolean functions. We will use the following notion of sensitivity
for boolean functions. For x ∈ {0, 1}k let x|i be the string obtained by flipping
the i-th bit of x and leaving the others unchanged. Let f : {0, 1}k → {0, 1} be
a boolean function and b ∈ {0, 1}. We say f has b-sensitivity at least s if there
exists an input x ∈ {0, 1}k and a set S ⊆ [k] of size s such that f(x) = b, xi = b
for every i ∈ S, and f(x|i) = b for every i ∈ S. We call (x, S) a witness that f
has b-sensitivity at least s.

We say a family of functions f = {fk : {0, 1}k → {0, 1}} has certifiable poly-
nomial b-sensitivity if there exists a constant α > 0 so that on input k we can
compute in time polynomial in k a witness that fk has b-sensitivity at least kα.

Examples of functions that have certifiable polynomial 0-sensitivity and 1-
sensitivity include parity and majority. The AND function has certifiable polyno-
mial 0-sensitivity while the OR function has certifiable polynomial 1-sensitivity.

3 Some works adopt the terms “distribution preserving” and ”compact” homomor-
phic evaluation. We prefer the terms “strong” and “weak” for this work, as we are
concerned with questions of computational complexity.
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Examples of functions whose 0-sensitivity and 1-sensitivity is less than s are
functions that depend on at most s − 1 of their inputs, i.e. (s − 1)-juntas. Si-
mon [Sim82] gives an example of a function on k bits that depends on all its
inputs but has 0-sensitivity and 1-sensitivity O(log k).

3 The Main Theorems

We say (Gen,Enc,Dec) supports weak homomorphic evaluation of f with error
ε if it has an efficient homomorphic evaluator for f with error ε.

A γ-distinguishing oracle for (Gen,Enc,Dec) is a function D such that

Pr[D(PK,EncPK(0)) accepts] − Pr[D(PK,EncPK(1)) accepts] > γ.

A reduction from a decision problem L to γ-distinguishing encryptions is an
efficient randomized oracle algorithm R? such that for every valid input x there
exists a γ-distinguishing oracle D such that RD(x) = L(x) with probability at
least 8/9. (For our results the exact constant won’t matter, as long as it is strictly
greater than 1/2.)

Theorem 1. Let f0 and f1 be functions with certifiable polynomial 0-sensitivity
and 1-sensitivity respectively (possibly the same function). Let ε ∈ (0, 1/18)
be any constant and δ ≥ 2

√
ε. Let (Gen,Enc,Dec) be a public key encryp-

tion scheme that supports efficient homomorphic evaluations of both f0 and f1
with error at most ε. If there is a reduction from L to (1 − δ)-distinguishing
(Gen,Enc,Dec), then L is in AM ∩ coAM.

We will assume that the reduction is query length regular: On input x, the re-
duction first computes a query length m ≥ |x| and only makes queries of length
m. The theorem can be proved without this assumption, but we make it for
notational convenience.

In the case when the reduction has constant query complexity, a stronger
conclusion can be obtained.

Theorem 2. Let f0 and f1 be functions with certifiable polynomial 0-sensitivity
and 1-sensitivity respectively (possibly the same function). Let q be any con-
stant, δ > 0, and ε = ε(q, δ) a sufficiently small constant. Let (Gen,Enc,Dec)
be a public key encryption scheme that supports efficient homomorphic evalu-
ations of f0 and f1 with error at most ε. If there is a reduction from L to
(1− δ)-distinguishing (Gen,Enc,Dec) that makes at most q queries, then L is
in statistical zero-knowledge.

In particular, Theorems 1 and 2 apply to the following cases: (1) f0 and f1 are
the parity function; (2) f0 and f1 are the majority function; (3) f0 is OR and
f1 is AND.

Ron Rothblum [Rot11] shows how to turn a private-key encryption scheme
into a public-key one using a homomorphic evaluator for parity. Combining the
two results, the conclusions of Theorems 1 and 2 can be extended to private-key
encryption schemes that support homomorphic evaluation of parity.
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Our last result shows how to obtain strong rerandomization given a homomor-
phic evaluator for almost any function. We call a function f : {0, 1}n → {0, 1}
exceptional if it is one of the following functions of the inputs that it depends
on: the constant 0, the constant 1, the identity, the NOT function, the AND
function, the OR function.

Theorem 3. Assume f : {0, 1}n → {0, 1} is not exceptional. If (Gen,Enc,Dec)
is a public key encryption scheme that supports efficient strong homomorphic
evaluation of f with negligible error, then (Gen,Enc,Dec) has an efficient
strong rerandomization with negligible error.

4 One-Sided Rerandomization from Homomorphic
Evaluation

In this section we show how to convert a homomorphic evaluation algorithm for a
sensitive function into a one-sided rerandomization. In Section 8 we extend these
ideas to obtain stronger notions of rerandomization under stronger assumptions.
Let H denote entropy and I denote mutual information.

Claim 4. Let X1, . . . , Xn be i.i.d. random variables and I ∼ {1, . . . , n} a uni-
formly random index. Let F,G,G′ be random variables such that (1) F and G
are independent conditioned on XI , (2) F is independent of I, (3) G and G′

are identically distributed and (4) F and G′ are independent. Then the random
variables (F,G) and (F,G′) are within statistical distance

√
2H(F )/n.

Proof

H(XI | F ) ≥ H(XI | F, I) =
1

n

n∑
i=1

H(Xi | F )

≥ 1

n
H(X1, . . . , Xn | F ) ≥ 1

n
(H(X1, . . . , Xn)−H(F )) = H(XI)−

H(F )

n
.

Since F and G are conditionally independent of XI , I(F ;G) ≤ I(F ;XI) and so

I(F ;G) ≤ I(F ;XI) = H(XI)−H(XI | F ) ≤ H(F )

n
.

The conclusion follows by Pinsker’s inequality [Pin64]. ��
The following lemma shows how to obtain one-sided rerandomization from ho-
momorphic evaluation of a sensitive function. This lemma will be used in the
proofs of Theorems 1 and 2. In Section 8 we give a version of this lemma that
applies to a more restricted class of functions but allows us to achieve a stronger
notion of rerandomization. That version will be used for the proof of Theorem 3.

Lemma 5. Assume f has certifiable polynomial b-sensitivity and let δ be any
function inverse polynomial in the security parameter. If (Gen,Enc,Dec) has a
weak efficient homomorphic evaluator for f with error ε, then it has a one-sided
weak rerandomization Rerb with decryption error ε and rerandomization error
δ.
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Proof. Suppose fk has b-sensitivity kα. Choose k = (2c/δ2)1/α, where c is the
length of ciphertexts (for the given security parameter). Let (x, S) be the witness
for b-sensitivity of fk. Given public key PK and ciphertext E define Rerb as
follows:

1. Choose a random I ∼ S.
2. Let

Xi =

{
EncPK(xi, Ri) if i �= I,

E if i = I.

3. Output F = HPK(X1, . . . , Xk).

We first condition on the choice of the public key PK, letting εPK denote the
statistical distance between the two distributions in the definition of strong ho-
momorphic evaluator conditioned on PK.

The decryption error of Rerb follows directly from the definition. We now
show the rerandomization error is at most δ. Let F,G be two independent in-
stantiations of Rerb on the same input E. Conditioned on PK, the random
variables Xi : i ∈ S and F,G satisfy the assumptions of Claim 4. It follows that
(F,G) and (F,G′), where G′ is i.i.d with G and therefore with F , are within
statistical distance

√
2c/kα, which is at most δ by our choice of parameters.

Averaging over εPK we prove the lemma. ��

5 The Distinguishing Protocol

In this section we describe a constant-round interactive proof system DP that,
given input (PK,C, b), certifies that C is an encryption of b under PK when
b ∈ {0, 1} and that (PK,C) is an invalid pair when b = ⊥. The proof system
is parametrized by two gaps [
, r) and [
′, r′), which describe a promise on the
inputs.

We will assume we have the following constant-round protocols for statistical
closeness (SC[�,r)) and statistical farness (SF[�,r)), where 0 ≤ 
 < r ≤ 1. The
protocols take as inputs a pair of sampler circuits D,D′ producing distributions
over the same set {0, 1}m with the following completeness / soundness properties:

– If D,D′ are at statistical distance less than 
 / at least r, SC[�,r)(D,D
′)

accepts / rejects with probability 1− σ.
– If D,D′ are at statistical distance at least r / less than 
, SF[�,r)(D,D

′)
accepts / rejects with probability 1− σ.

Here σ can be any inverse polynomial in the size of the input. The following
two theorems state the existence of these protocols. The second one is stronger
as it provides statistical zero-knowledge implementation, but makes a stronger
assumption about the gaps.

Formally we will view SC and SF as promise problems that take 
, r,D,D′ as
their inputs. Theorem 6 essentially follows from work of Bhatnagar, Bogdanov,
and Mossel [BBM11]. We provide the missing details in the full version..



Limits of Provable Security for Homomorphic Encryption 121

Theorem 6. For r > 
, the problems SC and SF are in AM where the running
time of the verifier is polynomial in the size of D, the size of D′, and 1/(r− 
).

Theorem 7 is proved by Sahai and Vadhan [SV03].

Theorem 7. For r2 > 
, the problems SC and SF are in SZK where the run-
ning time of the verifier is polynomial in the size of D, the size of D′, and
1/
1/ log(r2/�).

The protocol DP will certify that the rerandomization of C is close to an reran-
domized encryption of b but far from a rerandomized encryption of b when
b ∈ {0, 1}. When b = ⊥, it certifies that either the rerandomized encryptions of
0 and 1 are close, or the rerandomized encryption of C is far from both.

Let ZPK,b (b ∈ {0, 1}) be the following circuit: On input R,R′, output

RerbPK(EncPK(b, R), R′), i.e. a one-sided rerandomized encryption of b.

The distinguishing protocol DP[�,r),[�′,r′)

On input (PK,C, b), where b ∈ {0, 1,⊥}:
1. If b = 0 or b = 1:
2. Verifier and Prover execute SF[�,r)(ZPK,0, ZPK,1).
3. If the protocol rejects, reject. Otherwise:

4. Verifier and Prover execute SC[�′,r′)(ZPK,b,RerbPK(C)).
5. If the protocol accepts, accept, else reject.
6. If b = ⊥:
7. Verifier and Prover execute SC[�,r)(ZPK,0, ZPK,1).
8. If the protocol accepts, accept. Otherwise:
9. Verifier and Prover execute SF[�′,r′)(ZPK,0,Rer0PK(C)).

10. Verifier and Prover execute SF[�′,r′)(ZPK,1,Rer1PK(C)).
11. If both accept, accept, else reject.

The distinguishing oracle. We define an oracle π that distinguishes between
encryptions of 0 and encryptions of 1. This oracle answers ⊥ on all queries
(PK,C) that do not represent valid key-ciphertext pairs and answers bad on
all queries that fall inside the gaps of the underlying protocols SC and SF . We
then show that for every pair (PK,C) that falls outside the gaps, b = π(PK,C)
is the unique answer that makes DP (PK,C, b) accept. Owing to lack of space
the definition of π, as well as the proof of the following claim which shows π is
a distinguishing oracle, are given in the full version.

Claim 8. Assume Rer0,Rer1 are one-sided rerandomizations with decryption
error ε < (1 − r)2/2 and rerandomization error ρ < 
′2. Then
Pr[π(PK,EncPK(b)) = b] ≥ 1−

√
2ε−√

ρ for every b ∈ {0, 1}.

The following claims are immediate from the definitions and the completeness
and soundness assumptions on SC and SF .
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Claim 9. (Completeness) Assume 
′ < r/2 and π(PK,C) �= bad. Then
DP (PK,C, π(PK,C)) accepts with probability at least 1− 3σ.

Claim 10. (Soundness) Assume 
′ < r/2. If DP (PK,C, b) accepts with proba-
bility more than 3σ, then π(PK,C) ∈ {b, bad}.

6 Complexity Theoretic Setup

In this section we cover the complexity-theoretic framework for the proofs of
Theorems 1 and 2. Proof of the claims can be found in the full version.

6.1 Promise Oracles for Adaptive Reductions

Let Ξ be any finite set of values that includes the special symbol bad. An oracle
family over input length m with size d is a multiset Π of functions π : {0, 1}m →
Ξ. We say Π is ε-bad if for every input x, Prπ∼Π [π(x) = bad] ≤ ε.

Let F : {0, 1}m → [d] be a function. The oracle ΠF : {0, 1}m → Ξ is given by
ΠF (z) = πF (z)(z). In the lemma below F will be a randomized function of the
same form.

Lemma 11. Let R? be a reduction that on an input of length n, makes at most
q queries of length m. Let Π be an oracle family of size d. Assume d is a power
of two. There exists a randomized function F : {0, 1}m → [d] such that:

– F is computable in time (and hence uses randomness) polynomial in m, q,
and d.

– For every input x of length n, the probability that RΠF (x) never receives bad
as an answer to any of its queries is at least (1− ε)q.

6.2 Statistical Zero-Knowledge

We recall some results about the complexity of statistical zero-knowledge SZK.
Sahai and Vadhan [SV03] show that the statistical distance problem SD =
SF[1/9,8/9) is complete for SZK under many-one reductions.

We also need the following result of Sahai and Vadhan [SV03] that states the
closure of SZK under truth-table reductions.

Theorem 12. There is a deterministic algorithm that takes as input instances
x1, . . . , xk of SD and a boolean predicate P : {0, 1}k → {0, 1} and outputs an
instance x of SD such that SD(x) = P (SD(x1), . . . , SD(xk)). The running
time of the algorithm is polynomial in 2k and the sizes of x1, . . . , xk.

We also need the following fact, which says that reductions within SZK can
without loss of generality be assumed deterministic.

Claim 13. If there is a randomized many-one reduction R from L to SD such
that Pr[SD(R(x)) = L(x)] ≥ p, where p is any constant above 1/2, then L is in
SZK.
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Combining Theorem 12 and Claim 13 we get the following corollary.

Corollary 14. Suppose there is a randomized algorithm A that on input x of
length n and randomness r computes inputs x1, . . . , xk and a predicate
P : {0, 1}k → {0, 1}, where k = O(log n) and accepts if P (SD(x1), . . . , SD(xk))
is true. If Pr[A(x) = L(x)] ≥ p, where p is any constant greater than 1/2, then
L is in SZK.

7 Proofs of the Main Theorems

7.1 Proof of Theorem 1

Let Fω : {0, 1}m → [d] be the randomized function from Lemma 11, with ω
describing the randomness. We set Ij =

[
1
3 + j−1

3d ,
1
3 + j

3d

)
and I ′j = 1

3Ij , where
1 ≤ j ≤ d.

The decision protocol DL: On input x:

V: Compute the oracle query length m. Let d be the smallest power of two
above 90q where q is an upper bound on the number of queries R?(x) makes.
Choose randomness r for the reduction and randomness ω for Fω . Send r, d, ω
to the prover.

P: Send a sequence ((PKi, Ci), bi), 1 ≤ i ≤ q of oracle query-answer pairs.
V: Verify that the received query-answer pairs determine an accepting compu-

tation of R?(x, r). If not, reject. For every query i, compute j = Fω(PKi, Ci)
and let [
i, ri) = Ij and [
′i, r

′
i) = I ′j .

B: Execute in parallel the protocols DP[�i,ri),[�′i,r
′
i)
(PKi, Ci, bi) for 1 ≤ i ≤ q

with completeness/soundness gap σ = 1/9q. If any of them result in rejec-
tion, reject. Otherwise, accept.

Let πj = πIj ,I′
j
and ΠF be the oracle from Lemma 11.

Claim 15. The oracle family {πj}1≤j≤d is at most 3/d-bad.

Proof of Theorem 1. It is sufficient to prove that L ∈ AM. By applying the same
argument to its complement L we also get L ∈ coAM.

Assume (Gen,Enc,Dec) supports homomorphic evaluation of f with error
at most ε and there is a reduction R? from L to (1−δ)-distinguishing encryptions.

We instantiate the constructions with the following parameters. Let ε be the
homomorphic evaluation error and c an upper bound on the length of ciphertexts
queried by the reduction on input x. Let Rerb be the rerandomization from
Lemma 5 with parameters chosen so that the decryption error is ε and the
rerandomization error is at most ρ ≤ ε2. The protocol DP is instantiated with
the rerandomizations Rer0 and Rer1.

Claim 16. For an appropriate choice of parameters and for every F , ΠF is a
(1− δ)-distinguishing oracle.
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By Theorem 6, the verifier for DL can be implemented in polynomial time.
Theorem 1 the follows by the next two claims:

Claim 17. (Completeness) If x ∈ L, there exists a prover that makes DL(x)
accept with probability at least 2/3.

Claim 18. (Soundness) If x �∈ L then no prover makes DL(x) accept with prob-
ability at least 1/3.

7.2 Proof of Theorem 2

Let Ij , 1 ≤ j ≤ d be the following collection of intervals: Ij = [
j , rj) where
r1 = 1/2, 
j = r2j /4, and rj+1 = 
j. Let I

′
j = 1

3Ij . Assume the reduction makes
at most q queries on every input and let d = 27q · 3q.

By Theorem 7, for every j the problems SCIj , SCI′
j
, SFIj , SFI′

j
are all in SZK

so by Theorem 12 and the completeness of SD, DPIj ,I′
j
is also in SZK for every

j.
Consider the following algorithm A. On input x, choose randomness r for

R and a random j ∼ [d] and accept if there exists a sequence of answers
(a1, . . . , aq) ∈ {0, 1,⊥}q such that R(x, r) accepts given these oracle answers
and DPIj ,I′

j
(Qi, ai) accepts for all 1 ≤ i ≤ q. Since DPIj ,I′

j
is in SZK and SD is

complete for SZK, A satisfies the assumption of Corollary 14, so if we can prove
that Pr[A(x) = L(x)] ≥ 2/3, it will follow that L is in SZK.

Say j is bad if πj = πIj ,I′
j
answers bad on any pair (Q, a) queried by A. Since

A makes at most q3q queries, by Claim 15 and a union bound the probability
that A answers bad on any of its queries is at most 1/9.

Fix an input x. By our choice of parameters, when ε is sufficiently small and
ρ = ε2, Claim 8 guarantees that πj is a (1 − 4ε)-decryption oracle for every
1 ≤ j ≤ d. So for at least 8/9 fraction of r, Rπj(x, r) = L(x). Therefore with
probability at least 7/9, both Rπj(x, r) = L(x) and πj never answers bad on any
of A’s queries. By Claims 9 and Claim 10, it must then hold that a = πj(Q) for
all query-answer pairs (Q, a) made by A, and so A(x) = L(x).

8 Strong Rerandomization from Strong Homomorphic
Evaluation

In this Section we prove Theorem 3. We begin by defining “t-symmetric func-
tions”. The proofs of the claims in this section can be found in the full version.

t-symmetric functions. Let G be a subgroup of the symmetric group Sk and
x ∈ {0, 1, �}k be a string containing exactly one �. Let t0(G, x) (resp., t1(G, x))
be the number of transpositions τ ∈ G that transpose a 0 and a � (resp., a 1
and a �) when acting on x. Observe that tb(G, σx) = tb(G, x) for every σ ∈ G.

Let x|�→0, x|�→1 be the string obtained when the � in x is replaced by a 0
and a 1 respectively. We will say a boolean function f : {0, 1}k → {0, 1} is t-
symmetric if there exist x and G with t0(G, x), t1(G, x) > t and f(σx|�→b) = b
for every σ ∈ G.
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For example, the majority function on 3 bits is 2-symmetric: Take G = S3

and let x = 01�. So is parity on 4 bits: Take G = S4 and x = 110�. The
DNF (x11 ∧ x12) ∨ (x21 ∧ x22) is also 2-symmetric. To see this take x to be the
string x11 = �, x12 = 1, x21 = 0, x22 = 1 and G to be the “wreath product”
S2 % S2, which acts on x by first permuting the inputs in each term of the DNF
independently, then permuting the terms.

Proof of Theorem 3 The theorem follows from the next two claims, proved below.

Claim 19. Let f : {0, 1}k → {0, 1}, k ≥ 2 be any boolean function that depends
on all its inputs and is not one of OR / AND. If (Gen,Enc,Dec) supports
efficient strong homomorphic evaluation of f with error ε, then (Gen,Enc,Dec)
supports efficient strong homomorphic evaluation of a 2-symmetric function with
error at most 12ε.

Claim 20. Let f : {0, 1}k → {0, 1} bea2-symmetric function. If (Gen,Enc,Dec)
is a public key encryption scheme that supports efficient strong homomorphic evalu-
ation of f with negligible error, then (Gen,Enc,Dec) has an efficient strong reran-
domization with negligible error.

8.1 Proof of Claim 19

Claim 21. Let f : {0, 1}k → {0, 1}, k ≥ 2 be a monotone function that depends
on all its inputs.

1. If f is not the AND function, then f has 0-sensitivity at least 2.
2. If f is not the OR function, then f has 1-sensitivity at least 2.

Let f : {0, 1}k → {0, 1} be a boolean function. We say f is an extension of g if

there exists a set S ∈ [k] and z ∈ {0, 1}S such that g is the restriction of f to S
using z, i.e. fS|z(x) = g(x) for every x ∈ {0, 1}S.

Claim 22. Let g be a function with b-sensitivity at least s and f be any extension
of g. Let (Gen,Enc,Dec) be a public key encryption scheme. If (Gen,Enc,Dec)
supports strong homomorphic evaluation of f with error ε, (Gen,Enc,Dec)
supports strong homomorphic evaluation of g with error ε.

Claim 23. Let g : {0, 1}k → {0, 1} be a boolean function. For every i ∈ [k], let
fi : {0, 1}ki → {0, 1} be a boolean function. Let (Gen,Enc,Dec) be a public key
encryption scheme. If (Gen,Enc,Dec) supports strong homomorphic evaluation
of g with error ε and each of the fi’s with error εi, then (Gen,Enc,Dec) sup-
ports strong homomorphic evaluation of g(f1, . . . , fk) with error ε+ε1+ · · ·+εk.

Proof (of Claim 19). First, we show that (Gen,Enc,Dec) supports homomor-
phic evaluation of f0 and f1 with error at most 4ε, where fb has b-sensitivity 2.
Consider the 2-symmetric function g : {0, 1}4 → {0, 1} defined by
g(x11, x12, x21, x22) = f0(f1(x11, x12), f1(x21, x22)). Since g is a composition of
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f0 and f1, by Claim 23 (Gen,Enc,Dec) has a strong homomorphic evaluation
of g with error at most 12ε.

Now we show that (Gen,Enc,Dec) supports homomorphic evaluation of f0
and f1. This follows from Claim 21 and 22 if f is monotone. If f is not monotone,
there is an x ∈ {0, 1}k and i ∈ [k] such that xi = 1, f(x) = 0 and f(x|i) = 1. Let
g be the restriction of f to the rest of the bits using xi. Note that g is the NOT
function and so by Claim 22 (Gen,Enc,Dec) supports homomorphic evaluation
of the NOT function with error ε. It is easy to see that one can obtain f0 and
f1 by composing g with a restriction of f . The rest follows by Claim 23. ��

8.2 Proof of Claim 20

We start with the following Corollary of Claim 4 for the special case when
G = XI .

Corollary 24. Let X1, . . . , Xn be i.i.d and I ∼ {1, . . . , n} a uniformly random
index and F be independent of I. Then (F,XI) and (F,X) are within statistical
distance

√
2H(F )/n, where X is i.d. with X1, . . . , Xn and independent of F .

The following lemma shows how to obtain strong rerandomization from any
t-symmetric function. The resulting rerandomization error is noticeable. It is
similar to Lemma 5 and the proof is given in the full version.

Lemma 25. Let f : {0, 1}k → {0, 1} be any t-symmetric function. If
(Gen,Enc,Dec) has a strong efficient homomorphic evaluator for f with er-
ror ε, then it has a strong efficient rerandomization Rer with error at most
ε+
√
2c/t (resp. decryption error ε and rerandomization error

√
2c/t), where c

is the length of ciphertexts.

We now show that for strong homomorphic evaluation, the error can be reduced
and prove Theorem 3.

For a boolean function f : {0, 1}k → {0, 1}, Let f (r) : {0, 1}kr → {0, 1} be
defined recursively by first applying f (r−1) on k independent tuples of kr−1

inputs and then applying f to these k values. For the base case we take f (1) = f .

Claim 26. If f is t-symmetric, then f (r) is tr-symmetric.

Proof (of Claim 20). Let Rer be the rerandomization of f from the proof of

Lemma 25. We define Rer(r) recursively by Rer(1) = Rer and

Rer
(r)
PK(E, (R1, . . . , Rr)) = RerPK(Rer

(r−1)
PK (E, (R1, . . . , Rr−1)), Rr).

where R1, . . . , Rr are independent random strings. We now argue that Rer(r)

has the desired properties.
Let Rer′(r) be the rerandomization obtained by applying the construction of

Lemma25to the functionf (r).Weclaimthat thedistributions (PK,E,Rer
(r)
PK(E))

and (PK,E,Rer
′(r)
PK(E)), whereE ∼ EncPK(b), are within statistical distance at
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most εkr−1. We show this by induction. The base case r = 1 is obvious (the statis-
tical distance is zero).

For the inductive step, we can describe Rer
(r)
PK(E) as follows: First, choose

X by applying a random permutation π to the indices of x ∈ {0, 1, �}. Then
Rer

(r)
PK(E) = HPK(e1, . . . , ek) where ei = EncPK(Xi) when Xi �= � and

ei = Rer
(r−1)
PK (E) when Xi = �. On the other hand Rer

′(r)
PK(E) can be de-

scribed as follows: First, choose X by applying a random permutation π to

the indices of x ∈ {0, 1, �}. Then Rer
′(r)
PK(E) = HPK(e′1, . . . , e

′
k) where e′i =

Rer
′(r−1)
PK (EncPK(Xi)) when Xi �= � and e′i = Rer

′(r−1)
PK (E) when Xi = �. By

inductive assumption, the statistical distance between (PK,Rer
(r−1)
PK (E)) and

(PK,Rer
′(r−1)
PK (E)) is at most εkr−2. Since HPK has error ε, the statistical

distance between (PK,EncPK(b)) and (PK,Rer
′(r−1)
PK (EncPK(b)) can also be

bounded by εkr−2 using an inductive argument. Applying a hybrid argument we
conclude that the distributions (PK, e1, . . . , ek) and (PK, e′1, . . . , e

′
k) are within

distance at most εkr−1 and therefore so are the distributions (PK,Rer
(r)
PK(E))

and (PK,Rer
′(r)
PK(E)).

By Claim 26, f (r) is tr symmetric. It follows from Claim 23 that the function

H
(r)
PK defined recursively by H

(1)
PK = HPK and H

(r)
PK = HPK(H

(r−1)
PK , . . . , H

(r−1)
PK )

is a homomorphic evaluation of f (r) with error at most εkr. By Lemma 25,
Rer′(r) has error krε +

√
2c/tr. Therefore Rer(r) has error at most ε(kr−1 +

kr) +
√
2c/tr. Let α = log t/ log k. By choosing r = 1/(2 + α) · log(2c/ε2)/ log k

we get that Rer(r) has error O(εα/(2+α)), which is negligible when ε is negligible.
��
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Abstract. We introduce counter-cryptanalysis as a new paradigm for
strengthening weak cryptographic primitives against cryptanalytic
attacks. Redesigning a weak primitive to more strongly resist cryptana-
lytic techniques will unavoidably break backwards compatibility.
Instead, counter-cryptanalysis exploits unavoidable anomalies introduced
by cryptanalytic attacks to detect and block cryptanalytic attacks while
maintaining full backwards compatibility. Counter-cryptanalysis in prin-
ciple enables the continued secure use of weak cryptographic primitives.

Furthermore, we present the first example of counter-cryptanalysis,
namely the efficient detection whether any given single message has
been constructed – together with an unknown sibling message – using a
cryptanalytic collision attack on MD5 or SHA-1.

An immediate application is in digital signature verification software
to ensure that an (older) MD5 or SHA-1 based digital signature is not
a forgery using a collision attack. This would certainly be desirable for
two reasons. Firstly, it might still be possible to generate malicious forg-
eries using collision attacks as too many parties still sign using MD5
(or SHA-1) based signature schemes. Secondly, any such forgeries are
currently accepted nearly everywhere due to the ubiquitous support of
MD5 and SHA-1 based signature schemes. Despite the academic push to
use more secure hash functions over the last decade, these two real-world
arguments (arguably) will remain valid for many more years.

Only due to counter-cryptanalysis were we able to discover that Flame,
a highly advanced malware for cyberwarfare uncovered in May 2012, em-
ployed an as of yet unknown variant of our chosen-prefix collision at-
tack on MD5 [SLdW07, SSA+09]. In this paper we disect the revealed
cryptanalytic details and work towards the reconstruction of the algo-
rithms underlying Flame’s new variant attack. Finally, we make a prelim-
inary comparision between Flame’s attack and our chosen-prefix collision
attack.

1 Introduction

1.1 Weak Cryptographic Primitives

Cryptographic primitives that are broken or weak due to the existence of crypt-
analytic attacks should be retired in favor of a more secure one. However, in
practice, widely used cryptographic primitives that are broken continue to be

R. Canetti and J.A. Garay (Eds.): CRYPTO 2013, Part I, LNCS 8042, pp. 129–146, 2013.
c© International Association for Cryptologic Research 2013
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used long after their expiration date. This phenomenom is caused by many rea-
sons among which are cost and/or risk considerations, unconvincing real-world
abuse scenarios and even laxness.

However, in the case of weak digital signature schemes there is also the issue
of supporting old signatures. It may well be impossible to replace all old weak
signatures with more secure ones, as signatures tend to proliferate beyond the
control of the original signer. It seems that therefore signature verifiers will
continue to accept weak – and possibly malicious – signatures for a long time
to come. Unfortunately, signature verifiers have no way of knowing whether
all signers have actually retired the weak scheme and whether an ’old’ weak
signature is really an old one or just forged to look like one.

This is exactly what we’re currently seeing for MD5-based signatures in prac-
tice. MD5 was first proven to be broken in 2004 by Wang et al.[WY05], however
the first truly convincing attack scenario using MD5 collisions was our construc-
tion of a rogue Certification Authority from 2008 using a more powerful attack
called the chosen-prefix collision attack [SSA+09]. MD5 has been explicitly disal-
lowed for digital signatures for Certification Authorities ever since, but it’s still
used by some and still supported nearly everywhere.

1.2 Flame

An example showing that the continued support for weak signature schemes
leaves one vulnerable is Flame [Cry12, Kas12]. Flame is a highly advanced mal-
ware for cyberwarfare discovered in May 2012, which spread itself locally by
impersonating as a properly, but illegitimately, signed Windows Update secu-
rity patch. Flame’s code-signing certificate was obtained by fooling Microsoft
into signing an colliding and innocuous-looking certificate using an MD5-based
signature algorithm. As the to-be-signed part of both certificates were carefully
crafted to result in the same MD5-hash using a chosen-prefix collision attack,
the MD5-based signature is valid for both certificates.

Even though Microsoft was fully aware of these severe weaknesses of MD5 and
spent great effort in migrating to more secure hash functions for new digital sig-
natures at least since 2008, their software continued to accept (old) MD5-based
digital signatures. Also, in their efforts they overlooked their use of MD5-based
signatures for licensing purposes in their Terminal Server Licensing Service up
to the discovery of Flame in 2012. This, together with other unforeseen cir-
cumstances, allowed the creation of Flame’s properly, but illegitimately, signed
security patch that was trusted by all versions of the Windows [MS12a].1

1.3 Counter-Cryptanalysis

We introduce counter-cryptanalysis as a new paradigm for strengthening weak
cryptographic primitives against cryptanalytic attacks by exploiting subtle, un-
avoidable anomalies introduced by the cryptanalytic attack. This might seem to

1 Any license certificate produced by the Terminal Server Licensing Service could
directly be used to attack Windows Vista and earlier versions, but not later versions.
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be impossible for, e.g., passive cryptanalytic attacks on public and/or private
key encryption schemes. But any active cryptanalytic attack that feeds care-
fully crafted inputs to the cryptographic primitive may thereby introduce subtle
unavoidable anomalies that can be exploited to detect such attacks. In effect,
counter-cryptanalysis protects against cryptanalytic attacks and thereby may
prevent significant leaks or damages.

Note that in contrast to a strengthened redesign of the cryptographic primi-
tive, applying counter-cryptanalysis does not alter the cryptographic primitive
intrinsically. Thus counter-cryptanalysis can be applied transparantly in the
cryptographic primitive, only altering its behaviour when a cryptanalytic at-
tack is detected. Thereby in principle enabling the continued secure use of a
weak primitive for full backwards compatibility.

1.4 Collision Attack Detection

We also introduce the first example of counter-cryptanalysis, namely the efficient
detection whether any given single message has been constructed using a crypt-
analytic collision attack on MD5 or SHA-1. In particular our novel techniques
solves the above verifiers problem as he can now assess whether a message hav-
ing a MD5-based or SHA-1-based signature is part of a forgery attack using a
cryptanalytic collision attack.

Although one way to use our novel technique is to obtain, together with the
MD5 or SHA-1 hash, an auxilary boolean output indicating whether a cryptan-
alytic attack has been detected. This auxilary boolean output can then be used
by the application to decide to invalidate the signature as well as informing the
user of a forged signature. Another possibility to effectively invalidate a forgery
(attempt) that does not require changes at the application level is to ensure that
the two colliding messages result in different outputs, e.g., by outputting the
truncated SHA-256 hash or outputting a random hash value instead.

1.5 Overview

The rest of this paper is split into two parts. In Sect. 2, we first introduce our
novel collision detection algorithm and apply it to both MD5 and SHA-1. Next
in Sect. 3, we discuss the discoveries made by analyzing Flame’s malicious cer-
tificate using our counter-cryptanalysis technique and our work towards the re-
construction of the underlying algorithms and our preliminary conclusions.

2 Detection of Cryptanalytic Collision Attacks

2.1 Brief Background on Collision Attacks

MD5 and SHA-1 are cryptographic hash functions that use the Merkle-Damg̊ard
construction in which the security of the hash function is reduced to that of a
compression function that takes as input an Intermediate Hash Value IHV and
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512-bit message block B. The compression starts with a working state WS0

initialized with IHV and goes through 64 (MD5) or 80 (SHA-1) steps t = 0, . . .
computing state WSt+1 from WSt. Finally it outputs the sum of IHV and the
last working state. A collision for a hash function is a pair of messages (M,M ′)
that have the same hash. For any named variable X related to M , we denote by
X ′ the same variable for M ′.

The first collision attack on MD5 is due to Wang et al.[WY05] and is con-
structed from two sequential near-collision attacks on the compression function.
Each near-collision attack starts with a given (IHV, IHV ′)-pair with a known
difference denoted by δIHV and uses specific message block differences denoted
by δB. It is based on a differential path that describes exactly how the input dif-
ferences δIHV and δB propagate through the compression function, for which
then a solution (B,B′) with B′ = B + δB is found. As Wang et al.’s attack
requires a zero δIHV before the two near-collision blocks, this type of collision
attack is called an identical-prefix collision attack.

The more powerful chosen-prefix collision attack [SLdW07] can start from
an arbitrary (IHV, IHV ′) pair. It first uses a birthday search to obtain a new
(IHVb, IHV ′

b ) pair whose difference δIHVb has a specific form. Then it employs a
series of near-collision attacks that iteratively reduces δIHVb to zero and thereby
results in a collision.

2.2 Exploiting Cryptanalytic Necessities

The main principle of our novel technique of detecting collision attacks is to
detect the last near-collision block of a collision attack and uses two key obser-
vations on the literature on MD5 and SHA-1 cryptanalysis:

– There are only a small number of possible message block differences that
may lead to feasible near-collision attacks;

– All published MD5 and SHA-1 collision attacks use differential paths that
at some step have no differences at all in the working state, or – in the case
of MD5 – the differences (231, 231, 231, 231) (see [dBB93]).2

Due to these observations it is possible to check for collision attacks given only
one message of a colliding pair of messages. First we present our basic algorithm
and then prove its correctness if the message was actually constructed using a col-
lision attack. Then we argue that the probability of a false positive is practically
negligible. Lastly, we apply our algorithm to MD5 and SHA-1 specifically.

Algorithm. We present our collision detection algorithm in Alg. 2-1 that should
work for any Merkle-Damg̊ard hash function with a MD4-style compression func-
tion and in particular for MD5 and SHA-1. Our algorithm depends on a list of
triples (δB, i, δWSi) for which there may exist a feasible collision attack that uses

2 The reason for this is simple: these working state differences can be maintained at
every step of the 64 steps of MD5Compress with probability at least 1/2 if not 1.
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Algorithm 2-1. Last near-collision block detection

This algorithm returns True if a near-collision attack is detected and False otherwise.
For a given message M , let M0, . . . ,MN−1 be the N message blocks that result from
the padding and the splitting of M by the hash function. For k ∈ {0, . . . , N − 1} do
the following:

1. Let IHVk be the intermediate hash value before the message block Mk is processed.
2. Initialize the working state WS0 with IHVk, compute steps 0, . . . , S − 1 resulting

in working states WS1, . . . ,WSS and determine IHVk+1 using IHVk and WSS.
3. For each possible combination of values for message block differences δB, step i

and working state differences δWSi belonging to a feasible near-collision attack do
the following:
(a) Apply the message block differences δB to Mk to obtain M ′

k.
(b) Apply the working state differences δWSi to WSi to obtain WS′

i.
(c) Compute steps i − 1, . . . , 0 backwards to obtain the working states

WS′
i−1, . . . ,WS′

0.
(d) Compute steps i, . . . , S − 1 to obtain the working states WS′

i+1, . . . ,WS′
S.

(e) Determine IHV ′
k from WS′

0 and IHV ′
k+1 from IHV ′

k and WS′
S.

(f) If IHV ′
k+1 = IHVk+1 then (Mk,M

′
k) is a near-collision block pair: return True

4. Return False

message block differences δB and always uses working state differences δWSi at
step i. For a total of C triples, the runtime-complexity of Alg. 2-1 for a message
M is approximately C + 1 times the runtime-complexity of computing the hash
value of M .

Correctness. First we assume that our list of triples (δB, i, δWSi) is exhaustive
for all possible feasible collision attack. For two colliding messages M and M ′

constructed with a feasible collision attack, let (Mk,M
′
k) be the last near-collision

block pair of a collision attack. Let IHVk+1 and IHV ′
k+1 be the intermediate hash

values just after applying the compression function to Mk and M ′
k in the hash

value computation of M and M ′, respectively. Evidently, it follows that

IHVk+1 = IHV ′
k+1,

however as only the message M is given, the values of M ′, M ′
k and IHV ′

k+1 are
not directly known. Since M and M ′ were constructed with a feasible collision
attack, there exists a triple (δB, i, δWSi) in our list such that δB = δMk and
this last near-collision attack uses working state differences δWSi at step i. As
illustrated in Fig. 1, step 3 of Alg. 2-1 computes IHVk+1 and IHV ′

k+1 and tests
for the telltale condition IHVk+1 = IHV ′

k+1 in the following manner.
The hash value computation of M gives us values for the input IHVk, output

IHVk+1 and intermediate state WSi (the working state before step i) of the
compression function applied to IHVk andMk. Since we know the message block
differences and the working state differences by assumption, we can determine
the message block M ′

k and the working state WS′
i associated with the message
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If the message (upper half) was constructed using a collision attack and we correctly
guess both the working state differences at a certain step and the used message block
differences, then we obtain values of the internal computation of its sibling message
(lower half). These are sufficient to reconstruct the entire compression function compu-
tation for this sibling block and verify whether there is a collision: IHV ′

k+1 = IHVk+1.

Fig. 1. Detection of near-collisions

M ′ that collides with M . Computing steps i+ 1, . . . , S (where S = 64 for MD5
and S = 80 for SHA-1) of the compression function using M ′

k and WS′
i, we

obtain working states WS′
i+1, . . . ,WS

′
S . As the step functions of MD5 and SHA-

1 are reversible we can also compute working states WS′
i−1, . . . ,WS

′
0. The value

of IHV ′
k can be derived from WS′

0 and the value of IHV ′
k+1 can be computed

from IHV ′
k and WS′

S .
It is clear that Alg. 2-1 on input M for the value k in step 3 for the triple

(δBi, i, δWSi) will determine the correct value IHV ′
k+1, verify that indeed

IHV ′
k+1 = IHVk+1 and therefore return True. What remains is to argue that

the probability of a false positive, i.e., it returns True for a given message M
which was not constructed using a cryptanalytic collision attack, is negligible.

False Positives. If the given message block is not part of a near-collision block
pair then the guessedWS′

i is passed through all 64 or 80 steps of the compression
function to determine IHV ′

k+1. Therefore, we argue that if there was no crypt-
analytic attack then the distribution of the resulting value IHV ′

k+1 is close to
the uniform distribution. Hence, the probability of a false positive, namely that
IHV ′

k+1 = IHVk+1, is thereby approximately C · 2−L where L is the bit length
of the hash value and C is the number of triples attempted in step 3 of Alg. 2-1
as before.
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Interestingly, the false positive probability may be prove to be higher when
there exists a differential path compatible with one of the combinations of δB,
i and δWSi that holds with probability higher than 2−L. So far only one non-
zero differential path is known with probability higher than 2−128 for MD5 (and
none for SHA-1), namely the differential path consisting of differences in the
most significant bit [dBB93], and this differential path is treated as a special
case below and also checks for the necessary second-last near-collision block.
So if nevertheless the false positive probability proves to be higher than we
conjecture then this may well point towards interesting unknown cryptanalytic
weaknesses.

2.3 Application to MD5

Alg. 2-1 can be directly applied to MD5. What remains is to determine possi-
ble combinations of values for message block differences δB, step i and working
state differences δWSi that belong to a feasible near-collision attack. The mes-
sage block differences are additive in Z/232Z and for each message block Mk

the message block M ′
k can be either Mk + δB or Mk − δB. There are two triv-

ial different working state differences δWSi that can be used for MD5, namely
(0, 0, 0, 0) and (231, 231, 231, 231), written more compactly as 0 and 231.

We refer to Sect. A for a list of 222 triples (δB, i, δWSi) derived from the
literature. We do not guarantee that this list forms the exhaustive list of all
combinations that lead to feasible near-collision attacks. However, it should be
noted that interesting message block differences have been studied extensively
for nearly a decade, which has resulted in the above mentioned list. Nevertheless,
other combinations from future collision attacks can easily be added to this list.

All published near-collision attacks require complex differential steps in the
first round, thereby requiring a high number of bitconditions, say at least 200.
E.g., the differential paths by Wang et al. require roughly 300 bitconditions
[WY05]. This implies that the probability of a false positive is dominated by the
general C · 2−L term explained earlier. Hence, the probability of a false positive
is estimated as 222 · 2−128 and thus negligible.

However, there is a special case. Due to the pseudo-collision attack against
MD5’s compression function by den Boer and Bosselaers [dBB93], there is also
a special near-collision attack not yet included in the above list. It uses zero
message block differences and δWSi = 231 for all i ∈ {0, . . . , 64}. One can test
for this pseudo-collision attack using δB = 0, i = 32 and δWS32 = 231. The
probability of a false positive is 2−48 which is not negligible. However, since it
requires δWS0 = 231 and thus IHVin = 231, this pseudo-collision attack requires
at least one preceding near-collision block to form a collision attack against MD5.

This observation calls for the following modification of Alg. 2-1 for MD5 to
reduce the chance of a false positive to 222 · 2−128 · 2−48 for the case δB = 0.
Whenever a near-collision block is detected in step 3.(f) for the combination
δB = 0, i = 32 and δWS32 = 231 and before returning True, perform steps
1–4 of Alg. 2-1 on the previous message block Mk−1 using all combinations
that have δB �= 0 and using the condition IHV ′

k = IHVk + 231 instead of
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the condition IHV ′
k = IHVk. If this sub-instance returns False then the main

instance continues with the next combination of δB, i and δWSi. Otherwise, the
main instance returns True.

Given a message M , the average complexity to detect whether M is con-
structed by a collision attack against MD5 using one of the given message dif-
ferences is about 222+ 1+1 = 224 times the complexity of computing the MD5
hash of M . It has a conjectured false positive probability of about 222 · 2−128.

2.4 Application to SHA-1

Alg. 2-1 can be directly applied to SHA-1. Note that this is possible even though
no actual colliding messages for SHA-1 are known yet. What remains is to deter-
mine possible combinations of values for message block differences δB, step i and
working state differences δWSi that belong to a feasible near-collision attack.

All known attempts at a SHA-1 collision attack are based on combining lo-
cal collisions according to a disturbance vector (DVi)

79
i=0 ∈ (Z/232Z)80. Fur-

thermore, Manuel [Man11] has found that all proposed disturbance vectors can
be categorized into two classes. A disturbance vector from the first class de-
noted by I(j, b) is defined by DVj = . . . = DVj+14 = 0 and DVj+15 = 2b.
Similarly, a disturbance vector from the second class denoted by II(j, b) is de-
fined by DVj+1 = DVj+3 = RL(231, b) and DVj+15 = 2b and DVj+i = 0
for i ∈ {0, 2, 4, 5, . . . , 14}. For both classes, the remaining DV0, . . . , DVj−1 and
DVj+16, . . . , DV79 are determined through the message expansion relation.

For a given disturbance vector (DVi)
79
i=0, the necessary message block differ-

ences are the XOR differences (DWi)
15
i=0 =Mk ⊕M ′

k determined as:

DWi :=
⊕

(j,r)∈R
RL(DVi−j , r), R = {(0, 0), (1, 5), (2, 0), (3, 30), (4, 30), (5, 30)},

where DV−1, . . . , DV−5 are given by the reversed message expansion relation:

DVi = RR(DVi+16, 1)⊕DVi+2 ⊕DVi+8 ⊕DVi+13, i = −1, . . . ,−5.

For both disturbance vector I(j, b) and II(j, b) there are no differences at step
j+8, hence to test for near-collision block pair using either disturbance vector we
use Alg. 2-1 with the combination (DWt)

15
t=0, i = j+8 and δWSi = (0, 0, 0, 0, 0).

Given the fact that no actual collisions are known yet, it is somewhat diffi-
cult to decide which triples to include. For this we refer to our recent analysis
[Ste13] that seems to use the most appropriate cost function, namely one that is
exact, exhaustive and takes the dependence of local collisions fully into account.
However, due to the complex nature of constructing a collision attack, this cost
function is not perfect as it does not accurately predict the final attack complex-
ity. Nevertheless, we propose (a bit arbitrarily) to limit ourselves to the following
14 best disturbance vectors:

I(46,0), I(48,0), I(49,0), I(50,0), I(51,0), I(48,2), I(49,2),
II(46,0), II(50,0), II(51,0), II(52,0), II(53,0), II(54,0), II(56,0).
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Similar to the case of MD5, it is always possible to add extra disturbance vectors
to the above list in the future whenever it is believed it can lead to a feasible
collision attack. Ignoring the first round, each disturbance vector has a proba-
bility in the order of 2−70 that a false positive occurs. Taking into account the
complex differential steps necessary in the first round, we can safely assume that
the probability of a false positive is negligible.

Given a message M , the average complexity to detect whether M is con-
structed by one of the above possibly feasible collision attacks against SHA-1 is
about 14 + 1 = 15 times the complexity of computing the SHA-1 hash of M . It
has a conjectured false positive probability of about 14 · 2−160.

3 Analyzing Flame’s Chosen-Prefix Collision Attack

3.1 Background on Flame

Flame is a highly advanced malware for cyberwarfare and was discovered in
May 2012 by the Iranian CERT, Kaspersky Lab and CrySyS Lab. It seemed
to have targeted the Middle-East, with the most infections in Iran. We refer to
the analysis of Kaspersky Lab and CrySyS Lab for more details on the func-
tionality, purpose and origin of Flame. Here, we will focus on Flame’s advanced
propagation.

For a malware, it has a number of quite uncharacteristic features [Kas12,
Cry12]. It has a modular design with up to 20 different plugins with different spe-
cific roles, each of which can be carefully selected prior infection. Flame is about
20MB in size as it also includes many different libraries such as for compression
(zlib, bz2, ppmd), database (sqlite) and even a Lua virtual machine. Infections
seem to occur with surgical precision with each target carefully selected instead
of wildly spreading, which may be one of the reasons it has evaded discovery
since about 2007 when Flame’s main file was first seen. It spread itself locally
as a valid, but illegitimate, Microsoft Windows security patch by impersonating
Windows Update. Flame seems to be the first to use a chosen-prefix collision
attack maliciously in the wild. Lastly, as we’ve discovered, it employed a yet
unknown variant chosen-prefix collision attack.

3.2 Applying Counter-Cryptanalysis

On the 3rd of June 2012, Microsoft blogged that in their initial analysis of Flame
they “identified that an older cryptography algorithm could be exploited and then
be used to sign code as if it originated from Microsoft” [MS12b]. An immediate
guess for this cryptically worded attack was a chosen-prefix collision attack on
MD5 due to our construction of a rogue Certification Authority [SSA+09]. How-
ever, only the certificates in the chain leading to the forged signature on Flame’s
executable were circulating on the Internet. In particular the sibling innocuous-
looking certificate actually used to obtain the forged signature on the malicious
certificate was not available to directly verify a collision attack.
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We were asked by enthousiasts if we could indeed verify whether the malicious
certificate named ‘MS’ was constructed using a collision attack. We ran a proof-
of-concept implementation of our technique from Sect. 2 dating from 2008 on
a privately-obtained copy of the ‘MS’ certificate. In 0.03 seconds, it detected
4 sequential near-collision blocks and reconstructed the underlying differential
paths that are given in the full version of this paper (the first differential path
is also given in Sect. B). These differential paths indeed indicate a chosen-prefix
collision attack that starts with a δIHV containing many bit differences that
is gradually reduced to zero by the four near-collision blocks. However, very
surprisingly, we discovered that these differential paths are not of the same family
we used and also show characteristics that do not match those from known
differential path construction methods for MD5. In the following sections we
first describe the observed characteristics and then analyze and compare them.

On a historic note, the validity period of the ‘MS’ certificate started February
19 of 2010. Although the date can be faked, it can be argued that it does not make
sense to craft this special code-signing certificate that only becomes valid in the
(far) future. This puts Flame’s attack years after the first identical-prefix and
chosen-prefix collision attack. Also, Project HashClash [HC] released a chosen-
prefix collision toolkit in 2009, which was generally expected to have been used
before our discovery. Hence, it is our guess that the development of Flame’s
attack started before this release, but after the publication of the first chosen-
prefix collision attack.

3.3 Observed Characteristics of Flame’s Differential Paths

1. Wang et al.‘s message block differences. All four differential paths are
based on the same message block differences that were used by Wang et
al. for the first MD5 collision [WY05]: δm4 = δm14 = 231 and δm11 = ±215.
The first and third path use δm11 = +215 and the second and third path
use the negated form δm11 = −215.

2. δIHV corrections. The four differential paths are used in a step-wise man-
ner to eliminate the differences in δIHV = (δa, δb, δc, δd) resulting from the
birthday search in their chosen-prefix collision. The corrections each path
made are:

Block δa = δQ61 δb = δQ64 δc = δQ63 δd = δQ62

1 [31] [31,25,-18,-15,-12,9,1] [31,25,-14,-12,9] [31,25]
2 [31,5] [-26,24,21,-14,-9,5,0] [31,26,24,20,-9,5] [31,-25,-9,5]
3 [31] [30,26,-24,20,-17,15,9,-3] [31,26,-24,-14,9] [31,25,9]
4 [31] [-25,14,-9,-5,3,0] [31,-25,14,-9] [31,-25,-9]

1+2 [5] [31,-24,21,-18,-16,14,-12,5,2,-0] [27,-24,20,-14,-12,5] [-9,5]
3+4 [] [30,24,20,-16,-14,-5,0] [24] []

1+4 [] [31,-18,-14,-12,-4,-2,-0] [-12] [-9]
2+3 [5] [30,22,-20,-17,14,5,-3,0] [27,20,-14,5] [5]

all [5] [-30,21,19,17,-12,2] [27,20,-14,-12,5] [-9,5]

Note: we use the compact notation [b1, . . . , bn] for
∑n

i=0 2
|bi|sign(bi).
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In comparison, the first collision attack by Wang et al. was based upon the
δIHV ‘correction’ ([31],[31,25],[31,25],[31,25]) used in two sequential near-
collision attacks, where the second uses the negated ‘correction’ such that
the two ‘corrections’ cancel out.

3. bit differences in all bits of ΔQ6, identical for blocks 1&3 and 2&4

Block q6[31] . . . q6[0]
1 ++----+- ---+---- -----+++ ++++++++

2 +-++++++ ++++---- ------+- --+-----

3 ++----+- ---+---- -----+++ ++++++++

4 +-++++++ ++++---- ------+- --+-----

4. highest density of bitconditions found on Q4, . . . , Q8. The four differ-
ential paths have, respectively, only 8, 4, 6 and 5 bits of freedom left out
of those 160 bits of Q4, . . . , Q8.

5. fixed differences δQ6, . . . , Q60. The differential paths from the first and
third block (that use the same message block differences) use the same dif-
ferences δQ6, . . . , δQ60. Similarly, the differential paths from the second and
fourth block (that also use the same message block differences) use the same
differences δQ6, . . . , δQ60.

6. advanced message modification not maximized. One of the key mes-
sage modifications to speed up to collision search are tunnels [Kli06]. The
best and most important tunnel allows a simple message modification that
does not affect all bitconditions on Q1, . . . , Q24. For Flame’s differential
paths, this tunnel can maxime the time spent on steps 24 and onwards. This
tunnel is based on flipping a bit Q9[b] with no bit condition and requires that
Q10[b] = Q′

10[b] = 0 and Q11[b] = Q′
11[b] = 1. As shown in the table below,

the near-collision blocks show a significantly lower tunnel strength than the
maximal strength possible based on just the differential paths.3

Block strength max. strength avg. strength
1 7 17 4.25
2 13 18 4.5
3 10 17 4.25
4 9 18 4.5

3.4 Differential Path Construction Analysis

So far there are two known methods for constructing a differential path for MD5.
One is the our method [SLdW07] that uses a meet-in-the-middle approach. The
second one is due to Mendel et al. [MRS09] that works similar to a probabilistic
algorithm from coding-theory that searches for low weight code words.

The fact that all bit positions of ΔQ6 have non-zero differences for all dif-
ferential paths and that this does not help the collision search itself, indicates

3 The ‘avg. strength’ is the average strength that would be observed if the extra
conditions on Q10 and Q11 are each fulfilled randomly and the tunnel is not used.
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that this choice was made with a specific purpose for the differential path con-
struction. This choice seems to be a very bad one in combination with a method
similar to Mendel et al.‘s, as it is unnecessary and leads to significant increases
in computational cost and number of differential path conditions. Hence, also
given the uncharacteristicly high amount of differences and conditions in the
first few steps, we argue that a meet-in-the-middle approach was used with a
random starting path and a fixed ending path. However, from Observation 3
it is also clear that it does not use our method to construct a full differential
path from the starting and ending paths: none of our differential paths have this
characteristic. Evidently, it uses a yet unknown meet-in-the-middle method to
construct full differential paths.

However, using the four differential paths, we can make an educated guess
on how their method works. In any meet-in-the-middle approach, the lower and
upper partial differential paths can be constructed independently except for four
differential steps. It appears that Flame’s uses a fixed differential path over steps
9, . . . , 59, then the meet-in-the-middle steps are 5, 6, 7, 8. Our educated guess is
that they first completed step 5 and then used an exhaustive search over steps 6, 7
and 8. With step 5 completed, the boolean function outcome modular differences
δFt for steps 6, 7 and 8 are completely determined. To complete steps 6, 7 and 8,
such an exhaustive search only needs to find bit conditions that achieves these
three modular differences simultaneously. The choice for non-zero differences in
ΔQ6 makes a lot of sense in this scenario, as it almost maximizes the number
of choices for each ΔFt[b] (t = 6, 7, 8, b = 0, . . . , 31) and thus results in a higher
success probability. Completing step 5 and the exhaustive search can either be
done efficiently in a bit-wise approach, e.g., an adaptation of our method, or
simply with a brute-force search. So far we were not able to distinguish between
these two very different approaches from these differential paths.

Unfortunately, the choice to use non-zero differences in all bit positions of
ΔQ6 strictly reduces the solution space over steps 5, 6, 7, 8 in comparison to our
method and thus requires more lower/upper differential path pairs to succeed.
Moreover, the choice to use a fixed upper differential path over steps 9, . . . , 59
implies that Flame’s method requires many more lower differential paths to
obtain the required amount of lower/upper path pairs. Overall, this would imply
that Flame’s method has higher complexity and results in differential paths with
fewer degrees of freedom.

We were able to perform a somewhat simple quantitive comparison of Flame’s
differential paths with differential paths constructed using our publicly available
HashClash toolkit [HC]. In an experiment we tried to find a replacement path
for Flame’s first differential path with as few bitconditions as possible. The
resulting differential path is given in Tbl. C-1 and has only 266 bit conditions
over Q1, . . . , Q24 which are 62 fewer than the 328 bit conditions of Tbl. B-1. In
another experiment we tried to construct a differential path with the HashClash
toolkit in a very short amount of time, the result was an average runtime of
only 15 seconds on an Intel i7-2600 CPU leading to differential paths with about
276 bit conditions, which is still 52 bit conditions fewer than Flame’s path. This
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experiment used only 20,000 lower and 20,000 upper partial paths leading to a
total of 400,000,000 pairs. Future researchmight provide insights in the minimum
complexity of constructing differential paths with the same characteristics of
Sect. 3.3, however we have no results in this direction at this point of time.

3.5 Near-Collision Block Search

Though Observation 6 indicates the best tunnel strength is not maximized, it is
also clear that this tunnel (or a slightly weaker version) is actually used as the
observed tunnel strength is significantly higher than what would be observed if
this tunnel was not used (cf. ‘avg. strength’ at Obs. 6). A reasonable guess is
that they used tunnels in a dynamic manner depending on whether the necessary
conditions on Q10 and Q11 were fulfilled.

Given the low number of bitconditions on Q18, . . . , Q24 and sufficiently high
tunnel strengths, we can reasonably say that the near-collision block search
complexity is dominated by the cost of steps 24 up to 63. We have experimentally
determined the success probability over steps 24 up to 63 for each of the near-
collision blocks and these are given in Tbl. 3-1 together with lower-bounds for
the average complexity in MD5 compression function calls. Note that because
the inner-most loop computes at least 9 steps of the compression function, this
search is well suited for massively parallel architectures in contrast to our chosen-
prefix collision attack.

Table 3-1. Near-collision blocks: complexity lower-bounds

Block estimated probability of steps 24-63 average complexity lower-bound

1 2−38.8 236.0

2 2−46.8 244.0

3 2−33.6 230.8

4 2−33.3 230.5

[WY05] 2−20.5 217.7

3.6 Birthday and Reduction Procedures

The δIHV resulting from the birthday procedure can be observed as the differ-
ences for t = −3,−2,−1, 0 of the first differential path Tbl. B-1:

δIHV =(−25, −22+212−217−219−221+230, −25+212+214−220−227, −25+29).

Based on the available space in the certificate, our initial guess is that Flame uses
64 birthday bits over the first and last word of the IHV (matching t = −3 and
t = −2 of the first path). However, this does not immediately imply that Flame’s
birtday search has complexity

√
π ·232 MD5 compressions, as not every birthday

collision is usable. In fact, the two random-looking differences have very low
weights of 6 and 5 bit differences, where an uniform distribution that might be
expected from an arbitrary birthday collision would actually lead to an average
of about 11 bit differences each. Just aiming at such a low weight distribution
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would result in a birthday complexity of about 242 MD5 compressions. However,
lacking a systematic family of differential path like that of [SSA+09], it is almost
certain that the positions of the bit differences are also important, which further
increases the birthday complexity.

Further research may provide more insights in which δIHV corrections are pos-
sible within the observed near-collision block complexities and the effect thereof
on the birthday search and its complexity.

3.7 Preliminary Conclusions

Firstly, Flame’s method to construct differential paths seems to be sub-optimal
compared to those obtained with our public HashClash toolkit [HC].

Secondly, so far we have been able to provide a weak lower-bound for the
birthday search and good lower-bounds for the near-collision block search com-
plexities. These lower-bounds together indicate that Flame’s new variant chosen-
prefix collision attack likely costs more than 244.3 MD5 compressions. How much
more remains an open question as the birthday search complexity is inaccurate
and it does not yet include the cost of the differential path construction. Also
note that we have only one instance of a chosen-prefix collision from Flame’s
new variant attack, making it uncertain how close the observed near-collision
block search complexities are to what can be expected on average with Flame’s
attack.

In comparison, the average complexity of our 2009 chosen-prefix collision at-
tack for four near-collision blocks appears to be dominated by the birthday
search complexity of 244.55 MD5 compression function calls (cf. [SSA+09, Table
2] using r = 4 and w = 5). Comparing the weak lower-bound with this cost, the
theoretical complexity of Flame’s attack is not significantly lower than that of
our attack. Nevertheless, Flame’s attack might be more cost effective due to the
suitabilitiy of the collision search for massively parallel architectures.

4 Conclusion

We have introduced counter-cryptanalysis as a new paradigm for strengthening
weak cryptographic primitives. Also, we have presented the first example thereof,
namely the efficient detection whether a given message was constructed using a
cryptanalytic collision attack on MD5 and/or SHA-1. A reference implementa-
tion will be made available on project HashClash [HC].

Using our novel technique, we have analyzed Flame’s malicious certificate and
exposed its chosen-prefix collision attack. Our proof-of-concept collision detec-
tion implementation also reconstructed the four underlying differential paths.
These differential paths reveal that Flame used a yet unknown variant chosen-
prefix collision attack on MD5. We have analyzed these differential paths, work-
ing towards a reconstruction of the underlying algorithm, and found a prelim-
inary weak lower-bound of 244.3 MD5 compressions for Flame’s new variant
chosen-prefix collision attack.
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A List of Possible Feasible MD5 Near-Collision Attacks

Used non-zero message block differences in published near-collision attacks are:

– δB = ±(δm11 = 215, δm4 = δm14 = 231) [WY05]: i = 44, δWS44 ∈ {0, 231};
– δB = ±(δm2 = 28, δm11 = 215, δm4 = δm14 = 231) [SSA+09]: i = 44,
δWS44 ∈ {0, 231};

– δB = ±(δm11 = 2b) for b ∈ {0, . . . , 30} [SLdW07]: i = 44, δWS44 ∈ {0, 231};
– δB = (δm11 = 231) [SLdW07]: i = 44, δWS44 ∈ {0, 231};
– δB = ±(δm5 = 210, δm10 = 231) [XF10]: i = 44, δWS44 ∈ {0, 231};
– δB = (δm8 = 231) [XLF08]: i = 44, δWS44 ∈ {0, 231};
– δB = ±(δm6 = 28, δm9 = δm15 = 231) [XFL08]: i = 37, δWS37 ∈ {0, 231};
– δB = ±(δm9 = 227, δm2 = δm12 = 231) [VJBT08]: i = 37, δWS37 ∈ {0, 231}.

Other non-zero message block differences taken from [XF09] and [XLF08] are:

– δB = ±(δm4 = 220, δm7 = δm13 = 231): i = 44, δWS44 ∈ {0, 231};
– δB = ±(δm2 = 28): i = 37, δWS37 ∈ {0, 231};
– δB = ±(δm5 = 210, δm11 = 221): i = 44, δWS44 ∈ {0, 231};
– δB = ±(δm5 = 210, δm11 = 231): i = 44, δWS44 ∈ {0, 231};
– δB = (δm5 = 231, δm8 = 231): i = 44, δWS44 ∈ {0, 231};
– δB = ±(δm2 = 28, δm14 = 231): i = 37, δWS37 ∈ {0, 231};
– δB = (δm4 = 231): i = 44, δWS44 ∈ {0, 231};
– δB = (δm5 = 231): i = 44, δWS44 ∈ {0, 231};
– δB = (δm14 = 231): i = 44, δWS44 ∈ {0, 231};
– δB = ±(δm4 = 225): i = 44, δWS44 ∈ {0, 231};
– δB = ±(δm5 = 210): i = 44, δWS44 ∈ {0, 231};
– δB = ±(δm8 = 225): i = 44, δWS44 ∈ {0, 231};
– δB = ±(δm11 = 221): i = 44, δWS44 ∈ {0, 231};
– δB = ±(δm14 = 216): i = 44, δWS44 ∈ {0, 231};
– δB = ±(δm4 = 220): i = 44, δWS44 ∈ {0, 231};
– δB = ±(δm6 = 28): i = 50, δWS50 ∈ {0, 231};
– δB = ±(δm9 = 227): i = 50, δWS50 ∈ {0, 231};
– δB = ±(δm5 = 210, δm9 = 227): i = 37, δWS37 ∈ {0, 231};
– δB = (δm5 = 231, δm11 = 231): i = 44, δWS44 ∈ {0, 231};
– δB = ±(δm8 = 231, δm11 = 221): i = 44, δWS44 ∈ {0, 231};
– δB = ±(δm8 = 225, δm13 = 231): i = 44, δWS44 ∈ {0, 231}.
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B Flame’s Differential Paths

Table B-1. Differential path of near-collision block 1

t Bitconditions: qt[31] . . . qt[0]

-3 ........ ........ ........ ..-.....

-2 00...... .1.1.01. ...1..+. ..-.10..

-1 110-+..1 .1.-.00. .+.+.... ..-110..

0 +-100..0 .-0+^++1 .0.+0.11 .110-+..

1 0+-++..- .-0++-+0 011-0..1 110+++..

2 +0-0-.00 .-++00+- 0-1-+.1+ 1+-0++^.

3 +010-000 .-+++0+1 +--.+^1+ -+-+++-.

4 -00-10+. .11-+-0+ +++11--0 -101-+0.

5 0-+-++-^ ^0110+1- -110+0-0 -0001+1^

6 ++----+- ---+---- -----+++ ++++++++

7 111.-111 1101011. 110-1001 +0100.00

8 00+0.111 10111101 -1101100 .1110011

9 ..0.1... .....-.. 0.10+... 0-....0.

10 ..0^...1 ^....0.. 0^0-1... .1....+.

11 ..0-...1 +....-.. .+-01... .0..^.1.

12 .1-1..^+ 1....+.. .0+0.... ....+.1.

13 .0+1..-+ 1....0.. 100....1 ....0...

14 .-+...1. .....1.. 1.+....1 ....1...

15 .0+...10 ........ -.0....- ....-...

16 .1+..... .0...... ..^..... ........

17 ..1..... .1....0. ^......^ ....^...

18 ..0..... .+....1. ........ ........

19 ........ ......-. ........ ........

20 0....... .^...... ........ ........

21 0....... ......^. ........ ........

22 -....... ........ ........ ........

23 ........ ........ ........ ........

24 ^....... ........ ........ ........

25–32 ........ ........ ........ ........

33 0....... ........ ........ ........

34 1....... ........ ........ ........

35–59 X....... ........ ........ ........

60 X.11110. ........ ........ ........

61 X.11000. ........ .001.00. ........

62 X.+----. ........ ...0.... ........

63 X.?0??+. ........ .--+.+-. ........

64 X......+ ++++++.. -..-.+-. .....+-.

δm4 = δm14 = 231, δm11 = 215
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C Replacement Differential Path 1

Table C-1. Replacement differential path for near-collision block 1

t Bitconditions: qt[31] . . . qt[0]

-3 ........ ........ ........ ..-.....

-2 00...... .1.1.01. ...1..+. ..-.10..

-1 110-+..1 .1.-.00. .+.+.... ..-110..

0 +-100..0 .-0+^++1 .0.+0011 .110-+..

1 1+00-..- .-.+.++. .1.-11.. .0+10-..

2 1--.-..1 ...-.+0. ...1--.^ .-0-1-..

3 .10.0.11 .1.+1+10 1.1+101+ .+0-+.^.

4 .00^+^0. 0..+00+1 1^0+-000 0-1.-1+^

5 ^++++-+^ 0.^+--0+ ----1.+1 10-01.1+

6 -001+1-+ +.+.0-++ +1-++.0- ++0.0.+0

7 100--001 +.001+0. -1+11.01 010...11

8 1.+00.10 -.0..010 -.0+-..0 1-....1.

9 ..0-0... 0....1.. ..11-... .0....1.

10 ..-1...1 +....-.. 0..+.... .1....+.

11 ..++..00 +....-.. ...00... ......1.

12 ..+1..1+ .....+.. ..01.... ......1.

13 ..-1..-+ 0....1.. 1.1....1 ....1...

14 ..-...1. .....1.. 1.+....1 ....1...

15 ..+...10 ........ -.1....- ....-...

16 ..+..... .0...... ..1..... ........

17 ..1..... .1....0. ^......^ ....^...

18 ..0..... .+....1. ........ ........

19 ........ ......-. ........ ........

20 0....... .^...... ........ ........

21 0....... ......^. ........ ........

22 -....... ........ ........ ........

23 ........ ........ ........ ........

24 ^....... ........ ........ ........

δm4 = δm14 = 231, δm11 = −215
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Abstract. We examine the widespread SimonsVoss digital locking sys-
tem 3060 G2 that relies on an undisclosed, proprietary protocol to mu-
tually authenticate transponders and locks. For assessing the security
of the system, several tasks have to be performed: By decapsulating
the used microcontrollers with acid and circumventing their read-out
protection with UV-C light, the complete program code and data con-
tained in door lock and transponder are extracted. As a second major
step, the multi-pass challenge-response protocol and corresponding cryp-
tographic primitives are recovered via low-level reverse-engineering. The
primitives turn out to be based on DES in combination with a proprietary
construction.

Our analysis pinpoints various security vulnerabilities that enable
practical key-recovery attacks. We present two different approaches for
unauthorizedly gaining access to installations. Firstly, an attacker having
physical access to a door lock can extract a master key, allowing to mimic
transponders, in altogether 30 minutes. A second, purely logical attack
exploits an implementation flaw in the protocol and works solely via the
wireless interface. As the only prerequisite, a valid ID of a transponder
needs to be known (or guessed). After executing a few (partial) protocol
runs in the vicinity of a door lock, and some seconds of computation, an
adversary obtains all of the transponder’s access rights.

Keywords: Access control, electronic lock, reverse-engineering, real-
world attack, hardware attack, cryptanalysis, wireless door openers.

1 Introduction

Despite the fact that nowadays strong and well-analyzed cryptographic primi-
tives are available for a large variety of applications, very weak cryptographic
algorithms are still widely deployed in real products all over the world. Examples
include algorithms like KeeLoq or the Crypto1 cipher used in the Mifare Classic
cards. It is very surprising how big a gap between cryptographic theory on the
one hand and cryptographic protocols in real products on the other hand exists
and how real-life products have their security mainly based on obscurity and not
on cryptographically sound protocols and primitives.
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In this paper, we add one more interesting example to the list of widely
deployed ciphers that have severe design flaws. Our hope is that the presented
findings contribute to the science of building more secure wireless systems.

1.1 (Digital) Locking Systems and Wireless Technology

For many decades, purely mechanical keys and locks were the only means for
securing the access to buildings, rooms, cars, and other property. Starting in the
1950s, the first Remote Keyless Entry (RKE) systems were available on the mar-
ket to open doors from a distance via a Radio Frequency (RF) interface. These
“fixed-code” systems provided no cryptographic protection and could easily be
circumvented by means of a replay attack. In the 1980s, manufacturers started to
equip cars with this type of wireless door opener on a large scale. After the num-
ber of stolen cars rose, it became clear that the new wireless comfort came at the
price of reduced security and that more elaborate authentication schemes were
required to prevent theft. Combining the benefits of modern wireless technology
and cryptography, a new era of access control systems began: Immobilizers and
more secure RKE systems were invented and today, all new cars are furnished
with remote controls incorporating cryptography, while purely mechanical keys
have almost vanished from the market.

Recently, a similar trend can be observed for the access control to buildings.
While mechanical keys and locks are still widespread, they suffer from certain
disadvantages. For example, keys can often easily be copied and if a key gets
lost or stolen, all affected door locks have to be replaced. Also, mechanical locks
only allow a rudimentary type of access management. The demand for a flex-
ible assignment of keys to locks and vice versa paved the way for augmenting
mechanical locks with wireless technology and replacing mechanical keys by elec-
tronic counterparts, e. g., transponders or smartcards. In case of loss or theft,
administrators can simply block affected transponders in a database.

Despite all these comforts and benefits, wireless communication implies an
increase in attack surface: A transponder residing in a pocket or wallet could be
read out or modified without the owner taking note of it. Moreover, the trans-
mission of data via the RF interface can be monitored from a distance. Hence,
wireless access control systems require protecting the over-the-air interface with
additional security measures.

1.2 Related Work

In the world of access control by electronic means, various manufacturers have
been inventing their own cryptographic primitives and protocols, often with low-
cost properties and established “security” by keeping the details secret. The past
decade has shown that the vast majority of these schemes is flawed and that
once the ciphers have been reverse-engineered and become public, they can be
broken with low to modest efforts.

One of the first examples is the DST40 cipher. It is used in Texas Instru-
ment’s Digital Signature Transponder (DST) and has been reverse-engineered
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in 2005 [1]: Knowing at least two challenge/response pairs, the 40-bit secret key
of a corresponding transponder can be revealed by means of a brute-force attack
in less than one day. Likewise, following the reverse-engineering of NXP’s Mi-
fare Classic cards [2] through analyzing the silicon die, the used Crypto1 cipher
was found to be weak, relying on a state of only 48 bits. Further mathematical
weaknesses of the cipher and implementations flaws, e. g., a weak random num-
ber generator, enable to reveal all secret keys and practically circumvent the
protection mechanisms with a card-only attack in minutes [3–5]. The Hitag 2
transponders of the same manufacturer, widely used for car immobilizers—but
also for RKE systems—were found to be flawed after the cipher became pub-
lic [6]. Based on the latest results [7], their secret keys can be extracted in
six minutes. Further insecure products for access control include HID Global
iClass [8] and Legic Prime cards, both based on highly ineffective cryptographic
measures [9].

Practically exploiting the vulnerabilities of the above products typically re-
quires to be at least in the vicinity of the targets (cars, cards, card readers in the
buildings, etc.). In contrast, attacking the RKE system KeeLoq is feasible from a
larger distance: After the cipher became public, mathematical weaknesses were
found [10, 11] and—after performing a side-channel attack to obtain the master
key of the system—duplicating remote controls is feasible by means of eaves-
dropping from several hundred meters [12].

1.3 SimonsVoss Digital Locking and Access Control System 3060

One large manufacturer of digital locking systems for buildings is the Germany-
based company SimonsVoss Technologies AG. SimonsVoss, the European market
leader for electronic locking and access control systems [13], installed its one mil-
lionth digital locking cylinder in April 2012 and has sold more than three million
corresponding transponders. The list of customers and objects secured with this
technology in Europe, USA, and Asia, as listed on the official website [14], is very
impressive: It includes residential buildings, tourist apartments, hospitals, uni-
versities, embassies, major banks, airports, buildings of the German armed forces
and the US army, factory sites of well-known brands, police stations, stadiums,
town halls, prisons, insurances, and many others.

One part of the system, termed transponder, serves as a substitute for a me-
chanical key. It is a battery-powered remote control that, upon pressing a but-
ton, activates the second part of the system, an electronically enhanced cylinder.
The cylinder that is integrated into the door has the same dimensions as a stan-
dardized mechanical locking cylinder. If successfully activated, the door cylinder
beeps twice, indicating that the lock can be opened or closed during the next few
seconds (with manual force, by turning a knob that is attached to the cylinder).

The digital cylinder is also powered from batteries. In case of worn-out batter-
ies after a few years of operating time or exceptional operating conditions1, they

1 The batteries need to be replaced in intervals of up to 10 years or 150,000 door
openings according to the information of the manufacturer.
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(a) Transponder
3064

(b) Door lock cylin-
der 3061

(c) Battery replace-
ment tool

(d) Opened lock
knob

Fig. 1. Components of the digital locking system

can be replaced after dismantling the knob of the cylinder with the commercially
available “battery replacement tool” (cf. Fig. 1c). The electronics are contained
inside the knob of one side of the door cylinder, as illustrated in Fig. 1d, while
the other knob is usually empty. The correct side for a battery change can be
visually identified by a small, black plastic ring that is visible between the cap
of the knob and the metal parts of the cylinder. This knob should be installed
inside the buildings or inside the offices to prevent unauthorized access to the
electronics.

The widespread digital locking system 3060 analyzed in this paper is based on
a so far undisclosed, proprietary cryptographic protocol. The latest revision is
termed “Generation 2” or “G2-based” system by the manufacturer. It supports up
to 64,000 digital locking cylinders 3061 (cf. Fig. 1b) per installation, up to 64,000
transponders 3064 (cf. Fig. 1a) per lock, and the storage of up to 1,000 access
instances on the transponder. The cost of a transponder 3064 is approx. $ 40 and
that of a locking cylinder 3061 approx. $ 440.

The back-end of larger installations is realized as a software running on a
standard PC, allowing to configure all door locks of an installation via a wireless
link, e. g., in order to re-program the door locks. Likewise, transponders can be
programmed to enable access to certain doors by means of the functionality of the
back-end. In general, the “Generation 2” system enables to form a network of door
cylinders, transponders, and the back-end by means of various communication
techniques, e. g., through Ethernet or through multiple routers and nodes (cf.
[15]). Small installations can also be configured offline, using the programming
transponder 3067.

The door locks can have a permanent connection to a central server through
multiple wireless access points (“WaveNet router nodes”) at 868 MHz. These
router nodes connect to so-called lock nodes [16] placed within the door knob.
Lock nodes in turn communicate over a single wire with the circuitry responsible
for opening the lock and the 25 kHz connection to the transponders. The (suc-
cessful or unsuccessful) opening attempt of any transponder at any door lock in
the system can be monitored and stored in logfiles. In case of an electrical power
outage or when communication between door locks and back-end is interrupted,
doors remain fully functional [17, p.5]. The security of the back-end and the
wireless link are explicitly not analyzed in this paper. All our findings in the
following are solely based on analyzing the door locks and transponders.
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1.4 Contribution and Outline

The security level of access control systems relying on the obsolete ciphers men-
tioned in Sect. 1.2 has already been evaluated and in most cases has been
found to be very low. However, to the best of our knowledge, the security of
the widespread SimonsVoss digital locking system 3060 G2 and its proprietary,
undisclosed schemes for encryption, authentication, and key derivation has not
been publicly evaluated yet. The aim of this paper is to close this gap and analyze
the security of this system.

By eavesdropping the communication between transponder and lock, it quickly
became clear that the protocol is rather involved, with each protocol run consist-
ing of 11 messages being exchanged. Moreover, as non-trivial computations are
executed, extracting the details of the protocol by eavesdropping only seemed
out of reach. Thus, more invasive methods were needed to advance at this step:
In Sect. 2, we reverse-engineer the hardware and software of transponders and
digital cylinders, by means of decapsulating chips with acid, circumventing read-
out protections with UV-C light, and analyzing the internals with a microscope
and disassembler. As a result, the proprietary authentication scheme is disclosed
in Sect. 3 and details about the proprietary cryptographic primitives and the
key derivation mechanism are given in Sect. 4. Compared to various antiquated
access control systems (cf. Sect. 1.2), the SimonsVoss realization at a first glance
appeared to provide an adequate security level, since a slightly changed version
of the Data Encryption Standard (DES) combined with a proprietary obscurity
function is applied.

The next step of our work thus consists in cryptanalyzing the cipher and the
protocol (cf. Sect. 5). Most surprisingly, due to a crucial flaw in the protocol,
the (modified) DES can be circumvented completely. This allowed us to mainly
focus on the proprietary obscurity function. After our detailed analysis it turns
out that this function can be seen as a (generalized) T-function (cf. [18]), which
is the key to invert (parts of) the obscurity function very efficiently.

Our work finally resulted in very practical attacks which enable opening the
doors secured by the analyzed system, as illustrated in Sect. 5: An adversary
possessing an ID of an valid transponder (for instance obtained by eavesdropping,
exhaustive search, or reading it out from a transponder or door lock) simply has
to execute a few (partial) protocol runs in the vicinity of a door lock to obtain
all access rights the respective genuine transponder possesses. The attack works
solely via the wireless interface, thus leaves no traces, and does not require
physical access to a valid transponder or lock.

2 Reverse-Engineering

When initially analyzing the SimonsVoss System 3060, we were facing a
complete black-box, i. e., had no information on the inner workings of the sys-
tem. From publicly available information, little can be learned about the actual
implementation. Hence, we decided to obtain the necessary knowledge for our
security analysis by reverse-engineering the involved components. The Printed
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Circuit Boards (PCBs) of transponder and door (cf. Fig. 2a) have a similar layout
containing three main components that are involved in the authentication pro-
cess: A SimonsVoss-proprietary Application Specific Integrated Circuit (ASIC)
is connected to a Microchip PIC16F886 Microcontroller (μC) [19]. The third
component is an external Electrically Erasable Programmable Read-Only Mem-
ory (EEPROM) controlled by the μC over an Inter-Integrated Circuit (I2C)
bus [20]. In this section, we summarize the results of reverse-engineering the
functionality of these components.

2.1 Reverse-Engineering the Proprietary ASIC

Since we could not obtain any documents regarding the functionality of the
ASIC, we decided to analyze the device on the level of the silicon die. To this
end, we decapsulated several ASICs using White Fuming Nitric Acid (WFNA)
according to the two-step procedure as described in [21, p.10] and took high-
resolution pictures of the die with an optical microscope. We found that the
ASIC employs a 2μm gate array design with a total number of 2320 transis-
tors available for CMOS logic. In consequence, the amount of logic that can be
implemented is rather limited and insufficient to, e. g., realize cryptographic al-
gorithms. After reverse-engineering most of the digital circuits of the ASIC we
found out that the main functions of the ASIC are (1) to implement functions
to wake up the μC periodically and (2) to work as a (de)modulator for the RF
transmission.

2.2 Reading Out the Firmware of the PIC16F886

Having found that the ASIC is not related to the security-relevant parts of the
system, it can be assumed that all (cryptographic) functionality is implemented
in the firmware of the Microchip PIC16F886 [19] μC. Like many common μCs,
this PIC stores its firmware in an internal flash memory. Moreover, the μC
contains an internal EEPROM for storing 256 bytes of user-defined data. In
order to protect the firmware and the content of the EEPROM, SimonsVoss
enabled the read protection fuse.

After unsuccessful attempts to clear the respective configuration bits us-
ing power glitches during the programming operation, we considered a differ-
ent method: In [22], the author successfully cleared the configuration bits of
a PIC18F1330, i. e., changed the state from 0 to 1 by applying Ultraviolet-
C (UV-C) light in a certain angle to the decapsulated chip. The idea is that
even if the fuses are covered with a (small) metal plate as a shield, UV-C light
will bounce off from various parts around the metal plate and the plate itself,
eventually hitting the cells storing the fuse bit. In [23], the author confirmed
that the attack worked for a PIC12F683 as well.

Although the PIC16F886 comes in a relatively new type of package (QFN),
Microchip did not address this issue and leaves the UV-C attack still possible.
We decapsulated the μC with WFNA and used an EPROM erasure tool [24]
as our UV-C source (cf. Fig. 2d). After testing various positions and angles,
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(a) PCB (front) of the
door part

(b) PIC16F886
annotated (ana-
log to [23])

(c) PCB after decap-
sulation, memories
covered with tape

(d) Exposure to
UV-C light of an
EPROM erasure tool

Fig. 2. PCB of the door circuitry, location of the security bits (fuses) and erasing fuses
of the PIC16F886

we found that all non-volatile memories and the configuration bits were erased
after an exposure of about 20 min. By applying this technique exclusively to
the configuration bits, i. e., by covering the non-volatile memories with electrical
isolation tape (cf. Fig. 2b and 2c), we were able to recover the complete firmware
(stored in the internal Flash memory) and the contents of the internal EEPROM
of several transponders and door lock μCs.

In order to disassemble and understand the code running on the μC of both the
transponder and the door lock, we utilized IDA Pro [25], a tool often employed
for the analysis of regular PC-software. Nevertheless, IDA Pro also includes a
module for PIC μCs which greatly aided in the reverse-engineering process. In
addition to performing a static analysis of the program code with IDA Pro, we
also inserted debug routines into the disassembled code. This routine allows to
dump the registers and the SRAM during the execution of the program on the
original transponder or door PCB over an unused pin of the μC. Thus, being
able to dump the memory contents, e. g., during the execution of a successful
authentication protocol run, we were able to verify the results of the static
analysis and to understand parts of the code that heavily depend on external
input (e. g., from the external flash).

3 Authentication Keys and Protocol

In the following, we present the essential results of reverse-engineering the soft-
ware running on the transponder and the lock. We focus on the keys, protocol,
and the cryptographic primitives used to mutually authenticate transponders
and locks.

For a successful execution of the authentication protocol, transponder and
lock must be in possession of a shared secret. For this purpose, each transponder
has a (unique) 128-bit long-term secret KT . This key is computed from a 128-bit
value KT,ext stored in the external EEPROM and a 128-bit key KT,int stored in
the PIC’s internal EEPROM as

KT = KT,ext ⊕KT,int.
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On the other hand, each lock stores a set of four 128-bit keys KL,j that are
identical for every lock in the entire installation. Analogous to the transponder’s
key, one of these keys KL,j is the XOR of a key KL,j,ext stored in the external
EEPROM with one 128-bit internal key KL,int stored in the internal EEPROM,
i. e.,

KL,j = KL,j,ext ⊕KL,int

with 0 ≤ j ≤ 3. In the following, we refer to the set of the keys KL,j as the
system key. Based on this key, the lock can derive any transponder key, as will
be explained in the course of the protocol.

The system uses an 11-step challenge-response protocol to achieve mutual
authentication between transponder and lock. A protocol run is initiated by
the transponder when the central button is pressed in proximity of a lock. In
the course of this authentication step, a multitude of messages is exchanged, cf.
Fig. 3.

Transponder Lock
(has KT ) (has KL,0, KL,1, KL,2, KL,3)

preamble−−−−−−−−−−−−−−−−−−→
ID IL←−−−−−−−−−−−−−−−−−−
ID IT−−−−−−−−−−−−−−−−−−→

challenge C←−−−−−−−−−−−−−−−−−−
authentication data D−−−−−−−−−−−−−−−−−−→

... KT = K(KL,i; IT , · · · )
R0||R1 = R(KT ;C, · · · )

response R0−−−−−−−−−−−−−−−−−−→
response R1←−−−−−−−−−−−−−−−−−− R0||R1 = R(KT ;C, · · · )

...

Fig. 3. Protocol for the mutual authentication between a transponder and a lock

Here we only focus on a subset of these messages that we identified to be
relevant for our security analysis:

IL Each lock has a 24-bit ID that is transmitted to the transponder.
IT Each transponder has a 32-bit ID that is transmitted to the door.
C After the ID exchange, the lock sends an 88-bit challenge C to the

transponder.
D The transponder sends 80 bits of authentication data to the lock. This

includes the result of its ID verification and transponder-specific data.
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In the first four steps of the protocol, most of the messages are fixed for a
transponder/lock combination. Only C (and conversely the responses R0 and
R1) change between protocol runs—and of this 88-bit value, only 40-bit are
actually random. The remaining bits are either fixed or change infrequently. In
answer to such a challenge, both transponder and lock derive the same 64-bit
response R using the data exchanged in previous messages and the 128-bit long-
term secret KT of the transponder. We denote the function to compute the
response as R, with

R = R0||R1 = R(KT ; IL, IT , C,D).

The main part of the authentication is then accomplished by exchanging the
following two messages:

R0 The transponder sends the first 32-bit half of R as the first response to
the lock.

R1 If R0 matches the first half of R computed by the lock, it sends the
second 32-bit half of R to the transponder.

As each party computes the full 64-bit output of R, both can verify the response
of the other party and mutually authenticate each other on the basis of KT .
Instead of storing the key KT for each transponder, a lock is able to derive KT

from a transponder’s ID IT , the authentication dataD, and part of the long-term
system key. A key derivation function K is used for this purpose, i. e.,

KT = K(KL,j; IT , D)

with 0 ≤ j ≤ 3.

4 Cryptographic Primitives

In the authentication protocol, the two basic functions K (for key derivation on
the door’s side) and R (for response computation) are used. These functions are
proprietary constructions and share two building blocks we denote as O and D.
While it turned out that D is simply a modified DES [26], what we call “the
obscurity function” O is a more intricate design, which we are describing in the
following.

The O function takes two 128-bit inputs (a plaintext and a key) and returns
a 128-bit output. Figure 4 shows the internal structure of O. This function
operates byte-wise on two registers with 16 8-bit cells. The upper registers are
continuously updated while the lower registers remain constant.

To compute the output of O the upper x registers are initialized with the
plaintext, while the lower y registers are set to the key. After that, the registers
are updated successively, all in all each of the x registers is updated for 8 times,
according to the following scheme: Updates start with x0, then x1, etc., and are
computed mostly as sums of 8-bit values modulo 256. Additionally, each cell
update incorporates an 8-bit chaining value zi, which is the result of the update
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Fig. 4. Structure of the obscurity function

of the preceding cell. The update equation for the successive state x′i from xi is
given as x′i = yi + zi + xi mod 28. There are basically three ways the chaining
value is computed for any round r with 0 ≤ r ≤ 7:

zi+1 =

⎧⎪⎨⎪⎩
(xi + 2(yi + zi)) mod 28 if i ∈ {0, 1, ..., 14} \ {3, 7, 12},
(xi + 2(yi + zi) +RCr+1) mod 28 if i = 7,((
yi + zi mod 28

)
+ xi >> 1

)
mod 28 if i ∈ {3, 12}.

The computation of the first value z0 is different: Initially, it is set to RC0 and
then, for the next round of cell updates it is computed as

z0 = (x15 + 2(y15 + z15)) mod 28.

Here, all RCr with 0 ≤ r ≤ 8 are 8-bit round constants, which we do not disclose
at this time. The function’s output is given by the contents of the x cells after
8 rounds.

4.1 K: Key Derivation Function

In the following we describe how D and O are combined to construct the key
derivation function, which is used only in the door. This function can be decom-
posed into three blocks, D and two instances of the aforementioned obscurity
function O, as illustrated in Fig. 5.

Fig. 5. Construction of the key derivation function
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The construction has four inputs, one fixed to 64 zero bits and two other 128-
bit inputs that are exchanged in the authentication protocol: The value P0, used
twice during key derivation, is composed of the first three bytes IT,0, IT,1, IT,2 of
the transponder ID IT and the first three bytes D0, D1, D2 of the authentication
data D. The last of each of these three bytes is masked by a Boolean AND-
operation with the fixed constant 0xC7 or 0x3F, respectively, thus selecting only
certain bits. All other bytes are filled with zeros, i. e.,

P0 = (IT,0, IT,1, IT,2 & 0xC7, D0, D1, D2 & 0x3F, 0, . . . , 0)28 .

Only one input of K is secret: One of the four 128-bit keys of the system key
set is selected according to the two most significant bits of the third byte of IT .
This 128-bit key is used as key KL for the first instance of O to encrypt P0.
The output of this operation is split into two 64-bit halves which are used as
plaintext and key for D. The output of D, denoted by T , is then concatenated
with 64 zero bits, and the result is encrypted with O—using P0 as the key. The
resulting 128-bit value is the transponder’s key KT , i. e.,

K(KL;P0) = O
(
P0;D

(
O(KL;P0)64..127;O(KL;P0)0..63

)
||0 . . . 0

)
.

4.2 R: Response Computation Function

The structure of the response computation R is very similar to the key derivation
function K. However, the way the building blocks are combined is different.
Figure 6 shows the internal structure of R.

Fig. 6. Construction of the response computation function

Again two instances of the proprietary obscurity function O are used along
with the modified DES D. The 128-bit input P1 to R is the concatenation of the
challenge C and part of the authentication data D, i. e.,

P1 = (c0, c1, ..., c10, D6, D7, D8, D9, 0)28 .

The output of the first instance of O is used as key for the second iteration of
O. The 128-bit input P2 is fixed for every transponder/lock combination and is
composed of more bytes taken from the IDs of lock and door, i. e.,

P2 = (IL,2, IT,2, IT,3, D3, D4, D5, 0, ..., 0)28 .
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The output of this operation is split into two 64-bit halves, whereas the first half
is used as plaintext for D and the second as the respective key. The two halves
of the 64-bit result R form the responses R0 and R1 used in the protocol, i. e.,

R(KT ;P1, P2) = D
(
O
(
O(KT ;P1);P2

)
64..127

;O
(
O(KT ;P1);P2

)
0..63

)

5 Attacks

Having revealed the inner structure of the authentication protocol, we now in-
troduce two types of attacks. The physical attacks exploit weaknesses of the
platform that is used for cryptographic purposes and the basic system design.
The cryptanalytical attack goes more into details of the implemented crypto-
graphic structure, especially of the obscurity function O.

All presented attacks have been verified at several installations of the Si-
monsVoss 3060 G2 system.

5.1 Physical Attacks

The attacks presented in the following are of invasive nature and assume physical
access to either a transponder or a digital cylinder.

Attack 1: Invasive Cloning of a Transponder. As presented in Sect. 2, the
program and internal EEPROM memories of the μC can be read after clear-
ing the respective fuse bit with UV-C light after decapsulation. The external
EEPROM is unprotected and can thus be read out trivially. Since the propri-
etary ASIC does not contain, e. g., a unique identifier, it is possible to copy one
transponder to another by writing the respective memories. The whole process
of duplicating a transponder takes less than 30 minutes, including the decapsu-
lation of the μC. Note that the memory protection fuse bits can also be reset
by performing a full chip-erase of the PIC16F886. Of course, this also deletes
the program memory and the internal EEPROM and hence cannot be used for
reading out the respective contents. However, this characteristic is handy for an
adversary when cloning a transponder. Instead of building a custom “emulation”
device, an original SimonsVoss transponder can be fully erased and then re-
programmed with the contents of the transponder to be duplicated. It should be
noted that this attack does not require an adversary to understand the program
code or the contents of the EEPROMs at all. In particular, this means that no
knowledge of the cryptographic details of the protocol is necessary.

Attack 2: Cloning Using the System Key Analyzing the key derivation
scheme described in Sect. 4, it is obvious that the system key is a single-point-
of-failure. Given the system key together with a valid transponder ID, the key
for the respective transponder can be generated. Apart from the system key, all
other inputs to the key derivation are—by design—publicly known. Since the
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system key is stored in every door lock, only one lock PCB has to be in the
hands of the adversary temporarily. The PCB could be for instance removed
from a door that is rarely locked or that is accessible from the outside, e. g.,
a door of a main entrance2. A “battery replacement” tool to remove the metal
casing of the lock is publicly available. Note that these doors are very likely to
contain the valid IDs of transponders with a system-wide validity, as required for
emergencies. By invasively reading out the μC, an adversary obtains the system
key and IDs of valid transponders. Similar to the previous invasive cloning of
a transponder, the data can now be programmed onto an original SimonsVoss
transponder that optically appears genuine. She can furthermore attempt to
cover the tracks of the attack, e. g., the decapsulated μC could be replaced with
a new, re-programmed PIC. Again, the complete attack can be carried out in
less than 30 minutes.

Compared to the attack cloning a single transponder, the consequences of
obtaining the system key are far more severe. Given the ID, any transponder
in the system can be cloned without physical access to the actual transponder
hardware. Since a list of IDs can be extracted from a door lock together with
the system key, the problem for the adversary reduces to obtaining the PCB of
one single lock.

5.2 Cryptanalytical Attack

In the following we present a non-invasive attack that allows to recover KT in
a very practical setting within a few seconds resp. minutes. The attack exploits
the following properties of the system:

1. When the door computesR(t)
0 ||R(t)

1 = R(KT ;C
(t), · · · ) to verify the transpon-

der’s response, 40 bits of the internally computed DES key V (t) are used as
part of the next challenge, i. e.,(
C

(t+1)
2 , C

(t+1)
3 , C

(t+1)
4 , C

(t+1)
5 , C

(t+1)
6

)
28

=
(
V

(t)
8 , V

(t)
9 V

(t)
10 , V

(t)
11 , V

(t)
12

)
28
.

2. Looking at one instance of O and the equations describing the Least Signifi-
cant Bits (LSBs) of each x cell after 8 rounds, these bits are only dependent
on 32 bits of the key. More specifically, the equations reveal that the LSBs
of the y cells occur in non-linear combinations, while the bits next to the
LSBs occur only in linear combinations.
This observation can be generalized for any bit b in the 16 output bytes, for
cases where M instances of O are chained (like in R). Here, the M + b lower
bits per byte of the key are found in non-linear combinations in the output
bits at position b, while bits at position M + b + 1 are only appearing in
linear combinations.
Thus, in a sense even multiple instances of O resemble a T function, making
it significantly easier to invert them.

2 In various real-world systems we found that the electronics of the main entrance’s
doors are placed facing outwards the building and can thus be easily accessed.
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3. The output of K, and thus every transponder key, has actually only 64 bits
of entropy (the output of D). We denote this 64-bit value as T , which—if
recovered—allows to compute the full 128-bit key KT if the corresponding
P0 is known. Note that this fact alone allows to break the scheme in practice
using dedicated hardware.

Especially the first item is a weakness in the protocol. However, it is a well-known
fact that obtaining “good” random numbers in (constrained) embedded systems
is hard, therefore it is not entirely surprising that these seemingly random looking
bits are re-used as challenge.

Lock-Only Attack. For our attack we merge three instances of O; we focus
on the part of the computation that maps the output T of the DES function in
the key-derivation phase, along with the (known) values of P0,P1 and P2, to the
leaked input bits of the final (modified) DES function in the response computa-
tion. As mentioned above, in order to obtain the leaked data, the protocol has
to be triggered once more, as the those bits leak as part of the challenge in the
following protocol run.

Attacking this part allows to circumvent the (except for the small key-size)
cryptographically strong, modified DES and focus on the rather weak obscurity
function O only.

We denote by

F : F128
2 × F128

2 × F128
2 × F64

2 → F40
2

F (P0, P1, P2, T ) → O
(
O
(
O(P0;T ||0 . . .0);P1

)
;P2

)
64..103

= VL

the corresponding part of the commutation where VL corresponds (up to a per-
mutation of bits) to the leaked bits. In order to simplify the following description
of our attack, we reordered the bits in such a way that the 5 first output-bits
of F correspond to the 5 least significant bits of V (t)

i , 8 ≤ i ≤ 12. Similarly, the
next 5 output-bits of F correspond to the second least significant bits, etc.

As mentioned above the function F inhibits a structure resembling a (slight
generalization of a) T-function. More precisely, splitting the output of F in eight
5 bit chunks, i. e.,

F (P0, P1, P2, T ) =

⎛⎜⎝F7(P0, P1, P2, T )
...

F0(P0, P1, P2, T )

⎞⎟⎠
it turns out that not all Fi depend on all 64 bits of T . In fact, F0 depends only
on 30 bits of T , F1 on 38, F2 on 46, F3 on 54 and F4 on 62 bits. Even more, out
of the 30 bits influencing F0 seven bits of T enter linearly in F0.

Making this more precise, denote for a subset S ⊂ {0, . . . , 63} by TS , the
projection of T to S, i. e., (TS)i = Ti if i ∈ S and (TS)i = 0 otherwise. We have

F0(P0, P1, P2, T ) = F0(P0, P1, P2, TS(0)
0

) + L0(TS(1)
0

)



Fuming Acid and Cryptanalysis 161

where S0 = S(0)
0 ∪ S(1)

0 with

S(0)
0 = {0, 1, 2, 8, 9, 10, 16, 17, 18, 24, 25, 26, 32, 33, 40, 41, 42, 48, 49, 50, 56, 57, 58}

and
S(1)
0 = {3, 11, 19, 27, 34, 51, 59}.

and the mapping L0 is linear with rank 4.
For i = 1..7 we get

Fi(P0, P1, P2, T ) = Fi(P0, P1, P2, TSi−1) + Li(TSi\Si−1
)

where

S1 = S0 ∪ {4, 12, 20, 28, 35, 43, 52, 60} S2 = S1 ∪ {5, 13, 21, 29, 36, 44, 53, 61}
S3 = S2 ∪ {6, 14, 22, 30, 37, 45, 54, 62} S4 = S3 ∪ {7, 15, 23, 31, 38, 46, 55, 63}

S5 = S4 ∪ {39, 47} S6 = S7 = S5 ∪ {} = {0, . . . , 63}

and the mappings Li are linear with rank 5 for i ∈ {1, 2, 3, 4}, rank 2 for i = 5
and rank zero for i = 6 and i = 7.

Given a set of values
(
P

(i)
0 , P

(i)
1 , P

(i)
2

)
along with the leaked values V (i)

L =

F
(
P

(i)
0 , P

(i)
1 , P

(i)
2 , T

)
this structure of F immediately leads to a recursive attack

procedure: One first guesses the 23 key bits in S(0)
0 and sets up a system of linear

equation for the bits in S(1)
0 using F1. For each solution, one recursively sets up

and solves the corresponding linear system for the bits in Si using the values of
Fi for 1 ≤ i ≤ 5. All remaining solutions are finally validated against the values
of F6 and F7 and a key-candidate is output when all values match known data.

Practical Results. The attack assumes that the attacker is able to obtain (or
guess) a transponder’s ID IT , thus being able to construct valid P0, P1 and P2.
Additionally, a handful of random, consecutive, challenges C are required, which
can be obtained from partial consecutive protocol runs. The following two-step
procedure will reveal all relevant data:

1. Temporarily obtain a transponder that has access to a desired door, press
its button and record IT . Alternatively, since certain keys (such as emer-
gency keys) are assigned very low IDs (e. g., 0x00000005)—which might be
true across installations—it also seems very likely that IDs with sufficient
privileges can be guessed.

2. Find the most convenient door the transponder has access to—this does not
have to be the targeted door—and, using some hardware which is able to
communicate on the desired frequency, run these steps of the protocol:
(a) Send the preamble, receive IL of the door.
(b) Send the previously obtained IT of the transponder and receive a chal-

lenge C.
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(c) Choose a suitable 80-bit string as D and send it to the door.
All interactions are recorded, then the protocol is terminated and the pro-
cedure is repeated until a handful of challenges have been collected.

As this attack does not make use of the responses R0 and R1 in the protocol,
the challenges can be obtained by communication with the lock only (i. e., with-
out a valid transponder). We implemented the attack in C and tested it against
real data. Table 1 summarizes the running time of the attack and the num-
ber of key candidates in relation to the number of known input output-pairs(
P

(i)
0 , P

(i)
1 , P

(i)
2

)
, V (i)

L . Most importantly, all attack complexities are clearly
practical and when using more than two pairs, in all our 1000 tries no false
positives were detected as key candidates.

Table 1. Performance of our attack on an Intel(R) Xeon(R) CPU E5540. Note that
the number of (partial) protocol runs is the number of pairs used plus one.

# Pairs Used Aver. Running Time Aver. # Key Candidates
2 3.36 min. 21.34

3 11.5 sec. 1

4 1.2 sec. 1

5 0.65 sec. 1

6 Conclusion

Our work shows one reason why not more existing products with weak propri-
etary solutions are broken: It is a challenging, time-consuming task that requires
a large variety of skills; from reverse-engineering hardware and software to crypt-
analytical abilities. Drawing upon all of these skills, we were able to perform a
thorough analysis of the widely used SimonsVoss 3060 G2 access control system.
We detailed methods, procedures, and results of our work to reveal all relevant
physical and logical properties.

Based on the recovered details of the system, we presented attacks exploiting
the found weaknesses on the hardware level. The fact that fuse bits can be erased
allows to dump secret internal EEPROM contents and the firmware of the used
μC. This enables the straightforward invasive cloning of one specific transponder.
Utilizing this flaw to read out the system key from one lock compromises the
long-term secret of arbitrary transponders. However, these attacks are heavily
invasive and require access to the hardware of the system, time, and special
equipment.

A more powerful, logical attack was enabled by further analysis; we found that
the locking system actually uses a cryptographically strong primitive (DES)
which, especially when compared to KeeLoq or Crypto1, does provide some
resistance against attacks. However, here DES is used in such a way that it can
be circumvented, resulting in a non-invasive attack that is even more practical
than the known (non-invasive) attacks against KeeLoq or DST40. Our presented
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attack is able to retrieve an arbitrary transponder key after obtaining its ID and
partially running the authentication protocol with a lock only a few times. A
second attack, based on the meet-in-the-middle principle, which is optimal with
regard to data complexity, can be found in the full version of this paper.

In conclusion it must be said that the attacks we have presented and executed
are devastating and—although initially facilitated by the ability to easily bypass
fuse bits (which can be attributed to Microchip Technology)—ultimately enabled
by a faulty system design. Consequently, the security of any installation based
on the analyzed system is questionable.

We are in close contact with SimonsVoss and discussed the found vulnerabili-
ties. As a first response, SimonsVoss is currently developing a patch for new and
existing G2 systems that prohibits the here presented mathematical attacks; by
changing the source of the randomness in the cylinder. This patch does not re-
quire a change of the hardware and can be deployed over-the-air via WaveNet (if
the system is online, cf. Sect. 1.3) or by a programming transponder. We assume
that these mathematical attacks do not apply anymore at the time this paper
gets publicly available. However, we have intentionally left out certain details
of the cryptographic primitives, i.e., the round constants RCi and the modifica-
tions of the DES. Since the physical attacks are not affected by this patch and
are not fixable without changing the hardware, SimonsVoss is planning to move
to hardware specially designed for security applications.
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Abstract. The Bluetooth standard authorized by IEEE 802.15.1 adopts
the two-level E0 stream cipher to protect short range privacy in wireless
networks. The best published attack on it at Crypto 2005 requires 238

on-line computations, 238 off-line computations and 233 memory (which
amount to about 19-hour, 37-hour and 64GB storage in practice) to
restore the original encryption key, given the first 24 bits of 223.8 frames.
In this paper, we describe more threatening and real time attacks against
two-level E0 based on condition masking, a new cryptanalytic technique
that characterizes the conditional correlation attacks on stream ciphers.
The idea is to carefully choose the condition to get better tradeoffs on
the time/memory/data complexity curve. It is shown that if the first 24
bits of 222.7 frames is available, the secret key can be reliably found with
227 on-line computations, 221.1 off-line computations and 4MB memory.
Our attacks have been fully implemented on one core of a single PC.
It takes only a few seconds to restore the original encryption key. This
is the best known-IV attack on the real Bluetooth encryption scheme
so far.

Keywords: Stream ciphers, Correlation, Condition masking, Bluetooth
two-level E0.

1 Introduction

Bluetooth and WiFi wireless networks are ubiquitous nowadays. The Bluetooth
standard [3] adopts the two-level E0 stream cipher to protect the privacy between
different devices, such as personal computers, laptops and mobile phones, that
operate over a short range and at low power. Although being a long standing
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problem in stream ciphers, the security analysis of two-level E0 is still of great
practical importance, as pointed out by Prof. Preneel in [25].

Correlation attack [28] is a classical method in the cryptanalysis of stream
ciphers, which exploits some statistically biased relation between the produced
keystream and the output of certain underlying sequence. In the 90’s, the corre-
lation properties of combiners with memory is analyzed [9,23] in theory. Based
on these correlations, for LFSR-based stream ciphers, the initial state of the tar-
get LFSR can be recovered by (fast) correlation attacks [4,5,12,13,22]. Further,
in [15,16], the notion of correlation was extended to conditional correlation, that
studied the linear correlation of the inputs conditioned on a given output pattern
of some nonlinear function. Later at Crypto 2005 [17], the conditional correlation
is assigned with a dual meaning, i.e., the correlation of the output of a function
conditioned on some unknown input, called condition vector, which is uniformly
distributed and is applied to analyze the security of two-level E0. Usually, the
condition vector is some key related material and if a good conditional corre-
lation exists, it is expected that the adversary will observe the biased sample
sequence for the correct key and unbiased sequences for the wrong candidates.
Thus, a distinguisher can be mounted to restore the secret key given a pool of
sample sequences derived from the guessed values of the condition vector and
some public information.

In practice, the E0 cipher is frequently re-synchronized as a two-level scheme
and the keystream generated for each frame is only 2745 bits. Thus, most of the
published attacks [1,6,11,14,19,26,27] that work on one impractically long frame
of keystream remain the academic interest only and have little impact on the
practical usage of Bluetooth encryption. Currently, a few attacks [7,8,10,17,18,24]
apply to the two-level E0. The cube attack in [24] works under the unrealistic
assumption that the output of LFSRs at any clock cycle is available and it
is a chosen-IV attack. The best known-IV attack in [17] requires 238 on-line
computations, 238 off-line computations and 233 memory to restore the original
encryption key, given the first 24 bits of 223.8 frames in theory (while in experi-
ments, it needs about 19-hour, 37-hour and 64GB storage, given the first 24 bits
of 226 frames). Note that this attack depends dominantly on the external data
transfer rate between the hard disk and main memory and the pre-computation,
which has to be done once for each key, is too time-consuming.

In this paper, we propose a new cryptanalytic technique, called condition
masking, to characterize the conditional correlation attacks on stream ciphers.
The attack in [17] considered the correlations conditioned on the whole con-
dition vector, whereas we investigate the correlations only based on a subset
of the condition vector. This generalizes the concept of linear mask by depict-
ing the condition as the value selected according to a mask and studying how
to choose the condition to achieve better tradeoffs between time/memory/data
complexities. Our main observation is that it is of high probability that only a
subset of bits in the whole condition vector determine the magnitude of the bias,
e.g., in the E0 combiner, only the latest four input bits to the FSM play the most
important role. The theoretical framework in [17] is refined based on this
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notion and it is shown that the time/memory complexities of the attack against
two-level E0 can be significantly reduced by properly choosing the condition
mask.

Precisely, we first present the complete1 formula for fast computation of un-
conditional correlations in the E0 combiner, and thus efficiently solve the 11-year
old open problem of Golić in [10]. Second, we precisely study the conditional
correlations in two-level E0 with the condition masking. The target function in-
herent in E0 used to compute the conditional correlation in [17] is generalized
and a large class of correlations conditioned on both the linear mask and the
condition mask is presented. Although the correlation conditioned on the full
condition vector is maximum in the value, it is not generally optimum in the
global time/memory/data complexities aspect. The time/memory complexities
are closely associated with the condition. An adversary need not to guess the full
condition vector and what he has to guess is determined by the condition mask
he has chosen. In this way, the time/memory complexities can be considerably
reduced. Third, combined with the vectorial approach2, the data complexity of
our attack can be reduced or at least kept at the same magnitude level of that
in [17] as well. A necessary and sufficient condition that determines when the
adversary could gain in the correlation by moving from bit to small vector (or
from low-dimension to high-dimension) in the conditional correlation attack is
proved in theory. Based on it, the vectors used in our attack are constructed
and indeed work well to keep the data complexity as small as possible with-
out a penalty in the time or memory complexities. As a result of all the above
techniques, it is shown that if the first 24 bits of 222.7 frames is available, the
secret key can be reliably found with 227 on-line computations, 221.1 off-line
computations and 4MB memory. Other choices of tradeoff parameters are also
possible. Our attacks have been fully implemented in C language on one core of
a single PC. Due to the small memory consumption and low time complexity,
it is repeated thousands of times with randomly generated keys and IVs, while
the attack in [17] is only executed 30 times for a fixed key with 226 frames. On
average, it takes only a few seconds to restore the original encryption key. To
our knowledge, this is the best and most threatening known-IV attack on the
real Bluetooth encryption scheme so far.

This paper is organized as follows. A full description of the two-level E0 scheme
is presented in Section 2. Various correlation properties about the E0 combiner,
e.g., unconditional and conditional correlations based on condition masking are
studied in Section 3. Inspired by these findings, both bitwise and vector-wise
key recovery attacks based on condition masking are developed in Section 4.
In Section 5, the practical implementation of our attack is described with the
experimental results. Finally, some conclusions are provided and future work are
pointed out in Section 6.

1 Here ’complete’ means that the formula can cover all the correlated input and output
linear masks.

2 Using multiple linear approximations at the same time.
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2 Description of Bluetooth Two-Level E0

The description here is according to the official specification in [3]. The size
of the secret key used in two-level E0 is 128 bits and the IV is 74 bits. The
core is a modification of the summation generator with 4-bit memory. Precisely,
the keystream generator consists of four regularly-clocked LFSRs whose lengths
are 25, 31, 33 and 39 bits, respectively (128 bits in total). Their outputs are
combined by a Finite State Machine (FSM) with 4 bits memory. At each time
t, the following steps are executed.

The keystream generation of E0
Parameters:
1: Bt = (b1t , b

2
t , b

3
t , b

4
t ) ∈ GF (2)4 denote the output bits of four LFSRs

2: Xt ∈ GF (2)4 denotes the 4 memory bits (ct−1, ct) = (c1t−1, c
0
t−1, c

1
t , c

0
t )

3: zt is the keystream bit
Input: Xt, Bt

5: zt = b1t ⊕ b2t ⊕ b3t ⊕ b4t ⊕ c0t
6: st+1 = (s1t+1, s

0
t+1) = � b

1
t+b2t+b3t+b4t+2c1t+c0t

2 �
7: c0t+1 = s0t+1 ⊕ c0t ⊕ c1t−1 ⊕ c0t−1, c

1
t+1 = s1t+1 ⊕ c1t ⊕ c0t−1

8: (ct−1, ct) ← (ct, ct+1)
9: update the LFSRs

It is easy to see that the four LFSRs are equivalent to a single 128-bit LFSR
whose output bit Rt is obtained by xoring the outputs of the four basic LFSRs,
i.e., Rt = b1t ⊕ b2t ⊕ b3t ⊕ b4t and zt = Rt ⊕ c0t .

Next, we introduce the two-level E0 scheme, as shown in Fig. 1. We refer the
time instant t and t′ to the context of E0 level one and level two, and denote
c0t , c

0
t′ by αt, βt′ respectively.

LFSR1G

2G FSM

3G LFSR

FSM

K

iP

i
tR

i
tS '

i
tV

0( )i
t tc

0
' '( )i
t tc

'
i
tz

The first level The second level

Fig. 1. Two-level E0 encryption scheme

1. (The first level) The LFSRs are preset to zero. Given the secret key K
and some IV P i, the LFSRs are initialized linearly as Ri

[−199,··· ,−72] =

(Ri
−199, · · · , Ri

−72) = G1(K) ⊕ G2(P
i), where G1 and G2 are public affine

transformations over GF (2)128.3

3 Hereafter we always use the superscript i to indicate the context of the i-th frame.
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2. The initial 4 memory bits of FSM are all set to 0. After clocking E0 200 times,
we only keep the last produced 128-bit output Si

[−127,··· ,0] = Ri
[−127,··· ,0] ⊕

αi
[−127,··· ,0]. Let M be the state transmission matrix of the equivalent LFSR

over GF (2)128, i.e., Ri
[−127,··· ,0] =M72(Ri

[−199,··· ,−72]). Note that because of

the linear functions G1, G2 and M , the last 128 bits of Ri
t can be written as

Ri
[−127,··· ,0] = (M72 ◦G1)(K)⊕ (M72 ◦G2)(P

i).

3. Si
[−127,··· ,0] is used to initialized the four LFSRs by a byte-wise affine trans-

formation G3 : GF (2)128 → GF (2)128, detailed in Section 4.1 and Appendix
B, this process can be expressed by V i

[1,··· ,128] = G3(S
i
[−127,··· ,0]).

4. (The second level) The FSM initial state remains the same as it was in the
end of the first level. Then E0 produces the keystream zit′ = V i

t′ ⊕ βi
t′ of the

i-th frame for t′ = 1, · · · , 2745.

3 Correlations in the Bluetooth Combiner

In this section, we will carefully study both the unconditional and conditional
correlation properties of the E0 combiner.

3.1 Unconditional Linear Correlations

We first give the definition of correlation used in this paper.

Definition 1. The correlation (or bias) of a random Boolean variable X is
ε(X) = Pr(X = 1)− Pr(X = 0).4

Let Ω(a, (ω, u)) denote the correlation ε(a · st+1 ⊕ ω · ct ⊕ u · Bt), where
a ∈ GF (2)2, u ∈ GF (2)4, ω ∈ GF (2)2 and Bt denote the output bits of four
LFSRs at time t. From Section 2, note that st+1 is symmetric with respect to
each bit and depends only on wt(Bt).

5 Our complete formula for the computation
of unconditional correlations is as follows.

Theorem 2. Let h : (x1, x0) → (x0, x1⊕x0) be a permutation over GF(2)2 and
δ((a1, u1), · · · , (ad−1, ud−1), ad) = ε(a1 · c1 ⊕ u1 · B1 ⊕ · · · ⊕ ad−1 · cd−1 ⊕ ud−1 ·
Bd−1 ⊕ ad · cd), where a1, · · · , ad ∈ GF (2)2 and u1, · · · , ud−1 ∈ GF (2)4. If the
initial state of the FSM is uniformly distributed, then we have

δ((a1, u1), · · · , (ad−1, ud−1), ad) = −
∑

ω∈GF (2)2

Ω(ad, (ω, ud−1)) · δ((a1, u1),

· · · , (ad−3, ud−3), (ad−2 ⊕ h(ad), ud−2), ad−1 ⊕ ad ⊕ ω).

Theorem 2 is a generalization of the formula in [19,20]. It can compute all the
unconditional correlations of the E0 combiner without any miss, e.g., it covers
all the results reported in [10].

4 Note that in some articles, ε(X) = Pr(X = 0) − Pr(X = 1). The only difference is
the sign of the correlation.

5 wt(·) denotes the Hamming weight of a vector.
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3.2 Conditional Correlations Based on Condition Masking

There are two sets of inputs to the FSM in E0 encryption scheme at time t,
i.e., the four LFSR output bits Bt = (b1t , b

2
t , b

3
t , b

4
t ) and the 4 memory regis-

ter bits Xt = (ct−1, ct) ∈ GF(2)4. Consider l continuous time instants and
let γ = (γ0, γ1, · · · , γl−1) ∈ GF (2)l be a linear mask with γ0 = γl−1 = 1.
γ̄ = (γl−1, γl−2, · · · , γ0) is the linear mask in reverse order. Define the inputs
Bt+1 = Bt+1Bt+2 · · ·Bt+l−2 ∈ GF(24(l−2)), Xt+1 = (ct, ct+1) ∈ GF(2)4 and the
FSM outputs Ct = (c0t , · · · , c0t+l−1). Then the function hγBt+1

: Xt+1 → γ · Ct

conditioned on Bt+1 is well defined. It is shown in [17] that given Bt+1, γ ·Ct is
heavily biased for properly chosen linear mask γ.

Consider the function hγBt+1
: Xt+1 → γ ·Ct. With the knowledge of Bt+1 and

Xt+1, we can recursively compute Ct. The bias ε(h
γ
Bt+1

) can be easily computed
by an exhaustive search over all the possible values of Xt+1. For different values
of Bt+1, the bias ε(hγBt+1

) may be different, while the mean value E[ε(hγBt+1
)]

is a good estimate in the attacks. The following definitions are essential in our
attacks.

Definition 3. Let ξ be an arbitrary set, given the function f : ξ → GF (2)r,
the distribution Df of f(X) with X ∈ ξ uniformly distributed is Df(a) =
1
|ξ|
∑

X∈ξ 1f(X)=a, for all a ∈ GF (2)r. As in [2], the Squared Euclidean Imbal-

ance (SEI) of a distribution Df is defined as Δ(Df ) = 2r
∑

a∈GF (2)r (Df (a) −
1
2r )

2. SEI measures the distance between the target distribution and the uniform
distribution.

Specially, for r = 1, we have Δ(Df ) = ε2(Df ). For brevity, we use the ε(f),
Δ(f) to represent ε(Df), Δ(Df ) respectively hereafter. Similarly, E[Δ(hB)] is
used to measure the conditional correlations. Now we are ready for the definition
of condition masking.

Definition 4. Given a function h : GF (2)u × GF (2)v → GF (2)r with inputs
B ∈ GF (2)u, X ∈ GF (2)v, where B is the key related part and the possible
condition vector. Let B = (b0, · · · , bu−1) ∈ GF (2)u and λ = (λ0, λ1, . . . , λu−1) ∈
GF (2)u with supp(λ) = {0 ≤ i ≤ u− 1|λi = 1} = {l1, · · · , lm} (lj < lj+1). Then
the shrunken vector of B defined by λ is B′ = (bl1 , · · · , blm) ∈ GF (2)m. Here λ is
called the condition mask of B. Further, other bits in B form another vector and
is denoted by B∗ ∈ GF (2)u−m, which is the complement part of B′. We define
an operator ′\′ to represent the above process and have B∗ = B \ B′.

This definition indicates that the adversary maybe not use the full vector as the
condition, but only search the correlations conditioned on a subset of B defined
by a mask λ. In the cryptanalysis of E0, Bt+1 is the key related input. Given
a condition mask λ = (λt+1, · · · , λt+l−2) ∈ GF(2)4(l−2), where λj ∈ GF(2)4

corresponds to Bj for j = t+1, · · · , t+ l−2, denote the condition vector defined
by λ by B′

t+1 and its complement by B∗
t+1 which includes the other bits. The

function hγBt+1
can now be generalized as

hΛB′
t+1

: Xt+1,B∗
t+1 → γ · Ct ⊕ ω · B∗

t+1, (1)
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where Λ = (γ, ω) and |ω| = |B∗
t+1|.6 As we can see, this function induces a large

class of correlations based on both the linear mask and the condition mask.
Although the computation process of Ct is frustrated by the condition mask

λ �= 1u, the bias can still be computed. For example, given l = 4 and λ = 0x0f ,7

we have Bt+1 = Bt+1Bt+2, B′
t+1 = Bt+2 and B∗

t+1 = Bt+1. We can guess Bt+2

and compute hΛBt+2
for all the possible choices of Bt+1, Xt+1 to get ε(hΛBt+2

).

Since Bt+1 is the outputs of the LFSRs, it is the key related material. In [17], the
attacker guesses the full vector Bt+1, while now he/she only needs to guess B′

t+1,
a part of Bt+1, to mount the attack. This is the reason that the time/memory
complexities of the attack can be significantly reduced.

Note that in the initialization phase, Bt at level one can be expressed as
Bi
t = Lt(K) ⊕ L′

t(P
i), where Lt and L′

t are the public linear functions. The
knowledge of Bi

t will directly lead to the linear equations on the original key.
This motivates us to study the bias ε(hΛB′

t+1
) defined by a certain condition

mask λ. For 4 ≤ l ≤ 6, we have exhaustively searched the correlations based
on condition masking for all the possible condition masks on a PC. All the
significant biases obtained are also verified in computer simulations working on
sufficiently long output sequences. The time complexity of guessing is determined
by wt(λ). To get better time/memory complexities, we restrain ourselves to
the λs satisfying 1 ≤ wt(λ) ≤ 7. In the experiments, we have found many
important masks, one is listed in the following Table 1. Table 1 is computed
with λ = 0x00f, Λ = (γ, ω) = (0x1f,0|ω|). We get E[Δ(hB′

t+1
)] ≈ 2−3.7, where

B′
t+1 = Bt+3. The following property, shows that the more knowledge of the

LFSR bits B, the larger conditional correlation we will obtain.

Proposition 5. Given a function f with a partial input B and two condition
masks λ1, λ2, let B1 be the condition vector defined by λ1 and B2 be the con-
dition vector defined by λ2. If supp(λ2) ⊆ supp(λ1), then we have E[Δ(fB1)] ≥
E[Δ(fB2)], where equality holds if and only if DfB1

is independent of B1 \ B2.

From this proposition, give a function h : GF (2)u×GF (2)v → GF (2)r with B ∈
GF (2)u, X ∈ GF (2)v and a condition mask λ, we have E[Δ(hB)] ≥ E[Δ(hB′)] ≥
Δ(h). Moreover, for a fixed condition mask λ, its maximum bias among all the

Table 1. The bias with Λ = (γ,ω) = (0x1f, 0|ω|) and λ = 0x00f

ε(hΛ
B′
t+1

) wt(Bt+3) cardinality of Bt+3

0.390625 2 6

−0.390625 0, 4 2

0.0625 3 4

−0.0625 1 4

6 | · | denotes the length of a vector.
7 For brevity, we use the hexadecimal number to represent a vector.
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linear masks Λ is an essential measure of it. The larger the maximum bias, the
better the condition mask is. The following proposition indicates how to choose
the condition mask to make the bias large. We have verified this property by
searching over all the biases of hΛB′ for each combination of λ, γ and ω.

Proposition 6. For 4 ≤ l ≤ 6, let Bt+1 = Bt+1 · · ·Bt+l−2 ∈ GF (2)4(l−2), and
λ = (λt+1, · · · , λt+l−2), λ

′ = (λ′t+1, · · · , λ′t+l−2) are two condition masks with
wt(λ) = wt(λ′) ≥ 4, where λi, λ

′
i ∈ GF (2)4 correspond to Bi. If wt(λt+l−2) = 4

and wt(λ′t+l−2) < 4, then maxΛ(E[Δ(hΛB′
t+1

)]) > maxΛ′(E[Δ(hΛ
′

B′
t+1

)]),8 expect

that when l = 4, wt(λt+1) = 1, wt(λt+2) = 4 and wt(λ′t+1) = 2, wt(λ′t+2) = 3, in
which case the maximum values are equal.

From Proposition 6, wt(Bt+l−2) in Bt plays the most important role in the
correlation values based on condition masking, which determines the magnitude
of the corresponding bias. This fact tells us that when selecting the condition
masks, we should set the highest four bits of λ to 0xf .

4 Our Attacks with Condition Masking

In this section, our attack with the condition masking method is presented in a
step-by-step manner.

4.1 Preliminaries

A statistical distinguisher can be constructed based on the biased distribution
of γ · Ct in [17]. Since Bt+1 is the key related material, the adversary can guess
the involved key information and collect a set of sample sequences from the
keystream, IVs and the guessed key value. By properly choosing the involved
parameters, it is expected that with the correct key, the corresponding sample
sequence is biased, while for the wrong guesses, the underlying sequence will
behave like a random source.

As mentioned before, the essential problem lies in the core of the attack is
to distinguish a biased sample sequence from a pool of random-like sample se-
quences. Since the involved sample sequences are derived from some key related
information, this distinguisher can be used to identify the correct key. Formally,
given a function f : GF (2)m ×GF (2)u−m ×GF (2)v → GF (2)r and a condition
mask λ, let fB′(B∗, X) = f(B′,B∗, X) with B = B′∪B∗ ∈ GF (2)u, X ∈ GF (2)v.
Here the condition vector defined by λ is B′ ∈ GF (2)m and B∗ = B \ B′. If B′

is determined by k-bit key information, then denote by B′K the value derived
when the guessing value of the key material is K, now the problem is as follows.

Definition 7. There are 2k sequences of n samples with the following charac-
teristics: one biased sequence has n samples (fB′K

i
,B′K

i ) (i = 1, . . . , n) with the

8 maxΛ(·) is the maximum function for all Λ.
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correct key K; the other 2k − 1 sequences consists of n independently and uni-
formly distributed random variables (ZK

i ,B′K
i ) (i = 1, . . . , n) with the wrong keys

K �= K. The problem is to efficiently distinguish the biased sequence from the
other sequences with the minimum number n of samples.

Following [2], the minimum number n of samples for an optimal distinguisher
using the unconditional correlation to effectively distinguish a sequence of n
output samples of f from (2k−1) truly random sequences of equal length is n =
4k log2
Δ(f) , while with the smart distinguisher in [17] based on the condition vector

B, the number of samples needed is nB = 4k log2
E[Δ(fB)] . Since E[Δ(fB)] ≥ Δ(f), we

have nB ≤ n. In our condition masking terminology, detailed in Appendix A
Theorem 10, the data complexity becomes nB′ = 4k log 2

E[Δ(fB′ )] , and the online time

complexity are O(nB′ + k2k+1) with pre-computation O(k2k). Besides, |B′| = k.
We should not ignore the impact of the cardinality of the condition vector

|B′| = k on the time/memory complexities. It is easy to see that for λ �= 1u,
the cardinality k can be reduced and accordingly the time/memory complexities
can be exponentially reduced. It is expected that with a careful choice of the
condition mask, we can get better tradeoffs on the time/memory/data complex-
ity curve compared to the case λ = 1u. This is why we introduce the notion of
condition masking to represent this phenomenon. Further, note that not all the
bits in the condition vector B have the same influence on the correlation. In fact,
some are more important than others, i.e., it is of high probability that only a
subset of the condition bits can determine the magnitude of the correlation. For
example, Proposition 6 shows that in the E0 FSM, only the latest four bits of
Bt+1 play the most important role. This is the key observation of our attack.

Next, we build the linear approximations with condition masking. The linear
approximation is based on the re-initialization flaw of two-level E0 [18] detailed

in the Appendix B. Precisely, we have γ̄ · (Zi
t′ ⊕ Lt′(K) ⊕ L′

t′(P
i)) =

⊕4
j=1(γ ·

Ci
tj ) ⊕ γ̄ · Ci

t′ , for i = 1, · · · , n and Lt′ ,L′
t′ are public linear functions. Here we

have t′ ∈
⋃2

d=0{8d+ 1, · · · , 8d+ 9− l}. By Eq.(1), we can rewrite this equation
as follow:

γ̄ ·(Zi
t′⊕Lt′(K)⊕L′

t′(P
i))⊕

4⊕
j=1

(ω ·B∗i
tj+1) =

4⊕
j=1

(γ ·Ci
tj ⊕ω ·B

∗i
tj+1)⊕ γ̄ ·Ci

t′ . (2)

For brevity, given masks λ and Λ, we use the simplified notations hΛB′i
t+1
, hγ̄ to

denote hΛB′i
t+1

(B∗i
t+1, X

i
t+1), h

γ̄(Bi
t′+1, X

i
t′+1) hereafter. Since B∗i

t+1 = Bi
t+1 \ B′i

t+1

is the linear combination of K and P i. Now Eq.(2) becomes

γ̄ · (Zi
t′ ⊕ Lt′(K)⊕ L′

t′(P
i))⊕ ω · (L1(K)⊕ L2(P

i)) =

4⊕
j=1

hΛB′i
tj+1

⊕ hγ̄ , (3)

where L1, L2 are public linear functions. Eq.(3) is the hybrid bitwise linear ap-
proximation based on condition masking for two-level E0, where hΛB′i

tj+1
are
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derived from the first level and hγ̄ contains the unconditional correlation for
the second level.

4.2 Key Recovery Attack with Bitwise Linear Approximation

From Section 3, the largest unconditional bias of hγ is 25
256 with γ = (1, 1, 1, 1, 1)

or (1, 0, 0, 0, 0, 1). To maximize the bias of Eq.(3), we choose these two γs in the
second level approximation, then |γ| = l = 5 or 6. Due to the high time/memory
complexities, the attack in [17] only considered l < 6. While in our attack, the
time/memory complexities are not dependent on |γ|, they are determined by
wt(λ), thus l = 6 can also be used in the condition masking setting.

Given the condition mask λ and the linear masks Λ = (γ, ω), we define the
following sign function to estimate the effective value of hΛB′i

t+1
(Eq.(1)):

gΛ(B′i
t+1) =

{
1, if ε(hΛB′i

t+1
) > 0

0, if ε(hΛB′i
t+1

) < 0
(4)

for all B′i
t+1 ∈ GF (2)wt(λ) such that ε(hΛB′i

t+1
) �= 0. For brevity, let

Bi
λ = (B′i

t1+1,B′i
t2+1,B′i

t3+1,B′i
t4+1),X i = (Y i

t1+1, Y
i
t2+1, Y

i
t3+1, Y

i
t4+1, X

i
t′+1,Bi

t′+1),

where Y i
tj+1 = (X i

tj+1,B∗
tj+1) is the unknown input to hΛB′i

tj+1
, and X i

t′+1,Bi
t′+1

are the inputs to hγ̄ . By Eq.(3), the knowledge of the key K is contained in
Bi
λ,Lt′(K) and L1(K). Let the 4wt(λ) bits K1 = (Lt1(K), Lt2(K), Lt3(K),

Lt4(K)) contained in Bi
λ and K2 = γ̄ ·Lt′(K)⊕ω ·L1(K) be the subkeys. Denote

by ·̃ the guessed value of the argument. The attack is detailed as follow.
First, choose an appropriate condition mask λ and guess the subkeys K̃1 and

K̃2. As P
i is known for each frame i = 1, · · · , n, we can compute the condition

vector Bi
λ. Second, to distinguish the correct keys from the wrong ones, we define

a mapping FΛ
Bi

λ
(X i) as follows.

FΛ
Bi

λ
(X i) =

{ ⊕4
j=1(h

Λ
B′i

t+1
⊕ gΛ(B̃′i

tj+1))⊕ hγ̄ , if
∏4

j=1 ε(h
Λ
B′i

tj+1
) �= 0

a truly random bit, otherwise

With Eq.(4) the value of FΛ
Bi

λ
(X i) can be computed as

FΛ
Bi

λ
(X i) = γ̄ · (Zi

t′ ⊕ L′
t′(P

i))⊕ ω · L2(P
i)⊕ K̃2 ⊕

4⊕
j=1

gΛ(B̃′i
tj+1).

If n frames are available, we can compute the value of FΛ
Bi

λ
(X i) for each possible

key by the above equation n times. With appropriate choice of Λ and λ, if
K1,K2 are correctly guessed, then E[Δ(FΛ

Bi
λ
(X i))] > 0 and we expect FΛ

Bi
λ
(X i)

equals one most of the time. Otherwise, FΛ
Bi

λ
(X i) is estimated by the uniform
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distribution, proved in [17]. Third, we get n outputs of the source for every
possible key. Submitting these samples to the distinguisher in Algorithm 1 in
Appendix A, with the k = 4wt(λ) + 1, u = 16(l− 2),m = wt(λ), v = 20+ 20(l−
2)− 4wt(λ) and r = 1, we are expected to successfully restore the correct keys.

4.3 Key Recovery Attack with the Vectorial Approach

Now we enhance the above attack by using multiple linear approximations si-
multaneously. Since the correlations based on condition masking are not likely
to be larger than those based on the whole condition vector, we appeal to the
vectorial approach to keep the data complexity as low as possible.

Assume we use s mutually independent linear approximations and let Γ =
(Λ1, · · · , Λs) and Γ ′ = (γ̄1, · · · , γ̄s) denote the linear mask of these s approxi-
mations, where Λi = (γi, ωi), and |γ1| = · · · = |γs| = l with s < l. Especially, Λ1

is just the linear mask used in the above bitwise attack. For brevity, let gΓ =
(gΛ1(B′i

t+1), · · · , gΛs(B′i
t+1)), h

Γ
B′i

t+1
= (hΛ1

B′i
t+1

, · · · , hΛs

B′i
t+1

), FΓ
Bi

λ
(X i) = (FΛ1

Bi
λ

, · · · ,
FΛs

Bi
λ

) and hΓ
′
= (hγ̄1 , · · · , hγ̄s). Here the first gΛ1(B′i

t+1) in g
Γ is determined by

Eq.(4). The other bits are determined as follow: e.g., for the j-th bit, we just
let it be an uniformly distributed bit if ε(hΛ1

B′i
tj+1

) = 0, otherwise take 0 or 1

according to the definition in Eq.(4). Since we have found the efficient condition
mask λ and linear mask Λ1 = (γ1, ω1) in the bitwise attack, we extend FΛ1

Bi
λ

to a

s-dimensional vector, i.e.,

FΓ
Bi

λ
(X i) =

{ ⊕4
j=1(h

Γ
B′i

tj+1
⊕ gΓ (B̃′i

tj+1))⊕ hΓ
′
, if

∏4
j=1 ε(h

Λ1

B′i
tj+1

) �= 0

a uniformly distributed s-bit vector, otherwise.

In this way, we have constructed an approximation of two-level E0 in the vecto-
rial approach. For the correct guess K̃ = K, we have FΓ

Bi
λ
(X i) =

⊕4
j=1(h

Γ
B′i

tj+1
⊕

gΓ (B′i
tj+1)) ⊕ hΓ

′
and E[Δ(FΓ

Bi
λ
(X i))] > 0. For each wrong guess, the compo-

nents of the s-dimensional vector FΓ
Bi

λ
are uniformly distributed and we esti-

mate the distribution DFΓ

Bi
λ

(X i) as a s-bit uniform distribution for all i such

that E[Δ(FΓ
Bi

λ
(X i))] = 0. With the appropriate choice of Γ = (Λ1, · · · , Λs), we

can get larger correlation values than those in the bitwise case. Thus, the data
complexity nB′ is effectively reduced compared to the bitwise attack. Again, sub-

mitting 2k sequences of nB′ pairs (FΓ
Bi

λ
(X i), B̃i

λ) to Algorithm 1 in Appendix A,

we can eventually recover the k-bit K.
Now we study how to choose the linear mask vector Γ . We first select a linear

mask Λ1 = (γ1, ω1) in the bitwise attack. Under this Λ1, we search for other
masks Λj (j ≥ 2) to maximize the total correlation. The following theorem
provides a guideline for an adversary to construct the vector by depicting the
criterion when he/she could gain in correlation by moving from (s−1)-dimension
unit to s-dimension unit.
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Theorem 8. Let Γs = (Λ1, · · · , Λs) be the linear mask in the s-dimensional
attack with condition vector B and condition mask λ. Denote the joint probability
by Pa1···as = P (hΛ1

B′ = a1, · · · , hΛs

B′ = as), where ai ∈ GF (2) for 1 ≤ i ≤ s. Let
P00···00 = 1

2s + ξ00···00, P00···01 = 1
2s + ξ00···01, · · · , P11···11 = 1

2s + ξ11···11, where
− 1

2s ≤ ξj ≤ 1
2s for all j ∈ GF (2)s and

∑
j∈GF (2)s ξj = 0, then Δ(hΓs

B′ ) ≥
Δ(h

Γs−1

B′ ), where the equality holds if and only if ξ00···00 = ξ00···01, ξ00···10 =
ξ00···11, · · · , ξ11···10 = ξ11···11.

