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Abstract. Side-channel analysis has become a very powerful tool help-
ful for attackers trying to recover the secrets embedded in microproces-
sors such as smartcards. Since the initial publications from Kocher et al.
many improvements on side-channel techniques have been proposed. At
the same time developers have designed countermeasures to counterfeit
those threats. The challenge for securing smart devices remains rough.
The most complex techniques like Differential, Correlation and Mutual-
information analysis are more studied today than simple side-channel
analysis which seems less considered as said less powerful. We revisit in
this paper the simple side-channel analysis attacks previously published.
Relying on previous leakage models we design two new methods to build
chosen message which allows more efficient analysis on blinded exponen-
tiation. We also show that, contrarily to common belief, with our chosen
message method simple side-channel analysis can be successful also in
some hashed message models. In a second step we introduce a more pre-
cise but realistic leakage model for hardware multipliers which leads us
to new results on simple side-channel efficiency. Relying on these models
we show that even with big base multipliers leakages can be exploited to
recover the secret exponent on blinded exponentiations.

Keywords: side-channel analysis, arithmetic coprocessor, long integer
algorithms, exponentiation, padding.

1 Introduction

Today secure smart devices such as smartcards or other form factors are widely
spread in many different applications. Payment, Pay-TV, health or cell phone
SIM cards, etc. Each device contains sensitive issuer and user secret data which
must not be disclosed. Many techniques threatening smartcard security exist.
The most famous still remains the Side-Channel Analysis (SCA). Introduced by
Kocher et al. [19,20] in the previous decade, SCA includes the Simple Side-
Channel Analysis (SSCA) as well as the Differential Side-Channel Analysis
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(DSCA). Many studies on these subjects have been published either for im-
proving the attack methods or to present some new countermeasures. The task
consisting in developing secure products which must resist many years has then
become a difficult challenge when every year new attacks are published.

More precisely public key implementations like RSA [24] and DH [11] es-
sentially consists in modular exponentiations. They are often used nowadays
respectively for signature and key exchange schemes. Exponentiation operates
on long integers and then requires much more computations than in any sym-
metric algorithm. Therefore in order to implement it efficiently, various modular
multiplication algorithms have been designed to be embedded in constrained
hardware resource devices such as smartcards. Although efficiency is a key con-
cern, since the initial publication from Kocher side-channel resistance must also
be taken into consideration when developing the code for this operation. Coun-
termeasures must not only resist each and every SCA known so far but must also
have the smallest impact in terms of performance and memory consumption.

SSCA on exponentiation has been introduced by Kocher et al. in [20], and one
year later improved by Mayer-Sommer in [21]. However even if more complex
side-channel techniques like differential and correlation side-channel analysis, the
collision attacks (for instance the doubling attack [13]) have been applied on ex-
ponentiation, very few publications have dealt with simple side-channel analysis
on exponentiation. One of them is the zero value side-channel attack from Goubin
[15]. It was originally presented as a differential analysis but works on a single
execution trace of an elliptic curve scalar multiplication. Later Yen et al. [26]
presented a chosen message SSCA defeating some of the common exponentiation
algorithms. Later Courrege et al. [9] improved these results; they showed that
random message SSCA can be very powerful even on blinded exponentiation for
some cases and gave recommendations for safe developments.

Many countermeasures have been proposed. Common countermeasures to pre-
vent up-to-date SSCA on exponentiation consists in using an exponentiation
algorithm where the sequence of modular operations leaks no information on
the secret exponent. Examples of such exponentiation are the Montgomery lad-
der [16], the Joye ladder [17] and the so-called atomic exponentiation [5]. Ad-
ditionally to prevent leakage on data manipulation, common countermeasure
consists in blinding the modulus and the message as well as the exponent [20,7].
Their effect is to randomize the intermediate values manipulated during the ex-
ponentiation as well as the sequence of squaring and multiplication operations.

In this paper we denote by blinded exponentiation an atomic exponentiation
where modulus, message and exponent are blinded and then focus our study
on this algorithm. Considering this state-of-the-art implementation we present
how to build chosen messages leading to more efficient SSCA when attacking
blinded exponentiation on devices and show that, contrarily to common belief,
our SSCA can also be successful in some hashed message models. Moreover we
introduce a more precise new leakage model for hardware multipliers than [9]
we know realistic for practical measurements. We then obtain new results when
explaining simple side-channel efficiency for different key length, multipliers and
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the size of the random used for blinding. We highlight then that, even if the
hardware multiplier architecture is a 32-bit one, SSCA can be very efficient with
a reasonable number of executions to recover the secret exponent manipulated.
We discuss then the need for a deep side-channel characterization of hardware
multipliers in order to establish the best recommendations for any hardware
multiplier being used for secure products. It would allow developers to select with
strong assurance the right countermeasures (and algorithm) when implementing
for a selected device any public key algorithm.