This theorem indicates that high-dimensional attack will always be better than
or at least be the same as low-dimensional attacks. Besides, if an adversary choose
the linear masks following the rules in this theorem, then he could always gain in
correlation. Further, there are some other rules when choosing Γ . First, the linear
masks γj for j = 1, · · · , s should be linearly independent with s ≤ l− 2. Second,

when the key is wrong, FΛj

Bi
λ

is an uniformly distributed bit for 1 ≤ j ≤ s in the

bitwise attack. If they are independent to each other, FΓ
Bi

λ
follows a s-bit uniform

distribution. Thus when choosing the new Λj = (γj , ωj) (j > 1), we should keep

the independence among the different components FΛj

Bi
λ

for j = 1, · · · , s. Third,
for a fixed Λ1, when we choose some new Λ = (γ, ω) to constitute the vector, we
should choose such γ that γ̄ makes the unconditional correlation ε(hγ̄) = 0 in
the second level approximation, as such γ does not increase the time complexity
after the extension to high-dimensional attack, which is shown in the following
theorem.

Theorem 9. Let Λ1 = (λ1, ω1) be a linear mask adopted in the bitwise attack,
if the jth-dimensional linear mask γj(j ≥ 2) makes the unconditional correla-
tion ε(hγ̄j ) = 0 in the approximation of the second level E0, then γj does not
increase the time complexity when extending the j − 1-dimensional vector to the
j-dimensional vector.

4.4 Theoretical Analysis

Now we present the theoretical justifications of our attack. We first introduce
the definition of Walsh Transform and the convolution transform.

Given f : GF (2)k → R, the Walsh transform f̂ is f̂(ω) =
∑

x∈GF (2)k f(x)

(−1)ω·x, and its inverse transform is f(x) = 2−k
∑

ω∈GF (2)k f̂(ω)(−1)ω·x. The
convolution function of f and g is (f ⊗ g)(a) =

∑
b∈GF (2)k f(b) · g(a ⊕ b) for

a ∈ GF (2)k. Further, the convolution and Walsh Transform are transformable,

i.e., f̂ ⊗ g(a) = f̂(a) · ĝ(a), for all a ∈ GF (2)k.
To compute the convolution function (f ⊗ g)(a), we just perform the FWT of

f and g, multiply them together and then use the inverse Walsh transform. The
time and memory complexities of FWT are O(k2k) and O(2k), respectively.
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By the definition of gΛ, for a certain Bi
λ, g

Λ(B̃′i
tj+1) is a fixed value not de-

pending on X i. Consequently, gΓ has no influence on Δ(FΓ
Bi

λ
). We apply the

Piling-up Lemma [21] and have the data complexity9

nB′ =
4k log 2

E[Δ(FΓ
Bi

λ

)]
=

4k log 2

Δ(hΓ ′ )
∏4

j=1 E[Δ(hΓB′i
tj+1

)]
=

4k log 2

Δ(hΓ ′)E4[Δ(hΓB′i
t+1

)]
. (5)

Now let us discuss the time complexity of our attack. From the expression of FΓ
Bi

λ
,

it can be easily verified that this expression fulfills Theorem 10 in Appendix A,
so our attack can also use the FWT to get the optimal time complexity. For all
the subkeys K = (K1,K2) ∈ GF (2)k−1 ×GF (2), where K1 and K2 are defined
in Section 4.2, we define H,H′ as follows:

H(K) =

nB′∑
i=1

1L′
t1

(P i),··· ,L′
t4

(P i)=K1 and (θ1,··· ,θs)=(K2,1,··· ,1),

H′(K) =

{
0, if

∏4
j=1 ε(h

Λ1

K1,j
) = 0

log 2kDFΓ
Kλ

((K2, 1, · · · , 1)⊕ (η1, · · · , ηs)), otherwise

where θj = γ̄j · (Zi
t′ ⊕ L′

t′(P
i)) ⊕ ωj · L2(P

i) and ηj =
⊕4

i=1 g
Λj (K1,i) for j =

1, · · · , s. In Algorithm 1 in Appendix A, the grade G(K) is a simple convolution

betweenH andH′ (also in [17]), thus we haveG(K) = 1
2k
Ĥ′′(K) whereH′′(K) =

Ĥ(K) · Ĥ′(K). Note that Ĥ′ can be pre-computed in time O(k · 2k) and O(2k)

memory. The preparation of H needs O(nB′) online computation. Ĥ and Ĥ′′
need twice of FWT with time complexity O(k · 2k+1) and O(2k+1) memory.
Therefore, the total time complexity is O(nB′ + k · 2k+1).

To get the optimal performance of our attack, we should carefully choose
the parameters Γ and λ in the linear approximations. The experiments show
that there are many large correlations based on condition masking that can be
used in our attack. For example, for a condition mask λ = 0x00f , we choose 3
linear masks in the following Table 2, the experimental results show Δ(hΓB′

t+1
) ≈

2−2.6, where Γ = ((0x1f,0), (0x1d,0), (0x15, 0x1)). And Δ(hΓ
′
) ≈ 2−6.7, so we

conclude from Eq.(5) that the data complexity is nB′ ≈ 222.7. In this example,
we can recover the k = 17-bit subkey. Let us look at the time complexity in this

Table 2. Example: λ = 0x00f

λ γ ω E[Δ(hΛ
B′
t+1

)]

(1, 1, 1, 1, 1) 0 2−3.7

0x00f (1, 1, 1, 0, 1) 0 2−3.7

(1, 0, 1, 0, 1) 0x1 2−7.6

9 E[Δ(hΓ
B′i
t+1

)] dose not depend on t.
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case. The pre-computation of Ĥ ′ is 17 · 217, and we need time 2 · 17 · 217 ≈ 221.1

to compute Ĥ, Ĥ′′, and time nB′ = 222.7 to compute H, so the total time is
222.7 + 221.1.

5 Practical Implementation

Our attacks have been fully implemented on one core of a single PC, running
with Windows 7, Intel Core 2 Q9400 2.66GHz and 4GB RAM. In general, the
experimental results match the theoretical analysis quite well. We present the
details as follows.

We choose the condition mask λ = 0x00f and γ1 = 0x1f, ω1 = 0, γ2 =
0x1d, ω2 = 0, t′ = 1, nB′ = 224 (slightly more than the theoretical estimate
223.1) in the experiments. The condition bits B′i

t+1 = Bi
t+3. We first collect

nB′ frames for a random key and store them in a binary file. It takes about 4
minutes and 80MB to fulfill this task. With these samples, we run Algorithm
1 in Appendix A to recover the key. The pre-computation of H′ and Ĥ′ needs
about one second and the results are stored in a 4MB table in RAM, not on the
hard disk. Computing H, Ĥ,H′′, Ĥ′′ in total takes about 2 seconds. Compared
with the 37 hours and 64GB table in [17], our attack can be easily carried out
in real time on a single PC.

Our attack is repeated 6000 times with different randomly generated keys and
IVs. In our experiments, the right key does not always rank first. The reason
is that when our guess is wrong, the distribution of gΛ(Bi

t+3) does not behave
exactly as the uniform distribution from the Table 1. We take the first 256
candidates in the list as the possible keys for each run (corresponding to the
256 key candidates equivalent to each other in the experiment of [17]). There is
only one correct key in their equivalent key candidates, thus they also need to
test these 256 equivalent key candidates to recover the right key. The success
probability of our attack is about 38.6% in this case, which can be raised very
high by running it several times or by taking more candidates in the rank list.
Note that in [17], the experiments are only carried out in the basic bitwise level
with 226 frames and repeated 30 times for a fixed key. If the key is changed,
the precomputation of the attack in [17] has to be done again. This fact greatly
weakens the practical effect of their attack.

During the experiments, we also found many other different condition masks
that can improve the attack in [17], some of which are listed in Table 3. The
detailed description of one run of our attack can be found in the full version of
the paper.

Table 3. The complexities of our attack with different condition masks

mask (γ1, · · · , γs) (ω1, · · · , ωs) Precom Time Frames Memory

0x00f (1f, 1d) (0, 0) 221.1 227 223.1 217

0x00f (1f, 1d, 15) (0, 0, 1) 221.1 227 222.7 217

0x101f (21, 23, 31, 35) (0, 0, 0, 0) 229.6 230.6 221.4 225

0x007f (21, 23, 33, 37) (0, 0, 0, 0) 233.9 234.9 220.2 229
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6 Conclusions

In this paper, we have introduced a new cryptanalytic technique, called condition
masking, to characterize the conditional correlation attacks on stream ciphers.
Based on this new concept, we have investigated the conditional correlations of
the two-level E0 scheme and found many useful conditional correlations for the
first time. Combined these correlations with the vectorial approach, we studied
the practical security of two-level E0 and developed the best and most threat-
ening known-IV attack on the real Bluetooth encryption scheme so far. Our
attacks have been fully implemented in C code on one core of a single PC and
are repeated thousands of times with randomly generated keys and IVs. On av-
erage, it takes only a few seconds to restore the original encryption key. This
clearly demonstrates the superiority of our new method. We believe our new
method is generic and applicable to other stream and block ciphers as well. It is
our future work to study the practical ciphertext-only attack on the real Blue-
tooth encryption scheme using the condition masking method. Table 4 gives a
comparison of our attacks with the best previous attacks on two-level E0.

Table 4. Comparison of our attacks with the previous attacks on two-level E0

Attack Precom Time Frames Memory

[7] - 273 - 251

[8] 280 265 2 280

[10] 280 270 45 280

[18] - 240 235 235

[17] 238 238 223.8 233

Ours 221.1 227 222.7 217

Ours 229.6 230.6 221.4 225

Ours 233.9 234.9 220.2 229
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A The Key Recovery Distinguisher Based on Condition
Masking

Algorithm 1. The key recovery method based on condition masking
Parameters: n, λ, B and DfB′
input:
1: for i = 1, 2, . . . , n, B′K

i for all k-bit K
2: ZK

i = fB′(B∗K
i , Xi) for the right key K with uniformly and independently

distributed v-bit vectors Xi and B∗K
i = BK

i \ B′Ki

3: uniformly and independently distributed ZK
i for all the wrong keys K

such that K �= K
Goal: find K
Processing:
4: for all k-bit K do
5: G(K) ← 0
6: for i = 1, · · · , n do
7: G(K) ← G(K) + log2(2

r ·DfB′K
i

(ZK
i ))

8: end for
9: end for
10: output K that maximizes the grade G(K)

Theorem 10. Given a condition mask λ, the above Algorithm 1 solves the prob-
lem in Definition 7 with nB′ = 4k log 2

E[Δ(fB′ )] samples and the time complexity is

O(nB′ · 2k), where the condition bits B′ is defined by λ, the expectation is taken
over all the uniformly distributed B′. Further, if the B′K

i and ZK
i can be expressed

by

B′K
i = L(K)⊕ ai,

ZK
i = L′(K)⊕ a′i ⊕ g(B′K

i ),

for all k-bit K and i = 1, 2, · · · , n, where g is an arbitrary function, L,L′ are
linear functions, and ai, a

′
i are independently and uniformly distributed con-

stants known to the distinguisher. Under these assumptions we can use the
FWT algorithm to achieve the optimal time complexity O(nB′ + k2k+1) with
pre-computation O(k2k). Besides, |B′| = k.
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B The Linear Approximation of Two-level E0

Following the specification in [3], the last generated 128 bits Si
[−127,··· ,0] in

the first level are arranged in octets denoted by S[0], · · · , S[15], e.g., S[0] =
(Si

−127S
i
−126 · · ·Si

−120), where Si
[−127,··· ,0] = Ri

[−127,··· ,0] ⊕ αi
[−127,··· ,0]. From

Section 2, we have V i
[1,··· ,128] = G3(R

i
[−127,··· ,0])⊕G3(α

i
[−127,··· ,0]), whereG3 is de-

picted in Fig.2. For brevity, we define (U i
1, · · · , U i

128) = G3(R
i
[−127,··· ,0]). Accord-

ing to Fig.2, V i
[1,··· ,24] can be expressed as V i

t′ = U i
t′⊕αi

t1⊕αi
t2⊕αi

t3⊕αi
t4 , for t′ =

1, · · · , 24, where t1, t2, t3, t4 are the fixed time instants of αi before the applica-
tion of G3.

S[0] S[4] S[8]

S[1] S[5] S[9] S[12]

S[6] S[10] S[13]S[2]

S[3] S[7] S[11] S[14] S[15]

1
'tb

2
'tb

3
'tb

4
'tb

Fig. 2. Distribution of the last 128 bits in the first level

Note that we have U i
t′ = Ht′(K) ⊕ H ′

t′(P
i), where Ht′ , H

′
t′ are public linear

functions dependent on t′. At the second level, zt′ = Vt′ ⊕ βt′ holds. Hence we
have

zt′ ⊕Ht′(K)⊕H ′
t′(P

i) = αi
t1 ⊕ αi

t2 ⊕ αi
t3 ⊕ αi

t4 ⊕ βi
t′ , for t′ = 1, · · · , 24. (6)

Given a linear mask γ with |γ| = l, let Zi
t′ = (zit′ , · · · , zit′+l−1). Since at level

two (in Fig.2), the 128-bit keystream Si
t are loaded in the reverse order of that

at level one, then Eq.(6) can be rewritten with the linear mask notation as

γ̄ · (Zi
t′ ⊕ Lt′(K)⊕ L′

t′(P
i)) =

4⊕
j=1

(γ · Ci
tj )⊕ γ̄ · Ci

t′ , (7)

for i = 1, · · · , n and Lt′ ,L′
t′ are fixed linear functions which can be derived from

Ht′ , H
′
t′ . Here we have t′ ∈

⋃2
d=0{8d+ 1, · · · , 8d+ 9 − l}.10 Eq.(7) corresponds

to the case of λ = 1u.

10 From Eq.(7), the time instant tj in Ci
tj are continuous, so the approximation is only

set up in this requirement.
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Abstract. While the symmetric-key cryptography community has now
a good experience on how to build a secure and efficient fixed permuta-
tion, it remains an open problem how to design a key-schedule for block
ciphers, as shown by the numerous candidates broken in the related-key
model or in a hash function setting. Provable security against differential
and linear cryptanalysis in the related-key scenario is an important step
towards a better understanding of its construction.

Using a structural analysis, we show that the full AES-128 cannot be
proven secure unless the exact coefficients of the MDS matrix and the
S-Box differential properties are taken into account since its structure is
vulnerable to a related-key differential attack. We then exhibit a chosen-
key distinguisher for AES-128 reduced to 9 rounds, which solves an
open problem of the symmetric community. We obtain these results by
revisiting algorithmic theory and graph-based ideas to compute all the
best differential characteristics in SPN ciphers, with a special focus on
AES-like ciphers subject to related-keys. We use a variant of Dijkstra’s
algorithm to efficiently find the most efficient related-key attacks on SPN
ciphers with an algorithm linear in the number of rounds.

Keywords: SPN, Block Cipher, AES, Related-Key, Chosen-Key.

1 Introduction
Block ciphers and hash functions are among the most important primitives in
cryptography and while their respective goals are different, they are related in
many ways. For example, most compression functions, which can in turn be
used to define a hash function, are built upon an internal block cipher thanks to
classical constructions [19,28] such as Davies-Meyer (DM), Matyas-Meyer-Oseas
(MMO) or Miyaguchi-Preneel (MP). One of the main differences between the
two primitives is that in the case of the block cipher, the key input is unknown
and uncontrolled by the attacker, whereas for the compression function, the at-
tacker has full control over the key schedule (generally called message expansion
in that context). Yet, the so-called related-key attack scenario [3, 5] is interest-
ing for both cases. This model allows the attacker to incorporate differences not
only in the plaintext or ciphertext input, but also in the key input. While less
relevant in practice than the classical single-key model, it is important to an-
alyze block ciphers in the light of related-key attacks since the secret keys are

R. Canetti and J.A. Garay (Eds.): CRYPTO 2013, Part I, LNCS 8042, pp. 183–203, 2013.
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often updated in security protocols or differences can be incorporated using fault
attacks. Moreover, related-key attacks are also very important when the block
cipher is used as inner primitive of a hash function, and in that setting one can
even consider the known-key [22] or chosen-key models [8] where the attacker is
given knowledge or complete control of the key and his goal is to exhibit some
non-ideal property of the primitive.

Avoiding high-probability related-key differential characteristics is one of the
goal of the key schedule, and so far various directions have been investigated to
construct this component. Resisting to attacks in this setting has for example
been taken into account in the conception of the Whirlpool hash function [1],
by using the same AES-like permutation for both the internal permutation and
the message expansion part, leading to a strong key schedule in terms of number
of Sbox calls, but quite slow as it represents about half of the total amount of
computations. As a complete opposite, the designers of the LED block cipher [17]
chose to use no key schedule at all, at the expense that an important number of
rounds is required. These two functions can both provide provable security with
regard to related-key differential attacks, but they also both suffer from efficiency
issues. In general (see for example AES or PRESENT [11]), key schedules are built
by using an ad-hoc and relatively light function that is quite different from the
main permutation, in a hope that this will avoid any correlation between the two
components and enforce low-probability related-key differential characteristics.
However, because of the heuristic design process and the difficulty of the task, no
real security argument is given and this can eventually lead to security issues [7,9].
To help designers and cryptanalysts, many automated differential analyses have
already been applied to various primitives [9, 12, 13, 20, 29].

The AES block cipher [14] is currently the most interesting candidate to scru-
tinize with regard to related-key, chosen-key attacks or when used as a black-box
in cryptosystems: during the NIST SHA-3 hash function competition, many can-
didates [2, 4, 15] reused some components from the AES and related-key attacks
on the AES-192 and AES-256 [7, 8] have been discovered. While differential
and linear attacks against the AES in the single-key scenario seem to be mas-
tered since the design of the cipher focuses in particular to resist to those class
of attacks, provable security against related-key attacks remains more complex
to tackle.

Graph Traversal Algorithms. In [24], Matsui proposes an algorithm to find
the best differential characteristics for DES. The strategy to find the best one on n
rounds first starts by computing the best ones on 1 to n−1 rounds. The algorithm
works by induction and can be seen as a tree traversal in a depth-first manner,
where the tree represents all the possible differential characteristics in the cipher
layered by round. The nodes represent the actual differences and the edges the
possible transitions between them, and are labeled by their probabilities. One
differential characteristic is a path in this tree, and its probability equals the
product of all traversed edges. We are looking for the path with the highest
probability in this tree. The knowledge of the previous best characteristics, i.e.
up to some depth in the tree, allows pruning during the procedure like the A∗
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heuristic [18]: the target value being known (the exhaustive search bound), we
can reduce the possibilities for each one-round transition. Using such algorithm,
the complexity is exponential in the number of nodes in the tree, and therefore
in the block-size and the number of rounds, except if the pruning is very efficient.

In modern byte-oriented ciphers, designers ensure there is a fast diffusion and
that all actual differential transitions occur with the same probability: all differ-
ences become equivalent. Consequently, Matsui’s search algorithm becomes less ef-
ficient since there is no dominant characteristic.Biryukov andNikolić propose in [9]
to restrict the search to truncated differences to decrease the number of edges in the
tree. They also introduce a nice representation of truncated differences to consider
the branching (combinatorial explosion of differences) in the key schedule.

In this article, we change the tree representation from the previous works
into a graph: the nodes and edges have the same signification as before, but we
merge all the nodes representing the same differences into a single one. Matsui’s
tree encodes all the paths of our graph. This merging allows to view the path
search as a Markov process: round i is independent of the paths in rounds 0
to i − 1. Consequently, the numbers of nodes and edges become linear in the
number of rounds. Finding the best differential characteristics is reduced to a
shortest path problem: we want all the shortest paths in this graph to get all
the differential characteristics with the highest probabilities. We use a variant
of Dijkstra algorithm combined with the A∗ heuristic to explore a kind of graph
product in a breadth-first manner. Our algorithm uses a dynamic programming
method, which was considered too costly in terms of memory in [9]. This ap-
proach solves the problem of finding the best related-key characteristics using
graph algorithms in polynomial time in the number of rounds and exponential in
the state, whereas the previous best known methods were exponential in both pa-
rameters using Matsui’s algorithm variants (the search in [9] was made possible
thanks to an extreme pruning in the AES tree).

Structural Evaluation. By structural evaluation, we mean the domain of cryp-
tography that analyzes a cryptosystem in terms of generic constructions using
black-box elements. We are interested in how the building blocks of the primi-
tives interact together, while "ignoring their semantic definitions as particular
functions" as in meet-in-the-middle attacks [10].

In this line of research, a major result is the conception of Rijndael, or how
to construct a block cipher provably resistant to differential attacks. Daemen
and Rijmen show in [14] a lower bound Br on the number of active Sboxes for
any differential characteristic on r rounds of Rijndael, when no difference is
introduced in the key. For an Sbox with maximal differential probability pmax,
this result allows to upper bound the probability of success of any differential
attack on r rounds by pBr

max. For k-bit keys block ciphers, the resistance to dif-
ferential cryptanalysis means p−Br

max > 2k, which gives a criteria on r and pmax

for the security of the cipher. In [10], Biryukov and Shamir analyze the SASAS
construction, alternating five layers of non-linear S and affine A functions. They
show that five such rounds are vulnerable to a very efficient structural attack,
even though the adversary does not know anything about the inner structure of
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both S and A. Finally, we mention the work by Miles and Viola in [26], where
they prove the security of bounded-input-length pseudo-random functions based
on Substitution-Permutation Networks like the AES. In this article, we study the
structural analysis of generic Substitution-Permutation Networks in the related-
key model. Contrary to the single-key model, it seems impossible to prove any-
thing on the key schedule resistance in the same vein as [14, 26], so we build a
tool to study this problem.

Open-Key Model. The open-key model has been introduced so as to inves-
tigate the security of block ciphers in relaxed versions of the standard model.
In [22], Knudsen and Rijmen studied what they called the known-key model
where the key is public and the goal of the adversary consists in distinguish-
ing the cipher from a random permutation. At Crypto 2009, Biryukov et al.
introduced in [8] a more relaxed version called chosen-key model where the
adversary must exhibit a nontrivial property of the cipher when he has the free-
dom of the key bytes as extra parameters. They show how to find differential
q-multicollisions for AES-256 in time q · 267. For an ideal cipher, constructing
q-multicollisions would require at least O

(
q · 2

q−1
q+1 128

)
. At Fse 2010, Gilbert

and Peyrin introduced in [16] particular properties for the known-key model by
using high-probability differential characteristics on 8 rounds of the block cipher
AES-128. Given a key k, two known subspaces ΔIN and ΔOUT , they show how
to find one pair of inputs (m,m′) to the block cipher Ek such that m⊕m′ ∈ ΔIN

and Ek(m) ⊕ Ek(m
′) ∈ ΔOUT more efficiently than a generic attack on a ran-

dom permutation, based on a restricted variant of the birthday paradox. In
this work, given δ, ΔIN and ΔOUT , we are interested in finding a pair of keys
(k, k′) and a pair of messages (m,m′) such that k ⊕ k′ = δ, m⊕m′ ∈ ΔIN and
Ek(m)⊕ Ek′ (m′) ∈ ΔOUT .

Our Contributions. The goal of this article is twofold. First, we describe an
efficient and generic tool that computes all the best differential characteristics for
general SPN ciphers, in particular for AES-like ciphers, and then we apply it to
the structure of the AES-128. While our algorithm also works in the single-key
setting and retrieves the tight proven bounds of the AES structure, we focus this
article on the related-key model where the classical XOR difference is the relation
in the keys. The search complexity for related-key differential is improved from
several days of computations in [9] with a depth-first algorithm to a few hours on
a single PC using our breadth-first approach. We also show that the theoretical
upper bound 2−6·17 = 2−102 mentioned in [9] for the best 5-round characteristic
cannot be reached, since the truncated characteristic can only be instantiated
with a probability at most 2−105.

As an application of our tool, we study AES-128 as a particular SPN cipher.
First, we perform a structural analysis where we consider the MDS property
of the diffusion layer, but we do not specify its coefficients. The results show
that in order to prove the security of 10 rounds of the cipher in the related-
key model, one needs to consider more than just its structure: one needs in
particular to consider the differential properties of the non-linear Sbox. Secondly,
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we analyze the structure of AES-128 in the hash function setting, where the
key schedule and the message parts can be attacked somewhat independently by
the adversary. We also show that this setting cannot be proven secure against
differential cryptanalysis unless additionnal information about the instantiation
of the SPN cipher are provided (e.g., the Sbox and the linear layer). Finally, we
construct a chosen-key distinguisher for 9 rounds of AES-128 that requires 255

simple operations and 232 words of memory storage: this was considered an open
problem until now, e.g. [9]. Our distinguisher exhibits a non-random property in
the chosen-key setting and such a property for an ideal cipher would be detected
only after 268 encryptions queries.

Organization of the Paper. In Section 2, we first introduce definitions re-
garding the ciphers studied and the types of differences we analyze. We then
describe our generic tool and give some improvements in the specific case of
AES-like ciphers in Section 3. Finally, we present the results of our structural
evaluation in Section 4.1, more specifically on AES-128 in Section 4.2, and we
precise the construction of the chosen-key distinguisher for 9 rounds of AES-128
in Section 4.3.

2 Definitions

2.1 SPN and AES-Like Ciphers Description

To keep our reasoning as general as possible, we give in this subsection a generic
description of Substitution-Permutation Network (SPN) ciphers, and we identify
the subgroup of the AES-like ciphers. We refer to the corresponding specifications
for a detailed description of the AES [14,27]. We consider that the block ciphers
studied here take as input a plaintext or ciphertext of size n bits, and a key of size
k bits. The cipher is composed of R successive applications of a round function,
and we denote respectively si and ki the successive internal states of the block
cipher and the key schedule after the i-th round. The state s0 is initialized with
the input plaintext and k0 with the input key. One round i is itself composed of
three layers: a key extraction and incorporation layer (AK) where a n-bit round-
key rki−1 is extracted from ki−1 and xored to si−1, a block cipher permutation
layer BC that updates the n-bit current state of the block cipher after addition
of the subkey, i.e. si = BC(si−1⊕rki−1), and a key schedule transformation layer
KS that updates the k-bit current state of the key schedule, i.e. ki = KS(ki−1).
The final ciphertext is then defined as sR ⊕ rkR.

Definition 1. (SPN cipher) Let a block cipher E whose internal state is viewed
as a tBC-cell vector (where tBC = n

b ), each cell representing a b-bit word, and the
key schedule as a tKS-cell vector (where tKS = k

b ). The block cipher E is called
an SPN cipher when its round function BC is made of a linear function P and
a non-linear permutation S, with BC = P ◦ S, the latter applying one or distinct
b-bit S-Boxes to every cell.

In the even more particular case of AES-like ciphers, the internal state of BC can
be viewed as a square matrix of b-bit cells with d rows and d columns (n = d2 ·b).
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A cell of si is denoted by sx,yi , where x is its row position and y its column
position in the square matrix, starting the counting from 0. Then, the linear
layer is itself composed of the ShiftRows transformation (ShR), that moves each
cell by x positions to the left in its own row, and the MixColumns transformation
(MC), that linearly mixes all the columns of the matrix separately. Overall, for
AES-like ciphers we have BC = P ◦ S = MC ◦ ShR ◦ S (Figure 1).
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Fig. 1. One round of the generic SPN and AES-like ciphers

2.2 Truncated and Actual Differences

In this article, we are interested in differential attacks [6]. Usually, in this scenario
the attacker looks for the bitwise difference between two state values. However,
here we also consider truncated differential attacks [21].

Definition 2. Let A = [Ax,y] and B = [Bx,y] two states. We denote their trun-
cated difference by Δ = [Δx,y] with Δx,y = 1 if and only if Ax,y �= Bx,y (active
cell), and Δx,y = 0 otherwise (inactive cell). We denote their actual difference
by δ = [δx,y] with δx,y = Ax,y ⊕Bx,y.

First, we need analyze the effect of the cipher transformations on the truncated
and actual differences.

The Substitution Layer. One can easily check that the substitution layer S
has no effect on the truncated difference of a cell: a cell remains in the same
active/inactive situation after application of the transformation. However, S has
an effect on the actual difference of every active cells. This effect can be visualized
by the differential distribution table (DDT) of the S-Boxes. More precisely, for
each possible pair (δin, δout) of actual difference on the input/output of the S-
Box S, the table gives the number DDT(δin, δout) = x of values X that validate
this differential transition, i.e. S(X) ⊕ S(X ⊕ δin) = δout. Alternatively, x/2b
represents the differential probability of the transition. An important criteria
that can be derived from this table is the maximal differential probability pmax,
which is the highest possible differential probability when δin �= 0 and δout �= 0.

In order to measure the quality of a truncated differential characteristic, we
use the classical counting of the number of active S-Boxes appearing in the
characteristic, and we denote it | · |.
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Definition 3. Let v = [Δi] be a vector of truncated differences. The weight
of v is the number of active differences in v:

∑
Δi �=0 1. We denote it |v| and

generalize the notion to any matrix v.

The Permutation Layer for AES-Like Ciphers. Since the ShR layer only
moves the cells around, it only changes the active/inactive cells positions in the
internal state, but not their number. The same reasoning applies to the actual
differences. The MC transformation being linear, the effect on the values and
the actual differences is the same and therefore for each column of the internal
state, the output actual differences are simply deduced by the application of the
MC linear matrix. Concerning the truncated differences, the effect depends on
the branching number BMC of the MC matrix. The branching number is the
minimum amount of active cells one can get on both the input and the output
of the matrix, excluding the case when there are both null. This measure of
the diffusion is crucial for the security of many cryptography primitives and, in
general, the MC matrix is Maximum Distance Separable (MDS), that is BMC =
d + 1 is maximal. A valid truncated differential transition forcing i cells to be
inactive on the output happens with probability 2−b·i.

2.3 Structural Evaluation

Considering only truncated differences enables the cipher designers to get an
estimation on the quality of the structure of their primitive in regard to provable
security. As an example, the designers of the AES can easily derive the minimal
number of active S-Boxes in any number of rounds of the cipher in the single-key
model [14], by ignoring the instantiation of the matrix of the diffusion layer. This
means that the same reasoning applies for any diffusion matrix. In this paper,
we are also interested in a generalization of this notion for the related-key model.

More formally, we denote by ES,P a block cipher that uses a substitution layer
instantiated by S, and a permutation layer instantiated by P . On the one hand,
if E represents the AES family of permutations, we can either plug the AES S-Box
SAES (S ← SAES), or a random bijection S (S $← S2b) selected uniformly at
random in the set S2b of the permutations on b bits. In the latter setting, we loose
the information pmax = 2−(b−2) as we can only get 2−(b−1) ≤ pmax ≤ 1, but we
are interested in how the structure of the AES resists to differential cryptanalysis
when we relax the strong information on pmax. We perform the same abstraction
for the P layer, where the matrix is selected uniformly at random in the set of
all the d× d matrices with coefficients in GF(2b).

3 Generic Related-Key Differential Characteristic Search
Tool for SPN Ciphers

In this section, we explain the inner workings of our generic related-key differential
characteristic search tool for SPN ciphers. As a first step, we model the problem by
assuming that the cipher round function is a Markov process in regard to the trun-
cated differential characteristic search (Section 3.1). This allows us to reduce the
problem to a shortest path search in a special (r+ 1)-equipartite directed acyclic
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graph, for which we provide a simple yet powerful algorithm. The precomputa-
tion phase of the process is devoted to building the graphs on which we work on
(Section 3.2), while the online phase looks for the shortest paths (Section 3.3). We
note that we can tweak the Markov assumption to find not only the best truncated
differential characteristics, but also the actual difference ones.

3.1 Differential Characteristic Search as a Graph Modeling of a
Markov Process

We describe here an algorithm that generates for any number of rounds all the
related-key truncated differential characteristics for SPN ciphers with minimal
number of active S-Boxes. This analyzes the structure of the cipher in regard
to the resistance against related-key attacks. We make a simple assumption: we
would like the search to be a Markov process. More precisely, we assume that
the possible differential transitions through a round from one truncated state to
another one does not depend on previous rounds transitions. If we stick to the real
definition of truncated differentials (i.e. without implicit conditions contained),
then this assumption is verified for SPN ciphers: knowing the truncated input
difference of one round represents all the information needed in order to deduce
the possible output ones.

Graph Modeling. In order to find the best r-round related-key truncated
differential characteristics, we use a graph modeling of the problem. Let G be
the 2-equipartite directed acyclic graph of all the possible one-round transitions.
Then all the best r-round related-key truncated differential characteristics corre-
spond to all the shortest paths in the (r + 1)-equipartite directed acyclic graph
Gr built by concatenating r copies of G. Namely, denoting G = (V0, V1 ; E0,1)
the 2-equipartite graph linking with one cipher round a state in set V0 to a state
in set V1 using some edge in set E0,1, we build the graph Gr representing r
rounds of the cipher by Gr = (V0, . . . , Vr ; E) such that for all i, the subgraph
(Vi, Vi+1 ; Ei,i+1) is equal to G. Note that all edges are oriented from Vi to Vi+1,
and that |Vi| = |Vi+1|. The nodes of the graph stand for all the possible pairs
(ΔKS, ΔBC) where ΔKS represents the truncated difference on the key schedule
state and ΔBC represents the truncated difference on the block cipher state.
Since we have 2tKS possible values ΔKS and 2tBC possible values ΔBC, all Vi in
the graph are composed of 2(k+n)/b nodes. The edges correspond to a possible
one-round related-key truncated differential characteristic from the input to the
output vertex and in the worst case where all differential transitions are possible,
we have 22(k+n)/b edges. A path in Gr is defined as a sequence of r + 1 nodes,
one in each of the Vi.

We note that the probability costs are not associated to the edges, but to the
output nodes. Indeed, the number of active cells in the output node represents
the number of active S-Boxes during this round1. We denote CBC (resp. CKS)
the total number of active S-Boxes in the internal permutation part of the block
1 To be able to associate the number of active S-Boxes in the key schedule to the output

node as well, we make the weak assumption that one round of the key schedule is
composed of an S-Box and a linear layer at most.
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Fig. 2. Examples of simplified versions of the two graphs G and G5. Variables si and
ki represent the current internal permutation/key state respectively, while rki stands
for the subkey generated during the round.

cipher (resp. in the key schedule part) in the whole characteristic. Depending
on the situation considered, one might want to minimize CBC +CKS for classical
scenarios, or instead max{CBC;CKS} for hash function settings, where the key
schedule and the block cipher parts can be attacked sequentially (first the key
schedule part, and then the block cipher one).

Theorem 1. (Search algorithm) Let E be a SPN cipher on n-bit blocks using
a k-bit internal state in the key schedule. Both states are viewed as vectors of
b-bit cells. There exists an algorithm A with a theoretical time complexity of
O(r · 2(2n+k)/b) that finds all the best characteristics on r rounds of E.

We emphasize that algorithmA will find all the shortest paths in Gr representing
the differential transitions of r rounds of E . Moreover, we note that the time
complexity of A can be greatly reduced with heuristics. We describe in the next
two sections our tool that searches for the best r-round related-key truncated
differential characteristics.

3.2 Precomputation Phase
The precomputation phase builds the graphG. It can be built and stored efficiently
by observing its inner structure: the block cipher internal state output depends
only on the block cipher internal state input and the incoming subkey (deduced
by the extraction phase from the key schedule internal state input), while the key
schedule internal state output depends only on the key schedule internal state in-
put. Therefore, G can actually be described as a special product of two smaller
graphsGBC and GKS, such that an edge (si, kj) → (si′ , kj′ ) exists in G if and only
if kj → kj′ exists in GKS and (si, kj) → si′ exists in GBC. On the one hand, GBC
is a bipartite directed acyclic graph whose input nodes are all the possible block
cipher internal state and subkey pairs, and whose output nodes are all the possible
block cipher internal state. The edges represent input nodes that can be mapped
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to output nodes through a valid differential transition. On the other hand, GKS is
a 2-equipartite directed acyclic graph, whose input and output nodes are all the
possible key schedule internal states. The edges represent input nodes that can be
mapped to output nodes through a valid differential.

This observation slightly reduces the amount of computation/memory to
build/store G: the number of vertices in GBC is vBC = 2tBC+tKS + 2tBC and the
number of vertices in GKS is vKS = 2 × 2tKS . This has to be compared with the
2×2tBC+tKS nodes in G. For example, in the particular case of the AES-128, this
trick reduces the number of nodes from 233 in G to vBC = 232 + 216 in GBC and
216 in GKS and mainly allows to apply an early-abort approach to prune edges
in G in the online phase. More importantly, the total number of edges shrinks
considerably from eBC · eKS to eG = eBC + eKS, which equals to 233.6 + 222.15 in
the case of AES-128.

The Graph GBC. It can be built by repeating the three following steps for all
the 2tBC possible truncated differences Δin on the input and all the 2tBC possible
truncated differences Δout on the output.

1. Compute all the possible truncated differences Δx that can be obtained from
Δin through the P layer (on the backward direction, a truncated difference
Δout stays the same when inverting the S layer).

2. For every Δx found, compute all the possible truncated differences Δk on
the key state that can be obtained from AK−1(Δx ⊕Δout).

3. For everyΔk found, add an edge in GBC from input node (Δk, Δin) to output
node Δout if none exists.

The time complexity to build GBC depends on the average branching BP of the P
layer and on the average branching Bxor of the subkey XORing layer. It amounts
to 22tBC ·Bxor ·BP operations. The memory cost to store GBC corresponds to the
number of edges eBC of GBC and is upper bounded by 22tBC ·Bxor ·BP since one
operation on step 3 adds at most one edge. We denote succBC(s, k) the set of
successors of the state s in the graph GBC using the key k.

The Graph GKS. It is built by simply going through all the 2tKS possible
key schedule internal state input truncated differences, checking which output
truncated differences can be obtained through the KS layer and adding edges
in GKS accordingly2. The time and memory complexities depend on the average
branching BKS of the KS layer and amounts to 2tKS ·BKS operations. The number
of edges eKS of GKS equals eKS = 2tKS · BKS. In the sequel, we denote succKS(k)
the set of successors of the key k in graph GKS.

3.3 Online Phase

The online phase finds all the shortest paths inGr with at most r·(vG2 ·log(vG2 )+eG)
computations and memory r · eG, thus linear in the number of rounds r. This is
2 We assume that the key schedule is simple: given a truncated difference on the

input, one can find each reachable truncated output difference in constant time. This
assumption is weaker than the one from Footnote 1, and verified by most ciphers
since a very complex key schedule would make the whole primitive inefficient anyway.
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Algorithm 1 – Search all shortest paths in Gr.
1: function Search(Gr)
2: Copy all nodes of Gr in a new graph G∗

r

3: for all v ∈ V0, c(v) ← |v|
4: for all v ∈ V1, . . . , Vr, c(v) ← ∞
5: SortList(V0)
6: for i = 1 → r do
7: for all v′ ∈ Vi, by increasing c(v′) do
8: for all v ∈ succ(v′) do
9: α ← c(v′) + |v|

10: if c(v) = ∞ then
11: c(v) ← α
12: Add the edge v′ → v to G∗

r

13: else if c(v) = α then
14: Add the edge v′ → v to G∗

r

15: SortList(Vi)

16: return G∗
r

possible because Gr is a vertex-weighted directed acyclic graph. Since the edges
have a constant weight (the number of active S-Boxes, i.e. the weights, are on the
nodes and not the edges), the function we want to minimize for each node v ∈ Vi,
i ∈ [1, r] is: |v| + minv′ ∈ pred(v) (c(v

′)), where pred(v) ⊆ Vi−1 is the set of all
predecessors of v and c(v′) represents the cost of the shortest path to v′. In other
words, if we know the shortest path costs to all the v′ ∈ Vi−1, we find the shortest
path to any v ∈ Vi by choosing the predecessor of v with the minimal cost.

This can easily be done by creating a list containing all the nodes v′ ∈ Vi−1

sorted increasingly according to the cost of their shortest path c(v′). Then, start-
ing from the cheapest v′ and ending to the most expensive one, we set the short-
est path cost of all the successors v of v′ to |v| + c(v′) if and only if the cost
of v was not set yet (see Algorithm 1). This is an improvement over the simple
shortest path computation in a directed acyclic graph using a topological order
since we can take advantage of the vertex-weighted property. In practice, we
iteratively build a simpler vertex-weighted directed acyclic graph G∗

r from Gr

(all the nodes are the same, but with less edges), for which each node v ∈ Vi has
a cost equal to the cost of the shortest path to v in Gr, and an edge leading to
v ∈ Vi represents one of the shortest paths to v (see Figure 3). At this point, in
the graph G∗

r the costs assigned to all the nodes v in Vr represent the cost of
the shortest path to v in Gr. If vG represents the number of vertices and eG the
number of edges in the graph G, then the complexity of the shortest path search
is about r · (vG2 · log(vG2 )+ eG) operations: the vG

2 · log(vG2 ) term comes from the
construction of the sorted list of the nodes at each round, and the eG term is
the number of edges visited during each round as we visit all of them. Note that
this is an upper bound on the complexity since we do not need to go through all
vG
2 nodes every rounds, but only a subset of them, and we may cut some edges

among all the eG ones. The term eG = eBC+ eKS dominates the complexity, and
since eBC >> eKS, it can be approximated by the number eBC ≤ 2(n+k)/b × 2n/b

of edges in GBC. Hence, the total time complexity is O(r ·2(2n+k)/b) for r rounds.
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Fig. 3. The dashed edges form an example of a simplified G5. The thick edges describe
paths in the subgraph G∗

5 that are shortest paths in G5 to node (s, k). All the nodes
in G∗

5 are sorted according to their weight, the top being the cheapest ones.

In order to get all the shortest paths in Gr , we need to store at each node
v ∈ Vi not only the first shortest path found to v but all of them (lines 13 and
14 in Algorithm 1). In general, this number is very small and never exceeds the
total number of shortest paths anyway. In the worst case where all paths are the
shortest, it amounts to the total number of edges r · eG.

As explained previously, in practice we do not use the graph G directly, but
two separate graphsGBC and GKS. We can adapt the Algorithm 1 for this setting:
in order to build G∗

r , we replace the for all loop of line 8 that iterates over all
nodes v′ = (si, ki) ∈ Vi by two for all loops that describe all ki+1 ∈ succKS(ki)
and all si+1 ∈ succBC(si, ki+1).

In [24], Matsui introduces an argument equivalent to the A∗ optimization for
path-finding or graph traversal algorithms [18] that allows to prune the majority
of the edges of G and to avoid the evaluation of many sets of successors. If we
know the costs ck of all k-round characteristics, 1 ≤ k ≤ n− 1, and we target an
n-round characteristic of cost at least cn, then we can consider only the nodes
from V0 that have a cost at most cn − cn−1, and the ones in V1 that have a cost
at most cn − cn−2. Intuitively, after one round has been passed, we know that
we paid at least c1, and since there are n− 1 remaining rounds to pass, we will
need to pay at least cn−1. In terms of intervals of costs, for each of the Vi, we
only need to consider nodes that have costs in [ci, cn−cn−i], 0 ≤ i ≤ n assuming
c0 = 0. To take advantage of the A∗ heuristic, we sort the sets of successors in
both graphs, so that we can perform an extreme pruning of the edges whenever
the updated costs exceed the current interval, in an early-abort manner.

Due to space constraints, we cannot detail how to efficiently extend this al-
gorithm to the case of AES-like ciphers, so we continue directly with the conse-
quences of the search for this class of ciphers. However, the full details are given
in the extended version of our paper.

4 Applications to SPN and AES-128

4.1 Structural Evaluation of SPN AES-Like Ciphers

We present here the results on the structural evaluation of the AES-like ciphers
in regard to the related-key model, which provides an estimation of the security
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provided by their key schedule. Namely, we ignore the semantic definition of the
S-Box and the MDS matrix, and we are only interested in how they can interact
in the related-key settings. The results are measured in terms of number of active
S-Boxes as in [22], and presented in Table 1. Lines 2 and 3 of the table provide
the minimum number of active S-Boxes (line 2) for any number of rounds when
implementing an AES-like cipher, and the number of truncated characteristics
that reach that bound (line 3). In these two lines, we count the number of active
S-Boxes in both the state and the subkeys, whereas in lines 4 and 5 of Table 1,
we consider the case of the hash function setting where the block cipher and its
key schedule can be attacked somewhat independently.

Table 1. For the AES-128 cipher on r rounds, this table shows: (1) the minimal
number CKS + CBC of active S-Boxes in both the key schedule CKS and in the block
cipher CBC achievable in truncated differential characteristics; and (2), the same figures
for the minimal number max(CBC, CKS) for the hash function setting. Lines 3 and 5
count the number of distinct truncated characteristics that reach that bound.

Rounds 1 2 3 4 5 6 7 8 9 10
min(CKS + CBC) 0 1 3 9 11 13 15 21 23 25

Trunc. Char. (log2) – 4.52 6.58 10.46 5.00 13.26 16.17 21.34 14.90 21.38
min(max(CBC, CKS)) 0 1 3 6 7 9 11 14 15 17
Trunc. Char. (log2) – 4.00 10.00 11.73 10.00 18.92 23.64 >30 >30 >30

Theorem 2. It is impossible to prove the security of the full AES-128 against
related-key differential attacks without considering both the differential property
of the S-Box and the P layer when two keys verify a certain relation. It is im-
possible to prove the security of the full AES-128 in the hash function setting
without considering both the differential property of the S-Box and the P layer.

Proof. First, in the case where we consider related-key differential attacks where
two keys are related if their difference verify a certain relation (line 2), we remark
that for 10 rounds there exists a truncated differential characteristic counting
only 25 S-Boxes. As we discussed before, this means that a differential analysis
would run in p−25

max operations. Consequently, the structure of AES-128 on its
own is not enough to prove the resistance to related-key attacks for any ciphers
in this class, we at least need to add a criteria on the S-Box via pmax.

Secondly, with an S-Box on n bits (n = 8 in the AES), the minimal theo-
retical pmax that can be obtained is 2−(n−1): consequently, the largest number
of rounds that our structural analysis could attack for AES-like ciphers is 7
rounds. Indeed, for 7 rounds, the 15 active S-Boxes give a differential analysis
requiring p−15

max ≥ 2105 computations, which might be smaller than 2128. We note
that we do not know how to construct an almost-perfect permutation on n bits
acting as an S-Box with pmax = 2−(n−1). The S-Box chosen in the AES imple-
ments a composition of an affine transformation on the inverse mapping, and
reach pmax = 2−(n−2). Hence, the largest number of rounds that our structural
analysis could attack is 8 rounds. Indeed, for 8 rounds, the 21 active S-Boxes
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give a differential analysis requiring p−21
max ≥ 2126 computations, which might be

smaller than 2128. However, when we instantiate the P layer by the one of the
AES-128, we observe that none of the 216.17 characteristics found on 7 rounds
by our search algorithm nor the 221.34 ones for 8 rounds can be instantiated due
to linear constraints coming from the key schedule. This means that proving
or disproving the security of the AES-128 in the related-key setting needs to
consider both the differential properties of the S-Box and the linear equations
of the P layer. From an instantiated P layer, we can write a system Q of linear
equations whose solutions are the values of all the truncated differences of the
characteristic. Therefore, choosing P such that Q can be made inconsistent on
a small number of rounds brings more security than a random P. Our tool can
be used to write this system of linear equations for any truncated differential
characteristic.

Finally, for 10 rounds in the hash function setting, there exists characteristics
with only 17 active S-Boxes. For the AES-128, in the best case, the differential
probability equals 2−6·17 = 2−102. In this setting, the adversary is supposed to
have full control over the input of both the key schedule and the block cipher,
that is why we considered max(CBC, CKS) as an objective function to minimize
in our search algorithm of Section 3. As the previous structural results, this also
means that one cannot prove the security of the full AES-128 against differential
cryptanalysis by only analyzing its structure. �

4.2 Differential Characteristics Results for AES-128

Theorem 3. After 6 rounds, there is no related-key differential characteristic
for AES-128 with a probability higher than 2−128.

Proof. The related-key differential characteristics presented in the previous sec-
tion are valid only when one deals with truncated differences, and these charac-
teristics give an indication on the structural security provided by the AES-128
key schedule. However, due to the choice of the P layer in AES-128, it turns
out that none of them can be instantiated with actual differences, because of
inconsistencies in some linear constraints. To overcome this difficulty, and at the
cost of a bigger graph G to handle, we first add some more information in the
Markov process both on the representation of the key schedule state and the
internal permutation state, and we then filter the best characteristics obtained
and hope to find one that can be instantiated with actual differences. Our algo-
rithm performs a search fundamentally different from [9], but it finds again and
more efficiently the same results.

By a system resolution, we show that from a truncated differential character-
istic, we can decide whether it can be instantiated with actual differences, and
even find an associated differential characteristic with the greatest probability.
As an example, our tool found again the best 17-S-Box truncated differential
characteristic on 5 rounds of AES-128, and also found how to achieve the great-
est probability 2−105 by instantiating the differences. This has to be compared
with the upper bound of 2−6·17 = 2−102 given in [9] since in the best case, all
the AES active S-Boxes have maximal differential probability 2−6. Trying all the
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possible differences that instantiate this truncated differential characteristic, we
show that we cannot reach that bound, but we can only set 15 out of 17 S-Boxes
to the maximal differential probability. The following Table 2 reports the best
related-key characteristics found by our tool on AES-128 up to 5 rounds, with
their respective highest achievable probabilities. Thus, from 6 rounds, there is
no related-key differential characteristic for AES-128 with a probability higher
than 2−128. �

Table 2. After 6 rounds, there is no related-key differential characteristic for AES-128
with a probability higher than 2−128. Our tool retrieved the previous known results
but also provides the real differential characteristics with maximum probability.

Rounds 1 2 3 4 5

min(CKS + CBC) 0 1 5 13 17

max log2(p) 0 -6 -31 -81 -105

Appendix reference – B C D E

4.3 Distinguishing 9 Rounds of AES-128

As another application of our tool, we describe a 9-round distinguisher for
AES-128 in the chosen-key model requiring 255 computations and 232 memory.
For an ideal cipher, the same property would be detected after 268 encryption
queries. Here, the chosen-key model asks the adversary to find a pair of keys
(k, k′) satisfying k ⊕ k′ = δ with a known difference δ, and a pair of messages
conforming to a partially instantiated characteristic in the data part.

We achieve this result by considering the best 5-round related-ley differential
characteristic and propagating it backwards to reach 9 rounds. The 5 last rounds
hence count 6 active S-Boxes in the key schedule part and 11 in the data part
(rounds 5 to 9 in Figure 4 and Table 3). By the backward propagation in the key
schedule, we reach a total of 15 active S-Boxes for the key schedule differential
characteristic, whose probability equals 2−101. Since we have 2128 possible key
values, we expect 227 pairs of keys to conform to the differential characteristic
in the key schedule. In the block cipher part, we prepend three rounds that we
plan to control with an average cost of one computation using the Super-SBox
technique [14, 16, 23], and one more round at the very beginning that we make
as sparse as possible. The entire 9-round differential characteristic is depicted on
Figure 4 and in Table 3.

The Distinguishing Algorithm. Once this differential characteristic settled,
we find inputs that verify the whole characteristic. We start by finding a pair of
keys that conforms to the whole differential characteristic in the key schedule.
There are about 227 expected such pairs of keys, and we can generate them at
an average cost of one computation by picking random values satisfying all the
non-linear transitions and efficiently solve the linear system to retrieve all the
subkeys: our implementation of that part confirms about 227 are found. We note
that the difference k ⊕ k′ = δ is already verified at this stage.
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Fig. 4. Differential characteristic of 9-round AES-128 used in the distinguisher. White
bytes are inactive, gray bytes have known differences, and hatched bytes are truncated
differences.

Table 3. Differential characteristics used in the distinguisher of 9 rounds of AES-128.
The known differences are represented by their values from 0x00 to 0xFF, and trun-
cated differences as ??, since their values are unknown, but non-zero. The two lines for
state differences are respectively the input difference after key addition and the output
difference.

Round State differences Key differences
Plaintext B3??0000 0000??00 28F47A?? ????0000

1 00??0000 0000??00 000000?? ????0000 B3000000 00000000 A6F47A7A 008E0000

00000000 00000000 8EF47A7A ????????

2 00000000 00000000 28000000 ???????? 00000000 00000000 A6F47A7A A67A7A7A

???????? ???????? ???????? ????????

3 ???????? ???????? ???????? ???????? 8E7A7A7A 8E7A7A7A 288E0000 8EF47A7A

??0000?? ????7A7A 8E????7A 0000????

4 ??0000?? ????0000 00????00 0000???? 28000000 A67A7A7A 8EF47A7A 00000000

288E0000 8E7A7A7A 00000000 00000000

5 008E0000 00000000 008E0000 008E0000 28000000 8E7A7A7A 008E0000 008E0000

00000000 8EF47A7A 8EF47A7A 8EF47A7A

6 00000000 008E0000 00000000 008E0000 00000000 8E7A7A7A 8EF47A7A 8E7A7A7A

8EF47A7A 00000000 8EF47A7A 00000000

7 00000000 008E0000 008E0000 00000000 8EF47A7A 008E0000 8E7A7A7A 00000000

8EF47A7A 8EF47A7A 00000000 00000000

8 00000000 008E0000 00000000 00000000 8EF47A7A 8E7A7A7A 00000000 00000000

8EF47A7A 00000000 00000000 00000000

9 00000000 008E0000 008E0000 008E0000 8EF47A7A 008E0000 008E0000 008E0000

???????? ???????? ???????? 00000000

Ciphertext ???????? ???????? ???????? 787A7A7A 78F47A7A 787A7A7A 78F47A7A 787A7A7A

For a pair of keys, we precompute the four arrays Ti containing the paired
values of the ith Super-SBox: those are four parallel 32-bit non-linear applica-
tions obtained by reordering the layers of two rounds of the cipher. To construct
the tables Ti, we iterate in parallel over the 232 input values from state Send

that corresponds to the ith Super-SBox and propagate the values backwards
until S′

start. We note that the difference in Send is completely determined by our
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differential characteristic. We store the pair in Ti indexed by its difference3, so
that this precomputation requires 232 simple operations, a memory complexity
of 232, and depends on the selected pair of keys.

We continue by picking random values for the 5-byte difference after the sec-
ond non-linear layer in Sstart, which linearly fixes all the differences in S′

start.
Note that we can repeat this part about 28·5 = 240 times. From the precomputed
tables Ti, we find on average one pair of messages that verifies the middle rounds
from Sstart to Send. The remaining of the process is probabilistic: backwards, we
expect a fraction of 2−7 pairs to pass the unique specified S-Box transition in
the second round up to ΔIN . Forwards, we expect a fraction of 2−6×8 = 2−48

to verify the 5 last rounds up to ΔOUT (all 8 transitions have been chosen by
our tool to be 8 times the same one with maximal probability pmax = 2−6).
Finally, we expect a fraction 2−7−48 = 2−55 of the pairs generated in the middle
to propagate correctly forwards and backwards.

By repeating this process for all 240 differences in Sstart and for 215 distinct
pairs of keys, we expect to find a solution for the whole characteristic in 215 ·(232+
240) ≈ 255 operations. Note that the freedom degrees left allows to get up to 212

solutions in 267 operations by exhausting the remaining 212 valid pairs of keys.

Ideal Case. For an ideal cipher, the adversary faces a family of random and in-
dependent permutations

{
πi, i ∈ {0, 1}128

}
. His goal is to find a key k and a pair

of messages (m,m′) such that: m⊕m′ ∈ ΔIN and πk(m) ⊕ πk⊕δ(m
′) ∈ ΔOUT ,

where δ, ΔIN and ΔOUT are specified in Figure 4. Namely, δ is a completely
determined 128-bit difference, whereas ΔIN and ΔOUT are two sets of 128-bit
differences defined in Figure 4: colored and white bytes are fixed differences,
while hatched bytes can take several difference values. On the output, we con-
strained each of the three independent active bytes after the last non-linear layer
of the last round to only 127 reachable difference values (since from a fixed input
difference, only 127 output differences can be reached through the AES S-Box),
and the MixColumns layer being linear we have |ΔOUT | = 1273 ' 221. On the
input, 4 bytes in ΔIN can take any difference value and 1 byte is constrained to
only 127 reachable difference values, thus |ΔIN | = 127 · (28 − 1)4 ≈ 239.

The best known method for the attacker to find (k,m,m′) verifying those
properties consists in applying the limited birthday algorithm [16]. The addi-
tional freedom left in choosing the key bits does not help the attacker to find
the actual pair of messages that verifies the required property, since the permu-
tations Fk and Fk⊕δ have to be chosen beforehand. All in all, the attacker has
access to 39 bits of differences at the input and 21 bits in the output, for a pair of
permutations on n = 128 bits. The limited birthday distinguisher on these per-
mutations finds a solution in time max{min(2IN/2, 2OUT/2), 2IN+OUT−n}, with
IN = n − 39 and OUT = n − 21, which gives a time complexity equivalent to
268 encryption queries.

3 To simplify, we assume the differences in S′
start to be uniformly distributed so that

each 32-bit difference appears once. While this simplification is not true in practice,
the cost per solution remains one on average, thus it does not change the complexity
estimation.
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5 Conclusion and Future Works
In this article, we have proposed a simple, efficient and generic algorithm that
searches for (truncated) differential characteristics in the single-key, related-key
or hash function setting for SPN ciphers. Thanks to this method, we were able
to obtain the first non-trivial distinguisher of 9-round AES-128 in the chosen-
key model, which has been a long-lasting open problem on this version of AES.
We also show that no security proof of AES-128 in the related-key model of the
hash function setting can be based only of its structure: one has to take into
consideration both the Sbox and the linear layer. We believe this tool will be
useful for designers that would like to easily test the security of their own key
schedule or message expansion. The research community has still a lot to learn on
the security of key schedules and there are many future works possible: extend the
9-round result on AES-128 to the full 10 rounds, find a single-key like security
proofs in the related-key model for AES-like ciphers (generic enough to work
for any dimension), provide a formal proof of security against differential/linear
cryptanalysis for AES in the related-key model, and build simpler, more efficient
and more secure key scheduling algorithms.

Acknowledgements. We would like to thank the Martjin Stam, Christian
Rechberger and the anonyous referees for their valuable comments on our paper.
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Fig. 5. Best truncated differential characteristics for AES-128 when r = 5 rounds
with 11 active Sboxes
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Fig. 6. Best truncated differential characteristics for AES-128 when r = 10 rounds
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B Differential Characteristic for 2-Round AES-128
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Fig. 8. The best differential characteristic on two rounds of AES-128, which has a
probability p = 2−6. The vector of differences can take as many as 28 values, and for
instance: (1,...,5)=(0x1C,0x0E,0x12,0x01,0x1D).

C Differential Characteristic for 3-Round AES-128
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Fig. 9. The best differential characteristic on three rounds of AES-128,
which has a probability p = 2−31. The vector of differences is
(1,...,d)=(0x1C,0x0E,0x12,0x01,0x1D,0x90,0x0D,0x0B,0xB3,0x58,
0x45,0xF7,0x4B).

D Differential Characteristic for 4-Round AES-128
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Fig. 10. The first best differential characteristic on four rounds of AES-128, which has
a probability p = 2−81. Differences are: � = 0x7A, � = 0x8E and � = �⊕� = 0xF4.
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Fig. 11. The second best differential characteristic on four rounds of AES-128, which
has a probability p = 2−81. Differences are: � = 0x7A, � = 0x8E and � = � ⊕ � =
0xF4.

E Differential Characteristic for 5-Round AES-128
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Fig. 12. The best differential characteristic on five rounds of AES-128, which has a
probability p = 2−105. Differences are: � = 0x7A, � = 0x8E and � = �⊕� = 0xF4.
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Abstract. Proving bounds on the expected differential probability (EDP)
of a characteristic over all keys has been a popular technique of arguing
security for both block ciphers and hash functions. In fact, to a large
extent, it was the clear formulation and elegant deployment of this very
principle that helped Rijndael win the AES competition. Moreover, most
SHA-3 finalists have come with explicit upper bounds on the EDP of a
characteristic as a major part of their design rationale. However, despite
the pervasiveness of this design approach, there is no understanding of
what such bounds actually mean for the security of a primitive once a
key is fixed — an essential security question in practice.

In this paper, we aim to bridge this fundamental gap. Our main result
is a quantitative connection between a bound on the EDP of differential
characteristics and the highest number of input pairs that actually satisfy
a characteristic for a fixed key. This is particularly important for the
design of permutation-based hash functions such as sponge functions,
where the EDP value itself is not informative for the absence of rekeying.
We apply our theoretical result to revisit the security arguments of some
prominent recent block ciphers and hash functions. For most of those,
we have good news: a characteristic is followed by a small number of
pairs only. For Keccak, though, currently much more rounds would be
needed for our technique to guarantee any reasonable maximum number
of pairs.

Thus, our work — for the first time — sheds light on the fixed-
key differential behaviour of block ciphers in general and substitution-
permutation networks in particular which has been a long-standing
fundamental problem in symmetric-key cryptography.

Keywords: block cipher, hash function, differential cryptanalysis, dif-
ferential characteristic, expected differential probability, Grøstl.

� “There is a tide in the affairs of men / Which, taken at the flood, leads on to
fortune; / Omitted, all the voyage of their life / Is bound in shallows and in
miseries. / On such a full sea are we now afloat; / And we must take the current
when it serves, / Or lose our ventures”. The Tragedy of Julius Caesar by William
Shakespeare. Act 4, Scene 3.
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1 Introduction

Block Ciphers and Hash Functions. Block ciphers and hash functions are at
the very core of cryptography today, being accountable for absolutely most data
encryption and authentication occurring in the field. It is not by accident that
block ciphers (AES) and hash functions (SHA) are among the few cryptographic
algorithms standardized by NIST, the U.S. National Institute of Standards and
Technology. The security properties of block ciphers and hash functions are
largely interconnected. The traditional way of building a hash function has been
to employ a block cipher in a mode of operation, such as Davies-Meyer, Matyas-
Meyer-Oseas, Miyaguchi-Preneel or Hirose. Rather lately, it has become popular
to build hash functions from permutations which are usually obtained by fixing
a key in a well-understood block cipher. While SHA-1 and SHA-2 conform to the
former design principle (having the SHACAL block ciphers at their foundation),
SHA-3 (Keccak) — building upon the sponge construction [3] — adopts the
latter one. In the paper, we will deal with the cryptographic fixed-key properties
of block ciphers (or, equivalently, with properties of permutations) — a research
field that, rather unduly as we think, has not received much attention recently.

Differential Cryptanalysis, Differential Characteristics, Probabilities.
Any sound newly developed block cipher or hash function comes with strong
arguments against differential cryptanalysis. It was introduced in 1990 by Bi-
ham and Shamir [7] for recovering the key of round-reduced DES — the former
U.S. Data Encryption Standard. Later they used it to attack the full DES [8].
Differential cryptanalysis was known to the designers of DES (IBM with NSA
involvement) back in the 1970s though [15]. Based on the seminal idea of differ-
ential cryptanalysis, plenty of extensions have been proposed [5,12,27,28,35]. In
fact, it was a variant of differential cryptanalysis that resulted in the first key
recovery for the full AES, though in a weak related-key model [9].

Since its publication for the case of DES, differential cryptanalysis has been
applied to numerous iterative block ciphers, that is, block ciphers whose data
transform consists of consecutive application of similar simpler maps (rounds).

In the differential cryptanalysis context, given a pair of inputs to the ci-
pher with a certain difference Δ0, one tracks the propagation of this differ-
ence through the r round transforms resulting in intermediate differences Δi,
i = 1, . . . , r − 1, and an output difference Δr. The sequence of all these r + 1
differences (Δ0, . . . , Δr) is called a differential characteristic. In a block cipher,
once the key K is fixed, the fixed-key differential characteristic probability (DP)
πK is the probability for a pair of inputs to follow this differential characteristic.
When πK is averaged over all round keys, one obtains the expected differen-
tial characteristic probability (EDP) π. The paper at hand contributes to the
fundamental understanding of the links between DP and EDP.

Hypothesis of Stochastic Equivalence and Plateau Characteristics. As
regards the connection between the fixed-key DP πK and the EDP π for a char-
acteristic in a cipher, the common hypothesis of stochastic equivalence [29] states
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that π ≈ πK for almost all keys. However, there is an essential gap between EDP
π and DP πK , since there can be a significant discrepancy between those values.
Probably the most prominent example of a strictly non-equivalent behaviour is
actually constituted by the AES and its plateau characteristics, that is, differen-
tial characteristics that, depending on the key, have a probability of either 0 or
2h−n, where h is the height of the plateau characteristic and n is the block size.
One presumes that most characteristics over the full AES are plateau of height
1 [21,33] with n = 128. At the same time, it is well known that the value of EDP
for, say, AES-128 does not exceed 2−330.

Bounds on Differential Characteristic Probability as Security Argu-
ment. While the computation of the DP value or even its informative upper-
bounding is known to be a difficult problem in symmetric-key cryptography, it
turns out that it is possible to compute an upper bound on the value of EDP
for a characteristic — at least for some suitable ciphers and under some as-
sumptions. Both block cipher and hash function designers tend to compute such
a bound on the EDP whenever possible. This bound is widely accepted as a
valid security argument not only for block ciphers [14, 18, 26] but also for hash
functions [2, 4, 6, 24, 36].

The starting point of computing an upper bound on EDP is the Markov cipher
assumption which requires the iterative cipher to be such that the transition
probability πΔi,Δi+1 for differences Δi → Δi+1 over a round does not depend
on the actual input value, where the probability is taken over the keys. Under
the Markov cipher assumption and if round keys are independent, it can be
shown [29] that the product of all transition probabilities equals the EDP, π =∏

i πΔi,Δi+1 .
This approach gives the designers of new block ciphers and hash functions

a formal way of arguing the resistance of their primitives towards differential
cryptanalysis. Eventually, it took the symmetric-key community several years
since the introduction of differential cryptanalysis to come up with the paradigm
that finally manifested itself as a winning approach and stipulated the spread of
substitution-permutation networks: the wide trail design strategy [19] (decorrela-
tion theory [34] being another example of a similar but somewhat more general
approach). Here, one builds a primitive such that the minimum number of active
S-boxes (i.e. nonlinear components with nonzero input and output differences in
a differential characteristic) over all nontrivial differential characteristics is max-
imized. Then an upper bound on the difference propagation probability through
an S-box is used to compute the EDP for the full characteristic. In fact, to a
large extent, it was the clear formulation and elegant deployment of the wide
trail design strategy that helped Rijndael win the NIST AES competition.

The application of such approaches is by far not limited to block ciphers
though. Also three out of five SHA-3 finalists (Keccak [4], Grøstl [24] and JH [36])
– including the SHA-3 winner – have come with wide-trail type security ar-
guments, providing some bounds on the EDP. However, the exact meaning –
quantitative or even qualitative – of these bounds appears to have been unclear.
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Criticism of the Expected Differential Characteristic Probability. In-
deed, while an upper bound on EDP does contain information on the behaviour
of a fixed-key differential characteristic on average, interpreting it can be rather
confusing, even for block ciphers. It is not clear what such a bound says when
the key is fixed, like it is the case in almost any block cipher based encryption
procedure or in permutation based hash functions.

As already mentioned above, an upper bound on EDP can get rather low.
For instance, consider the permutation P (or Q) of Grøstl-256. This is a permu-
tation on 512 bits and the designers show that, under the round independency
assumption, any differential characteristic has a probability of less than 2−972,
by using the wide-trail design strategy. Since 2511 (unordered) pairs are possible,
this might seem to indicate that any given characteristic is fulfilled by zero pairs.
But then, it is trivial to find many characteristics that are fulfilled by at least
one pair – just take two inputs with some difference ΔI , apply the permutation
P to it and note down the intermediate differences Δi after each round.

Of course, this situation is not specific to Grøstl since similar arguments are
provided by, among many others, the designers of the SHA-3 winner Keccak,
SHA-3 finalist JH as well as lightweight hash functions such as spongent [13]
and photon [25]. Here, lower bounds on the number of differentially active S-
boxes can only be translated to upper bounds on the expected differential char-
acteristic probability (in other words, on the expected number of pairs following
a characteristic), averaged over all keys. At the same time, such designs rely
on a permutation which is a substitution-permutation network for a fixed key,
usually supplied in form of round constants. The assumption that the rounds
are independent can only be argued strictly if we have independent round keys.
Here this is clearly not the case as the key (resp. the round constants) is fixed.

The Motivation. The question of what bounds on expected differential charac-
teristic probabilities actually imply for permutation-based hash functions (like
Keccak, Grøstl and JH as well as many more recent hash functions such as
spongent and photon) – or even for a block cipher with a fixed key – remains
unanswered. Thus, there is a fundamental lack of understanding of what those
bounds mean. The significance of this problem is emphasized by the large num-
ber of designs that use such bounds without discussing their impact. So, given
that there will always be characteristics that are fulfilled by at least one pair,
what can we hope for? From a designer’s point of view — focusing on differential
characteristics — a reasonable goal will be that with high probability, there is
no characteristic that is fulfilled by more than one pair.

Now, the critical question is: How small should a bound be on the EDP
of a differential characteristic to guarantee this goal above? Concretely, in the
example of Grøstl-256, is 2−972 enough, too big or already far too small?

Somewhat more specifically, the research problem we aim to address in this
work is the following:

Given an upper bound on the expected differential characteristic probability (EDP)
π for a block cipher over all keys, what is the probability to have at most B pairs
of inputs following a differential characteristic for one fixed key?
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Our Main Contribution. In this paper, we answer this question formally and
shed some light on what those bounds mean for constructions with a fixed key
or a fixed constant. The only assumption we are making in our work is that the
number of (unordered) pairs that satisfy a given characteristic follows a binomial
distribution over all possible keys (resp. round constants).

Now we formulate our main result. Let B be a bound on the number of pairs of
input that fulfill a differential characteristic in a block cipher (or a permutation),
once the key is fixed. Let qB be the probability that all nontrivial characteris-
tics are fulfilled by at most B pairs of inputs. Recall that we denote the block
size in bits by n. The main result of our paper is summarized in the next theorem.

Theorem (Main Result). If π is an upper bound on the expected differential
characteristic probability (EDP) for a block cipher (or a permutation) over all
keys, the probability qB that all nontrivial characteristics are fulfilled by at most
B input pairs is lower-bounded by:

qB ≥ 1− πB

(B + 1)!2B
2(B+2)n.

Given this result, one can now obtain the greatest sufficient value of an upper
bound on EDP to achieve the design goal of a permutation having at most
B = 1: An upper bound on π of 2−3n−7 or lower suffices to attain this goal
with probability q1 ≥ 0.99. Using this theorem reciprocally for already existing
designs, we can state, for instance, that the designers’ upper bound of π = 2−972

on the EDP for the P or Q permutations in Grøstl is sufficient to have at most
3 pairs with a probability of at least q3 = 1− 2−363.58.

Though we do not consider the EDP and DP of differentials, our work does
shed light on a fundamental, previously ignored, problem in the design of (round-
based) fixed permutations. The only requirement to apply our result is to provide
a bound on the EDP of a characteristic, which is the only indicator of security
against differential cryptanalysis that designers are usually able to give.

2 Preliminaries

In this section, we introduce our notation and subsequently the statistical model
along with its single assumption. We want our model to deal with all differential
characteristics of a cipher. For this purpose, we introduce what we coin as the
differential characteristic spectrum of a cipher. In a nutshell, this is a list of
probabilities of characteristics along with their quantity. Note that, while this
spectrum is very suitable to model the differential behaviour of a given cipher, for
any real-world cipher it is completely out of reach to compute this spectrum. We
therefore will later, cf. Section 3.1, explain how to bypass the need to compute
the entire spectrum. In this sense, the introduction of the spectrum is a way of
eliminating most of it in a sound manner.
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2.1 The Model

Let n denote the bit size of the primitive (permutation size or block size). Let
p denote the probability of a differential characteristic and Xp denote the ran-
dom variable (taken over independent round keys) which corresponds to the
number of pairs that fulfill a differential characteristic with probability p. Note
that we are always taking the whole input space into consideration. In order to
simplify the treatment, we furthermore always considered unordered pairs . The
sole assumption underlying our model, and thus our results, is that Xp follows
a binomial distribution. More precisely:

Assumption 1. Xp follows (over the independent round keys) a binomial dis-
tribution with parameters (N, p), i.e.

Xp ∼ B(N, p)
where N = 2n−1 is the total number of unordered pairs with a fixed difference.

This assumption has been used frequently in the literature, cf. Section 2.2 for
more details. The only class of characteristics that clearly do not follow a bino-
mial distribution we are aware of are plateau characteristics, most prominently
present in the AES [21,22,33]. We discuss plateau characteristics in Appendix A
and explain in which cases our result extends to those characteristics as well.

Now, as outlined above, we do not only deal with a single characteristic, but
with all characteristics at the same time. There are usually characteristics with
many different probabilities, and conversely many characteristics for a given
probability. Following [10] for a similar concept, we capture this information in
what we refer to as the differential spectrum of a cipher, cf. also the charac-
teristic weight counting function of [20]. For this, denote by (pi)i the set of all
occurring probabilities and by Ai the number of characteristics with probability
pi. For convenience we assume that pi ≥ pi+1, i.e. the probabilities are ordered
in descending order. Note that we explicitly exclude the trivial characteristics,
i.e. the characteristic with input difference 0.

Definition 1 (Differential Spectrum). The vector of pairs S = ((pi, Ai))i is
called the differential spectrum of a cipher.

The complete list of differential characteristics is modeled, according to Assump-

tion 1, by random variables X
(pi)
j ∼ B(pi, 2n−1), where 1 ≤ j ≤ Ai. Clearly, it

holds that ∑
i

piAi = 2n − 1 (1)

simply as every pair follows some (non-trivial) characteristic. Actually, even more
is true, namely

Pr

⎛⎝∑
i

∑
j

X
(pi)
j = 2n−1(2n − 1)

⎞⎠ = 1.
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From this perspective it seems reasonable to assume that the vector (X
(pi)
j )i,j

is multinomial distributed. However, this way one would assume that no other de-
pendency between the individual characteristic exists. This is especially
doubtable in the case of characteristics that are identical for a large number
of rounds and only diverge in the very last (or first) round.

Let us turn to our main focus, i.e. studying the question of what the max-
imal number of pairs is that follow a characteristic. In the above model, this
corresponds to studying the distribution of the random variable ZS defined as

ZS = max
i,j

{X(pi)
j }. (2)

The relevance of ZS is the following. If, for example, we can argue (within our
model) that Pr(ZS ≤ B) = 0.99, we are guaranteed that choosing random round
constants (resp. round keys), will result in 99 out of 100 cases in a permutation
such that no characteristic is followed by more than B pairs.

In particular, for ensuring that any characteristic is fulfilled by at most one
pair, Pr(ZS ≤ 1) should be close to one.

In the sequel, as in Assumption 1, N = 2n−1 will denote the number of
unordered pairs with a fixed difference. Furthermore, B will denote the bound
on the number of pairs we consider and qB = P (ZS ≤ B) denotes the probability
that no characteristic is fulfilled by more than B pairs. For a given spectra we
denote p = p0, i.e. the maximal probability of a characteristic (or an upper
bound on it).

2.2 Binomial Distribution

Since differential cryptanalysis is one of the major cryptanalytic techniques in
symmetric-key cryptography, the distributions of random variables associated
with differential characteristics and differentials have been extensively studied
over the past 20 years. In [1], examples with different EDP and fixed-key DP are
considered and it is noted that computing the average values does not in general
allow one to draw conclusions about the shape of the distributions. In a similar
direction, the work [23] develops a model derived from binomial distribution and
performs experiments in the case of a random permutation. Moreover, it provides
instances of ciphers for which this model holds and does not hold. In [22], it is
shown that for only 2 rounds of the AES, this model is not correct due to the
existence of plateau characteristics (see the discussion in Appendix A).

In [11], experiments show that — at least for some relevant ciphers — the
distribution is actually binomial, that is, as stated in Assumption 1. To estab-
lish a clear independent empirical basis for our theoretical study and to support
the meaningfulness of the assumption, we conducted experiments of our own
on a 16-bit reduced version of present [14]. The experiments depicted in Fig-
ure 1 correspond to 5, 6 and 7 rounds of SmallPresent: As the number of
rounds increases and the EDP of the best characteristic decreases, the deviation
from the binomial distribution is almost non-existant and clearly indicates that
Assumption 1 is realistic in that case.
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Fig. 1. Distribution for the characteristics of SmallPresent (n=16): Comparison be-
tween the distribution of different characteristics with EDP p and the binomial distri-
bution B(2n−1, p).

3 The Link: Bounding the Bound

In this section, we present and prove the main result of this work. First, we
show how to avoid computing the whole spectrum and still be able to make
useful statements about the distribution of ZS , as introduced in (2). Second, we
provide the proof of our main theorem outlined in the introduction.

3.1 Cutting the Spectrum of a Cipher

As introduced in Section 2, we assume that the number of pairs fulfilling a
given characteristic with a certain probability follows a binomial distribution.
As we are interested in primitives where no characteristic is satisfied by many
pairs, we consider the bound on the EDP which is smaller or equal to 2−n, i.e.
p = p0 ≤ 2−n in the sequel.

For a fixed B, we show, in this section, that an underestimate of the qB =
P (ZS ≤ B) can be obtained with partial knowledge of the spectrum. More
precisely, we study what we call a cut of a given spectrum.

Definition 2. Given a spectrum S = (pi, Ai)
w
i=0 we define a cut spectrum of

order t (1 ≤ t ≤ w) by St = (pi, A
′
i)

t
i=0 where

A′
i = Ai for 0 ≤ i ≤ t− 1

and
A′

t =
(2n − 1)−

∑t−1
i=0 Aipi

pt
.

The cut spectrum of order 0 is defined by S0 = (p0, A
′
0) with A

′
0 = 2n−1

p0
.

Thus, by studying a cut of order t of a spectrum, one assumes that all character-
istics with probability less than pt−1 actually have probability pt. The definition
of A′

t then follows directly from (1).
The following theorem shows that, by studying cuts of a given spectrum, we

obtain an underestimate of the cumulative distribution of ZS , cf. (2). While this
might be intuitively reasonable, strictly proving it is rather technical, as we will
see below.



212 C. Blondeau, A. Bogdanov, and G. Leander

Note that all results presented here hold independently of any possible corre-
lation between the individual characteristics. Depending of their relations, tight-
ness of the results can differ but the results remain valid.

Theorem 1. Given a spectrum S and its cuts (St)t, the following holds for any
B ≥ 1.

qB = Pr(ZS ≤ B) ≥ Pr(ZSt ≤ B) ≥ · · · ≥ Pr(ZS0 ≤ B).

In order to prove the statement of the theorem, we first introduce two technical
lemmata.

Lemma 1. Let 2−n ≥ p1 ≥ p2 be two probabilities. For all, i ≥ 2 we have

pi−1
1 (1− p1)

N−i − pi−1
2 (1 − p2)

N−i ≥ 0.

Proof. To prove this inequality, we shall prove that

T =

(
p1
p2

)i−1(
1− p1
1− p2

)N−i

≥ 1.

Assuming that p1 ≥ p2, we have

p1 − p2
p1

≤ − log(1− p1 − p2
p1

) = log(
p1
p2

).

Now the proof follows by a succession of inequalities:

N ≤ 1

2p1
≤ 1− p1
p1 − p2

p1 − p2
p1

⇒ (N − i) ≤ N ≤ 1− p1
p1 − p2

log(p1/p2)

⇒ (N − i)
p1 − p2
1− p1

≤ log(p1/p2) ≤ (i− 1) log(p1/p2)

⇒ (N − i) log(1 +
p1 − p2
1− p1

) ≤ (N − i)
p1 − p2
1− p1

≤ (i− 1) log(p1/p2)

⇒ 0 ≤ (i − 1) log(p1/p2)− (N − i) log(
1− p2
1− p1

)

⇔ 1 ≤ exp

[
(i− 1) log(p1/p2) + (N − i) log(

1− p1
1− p2

)

]
⇔ 1 ≤ T.

��

Lemma 2. Given two random variables X1, X2 with Xi ∼ B(N, pi), i = 1 or 2,
and 2−n ≥ p1 > p2, for all B ≥ 1 it holds that

1

p1
Pr(X1 > B)− 1

p2
Pr(X2 > B) ≥ 0.
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Proof. We consider

C =
1

p1
Pr(X1 > B)− 1

p2
Pr(X2 > B)

=

N∑
i=B+1

(
N

i

)[
pi−1
1 (1 − p1)

N−i − pi−1
2 (1− p2)

N−i
]
.

From Lemma 1, if B ≥ 1, we have

pi−1
1 (1− p1)

N−i − pi−1
2 (1 − p2)

N−i ≥ 0.

And we conclude that C ≥ 0. ��
Now, using these two lemmata, we can prove that the partial knowledge of the
spectrum allows the computation of an underestimate of qB = Pr(ZS ≤ B).

Proof (Proof of Theorem 1). To simplify the notation we denote by Xi a random
variable that follows a binomial distribution with parameters N and pi, i.e.
Xi ∼ B(N, pi).

Using the fact the probability of a union of events is smaller than the sum of
the probabilities of the different events, independently of the correlation between
the different variables Xi, the following holds for any B and any cut spectrum
St:

Pr(ZSt ≤ B) = 1− Pr(ZSt > B) ≥ 1−
t∑

i=0

A′
i∑

j=1

Pr(X
(pi)
j > B)

≥ 1−
t∑

i=0

A′
iPr(Xi > B)

For the cut spectra St = (pi, A
′
i)

t
i=0 and St−1 = (pi, Γ

′
i )

t−1
i=0 , we first prove that:

∀t > 1

t∑
i=0

A′
iPr(Xi > B) ≤

t−1∑
i=0

Γ ′
iPr(Xi > B). (3)

Note that, as a consequence of (1), we have

A′
t =

(2n − 1)−
∑t−2

i=0 A
′
ipi −A′

t−1pt−1

pt
and Γ ′

t−1 =
(2n − 1)−

∑t−2
i=0 Γ

′
ipi

pt−1
.

As for i < t− 1 we have A′
i = Γ ′

i , we obtain

C =

t∑
i=0

A′
iPr(Xi > B)−

t−1∑
i=0

Γ ′
iPr(Xi > B)

= A′
t−1Pr(Xt−1 > B) +A′

tPr(Xt > B)− Γ ′
t−1Pr(Xt−1 > B)

=

[
A′

t−1 −
(2n − 1)−

∑t−2
i=0 A

′
ipi

pt−1

]
Pr(Xt−1 > B) +A′

tPr(Xt > B)

=

[
−
(2n − 1)−

∑t−2
i=0 A

′
ipi −A′

t−1pt−1

pt−1

]
Pr(Xt−1 > B) +A′

tPr(Xt > B)

= ptA
′
t

[
1

pt
Pr(Xt > B)− 1

pt−1
Pr(Xt−1 > B)

]
.
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Given pt−1 > pt, from Lemma 2 it follows that C ≤ 0. The remaining of the
proof follows then applying (3) iteratively for all t. ��

Example. Figure 2 illustrates Theorem 1 for a reduced variant of present.
For SmallPresent [30] with a 16-bit block size, it is still feasible to compute
the spectrum using a branch and bound approach. Clearly, not all character-
istics have the same probability, but different probabilities occur with varying
frequency.

As predicted by Theorem 1, taking only part of spectrum into account, i.e.
studying ZSt , leads to an underestimate of qB = Pr(ZS ≤ B). In this example,
studying S7 already gives a rather tight estimate of the actual value of qB.

As mentioned above, for real-world ciphers even computing such a cut spec-
trum is hard. Indeed, for many primitives, designers can often only provide (a
bound on) the EDP of the most probable characteristic.
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Fig. 2. Influence of cut spectra on qB = P (ZS ≤ B): Experiments on 6 rounds of
SmallPresent with fixed input difference

3.2 At the Limit: Considering the Bound only

In practice, for many primitives, designers are only able to compute (a bound on)
the EDP. In that case, the spectrum is cut to its maximum and is defined by S0 =
(π,A0), where π is an upper bound (or exact value) of the EDP and, following
(1), A0 = 2n−1

π is the total number of these potential characteristics. To simplify
the notation, in this section the random variable associated to characteristics of
this sort is denoted by X .

We recall here the main result of this paper presented in the introduction,
now stated formally:

Theorem 2 (Main Result). Under Assumption 1, if π is an upper bound on
the expected differential characteristic probability (EDP) for a block cipher over
all keys (or a permutation over all round constants), the probability qB that all
nontrivial characteristics are fulfilled by at most B input pairs is lower-bounded
by:

qB ≥ 1− πB

(B + 1)!2B
2(B+2)n. (4)
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Proof. From Theorem 1 and (3), we have:

Pr(ZS ≤ B) ≥ Pr(ZS0 ≤ B) ≥ 1−A0P (X > B) ≥ 1− 2n

π
P (X > B).

Meaning that when only π is known, the tail of cumulative function of ZS can
be bounded by:

Pr(ZS ≤ B) ≥ 1− 2n

π
Pr(X > B). (5)

As we have

Pr(X > B) =
N∑

i=B+1

(
N

i

)
πi(1− π)N−i ≤

N∑
i=B+1

(
N

i

)
πi

≤
N∑

i=B+1

N i

(B + 1)!
πi ≤ 2

(Nπ)B+1

(B + 1)!
,

we conclude that

Pr(ZS ≤ B) ≥ 1− 4

(B + 1)!
NB+2πB.

��

4 The Impact: Shallows and Miseries?

In this section, we inspect the impact of our main result on the practical con-
structions, both block ciphers with a fixed key and permutation-based hash
functions.

4.1 Sufficient Condition

From our main result stated in Theorem 2, we can deduce that the upper bound
on the EDP of a characteristic in a primitive, should be of order of magnitude
π ≈ 2−[(B+2)/B]n, in order for our result to guarantee that no characteristic is
fulfilled by more than B pairs. More precisely, from Theorem 2, we immediately
obtain the following estimate of π:

Corollary 1 (Sufficient Condition). Let CB defined by

CB =
[
(1− qB)(B + 1)!2B

]1/B
.

To guarantee with probability qB = P (ZS ≤ B) that no characteristic is ful-
filled by more than B pairs, it suffices to have the maximal probability π of a
characteristic such that

π ≤ CB2
−[(B+2)/B)]n.
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Fig. 3. Bringing it all together: qB as a function B and EDP bound for characteristics.
The dotted curves are computed with (4). The continuous curves are computed using
(5) in the case where n = 64.

By computing the exact value of CB introduced in Corollary 1, in order to
guarantee that for 99% of the keys or fixed constants, no characteristic is fulfilled
by more than one pair, we should consider permutations where the maximal EDP
is lower than 2−3n−7. For B = 2, the maximum EDP can be up to 2−2n−2. For
larger values of B, CB ≈ 1 and the same security claims can be achieved if π ≤
2−[(B+2)/B]n. In Figure 3, we illustrate that the sufficient condition of Corollary 1
is rather tight. Note that though computations have been performed for n = 64,
results are similar for larger values of n. Most importantly, Figure 3 shows that
the distributions are extremely steep at around 2−[(B+2)/B)]n. Thus, a value of
π slightly below this threshold does not guarantee anything any more, while a
value slightly larger guarantee the non-existence of characteristics followed by
more then B pairs almost certainly.

4.2 Revisiting the Security Arguments of Prominent Primitives

In here, we consider only primitives that come with informative bounds on the
EDP of their differential characteristics which excludes ARX-based designs, for
instance, where no efficient way of arguing tight bounds on EDP is known. How-
ever, we prominently note here that this by no means indicate per se that those
designs are stronger or weaker in cryptanalytic terms. This only says that we can
state much less about those constructions using the state-of-the-art techniques.

The major findings of this section are presented in Table 1. Not all bounds
provided by the respective designers of the primitives mentioned in the table are
actually tight. Proving better bounds on the EDP would improve the probabil-
ities qB for those constructions.

As it usually gets harder to provide strong diffusion with the increase of the
block size, bigger variants of primitives often have a higher value of B0. The
notable exceptions are constituted by the lightweight hash functions photon

and spongent: For photon, while the maximum number of fulfilling pairs
grows first with the size, it gets much lower for its biggest version, which is due
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Table 1. Lower bound on the probability to have at most B pairs following a differential
characteristic for various primitives. The primitives are either block ciphers with a fixed
key (public or secret) or fixed permutations. n: block size. qB : the probability for all
nontrivial characteristics to be fulfilled by at most B input pairs. π: an upper bound on
the the expected differential characteristic probability averaged over all keys. − means
that Theorem 2 does not provide any informative indication for the parameter set. B0

is the minimum value of B such that qB is close to 1.

Primitives n π q1 ≥ q2 ≥ q3 ≥ B0

AES-128 128 2−330 - 1− 2−152.6 1− 2−357.6 2

AES-192 128 2−450 1− 2−68 1− 2−392.6 1− 2−717.6 1

AES-256 128 2−480 1− 2−98 1− 2−452.6 1− 2−807.6 1

Rijndael-192/192 192 2−450 - 1− 2−136.6 1− 2−397.6 2

Rijndael-192 /256 192 2−480 - 1− 2−196.6 1− 2−487.6 2

Rijndael-256 256 2−480 - - 1− 2−167.6 3

present-80/-128 64 2−122 - - 1− 2−53.6 3

LED-64 64 2−400 1− 2−210 1− 2−548.6 1− 2−887.6 1

LED-128 64 2−600 1− 2−410 1− 2−948.6 1− 2−1487.6 1

spongent-88/80/8 88 2−176 - 1− 2−4.6 1− 2−95.6 2

spongent-128/128/8 136 2−272 - 1− 2−4.6 1− 2−143.6 2

spongent-160/160/16 176 2−352 - 1− 2−4.6 1− 2−183.6 2

spongent-224/224/16 240 2−480 - 1− 2−4.6 1− 2−247.6 2

spongent-256/256/16 272 2−544 - 1− 2−4.6 1− 2−279.6 2

photon-80 100 2−216 - 1− 2−36.6 1− 2−155.6 2

photon-128 144 2−294 - 1− 2−16.6 1− 2−169.6 2

photon-160 196 2−384 - - 1− 2−179.6 3

photon-224 256 2−486 - - 1− 2−185.6 3

photon-256 288 2−882 1− 2−20 1− 2−616.6 1− 2−1213.6 1

Grøstl-224/256 512 2−972 - - 1− 2−363.6 3

Grøstl-384/512 1024 2−1469 - - - 5

JH-224/-256/-384/-512 1024 2−1184 - - - 13

to the special case design of the largest permutation [25]. For spongent, the
distribution of B0 is very smooth because of its clearly stated design goal: the
EDP bound of 2−2n for an n-bit permutation [13].

SHA-3 finalists certainly deserve special treatment. The standard behavior of
B0 (its increase as n grows) is clearly visible in Grøstl. The EDP bounds are not
tight for either version of Grøstl though. With the designers’ bounds, one can
state that it is good news for Grøstl since not more than 5 pairs can satisfy a
characteristic here (and only at most 3 pairs for the smaller variant). The bound
of JH is only sufficient to show a maximum of 13 satisfying pairs.
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Table 1 does not contain Keccak. The reason is that the best existing bound
for the 24 rounds of Keccak-f [1600] (with a permutation size of n = 1600 bits)
is actually only 2−296 [16]. So, if one aims to attain the goal of having at most two
satisfying pairs for a Keccak-type permutation given this bound, 10 times more
rounds (240 rounds) would be needed in Keccak-f [1600]. To achieve B0 = 18,
it suffices to take 6 times more rounds (144 rounds). However, if the special
case of 1- to 8-symmetric characteristics is considered, a bound of 2−1648 can
be proven for 18 rounds [4], which leads to B0 = 60 with q60 = 1 − 2−18.1 for
the 18 rounds. Again, we emphasize that this by no means indicates any type
of weakness in Keccak. Having high upper bounds on the EDP of a differential
characteristic prohibits our model from providing any informative bounds on the
number of pairs following a differential characteristic.

5 Conclusion and Future Work

In this paper, we establish the fundamental link of a bound on EDP of a differ-
ential characteristic to its fixed-key DP, i.e. the maximum number of input pairs
that follow a characteristic. We apply our framework to prominent hash func-
tion and block cipher designs. Once the key is fixed (which is almost always the
case in practice), our result is the only formal foundation for arguing the crucial
differential security properties of symmetric-key primitives available so far.

Having said that, we also clearly state some important open problems which
are out of scope of this paper. First, though we constrain ourselves to consider-
ing the EDP and DP of differential characteristics here, a much more interesting
object of study would be the connection between EDP and DP for differen-
tials, which are sets of differential characteristics with certain input and output
differences. However, since even bounding EDP for those is notoriously difficult
(though not impossible, at least for several rounds of suitable constructions [17]),
studying similar questions for differentials seems out of reach given the current
techniques (note that [23] considered the differential behaviour of random per-
mutation — a work that technically bears some similarities with ours). Second,
though the basic differential cryptanalysis is certainly the most essential differen-
tial attack to consider, more advanced techniques such as the rebound attack [31]
often pose a more critical threat, even in the case where the probabilities of any
differential characteristic over the full permutation is very small. However, for
rebound attacks, considering differential characteristics over smaller parts of a
permutation makes a lot of sense: A good bound over a fraction of rounds will
imply that there are only a small number of pairs satisfying a characteristic,
so those values are not easy to find. Multiple inbound stages might undermine
this reasoning though and it is still an open problem to argue provable security
against rebound attacks. We think however that our result opens up the possibil-
ity of making at least some basic security arguments for rebound attacks where
it has not been feasible so far to come up with a sound bound considerations.

We believe that those are some of the most important fundamental problems
in symmetric-key cryptography open today and would like to see the results of
this paper as a first step towards their solution.
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A Plateau Characteristics and Our Model

Especially for the AES, the existence of so called plateau characteristics (intro-
duced in [21, 22]) is a well studied phenomena. Basically, a given characteristic
is plateau if there are only two possible values, 0 and 2h−1 for some positive
integer h, for the number of pairs following this characteristics. In other words,
the number of right pairs following a plateau characteristic with EDP p can be
modeled by a random variable Y satisfying

Y =

{
2h−1 with probability p2n−h

0 with probability (1− p)2n−h .

The value of h is called the height of the characteristic1.
Plateau characteristics for two rounds of AES are well understood. In partic-

ular it has been shown that for two rounds plateau characteristics of height up
to 5 exist. Recently, in [33] some four-round plateau characteristics with height
greater than one have been presented for AES. We are not aware of any results
for more than 4 rounds of AES.

Note that a plateau characteristic of height one for a round-reduced variant
of the primitive, trivially extends to any number of rounds simply because the
number of right pairs never increases as the number of rounds grows. This is not
(in general) the case for plateau characteristic of height greater than one.

Clearly, a plateau characteristic does not follow a binomial distribution. Even
more, in the case where the height h is greater than one, the binomial distribution
clearly underestimates the probability of the characteristic to be fulfilled by 2h−1

or more pairs. Thus, in this case our model does not fit as is.
However, plateau characteristics of height 1 actually do not pose a problem for

our model. In this case, the characteristic is never fulfilled by more than one pair.
By assuming a binomial distribution in our model, we therefore overestimate the
probability of having more than one right pair.

Intuitively, plateau characteristics of height greater than one for all rounds of
AES (or similar constructions) seem unlikely. However, until now their existence
cannot be excluded an, thus, some doubts on the unrestricted applicability of
our model remain.

Finally note that our model can tolerate plateau characteristics of height
greater than one as long as they are not too frequent. More precisely, assume
the existence of A plateau characteristics of height h with EDP below p. In
this case the probability that at least one of them is fulfilled by 2h−1 pairs is

upper bounded by Ap2n−h. Thus is A is sufficiently smaller than 2h−n

p with good
probability all those plateau characteristics are fulfilled by zero pairs and thus
do not affect the validity of our bounds.

1 The “−1” in 2h−1 stems from the fact that we consider unordered pairs, i.e. the total
number of pairs is N = 2n−1 while [22] considers ordered pairs.
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Abstract. This paper presents a new generic technique, named sieve-
in-the-middle, which improves meet-in-the-middle attacks in the sense
that it provides an attack on a higher number of rounds. Instead of
selecting the key candidates by searching for a collision in an intermedi-
ate state which can be computed forwards and backwards, we look for
the existence of valid transitions through some middle sbox. Combining
this technique with short bicliques allows to freely add one or two more
rounds with the same time complexity. Moreover, when the key size of
the cipher is larger than its block size, we show how to build the bi-
cliques by an improved technique which does not require any additional
data (on the contrary to previous biclique attacks). These techniques
apply to PRESENT, DES, PRINCE and AES, improving the previously
known results on these four ciphers. In particular, our attack on PRINCE
applies to 8 rounds (out of 12), instead of 6 in the previous cryptanal-
yses. Some results are also given for theoretically estimating the sieving
probability provided by some inputs and outputs of a given sbox.

Keywords: Meet-in-the-middle, bicliques, sbox, matching algorithms.

1 Introduction

Meet-in-the-middle (MITM) attacks are a widely used tool introduced by Diffie
and Hellman in 1977. Through the years, they have been applied for analyzing
the security of a substantial number of cryptographic primitives, including block
ciphers, stream ciphers and hash functions, e.g. [20,5,12,15,14]. They exploit
the fact that some internal state in the middle of the cipher can be computed
both forwards from the plaintext and backwards from the ciphertext, and that
none of these computations requires the knowledge of the whole master key. The
attacker then only keeps the (partial) key candidates which lead to a collision in
that internal state and discards all the other keys. This generic attack has drawn
a lot of attention and raised many improvements, including the partial matching,
where the computed internal states are not completely known, the technique of
guessing some bits of the internal state [12], the all-subkeys approach [15], splice-
and-cut [2,3,13] and bicliques [18]. The most popular application of bicliques is an

� Partially supported by the French Agence Nationale de la Recherche through the
BLOC project under Contract ANR-11-INS-011.

R. Canetti and J.A. Garay (Eds.): CRYPTO 2013, Part I, LNCS 8042, pp. 222–240, 2013.
c© International Association for Cryptologic Research 2013



Sieve-in-the-Middle: Improved MITM Attacks 223

accelerated exhaustive search on the full AES [4]. But, besides this degenerated
application where the whole key needs to be guessed, short bicliques usually
allow to increase the number of rounds attacked by MITM techniques without
increasing the time complexity, but with a higher data complexity. Moreover,
following [7], low-data attacks have attracted a lot of attention, motivated in part
by the fact that, in many concrete protocols, only a few plaintext-ciphertext pairs
can be eavesdropped. MITM attacks belong to this class of attacks in most cases
(with a few exceptions like bicliques): usually, 1 or 2 known plaintext-ciphertext
pairs are enough for recovering the key.

Our Contribution. This paper first provides a new generic improvement of
MITM algorithms, named sieve-in-the-middle, which allows to attack a higher
number of rounds. Instead of looking for collisions in the middle, we compute
some input and output bits of a particular middle sbox S. The merging step
of the algorithm then consists in efficiently discarding all key candidates which
do not correspond to a valid transition through S. Intuitively, this technique
allows to attack more rounds than classical MITM since it also covers the rounds
corresponding to the middle sbox S (e.g. two middle rounds if S is a superbox).
This new improvement is related to some previous results, including [2] where
transitions through an ARX construction are considered; a similar idea was
applied in [17] in a differential attack, and in [8] for side-channel attacks. This
new generic improvement can be combined with bicliques, since short bicliques
also allow to add a few rounds without increasing the time complexity. But, the
price to pay is a higher data complexity. Here, we show that this increased data
requirement can be avoided by constructing some improved bicliques, if the key
size of the cipher is larger than its block size.

These new improvements and techniques are illustrated with four applications
which improve previously known attacks. In Section 4, the sieve-in-the-middle
algorithm combined with the improved biclique construction is applied to 8
rounds (out of 12) of PRINCE, with 2 known plaintext-ciphertext pairs, while
the previous best known attack was on six rounds. Due to the page limitation,
the other three applications are presented in the full version of this paper [9]
only. In [9], we describe a sieve-in-the-middle attack on 8 rounds of PRESENT,
which provides a very illustrative and representative example of our technique.
This attack applies up to 8 rounds, while the highest number of rounds reached
by classical MITM is only 6. A similar analysis on DES is presented in [9];
our attack achieves 8 rounds, while the best previous MITM attack (starting
from the first one) was on 6 rounds. The cores of these two attacks have been
implemented, confirming our theoretical analysis. In [9], we also show that we
can slightly improve on some platforms the speed-up factor in the accelerated
exhaustive search on the full AES performed by bicliques. The time complexity
of the sieve-in-the-middle algorithm highly depends on the sieving probability
of the middle sbox, i.e., on the proportion of pairs formed by a partial input
and a partial output which correspond to a valid transition for S. We then give
some results which allow to estimate the sieving probability of a given sbox. In
particular, we show that the sieving probability is related to the branch number
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of the sbox, and we give a lower bound on the minimal number of known input
and output bits which may provide a sieve.

2 The Sieve-in-the-Middle Attack

2.1 Basic Idea

The basic idea of the attack is as follows. The attacker knows one pair of plaintext
and ciphertext (P,C) (or several such pairs), and she is able to compute from
the plaintext and from a part K1 of the key candidate an m-bit vector u, which
corresponds to a part of an intermediate state x. On the other hand, she is able
to compute from the ciphertext and another part K2 of the key candidate a p-
bit vector v, which corresponds to a part of a second intermediate state y. Both
intermediate states x and y are related by y = S(x), where S is a known function
from Fn

2 into Fn′
2 , possibly parametrized by a part K3 of the key. In practice, S

can be a classical sbox, a superbox or some more complex function, as long as
the attacker is able to precompute and store all possible transitions between the
input bits obtained by the forward computation and the output bits obtained
backwards (or sometimes, these transitions can even be computed on the fly). In
particular, the involved intermediate states x and y usually correspond to partial
internal states of the cipher, implying that their sizes n and n′ are smaller than
the blocksize.
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Fig. 1. Generic representation of Sieve-in-the-Middle

Then, the attacker is able to compute some pairs (u, v) in Fm
2 × Fp

2 and
she wants to determine whether those pairs can be some valid parts of a pair
(x, S(x)) for some x ∈ Fn

2 (and for some K3 if S depends on a part of the key).
If it appears that no input x ∈ Fn

2 can lead to a given (u, v), then the keys
(K1,K2) from which (u, v) has been obtained do not form a valid candidate for
the key. In such a case, the (m + p) positions corresponding to (u, v) can be
used as a sieve. The sieving probability is then the proportion of pairs (u, v)
corresponding to valid parts of (x, S(x)). Obviously, in classical MITM attacks,
u and v correspond to the same n-bit part of an intermediate state and S = Idn;
the sieving probability is then equal to 2−n. We now define precisely when a pair
(I, J) of input and output positions can be used as a sieve.
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Definition 1. Let S be a function from Fn
2 into Fn′

2 . Let I ⊂ {1, . . . , n} and J ⊂
{1, . . . , n′} be two subsets with respective sizes m and p. The sieving probability
of (I, J), denoted by πI,J , is the proportion of all elements in Fm+p

2 which can
be written as (xi, i ∈ I;Sj(x), j ∈ J) for some x ∈ Fn

2 . The pair (I, J) is called
an (m, p)-sieve for S if πI,J < 1.

The smaller πI,J , the better the sieving, because more candidates will be dis-
carded. If S depends on a k3-bit value key K3, the definition similarly applies
but S must be seen as a function with (k3 + n) inputs.

When a large number of inputs and outputs of S can be computed by the
attacker, they can be used as a sieve, as shown in the following proposition.

Proposition 1. Any pair (I, J) of sets of size (m, p) with m+ p > n is a sieve
for S with sieving probability πI,J ≤ 2n−(m+p).

Proof. For any given u, there exists exactly 2n−m values of x such that (xi, i ∈
I) = u. Thus, (Sj(x), j ∈ J) can take at most 2n−m different values, implying
that πI,J ≤ 2n−(m+p).

However, smaller subsets I and J may provide a sieve even when m + p ≤ n.
This issue will be extensively discussed in Section 5. More generally, u and v may
consist of some information bits of x and y, i.e., of some linear combinations of
the bits of x and y. We then define two linear functions L : x ∈ Fn

2 �→ u ∈ Fm
2

and L′ : y ∈ Fn
2 �→ v ∈ Fp

2. The corresponding sieving probability π is now
the proportion of (u, v) such that there exists x ∈ Fn

2 with L(x) = u and
L′(S(x)) = v. Then, π can be seen as the sieving probability of I = {1, . . . ,m}
and J = {1, . . . , p} for the function L′◦S◦L̃−1 where L̃ is any linear permutation

of Fn
2 such that (L̃(x)i, i ∈ I) = L(x).

2.2 Description of the Attack

We now precisely describe the improved MITM attack and provide its complex-
ity. The secret key K is divided into four (possibly non-disjoint) parts, K1 to
K4. K1 (resp. K2) is the part of the key used in the forward (resp. backward)
computation, while K3 is involved in the middle S function only (see Fig. 1).
The key bits corresponding to K4 are not involved in the MITM step. In the fol-
lowing, ki denotes the length of the key part Ki, while k is the total key length.
Moreover, K1 ∩K2 denotes the bits shared by K1 and K2, and κ corresponds to
the size of this intersection.

We denote by I (resp. J) the set of input positions of S (resp. output positions)
corresponding to u (resp. v). The fact that a pair (u, v) corresponds to a valid
pair of inputs and outputs of S is characterized by a Boolean relation R with
(m+ p) inputs defined by

R(u, v) = 1 if and only if ∃x ∈ Fn
2 : (xi, i ∈ I) = u and (S(x)j , j ∈ J) = v .
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The attack proceeds as follows.

for all 2κ values of K1 ∩K2 do
Lf ← ∅ and Lb ← ∅
// Forward computation
for all 2k1−κ values of the remaining bits of K1 do
compute u = FK1(P ) and add u to Lf

// Backward computation
for all 2k2−κ values of the remaining bits of K2 do
compute v = BK2(C) and add v to Lb

// Merging step
Merge Lf and Lb w.r.t. Relation R and return the merged list Lsol.

// Testing the remaining candidates
for all K with (K1,K2) in Lsol do
if EK(P ) = C then
return K

Section 2.3 details some efficient algorithms for merging the two lists Lf and
Lb (i.e. for recovering all the (u, v) which satisfy R(u, v) = 1) with complexity
lower than the product of their sizes.

With a Single Plaintext-Ciphertext Pair. Obviously, the whole secret key
can be recovered only if the key length does not exceed the blocksize. Otherwise,
2k−b possible keys will be returned in average where b is the blocksize. The time
complexity of the attack is given by:

2κ
(
2k1−κcF + 2k2−κcB + Cmerge

)
+ π2kcE ,

where π is the sieving probability of (I, J) as defined in Definition 1, cE is the cost
of one encryption, while cF and cB correspond to the costs of a partial encryption
in the forward and backward directions. In most cases, cF ' cB ' cE/2. Cmerge

is the time complexity of the merging step, and it depends on k3. Its value is
discussed in the following section. The average time complexity of the attack
needs to be compared to 2kcE which is the cost of the exhaustive search. The
memory complexity is mainly determined by the memory needed in the merging
step. In some cases, it can be improved by storing only one among the two lists
Lf and Lb, when the auxiliary lists used in the merging step remain smaller.

With N Plaintext-Ciphertext Pairs. If N plaintext-ciphertext pairs are
available to the attacker, then the average number of keys returned by the attack
is 2k−Nb, implying that the whole key will be recovered when N ≥ k/b. The main
modification in the attack concerns the last step where all key candidates in Lsol

are tested: before performing an exhaustive search over (K1 ∩K2) and K4 for
testing all keys with (K1,K2) ∈ Lsol, an additional sieving step is performed
in order to reduce the size of Lsol. Once a new solution (K1,K2) ∈ Lsol has
been found, (N − 1) additional pairs (ui, vi) generated from the other plaintext-
ciphertext pairs are considered, and only the keys for which R(ui, vi) = 1 are
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kept in Lsol (note that, in some very particular situations, it might be more
efficient to directly include in Lf and Lb the values u and v generated from
several plaintext-ciphertext pairs, and then merge the lists). The average size of
Lsol after this additional sieving step is then πN2k1+k2−2κ . But this formula
should be adapted to the case where S depends on a part of the secret key
K3: indeed the merging step determines a candidate for (K1,K2,K3). Then, the
sieving probability of the additional sieving step π′ differs from π since the value
of K3 is now fixed. π′ is then the sieving probability of (I, J) for SK3 averaged
over all K3. Then, in the case of N plaintext-ciphertext pairs, the cost of the
forward and backward computations are multiplied by N , while the cost of the
testing part decreases:

2κ
(
N2k1−κcF +N2k2−κcB + Cmerge

)
+ π(π′)N−12kcE .

2.3 Merging the Two Lists Efficiently

Very often, the middle function S can be decomposed into several smaller sboxes,
and the merging step can be performed group-wise. The problem of merging
two large lists with respect to a group-wise Boolean relation has been defined
and addressed by Naya-Plasencia in [19, Section 2]. Here, we focus on three
algorithms proposed in [19], namely instant matching, gradual matching and an
improvement of the parallel matching due to [10]. We provide general and precise
formulas for the average time and memory complexities of these three algorithms.
Actually, in our case, the lists to be merged may be small. Then, the construction
of some auxiliary tables, which had a negligible cost in [19] for large lists, must
now be taken into account. It might even become the bottleneck of the algorithm.
Thus, when the involved lists are small, it is harder to determine a priori which
algorithm is the most efficient in a given case. Then, in each application, we need
to check thoroughly which algorithm provides the best complexity. The optimal
case may even sometimes correspond to the combination of two algorithms.

In the following, we consider two lists, LA of size 2�A and LB of size 2�B , whose
roles are interchangeable. The elements of both lists can be decomposed into
t groups: the i-th group of a ∈ LA has size mi, while the i-th group of b ∈ LB

has size pi. The Boolean relation R can similarly be considered group-wise:
R(a, b) = 1 if and only Ri(ai, bi) = 1 for all 1 ≤ i ≤ t. The sieving probability
π associated to R then corresponds to the product of the sieving probabilities
πi associated to each Ri. Since each Ri corresponds to an sbox Si with ni-bit
inputs, a table storing all (ai, bi) such that Ri(ai, bi) = 1 can be built with
time complexity 2ni , by computing all (xi, Si(xi)), xi ∈ Fni

2 . The corresponding
memory complexity is proportional to πi2

mi+pi . This cost won’t be included
in the cost of the merging algorithm since, in the sieve-in-the-middle process,
the tables will be built once for all and not 2κ times. As we will see, in some
situations, these tables can be built “on-the-fly” with much fewer operations.

A complete description of the three matching algorithms is provided in the
full version [9]. It is worth noticing that the size of the list Lsol returned by the
matching algorithm is not included in the memory complexity since each of its
elements can be tested in the attack as soon as it has been found.
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Instant Matching. Instant matching successively considers all elements LB :
for each b ∈ LB, a list Laux of all a such that R(a, b) = 1 is built, and each
element of Laux is searched within LA. Its complexity is

Time = π2�B+m + π2�A+�B and Memory = 2�A + 2�B .

Gradual Matching. Gradual matching is a recursive procedure: all elements
are decomposed into two parts, the first t′ groups and the last (t − t′), with
t′ < t. For each possible value β of the first t′ groups, the sublist LB(β) is built.
It consists of all elements in LB whose first t′ groups take the value β. Now, for
each α such that Ri(αi, βi) = 1, 1 ≤ i ≤ t′, LB(β) is merged with the sublist
LA(α) which consists of all elements in LA whose first t′ groups take the value

α. Then, we need to merge two smaller lists, of respective sizes 2�A−∑t′
i=1 mi and

2�B−∑t′
i=1 pi .

Time =

⎛⎝ t′∏
i=1

πi

⎞⎠ 2
∑t′

i=1 mi+piCmerge and Memory = 2�A + 2�B .

where Cmerge is the cost of merging the two remaining sublists.

Parallel Matching without Memory. We give here the first general descrip-
tion of the memoryless version of parallel matching. This algorithm applies an
idea from [10] to the parallel matching algorithm from [19]: instead of building
a big auxiliary list as in the original parallel matching, we here build small ones
which do not need any additional memory. In parallel matching, the elements
in both lists are decomposed into three parts: the first t1 groups, the next t2
groups, and the remaining (t− t1 − t2) groups. Both lists LA and LB are sorted
in lexicographic order. Then, LA can be seen as a collection of sublists LA(α),
where LA(α) is composed of all elements in LA whose first t groups equal α.
Similarly, LB is seen as a collection of LB(β). The matching algorithm then pro-
ceeds as follows. For each possible value α for the first t groups, an auxiliary list
Laux is built, corresponding to the union of all LB(β) where (α, β) satisfies the
first t relations Rj . The list Laux is sorted by its next t2 groups. Then, for each
element in LA(α), we check if a match for its next t2 groups exists in Laux. For
each finding, the remaining (t− t1− t2) groups are tested and only the elements
which satisfy the remaining (t − t1 − t2) relations are returned. Details on the
evaluation of the time and memory complexities are given in [9].

Time =

(
t1∏
i=1

πi

)
2�B+

∑t1
i=1 mi +

(
t1+t2∏
i=t1+1

πi

)
2�A+

∑t1+t2
i=t1+1 pi +

(
t1+t2∏
i=1

πi

)
2�A+�B

Memory = 2�A + 2�B +

(
t1∏
i=1

πi

)
2�B .



Sieve-in-the-Middle: Improved MITM Attacks 229

3 Combining Sieve-in-the-Middle and Bicliques

Sieve-in-the-middle, as a generic technique, can be combined with other improve-
ments of MITM attacks, in particular with bicliques [4,18]. The general purpose
of bicliques is to increase the number of rounds attacked by MITM techniques.
Here, we briefly describe how bicliques can increase the number of rounds at-
tacked by the previously described sieve-in-the-middle algorithm. This can be
done at no computational cost, but requires a higher data complexity. In order to
avoid this drawback, we then present an improvement of bicliques which applies
when the key length exceeds the block size of the cipher.

3.1 Sieve-in-the-Middle and Classical Bicliques

The combination of both techniques is depicted on Figure 2: the bottom part is
covered by bicliques, while the remaining part is covered by a sieve-in-the-middle
algorithm. In the following, HK8 : X �→ C denotes the function corresponding
to the bottom part of the cipher, and K8 represents the key bits involved in
this part. Then, K8 is partitioned into three disjoint subsets, K5, K6 and K7.
The value taken by Ki with 5 ≤ i ≤ 7 will be represented by an integer in
{0, . . . , 2ki − 1}. A biclique can be built if the active bits in the computation
of HK8(X) when K6 varies and the active bits in the computation of H−1

K8
(C)

when K5 varies are two disjoint sets. In this case, an exhaustive search overK7 is
performed and a biclique is built for each value h of K7 as follows. We start from
a given ciphertext C0 and a chosen key K0

8 = (0, 0, h) formed by the candidate
for K7 and the zero value for K5 and K6. We compute X0

h = H−1
0,0,h(C

0). Next,

we compute backwards from C0 the intermediate state X i
h = H−1

i,0,h(C
0) for each

possible value i for K5. Similarly, we compute forwards from X0
h the ciphertext

Cj
h = H0,j,h(X

0
h) for each possible value j of K6. Since the two differential paths

are independent, we deduce that Hi,j,h(X
i
h) = Cj

h for all values (i, j) of (K5,K6).
Then, the sieve-in-the-middle algorithm can be applied for each K7 and each

value for (K1 ∩K2). The list Lb of all output vectors v is computed backwards
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Fig. 2. Generic representation of Sieve-in-the-Middle and bicliques
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from X i
h for each value i of K5 and each value of K2 \ (K1 ∩K2). The list Lf

of all input vectors u is computed forwards from all plaintexts P j
h corresponding

to Cj
h for each value j of K6 and each value of K1 \ (K1 ∩K2). We then merge

those two lists of respective sizes 2|K2∪K5| and 2|K1∪K6|.
As in classical MITM with bicliques, the decomposition of K8 should be such

that the bits of K5 do not belong to K1, the bits of K6 do not belong to K2 and
the bits of K7 should lie in (K1 ∩K2). The best strategy here seems to choose
(K5,K6) such that the bits of K5 belong to K2 \ (K1 ∩K2), and the bits of K6

belong to K1 \ (K1 ∩K2). In this case, we have to add to the time complexity of
the attack the cost of the construction of the bicliques, i.e., 2k7(2k5+2k6)cH (very
rarely the bottleneck), where cH is the cost of the partial encryption or decryp-
tion corresponding to the rounds covered by the bicliques. The main change is
that the data complexity has increased since the attack now requires the knowl-
edge of all plaintext-ciphertext pairs (P j

h , C
j
h) corresponding to all possible values

(j, h) for (K6,K7). The data complexity then would correspond to 2k6+k7 pairs
of plaintext-chosen ciphertexts, but it is usually smaller since the ciphertexts Cj

h

only differ on a few positions.

3.2 Improved Bicliques for Some Scenarios

Now, we describe a generic idea for improving bicliques in certain scenarios and
reducing the data complexity to a single plaintext-ciphertext pair. Our improve-
ment usually applies when the total key size of the cipher is larger than the
block size. This occurs for instance when whitening keys are used. A detailed
and successful application is demonstrated on PRINCE in Section 4. The main
idea of our improvement is to gather some parts of the partial exhaustive search
over K7 into different groups such that, within a group, all obtained ciphertexts
Cj are equal to C0.

We consider a biclique repartition of keys consistent with the sieve-in-the-
middle part: we chooseK5 ⊂ K2\(K1∩K2) as previously, and some setK ′

6 ⊂ K1

(this differs from the classical biclique construction where we hadK6 ⊂ K1\(K1∩
K2)). Let Δ

C
6 be the positions of the bits of C which may be affected byK ′

6 when
computing forward from X , and let ΔX

6 be the positions of the bits of X which
may be affected by ΔC

6 and K ′
6 during the backward computation. In classical

bicliques, the path generated in the backward direction by the different K5 must
be independent from the path generated in the forward direction by the different
K ′

6. Here, we also require this first path generated by K5 to be independent from
the backward path generated when the ciphertext bits in positions ΔC

6 vary.
For instance, in the example depicted on Figure 3, H follows the Even-Mansour
construction, i.e., it is composed of an unkeyed permutation H ′ and the addition
of two whitening keys Ka and Kb. The positions of K5 and K ′

6 are represented
in red and blue respectively, and it can be checked that the corresponding paths
are independent.

In this situation, an improved biclique without any additional data can be
built if the size of ΔX

6 is smaller than k′6. In our context, the algorithm has to
be repeated for each value h for K ′

7 = K8 \ (K5 ∪ K ′
6), but the index h will
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Fig. 3. Example of the improved biclique construction

be omitted in the description. First, we precompute the values obtained from a
chosen C0 when K ′

6 takes all possible values. If the number of information bits
in ΔX

6 is less than k′6, all 2k
′
6 transitions can be represented by several lists Lj ,

each containing the different values of K ′
6 which all map C0 to the same value

of the state X , Xj (see Figure 4(a)). For the sake of simplicity, we assume that
all these lists have the same size 2�. In most cases, we have 
 = k′6 − |ΔX

6 |. For
the example depicted on Figure 3, we assume that H ′ is such that the function
obtained by restricting its inputs to the positions in ΔX

6 and its outputs to the
positions in ΔC

6 is a permutation. Then, it clearly appears that the number of
bits in ΔX

6 is equal to the number of bits of K ′
6 ∩Kb, and thus strictly smaller

than the number of bits of K ′
6. More precisely, there are exactly 2� values of K ′

6,
with 
 = |K ′

6 ∩Ka| , which provide the same value of X = H ′−1(C0 +Kb) +Ka

when K ′
6 varies and all other bits are fixed.

C0
X0

Xj

X2k6−1

0,K ′
6 ∈ L0

...

0,K ′
6 ∈ L2k6−1

(a) Step 1

i,Kj

0,Kj C0Xj

Xj +∇i

2k5 − 1,Kj

C0

C0Xj +∇2k5−1

... ...

(b) Step 2: to be repeated for the

2k
′
6−
 values of j

Fig. 4. Improved biclique construction
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Now, for each of the 2k
′
6−� values of Xj , all transitions from C0 to Xj through

different values of K ′
6 ∈ Lj can also be seen as the 2� biclique transitions from

Xj to C0 through some particular values of the key K ′
6 (these transitions are

represented in black on Figure 4(b)).
Now, the second step consists in building the bicliques in the other direction:

from C0 for each value of Xj . For each of the 2k
′
6−� values of j, we fix the

value of K ′
6 to a constant value Kj appearing in Lj . This way, the part of

X corresponding to ΔX
6 is the same for all the transitions of the bicliques,

and this property holds even when K5 is modified since both corresponding
paths are independent. We then consider the 2k5 possible values i for K5 and
compute the corresponding X = Xj + ∇i (see Figure 4(b)). We then deduce

the 2k5+k′
6 transitions H(Xj + ∇i)(i,K′

6)
= C0 for all K ′

6 ∈ Lj , from (2k
′
6 +

2k
′
6−�+k5) computations of the function. Indeed, the first term in the complexity

corresponds to the precomputation phase (Step 1), and the second one to the
number of lists Lj , 2

k′
6−�, multiplied by the cost for building the bicliques in

the other direction. The main advantage of this construction is that it can be
combined with the sieve-in-the-middle part as previously described, but it now
requires a single plaintext-ciphertext pair, the one formed by (P 0, C0).

Finally, we assume that the bits of K5 belong to K2 \ (K1 ∩K2), the bits of
K ′

6 belong to K1 and the bits of K ′
7 are the bits from (K1 ∪K2) \ (K5 ∪ K ′

6),
the time complexity of the attack is:

2k
′
7

(
2k

′
6 + 2k

′
6−�+k5

)
cH + 2k1cF + 2k2cB + 2κCmerge + π2kcE

where Cmerge is the cost of merging the lists of size 2k1−κ and 2k2−κ with respect
to the sieving conditions.

A similar idea can also be used for choosing an appropriate K5 which delays
the propagation of the unknown bits during the forward computation. This will
be shown in the case of Prince.

4 Application to PRINCE

PRINCE is a lightweight block cipher designed by Borghoff et al. [6]. Though be-
ing very recent, it has already waked the interest of many cryptanalysts [21,16,1].
The best known attacks so far on the proposed cipher, including the security
analysis performed by the authors, reach 6 rounds. In particular, MITM with
bicliques (without guessing the whole key) is said to reach at most 6 rounds (out
of 12). In [16], a reduction of the security by one bit is presented, and in [1] an
accelerated exhaustive search using bicliques is presented. Here, we describe how
to build sieve-in-the-middle attacks on 8 rounds with data complexity 1 (or 2
if we want to the whole key instead of a set of candidates). In addition to the
new sieve-in-the-middle technique, we use the improved method for constructing
bicliques presented in Section 3.2.
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4.1 Brief Description of PRINCE

PRINCE operates on 64-bit blocks and uses a 128-bit key composed of two 64-bit
elements, Ka and Kb. Its structure is depicted on Figure 5. PRINCE is based
on the so-called FX-construction: two whitening keys Win = (Ka + Kb) and
Wout = (K ′

a + Kb) are xored respectively to the input and to the output of a
12-round core cipher parametrized by Kb only. The value of K ′

a involved in the
post-whitening key is derived from Ka by K ′

a = (Ka ≫ 1)⊕ (Ka � 63).

�+ �+�� ��
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�� ��
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Fig. 5. Structure of PRINCE

The round function is composed of:

– a non-linear layer SB corresponding to 16 parallel applications of a 4 × 4
sbox σ.

– a linear layer P ◦ M , where M is the parallel application of 4 involutive
mixcolumns operations on 16 bits each (defined either by M̂ (0) or by M̂ (1)).
This transformation is then followed by a permutation P of the 16 nibbles
which is the same as the ShiftRows transformation used in the AES.

– the addition of a round constant RCi and of the subkey Kb.

The first 5 rounds in PRINCE correspond to the previous round permutation
R, while the last 5 rounds are defined by the inverse permutation R−1. The two
middle rounds correspond to the successive applications of SB, M and S−1

B .

4.2 Sieve-in-the-Middle and Improved Bicliques on 8 Rounds

Sieve-in-the-Middle on Six Rounds. We first describe the sieve-in-the-
middle part of the attack, which covers Rounds 1 to 6 (see Figure 6). The
internal state X after Round 6 is supposed to be known, as well as the plaintext.
The sieving step is done with respect to a function S which covers Round 3 and
the SB level of Round 4. This middle function S can then be decomposed as
four 16× 16 superboxes: the colored nibbles in the middle of Figure 6 represent
the nibbles belonging to the same superbox.

The 128 keybits in PRINCE are then decomposed as depicted on Figure 7:

– K1, i.e. the keybits known in the forward direction, are represented in white
and in blue in Kb and the first whitening key Win. They correspond to all
bits Kb and Win except the 11 leftmost bits of the third 16-bit group in Kb.
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Fig. 6. Sieve-in-the-middle attack on 8 rounds of PRINCE with data complexity of 1

– K2, i.e. the keybits known in the backward direction, are represented in
white and in red in Kb and Win. They correspond to all bits of Kb and Win

except the leftmost nibble of Kb and the 16 bits at positions 0 and 49 to 63
in Win.

It follows that the intersection (K1 ∩K2) consists of κ = 97 information bits of
(Ka,Kb): the 49 white bits in Kb and the 48 white bits in Win.

The algorithm is described on Figure 6, where each nibble which contains
’K’ is known in the backward computation, each nibble which contains ’k’ is
known in the forward computation and ’1’ means that there is a known bit in
the nibble. The right part of the figure represents the key. We will exploit the
fact that, for each 16× 16 mixcolumns operation, there exist 4 output bits (one
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Fig. 7. Decomposition of the key in the attack on 8 rounds of PRINCE. Win = Ka⊕Kb

and Wout = (Ka ≫ 1) ⊕ (Ka � 63) ⊕Kb.

per nibble), as well as 8 information bits of the output, which do not depend on
a given input nibble. Each of these 8 information bits corresponds to the sum
of two output bits (see [9, Sect. 6.2] for details). In the backward computation,
from State X and K2, we can compute 3 nibbles of each input of the mixcolumns
operations at Round 5. Then, we deduce one bit in each nibble of the output of
the middle function S, as well as 32 information bits which involve the outputs
of two different superboxes. When considering s < 4 superboxes together, the
number of information bits known is reduced to 8 if s = 2, and to 20 if s = 3.

In the forward computation, from the plaintext P and K1, we compute three
input nibbles of each superbox. From the mixcolumns operation in Round 2
whose input is partially known, we can also have 4 additional information bits
on the input of the middle function S. When considering s < 4 superboxes
together, the number of information bits known is reduced to 0 if s = 2 and to
1 if s = 3.

Then, we need to merge the two lists Lf and Lb of respective sizes 24 and
211. Since m = 4 × 12 + 4 = 52 input bits and p = 4× 4 + 32 = 48 output bits
are known, the total sieving probability π is at most 264−(52+48) = 2−36. In the
following, the tables Tj providing all transitions for the four superboxes Sj are
supposed to be known1.

We are going to first apply the instant matching on the first two blocks (orange
and green), i.e., instant matching as described in [9, Algo. 1] with parameters
n1 = n2 = 16 and m1 = m2 = 12 and p1 + p2 = 8 + 8 = 16. The sieving prob-
ability of these two superboxes together is then π1,2 = 232−(24+16) = 2−8. We
consider LA = Lb and LB = Lf . From the corresponding formula in Section 2.3,
we get that the time complexity of this step is 2−824+16 + 2−8215 ≈ 212. With
this complexity we have found 215π1,2 = 27 input-output pairs of S which are
valid for the first two superboxes. We can now check whether each of these pairs
is also valid for the two remaining superboxes. Now, the sieving probability for
the remaining part is at most 2−36 × 2+8 = 2−28 as the total sieving probability
is at most 2−36.

Therefore, at the end of the merging step, for each guess of the κ = 113
bits of (K1 ∩ K2), we have a probability of 27−28 = 2−21 of finding a correct
configuration for the 15 remaining bits of (K1,K2). This means that the testing
step will consider 2113−21 = 292 keys, and it will recover 264 possible candidates

1 The orange and green superboxes that involve common key bits only can be com-
puted on the fly and will be used first for the instant matching. For each pair we
obtain, the whole key is already known, so we can repeat the on-the-fly procedure.
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for the whole key. If two plaintext-ciphertext pairs are available, the testing step
will consider 292−36 = 256 keys instead of 292, leading to performing a test over
256 candidates for recovering the correct key.

Improved Bicliques Part. Our attack combines the previous sieve-in-the-
middle algorithm with bicliques built as described in Section 3.2, without in-
creasing the data complexity. We define K ′

6 as the five nibbles corresponding
to the union of the leftmost nibble of Kb and the four leftmost nibbles of the
whitening key Wout = (K ′

a +Kb). Then, Δ
C
6 is represented on Figure 6 by the

four ’O’ symbols in the line before C. Also, ΔX
6 then corresponds to the ’O’

symbols in X . Then, |ΔC
6 | = 16 and |ΔX

6 | = 16. The remaining ’O’ show the
path from ΔC

6 to ΔX
6 . All 220 transitions obtained when K ′

6 varies correspond,
for each one of the 216 possible values of j, to 24 biclique transitions from Xj to
C. Then, K5 is defined as the 11 leftmost bits of the third 16-bit group of Kb,
implying that K5 is equal to K2\(K1∩K2). The path generated in the backward
direction, represented in red, is then independent from the blue path generated
by K ′

6, and also from the path with ’O’ symbols from ΔC
6 to ΔX

6 .
The complete algorithm then consists in performing an exhaustive search

over the κ = 97 common bits corresponding to the white bits of Kb and Win

in Figure 7. The previously described bicliques determine 216 states Xj , and 24

transitions from each Xj to C. Then, for each Xj , we examine the corresponding
24 values of K ′

6. For those K ′
6, we compute forwards from the plaintext P the

list of all 24 vectors u. It is worth noticing that even if the red bits of Ka and Kb

are unknown in the forward direction, their sum is known (see Fig. 7). Similarly,
the list Lb of all vectors v is computed backwards from the 211 X i and their
associated value i for K5. From the formula given in Section 3.2, we deduce
that, for one plaintext-ciphertext pair, the time complexity is

Time=297
(
220+216+11

)
cH+2117cF+2113cB+297×212+2−36×2128cE ' 2124cH .

We have then gained more than four bits over the exhaustive search (2128cE).
The memory complexity is of 220, corresponding to the precomputed table in
the construction of the improved bicliques, since the transition tables for the
superboxes can be computed on the fly.

5 Sieving Probability and Related Properties of the Sbox

5.1 General Properties

In this section, we focus on the general problem of theoretically estimating the
sieving property provided by two subsets I ⊂ {1, . . . , n} and J ⊂ {1, . . . , n′},
with respective sizes m and p, for a given function S from Fn

2 into Fn′
2 . In partic-

ular, we provide some results on the minimal value of (m+ p) for which a sieve
exists. In the following, SJ denotes the function from Fn

2 into Fp
2 corresponding

to the p coordinates of S defined by J . Also, for any affine subspace W , S|W de-
notes the restriction of S toW , i.e., the function defined onW by S|W (x) = S(x).
Obviously, S|W can be identified with a function of dimW input variables.
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For a given input set I, V denotes the linear subspace V = {x ∈ Fn
2 : xi =

0, i ∈ I}. Then, the sieving probability of (I, J) can be expressed in terms of the
sizes of all Range(SJ )|u+V when u varies (see Prop 2 in [9]). Most notably, we
deduce:

Corollary 1. The sieving probability of (I, J) satisfies πI,J ≥ 2−p, with equality
if and only if SJ does not depend on its inputs at positions in {1, . . . , n} \ I.

Link with the branch number of S. We associate to S the (nonlinear) code
CS of length (n + n′) and of size 2n defined by CS = {(x, S(x)), x ∈ Fn

2}. The
minimum distance of CS is the lowest value of wt(x + y) + wt(S(x) + S(y))
for distinct x, y. It corresponds to the branch number of S. Obviously, when
m+p > n, the sieving probability of any (I, J) of size (m, p) is at most 2n−(m+p)

(see Prop 1). Now, the following proposition shows that this upper bound is tight
when (m+ p) exceeds some bound depending on the branch number of S.

Proposition 2. Let m and p be two integers with m+ p ≥ n. Then, all (m, p)-
sieves have probability 2n−(m+p) if and only if m+ p > n+n′− dmin where dmin

is the branch number of S (i.e., the minimal distance of CS).

For instance, the branch number of the 4 × 4 PRESENT sbox is equal to 3. It
follows that any (m, p) sieve with m+ p ≥ 6 has probability 2n−(m+p).

Lower Bound on the Minimal Value of (m + p). Even if the code CS is a
nonlinear code, its dual distance can be defined as follows (if CS is linear, this
definition coincides with the minimum distance of the dual code C⊥

S ).

Definition 2. Let C be a code of length N and size M over Fq and A =
(A0, . . . , AN ) be its distance distribution, i.e., Ai = 1

M#{(x, y) ∈ C × C :
dH(x, y) = i} .

Let A′ = (A′
0, . . . , A

′
N ) be the image of A under the MacWilliams transform,

A′(X,Y ) = A(X + (q − 1)Y,X − Y ) where A(X,Y ) =
∑N

i=0 AiX
N−iY i and

A′(X,Y ) =
∑N

i=0 A
′
iX

N−iY i. The dual distance of C is the smallest nonzero
index i such that A′

i �= 0.

The dual distance of CS is a lower bound on the lowest (m + p) for which an
(m, p)-sieve exists.

Theorem 1. Let d⊥ be the dual distance of the code CS. Then, for any (m, p)
such that m+ p < d⊥, there is no (m, p)-sieve for S. Moreover, there exists no
(m, p)-sieve for S with m+p ≤ n if and only if CS is an MDS code, which cannot
occur if S is defined over F2.

In some scenarios, S is defined over a larger alphabet, and I and J may be
defined as two sets of byte (or nibble) positions. Then, the previous theorem
proves that, if the corresponding code CS is an MDS code, there is no (m, p)-
sieve for m+ p ≤ n, and we deduce also from Proposition 2 that all (m, p)-sieve
with m+ p > n have probability 2n−(m+p).
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5.2 Sieving Probability for Some Particular Values of (m,p)

(m, 1)-Sieves and Nonlinearity. When p = 1, a pair (I, {j}) of size (m, 1) is
a sieve if and only if Sj is constant on some coset u + V . Therefore, if (I, {j})
is a sieve, then Sj is (n − m)-normal, i.e. constant on an affine subspace of
dimension (n−m). In particular, it can be approximated by an affine function
with a probability at least 1

2 (1+2−m) [11]. It follows that, if S provides the best
resistance to linear cryptanalysis for even n, then it has no sieve (I, {j}) with
|I| < n

2 − 1. As an example, the AES Sbox does not have any (2, 1)-sieve.

(n − 1, p)-Sieves. When m = n − 1, the sieving probability can be easily
determined by the difference table of S.

Proposition 3. Let I = {1, . . . , n} \ {
} and let J ⊂ {1, . . . , n′} with |J | = p.
Then,

πI,J = 2−(p−1) − 2−(p+n)
∑

β∈Fn′−p
2

δ(e�, (0J , β)) ,

where δ(a, b) = |{x ∈ Fn
2 : S(x+ a)+S(x) = b}| is the element of index (a, b) in

the difference table of S, and e� is the input vector with a 1 at position 
. Thus,
(I, {j}) is a sieve except if Sj is linear in x�.

Since the branch number of the PRESENT sbox is 3, Prop. 2 implies that (m, p)-
sieves with m + p = 5 exist for this sbox. Indeed, by considering its difference
table, we get that all (I, J) of size (3, 2) correspond to a sieving probability
πI,J ∈ { 1

2 ,
1
2 − 1

32 ,
1
2 − 1

16}. For instance, the sieve used in the attack in [9],
I = {0, 1, 2} and J = {0, 1} has probability 1

2 . We also derive from Prop. 3 the
exact sieving probability involved in the attack on the DES in [9].

6 Conclusions

The main contributions of this paper are a generic improvement of MITM at-
tacks, the sieve-in-the-middle technique, which allows to attack more rounds,
and an improved biclique construction which avoids the need of additional data.
These two methods have been applied to PRESENT, DES, AES and PRINCE.
Moreover, some general results on the sieving probability of an sbox are given,
which allow to theoretically estimate the complexity of the attack.