Roadmap. The paper is organized as follows. Section 2 reminds basics on long
integer arithmetic and exponentiation. We also give the reader the necessary
knowledge and background on simple side-channel analysis to understand the
attack improvements we are presenting. In Section 3 we describe our new meth-
ods to build chosen message attacks and analyze its efficiency in blinded expo-
nentiation use cases. We also show that chosen message SSCA can be efficient on
hashed message models. Section 4 introduces our new leakage models for hard-
ware multipliers, we detail the probabilities of leakage for blinded exponentiation
depending on long integer bit-lengths. We discuss the need for a deep charac-
terization of hardware multiplier and related countermeasures in Section 5 to
finally conclude our paper in Section 6.

2 Simple Side Channel Analysis and Embedded
Exponentiation

In this section we give the notations we use in the paper, remind the reader the
classical algorithms used to calculate multiplication and exponentiation on long
integers. We also remind the necessary knowledge and background on simple
side-channel analysis to understand the attack improvements we are presenting.

Definitions and Notations

• x = (x�−1 . . . x1x0)b corresponds to integer x decomposition in base b, i.e.
the x decomposition in t-bit words with b = 2t and � = �logb(x)�.

• LIM(x,y) = x · y long-integer multiplication operation is detailed in the
following. Algorithm 2.1 presents the classical long integer multiplication
algorithm.

• BarrettRed(x,n) = x mod n using the Barrett reduction method. In this
paper we consider reduction operations are done using this algorithm.

• ModMul(x,y,n)= x·y mod n= BarrettRed(LIM(x,y),n). It is the combination
of a long integer multiplication LIM(x,y) followed by a Barrett reduction by
the modulus value n.

• Exp(m,d,n)= md mod n. Algorithm 2.2 gives more detail on this exponenti-
ation algorithm.
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Algorithm 2.1. Long Integer Multiplication

Require: x = (x�−1x�−2 . . . x1x0)b, y = (y�−1y�−2 . . . y1y0)b
Ensure: multiplication result LIM(x, y) = x · y
1: for i = 0 to 2�− 1 do
2: wi ← 0
3: for i = 0 to �− 1 do
4: c← 0
5: for j = 0 to �− 1 do
6: (uv)b ← wi+j + xj · yi + c
7: wi+j ← v and c← u
8: wi+� ← c

9: return w

2.1 Embedded Exponentiation

We do not detail the Barrett reduction algorithm here, for more details the reader
can refer to [1] or [22]. Other techniques can be chosen for processing modu-
lar multiplications such as the interleaved multiplication-reduction with Knuth,
Sedlak, Quisquater or Montgomery methods [10]. Although we have chosen the
Barrett reduction our results can also be adapted to these other methods.

Algorithm 2.2. Exponentiation

Require: integers m and n with m < n, k-bit exponent d = (dk−1dk−2 . . . d1d0)2
Ensure: Exp(m,d,n) = md mod n

1: R0 ← 1; R1 ← m
2: for i = k − 1 down to 0 do
3: R0 ← ModMul(R0, R0, n)
4: if di = 1 then R0 ← ModMul(R0, R1, n)
5: return R0

Exponentiation and RSA. Let p and q be two secret prime integers and
n = p·q be the public modulus used in the RSA cryptosystem. Let e be the public
exponent and d the corresponding private exponent such that e ·d ≡ 1 mod φ(n)
where φ(n) = (p − 1) · (q − 1)1. Signing with RSA a message m consists in
computing the value s = md mod n. Signature s is then verified by checking
that se mod n is equal to m.

2.2 Simple Side-Channel Analysis

Side-channel analysis has been studied for years since it was introduced by
Kocher et al. [20]. It has then be applied to the most frequently used cryp-
tosystems (DES, AES, RSA, ECDSA,. . . ) and many improvements on those

1 It can be replaced, as in some standards, by e · d ≡ 1 mod ψ(n) where ψ(n) =
lcm(p− 1, q − 1) is the Carmichael function applied to n.
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attack techniques have been done and published during the last decade. We can
mention the Correlation Side-Channel Analysis (CSCA), introduced by Brier
et al. [4], which requires far fewer traces for recovering the key than the original
DPA from Kocher et al. More recently many other studies have been published
to improve the side-channel methodology [14,23,25].

The original simple side-channel analysis [20] recovered the secret exponent
manipulated in an RSA exponentiation from a single consumption trace. Indeed,
when the squaring and the multiplying operations have different recognizable
and sizeable patterns the recovery can be done easily because the bits of the
secret exponent are directly read on the side-channel trace for a classical Square
and Multiply algorithm. Indeed two consecutive squares on the trace imply the
exponent bit is 0 while when a squaring is followed by a multiplication the
exponent bit is 1.

The side-channel leakage appears due to differences in the executed code. In-
deed it happens when the executed code is different for a squaring than for a
multiplication operation. An efficient countermeasure against this SPA is the
side-channel atomicity introduced by Chevallier-Mames et al. [5] as mentioned
previously. In an atomic implementation the code executed during the whole ex-
ponentiation loop is the same for a squaring and a multiplication step rendering
the attack no more possible.

Yen et al. introduced in [26] a new type of SPA attack defeating the atomic-
ity countermeasure by using as input of exponentiation particular message value
m = n−1. However classical blinding countermeasure counterfeits this technique.
Later Courrege et al. in [9] gave an explanation for the coprocessor leakages when
computing an exponentiation, especially for the long integer multiplication op-
eration, and they illustrated their analysis with practical results. They discussed
the success of simple side-channel analysis on secure exponentiation with regard
to the size of the multiplier, the length of the modulus and the choice done on
random values used for blinding. Indeed authors explained that the side-channel
leakage appears during the operation xi · yj of the long integer multiplication
LIM(x,y). Any operation xi · yj has a side-channel consumption related to the
number of bit flips of the bit lines manipulated. When one of the operands is null
the t-bit multiplication has a lower side-channel consumption than the average
one. It is then possible to distinguish in a long integer multiplication when such
a value is manipulated.

Blinded Exponentiation. As we said, in this paper our analysis targets a
secured state of the art blinded exponentiation. Therefore we include into the
previous exponentiation algorithm 2.2 the following countermeasures:

• exponent blinding: the secret exponent d is randomized by d� = d+ r ·φ(n),
with r being a random value and φ() the Euler totient function2. More
detail for such exponent blinding when ψ(n) and/or φ(n) are unknown can
be found in [18]. However here the exponent blinding will not have any effect

2 or d� = d+ r · ψ(n).
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on our analysis since a single trace is used to recover the private exponent
and recovering d� is equivalent to recovering d.

• additive message blinding: message is randomized additively by the classical
countermeasure: m� = m+ r1 · n mod r2 · n, with r1 and r2 being two λ-bit
random values. In this case we have m� equal to m + u · n with u being a
λ-bit value equal to r1 mod r2.

• atomicity principle: the code is implemented following the atomicity princi-
ple [5]; it consists in using the same code during the exponentiation whether
the operation executed is a squaring or a multiplying operation. Thus it
allows protecting from the classical SSCA which consists in distinguishing
both types of operations on the side-channel trace.

We obtain the blinded exponentiation detailed in algorithm 2.3. This algorithm
implementation is the target of the new simple side-channel analysis we detail
in the rest of this paper.

Algorithm 2.3. Blinded exponentiation

Require: integers m and n with m < n, � · t-bit exponent d = (d�·t−1d�·t−2 . . . d1d0)2,
a security parameter λ

Ensure: Exp(m,d,n) = md mod n

1: r1 ← random(1, 2λ − 1)
2: r2 ← random(1, 2λ − 1)
3: R0 ← 1 + r1 · n mod r2 · n
4: R1 ← m+ r1 · n mod r2 · n
5: i← � · t− 1; α← 0
6: while i � 0 do
7: R0 ← ModMul(R0, Rα, n)
8: α← α⊕ di;
9: i← i− 1 + α
10: return R0

3 Improving the Previous Simple Side Channel Analysis
on Exponentiation

In [9] authors considered that during a long integer multiplication R0 · R1, if
the multiplicand R1 = m contains one (or more) of the t-bit words set to 0,
it is possible to recognize each time this value m is manipulated all along the
exponentiation, i.e. each time the exponent bit is 1.

In that case we say in the following a message m or an operand x are tagged
because their manipulation can be distinguished.