A future possible line of work is to investigate some possible combinations
with other existing MITM improvements: with the guess of intermediate state
bits [12], or with the all-subkeys approach [15]. A promising direction would be to
try to make a first selection within each of the two lists before the merging step,
by keeping only the input values (resp. output values) which have the lowest
probability of corresponding to a valid transition. This introduces some non-
detection probability, since some correct candidates would be discarded, but the
sieving would be improved. Such an approach does not seem easy, but it would
surely be a big step forward for further improving MITM attacks.
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Abstract. In this paper, we study differential attacks against ARX
schemes. We build upon the generalized characteristics of De Cannière
and Rechberger and the multi-bit constraints of Leurent.

Our main result is an algorithm to build complex non-linear differ-
ential characteristics for ARX constructions, that we applied to reduced
versions of the hash function Skein. We present several characteristics for
use in various attack scenarios: on the one hand we show attacks with a
relatively low complexity, in relatively strong settings; and on the other
hand weaker distinguishers reaching more rounds. Our most notable re-
sults are practical free-start and semi-free-start collision attacks for 20
rounds and 12 rounds of Skein-256, respectively. Since the full version of
Skein-256 has 72 rounds, this result confirms the large security margin
of the design.

These results are some of the first examples of complex differential
trails built for pure ARX designs. We believe this is an important work
to assess the security those functions against differential cryptanalysis.
Our tools are publicly available from the ARXtools webpage.

Keywords: Symmetric ciphers, Hash functions, ARX, Generalized
characteristics, Differential attacks, Skein.

1 Introduction

ARX is a popular alternative to S-Box based designs for the design of symmetric
key cryptographic primitives. ARX designs use only Additions (a�b), Rotations
(a ≫ i), and Xors (a ⊕ b). These operations are very simple and can be imple-
mented efficiently in software or in hardware, but when mixed together, they
interact in complex and non-linear ways. ARX designs have been quite popular
recently; in particular, two of the SHA-3 finalists, BLAKE and Skein, follow this
design strategy. This stategy as also been used for stream ciphers such as Salsa20
and ChaCha, and block ciphers, such as TEA, XTEA or HIGHT (RC5 uses ad-
ditions and data-dependant rotations, but we only consider construction with
fixed rotations). Recently, a dedicated short-input PRF, SipHash [1], has been

� Part of this work was done when the author was at the University of Luxembourg.

R. Canetti and J.A. Garay (Eds.): CRYPTO 2013, Part I, LNCS 8042, pp. 241–258, 2013.
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built following the ARX design. We note that Salsa20 is in the eStream portfolio,
while SipHash is already deployed as the default hash table implementation of
the Perl and Ruby languages. More generally, functions of the MD/SHA family
are built using Additions, Rotations, Xors, but also bitwise Boolean functions,
and logical shifts; they are sometimes also referred to as ARX.

The ARX design philosophy is opposed to S-Box based designs such as the
AES. Analysis of S-Box based designs usually happen at the word-level; differ-
ential characteristics are relatively easy to build, but efficient attacks often need
novel techniques, such as the rebound attack against hash functions [20]. For
ARX designs, the analysis is done on a bit-level; finding good differential charac-
teristics remains an important challenge. In particular, the seminal attacks on the
MD/SHA-familiy by the team of X. Wang are based on differential characteristics
built by hand [28,30,29], and a significant effort has been dedicated to building
tools to construct automatically such characteristics [6,24,10,17,25,18,16]. This
effort has been quite successful for functions of the MD/SHA family, and it has
allowed new attacks based on specially designed characteristics: attacks against
HMAC [11], the construction of a rogue MD5 CA certificate [26], and attacks
against combiners [19].

However, this body of work is mainly focused on MD/SHA designs, as op-
posed to pure ARX designs such as Skein, BLAKE or Salsa20. In MD/SHA-like
functions, the Boolean functions play an important role, and the possibility to
absorb differences gives a lot of freedom for the construction of differential char-
acteristics. In pure ARX designs, the addition is the only source of non-linearity
(over F2), and the freedom in the carry expansions is much harder to use than
the absorption property of Boolean functions.

To this effect, Leurent introduced multi-bit constraints [14] involving several
consecutive bits of a variable (i.e. x[i] and x[i−1]), instead of considering bits one
by one. He describes reduced sets of 1.5-bit and 2.5-bit constraints, and explains
how to propagate these constraints using S-systems and automata. This set of
constraints is well suited to study ARX designs because it can extract a lot of
information about the carry extensions in modular additions. A set of tools to
propagate these constraints is given in [14], and the main result is a negative
result (for the cryptanalyst) showing that several previous attacks are invalid.

1.1 Our Results

In this paper, we study the problem of constructing differential characteristics
for ARX schemes. This work is heavily inspired by the framework of gener-
alized characteristics from De Cannière and Rechberger [6], and the multi-bit
constraints of [14]. As opposed to the results of [14], we give positive results for
cryptanalysts.

We first recall how to describe a differential characteristic, and the main ideas
for constraint propagation in Section 2. Then, we describe a differential charac-
teristic search algorithm in Section 3 using a constraint propagation tool, and
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we present our results on Skein in Section 4. Finally, we describe our technical
improvements over the previous constraint propagation tools in the full version
of this paper.

Construction of Differential Characteristics. We use a propagation tool to
construct differential characteristics automatically. Using an efficient constraint
propagation tool and some simple heuristics, we show that we can actually build
complex non-linear characteristics. We obtain some of the first complex differen-
tial trails for ARX designs and we believe that this automated approach is an
important step to assess the security of ARX designs against differential crypt-
analysis.

Application to Skein. We apply this technique to reduced versions of the
Skein hash function, where we build rebound-like characteristics by connecting
two high-probability trails.

We compare our results with previous works in Table 1. Most previous works
on Skein are either weak distinguishers (such as boomerang properties or free-
tweak free-start partial-collisions), or attack with marginal improvement over
brute-force (such as some biclique-based results). In this work, we present attacks
in relatively strong settings (collisions and free-start collisions) with a relatively
low complexity (several attacks are practical, and all our attack gain at least a
factor 28).

Constraint Propagation. Finally, we describe an alternative way to perform
the constraint propagation for multi-bit constraints. Our approach is significantly
more efficient that the technique of [14], and uses the full set of 232 constraints
instead of a reduced set of 16 carefully chosen constraints. The reduced set is
sufficient in most situations, but we show that the full set extracts some more
information. This improvement was crucial to allow the characteristic search to
work in practice.

In addition, our approach can also deal with larger systems that the previous
technique with a reasonable complexity. In particular, we can deal with the 3-
input modular sums, and 3-input Boolean functions used in functions of the
MD/SHA family. We can also propagate 4 simultaneous trails in a boomerang
configuration through an addition or an xor, with full 2-bit constraints.

1.2 Related Work

A recent result by Yu et al. achieves a similar result as our free-start free-tweak
partial-collision on 32 rounds, and is also based on a complex non-linear trail
for Skein-256. This work has been available on ePrint since April 2011 [31], but
the characteristic given in that version of the paper was flawed [14]. This has
motivated our work on building such characteristics automatically.

More recently, they managed to build a valid characteristic and their work
has been presented at FSE [33]; this result was achieved simultaneously and
independently from our work. Building such a trail by hand is impressive, but
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Table 1. Comparison of attacks on reduced versions of Skein-256 (we omit attack on
previous versions, and weak distinguishers). The full Skein-256 has 72 rounds. In order
to compare various attack settings, we count the number of extra degrees of freedom
used by the attack.

Extra Degrees of freedom Rounds Time Generic Ref, notes

Collision 0 4 2 96 2128 [13], biclique
8 2120

9 2124

12 2126.5

Free-start collision 8 22† 2253.8† 2256 [15], biclique
37† 2255.7†

Related-tweak‡ partial q-multicol 10 20 q · 2 97 2
q−1
q+1

·130 [27], 126 bits
Free-tweak partial q-multicol 12 32 q · 285 2

q−1
q+1

·205 [33], 51 bits

Collision 0 12 ≈ 2100� 2128 4.4
Semi-free-start collision 4 12 ≈ 2 40 2128 4.4
Free-start collision 8 20 ≈ 2 40 2128 4.5
Free-start near-collision 8 24 ≈ 2 40 2 88.4 4.5, 15 bits
Related-tweak‡ near-collision 10 24 ≈ 2 40 2117.3 4.6, 3 bits
Related-tweak‡ partial q-multicol 10 32 ≈ q · 2119� 2

q−1
q+1

·205 4.6, 51 bits
Free-tweak partial q-multicol 12 32 q · 2105 2

q−1
q+1

·205 4.6, 51 bits

Block cipher attacks

Key recovery (Threefish-512) 32 2181 2512 [32], Boomerang
33 2305

34 2424

† Attacks on Skein-512. For Skein-256, fewer round will be attacked, with a
complexity slightly below 2128.
‡ Using freedom degrees in the tweak difference, but the tweak value can be arbitrary.
� Using heuristic assumptions about the search for a large number of characteristics.

this kind of result it is very challenging to replicate or to apply to another
primitive. We hope that our automatic approach will be easier to adapt to new
settings.

2 Analysis of Differential Characteristics

The first step for working with differential characteristics (or trails) is to choose
a way to represent a characteristic, and to evaluate its probability. The main idea
of differential cryptanalysis is to consider the computation of the function for a
pair of inputs X,X ′, and to specify the difference between x and x′ for every
internal state variable x. The difference can be the xor difference, the modular
difference, or more generally, use any group operation. However, this approach
is not efficient for ARX design, because both the modular difference and the xor
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difference play an important role. Several works have proposed better way to
represent a differential characteristic for ARX designs.

Signed Bitwise Difference. The groundbreaking results of Wang et al.
[28,30,29] are based on a bitwise signed difference. For each bit of the state,
they specify whether the bit is inactive (x = x′), active with a positive sign
(x = 0, x′ = 1), or active with a negative sign (x = 1, x′ = 0). This information
express both the xor difference and the modular difference.

Generalized Characteristics. This was later generalized by De Cannière and
Rechberger [6]: for each bit of the state, they look at all possible values of the
pair (x, x′), and they specify which values are allowed. The constraints -, u and n
correspond to the bitwise signed difference of Wang. De Cannière and Rechberger
also describe an algorithm to build differential characteristics using this set of
constraints.

Multi-bit Constraints. Recently, Leurent studied differential characteristics
for ARX designs, and introduced multi-bit constraints [14]. These constraints
are applied to the values of consecutive bits of a state variable (e.g. x[i] and
x[i−1]) instead of being purely bitwise. Multi-bit constraints are quite efficient
to study ARX designs because they can capture the behaviour of carries in the
modular addition. Two set of constraints are introduced in [14]:

– a set of 16 constraints involving (x[i], x′[i], x[i−1]) called 1.5-bit constraints;
– a set of 16 constraints involving (x[i], x′[i], x[i−1], x′[i−1], x[i−2]) called 2.5-bit

constraints.

The full sets of 28 1.5-bit constraints and 232 2.5-bit constraint are not used
because the propagation method of [14] becomes impractical with such large
sets.

2.1 Constraint Propagation and Probability Computation

In [14], the constraints are studied using the theory of S-functions introduced
in [22]. We use the following definitions:

T-function. A T-function on n-bit words with k inputs and l outputs is a
function from ({0, 1}n)k to ({0, 1}n)l with the following property:

For all t, the t least significant bits of the outputs can be computed
from the t least significant bits of the inputs.

S-function. An S-function on n-bit words is a function from ({0, 1}n)k to
({0, 1}n)l, for which we can define a small set of states S, and an initial
state S[−1] ∈ S with the following property:

For all t, bit t of the outputs and the state S[t] ∈ S can be computed
from bit t of the inputs, and the state S[t− 1].
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For instance, the modular addition is an S-function, with a 1-bit state corre-
sponding to the carry. An S-function can also include bitwise functions, shifts to
the left by a fixed number of bits, or multiplications by constants. A system of
equation that can be written as a S-function is called an S-system.

2.2 Differential Characteristics

In order to describe a differential characteristics with this framework, we specify
a difference for each internal variable of a cipher, and we consider the operations
that connect the variables. For a series a constraints Δ, we write δx = Δ to
denote that the pair (x, x′) follows the difference pattern Δ. For instance, δx =
x--0 is equivalent to x⊕ x′ = 1000 and x[0] = 0.

For each operation ,, we can write a system:

δx = Δx δy = Δy δz = Δz z = x, y z′ = x′ , y′, (1)

where x, y, z, x′, y′, z′ are unknowns, and Δx, Δy, Δz are parameters. In an ARX
design, all the operations except the rotations are S-function, and the difference
operation δ can be written with bitwise operations and left-shifts; therefore sys-
tem (1) is an S-system. Using tools to analyze this S-system, we can verify if the
specified input and output patterns for each operation are compatible. We deal
with the rotations y = x ≫ i by just rotating the constraint pattern: if δx = Δx

then we use δy = Δx ≫ i.
We can also find new constraints that must be satisfied for any solution to the

system. This allows to propagate constraints between the inputs and outputs of
the operation ,. When we consider a characteristic for a cipher, this process will
be iterated for each operation, until no new constraints are found.

Moreover, we can compute the probability to reach the specified output pat-
tern by counting the number of solutions. Assuming that the probabilities of
each operations are independent, we can compute the probability of the full
characteristic by multiplying the probabilities of each operations.

2.3 Tools for S-Systems

In [14], a set of constraints is represented by an S-system, and an automaton
is built to compute the probability of each operation. To perform constraints
propagation, each constraint is split into two disjoint subsets; if one of the subsets
results in an incompatible system, the constraint can be restricted to the other
subset without reducing the number of solutions.

This approach allows to achieve a good efficiency when the automaton is fully
determinized: one can test whether a system is compatible with only n table
accesses. However, the table becomes impractically large if the set of constraints
is too large, or if the operation is too complex. In [14], the automaton is fully
determinized for 1.5-bit constraints, but could not be determinized for 2.5-bit
constraints; this results in a quite inefficient propagation algorithm for 2.5-bit
constraints.

In this work, we explore a different option using non-deterministic automata.
This allows to deal with large set of constraints and more complex operations.
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We need to perform many operations to verify whether a system is compatible,
but the automata are very sparse and can be represented by tables small enough
to fit in the cache (the tables of [14] take hundreds of megabytes for an addition);
this gives better results in practice. In addition, we show special properties of
the automata allowing an efficient propagation algorithm without splitting the
constraints into subsets. Due to space constraints, the technical details of our
new approach are given in the full version of this paper.

2.4 Comparison

We show a comparison with previous methods in Table 2. We use the same
settings as [14]:

1. A reduced Skein with two rounds and 4 words of 4 bits each; In this setting
the full 2.5-bit constraints offer a little advantage over the reduced set of
2.5-bit constraints.

2. A reduced Skein with three rounds and 4 words of 6 bits each. We only use
sparse differences (less than 4 active bits in the input and output), because
the full space is too large to be exhausted in practice. In this setting, the
full 2.5-bit constraints give a significant improvement over the reduced set
of 2.5-bit constraints.

These experiments show that using the full set of 2.5-bit constraints gives better
results than using the reduced set of [14]. We also give timing informations1: our
new approach for constraint propagation is one order of magnitude faster that
the previous method with a reduced set of 2.5-bit constraints, and somewhat
slower than the previous method with 1.5-bit constraints.

Table 2. Experiments with toy versions of Skein. We give the number of input/output
differences accepted by each technique, and the ratio of false positive.

2 rounds / 4 bits 3 rounds / 6 bits (sparse�)

Method Accepted F pos. Accepted F pos. Time†

Exhaustive search 225.1 (35960536) – 218.7 ( 427667) –
2.5-bit full set 225.3 (40597936) 0.13 219.2 ( 619492) 0.4 2.5 ms
2.5-bit reduced set [14] 225.3 (40820032) 0.14 219.5 ( 746742) 0.7 50 ms
1.5-bit reduced set [14] 225.3 (40820032) 0.14 220.4 (1372774) 2.2 0.5 ms
1-bit constraints [6] 225.4 (43564288) 0.21 220.7 (1762857) 3.1 0.5 ms
Check adds independently 225.8 (56484732) 0.57

� Weight 4 differences. The number of input/output differences is
(∑4

i=0

(
24
i

))2 ≈ 226.7

† Average time to verify one input/output difference (over the false positives of the
1.5-bit reduced set).

1 The comparison is done with similar implementations.
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3 Automatic Construction of Differential Characteristics

In order to mount a differential attack for a hash function or a block cipher, an
important task is to build a differential characteristic. For the analysis of ARX
primitives (and MD/SHA-like designs), the characteristic is usually designed at
the bit level. This turns out to be a very challenging task because of the complex
interactions between the operations, and the large number of state elements to
consider.

This problem has been heavily studied for attacks on the MD/SHA family of
hash functions: a series of attacks by X. Wang and her team are based on differen-
tial characteristics built by hand [28,30,29,33], while later works gave algorithms
to build such characteristics automatically [6,24,10,17,25]. Unfortunately, most
of those tools are not publicly available.

In this section, we show that the multi-bit constraints can be used to design a
successful algorithm for this task on pure ARX designs. Our algorithm is heavily
inspired by the pioneer work of De Cannière and Rechberger [6], and the more
detailed explanation given in [23] and [21].

3.1 Types of Trails

Differential trails can be classified in two categories: iterative and non-iterative.
An iterative characteristic exploits the round-based nature of many cryptographic
constructions: if a trail can be built over a few rounds with the same input and
output difference Δ, then this characteristic can be repeated to reach a larger
number of rounds. In practice very few iterative characteristics have been found
for ARX constructions, because many designs use different rotation amounts
or Boolean functions over the rounds, or a non-iterative key-schedule. Notable
exceptions include the attacks of den Boer and Bosselaers against MD5 [7], and
the recent work of Dunkelman and Khovratovich on BLAKE [8]. In this work,
we focus on non-iterative trails.

The main way to build non-iterated trails is to connect two simple and high-
probability trails using a complex and low-probability section in between. The
choice of the high-probability trails will depend on the attack setting, and should
be done by the cryptanalyst using specific properties of the design, while the
complex section will be build automatically by an algorithm (or by hand). When
the characteristic is used in a hash-function attack, the cost of the low-probability
section can usually be avoided.

For instance, the characteristics used for the attacks on SHA-1 use a linear
section built using local collisions [4,29], and a non-linear section to connect a
given input difference to the linear characteristic. This general idea is also the
core of the rebound attack [20]: it combines two high-probability trails using a
low-probability transition through an S-box layer.

In our applications, we will use a rebound-like approach to connect two high-
probability trails with a complex low-probability section. Using rebound-like
differential trails for ARX designs has also been proposed in [33].
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3.2 Algorithm

Our algorithm takes as input a characteristic representing two high-probability
trails Δ1 → Δ2 and Δ3 → Δ4. The middle section is initially unconstrained, i.e.
filled with ?. The main part of the algorithm is a search phase which tries to
fill the middle part with a valid characteristic. We follow the general idea of the
algorithm of De Cannière and Rechberger, by repeating the following operations:

Propagation: deduce more information from the current characteristic by run-
ning the propagation algorithm on each operation.

Guessing: select an unconstrained state bit (i.e. a ? constraint), and reduce
the set of allowed values (e.g. to a - or x constraint).

When a contradiction is found, we go back to the last guess, and make the
opposite choice, leading to a backtracking algorithm. However, we abort after
some number of trials and restart from scratch because mistakes in the early
guesses would never be corrected.

Our algorithm is built from the idea that the constraint propagation is rela-
tively efficient to check if a transition Δ→ Δ′ is possible. Therefore to connect
the differences Δ2 and Δ3 from the high-probability trails, we essentially guess
the middle difference Δ′ and we check whether the transitions Δ2 → Δ′ and
Δ′ → Δ3 are possible.

This leads to the following difference with the algorithm of De Cannière and
Rechberger:

– We only use signed differences, i.e. we use the constraints -, u, and n.
– We specify in advance which words of the state will be restricted in the

guessing phase, using state words in the middle of the unspecified section.
– We guess from the low bits to the high bits, and we can compare incomplete

characteristics by counting how many bits have been guessed before aborting
the search.

– Every time the backtracking process is aborted, we remember which guess
was best and the random guesses of the next run are strongly biased toward
this choice.

Thanks to this approach, we can use the best path of the previous run as an
input for the search algorithm, and explore solutions with few differences in the
guesses. Finally, we use a simulated annealing algorithm in order to find better
characteristics.

3.3 Finding Pairs

The hardest part of our attacks in to build the differential trails. Finding con-
forming pairs for the middle section is relatively easy using the propagation
algorithm: one just has to make random choices for the unconstrained bits in
the middle and run the propagation algorithm after each choice. In practice the
paths we found leave very few choices to make, and most of them lead to valid
pairs. The degrees of freedom in the key can then be used to build many different
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pairs. This can be compared to the rebound attack on AES-like designs [20]: in
this attack the trails are easy to build, and finding pairs for the inbound phase
has a small amortized cost.

4 Application to Skein-256

In this section, we apply our algorithm to build characteristics for several attack
scenarios on Skein-256.

4.1 Short Description of Threefish and Skein

The compression function of Skein is based on the block cipher Threefish. In this
paper we only study Threefish-256, which uses a 256-bit key (as 4 64-bit values),
a 128-bit tweak (as 2 64-bit values), and a 256-bit state (as 4 64-bit values). The
full version of Skein has 72 rounds. We denote the ith word of the state after r
rounds as er,i. There is a key addition layer every 4 rounds:

er,i =

{
vr,i + kr/4,i if r mod 4 = 0

vr,i otherwise

where kr/4,i is the ith word of the round key at round r/4. The state vr+1,i

(for i = 0, 1, .., nw) after round r + 1 is obtained from er,i by applying a MIX
transformation and a permutation of 4 words as following:

(fr,2j , fr,2j+1) := MIXr,j(er,2j , er,2j+1) for j = 0, 1, .., nw/2
vr+1,i := fr,σ(i) for i = 0, 1, .., nw

where σ is the permutation (0 3 2 1) (specified in [9]) and (c, d) = MIXr,j(a, b) is
defined as:

c = a� b
d = (b ≪ Rr mod 8,j)⊕ c

The rotations Rr mod 8,j are specified in [9]. The key scheduling algorithm of
Threefish produces the round keys from a tweak (t0, t1) and a key as following:

kl,0 = k(l ) mod 5 kl,1 = k(l+1) mod 5 + tl mod 3

kl,2 = k(l+2) mod 5 + t(l+1) mod 3 kl,3 = k(l+3) mod 5 + l,

where k4 = C240⊕
⊕4

i=0 ki with C240 a constant specified in [9], and t2 = t0⊕ t1.
The compression function F for Skein is given as F (M,H, T ) = EH,T (M)⊕M ,
where H is the chaining value, M is the message, and T is a block counter. This
follows the Matyas-Meyer-Oseas construction for the compression function, and
the Haifa construction for the iteration.

In this work, we only consider attacks on multiples of four rounds, because the
structure of Skein is built with 4-round blocks with key additions in between.
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We describe attacks in three different settings in Sections 4.4, 4.5, and 4.6. The
attacks are based on different kinds of trails shown in Figures 2, 3, and 4. Due
to space constraints, we do not include differential characteristics, but they are
given in the full version of this paper. All the characteristics have been verified by
building a conforming pair, and we give example of colliding pairs in Appendix A.

4.2 Building Characteristics

To describe a differential characteristic for Skein with our framework, we write
constraints for each er,i value, and for the vr,i values before a key addition
(i.e. when r mod 4 = 0). For each round, we have 4 equations and 2 rotations,
corresponding to two MIX functions. We also write the full key schedule as a
system of equations.

We note that the variables er,2j with r mod 4 = 0 are only involved in modular
additions: fr,2j = er,2j � er,2j+1 and er,2j = vr,2j � kr/4,2j . Therefore, we could
remove these variables, and write fr,2j = vr,2j � kr/4,2j � er,2j+1 using a three-
input modular addition. In practice, the propagation algorithm for three-input
modular addition takes significantly longer, so we keep the variables, but we
try to avoid constraining them since the multi-bit constraints can propagate the
modular difference.

Choosing the High-Probability Characteristics. In attack setting with
differences in the key, we build the high-probability trails starting from a non-
active state, with a low-weight key difference. When we go through the key
addition, a difference is introduced in the state, and we propagate the difference
by linearizing the function. If we have no difference in the key, we start with a
single active bit in the state and we propagate the difference for a few rounds
by linearizing the function. Most of our trails use the most significant bit as the
active bit in order to increase their probabilities.

4.3 General Results

For the algorithm to work successfully, we need to find a delicate balance in the
initial characteristic. If the unconstrained section is too short, there will not be
enough degrees of freedom to connect the high-probability parts. On the other
hand, if the unconstrained section is too long, the propagation algorithm will
not filter bad characteristics efficiently.

In practice, we can only build characteristics when we have a key addition
layer in the unconstrained part of the characteristic. This way, the algorithm
can use degrees of freedom from the key to connect the initial characteristics. In
general it seems hard to find enough degrees of freedom to build a valid trail
without using degrees of freedom from the key: for a random function f and
arbitrary differences Δ2 and Δ3, we expect on average a single pair satisfying
f(x + Δ2) = f(x) + Δ3. We can consider the intermediate differences for one
such pair as a differential characteristics but a differential characteristic with a
single valid pair is not very useful for a differential attack.
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In order to let the algorithm use the degrees of freedom in the key effi-
ciently, we use the registers before and after a key addition as guessing points:
vr,0, vr,1, vr,2, vr,3, er,1, er,3 with r mod 4 = 0 (as discussed above we do not con-
strain er,0 and er,2).

We find that the characteristics built by the algorithm are rather dense, and
use many degrees of freedom in the state, and many degrees of freedom in the
key. This is not a problem for attacks on the compression function, but the
characteristics are harder to use in attacks against the full hash function, where
fewer degrees of freedom are available to the attacker. We note that this problem
is less acute for attack against functions of the MD/SHA family, where the
message block is much larger than the state.

On the other hand, the trail built by hand by Yu et al. [33] is somewhat
sparser, and leaves more degrees of freedom for the key and the middle state.

4.4 Collision Attacks

We first study attacks with no difference in the chaining value so that they
can be applied to the full hash function. Since Skein uses the MMO mode, the
chaining value of the hash function is the key to the block cipher. We try to
build characteristics for a collision attack, therefore we use the same difference
in the initial state and in the final state so that they can cancel out in the
feed-forward2. We start with a low-weight difference in one of the first rounds
2 We could build characteristics for 20 rounds if we consider near-collisions, but this

would not work on the full hash function because of the finalization step.
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and we propagate by linearization through rounds 0–4 and backward through
round 11.

We give an example of a colliding pair for the compression function of Skein-
256 reduced to 12 rounds in Table 3.

Full Collision Attack. To build a collision attack on the full hash function,
we have to deal with the fact that the characteristic is only valid for a small
fraction of the keys, i.e. a small fraction of the chaining values. We use a large
number of characteristics, and a large number of random chaining values, in a
meet-in-the-middle fashion.

More precisely, the characteristics given by the algorithm have many con-
straints of the key, which define a set of valid keys, and the number of conform-
ing pairs estimated by looking at the probability of each step is even lower. We
assume that each solution will correspond to a different key, and the number of
solutions of the characteristics gives the number of key (i.e. chaining values) for
which we can actually build a collision. Our experiments indicate that we can
expect to build characteristics with more than 2106 solutions for a cost of 250.
If we extrapolate this experimental result, we expect that it is possible to build
many such characteristics. Let’s assume that we can build N characteristics for
a cost of N × 250; where each characteristic has 2106 solutions out of 2200 valid
keys. In a second phase, we will hash M random message blocks and test if they
can give a collision using one of the characteristics. Out of the M chaining values
generated, we expect that M ×N × 2200−256 will be valid for one characteristic,
and M×N×2106−256 values will actually lead to a collision after verification. An
important step of the attack will be to find for which characteristic a given chain-
ing value can be valid, but this can be done efficiently using a hash table indexed
by the bits of the chaining value which are imposed by the characteristics.

The optimal complexity is achieved with N = 250 and M = 2100. With these
parameters we only have to verify 294 valid chaining values, so the verification
step is negligible. This gives a collision attack on 12-round Skein-256 with a time
complexity of 2100, using memory to store 250 characteristics3.

The assumption that we can build so many good characteristics is a strong
assumption, and it is hard to verify. However, we believe that this estimation is
a safe upper bound, and that better characteristics would be found by running
the search algorithm for longer times. In our experiments, we tested a few dif-
ferent high probability trails as input to the algorithms, and we spend an effort
equivalent to about 250 hash computations on our best candidate.We ran our
algorithm 128 times with different initialization of the PRNG, and we report the
best paths found by each run after 120 CPU hours in Figure 5. In addition, we
ran a few parallel experiments for 120 hours with 32 cores. All these experiments
generated more than 400.000 different characteristics; the best characteristic al-
3 To store a characteristic, we just need to store masks defining the valid keys, and

one state in the middle (if is not necessary to store all the intermediate constraints).
Then, we can test a chaining value candidate by just computing all the intermediate
states and checking if we reach a collision. This would take about 4× 256 bits.
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Fig. 5. Best characteristic found after each run. The experiments were run on Intel
Xeon L5420 CPUs.

low 2118 solutions, and 30.000 of these allow more than 2106 solutions (only the
best characteristic of each run is shown in Figure 5). We note that in order
to build a large number of characteristics, we would also use several different
starting points for the linear part.

4.5 Free-Start Collision Attack

For a collision attack on the compression function, i.e. a free-start attack on
the hash function, we can use a difference in the chaining value (i.e. the key).
We note that the key schedule of Skein-256 repeats itself every 20 rounds when
there is no tweak difference. Therefore, we build trails with two inactive blocks
as shown in Figure 3: the difference introduced in the initial state by k0 cancels
out with the difference introduced in the final state by k5.

We give a collision pair built using this strategy in Table 4.
We can also extend this path to a free-start near-collision attack against 24-

round Skein, if we extend the trail to 4 more rounds at the end. A linearized trail
gives near-collisions with 15 active bits, and the cost of finding a conforming pair
is negligible before the cost of finding the trail.

4.6 Free-Tweak Free-Start Near-Collision Attack

Finally, we can use degrees of freedom in the tweak to reach the maximum
number of rounds possible. Previous works have shown that the key schedule
allows to have one round without any active key words if we use a difference in
the tweak in order to cancel a difference in the key. Using this property we can
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build a 24-round trail, and extend it to 32 round by propagating the external
difference for four extra rounds in each direction, as shown in Figure 4. This is
the approach used in [31].

We give a characteristic built using this idea in the full version of this paper.
This results in a low weight difference for the input and output, with many zero
bits in predetermined position. Moreover, we can follow the approach of [31] and
also specify a fixed characteristic for round 0 to 4 and 28 to 32. It costs about
240 to build a characteristic that allows 220 solutions, so we can estimate that
the amortized costs of building a valid pair for rounds 4 to 28 is about 220. Using
the analysis of [31], we would build a conforming pair for rounds 0 to 32 for a
cost of 220+43+43 = 2119, assuming that we can find 266 different characteristics.

Alternatively, if we can choose the value of the tweak, then we only need
a single characteristic, and we follow the same attack as [33] with the same
complexity.

Note that the complexity of these attack is higher than the generic complexity
of a partial-collision attack on 256 − 51 pre-specified bits, 2102.5. However, the
generic complexity to reach the fixed 256-bit difference with 51 pre-sepcified active
bits is still 2128. Alternatively, this attack can be considered as a q-multicollision
attack [2].

Conclusion

In this paper we describe an algorithm to build differential characteristics for
ARX designs, and we apply the algorithm to find characteristics for various
attack scenarios on Skein. Our attacks do not threaten the security of Skein, but
we achieve good results when compared to previous attacks; our main results
are low-complexity attacks in relatively strong settings. In particular, we show
practical free-start and semi-free-start collision attacks for 20 rounds and 12
rounds of Skein-256, respectively.

We obtain some of the first complex differential trails for pure ARX functions
(as opposed to MD/SHA-like functions with Boolean functions). Since our ap-
proach is rather generic, we expect that our technique can be applied to other
ARX designs, and will be used to evaluate the security of these designs against
differential cryptanalysis.

Our improvements to the tools of [14], and the code to build differential
characteristics for Skein are publicly available from the ARXtools webpage:
http://www.di.ens.fr/~leurent/arxtools.html. We hope that this will pro-
mote cooperation between researchers, and avoid a situation where several teams
have to develop their own implementation.
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The inputs are k = cv and v0 = m. The output is h = Ek(m) ⊕ m. The
examples are given for T = 0.

Table 3. Semi-free-start collision for 12-round Skein-256 (rounds 0–12)

Input 1 Input 2 Output 1 Output 2

k0 968cb2e66b0fb527 968cb2e66b0fb527 e12,0 2798a30c07459007 2398930c07459007
k1 37fce3361809b06a 37fce3361809b06a e12,1 2410f135e024aace 2410e135e024aace
k2 4bb032fb1894a60b 4bb032fb1894a60b e12,2 60490bbd9ddcb933 60490bbd9ddcb933
k3 d917aa4640682db6 d917aa4640682db6 e12,3 7fd51384c7b528f3 7fd51384c7b528f3

m0 e7395021238d7d18 e3396021238d7d18 h0 c0a1f32d24c8ed1f c0a1f32d24c8ed1f
m1 7229b06628958c1a 7229a06628958c1a h1 56394153c8b126d4 56394153c8b126d4
m2 3ea410b0b8f1b533 3ea410b0b8f1b533 h2 5eed1b0d252d0c00 5eed1b0d252d0c00
m3 fc0aa7147201f560 fc0aa7147201f560 h3 83dfb490b5b4dd93 83dfb490b5b4dd93

Table 4. Free-start collision for 20-round Skein-256 (rounds 0–20)

Input 1 Input 2 Output 1 Output 2

k0 5f977cfdd64d2f57 5f977cfdd64d2f57 e20,0 6627a3d5c18e2057 6627a3d5c18e2057
k1 35839193022be6f4 b5839193022be6f4 e20,1 7a1eeeee92b2202d fa1eeeee92b2202d
k2 05e168930700458f 85e168930700458f e20,2 2bf3a5067fac9218 abf3a5067fac9218
k3 6f47d57f8b6f9b78 6f47d57f8b6f9b78 e20,3 b0ccc2f709dc2e35 b0ccc2f709dc2e35

m0 627f37f95152438c 627f37f95152438c h0 0458942c90dc63db 0458942c90dc63db
m1 0532b3fdf499d0d7 8532b3fdf499d0d7 h1 7f2c5d13662bf0fa 7f2c5d13662bf0fa
m2 91c792ab31ba535c 11c792ab31ba535c h2 ba3437ad4e16c144 ba3437ad4e16c144
m3 72e80ac1aaee8118 72e80ac1aaee8118 h3 c224c836a332af2d c224c836a332af2d
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Abstract. We study various classical secure computation problems in
the context of fairness, and relate them with each other. We also system-
atically study fair sampling problems (i.e., inputless functionalities) and
discover three levels of complexity for them.

Our results include the following:

– Fair exchange cannot be securely reduced to the problem of fair coin-
tossing by an r-round protocol, except with an error that is Ω( 1

r
).

– Finite fair sampling problems with rational probabilities can all be
reduced to fair coin-tossing and unfair 2-party computation (or equiv-
alently, under computational assumptions). Thus, for this class of
functionalities, fair coin-tossing is complete.

– Only sampling problems which have fair protocols without any fair
setup are the trivial ones in which the two parties can sample their
outputs independently. Others all have an Ω( 1

r
) error, roughly match-

ing an upperbound for fair sampling from [21].
– We study communication-less protocols for sampling, given another

sampling problem as setup, since such protocols are inherently fair.
We use spectral graph theoretic tools to show that it is impossible to
reduce a sampling problem with common information (like fair coin-
tossing) to a sampling problem without (like “noisy” coin-tossing,
which has a small probability of disagreement).

The last result above is a slightly sharper version of a classical result by
Witsenhausen from 1975. Our proof reveals the connection between the
tool used by Witsenhausen, namely “maximal correlation,” and spectral
graph theoretic tools like Cheeger inequality.

1 Introduction

Despite wide interest in the problem of fairness, our understanding of some
of the most fundamental questions about it is greatly lacking. In this work,
we study fair-exchange, fair coin-flipping, and more generally fair sampling, to
understand the relation between these primitives. In the process, we also obtain a
sharper version of a classical information theory result from the 70’s on common
information of correlated random variables.
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Fair coin-flipping and fair-exchange are two classical problems in cryptogra-
phy, with a long history of results, both positive and negative. The most influ-
ential, and perhaps the most important negative result, dates back to the work
of Cleve [8], in which a deceptively simple argument was used to prove a result
of great consequence: irrespective of what computational assumptions are used,
any 2-party coin-flipping protocol is vulnerable to a simple attack which can
produce a bias that is inversely proportional to the number of rounds of the
protocol (rather than being negligible, as one would have preferred).

Our first result relates fair coin-flipping to fair-exchange. It is easy to see that
a fair exchange functionality can be directly used to obtain a fair coin-flipping
protocol (and thus Cleve’s impossibility for fair coin-flipping implies impossibil-
ity of fair-exchange as well). We ask if fair coin-flipping and fair-exchange are
equivalent, possibly under some computational assumption. That is, given access
to a fair coin-flipping functionality, can we implement a fair-exchange protocol?

The answer turns out to be negative: we show that an efficient attack can break
the security of any fair-exchange protocol that has access to fair coin-flipping,
in the same way Cleve’s attack could break the security of any fair coin-flipping
protocol. Our attack, like Cleve’s, is a simple fail-stop attack, and does not rely
on any computation other than running the steps of the protocol itself. However,
it differs from Cleve’s in some essential ways, in order to handle the presence of
the fair coin-flipping functionality. (In particular, one of our attacks requires the
adversary to run a particular round of the protocol twice, to “look-ahead” before
actually accessing the coin-flipping functionality.)

Our other results relate to the problem of fair sampling. This is a general-
ization of the fair coin-flipping problem, in which it is not necessary that Alice
and Bob output the same bit, but instead they are required to produce outputs
that are correlated in a specified manner. While somewhat more subtle than
the problem of fair coin-flipping, one can use a natural (standalone) simulation
based security definition to get the right definition of fair and secure sampling.
Surprisingly, we show that fair coin-flipping is at least as “complex” as generat-
ing correlated outputs from various distributions like noisy coin-flipping (where
each party gets an unbiased coin, but with probability say, 0.1, their coins do
not agree), random-OT (where Alice gets two random bits (x0, x1) and Bob gets
(b, xb) for a random b). That is, all these fair sampling problems can be solved
with access to a fair coin-flipping functionality (under standard computational
assumptions, or alternately, with access to unfair 2-party computation function-
alities). On the other hand, we believe the converse does not hold in general. We
give results (including one of independent interest) that show that somewhat
restricted protocols cannot give fair coin-flipping from fair sampling functionali-
ties if the distribution does not provide any common information (as formalized
by [11]) to the two parties.

Two points are worth highlighting here. In standard (unfair) secure 2-party
computation, the “complexity” of coin-flipping and that of say, noisy coin-flipping
are inverted. Indeed, noisy coin-flipping is a complete functionality for unfair 2-
party computation in the information-theoretic setting, whereas coin-flipping is
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not (see for e.g. [18]). The second point is that, noisy coin-flipping and random
OT, though possibly strictly simpler than coin-flipping itself, still turn out to be
impossible to fairly and securely implement, irrespective of any computational
assumptions or setups. We emphasize that these are sampling problems, and
should not be confused with (automatically fair) functionalities like OT (with
inputs). We generalize the proof of Cleve to show that unless a 2-party distribu-
tion is trivial (i.e., the outputs for the two parties are independent of each other),
it does not have a fair protocol. In fact, our proof leads to a slight simplification
of Cleve’s argument, but without yielding any quantitative improvements.

Finally, an important contribution of our work on fair sampling is a deeper un-
derstanding of common information, a concept introduced by Gács and Körner
[11], and since then widely studied in the information theory literature. Roughly
speaking, common information of a 2-party distribution is a piece of information
two parties can agree on, after they obtain a sample from the 2-party distribu-
tion (with each party obtaining only its part of the output). Distributions like
noisy coin-flipping, and random OT have no common information. Gács and
Körner showed that, even if a large number of samples from such a distribution
are given to the two parties, if they must agree on a common output without
further communication, then the entropy rate of their outputs must be zero. Our
interest in this setting, where the parties have to agree on an output without
any communication, is because such a protocol is inherently fair (provided the
access to the samples are fair). The original proof of Gács and Körner used tools
from ergodic theory to show that the number of independent random bits that
Alice and Bob can agree on is o(n) if they access n samples from a distribution
with zero common information. Witsenhausen used maximal correlation [12,22]
to show that they cannot agree on an output with any positive entropy (not
entropy rate) except by suffering a constant probability of disagreement [23].
We reprove this result using tools from spectral graph theory. Technically, our
proof is quite similar to that in [19] who refined Witsenhausen’s proof that used
maximal correlation. However, by identifying the connection with spectral graph
theory, we are able to obtain a slightly sharper result, afforded to us by Cheeger’s
inequality [5].

Our Results. We provide a collection of results on fair 2-party computation
(all of which also extend to the case of multi-party computation without honest
majority). Our focus is on studying certain important and representative tasks,
rather than attempting to exhaustively characterize fairness of all the tasks. The
following three canonical problems can be used to explain our main results.

– Fair exchange Fexch. Alice and Bob exchange a single bit.
– Fair coin-tossing Fcoin. Alice and Bob obtain a common coin.
– Fair sampling of a random instance of oblivious transfer FrOT: Alice gets a

pair of random bits (x0, x1) and Bob gets (b, xb) where b is a random bit.

We show that these three functionalities have decreasing complexity in the con-
text of fairness:
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1. Fexch > Fcoin: In Section 3, we show that Fexch cannot be reduced to Fcoin,
irrespective of what computational assumptions are made. We show that for
any r-round protocol for Fexch using Fcoin, there is an efficient fail-stop
adversary for which the simulation error is Ω(1r ). On the other hand, it is
well-known that Fcoin can be reduced to Fexch.

2. Fcoin ≥ FrOT: In Section 4 we show that FrOT can be reduced to Fcoin
(and an unfair 2-party computation problem). This protocol involves no
communication between the two parties, except for them both accessing
an unfair sampling functionality, and Fcoin. This protocols extends beyond
FrOT, and shows that Fcoin is complete with respect to fair and secure
reductions at least for a class of “nice” sampling tasks (including FrOT).

3. Fcoin > FrOT? We do not completely rule out a reduction of Fcoin to FrOT.
However, we present important partial negative results in Section 5. In par-
ticular, we show that there is no logarithmic round reduction from coin flip-
ping to a distribution with zero common information. (Also see below.)

4. FrOT non-trivial: Though FrOT is at the bottom of this list, in Section 6
we show that it cannot be fairly sampled either (irrespective of the com-
putational assumptions used). Here we have a tight characterization: only
distributions that can be fairly sampled are the ones in which there is no
correlation between Alice’s and Bob’s outputs. Our result is also tight in
that the bias we obtain closely matches a positive result from [21].

In Section 5 we investigate a sub-class of protocols for fair sampling, in which
the two parties access samples from a setup functionality, and then, without any
communication, produce their outputs. Such protocols are inherently fair. The
question of when such protocols are possible presents interesting combinatorial
and information-theoretic questions.

Using tools from spectral graph theory to analyze an appropriately defined
graph product (or rather, bipartite graph product), we show that even with
an unbounded number of samples from FrOT, any such protocol for Fcoin will
have a constant amount of error. Specifically, we give a tight bound on the
second eigenvalue of the normalized Laplacian of G1 	 G2 in terms of that of
G1 and G2, where 	 is a natural bipartite graph product that we define. Our
result sharpens a classical result on “common information” from information
theory, originally proven by Gács and Körner [11] using techniques from ergodic
theory and subsequently improved by Witsenhausen [23] using the “maximal
correlation” measure [12,22]. As it turns out, our spectral graph theoretic proof
is very similar to the one using maximal correlation as reformulated in [19],
but we can make a slightly sharper statement relating the error when using one
sample from FrOT versus using an unbounded number of samples, thanks to
Cheeger inequality.

This result also goes beyond FrOT, and in fact gives a tight characterization of
which sampling problems allow Fcoin to be reduced to them, and which ones do
not: any 2-party distribution (i.e., a pair of correlated random variables) which
has non-zero “common information” can be used to implement Fcoin, where
common information is as was defined in the seminal work of [11].
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We believe the explicit connection between spectral graph theory and tools
in information theory is of independent interest, and holds promise for other
problems.

An Emerging Picture. While the focus on this work has been to study specific
functionalities, our results suggest a certain hierarchy of “complexity” of func-
tionalities. Firstly, in general fair functions with input (like XOR) can be strictly
more complex than fair sampling problems. We leave it open to study distinctions
within functions with input (e.g., both parties having input vs. only one party
having input). Our other results have explored variations among fair sampling
problems. There are three apparent classes here: trivial problems (which can
be sampled trivially, by both parties independently generating their outputs),
non-trivial problems with zero common information (which includes FrOT and
noisy coin-flip), and problems with non-zero common information (which in-
cludes Fcoin). Indeed, the last class is complete for all sampling problems with
rational probabilities. The qualitative separation between problems with and
without common information is formalized in the setting of protocols without
communication.

Related Work. The problem of fairness in multi-party computation goes back
to the work of Even and Yacobi [10] where exchange of digital signatures is
informally proved to be impossible. The first rigorous proof of the impossibil-
ity of fairly computing a functionality comes from Cleve’s work [8]. He showed
that a very basic functionality, that of tossing a coin, cannot be realized fairly.
Subsequent works like that of [9] which considered stronger attacks, relied on
computationally unbounded adversaries.

A recent series of results has renewed interest in the area of fairness. Starting
with the work of Gordon et al. [14], where they show that several functionalities
of interest can be realized with complete fairness, there has been a series of
results in this area. In [21], Moran et al. solve a long standing open problem
in fairness. They show that Cleve’s lower bound on the bias of coin tossing
protocols can be achieved (up to a factor of 2) by a protocol. Beimel et al. [3]
extend their results to the multi-party model when less that 2/3 of the parties
are corrupt. In [15], Gordon et al. study the question of reductions among fair
functionalities. They show that no short primitive is complete for fairness. They
also establish a fairness hierarchy for simultaneous broadcast. Further in [13],
a definition of partial fairness is proposed, and it is shown that any two-party
functionality, at least one of whose domains or ranges is polynomial in size, can
be realized fairly under this definition. Beimel et al. [2] study partial fairness in
the multi-party setting. Asharov et al. [1] provide a complete characterization
of functions that imply fair coin tossing, and hence cannot be computed fairly
due to Cleve’s impossibility result. The negative results in this work relied on
computationally unbounded adversaries.

Separations of the kind we consider (impossiblity of reducing XOR to coin-
flipping) was also considered in the context of security with abort, but in the
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computationally unbounded setting [20]. We remark that such a result does not
hold in the computationally bounded setting.

The notion of common information was introduced by [11], and further devel-
oped in [24,16,23] and many later works. The problem of obtaining isoperimetric
inequalities of graph products has been studied, but for notions of graph prod-
ucts different from the bipartite product we study (e.g. [7], also see [6]).

2 Preliminaries

2.1 Secure Two-Party Computation with Complete Fairness

We are interested in (possibly randomized) two-party secure function evaluation
with complete fairness (in contrast to security with abort). The functionalities we
consider are all finite and their domains and ranges remain constant, irrespective
of the security parameter. All entities considered are probabilistic polynomial
time (PPT). They are given the security parameter n as an auxiliary input, and
their total running time is polynomial in n.

Fairness is modeled by specifying the ideal functionality F to be fair: it
delivers the output to both parties together. A corrupt party controlled by
the adversary may explicitly instruct the ideal functionality to abort (or, pro-
vide ⊥ as its input) without receiving any information from the functionality;
but if both parties provide valid inputs, then the functionality will evaluate
a specified function of the inputs and provide the results to the parties. Let
idealF ,S(n) = (viewF ,S(n),outF ,S(n)) be the random variable that denotes
the output of the adversary and the output of the honest party in the ideal
world.

In the real world, instead of outsourcing the computation, parties run a pro-
tocol π which enables them to compute F . While the honest party follows the
instructions of π, the corrupt party controlled by the adversary may deviate
arbitrarily. Let realπ,A(n) = (viewπ,A(n),outπ,A(n)) be the random variable
that denotes the view of the adversary and the output of the honest party.

A more detailed description of the ideal and real executions can be found in
the full version of the paper. In proving our negative results, we use the following
weak simulation based security definition.

Definition 1 (Weak Security). A protocol π is said to be a weak ε-secure
realization of a two party functionality F if for every PPT adversary A in the
real world, there exists a PPT adversary S in the ideal world such that

Δ (idealF ,S(n),realπ,A(n)) ≤ ε(n).

We say that π is a weak secure realization of F , if it is a weak ε-secure realization
of F for a negligible function ε(n).

Our definition is similar to the one given in [13], except that we do not require
security to hold in the presence of auxiliary information, which makes our defi-
nition weaker. Note that using a weaker security definition only strengthens the
impossibility results. On the other hand, we remark that our positive results,
i.e., constructions, are in fact UC secure [4].
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2.2 Normal Form of a Protocol

We shall use the following normal form for a 2-party protocol π between Alice
and Bob. The number of rounds of the protocol will be denoted by r(n), where
n is the security parameter. In this protocol, parties may also have access to a
setup functionality G. We shall often refer to such a setup functionality as an
oracle. Without loss of generality, we assume that the ith round in π consists of
the following steps, for 1 ≤ i ≤ r(n):

– Alice sends a message to Bob; if Alice aborts without sending this message,
Bob produces an output, denoted by the random variable Yi−1.

– the functionality G is invoked; if this invocation is aborted, Alice and Bob
would produce outputs.

– then Bob sends a message to Alice; if Bob aborts without sending this mes-
sage, Alice produces an output, denoted by the random variable Xi.

– G is invoked once again; again, if this invocation is aborted, Alice and Bob
would produce outputs.

In all our results, the functionality G will be an inputless function, and the
particular attacks we use do not involve aborting its invocation. So we have not
given any names for the random variables corresponding to the outputs if G’s
invocation is aborted. If multiple setups, say G1 and G2, are available, they will
be invoked one after the other in every round.

We remark that what makes proving our impossibility results harder is that
the protocol π can access Fcoin throughout its execution, rather than only in a
pre-processing phase. Indeed, it has been observed before by Ishai et al. [17] that
the impossibility results for fair deterministic function evaluation in the plain
model continue to hold in a pre-processing model.1

3 Fair Exchange from Fair Coin-Flipping

In this section, our goal is to show that two parties cannot exchange their bits
fairly, even when given access to fair coin-flipping functionality. The Fcoin func-
tionality does not take any input and provides a bit uniformly distributed in
{0, 1} to the two parties. The Fexch functionality is also simple to state: if
x, y ∈ {0, 1}, then Fexch(x, y) = (y, x); but if one of the parties aborts or sends
an invalid input to it, the functionality substitutes its input by a default value,
say 0.2 Recall our convention that this is a fair functionality, so the adversary
cannot prevent the delivery of output to the honest party.
1 The observation in [17] considers not just deterministic function evaluation. However

in the general case, the impossibility of fairness there holds only under a stricter
requirement, that the correctness of the protocol should hold conditioned on the
randomness of the pre-processing phase. In particular, Fcoin does not reduce to Fcoin

in such a pre-processing model. Our results are not restricted to the pre-processing
model, nor depend on such a security requirement.

2 An alternate formulation would be that if (x, y) ∈ {0, 1}2, then Fexch(x, y) = (⊥,⊥)
where ⊥ is a special symbol indicating abort. It can be easily seen that these formu-
lations are “isomorphic” to each other (see following text).
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We define another functionality Fxor which takes inputs x and y from the
two parties. If x, y ∈ {0, 1}, then Fxor(x, y) = (x ⊕ y, x ⊕ y); but if one of the
parties aborts or sends an invalid input, the functionality substitutes its input by
a default value, say 0 (similar to what Fexch does above). The functionality Fxor
is “isomorphic” to Fexch: that is, each functionality can be (UC) securely reduced
to the other using a protocol that involves no other communication other than
a single invocation of the latter functionality. Then it is easy to see that the fair
functionality Fexch can be (weakly) securely realized (using any set up) if and
only if the fair functionality Fxor can be (weakly) securely realized (using the
same set up). This allows us to prove that Fexch cannot be reduced to Fcoin by
showing instead that Fxor cannot be reduced to Fcoin.

The result of this section follows. A formal proof can be found in the full
version of the paper. Here we provide a sketch which describes the main ideas
involved in the proof. We point out that the result is tight up to a constant,
since [13] shows that Fxor can be computed ε-securely in O(1/ε(n)) rounds even
without access to Fcoin.

Theorem 1. For any weakly ε-secure protocol πFcoin that realizes the function-
ality Fxor and runs in r(n) rounds, r(n) ∈ Ω( 1

ε(n) ).

Proof sketch: Similar to Cleve’s approach [8], we shall consider a collection of
fail-stop adversaries that corrupt either Alice or Bob. We shall also consider
the case when neither party is corrupt. We seek to argue that at least for one
of these adversaries, the outcome in the real experiment cannot be simulated
within a Ω(1r ) error by any simulator in the ideal world, where r is the number
of rounds in πFcoin . (r is a function of the security parameter n, but for the sake
of readability, we write r instead of r(n).)

We start off along the same lines as Cleve: we note that at the end of the
protocol, the parties will agree on their outcome (except with at most ε prob-
ability). On the other hand, in the beginning of the protocol, the variables Y0
and X1 are independent of each other; also, by considering an adversary who
forces an abort right at the beginning, each of Y0 and X1 should be close to
uniformly random. So Y0 and X1 are equal with probability only about half.
Thus there must be a round i such that Pr[Xi = Yi]−Pr[Xi = Yi−1] = Ω(1r ) (or
Pr[Xi+1 = Yi] − Pr[Xi = Yi] = Ω(1r ); w.l.o.g, we can consider the former to be
the case).

In Cleve’s case, where the protocol he considers does not have access to any
setup, we can consider two adversaries that corrupt Alice, and selectively abort
at round i as follows. (See Section 2 for the numbering of the rounds.) The first
adversary forces Bob to output Yi−1 if Xi = 0 and otherwise forces him to output
Yi; the second adversary does the same for Xi = 1. To ensure that Bob’s output
is unbiased under these two attacks requires that

Pr[Yi−1 = 0 ∧Xi = 0] ≈ Pr[Yi = 0 ∧Xi = 0],

Pr[Yi−1 = 1 ∧Xi = 1] ≈ Pr[Yi = 1 ∧Xi = 1].
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This contradicts the assumption that Pr[Xi = Yi] − Pr[Xi = Yi−1] = Ω(1r ).
A crucial element in this proof is that Alice can compute Xi first and then
selectively force Bob to output Yi−1.

Unfortunately, but not surprisingly, this breaks down when the parties have
access to the Fcoin oracle as in our case. To compute Xi, Alice must obtain the
first coin in round i. But after that she cannot force Bob to output Yi−1: he
will output only Yi (note that aborting an access to Fcoin cannot help, because
w.l.o.g, the protocol can instruct a party to substitute it with a coin it generates).
Indeed, we cannot expect Cleve’s argument to go through when an Fcoin oracle
is present, because fair coin-flipping is trivially possible given access to Fcoin.

The reason we can expect to have an attack nevertheless, has to do with the
fact that there is an additional correctness requirement in the case of Fxor that is
not present in the case of coin-flipping. For instance, if the parties were to output
a coin they obtain in round i as their final output, while none of the attacks can
bias this outcome, when the execution is carried out without any corruption, the
output will be different from the XOR of the input with probability 1

2 .
We leverage this fact in a somewhat non-obvious manner. Suppose we want to

run Cleve’s attacks as well as we can. The two adversaries described above can
proceed right up to the point before accessing Fcoin in round i. Then, without
invoking Fcoin, the attacker can check what the value of Xi would be for each
of the two possible outcomes from Fcoin (by feeding one value of the coin to the
honest protocol execution, then rewinding it, and feeding the other value of the
coin). If in both cases the outcome is the same, then the adversary manages to
find Xi without invoking Fcoin at all. Let EA

i denote this event that in an honest
execution of the protocol, at the point before invoking the first access to Fcoin
in round i, the value of Xi already gets determined.

But what happens if the complement event E
A

i occurs? In this case, Xi is a
0 with probability 1

2 and 1 with probability 1
2 . Further, this happens indepen-

dently of Yi−1. Note that Yi could very well be correlated with Xi, since it is
influenced by the same coin that decides Xi as well as messages sent by Alice
after determining Xi. On the other hand, the final output of Bob, Yr must be
(almost) independent of Xi, since it must (mostly) equal the XOR of the inputs,
which is fixed well before the coin from Fcoin is accessed. Thus, Xi is correlated
almost the same way (i.e., uncorrelated) with both Yi−1 and Yr.

This gives us a way to emulate the effect of forcing the outcome to be Yi−1

when Xi comes out a particular way, provided E
A

i occurs: instead of trying
to force Bob to output Yi−1 (for which it is too late), let the protocol run to
completion and force his outcome to be Yr.

Somewhat surprisingly, this intuition can be turned into a concrete argument.
We employ adversaries for each round which check if the event EA

i occurs, and
adopt one of the above strategies. Note that the adversary can efficiently deter-
mine if the event EA

i occurs (without accessing the corresponding instance of
Fcoin). 


In the full version, we actually prove a generalization of Theorem 1. We show
that no δ-balanced function [1] can be securely reduced to Fcoin. The XOR
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function, which is δ-balanced with δ = 1/2, is therefore not reducible to Fcoin
either.

Remark. The proof and the result readily extends to the case when the pro-
tocol has access to other unfair non-reactive functionalities as well as Fcoin,
since in that case Alice can determine whether the event EA

i occurs (using an
unfair access to the functionalities) and act accordingly. Also, a corollary of the
generalization of Theorem 1 is that access to any fair functionality that can be
securely realized using access to (polynomially many invocations of) a δ-balanced
function is not sufficient to obtain a secure fair XOR protocol.

4 Fair Sampling from Fair Coin-Flipping

We shall say that a functionality F is complete for fair function evaluation if for
any fair function evaluation task there is an (information theoretically) secure
protocol that uses F and optionally, some unfair functionality G . Allowing
access to an unfair functionality eliminates the need to base the completeness
result on computational assumptions. (Equivalently, one could define it in terms
of a reduction to F that is secure in the probabilistic polynomial time setting,
and assume the existence of oblivious transfer protocol.)

In [15] it was shown that no finite functionality is complete for fair compu-
tation, even restricted to finite functionalities. We pose the same question, but
restricted to finite sampling functionalities (i.e., functionalities without input).

Surprisingly, we show that fair coin-flipping functionality Fcoin is in fact com-
plete for this class of problems. We mention a caveat in our result: our protocol
for fair sampling requires that the probability values in the target distribution
are rational numbers. Note that since the functionalities are finite, there is only
a finite constant set of probabilities in question, independent of the security
parameter. We say that such distributions are “nice.” If the target distribu-
tion involves probabilities that are not rational, then even though one could
approximate them to negligible error using rational numbers, an initial unfair
secure computation phase in our protocol would involve exponentially large out-
puts. However, even in this case, the number of accesses to Fcoin is still only
polynomial.

Let pXY denote a joint distribution over two random variables X and Y which
take values in the finite domains X and Y respectively. Our goal is to construct
an information-theoretic, UC secure protocol for the functionality which takes no
input, but samples (X,Y ) according to pXY and gives X to Alice and Y to Bob.
This functionality is modeled as a fair functionality as described in Section 2.
The protocol has access to an arbitrary unfair 2-party computation problem
(in fact, a 2-party sampling problem suffices) and the fair coin tossing function
Fcoin.

The basic idea of the protocol is fairly simple: first use an unfair secure com-
putation phase to generate two lists A and B such that if a uniformly random
i is picked then (Ai, Bi) will be distributed according to the target distribution.
This computation will give the list A to Alice and B to Bob. Then, use (many
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accesses to) fair coins to sample an index i; if either party aborts mid-way, the
other party simply tosses the remaining coins on its own. Alice’s output will be
Ai and Bob’s output will be Bi. The list A could contain many indices i such
that Ai = x for some character x, such that not all of these indices have the same
value of Bi. For security of this protocol, it is important that if Alice receives i
such that Ai = x, she learns nothing more about Bob’s output Bi, than what x
reveals. This is ensured by randomly permuting the lists A and B.

It remains to describe how the lists A and B can satisfy the above require-
ments. For this, first, for each (x, y) ∈ X × Y, express the probability p(x, y)
as rational number Px,y/Q, where Q is the same for all (x, y). Note that this is
where we assume that the distribution pXY is nice. Then, for each pair (x, y),
add Px,y copies of (x, y) to a list L. The size of this list will be Q. Then ran-
domly permute L to obtain a list ((a1, b1), · · · (aQ, bQ)). A is defined to be the
list (a1, · · · , aQ) and B the list (b1, · · · , bQ).

Simulation to prove the security of this protocol is straightforward and
omitted.

Despite the restriction to nice distributions, we note that the consequences
of this protocol are already quite powerful. The sampling problems mentioned
in the introduction — noisy coin-flipping with noise probability 0.1 or random
oblivious transfer distribution (in which one of 8 different possibilities occur with
the probability 1/8 each) — are covered by this protocol.

We also point out another feature of this protocol: Alice and Bob do not
interact with each other, except by accessing two sampling functions: the first
one which produces the lists A and B (unfairly) and the second one which gives
fair coins.

5 Impossibility of Fair Coin Flip from Fair Sampling

In this section we ask if it is possible to have a fair coin flipping protocol given
access to a setup for fairly sampling from a 2-party distribution. As we shall see,
this depends on whether the setup distribution gives non-zero common infor-
mation to the two parties. Our definition of common information of a 2-party
distribution, adapted from Gács and Körner [11], is best understood in terms of
the characteristic bipartite graph representation of a 2-party distribution.

Characteristic Bipartite Graph. Consider a distribution which samples a
pair of symbols (u, v) ∈ U×V with probability p(u, v) and gives u to Alice and v
to Bob. The characteristic bipartite graph (or simply the graph of a distribution)
of this distribution is a weighted graph G = (U, V, w) with U and V as the two
partite sets, and with weight of the edge between u ∈ U and v ∈ V defined to
be w(u, v) = p(u, v). Edges with weight 0 are considered absent, and only nodes
with at least one edge incident on them are retained in G.

Common Information. In the above setting, consider a function C which
maps a sample (u, v) to the index of the connected component in G that contains
the edge (u, v) (after removing 0-weight edges). We define the common informa-
tion of a 2-party distribution as the entropy of the random variable C(u, v) when
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(u, v) is sampled from the distribution. In particular, the distribution has zero
common information iff G has a single connected component (after removing
0-weight edges and isolated nodes).

For example, 2-party coin flipping has 1 bit of common information, whereas
a noisy coin flipping which gives an unbiased coin each to Alice and Bob which
are equal only with probability say 0.9, has zero common information.

Conjecture 1. For the class of finite 2-party distributions, the ones that are com-
plete with respect to fair and secure reductions are exactly the ones that have
positive common information.

We do not completely resolve this conjecture, but we provide the following results
in its evidence:

1. In the positive direction, the conjecture is equivalent to stating that coin
flipping is complete (since, as can be easily seen, any distribution with positive
common information can be used to obtain fair coins). Our result in Section 4
proves this, restricted to the class of “nice” distributions.

2. In the negative direction, we show that there is no logarithmic round re-
duction from coin flipping to a distribution with zero common information. We
present this proof in the full version of the paper.

3. We show that there is no reduction from coin flipping to a distribution
with zero common information using a protocol that has (an unbounded num-
ber of) rounds which access the setup, followed by a polynomial number of com-
munication rounds. (Our proof does not apply if the accesses to the setup are
interspersed with communication.) This can be shown using Theorem 2 below,
which deals with the special case when the protocol involves no communication
at all.

Theorem 2. [23] Let pUV be a 2-party distribution with zero common infor-
mation. Then for every constant δ > 0 there is a constant ε > 0 (depending
on pUV ) such that for any 2-party protocol in which the parties are given an
arbitrary number of samples from pUV , but they do not exchange any messages
and the entropy of the output of at least one of the parties is at least δ, then with
probability at least ε the output of the two parties will be different.

In Appendix A we give a new proof for this result, originally due to [23]. Note
that the error probability ε does not decrease with the number of coin samples
the protocol is allowed access to. Further, Lemma 1 in Appendix A, implies that
the error ε0 achievable using a single sample from pUV is (for the same δ) O(

√
ε).

That is, using more than one sample can decrease the error probability at most
quadratically. To the best of our knowledge, this final result was not known
previously.

6 Secure Sampling

In this section we consider the task of sampling from a joint distribution (X,Y ),
where X and Y are distributed over finite domains X and Y respectively. Two
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parties Alice and Bob wish to sample from this distribution such that Alice
learns only the value of X and Bob learns only the value of Y . The functionality
for secure sampling Fss is very simple: it does not take any input and produces
a sample from the distribution (X,Y ).

Let X × Y denote the product distribution of X and Y , i.e., Pr[X × Y =
(x, y)] = Pr[X = x] · Pr[Y = y] for all x ∈ X and y ∈ Y. We show:

Theorem 3. For any weakly ε-secure protocol π that realizes the functionality
Fss and runs in r(n) rounds,

r(n) ≥ Δ((X,Y ), X × Y )− 3ε(n)

2(|X |+ |Y|)ε(n) , (1)

r(n) ≥ αXY − 3ε(n)

4ε(n)
, (2)

where αXY = max(x,y)∈(X ,Y) |Pr[(X,Y ) = (x, y)]− Pr[X × Y = (x, y)]|.

In general, the two bounds are incomparable: the nature of joint distribution
decides which one is stronger (for examples see the full version). Our first bound
closely matches an upper bound from [21], who give an ε-secure sampling protocol
with Δ((X,Y ),X×Y )

2ε(n) + c rounds, where c is a positive constant. We prove this
bound in the full version of the paper. Here we prove the second bound in
the above theorem. Our proof is a natural generalization (and perhaps a slight
simplification/clarification) of Cleve’s proof for fair coin-tossing.

Proof of (2): Consider a weakly ε-secure protocol π for secure sampling that
runs in r(n) rounds. In a single round, Alice sends a message to Bob followed
by Bob sending a message to Alice. Recall the definitions of Xi and Yi−1 for
1 ≤ i ≤ r(n) + 1 from Section 2. Since we are working in the plain model here
(without any oracle set-up), Alice (resp. Bob) can compute the value of Xi (resp.
Yi) before sending the message for round i.

For simplicity in the following, we omit the security parameter n. We also
assume that Alice and Bob always output a value from X and Y respectively
when the other party aborts (for more discussion, see the full version). Fix a
pair (x, y) ∈ X × Y, and define four adversaries as shown in Figure 1 for each
1 ≤ i ≤ r.

Let us first consider the probability that Bob outputs y when Alice is cor-
rupted by Ai,x in the real world.

Pr[outπ,Ai,x = y] = Pr[Xi = x ∧ Yi = y] + Pr[Xi �= x ∧ Yi−1 = y]

= Pr[Xi = x ∧ Yi = y]− Pr[Xi = x ∧ Yi−1 = y] + Pr[Yi−1 = y].

(3)

When Ai corrupts Alice, Pr[outπ,Ai = y] is simply Pr[Yi−1 = y].
On the other hand, since the sampling functionality is inputless, no matter

what strategy the adversary adopts in the ideal world, the output of Bob is dis-
tributed according to the marginal distribution Y . Therefore, for all SAi,x ,SAi ,
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Adversary Ai,x:
Simulate Alice for i− 1 rounds
if Xi = x then

abort at round i+ 1
else

abort at round i
end if

Adversary Bi,y

Simulate Bob for i− 1 rounds
if Yi = y then

abort at round i+ 1
else

abort at round i
end if

Adversary Ai

Simulate Alice for i− 1 rounds
Abort

Adversary Bi

Simulate Bob for i− 1 rounds
Abort

Fig. 1. Adversaries for round i, where 1 ≤ i ≤ r.

we have

Pr[outFss,SAi,x
= y] = Pr[outFss,SAi

= y] = Pr[Y = y], (4)

where SA denotes the ideal world counterpart of a real world adversaryA. Hence,

Δ
(
outπ,Ai,x ,outFss,SAi,x

)
+Δ

(
outπ,Ai ,outFss,SAi

)
≥ |Pr[Xi = x ∧ Yi = y]− Pr[Xi = x ∧ Yi−1 = y]| . (5)

Similarly, by considering the real and ideal world outputs of Alice when Bob is
corrupted by adversaries Bi,y and Bi, for all SBi ,SBi,y , we have

Δ
(
outπ,Bi,y ,outFss,SBi,y

)
+Δ

(
outπ,Bi ,outFss,SBi

)
≥ |Pr[Yi = y ∧Xi+1 = x]− Pr[Yi = y ∧Xi = x]| . (6)

Adding (5) and (6) for all 1 ≤ i ≤ r, we have that the sum of 4r statistical dif-
ference terms is at least |Pr[Xr+1 = x ∧ Yr = y]− Pr[X1 = x ∧ Y0 = y]|. Hence,
there exists an adversary A (among the 4r adversaries) such that for any ideal
world adversary S,

Δ(outπ,A,outFss,S) ≥
|Pr[Xr+1 = x ∧ Yr = y]− Pr[X1 = x ∧ Y0 = y]|

4r
(7)

We want to lower bound the above quantity in terms of X and Y . To this end,
observe that when neither party is corrupt, the joint distribution of Alice and
Bob’s outputs in the ideal world is given by (X,Y ), and in the real world it is
given by (Xr+1, Yr). Then, the ε-security of π implies that

|Pr[(X,Y ) = (x, y)]− Pr[(Xr+1, Yr) = (x, y)]| ≤ ε. (8)
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We can also obtain the following from the ε-security of π:

|Pr[(X1, Y0) = (x, y)]− Pr[X × Y = (x, y)]| ≤ 2ε (9)

(see the full version for a proof). Combining (7) with (8) and (9), we get:

Δ(outπ,A,outFss,S) ≥
|Pr[(X,Y ) = (x, y)]− Pr[X × Y = (x, y)]| − 3ε

4r
. (10)

However, since π is an ε-secure protocol, the above quantity can be at most ε.
Choosing a pair (x, y) that maximizes |Pr[(X,Y ) = (x, y)]− Pr[X × Y = (x, y)]|,
we obtain the desired bound:

r ≥ αXY − 3ε

4ε
. (11)
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A A Spectral Graph Theoretic Proof of Theorem 2

Firstly, we define a natural notion of bipartite graph product, to capture the
bipartite characteristic graph resulting from multiple independent samples from
a 2-party distribution.

Definition 2. If G1 = (U1, V1, w1) and G2 = (U2, V2, w2) are two weighted
bipartite graphs, we define their bipartite tensor product G1	G2 = (U, V, w) as a
weighted bipartite graph with U = U1×U2, V = V1×V2 and w((u1, u2), (v1, v2)) =
w1(u1, v1) · w2(u2, v2).

Also, for all positive integers k we define G�k = G�k−1	G, where G�0 = K1,1

(a single edge with weight 1).

To prove Theorem 2, we shall see that it suffices to lowerbound the “Cheeger
constant” of G�k (for all k ∈ N). Before defining the Cheeger constant, we note

http://www.stanford.edu/~gowthamr/research/binary_renyi_correlation.pdf
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that we can consider a weighted bipartite graph G = (U, V, w) as a general
(not necessarily bipartite) weighted graph G′ = (T,w), where T = U ∪ V , by
extending its weight function (originally defined over U × V ) to cover all pairs
of nodes in the graph, in a natural way: for (v, u) ∈ V × U , w(v, u) = w(u, v);
for (x, x′) ∈ U2 ∪ V 2, w(x, x′) = 0. Also, as a matter of convenient notation,
for every node x ∈ T , we define w(x) =

∑
y∈T w(x, y). Also, for S ⊆ T , let

w(S) =
∑

x∈S w(x) and w(S, S) =
∑

(x,y)∈S×S w(x, y).

Definition 3 (Cheeger Constant). For a weighted graph G = (T,w), the
Cheeger constant h(G) is

h(G) = min
S⊆T

w(S, S)

min(w(S), w(S))
. (12)

Lemma 1. Given a weighted bipartite graph G, for all non-negative integers k, t,
h(G�k	K2,2

�t) ≥ 1
2h

2(G), where K2,2 denotes the complete bipartite graph with
weight 1

4 on all four edges.

While this does not give very tight bounds on h(G�k) in terms of h(G), the
proof of this lemma, given in the full version, in fact shows that the second
eigenvalue of the normalized Laplacian matrix associated with G�k 	 K2,2

�t

(for k > 0) is equal to that of the normalized Laplacian matrix associated with
G. This translates to the above bound via Cheeger inequality [5].

Now we sketch how this lemma can be used to prove Theorem 2. Let G =
(U, V, w) be the characteristic bipartite graph of pUV . G�k = (Uk, V k, w(k))
denotes the graph corresponding to k independent samples from pUV , where
w(k)((u1, · · · , uk), (v1, · · · , vk)) =

∏k
i=1 w(ui, vi). Alice gets a node in Uk as her

part of the sample from pkUV (i.e., k independent samples from pUV ), and Bob
gets a node in V k. Further, Alice and Bob may use private random coins, say
t of them. The characteristic bipartite graph for t pairs of independent coins is
K2,2

�t. Thus G�k 	 K2,2
�t denotes the entire view of the two parties in the

protocol. Now, the output of each party is a deterministic function of its view.
W.l.o.g., we assume that each party is outputting a single bit (if necessary,

by partitioning the outputs into two appropriately chosen parts, while retaining
a constant amount of entropy in the outputs). Let A0 ⊆ Uk × {0, 1}t be the set
of views on which Alice outputs 0. Similarly define A1, and also define the sets
B0 and B1 for Bob. Let w∗ be the weight function for G�k 	K2,2

�t.
Then, the probability that Alice outputs 0 is pA0 =

∑
a∈A0

w∗(a). Similarly
pA1 =

∑
a∈A1

w∗(a), and pB0 =
∑

b∈B0
w∗(b) and pB1 =

∑
b∈B1

w∗(b). W.l.o.g,
assume that pA0 + pB0 ≤ pA1 + pB1 (interchanging 0 and 1 if necessary). Then, let
S = A0∪B0 and S = A1∪B1. Since we required the output of at least one party
to have constant entropy, it must be the case that pA0 +pB0 ≥ α for some constant
α > 0. The probability that Alice and Bob disagree on their outputs, p∗ is given
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by the weight of the edges that go across S and S: i.e., p∗ =
∑

x∈S,y∈S w
∗(x, y).

By definition of the Cheeger constant, we have

h(G�k 	K2,2
�t) ≤

∑
x∈S,y∈S w

∗(x, y)

pA0 + pB0
≤ p∗

α
.

That is, p∗ ≥ αh(G�k 	K2,2
�t) ≥ αh2(G)

2 . Since pUV has zero common infor-
mation, its bipartite characteristic graph G has a single connected component,
and h(G) is positive. Thus, we can set ε = αh2(G)

2 to complete the proof of
Theorem 2.

Remark. Gács and Körner [11] also considered the case when the setup dis-
tribution has non-zero common information. Our proof readily extends to this
setting, showing that the entropy of a common output conditioned on this com-
mon information will have to be o(1) (when the disagreement probability is
required to be o(1)).
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Abstract. We revisit the question of whether cryptographic protocols can replace
correlated equilibria mediators in two-player strategic games. This problem was
first addressed by Dodis, Halevi and Rabin (CRYPTO 2000), who suggested re-
placing the mediator with a secure protocol and proved that their solution is stable
in the Nash equilibrium (NE) sense, provided that the players are computationally
bounded.

We show that there exist two-player games for which no cryptographic pro-
tocol can implement the mediator in a sequentially rational way; that is, without
introducing empty threats. This explains why all solutions so far were either se-
quentially unstable, or were restricted to a limited class of correlated equilibria
(specifically, those that do not dominate any NE, and hence playing them does
not offer a clear advantage over playing any NE).

In the context of computational NE, we classify necessary and sufficient cryp-
tographic assumptions for implementing a mediator that allows to achieve a
given utility profile of a correlated equilibrium. The picture that emerges is some-
what different than the one arising in semi-honest secure two-party computation.
Specifically, while in the latter case every functionality is either “complete" (i.e.,
implies Oblivious Transfer) or “trivial" (i.e., can be securely computed uncon-
ditionally), in the former there exist some “intermediate" utility profiles whose
implementation is equivalent to the existence of one-way functions.

1 Introduction

The field of game theory offers a variety of ways to reason about the behavior of rational
players. One of the most famous analytic tools for that purpose is that of Nash equilib-
rium [14]. In the basic case of two-player games, a Nash equilibrium (NE) constitutes
of two independent plans of action, one for each player, such that no player can unilater-
ally benefit by deviating from her own plan. The NE solution concept was subsequently
generalized by Aumann [2], who allowed players to pick their actions in a correlated
way. Correlated equilibria (CE) are in many cases preferable over NE, in part because
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a correlated manner, the players are assumed to have access to a mediator (sometimes
referred to as correlation device), that provides them with private, correlated, recom-
mendations on the action to be taken.

About a decade and a half ago, Dodis, Halevi and Rabin [7] pointed out the possibil-
ity of implementing the mediator without having to refer to any trusted party. To this
end, they proposed the use of secure two-party computation, viewing the correlation
device as a randomized functionality. Their approach, natural from the cryptographic
perspective, gives rise to some game theoretical challenges that need to be addressed.
Most notably, the cryptographic protocol preceding the actual play of the strategic game
introduces new actions that are observable by the players. Since these actions take place
sequentially, the model of the game needs to be adjusted to account for the strategic de-
cisions that players need to take during the protocol execution. While these actions do
not directly affect the utility in the underlying strategic game, they can nevertheless in-
fluence the players in their decision making. Such pre-play communication is referred
to as cheap talk in the economic literature.

One crucial difference from the mediated setting, which is inherited from the sequen-
tial nature of protocols, is that one of the players may learn her recommendation before
the other. If this player is not happy with the protocol’s recommendation, she can simply
decide to “abort,” thus preventing the other player from learning his own recommenda-
tion. Another crucial difference is that player A (not necessarily the one who learns her
recommendation first), can reveal extra information to player B, changing player B’s
knowledge and expectation on how player A is going to play.1

Given that such deviations can always be observed, it becomes necessary to spec-
ify what action players take in case deviation is detected. One could attempt to deter
misbehavior by threatening with some punishment. However, it is not a priori clear
what kind of punishment should a player invoke, assuming that the other player is ratio-
nal. In the protocol of Dodis et al. [7], an “abort" action is punished by employing the
min-max strategy (that is, the strategy that minimizes the maximal gain of the deviator).
This approach suffers from the well known and often unavoidable shortcoming of be-
ing harmful to the punishing player. Consequently, the threat of playing the min-max
strategy is empty, or in other words not credible. Punishing the other type of deviations,
in which the deviating player reveals extra information, appears to be even more chal-
lenging, as a message reacting to such deviations might not even fall into the scope
of the prescribed protocol (for instance, if the deviating player is the last to learn her
recommendation, meaning that the protocol actually terminates at that point).

The issue of empty threats is classically handled by the requirement of subgame per-
fection (SPE), which requires strategies to be in equilibrium at any point during the
protocol execution. This requirement insures that any threat is credible. One problem
with subgame perfection, that is particularly acute when modeling behavior of compu-
tationally bounded players in a cryptographic protocol, is the requirement of optimality
at any point in the protocol execution. This problem was first addressed by Gradwohl,
Livne and Rosen [9], who by defining empty threats in an explicit manner, were able

1 For instance, the second player to learn his own recommendation could make his private view
of the protocol public, thus revealing his recommendation to the first player and rendering the
correlation device useless.
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to reason about sequential rationality in face of computationally bounded players. In
addition to this modeling, their work proposed a simple cryptographic protocol for the
class of convex hull Nash equilibria (i.e., correlated equilibria that can be expressed as a
convex combination of the Nash equilibria of the game), assuming the existence of one-
way functions. To avoid empty threats, their solution punishes the aborting player with
her “worst" NE (i.e., the NE yielding the lowest payoff amongst all NE in the game).
Indeed, since the punishment is a Nash equilibrium, a rational punishing player has no
incentive to deviate from it, which renders the threat of playing this NE credible.

One significant shortcoming of the Gradwohl et al. [9] solution is that it only ap-
plies to convex combinations of Nash equilibria. Unfortunately, such equilibria are not
very interesting since they do not enjoy the most beneficial feature of CE, namely the
ability of dominating the payoffs achieved by any NE. This leaves open the question
of whether there exists a sequentially rational cryptographic protocol for implementing
the mediator in the cases where playing a CE is preferable over playing any NE.

1.1 Our Results

A necessary requirement for guaranteeing sequential rationality is the ability for a
player to threaten credibly. For this to be possible the threat must consist of a ratio-
nal plan of action. Otherwise, there is no guarantee that a rational player will follow
through in case she is tested. We formalize this intuition by putting forward the notion
of Nash equilibrium punishable CE. These are correlated equilibria for which the ex-
pected utility of any player given a recommendation by the mediator is never smaller
than in her worst NE. This notion turns out to be crucial for implementing the mediator
of a CE using a cryptographic protocol.

Theorem 2 (Informal). A correlated equilibrium can be implemented in a sequentially
rational way using cryptographic cheap talk if and only if it is Nash equilibrium pun-
ishable.

Given the above theorem, it is natural to ask whether every CE is NE-punishable. An
affirmative answer would have implied that any player receiving an unsatisfactory rec-
ommendation from the cryptographic protocol can be threatened from aborting in a
credible way.

Our answer to this question is negative. We show that there exist games with CE that
are not NE-punishable. Moreover, these games have utility profiles that can be obtained
only by those CE that are not NE-punishable (and so cannot be achieved by other NE-
punishable equilibria). Additionally, both players prefer these utility profiles to utility
profile of some other NE-punishable CE, thus both would be in favor of implementing
such preferable CE.

Theorem 1 (Informal). There exist infinitely many strategic games with preferable CE
that cannot be achieved by sequentially rational cryptographic cheap talk.

The above theorem explains why all solutions so far were either sequentially unstable,
or were restricted to a limited class of correlated equilibria.

In addition to the above results, we classify necessary and sufficient cryptographic
assumptions for implementing a mediator that allows to achieve a given utility profile
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of a CE by a protocol that is in computational NE. We show that there are non-trivial
CE in the convex hull of Nash equilibria2 (CHNE) which can be implemented via cheap
talk only if one-way functions exist.

Theorem 3 (Informal). If the payoff of all non-trivial convex hull Nash equilibria can
be achieved via cryptographic cheap talk then one-way functions exist.

As shown by Gradwohl et al. [9], if one-way functions exist then all non-trivial CE in the
convex hull of NE can be implemented via computational (and moreover sequentially
rational) cheap talk. Taken together these results fully characterize the assumptions
under which all convex hull NE can be implemented. We also show that there exist
CE outside CHNE which can only be cheap talk implemented if OT exists.

Theorem 4 (Informal). If the payoff of all correlated equilibria outside the convex
hull of NE can be achieved via cryptographic cheap talk then there exists a protocol for
oblivious transfer (OT).

As shown by Dodis et al. [7], if there exists a protocol for OT then all correlated equi-
libria (including those outside the convex hull of NE) can be implemented via computa-
tional (but not necessarily sequentially rational) cheap talk. Taken together these results
show that OT is complete for implementing all CE (regardless of the issue of sequential
rationality). We conjecture that implementing any CE outside the CHNE and provide
evidence to support the conjecture. We leave it as an open problem to prove or disprove
the conjecture.

These are to our best knowledge the first results of this type. Previous work on ra-
tional cryptography has focused on sufficiency of cryptography for implementing equi-
libria. Our results suggest an intriguing connection between the distinction between CE
and CHNE on one hand and the distinction between Cryptomania and Minicrypt on
the other hand (see Impagliazzo [11]). The picture that emerges is somewhat different
than the one arising in semi-honest secure two-party computation. While in the latter
case every functionality is either “complete" (i.e. implies OT) or “trivial" (i.e. can be se-
curely computed unconditionally), in the former there exist some “intermediate" utility
profiles whose implementation is equivalent to the existence of one-way functions. The
details are given in Sect. 6 and Sect. 7.

1.2 Related Work

Osborne and Rubinstein [15] provide a standard introduction to game theory. The notion
of correlated equilibrium was introduced by Aumann [2]. A non-technical introduction
motivating the notion of cheap talk is given in Farrell and Rabin [8]. Cheap talk im-
plementation of a correlation device in game-theoretical framework was put forward
by Bárány [4]. Aumann and Hart [3] show what equilibria payoffs can be achieved via
cheap talk preceding games with imperfect information.

We already mentioned the works in [7, 9]. Teague [17], and subsequently Atallah et
al. [1] gave a protocol for the general problem of correlated element selection achieving

2 Note that NE, even though contained in the convex hull of NE, are trivial from our perspective,
since there is no need for a mediator to play according to them.
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better efficiency than [7], but preserving the original solution concept of computational
NE. Using results from computational complexity to implement correlation devices was
considered by Urbano and Vila [19], aiming for a similar result to Dodis et al. [7]. How-
ever, Teague [18] showed that their approach is flawed. An alternative solution concept
for analyzing game theoretical properties of cryptographic protocols was suggested by
Pass and shelat [16].

2 Preliminaries and Definitions

For m ∈ N, we use [m] to denote the set {1, . . . ,m}. For a finite set A, we use Δ(A) to
denote the set of probability distributions over A.

Definition 1 (Two-player Strategic Game). A two-player strategic game Γ is a triple
(A1,A2,u), where Ai is a set of actions of player i ∈ {1,2}, and u : A1 ×A2 → R2 is a
utility function assigning a utility profile to every action profile a ∈ A1×A2. We use ui

to denote the i’th output of u, i.e., u(a) = (u1(a),u2(a)).

In this work we only consider two-player games. Also, we talk about a k×k strategic
game Γ if both players have k strategies in Γ , i.e., |A1|= |A2|= k. A classical example
of strategic game is the game of Chicken as in Fig. 1a.

Definition 2 (Strategy Profile). A strategy profile for a strategic game Γ is a prob-
ability distribution γ on A1×A2, i.e., γ ∈ Δ(A1×A2). We denote γ(a) the probability
assigned by γ to a ∈ A1×A2. The corresponding utility profile U(γ) ∈ R2 is given by
U(γ) = (U1(γ),U2(γ)), where Ui(γ) =∑(a1,a2)∈A1×A2

γ(a1,a2)ui(a1,a2) for i∈ {1,2}. If
U(γ) = (v1,v2), we say that γ achieves the utility profile (v1,v2).

Definition 3 (Correlated Equilibrium). A correlated equilibrium (CE) of a strategic
game (A1,A2,u) is a strategy profile γ ∈Δ(A1×A2), such that for every player i∈ {1,2}
and every pair of strategies ai,a′i ∈ Ai it holds that

∑
a−i∈A−i

γ(ai,a−i)ui(a
′
i,a−i)≤ ∑

a−i∈A−i

γ(ai,a−i)ui(ai,a−i) .

We denote Ui(γ|ai) the expected utility of player i when given advice ai ∈Ai and the
other player also plays according to some advice sampled from γ , i.e., Ui(γ|ai) =(
∑a−i∈A−i

γ(ai,a−i)
)−1 ∑a−i∈A−i

γ(ai,a−i)ui(ai,a−i).

Definition 4 ((Convex Hull) Nash Equilibrium). A Nash equilibrium (NE) of a strate-
gic game Γ = (A1,A2,u) is a correlated equilibrium σ of Γ , such that σ is also a prod-
uct distribution, i.e., σ ∈ Δ(A1)×Δ(A2). A convex hull Nash equilibrium (CHNE) of
a strategic game Γ is a correlated equilibrium of Γ that can be expressed as a convex
combination of Nash equilibria of Γ .

We denote NE(Γ ),CHNE(Γ ), and CE(Γ ) the set of Nash equilibria of Γ , the set of
convex hull Nash equilibria of Γ , and the set of correlated equilibria of Γ respectively.3

3 As a convention, we will use γ to denote a strategy profile that is a CE and σ to denote a strategy
profile that is a NE.
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We are interested in implementing correlated equilibria of two-player strategic
games. Given such strategic game Γ one can visualize the utility profiles achievable by
all its correlated equilibria in R2. Figure 1b depicts the polygon of utility profiles achiev-
able by CE of the game of Chicken defined by the payoff matrix in Fig. 1a. The dark
grey triangle corresponds to utility profiles achievable by the CHNE of Chicken, and its
three corner points are exactly the payoffs of the three NE of the game of Chicken. One
can see that the payoffs of CE of Chicken extend the region of CHNE payoffs in both
directions, i.e., there are both CE that improve the CHNE payoffs (the white polygon)
and those that are dominated by the CHNE payoffs (the light grey triangle).

C D

c 6,6 2,7

d 7,2 0,0

(a)

u1

u2
(2,7)

(7,2)

( 14
3 , 14

3 )

( 21
4 , 21

4 )

( 18
5 , 18

5 )

(b)

Fig. 1. (a) the game of Chicken (b) the utility profiles achievable by its CE

There is a natural partial ordering on the utility profiles induced by the relation of
Pareto dominance.

Definition 5 ((Strict) Pareto Dominance, Weak Pareto Optimality). Let Γ be a
strategic game, and γ,γ ′ ∈ CE(Γ ). If Ui(γ) > Ui(γ ′) for both i ∈ {1,2}, we say that
γ strictly Pareto dominates γ’. We say that γ Pareto dominates γ ′ if for both i ∈ {1,2} it
holds that Ui(γ) ≥Ui(γ ′), and there exist i′ ∈ {1,2} such that Ui′(γ) >Ui′(γ ′). We say
that a γ∗ ∈ CE(Γ ) is weakly Pareto optimal if there exists no γ ′ ∈ CE(Γ ) that Pareto
dominates γ∗.

We sometimes abuse the notation and say that utility profile v ∈ R2 (strictly) Pareto
dominates v′ ∈ R2 if there exist γ,γ ′ ∈ CE(Γ ), such that v = U(γ),v′ = U(γ ′) and γ
(strictly) Pareto dominates γ ′. Consider again the CE payoffs of Chicken in Fig. 1b.
The two line segments between (2,7) and ( 14

3 ,
14
3 ), and between ( 14

3 ,
14
3 ) and (7,2) on

the boundary of CHNE payoffs are exactly the weakly Pareto optimal boundary of the
CHNE payoffs of Chicken.

3 Not All CE Are NE-Punishable

In this section, we show that there exists a barrier for using cryptography to implement
any interesting correlated equilibrium without empty threats. Intuitively, for a correlated
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equilibrium to be implementable by a cryptographic protocol without empty threats, one
must be able to effectively punish any deviating player by her worst NE.

Definition 6 (NE-punishable CE). Let γ be a CE of a strategic game Γ = (A1,A2,u).
We say that γ is a Nash equilibrium punishable correlated equilibrium if for all i∈ {1,2}
and every action ai ∈ Ai of player i played with non-zero probability in γ it holds that
Ui(γ|ai)≥Ui(σi), where σi is the worst Nash equilibrium for i in Γ .

It is not at all obvious if there exists any strategic game with a CE that is not NE-
punishable; it could also be the case that for any CE there exists a NE-punishable CE
achieving the same utility profile. However, we show that none of the above is true.
There are in fact many games with correlated equilibria that have some utility profile
extending the polygon of CHNE payoffs, but no NE-punishable CE achieves such utility
profile.

Theorem 1. For any k ∈ N. If k > 3, then there exists a k×k strategic game Γ with a
correlated equilibrium γ ∈CE(Γ )\CHNE(Γ ), s.t. every γ ′ ∈CE(Γ ) with U(γ ′) =U(γ)
is not a NE-punishable CE of Γ .

The proof is constructive. We start with a suitable (k− 1)×(k− 1) strategic game Λ
and extend it into a k×k game Γ that exemplifies the theorem; the initial game Λ is
characterised by some non-trivial properties (given by the criterion in Def. 7) that are
exploited when we extend it.

Definition 7 (Extensibility Criterion). A strategic game Λ = (A1,A2,u) satisfies the
extensibility criterion if there exists γ , a CE of Λ , with the following two properties:

1. γ strictly Pareto dominates any NE of Λ .
2. There exists a ∈ Ai for some player i ∈ {1,2}, such that for every γ ′ ∈ CE(Γ ) with

U(γ ′) =U(γ) it holds that Ui(γ ′)>Ui(γ ′|a).

We use the fact that any strategic game Λ satisfying the extensibility criterion has a CE
γ preferable for both players to any NE of Λ . The CE γ is preserved as a correlated
equilibrium in the extended game Γ . We are able to carefully devise the payoffs of Γ
such that its unique NE is strictly Pareto dominated by γ , however for at least one of the
players there exists a recommendation in γ that is inferior to the unique NE.

Lemma 1. For any k ∈ N+, if there exists a (k− 1)×(k− 1) strategic game Λk−1 that
satisfies the extensibility criterion, then there exists a k×k strategic game Γ with a
correlated equilibrium γ ∈CE(Γ )\CHNE(Γ ), s.t. every γ ′ ∈CE(Γ ) with U(γ ′) =U(γ)
is not a NE-punishable CE of Γ .

Proof. We show how to extend Λk−1 = (A,B,u) with one additional action for each
player to define Γ . Let a0 be the new action of player A and b0 be the new action of
player B, thus Γ = (A∪ {a0},B∪ {b0},u′). The utility function u′ of Γ corresponds
to the utility function of Λk−1 for every action profile in A×B. For some s, t ∈ R, u′ is
defined on the remaining action profiles as: u′(a0,b0) = (t, t), and u′(a0,b) = u′(a,b0) =
(s,s) for every b ∈ B and every a ∈ A.
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We show that it is possible to select s and t such that the claim holds. Recall that Λk−1

satisfies the extensibility criterion, so there exists a CE γ satisfying the two conditions
from Def. 7. Let i be the player and a∈Ai be the advice from the second condition of the
extensibility criterion. Denote v the expectation of player i in γ given recommendation
a, i.e., v = Ui(γ|a). We can assume without loss of generality that γ is the CE with
maximal v. Let v′ be the maximal utility obtained in Λk−1 by any of the players in some
NE, i.e., v′ = max(UA(σ∗

A),UB(σ∗
A)), where σ∗

i is the best NE for player i. Set s such
that max(v,v′)< s <Ui(γ), and let t = (s+Ui(γ))/2.

If s and t are selected as above, then no Nash equilibrium of Λk−1 is a Nash equi-
librium of Γ . Moreover, the action profile (a0,b0) is a unique NE of Γ achieving the
utility profile (t, t). However, γ is still a correlated equilibrium in Γ , and the expectation
of player i when given a as a recommendation is strictly smaller than the utility obtained
by player i in the unique NE (a0,b0) of Γ . Thus γ is not a NE-punishable CE.

Consider any other CE γ ′ of Γ that achieves the same utility profile as γ . Both t and s
are smaller than Ui(γ), thus any new correlated equilibrium achieving U(γ) satisfies the
second condition from the extensibility criterion. Since Ui(γ|a)≥Ui(γ ′|a), any such γ ′
is also not NE-punishable. ��

It remains to show that games satisfying the extensibility criterion exist for any k > 2.

Lemma 2. For every k ∈ N with k > 2, there exists a k×k strategic game Λk that
satisfies the extensibility criterion.

Proof. Let c,d,e, f ,g ∈ R be real numbers such that c < d < e < f < g, where g−
f < e− c, and 3 f < (e− c).4 Consider the k×k game Λk = (A = {a1, . . . ,ak},B =
{b1, . . . ,bk},u) with the utility function u : A×B → R2 defined as follows:

– u(a j,b j) = ( f ,g) for every j ∈ [k− 1],
– u(ak,bk) = (d,e),
– u(a j,b j+1) = (g, f ) for every j ∈ [k− 2],
– u(ak−1,bk) = (e, f ),
– u(ak,b1) = (g,d), and
– u(a,b) = (c,c) otherwise.

To illustrate the corresponding payoff matrix, we give the payoff matrix of Λ4 in Fig. 2.

b1 b2 b3 b4

a1 f ,g g, f c,c c,c

a2 c,c f ,g g, f c,c

a3 c,c c,c f ,g e, f

a4 g,d c,c c,c d,e

Fig. 2. The payoff matrix of Λ4

4 The two conditions g− f < e− c and 3 f < (e− c) are required for ease of exposition when
describing the candidate CE. In fact, Λk defined without this conditions would also satisfy the
claim of Lemma 2.
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Due to the restrictions on the entries in the payoff matrix, there is no pure Nash
equilibrium in Λk. Indeed, for every action profile (a,b) ∈ A×B there exists either an
action a′ of player A or an action b′ of player B, such that A prefers (a′,b) to (a,b) or
B prefers (a,b′) to (a,b). Following the same reasoning, Λk can only have fully mixed
Nash equilibria. Notice that any of such NE assigns non-zero probability to the action
profiles with utility profile (c,c).

We describe a candidate CE for the claim of Lemma 2. Let γk be any probability
distribution on A×B satisfying these conditions.

1. γk(ak,b1) = γk(ak−1,bk) = γk(ak,bk) =
g− f

3(g− f )+(2k−3)(e−c) ,

2. γk(a,b) =
e−c

3(g− f )+(2k−3)(e−c) for every (a,b) /∈ {(ak,b1),(ak−1,bk),(ak,bk)} such

that u(a,b) �= (c,c), and
3. γk(a,b) = 0 otherwise.

A proof of the following claim is given in the full version.

Claim. Any such probability distribution γk ∈ Δ(A×B) is a correlated equilibrium
of Λk.

Moreover, γk has in its support only the action profiles that do not yield the utility pro-
file (c,c). Therefore, any such CE strictly Pareto dominates any completely mixed NE
of Λk.

The expectation UA(γk) of player A is

((k− 1) f +(k− 2)g)
e− c

3(g− f )+ (2k− 3)(e− c)
+

(d + e+ g)(g− c f )
3(g− f )+ (2k− 3)(e− c)

,

and this is strictly larger than f when 3 f < (e− c). On the other hand, any correlated
equilibrium γ ′k of Λk that achieves the same utility profile as γk must assign non-zero
probability to every action profile with utility profile different from (c,c). Since the
highest utility of player A obtained from any action profile in which A plays action ak−1

is f , the expectation of A in any such correlated equilibrium γ ′k when given recommen-
dation ak−1 is at most f. Therefore, Λk satisfies the extensibility criterion. ��

4 Computational Cheap Talk Simultaneous Move Games

In this section we present an overview of our game theoretical model and solution con-
cepts. Full details are given in the full version.

Our core object of study is so-called computational cheap talk, simultaneous move
(CTSM) games. A CTSM game without types is fully specified by a strategic game
(A1,A2,u). The game itself is an extensive game with imperfect information modeling
an interactive protocol, where the agents take turn in exchanging messages, with agent
1 arbitrarily being chosen to send the first message. At some point each agent must
additionally pick an action ai ∈ Ai for (A1,A2,u). The utility of a play is u(a1,a2),
i.e., the utility does not depend on the communication, only the actions. We assume
that the agents do not get any information on what the action of the other party is,
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and hence consider the choice of actions for (A1,A2,u) as simultaneous moves. The
strategy σi of agent i specifies which messages to send in response to the messages
sent by the other agent, and which action to pick for (A1,A2,u) at the end of the cheap
talk. We require that σi is poly-time, to allow using cryptography. Any mixed strategy
should also by poly-time computable. To conveniently model this, we technically only
allow pure strategies, and then we give each such strategy an extra input ri, which is
a uniformly random bit-string not observed by the other agent. Any mixing must be
implemented by σi(ri) in poly-time.

As described above, for each strategic game (A1,A2,u), we have a CTSM game.
Correspondingly, for each CTSM game, we have a strategic game, which is just the
game (A1,A2,u) used to specify it. We say that a CE for a strategic game can be cheap
talk implemented if there exists a strategy σ = (σ1,σ2) for the corresponding CTSM
game which obtains the same utility profile as the CE and which is a computational NE,
which is just an ε-NE for a negligible ε . We say that a CE for a strategic game can be
ETF cheap talk implemented if it can be cheap talk implemented by some σ which is
additionally empty-threat free. We define empty-threat freeness along the lines of [9],
specialize their general definition to the setting of CTSM games and generalizing to
handle imperfect information. The details are in the full version. Here we sketch and
motivate the definition.

An empty threat posed by me in a CTSM game is a part of my future strategy which I
do not currently play and which I would not play should you call my bluff by deviating
in a way making the threatening strategy active. You would demonstrate the existence of
such a future empty threat posed by me by specifying a deviation by you which would
make me deviate from playing the supposedly empty threat. We adopt this constructive
definition, an advantage being that we can insist that the demonstration be poly-time.
Note, however, that using an empty threat to force me to deviate from a threat does
not convincingly demonstrate that my threat was empty. We therefore require that your
demonstrator itself is empty threat free in future play. Formally we require that the
deviation meant to demonstrate the existence of a future empty threat occurs in response
to some event D, for deviate, and require that the demonstration be empty-threat free in
the sub-game defined by D occurring.

Another qualification is that a deviation which makes me abstain from my threat, but
which does not at the same time result in you receiving a larger expected utility does not
demonstrate that I posed an empty threat. Yes, your deviation made me not execute the
threat, but the threat did not serve to prevent you from this particular deviation, as you
have no incentive for your deviation in the first place. All in all, a credible demonstration
that I am posing an empty threat on you would therefore be an event D observable by
you, and a deviation, which you only make when D occurs, which has the property that
it leads to an empty-threat free future play, in the sub-game defined by D occurring, in
which you have higher utility.

Formalizing the above definition and making it work well with the computational
issue, is highly non-trivial, but none of the details really matter for the intuition of the
results we describe later. For details, see the full version. Here we only mention and
motivate the two main technical choices.
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Since our definition of ETF is recursive, we need a last round to start from. Yet, our
strategies are allowed any polynomial number of rounds, and the nature of most set-
tings naturally modeled by CTSM games does not make it seem reasonable to postulate
some exogenous fixed last round of communication, so we do not want to build a fixed
last round into our model. Also, it is by far always given that a party can commit to
an external action, like a bid in a real-life auction, until long after the cheap talk proto-
col was run, so we cannot guarantee that no more communication can take place after
the protocol was run. I.e., the natural strategy space contains the possibility of more
communication than needed exactly by the protocol in question, so our model should
capture this. We essentially handle this by considering CTSM games families of games,
Γ = {ΓR}R∈N, where all ΓR have the same corresponding strategic game, and where ΓR

has a fixed last round in round R. This allows to easily define ETF for each ΓR, and
we then say that σ is ETF if there exists R0 such that it is ETF for all ΓR for R ≥ R0.
I.e., the stability of a protocol is in particular not jeopardized by leaving some empty
rounds after the execution of the strategy, i.e., rounds in which communication could
have taken place. Robustness to the presence of such possible communication seems
crucial for stability in real world networks.

We have chosen to use a similar mechanism to model poly-time. For a fixed strategic
game (A1,A2,u) and T ∈ N, let Γ T be the CTSM game corresponding to (A1,A2,u),
where the messages and the action must be computable in time exactly T . For a
polynomial p we consider a family of games Γp = {Γ (κ) = Γ p(κ)}κ∈N. A strategy
σ = {σ (κ)}κ∈N for Γp is one where σ (κ) is a strategy for Γ (κ). A strategy σ for Γ
is clearly poly-time. We say that σ is a computational NE for Γp if there exists negli-
gible ε such that σ (κ) is an ε(κ)-NE for Γ (κ). We call it a computational CTSM for
(A1,A2,u) if there exists a polynomial p0 such that it is a computational NE for Γp for
all p ≥ p0. Using the same flavor of definition to handle the computational issue and
the no-last-round issue, allows to give one natural definition handling both issues.

Note that the above two design choices force proposed protocols to run in some
fixed polynomial number of rounds and some fixed poly-time, whereas deviations are
allowed to deviate to larger polynomials. This seems natural and strong.

To play a NE of any strategic game it is sufficient for the players to randomize in-
dependently, and there is no need for any cheap talk. The players need some publicly
observable lottery to play according to a CHNE, that can be implemented using the pro-
tocol of Gradwohl et al. [9]. However, a CE outside the convex hull of NE needs some
non-trivially correlated randomness. Motivated by our results from Sect. 6 and Sect. 7,
we categorize correlated equilibria payoffs using the terminology of Impagliazzo [11].

Definition 8 (Trivial, Minicrypt, and Cryptomania Utility Profiles). Let Γ be a
strategic game, and v ∈R2 be a utility profile achieved by some γ ∈ CE(Γ ).

– We call v a trivial utility profile if there exists σ ∈ NE(Γ ) achieving v.
– We call v a Minicrypt utility profile if γ is a CHNE and there is no NE achieving v.
– We call v a Cryptomania utility profile if γ is not a CHNE.
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5 NE-Punishable CE versus Empty-Threat Free NE

We can now formally relate NE-punishable CE and empty-threat free computational
NE.

Theorem 2. Let Γ = (A1,A2,u) be a strategic game and let Γ̃ be the corresponding
CTSM game. If there exists a strategy profile σ , a computational ETFE of Γ̃ with utility
profile (v1,v2), then there exists a NE-punishable CE γ for Γ achieving the same utility
profile (v1,v2).

The theorem is proven in the full version. Here we provide a sketch of the proof. Con-
sider any computational ETFE σ of Γ̃ . Remember that σ is a family of strategies, and
the utility profile of the members of the family need not converge to a fixed utility
profile. However, we assume in the premise of the theorem that it does converge, to
some (v1,v2). In the same vain, the action profiles of the members need not converge.
However, the distribution of the action profile of all the strategies, i.e., the probability
distribution over which actions (a1,a2) ∈ A1 ×A2 they make the players play, belong
to a fixed compact space as we consider finite games Γ . Hence we can pick an infinite
sub-sequence which converges to some probability distribution γ on A1×A2. It is pos-
sible to show that γ is a CE. Namely, in the games of the convergent sub-sequence, the
incentive to deviate given any particular action is converging to 0, as σ in particular is
an ε-NE for a negligible ε . This means that the incentive to deviate in the limit point γ
is 0, by compactness. For the same reason γ has utility profile (v1,v2). We now assume
that γ is not NE-punishable, and use this to show that σ is not empty threat free, which
proves the theorem by contradiction.

If γ is not NE-punishable, then there exist i ∈ {1,2} and an action ai ∈ Ai such that
ai occurs with non-zero probability and such that Ui(γ|ai) <Ui(σ∗

i ), where σ∗
i is the

worst NE for player i and Ui(γ|ai) is the expected utility of player i when playing γ
given that the recommendation is ai.

To prove that σ is not a computational ETFE we must pick a strategy space with
enough rounds to run σ , or more rounds, and show that σ is not an ε-ETFE in this
strategy space for any negligible ε . This in turn means that we must give an event D
observable by P2 (assume w.l.o.g. that i = 2) and a deviation for P2 in the face of D
for which he gets noticeably better expected utility in all ETF plays in the sub-game
defined by D occurring.

As for the strategy space, pick the one which after the run of σ leaves at least one
extra round of communication and where it is player 2 who sends a message in the last
round of the strategy space. As the event D, pick the event that the output of running
σ2 is the bad action ai for which Ui(γ|ai) <Ui(σ∗

i ) and that κ is among the values in
the infinite sub-sequence which converges to γ . As for the deviation, let player 2 play
exactly as in σ2, except that if D occurs, then player 2 does not play ai. Instead, it waits
until the last communication round where it sends its entire view of the protocol to
player 1. Then player 2 picks an action a∗2 according to σ∗

2 , and plays a∗2. To show that
σ is not a computational ETFE, it is now sufficient to show that in all ETF continuations
after the last communication round, in the sub-game defined by D occurring, player 2
gets noticeably better expected utility than by playing σ . If this is not the case, then
there exists an ETF continuation σ̃ after the last communication round, in the sub-game
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defined by D occurring, such that player 2 gets utility close to what he gets by playing
σ when D occurs, which in turn is lower than what he gets by playing the worst NE.
It follows that the utility profile of σ̃ is not the utility profile of a CHNE. Namely, a
CHNE has a utility profile which is a convex combination of utility profiles for NE, so
no player can get less than in his worst NE.

To conclude the proof by contradiction it is now sufficient to prove that σ̃ is a CHNE.
Recall that σ̃ is played in the sub-game with a common prior C corresponding to the
view of the parties after D occurred. Since player 2 sends his entire view to player 1
when D occurs, in the common prior C, player 1 can efficiently compute the signal of
player 2. Denote the signal of player i by si. We use that s2 = s(s1) for a fixed poly-time
function s. If we give unbounded computing time to player 1 and only give it the signal
s2, then it can re-sample a random (s′1,s

′
2)← C with s(s′1) = s2 and play according to

σ1(s′1). This will lead to exactly the same strategy, and the unbounded computing power
of player 1 does not allow it better deviations: since player 1 can efficiently compute
s2 = s(s1) from s1 and since it knows the code σ2 of player 2, it can use random runs
of σ2(s2) to sample the strategy profile of player 2 up to exponentially good precision
in poly-time and and then in poly-time compute an optimal response to this fixed and
now known strategy. Hence the unbounded computing power can at most give inverse
exponentially more utility, which does not disturb the ε-NE. But then we have an ε-
NE where the players have a common signal s2. It is possible to use compactness of
the strategy space to show that a sub-sequence of an ε-NE converges to a CHNE. The
details are in the full version.

It is instructive to see how the above reveal your view deviation defeats some of the
obvious attempts at circumventing the impossibility result.

Consider first a relaxed version of NE-punishable, which we could call one-sided
punishable, where we only require that there exists i ∈ {1,2} such that for every action
ai ∈ Ai of player i played with non-zero probability in γ it holds that Ui(γ|ai)≥Ui(σi),
where σi is the worst Nash equilibrium for i in Γ . Say i = 1 without loss of generality.
Consider the protocol which runs an unfair, active secure two-party computation where
first player 1 learns a1 and then in the following round player 2 learns a2 or learns that
player 1 aborted. If player 1 aborts, then player 2 punishes by playing the worst NE
for player 1. It seems this should work as player 1 now has no incentive to deviate and
player 2 cannot deviate as he learns his recommendation a2 last. However, this does not
work! What player 2 will do if he receives a bad recommendation a2, i.e., one where
U2(γ|a2) <U2(σ2), where σ2 is the worst Nash equilibrium for i in Γ , is to send his
entire view, including a2 to player 1, just before actions are to be played. Now that
player 1 has no uncertainty on the view of player 1, all stable ways for the two players
to pick their actions in the face of this deviation will give player 2 a payoff which is at
least as good as in σ2.

Consider then the attempt to use gradual release to give a1 and a2 to the players, the
hope being that we can release a1 and a2 in a way such that when learning ai it is too late
to prevent the other party from learning a−i. Again, this is in vain, as the reveal your
view deviation is played after both a1 and a2 are fully revealed. For the same reason
techniques for fair computation between rational players will fail too, like the protocol
in Groce and Katz [10].
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We consider it very interesting future work to consider variations of empty-threat
freeness which prevent the reveal your view deviation, more specifically, can we give
realistic models of empty-threat freeness allowing to implement larger classes of CE?

6 All Minicrypt Payoffs Iff One-Way Functions Exist

Recall that we denote Minicrypt utility profiles to be the utility profiles achieved by
some non-trivial CHNE. In this section we justify the name by showing that there exists
a Minicrypt utility profile which requires one-way functions to be computational cheap
talk implemented. This complements the result by Gradwohl et al. [9] that one-way
functions are sufficient to implement any Minicrypt utility profile.

6.1 Implementing All Minicrypt Payoffs Implies One-Way Functions

In this section we show how to use a computational cheap talk implementation of some
CHNE achieving a Minicrypt payoff to construct a protocol for weak coin-flip.

Given a two-party protocol π = (π1,π2) with no inputs, and outputs which are in
{0,1}. Let yi(π) ∈ {0,1} denote the output of πi after running π . Note that yi(π) is a
random variable, with the universe being the randomness used by P1 and P2 in the run
of the protocol. A weak coin-flip protocol is such a protocol, where the following holds:

1. If both players are honest, then they output the same value, i.e., y1(π1,π2) =
y2(π1,π2). Moreover, Pr[y1(π1,π2) = 0] = Pr[y1(π1,π2) = 1] = 1

2 .
2. For any efficient strategy π∗

1 of P1 it holds that Pr[y2(π∗
1 ,π2) = 0] ≤ 1

2 + ε for a
negligible ε .

3. For any efficient strategy π∗
2 of P2 it holds that Pr[y1(π1,π∗

2 ) = 1] ≤ 1
2 + ε for a

negligible ε .

It follows from the seminal work of Impagliazzo and Luby [12] that weak coin-flip
implies one-way functions.5

Consider the CTSM game specified by Γ =(A1,A2), where A1 = {c,d}, A2 = {C,D},
and the utility function u is given by the payoff matrix:

C D

c 1,1 0,4

d 4,0 0,0

The probability distribution selecting (c,D) and (d,C) with equal probability is a convex
hull NE achieving the utility profile (2,2). We show that if it is possible to implement
such CHNE using cryptographic cheap talk, then one-way functions exist.

Theorem 3. If there exists in the CTSM game corresponding to Γ a computational NE
σ achieving utility profile (2,2), then one-way functions exist.

5 The notion is defined slightly different in [12], but by letting a party Pi who outputs “REJECT”
output i instead, the notions become equivalent. Note also that opposed to what is common in
contemporary definitions, see e.g. [13], we do not require that the winner can be determined
from the communication of the protocol. This is in line with the original definition in [12], so
we can still use the implication of one-way functions.
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Proof. Consider the two-party protocol π given in Fig. 3.

1. For i ∈ {1,2}, party Pi runs the cheap talk phase of strategy σi of Pi in the strategy
profile σ , using uniformly random randomizers. All the messages are forwarded to party
P−i, and the round function is computed on the messages forwarded from P−i.

2. If in round m the strategy σi plays d or C, then Pi outputs yi = 0. If σi plays c or D, then
Pi outputs yi = 1.

Fig. 3. Protocol for weak coin-flip given a cheap talk implementation of a specific CHNE

The following statements are logically equivalent.

1. There exists an efficient π∗
1 such that P2 outputs 0 in (π∗

1 ,π2) with probability p0 >
1
2 .

2. There exists an efficient σ∗
1 such that P2 plays C in (σ∗

1 ,σ2) with probability p0 >
1
2 .

3. There exists an efficient σ∗
1 such that P1 has utility u0 > 2 in (σ∗

1 ,σ2).
4. There exists an efficient σ∗

1 such that P1 has utility u0 > 2 in (σ∗
1 ,σ2) and such that

P1 never plays c.

By construction statement 1 implies statement 2. If statement 2 is true, then the strategy
σ†

1 which plays like σ∗
1 and then plays d has expected utility 4p0 > 2. Statement 3

implies statement 4 because d is weakly dominating for P1, i.e, P1 never gets less utility
by playing d instead of c. If statement 4 is true, then 4α +0(1−α)> 2, where α is the
probability that P2 plays c in (σ∗

1 ,σ2). This implies that α > 1
2 . By letting π∗

1 be the
strategy playing like σ∗

1 , this implies statement 1.
If both parties follow the protocol in Fig. 3 then they both output the same bit b, and

it is 0 or 1 with equal probability. Since σ is a computational equilibrium of (Γ ,C/0), any
player can increase her utility by at most negligible amount. Thus, any player can bias
the output of the protocol by at most negligible amount towards her preferred outcome,
and the protocol is a weak coin-flip protocol. ��

7 All Cryptomania Payoffs iff OT Exists

In this section we show that there exist Cryptomania profiles which imply OT. Imple-
menting any Cryptomania profile given OT follows from [7]. We will also conjecture
that implementing any Cryptomania profile implies OT and give supporting evidence.

We recall the notion of random Rabin OT. It is a secure two-party computation
specified by a randomized function f (x1,x2) = (y1,y2). The outputs do not depend on
the inputs (x1,x2). The output y1 is a bit y1 ∈ {0,1}. The output y2 is a trit y2 ∈ {0,1,⊥}.
The bit y1 is uniformly random. The probability that y2 = ⊥ is 1

2 , independent of y1.
And, if y2 �=⊥, then y2 = y1. Note that this implies that party 1 gets no information on
whether y2 = y1 or y2 = ⊥ and that if y2 = ⊥, then party 2 has no information on y1.
We call a protocol a semi-honest random Rabin OT if it implements random Rabin OT
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against parties guaranteed to follow the protocol in the model [5]. Semi-honest random
Rabin OT is interesting as it is known to be complete for two-party computation, even
for active secure two-party computation which can tolerate that the parties deviate from
the protocol.

Given semi-honest random Rabin OT one can empty-threat free implement any NE-
punishable CE. One uses an active-secure two-party computation to sample the CE and
punishes a deviating party by playing the worst NE for that party. The proof that this
is empty-threat free follows the proof of Gradwohl et al. [9]. We now show that OT is
needed for having an implementation of all Cryptomania profiles.

7.1 Playing Chicken Well Implies OT

In this section we show that there exists a version of Chicken which has a CE with a
weakly Pareto optimal utility profile which cannot be obtained using a computational
NE in the corresponding cheap talk game, unless OT exists. The game has two actions
per player, which shows that even in the simplest non-trivial game setting, one can only
harvest the maximal utility if OT exists.

Consider the CTSM game specified by Γchicken = (A1,A2,u), where A1 = {c,d},
A2 = {C,D} and the utility function u is given by the payoff matrix:

C D

c 15,15 6,21

d 21,6 0,0

Theorem 4. If there exists a computational NE σ for the CTSM game corresponding to
Γchicken achieving utility profile (14,14), then there exists a protocol for semi-honest
random Rabin OT.

Proof. Let σ be as in the premise. We assume that u(σ) = (14,14)—extending the
proof to handling the case where the payoff of each player i is 14− εi for a negligible
εi is standard. In the following we use viewi(σ) = viewi(Γ ,σ ,C) to denote the view of
player i when the parties play according to σ .

Consider the following two-party protocol π :

1. Party Pi runs the cheap talk phase of strategy σi of Pi in the strategy profile σ , using
uniformly random randomizers.

2. If in the last round the strategy σi plays c or C, then Pi outputs bi = 1. If σi plays d
or D, then Pi outputs bi = 0.

Let viewi denote the view of party Pi in a run of this protocol. We are going to analyze
the distribution of the output of the parties and the distribution of their views, and then
conclude that they imply OT.

Since the expected utility (14,14) is symmetric, we know that σ plays (d,C) as
much as it plays (c,D); call the probability of playing each of these α . Let β denote the
probability that σ plays (c,C). We clearly have that 2α ≤ 1−β . The expected utility
is therefore α(21,6)+α(6,21)+β (15,15)≤ 2α(13.5,13.5)+(1−2α)(15,15). From
14≤ 2α13.5+(1−2α)15, it follows that α ≤ 1

3 . This means that the expected utility is
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at most 1
3 21+ 1

3 6+β 15. From 1
3 21+ 1

3 6+β 15≥ 14, we get that β ≥ 1
3 . The expected

utility of P2 when σ2 plays C is β
α+β 15+ α

α+β 6. If P2 would switch to D when σ1 says
to play C, then the expected utility of P2 would become β

α+β 21+ α
α+β 0. It follows from

the fact that σ is a computational NE that β 21≤ β 15+α6−ε for some negligible ε . We
will assume that ε = 0—handling the negligible ε is standard. From β 21≤ β 15+α6 we
get that β ≤ α . From α ≤ 1

3 , β ≥ 1
3 and β ≤ α we get that α = β = 1

3 . This means that
the joint output of (P1,P2) in π is uniform on {(0,1),(1,0),(1,1)}. One can show that
an expected constant number of samples from this distribution is sufficient to implement
random Rabin OT, see the full version for the details. This, however, is not sufficient to
conclude the proof, as the transcript of π might leak information. To finish the proof we
therefore have to show that the parties have no extra information to their outputs, i.e.,
show that

[view1 |b1 = 1∧b2 = 1]≈ [view1 |b1 = 1∧b2 = 0]

[view2 |b1 = 1∧b2 = 1]≈ [view2 |b1 = 0∧b2 = 1] ,

where ≈ denotes computational indistinguishability. We show the first relation. The
second follows using a symmetric argument.

Assume that there exists an efficient distinguisher D which can distinguish
[view1 |b1 = 1∧ b2 = 1] and [view1 |b1 = 1∧ b2 = 0] with non-negligible probability,
i.e., |Pr[D([view1 |b1 = 1∧b2 = 1]) = 1]−Pr[D([view1 |b1 = 1∧b2 = 0]) = 1]| is non-
negligible. Since we work with non-uniform complexity, we can assume that it is always
the case that Pr[D([view1 |b1 = 1∧b2 = 1] = 1)]≥ Pr[D([view1 |b1 = 1∧b2 = 0] = 1)].
Now consider the following strategy σ∗

1 . It plays like σ1, except that if σ1 recom-
mends to play c, then σ∗

1 switches to d when D(view1) = 1, where view1 is the view
of P1. Note that σ1 recommending to play c is logically equivalent to b1 = 1. I.e.,
view1 ∈ {[view1 |b1 = 1∧b2 = 1], [view1 |b1 = 1∧b2 = 0]}. Furthermore, since α = β ,
we have that b2 is uniformly random. We use this to compute the utility of switch-
ing. We look at the cases that the joint play of σ is (c,C) and (c,D) separately. If the
joint play is (c,C), then we switch with probability Pr[D([view1 |b1 = 1∧b2 = 1]) = 1],
for a gain of Pr[D([view1 |b1 = 1∧ b2 = 1]) = 1](21− 15). If the joint play is (c,D),
then we switch with probability Pr[D([view1 |b1 = 1 ∧ b2 = 0]) = 1], for a gain of
Pr[D([view1 |b1 = 1∧b2 = 0])= 1](0−6). This gives a total gain of 6(Pr[D([view1 |b1 =
1∧b2 = 1]) = 1]−Pr[D([view1 |b1 = 1∧b2 = 0]) = 1]). This means that the gain is six
times the advantage of D, which is non-negligible. This is a contradiction to σ being a
computational NE. ��

7.2 Perfectly Implementing any CE Outside CHNE Implies Unconditional OT

We now justify the conjecture that cheap talk implementing any Cryptomania profile
implies OT. In particular, we show that if the implementation had been perfect, in the
sense that it only leaks the recommendations, then one can always implement OT. We
leave it as an open problem to investigate whether the additional protocol transcript of
a cheap talk implementation of the correlation device in general leaks sufficiently little
information that the result also holds for computational cheap talk implementations.
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Theorem 5. Let γ be a Cryptomania correlation device for a game Γ , i.e., it outputs
recommendations which are not in the CHNE of Γ . Then given a polynomial number of
samples of γ , two parties can implement unconditionally secure OT against semi-honest
adversaries in the model [5].

We use the result of Crépeau, Morozov and Wolf [6] that any non-trivial Discrete Mem-
oryless Channel implies OT. Thus, it suffices to show that there are some correlation
devices that can be used to simulate a non-trivial DMC; the existence of any such cor-
relation device would consequently imply the existence of OT.

Definition 9 (Discrete Memoryless Channel). A discrete memoryless channel is char-
acterized by an input alphabet AX , an output alphabet AY , and a set of conditional
probability distributions Py|x for each x ∈ AX .

Note that the binary symmetric channel with probability of error p ∈ [0,1] is a special
case of DMC with AX =AY = {0,1}, and the conditional probabilities P1|0 = P0|1 = p,
and P0|0 = P1|1 = 1− p.

Wolf and Wullschleger [20] considered the problem of two parties with access to
correlated random variables X , and Y trying to simulate a DMC characterized by the
conditional probabilities PY |X . A correlated equilibrium γ of a strategic two player game
corresponds to an identical situation. The two players have access to two correlated
random variables that are defined by the randomized advice about what action each one
of them should take in the game. Given access to the correlation device, the players can
simulate a discrete memoryless channel as described in Fig. 4.

To send bit d ∈ {0,1} from party A to party B:

1. Both players get advice according to γ , and use rejection sampling to make sure that the
pair of advice they get is an element (a,b) ∈ {a0,a1}×{b0,b1} for some actions a0,a1
of player A and b0,b1 of player B. They use the correlation device for γ multiple times,
until both a0 and a1 appear in the list of advice received by player A.

2. Party A erases some advice from her list to make a0 and a1 equiprobable, and sends to B
the index i of the first occurrence of ad in her list.

3. Party B outputs d′, such that bd′ is the i-th advice in the list of player B.

Fig. 4. Simulating a DMC when given access to some correlation device for a CE γ

This procedure simulates a DMC defined by the conditional probabilities Py|x cor-
responding to the CE restricted by the rejection sampling to {a0,a1}× {b0,b1}; for
example the probability of receiving 0 after sending 1 is P0|1 = γ(a1,b0)/(γ(a1,b0)+
γ(a1,b1)). Note that this procedure in general does not simulate the binary symmetric
channel.6 However, we show that for non-trivial CE the properties of the associated
DMC are good enough to imply OT.

We are interested in DMCs that are non-trivial in the following sense.

6 Some non-trivial CE indeed give rise to well-known channels. For example the CE from previ-
ous section corresponds to the Z-channel.
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Definition 10 (Crépeau et al.[6]). We call a channel PY |X trivial if there exist, after
removal of all redundant input symbols, partitions of the (remaining) ranges X of X
and Y of Y , X =X1∪ . . .∪Xn,Y =Y1∪ . . .∪Yn, and channels PYi|Xi

, where the ranges
of Xi and Yi are Xi and Yi, respectively, such that

PY |X=x(y) =

⎧⎪⎨⎪⎩
PYi|Xi=x(y) if x ∈ Xi,y ∈ Yi,

0 if x ∈ Xi,y ∈ Y j , i �= j

holds and such that the capacity of the channel PYi|Xi
is 0 for all i.

The following lemma justifies the use of correlated equilibria outside the convex-hull
of NE to simulate non-trivial DMCs.

Lemma 3. Let Γ be a strategic game, and γ some correlated equilibrium of Γ . If γ
is a CE of Γ outside the convex hull of NE, then there exist a pair of actions ai �= a j

of player A and a pair of actions bk �= bl of player B, such that the restriction of γ to
{ai,a j}×{bk,bl} allows to simulate a non-trivial DMC.

Proof. Recall that Pb|a = γ(a,b)/(γ(a,bk)+γ(a,bl)) for any (a,b)∈ {ai,a j}×{bk,bl}.
Since γ is not a CHNE of Γ , there must exist actions ai �= a j of player A and bk �= bl of
player B, such that

Pbk|ai
�= Pbk|a j

, or Pbl |ai
�= Pbl |a j

(7.1)

(or else γ is a completely mixed NE of Γ ). We want to show that the conditional
probabilities Pb|a characterize a channel with non-zero capacity. Condition (7.1) en-
sures that it is never the case that Pbk|ai

= Pbl |ai
= Pbk|a j

= Pbl |a j
= 1/2. Thus, the re-

sulting DMC does not have entropy 1 (i.e. it has non-zero capacity). On the other hand,
we need to show that the resulting DMC has enough entropy to be non-trivial, i.e.,
that it is not a perfect channel or a channel outputting always the same symbol. It suf-
fices to show that among the tuples of actions consistent with the condition (7.1) we
can in fact select the actions ai,a j and bk,bl so that at most one of the conditional
probabilities Pb|a is zero. Equivalently, we instead show that it is possible to select
the actions where at most one of γ(a,b) is equal to zero. We call a candidate bad if
it has more than one 0. Note that no bad candidate has γ(ai,bk) = γ(a j,bk) = 0 or
γ(ai,bl) = γ(a j,bl) = 0, since then Pbk|ai

= Pbk|a j
= 0 and Pbl |ai

= Pbl |a j
= 1, respec-

tively Pbl |ai
= Pbl |a j

= 0 and Pbk|ai
= Pbk|a j

= 1. So, bad candidates are either of the
row type, γ(ai,bk) = γ(ai,bl) = 0 or γ(a j,bk) = γ(a j,bl) = 0, or the diagonal type,
γ(ai,bk) = γ(a j,bl) = 0 or γ(ai,bl) = γ(a j,bk) = 0. One can use this to show that
it holds for any two actions ai and a j that the residual distribution given ai and a j

is either identical or disjoint. I.e., either γ(ai,bk)/γ(ai) = γ(a j,bk)/γ(a j) for all bk

or γ(ai,bk) = 0∨ γ(a j,bk) = 0 for all bk. This shows that the distribution is a sum
of product distributions, each a NE, i.e., a CHNE. There are more details in the full
version. ��
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The following theorem characterizes DMCs with respect to the possibility of their use
to create unconditional OT:

Theorem 6 (Crépeau et al.[6]). Let two players A and B be connected by a non-trivial
channel PY |X . Then, for any α > 0, there exists a protocol for unconditionally secure OT
from A to B with failure probability at most α , where the number of uses of the channel
is of order O(log(1/α)2+ε) for any ε > 0. Trivial channels, on the other hand, do not
allow for realizing OT in an unconditional way.

Lemma 3 together with the above result of Crépeau et al. [6] give the sought proof of
Theorem 5.

Acknowledgements. The authors would like to thank for discussions and useful com-
ments to Ronen Gradwohl, Jonathan Katz, Noam Livne, Peter Bro Miltersen, and Mar-
garita Vald.
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Abstract. Differential privacy (DP) is a well-studied notion of privacy
that is generally achieved by randomizing outputs to preserve the privacy
of the input records. A central problem in differential privacy is how much
accuracy must be lost in order to preserve input privacy?

Our work obtains general upper bounds on accuracy for differen-
tially private two-party protocols computing any Boolean function. Our
bounds are independent of the number of rounds and the communica-
tion complexity of the protocol, and hold with respect to computationally
unbounded parties. At the heart of our results is a new general geomet-
ric technique for obtaining non-trivial accuracy bounds for any Boolean
functionality.

We show that for any Boolean function, there is a constant accuracy
gap between the accuracy that is possible in the client-server setting and
the accuracy that is possible in the two-party setting. In particular, we
show tight results on the accuracy that is achievable for the AND and
XOR functions in the two-party setting, completely characterizing which
accuracies are achievable for any given level of differential privacy.

Finally, we consider the situation if we relax the privacy requirement
to computational differential privacy. We show that to achieve any no-
ticeably better accuracy than what is possible for differentially private
two-party protocols, it is essential that one-way functions exist.

1 Introduction

SFE and Differential Privacy. Secure function evaluation (SFE) is a fun-
damental concept in cryptography. Informally, SFE allows two parties to com-
pute a joint function of their inputs without learning anything other than the
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value of the function. An important research program in SFE is characteriza-
tion of assumptions necessary for computing various classes of functionalities.
For instance, an early result of Chor and Kushilevitz [7] established a zero-
one law for Boolean functions in the information-theoretic model (against a
computationally-unbounded passive adversary).

Differential privacy (DP) is a theoretically sound and practically important
notion of privacy [10,12]. In contrast with SFE (which places the “output correct-
ness first and privacy second”), it limits information leaked through the output
of the function (i.e., places “privacy first and output correctness second”). Dif-
ferential privacy mechanisms work by randomizing the output to preserve the
privacy of the input records. Thus the main question in differential privacy is
quantitative rather than qualitative: How much accuracy must be lost in order
to preserve input privacy?

The problem of characterizing accuracy of differentially private mechanisms
is well-defined and very challenging even in the case of a single party’s holding
the input (the client-server setting). However if the input is distributed across
several parties, output needs to be computed through an interactive protocol.
Throughout the protocol, parties are restricted in how much information their
messages should reveal about their input, and this would seem to degrade the
quality of the output.

In other words, differential privacy gives a new set of restrictions on a proto-
col. Compared with the long line of research on feasibility and completeness of
SFEs and MPCs for various functionalities in the semi-honest computationally-
unbounded setting [3,6,24,1,7,22,23], our understanding of the corresponding
properties of differentially private protocols is remarkably incomplete.

The notion of differential privacy has been studied in the distributed setting,
starting with the seminal work of Dwork and Nissim [13]. In their work, there
are multiple parties each holding a dataset as the input. The study of limitations
on accuracy of distributed differentially private protocols was initiated in works
of Beimel et al. [2] for the case of n parties each holding its own input, followed
up by Chan et al. [5], and of McGregor et al. [25] for the setting of two parties
with n-bit inputs. The latter work considers several natural and constructed
functionalities that exhibit a stark gap in accuracy that can be as large as Θ(n)
between client-server and two-party protocols.

However, many questions remain. While we have several examples of function-
alities for which there is an accuracy gap between the client-server setting and
the distributed setting, does such a gap exist for any non-trivial functionality?
How large must this gap be? Answering these questions for a large and natural
class of functionalities in the two-party setting is the main focus of this work.

Boolean Functionalities. In this work, we focus on protocols that attempt
to compute a Boolean function. While much work in differential privacy has fo-
cused on computing statistics, we note that computing Boolean functions has
long been a motivating goal in differential privacy (e.g., answering questions
“Does smoking cause cancer?” or “Do millionaires pay proportionally less in
tax than their secretaries?”). Our goal is to obtain a characterization of which
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Boolean functions must suffer accuracy loss in the two-party setting, as well as
lower bounds on how much accuracy loss is inherently needed. We note that our
understanding of Boolean functions has been particularly (and perhaps surpris-
ingly) weak: Before this work, even for computing simple Boolean gates, like
AND and XOR, we did not understand whether any accuracy loss is essential to
the two-party setting.

1.1 Our Results

Before we describe our results, we must define the notion of accuracy that we
measure. Since our focus is on functions with Boolean output, there is only one
natural choice for accuracy measure: the probability that the output is correct.
We note that other metrics considered in the literature do not apply to the
Boolean setting.

Now we discuss our setting in more detail. There are two parties Alice and
Bob holding inputs x and y respectively and interested in computing a Boolean
function f(x, y). The protocol should be such that the differential privacy of each
bit of x as well as of y should be preserved1. We assume that Alice and Bob
follow the protocol as specified, but keep a record of what transpired during the
protocol (i.e., they are semi-honest in the cryptographic sense).

For a protocol to achieve accuracy a, it must be the case that for any possi-
ble inputs (x, y) to the protocol, the protocol computes the correct output with
probability at least a, over the coins of the protocol. We concentrate on the
worst-case (over the parties’ inputs) measure of accuracy as it is the most gen-
eral type of guarantee for a randomized protocol, independent of distributional
assumptions.

Informally speaking, the differential privacy (DP) constraint for Alice states
that for any two inputs x0, x1 for Alice that differ only in one bit, and for
any input y for Bob, the following must hold: For every possible execution of
the protocol, the resulting view v of Bob must be such that the probability
that v arises on inputs (x0, y) is within a multiplicative factor of eε from the
probability that v arises on inputs (x1, y) (see Section 2 for the formal definition
of differential privacy). Thus, no matter what Bob sees, he remains uncertain
about the value of each bit of Alice’s input even if he knows every other bit in
her input. Here ε is the key privacy parameter. We will denote by λ the value eε.
It is easy to see that in the client-server setting, it is always possible to achieve
an accuracy of λ

1+λ (= .5 +Θ(ε) for ε→ 0).
Our work obtains general upper bounds on accuracy. Our bounds are indepen-

dent of the number of rounds and the communication complexity of the protocol,
and hold with respect to computationally unbounded parties. At the heart of our
results is a new general geometric technique for obtaining non-trivial accuracy
bounds for any Boolean functionality.

1 Stronger notions of privacy are also interesting: for example, where symbols larger
than bits, or the entire input of each party should be protected. However, since our
focus is on obtaining lower bounds on error, we use the weaker notion of the privacy
stated here, with respect to bits.
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General Boolean Functions. Our strategy to obtain results on two-party
differentially private protocols for general Boolean functions begins by reducing
the problem of obtaining upper bounds for general Boolean functions to specific,
simple functions. We first note that Boolean functions where one party’s input
completely determines the output can, of course, be computed just as accurately
in the two-party setting as in the client-server setting. We call such functions
trivial, following works on classifying which Boolean functions have statistically-
secure two-party SFE protocols. We then show that the existence of an ε-DP
protocol with accuracy a for any non-trivial function implies the existence of
an ε-DP protocol with accuracy a for either the AND or XOR functionalities
(defined below). Thus, if we can obtain upper bounds on accuracy for AND and
XOR, we obtain upper bounds on accuracy for all non-trivial Boolean functions.

Computing an AND Gate. The AND functionality is as follows: Alice and Bob
each hold a bit denoted by x and y respectively and are interested in computing
the AND of the two bits. Given the output (and the protocol transcript), each
input bit should remain private. Naively, the best differentially private protocol
for this task is the randomized response protocol: each party individually per-
turbs its input and sends it out. The parties then compute the output based on
the two input bits appearing in the protocol transcript. It is easy to see that the
output and the protocol transcript still maintain privacy of each individual bit;
moreover, both players’ bits are released with maximal possible accuracy. The

randomized response technique gives protocols for AND with accuracy λ2

(1+λ)2 ,

which for λ < 1 +
√
2 is worse than a random guess.

We show that by augmenting the parties’ outputs with one additional symbol,
it is possible to improve on the näıve protocol. The new protocol can achieve

an accuracy of λ(λ2+λ+2)
(1+λ)3 . Moreover, we show that this accuracy is optimal for

AND, even for protocols with any number of rounds and unbounded (finite)
communication complexity. For ε → 0 and λ ≈ 1 + ε the protocol’s advantage
over a random guess is Θ(ε), in line with the canonical protocol in the client-
server setting.