Authors considered for their leakage statistical analysis during exponentiation
scheme the following side-channel tag model:

[A0] Side-channel tag originates when a whole t bit word equals zero in the
operand m.
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Notations: We denote by tag(m�) the event ”the operand m has a t-bit word
equal to zero” and by tagi(m�) the event ”the operand m has its ith t-bit word
equal to zero”. For a given �-word operand x = (x�−1 . . . x1x0)b we introduce
the following notations:

xi = x mod bi+1 = (xi . . . x1x0)b

xi = x mod bi = (xi−1 . . . x1x0)b with x0 = 0

The general principle of the attack is based on the fact that whenever the ran-
domized messagem� is tagged, this easily detectable event points the attacker to
all LIM operations corresponding to multiplications by the message, which thus
reveals the private exponent d�. The probability for a tag to occur is usually
quite small so that the attacker has to acquire and analyze many side-channel
traces until one of them eventually happens to be tagged.

3.1 Improving the Analysis

A first contribution of this paper is to observe that an attacker who has control of
the non randomized message m is able to further reduce the attack complexity –
measured as the number of required side-channel traces – by causing tags on the
randomized message m� to happen more frequently than by pure chance. More
precisely, for any word index 0 � i < �, and for any integer 0 � u(i) < 2λ − 1
which denotes a targeted value for the random u = r1 mod r2 involved in the
randomization ofm, it is possible to find a messagem such thatm� = m+u(i) ·n
is tagged on word i. This chosen message gives access to the private exponent
whenever u = u(i) which may be more probable than would naturally arise,
particularly when λ < t.

We can even do better since we will show that it is possible to build a message
which simultaneously verifies such kind of conditional tag property on each of
its words. Then in a second study we consider the scenario where the attacker
does not have full control on the message which is to be randomized since we
assume that this message is the output of a deterministic hash function whose
input is chosen by the attacker.

3.2 Known Message Scenario

We assume here a known message scenario where the message value to be ex-
ponentiated is uniformly distributed over the set of all integers that can be
represented on � t bits.

Theorem 1. Given a message m uniformly distributed over
{
0, . . . , 2�t − 1

}
,

the probability that the randomized message m� = m+ u · n is tagged on any of
its � least significant words is:

Proba
(
tag(m�)

)
= 1− (1− 2−t)�

� � · 2−t
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Proof. For any 0 � i < �, and any arbitrary integer 0 � u < 2λ − 1, letting
s = u · n, we have:

Probam
(
tag(i)(m�)

)
= Probam (m�

i = 0)

= Probam

(
mi = −

⌊
si +mi

bi

⌋
mod b

)

= 2−t

Now, considering also u as random:

Probau,m
(
tag(i)(m�)

)
=

∑

u

Proba(u)Probam
(
tag(i)(m�)

)

= 2−t

The proof follows immediately from the independence of the tag on each
word. ��
In the known message only setting, the probability for a side-channel trace to be
tagged is close to � 2−t. This result holds whatever the probability distribution
of u. In particular it makes no difference whether u is biased – which is the case
when r1 and r2 are both random – or uniformly distributed.

3.3 Chosen Message Scenario

Theorem 2 and Algorithm 3.1 show how an attacker can build a message whose
randomization will be tagged whenever u belongs to a set of � prescribed chosen
target values.

Theorem 2. Let U =
(
u(0), . . . , u(�−1)

)
be an arbitrary set of � targets, with

∀i, 0 � u(i) < 2λ − 1. The message m returned by Algorithm 3.1 is such that
m� = m+ u · n is tagged on word i whenever u = u(i).

Proof. For each i, let s(i) = u(i) · n. We have

mi = −
⎢
⎢
⎢
⎣s

(i)
i +mi

bi

⎥
⎥
⎥
⎦ mod b

so that (m+ s(i))i = 0 which implies that m�
i = 0 if u = u(i). ��

We now compute the probability that a randomization of the message returned
by Algo. 3.1 is tagged:

Proba
(
tag(i)(m�)

)
= Proba(u = u(i)) · 1 + Proba(u 	= u(i)) · 2−t

� Proba(u = u(i)) + 2−t

�
{

2−t if λ > t
2−λ if λ � t

(1)

� max(2−λ, 2−t)
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Algorithm 3.1. Chosen message construction

Require: a �-word modulus n and a set
(
u(0), . . . , u(�−1)

)
of targeted randoms

Ensure: a message m whose randomization is tagged for any specified target

1: m← 0
2: for i = 0 to �− 1 do
3: s(i) ← u(i) n

4: μ← −
⌊

s
(i)
i +mi

bi

⌋
mod b

5: m← m+ μ bi

6: return m

Equation 1 clearly shows that our chosen message method is particularly inter-
esting when λ � t. Indeed, when λ > t the randomized message is tagged with
same probability than in the known message model. For this reason we consider
from now on that λ � t. In that case choosing the message according to Algo. 3.1
changes the complexity of tag probability from O(2−t) to O(2−λ). Depending
on λ, the attack may now be feasible even on large multipliers (e.g. t � 64) as
the tag probability does not depend on t any more.