Computing an XOR Gate. The XOR functionality is defined analogously to
the AND functionality above, except the XOR of the two input bits is to be
computed. For the XOR case, the randomized response technique provides an

accuracy of 1+λ2

(1+λ)2 = .5+Θ(ε2) for ε→ 0. We show that this is, in fact, optimal

for XOR.
Combining the results above, we establish the following: There does not exist

any non-trivial Boolean functionality which can be computed with a differential
private protocol in the two party setting with accuracy matching that of the client-
server setting. In fact, we obtain a separation between the level of accuracy
obtainable in the client-server setting and the two-party setting for every non-
trivial Boolean functionality, where the separation is tight in the case of AND and
XOR, and for the XOR functionality is asymptotically significant. Our bounds
are shown in Figure 1.
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Fig. 1. Bounds on accuracy: for arbitrary Boolean functionalities (DP bound); for
protocol-compatible ε-DP AND and XOR. Every ε-DP protocol for any non-trivial
Boolean functionality must be subject to either the AND or XOR bound.

Computational Differential Privacy: What Assumption Is Necessary?
One option to restore accuracy in a distributed setting is to resort to a relaxed
computational notion of differential privacy [26]. In computational differential
privacy (CDP), we relax the privacy condition to require that no efficient ad-
versary can predict any bit of the input with probability greater than λ

1+λ , even
if the adversary knows all other bits. We ask the question: what computational
assumptions are necessary for CDP to enable greater accuracy?

We show that to achieve any noticeably greater accuracy with CDP protocols
than what is possible with DP protocols, one-way functions are required. We
show this by presenting a more general result, showing that if one-way functions
do not exist, then any CDP protocol must in fact also be a DP protocol.

When discussing CDP protocols, it is important to consider the relation-
ship between CDP protocols and secure computation protocols from cryptog-
raphy [30,15]. The two notions answer essentially orthogonal problems of what
and how :

– In (computationally) differentially private protocols, “privacy comes first”.
We would like to ensure privacy of each individual input and then with this
constraint, would like to compute an accurate output (the what question).

– In secure computation protocols, “accuracy comes first”. We would like to
release an accurate output to the function we are computing and then with
this constraint, would like to ensure privacy of inputs (the how question).

Nevertheless, it is immediate that general secure computation methods do give a
way to achieve the same level of accuracy in CDP two-party protocols as in the
client-server setting. To this end, a secure computation can be used to compute
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the algorithm that the server would perform on the joint input in the client-
server setting. However, general secure computation is essentially equivalent to
secure Oblivious Transfer [21,19]. It remains an important open question whether
accuracy better than what is possible with DP protocols may be achievable based
on assumptions weaker than the existence of secure Oblivious Transfer protocols.

1.2 Our Techniques

We present a new general geometric technique for bounding the accuracy of
differentially private protocols. At a high level, our technique gives us a method
for taking the truth table of a function f , a privacy parameter ε, and an accuracy
level a, and converting this into a linear program P . We prove that if there does
exist an ε-DP protocol for computing f with accuracy a, then this linear program
must have a solution. By analyzing this LP in the case of specific functions, we
can show that no solution exists when a is greater than a bound a∗. This proves
that no ε-DP protocol can exist with accuracy greater than a∗.

For simplicity, let us focus on protocols for Boolean functions where each
party holds a single bit. To obtain our bounds, we first think of every possible
“transcript” corresponding to some execution of the protocol. We can associate
with each such transcript a 2-by-2 “transcript matrix,” whose entries are the
probability that this transcript occurs when Alice and Bob start with a particular
pair of inputs. Now, each such transcript has an associated output value. If we
sum together all the transcript matrices with output value 0, we get a 2-by-2
“protocol matrix,” whose entries show the probability that the protocol outputs
0 when Alice and Bob start with a particular pair of inputs.

Now let us consider what constraints we can place on these matrices. Two
types of constraints are immediate: (1) the differential privacy conditions on
each input linearly constrain each transcript matrix; and (2) the accuracy con-
ditions linearly constrain the protocol matrix. But these constraints alone would
not yield any bound better than λ

1+λ , which is achievable in the client-server
setting. The key to obtaining better bounds, and our main obstacle, are condi-
tions which capture the constraint that these matrices must actually arise from
a protocol between two players. We consider a condition that we call protocol
compatibility that essentially captures the fact that if the two parties’ inputs are
drawn from independent distributions, then they must remain independent even
when conditioned on any particular protocol transcript. This post-execution in-
dependence has been useful in other works on differential privacy including the
work of McGregor et al. [25], as well as in works on secure computation such as
the work of Kilian [23].

The protocol-compatibility constraint manifests itself as a non-linear con-
straint on transcript matrices. Note that there can be an enormous (exponential
in communication complexity) number of possible transcript matrices, and we do
not want to have to consider such a large space of variables. In particular, we do
not want our bounds to depend in any way on the communication complexity or
the number of rounds in the protocol. We avoid this by proving a key lemma that
shows how to optimally combine the linear differential privacy constraints with
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the non-linear protocol-compatibility constraint to yield a new linear constraint
(Lemma 3.6 in Section 3). This combined linear constraint establishes an upper
bound on sums of probabilities from a transcript matrix that combine both the
upper and lower bounds from the differential privacy constraints. Because these
constraints are linear, they immediately give constraints on the protocol matrix,
as well. This gives us our linear program.

We analyze the linear programs that arise specifically for the AND and XOR
functionalities, and prove that the linear program is not satisfiable when the
accuracy a is higher than a certain value. We prove that these bounds are tight
by showing that this accuracy can be achieved for both the AND and XOR
functionalities. We stress that our technique is more general, and can be applied
to other specific functions to obtain potentially stronger, although not necessarily
tight, bounds. (As mentioned above, we focus our attention on AND and XOR
because every non-trivial Boolean function must contain an embedded AND or
XOR function.)

Related Work. In addition to the works mentioned above, several other works
have focused on the issue of accuracy and privacy. In the client-server setting
(i.e., where only one party owns the entire database), limitations for a wide class
of private algorithms were first shown by Dinur and Nissim [9]. The optimality
of differentially private mechanisms has since been studied in different models
such as answering multiple linear queries [17], contingency tables [20], or certain
classes of low-sensitivity queries [8]. In a surprising result of Ghosh et al. [14], a
simple geometric mechanism (a discrete version of the additive Laplacian mech-
anism) was shown to be universally optimal for releasing a single count query to
Bayesian consumers. Recently, Haitner et al. [16] showed that CDP two-party
protocols with accuracy improving upon the information-theoretic bound of
McGregor et al. cannot be black-box reduced to random oracles.

In the secure function evaluation model against computationally unbounded
semi-honest adversaries, characterization of deterministic Boolean functionalities
was completed by Chor and Kushilevitz [7], and for randomized functionalities
by [23]. These results establish the “all or nothing” nature of two-party computa-
tion under information-theoretic reductions. A related question of characterizing
complete deterministic functionalities in the computational setting was consid-
ered by Harnik et al. [18]. Complete classification of randomized functionalities
in the computational setting remains an important research problem.

2 Notation and Definitions

Standard Notation. We use symbols ¬,∨,∧, and ⊕ to denote the standard
Boolean operations: not, or, and, and xor respectively. The set of natural
numbers is denoted by N; for n ∈ N, we write by [n] as shorthand for the
set {1, 2, . . . , n}. The Hamming distance between two strings x, y ∈ {0, 1}n is
defined as: |x− y|h = | {i ∈ [n] : xi �= yi} |, where xi, yi denote the ith bit of x, y
respectively. We denote by e, the base of the natural logarithm.
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We now recall the definition of ε-differential privacy [10] and (ε, δ)-differential
privacy [11].

Definition 2.1 (ε-Differential Privacy). We say that a randomized function
M : {0, 1}n �→ R, with a finite range R, is an ε-differentially-private (ε-DP)
mechanism for ε ≥ 0 if for every (x, y) ∈ {0, 1}n×{0, 1}n satisfying |x−x′|h = 1
and every subset S ⊂ R we have that over the randomness of M :

Pr[M(x) ∈ S] ≤ eε × Pr[M(x′) ∈ S].

Definition 2.2 ((ε, δ)-Differential Privacy). We say that a randomized func-
tion M : {0, 1}n �→ R, with a finite range R, is an (ε, δ)-differentially-private
mechanism for ε, δ ≥ 0 if for every (x, y) ∈ {0, 1}n×{0, 1}n satisfying |x−x′|h =
1 and every subset S ⊂ R we have that over the randomness of M :

Pr[M(x) ∈ S] ≤ eε × Pr[M(x′) ∈ S] + δ.

We next recall the definition of computational differential privacy which cap-
tures differentially privacy for polynomial time tests. We work with the weakest
definition, namely ε-ind-cdp [26]. In the following, k denotes the security pa-
rameter, implicitly available to all algorithms; algorithms are assumed to run in
time polynomial in k unless stated otherwise.

Definition 2.3 (ε-IND-CDP Privacy). We say that an ensemble {Mκ}k∈N

of randomized functions Mk : {0, 1}n �→ Rk provides ε-ind-cdp if there exists
a negligible function negl(·) such that for every probabilistic polynomial time
distinguisher A, for every polynomial p(·), for any adjacent strings x, x′ ∈ {0, 1}n
(i.e., |x−x′|h = 1), for every sufficiently large k ∈ N, and for every advice string
zk of size at most p(k), it holds that

Pr [Ak(Mk(x)) = 1] ≤ eε × Pr [Ak(Mk(x
′)) = 1] + negl(κ),

where we write Ak(x) for A(1k, zk, x) and the probability is taken over the
randomness of mechanism Mk and the distinguisher A.

Interactive Setting. Let π := 〈A,B〉 be a two-party protocol. Let viewA
π (x, y)

be the random variable which, in a random execution of π with inputs x, y for
A,B respectively, consists of (x,RA, trans), where RA is the randomness used
by A and trans is the sequence of messages exchanged between the parties in
the sampled execution. For each x, viewA

π (x, y) is a mechanism over the y’s.
Define view

B
π (x, y) analogously. When dealing with the computational notion,

we consider the family of protocols {πk}k∈N and denote the view of A (resp., B)
by view

A
π (k, x, y) (resp., view

B
π (k, x, y)).

Definition 2.4 (Two-Party Differentially Privacy). We say that a protocol
π := 〈A,B〉 is ε-DP (resp., (ε, δ)-DP) if the mechanism view

A
π (x, y) is ε-DP

(resp., (ε, δ)-DP) for all values of x and the same holds for view
B
π (x, y). A

family of protocols {πk}k∈N is ε-ind-cdp if the mechanism view
A
π (k, x, y) is ε-

ind-cdp for all values of x and every sufficiently large k, and the same holds
for view

B
π (k, x, y).
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Finally, our measure of accuracy for Boolean functions simply looks at how often
a randomized mechanism outputs the correct output bit in the worst case.

Definition 2.5 (Accuracy). The accuracy of a randomized Boolean mecha-
nismM : {0, 1}n �→ {0, 1} with respect to a Boolean function f : {0, 1}n �→ {0, 1}
is defined as:

Accf(M) = min
x
{Pr[M(x) = f(x)]},

where the probability is taken over the randomness of M .

The accuracy of a two party protocol π := 〈A,B〉 w.r.t. to f : {0, 1}n×{0, 1}n �→
{0, 1} is defined as the accuracy of the mechanism outπ : {0, 1}n × {0, 1}n �→
{0, 1} which returns the (official) output of the protocol in a randomly sam-
pled execution of π. The accuracy for a family of protocols {πk}k∈N is defined
analogously for each k.

3 Geometric Analysis

It can be shown that AND andXOR gates are embedded on adjacent inputs into any
non-trivial Boolean two-party functionality, i.e., any functionality whose output
is not fully determined by one side’s input (the proof appears in the full version).
Therefore, it will be sufficient to analyzeAND/XOR gates. A similar claim also ap-
pears in [4] but does not guarantee the adjacency of inputs that embed AND/XOR
gates. Adjacency is crucial in our case, since otherwise we cannot conclude that
the protocol for AND/XOR have the same privacy parameter ε.

We then formulate necessary conditions for existence of a differentially private
two-party protocol implementing a randomized two-party Boolean functionality
(Section 3.1), and use these conditions towards tight analysis of accuracy of
AND and XOR gates achievable via differentially private protocols (Sections 3.2
and 3.3).

3.1 Differential Privacy and Protocol Compatibility

We begin by introducing several definitions pertaining to properties of matrices
that describe joint distributions of protocol outcomes as a function of two inputs.
For compactness we will use λ = eε without stating it explicitly throughout the
section.

Definition 3.1 (ε-DP Matrix). A 2n× 2n matrix P indexed by strings x, y ∈
{0, 1}n is ε-DP if its elements satisfy the following conditions for all adjacent
pairs x, x′ ∈ {0, 1}n and y, y′ ∈ {0, 1}n:

pxy ≤ λ · pxy′,

pxy ≤ λ · px′y,
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Definition 3.2 (Protocol-Compatible Matrix). A 2n×2n matrix P is pro-
tocol compatible if for all x1, x2, y1, y2 ∈ {0, 1}n it holds that

px1y1 · px2y2 = px1y2 · px2y1

The next two definitions extend the concepts of differential privacy and protocol
compatibility to two-party Boolean functionalities. By convention, we say that a
2n×2n matrix P represents a randomized Boolean functionality f of two inputs
if pxy = Pr[f(x, y) = 0] for all x, y ∈ {0, 1}n.

Definition 3.3 (ε-DP Functionality). We call a 2n × 2n matrix P an ε-DP

functionality if both P and 1 − P are ε-DP matrices, where 1 is the all-ones
matrix.

Definition 3.4. A 2n× 2n matrix P is protocol-compatible ε-DP functionality
if both matrices P and 1 − P can be expressed as sums of protocol-compatible
ε-DP matrices, where 1 is the all-ones matrix.

The following theorem establishes necessary conditions for existence of a differ-
entially private two-party protocol for computing a randomized predicate of two
n-bit inputs.

Theorem 3.5. Let π be a randomized ε-DP two-party protocol defined over
x, y ∈ {0, 1}n and π(x, y) be the Boolean output of the protocol. Let P be a
matrix of probabilities pxy = Pr[π(x, y) = 0]. Then P is a protocol-compatible
ε-DP functionality.

Proof. We start by showing that P can be expressed as sums of protocol-
compatible ε-DP matrices. The proof for 1− P is analogous.

Let T0 be the set of all transcripts τ for which the protocol output is 0, i.e.
π(x, y) = 0. For a fixed x, y, let τ ← π(x, y) denote that event that in a random
execution of π with inputs (x, y), the transcript is τ . Let Pτ be a 2n× 2n matrix
indexed by n-bit strings such that Pτ (x, y) = Pr[τ ← π(x, y)] = pτ,xy (say).
Then,

pxy = Pr[π(x, y) = 0] =
∑
τ∈T0

Pr[τ ← π(x, y)] =
∑
τ∈T0

pτ,xy.

Therefore, it holds that P =
∑

τ∈T0
Pτ . It is easy to verify that the matrices

Pτ are ε-DP matrices. To complete the proof, we now show that each Pτ is
protocol-compatible (following [23]).

Let X and Y be independently and uniformly distributed random variables
taking values in {0, 1}n. Then, using Bayes’ rule we see that for any two strings
x, y, pτ,xy = Pr[X = x, Y = y|τ ← π(X,Y )] · Pr[τ ← π(X,Y )]/Pr[X = x, Y =
y]. It is well known in communication complexity (e.g., see [25]) that for any two-
party protocol π, if the inputs X and Y are independent before the execution,
then for any transcript τ of the protocol, X and Y remain independent when
conditioned on the transcript being τ . That is, Pr[X = x, Y = y|τ ← π(X,Y )] =
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Pr[X = x|τ ← π(X,Y )] · Pr[Y = y|τ ← π(X,Y )]. Using this with our previous
relation, we see that

pτ,xy = px,τ · py,τ · pτ · 22n,

where px,τ = Pr[X = x|τ ← π(X,Y )]; py,τ and pτ are defined analogously. It
then follows that for any distinct x1, y1, x2, y2:

pτ,x1y1 · pτ,x2,y2 = px1,τpx2,τpy1,τpy2,τ · p2τ · 24n = pτ,x1y2 · pτ,x2y1 .

This completes the proof for protocol-compatibility, and hence the theorem. ��

The following lemma plays a critical role in our analysis, as it replaces a per-
transcript quadratic constraint imposed by the protocol-compatibility condition
with a system of linear inequalities.

Lemma 3.6. If P is protocol-compatible ε-DP functionality, then for all adjacent
pairs x, x′ ∈ {0, 1}n and y, y′ ∈ {0, 1}n

pxy′ + px′y ≤ pxy/λ+ px′y′ · λ,
pxy′ + px′y ≤ pxy · λ+ px′y′/λ,

and

pxy + px′y′ ≤ pxy′/λ+ px′y · λ,
pxy + px′y′ ≤ pxy′ · λ+ px′y/λ.

Proof. We first verify the statement for protocol-compatible ε-DP matrices Q.
Indeed, by the ε-DP condition qxy′ , qx′y ∈ [qxy/λ, qx′y′ · λ] and by protocol-
compatible qxy′ · qx′y = qxy · qx′y′ . If the product of two reals is fixed, their
sum is maximized when they are most apart, which corresponds exactly to the
endpoints of the feasible interval for qxy′ , qx′y. To formalize this, we observe that
by simple algebra, the condition

qxy/λ ≤ qxy′ ≤ qx′y′ · λ

is equivalent to the quadratic inequality

q2xy′ − (qxy/λ+ qx′y′ · λ)qxy′ + qxy · qx′y′ ≤ 0,

since all probabilities must be non-negative. Rewriting this inequality and divid-
ing by qxy′ , and using the fact that qx′y = qxy · qx′y′/qxy′ , we obtain the desired
bound:

qxy′ + qx′y ≤ qxy/λ+ qx′y′ · λ.

Moreover, the bound is linear in all qxy, qxy′ , qx′y, qx′y′ and holds for all protocol-
compatible ε-DPmatrices. Therefore, it would also hold for the sum of these ma-
trices, and thus for protocol-compatible ε-DP functionalities. The other bounds
follow similarly and this completes the proof. ��
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Lastly, we introduce the following definition that relaxes the notion of the protocol-
compatible ε-DP functionality to allow for a (typically small or negligible) fraction
of non-private transcripts.

Definition 3.7. A 2n× 2n matrix P is protocol-compatible ε-DP functionality
if both matrices P and 1−P−Δ can be expressed as sums of protocol-compatible
ε-DP matrices, where 1 is the all-ones matrix and all entries of Δ are between
0 and δ.

An analogue of Theorem 3.5 exists for (ε, δ)-functionalities defined over binary
inputs:

Theorem 3.8. Let π be a randomized (ε, δ)-DP two-party protocol defined over
x, y ∈ {0, 1} and π(x, y) be the Boolean output of the protocol. Let P be a matrix
of probabilities pxy = Pr[π(x, y) = 0]. Then P is a protocol-compatible (ε+

√
δ)-

DP O(
√
δ)-close functionality.

Proof. In the notation of the previous theorem, define the set of “bad” transcripts
B as

B = {τ : ∃ adjacent x, x′, y, y′ ∈ {0, 1}, s.t. Pτ (x, y) > eε+
√
δPτ (x

′, y′)}.

We claim that for all x, y ∈ {0, 1}, the probability that Pr[τ ∈ B : τ ← π(x, y)] <
O(

√
δ). Applying Theorem 3.5, it is sufficient to prove the claim.

For any two pairs of adjacent inputs x, x′, y, y′ define

Bx,x′,y,y′ = {τ : Pτ (x, y) > eε+
√
δPτ (x

′, y′)}. (1)

The probability of seeing a transcript from Bx,x′,y,y′ on input (x, y) is less than

O(
√
δ), since by the guarantee of (ε, δ)-DP and (1):

Pr[τ ∈ Bx,x′,y,y′ : τ ← π(x, y)} ≤ eε Pr[τ ∈ Bx,x′,y,y′ : τ ← π(x′, y′)}+ δ

< e−
√
δ Pr[τ ∈ Bx,x′,y,y′ : τ ← π(x, y)} + δ,

from which a O(
√
δ) bound on Pr[τ ∈ Bx,x′,y,y′ : τ ← π(x, y)} follows

immediately.
Applying the (ε, δ)-DP condition again, we find that

Pr[τ ∈ Bx,x′,y,y′ : π(x′′, y′′)] = eεO(
√
δ)

for all x′′, y′′ ∈ {0, 1}. Since the event B is the union of all events Bx,x′,y,y′ ,
summing over all pairs of adjacent inputs and assuming that ε is constant, we
complete the proof. ��

The next two sections apply Theorem 3.5 to tight analysis of accuracy of differ-
entially private protocols for computing two Boolean functionalities of two bit
inputs: AND and XOR.
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3.2 Analysis of the AND Functionality

We first define accuracy of a Boolean functionality for computing the AND of two
bit inputs specified as a 2× 2 matrix of probabilities. Recall that by convention,
the matrix P consists of elements pxy signifying the probability of obtaining
output 0 on inputs (x, y).

Definition 3.9 (AND-Accuracy). Define AND-accuracy of a 2 × 2 matrix( p00 p01
p10 p11

)
as

AND-Acc(
( p00 p01
p10 p11

)
) = min(p00, p01, p10, 1− p11).

Note that this notion is identical to the accuracy defined in Section 2. We
prove the following theorem establishing the maximal accuracies achievable by
protocol-compatible and arbitrary ε-DP functionalities and, in particular,
showing that there is a gap between the two quantities.

Theorem 3.10. For any λ ≥ 1 and a 2× 2 matrix M we have the following:

1. If M is a ε-DP functionality, then AND-Acc(M) ≤ λ
1+λ , where λ = eε.

2. If M is a ε-DP protocol-compatible functionality, then

AND-Acc(M) ≤ λ(λ2 + λ+ 2)

(1 + λ)3
.

In both cases the equality can be achieved.

Proof. Let M =
( p00 p01
p10 p11

)
and a = AND-Acc(M).

Claim 1. The accuracy condition implies p01 ≥ a and 1−p11 ≥ a. On the other
hand, by the ε-DP constraint p01 ≤ p11 · λ. Put together we have a/λ ≤ p11 ≤
1− a, which implies a ≤ λ/(1 + λ).

The following matrix is indeed a ε-DP functionality with accuracy λ/(1+λ):

M =

(
λ/(1 + λ) λ/(1 + λ)
λ/(1 + λ) 1/(1 + λ)

)
.

Claim 2. The following conditions relate the probabilities p00, p01, p10, p11 to
each other and to the accuracy parameter a:

p11 ≤ 1− a

p01 + p10 ≥ 2 · a
p01 + p10 ≤ p00/λ+ p11 · λ

(1− p01) + (1− p10) ≤ (1 − p00) · λ+ (1− p11)/λ.

The first two inequalities are implied by the accuracy requirement, the last two
by applying Lemma 3.6 to M and

( 1−p00 1−p01

1−p10 1−p11

)
.
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By introducing a newvariable q = p01+p10 and rewriting the above inequalities,
we have

q ≥ 2 · a (2)

q ≤ p00/λ+ p11 · λ (3)

q ≥ 2− (λ + 1/λ) + p00 · λ+ p11/λ. (4)

Consider the intersection of two lines bounding the half-planes (2) and (4), where
q and p00 are considered as free variables and λ, a, and p11 are parameters. It is
easy to verify that the lines intersect at the point (p∗00, q

∗), where

p∗00 = 1 + 1/λ2 − 2/λ+ 2a/λ− p11/λ
2 and q∗ = 2 · a.

The following lemma argues that (p∗00, q
∗) satisfies (3):

Lemma 3.11. Let p∗00 be defined as above. Then the following holds:

2 · a ≤ p∗00/λ+ p11 · λ.

Proof. Towards a contradiction, assume that

2 · a > p∗00/λ+ p11 · λ. (5)

Consider two cases:
Case p00 ≤ p∗00. Then

q
(3)
≤ p00/λ+ p11 · λ ≤ p∗00/λ+ p11 · λ

(5)
< 2 · a,

contradicting (2).
Case p00 > p∗00. Then

(p00 − p∗00)/λ+ 2 · a
(5)
> p00/λ+ p11 · λ

(3)
≥ q

(4)
≥

2− (λ + 1/λ) + p00 · λ+ p11/λ = (p00 − p∗00) · λ+ p∗00 · λ+ 2

− (λ+ 1/λ) + p11/λ
def of p∗

00= (p00 − p∗00) · λ+ 2 · a,

which is a contradiction since λ ≥ 1 and p00 > p∗00, concluding the proof of the
Lemma. ��

Finally, by substituting the value of p∗00 into the statement of Lemma 3.11 and
using that p11 ≤ 1− a, we have

2 · a ≤ (1 + 1/λ2 − 2/λ+ 2a/λ− p11/λ
2)/λ+ p11 · λ

≤ λ+ 1/λ− 2/λ2 + a · (2/λ2 − λ+ 1/λ3),

from which after collecting like terms and simplifying, the claim AND-Acc(M) =
a ≤ λ(λ2 + λ+ 2)/(1 + λ)3 follows.

The protocolwith optimal accuracyappears inAppendix thus proving tightness
of the bound. ��
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We remark that Claim 2 of Theorem 3.10 also applies to δ-close ε-DP pro-
tocol compatible functionalities, with the upper bound on the accuracy in-
creasing by (2 + λ + 1/λ)δ = O(δ). The proof changes in its application of
Lemma 3.6 to

( 1−p00 1−p01

1−p10 1−p11

)
that becomes instead

( 1−p00−δ00 1−p01−δ01
1−p10−δ10 1−p11−δ11

)
, where

δ00, δ01, δ10, δ11 ∈ [0, δ]. It is easy to verify that changes in the inequality (4) can
be absorbed by reducing the value of a by (2 + λ+ 1/λ)δ = O(δ).

Maximal accuracies attained by ε-DP functionalities and protocol-compatible
ε-DP functionalities are shown in Figure 1.

3.3 Analysis of the XOR Functionality

Recall that we consider the worst-case accuracy of a randomized protocol, i.e.,
the lowest probability over all inputs of producing a correct answer.

Definition 3.12 (XOR-Accuracy). Define XOR-accuracy of a 2 × 2 matrix( p00 p01
p10 p11

)
as

XOR-Acc(
( p00 p01
p10 p11

)
) = min(p00, 1− p01, 1− p10, p11).

Note that this notion is identical to the accuracy defined in Section 2. The follow-
ing theorem bounds XOR-accuracy of DP functionalities and protocol-compatible
DP functionalities.

Theorem 3.13. For any λ ≥ 1 and a 2× 2 matrix M we have the following:

1. If M is a ε-DP functionality, then XOR-Acc(M) ≤ λ
1+λ .

2. IfM is a ε-DP protocol-compatible functionality, then XOR-Acc(M) ≤ 1+λ2

(1+λ)2 .

In both cases the equality can be achieved.

Proof. Let M =
( p00 p01
p10 p11

)
and a = AND-Acc(M).

Claim 1. By the accuracy condition p00 ≥ a and 1 − p01 ≥ a. On the other
hand, by the ε-DP constraint p00 ≤ p01 · λ. Put together we have 1− a ≥ p01 ≥
p00/λ ≥ a/λ, which implies a ≤ λ/(1 + λ).

The following matrix is indeed a ε-DP functionality with accuracy λ/(1+λ):

M =

(
λ/(1 + λ) 1/(1 + λ)
1/(1 + λ) λ/(1 + λ)

)
.

Claim 2. Lemma 3.6 gives the following bounds on the entries of ε-DP protocol-
compatible matrices:

p00 + p11 ≤ p10/λ+ p01 · λ,
p00 + p11 ≤ p10 · λ+ p01/λ.

Summing the inequalities and dividing by two, we have

p00 + p11 ≤
λ2 + 1

2λ
(p10 + p01). (6)
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Observe that XOR-Acc(M) = min(p00, 1 − p01, 1 − p10, p11) ≤ min(p00+p11

2 , 1 −
p10+p01

2 ). Denote p00+p11

2 by x and p10+p01

2 by y, and write

XOR-Acc(M) = min(x, 1 − y)
(6)
≤ min(x, 1 − 2λ

1 + λ2
x),

which attains its maximal value when x = 1 − 2λ
1+λ2 x. Solving this for x and

substituting in the above expression, we prove that

XOR-Acc(M) ≤ 1 + λ2

(1 + λ)2
.

This value of accuracy for computing the XOR functionality is achieved by the
randomized response protocol (see Appendix). ��

4 One-Way Functions from CDP

In this paper, we show that one-way functions are implied by the existence
of a family of computationally differentially private (CDP) two-party protocols
that achieve better accuracy than the bounds proven for DP two-party protocols
proven in the previous section. We show this by presenting a more general result:
we show that if one-way functions do not exist, then the existence of a family of
CDP protocols imply the existence of DP protocols with only negligible loss in
accuracy and privacy.

Definition 4.1. An infinite family of two-party protocols Π = {πk} is defined
to be an infinite family of (ε, δ = negligible)-DP protocols achieving accuracy a
for a functionality F if for every constant c > 0, there exists an infinite sequence
of πk ∈ Π such that each πk is an (ε+ k−c, δ = k−c)-DP protocol with accuracy
a− k−c for functionality F .

Proof of the following theorem appears in the full version:

Theorem 4.2. Suppose that one-way functions do not exist. Then given any
infinite family Π of efficient ε-IND-CDP two-party protocols achieving accuracy
a for a functionality F , it must be that there is an infinite subfamily Π ′ ⊂ Π
such that Π ′ is an infinite family of (ε, δ = negligible)-DP protocols achieving
accuracy a for the functionality F .
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1 Introduction

Historically, when formalizing security definitions for cryptographic protocols, it
was noted that adversarial parties may enter a protocol with relevant knowledge
from the past. Meaningful security definitions should thus embed the important
requirement that, even armed with such side information, an adversary still
must not be able to break the security of the protocol. For example, in a zero-
knowledge proof system [22], it should not be the case that an adversarial verifier
with partial information about a witness, can now suddenly recover the entire
witness from the protocol. This natural property was formalized by requiring
that, for any adversary with any potential auxiliary input z on the inputs of the
honest parties prior to the execution of the protocol, this adversary still learns
nothing beyond the inputs and prescribed outputs of corrupted parties (and, of
course, the auxiliary input z it learned prior).

In the last two decades, as cryptographic protocols have become increasingly
prevalent (often within everyday online activities, run in parallel), and as new
classes of strong attacks have emerged, it has become increasingly evident that
adversaries may also acquire auxiliary information on the internal state of honest
parties during the protocol execution. This may take place, e.g., by performing
physical attacks on an implementation of a processor (say, a smart card or a
hardware token) [31,2,26], or when the randomness used by an honest party in
a protocol is correlated with randomness used in other applications. Unfortu-
nately, this case is no longer covered under historical definitions: the moment an
adversary is able to learn any side information, say, about the randomness of an
honest party in the protocol, the security guarantees break down.

In this work, we seek to extend the standard notion of security with (static)
auxiliary inputs to the setting of general adaptive auxiliary information. We
study secure general two-party and multiparty computation [34,21] in the setting
where an adversary, who corrupts an arbitrary subset of parties in the proto-
col, is able to learn arbitrary (efficiently computable) auxiliary information on
the entire states of all the honest parties (including their inputs and random
coins), in an adaptive manner, throughout the protocol execution. We formalize
a meaningful definition of security within this setting, and construct two-party
and multiparty computation protocols satisfying our definition.

How to Define Security against Adaptive Auxiliary Information? Se-
curity of MPC protocols is formalized by comparing the real-world protocol
execution to an ideal-world experiment where the parties interact directly with
a trusted party who receives all parties’ inputs and responds only with the cor-
rect function output. Formally, an MPC protocol is said to be secure under the
classical definition if for every real-world adversary with some auxiliary input
(say) z, there exists an ideal-world adversary (a.k.a. simulator) with the same
auxiliary input z, who simulates the output of the real-world experiment.

Our goal is to generalize this definition to the setting where side informa-
tion can be learned during the protocol. We model adaptive auxiliary informa-
tion by allowing the adversary to specify (efficiently computable) functions fi,
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adaptively throughout the protocol. For each such query, the selected function is
evaluated on the entire secret states of the honest parties, and the result is given
to the adversary as auxiliary information. Intuitively, we wish to guarantee that
an adversary who participates in the protocol and receives adaptive auxiliary
information throughout the protocol’s lifetime still learns nothing beyond the
inputs and outputs of the corrupted parties, and the auxiliary information.

Note that it is not immediately apparent how to formalize this notion. Whereas
in the static setting both the adversary and the simulator receive the exact same
auxiliary input z, in the adaptive setting, it doesn’t make sense even syntactically
to say that the same auxiliary input functions are applied both in the real world
and in the ideal world: this is because the real-world auxiliary input function will
expect to take as input the secret states of parties executing a protocol, whereas
in the ideal world no protocol is ongoing.

A natural attempt to formalize security in this setting may be to require that
if the real adversary learns 
 bits of auxiliary information, then the simulator
can also learn at most 
 bits of auxiliary information. While this is a natural
requirement (and our definition will achieve at least this requirement), unfor-
tunately, it may be too weak. For example, the auxiliary information learnt by
a real-world adversary (say, via physical processes) may be large but “noisy,”
giving very little information about the honest parties’ inputs. Or, the honest
parties’ inputs may be information-theoretically determined but computation-
ally unpredictable given the real-world auxiliary information. In these cases, the
above definition may not provide a meaningful security guarantee since the sim-
ulator may be able to simulate the honest parties “trivially” by first learning a
large portion (or all!) of their inputs as auxiliary information. Ideally, we would
like to formalize the intuitive requirement that the auxiliary information in the
ideal world is “no more” than that in the real world.

Our Security Definition. We capture the desired security notion by plac-
ing additional restrictions on the ideal-world simulator. In particular, for each
auxiliary input function f that the real-world adversary generates, we require
that the simulator generates a “translation function” T that takes as input only
the secret inputs of the honest parties, and generates “simulated states” for the
honest parties at each point in the protocol. These simulated states should be
computationally indistinguishable from the real states, and should be consistent
with the simulated transcript. Then, for each auxiliary input function f that is
requested in the real world, the same auxiliary information function is applied
in the ideal world, but it is applied to the simulated states. In other words, the
ideal world auxiliary function will be the composed function f ◦ T . This pre-
vents the ideal-world adversary from “learning too much” via the ideal-world
auxiliary information: for example, if the requested function f has short output,
reveals only useless unused information, or leaves its inputs unpredictable, then
the same restrictions will also hold for the ideal-world auxiliary information.

We say that an MPC protocol is secure against adaptive auxiliary informa-
tion if for every PPT real-world adversary who makes arbitrary adaptive (effi-
ciently computable) auxiliary information queries, there exists a PPT ideal-world
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simulator who, given the corresponding auxiliary information (as described
above), is able to simulate the output of the real-world experiment. Intuitively,
this definition guarantees that the security of the honest parties “gracefully de-
grades” with the amount of auxiliary information that the real adversary is able to
obtain. We remark that our definition is similar to that of [3,20], occurring within
the setting of zero-knowledge and protocols against passive adversaries.

1.1 Our Results

We construct two-party andmultiparty computation protocols (for any efficiently
computable function) secure against adaptive auxiliary information in the uni-
versal composability (UC) framework [7] in the common reference string (CRS)
model. Namely, we prove the following theorem:

Main Theorem (Informal). For any n ≥ 2, there exists a UC-secure n-party
protocol in the CRS model for evaluating any efficiently computable function,
such that for any malicious PPT adversary who (statically) corrupts any subset
of parties and learns any amount of (efficiently computable) adaptive auxiliary
information Z, this adversary learns nothing beyond the inputs and outputs of
corrupted parties, and the same auxiliary information Z (formalized as discussed
above). This holds based on the linear assumption over bilinear groups and the
n-th residuosity assumption.1

No Bound on the Auxiliary Information. We emphasize that, as in the
classical (static auxiliary input) setting, our result does not require any a priori
bound on the amount of the auxiliary information that the adversary may be able
to learn. Instead, our protocol guarantees that for any amount of information the
real-world adversary is able to (adaptively) acquire throughout the protocol, this
“same amount” of auxiliary information is given to the ideal-world simulator,
thus providing graceful degradation of security. This advantageous property is in
contrast with nearly all existing results in leakage-resilient cryptography, which
require the user to specify at design time an amount of information leakage he
wishes to protect against (growing the system parameters accordingly); if an
adversary is able to garner more leakage at runtime than the preset bound, then
security of these schemes no longer hold.

Application to Leakage-Resilient Protocols. There has been an extensive
amount of work on leakage-resilient cryptography in recent years, primarily fo-
cused on the setting of non-interactive primitives (see e.g., [29,16,1,15,32,30,6,14]).
Our result can be used to achieve leakage-resilient interactive protocols, an area
that has received comparatively little attention (see Section 1.3).

As alluded to above, our MPC protocol directly provides meaningful secu-
rity guarantees in the setting of leakage: where such a “leaky” adversary learns
no more than the inputs and outputs of the corrupted parties, and the leakage

1 The n-th residuosity assumption can be replaced with any lossy trapdoor function
(LTDF) with some specific properties. Roughly speaking, we require LTDFs that
are bijective and “sufficiently lossy”.
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information. This can be seen by viewing the adaptive auxiliary information as
joint leakage on the secret states of the honest parties during the protocol exe-
cution.2 Further, when combined with previous work on leakage-resilient cryp-
tography, our result yields applications where “standard” security is guaranteed
in the face of bounded leakage. Below, we discuss two such applications:

• Leakage-Resilient MPC in the leak-free preprocessing model. A recent work of
Boyle et al. [4] builds upon our results to construct multi-party secure com-
putation protocols to achieve standard ideal-world security (where no leakage
is allowed in the ideal world) against real-world adversaries that may leak
continuously from the secret state of each honest player separately, assum-
ing a one-time leak-free preprocessing phase and a large number of parties.
At a very high level, they achieve their result by applying our multi-party
secure computation protocol to the leakage-resilient computation compiler
of Goldwasser and Rothblum [23].

• Leakage-resilient threshold cryptosystems. In a threshold cryptosystem [13],
parties hold shares of a single secret key, and only a quorum of parties can
jointly execute the corresponding secret functionality (e.g., decryption). Our
MPC protocol, when combined with an underlying leakage-resilient crypto-
graphic primitive (e.g., [1] for public-key encryption), yields a corresponding
leakage-resilient threshold cryptosystem. The security guarantee of our pro-
tocol implies that any information learned by an adversary who controls any
strict subset of a quorum, and obtains leakage on the joint secret states of all
honest parties during the collective decryption protocol, reduces to simply
the output value and corresponding leakage on the underlying secret key.

1.2 Technical Overview

Our starting point is the GMW paradigm for building MPC protocols [21].

The First Approach. Recall the GMW paradigm begins by designing an MPC
protocol secure against semi-honest (i.e., passive) adversaries, and then compiles
the protocol into one secure against malicious adversaries by “enforcing” semi-
honest behavior via use of zero-knowledge proofs, a commitment scheme, and a
coin-tossing protocol.

We begin by mirroring this approach in the setting of adaptive auxiliary input.
We directly achieve MPC secure against adaptive auxiliary information in the
semi-honest setting by instantiating the basic GMW protocol with the oblivious
transfer protocol of [3] (that has analogous semi-honest security properties).
Further, continuing onto the GMW compiler, we see that zero-knowledge proofs
secure against adaptive auxiliary information were already constructed in [20,3],
and equivocal commitment schemes [18] were also shown to have the required
security properties [20,3]. We are thus almost within reach of our final goal.

2 We note, however, this differs from the security model considered in [3], where leakage
on the state of each party is “disjoint” in both the real- and ideal-world experiments.
Indeed, achieving security in such a model is an interesting open problem.
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Unfortunately, in the remaining step, one runs into serious problems. Note
that in order to reduce the malicious security of the compiled protocol to the
semi-honest security of the original protocol, the coin-tossing protocol to be
used in the compiler must be fully simulatable, in that the simulator must be
able to choose the output of the coin toss, and simulate the protocol to force this
output, for both honest and corrupted parties. It is not clear how to construct
a coin-tossing protocol secure against adaptive auxiliary information.3 Indeed,
as shown recently by Chung et al. [11], constructing such a protocol in the two-
party setting is in fact impossible. We refer the reader to the full version for
further discussion on this issue.

A New Stepping Stone: “Semi-malicious” Adversaries.We thus abandon
the approach of mimicking the GMW paradigm “out of the box.” We instead
consider a new intermediate step, lying closer to security against malicious adver-
saries, with the goal of eliminating the necessity for fully simulatable coin-tossing
in the final compiler. This amounts to constructing protocols that remain secure
even if an adversary potentially uses “bad” randomness in the protocol execu-
tion. To formalize this requirement, we consider the notion of a semi-malicious
adversary that follows the protocol execution (similar to a semi-honest adver-
sary), but can choose its random coins (and inputs) in any arbitrary manner.4

Once we construct a protocol for semi-malicious adversaries (that can learn
arbitrary auxiliary information), we can easily compile it into a secure protocol
for malicious adversaries by standard techniques. We do so using a modified
version of the GMW compiler adapted to our setting, implemented with equivo-
cal commitments [18,9] and the UC-NIZKs of [24] that were shown to be secure
against adaptive auxiliary information by Garg et al. [20]. (We refer the reader
to the technical sections for more details.) The task then remains to construct
an MPC protocol that is secure against adaptive auxiliary information in the
presence of semi-malicious adversaries.

A close look at the basic GMW construction reveals that constructing semi-
malicious MPC reduces to constructing a semi-malicious oblivious transfer (OT)
protocol. (We note that this observation is also implicit in [28].) Since our goal
is to protect against adversaries who may learn adaptive auxiliary informa-
tion, we aim to construct OT protocols with similar security guarantees against
semi-malicious adversaries. We discuss this next.

Semi-malicious OT. Our starting point is the adaptively secure semi-honest
OT protocol of Canetti et al. [9]. The [9] construction follows the “standard
template” of [17] for semi-honest OT, but replaces the underlying encryption
scheme with a non-committing encryption (NCE) scheme [8]. Namely, (1) The
receiver R generates and sends two public keys pk0, pk1 for the (non-committing)

3 The leakage-resilient coin tossing result of [5] is not relevant to this setting. Their
construction requires an honest majority of parties (to attain information theoretic
guarantees), whereas our model allows an arbitrary number of corruptions.

4 The notion of semi-malicious adversaries is somewhat similar in spirit to the notion
of defensible adversaries considered by [25]. We refer the reader to Section 3 for a
comparison of the two notions.
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encryption scheme—one for which he knows the secret key, and one “obliviously”
sampled; and (2) the sender S sends an encryption of each of his messages mi,
under the corresponding public key pki. The [9] scheme was shown to be secure
against adaptive auxiliary information in the semi-honest model by [3]. However,
the protocol fails in the semi-malicious model. Indeed, a semi-malicious receiver
can simply choose bad randomness to “obliviously” sample public keys for which
he can decrypt (and thus learn both messages of the sender). Further, a semi-
malicious sender may be able to create “malformed” ciphertexts that cause the
honest receiver to abort depending on his secret input. Circumventing these fatal
roadblocks demands a new set of techniques. We solve these problems as follows:

• First, we construct an underlying NCE scheme with strong security proper-
ties, which will guarantee security in the OT protocol as long as the adver-
sary’s randomness does not fall within a very small “bad” set. We achieve
this by building an NCE scheme where the public keys generated via the
oblivious key generation algorithm are almost always lossy (except if they
belong to some exponentially small set, such as the set of DDH tuples).
Now, unless the adversary’s randomness falls within this very small set, the
encryption of non-requested messages under his obliviously sampled public
keys will information theoretically hide the messages.

• Second, we develop a new methodology for generating private randomness
that prevents a malicious party from choosing randomness within this small
bad set. The challenge is doing so in the presence of adaptive auxiliary in-
formation, and while simultaneously providing the simulator the necessary
flexibility to “force” any randomness of his choice for honest parties.

A potential idea is to design a modified coin tossing protocol to ensure
a malicious party’s output randomness still maintains sufficient entropy in
the auxiliary information setting. However, approaches of this kind seem to
inherently necessitate an a priori bound on how much auxiliary information
can be handled: if honest parties cannot hold onto any secret entropy during
the protocol, this path appears hopeless.

We provide a different approach. We construct a non-interactive random-
ness generation procedure that achieves the desired properties by use of
lossy trapdoor functions (LTDF), together with a CRS. Namely, each party
Pi is assigned an LTDF seed σi in the CRS; each time the party must sam-
ple randomness in the protocol, he first chooses a random value r in the
LTDF domain, and then uses the LTDF evaluation F (σi, r) as his proto-
col randomness. Loosely speaking, in the simulation, honest parties will be
assigned seeds for injective functions, whereas corrupted parties will be as-
signed (computationally indistinguishable) seeds for lossy functions. This
allows the simulator to efficiently “explain” any possible output for honest
parties, while simultaneously restricting malicious parties to a small set of
attainable output values that does not “hit” the small set of bad values. We
refer the reader to Section 4.3 for more details.

Final Touches. While the above ideas essentially handle the issue of “bad”
randomness, we still need to find a way to answer the auxiliary information
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queries of the adversary correctly. Our starting point for this is the observation
of [20,3] that adaptive security (without erasures) provides simulators that can
simulate random tapes for honest parties, which can be used to answer auxiliary
information queries. However, this is possible if the simulator is able to decide
its random tape after viewing the random tape of the adversary. Unfortunately,
depending upon the “structure” of the protocol, this may not always be possible.
To address this problem, we somewhat “soften” this asymmetry: instead of gen-
erating the entire random tapes of each party a priori, we generate them in an
“online” fashion. In part because the GMW protocol provides perfect security
in the OT-hybrid model, it turns out that this essentially suffices for simulation.

1.3 Related Work and Organization

The notion of security considered in this paper is somewhat analogous to that
considered by Bitansky et al. [3] and Garg et al. [20], in the context of leakage-
resilience. Garg et. al. [20] consider the case of zero-knowledge proof systems
where a malicious verifier can adaptively leak arbitrary information on the state
of the honest prover during the execution of the protocol. Bitansky et. al. [3]
put forth a general definition of leakage tolerance in the setting of two-party
interactive protocols, extending the notion of universally composable security.
They show how to realize specific tasks (such as oblivious transfer) in such a
scenario against semi-honest adversaries as well as zero knowledge proofs in the
CRS model. In addition, they prove a composition theorem for leakage-tolerant
protocols that we use in our work. Indeed, our work is greatly inspired by theirs.

A concurrent and independent work of Damg̊ard et al. [12] considers the
problem of two-party computation protocol in the leakage setting. They formalize
a security definition along the lines of entropic leakage as in [32,27] and show
how to realize it for NC1 functionalities against semi-honest adversaries. (In
contrast, we consider malicious adversaries, as well as the multiparty setting.)
We note that our results, cast in the leakage context, also satisfy their definition
(for the case of 2-party protocols).

Guide to the Paper. Section 2 contains partial preliminaries. In Section 3,
we present our model and security definition. Section 4 contains the technical
core of our work: an oblivious transfer protocol secure against adaptive auxiliary
information in the semi-malicious model. Due to space limitations, we defer
remaining preliminaries, proofs of security, and formal analysis to the full version.

2 Preliminaries

Non-committing Encryption. Informally, a non-committing (bit) encryption
scheme [8] is a semantically secure, possibly interactive encryption scheme, with
the additional property that a simulator can generate special ciphertexts that
can be “opened” to (i.e. demonstrated to be the encryption of) both 0 and 1.
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Definition 1. [8,10] A non-committing (bit) encryption scheme consists of a
tuple (Gen,Enc,Dec,NCSim), where (Gen,Enc,Dec) is a semantically secure en-
cryption scheme, and NCSim is a PPT simulation algorithm that on input 1k

outputs a tuple (e, c, r0G, r
0
E , r

1
G, r

1
E) such that for every b ∈ {0, 1} the following

distributions are computationally indistinguishable:

1. The joint view of an honest sender and an honest receiver in a normal en-
cryption of b: {(e, c, rG, rE) : (e, d) ← Gen(1k; rG), c← Ence(b; rE)} .

2. A simulated view of an encryption of b: {(e, c, rbG, rbE) : (e, c, r0G, r0E , r1G, r1E) ←
NCSim(1k)} .

Augmented NCE. In our MPC protocol, we will use an “augmented” NCE
scheme, satisfying three additional properties.

Oblivious key generation: It should be possible to sample an encryption key
without “knowing” a corresponding secret key via a procedure OGen.

Invertible samplability: The key generation and the oblivious key generation al-
gorithms Gen and OGen should be “invertible.” That is, given an output that lies
in the range of Gen (resp., OGen) that was potentially generated via a different
algorithm (e.g., NCSim), we can efficiently generate randomness that “explains”
the output as being generated via Gen (resp., OGen).

Alternative simulation: In the standard NCE definition, NCSim generates a sim-
ulated ciphertext (and randomness values) together with an encryption key e.
For our purposes, we require a stronger simulation property, where we can gen-
erate a simulated ciphertext for a fixed encryption key – namely, one that is
obliviously sampled by another party.

In this work, we build upon the NCE construction of Choi et. al [10] to
construct an augmented NCE scheme with additional desired properties. See
Section 4 for more details.

Lossy Trapdoor Functions (LTDF). A lossy trapdoor function (LTDF) fam-
ily [33] consists of two computationally indistinguishable families of functions.
Functions in one family are injective and can be efficiently inverted using a trap-
door; functions in the other family are “lossy,” in that the size of their image is
significantly smaller than the size of their domain. We refer the reader to [33,19]
for a complete definition of an (m, 
)-LTDF family5 (GLoss, GInj, S, F, F

−1), with
function sampling algorithmsGLoss, GInj, domain sampling algorithmS, evaluation
algorithm F , and inversion algorithm F−1.

For our purposes, we require a strengthened LTDF family, in which the injective
functions are bijections (i.e., surjective onto their target space), the lossy branches
are sufficiently lossy, and the size parameters satisfy certain relations.

Definition 2. A collection of (m, 
)-lossy trapdoor functions (GLoss, GInj, S, F,
F−1) is bijective and (D,α)-admissible if it satisfies the following properties:

– Bijective: For every seed σ produced by GInj, the algorithm F (σ, ·) computes
a bijective function fσ : Dσ → Rσ (where Rσ is the output space of fσ).

5 The parameters (m, �): Each function fσ in the family has domain size |Dσ| ≥ 2m−1,
and each lossy function fσ has image size at most |Dσ| · 2−�.
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– (D,α)-Admissible: The following hold, corresponding to target output size
D, where α fraction of the D values are “bad”:

1. Efficiently invertible domain sampling: There exists a PPT algorithm

S−1 such that for each x ∈ Dσ, {S−1(x)} s≈ {r : S(r) = x}.
2. Sufficiently large output space: For each seed σ produced by eitherGLoss(1

k)
or GInj(1

k), the size of the output space Rσ satisfies |Rσ| ≥ D.
3. Sufficiently small image of lossy functions: There exists a negligible func-

tion μ(k) such that for every seed σ produced by GLoss, α·
(
|Dσ| · 2−�(k)

)
<

μ(k). Recall that |Dσ| · 2−�(k) is an upper bound for the image size of a
lossy function with seed σ.

In the full version, we show that the composite residuosity-based LTDF family
construction (with seed-dependent domains) of Freeman et. al. [19] satisfies our
required properties (with parameters tailored to our NCE construction):

Theorem 1. [19] Under the decisional composite residuosity assumption, there
exists a bijective, (D,α)-admissible collection of LTDFs (GLoss, GInj, S, F, F

−1)
with seed-dependent domains, for the following two choices of (D,α):
(1) D =

(
4k
k

)
. α =

(
3k
k

)/(
4k
k

)
. (2) D = 2k. α = 2−k/3.

3 Our Model

To define security against adaptive auxiliary information, we turn to the real/ideal
paradigm. We consider a real-world execution where an adversary, in addition to
corrupting a number of parties, can adaptively learn arbitrary auxiliary informa-
tion on the joint secret states of the honest parties, throughout the protocol ex-
ecution. Following the works on leakage-resilient cryptography, we model this by
allowing the adversary to make auxiliary information queries of the form L, where
L is the circuit representation of an efficiently computable function. On making
such a query, the adversary learns L(state), where state represents the joint secret
state of the honest parties. In the ideal world experiment, the ideal world adver-
sary, i.e., the simulator is allowed to request auxiliary information on the inputs of
all the parties from the trusted party. Note that this is similar to those considered
in [20,3], although these works focused only on the two-party case, whereas we deal
with both two-party case and multi-party case. Below, we describe a standalone
security definition. (See full version for the UC setting.)

Ideal World. We first define the ideal world experiment, where n parties
P1, . . . , Pn interact with a trusted party for computing a function f .

• Inputs: Each party Pi obtains an input xi. The adversary is given (initial)
auxiliary input z, selects a subset of parties M ⊂ P to corrupt, and receives
xi for every Pi ∈M .

• Sending inputs to trusted party: Each honest party Pi sends its input
xi to the trusted party. For each corrupted party Pi ∈M , the adversary may
select any value x′i and send it to the trusted party.
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• Trusted party computes output: Let x′1, . . . , x
′
n be the inputs that were

sent to the trusted party. The trusted party computes f(x′1, . . . , x
′
n).

• Adversary learns output: The trusted party first sends f(x′1, ..., x′n) to
the adversary. The adversary replies with either continue or abort.

• Honest parties learn output: If the message is abort, the trusted party
sends ⊥ to all honest parties. If the adversary’s message was continue, then
the trusted party sends the evaluation f(x′1, . . . , x

′
n) to all honest parties.6

• Auxiliary information queries on inputs: The adversary may send
(adaptively chosen) auxiliary information queries in the form of efficiently
computable functions Lj (described as a circuit). On receiving such a query,
the trusted party computes Lj(x

′
1, . . . , x

′
n) and returns the output to the ad-

versary. (We in fact, place further restriction on the communication between
the adversary and the trusted party w.r.t. the auxiliary information queries;
we discuss this in more detail below.)

• Outputs: Honest parties each output the message they obtained from the
trusted party. Malicious parties may output an arbitrary PPT function of
their initial inputs, auxiliary input, and the interaction with trusted party.

Real World. The real-world execution begins by an adversary A selecting any
arbitrary subset M ⊂ P of the parties to corrupt. On being corrupted, each
party Pi ∈ M hands over its input to A. The parties P1, . . . , Pn now engage
in an execution of a real n-party protocol Π (without any trusted third party).
The adversary A sends all messages on behalf of the corrupted parties, and
may follow an arbitrary PPT strategy. In contrast, the honest parties follow
the instructions of Π . Furthermore, at any point during the protocol execution,
the adversary may make auxiliary information queries of the form L and learn
L(stateP\M ), where stateP\M denotes the concatenation of the protocol states
statei of each honest party Pi. We allow the adversary to choose the auxiliary
information queries adaptively based on all the information that A received up
to that point (including responses to previous such queries). Honest parties have
the ability to toss fresh coins at any point in the protocol; these coins are added
to the state of that party at the time they are generated. At the conclusion of
the protocol execution, each honest party Pi generates its output according to
Π . Malicious parties may output an arbitrary PPT function of the view of A.

Security Definition. We now give our formal definition of MPC secure against
adaptive auxiliary information. Our definition crucially relies on the notion of
leakage-oblivious simulation as defined in [20,3]. We recall it below.

Leakage-Oblivious Simulation. Loosely speaking, an ideal world adversary, i.e., a
simulator S, is said to be leakage-oblivious if the auxiliary information obtained

6 We can also define a more general case, where f may output a different value
fi(x

′
1, ..., x

′
n) to each party Pi. In this setting, the adversary first learns the set

of outputs {fi(x′
1, ..., x

′
n)}i∈M corresponding to corrupted parties, and then decides

whether to abort or to allow the honest parties to receive their respective outputs.
We do not dwell on this detail for simplicity of exposition; however, our construction
also handles this more general case.
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by the simulator is used only for the purposes of simulating answers to the
auxiliary information queries of the real adversary.More formally, we require that
the simulator S has a special subroutine S̃ for handling auxiliary information
queries. Whenever S receives an auxiliary information query L from the real
world adversary, S̃ is invoked to produce a “state translation circuit” T that
takes as input the inputs of the honest parties and produces their joint states.
Once T is produced, the ideal functionality is queried on the composed circuit
L◦T . When the auxiliary information is returned, it is forwarded directly to the
real adversary and S returns to its state prior to the event. Such a simulator is
referred to as a leakage-oblivious simulator.

We now define security w.r.t. the real and ideal world experiments as discussed
above, except that we consider leakage-oblivious simulators in the ideal world
experiment. The output of the ideal-world experiment consists of the inputs and
outputs of all parties, and the answers of all the auxiliary information queries.
It is denoted by IDEALfS,M (1k,x, z). The overall output of the real-world exper-
iment consists of the inputs and outputs of all parties at the conclusion of the
protocol, and all the auxiliary information learnt by the adversary (including
the protocol transcript). It is denoted by REALΠA,M (1k,x, z).

Definition 3 (MPC Secure against Adaptive Auxiliary Information).
A protocol Π evaluating a functionality f is said to be secure against adaptive
auxiliary information if for every PPT real adversary A, there exists a PPT
leakage-oblivious simulator S such that for every input vector x, z ∈ {0, 1}∗,
and M ⊂ P, it holds that,{

IDEALfS,M (1k,x, z)
}
k∈N

≈c

{
REALΠA,M (1k,x, z)

}
k∈N

.

3.1 Security against Semi-malicious Adversaries

As a stepping stone toward realizing our definition of MPC secure against adap-
tive auxiliary information in the presence of malicious adversaries, we define the
notion of a semi-malicious adversary. Intuitively, a semi-malicious adversary is
similar to a “standard” (real-world) semi-honest adversary, in that it follows the
protocol specification. However, it differs from semi-honest adversaries in that it
may choose its input and its “random” coins for any protocol step in an online
fashion, adaptively, following any arbitrary PPT strategy. Once it has chosen
these values, however, it must follow the protocol as specified, given the chosen
input, and using the chosen coins in place of the random coins.7 Furthermore,
in our setting, a semi-malicious adversary is allowed to learn arbitrary auxiliary
information on the (joint) secret states of the honest parties.

More formally, a semi-malicious adversary A is modeled as an interactive
Turing machine (ITM) which, in addition to the standard tapes, has a special
auxiliary tape. At the start of the protocol, A selects for each corrupted party

7 This is reminiscent of the notion of defensible adversaries, introduced by Haitner
et. al. [25]. We refer the reader to the full version for a detailed comparison.
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Pk an input xk (which may depend on the original inputs of corrupted parties),
and writes xk to its special input auxiliary tape. Then in each round of the
protocol, whenever A produces a new protocol message m on behalf of some
party Pk, it must also append to its special auxiliary tape some randomness
that explains its behavior. More specifically, all of the protocol messages sent by
the adversary on behalf of Pk up to that point, including the new message m,
must exactly match the honest protocol specification for Pk when executed with
input xk and randomness rk written in the special auxiliary tape. We allow A
to make auxiliary information queries on the joint states of the honest parties in
the same manner as discussed earlier. We further assume that the adversary is
rushing and hence may choose the randomness r in each round adaptively, after
seeing the protocol messages of the honest parties in that round (and all prior
rounds), as well as all the auxiliary information that it may have obtained so
far. Lastly, the adversary may choose to abort the execution on behalf of Pk in
any step of the interaction.

Definition 4 (MPC Secure against Adaptive Auxiliary Information in
the Semi-malicious Model). We say that protocol Π evaluating a function f
is secure against adaptive auxiliary information in the semi-malicious model if
it satisfies Def. 3 when we only quantify over all semi-malicious adversaries A.

4 Semi-malicious OT

In this section, we construct an oblivious transfer (OT) protocol that is se-
cure against adaptive auxiliary information in the presence of semi-malicious
adversaries. This protocol is the technical heart of our MPC protocol.

Recall that our OT protocol construction builds on the adaptively secure pro-
tocol of [9] (which is resilient to adaptive auxiliary information in the semi-honest
model [3]), with two primary new components: (1) A new non-committing en-
cryption scheme with strong security properties (guaranteeing security in the OT
of [9] as long as the adversary’s randomness does not fall in a very small “bad”
set), and (2) A new randomness generation procedure that prevents the adver-
sary from selecting randomness within this small “bad” set, in light of adaptive
auxiliary information. We construct these new tools in Section 4.1 and 4.2, and
present our OT construction itself in Section 4.3.

4.1 Non-committing Encryption with Lossy Keys

We construct an augmented NCE scheme (see Section 2) with the property that
public keys generated using the oblivious key generation algorithm are almost
always lossy. The specific NCE we use is a slight variant of the one due to Choi
et. al. [10], which makes use of an underlying encryption scheme with oblivious
sampling and inverting algorithms (both for generating keys and ciphertexts).
For our construction, we use an underlying encryption scheme that is also lossy.

OurUnderlying Lossy Encryption Scheme E = (Gen,Enc,Dec,OGen,OEnc,
IGen, IEnc). LetG be a group of prime order p. The algorithmGen samples g1, g2 ←
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G, u ← Zp, and outputs pk = (g1, g2, g
u
1 , g

u
2 ) and sk = u. To encrypt a mes-

sage m ∈ G under pk = (g1, g2, g3, g4), Enc samples β1, β2 ← Zp and outputs

(gβ1

1 , gβ2

2 , gβ1

3 , gβ2

4 · m). To decrypt a ciphertext (c1, c2) with sk = u, Dec out-
putsm = c1

cu2
. The oblivious sampling algorithmsOGen, OEnc simply output ran-

dom values in the appropriate spaces, and the inversion algorithms IGen, IEnc to
“explain” a given key pair / ciphertext as being obliviously sampled are trivial.

The Augmented NCE scheme ENCE.

• NCGen(1k): Generate 4k public keys pk1, . . . , pk4k for the underlying scheme,
sampling k normally and 3k obliviously. Explicitly, choose a random subset
I ⊂ [4k] of size k. For every i ∈ I, sample (pki, ski) ← Gen(1k), and for every
i ∈ [4k] \ I, sample pki ← OGen(1k). Also choose two random messages
M0,M1 ← G from the message space of the underlying scheme. Output
pkNCE = (pk1, . . . , pk4k,M0,M1), and skNCE = (I, {ski}i∈I).

• NCEncpkNCE(b): Generate 4k ciphertexts c1, . . . , c4k, where k are encryptions
of Mb and 3k are obliviously sampled. Explicitly, choose a random subset
J ⊂ [4k] of size k. For every j ∈ [J ] compute cj ← Encpkj (Mb), and for every

j ∈ [4k] \ [J ] compute cj ← OEnc(1k). Output c = (c1, . . . , c4k).

• NCDecskNCE(c1, . . . , c4k): Decrypt the k ciphertexts for which it knows the
secret key. Namely, decrypt {ci}i∈I . If ∃ci decrypting to Mb, and no another
cj decrypts to M1−b then output Mb. Otherwise, output ⊥.

• We refer the reader to [10] for the simulator algorithm NCSim.

• Augmented NCE algorithms: A straightforwardmodification to NCSim yields
the required alternative simulator algorithm NCSim′. Oblivious key genera-
tion ONCGen is achieved by running the oblivious key sampler OGen for the
underlying scheme 4k times and sampling two random messages M0,M1.
The corresponding inversion algorithm is immediate.

We remark that for our OT application, the choice of M0,M1 will be made once
overall for all encryptions, and will be contained in the CRS. In the full version,
we prove that ENCE is an augmented NCE scheme with two additional properties:
first, correctness of decryption holds for all but a tiny fraction of encryption
randomness; and second, the NCE scheme inherits certain lossy properties of
the underlying encryption scheme. These properties are used in the security
proof of our MPC protocol.

4.2 Randomness Generation Procedure

In this section, we present a non-interactive procedure for generating private
randomness in the CRS model. Intuitively, we need the following two properties:

Semi-malicious Pj cannot force “bad” output: If party Pj is semi-malicious, then
he cannot force the output randomness to lie inside a “special” exponentially
small subset of the total space {0, 1}t.
Simulator can retroactively force any output for honest Pj: Given a trapdoor to
the CRS, the simulator can retroactively “explain” any desired outcome within
the “special” subset of {0, 1}t on behalf of an honest Pj .
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The “bad” sets arise as follows. To guarantee security of the OT, we must
ensure: (1) a corrupted receiver must sample lossy public keys in the oblivious
sampling procedure, to ensure an honest sender’s second message is information-
theoretically hidden; (2) a corrupted sender cannot generate malformed cipher-
texts, which could cause an honest receiver to abort depending on his secret
input bit; and (3) a corrupted sender-receiver pair cannot jointly select key gen-
eration and encryption randomness yielding an incorrect message decryption,
which would compromise the correctness of the OT output.

We now incorporate the specifics of our NCE construction (from the previous
section), and describe the corresponding randomness generation procedures.

Forcing Obliviously Sampled Public Keys to Be Lossy. A corrupted
receiver must be restricted to generate only public keys (g1, g2, g3, g4) ∈ G4 in
the underlying encryption scheme that are non-DDH tuples (yielding lossy keys),
whereas the simulator should be able to choose DDH tuples on behalf of honest
parties (allowing him to “obliviously sample” keys for which he can decrypt)

To achieve this, we append an additional 4-tuple of random elements g =
(g1, g2, g3, g4) ∈ G4 to the CRS of each party. Each time a party Pj must obliv-
iously sample public keys, he does so by rerandomizing his tuple gj : namely, he

samples random exponents α, β, γ ← Z∗
p and outputs the tuple (gα1 , g

β
2 , g

α·γ
3 , gβ·γ4 )

as the desired randomness. Denote this procedure by DDH-Rerand(g1, g2, g3, g4).
Note that if the original tuple (g1, g2, g3, g4) is a DDH tuple (as will be the

case for honest parties in the simulation), then the output of this procedure will
be a random DDH tuple; however, if the original tuple is not a DDH tuple (as
will be the case for corrupted parties), then for no value of α, β, γ �= 0 will the
resulting tuple become DDH.

Preventing Malformed Ciphertexts. When encrypting a bit m under the
NCE scheme, the sender must select a random subset of positions J ⊂ [4k] of size
k in which to embed encryptions of the appropriateMm in the underlying scheme.
If J is disjoint from an honest receiver’s set I ⊂ [4k] of positions for which he
knows the secret keys, then the resulting ciphertext will fail to decrypt. A cor-
rupted sender must then be restricted so that with overwhelming probability over
(honestly) chosen random I ⊂ [4k] with |I| = k, it holds that I ∩ J �= ∅, even if he
knows I completely. However, on behalf of an honest sender, the simulator should
be able to retroactively “explain” arbitrary J values.

To achieve this, our second proceduremakes use of a bijective, (D,α)-admissible
lossy trapdoor function (LTDF) family (GLoss, GInj, S, F, F

−1),8 forD =
(
4k
k

)
and

α =
(
3k
k

)/(
4k
k

)
, as in Theorem 1(1). Suppose within the CRS each party Pj is asso-

ciated with a LTDF seed σj . At each point when Pj must generate randomness for
sampling the set J ⊂ [4k], he samples a random value r ← S(σj) from the domain
Dσj of the LTDF function corresponding to seed σj and outputs the evaluation
F (σj , r) as the desired randomness.Denote this procedure by LTDF-Sample-J(σj).

8 Such an LTDF family has the additional properties that injective branches are each
bijective, the output space has size approximately D, and the lossy branches are very
lossy (to avoid a “bad” set of fractional size α). See Definition 2.
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Loosely speaking, the simulation works as follows. For each honest party, the
simulator will sample an injective seed σj together with an inversion trapdoor,
allowing him to “explain” any desired randomness output value. In contrast,
each corrupted party will be given a lossy seed σj , whose corresponding function
image will be sufficiently small that with high probability it will not hit the small
“special” subset of J values which do not intersect the (random) set I.

Preventing Ciphertexts that Decrypt to Wrong Messages. When both
sender and receiver are corrupted, we must ensure they cannot collaboratively
sample a secret key u ∈ Zp and “obliviously” sampled ciphertext (x, y) ∈ G2 for
the underlying scheme for which y

xu = M1−m. Such a pair may allow an honest
encryption of message bit m to (honestly) decrypt to the wrong message (1−m).

To prevent this event, the secret key u ∈ Zp and each element of the obliviously
generated ciphertext (x, y) ∈ G2 will be sampled using the same LTDF-based
procedure as above (but with a different choice of parameters (D,α)). Here, the
target output space size D will be set to p = |G| = 2k, and α will be selected so
that the total collection of possible values of y

xu , over all possible combinations
of u, x, y chosen from the range of the the sender and receiver’s (lossy) LTDF
functions, form a negligible fraction of the entire space of possible values (i.e.,
the full message space of the underlying encryption scheme). Thus, when the
“special” messages M0,M1 are chosen randomly as part of the initial CRS, the
probability that they will fall into this small set of “bad” attainable messages is
negligible. This holds when α is set to 2−k/3.

More formally, let (GLoss, GInj, S, F, F
−1) be a bijective, (D,α)-admissible

LTDF family for D = 2k and α = 2−k/3, as given in Theorem 1(2). Sup-
pose each party Pj is associated with a LTDF seed σj contained in the CRS.
Each time party Pj must generate randomness for (1) sampling a secret key
u (when acting as receiver in the OT), or (2) selecting each of the two com-
ponents in an obliviously sampled ciphertext (x, y), he executes the following
procedure LTDF-Sample-G(σj): first, sample a random value r ← S(σj) from
the domain Dσj of the LTDF function corresponding to seed σj , output the
evaluation F (σj , r) as the desired randomness.

Combining the Pieces. In Figure 1 we explicitly define the procedures for gen-
erating randomness for each relevant application in the OT protocol. The CRS
contains a value of σ(1), σ(2), and (g1, g2, g3, g4) for each party, corresponding to
LTDF seeds and group elements as described above. Denote by Ak the set of
all subsets of [4k] of size k. We refer the reader to the full version for a formal
treatment and analysis of these procedures.

4.3 Our OT Protocol

We now use the augmented NCE scheme from Section 4.1 and the randomness
generation procedures from Section 4.2 to construct a 1-out-of-4 OT protocol
secure against adaptive auxiliary information in the semi-malicious setting.
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Rand-KeyGen(σ(2), (g1, g2, g3, g4)): Sample I ← Ak. For each i ∈ I, sample randomness
to be used for Gen, by executing ui ← LTDF-Sample-G(σ(2)). For each j ∈ [4k] \ I,
sample randomness to be used for obliviously sampling a public key, by executing
rj ← DDH-Rerand(g1, g2, g3, g4). Output (I, {ui}i∈I , {rj}j∈[4k]\I).

Rand-OblivKeyGen(g1, g2, g3, g4): For each i ∈ [4k], sample randomness to be used for
obliviously sampling a public key, by executing ri ← DDH-Rerand(g1, g2, g3, g4).
Output {ri}i∈[4k].

Rand-Enc(σ(1), σ(2)): Select J ∈ Ak, by executing J ← LTDF-Sample-J(σ(1)). For
each j ∈ J , sample encryption randomness randj ← {0, 1}∗. For each i /∈ J , sam-
ple randomness for obliviously sampling a ciphertext, by running two executions
xi, yi ← LTDF-Sample-G(σ(2)). Output (J, {randj}j∈J , {(xi, yi)}i∈[4k]\J).

Fig. 1. Randomness generation procedures for the semi-malicious OT protocol

Our 1-out-of-4 OT protocol for semi-malicious parties.
CRS: Uniformly random message M0,M1 ← G. For each party Pi: (injective)

LTDF seeds σ
(1)
i , σ

(2)
i , and (non-DDH) tuple gi = (gi1, g

i
2, g

i
3, g

i
4).

1. The receiver Pi, on input b ∈ [4], does the following:
1. For b ∈ [4], sample a standard NCE key pair (eb, db) via

Rand-KeyGen(σ
(2)
i , gi). For each b′ ∈ [4] \ {b}, obliviously sample an

NCE public key eb′ via the algorithm Rand-OblivKeyGen(gi).

2. The receiver sends (e1, . . . , e4) to the sender.

3. The sender Pj , on input m1, . . . ,m4, where each mi ∈ G, and upon receiving
the message (e1, . . . , e4) from the receiver, does the following:

1. For each b′ ∈ [4], encrypt the message mb′ under public key eb′ . This is
done by executing the encryption algorithm NCEnc with message mb′ ,

key eb′ , and randomness rb′ ← Rand-Enc(σ
(1)
j , σ

(2)
j ).

2. Send (c1, . . . , c4).

3. The receiver decrypts cb using the secret key db.
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Abstract. Leakage-resilient cryptography aims at formally proving the
security of cryptographic implementations against large classes of side-
channel adversaries. One important challenge for such an approach to be
relevant is to adequately connect the formal models used in the proofs
with the practice of side-channel attacks. It raises the fundamental prob-
lem of finding reasonable restrictions of the leakage functions that can
be empirically verified by evaluation laboratories. In this paper, we first
argue that the previous “bounded leakage” requirements used in leakage-
resilient cryptography are hard to fulfill by hardware engineers. We then
introduce a new, more realistic and empirically verifiable assumption of
simulatable leakage, under which security proofs in the standard model
can be obtained. We finally illustrate our claims by analyzing the phys-
ical security of an efficient pseudorandom generator (for which security
could only be proven under a random oracle based assumption so far).
These positive results come at the cost of (algorithm-level) specialization,
as our new assumption is specifically defined for block ciphers. Never-
theless, since block ciphers are the main building block of many leakage-
resilient cryptographic primitives, our results also open the way towards
more realistic constructions and proofs for other pseudorandom objects.

Introduction

Physical cryptanalysis is an important concern for cryptographic implementa-
tions. By allowing to circumvent the models in which standard security proofs
are obtained, it can lead to powerful attacks (e.g. key recoveries) against large
classes of devices. Following the publications of papers about side-channel [24],
fault [6] or cold boot attacks [16], a large body of research has investigated so-
lutions to mitigate these security breaches. For this purpose, a natural solution
is to add protection mechanisms directly at the hardware level (i.e. independent
of the algorithm implemented). Examples of such approaches include masking
and hiding against side-channel attacks [26], error-detection codes against fault
attacks [20], and their formal extensions as compilers (e.g. [18,19]) - leading to
contrasted observations. On the one hand, these countermeasures are useful as
they reduce the amount of information leakage provided by physical implementa-
tions. On the other hand, they usually imply significant performance overheads,
and the security they provide is highly dependent on technological assumptions
(that may turn out to be contradicted in practice). Over the years, and starting

R. Canetti and J.A. Garay (Eds.): CRYPTO 2013, Part I, LNCS 8042, pp. 335–352, 2013.
c© International Association for Cryptologic Research 2013



336 F.-X. Standaert, O. Pereira, and Y. Yu

with the seminal work of Micali and Reyzin [27], the question whether a com-
plementary approach exploiting the formalism of modern cryptography could be
used in order to improve physical security consequently triggered the interest of
many researchers. In other words, can we design new cryptographic constructions
and security models in which the guarantees of provable security can be extended
from mathematical objects towards physical ones? And are the results obtained
in these models practically relevant (in terms of performance and security)?

Related Work. A look at the recent literature suggests that a wide variety of
tools aiming at reflecting different classes of physical attacks exist, ranging from
quite abstract to more realistic, and for various types of cryptographic primitives.
For example, the bounded retrieval model captures an hypothetical situation in
which the total amount of information leaked through the execution of a crypto-
graphic primitive is bounded [1,3]. One important drawback of this abstraction
is that quantifying an “overall amount of leakage” is hard for hardware engi-
neers. Besides, if a system is being used continually for a sufficiently long period
of time, the amount of leakage observed by the attacker may exceed any a-priori
determined leakage bound. As a result, alternative models have been proposed,
assuming that the leakage rate is bounded and leaving the overall leakage arbi-
trarily large, e.g. Dziembowski and Pietrzak’s leakage-resilient cryptography [12].
These models have been applied for analyzing different cryptographic primitives,
including PRGs and stream ciphers [13,30,38,39], PRFs and PRPs [11,13,38],
signature schemes (e.g. [7,21]) and public-key encryption (e.g. [2,22]).

Are We Done? Not Really. Despite significant progresses and many clever
design ideas, the fundamental problem of formal approaches to physical security
remains to determine reasonable restrictions of the leakage function. Even taking
the simple(st) example of leakage-resilient PRGs (that will be our main concern
in this work), obtaining security proofs in the standard cryptographic setting
turns out to be surprisingly difficult [12,13,30,38,39]. Intuitively, the proofs ob-
tained so far require a combination of seemingly too weak assumptions (e.g. that
the leakage may come from any polynomial time function) and seemingly too
strong assumptions (e.g. that the information leakage is bounded in a somewhat
unrealistic manner) [35]. Consequences of this imperfect modeling are three-
fold. First, it implies design tweaks that seem motivated by proof artifacts more
than physical intuition, and consequently harm performances. Second, obtaining
the proofs requires intricate (though sometimes of independent interest) math-
ematical tools, usually leading to loose security bounds. Third and most impor-
tantly, it leaves the question of how to connect the results in leakage-resilient
cryptography with the practice of side-channel attacks essentially open.

Our Contribution. In this paper, we start by investigating the relevance of
different bounded leakage assumptions. In particular, we confront the notion
of HILL pseudoentropy used to prove the leakage-resilience of previous PRGs,
PRFs and PRPs to the operation of actual side-channel attacks, and argue that
it is hard to verify empirically. We then tackle our main problem, i.e. the con-
struction of a leakage-resilient PRG based exclusively on empirically verifiable
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assumptions. For this purpose, our central ingredient is the introduction of a spe-
cialized assumption of simulatable leakage. We first show that this requirement
is easier to guarantee than maintaining a high pseudoentropy in a leaking device,
and detail how it can be tested in actual security laboratories. Next, we show the
security of an efficient leakage-resilient PRG under simulatable leakage. Eventu-
ally, we put forward that our new modeling allows mitigating the three issues
listed in the previous paragraph. In particular, it allows major simplifications
of the proofs, with reductions directly connected to our physical assumption
(i.e. the quality of the simulator). From a methodological point of view, the
idea of specialized assumption that we introduce can be seen as an intermediate
path, between fully generic requirements (e.g. bounded leakage that applies to
any algorithm) and implementation-specific ones (e.g. as used in hardware-level
countermeasures). More precisely, our simulatable leakage assumption is spe-
cialized at the algorithm level, and applies to any block cipher. We believe this
intermediate path is interesting, as it allows a better connection between the
theory and practice of side-channel attacks. It is also general enough for being
potentially applicable to the many other symmetric cryptographic primitives.

1 Previous Leakage Assumptions

In this section, we analyze different assumptions that have been introduced in
previous works, in order to bound the informativeness of a leakage function.
For this purpose, we start by providing a description of leakage traces, as they
are obtained from the power consumption or electromagnetic radiation of actual
cryptographic devices. We then argue that assuming a leakage function with
bounded range, or assuming that the secrets manipulated by a leaking device
have high pseudoentropy, is hardly realistic. By contrast, we list a few alternative
assumptions that are more in line with what hardware designers try to guarantee,
based on unpredictable cipher outputs or hard-to-invert leakage functions.

1.1 Actual Leakage Traces

We will consider the AES Rijndael as a case study. Note however that the ob-
servations in this section hold for any block cipher. In this context, let us de-
note the encryption of a plaintext x under a key k giving rise to a leakage
trace l as y = AESk(x) � l. Since the AES is made of ten rounds, we fur-
ther denote the application of these rounds and their corresponding subtraces as
xi+1 = Rki(xi) � li+1, where the initial state is given by the plaintext x0 = x
and the ciphertext is given by the final state y = x10. That is, a full leakage trace
is a vector containing all the rounds subtraces: l = [l0, l1, l2, . . . , l9, l10]. For il-
lustration, we provide a leakage trace obtained from a hardware implementation
of the AES in Figure 1, where each sample can be written as li(t) = Li,t(k, x, ρ),
with ρ a parameter representing the physical randomness (aka noise) in the mea-
surements [27]. In practice, it frequently turns out that the leakage produced
when generating an intermediate state xi can be approximated by the sum of a
polynomial function of the bits of xi (denoted as xi[j]) and some noise [32]:
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Fig. 1. Exemplary leakage trace of an AES encryption

li(t) = Li,t(k, x, ρ) ≈
∑
j

αj xi[j] +
∑
j1 �=j2

βj1,j2 xi[j1] xi[j2] + . . .+ ρi,t. (1)

In the following, and in order to simplify our discussions, we will further assume
that each subtrace is made of a single sample (pointed by the arrows in the figure)

that can be written as li(k, x) = HW(xi) + rphi , with HW the Hamming weight

function and rphi a Gaussian distributed physical noise. Note that these are usual
assumptions is side-channel attacks [26]. Yet, also keep in mind that we can
only loose information by doing this, and that actual adversaries may be more
powerful. Summarizing, we will consider illustrative leakage traces defined as:

l = [HW(x0) HW(x1) . . .HW(x10)] + [rph0 rph1 . . . rph10 ]. (2)

1.2 Bounded Range and HILL Pseudoentropy

One of the most demanding assumption regarding the informativeness of the
leakage function is the requirement that its range is bounded to {0, 1}λ, for
some parameter λ. Taking the example of a leaking block cipher implementation
as in the previous subsection, it is easy to observe that a bounded range is
hardly obtained. Starting with our simplifying Hamming weight assumption and
considering an n-bit key, we already have that each of the Nr Hamming weights
in the trace has range ≈ log(n), leading to an output range proportional to
Nr · log(n) (with Nr the number of block cipher rounds). Then, keeping in mind
that the number of samples monitored by an oscilloscope in actual attacks is
much larger than Nr, it turns out that the range of the leakage function is
frequently larger than {0, 1}n. In practice, this large range is directly reflected
by the memory requirements needed to store the measurements. For example,
in a recent work from Eurocrypt 2012, Moradi acquired 200 000 traces, each of
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them corresponding to 1μs of power consumption leakage sampled at roughly 109

samples per second, i.e. leading to more than 1.5 Gigabits of data storage [28].
Previous works in leakage-resilient cryptography (e.g. [11,12,13,30,39]), it is

argued that the bounded range assumption can be relaxed. Loosely speaking,
these previous proofs only require that for every key update kj+1 = AESkj (x) �
l, the leakage l does not decrease the HILL pseudoentropy of the updated state
kj+1 by more than a bounded amount of bits. It is further claimed in [22] that
such a requirement seems much more realistic in practice. Unfortunately, a look
at our example suggests the opposite. Having a pseudoentropy of n − λ bits
for kj+1 requires that there exist a dense set of 2n−λ keys k̃ that no efficient
distinguisher is able to tell apart from kj+1 given l. But again considering that
the leakage trace contains a sequence of (pseudorandom) Hamming weights, the
number of keys k̃ that give rise to the correct sequence of Hamming weights
rapidly vanishes, roughly decreasing the pseudoentropy of kj+1 according to
n − Nr · log(n). Of course, the high pseudoentropy requirement is weaker than
the bounded range assumption. For example, having multiple correlated samples
in the traces would not significantly decrease the pseudoentropy of kj+1, while it
would increase the output range of the leakage function. Yet, falsifying the pseu-
doentropy assumption simply requires that an adversary can check whether the
trace l is consistent with the actual kj+1, allowing him to efficiently distinguish

it from most fake k̃’s.
Summarizing, while these simple examples exclude the additional randomness

due to physical noise, they clearly suggest that maintaining high pseudoentropy
in a leaking device is challenging. Interestingly, this observation nicely connects
with the conclusions of Micali and Reyzin, who showed the non-equivalence
between unpredictability and indistinguishability in physically observable cryp-
tography [27]. We argue in the next subsections that also in terms of practical
assumptions, unpredictability is arguably easier to guarantee.

1.3 Side-Channel Attacks

Most distinguishers published in the literature are based on a divide-and-conquer
strategy, where independent pieces of a masker key (denoted as subkeys) are re-
covered independently. Examples include Kocher et al.’s differential power anal-
ysis [24], Gandolfi et al.’s electromagnetic analysis [14], Chari et al.’s template
attacks [9], Brier et al.’s correlation power analysis [8], Schindler et al.’s stochas-
tic approach [32], Gierlichs et al.’s mutual information analysis [15] and many
variations. These attacks are “standard DPAs” in the sense defined by Mangard
et al. [25], and operate according to the three following steps:

1. Prediction. The adversary predicts subkey-dependent intermediate values
manipulated during the encryption process (e.g. a 1st-round S-box output).

2. Modeling. The adversary models the leakage corresponding to these interme-
diate values (e.g. assuming it depends on the HW of the manipulated data).

3. Comparison. The adversary compares the subkey-dependent models with ac-
tual measurements (e.g. with Pearson’s correlation coefficient). If the attack
is successful, the best comparison holds for the correct subkey candidate.
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The result of a standard DPA attack against the AES usually corresponds to 16
lists of 256 scores (typically proportional to subkey likelihoods), that are then
recombined to obtain a master key candidate, e.g. using key enumeration [36].

One consequence of this description is that actual adversaries are usually
not able to exploit all the leakage samples in a trace. In practice, only the
intermediate computations that can be guessed will be useful. Taking our AES
example again, it means that out of a vector l = [l0, l1, l2, . . . , l9, l10], only the
external rounds are exploited (i.e. before the diffusion is complete). Furthermore,
considering an attack exploiting the first-round leakage l1, and under our current
assumption that the AES is implemented in 10 clock cycles, we have:

l1 = HW(x1) + rph1 = HW(x1[0]) + HW(x1[1]) + . . .+ HW(x1[15]) + rph1 , (3)

where x1[i] denotes the ith byte of x1. But actual adversaries are not able to
guess all the 16 bytes of x1 at once either. As a result, a part of this information
is usually considered as “algorithmic noise”. That is, in a (usual) attack where
the 16 AES key bytes are targeted independently, the leakage sample l1 as seen
by the adversary can be rewritten as:

ladv1 [0] = HW(x1[0]) + HW(r1) + . . .+ HW(r15)︸ ︷︷ ︸+rph1 , (4)

algorithmic noise

when targeting the first key byte, whith the ri’s uniformly random unknown
bytes (a similar equation holds for all the key bytes). In other words, only a single
(or at most a couple of) byte Hamming weight(s) is (are) actually considered as
useful signal at a time in this computationally bounded setting.

1.4 One-Way and Seed-Preserving Leakage Functions,
Unpredictability

The previous description allows shedding another light on why ensuring high
pseudoentropy for cryptographic keys in leaking devices is challenging. The main
issue is that it requires that these keys remain difficult to distinguish in front
of an adversary who can predict the whole device state (hence, exploit the full
vector of Equation 2 rather than the noisy samples of Equation 4). In fact, this
task is arguably more difficult than the (already difficult) task of securing an
implementation against standard DPA attacks. Therefore, we can at least claim
that constructions that strictly need this assumption to hold for being secure are
not going to “help hardware designers”, as usually advertised by leakage-resilient
cryptography. This observation naturally provides a strong incentive to look at
alternative assumptions that could be easier to fulfill and evaluate.

In general, a weaker assumption than the high HILL pseudoentropy require-
ment is that the leakage function is hard-to-invert, or that the key/seed is compu-
tationally infeasible to predict given the leakage (see [4,17] for relations between
several forms of pseudoentropy). This is easily seen the minimal assumption
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since no security is possible if the adversary can recover the key/seed. It is
also directly connected to the practice of side-channel attacks that usually aim
to predict keys/seeds. Unfortunately, how to build leakage-resilient symmetric
cryptographic primitives under such assumptions remains an open problem. So
far, only some weaker forms of security results have been obtained in this case,
such as the encryption schemes of [10] in the auxiliary-input setting (based on
a non-standard lattice problem), and the leakage-resilient stream cipher in [39]
(assuming PRGs to behave as random oracles that the leakage functions cannot
access). In view of this state-of-the-art, another natural solution would be to
use the simulation paradigm. Namely, to argue that some information reveals
nothing substantial, it suffices to show that it can be efficiently simulated from
some other information that is already part of the adversary’s knowledge. This
approach is empirically verifiable since it challenges the designer to build such
a simulator, and the adversary to break the indistinguishability game. In the
next sections, we argue that in the context of block ciphers, simulatable leak-
age is at least easier to guarantee than high pseudoentropy - and that efficient
leakage-resilient PRGs can be proven secure under this assumption.

2 Simulatable Leakage

Concretely, we will study the physical security of a “natural” (i.e. conform to en-
gineering intuition) PRG relying on the iterative application of a length-doubling
2PRG, represented in the left part of Figure 2 (the iterative application of length-
qpling generator qPRG would allow improved efficiency at the cost of more phys-
ical information leakage, and relies on similar security proofs). Furthermore, we
will focus on the block cipher based instantiation of 2PRG represented in the
right part of the figure, where p0 and p1 are public constants (larger expansion
factors q’s are directly obtained by encrypting more pi’s). The (leakage-free) se-
curity of this PRG is easily seen by a hybrid argument. It enjoys many advantages
such as simplicity, efficiency and forward security (see more discussions in [5]).
From a physical security point of view, it also avoids the alternating structure
and large randomness requirements of previously published proposals [13,30,38].
However, it turns out to be extremely difficult to prove the leakage-resilience of
this construction in a standard setting (independent of its instantiation).

In order to obtain practically-relevant proofs of leakage-resilience, we want
our assumption to be local (i.e. focusing on a single iteration), and re-usable.
The second condition suggests to consider block cipher implementations for this
purpose. On one hand, they are among the work horses of today’s secure com-
munications [23]. On the other hand, they are frequent targets of side-channel
analysis, with a vast literature on attacks and countermeasures - making them
natural candidates for mitigating the instantiation issues raised in [33]. In the
rest of this section, we will consequently define the simulatable leakage assump-
tion for block ciphers (denoted as BC : {0, 1}n × {0, 1}n → {0, 1}n from now
on), and argue about its empirical verifiability. The next section will then show
how to use this assumption to prove the leakage-resilience of the PRG from
Figure 2.
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Fig. 2. Left: leakage-resilient PRG. Right: 2PRG instantiation with block ciphers.

2.1 Formal Definition

As discussed in Section 1.1, actual leakage traces are made of multiple samples,
each of them being the output of a leakage function. Yet, since our goal is to
define our assumptions in general terms, this section will take advantage of a
slightly more concise notation that is independent of the actual representation
of these traces. That is, we will denote the probabilistic leakage corresponding

to a block cipher execution as: y = BCk(x) � l
def
= L(k, x), with L the (global)

leakage function (i.e. including all the samples).
In practice, we do not know how to express this function as a circuit or

a program that a computer could evaluate: we can only sample it by taking
leakage measurements from the target circuit on given inputs. Leakages re-
sulting from a complex physical process, it is even unclear how efficiently a
Turing machine could compute them. For this reason, they will be available
through queries to a public oracle in our model, and our complexity mea-
sures will take the number of these queries into account: an (s, t)-bounded ad-
versary AL will do at most s queries to L and run in time at most t. Note
that we define the leakage oracle as stateless, to capture the usual situation
in side-channel attacks where leakages only depend on the current state of
the target device and some independent randomness. Using this notation, the
requirement we make on a block cipher implementation is that the leakages
are simulatable. That is, we require that a (stateless) leakage simulator ora-
cle SL(·, ·, ·) can be built, possibly relying on accessing the implementation and
measuring equipment producing the real leakages. It must be able to return
a simulated leakage corresponding to any (possibly inconsistent) key, plain-
text and ciphertext, and its responses must be such that no efficient adver-
sary A can guess the bit b in the following q-sim game except with a small
advantage.

In this game, the adversary can query the device for the encryption of q
values of his choice. If b = 0, he receives the encryption of his queries and the
corresponding real leakages. If b = 1, he receives the encryption of his queries and
simulated leakages, based on the plaintext and ciphertext, but ignoring the (real)
key k that was used to compute them, which is replaced by another random k∗
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Game q-sim(A,BC, L,S, b).
The challenger selects two random keys k and k∗ in {0, 1}n. The output
of the game is a bit b′ computed by AL based on the challenger responses
to a total of at most q adversarial queries of the following type:
Query Response if b = 0 Response if b = 1

Enc(x) BCk(x), L(k, x) BCk(x), SL(k∗, x,BCk(x))
and one query of the following type:
Query Response if b = 0 Response if b = 1

Gen(z, x) SL(z, x, k) SL(z, x, k∗)

in an invocation of SL(·, ·, ·). Independently of these encryption queries, A gets
one more chance of winning the game by being able to query SL(·, ·, ·) on in-
puts of his choice, the ciphertext being the real or random key depending on
b. This extra query captures the case where the key used in a block cipher was
itself a ciphertext from a previous iteration. Note that it departs from the real
world/ideal world paradigm, as SL is invoked for both values of b. This aspect
plays a central role in our further developments. Additional types of (e.g. de-
cryption) queries could be added to the game. However, the two proposed ones
capture the usual situation where a block cipher is used to produce a key, which
is then used to encrypt multiple plaintexts. It can be observed that we do not
use the fact that BC is a block cipher so far. Its invertibility will however be
used in the next subsection, when proposing our instance of leakage simulator.

Definition 1 (q-simulatable Leakage). A block cipher BC with leakage func-
tion L has (sS , tS , sA, tA, ε) q-simulatable leakages if there is an (sS , tS)-bounded
simulator SL such that, for every (sA, tA)-bounded adversary AL, we have:

|Pr[q-sim(A,BC, L,S, 1) = 1]− Pr[q-sim(A,BC, L,S, 0) = 1]| ≤ ε.

Note that AL(·,·) can query the leakage function sA times, independently of the
q queries to the target implementation in the q-sim game. In practice, these sA
queries could correspond to profiling efforts to build a leakage model (e.g. as in
step 2 of the attack in Section 1.3). They will also be useful to generate simulated
leakages in our security proofs. As previously mentioned, we will keep small
constant values for q in any practical instantiation of the q-simulatability game.
This choice connects with the observation that 1-simulatability does not imply
q-simulatability without severe security degradation. For example, it is easy to
see that there might be block cipher implementations that offer perfect q − 1
simulatability but not q-simulatability. Consider a block cipher BC′ built from
a block cipher BC as follows: BC′

k1···kq
(x) := BCk1⊕···⊕kq (x) (for a constant q),

and a leakage function that leaks one of the ki’s every time the device computes.
Clearly, q − 1 leakages will not provide any information about the cipher key,
while the q-th leakage will fully disclose this key, making it trivial to detect the
simulation in our game. In fact, this example also matches the usual intuition
in side-channel attacks that security degrades almost exponentially with the
number of queries, as will be illustrated experimentally in the next subsection.
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2.2 Empirical Verifiability

To show that the previous simulatability assumption is realistic, we will first
instantiate an efficient simulator SL

s&c(·, ·, ·) to be used in the Enc and Gen queries
of the q-sim game, based on a block cipher implementation. We will then discuss
the interpretation of this assumption with respect to actual side-channel attacks.

As suggested by the acronym SL
s&c(·, ·, ·), our proposal of simulator is based

on the splitting and concatenation of leakage traces. For this purpose, and as we
now consider concrete instantiation issues, we again need the specific notations
of Section 1.1, and take the case of the AES for illustration. Namely, we will
use y = AESk(x) � l = lp‖lc, with lp = [l0, l1, . . . , l5] (resp. l

c = [l6, l7, . . . , l10])
denoting the first (resp. second) half of the traces, and || the concatenation
operator. Next, we want to build a simulator for such traces using only the
knowledge of the public values x and y. In this context, a central observation
already made in Section 1.2 is that any known intermediate value during a
cryptographic computation can be exploited to check its consistency with the
leakage. That is, taking the example of (noiseless) Hamming weight samples
for illustration, it is quite easy to check whether the triple (l, x, y) is consistent
by checking whether l0 = HW(x) and l10 = HW(y). Yet, we still have that
the “middle samples” l1, l2, . . . , l8, l9 may not be as easy to exploit since the
intermediate values x1, x2, . . . , x8, x9 are not given to the adversary. As a result,
the goal of the simulator will be to build traces that are at least consistent with
the input/output pair (x, y). This is where the specialization to (invertible) block
ciphers turns out to be useful, leading to the following proposal:

Leakage simulator instantiation SL
s&c(k

∗, x, y).
1. Run y′ = AESk∗(x) � lp||α;
2. Compute x′ = AES−1

k∗ (y);
3. Run y = AESk∗(x′) � β||lc;
4. Output lp||lc;

It is easy to verify that this simulator instance generates leakages that are con-
sistent with the public values x and y, since in practice it does nothing else
than generating traces from these values with a randomly generated key and
concatenating them. Hence, it can be implemented using the same hardware as
the target device containing the correct key. Note also that the same instance
can directly be used in the Gen queries by adapting its inputs.

Interpretation. The assumption in this section suggests that there exists situ-
ations in which the leakage of a cryptographic implementation can be simulated
without knowing all its secrets. For this purpose, our instance of simulator essen-
tially relies on the possibility to use the same hardware as the one manipulating
the actual cipher key. We believe this fact nicely captures the idea that the only
secret in a cryptographic implementation should indeed be this key (not the de-
vice manipulating it). The assumption is also expressed as a game that can be
tested by evaluation laboratories, since they could control both keys k and k∗. In
practice, the main question naturally is whether the probability to win the q-sim
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game can remain sufficiently low in front of actual side-channel distinguishers.
There are two natural strategies that could be considered to answer it:

1. Performing standard DPA attacks exploiting the first and last encryption
round leakages, e.g. trying to find an inconsistency between the x’s and y’s.

2. Targeting the middle rounds where concatenation occurs to find a direct
inconsistency in the trace, possibly based on the key information gathered.

Starting with the first type of distinguishers, an important observation is that
resisting them is at least easier than guaranteeing high HILL pseudoentropy
for a block cipher key. This relates to the previously observed fact that attacks
checking the consistency between the traces and the device state are not possible
in the q-sim game, since the key is not given to the adversary. In other words,
the device state is not known and can only be guessed, just as usually con-
sidered in side-channel analysis. Of course, being more realistic than the HILL
pseudoentropy assumption does not imply empirical verifiability yet. Typically,
there is little hope to ensure any security for small and unprotected devices (e.g.
8-bit microcontrollers), as key recovery is usually possible with very limited data
complexities in these cases [34]. Under certain hypotheses, it is even possible to
exploit the middle round leakages against such devices [31]. By contrast, a reason-
ing in the lines of Section 1.2 suggests that the simulatable leakage assumption
could be realistic for (unprotected but parallel) hardware implementations.

For example, Figure 3 depicts the security evaluation of the best attack per-
formed against such an implementation during the DPA Contest V2 (after two
years of public investigations) [29,37]. It indicates that as long as the number
of queries q remains limited (e.g. below 10), the success probability in recover-
ing the key (hence, in finding inconsistencies between x’s and y’s) remains close
to 2−128 in this case. Say that an adversary would try to exploit the q first-
and last-round leakages corresponding to his Enc queries, together with the last-
round leakage of his additional Gen query, and would be able to combine this
information efficiently (which is unlikely in view of the large number of key can-
didates that remain possible after attacks with low data complexity). Then the
amount of information leakage would at most be multiplied by three, still leav-
ing comfortable security margins. Therefore, as long as our leakage-resilient PRG
iterates qPRG’s with small enough q’s, we can conclude that this first strategy
will not succeed against this hardware implementation1. Note that the linearity
of the min/max bounds on Figure 3 typically illustrates the exponential security
degradation (in time) that was mentioned in the previous subsection.

Although the second strategy is admittedly less investigated, we argue that it
can also be verified for a wide variety of implementations based on the following

1 Leakage-resilient constructions as proposed in this (and previous) works are natu-
rally interesting in the context of small embedded devices as well, in combination
with other hardware level countermeasures. In particular, they simplify the goal of
protecting an implementation against arbitrary number of queries into the easier
goal of protecting it against a bounded number of queries. We gave the example of
the DPA Contest V2 for illustration, and because it is publicly available.
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Fig. 3. Security evaluation for best attack of the DPA contest v2

reasoning. What is needed for this strategy to fail is an efficient method for con-
catenating side-channel traces in an indistinguishable manner. For this purpose,
the key observation is that most current microelectronic devices are based on
sequential logic circuits. As illustrated in Figure 4 for a couple of rounds of an
AES implementation, such circuits essentially update some memory elements
(i.e. the registers in dark gray on the figure) every clock cycle. And the length
of these clock cycles is selected according to the longest delay needed to perform
a round (aka the critical path), with some security margin. One consequence
of this setup is that the circuit activity (hence, its leakage) is maximum at the
beginning of each cycle (when the round computation actually takes place), and
rapidly decreases afterwards. As indicated in the figure, the fact that each clock
cycle should anyway be longer than the critical path guarantees that there exist
samples with little or no activity. Interestingly, these points where no activ-
ity occurs usually contain no exploitable information. This observation actually

Fig. 4. Selection of samples for the concatenation of leakage traces

connects with the intuition from side-channel attacks that only a few samples
in the measurements contain useful signal, i.e. the so-called “points of interest”.
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For example, the Signal-to-Noise Ratio (SNR) curves in [26] (Section 4.3.1) illus-
trate this fact. In general, concatenating traces exactly at their non-informative
points can be done without risk of being distinguishable, since both the actual
traces and the simulated ones would exhibit a noise following the same distri-
bution at these points. Hence, our assumption for this second strategy to fail
boils down to the existence of a couple of points without interest in the traces
(which we believe is generally verified) and the ability to detect them. The latter
task is relatively easy since (i) any side-channel distinguisher (e.g. the ones in
Section 1.3) can be used for this purpose and (ii) the simulator can predict the
full state corresponding to his fake inputs, hence allowing it to easily plot SNR
curves. For illustration we performed such concatenations in the context of ac-
tual power traces and compared their spectrum with the one of original traces,
without being able to detect any significant bias. As a result, we conclude that
security against this second type of distinguishers can sometimes be ensured too.

Challenges. As for any cryptographic assumption, the claim that the simulat-
able leakage requirement is empirically verifiable will take strength with further
investigations by physical cryptanalysts. In this respect, we believe that a central
benefit of our security game is that it can be challenged using the techniques
developed by the cryptographic hardware community. In order to stimulate
research in this direction, we conclude this section by stating three challenges:

C1 (constructive). Design alternative instances of simulators. For example,
the proposal in this section relies on the splitting and concatenation of leak-
age traces, based on the ability to detect “points without interest”. But more
sophisticated techniques for mixing the traces could be investigated.

C2 (constructive). Given any instance of simulator, design efficient block ci-
pher implementations with q-simulatable leakages, for the largest possible
q’s. This challenge concurs with the one of securing these implementations
against side-channel key recoveries with data complexity bounded to q.

C3 (destructive). Given a block cipher implementation and an instance of
simulator, break the q-sim game with non-negligible advantage.

Regarding this last challenge, we finally note that falsifying the simulatable
leakage assumption for one given instance of block cipher implementation and
simulator does not imply that it cannot be verified at all. Our hope and belief is
that it will be verified for a sufficiently wide range of realistic implementations.

3 Security Analysis and Proofs under Simulatable
Leakages

We now want to show that the PRG of Figure 2 is secure when implemented with
a secure block cipher that has 2-simulatable leakages (as previously mentioned,
the proof would be similar for any constant value of q). The property we require
from BC is to be a PRF. Our PRF adversary is a regular interactive Turing
machine, augmented with an access to a leakage oracle L(·, ·). While this oracle
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is independent of the PRF challenger, nothing theoretically precludes that it
might do some cryptanalytic work, and we therefore include the number of times
it is queried in the adversary’s total computational power.

Definition 2 (Pseudorandom Function). A block cipher BC : {0, 1}n ×
{0, 1}n → {0, 1}n is a (s, t, ε) pseudorandom function (PRF) in the presence
of leakage function L if, for every (s, t)-bounded adversary AL(·,·), we have that:

|Pr[AL(·,·),BCk(·) = 1]− Pr[AL(·,·)F(·) = 1]| ≤ ε,

where k is a random key in {0, 1}n and F is a random function.

Note that if the leakage function was polynomial time, this definition would
be strictly equivalent to the standard definition of a PRF. However, it remains
an open problem to determine the exact complexity of such physical functions
(which essentially corresponds to the cost of solving Maxwell’s equations for a
complex circuit). Therefore, and despite it is unlikely that actual leakage func-
tions perform any cryptanalytic work, we believe it is conceptually cleaner to
keep track of their queries separately, as specified in Definition 2.

The first step towards showing the security of our stream cipher consists in
proving that one call of the 2PRG construction remains secure when it leaks and
when the computation of its seed also leaks, as expressed in the next lemma. All
bounds include the number of calls to the leakage function and the running time.

Lemma 1 (Single Iteration). Let BC : {0, 1}n × {0, 1}n → {0, 1}n with leak-
age function L be an (s, t, εprf) PRF having (sS , tS , s, t, εsim) 2-simulatable leak-
ages, and let SL be an appropriate (sS , tS)-bounded leakage simulator. Then,
for every k−, p0, p1 in {0, 1}n and every (s − 3sS , t − max(tprf , tsim))-bounded
distinguisher DL, the following inequation holds:

|Pr[DL(y+, k+, L(k, p0), L(k, p1),SL(k−, p1, k)) = 1]−
Pr[DL(y+∗, k+∗,SL(k, p0, y

+∗),SL(k, p1, k
+∗),SL(k−, p1, k)) = 1]| ≤ εprf + εsim,

with k, y+∗, k+∗ R←− {0, 1}n, y+ = BC(k, p0), k
+ = BC(k, p1), tprf being equal to

3tS augmented with the time needed to make 2 oracle queries to the PRF chal-
lenger and select a random key uniformly in {0, 1}n, and tsim being the time to
relay the content of two Enc and one Gen queries from and to a q-sim challenger.

Proof. The proof makes use of an intermediary distribution that provides round
outputs computed with one key and leakages simulated with another key. Details
appear in the long version of the paper on the IACR ePrint archive.

Based on this Lemma, we show that the last output after l iterations of 2PRG
remains pseudorandom even in the presence of the public outputs and leakages
for all the previous iterations. For this purpose, we first specify our PRG instance:
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Definition 3 (PRG Instance). We denote as PRG(k0) the pseudorandom
generator in Figure 2 with n-bit initial state k0. Each iteration of PRG expands
the current state by running a length-doubling PRG (2PRG : {0, 1}n → {0, 1}2n)
following the recurrence (yi, ki) = 2PRG(ki−1), and produces y1, y2, . . . as out-
put.

Next, we define our notion of leakage-resilient stream cipher as follows:

Definition 4 (Leakage-Resilient Stream Cipher). Let PRG be the stream
cipher of Definition 3 and let L(ki) = L(ki, p0)||L(ki, p1) be the leakages from its
ith iteration. The implementation of this PRG is (l, s, t, ε)-LR-pseudorandom if,
for every (s, t) bounded distinguisher DL, the following inequation holds:

|Pr[DL(y1, · · · , yl, L(k0), · · · , L(kl−1)) = 1] −
Pr[DL(y1, · · · , yl−1, Un, L(k0), · · · , L(kl−1)) = 1])]| ≤ ε,

with k0 and Un uniformly random values chosen in {0, 1}n.

We can now state our main theorem, which shows the leakage-resilience of
the stream cipher above and offers tight bounds: we only require 2-simulatable
leakages, and the security degrades linearly with the number of rounds.

Theorem 1. Let BC : {0, 1}n × {0, 1}n → {0, 1}n be a block cipher that is
an (s, t, εprf) PRF with a leakage function L and (sS , tS , s, t, εsim) 2-simulatable
leakages. Then, the implementation of PRG instantiated with BC is (s′, t′, ε′, l)-
LR-pseudo-random, where s′ = s − (2l − 1)(sS + 1), ε′ = 2l(εprf + εsim), and
t′ = t − t12 where t12 is 2ltS augmented with the time needed to sample 2l
random n-bit strings and evaluate BC 2l times, plus the time needed to relay
these block cipher inputs, outputs and leakages from and to oracles2.

Proof. We rely on Lemma 1 and on a hybrid argument. The full proof appears
in the long version of the paper on the IACR ePrint archive.

We may observe that this proof, like the one of Lemma 1, does not make full use of
the power of the adversary in the q-sim game. They could indeed accommodate
a non-interactive variant of game in which the plaintexts of the Enc and Gen
queries are fixed, and the key of the Gen query is chosen randomly.

Conclusion

This paper suggests that the specification of realistic leakage assumptions may
allow simplifying the proofs of natural constructions (such as the stream cipher
in Figure 2), for which one intuitively expects an improved resistance against

2 We do not include these relay times in the operation counts, because we assume
them to be small compared to the time needed for the block cipher evaluations.
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practical side-channel attacks. While the simulatable leakage requirement intro-
duced in this work naturally raises open questions regarding the implementation
scenarios in which it can be fulfilled (e.g. the challenges in Section 2.2), we can at
least claim that it is more realistic than requirements such as the bounded range
or high HILL pseudoentropy used in previous proofs for similar (symmetric cryp-
tographic) constructions. Interesting scopes for further investigations include the
application of simulatability to other primitives, and the quest for more generic
yet empirically verifiable assumptions that could be exploited to analyze the
leakage of cryptographic implementations.
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Abstract. This work presents the design and analysis of the first search-
able symmetric encryption (SSE) protocol that supports conjunctive
search and general Boolean queries on outsourced symmetrically-
encrypted data and that scales to very large databases and arbitrarily-
structured data including free text search. To date, work in this area
has focused mainly on single-keyword search. For the case of conjunctive
search, prior SSE constructions required work linear in the total num-
ber of documents in the database and provided good privacy only for
structured attribute-value data, rendering these solutions too slow and
inflexible for large practical databases.

In contrast, our solution provides a realistic and practical trade-off
between performance and privacy by efficiently supporting very large
databases at the cost of moderate and well-defined leakage to the out-
sourced server (leakage is in the form of data access patterns, never as
direct exposure of plaintext data or searched values). We present a de-
tailed formal cryptographic analysis of the privacy and security of our
protocols and establish precise upper bounds on the allowed leakage. To
demonstrate the real-world practicality of our approach, we provide per-
formance results of a prototype applied to several large representative
data sets, including encrypted search over the whole English Wikipedia
(and beyond).

1 Introduction

Outsourcing data storage to external servers (“the cloud”) is a major industry
trend that offers great benefits to database owners. At the same time, data
outsourcing raises confidentiality and privacy concerns. Simple encryption of
outsourced data is a hindrance to search capabilities such as the data owner
wanting to search a backup or email archive, or query a database via attribute-
value pairs. This problem has motivated much research on advanced searchable
encryption schemes that enable searching on the encrypted data while protecting
the confidentiality of data and queries.

R. Canetti and J.A. Garay (Eds.): CRYPTO 2013, Part I, LNCS 8042, pp. 353–373, 2013.
c© International Association for Cryptologic Research 2013
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Searchable Symmetric Encryption (SSE) is a cryptographic primitive ad-
dressing encrypted search. To securely store and search a database with an SSE
scheme, a client first uses a special encryption algorithm which produces an
encrypted version of the database, including encrypted metadata, that is then
stored on an external server. Later, the client can interact with the server to
carry out a search on the database and obtain the results (this is called the
symmetric setting as there is only one writer to the database, the owner, who
uses symmetric encryption – the public key variant of the problem has also been
extensively studied, see further related work).

An important line of research (e.g., [23,11,6,8,7,19]) gives practical construc-
tions of SSE that support searching for documents that contain a single specified
keyword. In these schemes, the server’s work scales with the size of the result
set (independently of the database size) and the leakage to the server is limited
to the set of returned (encrypted) documents and a few global parameters of
the system, such as total data size and number of documents. While efficient
and offering good privacy, all of these SSE schemes are severely limited in their
expressiveness during search: A client can only specify a single keyword to search
on, and then it receives all of the documents containing that keyword. In prac-
tical settings, like remotely-stored email or large databases, a single-keyword
search will often return a large number of documents that the user must then
download and filter herself to find the relevant results.

Conjunctive and Boolean Search. To provide a truly practical search ca-
pability, a system needs to at least support conjunctive search, namely, given a
set of keywords find all documents that contain all these keywords. Clearly, this
problem can be reduced to the single-keyword case by performing a search for
each individual keyword and then letting the server or client do the intersection
between the resultant document sets. This often results in inefficient searches
(e.g., half the database size if one of the conjunctive terms is “gender=male”)
and significant leakage (e.g., it reveals the set of documents matching each key-
word). Yet, this näıve solution is the only known sublinear solution to SSE
conjunctive search (other than those using generic techniques such as FHE or
ORAM). All other dedicated solutions require server work that is linear in the
size of the database. Of these solutions, the one that provides the best privacy
guarantees is due to Golle et al. [13], with variants presented in later work, e.g.,
[1,3]. They show how to build for each conjunctive query a set of tokens that
can be tested against each document in the database (more precisely, against an
encoded version of the document’s keywords) to identify matching documents.
These solutions only leak the set of matching documents (and possibly the set
of attributes being searched for) but are unsuited for large databases due to
the O(d) work incurred by the server, where d is the number of documents or
records in the database. This cost is paid for every search regardless of the size
of the result set or the number of documents matching each individual con-
junctive term. Moreover, these solutions require either O(d) communication and
exponentiations between server and client or O(d) costly pairing operations (as
well as dedicated cryptographic assumptions). Another serious limitation of this
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approach is that it works only for structured attribute-value type databases and
does not support free text search. In addition, none of the above solutions extend
to general Boolean queries.

The Challenge of Large Databases and the Challenge of Being Imper-
fect. In this work we investigate solutions to conjunctive queries and general
Boolean queries that can be practical even for very large databases where linear
search is prohibitively expensive. Our application settings include databases that
require search over tens of millions documents (and billions of document-keyword
pairs), with search based on attribute-value pairs (as in relational databases) and
free text - see below for specific numbers used in evaluating our prototype. To
support such scale in a truly practical way one needs to relax absolute privacy
and allow for some leakage beyond the result set.

As an example, compare the case of a conjunction of two highly-frequent
keywords whose intersection returns a small number of documents but whose
individual terms are very frequent (e.g., search for “name=David AND gen-
der=Female”), with the case of a conjunction that returns the same number
of documents but all the individual terms in the conjunction are themselves
infrequent. Search complexity in these two cases, even in the case of plaintext
data (hence in any encrypted solution), is likely to be different and noticeable to
the searching server, except if searches are artificially padded to a full database
search hence leading to O(d) complexity1. Note that even powerful tools, such as
ORAM, that can be used to search on encrypted data in smaller-scale databases
already incur non-trivial leakage if the search performance is to be sublinear.
Indeed, the mere computational cost, in number of ORAM operations, of a
given search is sufficient to distinguish between the two cases above (of all high-
frequency conjunctive terms vs. all small-frequency terms) unless the searches are
padded to the maximal search size, resulting in O(d) search cost. Thus, resorting
to weaker security guarantees is a necessity for achieving practical conjunctive
search. Not only this presents design challenges but also raises non-trivial theo-
retical challenges for analyzing and characterizing in a precise way the form and
amount of leakage incurred by a solution.

Ideally, we would like to run the search with complexity proportional to the
number of matches of the least frequent term in the conjunction, which is the
standard of plaintext information retrieval algorithms. In addition, the computa-
tional efficiency of database processing and of search is of paramount importance
in practice. Generic tools such as FHE [10] or ORAM [12] are too costly for very
large databases, although they may be used as sub-components of a solution if
applied to small data subsets.

Our Contributions. We develop the first non-generic sublinear SSE schemes
supporting conjunctive keyword search (and more general Boolean queries, see
below) with a non-trivial combination of security and efficiency. The schemes per-
formance scales to very large datasets and arbitrarily-structured data, including
free-text search. We attain efficiency by allowing some forms of access-pattern

1 A costly alternative is to pre-compute all n-term conjunctions in time O(|W|n).
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leakage, but with a much better leakage profile than the näıve solution implied
by single-keyword SSE, as discussed above. Further, we establish the security of
our solution via an explicit and precise leakage profile and a proof that this is
all the leakage incurred by this solution. Our formal setting follows a simulation-
based abstraction that adapts the SSE models of Curtmola et al. [8] and Chase
and Kamara [7], and assumes an adaptive adversarial model. The essence of the
security notion is that the view of the server (the attacker in this setting) can be
efficiently simulated given a precisely-defined leakage profile but without access
to the actual plaintext data. Such a profile may include leakage on the total size
of the database, on access patterns (e.g., the intersection between two sets of
results) and on queries (e.g., repetition of queries), but never the direct exposure
of plaintext data or searched values. Thus, a protocol proven secure ensures that
the server holding the encrypted data and serving the queries does not learn
anything about the data and queries other than what can be deduced from the
specified leakage2. The characterization of leakage and the involved proof of se-
curity that we present are central technical contributions that complement our
protocol design work.

The centerpiece of the protocol design is a “virtual” secure two-party protocol
in which the server holds encrypted pointers to documents, the client holds a
list of keywords, and the output of the protocol is the set of encrypted point-
ers that point to documents containing all the client’s keywords. The client is
then able to decrypt these pointers and obtain the matching (encrypted) docu-
ments but the server cannot carry this decryption nor can it learn the keywords
in the client’s query. While this underlying protocol is interactive, the level of
performance targeted by our solutions requires avoiding multiple rounds of in-
teraction. We achieve this by a novel approach that pre-computes parts of the
protocol messages and stores them in encrypted form at the server. Then, dur-
ing search, the client sends information to the server that allows to unlock these
pre-computed messages without further interaction. Our implementation of this
protocol, which we name OXT, uses only DH-type operations over any Diffie-
Hellman group which enables the use of the secure and most efficient DH elliptic
curves (with additional common-base optimizations).3 The complexity of our
search protocols is independent of the number of documents in the database.
To search for documents containing w1, . . . , wn, the search complexity of our
scheme scales with the number of documents matching the estimated least fre-
quent keyword in the conjunction. We note that while building a search based
on term frequency is standard in information retrieval, our solution seems to be
the first to exploit this approach in the encrypted setting. This leads not only
to good performance but also improves privacy substantially. All our solutions
support search on structured data (e.g., attribute-value databases) as well as on
free text, and combinations of both.

2 See the discussion in Section 6 on “semantic leakage”.
3 We also present a scheme (BXT in Section 3.1) that only uses symmetric-key opera-
tions but provides less privacy, and a pairings-based scheme (PXT in the full version
[5]) that optimizes communication at the expense of more computation.
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Boolean Queries. Our solution to conjunctive queries extends to answer any
Boolean query. This includes negations, disjunctions, threshold queries, and
more. The subset of such queries that we can answer efficiently includes any
expression of the form “w1 ∧ φ(w2, . . . , wm)” (intended to return any document
that matches keyword w1 and in addition satisfies the (unconstrained) formula
φ on the remaining keywords)4. The search complexity is proportional to the
number of documents that contain w1. Surprisingly, the leakage profile for such
complex expressions can be reduced to the leakage incurred by a conjunction
with the same terms w1, w2, . . . , wn, hence allowing us to re-use the analysis
of the conjunctive case to the much more general boolean setting. Finally, any
disjunction of the above forms can also be answered with an additive cost over
the disjunction expressions.

Further Extensions. In [4] we report on further practical enhancements to our
protocols, including support for dynamic databases (i.e., allowing additions, dele-
tions and modification of documents in the database). Our protocols can also be
applied to the multi-client setting [7,17,18] where a data owner outsources its en-
crypted data to an external server and enables other parties to perform queries on
the encrypted data by providing them with search tokens for specific queries. In
this case, one considers not only leakage to the server but also leakage to clients
beyond the information that their tokens are authorized to disclose. In subsequent
work [16], we address issues of authorization in this setting as well as the chal-
lenging problem of hiding the queries not only from the server but also from the
token provider - see for example IARPA’s SPAR program and its requirement for
supporting private queries on very large databases [14]. See also [21] for an inde-
pendent, concurrent work in the latter setting from which a solution to the SSE
problem can also be extracted. Finally, in ongoing work, we are extending the set
of supported queries with range queries, substring matching, and more.

Implementation. To show the practical viability of our solution we prototyped
OXT and ran experiments with two data sets: the Enron email data set [9] with
more than 1.5 million documents (email messages and attachments) where all
words, including attachments and envelope information, have been indexed; and
the ClueWeb09 [20] collection of crawled web-pages from which we extracted sev-
eral databases of increasing size with the largest one consisting of 13 million doc-
uments (0.4TB of HTML files). Approximately one third of the latter database is
a full snapshot of the English Wikipedia. The results of these tests show not only
the suitability of our conjunction protocols for data sets of medium size (such as
the Enron one) but demonstrate the scalability of these solutions to much larger
databases (we target databases of one or two orders of magnitude larger). Existing
solutions that are linear in the number of documents would be mostly impractical
even for the Enron dataset. Refer to Section 5 for more information on implemen-
tation and performance. More advanced results are reported in [4].

4 An example of such query on an email repository is: Search for messages with Alice
as Recipient, not sent by Bob, and containing at least two of the words {searchable,
symmetric, encryption}.
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Other Related Work and Research Questions. See full version [5] for more
discussion on related work and Section 6 for several interesting research questions
arising from our work.

2 Definitions and Tools

2.1 SSE Syntax and Security Model

Searchable Symmetric Encryption. A database is composed of a collection
of d documents, each comprised of a set of keywords Wi (we use “documents”
generically; they can represent text documents, records in a relational database
- in which case keyword are represented as attribute-value pairs, a combination
of both, etc.). The output from the SSE protocol for a given search query are
indices (or identifiers) ind corresponding to the documents that satisfy the query.
A client program can then use these indices to retrieve the encrypted documents
and decrypt them. This definition allows to decouple the storage of payloads
(which can be done in a variety of ways, with varying types of leakage) from the
storage of metadata that is the focus of our protocols.

SSE Scheme Syntax and Correctness. Let λ be the security parameter.
We will take identifiers and keywords to be bit strings. A database DB =
(indi,Wi)

d
i=1 is represented as a list of identifier/keyword-set pairs, where indi ∈

{0, 1}λ and Wi ⊆ {0, 1}∗. We will always write W =
⋃d

i=1 Wi (we think of the
ind values as identifiers that can be revealed to the outsourced server, e.g., a
randomization of the original document identifiers; in particular these are the
identifiers that will be used to retrieve query-matching documents). A query
ψ(w̄) is specified by a tuple of keywords w̄ ∈ W∗ and a boolean formula ψ on w̄.
We write DB(ψ(w̄)) for the set of identifiers of documents that “satisfy” ψ(w̄).
Formally, this means that indi ∈ DB(ψ(w̄)) iff the formula ψ(w̄) evaluates to true
when we replace each keyword wi with true or false depending on if wi ∈ Wi

or not. Below we let d denote the number of documents in DB, m = |W| and
N =

∑
w∈W |DB(w)|.

A searchable symmetric encryption (SSE) scheme Π consists of an algorithm
EDBSetup and a protocol Search between the client and server, all fitting the
following syntax. EDBSetup takes as input a database DB, and outputs a secret
key K along with an encrypted database EDB. The search protocol is between
a client and server, where the client takes as input the secret key K and a
query ψ(w̄) and the server takes as input EDB. At the end of the protocol the
client outputs a set of identifiers and the server has no output. We say that
an SSE scheme is correct if for all inputs DB and queries ψ(w̄) for w̄ ∈ W∗, if
(K,EDB)

$← EDBSetup(DB), after running Search with client input (K,ψ(w̄))
and server input EDB, the client outputs the set of indices DB(ψ(w̄)).

Security of SSE. We recall the semantic security definitions from [8,7]. The
definition is parametrized by a leakage function L, which describes what an
adversary (the server) is allowed to learn about the database and queries when
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interacting with a secure scheme. Formally, security says that the server’s view
during an adaptive attack (where the server selects the database and queries)
can be simulated given only the output of L.

Definition 1. Let Π = (EDBSetup, Search) be an SSE scheme and let L be a
stateful algorithm. For algorithms A and S, we define experiments (algorithms)
RealΠA (λ) and IdealΠA,S(λ) as follows:

RealΠA (λ) :A(1λ) chooses DB. The experiment then runs (K,EDB) ← EDBSetup
(DB) and gives EDB toA. ThenA repeatedly chooses a query q. To respond, the
game runs the Search protocol with client input (K, q) and server input EDB
and gives the transcript and client output to A. Eventually A returns a bit that
the game uses as its own output.

IdealΠA,S(λ) : The game initializes a counter i = 0 and an empty list q. A(1λ)
chooses DB. The experiment runs EDB ← S(L(DB)) and gives EDB to A.
Then A repeatedly chooses a query q. To respond, the game records this as
q[i], increments i, and gives to A the output of S(L(DB,q)). (Note that here,
q consists of all previous queries in addition to the latest query issued by A.)
Eventually A returns a bit that the game uses as its own output.

We say that Π is L-semantically-secure against adaptive attacks if for all adver-
saries A there exists an algorithm S such that Pr[RealΠA (λ) = 1]−Pr[IdealΠA,S(λ)
= 1] ≤ neg(λ).

We note that in the security analysis of our SSE schemes we include the client’s
output, the set of indices DB(ψ(w̄)), in the adversary’s view in the real game, to
model the fact that these ind’s will be used for retrieval of encrypted document
payloads.

2.2 T-Sets

We present a definition of syntax and security for a new primitive that we call a
tuple set, or T-set. Intuitively, a T-set allows one to associate a list of fixed-sized
data tuples with each keyword in the database, and later issue keyword-related
tokens to retrieve these lists. We will use it in our protocols as an “expanded
inverted index”. Indeed, prior single-keyword SSE schemes, e.g. [8,7], can be seen
as giving a specific T-set instantiation and using it as an inverted index to enable
search – see Section 2.3. In our SSE schemes for conjunctive keyword search, we
will use a T-set to store more data than a simple inverted index, and we will
also compose it with other data structures. The abstract definition of a T-set
will allow us to select an implementation that provides the best performance for
the size of the data being stored.

T-Set Syntax and Correctness. Formally, a T-set implementation Σ =
(TSetSetup,TSetGetTag,TSetRetrieve) will consist of three algorithms with the
following syntax: TSetSetup will take as input an array T of lists of equal-length
bit strings indexed by the elements of W. The TSetSetup procedure outputs
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a pair (TSet,KT ). TSetGetTag takes as input the key KT and a keyword w
and outputs stag. TSetRetrieve takes the TSet and an stag as input, and re-
turns a list of strings. We say that Σ is correct if for all W, T, and any
w ∈ W, TSetRetrieve(TSet, stag) = T[w] when (TSet,KT ) ← TSetSetup(T) and
stag ← TSetGetTag(KT , w). Intuitively, T holds lists of tuples associated with
keywords and correctness guarantees that the TSetRetrieve algorithm returns the
data associated with the given keyword.

T-Set Security and Implementation. The security goal of a T-set imple-
mentation is to hide as much as possible about the tuples in T and the keywords
these tuples are associated to, except for vectors T[w1],T[w2], . . . of tuples re-
vealed by the client’s queried keywords w1, w2, . . .. (For the purpose of T-set
implementation we equate client’s query with a single keyword.) The formal def-
inition is similar to that of SSE (think of the SSE setting for single-keyword
queries) and we provide it in [5] where we also show a specific T-set implemen-
tation that achieves optimal security, namely, it only reveals (an upper bound
on) the aggregated database size N =

∑
w∈W |DB(w)| We refer to such a T-set

implementation as optimal.

2.3 T-Sets and Single Keyword Search

Here we show how a T-set can be used as an “secure inverted index” to build an
SSE scheme for single-keyword search. The ideas in this construction will be the
basis for our conjunctive search SSE schemes later, and it essentially abstracts
prior constructions [8,7]. The details of the scheme, called SKS, are given in

EDBSetup(DB)

– Select key KS for PRF F , and parse DB as (indi,Wi)
d
i=1.

– Initialize T to an empty array indexed by keywords from W = ∪d
i=1Wi.

– For each w ∈ W, build the tuple list T[w] as follows:

• Initialize t to be an empty list, and set Ke ← F (KS, w).

• For all ind ∈ DB(w) in random order: e
$
← Enc(Ke, ind); append e to t.

• Set T[w]← t.

– (TSet,KT )← TSetSetup(T).
– Output the key (KS ,KT ) and EDB = TSet.

Search protocol

– The client takes as input the key (KS, KT ) and a keyword w to query.
It computes stag← TSetGetTag(KT , w) and sends stag to the server.

– The server computes t← TSetRetrieve(TSet, stag), and sends t to the client.
– Client sets Ke ← F (KS, w); for each e in t, it computes ind ← Dec(Ke, e) and

outputs ind.

Fig. 1. SKS: Single-Keyword SSE Scheme
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Figure 1. It uses as subroutines a PRF F : {0, 1}λ × {0, 1}λ → {0, 1}λ, and a
CPA secure symmetric encryption scheme (Enc,Dec) that has λ-bit keys.

3 SSE Schemes for Conjunctive Keyword Search

Existing SSE schemes for conjunctive queries ([13] and subsequent work) work
by encoding each document individually and then processing a search by testing
each encoded document against a set of tokens. Thus the server’s work grows
linearly with the number of documents, which is infeasible for large databases.
In addition, these schemes only work for attribute-value type databases (where
documents contain a single value per attribute) but not for unstructured data,
e.g., they cannot search text documents.

Here we develop the first sub-linear conjunctive-search solutions for arbitrarily-
structured data, including free text. In particular, when querying for the documents
that match all keywordsw1, . . . , wn, our search protocol scales with the size of the
(estimated) smallest DB(wi) set among all the conjunctive terms wi.

The näıve solution. To motivate our solutions we start by describing a straight-
forward extension of the single-keyword case (protocol SKS from Figure 1) to
support conjunctive keyword searching. On input a conjunctive query w̄ =
(w1, . . . , wn), the client and server run the search protocol from SKS indepen-
dently for each term wi in w̄ with the following modifications. Instead of return-
ing the lists t to the client, the server receives Kei , i = 1, ..., n, from the client
and decrypts the e values to obtain a set of ind’s for each wi. Then, the server
returns to client the ind values in the intersection of all these sets. The search
complexity of this solution is proportional to

∑n
i=1 |DB(wi)| which improves, in

general, on solutions whose complexity is linear in the number of documents in
the whole database. However, this advantage is reduced for queries where one of
the terms is a very high-frequency word (e.g., in a relational database of personal
records, one may have a keyword w = (gender,male) as a conjunctive term, thus
resulting in a search of, say, half the documents in the database). In addition,
this solution incurs excessive leakage to the server who learns the complete sets
of indices ind for each term in a conjunction.

Our goal is to reduce both computation and leakage in the protocol by tying those to
the less frequent terms in the conjunctions (i.e., terms w with small sets DB(w)).

3.1 Basic Cross-Tags (BXT) Protocol

To achieve the above goal we take the following approach that serves as the basis
for our main SSE-conjunctions scheme OXT presented in the next subsection.
Here we exemplify the approach via a simplified protocol, BXT. Assume (see
below) that the client, given w̄ = (w1, . . . , wn), can choose a term wi with a
relatively small DB(wi) set among w1, . . . , wn; for simplicity assume this is w1.
The parties could run an instance of the SKS search protocol for the keyword w1

after which the client gets all documents matching w1 and locally searches for
the remaining conjunctive terms. This is obviously inefficient as it may require
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retrieving many more documents than actually needed. The idea of BXT is indeed
to use SKS for the server to retrieve TSet(w1) but then perform the intersection
with the terms w2, . . . , wn at the server who will only return the documents
matching the full conjunction. We achieve this by augmenting SKS as follows.

During EDBSetup(DB), in addition to TSet, a set data structure XSet is built
by adding to it elements xtag computed as follows. For each w ∈ W, a value
xtrap = F (KX , w) is computed where KX is a PRF key chosen for this purpose;
then for each ind ∈ DB(w) a value xtag = f(xtrap, ind) is computed and added to
XSet where f is an unpredictable function of its inputs (e.g., f can be a PRF used
with xtrap as the key and ind as input). The Search protocol for a conjunction
(w1, . . . , wn), chooses the estimated least frequent keyword, say w1, and sets,
as in SKS, Ke ← F (KS , w1), stag ← TSetGetTag(KT , w1). Then, for each i =
2, . . . , n, it sets xtrapi ← F (KX , wi) and sends (Ke, stag, xtrap2, . . . , xtrapn) to
the server. The server uses stag to retrieve t = TSetRetrieve(TSet, stag). Then,
for each ciphertext e in t, it decrypts ind = Dec(Ke, e) and if f(xtrapi, ind) ∈ XSet
for all i = 2, . . . , n, it sends ind to the client.5

Correctness of the BXT protocol is easy to verify. Just note that a doc-
ument indexed by ind includes a word w represented by stag if and only if
xtag = f(xtrap, ind) ∈ XSet. Regarding implementation of XSet, it can use any
set representation that is history-independent, namely, it is independent of the
order in which the elements of the set were inserted. For TSet security and
implementation see Section 2.

Terminology (s-terms and x-terms): We will refer to the conjunctive term cho-
sen as the estimated least frequent term among the query terms as the s-term
(‘s’ for SKS or “small”) and refer to other terms in the conjunction as x-
terms (‘x’ for “cross”); this is the reason for the ‘s’ and ‘x’ in names such as
stag, xtag, stag, xtrap, etc.

The server’s work in BXT scales with n·|DB(w1)|, where w1 is the conjunction’s
s-term. This represents a major improvement over existing solutions which are
linear in |DB| and also a significant improvement over the näıve solution when-
ever there is a term with relatively small set DB(w1) that can be identified by
the client, which is usually the case as discussed in Section 3.1. Communication
is optimal (O(n)-size token plus the final results set) and computation involves
only PRF operations.

Security-wise this protocol improves substantially on the above-described näıve
solution by leaking only the (small) set of ind’s for the s-term and not for x-terms.
Yet, this solution lets the server learn statistics about x-terms by correlating in-
formation from different queries. Specifically, the server can use the value xtrapi
received in one query and check it against any ind found through an s-term of
another query. But note that direct intersections between x-terms of different
queries are not possible other than via the s-terms (e.g., if two queries (w1, w2)
and (w′

1, w
′
2) are issued, the server can learn the (randomly permuted) results of

(w1, w
′
2) and (w′

1, w2) but not (w2, w
′
2).

5 While in SKS one can choose to let the server decrypt the ind’s directly instead of
the client, in BXT this is necessary for computing the xtag’s.
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In settings where computation and communications are very constrained BXT
may provide for an acceptable privacy-performance balance. In general, however,
we would like to improve on the privacy of this solution even if at some perfor-
mance cost. We do so in the next section with the OXT protocol, so we omit a
formal analysis BXT – we note that the security of BXT needs the set of ind’s to
be unpredictable, a condition not needed in the other protocols.

Choosing the S-Term. The performance and privacy of our conjunction pro-
tocols improves with “lighter” s-terms, namely, keywords w whose DB(w) is of
small or moderate size. While it is common to have such terms in typical con-
junctive queries, our setting raises the question of how can the client, who has
limited storage, choose adequate s-terms. In the case of relational databases one
can use general statistics about attributes to guide the choice of the s-term (e.g.,
prefer a last-name term to a first-name term, always avoid gender as the s-term,
etc.). In the case of free text the choice of s-term can be guided by term fre-
quency which can be made available, requiring a small state stored at the client
or retrieved from the server. We extend on this topic in the full version [5].

3.2 Oblivious Cross-Tags (OXT) Protocol

The BXT scheme is vulnerable to the following simple attack: When the server
gets xtrapi for a query (w1, . . . , wn), it can save it and later use it to learn if any
revealed ind value is a document with keyword wi by testing if f(xtrapi, ind) ∈
XSet. This allows an honest-but-curious server to learn, for example, the number
of documents matching each queried s-term with each queried x-term (even for
terms in different queries). This attack is possible because BXT reveals the keys
that enable the server to compute f(xtrapi, ·) itself.

One way to mitigate the attack is to have the client evaluate the function
for the server instead of sending the key. Namely, the server would send all the
encrypted ind values that it gets in t (from the TSet) to the client who will
compute the function f(xtrapi, ind) and send back the results. However, this fix
adds a round of communication with consequent latency, it allows the server to
cheat by sending ind values from another query’s s-term (from which the server
can compute intersections not requested by the client), and is unsuited to the
multi-client SSE setting [7] discussed in the introduction (since the client would
learn from the inds it receives the results of conjunctions it was not authorized
for). Note that while the latter two issues are not reflected in our current formal
model, avoiding them expands significantly the applicability of OXT.

These issues suggest a solution where we replace the function f(xtrap, ·) (where
xtrap = F (KX , w)) with a form of oblivious shared computation between client
and server. A first idea would be to use blinded exponentiation (as in Diffie-
Hellman based oblivious PRF) in a group G of prime order p: Using a PRF Fp

with range Z∗
p (and keysKI ,KX), we derive a value xind = Fp(KI , ind) ∈ Z∗

p and

define each xtag to be gFp(KX ,w)·xind. The shared computation would proceed by
the client first sending the value gFp(KX ,wi)·z where z ∈ Z∗

p is a blinding factor;
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EDBSetup(DB)

– Select key KS for PRF F , keys KX , KI ,KZ for PRF Fp (with range in Z∗
p ), and

parse DB as (indi,Wi)
d
i=1.