When u has uniform distribution the choice of the u(i)s is not relevant provided
they are all distinct. In that case we have:

Proba
(
tag(m�)

) � � 2−λ

When u is biased due to the random choice of both r1 and r2 the smaller u the
more probable it is. The best strategy for an attacker is then to choose U =
(0, . . . , �− 1) which has the largest probability. This results in a tag probability
that can be expressed as:

Proba
(
tag(m�)

) � Proba(u ∈ U)

� ω � 2−λ

where ω � 1 is a multiplicative factor which quantifies the gain related to the
biased case compared to the uniform one.

Let’s now enumerate the three advantages from which our chosen message
attack benefits:

1. Considering some given word of the randomized message, the probability
that it is tagged is at least 2−λ instead of 2−t (for λ � t). This is by far the
more fundamental advantage provided by our method.

2. As it is possible to simultaneously generate a conditional tag on all words,
the probability of a tag on m� is l times that of a tag on a single word. Note
that this gain by a factor l also holds in the known message model.

3. In case of biased randomization – which is more usually implemented than
the uniform randomization – the attacker targets the most probable random
values u. This results in another gain by a factor ω which is far from being
negligible as shown in Table 1.
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Experimental Results. For different sets of parameters t, λ we have simulated
our attack on a large number of runs by generating a random 1024-bit modulus n,
building a message m according to Algo. 3.1, computing a randomized message
m� by applying the classical biased masking procedure, and testing whether m�

is tagged.
We present in Table 1 the experimental averaged tag probabilities, together

with the theoretical ones for comparison. We also mention the resulting mean
number of side-channel traces needed, the gain factor ω, as well as the number
of simulation runs in each case.

Table 1. Simulation results of the chosen message attack for a 1024-bit RSA key with
biased randomization

Tag probability Number of traces Gain ω
Simu Theory Simu Theory Simu Theory

λ = 8
(106 runs)

t = 16 6.50 10−1 6.51 10−1 1.54 1.54 2.60 2.60
t = 32 4.28 10−1 4.28 10−1 2.33 2, 33 3.43 3.43
t = 64 2.63 10−1 2.62 10−1 3.80 3.81 4.21 4.20

λ = 16
(107 runs)

t = 16 8.30 10−3 8.30 10−3 121 121 8.50 8.50
t = 32 4.49 10−3 4.48 10−3 223 223 9.19 9.18
t = 64 2.42 10−3 2.41 10−3 414 415 9.89 9.86

λ = 24
(108 runs)

t = 16 — — — — — —
t = 32 2.77 10−5 2.81 10−5 36062 35590 14.5 14.7
t = 64 1.48 10−5 1.47 10−5 67476 68049 15.5 15.4

λ = 32
(109 runs)

t = 16 — — — — — —
t = 32 — — — — — —
t = 64 8.3 10−8 7.78 10−8 12.0 106 12.8 106 22.3 20.9

From a practical point of view, the proposed chosen message method allows
our tag-based simple side-channel analysis on randomized exponentiation to be
feasible in a much wider range of settings. Definitely, the security against our
attack cannot be provided by a large multiplier. Also, Table 1 shows that the
mean number of traces required to recover the private exponent is small for
λ = 16 and quite practicable for λ = 24, while these random bit-length values
may be considered providing enough security for message blinding purpose. In
light of our method, we can say that message blinding must not use random
values smaller than 32 bits.

3.4 Hashed Message Scenario

In this section, we consider a more restricted model where the message is hashed
and padded before being randomized and then exponentiated. We still assume
that the message m is chosen by the attacker, but the aim is now to obtain a
tag on h� where:

{
h = H(m)
h� = h+ u · n
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We assume thatH is a deterministic hash and pad function – e.g. the full domain
hash RSA-FDH [2]. Because we do not have control on the hash output, it is not
possible to directly set some word of h to that precise value which would create
a tag for some given targeted u. Rather we can try to search for some m whose
hash has this property. Suppose we want to tag the least significant word of h�.
In order for that word to be tagged for a prescribed target u, we must find a
message m such that h0 = −s0 mod b with s = u · n. This allows the attack to
necessitate only O(2λ) side-channel traces as in the chosen message model, but
requires an average of O(2t) hash computations.