– Initialize T to an empty array indexed by keywords from W.
– Initialize XSet to an empty set.
– For each w ∈ W, build the tuple list T[w] and XSet elements as follows:
• Initialize t to be an empty list, and set Ke ← F (KS, w).
• For all ind in DB(w) in random order, initialize a counter c← 0, then:
∗ Set xind← Fp(KI , ind), z ← Fp(KZ , w ‖ c) and y ← xind · z−1.
∗ Compute e← Enc(Ke, ind), and append (e, y) to t.
∗ Set xtag← gFp(KX ,w)·xind and add xtag to XSet.

• T[w]← t.
– (TSet,KT )← TSetSetup(T).
– Output the key (KS ,KX ,KI ,KZ ,KT ) and EDB = (TSet,XSet).

Search protocol

– The client’s input is the key (KS,KX ,KI ,KZ ,KT ) and query w̄ = (w1, . . . , wn).

It sends to the server the message (stag, xtoken[1], xtoken[2], . . .) defined as:

• stag← TSetGetTag(KT , w1).
• For c = 1, 2 . . . and until server sends stop

∗ For i = 2, . . . , n, set xtoken[c, i]← gFp(KZ ,w1 ‖ c)·Fp(KX ,wi)

∗ Set xtoken[c] = xtoken[c, 2], . . . , xtoken[c, n].

– The server has input (TSet,XSet). It responds as follows.

• It sets t← TSetRetrieve(TSet, stag).
• For c = 1, . . . , |t|
∗ retrieve (e, y) from the c-th tuple in t
∗ if ∀i = 2, . . . , n : xtoken[c, i]y ∈ XSet then send e to the client.

• When last tuple in t is reached, send stop to C and halt.

– Client sets Ke ← F (KS, w1); for each e received, computes ind← Dec(Ke, e) and
outputs ind.

Fig. 2. OXT: Oblivious Cross-Tags Protocol

the server would raise this to the power xind and finally the client would de-blind
it by raising to the power z−1 mod p to obtain gFp(KX ,wi)·xind. Unfortunately, this
idea does not quite work as the server would learn xtag = gFp(KX ,wi)·xind and
from this, and its knowledge of xind, it would learn gFp(KX ,wi), which allows
it to carry out an attack similar to the one against BXT. This also requires
client-server interaction on a per-xind basis, a prohibitive cost.

In the design of OXT we address these two problems. The idea is to precompute
(in EDBSetup) the blinding part of the oblivious computation and store it in the
EDB. I.e., in each tuple corresponding to a keyword w and document xind, we
store a blinded value yc = xind · z−1

c , where zc is an element in Z∗
p derived (via

a PRF) from w and a tuple counter c (this counter, incremented for each tuple
in t associated with w, serves to ensure independent blinding values z).
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During search, the server needs to compute the value gFp(KX ,wi)·xind for each
xind corresponding to a match for w1 and then test these for membership in XSet.
To enable this, the client sends, for the c-th tuple in t, a n-long array xtoken[c]
defined by xtoken[c, i] := gFp(KX ,wi)·zc , i = 1, . . . , n, where zc is the precomputed
blinding derived by from w (via a PRF) and the tuple counter c. The server then
performs the T-set search to get the results for w1, and filters the c-th result
by testing if xtoken[c, i]yc ∈ XSet for all i = 2, . . . , n. This protocol is correct

because xtoken[c, i]yc = gFp(KX ,wi)·zc·xind·z−1
c = gFp(KX ,wi)·xind, meaning that the

server correctly recomputes the pseudorandom values in the XSet.
Putting these ideas together results in the OXT protocol of Figure 2. Note

that the client sends the xtoken arrays (each holding several values of the form
gFp(KX ,wi)·z) until instructed to stop by the server. There is no other communi-
cation from server to client (alternatively, server can send the number of elements
in TSet(w) to the client who will respond with such number of xtoken arrays).6

Note that while the description above is intended to provide intuition for the
protocol’s design, assessing the security (leakage) of OXT is non-trivial, requiring
an intricate security analysis that we provide in Section 4.

OXT consists of a single round of interaction, where the message sent by
the client is of size proportional to |DB(w1)|, 7 and the response to the client is
minimal, consisting only of the result set (i.e., the set of encrypted ind’s matching
the query). The computational cost of OXT lies in the use of exponentiations,
however, thanks to the use of very efficient elliptic curves (we only require the
group to be DDH) and fixed-base exponentiations, this cost is practical even for
very large databases as demonstrated by the performance numbers in Section 5.

OXT leaks much less information to the server than BXT. Indeed, since the
server, call it S, learns neither the ind values nor xtrapj , j = 2, . . . , n, its ability
to combine conjunctive terms from one query with terms from another query
is significantly reduced. In particular, while in BXT S learns the intersection
between s-terms of any two queries, in OXT this is possible only in the following
case: the two queries can have different s-terms, but same x-term and there is
a document containing both s-terms (the latter is possible since if the s-terms
of two queries share a document ind and an x-term xtrap then the xtag value
f(xtrap, ind) will be the same in both queries indicating that ind and xtrap are
the same). The only other leakage via s-terms is that S learns when two queries
have the same s-term w1 and the size of the set DB(w1). Finally, regrading intra-
query leakage if C responds with the values xtagj , j = 2, . . . , n, in the same order
for all ind’s, then in case n > 2, S learns the number of documents matching any
sub-conjunction that includes w1 and any subset of w2, . . . , wn. If, instead, C

6 The same protocol supports single-keyword search (or 1-term conjunctions) by skip-
ping the c = 1, 2, . . . at both client and server, hence falling back to the SKS protocol
of Figure 1.

7 For typical choices of w1, such message will be of small or moderate size. For large
values of |DB(w1)| one can cap the search to the first k tuples for a threshold k, say
1000. For example, in the case of a 3-term conjunction and xtag values of size 16
bytes, this will result in just 32 Kbyte message.
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randomly permutes the values xtagj , j = 2, . . . , n before sending these values to
S, then S learns the maximal number of satisfied terms per tuple in TSet(w1),
but not the size of sets matching w1 ∧wi, i = 1, . . . , n, or any other proper sub-
conjunctions (except for what can be learned in conjunction with other leakage
information). In Section 4 we formally analyze the security of OXT making the
above description of leakage precise.

As noted before, even a leakage profile as the above that only reveals access
patterns can still provide valuable information to an attacker that possesses
prior information on the database and queries. We don’t discuss here specific
countermeasures for limiting the ability of an attacker to perform such statistical
inference – see [15] for an example of potential masking techniques.

3.3 Processing Boolean Queries with OXT

We describe an extension to OXT that can handle arbitrary Boolean query ex-
pressions. We say that a Boolean expression in n terms is in Searchable Normal
Form (SNF) if it is of the form w1∧φ(w2, . . . , wn) where φ is an arbitrary Boolean
formula (e.g., “w1 ∧ (w2 ∨ w3 ∨ ¬w4)”). OXT can be extended to answer such
queries: On input a query of the form w1 ∧ φ(w2, . . . , wn), the client creates a

modified boolean expression φ̂ in new boolean variables vi (i = 2, . . . , n), which
is just φ but with each wi replaced by vi. Thus, the client uses w1 as the s-term
and computes its stag as in OXT, and computes the xtrap (i.e. the xtoken ar-
ray) for all the other terms wi (i > 1). It then sends the stag and the xtraps
in the order of their index. It also sends the server the above modified boolean
expression φ̂. The server fetches the TSet corresponding to the stag as in OXT.
It also computes the xtag corresponding to each x-term, also as in OXT. But, it
decides on sending (to the Client) the encrypted ind corresponding to each tuple
in the TSet based on the following computation (which is the only different part
from OXT): for each i = 2, . . . , n, the server treats the variable vi as a boolean
variable and sets it to the truth value of the expression (xtoken[c, i])y ∈ XSet.
Then it evaluates the expression φ(v2, . . . , vn). If the result is true, it returns the
e value in that tuple to the Client.

OXT can also be used to answer any disjunction of SNF expressions. Actu-
ally, note that OXT can answer any Boolean query by adding to the database
a field true which all documents satisfy. Then a search for any expression
φ(w1, . . . , wn) can be implemented as “true ∧ φ(w1, . . . , wn)”, which is in SNF
and can be searched as in the SNF case above. Clearly, this will take time linear
in the number of documents but it can be implemented if such functionality is
considered worth the search complexity.

4 Security of OXT

In the full version [5] we provide a complete detailed analysis of OXT and its
extension to Boolean queries. Due to space constraints we illustrate the security
claim for the particular case of two-term conjunctions, but this restricted case is
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representative of the general case. We start by describing the protocol’s leakage
profile, Loxt(DB,q), followed by a security theorem showing that this is all of
the information leaked by the protocol.

In describing the leakage profile of the OXT protocol we will assume an op-
timal T-set implementation (see Section 2) as the one presented in [5], namely,

with optimal leakage N =
∑d

i=1 |Wi|. We represent a sequence of Q two-term
conjunction queries by q = (s,x) where an individual query is a two-term con-
junction s[i] ∧ x[i] which we write as q[i] = (s[i],x[i]).

We define Loxt(DB,q), for DB = (indi,Wi)
d
i=1 and q = (s,x), as a tuple

(N,EP, SP,RP, IP) formed as follows:

– N =
∑d

i=1 |Wi| is the total number of appearances of keywords in documents.
– EP is the equality pattern of s ∈ WQ indicating which queries have the

equal s-terms. Formally, EP ∈ [m]Q is formed by assigning each keyword an
integer in [m] determined by the order of appearance in s. For example, if
s = (a, a, b, c, a, c) then EP = (1, 1, 2, 3, 1, 3). To compute EP[i] one finds the
least j such that s[j] = s[i] and then lets EP[i] = |{s[1], . . . , s[j]}| be the
number of unique keywords appearing at indices less than or equal to j.

– SP is the size pattern of the queries, i.e. the number of documents matching
the first keyword in each query. Formally, SP ∈ [d]Q and SP[i] = |DB(s[i])|.

– RP is the results pattern, which consists of the results sets (R1, . . . , RQ), each
defined by Ri = Iπ(s[i]) ∩ Iπ(x[i]).

– IP is the conditional intersection pattern, which is a Q by Q table with entries
defined as follows: IP[i, j] is an empty set if either s[i] = s[j] or x[i] �= x[j].
However, if s[i] �= s[j] and x[i] = x[j] then IP[i, j] = DB(s[i]) ∩ DB(s[j]).

Understanding the Leakage Components. The parameter N can be re-
placed with an upper bound given by the total size of EDB but leaking such a
bound is unavoidable. The equality pattern EP leaks repetitions in the s-term
of different queries; this is a consequence of our optimized search that singles
out the s-term in the query. This leakage can be mitigated by having more than
one TSet per keyword and the client choosing different incarnations of the Tset
for queries with repeated s-terms. SP leaks the number of documents satisfy-
ing the s-term in a query and is also a direct consequence of our approach of
optimizing search time via s-terms; it can be mitigated by providing an upper
bound on the number of documents rather than an exact count by artificially
increasing Tset sizes. RP is a the result of the query and therefore no real leak-
age. Finally, the IP component is the most subtle and it means that if two
queries have different s-terms but same x-term, then the indexes which match
both the s-terms are leaked (if there are no documents which match both s-
terms then nothing is leaked). This “conditional intersection pattern” can be
seen as the price for the rich functionality enabled by our x-terms and XSet ap-
proach that allows for the computation of arbitrary boolean queries. Note that
on query q[i] = (s[i] ∧ x[i]) the OXT protocol lets the server compute a deter-
ministic function f(xtrap(x[i]), ind) of the x-term x[i] for all ind’s that match the
s-term s[i]. Therefore a repeated xtag value in two queries q[i] and q[j] implies
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that x[i] = x[j] and that DB(s[i]) and DB(s[j]) contain a common index. Even
though this index is not revealed to the server, we still model this information
by simply revealing DB(s[i]) ∩ DB(s[j]) if x[i] = x[j]. This “pessimistic” upper
bound on the leakage simplifies the leakage representation. As said, if the above
intersection is empty then no information about the equality of the x-terms
x[i],x[j] is revealed. The probability of non-empty intersections is minimized
by consistently choosing low-frequent s-terms. Note also that for queries with
s-terms belonging to the same field with unique per-document value (e.g., both
s-terms containing different last names in a database with a last-name field), the
IP leakage is empty.

Theorem 1. The SSE scheme OXT implemented with an optimal T-set is Loxt-
semantically-secure if all queries are 2-conjunctions, assuming that the DDH
assumption holds in G, that F and Fp are secure PRFs, and (Enc,Dec) is an
IND-CPA secure symmetric encryption scheme.

Proof Sketch. The proof of the theorem is delicate and lengthy, and is presented
in [5] for the general case of multi-term conjunctions (with extensions to the case
of Boolean queries). To get some intuition for why the scheme is secure, we start
by examining why each of the outputs of L is necessary for a correct simulation.
Of course, this does nothing to show that they are sufficient for simulation,
but it will be easier to see why this is all of the leakage once their purpose is
motivated. For the sake of this sketch we assume a non-adaptive adversary.

The size of the XSet is equal to the value N leaked. The equality pattern
EP (or something computationally equivalent to it) is necessary due to the fact
that the stag values are deterministic, so a server can observe repetitions of stag
values to determine if s[i] = s[j] for all i, j. The size pattern is also necessary
as the server will always learn the number of matches for the first keyword in
the conjunction by observing the number of tuples returned by the T-set. We
include the results pattern to enable the simulator to produce the client results
for queries in way consistent the conditional intersection pattern.

The final and most subtle part of the leakage is the conditional intersec-
tion pattern IP. The IP is present in the leakage because of the following pas-
sive attack. During the computation of the search protocol, the values tested
for membership in the XSet by the server have the form f(xtrap(wi), ind) =
gFp(KX ,wi)·Fp(KI ,ind), where wi is the i-th x-term in a search query and ind is an
identifier for a document that matched the s-term in that query. As we explain
above, the leakage comes from the fact that f is a deterministic function, and
so these values will repeat if and only if (except for a negligible probability of a
collision) (1) the two queries involve the same x-term and (2) the sets of indexes
which match the s-terms involved in these queries have some indexes in common.

Our proof makes formal the claim that the output of L is sufficient for a
simulation. We outline a few of the technical hurdles in the proof without dealing
with the details here. For this discussion, we assume that reductions to PRF
security and encryption security go through easily, allowing us to treat PRF
outputs as random and un-opened ciphertexts as encryptions of zeros.
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We first handle the information leaked by the XSet. An unbounded adversary
could compute the discrete logarithms of the XSet elements and derive informa-
tion about which documents match which keywords. We want to show however
that a poly-time adversary learns nothing from the XSet due to the assumed
hardness of the DDH problem. Formally, we need to show that we can replace
the elements of XSet with random elements that carry no information about the
database, but there is a technical difficulty: some of the exponents (specifically,
the xind values) that will play the roll of hidden exponents in the DDH reduction
are used in the computation of the xtrap values, and these are revealed in the
transcripts. A careful rearrangement of the game computation will show that
this is not as bad as it seems, because the xind values are “blinded out” by the z
values. We stress that this requires some care, because the z values are also used
twice, and we circumvent this circularity by computing the XSet first and then
computing the transcripts “backwards” in way that is consistent with the XSet.
Now a reduction to DDH becomes clear, as the XSet values can be dropped in
obliviously as real-or-random group elements.

With the XSet leakage eliminated, the rest of the work is in showing that the
simulator can arrange for a correct-looking pattern of “repeats” in the documents
matched and in the values tested against the XSet. While riddled with details,
this is intuitively a rather straightforward task that is carried out in the latter
games of the proof.

5 OXT Implementation and Experimental Results

This section reports the status of the OXT implementation and several latency
and scalability measurements, which should be viewed as providing empirical
evidence to the performance and scalability claims made earlier in the paper.
Additional details on the implementation can be found in the full version [5].
Prototype. The realization of OXT consists of EDBSetup, which generates the

EDB, Client, which generates the stag and the xtoken stream, and EDBSearch,
which uses the EDB to process the Client’s request. All three use the same crypto-
graphic primitives, which leverage the OpenSSL 1.0.1 library. As the DH groups
we use NIST 224p elliptic curve. The overall C code measures roughly 16k lines.

To scale beyond the server’s RAM, the TSet is realized as a disk-resident paged
hash table. Each tuple list T[w] in the TSet is segmented into fixed-size blocks
of tuples keyed by a tag stagc. This tag is derived by a PRF from the list’s stag
and a segment counter. EDBSearch uses page-level direct I/O to prevent buffer
cache pollution in the OS, as the hash table pages are inherently uncachable,
and parallelizes disk accesses using asynchronous I/O (aio * system calls). The
XSet is realized as a RAM-resident Bloom filter [2], which enables the sizing
the false positive rate to the lowest value that the server’s RAM allows. For the
experiments presented next, the false positive rate is 2−20 and the Bloom filter
XSet still occupies only a small fraction of our server’s RAM.

Data Sets. To show the practical viability of our solution we run tests on two
data sets: the Enron email data set [9] with more than 1.5 million documents
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(email messages and attachments) which generate 145 million distinct (keyword,
docId) pairs, and the ClueWeb09 [20] collection of crawled web-pages from which
we extracted several databases of increasing size, where the largest one is based
on 0.4TB of HTML files which generate almost 3 billion distinct (keyword, docId)
pairs. For the Enron email data, the TSet hash table and the XSet Bloom filter
are 12.4 GB and 252 MB, respectively. The corresponding sizes for the largest
ClueWeb09 data set are 144.4 GB and 9.7 GB, respectively.

Experimental Results. All experiments were run on IBM Blades HS22 at-
tached to a commodity SAN system. Figure 3 shows the latency of queries on
one-term, called v, and three variants of two-term conjunctive queries on the
Enron data set. In one-term queries, the selectivity of v (the number of docu-
ments matching v) varies from 3 to 690492. As this query consists only of an
s-term, the figure illustrates that its execution time is linear in the cardinality of
TSet(v). The two-term conjunctive queries combine the previous queries with a
fixed reference term. In the first of these queries, the fixed term acts as an x-term:
each tuple retrieved from the TSet is checked against the XSet at the cost of an
exponentiation. However, as we perform these operation in parallel to retrieving
the TSet buckets from the disk, their cost is completely hidden by the disk I/O
latency. Micro-benchmarks show that the average cost of retrieving a bucket
which has a capacity of 10 tuples is comparable to ∼1, 000 single-threaded expo-
nentiations. Similarly, the client-side exponentiation in the OXT protocol can be
overlapped with disk and network I/O. It illustrates the fact that exponentia-
tions, over fast elliptic curves, are relatively cheap when compared to the cost of
accessing storage systems. The last two conjunctive queries use two fixed terms
with different selectivity, α and β, as s-terms. Their invariable execution time
is dominated by the cost of retrieving the TSet tuples corresponding to their
s-terms, irrespective the variable selectivity of the xterm v: the two horizontal
lines intersect with the single-term curve exactly where v corresponds to α and
β, respectively. This illustrates the importance of s-term selection, as discussed
in Section 3.1.

 0.001

 0.01

 0.1

 1

 10

 100

 1  10  100  1000  10000  100000  1e+06

T
im

e 
(s

)

Selectivity of Variable Term (v)

Selectivity of α:    15
Selectivity of β: 1948

v
v AND α
α AND v
β AND v

Fig. 3. Enron Performance Measurement:
Single Term & Conjunction

 0.001

 0.01

 0.1

 1

 10

 100

 1e+08  1e+09  1e+10

T
im

e 
(s

)

Database size as total number of per-document-distinct words

constant small (10) result set
constant medium-size (10,000) result set

proportional small result set
proportional medium-size result set

Fig. 4. Clueweb09 Performance Measure-
ment: Scaling Database Size



Highly-Scalable Searchable Symmetric Encryption 371

To further assess the scalability of EDBSearch, we generated several EDBs from
increasingly larger subsets of the ClueWeb09 data set ranging from 408, 450 to
13, 284, 801 HTML files having a size from 20 to 410 GBs and from 142, 112, 027
to 2, 689, 262, 336 distinct (keyword, docId) pairs. To make these databases com-
parable, we injected several artificial and non-conflicting keywords to randomly
selected documents simulating words of various selectivity. Figure 4 confirms
that our implementation matches the scalability of our (theoretical) algorithms
even when our databases exceed the size of available RAM: If the size of the
result set is constant, then query time is largely independent of the size of the
database and for result sets where the size is proportional to the database size,
the cost is linear in the database size.

6 Conclusions and Research Questions

The premise of this work is that in order to provide truly practical SSE solutions
one needs to accept a certain level of leakage; therefore, the aim is to achieve
an acceptable balance between leakage and performance, with formal analysis
ensuring upper bounds on such leakage. Our solutions strike such a practical
balance by offering performance that scales to very large data bases; supporting
search in both structured and textual data with general Boolean queries; and
confining leakage to access (to encrypted data) patterns and some query-term
repetition only, with formal analysis defining and proving the exact boundaries
of leakage. We stress that while in our solutions leakage never occurs in the
form of direct exposure of plain data or searched values, when combined with
side-information that the server may have (e.g., what are the most common
searched words), such leakage can allow for statistical inference on plaintext
data. Nonetheless, it appears that in many practical settings the benefits of
search would outweigh moderate leakage (especially given the alternatives of
outsourcing the plaintext data or keeping it encrypted but without the ability
to run useful searches).

Our report on the characteristics and performance of our prototype points
to the fact that scalability can only be achieved by low-complexity protocols
which admit highly parallelizable implementations of their computational and
I/O paths. Our protocols are designed to fulfill these crucial performance re-
quirements.

There are interesting design and research challenges arising from this work.
What we call “the challenge of being imperfect” calls for trade-offs between
privacy and performance that can only be evaluated on the basis of a formal
treatment of leakage. Understanding the limits of what is possible in this do-
main and providing formal lower bounds on such trade-offs appears as a non-
trivial problem that deserves more attention. Some of these problems may still
be unresolved even for plaintext data. The seemingly inherent difference pointed
out in the introduction between the complexity of resolving conjunctions with
high-frequency terms versus conjunctions with low-frequency terms, but with a
similar-size result set, may be such a case. We do not know of a proven lower
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bound in this case although the work of Patrascu [22], for example, may point
to some relevant conjectured bounds.

Another important evaluation of leakage is what we refer to as “semantic leak-
age.” How much can an attacker learn from the data given the formal leakage
profile and side knowledge on the plaintext data? Clearly, the answer to this
question is application-dependent but one may hope for some general theory
in which these questions can be studied. The success of differential privacy in
related domains opens some room for optimism in this direction. Demonstrating
specific attacks in real-world settings is also an important direction to pursue.
We note that in some settings just revealing the size of the number of docu-
ments matching a query may leak important information on the query contents
(e.g., [15]). Therefore, developing masking techniques that include dummy or
controlled data to obscure statistical information available to the attacker seems
as an important research direction to strengthen the privacy of solutions as those
developed here. ORAM-related techniques can be certainly help in this setting,
especially given the progress on the practicality of these techniques in last years.

Yet another research direction is to characterize plaintext-search algorithms
that lend themselves for adaptation to the encrypted setting. The s-term and
x-term based search that we use is such an example: It treats data in “black-
box” form that translates well to the encrypted setting. In contrast, search that
looks at the data itself (e.g., sorting it) may not work in this setting or incur in
significantly increased leakage (e.g., requiring order-preserving or deterministic
encryption). Finally, it would be interesting to see more examples (in other two-
party, or multi-party, protocols) of our approach, which is central to the design
of OXT, of removing interaction from protocols by pre-computing and storing
some of the protocol messages during a pre-computation phase.
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Abstract. Motivated by the problem of avoiding duplication in storage
systems, Bellare, Keelveedhi, and Ristenpart have recently put forward
the notion of Message-Locked Encryption (MLE) schemes which sub-
sumes convergent encryption and its variants. Such schemes do not rely
on permanent secret keys, but rather encrypt messages using keys de-
rived from the messages themselves.

We strengthen the notions of security proposed by Bellare et al. by
considering plaintext distributions that may depend on the public param-
eters of the schemes. We refer to such inputs as lock-dependent messages.
We construct two schemes that satisfy our new notions of security for
message-locked encryption with lock-dependent messages.

Our main construction deviates from the approach of Bellare et al.
by avoiding the use of ciphertext components derived deterministically
from the messages. We design a fully randomized scheme that supports
an equality-testing algorithm defined on the ciphertexts.

Our second construction has a deterministic ciphertext component
that enables more efficient equality testing. Security for lock-dependent
messages still holds under computational assumptions on the message
distributions produced by the attacker.

In both of our schemes the overhead in the length of the ciphertext is
only additive and independent of the message length.

Keywords: Deduplication, convergent encryption, message-locked
encryption.

1 Introduction

Deduplication, which eliminates redundant copies in user-provided data, is an
important space-saving technique in communications and storage (see, for
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example, [28,35,26]). Storage systems that rely on deduplication typically let
the server have unfettered access to the clients’ data. This set-up creates an
obvious confidentiality problem, since the clients must trust the server with not
only storing their documents but keeping them secret too.

The first solution for balancing confidentiality and efficiency in deduplication
was described by Douceur et al. [18] and called convergent encryption. According
to this deterministic scheme, a message is encrypted under a message-derived
key (a hash of the message) so that identical plaintexts are mapped to identical
ciphertexts. After encrypting the message, the client uploads the ciphertext to
the server, retaining the hash to allow later decryption. In the meantime, the
server can recognize equal ciphertexts, storing only one copy of each: if two clients
happen to upload the same file, the resulting ciphertexts will be identical and can
be deduplicated. The clients need not coordinate their actions and might not even
be aware of each other’s existence. Implementations and variants of convergent
encryption followed [3,14,25,30,33,2,1] but their precise security guarantees were
never fully proven or even stated.

Message-Locked Encryption. Recently, Bellare, Keelveedhi, and Risten-
part [7] brought much needed rigor into the area, by defining a new encryp-
tion primitive, Message-Locked Encryption (MLE), and several definitions that
capture various aspects of MLE security. They also constructed and analyzed
several schemes in their framework.

We briefly recall the definition of MLE and two security notions of privacy and
tag integrity for MLE schemes introduced by Bellare et al. An MLE scheme en-
capsulates a standard (possibly randomized) symmetric-key encryption scheme
where the encryption algorithm accepts a message m and a key k, and outputs a
ciphertext c. The decryption algorithm reverses the process, recovering m from
c given k. The scheme comes with a key derivation algorithm that, unlike a con-
ventional key generation algorithm, is a deterministic function from m to k. It
also includes a tag-generation algorithm that maps the ciphertext to a tag. Iden-
tical plaintexts result in equal tags. The corresponding ciphertexts, which may
be randomized, are not necessarily equal. Tag integrity means that no computa-
tionally bounded adversary can trick the server into replacing a valid encryption
with a ciphertext that does not decrypt to the same plaintext.

It is apparent that MLE, with its deterministic tag, cannot satisfy the standard
notions of confidentiality (such as semantic security). Indeed, if the plaintexts
can be feasibly enumerated, the adversarymay always compute their tags and test
them against that of the challenge ciphertext. A meaningful security guarantee
can be achieved only if the input is sufficiently unpredictable. More concretely,
in a CDA game (a chosen-distribution attack) the challenge consists
either of a uniformly distributed string of bits or an encryption of a message
drawn randomly from a distribution provided by the adversary. The security level
is characterized by the distinguisher’s running time, its advantage over a random
guess, and the min-entropy of the distribution that the adversary is allowed to
specify. A lower min-entropy requirement corresponds to a stronger security
guarantee. This approach—basing security of the scheme on the assumption
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of unpredictability of the plaintexts—is similar to the theory of deterministic
public-key encryption initiated by the work of Bellare, Boldyreva, and O’Neill [4]
(see also [6,10,5,12,19,24,32,29]).

Lock-Dependent Messages. In addition to the min-entropy requirement, there
is another constraint on the adversarially chosen distribution of plaintexts im-
plicit in the definition of MLE. If the adversary is allowed to specify a distribu-
tion of plaintexts, it may use the fact that the tags are deterministic for leaking
unnecessary information on the messages (e.g., select a distribution that is con-
centrated on messages whose tags share a particular property, such as that they
all start with a zero bit, or that the first bit of the tag reveals the first bit of
the message). Doing so immediately gives the adversary a constant advantage
in answering the challenge (of whether the output was a random string of bits
or an encryption of a message drawn from the distribution). Similar attacks can
be effective against any deterministic encryption scheme, where the adversary
tailors the distribution to the scheme’s public key. The common way of sidestep-
ping this difficulty is to require that the distribution be chosen independently
of the system parameters or, in the case of deterministic encryption, of the sys-
tem’s public key. More formally, the adversary must commit to the distribution
of plaintexts before accessing the description of the system.

Since the parameters of the scheme are supposed to be publicly available,
they must be included into the view of any realistic adversary. As soon as the
adversary learns the parameters of the system and may influence, however indi-
rectly, the distribution of plaintexts, the assumption of independence becomes
false, voiding the security guarantees proven under this assumption.

In this paper we ask whether security guarantees can encompass also attacks
that may depend on the scheme’s parameters. Identifying the public parameters
of an encryption scheme with a lock, we can paraphrase the problem addressed
in this paper as follows:

Can message-locked encryption be secure for lock-dependent messages?

1.1 Our Contributions

In this paper we put forward two approaches for resolving this question in the af-
firmative, and provide schemes that are secure even for lock-dependent messages
in realistic and rigorously defined adversarial models.

Our first approach is to avoid using tags that are derived deterministically
from the messages. To this end, we design a fully randomized scheme that sup-
ports an equality-testing algorithm defined on the ciphertexts. We show that this
enables us to satisfy a strong definition of security for an extension of the MLE
notion, allowing the adversary to specify the distribution of the plaintexts adap-
tively, with no further restrictions on the distribution other than its min-entropy.
Our construction is based on standard cryptographic tools in the random oracle
model [8] and on a natural variant of Canetti’s entropy-based DDH assumption
[13]. The ciphertext overhead is only additive and polynomial in the security
parameter.
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Our second approach, on the other hand, continues using deterministic tags.
Security for lock-dependent messages is guaranteed by limiting the computa-
tional power of the adversarial message distributions. (This approach is inspired
by the recent work of Raghunathan, Segev, and Vadhan [29] who proposed a
similar adversarial model for deterministic public-key encryption.) Specifically,
in the random oracle model, we consider adversaries that are allowed to choose
the distribution of plaintexts adaptively, after seeing the scheme’s parameters,
subject to the condition that the distribution be efficiently samplable using at
most q queries to the random oracle, where q is a pre-determined parameter.
Our construction can be based on any semantically secure encryption scheme.
Its overhead, defined as the increase in the length of the ciphertext, is additive
and depends only on the security parameter.

1.2 Paper Organization

In Section 2, we give a high-level overview of the fully randomized scheme and the
deterministic scheme that we construct in this paper. In Section 3, we introduce
a few preliminaries required to present our results. In Section 4, we formally
define our notion of message-locked encryption for lock-dependent messages. In
Section 5, we present the fully randomized scheme. In Section 7, we conclude
and mention several interesting directions for further research. Because of space
limitations all proofs and some definitions are deferred to the full version.

2 Overview of Our Schemes

In what follows we provide a high-level overview of the main ideas that underlie
our schemes. Intuitively, constructing MLE schemes requires solving two techni-
cal challenges. We must design an algorithm that encrypts messages under a key
that is highly correlated (via the key derivation algorithm) with the message
and still remains secure. Secondly, the part of the ciphertext that allows the
equality test must not leak any information about messages sampled from an
adversarially chosen min-entropy distribution even given the public parameters.

Construction 1: A Fully Randomized Scheme. An encryption of a message
m in our first scheme consists of three components: a “payload” which is an en-
cryption of m using some underlying randomized encryption scheme, a tag, and
a proof of consistency showing that the payload and the tag correspond to the
same message. A tag for a message m is computed as τ =

(
gr, gr·h(m)

)
, where

g is a generator of a bilinear group, h is a sufficiently strong collision-resistant
function, and r is chosen uniformly at random. Given two tags τ1 = (g1, h1)
and τ2 = (g2, h2), the equality-testing algorithm computes the pairings ê(g1, h2)
and ê(g2, h1), which match if the tags were derived from the same message (or
if a non-trivial collision was found for h). The fact that tags do not reveal any
more information than is necessary for the scheme’s functionality is based on
combining a variant of Canetti’s entropy-based DDH assumption [13], and the
concept of seed-dependent condensers, recently introduced by Dodis, Ristenpart,
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and Vadhan [17]. A similar idea for equality testing (without hashing) was ex-
plored by Yang et al. [34], who designed public-key encryption schemes that
support equality testing but offer a significantly weaker notion of security (only
one-wayness).

As for the payload and the consistency proof, a natural approach would be
to simply encrypt m using its hash h(m) as a key (as in [7]), and provide a
NIZK proof of consistency. This approach, however, seems to fail as we must
use an encryption scheme for which it is secure to encrypt a message m under
the key h(m). All existing constructions satisfying this property rely on the
random oracle paradigm, which rules out using NIZK proofs as the language
under consideration is no longer in NP.

We can resolve this issue with a cut-and-choose protocol applied to the en-
cryption of the message. Näıvely, such a protocol would inflate the size of the
ciphertext. However, a delicate combination of a secret-sharing scheme and a
cut-and-choose technique enables us to realize an encryption scheme with a ci-
phertext overhead that is only additive and independent of the message length.

Specifically, the payload in our ciphertext consists of a randomized encryption
Es(m; r1) of m under a uniformly chosen key s, a commitment Commit(s‖t) to
s and a uniformly chosen key t, an ElGamal encryption

(
gr2 , gr2·h(m) · t

)
of t

using h(m) as a key, and a circular-secure encryption (r3, H(r3‖t)+s) of s using
t as a key. The circular-secure encryption scheme is due to Black, Rogaway, and
Shrimpton [9] whose proof of security assumes a random oracle H .

The only component that requires a random oracle is the circular-secure en-
cryption of s using t. We can use a NIZK proof for proving that all other compo-
nents (including the tag) are consistent with the same message m. In addition,
we use a cut-and-choose protocol (which we collapse using a random oracle to
a non-interactive one) for showing that the commitment Commit(s‖t) is consis-
tent with the circular-secure encryption (r3, H(r3‖t) + s), where s is encoded
with a threshold secret-sharing scheme. The commitment Commit(s‖t) is used
in both the NIZK proof and in the cut-and-choose components, and binds the
two together to yield a proof of consistency for the entire ciphertext.

To ensure that the overhead of the scheme is additive and independent of the
length of the message, first observe that the length of the commitment and the
encryption of s under t (and hence the cut-and-choose part of the scheme) depend
only on the security parameter. To further minimize the length of ciphertexts,
we use a composition of an NIZK proof system with a succinct argument system
in the random oracle model, where the length of the arguments depends only on
the security parameter.

Construction 2: Deterministic encryption for computationally bound-
ed distributions. As in the previous work [18,7], our second scheme uses any
semantically secure randomized encryption Ek(m; r). It encrypts a message m
using a key k = km and randomness r = rm that are derived from m in a
deterministic manner (e.g., using a hash function modeled as a random oracle).
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With lock-dependent message distributions, however, such a scheme does not
satisfy a meaningful notion of security since it is completely deterministic (as
discussed above).

Following Raghunathan et al. [29] we show that this approach can be made
secure even for lock-dependent message distributions, subject to the condition
that these distributions are efficiently samplable using at most q queries to the
random oracle, where q is a pre-determined parameter. (We do not ask for an
a priori bound on the number of oracle calls that are made directly by the
adversary.) Concretely, we derive the key km and the randomness rm as km =
⊕q+1

i=1H1(m‖i) and rm = ⊕q+1
i=1H2(m‖i), where H1 and H2 are two hash functions

modeled as independent random oracles.
Intuitively, the proof of security relies on the fact that km and rm are pseudo-

random against both the adversary and the sampling circuits of such “q-bounded”
message distributions. Pseudorandomness against the adversary relies on the fact
thatm is sampled with a super-logarithmic min-entropy and that the underlying
encryption scheme is secure. Pseudorandomness against the sampling circuits re-
lies on the fact that for learning any information on km or rm it is essential to
query the random oracle q + 1 times.

3 Preliminaries

Notation. For an integer n ∈ N we denote by [n] the set {1, . . . , n}, by [a, b]
the set {a, a+1, . . . , b}, and by Un the uniform distribution over the set {0, 1}n.
For a random variable X we denote by x ← X the process of sampling a value
x according to the distribution of X . Similarly, for a finite set S we denote by
x ← S the process of sampling a value x according to the uniform distribution
over S. We denote by x (and sometimes x) a vector (x1, . . . , x|x|). We denote
by X = (X1, . . . , XT ) a joint distribution of T random variables, and by x =
(x1, . . . , xT ) a sample drawn from X. For two bit-strings x and y we denote by
x‖y their concatenation. A non-negative function f : N → R is negligible if it
vanishes faster than any inverse polynomial.

Entropy. The min-entropy of a random variable X is defined as H∞(X) =
− log(maxx Pr [X = x]). A k-source is a random variable X with H∞(X) ≥ k.
A (k1, . . . , kT )-source is a random variable X = (X1, . . . , XT ) where each Xi is
a ki-source. A (T, k)-source is a random variable X = (X1, . . . , XT ) where for
each i ∈ [T ], it holds that Xi is a k-source. A (T, k)-block-source is a random
variable X = (X1, . . . , XT ) where for every i ∈ [T ] and x1, . . . , xi−1 it holds that
Xi|X1=x1,...,Xi−1=xi−1 is a k-source. The statistical distance between two random
variables X and Y over a finite domain Ω is SD(X,Y ) = 1

2

∑
ω∈Ω |Pr [X = ω]−

Pr [Y = ω] |.
The ME-DDH Assumption.We state a variant of Canetti’s entropy DDH as-
sumption [13]. The β-min-entropy DDH assumption (abbreviated as ME-DDH)
states that for a group G equipped with a non-degenerate bilinear map ê : G ×
G → GT, of prime order p (where p is a λ-bit prime) for any distribution X
over Zp with H∞(X) ≥ β, for uniformly sampled a, c ← Zp and b ← X , it
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holds that the two distributions
(
g, ga, gab

)
and (g, ga, gc) are computationally

indistinguishable. We make two remarks on the ME-DDH assumption:

1. We require β ≥ ω(logλ) for the assumption to be plausible. Otherwise, there
exists an x∗ ← X such that Pr [X = x∗] is non-negligible and a distinguisher
that, when given (g, ga, gc), checks to see whether (ga)x

∗
= gc, succeeds in

distinguishing the two distributions with non-negligible probability.

2. If X is the uniform distribution over Zp, then the assumption is uncondi-
tionally true as the two distributions ab and c are identical even given a.

4 MLE for Lock-Dependent Messages

Extending the work of Bellare et al. [7], we propose a more general notion of the
primitive MLE, which we call MLE2. In MLE2, we allow tags to be randomized
and consider a definition of tag correctness that introduces a new polynomial-
time algorithm EQ that subsumes the functionality of deterministic tags. In
addition, we introduce a new validity-test algorithm, denoted Valid, that allows
anyone with the public parameters to check if a given ciphertext is a valid ci-
phertext. In the context of using MLE2 for secure deduplication, EQ allows for
deduplication of ciphertexts and Valid allows the server to reject adversarially
constructed ciphertexts that subvert deduplication to replace a valid ciphertext
with an invalid one that does not decrypt correctly.

The main benefit of the new notion is permitting a stronger security require-
ment (which we denote PRV-CDA2) that allows the adversary to see the public
parameters before issuing oracle queries.

MLE2. A message-locked encryption scheme for lock-dependent messages is a
six-tuple Π = (PPGen,KD,Enc,Dec,EQ,Valid) operating over plaintext space
M = {Mλ}λ∈N, ciphertext space C = {Cλ}λ∈N, and keyspace K = {Kλ}λ∈N of
polynomial-time randomized algorithms with the following properties:

– The parameter generation algorithm takes as input 1λ and returns public
parameters pp.

– The key derivation function KD takes as input public parameters pp, a mes-
sage m, and outputs a message-derived key km ← KDpp(m).

– The encryption algorithm Enc takes as input public parameters pp, a message
m, and a message-derived key km. It outputs a ciphertext c← Encpp(km,m).

– The decryption algorithm Dec takes as input public parameters pp, cipher-
text c, and a secret key k and outputs either a message m or ⊥.

– The (new) equality algorithm EQ takes as input public parameters pp, and
two ciphertexts c1 and c2 and outputs 1 if both ciphertexts are generated
from the same underlying message.

– The (new) validity-test algorithm Valid takes as input public parameters pp
and a ciphertext c and outputs 1 if the ciphertext c is a valid ciphertext.

Bellare et al. [7] considered the notion of an equality-checking tag analogous to
our notion of an equality algorithm EQ. A (publicly computable) tag-generation
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algorithm, on input a ciphertext c, produces a tag such that if two ciphertexts
c1 and c2 are generated from the same message, the corresponding tags are
equal with high probability. Our equality algorithm is a generalization of such
an equality-checking tag. Given any scheme with equality-checking tags, we can
describe a simple algorithm EQ that given c1 and c2 derives their respective tags
and outputs 1 only if the tags are equal.

The notion analogous to tag correctness of Bellare et al. [7] requires that for
all λ ∈ N, all public parameters pp ← PPGen(1λ), and all messages m ∈ M,
there is a negligible function ν(λ) such that for two encryptions c1 and c2 of
m with KDpp(m) and independent random coins, it holds that EQpp(c1, c2) = 1
with probability at least 1 − ν(λ), where the probability is taken over random
coins of all algorithms.

The notion of correctness for the validity-test algorithm Valid requires that for
all λ ∈ N, all public parameters pp ← PPGen(1λ), and all messagesm ∈ M, there
is a negligible function ν(λ) such that for a ciphertext c← Encpp (KDpp(m),m),
Pr [Validpp(c) = 1] ≥ 1 − ν(λ), where the probability is taken over all random
coins of all algorithms.

The usual notion of correctness of the decryption algorithm Dec applies.
Specifically, for all λ ∈ N, all public parameters pp ← PPGen(1λ), and all mes-
sages m ∈M, there is a negligible function ν(λ) such that

Pr[Decpp(km,Encpp(km,m)) = m | km ← KDpp(m)] ≥ 1− ν(λ),

where the probability is taken over all random coins of all algorithms.

MLE2 Adversaries. To capture a notion of security against an adversary that
attacks the system by choosing messages that may depend on the public pa-
rameters, we introduce several adversary models. In what follows, we consider
several parameters that are functions of the security parameter; q = q(λ) de-
noting the number of random oracle queries, k = k(λ) denoting min-entropy
requirements over message sources, T = T (λ) denoting the number of blocks in
the message source, and Γ = Γ (λ) denoting the size of a circuit that generates
message sources.

In particular, inspired by recent work on deterministic encryption [29], for
X ∈ {(T, k)-block, (T, k)} we define the class of Γ -sampling complexity X-source
adversaries and a generalization to polynomial-size X-source adversaries. We
stress that all algorithms are allowed polynomially many calls to the random
oracle in the security definitions that follow. Additionally, in schemes that rely
random oracles, we define q-query X-source adversaries. Although more restric-
tive, they are useful in constructing efficient and practical deterministic encryp-
tion schemes secure in the random oracle model [29]. We begin by introducing a
definition of the real-or-random encryption oracle used in definitions of security.

Definition 4.1 (Real-or-Random Encryption Oracle). The real-or-random
encryption oracle, RoR, takes as input triplets of the form (mode, pp,M), where
mode ∈ {real, rand}, pp denotes public parameters, and M is a polynomial size
circuit representing a joint distribution over T messages. If mode = real then the
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oracle samples (m1, . . . ,mT ) ← M, and if mode = rand then the oracle samples
uniform and independent messages m1, . . . ,mT ←M. Next, for each i ∈ [T ], it
samples ki ← KDpp(mi), computes ci ← Encpp(ki,mi) and outputs the ciphertext
vector (c1, . . . , cT ).

Definition 4.2 (Γ -sampling Complexity Adversary). Consider an X-source
where X ∈ {(T, k)-block, (T, k)}. Let A be a probabilistic polynomial-time algo-
rithm that is given as input a pair (1λ, pp) and oracle access to RoR(mode, pp, ·)
for some mode ∈ {real, rand}. Then, A is a Γ -sampling complexity X-source ad-
versary if for each of A’s RoR queries M it holds that M is an X-source that is
samplable by a circuit of size at most Γ . In addition, for the case of (T, k)-source
adversaries, we require that for each such query M it holds that Mi �= Mj for
all vectors (M1, . . . ,MT ) in the support of M and for all i �= j ∈ [T ].

We consider a stronger adversary that has no a-priori bound on the sampling
complexity of its queries except that they are efficiently samplable by polynomial
size circuits. Such an adversary subsumes Γ -sampling complexity adversaries for
all Γ = poly(λ).

Definition 4.3 (Polynomial-Sampling Complexity Adversary). Let X ∈
{(T, k)-block, (T, k)}, and let A be a probabilistic polynomial-time algorithm that
is given as input a pair (1λ, pp) and oracle access to RoR(mode, pp, ·) for some
mode ∈ {real, rand}. Then, A is a polynomial-size X-source adversary if for each
of A’s RoR-queries M it holds that M is an X-source that is samplable by a
circuit of (an arbitrary) polynomial size in the security parameter.

Definition 4.4 (q-query Adversary [29]). Consider an X-source where X ∈
{(T, k)-block, (T, k)}. Let A be a probabilistic polynomial-time algorithm that is
given as input a pair (1λ, pp) and oracle access to RoR(mode, pp, ·) for some
mode ∈ {real, rand}. Then, A is a q-query k-source adversary if for each of A’s
RoR-queries M it holds that M is an X-source that is samplable by a polynomial-
size circuit that uses at most q queries to the random oracle.

A Stronger Notion of Message Privacy: PRV-CDA2. We define the fol-
lowing security notion with respect to polynomial-size X-source adversaries (see
Definition 4.3), which we denote X-source PRV-CDA2 security. A simple modifi-
cation to the experiments in the security definition allows us to restrict our class
of adversaries to Γ -sampling complexity or q-query X-source adversaries. Such
notions are referred to as Γ -sampling complexity or q-query X-source PRV-CDA2.

Definition 4.5 (PRV-CDA2 Security). An MLE2 scheme Π = (PPGen,KD,
Enc,Dec,EQ,Valid) is X-source PRV-CDA2 secure, for X ∈ {(T, k)-block, (T, k)},
if for any probabilistic polynomial-time polynomial-size X-source adversary A,
there exists a negligible function ν(λ) such that

AdvPRV-CDA2
Π,A (λ)

def
=
∣∣∣Pr [ExptrealΠ,A(λ) = 1

]
− Pr

[
ExptrandΠ,A(λ) = 1

]∣∣∣ ≤ ν(λ),
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PRV-CDA2 game: Exptmode
Π,A(λ) TC2/STC2 game: ExptZΠ,A(λ)

1. pp ← PPGen(1λ).

2. b ← ARoR(mode,pp,·)(1λ, pp).
3. Output b.

1. pp ← PPGen(1λ).

2. (m, c′) ← A(1λ, pp).

3. If m = ⊥ or Valid(c′) = 0 output 0.

4. k ← KDpp(m).

5. c ← (Encpp(k,m)) and m′ ← Decpp(k, c
′).

6. If Z = TC2, EQ(c, c′) = 1, m = m′, and
m′ = ⊥, output 1.

7. If Z = STC2, EQ(c, c′) = 1, and m = m′,
output 1.

8. Else, output 0.

Fig. 1. Security games for Definitions 4.5 and 4.7.

where for each mode ∈ {real, rand} and λ ∈ N the experiment Exptmode
Π,A (λ) is

defined in Figure 1. In addition, such a scheme is one-time secure if the above
holds for any adversary A that queries the RoR oracle at most once.

The assumption of the plaintexts’ unpredictability and support for equality test-
ing (for use in the context of deduplication) may appear to be at odds with each
other. After all, a distribution of plaintexts with sufficiently large min-entropy
cannot possibly benefit from deduplication as the number of clones in a mod-
erately sized sample is going to be negligible. However, the definition does not
presuppose a particular generative model for the plaintexts. Instead, it bounds
from below the amount of uncertainty that the adversary has about a particu-
lar plaintext, or in the language of Bayesian probability theory, the adversary’s
prior. In other words, Alice and Bob may share the same document that can
be deduplicated on the server and will stay private as long as the server cannot
guess its exact content.

Our parameter-dependent security notion enables an immediate reduction
of “multi-shot” adversaries to “single-shot” ones, as is standard in public-key
encryption schemes. Theorem 4.6 stated below follows via a standard hybrid
argument.

Theorem 4.6 (Equivalence of PRV-CDA2 and One-time PRV-CDA2 Se-
curity). Let k = k(λ), T = T (λ), and X ∈ {(T, k)-block, (T, k)}. Then, an
MLE2 scheme is X-source PRV-CDA2-secure if and only if it is one-time X-
source PRV-CDA2-secure.

Definition 4.7 (Tag Consistency). An MLE2 scheme Π = (PPGen,KD,Enc,
Dec,EQ,Valid) is tag consistent (resp., strongly tag consistent) if for any proba-
bilistic polynomial-time adversary A, there exists a negligible function ν(λ) such

that Advexpt
Π,A(λ)

def
= Pr

[
ExptexptΠ,A(λ) = 1

]
≤ ν(λ), where expt = TC2 (resp.,

expt = STC2) and for each Z ∈ {TC2, STC2}, λ ∈ N the experiment ExptZΠ,A(λ),
is defined in Figure 1.
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Block-Source Adversaries vs. Single-Message Adversaries. In the some-
what similar setting of deterministic public-key encryption, Boldyreva et al. [10]
showed that for proving security against (T, k)-block-source adversaries it suf-
fices to prove security against (1, k)-source adversaries. Their proof, however,
does not seem to carry over to our setting, where all message distributions are
required to be efficiently samplable by polynomial-sized circuits. Nevertheless,
motivated by the works of Bellare et al. [7] and Brakerski and Segev [12], we
now present a strengthening of our notion of PRV-CDA2 security, for which we
are able to prove an equivalence between security against (T, k)-block-source
adversaries and security against (1, k)-source adversaries.

The strengthened notion, to which we refer as aux-PRV-CDA2 security (i.e.,
PRV-CDA2 security with auxiliary inputs), is obtained by modifying the real-or-
random encryption oracle. The modification is that its inputs are now of the form
(mode, pp, (M,Aux)), where (M,Aux) is a joint distribution over messages and
auxiliary inputs. If mode = real then the oracle samples (m1, . . . ,mT , aux) ←
(M,Aux), and if mode = rand then the oracle samples uniform and indepen-
dent messages m1, . . . ,mT ← M and aux ← Aux, independent of the messages.
Next, for each i ∈ [T ], it samples ki ← KDpp(mi), computes ci ← Encpp(ki,mi)
and outputs the vector (c1, . . . , cT , aux). For X ∈ {(T, k)-block, (T, k)}, we say
that a probabilistic polynomial-time algorithm A is a polynomial-size X-source
adversary if for each of A’s RoR-queries (M,Aux) it holds that: (1) the joint
distribution (M,Aux) is samplable by a circuit of polynomial size, and (2) for
every auxiliary input aux in the support of Aux, it holds that M|Aux=aux is an
X-source. Equipped with this modification, we prove the following theorem:

Theorem 4.8 (Equivalence of (T, k)-block-source and (1, k)-source ad-
versaries with auxiliary inputs). Let k = k(λ) and T = T (λ) be polynomial
in λ. Then, an MLE2 scheme is (T, k)-block-source aux-PRV-CDA2-secure if and
only if it is (1, k)-source aux-PRV-CDA2-secure.

A Comparison to the Security Notion of Bellare et al. [7]. In the security
notion of MLE [7], adversaries are not given access to the public parameters
pp when interacting with the RoR encryption oracle (unlike in step 2 in our
definition). Adversaries receive pp only after all queries to the RoR oracle are
completed. (Once pp is published, subsequent oracle queries return ⊥.) Our
security notion of MLE2 considers adversaries that are given access to the public
parameters when interacting with the RoR encryption oracle. In particular, this
enables adversaries to query the oracle with message distributions that depend
on the public parameters pp (in a bounded manner, as described in the various
adversary notions defined above).

The security notions of both MLE and MLE2 consider message distributions
that are (T, k)-sources. All the MLE constructions of Bellare et al. are secure
for (T, k)-sources, and our deterministic MLE2 construction for q-query adver-
saries is secure for (T, k)-sources as well (for any polynomial T = T (λ)). How-
ever, our fully randomized construction is secure only for k-sources (that is, for
(1, k)-sources). This limitation seems to be inherent to our approach, which uses
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seed-dependent condensers. (See the work of Dodis et al. [17] for a discussion on
the limitations of seed-dependent condensers in the presence of auxiliary inputs).

The notions of TC2/STC2 tag consistency described above follow closely the
definitions of Bellare et al., with small modifications to accommodate the more
general notion of tags and the new algorithms EQ and Valid. In particular, the
experiment outputs 1 only if EQ(c, c′) = 1, which corresponds to comparing tags
in MLE. Additionally, we discard adversarially constructed ciphertexts c′ that
can be recognized by algorithm Valid as invalid.

5 A Fully Randomized Scheme

In this section, we present the scheme Πfull, a fully randomized MLE2 scheme.
An overview of the construction is presented in Section 2.

The Scheme. Let λ denote the security parameter. Let GroupGen be a proba-
bilistic polynomial-time algorithm that takes as input a security parameter 1λ,
and outputs (G,GT, p, g, ê) where G and GT are groups of prime order p, G
is generated by g, p is a λ-bit prime number, and ê : G × G → GT is a non-
degenerate efficiently computable bilinear map. The scheme is parameterized by
a parameter n that is polynomial in the security parameter. The MLE2 scheme
Πfull comprises the following building blocks.

– A one-time secure symmetric-key encryption scheme SE = (K,E,D). As a
concrete example, let G : K → M be a pseudorandom generator that takes
short keys and expands them to the message space. We can use such a PRG
as a one-time pad to get a simple, efficient, and one-time secure scheme
Ek(m) := G(k)⊕m ∈M.

– An (n+1)-out-of-(2n+1) secret sharing of a key k ∈ K. The secret is encoded
as an element of the field Fq for a prime q slightly larger than |K|. The
additive secret-sharing scheme we use (based on interpolating polynomials)
also satisfies the additional property that given 2n+1 shares of a secret, one
can efficiently reconstruct (via Reed-Solomon decoding techniques [23]) the
secret as long as at least �(3n+ 1)/2� shares are correctly computed.

– Two hash functions RO : {0, 1}∗ → Fq and FS : {0, 1}∗ → pn,2n+1. The func-
tions will be modeled in the proof of security as random oracles. RO is used
to break circularity and FS denotes the random oracle required to imple-
ment Fiat-Shamir. Here pn,2n+1 denotes the set of all subsets of [2n+ 1] of
cardinality n.

– A collection H = {Hλ}λ∈N of collision-resistant hash functions h : M → Zp.

– A commitment scheme T C = (CGen,Commit,Reveal).

– A simulation-sound non-interactive extractable zero-knowledge proof system
ZK = (ZKGen,ZKProve,ZKVer,ZKFakeGen,ZKSim,ZKExt) for the NP lan-
guage L defined at the end of the description of the scheme.

The scheme Πfull = (PPGen,KD,Enc,Dec,EQ,Valid) is parameterized by a pa-
rameter n that is polynomial in the security parameter and is as follows:
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– Parameter-generation algorithm: On input 1λ, algorithm PPGen sam-
ples (G,GT, p, g, ê) ← GroupGen(1λ). It chooses a hash function h ← H
from the family of collision-resistant hash functions, and specifies two ad-
ditional hash functions RO and FS. It generates public parameters ppZK ←
ZKGen(1λ) and ppcom ← CGen(1λ) and publishes pp = (G,GT, p, g, ê, h,
ppZK, ppcom).

– Key-derivation function: KD takes as input public parameters pp, a mes-
sage m, and outputs the message-derived key km = h(m).

– Encryption algorithm: Enc takes as input public parameters pp, a message
m, and a message-derived key km. It samples r ← Zp and first computes
τ =

(
gr, gr·h(m)

)
∈ G2.

Creating shares of s: The algorithm chooses a key s ← K(1λ) for scheme
SE and an (n + 1)-out-of-(2n+ 1) additive secret sharing of s denoted $s =
(s1, . . . , s2n+1) ∈ F2n+1

q . It computes the encrypted message d = Es(m) ∈ C.
Committing to deferring elements ti: The algorithm samples t1, . . . , t2n+1 ←
G and lets comi denote the commitment Commit(si‖ti). We let $com =
(com1, . . . , com2n+1) and $t = (t1, . . . , t2n+1).
Encrypting deferring elements ti: The algorithm samples random elements
u1, . . . , u2n+1 ← Zp and computes ElGamal encryptions of ti with public
key gh(m). Let eti =

(
gui , gui·h(m) · ti

)
. We let $et = (et1, . . . , et2n+1) and

$u = (u1, . . . , u2n+1).
Encrypting shares of s: The algorithm encrypts si under ti with a construc-

tion by Black et al. [9]. The algorithm samples v1, . . . , v2n+1 ← {0, 1}λ and
sets esi to the ciphertext (vi,RO(vi‖ti) + si mod q). We let $es denote (es1,
. . . , es2n+1).
Zero-knowledge proof: The algorithm computes a proof π using algorithm

ZKProve that the statement σ = (d, $com, $et, τ) is in the language L defined
below.
Cut-and-choose: The algorithm computesX ← FS (σ‖π‖$es) whereX ⊂ [2n+
1] of cardinality n. The algorithm reveals commitments comi for i ∈ X ,
denoted by $rcom = {Reveal(comi)}i∈X .
The algorithm outputs:

c =
(
d, $com, $et, $es, π, $rcom, τ

)
.

– Validity test: On input a ciphertext c =
(
d, $com, $et, $es, π, $rcom, τ

)
, algo-

rithm Valid constructs σ =
(
d, $com, $et, τ

)
. If ZKVer(ppZK, σ, π) = 0, algo-

rithm Valid outputs 0. Next, Valid computes X = FS (σ‖π‖$es) ∈ pn,2n+1

and verifies for revealed values {rcomi}i∈X from $rcom that the commit-
ments and encryptions of $s, {comi, esi}i∈X , are consistent with opened values
{si, ti}i∈X . It outputs 1 if they are consistent and 0 otherwise.

– Decryption algorithm: On input the public parameters of the system
pp, the ciphertext c =

(
d, $com, $et, $es, π, $rcom, τ

)
, and a secret key km, if

Valid(c) = 0, the decryption algorithm outputs ⊥. Else, the decryption al-
gorithm first recovers ti from eti = (α, β) with secret key km by computing
ti = β/

(
αkm

)
. Next, using ti, the algorithm recovers si from esi = (α, β) by
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computing si = β−RO(α‖ti) mod q. It reconstructs s, given the (n+1)-out-
of-(2n+1) additive secret sharing of s, (s1, . . . , s2n+1). Finally, the decryption
algorithm outputs m← Ds(d).

– Equality-testing algorithm: On input two ciphertexts, c1 and c2, the
algorithm recovers τ1 and τ2. Let τ1 = (g1, h1) ∈ G2 and τ2 = (g2, h2) ∈ G2.
The algorithm outputs 1 if and only if ê(g1, h2) = ê(g2, h1).

The Language L and Relation R. Intuitively, the language L contains only
statements σ = (d, $com, $et, τ) whose components are created with the secret
values (m, r, s,$t, $u) in a consistent manner. More formally, we define the relation
R = {(σ,w)} of statements σ and corresponding proof strings w below and note
that L = {σ : ∃ w s.t. (σ,w) ∈ R}:

R :=

⎧⎪⎪⎨⎪⎪⎩
((
d, $com, $et, τ

)
,
(
$s,$t,m

)) d = Es(m)
comi = Commit(si‖ti) ∀ i ∈ [2n+ 1]

eti =
(
gui , gui·h(m)

)
for uniform ui ∈ Zp

τ =
(
gr, gr·h(m)

)
for uniform r ∈ Zp

⎫⎪⎪⎬⎪⎪⎭ .

Correctness of the Scheme Πfull. Consider a ciphertext c← Encpp(h(m),m)
with components (d, $com, $et, $es, π, $rcom, τ) and the secret key km = h(m). If
eti = (α, β), then we have β/(αkm) = gui·h(m) · ti/(gui)h(m) = ti as required.
Next, if esi = (α, β), we have β − RO(α‖ti) = RO(vi‖ti) + si − RO(vi‖ti) = si
(mod q) as required. The secret-sharing scheme correctly reconstructs s given
shares (s1, . . . , s2n+1) (via Reed-Solomon decoding techniques [23]) and therefore
correctness of the scheme follows from correctness of the symmetric encryption
scheme SE .

Correctness of algorithm EQ follows from properties of groups equipped with
bilinear maps. If τ1 = (α1, β1) ∈ G2 and τ2 = (α2, β2) ∈ G2 are constructed by
the encryption scheme with the same underlying message m, then

ê (α1, β2) = ê
(
gr1 , gr2·h(m)

)
= ê (g, g)r1r2·h(m) , and

ê (α2, β1) = ê
(
gr2 , gr1·h(m)

)
= ê (g, g)

r1r2·h(m)
as required.

Succinct Ciphertexts. In order to shrink the ciphertexts in the scheme Πfull

to be of length |Es(m)| + poly(λ), we replace the (long) NIZK proof π in our
ciphertext with a non-interactive succinct extractable argument system whose
length depends only on the security parameter. (Such argument systems are
known to exist in the random oracle model—see the full version for the definition
and instantiation.)

Specifically, our parameter generation algorithm outputs additionally the pub-
lic parameters ppSA for the argument system. The encryption scheme first com-
putes an NIZK proof π for the statement σ = (d, $com, $et, τ), and then uses π as
a witness for asserting (with a succinct proof πSA), using the succinct argument
system, that there exists a proof π that is accepted by the verifier of the NIZK
system for the assertion that (σ, π) ∈ R. Finally, we discard the NIZK proof π
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and only include the succinct argument πSA in the ciphertext. The rest of the
components of the ciphertext remain unchanged. Such a technique for shrinking
NIZK proofs using succinct arguments was recently used, for example, in the
work of Boneh, Segev, and Waters [11]. And finally, we modify the validity test
by invoking the verifier SAVer of the succinct argument system on πSA instead
of the verifier of the NIZK proof system.

The following theorem states that the scheme Πfull is k-source PRV-CDA2
secure (see Definition 4.5). A proof outline is presented in Section 2.

Theorem 5.1. Let SE be a one-time secure symmetric-key encryption scheme,
T C be a statistically-hiding commitment scheme, ZK be a non-interactive ex-

tractable zero-knowledge proof system, and H be a family of
(
poly, 2−ω(log2 λ)

)
-

collision-resistant hash functions. Then, under the ω(log2 λ)-min-entropy DDH
assumption and the CDH assumption in group G, for any k > ω(log2 λ), Πfull is
k-source PRV-CDA2 secure with RO and FS modeled as random oracles.

Next, we state that the scheme Πfull satisfies the notion of strong tag consistency
as in Definition 4.7.

Theorem 5.2. Let T C be a secure commitment scheme, ZK be a non-interactive

extractable zero-knowledge proof system, and H be a family of
(
poly, 2−ω(log2 λ)

)
-

collision-resistant hash functions. Then, setting n ≥ ω(logλ), Πfull is strongly tag
consistent.

6 A Deterministic Scheme for Bounded Message
Distributions

The Scheme. Our deterministic MLE2 scheme uses as a building block an
IND-CPA secure symmetric-key scheme SE = (K,E,D) with the same message
space M as the MLE2 scheme, key space K, ciphertext space C, and randomness
length ρ. It is additionally parameterized by an integer q = q(λ). The scheme

Π
(q)
det = (PPGen,KD,Enc,Dec,EQ,Valid) is defined as follows:

– Parameter-generation algorithm: On input 1λ, the algorithm PPGen
chooses two hash functions H1 : {0, 1}∗ → K and H2 : {0, 1}∗ → {0, 1}ρ. It
outputs the public parameters pp = (H1, H2, q).

– Key-derivation function: The algorithm KD takes as input public pa-
rameters pp, a message m, and outputs the message-derived key km =
H1(m‖1)⊕H1(m‖2)⊕ · · · ⊕H1(m‖q + 1) ∈ K.

– Encryption algorithm: The algorithm Enc takes as input public param-
eters pp, a message m, and a message-derived key km. It computes rm =
H2(m‖1)⊕H2(m‖2)⊕ · · · ⊕H2(m‖q + 1) and outputs Ekm(m; rm) ∈ C.

– Validity test: The algorithm Valid outputs 1 on any input c ∈ C.
– Decryption algorithm: Dec takes as input public parameters pp, a cipher-

text c, and a message-derived key km and outputs m← Dkm(c).
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– Equality algorithm: Algorithm EQ on input public parameters pp and
ciphertexts c1 and c2 outputs 1 if and only if c1 = c2.

The following theorem, which is analogous to the combination of Theorems 5.1

and 5.2, captures security of Π
(q)
Det. However, security is established in a different,

incomparable adversarial model: the source specified by the adversary is allowed
to output T , possibly correlated, messages at a time as long as the sampling
circuit makes no more than q random oracle queries.

Theorem 6.1. Let q ∈ N be polynomial in the security parameter λ.

1. If SE is an IND-CPA secure scheme and H1 and H2 are modeled as random

oracles, then, for any any T = poly(λ) and any k = ω(logλ), Π
(q)
det is q-query

(T, k)-source PRV-CDA2-secure.

2. The scheme Π
(q)
Det is strongly tag consistent.

7 Conclusions and Open Problems

Prior definitions and schemes for message-locked encryption (MLE) admit only
an adversary who is oblivious to the scheme’s public parameters during the initial
interaction. We explore two avenues for extending security guarantees of MLE
towards a more powerful adversarial model, where the distribution of plaintexts
can be correlated with the scheme’s parameters (lock-dependent messages). In
our first construction we augment the definition of MLE to allow fully random
ciphertexts by supporting equality-testing functionality. One challenging aspect
of the construction is ensuring ciphertext consistency in the presence of random
oracles without inflating the length of the ciphertext. We achieve this goal via
a combination of a cut-and-choose technique and NIZKs. The resulting scheme
is secure against a fully adaptive adversary. Our second construction assumes
a predetermined bound on the complexity of distributions specified by the ad-
versary. It fits the original framework of deterministic MLE while satisfying a
stronger security notion.

We formulate the following several directions for further research. First, we
ask whether a fully adaptive randomized MLE2 can be constructed and proven
secure in the standard model. Second, a randomized scheme for deduplication
creates a potential leakage channel that allows one user to test whether her plain-
text has already been uploaded to the system (similar to the attack described by
Harnik et al. [20] where the deduplication event was observable via traffic anal-
ysis). Designing a scheme resistant to this attack, for example, by supporting
server-side rerandomization of ciphertexts, constitutes an interesting research
question. Note that deterministic MLEs are immune to this problem. Finally,
our first scheme requires a pairwise application of the equality-testing algorithm
to identify all duplicate ciphertexts, and uses computationally expensive NIZKs
as a building block. We leave reducing the overhead of the scheme as an open
problem.
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Abstract. We provide a new shuffling algorithm, called Mix-and-Cut,
that provides a provably-secure block cipher even for adversaries that can
observe the encryption of all N = 2n domain points. Such fully secure
ciphers are useful for format-preserving encryption, where small domains
(e.g., n = 30) are common and databases may well include examples of
almost all ciphertexts. Mix-and-Cut derives from a general framework
for building fully secure pseudorandom permutations (PRPs) from fully
secure pseudorandom separators (PRSs). The latter is a new primitive
that we treat for the first time. Our framework was inspired by, and
uses ideas from, a particular cipher due to Granboulin and Pornin. To
achieve full security for Mix-and-Cut using this framework, we give a
simple proof that a PRP secure for (1 − ε)N queries (recently achieved
efficiently by Hoang, Morris, and Rogaway’s Swap-or-Not cipher) yields
a PRS secure for N queries.

Keywords: shuffles, small-block encryption, tweakable block ciphers.

1 Introduction

Traditional block ciphers such as AES and DES work on fixed domain sizes
(e.g., n = 64 or 128 bits). Some applications, however, require the ability to
securely encipher bit strings of smaller sizes (e.g., n = 30 bits). The canonical
example here being format-preserving encryption (FPE) [2,4,6,7], which makes
use of small-block-size block ciphers to perform in-place encryption of credit card
numbers, social security numbers, and other sensitive data.

In this paper, we provide a new small-domain block cipher, called Mix-and-
Cut, that achieves provable security up to q = 2n queries (the most possible). It
was designed using a new methodology for building ciphers secure as pseudoran-
dom permutations (PRPs) from pseudorandom separators (PRSs). The latter
is a cryptographic primitive that we treat for the first time. This methodology
was inspired by, and uses ideas from, a particular cipher construction due to
Granboulan and Pornin (GP) [11].
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Small domain encryption. Before explaining our results in more detail, we
describe further the motivation and related work. FPE has become popular in
settings where ciphertexts must follow a proscribed format. For example, should
credit card numbers (CCNs) already be stored in a database with a limit of
16 numerical digits, then encrypting the CCN with a conventional encryption
scheme would result in a ciphertext that could not be placed back in the database
column. Typically, in fact, the first 6 digits (being the issuer identification num-
ber) and the last digit (a Luhn checksum digit) must also be left in the clear,
and so one would like to encrypt just the remaining 9 digits. This requires a
cipher with domain of 109 ≈ 230. In cryptographic parlance, we seek a block
cipher E : K × {0, 1}n → {0, 1}n for some key space K, n = 30, and which is
indistinguishable from a random permutation.

Work on this small-space encryption problem can be traced back to, at least,
Black and Rogaway [5]. They gave several approaches, the most efficient of which
generalizes Luby and Rackoff’s classic result [17] on balanced Feistel networks.
This provides provable security, but only up to a number of encryptions below
q = 2n/4. In our example with n = 30, this is only q ≈ 128 ciphertexts. Mor-
ris, Rogaway, and Stegers [19] uncover a connection between unbalanced Feistel
networks and the Thorp shuffle, and use it to prove that maximally unbalanced
Feistel networks achieve security up to about q ≈ 2n(1−ε) queries for a frac-
tion ε inversely proportional to the the number of rounds of the construction.
This approach, with similar bounds, was extended to arbitrary balanced Feistels
by Hoang and Rogaway [14]. Most recently, Hoang, Morris, and Rogaway [13]
introduced a new shuffling approach, called Swap-or-Not, and a cryptographic
realization of it that provably achieves security up to q ≈ (1− ε)2n.

None of the above approaches, however, provide guarantees of security should
q get within a constant of N = 2n. Such full security is desirable when large
databases contain almost N encryptions. In our running example, this would
mean only about 1 billion database entries, which is not particularly large con-
sidering that processors using FPE deal with hundreds of millions of transactions
each month. Employing key rotation and tweaks [16] can ease this gap (by reduc-
ing the number of ciphertexts per key/tweak), but their use for this purpose is
not always feasible or desirable, for example should one need to support search.
What’s more, choosing appropriate security parameters requires somehow pre-
dicting the number of ciphertexts an adversary obtains. A fully secure cipher,
on the other hand, can often set parameters based solely on n.

There exist a handful of proven full security constructions, but they are all
quite slow for moderately sized N . The shuffle popularized by Knuth [9, 10, 15]
provides a cipher with full security, but requiresO(N) computation time, as does
the simple construction that uses lookup tables (c.f., [5]). Granboulan and Pornin
(GP) [11], build a cipher based on a shuffle introduced by Czumaj, Kanarek,
Kutylowski, and Lory [8]. It requires O(log3N) operations and repeated sam-
plings from the hypergeometric distribution. The Thorp shuffle was shown to
provide full security [18], but also with O(log3N) rounds. Stefanov and Shi [23]
offer a variant of the GP scheme that improves performance for very small
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algorithm MixAndCut(D):

n ← log |D|
Repeat r times:
K ←$ {0, 1}n
for each pair of positions {X,K ⊕X}
b←$ {0, 1}
If b = 1 swap the cards at positions X

and K ⊕X
(D1, D2) ← Cut(D)
MixAndCut(D1)
MixAndCut(D2)
Gather(D1, D2)

Fig. 1. (Left) The Mix-and-Cut shuffle on N = 2n cards with Swap-or-Not for the
mixing. D is the size N deck of cards, |D| is the number of cards in D, Cut(D) cuts the
deck exactly in half, and Gather(D1, D2) stacks two piles on top of each other. (Right)
Diagram of the Icicle construction with four stages (s = 4) and using pseudorandom
separators Z1, . . . , Z4. Each of the Xi

j have length γ bits. The leftmost γ bits (the
shaded boxes) of each stage “drip” down to the final ciphertext X1

1 ‖X2
2 ‖X3

3 ‖X4
4 .

Each Ti is a tweak that includes the Xj
j values output in previous stages j < i.

domains, but it requires Θ̃(N) time for key setup and Θ̃(N1/2) time and space
for encryption.

Mix-and-Cut. We offer a new cipher, which, following [13,14,19] can be viewed
as a card shuffle. Think of each of the 2n domain points as a card. Our new shuf-
fling algorithm intermingles two kinds of shuffles on these cards. The first is the
recursive shuffling procedure underlying GP, in which at each stage one splits
the deck of cards into two halves, then splits each half into two smaller halves
for a total of four halves, and so on until one can split no further. GP uses a
recursive hypergeometric sampling routine to make the split perfectly random.
We instead use another shuffling routine to provide a split that is cryptographi-
cally indistinguishable from a random one. For this we use a number of rounds
of the Swap-or-Not shuffle sufficient to ensure the top and bottom halves of the
deck appear to have been chosen randomly (but not yet nearly enough rounds
to prove a full uniform shuffling of the deck). The complete shuffling algorithm
is given on the left of Figure 1. The full shuffle, then, will mix the deck using
Swap-or-Not, then cut it into two, recursively shuffle each one independently,
and so on.

Mix-and-Cut may appear ad-hoc, fitting together two prior shuffles in an
arbitrary fashion. But in fact it was discovered using, and is just the best in-
stantiation we could find of, a new paradigm for building ciphers that is inspired
by the construction of the GP cipher. We describe this paradigm from the bot-
tom up, starting with a new cryptographic primitive that we define, called a
Γ -pseudorandom separator.
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Γ -pseudorandom separators. A Γ -PRS, from a shuffling point of view, can
“split a deck” pseudorandomly into Γ piles. Cryptographically speaking, a per-
mutation Z on {0, 1}n is a secure Γ -PRS if no computationally bounded adver-
sary can distinguish the first γ = logΓ bits of its output from that of a randomly
chosen, regular function {0, 1}n → {0, 1}γ. That the ideal object is regular is
important: we will be often interested in n small and q large, and here the dif-
ference between a regular random function and arbitrary random function is
readily apparent even to a computationally bounded adversary. For large n and
small q, however, Γ -PRS security can be shown to be equivalent to security in
the sense of a PRF with range size γ bits using techniques first used to analyze
the PRF security of truncated PRPs [1, 12].

Unlike a PRP, a Γ -PRS provides no security guarantees about the remaining
n−γ bits of its output (when γ < n). This means that Γ -PRS security is strictly
weaker than PRP security in general; when γ = n the two notions coincide.

In fact, we focus on tweakable separators, which like tweakable block ciphers in
the sense of Liskov, Rivest and Wagner [16], are families of permutations indexed
by both a key and a tweak. Different tweaks should give rise to independent-
looking permutations. Tweaks will be critical to our use of PRSs in building
PRPs.

Separators were inspired by the use, in the GP cipher, of an algorithm for per-
fectly splitting a deck into two halves using a recursive sampling from the hyper-
geometric distribution. Our treatment here draws out the implicit cryptographic
primitive underlying GP’s algorithm: in our terminology, the GP hypergeometric
separator is a fully secure 2-PRS.

From PRSs to PRPs. Fix a value γ and target block size n, with s = n/γ. We
provide a new construction, that we call an icicle, that uses a set of tweakable
permutations Z1, . . . , Zs to build a secure PRP on n bits. See the right hand
side of Figure 1. Each Zi should be a secure Γ = 2γ-PRS on n − γ(i − 1) bits.
An icicle is simple: apply an n-bit Γ -PRS, output the first γ bits, apply to the
remaining n−γ bits a Γ -PRS on n−γ bits with tweak being the output thus far,
add the first γ bits of the result to the output, and so on for s stages, in order
to produce a sequence of γ-bit outputs that is the ciphertext. The use of tweaks
is requisite for security: they ensure that the PRSs lower in the icicle provide
independent behavior for different prefixes of the ciphertext. An icicle for Γ = 2
is exactly the recursive shuffling procedure used in the GP cipher; their cipher we
can view now as an icicle using hypergeometric 2-PRSs. Our proof of the icicle
construction modularizes their result, and generalizes it to work with imperfect,
computational PRSs for arbitrary Γ . The proof conserves full security, as well,
so if the underlying PRSs are fully secure, so too is the resulting PRP.

Overall, this can be seen as a new paradigm for building PRPs. Unlike Luby-
Rackoff that starts with PRFs, we go a different route, starting with PRSs. This
may seem to not buy much; in particular, building an n-bit cipher using an icicle
requires an n-bit permutation (the first stage) and also a γ-bit PRP (the last
stage). But we only require the first γ bits of the first stage to be random-looking,
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and we can arrange that γ is small enough in the last stage to make a PRP there
trivial (e.g., γ = 1).

A simple but useful lemma. This begs the question of how to build PRSs,
particularly ones that are faster than the GP hypergeometric 2-PRS. We show
that the inverse E−1

K of any cipher EK that is a secure PRP for (Γ − 1)N/Γ
queries is a good Γ -PRS for all N queries. The proof is straightforward (see
Section 4), and we explain it informally here for the case of Γ = 2 which we
will use later. The reduction must simulate all N 2-PRS queries given only N/2
evaluations of E. But to do so requires only returning the first bit of each value
E−1

K (X1), . . . , E
−1
K (XN ), and this is learnable by querying only half the domain,

say by querying EK(0 ‖ y) for all y ∈ {0, 1}n−1. If a value X is in the set of
returned points, then we know that the first bit of E−1

K (X) is zero and otherwise
that it is one. The result extends easily to handle when the PRS adversary
queries all N domain points for each of some number of tweaks.

The lemma shows that one can get a fully secure Γ -PRS using any construc-
tion that achieves only (1 − ε)N PRP security. In particular this implies that
Swap-or-Not is a fully secure 2-PRS for a number of rounds a small fraction
of that needed to make it a fully secure PRP (provably under the Hoang et
al. result).

Putting it all together. The Mix-and-Cut cipher uses the icicle construc-
tion with fully secure 2-PRSs built from Swap-or-Not. Our simple lemma
described above ensures that we can use the number of Swap-or-Not rounds sug-
gested by Hoang et al. for N/2 queries to establish 2-PRS security for N queries.
Back to the shuffling interpretation, Swap-or-Not need only shuffle enough to en-
sure that the “deck” can be cut into two piles with a pseudorandom assignment
of cards to piles. We then cut the deck, and focus on each pile independently.

The resulting cipher provides full security, using only simple operations: Swap-
or-Not can be instantiated with two AES calls per round. That said, the new
cipher does require a large number of rounds. For N = 230 and an advantage of
less than 10−10 we need around 10,000 rounds. By comparison, using Swap-or-
Not directly under the bounds1 of Hoang et al. requires about 126× 109 rounds
to achieve the same advantage for N = 230. On an Intel Core i5 with AES-NI, a
full application of Mix-and-Cut should take less than a millisecond for N = 230.
Improved analyses for Swap-or-Not or another algorithm (directly as a 2-PRS
or as a PRP) can be used immediately by Mix-and-Cut in order to increase
efficiency.

Adding tweaks and CCA security. It is easy to ensure that icicle produces
a tweakable block cipher: just prepend the tweak T to the tweak used in each
stage. We have also described all the above in terms of achieving CPA security.
But CPA security and CCA security are equivalent when q = N — another
advantage of targeting full security.

1 Their bound is vacuous if one sets q = N , but we can apply it with q = N − 1.
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Separators for generalized domains. Largely for pedagogical reasons, we
focus in this abstract on the case where domains have sizes that are powers
of 2. However, many small-domain encryption settings require domains that
operate over non-binary digits (e.g., base 10 for credit cards). We can generalize
our results to work with radixes other than two in a straightforward way. This
natural generalization leads to slightly weaker bounds than the binary case. It is
also possible to treat the most general case, which uses PRSs to build tweakable
ciphers for completely arbitrary domains. We give details in the full version.

Other uses of Γ -PRSs. We believe that the new Γ -PRS primitive will find
application in contexts beyond our goal here of full security ciphers. As one
example, we show in the full version that 2 rounds of balanced Feistel gives a
good 2n/2-PRS, though with security only for q ≈ 2n/4. While therefore not
directly useful for full security applications, we show that one can recast the
original Luby-Rackoff (LR) result [17] that 3-rounds provides a secure PRP as
a composition of any 2n/2-PRS with one round of Feistel. Combining the two
results gives a bound that matches the original LR result.

Further discussion. Should one be interested in just partial security (q � N),
then our approach does not provide the most efficient solution. This limitation
extends as well to very large block sizes, where partial security is inherently
the goal (since, e.g., q = 2128 is unrealistic); our lemma described above scales
exponentially in q. In these settings one would do best to stick with (say) Swap-
or-Not up to n = 64 and from there use traditional block ciphers within a suitable
domain extension transform (e.g., [22]).

The icicle construction, being built from any Γ -PRS, can of course be used in
a multitude of ways. A two stage icicle extends the domain of any fixed-length
PRP by γ bits. One can also build a full cipher using multiple different kinds of
separators across different icicle stages. For example, one could use several stages
of (say) Swap-or-Not before applying a different shuffle for a few stages, before
then applying at the bottom of the icicle a permutation that works well for very
small domains. While the resulting cipher would be more complicated than Mix-
and-Cut with its homogeneous set of separators, it suggests the existence of a
wide space of possible designs from which one might use proven-secure ciphers
for the domain sizes for which they work best to improve overall efficiency.

Finally, we note that in practice small-block encryption uses constructions
that have weak bounds or even have no security proofs entirely. The proposed
FFX [3,4] standard for FPE suggests 10 rounds of Feistel for domain size around
230. The choice of rounds is based on a heuristic; no proofs providing reasonable
bounds are known for this choice and in fact no proofs are likely given current
techniques (see [19] for more discussion). That said, no (computationally reason-
able) attacks are known, and we have no reason to believe that efficient attacks
will arise. (The best is due to Patarin [21], but the round choice was made to
defeat this.) But that is not proof of the absence of attacks, and so we view
closing the (large) performance gap between Mix-and-Cut and ciphers such as
FFX an important open research problem.
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2 Preliminaries

Tweakable block ciphers. A tweakable block cipher is a family of functions
E : K×T × {0, 1}n → {0, 1}n, where K is a non-empty, finite set called the key
space, T is a non-empty, finite set called the tweak space, and where for every
K ∈ K and T ∈ T , EK(T, ·) = E(K,T, ·) gives a permutation on {0, 1}n. We let
E−1

K (T, ·) denote the inverse block cipher of E. When T is a singleton, we have
a block cipher, and write instead EK(·) = E(K, ·) and E−1

K (·) = E−1(K, ·).
We target tweakable block ciphers that are secure even under chosen-ciphertext

attack. This is sometimes called strong pseudorandom permutation (SPRP) se-
curity. Given tweakable block cipher E : K × T × {0, 1}n → {0, 1}n and an
adversary A, the cca-advantage of A with respect to E is

Advcca
E (A) = Pr

[
AE(K,·,·),E−1(K,·,·) ⇒ 1

]
− Pr

[
Aπ(·,·),π−1(·,·) ⇒ 1

]
where the first probability is overK ←$ K and the coins used by A and the second
probability is over π←$ Perm(T , n) and the coins used by A. Here Perm(T , n) is
the set of families of n-bit permutations. That means picking π gives a family of
uniformly chosen permutations, one for each T ∈ T . The inverse of π is denoted
π−1. When T = {0, 1}t we will write Perm(t, n). A cpa adversary simply makes
no queries to its second oracle, and for such adversaries we denote their advantage
by Advcpa

E (A) as a reminder that A makes no inverse queries. We call a cipher
that is secure under cpa attack a good PRP.

We will need as well non-adaptive cpa security, which we define as follows. A
non-adaptive cpa adversary A is given access to one of two different oracles to
which it can query a single time a pair of vectors (T1, . . . , Tq) and (M1, . . . ,Mq).

The oracle E(K, (T1, . . . , Tq), (M1, . . . ,Mq)) computes Ci = ETi

K (Mi) for all i
and returns the resulting ciphertexts. The oracle π((T1, . . . , Tq), (M1, . . . ,Mq))
computes Ci = π(Ti,Mi) for a random tweakable permutation π, and returns
the results. We define advantage as

Advncpa
E (A) = Pr

[
AE(K,·,·) ⇒ 1

]
− Pr

[
Aπ(·,·) ⇒ 1

]
where the first probability is over the choice of K ←$ K and the coins used by A
and the second probability is over π←$ Perm(T , n) and the coins used by A.

Full security. We target full security, meaning that cca advantage should be
low even for adversaries that make q = N = 2n queries for some number w of
tweaks. (Clearly q = N − 1 is also sufficient, but the difference matters little.)
Thus, full security requires security to hold for a total of wN queries. When
security holds only for q � N we say that the tweakable cipher instead achieves
only partial security. Partial security suffices when, as with standard block ci-
phers with n = 128, the domain is so large that no adversary could feasibly
obtain, let alone compute over, anywhere remotely close to N queries. In small
domain encryption settings, however, full security is important as applications
may apply a cipher to most of the domain (for some set of tweaks). Another
advantage of targeting full security is that cpa security and cca security are



The Mix-and-Cut Shuffle 399

equivalent when q = N . The following formalizes this fact and allows us to focus
on cpa adversaries in the remainder of the paper.

Lemma 1. Let E : K × T × {0, 1}n → {0, 1}n and N = 2n. Let A be a cca
adversary making queries for w distinct tweaks. Then for the cpa adversary B
specified in the proof below it holds that Advcca

E (A) ≤ Advcpa
E (B). Moreover B

makes at most wN queries and runs in time that of A plus O(wN logwN) time.

Proof. The adversary B runs adversary A. When A makes either a forward
or inverse query on a not-before-seen tweak T , B immediately queries values
(T,X1), . . . , (T,XN ). That is, it queries the entire domain. Then B uses the
resulting values Y1, . . . , YN to respond to the query, and to respond to future
forward or inverse oracle queries using T .

Note that the variable w in the above only measures the number of distinct
tweaks queried, not the total number of queries made by A. Thus, even if A
makes 2n − 1 queries on each tweak, the bound holds as shown. Also, when we
use big-O notation, i.e., O(w2n logw2n) in the lemma above, this hides only
small, fixed constants.

PRFs. Let F : K×{0, 1}� → {0, 1}n be a family of functions. For an adversary

A, the prf security of F with respect to A is Advprf
F (A) = Pr

[
AF (K,·) ⇒ 1

]
−

Pr
[
Aρ(·) ⇒ 1

]
where the first probability is over K ←$ K and the coins used by

A and the second probability is over ρ←$ Func(
, n) and the coins used by A.
Here Func(
, n) is the set of all functions {0, 1}� → {0, 1}n. It will be convenient
to speak of PRFs that accept tweaks as input in addition to messages and keys,
so a map F : K × T × {0, 1}� → {0, 1}n. It is easy to build such an F that is a
good PRF using an untweaked PRF. We write Func(T , 
, n) to denote the set of
all such functions and Func(t, 
, n) should T = {0, 1}t.

3 Pseudorandom Separators

We define a new security goal for tweakable permutations. Informally speaking,
a family of permutations is a good Γ -pseudorandom separator or simply a good
Γ -PRS if no adversary can distinguish the first γ = logΓ bits of its outputs
from a random, regular function {0, 1}n → {0, 1}γ. (Regular just means that
each range point has 2n−γ preimages.) The shuffling-based interpretation is that
the permutation does a good job of separating the domain into Γ different piles
with random domain points (cards) assigned to each pile.

More formally, a tweakable separator is a map Z : K×T × {0, 1}n → {0, 1}n
where K is the key space, T is the tweak space, and we require that for all
K ∈ K and T ∈ T , Z(K,T, ·) is a permutation with inverse Z−1(K,T, ·). Let
RegFunc(T , n, γ) be the set of all functions f : T × {0, 1}n → {0, 1}γ where
f(T, ·) is regular for any T ∈ T . Then for γ ≤ n, the Γ -prs advantage of an
adversary A is defined by

AdvΓ -prs
Z (A) = Pr

[
AZ(K,·,·)[γ] ⇒ 1

]
− Pr

[
Aρ̂(·,·) ⇒ 1

]
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where the first probability is over K ←$ K and the coins used by A and the
second probability is over ρ̂←$ RegFunc(T , n, γ) and the coins used by A. The
oracle Z(K, ·, ·)[γ] on input (T, x), returns the first γ bits of Z(K,T, x).

We say, informally, that a tweakable separator Z is Γ -PRS secure if the advan-
tage is low for all adversaries given reasonable resources. Looking ahead, we will
use separators in building fully secure, small-block ciphers, and so reasonable
here means q = N queries can be made for each of some number ω of tweaks.

It is easy to see that any separator that is Γ -PRS secure is also Γ ′-PRS secure
for any γ′ < γ. The converse is also true, for any γ′ < γ one can construct a
Γ ′-PRS that is not a Γ -PRS. (Briefly, use the hypergeometric sampler described
below within the icicle construction of Section 5 for just γ′ stages, and output
the result without further processing of the low n− γ′ bits.)

Separators for generalized domains. In the above, and in the next few
sections, we restrict attention to the case of bit-string domains. We find this
to be pedagogically appealing. However, many small-domain encryption settings
require domains that operate over non-binary digits (e.g., base 10 for credit
cards). Generalizing the above formulation and our results in Sections 4, 5, and
6 to work over domains being strings over an arbitrary alphabet Σ is straight-
forward. We do caution that the natural generalization leads to slightly weaker
bounds than the binary case; see the full version for the details. There we also
treat the most general case, using PRSs to build tweakable ciphers for domains
of any size.

PRS versus PRF. It may seem that we have, above, just tediously repeated
with different language the classical PRF security notion for the special case of a
truncated permutation. However, there is indeed a gap between the two notions,
due to the fact that we require the random function in the PRS setting to be
regular. In fact, PRF security is not helpful to us in our full security setting.
Formally:

Proposition 1. Let ρ←$ Func(T , n, γ) for n ≥ γ and finite set T . There ex-
ists an adversary A making N = 2n queries such that AdvΓ -prs

ρ (A) > 1 −
e/
(
(
√
2π)Γ ·N (Γ−1)/2 · Γ (N−Γ )/2

)
where Γ = 2γ.

The attack is simple: just query all points, and determine if the function is
regular by inspecting preimage sets. The probability that a random function is
regular is at most the fraction shown, derived straightforwardly using Stirling’s
approximation. Even for n = 2 and γ = 1, we have the advantage of A being
about 0.9.

We note, however, that for q � N and for certain ranges of values of γ and
n, there exist upper bounds showing that PRF security implies PRS security.
For example, a simple birthday bound argument shows this for reasonably large
γ (and so n) and relatively small q. Better bounds for some parameters by
Hall, Wagner, Kelsey, and Schneier [12] as well as Bellare and Impagliazzo [1]
arise in their analyses of truncated PRPs. Their results also yield analogues to
Proposition 1 with improved bounds when A is allowed fewer than N queries.
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PRS versus PRP. When γ = n, PRS security is equivalent to PRP security.
For γ < n, however, PRS is strictly weaker. The reason is that the high bits
of the output of a separator are not given to the adversary, and so these may
be entirely non-random. We next give an example of a secure separator that is
easily distinguished from a PRP.

The hypergeometric 2-PRS. As an example of a PRS, we turn to the
Granboulan and Pornin [11] splitting function that we denote ZGP(x). Their
algorithm cleverly uses repeated sampling from the hypergeometric distribution.
We provide a fuller description in the full version.

GP show that ZGP is (in our terms) a secure 2-PRS. It is not a secure PRP.
More specifically, ZGP has the property that if x < x′ and x and x′ are mapped to
the same half of the output space, then ZGP(x) < ZGP(x

′). In other words, points
that are mapped to the same half of the range retain their relative ordering.
Because of this, for example, ZGP(0

n) will always be equal to either 0n or 10n−1,
and so ZGP is easily distinguished from a random permutation.

The GP 2-PRS is, unfortunately, slow when implemented due to the expen-
sive floating point computations needed to perform the repeated hypergeomet-
ric samplings. We will therefore seek other ways of constructing pseudorandom
separators.

4 Full PRS Security from Partial CPA Security

In this section we prove a relationship between the cpa advantage and the Γ -prs
advantage for a block cipher E. In short, we show that if a block cipher E is
CPA secure against (Γ − 1)N/Γ queries, then its inverse E−1 is a secure Γ -PRS
against N queries. Later in the paper, we will be particularly interested in the
Γ = 2 case, since there a block cipher need only be CPA secure against N/2
queries. The following theorem captures this result.

Theorem 1. Fix n ≥ γ ≥ 1. Let N = 2n and Γ = 2γ. Let E : {0, 1}k × T ×
{0, 1}n → {0, 1}n be a tweakable block cipher and E−1 : {0, 1}k×T × {0, 1}n →
{0, 1}n its inverse. Let A be an Γ -prs adversary making queries with ω distinct
tweaks. Then for the cpa adversary B specified in the proof below it holds that
AdvΓ -prs

E−1 (A) ≤ Advcpa
E (B). Moreover, B makes exactly ω · N · (Γ − 1)/Γ cpa

queries and runs in time O(ωN(Γ − 1)/Γ · log(ωN(Γ − 1)/Γ )).

Proof. Adversary B runs A and answers its oracle queries as follows. On query
(T, x) from B, if T is a tweak that has never been previously queried, then B
queries its own oracle on (T, y) for all y ∈ {0, 1}n except those that begin with
0γ . If there is a y such that the oracle query (T, y) returned x to A, then B
replies to A with the first γ bits of y. Otherwise, A replies with 0γ . When A
finally outputs a final bit, B outputs this same value. In short, B is able to
perfectly simulate the environment for A because it makes sure to make enough
queries to its oracle to determine the first γ bits of all of A’s queries.
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The above theorem and proof are perhaps most easily understood for the Γ = 2
case. There, to answer which half of the set {0, 1}n the point x is mapped to,
B queries the second half of {0, 1}n, i.e., all points starting with a 1. If one of
the returned answers is x, then B knows to return 1. If none of the returned
answers is x, then x must be mapped to the other half of {0, 1}n, so A knows it
can return a 0.

5 Building PRPs from PRSs: The Icicle Construction

We now show how to use PRSs to build PRPs. The route is a new construction
that we call Icicle, which recasts the Permutator algorithm of Granboulan and
Pornin [11] to work for arbitrary Γ -PRSs. (In the full version we provide a gen-
eralization of Permutator that works for any domain size.) Icicle can be viewed
as a way to shuffle a deck of N = 2n cards. First, use a Γ -PRS to separate the
full deck of cards into Γ piles pseudorandomly. Then, recursively shuffle each
of the Γ piles by separating each of them pseudorandomly into Γ smaller piles,
and so on. Finally collect up all the final piles (in some fixed order) back to
form a single deck. It is important that in each recursive step the shuffling is
independent across all the different piles.

The cryptographic interpretation can be formalized as follows. Let γ, n ∈ N be
numbers with 1 ≤ γ ≤ n and γ |n. Let Γ = 2γ . Let Zi : {0, 1}ki×Ti×{0, 1}ni →
{0, 1}ni for i ∈ [1 .. n/γ] and where Ti = T × {0, 1}ωi for ωi = (i − 1)γ and
ni = n − (i − 1)γ. Note that when i = 1, Ti = T and ni = n. Let Z =
{Z1, . . . , Zs}. The Icicle construction Icγ,n(Z) builds a tweakable block cipher
E : {0, 1}ks × T × {0, 1}n → {0, 1}n as defined by the pseudocode in Figure 2.
We use some notation there that must be defined: X1 ‖ · · · ‖X0 is defined to be
the empty string, while park(·) takes an input string of ik bits and parses it into
i strings of length k bits (and similarly for parγ).

The Icicle uses s = n/γ stages. In the first stage, it applies to the full n bit
input a Γ -PRS on n bits. This fixes the least γ bits of the final ciphertext, which
“drip” down to the output. These bits specify to which of the Γ piles the input

algorithm E(K,T,M):

s ← n/γ

K1, . . . ,Ks ← park(K)

X0
1 , . . . , X

0
s ← parγ(M)

for i = 1 to s:

Ti ← T ‖X1
1 ‖ · · · ‖Xi−1

i−1

Xi−1 ← Xi−1
i ‖ · · · ‖Xi−1

s

Xi
i , . . . , X

i
s ← parγ(Zi(Ki,T

i,Xi−1))

Y ← X1
1 ‖X2

2 ‖ · · · ‖Xs
s

return Y

algorithm E−1(K,T, Y ):

s ← n/γ

K1, . . . , Ks ← park(K)

X1
1 , X

2
2 , . . . , X

s
s ← parγ(Y )

for i = s down to 1:

Ti ← T ‖X1
1 ‖ · · · ‖Xi−1

i−1

Xi ← Xi
i ‖ · · · ‖Xi

s

Xi−1
i , . . . , Xi−1

s ← parγ(Z
−1
i (Ki,T

i,Xi))

M ← X0
1 ‖ · · · ‖X0

s

return M

Fig. 2. The s-stage Icicle construction Icγ,n(Z) using 2γ-PRSs Z = {Z1, . . . , Zs}
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algorithm Hybj(K,T,X):

s ← n/γ ; K1, . . . ,Ks ← park(K) ; X0
1 , . . . , X

0
s ← parγ(X)

for i = 1 to j:

T i ← T ‖X1
1 ‖ · · · ‖Xi−1

i−1 ; Xi−1 ← Xi−1
i ‖ · · · ‖Xi−1

s

Xi
i , . . . , X

i
s ← parγ(Zi(K

i, T i,Xi−1))

if j = s then

Y ← X1
1 ‖ · · · ‖Xj

j

else

T j+1 ← T ‖X1
1 ‖ · · · ‖Xj

j ; Xj ← Xj
j+1 ‖ · · · ‖Xj

s

Xj+1
j+1 , . . . , X

j+1
s ← parγ(πj+1(T

j+1,Xj))

Y ← X1
1 ‖ · · · ‖Xj

j ‖X
j+1
j+1 ‖ · · · ‖Xj+1

s

return Y

Fig. 3. Hybrid oracles for j ∈ [0 .. s] where s = n/γ as used in the proof of Theorem 2.
Tweakable permutation πj is selected randomly from Perm(Tγj , n− γj).

was mapped by the stage. The second stage processes the remaining n− γ bits
using a Γ -PRS on n bits. The tweak includes the γ bits output from the first
stage. The resulting output fixes the second γ bits of the final output, and so on.
In the last stage, only γ bits remain, and these are handled by the last Γ -PRS. A
pictorial diagram is shown on the right-hand-side of Figure 1 in the introduction.

Security. We now turn to analyzing the security of the Icicle construction. The
following theorem shows its security assuming the underlying separators enjoy
Γ -PRS security.

Theorem 2. Fix n ≥ γ ≥ 1 with γ |n, let s = n/γ and let Z = {Zi}si=1 be an
appropriate collection of permutations for Icγ,n(Z). Let A be a cpa adversary
making q queries. Then for the Γ -prs adversaries B1, . . . , Bs specified in the
proof below it holds that Advcpa

Icγ,n(Z)(A) ≤
∑s

j=1 AdvΓ -prs
Zi

(Bs). Each adversary

Bj makes q oracle queries, runs in time at most that of A plus O(jq·Time(Z)+
(s− j)q log(s− j)q).

Proof. We introduce a sequence of hybrid oracles Hyb0, . . . ,Hybs as defined in
Figure 3. The jth hybrid Hybj implements Icγ,n(Z) but with the last s − j
stages replaced by an appropriately sized, tweakable random permutation. By
construction Hyb0 implements a random permutation while Hybs implements
Icγ,n(Z). Then

Advcpa
Icγ,n(Z)(A) ≤

s−1∑
j=0

∣∣Pr [AHybj+1 ⇒ 1
]
− Pr

[
AHybj ⇒ 1

]∣∣ (1)

We will now upper bound each individual difference in the sum, by way of ad-
versaries B1, . . . , Bs that attack the Γ -PRS security of the s underlying permu-
tations in Z. The adversaries are defined in Figure 4. In it, the adversary runs
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adversary BSep
j :

V everywhere zero ; Z everywhere ⊥
K1, . . . ,Ks ←$ {0, 1}ks
Run AEnc, answering queries (T,M) by:

X0
1 , . . . , X

0
s ← parγ(M)

for i = 1 to j:

T i ← T ‖X1
1 ‖ · · · ‖Xi−1

i−1 ; Xi−1 ← Xi−1
i ‖ · · · ‖Xi−1

s

if i < j then Xi
i , . . . , X

i
s ← parγ(Zi(Ki, T

i,Xi−1))

else Xj
j , . . . , X

j
s ← parγ(SepSim(T j ,Xj−1))

if j = s then

Y ← X1
1 ‖ · · · ‖Xj

j

else

T j+1 ← T ‖X1
1 ‖ · · · ‖Xj

j ; Xj ← Xj
j+1 ‖ · · · ‖Xj

s

Xj+1
j+1 , . . . , X

j+1
s ← parγ(πj+1(T

j+1,Xj))

Y ← X1
1 ‖ · · · ‖Xj

j ‖X
j+1
j+1 ‖ · · · ‖Xj+1

s

return Y

A outputs b′

return b′

subroutine SepSim(T ′,X)

if Z[T ′,X] = ⊥ then

Xj
j ← Sep(T ′,X)

Z[T ′,X] ← Xj
j ‖ 〈V[T ′, Xj

j ]〉n−jγ

V[T ′, Xj
j ] ← V[T ′, Xj

j ] + 1

return Z[T ′,X]

Fig. 4. Adversaries for the proof of Theorem 2

for the first j − 1 stages as in Icγ,n(Z) and then queries its own Γ -PRS oracle
for the jth stage. Note that the oracle only gives back γ bits.

The adversary therefore simulates the behavior of Zj using the procedure
SepSim, defined as follows. On input T ′, X The first γ bitsXj are set by querying

Xj
j ← Sep(T ′,Xj−1). The remaining n− γ bits are set to an arbitrary value so

that the SepSim(T ′, ·) implements a permutation for each T ′. Specifically, we set
the last n− γ bits to be equal to the value V[T,Xj

j ], which is then incremented.
(Note that V is set everywhere to zero initially.) This process ensures that we
build a simulation of Zj(T

′, ·) that is a permutation yet agrees on the first γ bits
with the output of SepSim.

The output of the first j stages, the γ-bit value returned by the PRS oracle,
and the output of πj+1 (should j < s) combines to give the oracle response. We
will now argue that

Pr
[
AHybj ⇒ 1

]
= Pr

[
B

Zj(K,·,·)[γ]
j ⇒ 1

]
and (2)

Pr
[
AHybj+1 ⇒ 1

]
= Pr

[
B

ρj(·,·)
j ⇒ 1

]
. (3)
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where ρj ←$ RegFunc(Tj , nj, γ) for Tj = T × {0, 1}(j−1)γ and nj = n− (j − 1)γ.
The first equation may seem to be immediate, but in fact is not because Bj

does not simulate exactly Zj for A when j < s. (When j = s the simulation is
indeed exact.) Nevertheless, for j < s the distribution of values observed by A
when Sep returns Zj(T

′,X)[γ] is distributed identically to when A’s oracle uses
Zj directly. This is because the discrepancy between SepSim’s outputs and what
would have been computed by Zj are hidden by πj+1, and SepSim implements
a permutation. This justifies (2).

To show the second part, we must argue that, when SepSim uses an oracle ρj ,
the result is that Bj implements Hybj+1. Here, we require that the composition
of SepSim and πj+1 in Bj ’s simulation yields a random tweakable permutation.

For each tweak T ′ = T ‖X1
1 ‖ · · · ‖Xj−1

j−1 , gives rise to a different random func-
tion ρj(T

′, ·) and permutation πj+1(T
′, ·). Moreover, SepSim(T ′, ·) implements a

permutation and so πj+1 ends up mapping counter values 1-1 to random values.
This justifies (3).

Combining (2) and (3) with (1) and the definition of Γ -prs advantage yields
the advantage statement given in the theorem.

Discussion. It is easy to generalize the construction above to work for hetero-
geneous mixes of separators, meaning that γ varies across stages. Moreover, we
have above used a different separator with its own key for each stage, but we
can also extend our results to use a variable-input-length separator that can be
securely used with a single key on inputs of differing sizes. Finally we note that
a corollary of Theorem 2 is that the icicle construction with s = 2 gives a way
to extend the domain of a PRP on m-bits to one on m+ γ bits given a Γ -PRS
on m+ γ bits.

6 The Mix-and-Cut Cipher

We now use the results of the prior sections to construct a new, full-security
tweakable block cipher that we call Mix-and-Cut. To do so, we show that the
Swap-or-Not cipher [13] is a secure 2-PRS for N queries. We then apply the
Icicle construction with Γ = 2, and use Swap-or-Not for each of the n stages.

The Swap-or-Not cipher. Let F : {0, 1}k×{0, 1}∗ → {0, 1}n be a PRF family.
The Swap-or-Not tweakable block cipher ESN : {0, 1}k × {0, 1}t × {0, 1}n →
{0, 1}n built from F is described on the left side of Figure 5. We emphasize that
each round of Swap-or-Not results in two calls to F , one to generate the round
key and the other to decide whether or not to swap. If F is implemented using
CBC-MAC with AES, then a single call to F may result in multiple AES calls,
depending on the lengths of the PRF inputs and how they are encoded. (One
must also take care to use F that is secure for variable-length inputs.)

Hoang, Morris, and Rogaway [13] analyzed an ideal, untweaked version of this
cipher with Kj independently random and the swap decision in each round made
by a call to a random function Gj (right side Figure 5). We use the following
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algorithm ESN(K, T,M):

for j = 1 to r:

Kj ← F (K, roundkey ‖ j ‖T )
M ′ ← Kj ⊕M

X̂ ← max(M,M ′)
If F (K,decision ‖ j ‖T ‖ X̂)[0] = 1

M ← M ′

Return M

algorithm ESN*(KG,M):

(K1, . . . ,Kr) ← parn(KG)

for j = 1 to r:

M ′ ← Kj ⊕M

X̂ ← max(M,M ′)
If Gj(X̂) = 1

M ← M ′

Return M

Fig. 5. (Left) The Swap-or-Not algorithm [13] and (Right) its ideal counterpart

restatement of [13, Th. 2], which gives a bound on the non-adaptive cpa security
of ESN*.

Theorem 3 (Hoang-Morris-Rogaway). Let N = 2n and let ESN* be the
ideal version Swap-or-Not block cipher with r rounds as defined above. Let A be

a non-adaptive cpa adversary making q queries. Then Advncpa
ESN*

(A) ≤ 2·N3/2

r+2 ·(
q+N
2N

)r/2+1

.

Unfortunately, the bound above is not very useful when q ≥ N − 1. We will
instead use it with q = N/2 in order to help us prove the following theorem,
which establishes that ESN is a secure 2-PRS for wN queries for some number
w of tweaks.

Theorem 4. Fix γ, n with γ |n and let Γ = 2γ, N = 2n. Let ESN be the Swap-
or-Not block cipher with r rounds as defined above and using a function F . Let
A be a Γ -PRS adversary making N queries across ω distinct tweaks. Then there
exists an explicit prf-adversary B for which it holds that

Adv2-prs
ESN

(A) ≤ 2 ·ω ·N3/2

r + 2
·
(
3

4

)r/2+1

+Advprf
F (B) .

The adversary B makes at most 2rqω queries and runs in time that of A plus
O(2rωN).

Proof. By Theorem 1 the advantage of A is upper bounded by the cpa advan-
tage of an adversary B′ against ESN which makes N/2 fixed queries for each
(adaptively chosen) tweak T . (Note that ESN = E−1

SN .) Thus

Adv2-prs
ESN

(A) ≤ Advcpa
ESN

(B′)

for an adversary B′ explicitly specified in the proof of Theorem 1. We now move
to a setting where ESN uses, instead of the function F , a random function. This
is via a standard reduction yielding that

Adv2-prs
ESN

(A) ≤ Advcpa
ESN[ρ](B

′) +Advprf
F (B)

where ESN[ρ] is ESN except with F (K, ·) replaced by a random function ρ. Note
that ESN[ρ] is not yet ESN* since the latter does not take tweaks. However ESN[ρ]
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is equivalent to using ESN* with a fresh key KG for every tweak T queried by
B′. Note also that the set of messages queried to each instance of ESN* is fixed.
We can therefore use a hybrid argument in which one repeatedly applies the
ncpa advantage for each independent instance of ESN* to get that

Advcpa
ESN[ρ](B

′) ≤
ω∑

i=1

Advncpa
ESN*

(Bi) ≤
2 ·ω ·N3/2

r + 2
·
(
3

4

)r/2+1

.

The last inequality uses Theorem 3 for q = N/2 (the number of queries used by
each Bi).

Icicle applied to Swap-or-Not. We now explore the security of the icicle
construction when ESN is used as the underlying 2-PRS. Let N = 2n and let
ZSN = {Ei

SN}ni=1 be a family of SN block ciphers where Ei
SN : {0, 1}k × Ti ×

{0, 1}ni → {0, 1}ni denotes the Swap-or-Not cipher as defined above where ni =
n − (i − 1) and Ti = T × {0, 1}i−1. Given this, let Ic1,n(ZSN) : {0, 1}kn ×
T × {0, 1}n → {0, 1}n denote the block cipher on n bits with tweak space T
constructed by using the icicle construction with ZSN. For simplicity, we use
this construction with the same number of rounds r of Swap-or-Not at each
stage (meaning nr rounds of Swap-or-Not for the entire icicle construction). We
refer to the resulting construction as the Mix-and-Cut cipher. We can prove the
following:

Theorem 5. Let N = 2n and Ic1,n(ZSN) be the construction described above
using r rounds for each Swap-or-Not cipher Ei

SN. Each cipher uses the same
PRF F (with distinct keys). Let A be a cpa adversary making N queries with w
distinct tweaks. Then for the prf adversary B given in the proof below it holds
that

Advcpa
Ic1,n(ZSN)(A) <

7 · w ·N3/2

r + 2
·
(
3

4

)r/2+1

+ n ·Advprf
F (B) .

B makes 2rnNw queries and runs in time that of A plus O(2rnNw).

Proof. Let α = (r + 2)−1 ·(3/4)r/2+1. We first apply Theorem 2 and Theorem 4
to get that

Advcpa
Ic1,n(ZSN)(A) ≤

n∑
i=1

Adv2-prs
Ei

SN

(Bi)

≤
n∑

i=1

2 ·w ·2i−1 ·N3/2
i α+

n∑
i=1

Advprf
F (Bi) (4)

where Ni = 2n−(i−1) and we have used that the number of tweaks queried
against the ith stage Ei

SN is w ·2i−1. First, a standard hybrid argument shows
that the prf adversary B that chooses j←$ [1 .. n] and behaves as Bj is such that∑n

i=1 Advprf
F (Bi) ≤ n ·Advprf

F (B). Turning to analyze the first sum in the right
hand side, we first have that
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n∑
i=1

2i−1 ·N3/2
i =

n∑
i=1

2i−1 ·2n−(i−1) ·2(n−(i−1))/2 = 2n
n∑

i=1

2i/2

= 2n · 2
(n+1)/2 −

√
2√

2− 1

< 3.5N3/2 .

Plugging back into (4) yields the advantage statement of the theorem.

Shuffling interpretation. We can view the cipher above as a shuffle by
replacing all uses of the PRF with fresh random coin tosses. We refer to this as
the Mix-and-Cut shuffle, and it is given in the left of Figure 1 in the introduction.
To shuffle using Mix-and-Cut, “lightly” mix the entire deck in any fashion (e.g.,
using the Swap-or-Not shuffle for r rounds). Then, cut the deck in half. Lightly
mix each half and then cut the halves, yielding four total piles. This process is
repeated until all of the cards are in their own piles. At this point, the cards are
simply gathered together to form one deck. This shuffle is oblivious assuming
the mixing step is oblivious (in the sense of [20]).
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Key Homomorphic PRFs and Their Applications
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Abstract. A pseudorandom function F : K × X → Y is said to be key homo-
morphic if given F (k1, x) and F (k2, x) there is an efficient algorithm to compute
F (k1 ⊕ k2, x), where ⊕ denotes a group operation on k1 and k2 such as xor.
Key homomorphic PRFs are natural objects to study and have a number of in-
teresting applications: they can simplify the process of rotating encryption keys
for encrypted data stored in the cloud, they give one round distributed PRFs, and
they can be the basis of a symmetric-key proxy re-encryption scheme. Until now
all known constructions for key homomorphic PRFs were only proven secure in
the random oracle model. We construct the first provably secure key homomor-
phic PRFs in the standard model. Our main construction is based on the learning
with errors (LWE) problem. We also give a construction based on the decision
linear assumption in groups with an �-linear map. We leave as an open problem
the question of constructing standard model key homomorphic PRFs from more
general assumptions.

Keywords: Pseudorandom functions, Key homomorphism, Learning with
errors.

1 Introduction

Let F : K × X → Y be a secure Pseudorandom Function (PRF) and suppose that the
key space K has a group structure where ⊕ denotes the group action. We say that F
is key homomorphic if given F (k1, x) and F (k2, x) there is an efficient procedure that
outputs F

(
k1 ⊕ k2, x

)
. That is, the PRF is homomorphic with respect to its key. We

show below that key homomorphic PRFs have several important applications that are
practically motivated.

Constructing key homomorphic PRFs in the random oracle model is straightforward.
Let G be a finite cyclic group of prime order q and let H1 : X → G be a hash function
modeled as a random oracle. Define the function FDDH : Zq ×X → G as

FDDH(k, x) ← H1(x)
k,

and observe that FDDH(k1+k2, x) = FDDH(k1, x) ·FDDH(k2, x). Naor, Pinkas, and Rein-
gold [28] showed that FDDH is a secure PRF in the random oracle model assuming the
Decision Diffie-Hellman assumption holds in G. This PRF is clearly key homomorphic.

Similarly, we can construct random oracle key homomorphic PRFs from hard lattice
problems. Let p < q be two primes and let H2 : X → Zn

q be a hash function modeled
as a random oracle. Define the function FLWR : Zn

q ×X → Zp as

FLWR(k, x) ← �〈H2(x),k〉�p ,

R. Canetti and J.A. Garay (Eds.): CRYPTO 2013, Part I, LNCS 8042, pp. 410–428, 2013.
c© International Association for Cryptologic Research 2013
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where �x�p denotes rounding an element x ∈ Zq to Zp by multiplying it by (p/q)
and rounding the result (as defined in Section 2), and 〈·, ·〉 denotes inner product. The
function FLWR can be easily shown to be a secure PRF in the random oracle model
whenever the Learning with Rounding (LWR) assumption [8] holds. Because rounding
is not linear (i.e. it can happen that �a+ b�p �= �a�p + �b�p) the function FLWR is not
key homomorphic. However, it comes very close and is sufficiently homomorphic for
most of our applications. In particular, FLWR is “almost” key homomorphic in the sense
that

FLWR(k1 + k2, x) = FLWR(k1, x) + FLWR(k2, x) + e (1.1)

where e is short; namely, e ∈ [−1, 1].

1.1 Our Contributions

Key Homomorphic PRFs in the Standard Model. We construct the first (almost)
key homomorphic PRFs without using random oracles. Our main construction, given in
Section 5, is a lattice-based almost key homomorphic PRF based on the Learning with
Errors (LWE) assumption [33]. The PRF uses two public matrices A0,A1 ∈ Zm×m

q

where the entries of these matrices are sampled uniformly at random from {0, 1}. The
dimension m is derived from the security parameter. The key for the PRF is a single
vector k ∈ Zm

q and its domain is {0, 1}�. The PRF at the point x = x1 · · ·x� ∈ {0, 1}�
is defined as

FLWE(k, x) =

⌈
�∏

i=1

Axi · k
⌋
p

∈ Zm
p . (1.2)

This function satisfies FLWE(k1 + k2, x) = FLWE(k1, x) + FLWE(k2, x) + e where the
error term e ∈ [−1, 1]m. Therefore this function is almost key homomorphic in the
same sense as FLWR, which is sufficient for most of our applications. We prove that
FLWE is a secure PRF based on the LWE assumption in the standard model.

The construction in Eq. (1.2) is closely related to an elegant non-key homomorphic
PRF due to Banerjee, Peikert, and Rosen [8], but is technically quite different from it.
The secret key in [8] is a collection of 
 matrices while our secret key is only a single
vector k ∈ Zm

q . The public parameters in [8] consist of one matrix while our public
parameters consist of two matrices. An important step in our proof of security requires
that the two public matrices A0,A1 used in our PRF be low-norm matrices (e.g. binary)
and this poses a challenge in proving security from the standard LWE assumption.

To prove security we define a variant of LWE called the non-uniform LWE problem
and show that it is at least as hard as the standard LWE problem. Recall that the stan-
dard LWE assumption states that for a random s ∈ Zn

q , the following two oracles are
indistinguishable:

OLWE :
(
vi

R← Zn
q , 〈vi, s〉+ χi

)
and O$ :

(
vi

R← Zn
q , xi

R← Zq

)
where χi is sampled from a suitable low-norm noise distribution. We show that the
LWE assumption implies that these two oracles are indistinguishable even when the
vectors vi are sampled from certain distributions of low norm vectors in Zn

q or even
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as binary vectors in {0, 1}n. However, the dimension n must be increased—in general,
the lower the norm of each vi, the larger n needs to be. While this low norm version of
the LWE assumption is precisely what we need to prove security of the PRF FLWE , this
assumption may be of independent interest and useful in other settings.

Key-Homomorphic PRFs from �-Linear Maps. In the full version, we present an
algebraic 
-bit key homomorphic PRF built from 
-linear maps ê : G� → G�, where G�

is the 
th target group. PRF security is based on the 
-decision linear assumption [34, 23]
in G. For a generator g ∈ G, the public parameters for the PRF are pp =

(
gA0 , gA1

)
where A0,A1 are two matrices in Z�×�

p generated at random (here, the notation gA0

denotes component-wise exponentiation). The secret key for the PRF is a single vector
k ∈ Z�

p. The PRF at the point x = x1 . . . x� ∈ {0, 1}� is defined as

FDLIN(k, x) = (g�)
w ∈ (G�)

� where w = Ax1 · · ·Ax�
· k ∈ Z�

p (1.3)

where g� is a generator of G�. Evaluating the PRF at the point x given the public param-
eters pp =

(
gA0 , gA1

)
and key k can be done using a graded 
-linear map as explained

in the full version. The PRF FDLIN(k, x) is clearly homomorphic with respect to the
secret key k.

This PRF is related to the Naor-Reingold DDH-based PRF [29], but since the DDH
assumption is false in groups with an 
-linear map, the relation is closer to the Lewko-
Waters [25] variant which is proven secure under the 
-decision linear assumption in G.
The secret key in the Lewko-Waters PRF consists of 
 secret matrices while in con-
struction (1.3) the secret key is only a single vector in k ∈ Z�

p and this enables the
key-homomorphic property. However, our construction inherently requires an 
-linear
map in G whereas [25] did not. Unfortunately, we cannot use the 
-linear map candidate
of Garg, Gentry, and Halevi [20] to instantiate the construction because the 
-decision
linear problem is easy for that proposal. We therefore view our lattice-based construc-
tion as our primary key homomorphic PRF and await other 
-linear map candidates to
instantiate our second scheme.

1.2 Key Homomorphic PRFs: Applications

Our interest in key homomorphic PRFs stems from a number of real-world applications
for such functions. We describe them briefly here and discuss some of these applications
in more detail in Section 6. Due to space constraints the remaining applications have
been deferred to the full version.

Distributed PRFs. In a one-time password system such as RSA SecurID, users are
given a small cryptographic token containing a PRF secret key. The token displays PRF
outputs that are used as one-time passwords. An authentication server verifies a given
one-time password by comparing it to its own computation of the PRF value using the
same PRF secret key. Since the server knows the secret PRF keys for all users, these
authentication servers have become a prime target for attacks [17]. In response, RSA
introduced Distributed Credential Protection where PRF keys are shared among two or
more key servers and all servers have to be compromised to recover the keys. Currently
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this design does not provide true key splitting since the PRF in use is AES for which
there is no known simple key splitting mechanism.

Key homomorphic PRFs give a clean solution to distributing PRF keys using a sim-
ple communication pattern: a client who wants to evaluate the PRF at a point x sends a
single short message to each key server and receives a single response back from each
key server. No interaction between the key servers is needed. For an n-out-of-n shar-
ing, key server i stores a random key ki and the overall PRF key is k = k1 ⊕ · · · ⊕ kn,
where ⊕ is the group action over the key space. To evaluate F (k, x) the client sends x
to all key servers and each server responds with yi = F (ki, x). The client combines the
results to obtain F (k, x) using the key homomorphism property. To provide t-out-of-n
sharing, the client first “multiplies” the responses from the key servers by the appro-
priate Lagrange coefficients and then “adds” the results using the key homomorphism
property. We give the details in Section 6.1. This application still works with an al-
most key homomorphic PRF as long as the PRF range is sufficiently larger than the
homomorphism error term. The output is then defined as only the high order bits of the
computed value F (k, x) so as to eliminate the homomorphism error.

Symmetric-Key Proxy Re-encryption. Key homomorphic PRFs provide the symmet-
ric-key analogue of public-key proxy re-encryption [12, 7, 15, 6, 26]. Given a message
from a client encrypted under one symmetric key, a proxy can translate that ciphertext to
a different symmetric key (associated with another client) without knowledge of either
key. To do so, the proxy is provided with a short re-encryption token Δ that enables
it to transform the symmetric encryption of the data m from key k to key k′ without
knowing either key.

A key homomorphic PRF directly gives a symmetric-key proxy re-encryption
scheme. To see how, let F (k,m) be a key homomorphic PRF satisfying F (k⊕k′, x) =
F (k, x) ⊗ F (k′, x) where both ⊕ and ⊗ are group operations. Suppose the data m is
encrypted using randomized counter mode based on F—that is, the j th block of m is
encrypted as cj ← mj ⊗ F (k,N + j) where N is an encryption nonce. Now, to re-
encrypt from key k to key k′, the client sends the re-encryption token Δ = −k ⊕ k′ to
the proxy. The proxy computes the following on every ciphertext block:

c′j ← cj ⊗ F (Δ,N + j).

By the key homomorphism property, c′j = mj ⊗ F (k,N + j) ⊗ F (Δ,N + j) =
mj ⊗F (k⊕Δ,N + j) = mj ⊗F (k′, N + j) and therefore c′j is the encryption of mj

under key k′, as required. We discuss the security of this construction in Section 6.
This application works equally well with an almost key homomorphic PRF except

that we need to pad each message block mj with a constant number of zeros on the
right to ensure that the small additive homomorphic error term e does not affect the
encrypted plaintext after several re-encryptions.

We note that basic symmetric-key proxy re-encryption can also be done using a seed-
homomorphic pseudorandom generator (PRG)—that is, a PRG G : S → Y such that
G(s2) can be efficiently computed from G(s1) and Δ = −s1 ⊕ s2. We give examples
of such PRGs in Section 3.1. However, encrypting with a PRG is only one-time se-
cure, whereas randomized counter-mode using a PRF provides security against chosen-
plaintext attacks, thereby enabling a single key to encrypt multiple messages. We also
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note that the encryption scheme can be made to provide integrity without disrupting the
key homomorphism property by using “MAC then encrypt with counter-mode,” which
is known to provide secure authenticated encryption (see e.g., [24]).

Updatable Encryption. Symmetric-key proxy re-encryption built from key homomor-
phic PRFs elegantly solves a common problem facing companies who store encrypted
data in the cloud. Let m be some data and suppose the company stores the symmetric
encryption of m under key k in the cloud. Any employee who knows k has access to
m. As employees leave the company there is a need to rotate the encryption key (i.e.
re-encrypt m under a new key k′) to ensure that ex-employees lose access to the data.
Often key rotation happens at fixed time intervals (e.g. once a month).

One naı̈ve approach is to download the entire ciphertext from the cloud, re-encrypt
under a new key, and upload the new ciphertext to the cloud. If the cloud provider is
trusted to delete the old ciphertext then this ensures that employees who leave the com-
pany lose access even if they are able to access the current data stored in the cloud.
Unfortunately, downloading all the data from the cloud just for the purpose of key rota-
tion results in considerable wasted bandwidth and cost. A better solution is to encrypt
the data m using a symmetric-key proxy re-encryption scheme and use the cloud as the
proxy holding the company’s encrypted data. Now, by simply sending to the cloud the
re-encryption token Δ = −k ⊕ k′, the cloud can translate the ciphertext from key k to
key k′ in place without doing any large data transfers. As before, if the cloud is trusted
to delete the old re-encryption tokens Δ and the old versions of the ciphertext, then
employees who leave the company lose access to m even if they can access the current
data stored with the cloud.

We note that key-rotation in the cloud can potentially be done using ad-hoc solutions
such as nested encryption, but these solutions result in increased storage needs or in-
creased decryption time or do not fully prevent a revoked employee from decrypting
cloud data. A fast key homomorphic PRF would provide a clean solution that does not
increase storage requirements and has no impact on encryption or decryption time.

PRFs Secure against Related-Key Attacks. A related-key attack (RKA) on a PRF
models a situation where an adversary is able to manipulate the secret key used in
the PRF. Bellare and Cash [9] construct RKA-secure PRFs under the Decision Diffie-
Hellman assumption and also under the decision linear assumption. One important in-
gredient in their constructions is a PRF that satisfies “key malleability”—informally, an
adversary can transform an output of the PRF on a secret key k ∈ K and input x ∈ X
into an output of the PRF on a related key φ(k) (where φ : K → K is a member of a
class of functions Φ) and input x without having access to k. For PRFs, key homomor-
phism implies key malleability with respect to the class Φ⊕ = {φ(k) = k ⊕ k′}k′∈K,
where ⊕ represents the group action over K. However, the converse does not hold in
general— key malleability over Φ⊕ is not known to imply key homomorphism.

Bellare and Cash give several constructions of RKA-secure PRFs based on various
standard assumptions which are secure for certain restricted classes Φ of related-key
deriving functions. We show in the full version that any key homomorphic PRF that
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satisfies an additional syntactic property can be used to construct an RKA-secure PRF
for a larger class Φ than in [9].

1.3 Related Work

Distributed PRFs were first considered by Naor and Pinkas [28] for the purpose of
distributing the Kerberos key distribution center. They proposed the simple random
oracle construction FDDH which is key homomorphic. Nielsen [30] and D’Arco and
Stinson [18] constructed robust distributed PRFs, but evaluation requires interaction
between the key servers and multiple rounds of communication. Dodis [19] constructs
distributed PRFs and VRFs under a strong assumption and also requires multiple rounds
of communication to evaluate the PRF.

Much recent work has focused on preventing related key attacks [10, 9, 11]. Key
homomorphic PRFs are on the other end of the spectrum where key homomorphism is
encouraged in support of specific applications.

Syalim, Nishide, and Sakurai [37] describe a symmetric proxy re-encryption scheme
based on the all or nothing transform (AONT) in the random oracle model. Cook and
Keromytis [16] propose to use double encryption to provide one-hop symmetric proxy
re-encryption.

2 Preliminaries

Rounding. We define �·� to round a real number to the nearest integer. For integers q
and p where q ≥ p ≥ 2, we define the function �·�p : Zq → Zp as �x�p = �(p/q) · x̄�
(mod p) where x̄ ∈ {0, 1, . . . , q− 1} is the integer congruent to x (mod q). For a vec-
tor v ∈ Zm

q , we define �v�p as the vector in Zm
p obtained by rounding each coordinate

of the vector individually. A probability distribution χ over R is said to be B-bounded
if it holds that Prx←χ[|x| > B] is negligible in the security parameter.

PRFs and PRGs. Recall that a pseudorandom generator (PRG) is an efficiently com-
putable function G : S → R such that for uniform s in S and uniform r in R, the
distribution {G(s)} is computationally indistinguishable from the distribution {r}. A
pseudorandom function (PRF) [22] is an efficiently computable function F : K×X →
Y such that for a uniform k in K and a uniform function f : X → Y , an oracle for
F (k, ·) is computationally indistinguishable from an oracle for f(·). In this paper, we
allow our PRFs and PRGs to be further paramaterized by an additional public param-
eter pp, which will be clear from context. We let AdvPRF[F,A] denote the advantage
of adversary A in distinguishing the PRF F (along with its public parameters) from a
random function f : X → Y .

Learning With Errors (LWE) Assumption. The LWE problem was introduced by
Regev [33] who showed that solving the LWE problem on average is as hard as (quan-
tumly) solving several standard lattice problems in the worst case.

Definition 2.1 (Learning With Errors). For integers q = q(n) ≥ 2 and a noise dis-
tribution χ = χ(n) over Zq , the learning with errors problem (Zq, n, χ)-LWE is to
distinguish between the following pairs of distributions:
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{A,Aᵀs+ χ} and {A,u},

where m = poly(n), A ← Zn×m
q , s ← Zn

q , χ ← χm, and u ← Zm
q . We refer to the m

columns of the matrix A as the LWE sample points.

Regev [33] shows that for a certain noise distribution χ = Ψα
1, for n polynomial in

λ and q > 2
√
n/α, the LWE problem is as hard as the worst-case SIVP and GapSVP

under a quantum reduction (see also [31, 13]). These results have been extended to
show that s can be sampled from a low norm distribution (in particular, from the noise
distribution χ) and the resulting problem is as hard as the basic LWE problem [5].
Similarly, the noise distribution χ can be a simple low-norm distribution [27].

3 Key Homomorphic PRFs and Seed Homomorphic PRGs

In this section, we define key homomorphic PRFs and “almost” key homomorphic
PRFs. We also introduce the concept of seed homomorphic PRGs and give example
instantiations from standard assumptions.

Definition 3.1 (Key homomorphic PRF). Consider an efficiently computable function
F : K × X → Y such that (K,⊕) and (Y,⊗) are both groups. We say that the tuple
(F,⊕,⊗) is a key homomorphic PRF (KHPRF) if the following two properties hold:

1. F is a secure pseudorandom function.
2. For every k1, k2 ∈ K and every x ∈ X , F (k1, x)⊗ F (k2, x) = F (k1 ⊕ k2, x).

In Section 1 we gave an example of a key homomorphic PRF in the random oracle
model due to Naor, Pinkas, and Reingold [28]. While property 2 is very desirable, it
is helpful to also modify the homomorphic requirement to only being approximately
correct when Y = Zm

p . We call this variant an almost key homomorphic PRF (AKH-
PRF). An AKHPRF has a parameter γ that reflects the amount of error allowed in the
homomorphism.

Definition 3.2 (γ-Almost key homomorphic PRF). Let F : K × X → Zm
p be an

efficiently computable function such that (K,⊕) is a group. We say that the tuple (F,⊕)
is a γ-almost key homomorphic PRF (γ-AKHPRF) if the following two properties hold:

1. F is a secure pseudorandom function.
2. For every k1, k2 ∈ K and every x ∈ X , there exists a vector v ∈ [−γ, γ]m such

that
F (k1, x) + F (k2, x) = F (k1 ⊕ k2, x) + v (mod p) .

For example, the function FLWR from Section 1 is 1-almost key homomorphic. Such
γ-almost key homomorphic functions for small γ are sufficient for the applications we
have in mind.

1 For an α ∈ (0, 1) and a prime q, let Ψα denote the distribution over Zq of the random variable
�qX� (mod q) where X is a normal random variable with mean 0 and standard deviation
α/

√
2π.
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3.1 Seed Homomorphic Pseudorandom Generators

To explain our PRF construction it is instructive to first consider pseudorandom gener-
ators (PRGs) that are homomorphic with respect to their seed.

Definition 3.3 (Seed homomorphic PRG). An efficiently computable function G :
X → Y , where (X ,⊕) and (Y,⊗) are groups, is is said to be seed homomorphic if
the following two properties hold:

1. G is a secure PRG.
2. For every s1, s2 ∈ X we have that G(s1)⊗G(s2) = G(s1 ⊕ s2).

3.2 Examples of Seed Homomorphic PRGs

We give two example seed homomorphic PRGs, one based on the Decision Diffie-
Hellman (DDH) assumption and the other based on lattices.

Seed Homomorphic PRGs from DDH. Let G be a group of order p in which the
DDH assumption holds. Consider the following PRG GDDH : Zp → G × G and public
parameters pp being a pair g, h

R← G:

GDDH(s) = (gs, hs)

Security of this PRG follows immediately from the DDH assumption: when s is uniform
in Zp then GDDH(s) is indistinguishable from a random sample in G×G. It should also
be clear that this PRG is seed homomorphic since for all s1, s2 ∈ Zp, GDDH(s1+s2) =
GDDH(s1) ·GDDH(s2) where · is component-wise multiplication.

Almost Seed Homomorphic PRGs from LWR. Let p < q and n < m be parameters.
Then the following PRG GLWR : Zn

q → Zm
p , with public parameters pp being a random

matrix A
R← Zn×m

q , is secure assuming the Learning With Rounding (LWR) problem
is hard for the given parameters p, q, n,m:

GLWR(s) = �Aᵀ · s�p

While this PRG is not seed homomorphic, it is close to seed homomorphic in the fol-
lowing sense: GLWR(s1 + s2) = GLWR(s1) + GLWR(s2) + e where e ∈ [−1, 1]m.
An almost seed homomorphic PRG can be used for updatable encryption by append-
ing a few zeros to each plaintext block before encryption so that low-order bits can
be dropped during decryption thereby eliminating any errors resulting from the almost
homomorphic property.

Key Homomorphic PRFs from the GGM Construction. Consider a seed homomor-
phic PRG G : X → X × X where (X ,⊕) is a group. Since the output of G(s) is in
X × X let us write G0(s) for the left half of G(s) and write G1(s) for the right half.
We can now construct the GGM PRF [22] with key space X and input space {0, 1}� as
follows:

FGGM(k, x = x1 · · ·x�) = Gx�

(
Gx�−1

(
· · ·Gx2( Gx1(k) ) · · ·

))
(3.1)
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The standard GGM proof shows that if G is a secure PRG then F is a secure PRF. Now
suppose further that the input and output homomorphisms of G are compatible—that
is, for all s1, s2 ∈ X and b ∈ {0, 1} we have that Gb(s1 ⊕ s2) = Gb(s1) ⊕ Gb(s2).
Then it is not difficult to see that FGGM is key homomorphic.

Unfortunately, GDDH and GLWR defined in Section 3.2 above cannot be used directly
in construction (3.1). The problem is that these generators do not compose as needed for
construction (3.1). In the next few sections we show how to overcome these difficulties
while preserving the key homomorphic or almost key homomorphic property of the
resulting PRFs.

4 Learning With Errors with Low-Norm Samples

Before we construct our lattice-based key homomorphic PRF, we first present a variant
of the learning with errors assumption needed to prove security. Recall that the basic
LWE assumption [33] reviewed in Section 2 states that the distribution {A, Aᵀs+χ}
is indistinguishable from the distribution {A, u} where the columns of A are sampled
uniformly in Zn

q and s is uniform in Zn
q .

In this section we introduce a variant of the learning with errors (LWE) problem in
which the the columns of A (i.e., the LWE sample points) are sampled from a non-
uniform distribution η over Zn

q . We call this variant Non-uniform Learning with Errors,
or NLWE for short, and show that for suitable parameters it is as hard as the basic
LWE problem. In what follows we let k denote the dimension of the NLWE problem
and let n denote the dimension of the LWE problem. We also write ηm to denote m
independent samples from the distribution η.

Definition 4.1 (Non-uniform Learning with Errors). For an integer q = q(k) ≥ 2,
a noise distribution χ = χ(k) over Zq , and a distribution η over Zk

q , the non-uniform
learning with errors problem (Zq, k, χ,η)-NLWE is to distinguish between the two
distributions:

{A, Aᵀs+ χ} and {A, u},

where m = poly(k), A ← ηm (so that A ∈ Zk×m
q ), s ← Zk

q , χ ← χm, and
u ← Zm

q .

We show that for certain choices of the distributionη there is a reduction from (Zq, n, χ)-
LWE to (Zq, k, χ,η)-NLWE for some k ≥ n. Consequently, the NLWE problem is at
least as hard as the LWE problem. In particular, we show that for suitable parameters,
NLWE is as hard as LWE for the following distributions η:

/ ηBin(k): the uniform distribution on {0, 1}k for sufficiently large k,
/ DZk,σ: a discrete Gaussian on Zk with a sufficiently large k and standard devia-

tion σ,
/ ηV : a uniform distribution over a sufficiently large linear subspace V of Zk

q .