We can do better if we allow any u value to be targeted. Let S0 = {s0 =(u · n)0}
where 0 � u < 2λ− 1. Then we only have to find a message such that −h0 ∈ S0.
Provided that λ � t, the number of distinct values in S0 is close to 2λ and
the search for a convenient message requires O(2t−λ) hash computations and
O(t 2λ) space storage. We thus found a (time :memory : data) tradeoff – where
data means the number of side-channel traces required – which achieves (2t−λ :
t 2λ : 2λ) complexity.

A further improvement consists in allowing the tag to appear on any word.
Defining

S =

�−1⋃

i=0

Si where Si = {si = (u · n)i}

we now have about � 2λ elements in S so that the tradeoff complexity becomes
(2t−λ/� : � t 2λ : 2λ).

This proposed hashed message attack admits three drawbacks compared to
the chosen message one:

1. We do not see any means to simultaneously target different u on different
words. As a consequence the number of traces required does not benefit from
the division by �.

2. Also it seems impossible to provoke a tag for a prescribed u – except if we
accept a time complexity O(2−t) instead of O(2t−λ). Thus, the number of
traces required is not divided by the gain factor ω.

3. The method requires the pre-computation of O(2t−λ) hash values and the
storage of � t 2λ bits.

Despite these drawbacks we think that there are some settings for which the
proposed hashed message method can be practically applied while the known
message one would be infeasible. For instance when t = 32 and λ = 16 the attack
needs 216 traces and a short pre-computation phase, while it would require 229

traces in the known message model to break a 1024-bit key.
Note that the method described in this section seems restricted to the use

of a deterministic padding. It is an open question whether it could be modified
to apply also to probabilistic padding schemes such as RSA-PFDH [8] or RSA-
PSS [3].

Those analysis exploits the well-known efficient leakage model [A0] to design
an SSCA efficient chosen message technique which improves the previous results
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and to propose a hashed message attack. In the following we consider now a
relaxed model leakage. Indeed it is also realistic to consider less restrictive leakage
models for a side-channel tag to appear in a multiplication calculation. With
these new leakage models we give new results that highlight SSCA is still more
efficient than said previously to defeat state of the art blinded exponentiations.

4 Relaxed Side-Channel Leakage Model

We assume here a tag in a message could be due to two following assumptions
that are not independent:

[A1] Side-channel tag originates from the fact that at least τ consecutive bits
in a t-bit word of m are set to 0, with τ � t.

[A2] Side-channel tag originates from the fact that the Hamming weight h of
the t-bit word is lower than a value ν, with h � ν < t.

Both assumptions [A1] and [A2] are realistic and well suited for hardware imple-
mentations of multipliers. The choice of the most relevant model between [A1]
and [A2] and the best values of parameters τ and ν varies from one integrated
circuit to another one, it also depends on t. From our experiments we observed
that some integrated circuits are more resistant than others.

In this sequel we separately consider the two leakage models given by both
assumptions [A1] and [A2]

3.
We say that x is A1-tagged on word i whenever xi contains at least τ con-

secutive zero bits. This event will be denoted by tag
(i)
A1

(x). We also denote by
tagA1(x) the event that x is A1-tagged on at least one of its words.

In the same way, we say that x is A2-tagged on word i whenever the Hamming

weight of xi is less than ν, and this event will be denoted by tag
(i)
A2

(x). We also
denote by tagA2(x) the event that x is A2-tagged on at least one of its words.

In the following let’s denote by p the probability for a t-bit word to be either
A1-tagged or A2-tagged depending on the considered leakage model.

Theorem 3. Given a message m uniformly distributed over
{
0, . . . , 2�t − 1

}
,

the probability that the randomized message m� = m+ u · n is tagged on any of
its � least significant words is:

Proba
(
tag(m�)

)
= 1− (1− p)�

� � · p

4.1 Tag Probabilities for τ and t Values with [A1] Leakage Model

Considering the leakage model [A1] we have computed the different p values
for all τ values in the range [0, . . . t]. We have then exhausted the number nτ of

3 [A0] leakage model is a particular case of model [A1] (resp. [A2]) when τ equals t
(resp. when ν is null).
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existing words which have their longest consecutive zeros sequence being of exact
length τ . Knowing this number we compute p1(t, τ) the probability for a t-bit
word to have its longest consecutive zero sequence to be exactly τ : p1(t, τ) =

nτ/(2
t). Then we have Proba(tag

(i)
A1

(x)) =
∑t

j=τ p1(t, j). Once we obtain these

different tag
(i)
A1

(x) values we compute the tagA1(m) probabilities for 512, 1024
and 2048 bits long integer messages.