More generally, we show that NLWE is as hard as LWE for any distribution η which
is coset sampleable as defined next.
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Definition 4.2 (Coset Sampleable Distributions). For integers q = q(k) and n =
n(k) we say that a distribution η = η(k) over Zk

q is n-coset sampleable if there are
two PPT algorithms (MatrixGen, SamplePre) such that:

/ MatrixGen(1k, n, q) outputs a matrix M ∈ Zn×k
q and auxiliary data T,

/ SamplePre(z ∈ Zn
q , T) outputs a y ∈ Zk

q satisfying My = z. Moreover, if z
is distributed uniformly in Zn

q then the output of SamplePre(z,T) is distributed
statistically close to η.

The following theorem shows that (Zq, k, χ,η)-NLWE is as hard as (Zq , n, χ)-LWE
for any n-coset sampleable distribution η.

Theorem 4.3. Let η = η(k) be an n-coset sampleable distribution. Suppose there is a
PPT algorithm A that decides the (Zq, k, χ,η)-NLWE problem with advantage ε(k).
Then there is a PPT algorithm B that decides the (Zq, n, χ)-LWE problem with the
same advantage ε(k).

Proof. AlgorithmB takes an LWE instance (A, v) as input and needs to decide whether
this input is sampled from {A, Aᵀs+χ} or from {A, u}where A is uniform in Zn×m

q

and u is uniform in Zm
q . AlgorithmB translates (A, v) into an NLWE instance (B, v′)

and then runs A on (B, v′). It works as follows:

1. Choose a random r ← Zk
q and run MatrixGen(1k, n, q) to obtain a matrix M ∈

Zn×k
q and T.

2. For each column a ∈ Zn
q of A run SamplePre(a,T) to obtain b ∈ Zk

q such that
Mb = a. Assemble all such b into a matrix B ∈ Zk×m

q . Then MB = A.
3. Set v′ ← v +Bᵀr ∈ Zm

q .
4. Run A on input (B, v′) and output whatever A outputs.

It remains to show that (B, v′) is properly distributed as a (Zq, k, χ,η)-NLWE prob-
lem instance. First, by the definition of SamplePre, since the columns of A are uniform
in Zn

q , the columns of B are statistically close to η. Second, if the input v is uniform
in Zm

q then clearly v′ = v + Bᵀr is uniform in Zm
q . Third, if the input v satisfies

v = Aᵀs+ χ then v′ satisfies v′ = Bᵀ(Mᵀs+ r) + χ because Aᵀ = BᵀMᵀ and

v′ = v +Bᵀr = Aᵀs+ χ+Bᵀr = BᵀMᵀs+ χ+Bᵀr = Bᵀ(Mᵀs+ r) + χ .

Therefore (B, v′) is a proper NLWE instance where the secret vector is s′ = Mᵀs+ r
which is clearly uniform in Zk

q . It follows that B decides NLWE with the same advan-
tage as A decides LWE. ��

Remark 4.4. We note that while our definition of the NLWE problem requires that the
secret vector s ∈ Zk

q be uniform in Zk
q , the proof of Theorem 4.3 can be adapted to show

that NLWE problem is hard even when s is non-uniform and in particular distributed as
{Mᵀs′}where s′ is distributed as the secret vector in the LWE problem (e.g., uniform in
Zn
q ). The proof is adapted to a non-uniform s by eliminating the randomization vector r.
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Next we show specific distributions η for which the corresponding NLWE problem is
as hard as LWE.

NLWE with Uniform Samples in {0, 1}k. Let ηBin(k) be the uniform distribution
on {0, 1}k. We show that if the (Zq, n, χ)-LWE problem is hard then so is the non-
uniform LWE problem where the columns of A are random binary vectors and the
dimension is increased from n to n�log2 q�. The proof uses bit decomposition as in [14]
and also in [2, 13].

Corollary 4.5. Let q = q(n) be an integer such that 2�log q�−q
q is negligible (i.e., q is

close to a power of 2). Let k = n�log2 q�. Then the (Zq, n�log2 q�, χ, ηBin(k))-NLWE
problem is at least as hard as the (Zq , n, χ)-LWE problem.

Proof. By Theorem 4.3 it suffices to show that ηBin(k) is coset sampleable. Let m ∈
Z�log q�
q be the vector (1, 2, 22, . . . , 2�log q�−1), and let M ∈ Zn×k

q be the matrix M =
m ⊗ In, where ⊗ denotes the tensor product. Algorithms MatrixGen and SamplePre
are defined as follows:

/ MatrixGen(1k, n, q) simply outputs M = m⊗ In ∈ Zn×k
q and T = (n, q),

/ SamplePre(z ∈ Zn
q , T) outputs a vector y in {0, 1}k by setting the entry in posi-

tion (i+ j �log2 q�) of y to the ith bit of the j th entry of the input vector z,
for j = 0, . . . , n− 1 and i = 0, . . . , �log2 q� − 1.

By construction My = z. Moreover, if z is uniformly distributed in Zn
q then a standard

calculation shows that the statistical distance between the distribution SamplePre(z,T)

and ηBin(k) is bounded from above by n 2�log q�−q
q , which is negligible for our choice of

q and n, as required. ��
By Remark 4.4 the NLWE problem using ηBin(k) remains as hard as LWE when

s ∈ Zk
q is distributed as {r⊗ (1, 2, 22, . . . , 2�log q�−1)} where r is uniform in Zn

q .

NLWE with Samples from a Discrete Gaussian. Next, we show that when the columns
of A in LWE are sampled from a discrete Gaussian with a sufficiently large σ then the
resulting problem is as hard as LWE. Let DZk,σ denote the Gaussian distribution with
standard deviation σ restricted to Zk . We need the following two facts [4, 21]:

/ There is an efficient randomized algorithm TrapGen(1n, k, q) that given integers
n, q ≥ 2 and k ≥ 6n log q, outputs a matrix M ∈ Zn×k

q and a ‘trapdoor’ TM ∈
Zk×k such that M is negl(n)-close to uniform.

/ There is an efficient randomized algorithm SampleD(M,TM,u, σ) that given u ∈
Zn
q , sufficiently large σ = Ω(

√
n log q), and the trapdoor TM outputs a vector

e ∈ Zk
q such that Me = u. Moreover, when u is uniform in Zn

q , the output of
SampleD(M,TM,u, σ) is distributed as DZk,σ .

Corollary 4.6. Let q = q(k) be an integer and σ = Ω(
√
n log q). Then the problem

(Zq, k, χ,DZk,σ)-NLWE is at least as hard as (Zq , �k/(6 log2 q)�, χ)-LWE.
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Proof. By Theorem 4.3 it suffices to show that DZk,σ is coset sampleable. Algorithms
MatrixGen and SamplePre are defined as follows:

/ MatrixGen(1k, n, q) runs TrapGen(1n, k, q) and outputs M and T = (M,TM).
/ SamplePre(z ∈ Zn

q , T) outputs SampleD(M,TM, z, σ).

By construction, these algorithms show that DZk,σ is coset sampleable. ��
NLWE with Samples in a Linear Subspace. Our last example which was also studied
by Pietrzak [32] shows that when the columns of A in LWE are sampled uniformly from
a linear subspace of sufficient dimension then the resulting problem is as hard as LWE.

Corollary 4.7. Let q = q(k) be an integer and let V be a linear subspace of Zk
q

of dimension at least n. Let ηV be the uniform distribution on V . Then the problem
(Zq, k, χ,ηV )-NLWE is at least as hard as (Zq , n, χ)-LWE.

Proof Sketch. By Theorem 4.3 it suffices to show that ηV is coset sampleable and this
follows by elementary linear algebra. ��

5 An LWE-Based almost Key Homomorphic PRF

In this section, we construct a 1-almost key homomorphic PRF in the standard model
based on the LWE assumption. Our new (almost key homomorphic) PRF has parame-
ters comparable to those of [8]. Despite being almost key homomorphic, our PRF can
still be used for the applications discussed in the introduction.

Construction. Let q, n, andm be integers such thatm = n�log q�. Recall the definition
of the rounding function �·�p and the noise distribution Ψα from Section 2, and the
definition of ηBin(m) from Lemma 4.5. Let public parameters pp be a pair of matrices
of the form A0,A1 ∈ Zm×m

q where each row of A0 and A1 is sampled from ηBin(m)

such that both matrices are full rank. The secret key k is a vector in Zm
q . Define FLWE :

Zm
q × {0, 1}� → Zm

p as follows:

FLWE(k, x) =

⌈
�∏

i=1

Axi · k
⌋
p

. (5.1)

Theorem 5.1. The function FLWE is pseudorandom under the (Zq, n, Ψα)-LWE as-
sumption for parameter choices such that α ·m� · p ≤ 2−ω(logn).

The parameters α, m, 
, and p must be chosen carefully, as α determines the choice of
the underlying lattice hardness assumption used for security. In the interest of space,
we provide a proof overview of the pseudorandomness of FLWE and leave the rest of the
details to the full version.
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Proof Overview of Theorem 5.1. In proving the pseudorandomness of FLWE , we fol-
low the outline of the standard GGM construction [22]. The proof uses 
 + 1 hybrid
experiments, where in each experiment Expti for i ∈ [
 + 1], we successively ignore
additional bits of the input in computing the product of Axi’s while replacing this prod-
uct with consistent random values. As usual, experiment Expt1 corresponds to the case
where all bits of x are ignored, and instead of the product of Axi ’s, the experiment
returns random values. Experiment Expt�+1 honestly evaluates the PRF. Therefore, it
suffices to show the indistinguishability of Exptj and Exptj+1 for all j ∈ [
+1], which
is shown as follows.

Let P =
∏j−1

i=1 Axi . When the adversary queries its PRF oracle at a point x ∈
{0, 1}�, the resulting PRF evaluation given to the adversary in Exptj and Exptj+1 looks
like �P · r�p and

⌈
PAxj · r

⌋
p
, where r is chosen uniformly in Zm

q and is kept consis-
tent across the adversary’s queries using a lookup table indexed by the low order bits
of the query x. An LWE challenge, either of the form (A,As + δ) or (A, r), cannot
immediately be used to simulate the above evaluations. Instead, we move to an interme-
diate hybrid where the evaluations given to the adversary look like

⌈
PAxj s+Pδ

⌋
p
=⌈

P(Axj s+ δ)
⌋
p
, where s and δ are kept consistent across the adversary’s queries as

was done previously. Now, it remains to show that

(a)
⌈
PAxj s+Pδ

⌋
p
≈
⌈
PAxj · r

⌋
p

and (b)
⌈
P(Axj s+ δ)

⌋
p
≈ �P · r�p,

Together these show that Exptj is indistinguishable from Exptj+1.
Statistical indistinguishability in (a) follows from a probabilistic argument by show-

ing that for appropriate choices of parameters, the additive term Pδ has no impact on
the rounding. Although δ is low-norm, if P were distributed uniformly, as is the usual
case, this argument would fail. This explains why we must sample A0 and A1 using
ηBin(m)—it ensures that P is a low norm matrix so that Pδ is a low norm vector.

The two terms in (b) are of the more familiar form of an LWE challenge, but with one
important distinction. In such a challenge, the matrix A is low-norm, which is precisely
modeled by the non-uniform learning with errors problem, introduced in Section 4.
From Theorem 4.3, we can show computational indistinguishability in (b) under the
standard LWE assumption. ��

With a simple argument about the rounding of values from Zq to Zp (for which the
details are left to the full version), for every k1,k2 ∈ Zm

q and every x ∈ {0, 1}�, there
exists an e ∈ [−1, 1]m such that FLWE(k1, x) + FLWE(k2, x) = FLWE(k1 + k2, x) + e.
Thus, we can state the following theorem.

Theorem 5.2. The tuple (FLWE ,+) is a 1-almost key homomorphic PRF, where + is
addition over Zm

q .

6 Applications of (Almost) Key Homomorphic PRFs

In this section, we construct one-round distributed PRFs [28] and symmetric proxy
re-encryption schemes from γ-almost key homomorphic PRFs.
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6.1 Distributed PRFs

Definition. To define distributed PRFs we follow the exposition of Naor, Pinkas, and
Reingold [28]. The model comprises of N servers S1, . . . , SN and a client C that is
connected to at least t servers.

A distributed PRF is a tuple of algorithms Π = (Setup, Share,F,G, f) with the fol-
lowing properties. Algorithm Setup takes the security parameter λ and outputs public
parameters pp. The key-sharing algorithm Share : K → KN takes as input a master
secret key k0 ∈ K and outputs a tuple (k1, . . . , kN ) ∈ KN , where k1, . . . , kN represent
the key-shares of k0 from a (t, N)-threshold secret sharing scheme. The partial eval-
uation function F : K × X → Y computes a partial evaluation of the function f when
given a key-share and an input point. The combine algorithm G : 2[N ] × Yt → Y takes
as input a subset W ⊂ [N ] of size t and the t partial evaluations on key-shares in the
set W and outputs a value in Y . The evaluation function f : K × X → Y maps a key
and an input to the space of outputs.

The distributed PRF is initialized by a trusted third party that runs Setup(1λ) to
obtain the public parameters pp, samples a master secret key k0 uniformly from K,
and runs Share(k0) to obtain a tuple (k1, . . . , kn). The key-share ki is distributed as
the secret key for each server Si along with public parameters pp. A client C that
wants to compute the evaluation function f under key k0 on input x sends x to t servers
Si1 , . . . , Sit . Each server Si responds to the client with F(ki, x). Then, the client locally
computes f(k0, x) by computing G (W,F(ki1 , x), . . . ,F(kit , x)).

Consistency. Let pp be the output of Setup(1λ), k0 be sampled uniformly from K, and
(k1, . . . , kN ) be the key-shares output by Share(k0). For every subsetW = {i1, . . . , it}
⊂ [N ] of size t, and for every input x, a distributed PRF Π is consistent if f(k0, x) =
G (W,F(ki1 , x), . . . ,F(kit , x)).

Pseudorandomness. Intuitively, the evaluation function f should remain pseudoran-
dom even when the adversary is given t − 1 key shares ki1 , . . . , kit−1 for indices
{i1, . . . , it−1} of its choice. The adversary is also given an oracle O that performs
arbitrary partial evaluations: it takes (i, x) as input and returns F(ki, x). The adversary
should be unable to distinguish the function from random at points x where it did not
query the oracle O. We formalize this intuition by providing a concrete experiment-
based security definition in the full version.

Distributed PRFs from Key Homomorphic PRFs. Let F : F × X → F be a key
homomorphic PRF where F is a field. We consider a (t, N)-threshold secret sharing
scheme [35] over a secret k0 in F, which constructs key-shares by sampling a uniformly
random polynomial p(z) ∈ F[Z] of degree t−1 such that p(0) = k0, and the remaining
coefficients are sampled uniformly at random from F. We then define share ki = p(i)
for i ∈ [1, N ]. For secret shares constructed in this manner, it holds that for any W =
{i1, . . . , it} ⊂ [N ] of size t we have that k0 = p(0) =

∑
i∈W Λi,W · ki, where Λi,W ∈

F are the Lagrange coefficients that depend only on W . We construct a distributed PRF
scheme ΠdPRF = (Setup, Share,F,G, f) as follows.
/ Setup(1λ) outputs public parameters pp used by the key homomorphic PRF F .
/ Share(k0) samples a uniformly random polynomial p(z) of degree t − 1 such that
p(0) = k0 and outputs (p(1), . . . , p(N)).
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/ F(ki, x) returns the output of the key homomorphic PRF F (ki, x).
/ G(W, y1, . . . , yt) computes and returns

∑
i∈W Λi,W · yi.

/ f(k0, x) returns the output of F (k0, x).

Let pp be the output of Setup(1λ), k0 be chosen uniformly from F, (k1, . . . , kn) be the
output of Share(k0), W = {i1, . . . , it} ⊂ [N ], and x ∈ X . The combine algorithm
computes G (W,F(ki1 , x), . . . ,F(kit , x)) =

∑
i∈W Λi,W · F (ki, x). By the key homo-

morphism property of F , this quantity is equal to
∑

i∈W F (Λi,W · ki, x) = F(k0, x)
as required. If F is a key homomorphic pseudorandom function, then the following the-
orem shows that ΠdPRF is a secure distributed PRF. The complete proof is given in the
full version.

Theorem 6.1. If F is a key homomorphic PRF, thenΠdPRF is a secure distributed PRF.

Constructing dPRFs from almost Key Homomorphic PRFs. The construction de-
scribed above for a distributed PRF can be adapted to PRFs that are γ-almost key ho-
momorphic with output space Zp for some prime p. Unfortunately, when Lagrange
coefficients are interpreted as elements in Zp, they can be arbitrarily large which breaks
correctness of the combine algorithm. To overcome this difficulty, we use the technique
of “clearing the denominator” [36, 1]. Note that for every Lagrange coefficient Λi,W ,
it holds that N ! · Λi,W ∈ Z, and so the combine algorithm now uses N ! · Λi,W ∈ Z
to reconstruct the output of the PRF. The complete details of the construction and its
security proof are included in the full version.

6.2 Symmetric Proxy Re-encryption

Another natural application of key homomorphic PRFs is in constructing symmetric
proxy re-encryption schemes. In a proxy re-encryption scheme, a proxy is given re-
encryption information that enables the proxy to translate an encryption of any mes-
sage from one key to an encryption of the same message under another key without
revealing the underlying message. A symmetric proxy re-encryption scheme is a tuple
of algorithms Π = (Setup,KeyGen,ReKeyGen,Enc,ReEnc,Dec) with the following
properties.

/ Setup(1λ) → pp. On input the security parameter λ, the setup algorithm Setup
outputs the public parameters pp used for the scheme.

/ KeyGen(1λ) → sk. On input the security parameter λ, the key generation algorithm
KeyGen outputs a secret key sk.

/ ReKeyGen(sk1, sk2) → rk1,2. On input two secret keys sk1 and sk2, the re-encryp-
tion key generation algorithm ReKeyGen outputs a bidirectional re-encryption key
rk1,2.

/ Enc(sk,m) → C. On input a secret key sk and message m, the encryption algo-
rithm Enc outputs a ciphertext C.

/ ReEnc(rk1,2, C1) → C2. On input a re-encryption key rk1,2 and a ciphertext C1,
the re-encryption algorithm ReEnc outputs a second ciphertext C2 or ⊥.

/ Dec(sk, C) → m. On input a secret key sk and a ciphertext C, the decryption
algorithm Dec outputs a message m or the error symbol ⊥.
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Correctness. A symmetric proxy re-encryption scheme Π is T -time correct if, un-
der public parameters pp ← Setup(1λ), sk ← KeyGen(1λ) and for all mi ∈ M,
Dec(sk,Enc(sk,m)) = m, and for any sequence of secret keys sk1, . . . , skT output
by KeyGen(1λ) and re-encryption keys rki,i+1 output by ReKeyGen(ski, ski+1) for
i ∈ [1, T − 1], for all messages m ∈M and all ciphertexts C output by Enc(sk1,m), it
holds that Dec(skT ,ReEnc(rkT−1,T , · · ·ReEnc(rk1,2, C) · · · )) = m.

Security. The security model defines the notion of semantic security for symmetric
proxy re-encryption. We adapt the public-key model of Canetti and Hohenberger [15]
to the symmetric-key settings by providing access to an additional encryption oracle.
The model is described in detail in the full version.

Symmetric Proxy Re-encryption from Key Homomorphic PRFs. We show how to
achieve a symmetric proxy re-encryption scheme with T -time correctness for all T > 1
under our security model using key homomorphic PRFs. Let F : K × X → Y be a
key homomorphic PRF with superpolynomial input set size (|X | = ω(poly(λ))). Let
Πproxy = (Setup,KeyGen,ReKeyGen,Enc,ReEnc,Dec) be defined as follows.

/ Setup(1λ) samples and outputs the public parameters pp used by F .
/ KeyGen(1λ) outputs a uniform secret key sk from the key space K.
/ ReKeyGen(sk1, sk2) returns rk1,2 = sk2 − sk1.
/ Enc(sk,m) chooses a random r ← X and outputs (r,m+ F (sk, r)).
/ ReEnc(rk1,2, (r, C)) outputs (r, C + F (rk1,2, r)).
/ Dec(sk, (r, C)) outputs C − F (sk, r).

If F is a key homomorphic pseudorandom function with superpolynomial input set size,
then the following theorem shows thatΠproxy is a secure symmetric proxy re-encryption
scheme. The complete proof is given in the full version.

Theorem 6.2. If F is a key homomorphic PRF, thenΠproxy is a secure symmetric proxy
re-encryption scheme.

Using almost Key Homomorphic PRFs. In the full version, we show how to con-
struct a symmetric proxy re-encryption scheme with T -time correctness (where T must
be an additional input to Setup) from almost key homomorphic PRFs. The proof of
correctness is straightforward and the proof of security remains the same.

7 Conclusions and Open Problems

We explored the concept of key-homomorphic PRFs and discussed its application to
key rotation, one-round distributed PRFs, and symmetric-key proxy re-encryption. Our
construction of lattice-based key-homomorphic PRFs in the standard model relies on a
non-uniform variant of the learning with errors assumption that we show is equivalent
to the standard LWE assumption.
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We leave as an open problem the question of constructing key-homomorphic PRFs
from other standard assumptions and in particular constructions using bilinear maps.
Another interesting area of research is to construct key-homomorphic PRFs whose per-
formance is comparable to real-world block ciphers such as AES.

It would be interesting to improve the tightness of the analysis in our lattice-based
PRF, perhaps using techniques from [3]. Another useful improvement would be to re-
duce the hardness of worst-case lattice problems directly to our non-uniform LWE vari-
ant to improve its hardness parameters.
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Abstract. TLS is the most widely-used cryptographic protocol on the Internet.
It comprises the TLS Handshake Protocol, responsible for authentication and key
establishment, and the TLS Record Protocol, which takes care of subsequent
use of those keys to protect bulk data. In this paper, we present the most
complete analysis to date of the TLS Handshake protocol and its application
to data encryption (in the Record Protocol). We show how to extract a key-
encapsulation mechanism (KEM) from the TLS Handshake Protocol, and how the
security of the entire TLS protocol follows from security properties of this KEM
when composed with a secure authenticated encryption scheme in the Record
Protocol. The security notion we achieve is a variant of the ACCE notion recently
introduced by Jager et al. (Crypto ’12). Our approach enables us to analyse
multiple different key establishment methods in a modular fashion, including the
first proof of the most common deployment mode that is based on RSA PKCS
#1v1.5 encryption, as well as Diffie-Hellman modes. Our results can be applied
to settings where mutual authentication is provided and to the more common
situation where only server authentication is applied.

1 Introduction

TLS is the mostly widely used cryptographic protocol for secure communications on the
Internet. The main purpose of TLS is to provide end-to-end security against an active,
man-in-the-middle attacker. Originally deployed (as SSL) in web browsers for https
connections, TLS is now used as a general purpose provider of secure communications
to all kinds of applications: e-commerce transactions, virtual private networks (VPN),
Android and iOS mobile apps [20, 21], as well as related procotols like DTLS [31, 37].
In short, TLS is one of the most important real-world deployments of cryptography.

TLS in a Nutshell. We begin with an informal high-level overview of the TLS protocol;
a more detailed treatment is given in Section 2. The TLS protocol is executed between
a client and a server. It has two main constituents: the Handshake Protocol, which
is responsible for key establishment and authentication; and the Record Protocol,
which provides a secure channel for handling the delivery of data. The Handshake
Protocol establishes the application keys, which are in turn used to encrypt application
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data in the Record Protocol. The TLS specification offers multiple options for key
establishment mechanisms in the Handshake Protocol and for symmetric key encryption
schemes in the Record Protocol. The most common configuration, to which we refer
as TLS-RSA, relies on RSA PKCS #1v1.5 encryption in the Handshake Protocol.
Other configurations include TLS-DH and TLS-DHE, which rely on Diffie-Hellman
key exchange (the first uses a static server’s DH key and an ephemeral client’s key
while in the latter both parties contribute ephemeral DH keys). All these configurations
provide server authentication, with optional client authentication in settings where
clients possess public keys as well.

Prior Work on TLS. In view of its importance, TLS has long been the subject of
intense research analysis, including, in chronological order, [41, 12, 36, 28, 25, 40, 16,
27, 5, 32, 22, 6, 33, 18, 35, 9, 2, 24, 30, 19, 13, 3, 10, 4]. The main, twin thrusts of
this research have been to establish to what extent the TLS Handshake Protocol and
the TLS Record Protocol are secure, for the respective tasks of key establishment and
authentication and for providing a secure channel for delivery of data.

We now have a fairly complete understanding of the underlying cryptography for
the Record Protocol, as studied in the works of Krawczyk [28] as well as Paterson,
Ristenpart and Shrimpton [35]. These works demonstrated that, when carefully imple-
mented to avoid timing and other attacks like those in [40, 16, 3], the stream-cipher
and CBC encryption modes in the TLS Record Layer achieve the security notion of
authenticated encryption; in fact, [35] puts forth and achieves a strengthening there-of,
known as stateful, length-hiding authenticated encryption (sLHAE).

On the other hand, a complete analysis of the TLS Handshake Protocol remains
elusive. A main obstacle is that the design of TLS violates the basic cryptographic
principles of key indistinguishability and separation of key exchange and secure chan-
nels. This arises because the TLS Record Protocol overlaps with the TLS Handshake
Protocol, and the application key is used to encrypt the last two messages of the
Handshake Protocol (known as the Finished messages). As such, the TLS Handshake
Protocol is deemed insecure by the existing security models for key exchange, initiated
in the work of Bellare and Rogaway [8].

Several prior works [33, 25] circumvented this issue by analyzing variants of the
TLS protocol (e.g. with a different message ordering, unencrypted Finishedmessages,
or RSA-OAEP encryption). In particular, Morrissey, Smart and Warinschi [33] analyze
the “Truncated TLS Handshake Protocol”, where the Finished messages are not
encrypted by the application key. An important feature of [33] is the modularity of
the approach. This conceptually simplifies the protocol and the security proofs, and
points the way forward for subsequent analysis. However, the end result applies to
truncated TLS and not to the real protocol. In addition, Morrissey et al. [33] model
TLS-RSA under the assumption that RSA encryption is replaced with CCA-secure
encryption which is provably false for RSA PKCS #1v1.5 encryption as used in TLS-
RSA. The modularity theme from [33] is developed further in recent work by Brzuska et
al. [13], who analyze the TLS protocol using a game-based framework that is designed
to enable compositional results to be be proved, but their analysis of TLS-RSA assumes
IND-CCA security for the RSA encryption, which, again, is known not to hold. Thus,
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unfortunately, given the high sensitivity of key exchange protocols in general (and TLS
in particular) to small details, these results tell us little about TLS as used in practice.

In recent work, Jager et al. [24] put forth a new security notion — Authenticated and
Confidential Channel Establishment (ACCE) security — which captures the desired
security guarantees when the TLS Handshake and Record Protocols are used in tandem.
(This circumvents the barrier pertaining to the separation of key exchange and secure
channels.) In addition, they showed that the cryptographic core of the TLS-DHE
protocol when both server and client authentication are applied satisfies ACCE security.
Informally, this means the TLS Record Protocol when used with TLS-DHE as the
Handshake Protocol constitutes a secure channel and guarantees authentication and
privacy for data delivery between the server and the client. While this work constitutes
a significant step forward in terms of realistic modeling and analysis of TLS, the TLS-
DHE protocol is (currently) seldom used in practice, and client-side authentication via
signatures is very rarely done.

Additional literature on analyzing the TLS Handshake Protocol include works on
symbolic models, e.g. [36, 22, 9] and on security analysis of a TLS implementation
via type-checking [10]. Works on simulation-based definitions and designs for key
agreement and secure channel protocols include [39, 14, 15].

TLS-RSA. As noted earlier, the most commonly deployed mode of TLS, namely TLS-
RSA, uses RSA PKCS #1v1.5 encryption [26]. In 1998, Bleichenbacher discovered
a devastating man-in-the-middle attack on SSL, the predecessor of TLS. Specifically,
Bleichenbacher presented a chosen-ciphertext attack on RSA PKCS #1v1.5 encryption
[12], which in turn allows a man-in-the-middle adversary against SSL to recover the
pre-master secret and thence the application keys. In fact, the attack only requires
a ciphertext validity oracle. TLS, the successor to SSL, incorporates an ad hoc fix
to thwart Bleichenbacher’s attack: decryption failures are hidden from the adversary,
including via some defences against timing attacks, thereby removing access to the
ciphertext validity oracle.

For over a decade, the TLS Handshake Protocol (and in particular TLS-RSA) has
largely resisted attacks; however, that in itself does not rule out the possibility of an
attack being discovered in future. The folklore belief is that TLS-RSA is secure if
we replace RSA PKCS #1v1.5 with RSA-OAEP or any other CCA-secure encryption
scheme; unfortunately, only RSA PKCS #1v1.5 is standardised in TLS and used in
practice. This begs the question:

Is TLS-RSA with RSA PKCS #1v1.5 encryption ACCE secure?

A partial answer to the above question was provided in the work of Jonsson and Kaliski
Jr. [25]: they showed that RSA PKCS #1v1.5 encryption when augmented with the
unencrypted TLS client Finished message is CCA-secure. However, their analysis
was not extended to either the TLS Handshake Protocol or the full TLS protocol;
furthermore, in TLS the client Finished message is actually encrypted with the
application key. We stress that RSA PKCS #1v1.5 encryption when augmented with the
encrypted TLS client Finished message is not even a CPA-secure key-encapsulation
mechanism (KEM), for the same reason that the TLS Handshake Protocol violates key
indistinguishability.
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Proving Security of TLS-RSA and Beyond. We provide an affirmative answer to
the above question, namely, we provide the first proof of security for the unmodified
TLS-RSA protocol with RSA PKCS #1v1.5 encryption in the commonly deployed
setting of server-only authentication. More generally, we provide a systematic and
modular analysis of the different modes of TLS, which include TLS-RSA, TLS-DH
and TLS-DHE, in both the common setting of server-only authentication as well as
with combined client and server authentication. We also validate the folklore belief
that TLS Handshake with RSA replaced with any CCA-secure public-key encryption
scheme (e.g., RSA-OAEP) is secure. We refer to such an instantiation as TLS-CCA.
Following Jager et al. [24], we focus on the cryptographic core of TLS (see the full
version [29] for a discussion of what we omit). We concentrate on achieving ACCE
security with appropriate modifications to handle server-only authentication (in which
case we speak of SACCE security). We next present an overview of our framework,
summarized in Figure 1.

1.1 Systematic Analysis of All TLS Handshake Modes

Our Framework. We build an abstraction of the TLS Handshake Protocol via a generic
representation using a key-encapsulation mechanism (KEM) (see Figure 2). Each of
the TLS modes is then fully defined via a specific instantiation of the KEM. The goal
is to find sufficient conditions on the KEM so that any instantiation satisfying these
conditions immediately leads to a secure protocol in the sense of ACCE security (as
discussed above). This approach has its roots in the work of Jonsson and Kaliski [25]
that studied the underlying KEM in TLS-RSA.

We formalize this statement using the existing notion of constrained CCA (CCCA)
security, introduced by Hofheinz and Kiltz [23] in the context of hybrid encryption. In
the CCCA security game, the adversary is provided with a “constrained decryption
oracle” that takes as input a pair (C, T ) where C is a ciphertext and T is some
auxiliary information; the oracle returns the decryptionK ofC ifC is different from the
challenge ciphertext and (K,T ) satisfies some specified predicate, and ⊥ otherwise. In
particular, if the oracle returns⊥, the adversary does not learn whether it is becauseK is
⊥ or because (K,T ) fails to satisfy the predicate. In our framework, we consider CCCA
security where T is an encrypted TLS client Finished message, and the predicate
enforces validity of T . Now, if the constrained decryption oracle returns ⊥ on query
(C, T ), the adversary does not learn whether it is because C is an invalid ciphertext or
because T is an invalid Finished message – this precisely captures the intention of the
TLS fix for thwarting Bleichenbacher’s attack! We note that the challenge ciphertext
in the CCCA security experiment is not accompanied by the corresponding Finished

message; this asymmetry between the challenge ciphertext and the oracle queries allows
us to bypass the key indistinguishability barrier in TLS.

ACCE Security from CCCA Security. Our first result says that if the key encap-
sulation mechanism in the TLS Handshake Protocol satisfies CCCA security and the
encryption scheme used in the TLS Record Protocol is sLHAE-secure, then TLS is
ACCE secure, in the server-only authentication setting. We stress that this result is in the
standard model. Importantly, the CCCA security game is conceptually and technically
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+ sLHAE

+ sLHAE + SIG

Fig. 1. Summary of our results

much simpler to analyze than the whole TLS protocol, as we do not have to worry about
multiple sessions, nonces, or the multiple message flows in the full protocol.

To establish ACCE security, we need to achieve security against a (concurrent)
man-in-the-middle adversary communicating with multiple honest clients and multiple
honest servers. Roughly speaking, we will rely on the constrained decryption oracle
in CCCA security to simulate the honest servers. The main technical difficulty in
establishing this result arises when a man-in-the-middle adversary plays a relaying
strategy between an honest server and client and then mauls the client’s encrypted
Finished message. Here, we cannot rely on the constrained decryption oracle to
simulate the honest server’s response because the adversary is using the challenge
ciphertext. Moreover, we cannot immediately appeal to the non-malleability of the
sLHAE-secure scheme used to encrypt the Finished message since the protocol
messages leak information about the application key. To solve this problem, we exploit
the fact that the CCCA security game provides us with a real-or-random key K∗,
which we may use to decrypt and verify the client’s encrypted Finished message
for this specific adversarial strategy. We stress that this techical difficulty goes away
if the client’s Finished message is unencrypted, because the prior transcript uniquely
determines an accepting Finished message.

CCCA Security in the TLS Handshake. Our second set of results says that the key
encapsulation mechanisms underlying the TLS-RSA, TLS-CCA, TLS-DH, and TLS-
DHE variants of the TLS Handshake Protocol all satisfy CCCA security. Combined
with our first result, this yields ACCE security of TLS-RSA, TLS-CCA, TLS-DH and
TLS-DHE (see Figure 1).

ACCE Security of TLS with Mutual Authentication. We extend the above results,
developed for the case of server-only authentication, to the case of mutual authenti-
cation, namely, when the client authenticates itself via a digital signature. We show
that also in this setting, CCCA security of the underlying KEM implies ACCE security
with both server and client authentication. The extension is relatively straightforward
(a positive feature!) requiring minor changes to the server-authentication-only proofs
of server authentication and channel security, and the addition of a client authentication
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proof. The resultant analysis is generic and independent of the different underlying
KEM instantiations, thus it directly applies to TLS-RSA, TLS-CCA, TLS-DH and TLS-
DHE (demonstrating the power of our modular analysis).

1.2 Summary of Results

As a result of the above methodology we obtain proofs of ACCE security for the
TLS handshake protocol for all of the above TLS modes, both in the common setting
of server-only authentication as well as with mutual authentication. These results are
depicted in Figure 1 and are enumerated here with the assumptions used in each
case. In all cases we assume a secure PRF and the TLS Record Protocol encryption
implemented with an sLHAE encryption scheme. For the case of ACCE security with
mutual authentication a secure client signature is also assumed. Certificates for both
servers and clients are assumed to be provided by a minimally trusted CA that faithfully
checks identities before issuing certificates. No other checks from the CA (such as
proofs of possession, uniqueness of public keys, etc.) are assumed.

TLS-RSA. We obtain the first proof of security of TLS-RSA as deployed in practice,
with RSA PKCS #1v1.5 and server-only authentication, in the random oracle model
and under the assumption that RSA PKCS #1v1.5 is OW-PCA secure. The latter
assumption, formalized in Section 5, states that inverting the encryption function is hard
even given an oracle that on input a plaintext-ciphertext pair (K,ψ) checks whether the
decryption of ψ equals K (for K �=⊥). The OW-PCA security of RSA PKCS #1v1.5
can be proven under an RSA-like assumption, known as “partial-domain RSA with
decision oracle”, introduced by Jonsson and Kaliski in [25] and which we present in
Section 5.2. We refer to [25] for a discussion on why this assumption is reasonable
for typical parameters used in TLS; to the best of our knowledge no weakness in this
assumption has been discovered since its introduction in [25]. When clients authenticate
in TLS-RSA using digital signatures then full ACCE (i.e. with mutual authentication)
is proven assuming a secure signature scheme. We stress that TLS-RSA is the only
TLS mode whose proof is in the random oracle model; we prove all other modes in the
standard model.

TLS-CCA. We prove that when instantiated with a CCA-secure public-key encryption
scheme (instead of RSA PKCS #1v1.5), TLS is ACCE secure in the standard model.
While no such schemes are currently standardised for TLS, this result confirms the
intuition that IND-CCA security is the “right” target for the public key encryption
scheme used in TLS. It also means that, should the current RSA-based encryption
scheme used in TLS ever be replaced by a CCA-secure one, for example RSA-OAEP,
then our analysis will immediately provide strong security guarantees for the protocol.

TLS-DH and TLS-DHE. We prove ACCE security (with and without client authenti-
cation) of TLS-DH in the standard model under the PRF-ODH assumption introduced
in [24].1 The PRF-ODH assumption rules out some potential related-key attacks on the

1 The assumption is a variant of the ODH assumption from [1] where the oracle is implemented
via a PRF rather than by a hash function. In the proof of TLS-DH we require security against
multiple oracle queries while for TLS-DHE a single query suffices, as was the case in [24].
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Kdf function that would render the protocol insecure. In the full version [29] we show
this assumption to be provably necessary for the security of TLS-DH, showing attacks
on the protocol with PRFs for which the assumption does not hold. We note that we
can also prove TLS-DH in the random oracle model under the Strong DH assumption.
Finally, we obtain security for TLS-DHE as a corollary of our results for TLS-DH
security, under the PRF-ODH assumption as well as secure signatures for servers (and
clients in the case of mutual authentication). Note that our results for TLS-DHE do not
encompass forward security, but this is guaranteed by the results of [24].

2 The TLS Handshake Protocol with Server-Only Authentication

In this section, we present our model of the TLS Handshake Protocol when no client
authentication takes place. As noted in the introduction, this includes TLS-RSA, the
most common usage of the TLS protocol. The parties to the protocol are a client C
and a server S. Each maintains an internal state variable ST and Λ ∈ {∅, acc, rej}.
The protocol makes use of a number of cryptographic components: a key derivation
function (KDF) Kdf, a pseudorandom functionPRF, a stateful authenticated encryption
with associated data (AEAD) scheme stE = (stE.Gen, stE.Init, stE.Enc, stE.Dec), and
a KEM (KeyGen,FC ,FS). The protocol is shown schematically in Figure 2. We also
describe below how the keys established by this protocol are subsequently used by the
TLS Record Protocol.

The model is derived from the current TLS specification [17], and we believe that our
model captures the cryptographic core of TLS. It has a comparable level of accuracy
to the model of TLS-DHE used in [24]. We highlight several salient properties of our
model, and defer a detailed justification and discussion to the full version [29]:

– We assume that the ciphersuites, KDF, PRF and the stateful AEAD scheme, are
fixed once and for all. We do not model ciphersuite negotiation/renegotiation,
nor session resumption. In particular, this means that, while our treatment covers
multiple ciphersuites (such as those based on RSA key transport and various Diffie-
Hellman (DH) ciphersuites) in a modular fashion, our analysis currently does not
treat the case where different protocols runs may negotiate different ciphersuites.
This requires the application of a suitable composability framework that is beyond
the immediate scope of this paper.

– In the case of TLS-RSA, (KeyGen,FC ,FS) represents the algorithms of the RSA
PKCS#1v1.5 encryption scheme (c.f. Section 5.2). The specifics of this encoding
were analysed in detail in [12, 25]. For this mode, we assume that the outcome of
processing CRES at the server end is completely hidden from the adversary. Such an
assumption is necessary; otherwise, TLS-RSA is susceptible to Bleichenbacher’s
attack [12]. Formally, we model this by treating CRES‖CFIN as a monolithic
message in the proof of security.

– Our generic description includes the TLS-DH mode, where the server has a
certificate on a static DH key PKS and DH key exchange is used to establish PMS.
Here (CRES, PMS) ← FC(PKS) denotes the client’s computation of an ephemeral
DH value (CRES) and the pre-master secret (PMS); PMS ← FS(SKS , CRES) denotes
the corresponding computation on the server side. In this situation, we may
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CREQ

SRES

CRES

HC , CFIN

1. CREQ := ηC ←R {0, 1}λ

1. abort if verification of CERTS fails

2. η := ηC‖ηS

3. PEER := IDS

4. (CRES, PMS) ← FC(PKS);

5. MS := Kdf(PMS, η)

6. AKEY := CKEY‖SKEY := PRF(MS, 0‖η)
7. UCFIN := PRF(MS, 1‖CREQ‖SRES‖CRES)

8. (STC
e , STC

d ) ← stE.Init(1λ)

9. CFIN ← stE.Enc(CKEY, �C , HC , UCFIN, STC
e )

1. USFIN ← stE.Dec(SKEY, HS, SFIN)

2. verify USFIN using MS.

3. if fail, set Λ := rej and abort.

4. otherwise, set Λ := acc.

1. ηS ←R {0, 1}λ

2. (η := ηC‖ηS)

3. CERTS = {IDS , PKS}CA

4. SRES := ηS‖CERTS

1. PMS ← FS(SKS , CRES)

2. if PMS =⊥, then PMS ←R {0, 1}λ

3. MS := Kdf(PMS, η)

4. AKEY := CKEY‖SKEY := PRF(MS, 0‖η)

1. (STS
e , STS

d ) ← stE.Init(1λ)

2. UCFIN ← stE.Dec(CKEY, HC , CFIN)

3. verify UCFIN using MS.

4. if fail, set Λ := rej and abort.

5. HSMSGS := CREQ‖SRES‖CRES‖UCFIN

6. USFIN := PRF(MS, 2‖HSMSGS)

7. SFIN ← stE.Enc(SKEY, �S, HS, USFIN, STS
e )

8. send HS, SFIN, set Λ := acc.

HS, SFIN

Server SKSClient

Fig. 2. Basic Generic TLS Handshake Protocol Parameterized by (KeyGen,FC , FS)

alternatively think of (KeyGen,FC ,FS) as being the algorithms of a Diffie-Hellman
(or Elgamal-type) KEM based on public key PKS . See Section 6. Specifically, with
appropriate choices of Diffie-Hellman groups, our analysis covers the DH DSS,
DH RSA, ECDH ECDSA, and ECDH RSA key exchange methods from [17, 11];
here the suffix DSS/RSA/ECDSA has no meaning since the server does not sign in
this mode.

– By suitably extending CERTS to include the server’s signature on its choice of
ephemeral DH value, our description captures the TLS-DHE mode, where now
PKS is a signature verification key and PMS is the result of a DH key exchange
based on the ephemeral values chosen by client and server. This then covers
the DHE DSS, DHE RSA, ECDHE ECDSA, and ECDHE RSA key exchange
methods from [17, 11], where the suffix DSS/RSA/ECDSA refers to the signature
scheme used by the server.

– Our description also captures TLS-CCA, where (KeyGen,FC ,FS) represents the
algorithms of an IND-CCA-secure encryption scheme, such as RSA-OAEP.

– For notational simplicity, we use the same symbol λ to denote the security
parameter, as well as the bit length of PMS,MS, CKEY and SKEY.

TLS Record Protocol. A party that concludes the TLS Handshake protocol success-
fully continues to use the application key AKEY = CKEY‖SKEY in the TLS Record
Protocol. Specifically, the client uses CKEY to encrypt messages to the server, and the
server uses the same key CKEY to decrypt these messages. Similarly, the server uses
SKEY to encrypt messages to the client, and the client uses the same key SKEY to
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decrypt these messages. As noted above, the client and server Finished messages
are already encrypted in this way. As in [24], we model the TLS Record Protocol via a
stateful AEAD scheme stE which we will assume to be sLHAE-secure in the sense of
[35]. For further details, see the full version [29].

3 Authenticated and Confidential Channel Establishment (ACCE)

We begin with the definition of authenticated and confidential channel establishment
(ACCE) from [24, 8]. We will describe the syntax for a general ACCE protocol
but for security, we consider a specialization to the setting where only the server
is authenticated – we call this server-only authenticated and confidential channel
establishment (SACCE).

ACCE Protocol. An ACCE protocol is a protocol executed between two parties, a
client and a server. In the original description [24], an ACCE protocol has two distinct
phases, called the ‘pre-accept’ phase and the ‘post-accept’ phase, corresponding to
whether a party has accepted a session key in a particular session or not. We dispense
with this distinction (though it is still expressed in our security model by making the
queries that are available to the adversary depend on an oracle’s acceptance state). The
parties in the protocol first compute as the session key an application key AKEY. Then,
encrypted and authenticated data is transmitted using a symmetric encryption scheme
with the application key AKEY. More specifically, AKEY is parsed as CKEY||SKEY, the
client uses CKEY in a stateful AEAD scheme stE to send data to the server, and the
server uses SKEY in stE to protect data sent to the client. Henceforth, we will only refer
to application keys and not to session keys. Parties also maintain internal state Λ, and
clients keep an additional PEER variable. We assume that an ACCE protocol is such
that, when a party reaches the state Λ = acc, it has already computed an application
key AKEY and executed stE.Init. TLS meets this requirement.

3.1 Execution Environment

Protocol Entities. Following [24, 8], we consider a set of parties P = S ∪ C, where S
and C are disjoint and each party P ∈ P is a (potential) protocol participant. Moreover,
each P ∈ S (the servers) have a unique key pair (PKP , SKP ), an identity IDP ∈ {0, 1}λ
along with a certificate CERTP := (IDP , PKP )CA signed by a certification authority CA.
We also assume that all the parties in S have distinct identities.

Session Oracles. To model several sequential and parallel executions of the protocols
and sessions, each party P maintains a collection of oracles {πP

1 , π
P
2 , . . .}. The oracle

πP
i models party P executing a single instance of a protocol in “session” i. We stress

that the session numbers i are just an artefact of our security game – they are designed to
provide a means for the adversary to deliver messages to different sessions at different
parties. In particular, the protocols and oracles need not even be “aware” of what their
session numbers are (i.e. those numbers need not form part of the state).

Each oracle πP
i maintains as internal state a set of variables comprising:
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– Λ ∈ {∅, acc, rej};
– AKEY = CKEY‖SKEY ∈ {0, 1}2λ, where {0, 1}2λ is the application key space of

the protocol;
– if P ∈ C, then it has an additional PEER variable to denote the intended partner

(only client oracles have the PEER variable because only servers have identities);
– if P ∈ S, then πP

i also knows the party identity IDP .

The internal state of each oracle is initialized to (Λ, AKEY, PEER) = (∅, ∅, ∅), where ∅
denotes undefined.

Adversarial Queries. The adversary interacts with the oracles via the following
queries:

Send(πP
i ,m): the adversary uses this query to send a message m to oracle πP

i ;
the oracle will respond with an outgoing message according to the protocol
specification and its internal state. If πP

i has reached state Λ = acc, then it replies
with ⊥. When the attacker asks the first Send-query to an oracle πC

i where C ∈ C,
the oracle checks whether m is a special “Initiate client session” symbol 0, and if
so, responds with the first protocol message (which will be a fresh client nonce).
The variables Λ, AKEY are also set according to the protocol specification.

Reveal(πP
i ): the oracle πP

i responds with the contents of the application key AKEY.
Note that this query can be issued to πP

i before it has reached state Λ = acc.

Encrypt(πP
i , 
, H,m0,m1): if πP

i has not reached state Λ = acc, this oracle
returns ⊥. Otherwise, prior to reaching state acc, πP

i has (by assumption)
computed AKEY and run the stE.Init algorithm of a stateful AEAD scheme
stE = (stE.Gen, stE.Init, stE.Enc, stE.Dec) to define states STe, STd specific to
the oracle πP

i ; the game also samples a random bit bPi at this point, parses AKEY as
CKEY‖SKEY, and adds the 5-tuple (STe, STd, b

P
i , CKEY, SKEY) to the oracle state

ST. Now, when receiving the Encrypt query, the message mbPi
is encrypted along

with header data H using algorithm stE.Enc and key K = CKEY (if P ∈ C)
or key K = SKEY (if P ∈ S) to form a ciphertext of length 
, and to update
the encryption state STe. The resulting ciphertext is returned to the adversary. For
details, see Figure 3.

Decrypt(πP
i , H, c): this query is intended to allow the adversary to decrypt ciphertexts

that would be processed by the communication partner of the oracle πP
i (a server S

if P ∈ C, and a client C if P ∈ S). When bPi = 0, the response is always ⊥; when
bPi = 1, this query involves the decryption of H and c using algorithm stE.Dec and
the appropriate key K obtained from ST at the oracle: if P ∈ C, this will be CKEY,
and if P ∈ S, then it will be SKEY. The resulting message (or failure symbol ⊥) is
returned if the query is “out-of-sync”. For details, see Figure 3.

Certificate Authority. We assume that there is a single certificate authority (CA),
which uses a secure signature scheme casig and its public key is distributed to all the
clients. For each S ∈ S with public key PKS , the CA signs the pair (IDS , PKS) to
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Encrypt(πP
i , �, H,m0,m1):

u ← u+ 1

(c0, ST0
e) ←R stE.Enc(K, �, H,m0, STe)

(c1, ST1
e) ←R stE.Enc(K, �, H,m1, STe)

If c0i =⊥ or c1i =⊥ then return ⊥
Set cu = cb

P
i , Hu = H and STe = ST

bPi
e

Ret cu

Decrypt(πP
i , H, c):

If bPi = 0 then Ret ⊥
v ← v + 1

(m, STd) ← stE.Dec(K, H, c, STd)

If v > u or c = cv or H = Hv then phase ← 1

If phase = 1 then Ret m
Ret ⊥

Fig. 3. The Encrypt and Decrypt oracles in the ACCE security game

provide a certificate CERTS := (IDS , PKS)CA. We also allow the adversary access to
the CA to register any number of parties, not in the set S, with any public key of the
adversary’s choice.

Matching Conversations. We consider a definition of matching conversation which is
specific to TLS (and differs from the one in [24]):

Definition 1 (Matching conversations). We say that πP
i has a matching conversation

with πP ′
j if (i) either P ∈ C and P ′ ∈ S, or P ∈ S and P ′ ∈ C; and (ii) πP

i accepts;

and (iii) the transcripts at both πP
i and πP ′

j begin with the same three messages
(CREQ, SRES, CRES).

Remark 1. Defining matching conversations as above means that we may treat the
vector (CREQ, SRES, CRES) as a post-specified session identifer. Observe that these
three messages uniquely determine the parties’ nonces and server’s identity as well
as the key PMS which in turn determines the application keys. In addition, these three
messages determine the client’s Finished message, as well as the server’s Finished
message if the server reaches the accept state.

3.2 Correctness and Security

Correctness. For every honest C ∈ C and S ∈ S, if two sessions πC
i , πS

j have
matching conversations with each other, then we require that they have the same
application key AKEY and πC

i has its PEER variable set to IDS . We also require that
the encryption scheme stE used to model the secure channel is correct.

SACCE Security. Security of an ACCE protocol with server-only authentication
(SACCE) is defined by requiring that (i) the protocol provides server authentication
(but with no guarantee of client authentication, and that (ii) the subsequent use of the
application keys in the stateful AEAD scheme stE provides stateful Length Hiding
Authenticated Encryption (sLHAE), as per [35]. We consider a game played between
the adversary A and a challenger. This game is obtained by adapting [24, Definition 7]
to our setting. At the beginning of the game, the challenger generates the long-term key-
pair (PKS , SKS) along with the certificate CERTS := (IDS , PKS)CA for all S ∈ S and
gives all the certificates to A as input. Now the adversary issues a sequence of queries
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defined before. The challenger answers all queries to πC
i by running the honest client

protocol, and all queries to πS
j by running the honest server protocol using the key SKS .

The challenger will also provide certificates along with signatures to the adversary for
any identities outside the set {IDS : S ∈ S}.

Advantage Measures. We associate to an adversary A against an ACCE protocol Π
two advantage measures:

– (server authentication, i.e. client accepts ⇒ matching conversations.)
Advsacce−sa

Π (A) is the probability that when A terminates, there is a (honest) client
C and oracle πC

i that reaches an accept state with honest PEER = IDS , but there is
no unique oracle πS

j for which πC
i has had a matching conversation with πS

j .

– (channel security.)
Advsacce−ae

Π (A) is defined to be p− 1/2, where p is the probability that A outputs
(P, i, b′) such that b′ = bPi where bPi is set during the Encrypt(πP

i , . . .) query and
we define b′ to be ⊥ unless the following conditions hold: (i) πP

i reaches an accept
state; (ii) πP

i is not the subject of a Reveal query, and if there is an oracle πP ′
j with

which πP
i has a matching conversation then πP ′

j is not the subject of a Reveal query
either; and (iii) P ∈ C.

Definition 2 (SACCE-secure). We say that an ACCE protocol Π is SACCE-secure
if Π satisfies correctness, and for all PPT adversaries A, both Advsacce−sa

Π (A) and
Advsacce−ae

Π (A) are a negligible function of the security parameter λ.

4 From CCCA KEM Security to SACCE Security of TLS

In this section we state the following theorem which is our core intermediate result
for proving ACCE security of all TLS modes. It uses the notion of CCCA security
and the definition of the TLS KEM tlskem introduced below in Sections 4.1 and 4.2,
respectively.

Theorem 1. If tlskem is IND-CCCA secure, casig is an existentially unforgeable
signature scheme and stE is sLHAE-secure then TLS is SACCE-secure.

The IND-CCCA security of the KEMs arising from all TLS modes (and hence the
SACCE security of these modes) is shown in the subsequent sections.

4.1 IND-CCCA Security

We consider a variant of IND-CCCA security from [23]:

Definition 3 (IND-CCCA). For a stateful adversary A, an LKEM lkem and a predi-
cate pred, we define the advantage function

Advind−ccca
lkem,pred (A) := Pr

⎡⎢⎢⎢⎢⎢⎢⎣b = b′ :

(PK, SK) ← KeyGen(1λ);

L∗ ← ACDec(SK,·,·,·)(PK);

(C∗,K∗) ← Enc(PK, L∗);
K0 := K∗;K1 ←R {0, 1}λ; b←R {0, 1};
b′ ← ACDec(SK,·,·,·)(C∗,Kb)

⎤⎥⎥⎥⎥⎥⎥⎦−
1

2



On the Security of the TLS Protocol: A Systematic Analysis 441

with the restriction that (1) L∗ must be different from all previously queried L, and (2)
the restriction on the decryption oracle for queries after getting the challenge ciphertext
is (L,C) �= (L∗, C∗); and where the “constrained” decryption oracle CDec is given
by:

CDec(SK, L, C, T ) :

K ←R Dec(SK, L, C)

if K =⊥ or pred(K,T ) = 0 then return ⊥
else return K

A LKEM lkem is said to be IND-CCCA-secure if for all PPT adversaries A, the
advantage Advind−ccca

lkem,pred (A) is a negligible function in λ.

Remark 2 (comparison with [23]). We point out the differences between our formu-
lation and that in [23]. First, we consider a setting with labels. Second, in [23], the
predicate is specified by the adversary via a circuit. Here, we consider a fixed predicate
that takes an additional input T . To capture the prior formulation, the predicate would
be circuit evaluation and T would be a circuit. Third, by fixing the predicate, we avoid
having to explicitly consider plaintext uncertainty.

4.2 The TLS Labeled KEM

Following [25], we describe a labeled KEM which is extracted from the TLS protocol.
Unlike [25] which stopped at analyzing (labeled) CCA-security of the ensuing scheme
for the RSA mode of TLS, we show how to derive SACCE security of TLS (for any
mode) based on the IND-CCCA security of the labeled KEM. We then prove this IND-
CCCA property to hold for the KEMs arising in various TLS modes, namely TLS-RSA,
TLS-CCA, TLS-DH, and TLS-DHE.

LKEMs from TLS. Given a generic TLS protocol parameterized by (KeyGen,FC ,FS)
(see Fig. 2) along with cryptographic componentsKdf andPRF, we consider the LKEM
tlskem with algorithms (tls.Gen, tls.Enc, tls.Dec), in which tls.Gen(1λ) is the same as
KeyGen and the algorithms tls.Enc, tls.Dec are as below.

tls.Enc(PK, η‖CERTS):
(CRES, PMS) ← FC(PK);
MS := Kdf(PMS, η);
UCFIN := PRF(MS, 1‖η‖CERTS‖CRES);
AKEY := PRF(MS, 0‖η);
USFIN :=

PRF(MS, 2‖η‖CERTS‖CRES‖UCFIN);
output (CRES, AKEY‖USFIN‖UCFIN).

tls.Dec(SK, η‖CERTS , CRES):
PMS ← FS(SK, CRES);
if PMS =⊥, set PMS ←R {0, 1}λ;
MS := Kdf(PMS, η);
UCFIN := PRF(MS, 1‖η‖CERTS‖CRES);
AKEY := PRF(MS, 0‖η);
USFIN := PRF(MS, 2‖η‖CERTS‖CRES‖UCFIN);
output AKEY‖USFIN‖UCFIN.

In order to consider CCCA security we augment tlskem with the following predicate.
tls.Pred(AKEY‖USFIN‖UCFIN, CFIN):

(STS
e , STS

d ) ← stE.Init(1λ);
check if UCFIN = stE.Dec(CKEY, HC , CFIN, STS

d ).
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5 TLS-RSA: Instantiations from OW-PCA

Here, we show that if the underlying KEM (KeyGen,FC ,FS) is OW-PCA secure, then
the tlskem scheme in Section 4.2 is IND-CCCA-secure in the random oracle model.
Hence, by Theorem 1, the corresponding TLS scheme is SACCE-secure. In Section 5.2
we apply this result to show the security of TLS-RSA.

OW-PCA for KEM [34]. For a stateful adversary A and a KEM kem with algorithms
(KeyGen,Enc,Dec), we define the advantage function

Advow−pca
kem (A) := Pr

⎡⎢⎣K ′ = K∗ :

(PK, SK) ← KeyGen(1λ);

(ψ∗,K∗) ← Enc(PK);

K ′ ← APCA(SK,·,·)(ψ∗)

⎤⎥⎦
where PCA(SK, ·, ·) is the oracle that takes as input (K,ψ) with K �= ⊥ and outputs
1 if Dec(SK, ψ) = K and 0 otherwise. An encryption scheme is said to be one-
way against plaintext checking attacks (OW-PCA) if for all PPT adversaries A, the
advantage Advow−pca

kem (A) is a negligible function in λ.

5.1 IND-CCCA from OW-PCA

The following lemma is similar to that in [25, Theorem 3], with some significant
differences: (i) the KEM key in [25, Theorem 3] is AKEY and the ciphertext is
CRES‖UCFIN, whereas our KEM key is AKEY‖USFIN‖UCFIN and the ciphertext is
simply CRES; (ii) [25] models PRF (referred to as hs and hz therein) also as a random
oracle; (iii) [25] proves (labeled) IND-CCA security and does not consider encryption
of UCFIN.

Lemma 1 (IND-CCCA from OW-PCA). If (KeyGen,FC ,FS) is OW-PCA secure,
PRF is a pseudorandom function, and we model Kdf() as a random oracle, then the
LKEM tlskem with predicate tls.Pred (in Section 4.2) is IND-CCCA secure in the
random oracle model (c.f. Section 4.1). That is, for any adversary A that makes at
most Q decryption queries, there exists adversaries A1,A2,A4 such that

Advind−ccca
lkem,pred (A) ≤ Q · (Advprf

PRF(A1) + 2−λ) + Advow−pca
kem (A2) + AdvprfPRF(A4).

Moreover, the running times of A1,A2,A4 are roughly that of A.

5.2 Implications for TLS-RSA

TLS-RSA KEM. The definition of the TLS-RSA KEM follows from the RSA PKCS
#1v1.5 standard [26] adopted in TLS. Building on [25] we abstract the specification
with parameters λ0 = Θ(λ), λ1 = Θ(λ) with λ0 ≤ λ1 − 88 as follows:

– KeyGen(1λ) is standard RSA key generation that outputs (PK, SK) := ((N, e), d)
where de = 1 (mod φ(N)) and N has λ1 bits, where we assume that λ1 is a
multiple of 8.
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– FC : {0, 1}λ0 → Z∗
N takes as inputλ0-bit r, picks a paddingP ←R {0, 1}λ1−λ0−24

at random (subject to none of the bytes of P being 00), sets x := 00‖02‖P‖00‖r
(where 00, 02 are byte encodings), and outputs y := xe (mod N).

– FS : Z∗
N → {0, 1}λ0 takes as input y, and attempts to parse yd (mod N) as a byte

sequence of the form 00‖02‖P‖00‖r where P contains no zero bytes and r has
exactly λ0 bits. The procedure then outputs r if the parsing is successful (and ⊥ if
the parsing fails).

Here, the condition that λ0 ≤ λ1 − 88 ensures that the random padding P has at least
8 bytes, as required by the standard [26]. We also assume in our description that KEM
decapsulation involves performing a strict set of parsing checks.

The assumption that RSA PKCS #1v1.5 is OW-PCA is justified in [25, Theorem 1]
via a reduction to an RSA-like assumption, known as “partial-domain RSA with
decision oracle”. The latter, given in [25, Section 2.3], asserts that the RSA permutation
is one-way, even given an oracle that is parameterized by λ0 < λ1, takes as input
(x0, y), and reports whether the first λ0 bits of yd mod N equals x0 or not. A
close examination of the proof of [25, Theorem 1] shows that the theorem holds no
matter what set of parsing checks are carried out during decapsulation (so long as the
decapsulation algorithm is correct). This is convenient because, as recent work [7] has
shown, there is a good deal of variation in how the required parsing is done in different
PKCS #1v1.5 implementations.2

In TLS-RSA, λ0 is fixed to 384, reflecting the fixed size of PMS (at 48 bytes)
in the TLS specification, while λ1 (the bit-size of N ) is typically 1024 or 2048
in TLS deployments. Jonsson and Kaliski in [25] discuss at some length why the
above assumption is reasonable for typical parameters λ0, λ1 used in practice. While
seemingly strong, it seems hard to avoid using an assumption of this type given the
many known weaknesses in RSA-PKCS#1 v1.5. We are not aware of any further
significant work studying this assumption. In particular, in spite of the importance of the
widely-deployed PKCS #1v1.5 scheme and its use in TLS, to the best of our knowledge
no weaknesses on the assumption have been reported since its introduction in [25] over
10 years ago.

The security of TLS-RSA follows from Theorem 1 and Lemma 1:

Theorem 2. Under the following assumptions:

– RSA PKCS #1v1.5 is OW-PCA;

– PRF is a secure pseudorandom function;

– stE is a sLHAE encryption scheme,

the TLS-RSA Protocol is a secure SACCE protocol in the random oracle model.

2 This property of the proof would also allow us to incorporate into our analysis the additional
check from the TLS specification that the leading 2 bytes of r should be an encoding of the
TLS protocol version as sent by the client, at the cost of reducing λ0, the bit-size of r, by 16.
However, we omit this fine detail.
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6 TLS-DH: Instantiation from PRF-ODH

We prove the security of TLS-DH following our methodology: We show that the
KEM (KeyGen,FC ,FS) that instantiates this mode in accordance with our generic
representation of TLS (Figure 2) induces a labeled KEM, dh.tlskem, that is IND-
CCCA secure. Then, by Theorem 1 we conclude that TLS-DH is a secure SACCE
protocol. Finally, we apply these results to TLS-DHE, namely, when both client and
server provide ephemeral DH keys. Here, we merely provide a summary of our results;
details can be found in the full version [29].

TLS-DH KEM. Let G = 〈g〉 be a cyclic group of prime order q generated by an
element g. We define the TLS-DH KEM (KeyGen,FC ,FS) via the following three
algorithms.

– KeyGen(1λ): Set (PK, SK) := (gv, v), v ←R Zq, |q| = λ.
– FC(PK = gv): Set (ψ,K) := (gu, guv), u←R Zq .
– FS(SK = v, h): Check that h ∈ G, if yes, output hv , else output ⊥ (reject).

We show the security of TLS-DH in the standard model based on the PRF-ODH
assumption on the function Kdf. This assumption is an adaptation of the Oracle Diffie-
Hellman (ODH) assumption [1] to the PRF setting and was introduced in [24] for
their proof of TLS-DHE. For the proof of TLS-DH we need the multi-query version
of the assumption while for TLS-DHE the single-query case is sufficient, as in [24].
In [29] we describe the assumption and also prove its necessity by constructing secure
pseudorandom functions for which PRF-ODH does not hold and with which TLS-DH
violates ACCE security.

Theorem 3. Protocol TLS-DH obtained by instatiating the generic TLS protocol from
Figure 2 with the above defined TLS-DH KEM is a secure SACCE protocol provided
Kdf is PRF-ODH, PRF is a secure pseudorandom function, and stE is an sLHAE-
secure encryption scheme.

Extension to TLS-DHE with server-signed ephemeral DH (and no client authentica-
tion). In this variant of TLS-DH, the certified server’s public key corresponds to
a signature algorithm and the DH value, typically an ephemeral one, is signed by
the server itself. All other details are exactly as in TLS-DH. The security of this
protocol follows essentially from the analysis of TLS-DH by replacing CERTS =
{IDS , PK = gv}CA with CERTS = (CERTSIGS , sigS(g

v, . . .), gv), where CERTSIGS =
{IDS , PKSIGS}CA, PKSIGS is a public key of S for a secure signature scheme, and sigS
is a signature produced by S under the corresponding signature key.

We note that [24] provided a specialized proof of TLS-DHE with client authentica-
tion. We obtain a proof for that particular case in Section 7 (Corollary 1). However,
while [24] show forward security we do not include this property in our general
treatment as it is not achieved by any of the other TLS modes.
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7 The TLS Handshake Protocol with Mutual Authentication

In the full version [29] we augment server-only authentication, the SACCE model, with
client authentication to obtain mutual authentication. The resultant model, ACCE, is
mostly the same as in [24] except for the definition of matching sessions presented in
Section 3. In this setting, the TLS client possesses a signature key (with a corresponding
certificate CERTC ) which it uses to authenticate to the server (by computing a signature
on the session transcript up to the CRES message). In this case both the definition of
matching conversations and the TLS LKEM are augmented with CERTC .

We first extend Theorem 1 to the case of mutual authentication, namely, showing
that if tlskem is IND-CCCA secure and stE is sLHAE-secure then TLS with client
and server authentication is ACCE-secure. Then we immediately obtain the following
powerful corollary:

Corollary 1. TLS-RSA, TLS-CCA, TLS-DH and TLS-DHE where the client is authenti-
cated using a secure signature scheme are all ACCE secure under the same assumptions
stated for the SACCE security of these modes.

8 Conclusions and Discussion

Establishing the security of a central protocol like TLS is clearly a significant result.
The fact that we achieve this in a systematic way that covers the different TLS modes
(TLS-RSA, TLS-DH, and TLS-DHE, as well as the hypothetical TLS-CCA), has clear
methodological advantages and may be seen as indicating that the core design of the
protocol is sound. Yet, we find it important to stress the many shortcomings of the
TLS protocol that would be best avoided in future secure channel protocol designs. We
summarise these issues here, expanding on them in [29].

On the TLS Design. A main weakness in the overall TLS design is the unfortunate
interaction of the TLS Handshake and the Record protocols with respect to the
Finished messages. Instead, these two conceptually and functionally different parts
of a secure channel protocol can and should be designed as separate components. This
separation makes engineering sense for implementing and maintaining the protocol,
especially in evolving application settings as is the case with TLS. It also makes formal
security analysis of the protocol easier, which in turn increases the likelihood that this
analysis will be correct and applicable to the actual protocol under study.

In addition to the above structural weakness of the protocol, TLS has suffered from
the early implementation of its public key encryption mode, TLS-RSA, with RSA
PKCS#1v1.5. Rather than moving to a CCA-secure implementation of the encryption
function (e.g., via RSA-OAEP), the TLS community responded to Bleichenbacher’s
attack by keeping RSA PKCS#1v1.5 as the default implementation but disabling the
error message in case of a decryption error. We stress that our proof of security for TLS-
RSA relies crucially on there being no side channel that would reveal the existence of
decryption failures to the attacker. While the TLS specification now takes care to avoid
some explicit forms of leaking this information, implementations may still find ways
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of leaking it. This makes the security of the protocol non-robust and shows the clear
advantage of using a CCA-secure scheme in TLS that, as we show, would avoid these
complications and potential weaknesses.

The fragility of the TLS-RSA design is further illustrated by the somewhat “acci-
dental” nature of its security. The security of this mode relies crucially on the fact that
the client’s Finished message, CFIN, is sent immediately after the CRES message
(containing the RSA ciphertext in TLS-RSA) and before the server responds with its
own Finished message SFIN. Had CFIN been omitted or sent after SFIN, TLS-RSA
would be completely insecure, e.g. subject to Bleichenbacher’s attack.

On Our Attack Model. We caution that, while our work shows that accurate
descriptions of already-deployed, complex protocols can be analysed using the provable
security paradigm, we only analyse the “cryptographic core” of TLS. This means that
our analysis rules out many (but not all) attacks. More specifically:

– Several recent attacks on the TLS Record Protocol are possible because TLS
supports symmetric encryption algorithms that have turned out not to be sLHAE-
secure: see, for example, the BEAST attack [18], the short MAC attack [35], Lucky
13 [3], and the RC4 attacks in [4]. Such attacks can be mounted by the adversary in
our security model but are ruled out by our theorem statements, which assume the
use of an sLHAE-secure encryption scheme.

– Our description of TLS-RSA includes the standard countermeasures to Ble-
ichenbacher’s attack, and our security proof then gives assurance that these
countermeasures are effective in the context of the entire TLS protocol.

On the other hand, we do not treat ciphersuite (re)negotiation nor the TLS Record
Protocol’s compression or fragmentation features, meaning that, for example, none of
the attacks from [19, 30, 38] are covered by our analysis.

A Final Thought. We believe that one cannot overstate the importance of adopting
protocols in practice that have been first rigorously analyzed and proven in a plausible
cryptographic model. Such proofs are necessarily limited by the expressiveness of
the underlying model and do not guarantee security in every imaginable deployment
setting, yet they can serve as a major source of confidence in the soundness of the
design. This is particularly important given the practical difficulty in changing protocols
when weaknesses are found – and TLS serves as a good example for the latter.
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and Mallory love Android: An analysis of Android SSL (in)security. In: ACM CCS,
pp. 50–61 (2012)

[21] Georgiev, M., Iyengar, S., Jana, S., Anubhai, R., Boneh, D., Shmatikov, V.: The most
dangerous code in the world: Validating SSL certificates in non-browser software. In: ACM
CCS, pp. 38–49 (2012)

[22] He, C., Sundararajan, M., Datta, A., Derek, A., Mitchell, J.C.: A modular correctness proof
of IEEE 802.11i and TLS. In: ACM CCS, pp. 2–15 (2005)

www.isg.rhul.ac.uk/tls
http://mitls.rocq.inria.fr/
http://www.rfc-editor.org/rfc/rfc4492.txt
http://www.rfc-editor.org/rfc/rfc5246.txt
http://www.ekoparty.org/eng/2012/juliano-rizzo.php


448 H. Krawczyk, K.G. Paterson, and H. Wee

[23] Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation. In:
Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer, Heidelberg
(2007)
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Abstract. Password-authenticated key exchange (PAKE) protocols al-
low two players to agree on a shared high entropy secret key, that de-
pends on their own passwords only. Following the Gennaro and Lin-
dell’s approach, with a new kind of smooth-projective hash functions
(SPHFs), Katz and Vaikuntanathan recently came up with the first con-
crete one-round PAKE protocols, where the two players just have to send
simultaneous flows to each other. The first one is secure in the Bellare-
Pointcheval-Rogaway (BPR) model and the second one in the Canetti’s
UC framework, but at the cost of simulation-sound non-interactive zero-
knowledge (SS-NIZK) proofs (one for the BPR-secure protocol and two
for the UC-secure one), which make the overall constructions not really
efficient.

This paper follows their path with, first, a new efficient instantiation
of SPHF on Cramer-Shoup ciphertexts, which allows to get rid of the
SS-NIZK proof and leads to the design of the most efficient one-round
PAKE known so far, in the BPR model, and in addition without pairings.

In the UC framework, the security proof required the simulator to
be able to extract the hashing key of the SPHF, hence the additional
SS-NIZK proof. We improve the way the latter extractability is obtained
by introducing the notion of trapdoor smooth projective hash functions
(TSPHFs). Our concrete instantiation leads to the most efficient one-
round PAKE UC-secure against static corruptions to date.

We additionally show how these SPHFs and TSPHFs can be used
for blind signatures and zero-knowledge proofs with straight-line
extractability.

1 Introduction

Authenticated Key Exchange. Protocols are quite important primitives for
practical applications, since they enable two parties to generate a shared high
entropy secret key, to be later used with symmetric primitives in order to protect
communications, while interacting over an insecure network under the control of
an adversary. Various authentication means have been proposed, and the most
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practical one is definitely a shared low entropy secret, or a password they can
agree on over the phone, hence PAKE, for Password-Authenticated Key Exchange.
The most famous instantiation has been proposed by Bellovin and Merritt [4],
EKE for Encrypted Key Exchange, which simply consists of a Diffie-Hellman
key exchange [17], where the flows are symmetrically encrypted under the shared
password. Overall, the equivalent of 2 group elements have to be sent.

A first formal security model was proposed by Bellare, Pointcheval and Rog-
away [3] (the BPR model), to deal with off-line dictionary attacks. It essentially
says that the best attack should be the on-line exhaustive search, consisting
in trying all the passwords by successive executions of the protocol with the
server. Several variants of EKE with BPR-security proofs have been proposed
in the ideal-cipher model or the random-oracle model [27]. Katz, Ostrovsky and
Yung [23] proposed the first practical scheme (KOY), provably secure in the
standard model under the DDH assumption. This is a 3-flow protocol, with the
client sending 5 group elements plus a verification key and a signature, for a
one-time signature scheme, and the server sending 5 group elements. It has been
generalized by Gennaro and Lindell [20] (GL), making use of smooth projective
hash functions.

Smooth Projective Hash Functions. (SPHFs) were introduced by Cramer
and Shoup [16] in order to achieve IND-CCA security from IND-CPA encryption
schemes, which led to the first efficient IND-CCA encryption scheme provably
secure in the standard model under the DDH assumption [15]. They can be seen
as a kind of implicit designated-verifier proofs of membership [1, 9]. Basically,
SPHFs are families of pairs of functions (Hash,ProjHash) defined on a language L.
These functions are indexed by a pair of associated keys (hk, hp), where hk,
the hashing key, can be seen as the private key and hp, the projection key, as
the public key. On a word W ∈ L, both functions should lead to the same
result: Hash(hk,L,W ) with the hashing key and ProjHash(hp,L,W,w) with the
projection key only but also a witness w that W ∈ L. Of course, if W �∈ L, such a
witness does not exist, and the smoothness property states that Hash(hk,L,W )
is independent of hp. As a consequence, even knowing hp, one cannot guess
Hash(hk,L,W ).

One-Round PAKE in the BPR Model. Gennaro and Lindell [20] (GL)
extended the initial definition of smooth projective hash functions for an appli-
cation to PAKE. Their approach has thereafter been adapted to the Universal
Composability (UC) framework by Canetti et al. [14], but for static corruptions
only. It has been improved by Abdalla, Chevalier and Pointcheval [1] to resist
to adaptive adversaries. But the 3-flow KOY protocol remains the most efficient
protocol BPR-secure under the DDH assumption.

More recently, the ultimate step for PAKE has been achieved by Katz and
Vaikuntanathan [24] (KV), who proposed a practical one-round PAKE, where the
two players just have to send simultaneous flows to each other, that depend on
their own passwords only. More precisely, each flow just consists of an IND-CCA
ciphertext of the password and an SPHF projection key for the correctness of the
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partner’s ciphertext (the word is the ciphertext and the witness consists of the
random coins of the encryption). The shared secret key is eventually the product
of the two hash values, as in the KOY and GL protocols.

Katz and Vaikuntanathan Smooth Projective Hash Functions. Because
of the simultaneous flows, one flow cannot explicitly depend on the partner’s flow,
which makes impossible the use of the Gennaro and Lindell SPHF (later named
GL-SPHF), in which the projection key depends on the word (the ciphertext
here). On the other hand, the adversary can wait for the player to send his
flow first, and then adapt its message, which requires stronger security notions
than the initial Cramer and Shoup SPHF (later named CS-SPHF), in which the
smoothness does not hold anymore if the word is generated after having seen the
projection key. This led Katz and Vaikuntanathan to provide a new definition for
SPHF (later named KV-SPHF), where the projection key depends on the hashing
key only, and the smoothness holds even if the word is chosen after having seen
the projection key. Variations between CS-SPHF, GL-SPHF and KV-SPHF are
in the way one computes the projection key hp from the hashing key hk and
the word W , but also in the smoothness property, according to the freedom the
adversary has to choose W , when trying to distinguish the hash value from a
random value. As a side note, while CS-SPHF is close to the initial definition,
useful for converting an IND-CPA encryption scheme to IND-CCA, GL-SPHFs and
KV-SPHFs did prove quite useful too: we will use KV-SPHFs for our one-round
PAKE protocols and a GL-SPHF for the blind signature scheme.

As just explained, the strongest definition of SPHF, which gives a lot of free-
dom to the adversary, is the recent KV-SPHF. However, previous SPHFs known
on Cramer-Shoup ciphertexts were GL-SPHFs only. For their one-round PAKE,
Katz and Vaikuntanathan did not manage to construct such a KV-SPHF for an
efficient IND-CCA encryption scheme. They then suggested to use the Naor and
Yung approach [26], with an ElGamal-like encryption scheme and a simulation-
sound non-interactive zero-knowledge (SS-NIZK) proof [28]. Such an SS-NIZK
proof is quite costly in general. They suggested to use Groth-Sahai [21] proofs
in bilinear groups and the linear encryption [10] which leads to a PAKE secure
under the DLin assumption with a ciphertext consisting of 66 group elements
and a projection key consisting of 4 group elements. As a consequence, the two
players have to send 70 group elements each, which is far more costly than the
KOY protocol, but it is one-round only.

More recent results on SS-NIZK proofs or IND-CCA encryption schemes, in
the discrete logarithm setting, improved on that: Libert and Yung [25] proposed
a more efficient SS-NIZK proof of plaintext equality in the Naor-Yung-type cryp-
tosystem with ElGamal-like encryption. The proof can be reduced from 60 to
22 group elements and the communication complexity of the resulting PAKE is
decreased to 32 group elements per user. Jutla and Roy [22] proposed relatively-
sound NIZK proofs as an efficient alternative to SS-NIZK proofs to build new
publicly-verifiable IND-CCA encryption schemes. They can then decrease the
PAKE communication complexity to 20 group elements per user. In any case,
one can remark that all one-round PAKE schemes require pairing computations.
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One-Round PAKE in the Universal Composability Framework. Katz
and Vaikuntanathan [24] also proposed another construction of one-round PAKE,
provably secure against static corruptions in the UC framework. To achieve such
a level of security, the simulator has to be more powerful: it should be able to
make a successful execution after a dummy simulation, with a wrong password.
To this aim, Katz and Vaikuntanathan allowed the simulator to extract the
hashing key of the SPHF, to allow it to compute afterwards the hash value on
any word, even outside the language. More precisely, each player additionally
encrypts his hashing key to allow the key recovery by the simulator, so that the
latter can compute the hash value even when a dummy password has initially
been committed, whereas a success is expected. While this is the first one-round
PAKE provably secure in the UC framework, hashing key recovery requires an
additional quite costly simulation-sound extractable NIZK proof. Although the
latter can also be improved by the above more recent work [22], the UC-secure
one-round PAKE is still much more costly than the BPR-secure protocol.

Achievements. Our first contribution is the description of an instantiation
of KV-SPHF on Cramer-Shoup ciphertexts, and thus the first KV-SPHF on an
efficient IND-CCA encryption scheme. We thereafter use it within the above KV
framework for one-round PAKE [24], in the BPR security model. Our scheme
just consists of 6 group elements in each direction under the DDH assumption
(4 for the ciphertext, and 2 for the projection key). This has to be compared
with the 20 group elements, or more, in the best constructions discussed above,
which all need pairing-friendly groups and pairing computations, or with the
KOY protocol that has a similar complexity but with three sequential flows.

We also present the first GL-SPHFs/KV-SPHFs able to handle multi-exponen-
tiation equations without requiring pairings. Those SPHFs are thus quite efficient.
They lead to two applications. First, our new KV-SPHFs enable several efficient
instantiations of one-round Language-Authenticated Key-Exchange (LAKE) pro-
tocols [5]. Our above one-round PAKE scheme is actually a particular case of a
more general one-round LAKE scheme, for which we provide a BPR-like secu-
rity model and a security proof. Our general constructions also cover Credential-
Authenticated Key Exchange [11]. Second, thanks to a new GL-SPHF, we improve
on the blind signature scheme presented in [9], from 5
+ 6 group elements in G1

and 1 group element in G2 to 3
 + 7 group elements in G1 and 1 group element
in G2, for an 
-bit message to be blindly signed with a Waters signature [29]. Our
protocol is round-optimal, since it consists of two flows, and leads to a classical
short Waters signature.

Our second contribution is the novel extension of SPHFs, called Trapdoor
SPHFs, or TSPHFs. In addition to showing that an SPHF with an encryption
of the hashing key and a simulation-sound extractable NIZK proof, as used in
the UC-secure one-round PAKE of Katz and Vaikuntanathan, can be seen as an
inefficient TSPHF, we provide efficient instantiations of TSPHFs. To do so, we
first describe a new generic framework for SPHFs that allows an easy conver-
sion to TSPHFs. We then apply it to our above KV-SPHF on a Cramer-Shoup
ciphertext. Using our new TSPHF in the UC-secure one-round PAKE framework
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from [24], we obtain a scheme which consists of 11 group elements in each di-
rection (actually, 6 group elements in G1 and 5 group elements in G2 in an
asymmetric bilinear setting, using the Cramer-Shoup encryption). It is secure in
the UC framework against static corruptions under the SXDH assumption with
a CRS, and just twice more costly than our above BPR-secure PAKE. This is
the most efficient UC-secure one-round PAKE.

Finally, while SPHFs are often used as implicit designated-verifier proofs of
membership, when one wants to make them explicit, by sending the hash value,
one does not get the zero-knowledge property. We then show that TSPHFs ac-
tually lead to extractable zero-knowledge (E-ZK) arguments.

Outline. In Section 2, we first revisit the different definitions for SPHFs pro-
posed in [16, 20, 24], respectively denoted CS-SPHFs, GL-SPHFs and KV-SPHFs,
and give the first instantiation of KV-SPHF on Cramer-Shoup ciphertexts. This
leads to our efficient one-round PAKE provably secure in the BPR model.

We then define our novel extension of SPHFs, called Trapdoor SPHFs, or
TSPHFs, in Section 3. After the presentation of a new framework for SPHFs
together with a generic way to convert SPHFs into TSPHFs, we provide effi-
cient instantiations of TSPHFs in Section 4, and especially on Cramer-Shoup
ciphertexts, which lead to our efficient UC-secure one-round PAKE scheme.

We conclude with more constructions in Section 5 and other applications of
both SPHFs and TSPHFs: First, thanks to the various complex languages we
can handle with SPHFs, in Section 6, we present our one-round LAKE and an
improved blind signature scheme. Finally, we provide another application of our
TSPHF constructions by presenting efficient E-ZK protocols in Section 7.

Full Versions. This paper was formed by merging two Crypto 2013 submis-
sions, both extending SPHFs with applications to PAKE protocols. The first one
provided more evolved SPHFs with the BPR-secure PAKE as an application, and
the second introduced TSPHFs with application to UC-secure PAKE. Because of
lack of space, many details are left to the full versions of both papers that are
referred to along this paper as the SPHF full version [6] and the TSPHF full
version [7] respectively.

2 New SPHF on Cramer-Shoup Ciphertexts

In this section, we first recall the definitions of SPHFs and present our classi-
fication based on the dependence between words and keys. According to this
classification, there are three types of SPHFs: the (almost) initial Cramer and
Shoup [16] type (CS-SPHF) introduced for enhancing an IND-CPA encryption
scheme to IND-CCA, the Gennaro and Lindell [20] type (GL-SPHF) introduced
for PAKE, and the Katz and Vaikuntanathan [24] type (KV-SPHF) introduced
for one-round PAKE.

Then, after a quick review on the Cramer-Shoup encryption scheme, we intro-
duce our new KV-SPHF on Cramer-Shoup ciphertexts which immediately leads
to a quite efficient instantiation of the Katz and Vaikuntanathan one-round
PAKE [24], secure in the BPR model.
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2.1 General Definition of SPHFs

Let us consider a language L ⊆ Set, and some global parameters for the SPHF,
assumed to be in the common random string (CRS). The SPHF system for the
language L is defined by four algorithms:

– HashKG(L) generates a hashing key hk for the language L;
– ProjKG(hk,L, C) derives the projection key hp, possibly depending on the

word C;
– Hash(hk,L, C) outputs the hash value of the word C from the hashing key;
– ProjHash(hp,L, C, w) outputs the hash value of the word C from the projec-

tion key hp, and the witness w that C ∈ L.

The correctness of the SPHF assures that if C ∈ L with w a witness of this
membership, then the two ways to compute the hash values give the same re-
sult: Hash(hk,L, C) = ProjHash(hp,L, C, w). On the other hand, the security is
defined through the smoothness, which guarantees that, if C �∈ L, the hash value
is statistically indistinguishable from a random element, even knowing hp.

2.2 Smoothness Adaptivity and Key Word-Dependence

This paper will exploit the very strong notion KV-SPHF. Informally, while the
GL-SPHF definition allows the projection key hp to depend on the word C, the
KV-SPHF definition prevents the projection key hp from depending on C, as in
the original CS-SPHF definition. In addition, the smoothness should hold even if
C is chosen as an arbitrary function of hp. This models the fact the adversary can
see hp before deciding which word C it is interested in. More formal definitions
follow, where we denote Π the range of the hash function.

CS-SPHF. This is almost1 the initial definition of SPHF, where the projection
key hp does not depend on the word C (word-independent key), but the word C
cannot be chosen after having seen hp for breaking the smoothness (non-adaptive
smoothness). More formally, a CS-SPHF is ε-smooth if ProjKG does not use its
input C and if, for any C ∈ Set\L, the two following distributions are ε-close:

{(hp, H) | hk $← HashKG(L); hp ← ProjKG(hk,L,⊥); H ← Hash(hk,L, C)}
{(hp, H) | hk $← HashKG(L); hp ← ProjKG(hk,L,⊥); H

$← Π}.

GL-SPHF. This is a relaxation, where the projection key hp can depend on the
word C (word-dependent key). More formally, a GL-SPHF is ε-smooth if, for any
C ∈ Set\L, the two following distributions are ε-close:

{(hp, H) | hk $← HashKG(L); hp ← ProjKG(hk,L, C); H ← Hash(hk,L, C)}
{(hp, H) | hk $← HashKG(L); hp ← ProjKG(hk,L, C); H

$← Π}.
1 In the initial definition, the smoothness was defined for a word C randomly chosen

from Set\L, and not necessarily for any such word.
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KV-SPHF. This is the strongest SPHF, in which the projection key hp does not
depend on the word C (word-independent key) and the smoothness holds even if
C depends on hp (adaptive smoothness). More formally, a KV-SPHF is ε-smooth
if ProjKG does not use its input C and, for any function f onto Set\L, the two
following distributions are ε-close:

{(hp, H) | hk $← HashKG(L); hp ← ProjKG(hk,L,⊥); H ← Hash(hk,L, f(hp))}
{(hp, H) | hk $← HashKG(L); hp ← ProjKG(hk,L,⊥); H

$← Π}.

Remark 1. One can see that a perfectly smooth (i.e., 0-smooth) CS-SPHF is
also a perfectly smooth KV-SPHF, since each value H has exactly the same
probability to appear, and so adaptively choosing C does not increase the above
statistical distance. However, as soon as a weak word C can bias the distribution,
f can exploit it.

2.3 SPHFs on Languages of Ciphertexts

We could cover languages as general as those proposed in [5], but for the sake
of clarity, and since the main applications need some particular cases only, we
focus on SPHFs for languages of ciphertexts, whose corresponding plaintexts
verify some relations. We denote these languages LofCfull-aux.

The parameter full-aux will parse in two parts (crs, aux): the public part crs,
known in advance, and the private part aux, possibly chosen later. More con-
cretely, crs represents the public values: it will define the encryption scheme
(and will thus contain the global parameters and the public key of the encryp-
tion scheme) with the global format of both the tuple to be encrypted and the
relations it should satisfy, and possibly additional public coefficients; while aux
represents the private values (indeed, unless specified differently, as in Section 7,
aux is assumed private): it will specify the relations, with more coefficients or
constants that will remain private, and thus implicitly known by the sender and
the receiver (as the expected password, for example, in PAKE protocols).

To keep aux secret, hp should not leak any information about it. We will thus
restrict HashKG and ProjKG not to use the parameter aux, but just crs. This
is a stronger restriction than required for our purpose, since one can use aux
without leaking any information about it. But we already have quite efficient
instantiations, and it makes everything much simpler to present.

2.4 SPHFs on Cramer-Shoup Ciphertexts

Labeled Cramer-Shoup Encryption Scheme (CS). We briefly review the
CS labeled encryption scheme, where we combine all the public information in the
encryption key. We thus have a group G of prime order p, with two independent
generators (g1, g2)

$← G2, a hash function HK
$← H from a collision-resistant

hash function family onto Z∗
p, and a reversible mapping G from {0, 1}n to G.

From 5 scalars (x1, x2, y1, y2, z)
$← Zp

5, one also sets c = gx1
1 gx2

2 , d = gy1

1 gy2

2 , and
h = gz1 . The encryption key is ek = (G, g1, g2, c, d, h,HK), while the decryption
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key is dk = (x1, x2, y1, y2, z). For a message m ∈ {0, 1}n, with M = G(m) ∈ G,
the labeled Cramer-Shoup ciphertext is:

C def= CS(
, ek,M ; r) def= (u = (gr1 , g
r
2), e = M · hr, v = (cdξ)r),

with ξ = HK(
,u, e) ∈ Z∗
p. If one wants to encrypt a vector of group elements

(M1, . . . ,Mn), all at once in a non-malleable way, one computes all the individ-
ual ciphertexts with a common ξ = HK(
,u1, . . . ,un, e1, . . . , en) for v1, . . . , vn.
Hence, everything done on tuples of ciphertexts will work on ciphertexts of vec-
tors. In addition, the Cramer-Shoup labeled encryption scheme on vectors is
IND-CCA under the DDH assumption.
The (known) GL-SPHF for CS. Gennaro and Lindell [20] proposed an SPHF
on labeled Cramer-Shoup ciphertexts: the hashing key just consists of a random
tuple hk = (η, θ, μ, ν)

$← Z4
p. The associated projection key, on a ciphertext C =

(u = (u1, u2) = (gr1, g
r
2), e = G(m) · hr, v = (cdξ)r), is hp = gη1g

θ
2h

μ(cdξ)ν ∈ G.
Then, one can compute the hash value in two different ways, for the language
LofCek,m of the valid ciphertexts of M = G(m), where crs = ek is public but
aux = m is kept secret:

H def= Hash(hk, (ek,m), C) def= uη1u
θ
2(e/G(m))μvν

= hpr def= ProjHash(hp, (ek,m), C, r) def= H ′.

A (new) KV-SPHF for CS. We give here the description of the first known
KV-SPHF on labeled Cramer-Shoup ciphertexts: the hashing key just consists of
a random tuple hk = (η1, η2, θ, μ, ν)

$← Z5
p; the associated projection key is the

pair hp = (hp1 = gη1

1 gθ2h
μcν , hp2 = gη2

1 dν) ∈ G2. Then one can compute the hash
value in two different ways, for the language LofCek,m of the valid ciphertexts
of M = G(m) under ek:

H = Hash(hk, (ek,m), C) def= u
(η1+ξη2)
1 uθ2(e/G(m))μvν

= (hp1hp
ξ
2)

r def= ProjHash(hp, (ek,m), C, r) = H ′.

Theorem 2. The above SPHF is a perfectly smooth ( i.e., 0-smooth) KV-SPHF.

The proof can be found in Section 4.1 as an illustration of our new framework.

2.5 An Efficient One-Round PAKE

Review of the Katz and Vaikuntanathan PAKE. As explained earlier, Katz
and Vaikuntanathan [24] recently proposed a one-round PAKE scheme. Their
general framework follows Gennaro and Lindell [20] approach, which needs an
SPHF on a labeled IND-CCA encryption scheme. To allow a SPHF-based PAKE
scheme to be one-round, the ciphertext and the SPHF projection key for veri-
fying the correctness of the partner’s ciphertext should be sent together, before
having seen the partner’s ciphertext: the projection key should be independent of
the ciphertext. In addition, the adversary can wait until it receives the partner’s
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– Players U and U ′ both use ek = (G, g1, g2, c, d, h,HK);
– U , with password pw, chooses hk = (η1, η2, θ, μ, ν)

$← Z5
p,

computes hp = (hp1 = gη11 gθ2h
μcν , hp2 = gη21 dν), sets � = (U,U ′, hp),

and generates C = (u = (gr1, g
r
2), e = G(pw) · hr, v = (cdξ)r) with r a random

scalar in Zp and ξ = HK(�,u, e).
U sends hp ∈ G2 and C ∈ G4 to U ′;

– Upon receiving hp′ = (hp′1, hp
′
2) ∈ G2 and C′ = (u′ = (u′

1, u
′
2), e

′, v′) ∈ G4

from U ′, U sets �′ = (U ′, U, hp′) and ξ′ = HK(�′,u′, e′) and computes

skU = u′
1
(η1+ξ′η2)u′

2
θ
(e′/G(pw))μv′ν · (hp′1hp

′
2
ξ
)r.

Fig. 1. One-Round PAKE based on DDH

projection key before generating the ciphertext, and thus a stronger smoothness
is required. This is exactly why we need a KV-SPHF in this one-round PAKE
framework.
Our Construction. Our KV-SPHF on Cramer-Shoup ciphertexts can be used
in the Katz and Vaikuntanathan framework for PAKE [24]. It leads to the most
efficient PAKE known so far, and it is one-round. Each user indeed only sends
6 elements of G (see Figure 1), instead of 70 elements of G for the Katz and
Vaikuntanathan’s instantiation using a Groth-Sahai SS-NIZK [21], or 20 group
elements for the Jutla and Roy’s [22] improvement using a relatively-sound NIZK.

The formal security result follows from the Theorem 4 in Section 6. We want
to insist that our construction does not need pairing-friendly groups, and the
plain DDH assumption is enough, whereas the recent constructions made heavy
use of pairing-based proofs à la Groth-Sahai.

3 Computational Smoothness and Definition of TSPHF

In order to build a one-round PAKE provably secure in the UC framework, one
needs the simulator to be able to compute the hash value even when a dummy
password has initially been committed, whereas a success is expected. Katz and
Vaikuntanathan [24] thus asked the players to add an encryption of the hashing
key together with the projection key, and a proof a correctness (a simulation-
sound extractable NIZK proof). We now improve on this technique.

More precisely, in this section, we introduce TSPHFs, which are SPHFs with a
trapdoor enabling a simulator to compute the hash value on any word C without
knowing hk nor any witness, but only knowing hp. TSPHFs also provide a way to
ensure that hp is valid. It can be seen that, intuitively, in most cases, a TSPHF
cannot be statistically smooth, and so, before introducing TSPHFs, we need to
introduce a new notion of smoothness: computational smoothness.

3.1 Computationally-Smooth SPHF

Let us first suppose there exists an algorithm Setup which takes as input the
security parameter K and outputs a CRS crs together with a trapdoor τ , which
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is not the trapdoor of the TSPHF, but just a trapdoor of crs. The trapdoor τ
can be ⊥, but in our article, the trapdoor will contain the decryption key of the
encryption scheme, and possibly other data such that, for any C ∈ Set, it is
possible to check whether C ∈ LofCfull-aux or not, in polynomial time.

Let us then consider the two games Expsmooth−b
K (A) (with b = 0 or 1) depicted

in Figure 2, where Π denotes the set of hash values. There are two variants of
the games: whether the SPHF is adaptively-smooth (KV-SPHF) or not (CS-SPHF
and GL-SPHF).

Let us first explain the games for a non-adaptively-smooth SPHF. The pro-
cedure Initialize generates and outputs the CRS crs and its trapdoor τ . It is
important to notice that computational smoothness has to hold even when the
adversary knows the trapdoor, and so may depend on what is in the trapdoor τ .

During the execution of the game, the adversary is allowed to make one
query ProjKG(aux, C) to get a projection key hp associated with aux and C,
and then one query Hash(⊥) to get the hash value of C. If C ∈ LofCfull-aux,
smoothness does not apply, thus Hash(C) really returns the hash value H of
C: H = Hash(hk, full-aux, C), for a hashing key hk associated with hp. Other-
wise, the smoothness should apply with a real-or-random indistinguishability
game, and thus, if b = 0 the real hash value is returned too, whereas a random
value in Π is returned when b = 1. Eventually, the adversary ends the game
by querying the Finalize procedure with its guess b′ for b. We remark that the
procedure Hash may or may not be polynomial time, depending on τ , since it
is not necessarily possible to efficiently check whether C ∈ LofCfull-aux.

For the adaptively-smooth variant, the adversary does not need to provide the
word C when it makes a query to ProjKG. It gives ⊥ instead and can choose
C adaptively after having seen hp, as input to the Hash query.

Formally, an SPHF is (t, ε)-smooth if for all adversary A running in time at
most t: ∣∣∣Pr [Expsmooth−1

K (A) = 1
]
− Pr

[
Expsmooth−0

K (A) = 1
]∣∣∣ ≤ ε.

The classical statistical-smoothness implies the (t, ε)-smoothness for any t, and
any non-negligible ε (and whatever is the trapdoor τ).

3.2 Trapdoor SPHF

A TSPHF is an extension of a classical SPHF with an additional algorithm
TSetup, which takes as input the CRS crs and outputs an additional CRS crs′

and a trapdoor τ ′ specific to crs′, which can be used to compute the hash value
of words C knowing only hp. For TSPHF, we assume full-aux = (crs, crs′, aux),
although the language LofCfull-aux still does not depend on crs′. Formally, a
TSPHF is defined by seven algorithms:

– TSetup(crs) takes as input the CRS crs (generated by Setup) and generates
the second CRS crs′, together with a trapdoor τ ′;

– HashKG, ProjKG, Hash, and ProjHash behave as for a classical SPHF;
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Initialize(1K)

(crs, τ )
$← Setup(1K)

return crs, τ

ProjKG(aux, C)

(aux′, C′) ← (aux, C)
full-aux ← (crs, aux)

hk
$← HashKG(full-aux)

hp ← ProjKG(hk, full-aux, C)
return hp

Hash(C)

aux ← aux′ ; full-aux ← (crs, aux)
C ← C′ � if non-adaptively-smooth SPHF
if b = 0 or C ∈ LofCfull-aux then

H ← Hash(hk, full-aux, C)

else H
$← Π

return H

Finalize(b′)
return b′

Fig. 2. Games Expsmooth−b
K (A) (b = 0 or 1) for computational smoothness

– VerHP(hp, full-aux, C) outputs 1 if hp is a valid projection key, and 0 other-
wise. When hp does not depend on C (word-independent key), the input C
can be replaced by ⊥;

– THash(hp, full-aux, C, τ ′) outputs the hash value of C from the projection key
hp and the trapdoor τ ′.

It must verify the following properties:

– Correctness is defined by two properties: hash correctness, which corresponds
to correctness for classical SPHFs, and an additional property called trapdoor
correctness, which states that, for any C ∈ Set, if hk and hp are honestly
generated, we have: VerHP(hp, full-aux, C) = 1 and Hash(hk, full-aux, C) =
THash(hp, full-aux, C, τ ′), with overwhelming probability;

– Smoothness is exactly the same as for SPHFs, except that in the Initialize
procedure, TSetup is also called, but while τ ′ is dropped, crs′ is forwarded
to the adversary (together with crs and τ);

– The (t, ε)-soundness property says that, given crs, τ and crs′, no adversary
running in time at most t can produce a projection key hp, a value aux,
a word C and valid witness w such that VerHP(hp, full-aux, C) = 1 but
THash(hp, full-aux, C, τ ′) �= ProjHash(hp, full-aux, C, w), with probability at
least ε. The perfect soundness states that the property holds for any t and
any ε > 0.

It is important to notice that τ is not an input of THash and it is possible to use
THash, while generating crs with an algorithm which cannot output τ (as soon
as the distribution of crs output by this algorithm is indistinguishable from the
one output by Setup, obviously). For example, if τ contains a decryption key,
it is still possible to use the IND-CPA game for the encryption scheme, while
making calls to THash.

3.3 A Naive Construction of TSPHFs Using NIZK

A naive solution to transform any SPHF into a TSPHF consists in replacing the
projection key hp by a pair (hp, π), where π is an extractable NIZK (ENIZK)
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proof of the knowledge of a hashing key hk such that hp is the projection key
of hk. This is essentially the approach of [24]. In the TSPHF full version [7],
we show that this provides a correct, smooth and sound TSPHF. Intuitively
the hash correctness directly comes from the correctness of the original SPHF,
the trapdoor correctness and the soundness come from the extractability of the
ENIZK proof (and may not be perfect) and the smoothness comes from the
zero-knowledge property of the ENIZK proof. We also show some improvements
for this naive construction to make quite efficient TSPHFs, and in particular to
avoid having to do bit-by-bit Groth-Sahai ENIZK proofs. These improvements
can be seen as a generalization of the method proposed by Jutla and Roy in [22,
Section 8]. But even with these improvements, this naive construction is still less
efficient than the constructions described in the sequel.

4 Construction of DDH-Based TSPHFs

In the SPHF full version [6], we propose a formal framework for SPHFs using
a new notion of graded rings, derived from [19]. It enables to deal with cyclic
groups, bilinear groups (with symmetric or asymmetric pairings), or even groups
with multi-linear maps. In particular, it helps to construct concrete SPHFs for
quadratic pairing equations over ciphertexts, which enable to construct efficient
LAKE [5] for any language handled by the Groth-Sahai NIZK proofs, and so for
any NP-language (see Section 6.1).

However, we focus here on cyclic groups, with the basic intuition only, and
provide some illustrations. While we keep the usual multiplicative notation for
the cyclic group G, we use an extended notation: r, u = u, r = ur, for r ∈ Zp

and u ∈ G, and u ⊕ v = u · v, for u, v ∈ G. Basically, ⊕ and , correspond
to the addition and the multiplication in the exponents, that are thus both
commutative. We then extend this notation in a natural way when working on
vectors and matrices.

4.1 Generic Framework for GL-SPHF/KV-SPHF

Our goal is to deal with languages of ciphertexts LofCfull-aux: we assume that
crs is fixed and we write Laux = LofCfull-aux ⊆ Set where full-aux = (crs, aux).

Language Representation. For a language Laux, we assume there exist two
positive integers k and n, a function Γ : Set �→ Gk×n, and a family of functions
Θaux : Set �→ G1×n, such that for any word C ∈ Set, (C ∈ Laux) ⇐⇒ (∃λ ∈
Z1×k
p such that Θaux(C) = λ,Γ (C)). In other words, we assume that C ∈ Laux,

if and only if, Θaux(C) is a linear combination of (the exponents in) the rows
of some matrix Γ (C). For a KV-SPHF, Γ is supposed to be a constant function
(independent of the word C). Otherwise, one gets a GL-SPHF.

We furthermore require that a user, who knows a witness w of the membership
C ∈ Laux, can efficiently compute the above linear combination λ. This may
seem a quite strong requirement but this is actually verified by very expressive
languages over ciphertexts such as ElGamal, Cramer-Shoup and variants.
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We briefly illustrate it on our KV-SPHF on CS: C = (u1 = gr1, u2 = gr2, e =
M · hr, v = (cdξ)r), with k = 2, aux =M and n = 5:

Γ =

(
g1 1 g2 h c
1 g1 1 1 d

)
λ = (r, rξ)

λ, Γ = (gr1 , g
rξ
1 , g

r
2, h

r, (cdξ)r)

ΘM (C) = (u1, u
ξ
1, u2, e/M, v).

Essentially, one tries to make the first columns of Γ (C) and the first components
of Θaux(C) to completely determine λ. In our illustration, the first two columns
with u1 = gr1 and uξ1 = grξ1 really imply λ = (r, rξ), and the three last columns
help to check the language membership: we want u2 = gr2, e/M = hr, and
v = (cdξ)r, with the same r as for u1.

Smooth Projective Hash Function. With the above notations, the hashing
key is a vector hk = α = (α1, . . . , αn)

ᵀ $← Zn
p , while the projection key is, for

a word C, hp = γ(C) = Γ (C) , α ∈ Gk (if Γ depends on C, this leads to a
GL-SPHF, otherwise, one gets a KV-SPHF). Then, the hash value is:

Hash(hk, full-aux, C) def= Θaux(C),α = λ, γ(C) def= ProjHash(hp, full-aux, C, w).

Our above Γ , λ, and ΘM immediately lead to our KV-SPHF on CS from the
Section 2.4: with hk = (η1, η2, θ, μ, ν)

$← Z5
p, the product with Γ leads to: hp =

(hp1 = gη1

1 gθ2h
μcν , hp2 = gη2

1 dν) ∈ G2, and

H = Hash(hk, (ek,m), C) def= u
(η1+ξη2)
1 uθ2(e/G(m))μvν

= (hp1hp
ξ
2)

r def= ProjHash(hp, (ek,m), C, r) = H ′.

The generic framework detailed in the SPHF full version [6] also contains a secu-
rity analysis that proves the above generic SPHF is perfectly smooth: Intuitively,
for a word C �∈ Laux and a projection key hp = γ(C) = Γ (C) , α, the vector
Θaux(C) is not in the linear span of Γ (C), and thus H = Θaux(C) , α is inde-
pendent from Γ (C) , α = hp. This also proves the Theorem 2 as a particular
case.

4.2 Efficient Construction of TSPHFs under DDH

We now explain how to construct a TSPHF in a bilinear group (p,G1,G2,GT , e),
from any SPHF constructed via the above framework, provided the SPHF does
not require pairings (as all the SPHFs described in this paper), and under an
additional assumption detailed later (for the smoothness to hold). To this aim,
we extend our notations with g1 , g2 = g2 , g1 = e(g1, g2), and scalars can
operate on any group element as before. Intuitively, our TSPHF construction
is such that all the “SPHF” part of the TSPHF is in G1, whereas the trapdoor
part is in G2. And the trapdoor part simply contains some representation of α,
representation which cannot be used without knowing the trapdoor τ ′.

The second CRS is a random element crs′ = ζ
$← G2, and its trapdoor is its

discrete logarithm τ ′, such that ζ = gτ
′

2 = τ ′ , g2. The hashing key hk = α is
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the same as before. The projection key is the ordered pair hp = (γ,χ), where
γ is the same as before, and χ = ζ , α. The projection key is valid (i.e.,
VerHP(hp, full-aux, C) = 1) if and only if

χ ∈ Gn
2 and ζ , γ = Γ , χ, (1)

Then, for any word C ∈ Lfull-aux with witness w corresponding to the vector λ,
the hash value is
Hash(hk, full-aux, C) def= Θ(C),α,g2 = λ,γ,g2 def= ProjHash(hp, full-aux, C, w).

Equation (1) means that χ can be written χ = τ ′ ,α′, with α′ ∈ Zn
p verifying

γ = Γ,α′, i.e., hk′ = α′ is a valid hashing key for γ. We do not have necessarily
α = α′, however, for any word C ∈ Lfull-aux, we have and we set
λ, γ , g2 = Θ(C) ,α′ , g2 = τ ′−1 ,Θ(C) , χ def= THash(hp, full-aux, C, τ ′).

In the TSPHF full version [7], we prove the resulting TSPHF is computationally
smooth under the DDH assumption in G2, if the discrete logarithms of Γaux(C)
can be computed from τ . This latter assumption on Γaux(C) and τ is required
for technical reasons in the proof of smoothness. The correctness and the perfect
soundness are easy to prove from the construction, and so the resulting TSPHF
is correct, smooth and sound.

4.3 TSPHF on Cramer-Shoup Ciphertexts

We apply this technique to extend the SPHF on Cramer-Shoup ciphertexts from
Section 2 into a TSPHF. Let (p,G1,G2,GT , e) be a bilinear group. We consider
the same language and use the same notations as in Section 2 except we replace
G by G1, g1 and g2 by g1,1 and g1,2 resp., and h by h1, while g2 is a generator
of G2.

To get a TSPHF, we choose a random scalar τ ′ in Zp and set crs′ = ζ = gτ
′

2 .
Then the hashing key, the projection key and the hash value of the TSPHF are
defined as follows:

hk = (η1, η2, θ, μ, ν)
$← Z5

p

hp = (hp1 = gη1

1,1g
θ
1,2h

μ
1 c

ν , hp2 = gη2

1,1d
ν , hp3) ∈ G2

1 ×G5
2

where hp3 = (χ1,1 = ζη1 , χ1,2 = ζη2 , χ2 = ζθ, χ3 = ζμ, χ4 = ζν) ∈ G5
2

Hash(hk, (ek,m), C) = e(u1
(η1+ξη2)u2

θ(e/G(m))μvν , g2)

ProjHash(hp, (ek,m), C, r) = e((hp1hp2
ξ)r, g2)

The projection key is valid if and only if: e(hp1, ζ) = e(g1,1, χ1,1) · e(g1,2, χ2) ·
e(h1, χ3)·e(c, χ4) and e(hp2, ζ) = e(g1,1, χ1,2)·e(d, χ4). For any C ∈ LofC(crs,aux),
the hash value can be computed from C and τ ′ as THash(hp, (ek,m), C, τ ′):(

e(u1, χ1,1 · χξ
1,2) · e(u2, χ2) · e(e/G(m), χ3) · e(v, χ4)

)1/τ ′

.

The resulting TSPHF is smooth under the DDH in G2, hence the global SXDH
assumption. More complex and concrete examples of TSPHFs can be found in the
TSPHF full version [7].
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CRS: ek and ζ ∈ G2 Common password: pw
Both users do the same:

– U , with expected partner U ′, generates hk
$← Z5

p, hp ∈ G2
1 ×G5

2

and C = CS(�, ek, pw; r) ∈ G4
1, where � = (U,U ′, hp).

U sends hp ∈ G2
1 ×G5

2 and C ∈ G4
1

– Upon receiving hp′ ∈ G2
1 ×G5

2 and C′ ∈ G4
1,

U checks the validity of hp′. If the validity check fails, U aborts, otherwise
U sets �′ = (U ′, U, hp′). U computes

skU = Hash(hk, (ek, pw), C′) · ProjHash(hp′, (ek,m), C, r)

= e(u′
1
(η1+ξ′αη2 )

u′
2
θ
(e′/G(pw))μv′ν , g2) · e((hp′1hp

′
2
ξ
)r, g2)

Fig. 3. UC-Secure One-Round PAKE based on DDH

4.4 One-Round UC-Secure PAKE from TSPHF

We now show how our TSPHF can lead to a very efficient one-round PAKE,
secure in the UC framework with static corruptions. This is a slight variant of
the one-round PAKE from [24], where the SPHF and the SS-NIZK proofs are
replaced by a TSPHF, which can be much more efficient; and where, as in our
previous PAKE, we use the Cramer-Shoup encryption scheme as commitment
scheme, instead of the original inefficient IND-CCA encryption scheme based on
the Naor-Yung principle [26]. The concrete scheme is depicted in Figure 3. The
communication complexity is of 6 elements in G1 and 5 elements in G2 only in
each direction.

We show in the TSPHF full version [7] that the protocol actually works with
any TSPHF on an IND-CCA encryption scheme, and provide a full generic proof.
It is in the same vein as the KV’s proof but a bit more intricate for two reasons:
we do not assume a prior agreement of the session ID which makes our scheme a
truly one-round protocol; our TSPHF does not guarantee the smoothness (even
computationally) when the trapdoor τ ′ is known, and then, we have to modify
the order of the games to use this trapdoor at the very end only.

One can remark that the original scheme in [24] can be seen as an instantiation
of our scheme with the naive TSPHF based on NIZK (Section 3.3). Therefore, the
security of the original KV’s PAKE protocol is actually implied by our proof. And
our proof also shows that their construction can be simplified by removing the
commitment of hk and replacing the SS-NIZK by an ENIZK proof of knowledge
of hk.

5 More Constructions of SPHFs

In this section, we first illustrate more our generic framework, by constructing
more evolved SPHFs, and then we show some interesting applications. One can
note that all these constructions are without pairings, the generic framework
can thus be used to extend them with trapdoors, with some more applications
presented in Section 7.
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5.1 KV-SPHF for Linear Multi-exponentiation Equations

We present several instantiations of KV-SPHFs, in order to illustrate our frame-
work, but also to show that our one-round PAKE protocol from Section 2.5 can be
extended to one-round LAKE [5]. In PAKE/LAKE, we use SPHFs to prove that the
plaintexts associated with some ElGamal-like ciphertexts verify some relations.
The communication complexity of these protocols depends on the ciphertexts
size and of the projection keys size. We first focus on ElGamal ciphertexts, and
then explain how to handle Cramer-Shoup ciphertexts. More constructions are
detailed in the SPHF full version [6].

Notations. We work in a group G of prime order p, generated by g, in which
we assume the DDH assumption to hold. We define ElGamal encryption scheme
with encryption key ek = (g, h = gx). Let n, m and t be three positive integers.
In the following i, j and k always range from 1 to n, from 1 to m and from 1
to t respectively in all the products

∏
i,
∏

j ,
∏

k and tuples (·)i, (·)j , (·)k. We
are interested in languages of the ciphertexts Ci = (ui = gri , ei = hri ·Xi), for
which X1, . . . , Xn ∈ G satisfy

∃y1, . . . , ym ∈ Zp,
∀k ∈ {1, . . . , t},

n∏
i=1

X
ak,i

i ·
m∏
j=1

A
yj

k,j = Bk, with crs = (p,G, ek, (Ak,j)k,j)
aux = ((ak,i)k,i, (Bk)k),

(2)

where (Ak,j)k,j ∈ Gt×m are public and known in advance (i.e., are in crs), while
((ak,i)k,i, (Bk)k) ∈ Zt×n

p × Gt can be kept secret (i.e., can be in aux). This can
be seen as a system of t linear multi-exponentiation equations.

The Groth-Sahai Approach. Naive use of the Groth Sahai framework invites
us to also commit to scalars as Yj = gyj and to show that the plaintexts (Xi)i
and (Yj)j satisfy:

∃y1, . . . , ym ∈ Zp, ∀k ∈ {1, . . . , t},
∏

iX
ak,i

i ·
∏

j A
yj

k,j = Bk,

∀j ∈ {1, . . . ,m}, Yj = gyj .

Since there is no efficient way to extract yj from Yj , committing to yj is often
not useful.

A First SPHF. We thus consider the language of the ciphertexts Ci = (ui =
gri , ei = hri · Xi), for X1, . . . , Xn ∈ G satisfying (2). The witnesses are (Xi)i,
(ri)i and (yj)j , or just (ri)i and (yj)j . The matrix Γ is the following one:

Γ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

g

1
. . .

1
g

h

1
. . .

1
h

1
A−1

1,1· · ·A−1
t,1

...
...

A−1
1,m· · ·A−1

t,m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

Θaux(C) =
((∏

i u
ak,i

i

)
k
,
(∏

i e
ak,i

i /Bk

)
k

)
λ =

((∑
i ak,iri

)
k
, (yj)j

)
λ, Γ =

((∏
i g

ak,iri
)
k
,(∏

i h
ak,iri/

∏
j A

yj

k,j

)
k

)
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The upper-left diagonal block imposes the first t values on λ, while the last
t columns define the t relations: The last t components of Θaux(C), namely∏

i e
ak,i

i /Bk =
∏

i h
ak,iri ·

∏
iX

ak,i

i /Bk (for k = 1, . . . , t), are equal to the last
t components of λ , Γ , namely

∏
i h

ak,iri/
∏

j A
yj

k,j ((yj)j are just the last t
components of λ), if and only if the relations in (2) are all satisfied. It thus leads
to the following KV-SPHF, with (hp1,k = gηkhμk)k and (hp2,j =

∏
k A

−μk

k,j )j , for
hk = ((ηk)k, (μk)k):

H =
∏

k

(∏
i
(uηk

i eμk

i )/Bμk

k

)
=
∏

k
hp

∑
i ak,iri

1,k ·
∏

j
hp

yj

2,j = H ′.

As a consequence, the ciphertexts and the projection keys globally consist of
2n+t+m elements from G only. This is much more compact than the 2n+4m+t
elements one would get by additionally committing the (Yj = gyj)j .

Ciphertexts with Randomness Reuse. In some cases, even the constants
(ak,i)k,i can be public and known in advance, and thus moved from aux to crs.
In this case, one can furthermore shorten ElGamal ciphertexts by using multiple
independent encryption keys for encrypting the Xi’s: eki = (g, hi = gxi), for
i = 1, . . . ,m. This allows to reuse the same random coins [2]. More precisely,
we are now interested in the language of the ciphertexts C = (u = gr, (ei =
hri · Xi)i), for X1, . . . , Xn ∈ G still satisfying (2). This improves on the length
of the ciphertexts, from 2n group elements in G to n + 1, and the t first rows
of the matrix can be combined into the unique row (g,

∏
i h

a1,i

i , . . . ,
∏

i h
at,i

i ). It
thus leads to the following KV-SPHF, with hp1 = gη ·

∏
k(
∏

i h
ak,i

i )μk , (hp2,j =∏
k A

−μk

k,j )j , for hk = (η, (μk)k):

H = uη ·
∏

k

(∏
i
e
ak,i

i /Bk

)μk

= hpr1 ·
∏

j
hp

yj

2,j = H ′.

Globally, the ciphertexts and the projection keys consist of n+m+ 2 elements
from G: this is independent of the number of equations. This randomness-reuse
technique will be exploited in Section 6.2 for improving blind signature schemes.

From ElGamal to Cramer-Shoup Encryption. In order to move from
ElGamal ciphertexts to Cramer-Shoup ciphertexts (when non-malleability is
required), if one already has Γ , Θaux, and Λ to guarantee that the ElGamal
plaintexts satisfy a relation, one simply has to make a bigger matrix, diagonal
per blocks, with the block Γ and the smaller blocks (Γk)k for every cipher-
text Ck, where each block Γk is the Cramer-Shoup matrix from Section 4.1
without the fourth column (the column with h). The initial matrix Γ guaran-
tees the relations on the ElGamal sub-ciphertexts, and the matrices Γk guar-
antee the validity of the Cramer-Shoup ciphertexts. Since some witnesses are
the same, some rows/columns can be packed together. More complex languages
on Cramer-Shoup ciphertexts will be exploited in Section 6.1, we thus illustrate
how the above combination can be optimized in the case of multi-exponentiation
equations.
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KV-SPHF on Cramer-Shoup Ciphertexts for Linear Multi-Exponen-
tiation Equations. Let us convert the above KV-SPHF to Cramer-Shoup ci-
phertexts, with some optimizations: we write C = (u1 = gr1, u2 = g2

r, e1 =
hr1 ·X1, . . . , en = hrn ·Xn, v = (cdξ)r), where ξ = HK(u1, u2, e1, . . . , en) ∈ Z∗

p, for
X1, . . . , Xn ∈ G satisfying (2). We make the matrix more compact as follows,
with λ = (r, rξ, (yj)j):

Γ =

⎛⎜⎜⎜⎜⎜⎝
g1 1 g2

∏
i h

a1,i

i . . .
∏

i h
at,i

i c

1 g1 1 1 . . . 1 d

1
...
1

1
...
1

1
...
1

A−1
1,1· · ·A−1

t,1
...

...
A−1

1,m· · ·A−1
t,m

1
...
1

⎞⎟⎟⎟⎟⎟⎠ .

This leads to the following KV-SPHF, with hp1 = gη1

1 g2
θ ·
∏

k(
∏

i h
ak,i

i )μk · cν ,
hp2 = gη2

1 dν , (hp3,j =
∏

k A
−μk

k,j )j , for hk = (η1, η2, θ, (μk)k, ν):

H = uη1+ξη2

1 · uθ2 ·
∏

k

(∏
i
e
ak,i

i /Bk

)μk · vν = (hp1hp
ξ
2)

r ·
∏

j
hp

yj

3,j = H ′.

5.2 GL-SPHF on Bit Encryption

Our general framework allows to construct KV-SPHFs for any language handled
by the Groth-Sahai NIZK proofs (see the SPHF full version [6]). While these
KV-SPHFs encompass the language of ciphertexts encrypting a bit, they require
pairing evaluations. We show here a more efficient GL-SPHF for bit encryption,
which does not need pairings.

Let us consider an ElGamal ciphertext C = (u = gr, e = hrgy), in which one
wants to prove that y ∈ {0, 1}. We can define the following matrix that depends
on C, hence a GL-SPHF:

Γ (C) =

⎛⎝g h 1 1
1 g u e/g
1 1 g h

⎞⎠ Θaux(C) = (u, e, 1, 1) λ = (r, y,−ry)
λ, Γ (C) = (gr, hrgy, (u/gr)y, (e/ghr)y)

Because of the triangular block in Γ (C), one sees that Θaux(C) = λ,Γ (C) if and
only if gy(y−1) = 1, and thus that y ∈ {0, 1}. With hp1 = gνhθ, hp2 = gθuη(e/g)λ,
and hp3 = gηhλ, for hk = (ν, θ, η, λ): H = uνeθ = hpr1 · hp

y
2/hp

ry
3 = H ′.

6 More Applications of SPHFs

6.1 One-Round LAKE

Since we have shown that our framework allows to design KV-SPHFs for complex
languages, we extend our PAKE protocol to LAKE [5]. To this aim, we provide a
new security model, inspired from BPR [3] and a complete security proof, which
implies the security of our PAKE protocol from Section 2.5.



New Techniques for SPHFs and Efficient One-Round PAKE Protocols 467

Review of Language-Authenticated Key Exchange. LAKE is a general
framework [5] that generalizes AKE primitives: each player U owns a word W
in a certain language L and expects the other player to own a word W ′ in a
language L′. If everything is compatible (i.e., the languages are the expected
languages and the words are indeed in the appropriate languages), the players
compute a common high-entropy secret key, otherwise they learn nothing about
the partner’s values. In any case, external eavesdroppers do not learn anything,
even not the outcome of the protocol: did it succeed or not?

More precisely, we assume the two players have initially agreed on a common
public part pub for the languages, but then they secretly parametrize the lan-
guages with the private parts priv: Lpub,priv is the language they want to use,
and Lpub,priv ′ is the language they assume the other player will use. In addition,
each player owns a word W in his language. We will thus have to use SPHFs
on ciphertexts on W , priv and priv ′, with a common crs = (ek, pub) and aux
with the private parameters. For simple languages, this encompasses PAKE and
Verifier-based PAKE. We refer to [5] for more applications of LAKE.
A New Security Model for LAKE. The first security model for LAKE [5]
has been given in the UC framework [13], as an extension of the UC security
for PAKE [14]. In this paper, we propose an extension of the PAKE security
model presented by Bellare, Pointcheval, and Rogaway [3] model for LAKE: the
adversary A plays a find-then-guess game against n players (Pi)i=1,...,n. It has
access to several instancesΠs

U for each player U ∈ {Pi} and can activate them (in
order to model concurrent executions) via several queries: Execute-queries model
passive eavesdroppings; Send-queries model active attacks; Reveal-queries model
a possible bad later use of the session key; the Test-query models the secrecy
of the session key. The latter query has to be asked to a fresh instance (which
basically means that the session key is not trivially known to the adversary)
and models the fact that the session key should look random for an outsider
adversary.

Our extension actually differs from the original PAKE security model [3] when
defining the quality of an adversary. The goal of an adversary is to distinguish
the answer of the Test-query on a fresh instance: a trivial attack is the so-
called on-line dictionary attack which consists in trying all the possibilities when
interacting with a target player. For PAKE schemes, the advantage of such an
attack is qs/N , where qs is the number of Send-queries and N the number of
possible passwords. A secure PAKE scheme should guarantee this is the best
attack, or equivalently that the advantage of any adversary is bounded by qs ×
2−m, where m is the min-entropy of the password distribution. In our extension,
for LAKE, the trivial attack consists in trying all the possibilities for priv, priv ′

with a word W in Lpub,priv.

Definition 3 (Security for LAKE). A LAKE protocol is claimed (t, ε)-secure
if the advantage of any adversary running in time t is bounded by qs × 2−m ×
SuccL(t) + ε, where m is the min-entropy of the pair (priv, priv′), and SuccL(t)
is the maximal success an adversary can get in finding a word in any Lpub,priv

within time t.
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– Players U and U ′ both use ek and agreed on pub.
– U , with (priv, priv ′,W ), generates hk = HashKG(ek, pub)

and hp = ProjKG(hk, (ek, pub),⊥).
U computes � = (U,U ′, hp) and C = Encrypt(�, ek, (priv, priv ′,W ); r), with r a
random scalar in Zp, and sends hp, C to U ′.

– Upon receiving hp′, C′ from U ′, it sets �′ = (U ′, U, hp′),
U computes H = Hash(hk, ((ek, pub), (priv ′, priv)), (�′, C′)),

H ′ = ProjHash(hp′, ((ek, pub), (priv, priv ′)), (�, C), r), and sk = H ·H ′.

For crs = (ek, pub) and aux = (priv, priv ′),

LofCcrs,aux =

{
(�,C)

∣∣∣∣ ∃r,∃W, C = Encrypt(�, ek, (priv, priv ′,W ); r)
and W ∈ Lpub,priv

}
.

Fig. 4. One-Round LAKE

Note that the min-entropy of the pair (priv, priv′) might be conditioned to the
public information from the context.

Our Instantiation. Using the same approach as Katz and Vaikuntanathan for
their one-round PAKE [24], one can design the scheme proposed on Figure 4, in
which both users U and U ′ use the encryption key ek and the public part pub.
This defines crs = (ek, pub). When running the protocol, U owns a word W for
a private part priv, and thinks about a private part priv ′ for U ′, while U ′ owns
a word W ′ for a private part priv′, and thinks about a private priv for U .

This gives a concrete instantiation of one-round LAKE as soon as one can de-
sign a KV-SPHF on the language LofC(ek,pub),(priv,priv ′) = {(
, C) | ∃r, ∃W, C =
Encrypt(
, ek, (priv, priv ′,W ); r) and W ∈ Lpub,priv}. More precisely, each player
encrypts (priv, priv ′,W ) as a vector, which thus leads to C = (C1, C2, C3). We
then use the combination of three SPHFs: two on equality-test for the plaintexts
priv (for C1) and priv ′ (for C2), and one on LofC(ek,pub),priv for the ciphertext C3

of W ∈ Lpub,priv.
We stress that hk and hp can depend on crs but not on aux, hence the notations

used in the Figure 4. Using a similar proof as in [24], one can state the following
theorem (more details on the security model and the full proof can be found
in the SPHF full version [6]):

Theorem 4. If the encryption scheme is IND-CCA, and LofC(ek,pub),(priv,priv ′)
languages admit KV-SPHFs, then our LAKE protocol is secure.

From LAKE to PAKE. One can remark that this theorem immediately proves
the security of our PAKE from Figure 1: one uses priv = priv′ = pw and pub = ∅,
for the language of the ciphertexts of pw.

6.2 Two-Flow Waters Blind Signature

In [9], the authors presented a technique to do efficient blind signatures using
an SPHF: it is still the most efficient Waters blind signature known so far. In
addition, the resulting signature is a classical Waters signature.
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The construction basically consists in encrypting the message bit-by-bit un-
der distinct bases, that will allow the generation of a masked Waters hash of the
message. Thereafter, the signer will easily derive a masked signature the user
will eventually unmask. However, in order to generate the masked signature, the
signer wants some guarantees on the ciphertexts, namely that some ciphertexts
contain a bit (in order to allow extractability) and that another ciphertext con-
tains a Diffie-Hellman value. Using our new techniques, we essentially improve
on the proof of bit encryption by using the above randomness-reuse technique.

Construction. We refer the reader to [9] for the notations and to the SPHF
full version [6] for details on the proof, and also for the complete construction of
the GL-SPHF. Here, we give a sketch of the protocol (in which i always ranges
from 1 to 
, except if stated otherwise) and its communication cost:

– Setup(1K), where K is the security parameter, generates a pairing-friendly
system (p,G1,G2,GT , e; g1, g2), with g1 and g2 generators of G1 and G2

respectively, a random generator hs ∈ G1 as well as independent generators
u = (ui)i∈{0,...,�} ∈ G�+1

1 for the Waters hash function F(M) = u0
∏

i u
Mi

i ,
for M = (Mi)i ∈ {0, 1}�, and finally random scalars (xi)i ∈ Z�

p. It also
sets ek = (hi)i = (gxi

1 )i and gs =
∏

i hi. It outputs the global parameters
param = (p,G1,G2,GT , e, g1, g2, ek, gs, hs,u). Essentially, g1 and ek compose
the encryption key for an ElGamal ciphertext on a vector, applying the
randomness-reuse technique, while gs, g2 and hs are the bases used for the
Waters signature;

– KeyGen(param) picks at random x ∈ Zp, sets the signing key sk = hxs and
the verification key vk = (gxs , g

x
2 );

– BSProtocol〈S(sk),U(vk,M)〉 runs as follows, where U wants to get a signa-
ture on M = (Mi)i ∈ {0, 1}�:
• Message Encryption: U chooses a random r ∈ Zp and encrypts uMi

i for
all the i’s with the same random r: c0 = gr1 and (ci = hriu

Mi

i )i. U also
encrypts vkr1, into d0 = gs1, d1 = hs1vk

r
1, with a different random s: It

eventually sends (c0, (ci)i, (d0, d1)) ∈ G�+3
1 ;

• Signature Generation: S first computes the masked Waters hash of the
message c = u0

∏
i ci = (

∏
i hi)

rF(M) = grsF(M), and generates the
masked signature (σ′

1 = hxsc
t = hxsg

rt
s F(M)t, σ2 = (gts, g

t
2)) for a random

t
$← Zp;

• SPHF: S needs the guarantee that each ElGamal ciphertext (c0, ci) en-
crypts either 1 or ui under the key (g1, hi), and (d0, d1) encrypts the
Diffie-Hellman value of (g1, c0, vk1) under the key (g1, h1). The signer
chooses a random hk = (η, (θi)i, (νi)i, γ, (μi)i, λ) and sets hp1 = gη1 ·∏

ih
θi
i ·vkλ1 , (hp2,i = uθii c

νi
0 (ci/ui)

μi)i, (hp3,i = gθi1 h
μi

i )i, and hp4 = gγ1h
λ
1 ,

then H = cη0 ·
∏

ic
θi
i ·dγ0 ·dλ1 = hpr1 ·

∏
ihp

Mi

2,i ·hp
−rMi

3,i ·hps4 = H ′ ∈ G1. This
SPHF is easily obtained from the above GL-SPHF on bit encryption, as
shown in the SPHF full version [6];

• Masked Signature: S sends (hp, Σ = σ′
1 ·H,σ2) ∈ G2�+3

1 ×G2;
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• Signature Recovery: Upon receiving (hp, Σ, σ2), using his witnesses and
hp, U computes H ′ and unmasks σ′

1. Thanks to the knowledge of r, it can
compute σ1 = σ′

1 · (σ2,1)−r. Note that if H ′ = H , then σ1 = hxsF(M)t,
which together with σ2 = (gts, g

t
2) is a valid Waters signature on M ;

– Verif(vk,M, (σ1, (σ2,1, σ2,2)), checks whether both e(σ2,1, g2) = e(gs, σ2,2)
and e(σ1, g2) = e(h, vk2) · e(F(M), σ2,2) are satisfied or not.

Complexity. The whole process requires only 3
+ 7 elements in G1 (
+ 3 for
the ciphertexts, 2
 + 4 for the projection key, Σ and σ2,1) and 1 in G2 (σ2,2).
This is more efficient than the instantiation from [9] (5
+ 6 elements in G1 and
1 in G2) already using an SPHF, and much more efficient than the instantiation
from [8] (6
+7 elements in G1 and 6
+5 in G2) using a Groth-Sahai [21] NIZK
proof.

7 Application of TSPHFs to Zero-Knowledge Arguments

In this section, we are interested in the application of SPHFs and TSPHFs to
zero-knowledge arguments. Zero-knowledge arguments are used to convince a
verifier that some statement or word x is in a given NP-language L, defined by
a polynomial time relation R: L = {x | ∃(w, y), R(x, (w, y)) = 1}. This means
that a word x is valid if there exists a witness (w, y) such that R(x, (w, y)) = 1.
The witness is divided in two parts (w, y): we want to prove that we know some
w for which there exists y such that R(x, (w, y)) = 1. We use the notation of [12]
and write this as:

Kw, ∃y, R(x, (w, y)) = 1.

This formalism generalizes both extractable arguments of knowledge (when
y = ⊥) and non-extractable zero-knowledge arguments (when w = ⊥). More
precisely, we are interested in (partially) extractable zero-knowledge arguments
(E-ZK) and extractable honest-verifier zero-knowledge arguments (HVE-ZK).
E-ZK have to be complete, sound, extractable and zero-knowledge. Complete-
ness states that an honest verifier always accepts a proof made by an honest
prover for a valid statement and using a valid witness. Soundness states that
no adversary can make an honest verifier accept a proof of a false statement x.
Extractability states that there exists an extractor able to simulate a verifier
and to output a valid partial witness w from any successful interaction with an
adversary playing the role of a prover. The zero-knowledge property ensures that
it is possible to simulate a prover for any true statement x even without access to
a witness (w, y) for this statement x. HVE-ZK are similar to E-ZK with the dif-
ference, that for HVE-ZK, the zero-knowledge property holds only when verifiers
are honest. Formal definitions can be found in the TSPHF full version [7].
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Prover Verifier
Input: (aux = x, (w, y)) Input: aux = x

hp←−−−−−−
hk

$← HashKG(full-aux)
hp ← ProjKG(hk, full-aux,⊥)

C ← Encrypt(ek, w; r)
H ← ProjHash(hp, full-aux, C, (w, r, y))

C,H−−−−−−→
H ′ ← Hash(hk, full-aux, C)
if H = H ′ then accept
else reject

Fig. 5. Extractable Honest-Verifier Zero-Knowledge Argument from KV-SPHFs

We first show that SPHFs enable efficient constructions of HVE-ZK arguments.
But these constructions are often not witness-indistinguishable, i.e., a malicious
prover may be able to distinguish which witness has been used by an honest
prover2, in general. Then we show that TSPHFs can overcome this limitation
and we provide efficient constructions of E-ZK from TSPHFs.

7.1 Honest-Verifier Zero-Knowledge Arguments from SPHFs

The idea of the construction is that a prover, who knows some valid statement x
together with a valid witness (w, y), encrypts w, using an IND-CPA encryption
scheme, in some ciphertext C, under some encryption key ek contained in crs.
Then, using an SPHF, he shows that the ciphertext C is an encryption of a valid
partial witness w for the word x: the verifier chooses some hashing key hk and
sends the corresponding projection key hp to the prover; the prover sends back
the hash value H of the ciphertext C computed from hp, w, y and the random
coins used in C, using ProjHash; and the verifier checks he gets the same hash
value from hk, using Hash. If the SPHF is a KV-SPHF, the prover can send the
ciphertext C together with H after receiving hp from the verifier. This yields a
two-flow protocol. More precisely, we use a KV-SPHF for the following language:

LofCfull-aux = {C | ∃w, ∃r, ∃y, C = Encrypt(ek, w; r) and R(x, (w, y))},

where aux is the statement x, and crs contains the encryption key ek and possibly
some global parameters related to the language L associated with the relation R.
The complete protocol is depicted in Figure 5. In all this section, aux is public,
and so it is no more required that ProjHash does not use its input aux.

It is possible to use a GL-SPHF instead of a KV-SPHF for the above language,
if the ciphertext C is sent before hp. The protocol becomes three-flow but can
require fewer bits to be transmitted, because GL-SPHFs are often more efficient
than KV-SPHFs. Details can be found in the TSPHF full version [7].

2 The formal definition of witness-indistinguishability can be found in the TSPHF full
version [7].
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Prover Verifier
Input: (aux = x, (w, y)) Input: aux = x

hp←−−−−−−
hk

$← HashKG(full-aux)
hp ← ProjKG(hk, full-aux,⊥)

if VerHP(hp, full-aux,⊥) = 0 then
abort

C ← Encrypt(ek, w; r)
H ← ProjHash(hp, full-aux, C, (w, r, y))

C,H−−−−−−→
H ′ ← Hash(hk, full-aux, C)
if H = H ′ then accept
else reject

Fig. 6. Extractable Zero-Knowledge Argument from KV-TSPHFs

Completeness comes from the correctness of the SPHF and soundness comes
from the statistical smoothness of the SPHF. The extractor just acts as an hon-
est verifier and decrypts the ciphertext C of the adversarial prover at the end.
The simulator for the honest-verifier zero-knowledge property just encrypts an
arbitrary value in C and computes H using hk: H = Hash(hk, full-aux, C). The
IND-CPA property of the encryption scheme used for C ensures the simulator
transcripts are computationally indistinguishable from real transcripts, and so
the proposed construction is honest-verifier zero-knowledge.

7.2 Limitation of SPHFs

Unfortunately, without any extra property on the SPHF, the above construction
is not witness indistinguishable, and so not zero-knowledge, in general. The main
problem is that, for some SPHFs, it may be possible to generate hp in such a
way that the hash value H computed by the prover (through ProjHash) depends
on the witness used. This happens, in particular, when the language LofCfull-aux
of the SPHF (and also the language L of the HVE-ZK) is a disjunction of two
languages and when the generic construction of [1] for disjunctions is used to
construct the SPHF.

The previous problem does not happen for SPHFs where it is easy to distin-
guish valid hp from invalid ones, such as all SPHFs of this article. However, even
in this case, we do not see how to prove that the resulting generic construction
yields a zero-knowledge argument, because, if the simulator does not have access
to hk, but only to hp, there is no trivial way to compute H .

7.3 Zero-Knowledge Arguments from TSPHFs

Let us now introduce our generic two-flow construction of E-ZK arguments from
TSPHFs. The scheme is depicted in Figure 6. It is similar to the above generic
construction of HVE-ZK arguments from SPHFs, except the KV-SPHF is replaced
by a KV-TSPHF and the verifier aborts if the received hp is not valid.
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It is also possible to use a GL-TSPHF (instead of a KV-TSPHF), at the expense
of requiring three flows instead of two. In addition, if the IND-CPA encryption
scheme is replaced by a labeled IND-CCA encryption scheme and the TSPHF
is adapted, the resulting zero-knowledge argument becomes true-simulation ex-
tractable, which roughly means that it is possible to extract the witness of any
successful proof from an adversarial prover, even if this adversarial prover has
access to simulated transcripts of true statements. Details can be found in the
TSPHF full version [7].

Completeness and correctness can be proven as above. For the zero-knowledge
property, the simulator consists in encrypting an arbitrary value in C and com-
puting H using hp and the trapdoor τ ′: THash(hp, full-aux, C, τ ′). This works
thanks to the IND-CPA property of the encryption scheme.

Soundness and extractability are slightly more complex to prove and require
that, for any w and x, knowing τ provides a way to test whether x is valid and w
is a partial witness of x, with overwhelming probability. This property is actually
always verified by TSPHFs constructed as in Section 4.2. Proofs are given in the
TSPHF full version [7].

7.4 Instantiations and Comparison with Ω-Protocols

Let us consider the KV-SPHFs on ElGamal ciphertexts of Section 5.1, in which
possibly some of the ak,i’s, Ak,j ’s and Bk’s are moved from crs to aux, which is
possible here, since ProjHash is now allowed to depend on aux. If we apply the
generic constructions of HVE-ZK and E-ZK to these KV-SPHFs (after transform-
ing them to KV-TSPHFs, using the generic transformation of Section 4.2, for the
E-ZK construction), we get HVE-ZK and E-ZK for languages of systems of linear
multi-exponentation relations in cyclic groups:

K(Xi)i ∈ Gn, ∃(yj)j ∈ Zm
p , ∀k ∈ {1, . . . , t},

n∏
i=1

X
ak,i

i ·
m∏
j=1

A
yj

k,j = Bk,

where a statement x is a tuple containing all the constants ak,i, Ak,j and Bk, or
some of them (in this case, the other constants are in crs).

Compared to Ω-protocols [18], which are the classical way to do a HVE-ZK,
our HVE-ZK protocol from KV-SPHFs is two-flow instead of three-flow and has
a lower communication complexity. Whereas our E-ZK protocol from TSPHFs is
still two-flow instead of three-flow, it verifies a stronger notion of security (zero-
knowledge versus honest-verifier zero-knowledge) and has just a slightly greater
communication complexity.
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Abstract. Extending bilinear elliptic curve pairings to multilinear maps
is a long-standing open problem. The first plausible construction of such
multilinear maps has recently been described by Garg, Gentry and Halevi,
based on ideal lattices. In this paper we describe a different construc-
tion that works over the integers instead of ideal lattices, similar to the
DGHV fully homomorphic encryption scheme. We also describe a differ-
ent technique for proving the full randomization of encodings: instead of
Gaussian linear sums, we apply the classical leftover hash lemma over a
quotient lattice. We show that our construction is relatively practical: for
reasonable security parameters a one-round 7-party Diffie-Hellman key
exchange requires less than 40 seconds per party. Moreover, in contrast
with previous work, multilinear analogues of useful, base group assump-
tions like DLIN appear to hold in our setting.

1 Introduction

Multilinear Maps. Extending bilinear elliptic curve pairings to multilinear
maps is a long-standing open problem. In 2003 Boneh and Silverberg showed two
interesting applications of multilinear maps [BS03], namely multipartite Diffie-
Hellman and very efficient broadcast encryption; however they were pessimistic
about the existence of such maps from the realm of algebraic geometry.

The first plausible construction of multilinear maps has recently been de-
scribed by Garg, Gentry and Halevi, based on ideal lattices [GGH13]. The main
difference with bilinear pairings is that the encoding a · g of an element a is
randomized (with some noise) instead of deterministic; only the computed mul-
tilinear map e(a1 · g, . . . , aκ · g) is a deterministic function of the ai’s only. The
construction has bounded degree with a maximum degree κ at most polynomial
in the security parameter. Indeed, the encoding noise grows linearly with the
degree, and when the noise reaches a certain threshold the encoding can become
incorrect, as for ciphertexts in a somewhat homomorphic encryption scheme.
The security of the construction relies on new hardness assumptions which are
natural extensions of the Decisional Diffie-Hellman (DDH) assumption. To gain
more confidence in their scheme the authors provide an extensive cryptanalytic

R. Canetti and J.A. Garay (Eds.): CRYPTO 2013, Part I, LNCS 8042, pp. 476–493, 2013.
c© International Association for Cryptologic Research 2013
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survey. The authors focus on one application: the multipartite Diffie-Hellman
key exchange.

The construction from [GGH13] works in the polynomial ringR = Z[X ]/(Xn+
1), where n is large enough to ensure security. One generates a secret short ring
element g ∈ R, generating a principal ideal I = 〈g〉 ⊂ R. One also generates an
integer parameter q and another random secret z ∈ R/qR. One encodes elements
of the quotient ring R/I, namely elements of the form e+I for some e, as follows:
a level-i encoding of the coset e+I is an element of the form uk = [c/zi]q, where
c ∈ e+ I is short. Such encodings can be both added and multiplied, as long as
the norm of the numerators remain shorter than q; in particular the product of κ
encodings at level 1 gives an encoding at level κ. For such level-κ encodings one
can then define a zero-testing parameter pzt = [hzκ/g]q, for some small h ∈ R.
Then given a level-κ encoding u = [c/zκ] one can compute [pzt · u]q = [hc/g]q.
When c is an encoding of zero we have c/g ∈ R, which implies that hc/g is
small in R, and therefore [hc/g]q is small; this provides a way to test whether a
level-κ encoding c is an encoding of 0. For the same reason the high-order bits
of [pzt · u]q = [hc/g]q only depend on the coset e+ I and not on the particular
c ∈ e+I; this makes it possible to extract a representation of cosets encoded at
level κ, and eventually defines a degree-κ multilinear map for level-1 encodings.

Our Contributions. Our main contribution is to describe a different con-
struction that works over the integers instead of ideal lattices, similar to the
DGHV fully homomorphic encryption scheme [DGHV10] and its batch vari-
ant [CCK+13]. Our construction offers the same flexibility as the original from
[GGH13]; in particular it can be modified to support the analogue of asymmet-
ric maps and composite-order maps. Moreover, it does not seem vulnerable to
the “zeroizing” attack that breaks base group hardness assumptions like the ana-
logues of DLIN and subgroup membership for the multilinear maps of [GGH13].
Since those assumptions are believed necessary to adapt constructions of prim-
itives like adaptively secure functional encryption and NIZK, our construction
seems even more promising for applications than [GGH13].

As in [GGH13], the security of our construction relies on new assumptions; it
cannot be derived from “classical” assumptions such as the Approximate-GCD
assumption used in [DGHV10]. We describe various possible attacks against our
scheme; this enables us to derive parameters for which our scheme remains secure
against these attacks.

Our new construction works as follows: one first generates n secret primes
pi and publishes x0 =

∏n
i=1 pi (where n is large enough to ensure correctness

and security); one also generates n small secret primes gi, and a random secret
integer z modulo x0. A level-k encoding of a vector m = (mi) ∈ Zn is then an
integer c such that for all 1 � i � n:

c ≡ ri · gi +mi

zk
(mod pi) (1)

for some small random integers ri; the integer c is therefore defined modulo
x0 by CRT. It is clear that such encodings can be both added and multiplied
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modulo x0, as long as the numerators remain smaller than the pi’s. In particular
the product of κ encodings cj at level 1 gives an encoding at level κ where
the corresponding vectors mj are multiplied componentwise. For such level-κ
encodings one defines a zero-testing parameter pzt with:

pzt =

n∑
i=1

hi ·
(
zκ · g−1

i mod pi
)
·
∏
i′ �=i

pi′ mod x0

for some small integers hi. Given a level-κ encoding c as in (1), one can compute
ω = pzt · c mod x0, which gives:

ω =

n∑
i=1

hi ·
(
ri +mi · (g−1

i mod pi)
)
·
∏
i′ �=i

pi′ mod x0 .

Then if mi = 0 for all i, since the ri’s and hi’s are small, we obtain that ω is
small compared to x0; this enables to test whether c is an encoding of 0 or not.
Moreover for non-zero encodings the leading bits of ω only depend on the mi’s
and not on the noise ri; for level-κ encodings this enables to extract a function
of the mi’s only, which eventually defines as in [GGH13] a degree-κ multilinear
map.1

Our second contribution is to describe a different technique for proving the
full randomization of encodings. As in [GGH13] the randomization of encodings
is obtained by adding a random subset-sum of encodings of 0 from the public
parameters. However as in [GGH13] the Leftover Hash Lemma (LHL) cannot
be directly applied since the encodings live in some infinite ring instead of a
finite group. The solution in [GGH13] consists in using linear sums with Gaus-
sian coefficients; it is shown in [AGHS12] that the resulting sum has a Gaussian
distribution (over some lattice). As noted by the authors, this can be seen as a
“leftover hash lemma over lattices”. In this paper we describe a different tech-
nique that does not use Gaussian coefficients; instead it consists in working
modulo some lattice L ⊂ Zn and applying the leftover hash lemma over the
quotient Zn/L, which is still a finite group. Such technique was already used to
prove the security of the batch variant of the DGHV fully homomorphic encryp-
tion scheme [CCK+13, CLT13a]. Here we provide a more formal description: we
clearly state our “LHL over lattices” so that it can later be applied as a black-box
(as the corresponding Theorem 3 in [AGHS12]). Our quotient lattice technique
can independently be applied to the original encoding scheme from [GGH13],
while the Gaussian sum technique from [AGHS12] is also applicable to ours.

Our third contribution is to describe the first implementation of multilinear
maps. It appears that the basic versions of both [GGH13] and our scheme are
rather unpractical, because of the huge public parameter size required to random-
ize the encodings. Therefore we use a simple optimization that consists in storing
only a small subset of the public elements and combining them pairwise to gener-
ate the full public-key. Such optimization was originally described in [GH11] for

1 Technically for pzt we use a vector of integers instead of a single integer (see Sec. 3).
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reducing the size of the encryption of the secret-key bits in the implementation
of Gentry’s FHE scheme [Gen09]. It was also used in [CMNT11] to reduce the
public-key size of the DGHV scheme; however, as opposed to the latter work our
randomization of encodings is heuristic only, whereas in [CMNT11] the seman-
tic security was still guaranteed. Thanks to this optimization our construction
becomes relatively practical: for reasonable security parameters a multipartite
Diffie-Hellman computation with 7 users requires less than 40 seconds, with a
public parameter size of roughly 2.6 GBytes; a proof-of-concept implementation
is available at [Lep].

2 Definition of Randomized Encodings and Multilinear
Maps

In this section we recall the setting introduced in [GGH13] for the notion of
randomized encodings and multilinear maps, which they call graded encoding
schemes. There are essentially two main differences with classical bilinear pair-
ings (and their generalization to cryptographic multilinear maps as considered
in [BS03]):

1. In bilinear pairings (and more generally cryptographic multilinear maps) we
have a map e : Gκ → GT that is linear with respect to all its κ inputs:

e(a1 · g, . . . , aκ · g) =
(

κ∏
i=1

ai

)
· e(g, . . . , g) . (2)

One can view a ·g as an “encoding” of the integer a ∈ Zp over the group G of
order p generated by g. The main difference in our setting is that encodings
are now randomized. This means that an element a ∈ R (where R is a ring
that plays the role of the exponent space Zp) has many possible encodings;
only the final multilinear map e(a1 · g, . . . , aκ · g) is a deterministic function
of the ai’s only, and not on the randomness used to encode ai into ai · g.

2. The second main difference is that to every encoding is now associated a level.
At level 0 we have the “plaintext” ring elements a ∈ R, at level 1 we have the
encoding a ·g, and by combining k such encodings ai ·g at level 1 one obtains
a level-k encoding where the underlying elements ai are homomorphically
multiplied in R. The difference with “classical” cryptographic multilinear
maps is that we can now multiply any (bounded) subset of encodings, instead
of strictly κ at a time as with (2). For encodings at level κ we have a special
zero-testing parameter pzt that can extract a deterministic function of the
underlying ring elements. This enables to define a degree-κ multilinear map
for encodings at level 1.

2.1 Graded Encoding System

We recall the formal definition of a κ-Graded Encoding System from [GGH13].
For simplicity we only consider the symmetric case throughout the paper; we
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refer to [GGH13] for a more general framework that can handle the asymmetric
case.

Definition 1 (κ-Graded Encoding System [GGH13]). A κ-Graded Encod-

ing System for a ring R is a system of sets S = {S(α)
v ∈ {0, 1}∗ : v ∈ N, α ∈ R},

with the following properties:

1. For every v ∈ N, the sets {S(α)
v : α ∈ R} are disjoint.

2. There are binary operations + and − (on {0, 1}∗) such that for every α1, α2 ∈
R, every v ∈ N, and every u1 ∈ S

(a1)
v and u2 ∈ S

(a2)
v , it holds that u1 + u2 ∈

S
(α1+α2)
v and u1 − u2 ∈ S

(α1−α2)
v where α1 + α2 and α1 − α2 are addition

and subtraction in R.

3. There is an associative binary operation × (on {0, 1}∗) such that for every

α1, α2 ∈ R, every v1, v2 with 0 � v1 + v2 � κ, and every u1 ∈ S
(α1)
v1 and

u2 ∈ S
(α2)
v2 , it holds that u1 × u2 ∈ S

(α1·α2)
v1+v2 where α1 ·α2 is multiplication in

R.

2.2 Multilinear Map Procedures

We also recall the definition of the procedures for manipulating encodings. As
previously we consider only the symmetric case; we refer to [GGH13] for the
general case.

Instance Generation. The randomized InstGen(1λ, 1κ) takes as inputs the pa-
rameters λ and κ, and outputs (params,pzt), where params is a description of a
κ-Graded Encoding System as above, and pzt is a zero-test parameter.

Ring Sampler. The randomized samp(params) outputs a “level-zero encoding”

a ∈ S
(α)
0 for a nearly uniform element α ∈R R. Note that the encoding a does

not need to be uniform in S
(α)
0 .

Encoding. The (possibly randomized) enc(params, a) takes as input a level-zero

encoding a ∈ S
(α)
0 for some α ∈ R, and outputs the level-one encoding u ∈ S

(α)
1

for the same α.

Re-randomization. The randomized reRand(params, i, u) re-randomizes encod-

ings relative to the same level i. Specifically, given an encoding u ∈ S
(α)
v , it

outputs another encoding u′ ∈ S
(α)
v . Moreover for any two u1, u2 ∈ S

(α)
v , the

output distributions of reRand(params, i, u1) and reRand(params, i, u2) are nearly
the same.

Addition and Negation. Given params and two encodings relative to the same

level, u1 ∈ S
(α1)
i and u2 ∈ S

(α2)
i , we have add(params, u1, u2) ∈ S

(α1+α2)
i and

neg(params, u1) ∈ S
(−α1)
i . Below we write u1 + u2 and −u1 as a shorthand for

applying these procedures.

Multiplication. For u1 ∈ S
(α1)
i and u2 ∈ S

(α2)
j , we have mul(params, u1, u2) =

u1 × u2 ∈ S
(α1·α2)
i+j .
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Zero-Test. The procedure isZero(params,pzt, u) outputs 1 if u ∈ S
(0)
κ and 0

otherwise.

Extraction. The procedure extracts a random function of ring elements from
their level-κ encoding. Namely ext(params,pzt, u) outputs s ∈ {0, 1}λ, such that:

1. For any α ∈ R and u1, u2 ∈ S
(α)
κ , ext(params,pzt, u1) = ext(params,pzt, u2).

2. The distribution {ext(params,pzt, u) : α ∈R R, u ∈ S
(α)
κ } is nearly uniform

over {0, 1}λ.

This concludes the definition of the procedures. In [GGH13] the authors consider
a slightly relaxed definition of isZero and ext, where isZero can still output 1 even
for some non-zero encoding u with negligible probability, and ext can extract
different outputs when applied to encodings of the same elements, also with
negligible probability; see [GGH13] for the corresponding definitions.

2.3 Hardness Assumptions

Finally we recall the hardness assumptions for multilinear maps from [GGH13];
as previously we consider only the symmetric case and refer to [GGH13] for the
general case. In this symmetric case given a set of κ + 1 level-one encodings of
random elements, it should be unfeasible to distinguish a level-κ encoding of
their product from random.

Graded DDH (GDDH). Let GE be a graded encoding scheme consisting of
all the routines above. For an adversary A and parameters λ, κ we consider the
following process:

1. (params,pzt) ← InstGen(1λ, 1κ)
2. Choose aj ← samp(params) for all 1 � j � κ+ 1
3. Set uj ← reRand(params, 1, enc(params, 1, aj)) for all 1 � j � κ+ 1 //

encodings at level 1
4. Choose b← samp(params) // encoding at level 0
5. Set ũ = aκ+1 ×

∏κ
i=1 ui // encoding of the right product at level κ

6. Set û = b×
∏κ

i=1 ui // encoding of a random product at level κ

The GDDH distinguisher is given as input the κ+ 1 level-one encodings uj and
either ũ (encoding the right product) or û (encoding a random product), and
must decide which is the case. The GDDH assumption states that the advantage
of any efficient adversary is negligible in the security parameter.

3 Our New Encoding Scheme

System Parameters. The main parameters are the security parameter λ and
the required multilinearity level κ � poly(λ). Based on λ and κ, we choose the
vector dimension n, the bit-size η of the primes pi, the bit-size α of the primes gi,
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the maximum bit-size ρ of the randomness used in encodings, and various other
parameters that will be specified later; the constraints that these parameters
must satisfy are described in the next section. For integers z, p we denote the
reduction of z modulo p by (z mod p) or [z]p with −p/2 < [z]p � p/2.

In our scheme a level-k encoding of a vector m = (mi) ∈ Zn is an integer c
such that for all 1 � i � n:

c ≡ ri · gi +mi

zk
(mod pi) (3)

where the ri’s are ρ-bit random integers (specific to the encoding c), with the
following secret parameters: the pi’s are η-bit prime integers, the gi’s are α-bit
primes, and the denominator z is a random (invertible) integer modulo x0 =∏n

i=1 pi. The integer c is therefore defined by CRT modulo x0, where x0 is made
public. Since the pi’s must remain secret, the user cannot encode the vectors
m ∈ Zn by CRT directly from (3); instead one includes in the public parameters
a set of 
 level-0 encodings x′j of random vectors aj ∈ Zn, and the user can
generate a random level-0 encoding by computing a random subset-sum of those
x′j ’s.

Remark 1. From (3) each integer mi is actually defined modulo gi. Therefore
our scheme encodes vectors m from the ring R = Zg1 × · · · × Zgn .

Instance Generation: (params,pzt) ← InstGen(1λ, 1κ). We generate n secret
random η-bit primes pi and publish x0 =

∏n
i=1 pi. We generate a random in-

vertible integer z modulo x0. We generate n random α-bit prime integers gi
and a secret matrix A = (aij) ∈ Zn×�, where each component aij is ran-
domly generated in [0, gi) ∩ Z. We generate an integer y, three sets of inte-
gers {xj}τj=1, {x′j}�j=1 and {Πj}nj=1, a zero-testing vector pzt, and a seed s for
a strong randomness extractor, as described later. We publish the parameters
params =

(
n, η, α, ρ, β, τ, 
, y, {xj}τj=1, {x′j}�j=1, {Πj}nj=1, s

)
and pzt.

Sampling Level-Zero Encodings: c← samp(params). We publish as part as
our instance generation a set of 
 integers x′j , where each x

′
j encodes at level-0 the

column vector aj ∈ Zn of the secret matrix A = (aij) ∈ Zn×�. More precisely,
using the CRT modulo x0 we generate integers x′j such that:

1 � j � 
, x′j ≡ r′ij · gi + aij (mod pi) (4)

where the r′ij ’s are randomly generated in (−2ρ, 2ρ) ∩ Z.
Our randomized sampling algorithm samp(params) works as follows: we gen-

erate a random binary vector b = (bj) ∈ {0, 1}� and output the level-0 encoding

c =
�∑

j=1

bj · x′j mod x0 .
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From Equation (4), this gives c ≡
(∑�

j=1 r
′
ijbj
)
· gi +

∑�
j=1 aijbj (mod pi); as

required the output c is a level-0 encoding:

c ≡ ri · gi +mi (mod pi) (5)

of some vector m = A · b ∈ Zn which is a random subset-sum of the column
vectors aj . We note that for such level-0 encodings we get |ri · gi+mi| � 
 ·2ρ+α

for all i.
The following Lemma states that, as required, the distribution of m can be

made statistically close to uniform over R = Zg1 × · · · × Zgn ; the proof is based
on applying the LHL over the set R (see the full version of this paper [CLT13b]).

Lemma 1. Let c ← samp(params) and write c ≡ ri · gi + mi (mod pi). As-
sume 
 � n · α+ 2λ. The distribution of (params,m) is statistically close to the
distribution of (params,m′) where m′ ← R.

Encodings at Higher Levels: ck ← enc(params, k, c). To allow encoding at
higher levels, we publish as part of our instance-generation a level-one random
encoding of 1, namely an integer y such that:

y ≡ ri · gi + 1

z
(mod pi)

for random integers ri ∈ (−2ρ, 2ρ) ∩ Z; as previously the integer y is computed
by CRT modulo x0.

Given a level-0 encoding c of m ∈ Zn as given by (5), we can then compute
a level-1 encoding of the same m by computing c1 = c · y mod x0. Namely we
obtain as required:

c1 ≡
r
(1)
i · gi +mi

z
(mod pi) (6)

for some integers r
(1)
i , and we get |r(1)i · gi + mi| � 
 · 22(ρ+α) for all i. More

generally to generate a level-k encoding we compute ck = c0 · yk mod x0.
In multipartite Diffie-Hellman key-exchange every user keeps a private level-0

encoding c and publishes a level-1 encoding of the same underlying (unknown)
m; however one cannot publish c1 = c·y mod x0 directly since the private level-0
encoding c could be recovered immediately from c = c1/y mod x0. Instead the
level-1 encoding c1 must first be re-randomized into a new level-1 encoding c′1
whose distribution does not depend on the original c as long as it encodes the
same m.

Re-randomization: c′ ← reRand(params, i, c). To allow re-randomization of
encodings at level one, we publish as part of our instance-generation a set of n
integers Πj which are all level-1 random encodings of zero:

1 � j � n, Πj ≡
%ij · gi

z
(mod pi) .



484 J.-S. Coron, T. Lepoint, and M. Tibouchi

The matrix Π = (%ij) ∈ Zn×n is a diagonally dominant matrix generated as
follows: the non-diagonal entries are randomly and independently generated in
(−2ρ, 2ρ) ∩ Z, while the diagonal entries are randomly generated in (n2ρ, n2ρ +
2ρ) ∩ Z.

We also publish as part of our instance-generation a set of τ integers xj , where
each xj is a level-1 random encoding of zero:

1 � j � τ, xj ≡
rij · gi
z

(mod pi)

and where the column vectors of the matrix (rij) ∈ Zn×τ are randomly and
independently generated in the half-open parallelepiped spanned by the columns
of the previous matrix Π; see the full version of this paper [CLT13b] for a
concrete algorithm.

Given as input a level-1 encoding c1 as given by (6), we randomize c1 with a
random subset-sum of the xj ’s and a linear combination of the Πj ’s:

c′1 = c1 +

τ∑
j=1

bj · xj +
n∑

j=1

b′j ·Πj mod x0 (7)

where bj ← {0, 1}, and b′j ← [0, 2μ) ∩ Z. The following Lemma shows that as
required the distribution of c′1 is nearly independent of the input (as long as it
encodes the same m). This follows essentially from our “leftover hash lemma
over lattices”; see Section 4.

Lemma 2. Let the encodings c ← samp(params), c1 ← enc(params, 1, c), and
c′1 ← reRand(params, 1, c1). Write c′1 ≡ (ri ·gi+mi)/z (mod pi) for all 1 � i � n,
and r = (r1, . . . , rn)

T . Let τ � n · (ρ + log2(2n)) + 2λ and μ � ρ + α + λ.
The distribution of (params, r) is statistically close to that of (params, r′), where
r′ ∈ Zn is randomly generated in the half-open parallelepiped spanned by the
column vectors of 2μΠ.

Writing c′1 ≡ (r′i · gi +mi)/z (mod pi), and using |rij · gi| � 2n2ρ+α for all i, j,
we obtain |r′i ·gi+mi| � 
22(ρ+α)+τ ·2n2ρ+α+n ·2n2μ+ρ+α. Using μ � ρ+α+λ
this gives |r′i · gi +mi| � 4n22μ+ρ+α.

Adding and Multiplying Encodings. It is clear that one can homomor-
phically add encodings. Moreover the product of κ level-1 encodings ui can be
interpreted as an encoding of the product. Namely, given level-one encodings uj
of vectors mj ∈ Zn for 1 � j � κ, with uj ≡ (rij · gi + mij)/z (mod pi), we
simply let:

u =

κ∏
j=1

uj mod x0 .

This gives:

u ≡

κ∏
j=1

(rij · gi +mij)

zκ
≡
ri · gi +

( κ∏
j=1

mij

)
mod gi

zκ
(mod pi)
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for some ri ∈ Z. This is a level-κ encoding of the vector m obtained by compo-
nentwise product of the vectors mj , as long as

∏κ
j=1(rij · gi+mij) < pi for all i.

When computing the product of κ level-1 encodings from reRand and one level-0
encoding from samp (as in multipartite Diffie-Hellman key exchange), we obtain
from previous bounds |ri| � (4n22μ+ρ+α)κ · 
 · 2ρ+1 for all i.

Zero Testing. isZero(params,pzt, uκ)
?
= 0/1. We can test equality between

encodings by subtracting them and testing for zero. To enable zero testing we
randomly generate an integer matrixH = (hij) ∈ Zn×n such thatH is invertible
in Z and both ‖HT ‖∞ � 2β and ‖(H−1)T ‖∞ � 2β, for some parameter β
specified later; here ‖ · ‖∞ is the operator norm on n× n matrices with respect
to the 
∞ norm on Rn. A technique for generating such H is discussed in the
full version of this paper [CLT13b]. We then publish as part of our instance
generation the following zero-testing vector pzt ∈ Zn:

(pzt)j =
n∑

i=1

hij ·
(
zκ · g−1

i mod pi
)
·
∏
i′ �=i

pi′ mod x0 . (8)

To determine whether a level-κ encoding c is an encoding of zero or not, we
compute the vector ω = c · pzt mod x0 and test whether ‖ω‖∞ is small:

isZero(params,pzt, c) =

{
1 if ‖c · pzt mod x0‖∞ < x0 · 2−ν

0 otherwise

for some parameter ν specified later.
Namely for a level-κ ciphertext c we have c ≡ (ri · gi +mi)/z

κ (mod pi) for
some ri ∈ Z; therefore for all 1 � i � n we can write:

c = qi · pi + (ri · gi +mi) ·
(
z−κ mod pi

)
(9)

for some qi ∈ Z. Therefore combining (8) and (9), we get:

(ω)j = (c · pzt mod x0)j =

n∑
i=1

hij ·
(
ri +mi · (g−1

i mod pi)
)
·
∏
i′ �=i

pi′ mod x0 .

(10)
Therefore if mi = 0 for all 1 � i � n, then ‖ω‖∞ = ‖c · pzt mod x0‖∞ is
small compared to x0 when the ri’s are small enough, i.e. a limited number of
additions/multiplications on encodings has been performed. Conversely ifmi �= 0
for some i we show that ‖ω‖∞ must be large. More precisely we prove the
following lemma in the full version of this paper [CLT13b].

Lemma 3. Let n, η, α and β be as in our parameter setting. Let ρf be such
that ρf + λ + α + 2β � η − 8, and let ν = η − β − ρf − λ − 3 � α + β + 5.
Let c be such that c ≡ (ri · gi + mi)/z

κ (mod pi) for all 1 � i � n, where
0 � mi < gi for all i. Let r = (ri)1�i�n and assume that ‖r‖∞ < 2ρf . If m = 0
then ‖ω‖∞ < x0 · 2−ν−λ−2. Conversely if m �= 0 then ‖ω‖∞ � x0 · 2−ν+2.
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Extraction. sk ← ext(params,pzt, uκ). This part is essentially the same as in
[GGH13]. To extract a random function of the vector m encoded in a level-κ
encoding c, we multiply c by the zero-testing parameter pzt modulo x0, collect
the ν most significant bits of each of the n components of the resulting vector,
and apply a strong randomness extractor (using the seed s from params):

ext(params,pzt, c) = Extracts
(
msbsν(c · pzt mod x0)

)
where msbsν extracts the ν most significant bits of the result. Namely if two
encodings c and c′ encode the same m ∈ Zn then from Lemma 3 we have
‖(c − c′) · pzt mod x0‖∞ < x0 · 2−ν−λ−2, and therefore we expect that ω =
c · pzt mod x0 and ω′ = c′ · pzt mod x0 agree on their ν most significant bits,
and therefore extract to the same value.2

Conversely if c and c′ encode different vectors then by Lemma 3 we must have
‖(c− c′) · pzt mod x0‖∞ > x0 · 2−ν+2, and therefore the ν most significant bits
of the corresponding ω and ω′ must be different. This implies that for random
m ∈ R = Zg1×· · ·×Zgn the min-entropy ofmsbsν(c·pzt mod x0) when c encodes
m is at least log2 |R| � n(α − 1). Therefore we can use a strong randomness
extractor to extract a nearly uniform bit-string of length �log2 |R|� − λ.

3.1 Setting the Parameters

The system parameters must satisfy the following constraints:

• The bit-size ρ of the randomness used for encodings must satisfy ρ = Ω(λ)
to avoid brute force attack on the noise, including the improved attack from
[CN12] with complexity Õ(2ρ/2).

• The bit-size α of the primes gi must be large enough so that the order
of the group R = Zg1 × · · · × Zgn does not contain small prime factors;
this is required to prove the security of the multipartite Diffie-Hellman Key
Exchange (see the full version of this paper [CLT13b]). One can take α = λ.

• The parameter n must be large enough to thwart lattice-based attacks on
the encodings, namely n = ω(η logλ); see Section 5.1.

• The number 
 of level-0 encodings x′j for samp must satisfy 
 � n ·α+2λ in
order to apply the leftover hash lemma; see Lemma 1.

• The number τ of level-1 encodings xj must satisfy τ � n·(ρ+log2(2n))+2λ in
order to apply our “leftover hash lemma over lattices”. For the same reason
the bit-size μ of the linear sum coefficients must satisfy μ � α + ρ + λ; see
Lemma 2.

2 Two coefficients ω and ω′ from ω and ω′ could still be on the opposite sides of a
boundary, with �ω/2k� = v and �ω′/2k� = v + 1, so that ω and ω′ would extract to
different MSBs v and v+1. Heuristically this happens with probability O(2−λ). The
argument can be made rigorous by generating a public random integer W modulo x0

in the parameters, and extracting the MSBs of ω +W mod x0 instead of ω mod x0

for all coefficients ω of the vector ω.
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• The bitsize β of the matrix H entries must satisfy β = Ω(λ) in order to
avoid the GCD attack from Section 5.2. One can take β = λ.

• The bit-size η of the primes pi must satisfy η � ρf +α+2β+λ+8, where ρf
is the maximum bit size of the randoms ri a level-κ encoding (see Lemma 3).
When computing the product of κ level-1 encodings and an additional level-0
encoding (as in a multipartite Diffie-Hellman key exchange with N = κ+ 1
users), one obtains ρf = κ · (μ + ρ + α + 2 log2 n + 2) + ρ + log2 
 + 1 (see
previous Section).

• The number ν of most significant bits to extract can then be set to ν =
η − β − ρf − λ− 3 (see Lemma 3).

3.2 Security of Our Construction

As in [GGH13] the security of our construction relies on new assumptions that do
not seem to be reducible to more classical assumptions. Namely, as in [GGH13]
one can make the assumption that solving the Graded DDH problem (GDDH)
recalled in Section 2.3 is hard in our scheme. This enables to prove the security
of the one-round N -way Diffie-Hellman key exchange protocol [GGH13]. Ideally
one would like to reduce such assumption to a more classical assumption, such as
the Approximate-GCD assumption, but that does not seem feasible. Therefore
to gain more confidence in our scheme we describe various attacks in Section 5.

4 Another Leftover Hash Lemma over Lattices

As mentioned in the introduction, to prove the full randomization of encodings
(Lemma 2) one cannot apply the classical Leftover Hash Lemma (LHL) because
the noise in the encodings live in some infinite ring instead of a finite group. In
[GGH13] the issue was solved by using linear sums with Gaussian coefficients.
Namely the analysis in [AGHS12] shows that the resulting sum has a Gaussian
distribution (over some lattice). As noted by the authors this technique can
be seen as a “leftover hash lemma over lattices”. Such a technique would be
applicable to our scheme as well.

In this section we describe an alternative technique (without Gaussian co-
efficients) that can also be seen as a “leftover hash lemma over lattices”. It
consists in working modulo a lattice L ⊂ Zn and applying the classical left-
over hash lemma over the finite group Zn/L. This technique was already used
in [CCK+13, CLT13a] to prove the security of a batch extension of the DGHV
scheme. In this paper we provide a more formal description; namely we clearly
state our “LHL over lattices” so that it can later be applied as a black-box (as the
corresponding Theorem 3 in [AGHS12]). Namely our quotient lattice technique
can independently be applied to the original encoding scheme from [GGH13].

4.1 Classical Leftover Hash Lemma

We first recall the classical Leftover Hash Lemma. We say that the distributions
D1, D2 over a finite domain X are ε-statistically close if the statistical distance
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Δ(D1, D2) = 1
2

∑
x∈X |D1(x) − D2(x)| is smaller than ε. A distribution D is

ε-uniform if its statistical distance from the uniform distribution is at most ε. A
family H of hash functions from X to Y , both finite sets, is said to be pairwise-
independent if for all distinct x, x′ ∈ X , Prh←H [h(x) = h(x′)] = 1/|Y |.

Lemma 4 (Leftover Hash Lemma [HILL99]). Let H be a family of pairwise
hash functions from X to Y . Suppose that h ← H and x ← X are chosen
uniformly and independently. Then, (h, h(x)) is 1

2

√
|Y |/|X |-uniform over H×Y .

One can then deduce the following Lemma for random subset sums over a finite
abelian group.

Lemma 5. Let G be a finite abelian group. Set x1, . . . , xm ← G uniformly
and independently, set s1, . . . , sm ← {0, 1}, and set y =

∑m
i=1 sixi ∈ G. Then

(x1, . . . , xm, y) is 1/2
√
|G|/2m-uniform over Gm+1.

Proof. We consider the following hash function familyH from {0, 1}m toG. Each
member h ∈ H is parameterized by the elements (x1, . . . , xm) ∈ Gm. Given
s ∈ {0, 1}m, we define h(s) =

∑m
i=1 si · xi ∈ G. The hash function family is

clearly pairwise independent. Therefore by Lemma 4, (h, h(x)) is 1
2

√
|G|/2m-

uniform over Gm+1. ��

4.2 Leftover Hash Lemma over Lattices

Let L ⊂ Zn be a lattice of rank n of basis B = (b1, . . . , bn). Then every x ⊂ Zn

can be uniquely written as:

x = ξ1b1 + . . .+ ξnbn

for some real numbers ξi. Moreover, for every vector x ∈ Zn there is a unique
a ∈ L such that:

y = x− a = ξ′1b1 + . . .+ ξ′nbn

where 0 � ξ′i < 1; we write y = x mod B. Therefore each vector of Zn/L has
a unique representative in the half-open parallelepiped defined by the previous
equation.

We denote by DB the distribution obtained by generating a random element
in the quotient Zn/L and taking its unique representative in the half-open paral-
lelepiped generated by the basis B. Given a basis B = (b1, . . . , bn) and μ ∈ Z∗

we denote by μB the basis (μb1, . . . , μbn). We are now ready to state our “Left-
over Hash Lemma over Lattices”.

Lemma 6. Let L ⊂ Zn be a lattice of rank n of basis B = (b1, . . . , bn). Let xi

for 1 � i � m be generated independently according to the distribution DB. Set
s1, . . . , sm ← {0, 1} and t1, . . . , tn ← Z ∩ [0, 2μ). Let y =

∑m
i=1 sixi +

∑n
i=1 tibi

and y′ ← D2μB. Then the distributions (x1, . . . ,xm,y) and (x1, . . . ,xm,y
′) are

ε-statistically close, with ε = mn · 2−μ + 1/2
√
|detL|/2m.
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Proof. We consider the intermediate variable:

y′′ =

(
m∑
i=1

sixi mod B

)
+

n∑
i=1

tibi . (11)

Firstly by applying the leftover hash lemma over the finite abelian group G =
Zn/L, we obtain that the distributions (x1, . . . ,xm,

∑m
i=1 sixi mod B) and

(x1, . . . ,xm,ψ) are ε1-statistically close, where ψ ← DB and

ε1 = 1/2
√
|G|/2m = 1/2

√
|det(L)|/2m .

This implies that the distributions (x1, . . . ,xm,y
′′) and (x1, . . . ,xm,y

′) are also
ε1-statistically close.

Secondly we write:

m∑
i=1

sixi mod B =

m∑
i=1

sixi −
n∑

j=1

χjbj (12)

where χj ∈ Z for all j. We also write xi =
∑

j ξijbj where by definition 0 �
ξij < 1 for all i, j. This gives:

m∑
i=1

sixi mod B =

m∑
i=1

si

n∑
j=1

ξijbj −
n∑

j=1

χjbj =

n∑
j=1

(
m∑
i=1

siξij − χj

)
bj ,

which implies 0 �
∑m

i=1 siξij − χj < 1 for all j, and therefore 0 � χj � m for
all j. Combining Equations (11) and (12) we have:

y′′ =
m∑
i=1

sixi +
n∑

i=1

(ti − χi)bi ,

where as shown above 0 � χi � m for all i. This implies that the distributions
(x1, . . . ,xm,y) and (x1, . . . ,xm,y

′′) are ε2-statistically close, with ε2 = mn2−μ.
Therefore the distributions (x1, . . . ,xm,y) and (x1, . . . ,xm,y

′) are (ε1 + ε2)-
statistically close, which proves the Lemma. ��

We also show that the previous distribution D2μB is not significantly modified
when a small vector z ∈ Zn is added and the operator norm of the corresponding
matrix B−1 is upper-bounded; see the full version of this paper [CLT13b] for the
proof.

Lemma 7. Let L ⊂ Zn be a full-rank lattice of basis B = (b1, . . . , bn), and let
B ∈ Zn×n be the matrix whose column vectors are the bi’s. For any z ∈ Zn,
the distribution of z + D2μB is ε-statistically close to that of D2μB, where ε =
2−μ · (‖z‖∞ · ‖B−1‖∞ + 1).
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4.3 Re-randomization of Encodings: Proof of Lemma 2

We are now ready to apply our “LHL over lattices” to prove the full randomiza-
tion of encodings as stated in Lemma 2. Namely the re-randomization equation
(7) can be rewritten in vector form as:

r′ = r +X · b+Π · b′

where b ← {0, 1}τ and b′ ← ([0, 2μ) ∩ Z)n, and the columns of the matrix
X ∈ Zn×τ are uniformly and independently generated in the parallelepiped
spanned by the columns of the matrix Π ∈ Zn×n. To conclude, it therefore
suffices to apply Lemma 6 and Lemma 7, using additionally an upper bound on
‖Π−1‖∞. For this we use the fact that Π has been generated as a diagonally
dominant matrix. We refer to the full version of this paper [CLT13b] for the full
proof of Lemma 2.

5 Attacks against Our Multilinear Scheme

5.1 Lattice Attack on the Encodings

We first describe a lattice attack against level-0 encodings. We consider an ele-
ment x0 =

∏n
i=1 pi and a set of τ integers xj ∈ Zx0 such that:

xj mod pi = rij

where rij ∈ (−2ρ, 2ρ) ∩ Z. We want to estimate the complexity of the classical
orthogonal lattice attack for recovering (some of) the noise values rij .

This attack works by considering the integer vector formed by a subset of
the xj ’s, say x = (xj)1�j�t for some n < t � τ , and relating the lattice of
vectors orthogonal to x mod x0 to the lattice of vectors orthogonal to each
of the corresponding noise value vectors ri = (rij)1�j�t.

More precisely, let L ⊂ Zt the lattice of vectors u such that:

u · x ≡ 0 (mod x0).

Clearly, L contains x0Zt so it is of full rank t. Moreover, we have

vol(L) = [Zt : L] = x0/ gcd(x0, x1, . . . , xt) = x0 .

As a result, we heuristically expect the successive minima of L to be around
vol(L)1/t ≈ 2n·η/t, and hence applying lattice reduction should yield a reduced
basis (u1, . . . ,ut) with vectors of length ‖uk‖ ≈ 2n·η/t+αt for some constant
α > 0 depending on the lattice reduction algorithm (2αt is the Hermite factor).

Now, a vector u ∈ L satisfies u · x ≡ 0 (mod x0), so for each i ∈ {1, . . . , n},
reducing modulo pi gives:

u · ri ≡ 0 (mod pi).
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In particular, if u is short enough to satisfy ‖u‖·‖ri‖ < pi, this implies u ·ri = 0
in Z. As a result, if we have:

2n·η/t+αt · 2ρ < 2η, (13)

we expect the vectors (u1, . . . ,ut−n) from the previous lattice reduction step to
be orthogonal to the ri’s, and hence computing the rank n orthogonal lattice to
the lattice spanned by those vectors should reveal the ri’s.

Since t must be greater than n for the attack to apply, condition (13) implies
in particular that:

α <
η − ρ

n
.

Since a Hermite factor of 2αt is achieved in time 2Ω(1/α) (usually by carrying out
BKZ reduction with block size β = ω(1/α), in which each block is BKZ-reduced
in time exponential in β, see e.g. [HPS11]), we obtain that this orthogonal lattice
attack has a complexity exponential in n. In fact, with γ = η · n, we get a time
complexity of 2Ω(γ/η2), similar to [DGHV10, §5.2] (see also [CH12]).

5.2 GCD Attack on the Zero-Testing Parameter

We consider the ratio modulo x0 of two coefficients from the zero-testing vector
pzt, namely u := (pzt)1/(pzt)2 mod x0. From (8) we obtain for all 1 � i � 
:

u ≡ hi1/hi2 (mod pi)

We can therefore recover pi by computing gcd(hi2 ·u−hi1, x0) for all possible hi1,
hi2. Since the hij ’s are upper bounded by 2β in absolute value, the attack has
complexityO(22β). By using a technique similar to [CN12], the attack complexity
can be reduced to Õ(2β).

We describe more attacks in the full version of this paper [CLT13b].

6 Optimizations and Implementation

In this section we describe an implementation of our scheme in the one-round
N -way Diffie-Hellman key exchange protocol; we recall the protocol in the full
version of this paper [CLT13b], as described in [BS03, GGH13].

We note that without optimizations the size of the public parameters makes
our scheme completely unpractical; this is also the case in [GGH13]. Namely,
for sampling we need to store at least n · α encodings (resp. n · ρ encodings
for re-randomization), each of size n · η bits; the public-key size is then at least
n2 · η · α bits. With n ' 104, η ' 103 and α ' 80, the public-key size would
be at least 1 TB. Therefore we use three heuristic optimizations to reduce the
memory requirement; we refer to the full version of this paper [CLT13b] for a
detailed description.
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1. Non-uniform sampling: for the sampling algorithm we use a small number of
encodings 
 only; this implies that the sampling cannot be proved uniform
anymore.

2. Quadratic re-randomization: we only store a small subset of encodings which
are later combined pairwise to generate the full set of encodings. This implies
that the randomization of encodings becomes heuristic only.

3. Integer pzt: we use a single integer pzt instead of a vector pzt with n com-
ponents. An encoding c of zero still gives a small integer ω = pzt · c mod x0,
but the converse does not necessarily hold anymore.

We have implemented a one-round N -way Diffie-Hellman key exchange proto-
col with N = 7 users, in C++ using the Gnu MP library [Gt13] to perform
operations on large integers. We refer to the full version of this paper [CLT13b]
for a description of the protocol. We provide our concrete parameters and the
resulting timings in Table 1, for security parameters ranging from 52 to 80 bits.

Table 1. Parameters and timings to instantiate a one-round 7-way Diffie-Hellman key
exchange protocol with � = 160, β = 80, α = 80, N = 7 (i.e. κ = 6) and ν = 160
on a 16-core computer (Intel(R) Xeon(R) CPU E7-8837 at 2.67GHz) using GMP 5.1.1.
Note that the Setup was parallelized on the 16 cores to speed-up the process while the
other steps ran on a single core.

Instantiation λ n η Δ ρ pk size

Small 52 540 1838 23 41 24 MB

Medium 62 2085 2043 45 56 129 MB

Large 72 8250 2261 90 72 709 MB

Extra 80 26115 2438 161 85 2.6 GB

Instantiation Setup (once) Publish (per party) KeyGen (per party)

Small 6 s 0.23 s 0.20 s

Medium 38 s 1.0 s 1.2 s

Large 1700 s 5.1 s 5.9 s

Extra 29000 s 18 s 20 s

The timings above show that our scheme is relatively practical, as the KeyGen
phase of the multipartite Diffie-Hellman protocol requires only a few seconds per
user; however the parameter size is still very large even with our optimizations.

Acknowledgments. We would like to thank the Crypto referees for their help-
ful comments.
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[HPS11] Hanrot, G., Pujol, X., Stehlé, D.: Analyzing blockwise lattice algorithms
using dynamical systems. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 447–464. Springer, Heidelberg (2011)

[Lep] Lepoint, T.: An Implementation of Multilinear Maps over the Inte-
gers. Available under the Creative Commons License BY-NC-SA at
https://github.com/tlepoint/multimap

http://eprint.iacr.org/
http://eprint.iacr.org/
http://crypto.stanford.edu/craig
http://gmplib.org/
https://github.com/tlepoint/multimap


Full Domain Hash from (Leveled) Multilinear

Maps and Identity-Based Aggregate Signatures

Susan Hohenberger1,�, Amit Sahai2,��, and Brent Waters3,���

1 Johns Hopkins University
susan@cs.jhu.edu

2 UCLA
sahai@cs.ucla.edu

3 University of Texas at Austin
bwaters@cs.utexas.edu

Abstract. In this work, we explore building constructions with full do-
main hash structure, but with standard model proofs that do not employ
the random oracle heuristic. The launching point for our results will be
the utilization of a “leveled” multilinear map setting for which Garg,
Gentry, and Halevi (GGH) recently gave an approximate candidate. Our
first step is the creation of a standard model signature scheme that ex-
hibits the structure of the Boneh, Lynn and Shacham signatures. In par-
ticular, this gives us a signature that admits unrestricted aggregation.

We build on this result to offer the first identity-based aggregate signa-
ture scheme that admits unrestricted aggregation. In our construction,
an arbitrary-sized set of signatures on identity/message pairs can be ag-
gregated into a single group element, which authenticates the entire set.
The identity-based setting has important advantages over regular aggre-
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pairs. While identity-based signatures are trivial to achieve, their aggre-
gate counterparts are not. To the best of our knowledge, no prior candi-
date for realizing unrestricted identity-based aggregate signatures exists
in either the standard or random oracle models.

A key technical idea underlying these results is the realization of a hash
function with a Naor-Reingold-type structure that is publicly computable
using repeated application of the multilinear map. We present our results
in a generic “leveled” multilinear map setting and then show how they can
be translated to the GGH graded algebras analogue of multilinear maps.

1 Introduction

Applying a full domain hash is a common technique in cryptography where a
hash function, modeled as a random oracle, is used to hash a string into a set.
Originally, the concept referred to a signature scheme where one hashed into the
range of a trapdoor permutation [3]. Subsequently, full domain hash has been
treated as a more general concept and applied in bilinear map cryptography
where typically a hash function H : {0, 1}∗ → G is used to hash a string into
a bilinear group. (We note that multiple early works [9,11,10] employ this ter-
minology.) Pairing-based applications of Full Domain Hash include: the original
Boneh-Franklin [9], short and aggregate signatures [11,10], Hierarchical Identity-
Based Encryption [23], and decentralized Attribute-Based Encryption [26]. Typ-
ically, proofs of such schemes will use the random oracle heuristic to “program”
the output of the hash function in a certain way for which there is no known
standard model equivalent (see [24]).

Given that there arewell-known issueswith randomoracle instantiability in gen-
eral [14] and problems with Full Domain Hash in particular [18,17], there has been
a push to find standard model realizations of these applications. These endeavors
havebeen successful in several applications suchas signatures [8,36] and (Hierarchi-
cal) Identity-BasedEncryption [15,6,7,36,21,37]. Despite this progress, the current
state is not entirely satisfactory on two fronts. First, each of the standardmodel ex-
amples given above created new cryptographic constructions with fundamentally
different structure than the original Full Domain Hash construction. While creat-
ing a new structure is a completely valid and novel approach, that path does not
necessarily lend insight or further understanding of the original constructions.

Second, there are important applications of the Full Domain Hash method
where implementing such a hash using a random oracle introduces significant
limitations in the applicability of the Full Domain Hash method. One example
concerns aggregate signature schemes and their identity-based counterparts.

An aggregate signature system is one in which a signature σ′ on verification
key/message pair (VK′,M ′) can be combined with a signature σ̃ on (ṼK, M̃)
producing a new signature σ on the set S = {(VK′,M ′), (ṼK, M̃)}. This process
can be repeated indefinitely to aggregrate an arbitrary number of signatures to-
gether. Crucially, the size of σ should be independent of the number of signatures
aggregated, although the description of the set S will grow. The ultimate goal,
however, is to minimize the entire transmission size [31].
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The need for a public-key infrastructure for verification keys is a major draw-
back of traditional public-key cryptography, and for this reason identity-based
cryptography has flourished [35,9]: In an identity-based aggregate signature
scheme, verification keys like VK would be replaced with simple identity strings
like I =“harrypotter@hogwarts.edu”. This offers a very meaningful savings for
protocols such as BGPsec, which require routers to store, retrieve and verify
certificates for over 36,000 public keys [16,13]. We note that while identity-based
signatures follow trivially from standard signatures, identity-based aggregate
signatures are nontrivial (more on this below).

A decade ago, the Boneh, Gentry, Lynn and Shacham (BGLS) [10] aggregate
signature scheme was built using the Full Domain Hash methodology. In the orig-
inal vision of BGLS, aggregation could be performed by any third party on any
number of signatures. The authors showed how the Boneh, Lynn and Shacham
(BLS) [11] signatures (which are in turn comprised of Boneh-Franklin [9] private
IBE keys) can be aggregated in this manner. The BLS construction uses a full
domain hash and its security proof is in the random oracle model. However,
even though the BGLS scheme was built upon the key mechanism for Boneh-
Franklin Identity-Based Encryption, BGLS does not support identity-based ag-
gregation. The Full Domain Hash in BGLS is realized using a random oracle,
which destroys the structure that would be needed for identity-based aggregate
signatures. To the best of our knowledge, no prior solution to identity-based ag-
gregate signatures in either the standard or random oracle models exists. Prior
work considered ID-based aggregates restricted to a common nonce [22] (e.g.,
where signatures can only be aggregated if they were created with the same
nonce or time period) or sequential additions [5] (e.g., where a group of sign-
ers sequentially form an aggregate by each adding their own signature to the
aggregate-so-far).

Our Results in a Nutshell. In this work, we give a new method for implementing
the Full Domain Hash method using leveled multilinear maps, including the
ones recently proposed by Garg, Gentry, and Halevi (GGH) [19]. We show how
to use this method to implement aggregate signatures in the standard model
in a way that naturally extends to give the first full solution to the problem of
identity-based aggregate signatures (also in the standard model).

Prior Work on Standard Model Aggregate Signatures. All previous work on
achieving standard model aggregate signatures did so by departing fundamen-
tally from the Full Domain Hash methodology.

Subsequently to BGLS [10], different standard model solutions were proposed,
but with different restrictions on aggregation. These include: constructions [27]
where the signatures must be sequentially added in by the signers, multisigna-
tures [27] where aggregation can occur only for the same message M , or where
aggregation is limited to signatures associated with the same nonce or time pe-
riod [1].1 These restrictions limit their practical applicability.

1 We remark that these restrictions were considered in other works such
as [33,32,29,4,28] prior to the standard model constructions cited above.



Full Domain Hash from (Leveled) Multilinear Maps 497

In 2009, Rückert and Schröder [34] gave an intriguing vision on how mul-
tilinear maps might enable standard model constructions of aggregate signa-
tures, also departing from the Full Domain Hash methodology. They did not
discuss or achieve identity-based aggregate signatures. Their proposal came be-
fore the Garg, Gentry and Halevi [19] candidate and used the earlier Boneh-
Silverberg [12] view of multilinear maps, where a k-linear map would allow the
simultaneous multiplication of k source group elements into one target group
element. The GGH candidate in contrast allows for encodings to exist on multi-
ple levels and a pairing between an encoding on level i and one on level j gives
an encoding on level i + j as long as i + j is less than or equal to some k. One
drawback of the Rückert and Schröder construction is that the security proof re-
quires access to an interactive (or oracle-type) assumption in order to answer the
signature queries where the structure of the oracle output is essentially identical
to the signatures required. This property seems to be tightly coupled with the
modeling of a multilinear map as a one time multiplication. In contrast, we will
exploit the leveling of the GGH abstraction to actually replace the hash function
in a BLS-type structure and obtain proofs from non-interactive assumptions.

1.1 Overview of our Aggregate Signature Constructions

We now overview the constructions and their security claims. To simplify the
description of the main ideas, we describe the constructions here in terms of
leveled multilinear maps. Later on, we give translations to the GGH framework.

The Base Construction. A trusted setup algorithm will take as input security
parameter λ and message bit-length 
 and run a group generator G(1λ, k = 
+1)
and outputs a sequence of groups G = (G1, . . . ,Gk) of prime order p.2 The group
sequence will have canonical generators g = g1, g2, . . . , gk along with a pairing
operation that computes e(gai , g

b
j) = gabi+j for any a, b ∈ Zp and i + j ≤ k. The

setup algorithm will also choose A = (A1,0 = ga1,0 , A1,1 = ga1,1), . . . , (A�,0 =

ga�,0 , A�,1 = ga�,1) ∈ G2
1. We defineH : {0, 1}� → Gk−1 asH(M) = g

∏
i∈[1,�] ai,mi

k−1 ,
where mi are the bits of message M . The hash function hashes a message into
the group Gk−1. It exhibits a Naor-Reingold [30]-type structure and is publicly
computable using repeated application of a multilinear map. Since a group ele-
ment in Gk−1 has one pairing left, it intuitively reflects the bilinear map setting.
In our scheme a private key contains a random exponent α ∈ Zp and the cor-
responding verification key VK contains gα. A signature on a message M is

computed as σ = H(M)α and verified by testing e(σ, g)
?
= e(H(M), gα).

Stepping back, the structure of our scheme very closely resembles BLS signa-
tures. For this reason it is possible to aggregate them in the BGLS fashion by sim-
ply multiplying two together. The size of an aggregate signature depends on the
security parameter plus message length 
 (assuming the group representation size
increases with k = 
 + 1), but is independent of the number of times aggregation
is applied. Aggregation is unrestricted and can be done by any third party.

2 In practice one will perform a CRHF of an arbitrary length message to � bits.
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The Rückert and Schröder construction [34] also insightfully uses a Naor-
Reingold type function for aggregation. A key distinction is that in the RS
method there is a unique NR function for each signer and it is privately computed
by each signer per each message/input. In our construction the Naor-Reingold
function is computed as a public hash using the levels of the multilinear map.
A signer simply multiplies in his secret exponent after computing the hash.
Thus, this mimicks the BLS structure much more closely. One advantage of our
structure is that the hash function can be derived from a single common reference
string and then public keys are just a single group element. In addition, we will
see that our structure is amenable to proofs under non-interactive assumptions
and allow us to extend to the identity-based setting. In the aggregation setting,
where bandwidth is at a premium, our smaller public keys and the ability to go
identity-based is important.

Proofs of Security. We view our aggregate signatures as signatures on a multi-
set of message/verification key pairs for full generality. We prove security in a
modular way as a two step process. First, we define a weaker “distinct message”
variant of security that only considers an attacker successful if the aggregate
forgery no two signers sign the same message. We then show how to transform
any distinct message secure scheme into one with standard security. The trans-
formation captures the BGLS idea (formalized by Bellare, Namprempre and
Neven [2]) of hashing the public key plus message together. Using the trans-
formation we can focus on designing proofs in the distinct message game. We
first prove selective security under a natural analog of the CDH assumption we
call the k-Multilinear Computational Diffie-Hellman (k-MCDH) assumption. We
next show full (a.k.a., adaptive) security using a subexponentially secure version
of the assumption. Finally, we show full security with only polynomial factors in
the reduction using a non-interactive, but parameterized assumption.

Realizing Identity-Based Aggregation. The authority will run a setup algorithm
that takes the message bit-length 
 and identity bit-length n. It runs a group
generator G(1λ, k = 
 + n) and outputs a sequence of groups G = (G1, . . . ,Gk)
of prime order p. It creates the parameters A as in the prior scheme and B =
(B1,0 = gb1,0 , B1,1 = gb1,1), . . . , (Bn,0 = gbn,0 , Bn,1 = gbn,1) ∈ G2

1. We define

H : {0, 1}n × {0, 1}� → Gk−1 as H(I,M) = g
(
∏

i∈[1,n] bi,idi )(
∏

i∈[1,�] ai,mi
)

k , where
mi are the bits of messageM and idi the bits of I. The hash function is publicly
computable from the multilinear map. A secret key for identity I is computed

as SKI = g
∏

i∈[1,n] bi,idi
n−1 ∈ Gn−1. This can be used to produce a signature on

message M by computing (gk−1)
(
∏

i∈[1,n] bi,idi )(
∏

i∈[1,�] ai,mi
) using the multilinear

map. Finally, a signature can be verified by checking e(σ, g)
?
= H(I,M). The

signatures will aggregate in the same manner by multiplying together.
The distinct message translation is not required in the identity-based setting,

because there is no rogue key problem. We first prove selective security under
the k-MCDH assumption, and then show full security using a subexponentially
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secure version of the assumption. We provide these proofs in both the generic
multilinear and the GGH framework.

Further Applications. Taken altogether we show that multilinear forms provide
an opportunity for revisiting cryptographic structures that were strongly asso-
ciated with the random oracle heuristic. It remains to be seen how widely this
direction will apply. One interesting example of an application that currently
requires the full domain hash is the decentralized Attribute-Based Encryption
system of Lewko and Waters [26]. There is no standard model candidate that
has comparable expressiveness. Here performing an analogous transformation to
our aggregate signatures hash function gives a candidate construction that we do
not immediately see how to break. However, it is less easy to see how our proof
techniques would extend to the variant of the Lewko-Waters [26] decentralized
ABE scheme.

2 Leveled Multilinear Maps and the GGH Graded
Encoding

We give a description of generic, leveled multilinear maps. The assumptions
used in this setting are defined inline with their respective security proofs. Basic
details of the GGH graded algebras analogue of mulitlinear maps are included
where used, and for further details, please refer to [19].

For generic, leveled multilinear maps, we assume the existence of a group
generator G, which takes as input a security parameter 1λ and a positive integer k
to indicate the number of allowed pairing operations. G(1λ, k) outputs a sequence
of groups G = (G1, . . . ,Gk) each of large prime order p > 2λ. In addition, we let
gi be a canonical generator of Gi (and is known from the group’s description).
We let g = g1.

We assume the existence of a set of bilinear maps {ei,j : Gi×Gj → Gi+j | i, j ≥
1; i+ j ≤ k}. The map ei,j satisfies the following relation:

ei,j
(
gai , g

b
j

)
= gabi+j : ∀a, b ∈ Zp

We observe that one consequence of this is that ei,j(gi, gj) = gi+j for each valid
i, j.

When the context is obvious, we will sometimes abuse notation and drop the
subscripts i, j, For example, we may simply write e

(
gai , g

b
j

)
= gabi+j .

Algorithmic Components of GGH Encodings. While we assume familiarity with
the basics of GGH encodings [19], we now review the algorithmic components of
the GGH encodings that we will use in our constructions and proofs. The setup
algorithm InstGen(1λ, 1k) takes as input a security parameter 1λ and the level of
multilinearity 1k, and outputs the public parameters params needed for using the
remaining GGH algorithms, along with a special parameter pzt to be used for
zero testing. The sampling algorithm samp(params) outputs a level-0 encoding
of a randomly chosen element. The canonicalizing encoding cence(params, i, α)
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algorithm takes as input an encoding α of some element a, and outputs a level-i
encoding of a, with re-randomization parameter e. This canonicalizing encod-
ing algorithm can re-randomize an encoding for a fixed constant number of
re-randomization parameters e. Finally, the zero-testing algorithm isZero(pzt, α)
takes as input a level-k encoding α, and accepts iff α is an encoding of 0. A more
elaborate review of these algorithms can be found elsewhere in these proceed-
ings [20] (omitted here for lack of space).

3 Definitions for Aggregate and ID-Based Aggregate
Signatures

We now give our definitions for aggregate signatures. In our setting, each ag-
gregate signature is associated with a multiset S over verification key/message
pairs (or identity/message pairs in the ID-based setting). A set S is of the
form {(VK1,M1), . . . , (VK|S|,M|S|)}. Since S is a multiset it is possible to have
(VKi,Mi) = (VKj,Mj) for i �= j. All signatures, including those that come out
of the sign algorithm, are considered to be aggregate signatures. The aggrega-
tion algorithm is general in that it can take any two aggregate signatures and
combine them into a new aggregate signature.

Our definition allows for an initial trusted setup that will generate a set of
common public parameters PP. This will define a bit length of all messages
(and identities). In practice one could set these fixed lengths to be the output
length 
 of a collision resistant hash function and allow arbitrary-length mes-
sages/identities by first hashing them down to 
 bits. In the ID-based setting,
the authority also produces a master secret key used later to run the key gener-
ation algorithm.

We emphasize a few features of our setting. First, aggregation is very general
in that it allows for the combination of any two aggregate signatures into a
single one. Some prior definitions required an aggregate signature to be combined
with a single message signature. This is a limitation for applications where an
aggregator comes across two aggregate signatures that is wishes to combine. The
aggregation operation does not require any secret keys. The multiset structure
allows one to combine two aggregate signatures which both include the same
message from the same signer.

We begin formally with the ID-based definition, because it is novel to this
work, and then discuss its simpler counterpart.

Authority-Setup(1λ, 
, n). The trusted setup algorithm takes as input the se-
curity parameter as well the bit-length 
 of messages and bit-length n of the
identities. It outputs a common set of public parameters PP and master secret
key MSK.

KeyGen(MSK, I ∈ {0, 1}n). The key generation algorithm is run by the author-
ity. It takes as input the system master secret key and an identity I, and outputs
a secret signing key SKI .
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Sign(PP, SKI , I ∈ {0, 1}n,M ∈ {0, 1}�). The signing algorithm takes as input
a secret signing key and corresponding identity I ∈ {0, 1}n, the common public
parameters as well as a message M ∈ {0, 1}�. It outputs a signature σ for
identity I. We emphasize that a single signature that is output by this algorithm
is considered to also be an aggregate signature.

Aggregate(PP, S̃, S′, σ̃, σ′). The aggregation algorithm takes as input two mul-
tisets S̃ and S′ and purported signatures σ̃ and σ′. The elements of S̃ consist of
identity/message pairs {(Ĩ1, M̃1), . . . , (Ĩ|S̃|, M̃|S̃|)} and the elements of S′ con-
sist of {(I ′

1,M
′
1), . . . , (I ′

|S′|,M
′
|S′|)}. The process produces a signature σ on the

multiset S = S̃ ∪ S′, where ∪ is a multiset union.

Verify(PP, S, σ). The verification algorithm takes as input the public parame-
ters, a multiset S of identity and message pairs and an aggregate signature σ. It
outputs true or false to indicate whether verification succeeded.

Correctness. The correctness property states that all valid aggregate signatures
will pass the verification algorithm, where a valid aggregate is defined recur-
sively as an aggregate signature derived by an application of the aggregation
algorithm on two valid inputs or the signing algorithm. More formally, for all in-
tegers λ, 
, n, k ≥ 1, all PP ∈ Authority-Setup(1λ, 
, n), all I1, . . . , Ik ∈ {0, 1}n,
all SKIi ∈KeyGen(PP, Ii), Verify(PP, S, σ) = 1, if σ is a valid aggregate for mul-
tiset S under PP. We say that an aggregate signature σ is valid for multiset S if:
(1) S = {(Ii,M)} for some i ∈ [1, k],M ∈ {0, 1}� and σ ∈ Sign(PP, SKIi , Ii,M);
or (2) there exists multisets S′, S̃ where S = S′∪S̃ and valid aggregate signatures
σ′, σ̃ on them respectively such that σ ∈ Aggregate(PP, S̃, S′, σ̃, σ′).

Security Model for Aggregate Signatures. Adapting aggregation [10,2] to the
identity-based setting takes some care in considering how keys are handled and
which query requests the adversary should be allowed to make. Informally, in the
unforgeability game, it should be computationally infeasible for any adversary to
produce a forgery implicating an honest identity, even when the adversary can
control all other identities involved in the aggregate and can mount a chosen-
message attack on the honest identity. This is defined using a game between a
challenger and an adversary A with respect to scheme Π = (Authority-Setup,
KeyGen, Sign, Aggregate, Verify).

– ID-Unforg(Π,A, λ, 
, n):

Setup. The challenger runs Authority-Setup(1λ, 
, n) to obtain PP. It sends PP
to A.

Queries. Proceeding adaptively, A can make three types of requests:
1. Create New Key: The challenger begins with an index i = 1 and an

empty sequence of index/identity/private key triples T . On input an
identity I ∈ {0, 1}n, the challenger runs KeyGen(MSK, I) to obtain
SKI . It adds the triple (i, I, SKI) to T and then increments i for the next
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call. Nothing is returned to the adversary.We note that the adversary can
query this oracle multiple times for the same identity. This will capture
security for applications that might release more than one secret key per
identity.

2. Corrupt User: On input an index i ∈ [1, |T |], the challenger returns to
the adversary the triple (i, Ii, SKIi) ∈ T . It returns an error if T is empty
or i is out of range.

3. Sign: On input an index i ∈ [1, |T |] and a message M ∈ {0, 1}�, the
challenger obtains the triple (i, Ii, SKIi) ∈ T (returning an error if it does
not exist) and returns the signature resulting from Sign(PP, SKIi , Ii,M)
to A.

Response. Finally, A outputs a multiset S∗ of identity/message pairs and a
purported aggregate signature σ∗.

We say the adversary “wins” or that the output of this experiment is 1 if: (1)
Verify(PP, S∗, σ∗) = 1 and (2) there exists an element (I∗,M∗) ∈ S∗ such that
M∗ was not queried for a signature by the adversary on any index corresponding
to I∗; i.e., any index i such that (i, I∗, ·) ∈ T . Otherwise, the output is 0.
Define ID-ForgA as the probability that Unforg(Π,A, λ, 
, n) = 1, where the
probability is over the coin tosses of the Authority-Setup, KeyGen, and Sign
algorithms and of A.

Definition 1 (Adaptive Unforgeability). An ID-based aggregate signature
scheme Π is existentially unforgeable with respect to adaptive chosen-message
attacks if for all probabilistic polynomial-time adversaries A, the function ID-
ForgA is negligible in λ.

Selective Security. We consider a selective variant to ID-Unforg (selective in
both the identity and the message) where there is an Init phase before the
Setup phase, wherein A gives to the challenger a forgery identity/message pair
(I∗ ∈ {0, 1}n,M∗ ∈ {0, 1}�). The adversary cannot request a signing key for I∗.
(It may request that the challenger create one or more keys for this identity, but
it cannot corrupt any user index i associated with I∗.) Moreover, the adversary
only “wins” causing the experiment output to be 1 if the normal checks hold (i.e.,
its signature verifies and it did not request that I∗ sign M∗) and additionally
(I∗,M∗) appears in S∗.

Non-ID-Based Aggregates and the Distinct Message Variant. We provide se-
curity definitions for the non-ID-based setting in the full version [25] that fol-
low from [10,2]. We provide adaptive and selective variants. We also identify a
weaker “distinct message” security game that is easier to work with. In the full
version [25], we describe and prove secure a simple transformation from distinct
message security to standard aggregate signature security. The transformation
captures the idea of hashing the public key and message together [10,2] in a mod-
ular way. Focusing on distinct message security allows one to avoid the “rogue
key” attack (see Section 4.2). We do not consider distinct message security in
the ID-based setting, because there are no verification keys.
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4 Our Base Aggregate Signature Construction

4.1 Generic Multlinear Construction

Setup(1λ, 
) The trusted setup algorithm takes as input the security parameter
as well as the length 
 of messages. It first runs G(1λ, k = 
 + 1) and outputs a
sequence of groups G = (G1, . . . ,Gk) of prime order p, with canonical generators
g1, . . . , gk, where we let g = g1.

Next, it outputs random group elements (A1,0, A1,1), . . . , (A�,0, A�,1) ∈ G2
1.

These will be used to compute a function H(M) : {0, 1}� → Gk−1, which
serves as the analog of the full domain hash function of the BGLS [10] con-
struction. Let m1, . . . ,m� be the bits of message M . It is computed iteratively
as H1(M) = A1,m1 and for i ∈ [2, 
], Hi(M) = e(Hi−1(M), Ai,mi). We define
H(M) = H�(M). The public parameters, PP, consist of the group descriptions
plus (A1,0, A1,1), . . . , (A�,0, A�,1).

KeyGen(PP) The key generation algorithm first chooses random α ∈ Zp. It
outputs the public verification key as VK = gα. The secret key SK is α ∈ Zp.

Sign(PP, SK,M ∈ {0, 1}�) The signing algorithm computes the signature as
σ = H(M)α ∈ Gk−1. This serves as an aggregate signature for the (single
element) multiset S = (VK,M).

Aggregate(PP, S̃, S′, σ̃, σ′). The aggregation algorithm simply computes the out-
put signature σ as σ = σ̃ ·σ′. The serves as a signature on the multiset S = S̃∪S′,
where ∪ is a multiset union.

Verify(PP, S, σ). The verification algorithm parses S as {(VK1,M1), . . . , (VK|S|,

,M|S|)}. It then checks that e(σ, g)
?
=
∏

i=1,...,|S| e(H(Mi),VKi) and accepts if
and only if it holds.

Correctness To see correctness, an aggregate σ on S = {(VK1,M1), . . . , (VK|S|,
M|S|} is the product of individual signatures; i.e., σ =

∏|S|
i=1H(Mi)

αi where
VKi = gαi , and thus passes the verification equation as:

e(σ, g) = e(

|S|∏
i=1

H(Mi)
αi , g) =

|S|∏
i=1

e(H(Mi)
αi , g) =

|S|∏
i=1

e(H(Mi), g)
αi

=

|S|∏
i=1

e(H(Mi), g
αi) =

|S|∏
i=1

e(H(Mi), V Ki).

Efficiency and Tradeoffs An aggregate signature is one group element in Gk−1

independent of the number of messages aggregated. In a multilinear setting, the
space to represent a group element might grow with k (which is 
+ 1). Indeed,
this happens in the GGH [19] graded algebra translation. One way to mitigate
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this is to differ the message alphabet size in a tradeoff of computation versus
storage. The above construction uses a binary message alphabet. If it used an
alphabet of 2d symbols, then the aggregate signature could resident in the group
G�/d with 
/d − 1 pairings required to compute it, at the cost of the public

parameters requiring 2d
 group elements in G.

Construction in the GGH Framework We give a translation of the above con-
struction to the GGH [19] framework in the full version of this work [25].

4.2 Security Analysis

Assumption 1 (Multilinear Computational Diffie-Hellman: k-MCDH)
The k-Multilinear Computational Diffie-Hellman (k-MCDH) problem states the
following: A challenger runs G(1λ, k) to generate groups and generators of order
p. Then it picks random c1, . . . , ck ∈ Zp. The assumption then states that given

g = g1, g
c1 , . . . , gck it is hard for any poly-time algorithm to compute g

∏
j∈[1,k] cj

k−1

with better than negligible advantage (in security parameter λ).

We say that the k-MCDH assumption holds against subexponential advantage if
there exists a universal constant ε0 > 0 such that no polynomial-time algorithm
can succeed in the experiment above with probability greater than 2−λε0

. In
Section 5.3, we will give a variant of the k-MCDH assumption in the approxi-
mate multilinear maps setting of GGH [19] that we will call the GGH k-MCDH
assumption. We note that the best cryptanalysis available of the GGH frame-
work [19] suggests that the GGH k-MCDH assumption holds against subexpo-
nential advantage.

In the full version [25], we show that the basic aggregate signature scheme for
message length 
 in the distinct message unforgeability game is:

– Selectively secure under the (
+1)-Multilinear Computational Diffie-Hellman
(MCDH) assumption.

– Fully secure under the (
 + 1)-MCDH assumption against subexponential
advantage.

– Fully secure under a non-interactive, parameterized assumption which de-
pends on message length 
, the number of adversarial signing queries and
the number of messages in the adversary’s forgery.

By applying a simple transformation given in the full version [25] which follows
from [10,2], the distinct message requirement can be removed. Without this
transformation, there is a simple attack where the attacker sets some VK′ =
VK−1 and submits the identity element in Gk−1 as an aggregate forgery for
S = {(VK,M), (VK′,M)} for any message M of its choosing.

5 Our ID-Based Aggregate Signature Construction

5.1 Generic Multilinear Construction

Authority-Setup(1λ, 
, n) The trusted setup algorithm is run by the master au-
thority of the ID-based system. It takes as input the security parameter as



Full Domain Hash from (Leveled) Multilinear Maps 505

well the bit-length 
 of messages and bit-length n of identities. It first runs
G(1λ, k = 
 + n) and outputs a sequence of groups G = (G1, . . . ,Gk) of prime
order p, with canonical generators g1, . . . , gk, where we let g = g1.

Next, it chooses random elements (A1,0 = ga1,0 , A1,1 = ga1,1), . . . , (A�,0 =
ga�,0 , A�,1 = ga�,1) ∈ G2

1 and random exponents (b1,0, b1,1), . . . , (bn,0, bn,1) ∈ Zp
2.

It sets Bi,β = gbi,β for i ∈ [1, n] and β ∈ {0, 1}. These will be used to define a
function H(I,M) : {0, 1}n×{0, 1}� → Gk. Letm1, . . . ,m� be the bits of message
M and id1, . . . , idn as the bits of I. It is computed iteratively as

H1(I,M) = B1,id1 for i ∈ [2, n] Hi(I,M) = e(Hi−1(I,M), Bi,idi)

for i ∈ [n+ 1, n+ 
 = k] Hi(I,M) = e(Hi−1(I,M), Ai−n,mi−n).

We define H(I,M) = Hk=�+n(I,M).
The public parameters, PP, consist of the group sequence description plus:

(A1,0, A1,1), . . . , (A�,0, A�,1), (B1,0, B1,1), . . . , (Bn,0, Bn,1)

The master secret key MSK includes PP together with the values (b1,0, b1,1), . . . ,
(bn,0, bn,1).

KeyGen(MSK, I ∈ {0, 1}n). The signing key for identity I is SKI = g
∏

i∈[1,n] bi,idi
n−1

∈ Gn−1.

Sign(PP, SKI , I ∈ {0, 1}n,M ∈ {0, 1}�) The signing algorithm lets temporary
variable D0 = SKI . Then for i = 1 to 
 it computes Di = e(Di−1, Ai,mi) ∈
Gn−1+i. The output signature is

σ = D� = (gk−1)
(
∏

i∈[1,n] bi,idi )(
∏

i∈[1,�] ai,mi
).

This serves as an ID-based aggregate signature for the (single element) multiset
S = (I,M).

Aggregate(PP, S̃, S′, σ̃, σ′). The aggregation algorithm simply computes the out-
put signature σ as σ = σ̃ ·σ′. The serves as a signature on the multiset S = S̃∪S′,
where ∪ is a multiset union.

Verify(PP, S, σ). It parses S as {(I1,M1), . . . , (I|S|,M|S|)}. It then accepts if
and only if

e(σ, g)
?
=

∏
i=1,...,|S|

H(Ii,Mi).

Correctness and Security. For correctness, an aggregate σ on S = {(I1,M1), . . . ,
(I|S|,M|S|) is the product of individual signatures; i.e., σi where e(σi, g) =

H(Ii,Mi), and thus
∏|S|

i=1 e(σi, g) = e(
∏|S|

i=1 σi, g) = e(σ, g) =
∏|S|

i=1H(Ii,Mi).
Proof of the following theorem appears in the full version [25] and is similar to
the proof for the GGH translation which we provide shortly in Section 5.3.
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Theorem 2 (Selective Security of ID-Based Construction). The ID-
based aggregate signature scheme for message length 
 and identity length n in
Section 5.1 is selectively secure in the unforgeability game in Section 3 under the
(
+ n)-MCDH assumption.

5.2 ID-Based Construction in the GGH Framework

We show how to modify our ID-based construction to use the GGH [19] graded
algebras analogue of multilinear maps. Please note that we use the same notation
developed in [19], with some minor changes: Firstly, we use the canonical encod-
ing function cenc provided by the GGH framework more than once at each level
of the encoding, but only a globally fixed constant number of times per level. This
is compatible with the GGH encoding [19], and allows for a simpler exposition
of our scheme and proof. Also, for ease of notation on the reader, we sup-
press repeated params arguments that are provided to every algorithm.
Thus, for instance, we will write α← samp() instead of α← samp(params). Note
that in our scheme, there will only ever be a single uniquely chosen value for
params throughout the scheme, so there is no cause for confusion. Finally, we use
the variant of the GGH framework with “strong” zero-testing, where the zero
test statistically guarantees that a vector is a valid encoding of zero if it passes
the zero test. For further details on the GGH framework, please refer to [19]. See
also [20] in these proceedings.

Authority-Setup(1λ, 
, n) The trusted setup algorithm is run by the master au-
thority of the ID-based system. It takes as input the security parameter as
well the bit-length 
 of messages and bit-length n of identities. It then runs
(params,pzt) ← InstGen(1λ, 1k=�+n). Recall that params will be implicitly given
as input to all GGH-related algorithms below.

Next, it chooses random encodings ai,β = samp() for i ∈ [1, 
] and β ∈ {0, 1};
and random encodings bi,β = samp() for i ∈ [1, n] and β ∈ {0, 1}. Then it
assigns Ai,β = cenc1(1, ai,β) for i ∈ [1, 
] and β ∈ {0, 1}; and it assigns Bi,β =
cenc1(1, bi,β) for i ∈ [1, n] and β ∈ {0, 1}.

These will be used to compute a function H mapping 
+n bit strings to level
k− 1 encodings. Let m1, . . . ,m� be the bits of M and id1, . . . , idn be the bits of
I. It is computed iteratively as

H1(I,M) = B1,id1 for i ∈ [2, n] Hi(I,M) = Hi−1(I,M) ·Bi,idi

for i ∈ [n+ 1, n+ 
 = k] Hi(I,M) = Hi−1(I,M) · Ai−n,mi−n .

We define H(I,M) = cenc2(k,Hk=�+n(I,M)).
The public parameters, PP, consist of the params,pzt plus:

(A1,0, A1,1), . . . , (A�,0, A�,1), (B1,0, B1,1), . . . , (Bn,0, Bn,1)

Note that params includes a level 1 encoding of 1, which we denote as g.
The master secret key MSK includes PP together with the encodings

(b1,0, b1,1), . . . , (bn,0, bn,1).
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KeyGen(MSK, I ∈ {0, 1}n) The signing key for identity I is SKI = cenc2(n −
1,
∏

i∈[1,n] bi,idi).

Sign(PP, SKI , I ∈ {0, 1}n,M ∈ {0, 1}�) The signing algorithm lets temporary
variable D0 = SKI . Then for i = 1 to 
 it computes Di = Di−1 · Ai,mi . The
output signature is

σ = cenc3(k − 1, D�).

This serves as an ID-based aggregate signature for the (single element) multiset
S = (I,M).

Aggregate(PP, S̃, S′, σ̃, σ′). The aggregation algorithm simply computes the out-
put signature σ as σ = σ̃+σ′. The serves as a signature on the multiset S = S̃∪S′,
where ∪ is a multiset union.

Verify(PP, S, σ). The verification algorithm parses S as
{(I1,M1), . . . , (I|S|,M|S|)}. It rejects if the multiplicity of any identity/message

pair is greater than 2λ.
The algorithm then proceeds to check the signature by setting τ = cenc2(1, g),

and testing: :

isZero

⎛⎝pzt, τ · σ −
∑

i=1,...,|S|
H(Ii,Mi)

⎞⎠
and accepts if and only if the zero testing procedure outputs true. Recall that g
above is a canonical level 1 encoding of 1 that is included in params, part of the
public parameters.

Correctness. Correctness follows from the same argument as for the ID-based
aggregate signature scheme in the generic multilinear setting.

5.3 Proof of Security for ID-based Aggregate Signatures in the
GGH framework

We now describe how to modify our proof of security for our ID-based con-
struction to use the GGH [19] graded algebras analogue of multilinear maps. As
before, for ease of notation on the reader, we suppress repeated params arguments
that are provided to every algorithm. For further details, please see [19].

We begin by describing the GGH analogue of the k-MCDH assumption that
we will employ:

Assumption 3 [GGH analogue of k-MCDH: GGH k-MCDH] The GGH
k-Multilinear Computational Diffie-Hellman (GGH k-MCDH) problem states the
following: A challenger runs InstGen(1λ, 1k) to obtain (params,pzt). Note that
params includes a level 1 encoding of 1, which we denote as g. Then it picks ran-
dom c1, . . . , ck each equal to the result of a fresh call to samp().
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The assumption then states that given params,pzt, cenc1(1, c1), . . . , cenc1(1, ck)
it is hard for any poly-time algorithm to compute an integer t ∈ [1, 2λ] and an
encoding z such that

zT st

⎛⎝pzt, cenc2(1, g) · z − cenc1(k, t ·
∏

j∈[1,k]

cj)

⎞⎠
outputs true.

We say the GGH k-MCDH assumption holds against subexponential advantage if
there exists a universal constant ε0 > 0 such that no polynomial-time algorithm
can succeed in the experiment above with probability greater than 2λ

ε0
. The

best cryptanalysis available of the GGH framework [19] suggests that the GGH
k-MCDH assumption holds against subexponential advantage.

We establish full security of our ID-based aggregate signature scheme condi-
tioned on the k-MCDH assumption holding against subexponential advantage.
This follows immediately from the following theorem and a standard complexity
leveraging argument:

Theorem 4 (Selective Security of GGH ID-Based Construction). The
ID-based aggregate signature scheme for message length 
 and identity length n
in Section 5.2 is selectively secure in the unforgeability game in Section 3 under
the GGH (
+ n)-MCDH assumption.

Corollary 1. The ID-based aggregate signature scheme for message length 
 in
Section 5.2 is fully secure in the distinct message unforgeability game under the
GGH (
+ n)-MCDH assumption against subexponential advantage.

Proof. This follows immediately from a complexity leveraging argument: the
security parameter λ is chosen to ensure that 2λ

ε0
>> 2�, where 2−λε0

is the
maximum probability of success allowed in the k-MCDH assumption against
subexponential advantage. Now, to establish full security, the simulator performs
exactly as in the selective security proof, but first it simply guesses the message
that will be forged (instead of expecting the adversary to produce this message).
Because this guess will be correct with probability at least 2−�, and the security
parameter λ is chosen carefully, full security with polynomial advantage (or
even appropriately defined subexponential advantage) implies an attacker on
the GGH k-MCDH assumption with subexponential advantage.

Proof. (of Theorem 4) We show that if there exists a PPT adversary A that
can break the selective security of the ID-based aggregate signature scheme
in the unforgettability game with probability ε for message length 
, iden-
tity length n and security parameter λ, then there exists a PPT simulator
that can break the GGH (
 + n)-MCDH assumption for security parameter
λ with probability ε. The simulator takes as input a GGH MCDH instance
params,pzt, C1 = cenc1(1, c1), . . . , Ck = cenc1(1, ck) where k = 
 + n. Let mi

denote the ith bit of M and idi denote the ith bit of I. The simulator plays the
role of the challenger in the game as follows.



Full Domain Hash from (Leveled) Multilinear Maps 509

Init. Let I∗ ∈ {0, 1}n and M∗ ∈ {0, 1}� be the forgery identity/message pair
output by A.

Setup. The simulator chooses random x1, . . . , x�, y1, . . . , yn with fresh calls to
samp(). For i = 1 to 
, let Ai,m∗

i
= Ci+n and Ai,m̄∗

i
= cenc1(1, xi). For

i = 1 to n, let Bi,id∗
i
= Ci and Bi, ¯id∗

i
= cenc1(1, yi). The parameters are

distributed independently and uniformly at random as in the real scheme.
Queries. Conceptually, the simulator will be able to create keys or signatures

for the adversary, because his requests will differ from the challenge identity
or message in at least one bit. More specifically,
1. Create New Key: The simulator begins with an index i = 1 and an empty

sequence of index/identity/private key triples T . On input an identity
I ∈ {0, 1}n, if I = I∗, the simulator records (i, I∗,⊥) in T . Otherwise,
the simulator computes the secret key as follows. Let β be the first index
such that idi �= id∗i . Compute s =

∏
i=1,...,n∧i�=β Bi,idi . Then compute

SKI = cenc2(n − 1, s · yβ). Record (i, I, SKI) in T . Secret keys are
well-formed and, due to the rerandomization in the cenc2 algorithm,
are distributed in a manner statistically exponentially close to the keys
generated in the real game.

2. Corrupt User: On input an index i ∈ [1, |T |], the simulator returns to the
adversary the triple (i, Ii, SKIi) ∈ T . It returns an error if T is empty
or i is out of range. Recall that i cannot be associated with I∗ in this
game.

3. Sign: On input an index i ∈ [1, |T |] and a message M ∈ {0, 1}�, the
simulator obtains the triple (i, Ii, SKIi) ∈ T or returns an error if it
does not exist. If Ii �= I∗, then the simulator signs M with SKIi in the
usual way.

If Ii = I∗, then we know M �= M∗. Let β be the first index such
that mβ �= m∗

β . First compute σ′ =
∏

i=1,...,�∧i�=β Ai,mi . Next, compute
σ′′ = σ′ · xi. Also compute γ =

∏
i=1,...,nBi,idi . Finally, compute σ =

cenc3(k − 1, γ · σ′′) Return σ to A. Signatures are well-formed and, due
to the rerandomization in the cenc3 algorithm, distributed in a manner
statistically exponentially close to the keys generated in the real game.

Response. Eventually, A outputs an aggregate signature σ∗ on multiset S∗

where (I∗,M∗) ∈ S∗. The simulator will extract from this a solution to the
MCDH problem. This works by iteratively computing all the other signatures
in S∗ and then subtracting them out of the aggregate until only one or more
signatures on (I∗,M∗) remain. That is, the simulator takes an aggregate
for S∗ and computes an aggregate signature for S′ where S′ has one less
verification key/message pair than S at each step. These signatures will be
computed as in the query phase.

Eventually, we have an aggregate σ′ on t ≥ 1 instances of
(I∗,M∗). However recall that H(I∗,M∗) is a level k encoding of
(
∏

i∈[1,n] bi,id∗
i
)(
∏

i∈[1,�] ai,m∗
i
) =
∏

i∈[k] ci. Thus verification of the signature
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σ′ implies that (t, σ′) is a solution to the GGH k-MCDH problem, and so
the simulator returns (t, σ′) to break the GGH k-MCDH assumption.

The responses of the challenger are distributed statistically exponentially closely
to the real unforgeability game. The simulator succeeds whenever A does.
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Abstract. We adapt the concept of a programmable hash function
(PHF, Crypto 2008) to a setting in which a multilinear map is avail-
able. This enables new PHFs with previously unachieved parameters.

To demonstrate their usefulness, we show how our (standard-model)
PHFs can replace random oracles in several well-known cryptographic
constructions. Namely, we obtain standard-model versions of the Boneh-
Franklin identity-based encryption scheme, the Boneh-Lynn-Shacham
signature scheme, and the Sakai-Ohgishi-Kasahara identity-based non-
interactive key exchange (ID-NIKE) scheme. The ID-NIKE scheme is the
first scheme of its kind in the standard model.

Our abstraction also allows to derive hierarchical versions of the above
schemes in settings with multilinear maps. This in particular yields sim-
ple and efficient hierarchical generalizations of the BF, BLS, and SOK
schemes. In the case of hierarchical ID-NIKE, ours is the first such scheme
with full security, in either the random oracle model or the standardmodel.

While our constructions are formulated with respect to a generic
multilinear map, we also outline the necessary adaptations required for
the recent “noisy” multilinear map candidate due to Garg, Gentry, and
Halevi.

Keywords: programmable hash functions, multilinear maps, identity-
based encryption, identity-based non-interactive key exchange, digital
signatures.

1 Introduction

Programmable Hash Functions. Programmable hash functions (PHFs) have
been proposed in [18] as an abstraction of random oracles that can also be
instantiated in the standard model. In a nutshell, a PHF H maps a bitstring
X (e.g., a message to be signed) to a group element H(X); a special trapdoor
allows to decompose H(X) = caXhbX for previously chosen c, h. In a larger proof,
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c will usually be a “challenge element” (e.g., a part of a given Diffie-Hellman
challenge), so that H(X) contains a challenge component if and only if aX �= 0.

PHFs can be used to employ partitioning strategies: e.g., Waters’ CDH-based
signature scheme [24] (implicitly) uses a PHF to partition the set of all mes-
sages into “signable” and “unsignable” messages. (In his case, a message X is
signable iff aX �= 0.) During the proof of unforgeability, we hope that all messages
for which an adversary requests a signature are signable, while the adversary’s
forgery corresponds to an unsignable message.

Limitations of PHFs. While initially meant as a standard-model replace-
ment for random oracles, many applications require a degree of “programmabil-
ity” that is not met by current PHF constructions. Technically, we have PHF
constructions with aX �= 0 for most, but not all preimages X . Such PHFs are
suitable, e.g., in certain signature or identity-based encryption schemes [24, 18].

However, several prominent schemes that are formulated in the random oracle
model (e.g., [23, 4, 6]) would require a PHF with aX = 0 for most (but not all)
preimages. (Roughly speaking, in these schemes, adversarial queries X can be
handled iff the corresponding hash does not have a challenge component, i.e., if
aX = 0.) Unfortunately, a recent result [17] shows that no black-box construction
of such a PHF with aX = 0 for most (but not all) X exists.

OurWork. We construct PHFs with aX = 0 for most (but not all)X by slightly
adapting the PHF definition to a setting in which a multilinear map is available.1

We use our PHFs to give standard-model versions of prominent cryptographic
schemes whose security has so far only been proven in the random oracle model.
Specifically, we give standard-model versions of the Boneh-Franklin (BF) identity-
based encryption scheme [4], Boneh-Lynn-Shacham (BLS) signatures [6], and the
Sakai-Ohgishi-Kasahara (SOK) identity-based non-interactive key exchange (ID-
NIKE) [23]. We also use our PHFs to realise a completely new secure crypto-
graphic functionality: we present the first fully secure hierarchical ID-NIKE, with
security either in the standard-model or the random oracle model. Our construc-
tions assume the existence of anO(k)-linear map, where k is the security parame-
ter.2 We use an abstraction of multilinear maps that is compatible with the recent
“noisy” candidate for multilinear maps of Garg, Gentry, and Halevi [13].

SomeTechnical Details. We circumvent the black-box impossibility result [17]
by slightly adapting the PHF definition to a setting with multilinear maps. Intu-
itively, [17] uses that aX is an exponent that can be viewed as a known function
in certain unknown variables. This function is linear, because all involved group
elements are from the same group, and only group operations are allowed. But
the number of zeros of such a (nontrivial) linear function can be reasonably upper
bounded. This contradicts the goal that aX = 0 for many, but not all X .

1 Concretely, we construct (poly, n)-MPHFs for any constant n. This denotes a slight
variant of PHFs in a multilinear setting, with the following property. For any poly-
nomial number of Xi and Z1, . . . , Zn (with Xi = Zj), we have aXi = 0 and aZj = 0
for all i, j with significant probability. The Xi, Zj need not be known during setup.

2 In fact, our optimizations only require a O(k/ log(k))-linear map.
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By moving to a multilinear setting, we essentially allow (a limited number of)
multiplications in the exponent. Hence, the exponent aX is now no longer limited
to be a linear function, but can be a multivariate polynomial. Such polynomials
can have exponentially many zeros. For instance, we could choose secret values
αi,b (for 1 ≤ i ≤ |X | and b ∈ {0, 1}), such that exactly one element of each pair
(αi,0, αi,1) is nonzero; say αi,bi �= 0. Then the function

aX = α(X) =

|X|∏
i=1

αi,Xi (1)

(whereXi denotes the i-th bit ofX) evaluates to zero everywhere except forX =
(b1, . . . , b|X|). In fact, we implement a suitable variant of the function in (1) in the

exponent (in the sense that H(X) = caXhbX = cα(X)hbX for a suitable blinding
term hbX ) through multilinear maps.3 In the process, we also recognize and refine
an admissible hash function (AHF [3, 8, 1]) implicit in [19]. This yields the – by far
– most efficient known AHFs. As a result, we get PHFs in the multilinear setting
with aX = 0 for many (but not all) X .

Applications. To demonstrate their power, we use our new PHFs to replace
random oracles in three example applications. As one application, we obtain from
BLS signatures [6] an existing standard-model signature scheme due to Boneh
and Silverberg [5]; as a natural extension, we give a standard-model variant of the
Boneh-Franklin IBE scheme [4]. However, our central application is the SOK [23]
ID-NIKE scheme; from this scheme, we get the first fully secure ID-NIKE in the
standard model.

In all cases, the analysis is completely modular: we prove the security of
the PHF-based schemes solely from generic PHF properties. In particular, we
can also view (programmable) random oracles as PHFs to obtain the original
schemes, with essentially the original proofs.4 We view these results as strong
evidence that PHFs are a useful abstraction of random oracles that also allows
for standard-model instantiations.

In addition, we give natural hierarchical versions of all schemes in a setting
with multilinear maps. (Recall that we require multilinear maps for our PHFs
anyway.) Again, we can either use random oracles as PHFs to obtain reasonably
efficient new schemes, or use our new PHFs to obtain (somewhat less efficient)
standard-model versions.

More on Our ID-NIKE Schemes. In the signature and IBE applications,
we mainly explain (and slightly improve) existing schemes through PHFs. While
this already hints at the potential of our notion of PHFs, their actual usefulness

3 We stress that these ideas are not new; essentially the same function in the exponent
has been considered by Boneh and Silverberg [5] for a concrete signature scheme,
building on work of Lysyanskaya [19]. Our contribution here is an abstraction (along
with a few quantitative optimizations) that enables new applications.

4 The exception is the SOK scheme, for which we only get a proof under a slightly
stronger computational assumption.
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in building novel cryptographic functionalities is best demonstrated by our ap-
plication to ID-NIKE.

Loosely speaking, a non-interactive key exchange (NIKE) provides any two
parties registered in the system with a unique shared key, without any inter-
action. For NIKE in the identity-based setting, there is a single master public
key held by a trusted authority (TA); each party additionally gets an individual
user secret key from the TA, and combines its secret key with the identity of
the other party to compute the shared key. This primitive is a powerful one.
For one thing, it implies secure IBE under a minor technical requirement [20].
More importantly, it has important applications in managing keys and enabling
secure communications in mobile ad hoc and sensor networks, where the energy
cost of communication is at a premium [14, 9]. In the hierarchical setting, H-
ID-NIKE allows the same functionality, but also allows the TA’s operations to
be distributed over a hierarchy, which is well-suited to military and emergency
response scenarios. The advantages of ID-NIKE, in terms of reducing communi-
cation costs and latency in a realistic adversarial environment, are demonstrated
in [9]. For further discussion of applications of NIKE and ID-NIKE, see [14, 12].

However, ID-NIKE has proven surprisingly hard to instantiate in the standard
model, even more so in a hierarchical setting. Currently, to the best of our
knowledge, there is precisely one efficient, secure ID-NIKE scheme with a proof
of security in the random oracle model, namely the SOK scheme [23] (with
security models and analysis in [11, 20]). There are no schemes secure in the
standard model. One might think that such schemes could easily be obtained
from known standard-model-secure IBE schemes, but this is not the case; the
essential technical barrier seems to be the randomised key derivation in these
IBE schemes.

In the hierarchical setting, Gennaro et al. [14] constructed H-ID-NIKE schemes
that are secure under certain classes of key exposure, but which do not offer full
security, the desirable and natural generalisation of the existing ID-NIKE se-
curity notion from [20] to the hierarchical setting. Moreover, their schemes do
not scale well to large numbers of levels. The same criticisms apply to earlier
schemes [2, 21] on which the scheme of Gennaro et al. [14] is based. Indeed,
one of the open problems left in [14] is to construct a H-ID-NIKE scheme with
security against not only compromise of any number of leaves, but also against
any number of nodes at higher levels of the hierarchy.5

By substituting the random oracles in the SOK scheme [23] with our new
PHFs, we obtain the first secure ID-NIKE schemes in the standard model. Fur-
thermore, our construction extends naturally to the hierarchical setting, yielding
the first fully secure H-ID-NIKE schemes. The construction can be instantiated
using random oracles to obtain a reasonably efficient scheme, or using PHFs for
security in the standard model. In the full version, we also show how multilinear
maps can be used to achieve security in the broader scenario of multiple TAs,
and for shared keys among whole groups of parties.

5 We note that there are other papers claiming to solve this open problem (eg. [16]),
but these can be easily shown to provide insecure schemes.



Programmable Hash Functions in the Multilinear Setting 517

Note on the Recent Candidate for Multilinear Maps. Recently, Garg,
Gentry, and Halevi [13] have announced a candidate for a family of cryptographi-
cally interesting multilinear maps. Their candidate is lattice-based, heavily relies
on the notion of noise, and thus does not provide groups in the usual sense. We
comment on the necessary adaptations of our schemes to their setting inside.

2 Preliminaries

Notation. For n ∈ �, let [n] := {1, . . . , �n�}. Throughout the paper, k ∈ �
denotes the security parameter. For a finite set S, we denote by s ← S the pro-
cess of sampling s uniformly from S. For sets S1,S2, . . . and n ∈ �, we write
S≤n :=

⋃n
i=1 Si. For a probabilistic algorithm A, we write y ← A(x) for the pro-

cess of running A on input x with uniformly chosen random coins, and assigning
y the result. If A’s running time is polynomial in k, then A is called probabilistic
polynomial-time (PPT). A function f : � → � is negligible if it vanishes faster
than the inverse of any polynomial (i.e., if ∀c∃k0∀k ≥ k0 : |f(k)| ≤ 1/kc). f is
significant if it dominates the inverse of some polynomial (i.e., if ∃c, k0∀k ≥ k0 :
f(k) ≥ 1/kc).

Multilinear Maps. An 
-group system consists of 
 cyclic groups �1, . . . ,��

of prime order p, along with bilinear maps ei,j : �i × �j → �i+j for all
i, j ≥ 1 with i + j ≤ 
. Let gi be a canonical generator of �i (included
in the group’s description). The map ei,j satisfies ei,j(g

a
i , g

b
j) = gabi+j (for all

a, b ∈ �p). When i, j are clear, we will simply write e instead of ei,j . It will
also be convenient to abbreviate e(h1, . . . , hj) := e(h1, e(h2, . . . , e(hj−1, hj) . . . ))
for hj ∈ �ij and i = (i1 + i2 + . . . + ij) ≤ 
. By induction, it is easy to see
that this map is j-linear. Additionally, we define e(g) := g. Finally, it can also
be useful to define the group �0 = �

+
|�1| of exponents to which this pairing

family naturally extends. In the following, we will assume an 
-group system
MPG� = {{�i}i∈[�], p, {ei,j}i,j≥1,i+j≤�} generated by a multilinear maps pa-

rameter generator MG� on input a security parameter 1k.

The GGH Candidate. We currently do not have candidates for multilinear
maps between groups with cryptographically hard problems. However, Garg,
Gentry, and Halevi [13] (henceforth GGH) suggest a concrete candidate for an
“approximation” of multilinear maps, named graded encoding systems. With the
GGH candidate, group elements have a randomized (and thus non-unique) repre-
sentation dubbed “encoding”. While it is possible to extract a unique “canonical
bitstring” from an encoding, it is not possible to perform further computations
with this extracted bitstring. An encoding can be re-randomized (e.g., to hide
the sequence of operations that were performed), but only at the cost of in-
troducing an artificial “noise” term in the encoding. Further operations (and
re-randomizations) on this group element cause the noise to grow; once this
noise grows beyond a certain bound, encodings can no longer be worked with.6

6 We further ignore a (negligible) error probability in most of the GGH procedures.
Technically, however, this leads to applications with, e.g., negligible correctness error.
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Our Abstraction. For readability and universality, we will generally use the
notation from the abstract notion of multilinear maps described above. When
instantiated with the GGH candidate, operations are meant to occur on en-
codings, without implicit re-randomizations. In particular, e.g., g now denotes
an encoding (not a group element). Additionally, we will employ the following
notation to indicate necessary re-randomizations, extractions, and comparisons
when using encodings instead of group elements.

– g ← �i means choosing a random encoding g at level i. (This corresponds
to uniformly choosing a group element from �i.) We assume that encodings
g chosen in such a way have a low noise level, say, 1.

– g
enc
= h holds iff the encodings g and h match.

– g
grp
= h holds iff the group elements encoded by g and h match, that is, iff

the GGH isZero procedure identifies g−1h as the neutral element.7

– reRandj(g) is the re-randomization of encoding g. This re-randomization in-
creases the noise level to a certain, a-priori fixed bound j. For simplicity, and
abstracting, we only consider noise levels j ∈ �. If g’s noise level is already
at least j (e.g., because g is the output of reRandj), then randomization fails.
We note that the distributions reRandj(g) and reRandj(h) are statistically

close for any two encodings g, h with g
grp
= h and noise level less than j.

– ext(g) denotes the canonical bitstring extracted from encoding g. We have

ext(g) = ext(h) for any g, h with g
grp
= h of sufficiently small noise level.

Like [13], we omit parameters (such as noise bounds) to computations; asymp-
totic parameters can be derived from the suggestions in [13, Section 4.2].

Hard Problems. The 
-MDDH assumption is: given (g, gx1 , . . . , gx�+1), (for
g ← �1 and uniform exponents xi), the element e(gx1 , . . . , gx�)x�+1 ∈ ��

is computationally indistinguishable from a uniform ��-element. The (
 + 1)-
power assumption is: given (g, gx) (for g ← �1 and uniform x), the element
e(gx, . . . , gx︸ ︷︷ ︸

� times

)x ∈ �� is computationally indistinguishable from a uniformly cho-

sen ��-element.8

3 Programmable Hash Functions in the Multilinear
Setting

3.1 Motivation

Programmable hash functions (PHFs) have been defined in [18] as a special
type of a group hash function (i.e., a hash function with images in a group).

7 Technically, the GGH isZero procedure only allows to compare two encodings on the
“highest level” �. To compare two level-i encodings (for i < �), we can first “lift”
both to level � by pairing them with a nonzero level-(�− i) element.

8 We note that in the GGH setting, all elements gxi (resp. gx), and the challenge
e(gx1 , . . . , gx�)x�+1) (resp. e(gx, . . . , gx)x) are produced with knowledge of the ex-
ponents x, xi as fully randomized but low-noise encodings.
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Namely, the image H(X) of a PHF can always be explained as H(X) = caXhbX

for externally given c, h. Usually, c will be a “challenge element” (e.g., from a
Diffie-Hellman-like problem), and h will be a “controlled element” (e.g., with
known exponent relative to a fixed group generator) used for blinding purposes.
Intuitively, we require that both the events aX = 0 and aX �= 0 occur with
significant probability. Even more, an (m,n)-PHF guarantees that with signifi-
cant probability, aXi = 0 for any m given inputs Xi, while aZj �= 0 for any n
given inputs Zj (with Xi �= Zj of course). This means that the H(Xi) contain
no challenge component, while all H(Zj) do.

For our purposes, we will strive to construct efficient (poly, n)-PHFs for con-
stant n (i.e., group hash functions which are (q(k), n)-PHFs for any polynomial
q). However, there are indications that such PHFs do not exist [17], at least
according to the original definition from [18]. Thus, we will adapt the definition
of PHFs to the multilinear setting, and construct the “multilinear analog” of a
(poly, n)-PHF. Concretely, an (m,n)-PHF maps to a “target” group ��. Here
instead of explaining H(X) as a product caXhbX for c, h in the target group ��

(as the case of PHFs), we will explain H(X) as a product e(c1, . . . , c�)
aX e(BX , h),

for externally given challenges ci ∈ �1 (which means c = e(c1, . . . , c�) ∈ ��)
and controlled h ∈ �1. Note that the coefficient bX in the usual definition of a
PHF now becomes a preimage BX ∈ ��−1 under a pairing operation.

3.2 Definitions

Definition 1 (Group hash function). A group hash function H into � con-
sists of two polynomial-time algorithms: the probabilistic algorithm HGen(1k)
outputs a key hk, and HEval(hk , X) (for a key hk and X ∈ {0, 1}k) determinis-
tically outputs an image Hhk (X) ∈ �.

Definition 2 (MPHF). Assume an 
′-group system MPG�′ as generated by
MG�′(1

k). Let H be a group hash function into �� (
 ≤ 
′), and let m,n ∈ �.
We say that H is an (m,n)-programmable hash function in the multilinear setting
((m,n)-MPHF) if there are PPT algorithms TGen and TEval as follows.

– TGen(1k, c1, . . . , c�, h) (for ci, h ∈ �1 and h
grp

�= 1) outputs a key hk and a
trapdoor td. We require that for all ci, h, the distribution of hk is statistically
close to the output of HGen.9

– TEval(td , X) (for a trapdoor td and X ∈ {0, 1}k) deterministically outputs

aX ∈ � and BX ∈ ��−1 with Hhk (X)
grp
= e(c1, . . . , c�)

aX · e(BX , h). We
require that there is a polynomial p(k) such that for all hk and X1, . . . , Xm,
Z1, . . . , Zn ∈ {0, 1}k with {Xi}i ∩ {Zj}j = ∅,

Phk ,{Xi},{Zj} := Pr [aX1 = · · · = aXm = 0 ∧ aZ1 , . . . , aZn �= 0] ≥ 1/p(k), (2)

9 There is a subtlety here: in case of encoded group elements, the output of TGen may
consist of group elements whose noise level depends on the noise level of the ci or
h. Hence, we will assume a known a-priori bound on the noise level of the ci and h.
This assumption will be fulfilled in our applications.
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where the probability is over possible trapdoors td output by TGen along with
the given hk. Furthermore, we require that Phk ,{Xi},{Zj} is close to statis-
tically independent of hk . (Formally, |Phk ,{Xi},{Zj} − Phk ′,{Xi},{Zj}| ≤ ν(k)

for all hk , hk ′ in the range of TGen, all {Xi}, {Zj}, and negligible ν(k).)
We say that H is a (poly, n)-MPHF if it is a (q(k), n)-MPHF for every polynomial
q(k), analogously for (m, poly)-MPHFs.

Note that the TEval algorithm of an MPHF into �1 yields BX ∈ �0, i.e.,
exponents BX . In fact, in this case, the MPHF definition coincides with the
original PHF definition from [18].

Readers interested only in how to use MPHFs in cryptographic constructions
may safely skip the remainder of this section.

3.3 Warmup: Programmable Random Oracles as MPHFs

A programmable random oracle RO with images in �1 can be interpreted as a
group hash function in the obvious way. (By “programmable”, we mean that
during a security proof, we can freely and adaptively determine images of RO,
even depending on the inputs of TGen. The only restriction of this programming
is that images should appear uniformly and independently distributed to an
adversary who sees only public information.) However, note for this modeling to
make sense in the first place, we should require that we can hash into �1.

Theorem 1 (PROs as (poly, n)-MPHFs). A programmable random oracle
RO (in the above sense) with images in �1 can be programmed to act as a
(poly, n)-MPHF for any constant n.

Proof (Proof sketch.). Fix a polynomial q = q(k). We show that RO is a (q, n)-
MPHF (with empty hk ). For each new preimage X , we program RO(X) :=
caXhBX for the inputs c := c1 and h to TGen, and a uniformly chosen exponent
BX ∈ �0 = �|�1|. We choose aX = 1 with probability 1/2q, and aX = 0 oth-
erwise. TEval outputs these aX , BX , assigning them as necessary for previously
unqueried inputs X . For any pairwise different X1, . . . , Xq, Z1, . . . , Zn, we thus
have

Pr
[
∀i : aXi = 0 ∧ ∀j : aZj �= 0

]
=

(
1− 1

2q

)q

·
(

1

2q

)n

≥ 1

2
·
(

1

2q

)n

,

which is significant for polynomial q and constant n. ��

3.4 Ingredient: Efficient Admissible Hash Functions

At the heart of our standard-model constructions lies a primitive dubbed “ad-
missible hash function” (AHF) [3]. Unfortunately, the AHFs from [3] are not
very efficient (and in fact only achieve a weaker AHF definition, see [8]). How-
ever, luckily, an earlier work by Lysyanskaya [19] already contains an implicit
and much more efficient AHF.
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Intuitively, an AHF can be thought of as a combinatorial counterpart of
(poly, 1)-(M)PHFs. An AHF input X is mapped to an image AHF(X) in a way
that X can fall in the set of controlled, CO, inputs (meaning that we know a trap-
door that allows to answer adversary’s queries for that input) or uncontrolled,
UN, inputs (meaning that we do not know any trapdoor but hope to embed a
challenge element). (Unlike with (M)PHFs, however, this is a purely combinato-
rial property.) An AHF guarantees that for any X1, . . . , Xq, Z, with significant
probability, all Xi are controlled, and Z is uncontrolled.

We now give a definition that is a somewhat simpler variant of the AHF
definitions from [8, 1], and then show a result implicit in [19].

Definition 3 (AHF). For a function AHF : {0, 1}k → R� (with a finite set10

R and polynomial 
 = 
(k)) and K ∈ (R ∪ {⊥})�, define the function FK :
{0, 1}k → {CO, UN} through FK(X) = UN ⇐⇒ ∀i : Ki = AHF(X)i ∨ Ki = ⊥,
where AHF(X)i denotes the i-th component of AHF(X).11 We say that AHF is
q-admissible if there exists a PPT algorithm KGen and a polynomial p(k), such
that for all X1, . . . , Xq, Z ∈ {0, 1}k with Z �∈ {Xi},

Pr [FK(X1) = · · · = FK(Xq) = CO ∧ FK(Z) = UN] ≥ 1/p(k), (3)

where the probability is over K ← KGen(1k). We say that AHF is an admissible
hash function (AHF) if AHF is q-admissible for all polynomials q = q(k).

Thus, X is controlled (i.e., FK(X) = CO) if there is an i with Xi �= Ki �= ⊥.

Theorem 2 ([19]). Assume a family of codes {Ck} with Ck : {0, 1}k → R�

denoting both the code and its encoding function. Suppose that Ck has minimum
distance at least c · 
 for a fixed constant c > 0. (That is, X1 �= X2 implies that
the vectors Ck(X1) and Ck(X2) differ in ≥ c ·
 positions.) Then {Ck} is an AHF.

Proof. Let q = q(k) be a polynomial. We need to devise a PPT algorithm KGen
such that (3) holds. KGen(1k) sets d := �(ln 2q)/c� (so d is the smallest integer

such that (1− c)
d ≤ 1/2q), and picks K uniformly among all elements from

(R ∪ {⊥})� with exactly d non-⊥ components. Hence, the set I := {i | Ki �= ⊥}
is of size d.

Now fix X1, . . . , Xq, Z ∈ {0, 1}k with Z �∈ {Xi}. Our choice of K implies
Pr [FK(Z) = UN] = |R|−d. For any fixed i, we want to upper bound the prob-
ability Pr [FK(Xi) = UN | FK(Z) = UN]. (This step loosely corresponds to [19,
Lemma 4].) Hence, assume FK(Z) = UN; note that this conditioning leaves the
distribution of I uniform. Now Ck(Xi) and Ck(Z) differ in a set Δ ⊆ [
] of
positions with |Δ| ≥ c
. Hence, FK(Xi) = UN is equivalent to I ∩Δ = ∅. Thus,

Pr [FK(Xi) = UN | FK(Z) = UN] = Pr [I ∩Δ = ∅ | FK(Z) = UN]

≤ (1− c)
d ≤ e−cd ≤ 1

2q
.

10 One should have R = {0, 1} in mind here. Larger R (e.g., R = [k]) lead to slightly
less pairing-intensive constructions of MPHFs, see the paragraph before Theorem 4.

11 That is, for R = {0, 1}, we have FK(X) = CO iff there is an i with Ki = 1−AHF(X)i.



522 E.S.V. Freire et al.

A union bound over i gives Pr [∀i : FK(Xi) = UN | FK(Z) = UN] ≤ 1/2, so that

Pr [FK(Z) = UN ∧ ∀i : FK(Xi) = CO] ≥ 1

2
· |R|−d ≥ 1

2
·
(

1

2q

) 1
c·log|R|(e)

,

which is significant. ��

3.5 Main Result: MPHFs from Multilinear Maps

Our main result in this section is a simple construction of a (poly, n)-MPHF
from an AHF.

Construction 1 (MM). Let AHF : {0, 1}k → R� be an admissible hash function
and assume an 
′-group system MPG�′ . The group hash function MM into ��

(
 ≤ 
′) is given by the following algorithms:
– HGen(1k) picks h̃i,j ← �1\{1} (for (i, j) ∈ [
]×R), sets hi,j := reRand2(h̃i,j),

and outputs hk := {hi,j}i∈[�],j∈R.
12

– HEval(hk , X) computes (t1, . . . , t�) := AHF(X) and outputs MMhk (X) :=
e(h1,t1 , . . . , h�,t�).

Theorem 3. The group hash function MM above is a (poly, 1)-MPHF.

Proof. Fix a polynomial q = q(k). We need to exhibit TGen and TEval algorithms
as in Definition 2. TGen(1k, c1, . . . , c�, h) invokes K ← KGen(1k) and, for all
(i, j) ∈ [
]×R and uniform exponents ri,j �= 0, it sets up

hi,j :=

{
reRand2(h

ri,j ) if Ki �= j and Ki �= ⊥,
reRand2(c

ri,j
i ) if Ki = j or Ki = ⊥.

(4)

For now, assume ci
grp

�= 1 for all i, so our setup yields a perfectly distributed
key hk := {hi,j}i,j that is in fact independent of K.13 The trapdoor is td :=
((ci), h,K, (ri,j)).

TEval(td , X) computes (t1, . . . , t�) := AHF(X) and distinguishes two cases:

Case FK(X) = CO, i.e., there is at least an i∗ with Ki∗ �= ti∗ and Ki∗ �= ⊥. If
we set aX = 0 and

BX := e(h1,t1 , . . . , hi∗−1,ti∗−1
, hi∗+1,ti∗+1

, . . . , h�,t�)
ri∗,ti∗ ,

for any chosen i∗, we can decompose MMhk (X)
grp
= e(c1, . . . , c�)

aX e(BX , h).

12 The additional re-randomization step guarantees that the noise levels in scheme and
simulation are the same. The concrete noise level of re-randomized elements depends
on the maximal noise considered in the arguments of TGen.

13 In case of randomized encodings, the distribution of hk in the simulation may (e.g.,
with the GGH candidate) only be statistically close to the one in the scheme.
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Case FK(X) = UN, i.e., Ki = ti or Ki = ⊥ for all i. This means that hi,ti
grp
=

c
ri,ti
i for all i, so MMhk (X)

grp
= e(c1, . . . , c�)

aX e(BX , h) for aX =
∏

i ri,ti and
BX := 1.

The AHF property (3) implies (2). (Note that Phk ,{Xi},{Z} only depends on K
but not on hk .)

Finally, in case ci
grp
= 1 for some i, we have e(c1, . . . , c�)

grp
= 1. If we replace

all ci in (4) with h, we can explain any image MMhk (X)
grp
= e(h, . . . , h)

∏
i ri,ti as

MMhk
grp
= e(c1, . . . , ck)

aX e(BX , h) with arbitrary aX . Adjusting the probability
for aX �= 0 in the order of 1/2q (as in the proof of Theorem 1) allows to prove
(2) for p(k) = 2 · (2q)n. ��

Examples. For R = {0, 1} and binary codes Ck : {0, 1}k → R� with large
minimum distance, we get the AHF implicit in [19]. This yields MPHFs that use
O(k) groups �i, and have keys of 2k group elements. Larger R give new AHFs
that yield MPHFs that use fewer groups, but have larger keys. For instance, with
R = �2κ , for κ := �log2(k)�, along with MDS codes over R, we obtain MPHFs
that use O(k/ log2(k)) groups, and have keys consisting of k2 group elements.

Theorem 4. Let n be a constant, q = q(k) be a polynomial, and let H =
(HGen,HEval) be a (q + n − 1, 1)-MPHF into ��. Then the group hash func-
tion H′ = (HGen′,HEval′) with
– HGen′(1k) that outputs hk ′ = (hkν)ν∈[n] for hkν ← HGen(1k), and
– HEval′(hk ′, X) that outputs H′

hk′(X) :=
∏

ν∈[n]Hhkν
(X)

is a (q, n)-MPHF into ��.

Combining Theorems 3 and 4 yields a (poly, n)-MPHF for any constant n.

Proof. We construct suitable TGen′ and TEval′ algorithms from the respective
TGen and TEval algorithms for H:
– TGen′(1k, c1, . . . , c�, h) runs (hkν , tdν) ← TGen(1k, c1, . . . , c�, h) for ν ∈ [n],

and outputs hk ′ := (hkν)ν∈[n] and td ′ := (tdν)ν∈[n].
– TEval′(hk ′, X) invokes (aν,X , Bν,X)) ← TEval(tdν , X) and outputs aX :=∑

ν∈[n] aν,X and BX :=
∏

ν∈[n]Bν,X . This output can be justified with

H′
hk ′(X)

grp
=
∏
ν∈[n]

Hhkν
(X)

grp
=
∏
ν∈[n]

e(c1, . . . , c�)
aν,X e(Bν,X , h)

grp
= e(c1, . . . , c�)

aX e(BX , h).

Now fix X1, . . . , Xq, Z1, . . . , Zn with {Xi} ∩ {Zj} = ∅. For each ν, we hope
for the following event: aν,Xi = 0 for all i, and aν,Zj = 0 exactly for j �= ν.
For fixed ν, this event happens with probability at least 1/p(k) (over tdν) for
some polynomial p. Since aX =

∑
ν aν,X , we get that with probability at least

(1/p(k))n, we have aXi = 0 for all i and aZj = aj,Zj �= 0 for all j. ��



524 E.S.V. Freire et al.

4 (Hierarchical) ID-Based Non-interactive Key Exchange

Hierarchical identity-based non-interactive key exchange (H-ID-NIKE) is the
natural generalisation of ID-NIKE [23, 11, 20] to the hierarchical setting: a root
authority calculates and distributes private keys to sub-authorities, who in turn
do the same for sub-sub-authorities, and so on, until leaf nodes are reached.
Each node is identified by a vector of identities, and any pair of nodes in the
tree should be able to non-interactively compute a common key based on their
private keys and identities. We recall from the introduction that H-ID-NIKE
schemes are rare, and, to the best of our knowledge, there are not even any
ROM constructions that meet all the desirable criteria (efficiency, scalability,
and full security in the sense of resilience to arbitrary node compromises).

Formally, an H-ID-NIKE scheme H-ID-NIKE consists of three PPT algorithms
(see below), an identity space ID and shared-key space SHK. The users are
organized in a tree of depth L whose root (at level 0) is the trusted authority
(TA). The identity of a user at level d ∈ [L] is represented by a vector id =
(id1, . . . , idd) ∈ IDd.

Setup. The setup algorithm Setup(1k, L) is run by the TA. Given the security
parameter 1k and a parameter L ∈ �, it outputs a master public key mpk
and a master secret key msk . We also interpret msk as the user secret key
uskε for the empty identity ε.

Key Delegation. The key delegation algorithmDel(mpk , usk id, id
′) can be run

by any user to generate a secret key for any of its children. Given the master
public keympk , the user secret key usk id for an identity id = (id1, . . . , idd) ∈
IDd, the algorithm outputs a user secret key usk id′ for any of its children
id′ = (id1, . . . , id �, idd+1) ∈ IDd+1 (for 0 ≤ d < L).

Shared Key Generation. Given the master public key mpk , a user secret
key usk id1

for an identity id1 ∈ ID≤L, and an identity id2 ∈ ID≤L,
ShK(mpk , usk id1

, id2) outputs either a shared key Kid1,id2 ∈ SHK or a
failure symbol ⊥. (If id1 is an ancestor of id2 (or vice-versa) the algorithm
is assumed to always output ⊥ 14; here, id is in particular considered to be
an ancestor of itself. Otherwise the output is assumed to be in SHK.)

For correctness, we require that for any k, L ∈ �, for any (mpk ,msk) ←
Setup(1k, L), for any pair of identities (id1, id2) ∈ IDd1 × IDd2 , such that nei-
ther is an ancestor of the other, and corresponding user secret keys usk id1

and
usk id2 generated by repeated applications of Del from uskε = msk , we have
ShK(mpk , usk id1

, id2) = ShK(mpk , usk id2
, id1).

A (non-hierarchical) ID-NIKE scheme is a H-ID-NIKE scheme in which the
depth L of the tree is fixed to L = 1. (Note that in this case, Del gets as input
uskε = msk and outputs user secret keys for level-1 identities. We may thus also
speak of extraction of user secret keys.)

14 If id1 is an ancestor of id2, it can always compute the user secret key usk id2 ; a key
derived from usk id2 can be used as a shared key between the two users.
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4.1 Security Definition for (H-)ID-NIKE

We present a security model for H-ID-NIKE that is the natural generalisation
of the PS model for ID-NIKE from [20] to the hierarchical setting. The model
significantly strengthens the previous model of Gennaro et al. [14] by being
fully adaptive, allowing arbitrary numbers of node corruptions, and allowing the
adversary access to shared keys as well as user secret keys of inner (i.e., non-leaf)
nodes. The model is defined in terms of a game between an adversary A and a
challenger C. C takes as input the security parameter 1k and a depth L, runs
algorithm Setup of the H-ID-NIKE scheme and gives A the master public key
mpk. It keeps the master secret key, msk, to itself. A then makes queries of the
following three types:

Extract: A supplies an identity id = (id1, . . . , idd) ∈ IDd (for d ∈ [L]). C uses
Del repeatedly, starting from msk , to derive usk id and hands usk id to A.

Reveal : Here A supplies a pair (id1, id2) ∈ IDd1 × IDd2 . C extracts usk id1 as
above, runs Kid1,id2 ← ShK(mpk , usk id1

, id2), and hands Kid1,id2 to A.

Test : A supplies two target identities (id∗
1, id

∗
2) ∈ IDd1×IDd2 such that neither

is an ancestor of the other. C computes Kid∗
1 ,id

∗
2
as above, and tosses a coin

b← {0, 1}. If b = 0 then C gives Kid∗
1 ,id

∗
2
to A; otherwise, if b = 1, then C gives

A a uniform element from SHK.

Finally, A outputs a guess b̂ for b. In our security model, the adversary is allowed
to make an arbitrary (but polynomial) number of Extract and Reveal queries.
Furthermore, the adversary is fully adaptive, in the sense that it can compromise
nodes (by making Extract and/or Reveal queries) in any order. In order to
prevent the adversary from trivially winning, we require that the adversary is
not allowed to make any Extract queries on an ancestor of id∗

1 or id∗
2, and

no Reveal query on the pairs (id∗
1, id

∗
2) and (id∗

2, id
∗
1). The advantage of an

adversary A against a H-ID-NIKE scheme H-ID-NIKE is

AdvIND-SK
A,H-ID-NIKE(k) =

∣∣∣Pr[b̂ = b]− 1/2
∣∣∣

= 1/2
∣∣∣Pr [b̂ = 1 | b = 1

]
− Pr

[
b̂ = 1 | b = 0

]∣∣∣ .
We say that H-ID-NIKE is IND-SK secure iff AdvIND-SK

A,H-ID-NIKE(k) is negligible for
all PPT adversaries A.

In the non-hierarchical case (i.e., L = 1), we recover the definition and security
model for (non-hierarchical) ID-NIKE from [20]. Note also that versions of these
models in which multiple Test queries are permitted for a single bit b can be
shown to be polynomially equivalent to the versions with a single Test query
using standard hybrid arguments.

4.2 Fully-Secure ID-NIKE from MPHFs

In this section we revisit the ID-NIKE scheme of Sakai, Ohgishi and Kasahara
(SOK) [23]. We replace random oracles with (poly, 2)-MPHFs in their scheme
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and prove security of the generalized scheme. Using our standard-model MPHFs,
this yields the first standard-model ID-NIKE scheme.15 We then consider a hi-
erarchical generalisation.

We assume a 2
-group systemMPG2� = {{�i}i∈[2�], p, {ei,j}i,j≥1,i+j≤2�} gen-
erated by a multilinear maps parameter generator MG2�(1

k), and a (poly, 2)-
MPHF H = (HGen,HEval) with input length in {0, 1}k and output in ��. The
component algorithms of our ID-NIKE scheme IDNIKEMPHF are then defined in
Figure 1. (For compatibility with existing notation, we present an extraction
algorithm Ext instead of an equivalent delegation algorithm.) Correctness of the
scheme is easy to verify.

Algorithm Setup(1k)
MPG2� ← MG2�(1

k)
x ← �p, hk ← HGen(1k)
mpk := (MPG2�, hk),msk := x
return (mpk ,msk)

Algorithm Ext(mpk ,msk , id)
usk id ← reRand3(Hhk (id)

msk )
return usk id

Algorithm ShK(mpk , usk id1 , id2)
Kid1,id2 := ext(e(usk id1 ,Hhk (id2)))
return Kid1,id2

Fig. 1. The ID-NIKE scheme IDNIKEMPHF

Theorem 5 (Security of the MPHF-based ID-NIKE scheme). Assume
H is a (poly, 2)-MPHF into ��. Then IDNIKEMPHF is IND-SK secure under the
(2
+ 1)-power assumption.

Proof. See the full version (http://eprint.iacr.org/2013/354.pdf).

A Variant Secure under a Weaker Assumption. We can also construct an
ID-NIKE scheme in the standard model using two instances (with keys hk1, hk2)
of a (poly, 1)-MPHF instead of a single instance of a (poly, 2)-MPHF. Shared keys
are computed asK := ext(e(Hhk1

(id1)
msk ,Hhk2

(id2))); user secret keys are of the
form usk id = (reRand3(Hhk1(id)

msk ), reRand3(Hhk2(id)
msk )). The benefit of this

variant is that it is possible to prove security under the 2
-MDDH assumption
(as opposed to the potentially stronger (2
+1)-power assumption we use above).

4.3 Extension to H-ID-NIKE

We can extend our ID-NIKE scheme to a H-ID-NIKE scheme of constant depth
L. To this end, we work in a 2
L-group system MPG2�L, and use L instances
of a (poly, 2)-MPHF H into ��. The resulting H-ID-NIKE scheme, denoted by

15 If we instantiate the MPHFs again with random oracles (using Theorem 1), we
retrieve the original SOK scheme in pairing-friendly groups, along with a security
proof. However, we note that our security proof uses a different, seemingly stronger
computational assumption.

http://eprint.iacr.org/2013/354.pdf
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HIDNIKEMPHF, is given in Figure 2. In that description, and in the following, we
write id�i := (id1, . . . , id i) for an identity id = (id1, . . . , idd) and i ≤ d. We
assume that all involved identities (including “shortened identities” id�i) can be
uniquely encoded as k-bit strings. (If this is not the case, we can always first
apply a collision-resistant hash function.)

Algorithm Setup(1k, L)
MPG2�L ← MG2�L(1

k)
x ← �p, ũ ← ��, u ← reRand2(ũ)
hk i ← HGen(1k)(i ∈ [L]); msk := x
mpk := (MPG2�L, {hk i}i∈[L], u)
return (mpk ,msk)

Algorithm Del(mpk , usk id, id
′)

parse id′ =: (id1, . . . , idd+1)
if id = (id1, . . . , idd) return ⊥
usk id′ ← reRandd+2(e(usk id,Hhkd+1

(id′
�d+1)))

return usk id′

Algorithm ShK(mpk , usk id1 , id2)
Yid2 := e(Hhk1(id2,�1), . . . ,Hhkd2

(id2,�d2))
Kid1,id2 := ext(e(usk id1 , Yid2 , u, . . . , u︸ ︷︷ ︸

2L−d1−d2 times

))

return Kid1,id2

Fig. 2. The H-ID-NIKE scheme HIDNIKEMPHF

Note. msk = uskε = x ∈ �p = �0, so Del can be used to derive level-1 user secret
keys from msk . (Recall that our definition of e is consistent with the implicit exponent
group �0 = �p; e.g., e(x, g) = gx for x ∈ �0.)

Theorem 6 (Security of the MPHF-based H-ID-NIKE scheme). Let H
be a (poly, 2)-MPHF into ��. For fixed depth L ∈ �, HIDNIKEMPHF is secure
under the (2
L+ 1)-power assumption.

Proof. See the full version (http://eprint.iacr.org/2013/354.pdf).

A More Efficient Variant in the Random Oracle Model. We can replace
the 2
L-group system with a 2L-group system and the L different MPHFs with
a random oracle hashing into �1 in the above scheme HIDNIKEMPHF to obtain
a second H-ID-NIKE scheme which can be proven secure in the random ora-
cle model. In this case, the 2L-group system can be instantiated with smaller
parameters than the 2
L-group system required in our standard model scheme.

Security with Multiple TAs and Group-ID-NIKE. We can also achieve
security in the more general setting of multiple trusted authorities and shared
keys that can be computed by groups of parties instead of just pairs. The details
can be found in the full version.

5 IBE and Signature Schemes from MPHFs

Identity-Based Encryption. An identity-based encryption (IBE) scheme IBE
with identity space ID and message space M consists of four PPT algorithms:

http://eprint.iacr.org/2013/354.pdf
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Gen,Ext,Enc,Dec. Key generation Gen(1k), on input a security parameter 1k,
outputs a master public key mpk and a master secret key msk . Key extraction
Ext(msk , id), givenmsk and an identity id ∈ ID, outputs a user secret key usk id .
Encryption Enc(mpk , id ,M), given mpk , an identity id ∈ ID, and a message
M ∈ M, outputs a ciphertext C. Decryption Dec(usk id , C), given usk id and a
ciphertext C, outputs a messageM ∈M∪{⊥}. For correctness, we require that
for any k ∈ �, all (mpk ,msk) ← Gen(1k), all id ∈ ID, all usk id ← Ext(msk , id),
all M ∈M, and all C ← Enc(mpk , id ,M), Dec satisfies Dec(usk id , C) = M .

IBE-IND-CPA Security. An IBE scheme IBE as above is IBE-IND-CPA se-
cure iff every PPT adversary A succeeds in the following experiment with prob-
ability at most negligibly larger than 1/2. First, A gets an honestly generated
master public key mpk ; in all of the following, A has access to an Ext(msk , ·)
oracle for the corresponding msk . Next, A selects an identity id∗ ∈ ID and
two equal-length messages M0,M1 ∈ M. The experiment then computes C∗ ←
Enc(mpk , id∗,Mb) for uniformly chosen b ← {0, 1} and sends C∗ to A. Finally,
A outputs a guess b′ and succeeds iff b = b′ and it has not queried Ext with id∗.

IBE from (poly, 1)-MPHFs. Figure 3 depicts IBEMPHF, which is the Boneh-
Franklin IBE scheme [4], implemented with (poly, 1)-MPHFs. Message and iden-
tity space areM = ID = {0, 1}k. We assume an (
+1)-group systemMPG�+1 =
{{�i}i∈[�+1], p, {ei,j}i,j≥1,i+j≤�+1} generated by a multilinear maps parameter

generator MG�+1(1
k), and a (poly, 1)-MPHF H into ��. If we take a random

oracle as (poly, 1)-MPHF (as in Theorem 1), then 
 = 1, and we get the original
BF scheme. Correctness of IBEMPHF is easy to verify.

Algorithm Gen(1k)
MPG�+1 ← MG�+1(1

k)
hk ← HGen(1k), h ← �1, x ← �p

mpk := (MPG�+1, hk , h, reRand2(h
x))

msk := (hk , x)
return (mpk ,msk)

Algorithm Ext(msk , id)
parse msk =: (hk , x)
return usk id := reRand3(Hhk (id)

x)

Algorithm Enc(mpk , id ,M)
parse mpk =: (MPG�+1, hk , h, h̃)
r ← �p

C :=
(reRand2(h

r
1), ext(e(Hhk (id), h̃)

r)⊕M)
return C

Algorithm Dec(usk id , C)
parse C =: (C1, C2)
return M := C2 ⊕ ext(e(usk id , C1))

Fig. 3. The IBE scheme from (poly, 1)-MPHFs

Theorem 7. Assume IBEMPHF is implemented in an (
+ 1)-group system, and
with a (poly, 1)-MPHF H into ��. Then, under the (
+ 1)-MDDH assumption,
IBEMPHF is IBE-IND-CPA-secure.

Proof. See the full version (http://eprint.iacr.org/2013/354.pdf).

http://eprint.iacr.org/2013/354.pdf
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Extension to HIBE. We can extend the above IBE scheme to a hierarchical
IBE (HIBE) scheme of constant depth D. This generalization works similarly
as in the ID-NIKE case. Hence, due to space constraints, we postpone a more
detailed exposition to the full version of this paper.

(Hierarchical) Signatures from (poly, 1)-MPHFs. We can convert any
(H)IBE scheme into a (hierarchical) signature scheme using the techniques of [4,
15, 10]. If we apply this transformation to IBEMPHF above, we obtain an abstrac-
tion of BLS signatures [7]. Indeed, if we instantiate the involved MPHF with a
random oracle, we get the original BLS scheme. On the other hand, if we use
the standard-model MPHF from Theorem 3, we obtain (a slight variant of) the
signature scheme of Boneh and Silverberg [5]. In fact, with suitable parameters
(i.e., a larger R, see Section 3.5), we obtain a signature scheme that uses only
O(k/ log(k)) groups and multilinear operations (as opposed to O(k) groups and
multilinear operations in the Boneh-Silverberg scheme). It seems natural to ex-
pect that, using the techniques of [22], this also yields an aggregatable signature
scheme.
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Abstract. The Advanced Encryption Standard (AES) is the most widely
used block cipher. The high level structure of AES can be viewed as a
(10-round) key-alternating cipher, where a t-round key-alternating ci-
pher KAt consists of a small number t of fixed permutations Pi on n
bits, separated by key addition:

KAt(K,m) = kt ⊕ Pt(. . . k2 ⊕ P2(k1 ⊕ P1(k0 ⊕m)) . . . ),

where (k0, . . . , kt) are obtained from the master key K using some key
derivation function.

For t = 1, KA1 collapses to the well-known Even-Mansour cipher,
which is known to be indistinguishable from a (secret) random permuta-
tion, if P1 is modeled as a (public) random permutation. In this work we
seek for stronger security of key-alternating ciphers — indifferentiability
from an ideal cipher — and ask the question under which conditions
on the key derivation function and for how many rounds t is the key-
alternating cipher KAt indifferentiable from the ideal cipher, assuming
P1, . . . , Pt are (public) random permutations?

As our main result, we give an affirmative answer for t = 5, showing
that the 5-round key-alternating cipher KA5 is indifferentiable from an
ideal cipher, assuming P1, . . . , P5 are five independent random permuta-
tions, and the key derivation function sets all rounds keys ki = f(K),
where 0 ≤ i ≤ 5 and f is modeled as a random oracle. Moreover, when
|K| = |m|, we show we can set f(K) = P0(K)⊕K, giving an n-bit block
cipher with an n-bit key, making only six calls to n-bit permutations
P0, P1, P2, P3, P4, P5.