Case t = 16. Table 2 gives result examples for a t = 16-bit multiplier
architecture.4

Table 2. [A1] Leakage probability examples for some τ values when t = 16

τ t-bit word number p1(t, τ) P (tag
(i)
A1

(x)) P (tagA1 (m512)) P (tagA1 (m1024)) P (tagA1 (m2048))

0 1 1.53 10−05 1 1 1 1

4 13008 1.98 10−01 3.95 10−01 1 1 1

8 704 1.07 10−02 1.95 10−02 4.68 10−01 7.17 10−01 9.20 10−01

12 28 4.27 10−04 7.32 10−04 2.32 10−02 4.58 10−02 8.95 10−02

16 1 1.53 10−05 1.53 10−05 4.88 10−04 9.76 10−04 1.95 10−03

Considering for instance the case τ = 12, we observe there are 28 words
which have their longest consecutive zeros sequence being of length 12. The
probability for a word to be exactly τ bit A1 tagged is p1(16, 12) = 4.27 10−4.
The probability for a word to have at least τ = 12 consecutive zero bits is then

Proba(tag
(i)
A1

(x)) =
∑16

i=12 p1(16, i) = 7.32 10−4.

It is then worth to notice the probability a 1024-bit integer is tagged is reduced
from 9.76 10−4 to 4.58 10−2 from model [A0] to model [A1] with τ = 12 which can
happen in practice. It means that only 22 (≈ 1/(4.58 10−2)) messages would be
enough for recovering the secret exponent in a 1024-bit blinded exponentiation
with probability 1/e ≈ 0.63 instead of 1020 messages when considering [A0].
Finally to reach a leakage probability equal to 0.999 SSCA would require only
140 messages and not 6700 when considering the previous leakage model [A0].

Case t = 32. We processed the same study for a 32-bit multiplier. Table 3
gives result examples.

In [9] authors considered that using a 32-bit multiplier counterfeited simple
side-channel analysis in blinded exponentiation when random used for blinding
were big enough (i.e. � 32 bits). We observe here than it is not exact considering
the relaxed but realistic model [A1]. Indeed considering τ equal to 16 we obtain

Proba(tag
(i)
A1

(x)) = 1.37 10−4, it signifies Proba(tagA1(m)) = 4.39 10−3 for m
a 1024-bit integer message. It means that 230 messages would be enough for

4 The complete result tables of our analysis for [A1] and [A2] models, considering all
possible τ and ν values in the range [0,. . . , t] are given in the extended version of
this paper [6].
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Table 3. [A1] Leakage probability examples for some τ values when t = 32

τ t-bit word number p1(t, τ) P (tag
(i)
A1

(x)) P (tagA1 (m512)) P (tagA1 (m1024)) P (tagA1 (m2048))

0 1 2.33 10−10 1 1 1 1

8 111246728 2.59 10−02 5.02 10−02 5.61 10−01 8.08 10−01 9.63 10−01

16 311296 7.25 10−05 1.37 10−04 2.20 10−03 4.39 10−03 8.75 10−03

24 704 1.64 10−07 2.98 10−07 4.77 10−06 9.54 10−06 1.91 10−05

32 1 2.33 10−10 2.33 10−10 3.73 10−09 7.45 10−09 1.49 10−08

recovering the secret exponent in a 1024-bit blinded exponentiation with prob-
ability 1/e ≈ 0.63 instead of 1.34 108 messages when considering [A0]. Moreover
to reach a leakage probability equal to 0.999 only 1480 messages are required
instead of 8.73 108.

We have studied the leakage probabilities for exponentiation with the [A1]
model. Our analysis highlights the risk of SSCA leakage even when the hardware
multiplier base size is big, for instance 32-bit contrarily to previous paper results.
In the following we reproduce the same study for the second ([A2]) model leakage.

4.2 Tag Probabilities for ν and t Values with [A2] Leakage Model

The number of t-bit words which have their Hamming weight being μ is
(
μ
t

)
.

The probability for a t-bit word to have its Hamming weight being exactly μ is
p2(t, μ) =

(
μ
t

) · 2−t. Thus we obtain the probability for a t-bit word to be ν [A2]
tagged is:

Proba(tag
(i)
A2

(x)) =

∑ν
μ=0

(
μ
t

)

2t
. (2)

Using this simple formula we compute in the following the values Proba(tag
(i)
A2

(x))
and Proba(tagA2(m)) for t=16 and t = 32 bits multipliers and different message
bit-length.

Case t = 16. Table 4 gives results examples of Proba(tag
(i)
A2

(x)) and Proba
(tagA2(m)) for t=16.