Keywords: Even-Mansour, ideal cipher, key-alternating cipher, indif-
ferentiability.

1 Introduction

Block Ciphers. A block cipher E : {0, 1}κ × {0, 1}n → {0, 1}n takes a κ-bit
keyK and an n-bit input x and returns an n-bit output y. Moreover, for each key

R. Canetti and J.A. Garay (Eds.): CRYPTO 2013, Part I, LNCS 8042, pp. 531–550, 2013.
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K the map E(K, ·) must be a permutation, and come with an efficient inversion
procedure E−1(K, ·). Block ciphers are central primitives in cryptography. Most
importantly, they account for the bulk of data encryption and data authentica-
tion occurring in the field today, as well as play a critical role in the design of
“cryptographic hash functions” [1–4].

Indistinguishability. The standard security notion for block ciphers is that
of (computational) indistinguishability from a random permutation, which states
that no computationally bounded distinguisher D can tell apart having oracle
access to the block cipher E(K, ·) or its inverse E−1(K, ·) for a random key
K from having oracle access to a (single) truly random permutation P and its
inverse P−1. This security notion is relatively well understood in the theory com-
munity, and is known to be implied by the mere existence of one-way functions,
through a relatively non-trivial path: from one-way functions to pseudorandom
generators [5], to pseudorandom functions (PRFs) [6], to pseudorandom per-
mutations (PRPs) [7], where the latter term is also a “theory synonym” for
the “practical notion” of a block cipher. Among these celebrated results, we
explicitly note the seminal work of Luby-Rackoff [7], who proved that four (in-
dependently keyed) rounds of the Feistel network (L′, R′) = (R, f(K,R) ⊕ L),
also known as the “Luby-Rackoff construction”, are enough to obtain a PRP
E((K1,K2,K3,K4), (L0, R0)) on n-bit inputs/outputs from four n/2-to-n/2-
bits PRFs f(K1, R0), . . . , f(K4, R3). In fact, modulo a few exceptions men-
tioned below, the Luby-Rackoff construction and its close relatives were the
only theoretically-analyzed ways to build a block cipher.

Is Indistinguishability Enough? Despite this theoretical success, practical
ciphers — including the current block cipher standard AES — are built using
very different means. One obvious reason is that the theoretical feasibility results
above are generally too inefficient to be of practical use (and, as one may argue,
were not meant to be). However, a more subtle but equally important reason
is that a practitioner — even the one who understands enough theory to know
what a PRP is — would not think of a block cipher as a synonym of a PRP, but
as something much stronger!

For example, the previous U.S. block cipher standard DES had the following so
called “key complementary” property E(K̄, x̄) = E(K,x), where ȳ stands for
the bitwise complement of the string y. Although such an equality by itself does
not contradict the PRP property, though effectively reducing the key space by a
half, it was considered undesirable and typically used as an example of something
that a “good” block cipher design should definitely avoid. Indeed, AES is not
known to have any simple-to-express relations between its inputs/outputs on
related keys. Generally speaking though, related-key attacks under more complex
related-key relations (using nonlinear functions on the master key) for AES were
identified and received a lot of attention in the cryptanalytic community several
years ago [8–10], despite not attacking the standard PRP security. In fact, the
recent biclique cryptanalysis of the full AES cipher [11] in the single-key setting
implicitly uses the similarity of AES computation under related keys.
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Indeed, one of the reasons that practical block ciphers are meant to have
stronger-than-PRP properties is that various applications (e.g. [2–4, 12–19])
critically rely on such “advanced properties”, which are far and beyond the
basic indistinguishability property. Perhaps the most important such example
comes in the area of building good “hash functions”, as many cryptographic
hash functions, including the most extensively used SHA-1/2 and MD5 func-
tions, use the famous block-cipher-based Davies-Meyer compression function
f(K,x) = E(K,x) ⊕ x in their design.1 This compression function f is widely
believed to be collision-resistant (CR) if E is a “good-enough” block cipher (see
more below), but this obviously does not follow from the basic PRP property.
For example, modifying any good block cipher E to be the identity permutation
on a single key K ′ clearly does not affect it PRP security much (since, w.h.p., a
random key K �= K ′), but then f(K ′, x) = x⊕x = 0 for all x, which is obviously
not CR. While the example above seems artificial, we could instead use a natural
and quite popular Even-Mansour (EM) [14] cipher E(K,x) = P (K ⊕ x) ⊕ K,
where P is some “good-enough” public permutation. As we mention below,
the EM cipher is known to be indistinguishable [14] assuming P is a public
“random permutation”, and, yet, the composed Davies-Meyer hash function
f(K,x) = E(K,x) ⊕ x = P (K ⊕ x) ⊕ (K ⊕ x) is certainly not CR, as any
pair (K,x) �= (K ′, x′) satisfying K ⊕ x = K ′ ⊕ x′ yields a collision.

Ideal Cipher Model. Motivated by these (and other) considerations, prac-
titioners view a good block cipher as something much closer to an ideal cipher
than a mere PRP, much like they view a good hash function much closer to a
random oracle than a one-way (or collision-resistant) function. In other words,
many important applications of block ciphers (sometimes implicitly) assume that
E “behaves” like a family IC of 2κ completely random and independent permu-
tations P1, . . . , P2κ . More formally, an analysis in the ideal cipher model assumes
that all parties, including the adversary, can make (a bounded number of) both
encryption and decryption queries to the ideal block cipher IC, for any given
key K (not necessarily random!). Indeed, under such an idealistic assumption
one can usually prove the security of most of the above mentioned applications
of block ciphers [2–4, 13–19], such as a simple and elegant proof that the Davies-
Meyer compression function f(K,x) = E(K,x) ⊕ x is CR in the ideal cipher
model (ICM) [19].

Of course, the ideal cipher model is ultimately a heuristic, and one can con-
struct artificial schemes that are secure in the ICM, but insecure for any concrete
block cipher [22]. Still, a proof in the ideal cipher model seems useful because it
shows that a scheme is secure against generic attacks, that do not exploit specific
weaknesses of the underlying block cipher. Even more important than potential
applications, the ICM gives the block cipher designers a much “higher-than-
PRP” goal that they should strive to achieve in their proposed designs, even
though this goal is, theoretically-speaking, impossible to achieve. This raises

1 Where E is some particular block cipher; e.g., in the case if SHA-1/2, it was called
SHACAL [20, 21].



534 E. Andreeva et al.

an important question to the theory community if it is possible to offer some
theoretical framework within which one might be able to evaluate the design
of important block ciphers, such as AES, in terms of being “close” to an ideal
cipher or, at least, resisting generic “structure-abusing” attacks.

Indifferentiability. One such framework is the so-called indifferentiability
framework of Maurer et al. [23], popularized by Coron et al. [24] as a clean and
elegant way to formally assess security of various idealized constructions of hash
functions and block ciphers. Informally, given a construction of one (possibly)
idealized primitive B (i.e., block cipher) from another idealized primitive A (i.e.,
random oracle), the indifferentiability framework allows one to formally argue
the security of B in terms of (usually simpler) A. Thus, although one does not
go all the way to building B from scratch, the indifferentiability proof illustrates
the lack of “generic attacks” on B, and shows that any concrete attack must use
something about the internals of any candidate implementation of A. Moreover,
the indifferentiability framework comes with a powerful composition theorem [23]
which means that most natural (see [25]) results shown secure in the “ideal-B”
model can safely use the construction of B using A instead, and become secure
in the “ideal-A” model.

For example, we already mentioned that the design of popular hash functions,
such as SHA-1/2 and MD5, could be generically stated in terms of some under-
lying block cipher E. Using the indifferentiability framework, one can formally
ask if the resulting hash function is indifferentiable from a random oracle if E is
an ideal cipher. Interestingly, Coron et al. [24] showed a negative answer to this
question.Moreover, this was not a quirk of the model, but came from a well-known
(and serious) “extension” attack on the famous Merkle-Damg̊ard domain exten-
sion [26, 27]. Indeed, an attack on indifferentiability usually leads to a serious real-
world attack for some applications, and, conversely, the security proof usually tells
that the high-level design of a given primitive (in this case hash function) does not
have structural weaknesses. Not surprisingly, all candidates for the recently con-
cluded SHA-3 competition were strongly encouraged to come with a supporting
indifferentiability proof in some model (as we will expand on shortly).

Random Oracle vs. Ideal Cipher. Fortunately, Coron et al. [24] also showed
that several simple tweaks (e.g., truncating the output or doing prefix-free input
encoding) make the resulting hash function construction indifferentiable from a
random oracle. Aside from formally showing that the ICM model “implies” the
random oracle model (ROM) in theory, these (and follow-up [28, 29]) positive
results showed that (close relatives of) practically used constructions are “secure”
(in the sense of resisting generic attacks, as explained above).

From the perspective of this work, where we are trying to validate the design
principle behind existing block ciphers, the opposite direction (of building an
ideal cipher from a random oracle) is much more relevant. Quite interestingly, it
happened to be significantly more challenging than building a PRP out of a PRF.
Indeed, the most natural attempt is to use the already mentioned Feistel con-
struction, that uses the given random oracles f to implement the required round
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functions.2 However, unlike the standard PRF-PRP case, where four rounds
were already sufficient [7], in the indifferentiability setting even five rounds are
provably insecure [24, 30, 31]. On a high-level, the key issue is that in the lat-
ter framework the distinguisher can have direct access to all the intermediate
round functions, which was provably impossible in the more restricted indis-
tinguishability framework. As a step towards overcoming this difficulty, Dodis
and Puniya [31] considered a variant of the indifferentiability framework called
“honest-but-curious” (HBC) indifferentiability, where the adversary can only
query the global Feistel construction, and get all the intermediate results, but
cannot directly query the round functions. In this model, which turns out to be
incomparable to “standard” indifferentiability [30], they showed that the Feistel
construction with a super-logarithmic number of rounds (with random oracle
round functions) is HBC-indifferentiable from a fixed ideal permutation. The
elegant work of Coron et al. [30] (and later Seurin [32]) conjectured and at-
tempted a “standard” indifferentiability proof for the Feistel construction with
six rounds. Unfortunately, while developing several important techniques, the
proof contained some non-trivial flaws. Fortunately, this result was later fixed
by Holenstein et al. [33], who succeeded in proving that a fourteen-round Feistel
construction can be used to build an ideal cipher from a random oracle.

Key-Alternating Ciphers. Despite this great theoretical success showing the
equivalence between the random oracle and the ideal cipher models, the above
results of [30, 32, 33] only partially address our main motivation of theoretically
studying the soundness of the design of existing block ciphers. In particular,
we notice that (from a high level) there are two major design principles for
block ciphers. The “old school” approach is indeed Feistel-based, with many
prominent ciphers such as DES, Blowfish, Camellia, FEAL, Lucifer, and MARS.
However, it appears that all such ciphers use rather weak (albeit non-trivial)
round functions, and (in large part) get their security by usingmany more rounds
than theoretically predicted. So, while the theoretical soundness of the Feistel
network is important philosophically, it is unclear that random oracle modeling
of the round functions is realistic.

In fact, we already mentioned a somewhat paradoxical fact: while, in theory,
the random oracle model appears much more basic and minimal than the highly
structured ideal cipher model (much like a one-way function is more basic than
a one-way permutation), in practice, the implication appears to be totally re-
versed. In particular, in practice it appears much more accurate to say that hash
functions (or “random oracles”) are built from block ciphers (or “ideal ciphers”)
than the other way around. Indeed, in addition to the widely used SHA-1/2 and

2 The most natural modeling would give a single n-to-n-bit permutation from several
n/2-to-n/2-bit random oracles. However, by prepending the same κ-bit key K to
each such RO, one gets a candidate block cipher. We notice, though, that unlike the
secret-key setting, it is (clearly) not secure to prepend several independent keys to
each round function. We will come back to this important point when discussing the
importance of key derivation in the indifferentiability proofs.
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MD5 examples, other prominent block-cipher-based hash functions are recent
SHA-3 finalists BLAKE [34] and Skein [35].

Perhaps most importantly for us, the current block cipher standard AES,
as well as a few other “new school” ciphers (e.g., 3-Way, SHARK, Serpent,
Present, and Square), are not Feistel-based. Instead, such ciphers are called key-
alternating ciphers, and their design goes back to Daemen [36–38]. In general, a
key-alternating cipher KAt consists of a small number t of fixed permutations
Pi on n bits, separated by key addition:

KAt(K,m) = kt ⊕ Pt(. . . k2 ⊕ P2(k1 ⊕ P1(k0 ⊕m)) . . . ),

where the round keys k0, . . . , kt are derived from the master key K using some
key derivation (aka “key schedule”) function. For one round t = 1, the construc-
tion collapses to the well-known Even-Mansour (EM) [14] cipher. Interestingly,
already in the standard “PRP indistinguishability” model, the analysis of the
EM [14] (and more general key-alternating ciphers [39]) seems to require the
modeling of P as a random permutation (but, on the other hand, does not re-
quire another computational assumption such as a PRF). With this idealized
modeling, one can show that the Even-Mansour cipher is indistinguishable [14],
and, in fact, its exact indistinguishablity security increases beyond the “birthday
bound” as the number of round increases to 2 and above [39, 40].

Our Main Question. Motivated by the above discussion, we ask the main
question of our work:

Under which conditions on the key derivation function and for how many
rounds t is the key-alternating cipher KAt indifferentiable from the ideal
cipher, assuming P1, . . . , Pt are random permutations?

As we mentioned, one motivation for this question comes from the actual de-
sign of the AES cipher, whose design principles we are trying to analyze. The
second motivation comes from the importance of having the composition theo-
rem guaranteed by the indifferentiability framework. Indeed, we already saw a
natural example where using the Even-Mansour cipher to instantiate the clas-
sical Davies-Meyer compression function gave a totally insecure construction,
despite the fact that the Davies-Meyer construction was known to be collision-
resistant in the ideal cipher model [19], and the EM cipher indistinguishable in
the random permutation model [14]. The reason for that is the fact that the EM
cipher is easily seen to be not indifferentiable from an ideal cipher. In contrast,
if we were to use a variant of the key alternating cipher which is provably indif-
ferentiable, we would be guaranteed that the composed Davies-Meyer function
remains collision-resistant (now, in the random permutation model).

The third motivation comes from the fact that the direct relationship between
the random permutation (RP) model and the ideal cipher model is interesting
in its own right. Although we know that these primitives are equivalent through
the chain “IC ⇒ RP (trivial) ⇒ RO [41, 42] ⇒ IC [30, 33]”, a direct “RP ⇒
IC” implication seems worthy of study in its own right (and was mentioned as



On the Indifferentiability of Key-Alternating Ciphers 537

an open problem in [43]).3 More generally, we believe that the random permu-
tation model (RPM) actually deserves its own place alongside the ROM and
the ICM. The reason is that both the block cipher standard AES and the new
SHA-3 standard Keccak [44] (as well as several other prominent SHA-3 finalists
Grøstl [45] and JH [46]) are most cleanly described using a (constant number of)
permutation(s). The practical reason appears to be that it seems easier to ensure
that the permutation design does not lose any entropy (unlike an ad-hoc hash
function), or would not have some non-trivial relationship among different keys
(unlike an ad-hoc block cipher). Thus, we find the indifferentiability analyses in
the RPM very relevant both in theory and in practice. Not surprisingly, there
has been an increased number of works as of late analyzing various constructions
in the RPM [39, 41, 42, 47–50].

Our Main Result. As our main result, we show the following theorem.

Theorem 1. The 5-round key-alternative cipher KA5 is indifferentiable from
an ideal cipher, assuming P1, . . . , P5 are five independent random permutations,
and the key derivation function sets all rounds keys ki = f(K), where 0 ≤ i ≤ 5
and f is modeled as a κ-to-n-bits random oracle.

A more detailed statement appears in Theorem 3. In particular, our indiffer-
entiability simulator has provable security O(q10/2n), running time O(q3), and
query complexity O(q2) to answer q queries made by the distinguisher. Although
(most likely) far from optimal, our bounds are (unsurprisingly) much better than
the O(q16/2n/2) and O(q8) provable bounds achieved by following the indirect
“random-oracle route” [33].

We also show a simple attack illustrating that a one- or even two-round KAt

construction is never indifferentiable from the ideal cipher (in the full version of
this paper [51]). This should be contrasted with the simpler indistinguishability
setting, where the 1-round Even-Mansour construction is already secure [14].
Indeed, as was the case with Merkle-Damg̊ard based hash function design and
the “extension attack”, the Davies-Meyer composition fiasco of the 1-round EM
cipher demonstrated that this lack of indifferentiability indeed leads to a serious
real-world attack on this cipher.

Finally, we give some justification of why we used 5 rounds, by attacking
several “natural” simulators for the 4-round construction.

Importance of Key Derivation. Recall, in the secret-key indistinguishabil-
ity case, the key derivation function was only there for the sake of minimizing
the key length, and having t+1 independent keys k0, . . . , kt resulted in the best
security analysis. Here, the key K is public and controlled by the attacker. In
particular, it is trivial to see that having t + 1 independent keys is like having
a one-round construction (as then the attacker can simply fix all-but-one-keys
ki), which we know is trivially insecure. Thus, in the indifferentiability setting
it is very important that the keys are somehow correlated (e.g., equal).

3 Indeed, our efficiency and security below are much better than following the indirect
route through random oracle.
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Another important property for the key derivation functions, at least if one
wants to optimize the number of rounds, appears to be its invertibility. Very
informally, this means that the only way to compute a valid round ki is to “hon-
estly compute” a key derivation function f on some key K first. In particular, in
our analysis we use a random oracle as such a non-invertible key derivation func-
tion. We give some evidence of the importance of invertibility for understanding
the indifferentiability-security of key-alternating ciphers by (1) critically using
such non-invertibility in our analysis; and (2) showing several somewhat surpris-
ing attacks for the 3-round construction with certain natural “invertible” key
schedules (e.g., all keys ki equal to K for κ = n). We stress that our results do
not preclude the use of invertible key schedules for a sufficiently large number of
rounds (say, 10-12), but only indicate why having non-invertible key schedules
is very helpful in specific analyses (such as ours) and also for avoiding specific
attacks (such as our 3-round attacks). Indeed, subsequent to our work, Lampe
and Seurin [52] showed that the 12-round key alternating cipher will all keys
ki = K (for κ = n) is indeed indifferentiable from an ideal cipher, with security
O(q12/2n) and simulator query complexity O(q4) to answer q queries made by
the distinguisher. Although using substantially more rounds and achieving no-
ticeably looser exact security than this work, their result is closer to the actual
design of the AES cipher, whose key schedule f is indeed easily invertible.

Instantiating the Key Derivation Function. Although we use a random
oracle as a key derivation function (see above), in principle one can easily (and
efficiently!) build the required random oracle from a random permutation [41,
42], making the whole construction entirely permutation-based. For example, the
most optimized “enhanced-CBC” construction from [41] will use only a single
additional random permutation and make 2κ

n + O(1) calls to this permutation
to build a κ-to-n-bit random oracle f .4 Unsurprisingly, this instantiation will
result in a cipher making a lot fewer calls to the random permutation (by a
large constant factor) than following the indirect RP-to-RO-to-IC cycle.

Moreover, we can further optimize the most common case κ = n as follows.
First, [41] showed that f(K) = P (K) ⊕ P−1(K) is O(q2/2n)-indifferentiable
from an n-to-n-bit random oracle, which already results in a very efficient block
cipher construction with 7 permutation calls. Second, by closely examining our
proof, we observe that we do not need the full power of the random oracle f
for key derivation. Instead, our proof only uses the “preimage awareness” [53]
of the random oracle5 and the fact that random oracle avoids certain simple
combinatorial relations among different derived keys. In particular, we observe
that the “unkeyed Davies-Meyer” function [41] f(K) = P (K)⊕K is enough for
our analysis to go through. This gives the following result for building an n-bit
ideal cipher with n-bit key, using only six random permutation calls.

4 The indifferentiability security of this construction to handle q queries is “only”
O(q4/2n), but this is still much smaller than the bound in Theorem 3, and will not
affect the final asymptotic security.

5 Informally, at any point of time the simulator knows the list of all input-output pairs
to f “known” by the distinguisher.
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Theorem 2. The following n-bit cipher with n-bit key is indifferentiable from
an ideal cipher:

E(K,m) = k ⊕ P5(k ⊕ P4(k ⊕ P3(k ⊕ P2(k ⊕ P1(k ⊕m))))),

where k = P0(K)⊕K and P0, P1, P2, P3, P4, P5 are random permutations.

Overall, our results give the first theoretical evidence for the design soundness
of key-alternative ciphers — including AES, 3-Way, SHARK, Serpent, Present,
and Square — from the perspective of indifferentiability.6

2 Preliminaries

For a domain {0, 1}m and a range {0, 1}n, a random oracleR : {0, 1}m → {0, 1}n
is a function drawn uniformly at random from the set of all possible functions
that map m to n bits. For two sets {0, 1}κ and {0, 1}n, an ideal cipher IC :
{0, 1}κ × {0, 1}n → {0, 1}n is taken randomly from the set of all block ciphers
with key space {0, 1}κ and message and ciphertext space {0, 1}n. A random
permutation π : {0, 1}n → {0, 1}n is a function drawn randomly from the set of
all n-bit permutations.

Key-Alternating Ciphers. A key-alternating cipher KAt consists of a small
number t of fixed permutations Pi on n bits separated by key addition:

KAt(K,m) = kt ⊕ Pt(. . . k2 ⊕ P2(k1 ⊕ P1(k0 ⊕m)) . . . ),

where the round keys k0, . . . , kt are derived from the master key K using some
key schedule f : (k0, . . . , kt) = f(K). The notion of key-alternating ciphers itself
goes back to Daemen [36–38] and was used in the design of AES. However, it was
Knudsen [55] who proposed to instantiate multiple-round key-alternating ciphers
with randomly drawn, fixed and public permutations (previously, a single-round
key-alternating construction was proposed by Even-Mansour [14]).

Indifferentiability. We use the notion of indifferentiability [23, 24] in our
proofs to show that if a construction CP based on an ideal subcomponent P is
indifferentiable from an ideal primitive R, then CP can replace R in any system.
As noticed in [25] the latter statement must be qualified with some fine print:
since the adversary must eventually incorporate the simulator, the indifferentia-
bility composition theorem only applies in settings where the adversary comes
from a computational class that is able to “swallow” the simulator (e.g., the class
of polynomial-time, polynomial-space algorithms); see [25, 56] for more details
on the limitations of indifferentiability.

Definition 1. A Turing machine C with oracle access to an ideal primitive P
is called (tD, tS , q, ε)-indifferentiable from an ideal primitive R if there exists a

6 We also mention a complementary recent work of [54], who mainly looked at “weaker-
than-indistinguishability” properties which can be proven about AES design.
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simulator S with oracle access to R and running in time tS, such that for any
distinguisher D running in time at most tD and making at most q queries, it
holds that:

AdvindifC,R,S(D) =
∣∣∣Pr [DCP ,P = 1

]
− Pr

[
DR,SR

= 1
]∣∣∣ < ε.

Distinguisher D can query both its left oracle (either C or R) and its right
oracle (either P or S). We refer to CP ,P as the real world, and to R,SR as the
simulated world.

3 Indifferentiability of KA5

In this section we discuss our main result, namely that KA5 with an RO key sched-
ule is indifferentiable from an ideal cipher. In the statement below, KA5 stands
for a 5-round key-alternating cipher implemented with round functions P1, . . . , P5

and key scheduling function f , with the round functions, their inverses, and the
key scheduling function all being available for oracle queries by the adversary (and
thus, also, all being implemented as interfaces by the simulator).

Theorem 3. Let P1, . . . , P5 be independent random n-bit permutations, and f
be a random κ-to-n-bits function. Let D be an arbitrary information-theoretic
distinguisher that makes at most q queries. Then there exists a simulator S such
that

AdvindifKA5,IC,S(D) ≤ 320 · 610
(
q10

2n
+
q4

2n

)
= O

(
q10

2n

)
,

where S makes at most 2q2 queries to the ideal cipher IC and runs in time
O(q3).

Our 5-round simulator S is given by the pseudocode in game G1 (see Figures
1–4), and more precisely by the public functions f, P1, P1−1, P2, P2−1, ..., P5,
P5−1 within G1. Here f emulates the key scheduling random oracle, whereas P1,
P1−1 emulate the random permutation P1 and its inverse P−1

1 , and so on. Since
the pseudocode of game G1 is not easy to assimilate, a high-level description
of our simulator is likely welcome. Furthermore, because the simulator is rather
complex, we also try to argue the necessity of its complex behavior by discussing
why some simpler classes of simulators might not work.

To describe the simulator-distinguisher interaction we use expressions such
as “D makes the query f(K) → k” to mean that the distinguisher D queries f
(which is implemented by the simulator) on input K, and receives answer k as a
result. The set of values k for which the adversary has made a query of the form
f(K) → k for some K ∈ {0, 1}κ is denoted Z (thus Z is a time-dependent set). If
f(K) → k then we also write K as “f−1(k)”; here f and f−1 are internal tables
maintained by the simulator to keep track of scheduled keys and their preimages
(see procedure f(K) in Figure 1 for more details).
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Game G1

Random tapes: p1, . . . , p5, {pE [K] : K ∈ {0, 1}κ}, rf

private procedure ReadTape(Table, x, p)
y ← p(x)
if (Table(x) = ⊥) then abort
if (Table−1(y) = ⊥) then abort
Table(x) ← y
Table−1(y) ← x
return y

public procedure E(K,x)
if (ETable[K](x) = ⊥) return ETable[K](x)
y ← ReadTape(ETable[K], x, pE[K](→, ·))
return y

public procedure E−1(K, y)
if (ETable[K]−1(y) = ⊥) return ETable[K]−1(y)
x ← ReadTape(ETable[K]−1, y, pE[K](←, ·))
return x

public procedure f(K)
if f(K) = ⊥ return f(K)
k ← rf (K)
Z ← Z ∪ k
f(K) ← k
f−1(k) ← K
KeyQueries ← KeyQueries∪ {(K, k,++qnum)}
if (qnum > 6q2 + q) then abort
return f(K)

public procedure P1(x)
if (P1(x) = ⊥) return P1(x)
y ← ReadTape(P1, x, p1(→, ·))
AddQuery(1, x, y,→)
return P1(x)

public procedure P1−1(y)
PrivateP1−1(y)
Cleanup()
return P−1

1 (y)

Game G1 (continued)

private procedure PrivateP1−1(y)
if (P−1

1 (y) = ⊥) return P−1
1 (y)

x ← ReadTape(P−1
1 , y, p1(←, ·))

AddQuery(1, x, y,←)
FreezeLeftValues(x,⊥)
LeftQueue ← LeftQueue ∪ (1+, y)
return P−1

1 (y)

public procedure P2(x)
if (P2(x) = ⊥) return P2(x)
y ← ReadTape(P2, x, p2(→, ·))
AddQuery(2, x, y,→)
return P2(x)

public procedure P2−1(y)
if (P−1

2 (y) = ⊥) return P−1
2 (y)

x ← ReadTape(P−1
2 , y, p2(←, ·))

AddQuery(2, x, y,←)
return P−1

2 (y)

public procedure P3(x)
PrivateP3(x)
Cleanup()
return P3(x)

private procedure PrivateP3(x)
if (P3(x) = ⊥) return P3(x)
y ← ForcedP3(3−, x)
if (y = ⊥) then

if (y ∈ range(P3)) then abort
P3(x) ← y
P−1
3 (y) ← x

AddQuery(3, x, y,⊥)
RightQueue ← RightQueue ∪ (3+, y)

else
y ← ReadTape(P3, x, p3(→, ·))
AddQuery(3, x, y,→)

end if
LeftQueue ← LeftQueue ∪ (3−, x)
return P3(x)

Fig. 1. The simulated world (first of four sets of procedures)

A triple (i, x, y) such that D has made the query Pi(x) → y or Pi−1(y) → x
is called an i-query, i ∈ {1, 2, 3, 4, 5}. Moreover, when the simulator “internally
defines” a query Pi(x) = y, Pi−1(y) = x we also call the associated triple
(i, x, y) an i-query, even though the adversary might not be aware of these values
yet. (While this might seem a little informal, we emphasize that this section
is, indeed, meant mainly as an informal overview.) A pair of queries (i, xi, yi),
(i+1, xi+1, yi+1) such that yi⊕k = xi+1 for some k ∈ Z is called k-adjacent. We
also say that a pair of queries (1, x1, y1), (5, x5, y5) is k-adjacent if k ∈ Z and
E(f−1(k), x1 ⊕ k) = y5 ⊕ k, where E(K,x) is the ideal cipher (and E−1(K, y) its
inverse). (Since Z is time-dependent, a previously non-adjacent pair of queries
might become adjacent later on; of course, this is unlikely.) A sequence of queries

(1, x1, y1), (2, x1, y2), . . . , (5, x5, y5)
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Game G1 (continued)

public procedure P3−1(y)
PrivateP3−1(y)
Cleanup()
return P−1

3 (y)

private procedure PrivateP3−1(y)
if (P−1

3 (y) = ⊥) return P−1
3 (y)

x ← ForcedP3(3+, y)
if (x = ⊥) then

if (x ∈ domain(P3)) then abort
P3(x) ← y
P−1
3 (y) ← x

AddQuery(3, x, y,⊥)
LeftQueue ← LeftQueue ∪ (3−, x)

else
ReadTape(P−1

3 , y, p3(←, ·))
AddQuery(3, x, y,←)

end if
RightQueue ← RightQueue ∪ (3+, y)
return P−1

3 (y)

public procedure P4(x)
if (P4(x) = ⊥) return P4(x)
y ← ReadTape(P4, x, p4(→, ·))
AddQuery(4, x, y,→)
return P4(x)

public procedure P4−1(y)
if (P−1

4 (y) = ⊥) return P−1
4 (y)

x ← ReadTape(P−1
4 , y, p4(←, ·))

AddQuery(4, x, y,←)
return P−1

4 (y)

public procedure P5(x)
PrivateP5(x)
Cleanup()
return P5(x)

private procedure PrivateP5(x)
if (P5(x) = ⊥) return P5(x)
y ← ReadTape(P5, x, p5(→, ·))
AddQuery(5, x, y,→)
FreezeRightValues(y,⊥)
LeftQueue ← LeftQueue ∪ (5−, x)
return P5(x)

Game G1 (continued)

public procedure P5−1(y)
if (P−1

5 (y) = ⊥) return P−1
5 (y)

x ← ReadTape(P−1
5 , y, p5(←, ·))

AddQuery(5, x, y,←)
return P−1

5 (y)

private procedure FreezeLeftValues(x1, k
�)

forall k ∈ Z\{k�} do
if (x1 ⊕ k ∈ LeftFreezer) then abort
LeftFreezer ← LeftFreezer ∪ {x1 ⊕ k}

end forall

private procedure FreezeRightValues(y5, k
�)

... // (symmetric to FreezeLeftValues)

private procedure ForcedP3(i, z)
if (i = 3−) then

x3 ← z
candidate ← ∅
forall k ∈ Z do

if (x3 ⊕ k /∈ range(P2)) continue
y1 ← P−1

2 (x3 ⊕ k)⊕ k
if (y1 /∈ range(P1)) continue
x1 ← P−1

1 (y1)
if (x1 ⊕ k ∈ LeftFreezer) continue
if (candidate = ∅) then abort
candidate ← (k, x1 ⊕ k)

end forall // (k)
if (candidate = ∅) return ⊥
(k, x) ← candidate
y5 ← E(f−1(k), x)⊕ k
TallyEQuery(f−1(k), x,→)
if (y5 /∈ range(P5)) return ⊥
y4 ← P−1

5 (y5)⊕ k
return P4−1(y4)⊕ k

end if
if (i = 3+) then

... // (symmetric to case (i = 3−))
end if
return ⊥

Fig. 2. The simulated world (second of four sets of procedures)

for which there exists a k ∈ Z such that each adjacent pair is k-adjacent and such
that the first and last queries are also k-adjacent is called a completed k-path or
completed k-chain.

Consider first the simplest attack that a distinguisher D might carry out: D
chooses a random x ∈ {0, 1}n and a random K ∈ {0, 1}κ (where {0, 1}κ is the
key space), queries E(K,x) → y (to its left oracle), then queries f(K) → k,
P1(x ⊕ k) → y1, P2(y1 ⊕ k) → y2, P3(y2 ⊕ k) → y3, ..., P5(y4 ⊕ k) → y5 to
the simulator, and finally checks that y5 ⊕ k = y. The simulator, having itself
answered the query f(K), can already anticipate the distinguisher’s attack when
the query P2(y1 ⊕ k) is made, since it sees that a k-adjacency is about to be
formed between a 1-query and a 2-query. At this point, a standard strategy
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Game G1 (continued)

private procedure ExistsPath(i, z, k)
if (i = 1+) then

y1 ← z
if (y1 /∈ range(P1)) return false
x1 ← P1−1(y1)
(�, x) ← ProbeForward(2, 5, y1 ⊕ k, k)
if (� = 5 ∨ x /∈ domain(P5)) return false
if (E(f−1(k), x1 ⊕ k) = P5(x)⊕ k) then abort
TallyEQuery(f−1(k), x1 ⊕ k,→)
return true

end if
if (i = 3−) then

x3 ← z
(�1, y) ← ProbeBackward(2, 1, x3 ⊕ k, k)
(�2, x) ← ProbeForward(3, 5, x3, k)
if (�1 = 1 ∨ y /∈ range(P1)) return false
if (�2 = 5 ∨ x /∈ domain(P5)) return false
if (E(f−1(k), P−1

1 (y)⊕k) = P5(x)⊕k) then abort
TallyEQuery(f−1(k), P−1

1 (y)⊕ k,→)
return true

end if
if (i = 3+) then

... // (symmetric to case (i = 3−))
end if
if (i = 5−) then

... // (symmetric to case (i = 1+))
end if

private procedure ProbeForward(i, j, xi, k)
// (i, j ∈ {1, 2, 3, 4, 5}, i < j)
while i < j do

if (Pi(xi) = ⊥) break
xi ← Pi(xi)⊕ k
i ← i+ 1

end
return (i, xi)

private procedure ProbeBackward(i, j, yi, k)
// (i, j ∈ {1, 2, 3, 4, 5}, i > j)
while i > j do

if (P−1
i (yi) = ⊥) break

yi ← P−1
i (yi)⊕ k

i ← i− 1
end
return (i, yi)

Game G1 (continued)

private procedure EmptyQueue()
do

while ¬LeftQueue.empty()
(i, z) ← LeftQueue.pop()
if (i = 1+) then ProcessNew1Edge(z)
if (i = 3−) then ProcessNew3−Edge(z)

end while
while ¬RightQueue.empty()

(i, z) ← RightQueue.pop()
if (i = 3+) then ProcessNew3+Edge(z)
if (i = 5−) then ProcessNew5Edge(z)

end while
while (¬LeftQueue.empty())

private procedure ProcessNew1Edge(y1)
forall k ∈ Z

if (ExistsPath(1+, y1, k)) then continue
if (y1 ⊕ k /∈ domain(P2)) then continue
CompletePath1+(y1, k)

end forall

private procedure ProcessNew3−Edge(x3)
forall k ∈ Z

if (ExistsPath(3−, x3, k)) then continue
if (x3 ⊕ k /∈ range(P2)) then continue
CompletePath3−(x3, k)

end forall

private procedure ProcessNew3+Edge(y3)
... // (symmetric to ProcessNew3−Edge)

private procedure ProcessNew5Edge(x5)
... // (symmetric to ProcessNew1Edge)

private procedure Cleanup()
EmptyQueue()
LeftFreezer ← ∅
RightFreezer ← ∅

private procedure AddQuery(i, x, y, dir)
Queries ← Queries ∪ {(i, x, y, dir,++qnum)}
if (qnum > 6q2 + q) then abort

Fig. 3. The simulated world (third of four sets of procedures)

would be for the simulator to pre-emptively7 complete a k-chain by answering
(say) the queries P3(y2⊕k) and P4(y3⊕k) randomly itself, and setting the value
of P5(y4 ⊕ k) to E(f−1(k), x)⊕ k by querying E.

The distinguisher might vary this attack by building a chain “from the right”
(by choosing a random y and querying P5−1(y ⊕ k) → x5, P4

−1(x5 ⊕ k) → x4,
etc) or by building a chain “from the inside” (e.g., by choosing a random x3
and querying P3(x3) → y3, P2

−1(x3 ⊕ k), P4(y3 ⊕ k) → y4, ...) or even by
building a chain “from the left and right” simultaneously (the two sides meeting

7 Pre-emption is generally desirable in order for the simulator to avoid becoming
“trapped” in an over-constrained situation.
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Game G1 (continued)

private procedure CompletePath1+(y1, k)
x1 ← P−1

1 (y1)
x3 ← P2(y1 ⊕ k)⊕ k
x4 ← PrivateP3(x3)⊕ k
x5 ← P4(x4)⊕ k
FinishPath1+3−(x1, x5, k)

private procedure CompletePath3−(x3, k)
x2 ← P−1

2 (x3 ⊕ k)
x1 ← PrivateP1−1(x2 ⊕ k)
x4 ← P3(x3)⊕ k
x5 ← P4(x4)⊕ k
FinishPath1+3−(x1, x5, k)

private procedure FinishPath1+3−(x1, x5, k)
if (x1 ⊕ k ∈ LeftFreezer) then

fresh ← true
LeftFreezer ← LeftFreezer\{x1 ⊕ k}

else
fresh ← false

end if
y5 ← k ⊕ E(f−1(k), x1 ⊕ k)
TallyEQuery(f−1(k), x1 ⊕ k,→)
if (x5 ∈ domain(P5)) then abort
if (y5 ∈ range(P5)) then abort
P5(x5) ← y5
P−1
5 (y5) ← x5

AddQuery(5, x5, y5,⊥)
RightQueue ← RightQueue ∪ (5−, x5)
if (fresh) then

FreezeRightValues(y5, k)
end if

Game G1 (continued)

private procedure CompletePath3+(y3, k)
... // (symmetric to CompletePath3−)

private procedure CompletePath5−(x5, k)
... // (symmetric to CompletePath1+)

private procedure FinishPath5−3+(y5, y1, k)
... // (symmetric to FinishPath1+3−)

private procedure TallyEQuery(K, z, dir)
if (dir =→) then

if (TallyETable[K](z) = ⊥) then ++Eqnum
TallyETable[K](z) ← t ← E(K, z)
TallyETable[K]−1(t) ← z

end if
if (dir =←) then

... // (symmetric to case dir =→)
end if
if (Eqnum > 2q2) then abort

Fig. 4. The simulated world (fourth of four sets of procedures)

up somewhere in the middle). Given all these combinations, a natural strategy
is to have the simulator complete chains whenever it detects any k-adjacency.
We call this type of simulator näıve. The difficulty with the näıve simulator is
that, as the path-completion strategy is applied recursively to queries created by
the simulator itself, some uncontrollable chain reaction might occur that causes
the simulator to create a superpolynomial number of queries, and, thus, lead
to an unacceptable simulator running time and to an unacceptably watered-
down security bound. Even if such a chain reaction cannot occur, the burden of
showing so is on the prover’s shoulders, which is not necessarily an easy task.
We refer to the general problem of showing that runaway chain reactions do not
occur as the problem of simulator termination.8

To overcome the näıve simulator’s problematic termination, we modify the
näıve simulator to be more restrained and to complete fewer chains. For this we

8 Naturally, since the simulator can only create finitely many different i-queries, the
simulator is, in general, guaranteed to terminate. Thus “simulator termination”
refers, more precisely, to the problem of showing that the simulator only creates
polynomially many queries per adversarial query. We prefer the term “termination”
to “efficiency” because it seems to more picturesquely capture the threat of an out-
of-control chain reaction.
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use the “tripwire” concept. Informally, a tripwire is an ordered pair of the form
(i, i+ 1) or (i + 1, i) or (1, 5) or (5, 1) (for a 5-round cipher). “Installing a trip-
wire (i, j)” means the simulator will complete paths for k-adjacencies detected
between positions i and j and for which the j-query is made after the i-query.
(Thus, tripwires are “directed”.) As long as no tripwires are triggered, the sim-
ulator does nothing; when a tripwire is triggered, the simulator completes the
relevant chain(s), and recurses to complete chains for other potentially triggered
tripwires, etc. The “näıve” simulator then corresponds to a tripwire simulator
with all possible tripwires installed. The tripwire paradigm is essentially due to
Coron et al. [30] even while the terminology is ours.

Restricting ourselves to the (fairly broad) class of tripwire simulators, con-
flicting goals emerge: to install enough tripwires so that the simulator cannot be
attacked, while installing few enough tripwires (or in clever enough positions)
that a termination argument can be made. Before presenting our own 5-round
solution to this dilemma, we briefly justify our choice of five rounds.

Firstly, no tripwire simulator with 3 rounds is secure, since it turns out that
the näıve 3-round simulator (i.e., with all possible tripwires) can already be at-
tacked. Hence, regardless of termination issues, any 3-round tripwire simulator
is insecure. Secondly, we focused on 4-round simulators with four tripwires, as
proving termination for five or more tripwires seemed a daunting task. A par-
ticularly appealing simulator, here, is the 4-tripwire simulator

(1, 4), (4, 1), (2, 3), (3, 2)

whose termination can easily be proved by modifying Holenstein et al. termi-
nation argument [33], itself adapted from an earlier termination argument of
Seurin [32]. Unfortunately it turns out this simulator can be attacked, making it
useless. This attack as well as the above-mentioned attack on the 3-round näıve
simulator can be found in the full version of this paper [51], where some other
attacks on tripwire simulators are also sketched.

Ultimately, the only 4-round, 4-tripwire simulator for which we didn’t find an
attack is the simulator with the (asymmetric) tripwire configuration

(1, 2), (3, 2), (3, 4), (1, 4)

(and its symmetric counterpart). However, since we could not foresee a man-
ageable termination argument for this simulator, we ultimately reverted to five
rounds. Our 5-round simulator has tripwires

(2, 1), (2, 3), (4, 3), (4, 5)

(and no tripwires of the form (1, 5) or (5, 1)), as sketched in Figure 5. This sim-
ulator has the advantage of having a clean (though combinatorially demanding)
termination argument, and, as previously discussed, of having excellent efficiency
and also better security than the state-of-the-art in “indifferentiable blockcipher”
constructions.
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k k k k k k

P1 P2 P3 P4 P5

Fig. 5. Tripwire positions for our 5-round simulator. A directed arrow from column Pi

to column Pj indicates a tripwire (i, j). The tripwires are (2, 1), (2, 3), (4, 3) and (4, 5).

Some more high-level description of the 5-round simulator. We have
already mentioned that our 5-round simulator has tripwires

(2, 1), (2, 3), (4, 3), (4, 5).

To complete the simulator’s description it (mainly) remains to describe how
the simulator completes chains, once a tripwire is triggered, since there is some
degree of freedom as to which i-query is “adapted” to fit E, etc. Quickly and
informally, when a newly created 1-query or 3-query triggers respectively the
(2, 1) or (2, 3) tripwire, the relevant path(s) that are completed have their 5-
query adapted to fit E. (We note the same query may trigger the completion
of several new paths.) Symmetrically, when a newly created 3-query or 5-query
triggers a (4, 3) or (4, 5) tripwire, the completed paths have their 1-query adapted
to fit E. We note that new 2-queries and 4-queries can never trigger a tripwire,
due to the tripwire structure. Moreover, 2- and 4-queries are never adapted, and
always have at least one “random endpoint”. The latter property turns out to
be crucial for various arguments in the proof. It also makes the implementation
of the procedures P2(), P2−1(), P4() and P4−1() particularly simple, since these
do nothing else than lazy sample and return.

The above “quick and informal” summary of the path-completion process is
over-simplified because 3-queries can also, in specific situations, be adapted to
complete a path. To gain some preliminary intuition about 3-queries, consider
a distinguisher D that chooses values x and K and then makes the queries
f(K) → k, P1(x⊕k)→ y1, P2(y1⊕k)→ y2, E(K,x) → y, P5−1(y⊕k) → x5 and
P4−1(x5 ⊕ k) → x4. So far, no tripwires have been triggered, but the adversary
already knows (e.g., in the real world) that P3(y2 ⊕ k) = x4 ⊕ k, even while the
simulator has not yet defined anything internally about P3. Typically, such a
situation where the adversary “already knows” something the simulator doesn’t
are dangerous for the simulator and can lead to attacks; in this case, it turns
out the distinguisher cannot use this private knowledge to fool the simulator.
It does mean, however, that the simulator needs to be on the lookout for such
“pre-defined” 3-queries whenever it answers queries to P3(), P3−1() or, more
generally, whenever it makes a new 3-query internally.

In fact the code used by the simulator to answer 3-queries is altogether rather
cautious and sophisticated, even slightly more so than the previous discussion
might suggest. To gain further insight into the simulator’s handling of 3-queries,
consider a distinguisher D′ that similarly chooses values x and K and then
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makes the queries f(K) → k, P1(x⊕k)→ y1, P2(y1⊕k) → y2, E(K,x) → y and
P5−1(y⊕k) → x5. (SoD

′ makes all the same queries as the distinguisherD above
except for the final query P4−1(x5⊕k), which is not made by D′.) At this point,
the value P3(y2 ⊕ k) is not yet pre-defined by E and by the previous queries,
since the query P4−1(x5 ⊕ k) hasn’t been made; if D′ queries P3(y2 ⊕ k) → y3,
the simulator might conceivably sample y3 randomly, and later use the freedom
afforded by the missing P4 query to adapt the chain. If the simulator did this,
however, the simulator would create a “non-random” 4-query (i.e., a 4-query
that doesn’t have at least one non-adapted, “random endpoint”), which would
wreak havoc within the proof. Instead, when faced with the query P3(y2⊕k), the
simulator detects the situation above and starts by making the “missing” query
P4−1(x5 ⊕ k) → x4 internally, thus giving the P4-query its required “random
endpoint” (at x4), and finally adapts P3(y2 ⊕ k) to x4 ⊕ k. It so turns out that,
with high probability, the simulator is never caught trying to adapt P3() to two
different values in this way.

The sets LeftQueue and RightQueue mentioned in the pseudocode are two
queues of queries maintained by the simulator for the purpose of tripwire de-
tection. When a new i-query is created, i ∈ {1, 3}, that the simulator believes
might set off the (2, 1) or (2, 3) tripwire, the simulator puts this i-query into
LeftQueue, to be checked later; similarly for i ∈ {3, 5}, the simulator puts a
newly created i-query into RightQueue if it believes this new query might set off
a (4, 3) or (4, 5) tripwire. (The same 3-query might end up in both LeftQueue and
RightQueue.) As evidenced by the procedure EmptyQueue() in Fig. 3, LeftQueue
and RightQueue are emptied sequentially and separately, which we choose to do
mostly because it offers conceptual advantages within the proof. In the full ver-
sion of this paper [51] we further discuss how the simulator might come to believe
that a newly created i-query will likely not set off a tripwire (and thus not put
this i-query into the relevant queue(s)), as well give a more detailed discussion
of the pseudocode of the simulator.

Due to the space constraints, we similarly leave to the full version [51] a full
formal indifferentiability proof of our construction, as well as all other results
mentioned in the introduction (e.g., our attacks and the proof of Theorem 2).
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Abstract. Cascading-based constructions represent the predominant
approach to the problem of key-length extension for block ciphers. Be-
sides the plain cascade, existing works also consider its modification con-
taining key-whitening steps between the invocations of the block cipher,
called randomized cascade or XOR-cascade. We contribute to the un-
derstanding of the security of these two designs by giving the following
attacks and security proofs, assuming an underlying ideal block cipher
with key length κ and block length n:

– For the plain cascade of odd (resp. even) length � we present a generic

attack requiring roughly 2κ+
�−1
�+1

n (resp. 2κ+
�−2
�

n) queries, being a
generalization of both the meet-in-the-middle attack on double en-
cryption and the best known attack on triple cascade.

– For XOR-cascade of odd (resp. even) length � we prove security up

to 2κ+
�−1
�+1

n (resp. 2κ+
�−2
�

n) queries and also an improved bound

2κ+
�−1
�

n for the special case � ∈ {3, 4} by relating the problem to
the security of key-alternating ciphers in the random-permutation
model.

– Finally, for a natural class of sequential constructions where block-
cipher encryptions are interleaved with key-dependent permutations,

we show a generic attack requiring roughly 2κ+
�−1
�

n queries. Since
XOR-cascades are sequential, this proves tightness of our above re-
sult for XOR-cascades of length � ∈ {3, 4} as well as their optimal
security within the class of sequential constructions.

These results suggest that XOR-cascades achieve a better security/effi-
ciency trade-off than plain cascades and should be preferred.

Keywords: Provable security, block ciphers, key-length extension, ideal-
cipher model, cascade, XOR-cascade.

1 Introduction

1.1 Block Ciphers and the Key-Length Extension Problem

It is beyond question that block ciphers play a pivotal role in cryptographic
practice, being the basic building block for most constructions in the realm
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of symmetric cryptography. The first standardized block cipher achieving huge
popularity and wide-spread use was DES [1], nowadays being replaced by the
current standard AES [4].

Formally, a block cipher with keyspace {0, 1}κ and message space {0, 1}n is
simply a family of efficiently computable (and invertible) permutations Ek on
the set of n-bit strings indexed by a κ-bit key k, which is often emphasized by
referring to it as a (κ, n)-block cipher. For example, n = 64 and κ = 56 for DES,
and n = 128 and κ ∈ {128, 192, 256} for AES.

In most applications that employ a block cipher as its underlying primitive,
it is assumed (and required) that it behaves as a pseudorandom permutation
(PRP), i.e., if used with a random secret key, it cannot be efficiently distinguished
from a uniformly random permutation. To capture this notion, the PRP security
level of a block cipher is defined as the complexity required to distinguish it from
a random permutation with non-negligible advantage.

Key-Length Extension. The key length κ is a crucial security parameter
of every block cipher E. An attacker, given some plaintext-ciphertext pairs,
can easily identify the secret key being used by a brute-force attack if he is
capable of performing roughly 2κ evaluations of E. This key-recovery attack
can be also transformed into a PRP distinguishing attack, implying that the
bound of 2κ evaluations limits the PRP security of every block cipher. This
represents a problem for existing block ciphers with small key length κ for which
2κ operations can no longer be considered beyond the available computational
power of a potential attacker.

A prominent example of such a design is the former standard DES, which
however, apart from its insufficient key size, is believed to contain no significant
structural weaknesses. It also remains attractive thanks to its short block length
which allows enciphering short inputs and explains the wide-spread use of DES-
based constructions in the financial industry even today (see e.g. [6] for the EMV
standard).

Due to the above reasons, there exists a practical demand for constructions
transforming any (κ, n)-block cipher E into a (κ′, n)-block cipher CE while in-
creasing both the key length (i.e., κ′ > κ) and the generic security achieved (i.e.,
the PRP security of CE should be significantly higher than 2κ assuming that
E itself contains no non-generic weaknesses). This is known as the key-length
extension problem for block ciphers and in this paper we contribute to the un-
derstanding and analysis of several cascading-based constructions addressing this
problem. Note that even though the case of DES constituted the initial moti-
vation for the study of key-length extension, we focus on generic constructions
that are applicable to any block cipher, making our results attractive also from
a theoretic perspective.

Ideal-Cipher Model.To assess the security level achieved by the key-length
extension constructions themselves, we assume the absence of any weaknesses of
the underlying block cipher by modelling it as the ideal block cipher E provid-
ing an independent uniformly random permutation for each key. We consider a
distinguisher D that is allowed to issue two types of queries:
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- block-cipher queries to evaluate the block cipher E under any key and on
any input block (both in the encryption and the decryption direction).

- construction queries to evaluate either the key-length extending construction
CE
K′ used with the block cipher E and a uniformly random secret κ′-bit key

K ′; or a uniform random permutation P independent of E (again, both query
directions are allowed).

Hence, the distinguisher is either given to interact with the combined system
(E,CE

K′) or with (E,P) and its goal is to decide which of these two situations
has occurred. Its complexity is determined solely by the sum of its queries of both
types, leading to results of information-theoretic nature. Note that the security
of any key-length extension construction in this model can be upper-bounded by
2κ+n which corresponds to the trivial attack asking all possible block-cipher and
construction queries. This model has already been employed numerous times to
analyze the security of key-length extending constructions, e.g. in [19,10,16,18].

1.2 Plain and Randomized Cascades

Arguably the most natural way to approach the key-length extension problem
is to simply apply the block cipher several times using an independent key at
each step – an approach known as cascading. Its security has been a subject
of extensive study in various models, including the information-theoretic ideal-
cipher model described above. It is well known that a cascade of length two does
not substantially increase security due to the meet-in-the-middle attack [12],
even though a security increase in terms of distinguishing advantage is achieved
for low attack complexities, as shown in [7]. This makes triple encryption the
shortest cascade with a potential for significant security gain, resulting into
its widespread usage as the Triple-DES (3DES) standard [2,3,5]. Given keys
k1, k2, k3 ∈ {0, 1}56, 3DES encrypts a 64-bit message m as

3DESk1,k2,k3(m) = DESk3(DESk2(DESk1(m))) .

3DES was formally studied by Bellare and Rogaway [10], showing its security up
to roughly 2κ+min{κ,n}/2 queries when DES is replaced by an ideal block cipher.
Gaži and Maurer [16] showed that the security lower bound increases further
with the length of the cascade for block ciphers where κ ≤ n, reaching roughly

2min{ 2�κ
�+1 ,κ+

n
2 } queries for a cascade of odd length 
; with increasing 
 this term

approaches 2min{2κ,κ+n
2 }. Recently it was shown by Lee [22] that the security of

the cascade actually approaches the value 2κ+min{κ,n} with increasing 
, however
his result only gives useful bounds for large 
 (say 
 ≥ 16). On the negative side,
Lucks [23] presented an attack on triple encryption that, once cast into the ideal-
cipher model, constitutes the best such attack known in this model by requiring
roughly 2κ+n/2 queries.

An alternative approach to the keylength-extension problem is inspired by
the key-whitening technique, first employed in the DESX construction due to
Rivest. Here, the input and output of the block cipher is masked (“whitened”)
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by an XOR with additional key material as follows: given a key tuple (ki, ko, k) ∈(
{0, 1}64

)2 × {0, 1}56 a message m is mapped to

DESXki,ko,k(m) = ko ⊕DESk(ki ⊕m).

The generalization of DESX for arbitrary κ, n was shown to be secure up to

2
κ+n

2 queries by Kilian and Rogaway [19] even if the same key is used in both
whitening steps.

In an attempt to combine cascading and key whitening, Gaži and Tessaro [18]
proposed the so-called 2-XOR-cascade (or randomized cascade) construction. It
consists of a cascade of length 2 interleaved with two whitening steps, mapping
each n-bit message m under a key (k, z) ∈ {0, 1}k × {0, 1}n to

2XORk,z(m) = Ek̃(Ek(m⊕ z)⊕ z)

where k̃ is derived from k in a deterministic way (e.g. by flipping a single bit).
They prove 2-XOR-cascade to be secure up to 2κ+n/2 queries and also show
that this bound is tight. The recent independent work by Lee [22] considers the
general case of XOR-cascade of length 
 (with independent keys and an XOR
step at the end) and proves that its security approaches the optimal bound 2κ+n,
while again giving useful statements only for large 
.

Other Models.There is a vast amount of literature on the security properties
of different cascading-based constructions for block ciphers in various security
models, in the information-theoretic setting [14,25,31,26,27,17] as well as in the
computational setting [28,30,13]. The models employed in these works are how-
ever orthogonal to ours and hence the results are not directly comparable.

1.3 Our Contributions

Cascades.We start our investigation by looking at the case of a plain cascade
construction of a general length 
 (see Fig. 2). As a complement to the above-
mentioned positive results given in [16,22], in Section 3 we present a generic

attack on 
-cascade in our model that requires roughly 2κ+
�−2
� n queries (2κ+

�−1
�+1n

queries) for even (odd) 
. The well-known meet-in-the-middle attack [12] and the
attack of Lucks [23] turn out to be special cases of our attack for 
 = 2 and 
 = 3,
respectively. To the best of our knowledge, our result also constitutes the first
formal analysis of the advantage achieved by the often-cited attack on triple
encryption [23].

XOR-Cascades. After upper-bounding the security of the seemingly simplest
possible construction — the cascade — we turn our attention to the more in-
volved 
-XOR-cascade constructions of arbitrary length 
 (see Fig. 4) which are
a generalization of the 2-XOR-cascade proposed in [18].

In Section 4 we give a general method to reduce the security of XOR-cascades
in our model to the security of so-called key-alternating ciphers in the random-
permutation model. A key-alternating cipher (KAC) is a block cipher designed
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Fig. 1. Upper bounds on distinguishing advantage versus log2 q (where q is the number
of queries) for plain (blue) and randomized (red) cascades of lengths 2–4, using κ = 56
and n = 64. Curves from left to right: (1) single encryption for reference; (2) 2-cascade;
(3) 3- and 4-cascade (same bound); (4) 2-XOR-cascade; (5) 3-XOR-cascade; (6) 4-
XOR-cascade.

to alternate keyed XOR operations with fixed publicly known permutations
(see Fig. 5). Since AES represents a prominent practical example of this design
paradigm, its security has been extensively studied [11,29,20,8,21]. However, de-
spite the seeming closeness to the structure of XOR-cascades, these two topics
were never related to each other explicitly.

Our reduction relates the security of an XOR-cascade to the security of one
step shorter KAC, allowing for more modular security analysis of XOR-cascades.
By combining it with recent lower bounds on the security of KAC [11,29,20] we

obtain a proof that 3-XOR-cascade and 4-XOR-cascade are secure up to 2κ+
2
3n

and 2κ+
3
4n queries, respectively; and finally, that a general 
-XOR-cascade of

odd (even) length is secure at least up to 2κ+
�−1
�+1n queries (2κ+

�−2
� n queries),

respectively.
The latter result implies that the security of XOR-cascades with increasing

length approaches the optimum 2κ+n. While this also follows from the inde-
pendent concurrent work [22], the bound presented in [22] is not applicable to
small, practical values of 
 (exceeding the trivial security 2κ only for 
 ≥ 5). Using
the DES parameters for illustration, our bound for 3-XOR-cascade is roughly
matched by the bound in [22] for 12-XOR-cascade. We also see the modular
approach of our proof as an advantage, exhibiting a general reduction to the
recently studied security of KAC. On the other hand, the result from [22] gives
a better bound for large values of 
 (e.g. 
 > 22 for DES parameters).

Contrasting our results with the generic attacks on plain cascades given in Sec-
tion 3, we see that a 3-XOR-cascade is provably at least as secure as a 6-cascade
and a 4-XOR-cascade is at least as secure as an 8-cascade, while providing much
better efficiency. This gives us a more robust argument in favor of XOR-cascades
as constructions providing security and efficiency at the same time; a view that
was already advocated in [18]. Note that here we are comparing security lower
bounds (for XOR-cascades) to best known attacks (for plain cascades), making
an even stronger case for the randomization. Alternatively, one can compare the
upper bounds on distinguishing advantages for the constructions considered, we
present one such comparison in Fig. 1.
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Table 1. Best known security lower bounds and generic attacks for various key-length
extension schemes. Each given term is a logarithm of the respective number of queries
and is parameterized by the key length κ and block size n of the underlying block
cipher. References and further details to all depicted bounds are given in the text.
Results denoted by (�) come from this paper.
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sequential

�-XOR- �-query
cascade construction

security attack security attack

2 min{κ, n} κ κ+ n
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{
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2
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2

}
κ+ n

2
κ+ 2
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�
n κ+ �−2

�
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Sequential Constructions. Motivated by the question of tightness of the
above-mentioned bounds for XOR-cascades, we proceed by investigating generic
attacks on a particular class of key-length extending constructions that include
them. In Section 5 we look at constructions issuing 
 queries to the block cipher
while working in a sequential way: they consist of 
 block-cipher encryptions
interleaved with applications of arbitrary permutations that only depend on the
key being used. For this class of constructions that we call sequential we exhibit

an attack requiring approximately 2κ+
�−1
� n queries. Since XOR-cascades clearly

belong to the class of sequential constructions, an 
-XOR-cascade cannot be

secure beyond 2κ+
�−1
� n queries. This shows that the obtained security bounds

for 
 ∈ {3, 4} are tight and moreover, the 
-XOR-cascades of this length are
optimally secure among the class of all sequential constructions, emphasizing
that the extremely cheap XOR operation is sufficient to achieve the full potential
of sequential constructions. This was previously only shown for 
 = 2 in [18].

Summary. Table 1 summarizes the results of this paper in the context of pre-
viously known results. To serve as an overview, most bounds are presented in
a simplified form. For numerical illustration, let us again consider the DES pa-
rameters and the case 
 = 3. For 3-cascade we have a security lower bound of
278.4 [10,16] and an upper bound of 289.6 queries due to the attack [23] ana-
lyzed here. For 3-XOR-cascade the lower and upper bounds are 293.0 and 2102.4

queries, respectively, both obtained in this paper. In both cases, lower bounds
are threshold values where the advantage bound reaches 1/2, upper bounds are
numbers of queries required by our attacks resulting in advantage at least 1/2.

1 For large � (e.g. � > 16 for cascade and � > 22 for XOR-cascade, considering DES
parameters) the security lower bounds are superseded by the results in [22].
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Finally, note that all generic attacks presented in this paper can be mounted
even if the distinguisher is only allowed to ask forward construction queries.
Moreover, these queries can be chosen arbitrarily, resulting in known-plaintext
attacks. In contrast, our security proofs are valid also with respect to an adaptive
adversary allowed to ask also inverse construction queries (CCA adversary).

2 Preliminaries

2.1 Basic Notation

We typically denote sets by calligraphic letters X ,Y, . . ., and by |·| we denote
their cardinalities. The set of all k-tuples xk = (x1, . . . , xk) of elements of X
is denoted by X k. The symbols Func(m, 
) and Perm(n) refer to the sets of all
functions from {0, 1}m to {0, 1}� and of all permutations of {0, 1}n, respectively;
while id ∈ Perm(n) represents the identity mapping when n is implicit. All
logarithms are understood to the base 2.

Random variables and concrete values they can take are usually denoted by
upper-case lettersX,Y, . . . and lower-case letters x, y, . . ., respectively. For events
A and B and random variables U and V with ranges U and V , respectively, we
denote by PUA|V B the corresponding conditional probability distribution, seen
as a (partial) function U×V → [0, 1]. The value PUA|V B(u, v) = P[U = u∧A|V =
v∧B] is well-defined for all u ∈ U and v ∈ V such that PV B(v) > 0 and undefined
otherwise. Two probability distributions PU and PU ′ on the same set U are equal,
denoted PU = PU ′ , if PU (u) = PU ′(u) for all u ∈ U . Conditional probability
distributions are equal if the equality holds for all arguments for which both of
them are defined. To emphasize the random experiment E in consideration, we
sometimes write it in the superscript, e.g. PE

U|V (u, v). The expected value of a

discrete random variable X is denoted by E(X) =
∑

x∈X (x · P[X = x]). The

complement of an event A is denoted by A.

2.2 Random Systems

To present our results we make use of Maurer’s random systems framework [24],
which we now introduce in a self-contained exposition sufficient to follow the
rest of the paper.

We start by observing that the input-output behavior of any kind of reactive
discrete system with inputs in X and outputs in Y can be described by an infinite
family of functions specifying, for each i ≥ 1, the probability distribution of the
system’s i-th output Yi ∈ Y given the values of the first i inputs X i ∈ X i and
the previous i − 1 outputs Y i−1 ∈ Yi−1. Using this viewpoint, we say that an
(X ,Y)-(random) system F is an infinite sequence of functions pFYi|XiY i−1 : Y ×
X i × Yi−1 → [0, 1] such that

∑
yi
pFYi|XiY i−1(yi, x

i, yi−1) = 1 for all i ≥ 1,

xi ∈ X i and yi−1 ∈ Yi−1. Note that pFYi|XiY i−1 by itself does not represent a

(conditional) probability distribution in any particular random experiment with
well-defined random variables Yi, X

i, Y i−1 until the system is connected to a
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distinguisher (see below), in which case these random variables will exist and take
the role of the transcript. We shall typically define discrete systems by a high level
description, as long as the resulting conditional probability distributions could
be derived easily from this description. A system F is deterministic if the range
of pFYi|XiY i−1 is {0, 1} for all i ≥ 1. Moreover, it is stateless if the probability
distribution of each output depends only on the current input, i.e., if there
exists a distribution pY |X : Y × X → [0, 1] such that pFYi|XiY i−1(yi, x

i, yi−1) =

pY |X(yi, xi) for all yi, x
i and yi−1.

A system F might often be used as a component (subsystem) in a construction
C(·), resulting in the composed system CF. While a construction C(·) does not
define a random system by itself, CF does define a random system. The notions
of being deterministic and of being stateless naturally extend to constructions.2

Two (possibly dependent) systems F and G can also be composed in parallel,
denoted (F,G), which simply results in a system that allows queries to both
systems F and G.

Examples.A special case of a random system is a random function F : X → Y
that implements a function f initially chosen according to some distribution
on the set of all functions from X to Y.3 In particular, the uniform random
function (URF) R : {0, 1}m → {0, 1}� realizes a uniformly chosen function f ∈
Func(m, 
), and the uniform random permutation (URP) P : {0, 1}n×{+,−} →
{0, 1}n realizes a uniformly chosen permutation π ∈ Perm(n) allowing both
forward queries of the form (x,+) returning π(x) as well as backward queries
(y,−) returning π−1(y). Throughout this paper we meet the convention that
any system realizing a random function (possibly by means of a construction)
which is a permutation will always allow both forward and backward queries.
Furthermore, by E : {0, 1}κ×{0, 1}n×{+,−} → {0, 1}n we denote the random
function realizing an ideal block cipher that provides an independent uniform
random permutation Ek ∈ Perm(n) for each key k ∈ {0, 1}κ, allowing both
forward and backward queries to each Ek. Finally, note that with some abuse of
notation, we often write Ek or P to refer to the randomly chosen permutation
P implemented by the system Ek or P, respectively.

Distinguishing Random Systems. A distinguisher D for an (X ,Y)-random
system asking q queries is a (Y,X )-random system which is “one query ahead:”
its input-output behavior is defined by the conditional probability distributions
of its queries pDXi|Xi−1Y i−1 for all 1 ≤ i ≤ q. (Its first query is determined by

pDX1
.) After the distinguisher asks all q queries, it outputs a bit Wq depending

on the transcript (Xq, Y q). Given a random system F and a distinguisher D,
we denote by DF the random experiment where D interacts with F, with the
distributions of the transcript (Xq, Y q) and of the bitWq being uniquely defined
by their conditional probability distributions. For two (X ,Y)-random systems

2 We dispense with a formal definition. However, we point out that we allow a stateless
construction to keep a state during invocations of its subsystem.

3 As for the notion of a random variable or a random system, the word “random” does
not imply any uniformity of the distribution.
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F and G, the distinguishing advantage of D in distinguishing systems F and G
by q queries is the quantity ΔD(F,G) = |PDF

Wq
(1) − PDG

Wq
(1)| and the maximal

distinguishing advantage over all distinguishers asking q queries is denoted by
Δq(F,G) = maxDΔD(F,G) (with D ranging over all such distinguishers).

If a detailed description of some distinguisher’s internal workings is needed,
we use standard pseudocode notation (see e.g. Fig. 3). To capture that the
distinguisher issues a query x to a system F and stores the response as y we
always use the explicit notation “query y := F(x)”.

Monotone Conditions. For a random system F, we often consider an in-
ternal monotone condition defined on it. Such a condition is initially satisfied
(true), but once it gets violated, it cannot become true again (hence the name
monotone). We use such conditions to capture whether the behavior of the sys-
tem meets some additional requirement (e.g. distinct outputs, consistent out-
puts) or this was already violated during the interaction that occurred so far.
A monotone condition is formalized by a sequence of events A = A0, A1, . . .
such that A0 always holds, and Ai holds if the condition holds after answering
the i-th query. The probability that a distinguisher D issuing q queries to F
makes a monotone condition A fail in the random experiment DF is denoted by
νD(F, Aq) = PDF(Aq) and maximum over all such distinguishers is denoted by
ν(F, Aq) = maxD νD(F, Aq).

For any random system Fwith a monotone conditionA defined on it, following
[27] we define F blocked by A to be a new random system that behaves exactly
like F as long as the condition A is satisfied; but once A is violated, it only
outputs a special blocking symbol ⊥ not contained in the output alphabet of F.
We will make use of the following helpful claims on random systems proven in
previous works.

Lemma 1. Let C(·) and C′(·) be two constructions invoking a subsystem, and let
F and G be random systems. Let A and B be two monotone conditions defined
on F and G, respectively.

(i) [16, Lemma 2] Let F⊥ denote the random system F blocked by A and let
G⊥ denote G blocked by B. Then for every distinguisher D asking q queries
we have ΔD(F,G) ≤ Δq(F

⊥,G⊥) + νD(F, Aq).
(ii) [24, Lemma 5] Δq(C

F,CG) ≤ Δq′(F,G), where q′ is the maximum number
of invocations of any internal system H for any sequence of q queries to
CH, if such a value is defined.

(iii) [16, Lemma 3] There exists a fixed permutation S ∈ Perm(n) (represented
by a deterministic stateless system) such that Δq(C

P,C′P) ≤ Δq(C
S ,C′S).

3 Plain Cascades

We start by investigating the security of the plain cascade construction. Given
the lower bounds on the security of plain cascades given in [16,22], it is natural
to approach the question from the opposite direction and explore generic attacks
on the cascade construction in our model. In this section we describe such an
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x EK1 EK2 · · · EK�

K1 K2 K�

Fig. 2. The cascade construction realized by CascE�,K̄

attack for the general case of a cascade of arbitrary length 
 ≥ 2. It shows that,

roughly speaking, plain cascade of length 
 can be attacked in 2κ+
�−2
� n queries

(2κ+
�−1
�+1n queries) for even (odd) 
.

Let Casc
(·)
� : ({0, 1}κ)� × {0, 1}n × {+,−} → {0, 1}n denote a (determinis-

tic stateless) construction which expects a subsystem E : {0, 1}κ × {0, 1}n ×
{+,−} → {0, 1}n realizing a block cipher. CascE� then realizes cascaded encryp-
tion of length 
 using the block cipher E and the keys given, i.e., CascE� answers
each forward query (k1, . . . , k�, x,+) by Ek�

(· · ·Ek1 (x) · · ·) and each backward
query (k1, . . . , k�, y,−) by E−1

k1
(· · ·E−1

k�
(y) · · · ). Moreover, we let CascE�,K̄ be the

system that chooses a uniformly random (secret) key tuple K̄ = (K1, . . . ,K�) ∈
({0, 1}κ)� and then gives access to the permutation CascE� (K̄, ·) in both direc-
tions (i.e., takes inputs from {0, 1}n×{+,−}). The evaluation of a forward query
by CascE�,K̄ is depicted in Fig. 2.

Theorem 1. For the cascade construction Casc
(·)
�,K̄

of even length 
 ≥ 2 using

an ideal block cipher E and for any4 parameter 0 < t < 22n/�−1 there exists a
distinguisher D such that

ΔD
(
(E,CascE�,K̄), (E,P)

)
≥ 1− 2

t
− 2�κ−t(n−1)

and D asks at most 
 · 2κ+ �−2
� n queries to E and 2t · 2 �−2

� n forward queries to

either of CascE�,K̄ and P. For odd-length cascades, D requires at most 
 · 2κ+
�−1
�+1n

queries to E and 2t · 2
�−1
�+1n forward queries to either of CascE�,K̄ and P.

Our proof relies on the following technical lemma proven in the full version of this
paper. Let E, Var and Cov denote the usual notions of expected value, variance
and covariance, respectively.

Lemma 2. Let U be a set such that |U| = N and for m ∈ N let A1, · · · ,Am

be sets of size a1, . . . , am respectively, such that each Ai for i ≥ 2 is chosen
independently uniformly at random from all subsets of U having ai elements;
A1 may be chosen arbitrarily. If the random variable X denotes the number of
elements of the intersection A1∩· · ·∩Am then we have E(X) = (

∏m
i=1 ai)/N

m−1

and Var(X) ≤ (
∏m

i=1 ai)/N
m−1.

4 For some intuition about the bound obtained, consider e.g. κ ≈ n and t :≈ �+ 1.
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Distinguisher D(E,S): where S ∈ {CascE�.K̄ ,P}

1: choose arbitrary S0 ⊆ {0, 1}n s.t. |S0| = 2t · 2
�−2
�

n

2: for i := 1 to �/2− 1 do

3: choose uniformly at random S2i ⊆ {0, 1}n s.t. |S2i| = 2
�−2
�

n

4: for all x ∈ S0 do
5: query y(x) := S(x,+)
6: S� := {y(x) | x ∈ S0}
7: for all x ∈ S0 ∪ S2 ∪ · · · ∪ S�−2 do
8: for all k ∈ {0, 1}κ do
9: query ek(x) := E(k, x,+)
10: for all y ∈ S2 ∪ S4 ∪ · · · ∪ S� do
11: for all k ∈ {0, 1}κ do
12: query e−1

k (y) := E(k, y,−)

13: for all k̄ = (k1, . . . , k�) ∈ ({0, 1}κ)� do
14: choose I ⊆ S0 s.t. |I| = t and ∀x ∈ I, ∀i ∈ {1, . . . , �} :

eki(· · · ek1(x)) is known from lines 9 and 12
15: if I exists ∧ ∀x ∈ I : y(x) = ek�

(· · · ek1(x)) then
16: return 1
17: return 0

Fig. 3. Distinguisher D for the proof of Theorem 1 for the case of � being even

Proof (of Theorem 1). Assume 
 is even, we give the description of the distin-
guisherD in Fig. 3. It first chooses an arbitrary set S0 ⊆ {0, 1}n and independent

random sets S2,S4, . . . ,S�−2 ⊆ {0, 1}n of the given sizes and issues 2t · 2 �−2
� n

queries to the construction (cascade or random permutation – let us denote it S)
to obtain S� := S(S0). Each Si will represent the subset of values {0, 1}n that D

“cares about” after i steps of the cascade. Then D issues 
 ·2κ+ �−2
� n block-cipher

queries to obtain all the values

Ek(S0),E
−1
k (S2),Ek(S2), . . . ,E

−1
k (S�−2),Ek(S�−2),E

−1
k (S�)

with all possible keys k ∈ {0, 1}κ. These are all the queries D makes, it remains
to justify that they are sufficient to expect that there is a constant number of
values x ∈ {0, 1}n that, in case the correct keys are guessed, can be traced
through the whole cascade only with the information obtained above. Each such
path then allows us to compare its endpoint with S(x) which will most probably
only match if S is the cascade.

Let us analyze the probability that the set I is found on line 14 in the setting
where S = CascE�.K̄ and the examined key is the correct one, i.e., for k̄ chosen on
line 13 we have k̄ = K̄. Consider the sets

P0 = S0

P2 = E−1
k1

(E−1
k2

(S2))

...

P�−2 = E−1
k1

(· · ·E−1
k�−3

(E−1
k�−2

(S�−2)) · · · ),
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i.e., P2i for i ≥ 1 is the subset of the plaintext space {0, 1}n that gets mapped to
S2i after applying the first 2i steps of the cascade with the correct keys. Since the
sets S2i for i ≥ 1 were chosen independently at random, we can invoke Lemma 2

to obtain that for P =
⋂�/2−1

i=0 P2i we have

E(|P|) =
∏�/2−1

i=0 |P2i|
2n(

�
2−1)

=

∏�/2−1
i=0 |S2i|
2n(

�
2−1)

= 2t

and similarly Var(|P|) ≤ 2t. Using Chebyshev inequality, this gives us P(|P| <
t) ≤ 2/t. If this does not occur (i.e., if |P| ≥ t) then any t-element subset of P
clearly satisfies all requirements imposed on the set I on lines 14 and 15 (note
that any such subset can be chosen, we assume that D has a fixed way of doing
so). Since the desired I exists, D will output 1 in this case. Overall, this gives
us that D(E,CascE�.K̄) outputs 1 with probability at least 1− 2/t.

On the other hand, if S = P then for each k̄ the condition on line 15 can only
be satisfied with probability at most 2−t(n−1), hence by union bound D(E,P)
outputs 1 with probability at most 2�κ−t(n−1), which concludes the proof for the
case of even 
.

For odd 
 we just start by choosing S0,S1,S3, . . . ,S�−2 ⊆ {0, 1}n with |S0| =
2t ·2

�−1
�+1n and each of the remaining sets having size 2

�−1
�+1n. The rest of the attack

and its analysis is analogous and therefore omitted. ��

Interestingly, for 
 = 2 our attack corresponds to the well-known meet-in-the-
middle attack against double encryption [12] and for 
 = 3 it corresponds to one
of the attacks given in [23].

Note that there is a trade-off between the number of construction queries
and block-cipher queries required for the attack presented in Theorem 1. The
attack can be modified in a straightforward way to use a lower number 2tm of

construction queries and 2κ+n− 2 log m
�−2 block-cipher queries. Moreover, the con-

struction queries can be chosen arbitrarily, making it a known-plaintext attack.

4 XOR-Cascades

We now turn to investigate the so-called XOR-cascades that, loosely speaking,
consist of multiple encryption steps interleaved with key-whitening steps using
the XOR operation.

This design paradigm still offers several degrees of freedom: the addition or
omission of the key-whitening step at the beginning and at the end; as well as
repetition or dependence of keys across the encryption and whitening steps. We
resolve the first choice by including the first XOR operation and omitting the last
one, see Fig. 4 and the formal definition below. In the choice of key-scheduling
we consider the variant that derives all keys used in the encryption steps from
a single one in a fixed deterministic way such that they are distinct. This is
safe thanks to the properties of the ideal-cipher model that we are working in
that postulates the independence of the permutations realized for each key by
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x
⊕

EK(1)

⊕
EK(2) · · ·

⊕
EK(�) XE

�,K,Z̄(x)

Z1 K(1) Z2 K(2) Z� K(�)

Fig. 4. The XOR-cascade construction realized by XE
�,K,Z̄

the block cipher; any practical instantiation would however require a form of
security under related-key attack [9]. In order to avoid such an assumption, one
could also consider independent keys for each of the encryption steps, arriving
at the same security statement for a construction requiring more key material.
Finally, we assume the whitening keys to be random and independent. A formal
definition of the 
-XOR-cascade construction follows.

Let us fix a deterministic way to derive 
 distinct κ-bit keys (k(1), . . . , k(�))
from a given κ-bit key k in such a way that each mapping k �→ k(i) is a bijection.
For example, if we assume 
 ≤ κ then we can simply set k(i) := k ⊕ 0i−110κ−i,
i.e., k(i) will differ from k in the i-th bit. The definition extends naturally to
random variables K(1), . . . ,K(�) derived from a uniformly random key K.

In the following discussion, let us model the XOR-cascade of length 
 by a

(deterministic stateless) construction X
(·)
� : {0, 1}κ × ({0, 1}n)�+1 × {+,−} →

{0, 1}n which expects to access a subsystem E : {0, 1}κ × {0, 1}n × {+,−} →
{0, 1}n realizing a block cipher. The combined system XE

� then answers each
forward query (k, z1, . . . , z�, x,+) by Ek(�) (· · ·Ek(2) (Ek(1) (x⊕ z1)⊕ z2) · · · ⊕ z�)
and each backward query (k, z1, . . . , z�, y,−) by E−1

k(1)(· · ·E−1
k(�−1)(E

−1
k(�)(y)⊕z�)⊕

z�−1 · · · ) ⊕ z1. Again, we let XE
�,K,Z̄

be the system that first chooses uniformly

random (secret) keys (K, Z̄) ∈ {0, 1}κ × ({0, 1}n)� where Z̄ = (Z1, . . . , Z�) and
then gives access to the permutation XE

� (K, Z̄, ·) in both directions (i.e., takes
inputs from {0, 1}n × {+,−}). The evaluation of a forward query by XE

�,K,Z̄
is

depicted in Fig. 4.
Before presenting our results, we introduce the notion of key-alternating ci-

phers. This concept, studied for example in [15,11,29,20,8,21], is surprisingly
close to the notion of XOR-cascades, however introduced with a very different
motivation. It refers to a construction of a block cipher by alternating two types
of steps: an XOR of a secret key and an application of a publicly known permuta-
tion (see Fig. 5 and the formal definition below). A prominent example of a block
cipher having this structure is the current standard AES [4]. This approach to
block-cipher construction is then typically studied in the random-permutation
model where one assumes that the permutation steps consist of applications of
uniformly random and independent, publicly accessible permutations. Below we
model the key-alternating ciphers under this assumption. Note that in this set-
ting it is natural to consider constructions that both start and end with the
XOR operation.
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x
⊕

P1

⊕
P2 · · ·

⊕
P�

⊕
A

P̄�

�,Z̄
(x)

Z1 Z2 Z� Z�+1

Fig. 5. The key-alternating cipher realized by AP̄�

�,Z̄

In the following, let us denote by A
(·)
�,Z̄

the key-alternating cipher as it is for-

malized in the random permutation model (e.g. in [15,11,29,20]). More precisely,

let A
(·)
� : ({0, 1}n)�+2 × {+,−} → {0, 1}n be a construction which expects to

access a subsystem P̂� giving bidirectional access to 
 arbitrary permutations
(denoted P1, . . . , P�), using some fixed addressing mechanism for the queries.

The combined system AP̂�

� then answers each forward query (z1, . . . , z�+1, x,+)
by the value P� (· · ·P2 (P1 (x⊕ z1)⊕ z2) · · · ⊕ z�)⊕z�+1 and each backward query
(z1, . . . , z�+1, y,−) by P−1

1 (· · ·P−1
�−1(P

−1
� (y⊕ z�+1)⊕ z�)⊕ z�−1 · · · )⊕ z1. Again,

we let AP̂�

�,Z̄
be the system that first chooses uniformly random (secret) keys

Z̄ ∈ ({0, 1}n)�+1 where Z̄ = (Z1, . . . , Z�+1) and then gives access to the per-

mutation AP̂�

� (Z̄, ·) in both directions (taking inputs from {0, 1}n × {+,−}).
Finally, let P̄i denote a system that provides bidirectional access to i indepen-

dent uniformly random permutations. The evaluation of a forward query by AP̄�

�,Z̄

is depicted in Fig. 5 and some known results on the security of key-alternating
ciphers in the random-permutation model are summarized using our formalism
in Appendix A.

We are now ready to present the reduction of the security of XOR-cascades
in the ideal-cipher model to the problem of the security of one step shorter key-
alternating ciphers in the random-permutation model. This reduction allows one
to analyze the problem in a simpler setting without considering the block-cipher
keys, as well as invoke existing results on key-alternating ciphers. The proof
modularizes the approach used in [18] to analyze the security of XOR-cascade
of length 2 and generalizes it to arbitrary lengths.

Theorem 2. For 
 ≥ 2, for the constructions X
(·)
�,K,Z̄

and A
(·)
�−1,Z̄

defined as

above, and for every distinguisher D making q queries to E,

ΔD
((

E,XE
�,K,Z̄

)
, (E,P)

)
≤ min

h

{

q

h2κ
+Δh

((
P̄�−1,A

P̄�−1

�−1,Z̄

)
, P̄�

)}
.

In particular, D can make arbitrarily many queries to either of XE
�,K,Z̄

and P.

Proof. In accordance with [10,16,18] we first reduce the original distinguishing
problem to a simpler one, involving only block-cipher queries. Overall, the sys-
tem (E,XE

�,K,Z̄
) provides an interface to query 2κ+1 (dependent) permutations:
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2κ of them correspond to the block cipher E being used under all possible keys
and the last permutation is provided by XE

�,K,Z̄
, where the values K and Z̄ are

chosen at the beginning by the construction X�,K,Z̄ . (All these permutations can
be queried both in forward and backward direction.) Since the last permutation
is also uniformly distributed and Perm(n) forms a group under composition, the
joint distribution of these permutations does not change if we first choose the
last permutation uniformly at random, i.e., we replace it by P, then pick random
K and Z̄ and finally choose the permutations of the block cipher independently
and uniformly for all keys except K(�), for which we choose the permutation
x �→ P(E−1

K(1)(· · ·E−1
K(�−2)(E

−1
K(�−1)(x ⊕ Z�) ⊕ Z�−1) · · · ) ⊕ Z1). To formalize this

transition, let G(·) be a construction that expects a single permutation as its
subsystem (let us denote it P ) and itself provides an interface to a block cipher
(let us denote it G). Any query to G is answered in the following way: in ad-
vance, G chooses random keys (K, Z̄) and then generates random independent
permutations for G used with any key except K(�). For K(�), G instead realizes
the permutation x �→ P (G−1

K(1)(· · ·G−1
K(�−2)(G

−1
K(�−1)(x ⊕ Z�) ⊕ Z�−1) · · · ) ⊕ Z1),

querying P for any necessary values. By the above argument we then have(
E,XE

�,K,Z̄

)
= (GP,P) and hence also

Δq

((
E,XE

�,K,Z̄

)
, (E,P)

)
= Δq

((
GP,P

)
, (E,P)

)
.

Now we can apply claim (iii) in Lemma 1 to obtain Δq

((
GP,P

)
, (E,P)

)
≤

Δq

((
GS , S

)
, (E, S)

)
where S denotes the fixed permutation whose existence is

guaranteed by this claim. Since S is fixed and hence can be seen as known to
the distinguisher, it makes no sense to query it and therefore we only have to
bound Δq

(
GS ,E

)
for an arbitrary permutation S. To simplify the notation, we

shall denote the system GS by G.

Let us call a (forward or backward) query to G relevant if it involves any of the
keys K(1), . . . ,K(�). Similarly, we can see the system E as also choosing some
random key K (and hence also all K(i)) that does not affect its behavior, it
just serves to define relevant queries for E in an analogous way. We now define
monotone conditions Ah and Bh on systems E and G respectively, such that
each of these conditions remains satisfied as long as at most h of the queries
asked so far were relevant. In E the probability of violating this condition can
be upper-bounded easily since the keys K(i) do not affect the system’s behavior
and hence it suffices to consider non-adaptive strategies. The expected number of
relevant queries among any given q queries asked by the distinguisher is 
q · 2−κ

and from Markov inequality we obtain ν(E,Ah

q ) ≤ 
q/h2κ. Hence by claim (i)
of Lemma 1 we have

Δq(G,E) ≤ Δq(G
⊥,E⊥) + ν(E,Ah

q ) ≤ Δq(G
⊥,E⊥) + 
q/h2κ

where E⊥ and G⊥ denote the systems E and G blocked by Ah and Bh, respec-
tively.



566 P. Gaži

In order to upper-bound the term Δq(G
⊥,E⊥), we notice that the systems

G⊥ and E⊥ only differ in a small part. Moreover, this part corresponds to the
systems considered in the security definition of key-alternating ciphers in the
random-permutation model. More precisely, G⊥ = CS and E⊥ = CT where:

- S denotes a system that chooses 
 random keys Z̄ ∈ ({0, 1}n)� and then
provides access (by means of both forward and backward queries) to 
 ran-
domly chosen permutations π1, . . . , π� ∈ Perm(n) such that they satisfy the
equation

π−1
� (π�−1(· · ·π2(π1(· ⊕ Z1)⊕ Z2)⊕ Z3 · · · )⊕ Z�) = id;

i.e., π1, . . . , π�−1 are chosen independently at random and π� is set to

x �→ π�−1(· · ·π2(π1(x⊕ Z1)⊕ Z2)⊕ Z3 · · · )⊕ Z�.

Note that this corresponds to the system
(
P̄�−1,A

P̄�−1

�−1,Z̄

)
.

- T denotes a system that provides access (by means of both forward and
backward queries) to 
 uniformly random permutations π1, . . . , π� ∈ Perm(n)
that are independent. This in turn corresponds to the system P̄�.

- C(·) denotes a randomized construction expecting a subsystem providing
bidirectional access to 
 permutations π1, . . . , π�. The construction C(·) itself
then provides access to a block cipher (let us denote it C) as follows: it first
chooses a uniformly random key K and then sets CK(i) := πi for all i ∈
{1, . . . , 
− 1} and CK(�)(·) := S(π−1

� (·)). (C only queries its subsystem once
it is necessary in order to answer a relevant query to C). The permutations
for all other keys are chosen independently at random and maintained by C.
Moreover, C only allows h relevant queries, after that it returns ⊥.

It is now straightforward to verify that we indeed have G⊥ = CS and E⊥ = CT.
Since C(·) issues at most h queries to its subsystem, we can invoke Lemma 1(ii)
to obtain

Δq(G
⊥,E⊥) ≤ Δh(S,T) = Δh

((
P̄�−1,A

P̄�−1

�−1,Z̄

)
, P̄�

)
.

The whole argument holds for any parameter h, hence we can minimize over it
to conclude the proof of the theorem. ��

Combining our Theorem 2 with the known results on the security of key-
alternating ciphers in the random permutation model [11,29,20] given in Ap-
pendix A we obtain the following corollary.

Corollary 1. Let X
(·)
�,K,Z̄

denote the 
-XOR-cascade construction as above. Then

we have:

1. 3-XOR-cascade is secure up to roughly 2κ+
2
3n queries; more precisely, for

n ≥ 20 we have

Δq

((
E,XE

3,K,Z̄

)
, (E,P)

)
≤ 3 ·

(
q

2κ+
2
3n

) 1
2

+ 9 ·
(

q

2κ+
2
3n

) 3
2

+ 3 · q

2κ+
2
3n

.
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2. 
-XOR-cascade is secure up to roughly 2κ+
3
4n queries for 
 ≥ 4; more pre-

cisely, for n ≥ 27 we have

Δq

((
E,XE

�,K,Z̄

)
, (E,P)

)
≤ 
 ·

(
q

2κ+
3
4n

) 1
2

+ 9 · q

2κ+
3
4n

+ 4 ·
(

q

2κ+
3
4n

) 3
2

.

3. 
-XOR-cascade is secure up to roughly 2κ+
�−1
�+1n queries for odd 
; more pre-

cisely, we have

Δq

((
E,XE

�,K,Z̄

)
, (E,P)

)
≤ (
+1)·

(
q

2κ+
�−1
�+1n

) 1
2

+23+
�−1
4 ·
(

q

2κ+
�−1
�+1n

) �+1
8

.

For even 
 one can prove the same security as for one step shorter odd-length
XOR-cascade.

Proof (sketch). We combine the statement of Theorem 2 with the bounds on the
security of the key-alternating cipher listed in Theorem 4, choosing the value h

to be q
1
2 2

n
3 −κ

2 , q
1
2 2

3n
8 −κ

2 and q
1
2 2

(�−1)n
2(�+1)

−κ
2 in the three cases above, respectively.

The statements for constructions with more rounds follow from the fact that

Δh

((
P̄�,A

P̄�

�,Z̄

)
, P̄�+1

)
≤ Δh

((
P̄�−1,A

P̄�−1

�−1,Z̄

)
, P̄�

)
which can be shown by a straightforward reduction. ��

5 Sequential Constructions

To obtain an upper bound on the security achievable by the 
-XOR-cascade con-
struction, in this section we consider keylength-extending constructions having
a particular natural form which we call sequential.

A construction C : {0, 1}κ′ ×{0, 1}n×{+,−} → {0, 1}n is sequential if, given
an underlying block cipher E, the mapping it realizes can be written as

CE(k′, x,+) = Q�,k′ (Ek�
(Q�−1,k′ (· · ·Ek2 (Q1,k′ (Ek1 (Q0,k′(x)))) · · ·)))

where all keys ki are determined by k′ and Qi,k′ is a fixed permutation for

all (i, k′) ∈ {0, . . . , 
} × {0, 1}κ′
. Again, we let CE

K′ be the system that first

chooses a uniformly random (secret) key K ′ ∈ {0, 1}κ′
and then gives access

to the permutation CE(K ′, ·) in both directions (i.e., takes inputs from the set
{0, 1}n × {+,−}).

The attack on a class of so-called injective 2-query constructions given in [18]
can be generalized to sequential 
-query constructions for arbitrary 
, resulting
in the statement below. Its proof is given in the full version of this paper. Note
that this attack can also be seen as a lifting of an attack presented in [11] into
the ideal block-cipher setting.



568 P. Gaži

Theorem 3. Let C(·) : {0, 1}κ′ × {0, 1}n × {+,−} → {0, 1}n be a sequential 
-
query construction. For any parameter 0 < t < 2n/�−1 there exists a distinguisher
D such that

ΔD((E,CE
K′), (E,P)) ≥ 1− 2/t− 2κ

′−t(n−1),

where D makes at most (2t + 
) · 2κ+ �−1
� n block-cipher queries as well as 2n

forward construction queries.

Again, a trade-off between the number of construction queries and block-cipher
queries is possible: an analogous attack can be mounted with a lower numberm of

construction queries and at most (2t+ 
) · 2κ+n− log m
� block-cipher queries. Also

here the construction queries can be arbitrary, resulting in a known-plaintext
attack.
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A Security of Key-Alternating Ciphers

In this appendix we present several bounds recently proved for the security
of key-alternating ciphers in the random-permutation model, recast into our
formalism.

Theorem 4. Let A�,Z̄ denote the key-alternating cipher of length 
 as described
above.
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Abstract. In a digital signature scheme with message recovery, rather
than transmitting the message m and its signature σ, a single enhanced
signature τ is transmitted. The verifier is able to recover m from τ and at
the same time verify its authenticity. The two most important parameters
of such a scheme are its security and overhead |τ | − |m|. A simple argu-
ment shows that for any scheme with “n bits security” |τ |− |m| ≥ n, i.e.,
the overhead is lower bounded by the security parameter n. Currently,
the best known constructions in the random oracle model are far from
this lower bound requiring an overhead of n + log qh, where qh is the
number of queries to the random oracle. In this paper we give a con-
struction which basically matches the n bit lower bound. We propose a
simple digital signature scheme with n + o(log qh) bits overhead, where
qh denotes the number of random oracle queries.

Our construction works in two steps. First, we propose a signature
scheme with message recovery having optimal overhead in a new ideal
model, the random invertible function model. Second, we show that a
four-round Feistel network with random oracles as round functions is
tightly “public-indifferentiable” from a random invertible function. At
the core of our indifferentiability proof is an almost tight upper bound
for the expected number of edges of the densest “small” subgraph of a
random Cayley graph, which may be of independent interest.

Keywords: digital signatures, indifferentiability, Feistel, Additive com-
binatorics, Cayley graph.

1 Introduction

When transmitting a message m over an unauthenticated public channel, one
usually appends a string σ to the message that can be used to verify (relative
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to a public key) the authenticity of the message. This string σ is called a digital
signature of m. More generally, one transforms the message m into an enhanced
signature τ such that (i) the original messagem can be recovered from τ ; (ii) the
authenticity ofm can be verified from τ . This is called a digital signature scheme
with message recovery (MR) and is used to save on bandwidth, i.e., to minimize
the signature overhead informally defined as O = |τ | − |m| (signature length
minus message length). Standard bodies for signature schemes (e.g. ISO/IEC
9796 and IEEE P1363a) contain several schemes with MR. In this paper we ask
the natural question: what is the minimal overhead required to achieve a desired
security level?

1.1 Bounds on the Overhead

A Trivial Lower Bound for Every Scheme. Following [3], we say that a
signature scheme has “n-bit security” if all adversaries A attacking the scheme
have success ratio SR(A) at most 2−n, where SR(A) := success(A)/time(A). A
natural lower bound for the overhead of a signature scheme (with or without
message recovery) for n-bit security is O ≥ n bits. This is since for a signature
scheme with O bits of overhead any random bit string τ constitutes a valid
enhanced signature with probability 2−O. Hence an adversary A guessing a single
random authenticated message τ has success ratio SR(A) = 2−O which implies
O ≥ n.

Overhead of Schemes without MR. In standard digital signature schemes
(without message recovery) such as RSA full domain hash [5], the probabilistic
signature scheme PSS [5], or (pairing-based) BLS signatures [6] the overhead
equals the size of a signature. Since classical signatures contain (at least) one
group element (e.g., Z∗

N or an elliptic curve group) whose representation requires
at least 2n bits (for n bits security, due to generic square-root attacks) we cannot
hope to obtain an overhead smaller than 2n bits. The above lower bounds do not
apply for schemes without such a group structure, in particular schemes based
on lattices or codes, but for other reasons these schemes tend to have a very
large overhead and/or prohibitively large public parameters.

Overhead of Schemes with MR in the RO model. Computing the over-
head for a given signature scheme turns out to be a bit subtle and depends on
the security reduction. We exemplify such a calculation for the RSA-based prob-
abilistic signature scheme with message recovery PSS-MR[n0, n1] [5], which can
be seen as a two-round Feistel construction. PSS-MR[n0, n1] has an overhead of
n0+n1 bits, where parameter n0 controls the randomness and n1 the amount of
added redundancy used during signing. The minimal size of n0 and n1 providing
a given security level can be computed from the security reduction. The security
reduction from [5] in the random oracle model [4] transforms an adversary against
PSS-MR[n0, n1] making qs (online) signing and qh (offline) hash queries with suc-
cess probability εPSS-MR into an adversary against RSA with success probability
εRSA such that εPSS-MR = εRSA + εsim , where εsim = (qs + qh)

2(2−n0 + 2−n1).
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An easy computation shows that this implies OPSS-MR = n0+n1 ≥ 2n+2 log2(qh)
bits of overhead for n bits security.1 An improved security reduction by Coron
gives OPSS-MR ≥ 2n+log2(qh)+log2(qs). Recently, an alternative security reduc-
tion for PSS-MR was proposed in [15] demonstrating a tight security reduction
for PSS-MR[n0 = 0, n1] with zero-padding from the (stronger) phi-hiding as-
sumption [7]. However, the required overhead is still OPSS-MR = n + log2(qh)
bits, stemming from an additive term εsim = q2h/2

n1 in the security reduction.

TheRandom Invertible PermutationModel.Besides the popular random-
oracle model, signature schemes have also been analyzed in other idealized mod-
els. In particular, [16,8] propose a digital signature scheme with message recovery,
together with optimal security reduction in the ideal random invertible permuta-
tion model. Unfortunately, unlike for random oracles, there is no standard cryp-
tographic object which could be used to directly instantiate random invertible
permutations over a large domain.2 In order to get a construction in the random
oracle model, one can replace the random invertible permutation P with some
construction CH (based on a random oracle H) that is indifferentiable [19,10]
from P . In the context of signature schemes, already a weaker notion called
“public-indifferentiability” [23,11,18] is sufficient. In [18] it is proven that a six-
round Feistel network with random round functions is public-indifferentiable
from a random invertible permutation. (For full indifferentiability more rounds
are needed [14].) Unfortunately, the reduction from [18] is not tight in the oracle
query complexity (i.e., the number of queries made by the simulator is quadratic
in the number of the queries made by the distinguisher), and as a consequence
the required overhead is log(qh) bits larger than in the ideal permutation model.

Table 1 summarizes the signature overhead and gives concrete parameters
for a typical security parameter of n = 80 bits and using 1024/2048-bit RSA.
(Parameters for n ∈ {128, 192, 256} can be computed accordingly.) We remark
that the table is only valid for sufficiently large messages, i.e., if |M | ≥ 1024−O.
For smaller messages standard signatures such as BLS naturally outperform any
RSA-based signature scheme with MR.

1.2 Our Contribution

Our main contribution is to revisit and affirmatively answer the question whether
there exist signature schemes with minimal overhead in the random oracle model.
In a first step we show that such a scheme exists in a new ideal model which we
call random invertible function model, provided that the ideal functions’ image

1 For n-bit security of PSS-MR[n0, n1] we require SR(A) ≤ 2−n+1 which is implied by
εRSA/time(A) ≤ 2−n and εsim/time(A) ≤ 2−n. With time(A) ≥ qs + qh we obtain
n0 ≥ n + log2(qh) and n1 ≥ n + log2(qh) and consequently the overhead is O =
n0 + n1 ≥ 2n+ 2 log2(qh).

2 For fixed small domain, one might use a block-cipher with a fixed key. Though,
the heuristic to replace a random permutation with a block-cipher like AES with
fixed known keys is not as well analyzed as replacing a random oracle with a strong
cryptographic hash function.
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Table 1. Overhead of RSA-based signature schemes with message recovery in the
random oracle model for n bits security assuming the adversary makes at most qh hash
and qs signing queries. The table shows the overhead required for n = 80 (and only
the trivial upper bound qh ≤ 280) and when we additionally assume that the number
of random-oracle/signature queries are upper bounded by qh ≤ 260 and qs ≤ 240,
respectively. As the o(log qh) term in our bound depends on the domain, we give the
bounds for 1024 and 2048 bits RSA.

Type Required overhead O for n bits security Security
asymptotic n = 80 qh ≤ 260, qs ≤ 240 reduction

2-round Feistel 2n+ 2(log qh) 320 280 Bellare-Rogaway [5]
2-round Feistel 2n+ log(qh) + log(qs) 320 240 Coron [9]
2-round Feistel n+ log(qh) 160 140 Kakvi-Kiltz [15]
6-round Feistel n+ log(qh) 160 140 [16,8]+[18]
4-round Feistel n+ o(log qh) 97 93 this work (1024-bit RSA)
4-round Feistel n+ o(log qh) 92 90 this work (2048-bit RSA)

is sufficiently sparse. Next, we show that a Feistel network with four rounds
and random oracles as round functions is public-indifferentiable from a random
invertible function with an almost tight reduction. Combining the two steps,
we obtain a new signature scheme with message recovery with almost minimal
overhead in the random oracle model.

Signature scheme with MR from random invertible functions. Given
a trapdoor permutation TDP = (f, f−1) over {0, 1}k and an injective function
F : {0, 1}m → {0, 1}k (k > m) that can be queried in both directions, we
can define a signature scheme with message recovery SIG-MRF as follows. The
enhanced signature τ on a message m is defined as τ = f−1(F(m)). Signature
recovery first evaluates the trapdoor permutation on τ and checks if the result
has a valid pre-image or not, i.e., {m,⊥} = F−1(f(τ)). If the result is not ⊥, it
returns message m. The overhead of SIG-MRF is O = k−m bits. It is a straight-
forward generalization of [16,15], to prove that the resulting signature scheme
SIG-MRF is tightly secure (losing an additive factor qF/2k−m, where qF is the
number of queries to F) if F is chosen at random. (The above scheme can only
be proved secure assuming TDP is lossy [22]. Using a trick of [16] we can also
prove a slightly modified scheme tightly secure assuming TDP is one-way.)

Instantiating Invertible Random Functions with Random Oracles.

To instantiate the above scheme in the random oracle model, we must replace
the random invertible function F : {0, 1}m → {0, 1}k with a construction CH

that is public-indifferentiable from F .
It is easy to construct a random invertible function F : {0, 1}m → {0, 1}k

from a random invertible permutation P : {0, 1}k → {0, 1}k (by setting F(x) =
P(x‖0k−m)) with a tight reduction. But as discussed above, we do not know how
to instantiate P in the random oracle model without losing at least a quadratic
factor in the oracle query complexity [18]. Furthermore, it is well known that a



Digital Signatures with Minimal Overhead 575

five (or less) round Feistel network cannot be pub-indifferentiable from a random
invertible permutation [18].

A formal definition of pub-indifferentiability is given in Definition 1. The
important parameters are the error εsim and the number of queries qS made by
the simulator S, which are both functions in the number of queries qD made
by the distinguisher D. In order to get a reduction with optimal overhead, i.e.,
where the security (in bits) is not much smaller than the overhead O = k −m,
we need qS ≈ qD and εsim ≈ qD/2

k−m.

Two Feistel rounds. As a simple warmup example we show that a two-round
Feistel network (with random oracles as round functions) is pub-indifferentiable
from F with

εsim = q2D/2
k−m and qS = qD.

The resulting signature scheme (as explained above) requires an overhead of
O = n+log2(qh) to achieve n bits security. This essentially reproves the overhead
of PSS-MR obtained in [15].

Four Feistel rounds. As the main technical result of this paper we give
a construction CH

4F based on a four round Feistel network and prove it pub-
indifferentiable from F with

εsim ≤ q
1+o(1)
D /2k−m and qS = Õ(qD). (1)

Hence the resulting signature scheme has an overhead of O = n+ o(log qh) bits,
cf. Table 1. The o(1) term can be computed explicitly and for example leads to
97 bits overhead for n = 80 bits security if the domain of the TDP is at least
1024 bits (we get smaller overhead if the domain is larger or we put non-trivial
bound on qh). The o(1) term goes to 0 as the ratio of the security we want to
achieve, divided by the domain size of the TDP, decreases.

In the proof of (1), the variable Q(μ, q) = maxX ,Z |{(x, z) |x ∈ X , z ∈ Z, z −
x ∈ B}| (where B,X ,Z are q element subsets of Zμ and B is sampled uniformly
at random) will play a central role. This variable has a natural interpretation in
graph theoretical terms, it’s the number of edges of the densest “small” subgraph
of a random (bipartite) Cayley graph (here the Cayley graph has μ vertices on
each side, is of degree q and the subgraph has q vertices on each side.) We prove
by a compression argument (Corollary 1) an upper bound

for each 0 < a < 1/4 : Q(μ, μa) ≤ μa+2a2

(with probability extremely close to 1).

(2)

We believe that this bound may be of independent interest. It complements a
result of Alon et al. [2, Th. 4] which states thatQ(μ, μa) ≈ μ3a−1 for 2/3 < a ≤ 1,
i.e. their bound applies to large subgraphs of size ≥ μ2/3.

We show (Theorem 5) that the four round Feistel network CH
4F is pub-

indifferentiable form a random invertible function with a simulator making qS =
Õ(qD) queries and failing with probability εsim = O(E[Q(μ, qD)]/2

k−m). Setting
qD = μa in (2) this gives the claimed bound (1) on the pub-indifferentiability of
CH
4F .
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We leave it is an interesting open problem whether our techniques can be used
to prove better bounds for constructions of permutations from random oracles.
As mentioned above, currently all such constructions suffer from a quadratic
increase in the oracle query complexity. Another interesting question is, whether
random invertible functions can be used to build chosen-ciphertext secure en-
cryption with optimal overhead. Interestingly, the construction from [1] also uses
a four round Feistel network, but the proven security suffers from a quadratic
loss in running time.

2 Preliminaries

For n ∈ N, we write 1n for the string of n ones, and [n] for {1, . . . , n}. |x| denotes
the length of a bitstring x, while |S| denotes the size of a set S. s ← S denotes
sampling an element s uniformly at random from the set S. For an algorithm
A, we write z ← A(x, y, . . .) to indicate that A is a (probabilistic) algorithm
that outputs z on input (x, y, . . .). In the following we will introduce some basic
cryptographic objects that (for simplicity) are defined over bit-strings (rather
than arbitrary domains).

2.1 Ideal Primitives and Indifferentiability

Throughout, we use the letter H to denote a random oracle [4], P for a random
invertible permutation and F for a random invertible function.

A random oracle H : D → R with input domain D ⊂ {0, 1}∗ and range R ⊂
{0, 1}∗ is a function chosen uniformly at random from all functions D → R. A
random invertible function F : D → R is a function chosen uniformly at random
from all injective functions (i.e., all functions where x �= x′ ⇒ F(x) �= F(x′)). A
random invertible permutation P is a random injective function where D ≡ R.

Unlike for H, which can only be queried in forward direction, whenever we
consider algorithms with oracle access to F (or P), it is always understood that
F can be queried also in inverse direction. Technically, we can think of F as
being given by two oracles F and F−1, where F−1(F(x)) = x and F−1(y) = ⊥
if y is not in the range of F .

Below we define a pub-indifferentiable [11,23] construction of F from H. The
public indifferentiability notion differs from the standard indifferentiability no-
tion [19,10] by the fact that in the public notion the simulator S gets to see all
queries made by D.

Definition 1 (pub-indifferentiability). A (qD, qS, εsim , tsim )-public indiffer-
entiable construction of a random invertible function F from a random oracle
H is a stateless oracle circuit C and a (stateful, probabilistic) simulator S such
that for any distinguisher D making at most qD oracle queries, S makes at most
qS oracle queries, runs in time at most tsim and the following holds:

|Pr[DF ,SF
(1n) = 1]− Pr[DCH,H(1n) = 1]| ≤ εsim ,

here the second oracle SF gets to see also the queries made by DF ,SF
to the first

oracle F .
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2.2 Digital Signatures with Message Recovery

A digital signature scheme with message recovery SIG-MR = (GSIG-MR, Sign,
Recover) consists of three algorithms and two function families m(n), k(n) de-
scribing message space {0, 1}m(n) and signature space {0, 1}k(n). Key gener-
ation GSIG-MR generates a keypair (pk , sk) ← G(1n) for a secret signing key
sk and a public verification key pk . The signing algorithm Sign, on input a
message M ∈ {0, 1}m(n) and the secret signing key, returns an enhanced sig-
nature τ ← Signsk (M) ∈ {0, 1}k(n) of the message. The recovery algorithm
Recover takes a verification key pk and an enhanced signature τ as input and
returns M ← Recoverpk (τ), where M ∈ {0, 1}m(n) ∪ {⊥}. We require that
Pr[Recoverpk (Signsk (M)) = M ] = 1.

The security of the signature scheme can be analyzed in a model where an
idealized primitive exists, for example a random oracle or a random invertible
function. In that case the adversary and the scheme get access to the idealized
primitive O by making oracle calls.

Security. Let us recall the existential unforgeability against chosen message
attacks (EUF-CMA) security game [12] relative to the ideal primitive O, played
between a challenger and a forger A.

1. The challenger runs GSIG-MR(1
n) to generate a keypair (pk , sk). Forger A

receives pk as input.

2. Forger A may ask the challenger to sign a number of messages and evaluate
the ideal object O. To query the i-th signature, A submits a message Mi ∈
{0, 1}m(n) to the challenger. The challenger returns an enhanced signature
τi under sk for this message. For the j-th query to O, A submits a query xj
to the challenger who returns the values O(xj).

3. Forger A outputs an enhanced signature τ∗.

Let M∗ ← Recover(pk , τ∗) be the recovered message of A’s forgery. The game
outputs 1 (meaning forger A wins the game) if M∗ �= ⊥ (i.e., τ∗ is a valid
enhanced signature) and M∗ �= Mi for all i. The success probability of A is the
probability that the game outputs 1.

Definition 2 (Security and Overhead of SIG-MR). Let O be an ideal prim-
itive and let SIG-MRO be a signature scheme with message recovery, where
{0, 1}m(n) is the message and {0, 1}k(n) is the signature space. Let tsig , qs, qo, εsig
be functions of a security parameter n.

Security: SIG-MRO is (tsig , qs, qo, εsig)-secure relative to O, if all adversaries
A running in time at most tsig making at most qs signing queries and qo
queries to O (this includes direct queries to O, but also the queries to O
done during evaluation of the signature queries), have success probability at
most εsig . If O is a random oracle (random invertible function), then we say

that SIG-MRO is secure in the random oracle (random invertible function)
model.
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n-bit security: We say SIG-MRO has n bits of security against qs, qo queries
if it is (tsig , qs, qo, εsig)-secure for all tsig , εsig satisfying εsig/tsig ≤ 2−n. We
simply say it has n bits security if it has n bits security for any qs, qo (we
can always assume the trivial upper bound qo ≤ tsig ≤ 2n.3)

Overhead: The overhead is defined as k(n)−m(n). OSIG-MRO (n, qs, qo) denotes
the overhead required in the construction SIG-MRO to reach n bits security
against qs and qo queries. OSIG-MRO (n) is short for OSIG-MRO (n, 2n, 2n) (i.e.,
when putting no upper bounds on qo, qs).

In the following we will propose a scheme with finite message space. In the full
version [17] we show how to do domain extension in order to get a scheme that
can sign arbitrary longer messages with the same security and overhead.

Using a composition theorem [19], we can express the security of a signa-
ture scheme proven secure in the invertible function model when we replace the
invertible random function F with an pub-indifferentiable constructions CH as
follows.

Theorem 1. If SIG-MRF is (tsig , qs, qh, εsig)-secure in the random invertible
function model, and C is a (qD = qh, qS, εsim , tsim)-pub-indifferentiable construc-

tion of F from H (cf. Def.1), then SIG-MRCH
is (tsig − tsim , qs, qS, εsig + εsim)-

secure in the random oracle model.

2.3 Trapdoor Permutations

A trapdoor permutation TDP = (GTDP, f, f
−1) over domain D(n) = {0, 1}k(n)

consists of three ppt algorithms. The key generation algorithm GTDP gener-
ates a keypair (ek , td) ← GTDP(1

n) of evaluation key and trapdoor. For every
(ek , td) in the domain of GTDP(1

n), f(ek, ·) and f−1(td , ·) compute permuta-
tions fek (·), f−1

td (·) on {0, 1}k(n) s.t. for all x ∈ {0, 1}k(n): f−1
td (fek (x)) = x. We

say TDP is homomorphic if (D(n), ◦) is a group and for all x1, x2 ∈ D(n),
fek (x1) ◦ fek (x2) = fek (x1 ◦ x2).

We now recall the security properties of one-wayness and regular lossiness
[15,22].

Definition 3 (Security of TDP). Let t = t(n) and εone−way = εone−way(n)
be functions of a security parameter n. TDP is (εone−way , t)-one-way if for all
adversaries A running in time at most t, Pr[A(ek , fek (x)) = x] ≤ εone−way , where
(ek , td) ← GTDP(1

n), x← {0, 1}k(n).

Definition 4 (Lossy TDP). Let tlossy = tlossy (n), 
 = 
(n) and εlossy =
εlossy (n) be functions of a security parameter n. A trapdoor permutation TDP
over domain {0, 1}k(n) is regular (εlossy , tlossy , 
)-lossy if there exists a ppt algo-
rithm Glossy (the lossy key generator) that on input 1n outputs ek ′ such that

3 As ε ≤ 1, εsig/tsig ≤ 2−n for every tsig ≥ 2n, so we only have to look at the case
tsig ≤ 2n.
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1. (indistinguishability of real and lossy keys) for all adversaries A running in
time at most tlossy , Pr[A(ek ) = 1]−Pr[A(ek ′) = 1] ≤ εlossy , where (ek , td) ←
GTDP(1

n) and ek ′ ← Glossy (1
n);

2. (lossiness) fek ′(·) is 
-to-1, i.e. ∀x ∈ {0, 1}k(n) : |{z : fek′(z) = fek′(x)}| = 


For any 
 ≥ 1, a lossy trapdoor permutation is collision-resistant when instanti-
ated in lossy mode [22]. The most important example of a trapdoor permutation
is RSA with domain Z∗

N , defined as fN,e(x) = xe mod N . It is homomorphic with
respect to modular multiplication. It is one-way under the RSA assumption; for
any e < N1/4 it is furthermore regular e-lossy under the phi-hiding assumption
[15], where e is the public RSA exponent. Another example of a (homomorphic
and regular lossy) trapdoor function is Paillier [21].

3 Signatures with MR from Random Invertible Functions

Let k = k(n) and m = m(n) be functions with k(n) ≥ m(n). Let TDP be
a trapdoor permutation over domain {0, 1}k and F : {0, 1}m → {0, 1}k be a
random invertible function. We build a signature scheme with message recovery
SIG-MRF = (GSIG-MR, Sign,Recover) with message space M(n) = {0, 1}m and
signature space S(n) = {0, 1}k. GSIG-MR(1

n) runs (ek , td) ← GTDP(1
n). It returns

pk = ek and sk = td .

Algorithm Signsk (M ∈ {0, 1}m)

y := F(M) ∈ {0, 1}k
Return τ = f−1

td (y) ∈ {0, 1}k

Algorithm Recoverpk (τ ∈ {0, 1}k)
y = fek (τ)
If F−1(y) = ⊥ then return ⊥
Else return M = F−1(y)

Note that SIG-MR has n1 = k −m bits of redundancy and correctness follows
since TDP is a permutation.

The following theorem proves security provided TDP is regular lossy. Its proof
is similar to the one of FDH in [15] and postponed to the full version [17].

Theorem 2. Suppose TDP is regular (
, tlossy , εlossy )-lossy (i.e., lossy by log2(
)
bits) and F is a random invertible function from {0, 1}m to {0, 1}k. Then
SIG-MRF is (tsig , qs, qf , εsig) secure with

tsig ≈ tlossy , εsig = (2
− 1)/
 · εlossy +
qf

2k−m
.

In case TDP only satisfies the weaker security property of (t, εone−way )-one-
wayness, we only can obtain a non-tight security reduction [9] with respect to
εone−way . As we will show now, a tight security reduction from one-wayness can
be obtained by paddingM with one random bit b, using a reduction technique by
Katz and Wang [16]. We now define an alternative signature scheme SIG-MRF

ow

with message space M(n) = {0, 1}m−1 which can be proved tightly secure from
one-wayness of TDP.
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Algorithm Signsk (M ∈ {0, 1}m−1)
b(M) ← {0, 1}
y := F(b‖M) ∈ {0, 1}k
Return τ = f−1

td (y) ∈ {0, 1}k

Algorithm Recoverpk (τ ∈ {0, 1}k)
y = fek (z)
If F−1(y) = ⊥ then return ⊥
Else compute b‖M = F−1(y)
Return M

It is furthermore enforced that Sign always uses the same random bit b = b(M)
for message M . (E.g., by defining b = PRFK(M).) Note that SIG-MRF

ow has
k −m+ 1 bits redundancy.

The proof of the following theorem is postponed to the full version [17].

Theorem 3. Suppose TDP is homomorphic and (t, εone−way )-one-way and F is

a random injective function from {0, 1}m to {0, 1}k. Then the scheme SIG-MRF
ow

is (t, qs, qf , 2εone−way +
qf

2k−m ) secure.

4 Pub-Indifferentiable Constructions Based on Feistel
Networks

4.1 The Two Round Feistel Network

Consider the two-round construction CH
2f : Zμ → Zμ × Zρ Figure 1 (left) which

is derived from an unbalanced two-round Feistel network φ2f instantiated with
random oracles H1 : Zμ → Zρ,H2 : Zρ → Zμ

φ2f (x, v) = (x+H2(H1(x) + v),H1(x) + v)

φ−1
2f (w, y) = (w −H2(y), y −H1(w −H2(y))

as CH
2f (x) = φ2f (x, 0) CH

2f

−1
(w, y) =

{
x if φ−1

2f (w, y) = (x, 0)

⊥ otherwise

This will serve as an example of a simple indifferentiability proof and to prepare
for our four round Feistel network in the next section.

Theorem 4 (pub-indifferentiability of C2f , implicit in [5]). CH
2f as il-

lustrated in Figure 1 (left) is (qD, qS, εsim , tsim)-pub-indifferentiable from F (cf.
Def. 1) where

qS = qD tsim = qD · polylog(μ) εsim = q2D/ρ,

More precisely, we can set tsim = O(qD log(qD) log(μ)) using that the cost per
(find or insert) operation on a sorted list with ≤ qD elements of size log(μ) bits
is O(log(qD) log(μ)).

The proof of Theorem 4 is postponed to the full version [17]. There we also
formally show that a combination with Theorems 2/3 and Theorem 1 leads to the

overhead of O(n, qh, qs) = n+ log(qh) bits for the two schemes SIG-MRCH
2f [RSA]

and SIG-MR
CH
2f

ow [RSA] in the random oracle model.
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x ∈ Zμ 0 ∈ Zρ

x

y

a

b

�H1

� H2

x ∈ Zμ (v, 0) ∈ Zρ × Zρ

x a

b y

z c

d w

�H1

�H3

� H2

� H4

Fig. 1. (left) Two round Feistel network φ2f : Zμ × Zρ → Zμ × Zρ, the construction
CH
2f : Zμ → Zμ×Zρ of a random invertible function F from a random oracle H is derived

from φ2f by setting the right part to 0, i.e. CH
2f (x) = φ2f (x, 0). � denotes component-

wise addition in the respective domains. (right) Four round Feistel network φ4F , our
main construction is derived from it as CH

4F (x, v) = φ4F (x, v, 0).

4.2 The Four Round Feistel Network

We prove the following theorem which bounds the pub-indifferentiability of our
main construction CH

4F as illustrated in Figure 1 (right) in terms of the variable
Q(μ, q) (which we mentioned in the introduction, and will discuss in detail in
Section 5).

Theorem 5 (pub-indifferentiability of CH
4F ). C

H
4F as illustrated in Figure 1

(right) is (qD, qS, εsim , tsim)-pub-indifferentiable from F (cf. Def. 1) where

qS ≤ qD log(ρ) tsim = qS · polylog(μ)

εsim =
2E[Q(μ, qD)]

ρ
+

2q4D
μ

+
2q2D
ρ2

·
(

log(ρ)

log(ρ/qD)

)2

. (3)

Given Theorem 5 we will now compute the concrete overhead of SIG-MRCH
4F [RSA]

and SIG-MRCH
4F

ow [RSA]. Let N = pq be the RSA modulus with k = logN and
recall that logμ = k− log ρ, where log ρ is the redundancy of the scheme. For all
practically relevant values, the first term in εsim in (3) is the dominating one.4

With the same argument as in the case of two rounds, by Theorems 2/3 and
Theorem 1 the overhead for n-bit security can (up to a small additive constant)
be computed as

O(n, qh, qs) = n+ logE[Q(μ, qh)]− log qh. (4)

4 Unless one proves an even stronger upper bound on Q(μ, qD) than we do in this
work, in which case the last term might become dominant for large qD.
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In order to bound E[Q(μ, qh)] we assume n ≤ log ρ ≤ 1.25n and hence logμ =
logN − 2 log ρ ≥ logN − 2(1.25n). The following table summarizes the overhead
O(n, qs, qh) for n = 80 bits security using (4) and the bounds on Pr[Q(μ, qh) ≥
qh2

s] from Theorem 6 in Section 5. We use logN ∈ {1024, 2048} as bit-length
of RSA and log qh ∈ {60, 80} as upper bound on the random oracle queries.

logN log qh t = logμ s Pr[Q(μ, qh) ≥ qh2
s] O(n, qh, qs)

1024 80 824 17 2−427 (l = 8) ≈ 97
1024 60 824 13 2−430 (l = 10) ≈ 93
2048 80 1848 12 2−230 (l = 16) ≈ 92
2048 60 1848 10 2−92 (l = 18) ≈ 90

4.3 Proof Intuition

For space reasons, the proof of Theorem 5 is only given in the full version [17]
of this paper. In this section we give a high level intuition of the simulator, and
in the next section give a proof of a combinatorial result which is at the heart
of our proof.

To prove Theorem 5, we have to define a simulator SF , which is given access
to a random function F : Zμ×Zρ → Zμ ×Zρ ×Zρ, such that the pair of oracles
(F , SF ) behaves like (CH

4F ,H).

Our simulator will internally define fake random oracles Ĥi, i = 1, . . . , 4 by
lazy sampling, and always try to make sure that they are consistent with F in
the sense that on inputs x on which F has been queried, the Ĥi are defined on

all values required to evaluate CĤ
4F (x) and moreover CĤ

4F (x) = F(x).

At some point, the simulator might not be able to define the Ĥ’s consistently
any more due to collisions or more complicated linear relations amongst some
of the inputs/outputs of F and the Ĥ’s. We can easily bound the probability of
most such failure events by roughly qD/ρ or less, except for one case, which we’ll
outline below.

Consider a qD query adversary D who queries an unbalanced three round
Feistel network (as illustrated in Figure 1 on the right side, but ignore the last
round, and let the right half of the input be 0 ∈ Zρ not (v, 0) ∈ Zρ×Zρ). Assume
the adversary queried the third oracle H3 on inputs Z and the second on inputs
Y (receiving outputs B). Next, D chooses some set X and queries the network
on inputs (x, 0). If for some x ∈ X we have H1(x) ∈ Y and x+H2(H1(x)) ∈ Z,
then the input to H3 on this query has been already fixed, and the simulator
can’t program it so it is consistent with F(x), we’ll refer to this as a bad event
below.5 Any tuple (x, y, z) ∈ X ×Y ×Z where x+H2(y) = z can lead to such a

5 The reason our actual construction needs one more round, is so we can also program
the right half of the output of the network. Moreover the input to the right half
contains not just the redundancy 0 ∈ Zρ, but another element Zρ which is part of
the message. The reason we do this is that now the domain of the right half is large
enough so we can upper bound by q2D/ρ

2 ≤ qD/ρ terms which come up in the proof
that depend on the collision probability of random elements over this domain.
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failure with probability Z−1
ρ (namely, if H1(x) = y). The number of such tuples

(for an optimal choice of X ,Z for a given B) is

Q(μ, q,B) = max
X ,Z⊂Zμ,|X |=|Z|=q

|{(x, z) | x ∈ X , z ∈ Z, z − x ∈ B}| (5)

We can thus bound the probability of this bad event by Q(μ, qD,B)/ρ. Simple
lower and upper bounds on Q(μ, qD,B) are6

∀B ⊂ Zμ, |B| = q : 2q − 1 ≤ Q(μ, q,B) ≤ q2.

Unfortunately, there exist B for which the upper bound is almost achieved.7

Fortunately, the set B is not adversarially chosen, but the output of a random
oracle, which makes it a random subset of Zμ. We thus consider the variable
Q(μ, qD) which denotes Q(μ, qD,B) for a randomly chosen B. In order to get a
good upper bound on the probability of the bad event, it thus suffices to give
an upper bound on Q(μ, qD) that holds with high probability over the choice of

B. In Section 5 we give such a bound showing that Q(μ, qD) is q
1+o(1)
D with very

high probability, here the o(1) term goes to 0 as the ratio qD/μ decreases.

5 A Bit of Additive Combinatorics

Additive combinatorics deals with questions of the sort that given an Abelian
group A, find subsets Z,X of given size that minimizes the size of

Z − X = {z − x|z ∈ Z, x ∈ X}

Often we also want to find out the structure of such optimal (or nearly optimal)
Z,X pairs. Such pairs are of course special, and we do not have too many of
them. Analogous questions are also raised when the ’−’ is replaced with ’+’.

Here we investigate a variant, where we also have a third set B ⊆ A with
the same size as Z and X with the property that z − x ∈ B for an unusually
large number (say, |B|3/2) of (x, z) pairs with z ∈ Z and x ∈ X . We show that
for an adequately small random B it is very unlikely that we can find any Z,X
such that Z,X and B form a triplet as above. We may interpret our result as a
property of the random Cayley graph generated by B.

Remark 1. Although our setting is natural and undoubtedly useful for the ap-
plication at hand, the problem we raise does not seem to have been studied
before. An often-cited work of B. J. Green [13] computes the maximum clique

6 To see the 2q − 1 lower bound, add any x to X and let Z be {z | z − x ∈ B}, this
gives us already a set of size |B| = q. We can get q − 1 more by adding any q − 1
elements x to X s.t. x = z − b for some b ∈ B, each increasing the set by at least 1.
To see the q2 upper bound, note that for any of the q distinct x ∈ X , z − x ∈ B can
hold for at most q z’s as |B| = q. This upper bound holds even if we allow Z (or X )
to be all of Zμ.

7 Consider the case B = X = Z = {0, . . . , q−1}, which shows |Q(μ, q,B)| ≥ q(q+1)/2.
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size of (dense) random Cayley graphs of cyclic groups and of Zn
2 . Other authors

e.g. Christofides and N. Alon have also investigated random Cayley graphs, but
with focus on Hamiltonicity, chromatic number, etc. The size of the generator
set, unlike in our case, in most studies are either very small (poly(log |A|)) or
very large (Ω(|A|)). Since spectra of random Cayley graphs have been studied,
it is conceivable that there is a shorter analytic proof to our statement. We use
simple combinatorics to prove our theorem.

We (non-crucially) set the Abelian group A to be the cyclic group Zμ, where μ
is a prime. Let 1 ≤ q ≤ μ arbitrary, but we will think of it as a small constant
power of μ, for instance q = μ0.1. For a set B ⊂ Zμ, |B| = q define

Q(μ, q,B) = max
X ,Z⊂Zμ,|X |=|Z|=q

|{(x, z) | z ∈ Z, x ∈ X , z − x ∈ B}| (6)

Expression (6) becomes a random variable Q(μ, q, .) as B ranges over all uni-
formly random B ⊆ Zμ of size q. The minimum value of this random variable
is at least q, because for any B one can choose Z = B and 0 ∈ X . We show
that if q is a small power of μ, the probability of the event that this random
variable much exceeds q is small. To obtain practical expressions in the theorem
and simpler formulas in the proof, we introduce μ = 2t and q = 2r.

Theorem 6. For 0 < r < t/4, and for every s, l > 0, 2s ≥ l2 it holds that

Pr[Q(2t, 2r) ≥ 2r+s] ≤ 2−DB+t

where D = �2s− r
l /(2l+ 2)� and B = t− l(r + 1).

Corollary 1. Let q = μa, where a ≤ 1/4. If q is large enough (while parameter
a is fixed), then

Pr[Q(μ, q) ≥ q1+2a] ≤ 2−qa/2

We defer the proof of the corollary to after that of the theorem.

Proof. (of Theorem 6) Let μ = 2t denote the size of the group, which we as-
sume to be Zμ, but this is not essential. We prove Theorem 6 by an informa-
tion compression argument. What we show is that a set B satisfying |B| = 2r,
Q(2t, 2r,B) ≥ 2r+s has a lot of constant size linear relations between its ele-

ments, which allows us to describe it with significantly less than log
(
2t

2r

)
bits.

In order to encode a B ⊆ Zμ for which |B| = 2r, Q(2t, 2r,B) ≥ 2r+s efficiently,
we show that any such B has a decomposition B = D ∪ D, where |D| = D as in
the theorem, D = B \ D, and there exist fixed x, z ∈ Zμ that the elements b of
D can be ordered suitably and be expressed as

b = ε(z − x)− ε1b1 − . . .− εl−1bl−1, (7)

where b1, . . . , bl−1 are either from D or from elements of D that are expressed
earlier. The numbers ε, ε1, . . . , εl−1 are all in {−1, 1}. The saving per every item
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in D is the difference measured in bits between its description length via (7)
versus their default information cost per item. The latter is:

log
(
2t

2r

)
− log

(
2t

2r−D

)
D

∼ t− r

Since the sequence ε1, b1, . . . , εl−1, bl−1 together with ε can be described with
(l− 1)(r+1)+1 bits (each bi is element of B which is already on our list, so has
an r-bit description), our saving per item is

B = t− r − (l − 1)(r + 1)− 1 = t− l(r + 1)

bits. Our total saving is then DB − t, since we also need t bits to describe
z − x (once for the entire D). The upper bound on the probability of the event
Q(2t, 2r,B) ≥ 2r+s is then 2−DB+t.

We are left to construct the (D,D) decomposition and to calculateD. Consider
a B that satisfies Q(2t, 2r,B) ≥ 2r+s. Then there are X ,Z ⊆ Zμ, |X | = |Z| = 2r

such that |{(x, z) | x ∈ X , z ∈ Z, z − x ∈ B}| ≥ 2r+s. We fix such an X ,Z pair.
Let G be the bipartite graph with bipartition (X ,Z) and edge set

e(G) = {(x, z) | x ∈ X , z ∈ Z, z − x ∈ B}.

By our assumption |e(G)| ≥ 2r+s. If we iteratively remove the minimum degree
vertex from G until all degrees of the resulting graph are at least 2s/2 (i.e. the
average degree of G divided by two), it is easy to show that this process ends
up with a non-empty graph G′ with minimum degree at least 2s/2. Fix a vertex
x ∈ X ∩ V (G′) . Our proof hinges upon the following construction:

Definition 5. Let Pi for i = 1, 2, . . . be the set of all those (not necessarily
simple) paths π of length i in G′ (the length is the number of edges) that satisfy:

1. π starts at x
2. No two edges edges of π have identical labels, where a label of an edge (v, w)

(v ∈ X , w ∈ Z) is by definition w − v.

Let π be a path in Pi and let d = d(π) denote the degree of its end point z. All
edges incident to z have distinct labels, so the number of those edges incident
to z whose label do not coincide with any labels we already have in π is at least
d− i. Thus π has d− i ≥ 2s

2 − i continuations in Pi+1. Therefore, by induction,
for i ≥ 1:

|Pi| ≥
i−1∏
j=0

(
2s

2
− j

)
>

1

e

2is

2i
.

Consider the set Pl. Notice that if l is odd, then every path in Pl end in Z,
otherwise they all end in X . Since the nodes of G′ are from X ∪Z and |X |, |Z| =
2r, there must be a z ∈ X (if l is even) or z ∈ Z (if l is odd) such that at least
|Pl|
2r ≥ 1

e
2ls−r

2l paths from Pl end in z.
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Let T be the set of the paths in Pl that end in this z. We will use the paths in
T to find a lot of small linear relations among the elements of B. For a path π let

(π) denote the set of labels that occur on its edges, and define D0 = ∪π∈T 
(π),
which is just the collection of all labels that ever occur in those paths of Pl that
end in z. Of course, D0 ⊆ B, because all labels along the edges of G′ are in B. In
order to estimate |D0| we view a path π ∈ Pl as an ordered sequence of labels.
Each π ∈ Pl uniquely corresponds to such a sequence of length l (although not
necessarily every element of Dl

0 is an element of Pl). Since from an alphabet of
size |D0| we can create at most |D0|l different sequences of length l, we have that

|D0| ≥ |T |1/l ≥
(
1

e

2ls−r

2l

)1/l

≥ 2s−r/l/(2 + 2/l).

We are now ready to define the decomposition B = D ∪ D as promised in the
beginning. The role of x and z in expression (7) will be played by the common
starting- and end-point of all paths in T . For any path π ∈ T we have that

z − x = b1 − b2 + b3 − . . .+ bl (if l is odd, otherwise the last sign is a minus)

It is a trivial matter to transform the above equation into (7), where b is one of the
bis (our choice which one). What remains is to show is that starting from a subset
of T we can to generate all remaining elements by (7) such, that the number of
generated elements is no less than the bound we require. A combinatorial lemma
will help us in this.

Definition 6. We say that a set {h1, . . . , hl−1} of nodes in an undirected hyper-
graph H generates node h, if {h1, . . . , hl−1, h} is a hyper-edge. A generator set
for H is a subset of nodes from which we can iteratively generate the entire vertex
set of H.

Lemma 1. Let H be an hyper-graph on m nodes such that every edge is a set
of size at most l, and every node is contained in at least one hyper-edge. Then

H has a generator of size at most (l−1)m
l .

Proof. The proof is by induction on l. The claim is trivial for l = 1. Take
a minimal generator set X for H. If it does not satisfy our condition, then

|X | > (l−1)m
l . Consider the hyper-graph H′ we get from H by restricting all of

its nodes and edges to X . Since a minimal generator set in H cannot properly
contain any hyper-edge, every hyper-edge in H′ has size at most l − 1. Thus by

induction H′ has a generator set Y of size at least (l−2)|X|
l−1 . But Y ∪X generates

H, and it has size at most l−2
l−1 |X |+m− |X | ≤ (l−1)m

l .

We now apply this lemma for the hyper-graph, which has vertex set D0 and
edge set {
(π) | π ∈ T }. We get a generator set of size (l− 1)|D0|/l. We put the
elements of this generator set into D, as well as the elements of B that are not
in D0. We can generate the remaining elements of D0 out of these via (7), and

we let these form the set D. The size of D is |D0|/l = 2s−r/l

(2l+2) .
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Proof. (of Corollary 1) In Theorem 6 we set a = r/t, s = 2r2/t, l = 3t
4(r+1) . This

gives B = t/4 and

D =
exp2

(
2 r2

t − 4r(r+1)
3t

)
2l + 2

= q2
r
t − 4(r+1)

3t /(2l+ 2) ≥ qa/2

if q is large enough (above exp2(z) is by definition 2z). Thus 2−DB+t ≤ 2−qa/2

when q is sufficiently large.
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Nielsen, Jesper Buus I-277

Obremski, Maciej II-239
O’Neill, Adam II-519
Ostrovsky, Rafail II-258
Oswald, David I-147

Paar, Christof I-147
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Rothblum, Guy N. II-416
Rothblum, Ron D. II-185

Sahai, Amit I-75, I-298, I-316, I-494,
II-479

Schellenberg, Falk I-147
Schulman, Leonard J. II-258
Segev, Gil I-374, II-461
Skeith III, William E. II-148
Standaert, François-Xavier I-335
Stebila, Douglas II-344
Steinberger, John P. I-531
Steiner, Michael I-353
Stevens, Marc I-129
Striecks, Christoph I-513
Strobel, Daehyun I-147
Szegedy, Mario I-571

Thaler, Justin II-71
Tibouchi, Mehdi I-476
Tromer, Eran II-90

Unruh, Dominique II-380

Vadhan, Salil I-93
Vaikuntanathan, Vinod II-500, II-536
Vayssière, Bastien I-222
Vergnaud, Damien I-449
Villar, Jorge II-129
Virza, Madars II-90

Waters, Brent I-75, I-494, II-166, II-479
Wee, Hoeteck I-429, II-435, II-500
Wehner, Stephanie II-326
Wichs, Daniel I-57

Xu, Chao I-165

Yang, An II-277
Yilek, Scott I-392
Yu, Yu I-335
Yung, Moti II-289

Zeldovich, Nickolai II-536
Zhandry, Mark II-361
Zhang, Bin I-165
Zheng, Colin Jia I-93
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