Table 4. [A2] Leakage probability for some ν values when t = 16

ν t-bit word number p2(t, ν) P (tag
(i)
A2

(x)) P (tagA2 (m512)) P (tagA2 (m1024)) P (tagA2 (m2048))

0 1 1.53 10−05 1.53 10−05 7.78 10−03 1.55 10−02 3.08 10−02

2 120 1.83 10−03 2.08 10−03 6.43 10−02 1.24 10−01 2.33 10−01

4 1820 2.78 10−02 3.84 10−02 7.14 10−01 9.18 10−01 9.93 10−01

8 12870 1.96 10−01 5.98 10−01 1 1 1

12 1820 2.78 10−02 9.89 10−01 1 1 1

16 1 1.53 10−05 1 1 1 1

Considering for instance the case ν = 2, the probability a 1024-bit integer
is tagged is Proba(tagA2(m1024) = 1.24 10−1. It signifies that only 8 messages
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would be enough for recovering the secret exponent in a 1024-bit blinded expo-
nentiation with a probability of success equal to 1/e ≈ 0.63. Finally to reach
a leakage probability equal to 0.999 SSCA it would require only 49 messages
(exponentiation executions).

Case t = 32. We processed the same study for a 32-bit multiplier.

Table 5. [A2] Leakage probability for some ν values when t = 32

ν t-bit word number p2(t, ν) P (tag
(i)
A2

(x)) P (tagA2 (m512)) P (tagA2 (m1024)) P (tagA2 (m2048))

0 1 2.33 10−10 2.33 10−10 3.73 10−09 7.45 10−09 1.49 10−08

4 35960 8.37 10−06 9.65 10−06 1.54 10−04 3.09 10−04 6.17 10−04

8 10518300 2.45 10−03 3.50 10−03 5.46 10−02 1.06 10−01 2.01 10−01

16 601080390 1.40 10−01 5.70 10−01 1 1 1

24 10518300 2.45 10−03 9.99 10−01 1 1 1

32 1 2.33 10−10 1 1 1 1

We consider here a device where the power leakage appears for this [A2] model
when ν = 4, we know by experiments it is a realistic case. The probability a 1024-
bit integer is tagged becomes Proba(tagA2(m1024)) = 3.09 10−4. It means that
only 3.24 103 messages would be enough for recovering the secret exponent in a
1024-bit blinded exponentiation with probability 1/e ≈ 0.63 instead of 1.34 108

when considering the [A0] model. Moreover to reach a leakage probability equal
to 0.999 2.1 104 messages are required instead of 8.73 108.

Synthesis. We have discussed the probability of SSCA leakage for the two
relaxed models [A1] and [A2] we have introduced. We have shown that the pre-
vious model [A0] is too restrictive and that even for big size multipliers like
32-bit ones it is possible with a reasonable number of executions to recover the
private exponent in a blinded exponentiation.

To illustrate our results we gives in Table 6 different leakage probabilities for
different models we consider realistic. Of course this table is an example and each
integrated circuit will have different leakage characteristic. It is then important
to measure the right values τ and ν for each integrated circuit.

Table 6. Leakage probability examples for t=32

τ, ν t-bit word number p P (tagAi
(m512)) P (tagAi

(m1024)) P (tagAi
(m2048))

[A2] ν = 4 8.37 10−06 9.65 10−06 1.54 10−04 3.09 10−04 6.17 10−04

[A1] τ = 16 7.25 10−05 1.37 10−04 2.20 10−03 4.39 10−03 8.75 10−03

[A0] 2.33 10−10 2.33 10−10 3.73 10−09 7.45 10−09 1.49 10−08

It is important to notice that SSCA is much more efficient than previous
studies said and particularly can threaten blinded exponentiation implemented
with 32-bit cores which are commonly used today. Of course it depends on the
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Table 7. Number of messages/executions needed for leakage probability at 0, 999,
for t=32

τ, ν m512 m1024 m2048

[A2] ν = 4 4.22 104 2.11 104 1.06 103

[A1] τ = 16 3 103 1.5 103 750

[A0] 1.75 109 8.73 108 4.37 108

kind of hardware selected for the implementation, it is then very important to
measure the exact side-channel leakage of the multiplier, for instance the exact
values τ and ν in our two models.

5 Countermeasures and Recommendations

We have shown previously that some mandatory conditions must be respected
to prevent any implementations from the enhanced simple side-channel analysis.

Hardware Multiplier Characterization. The first consideration to take into
account consists in precisely characterizing the leakage characteristics of any
designed hardware multiplier. Effectively, contrarily to [9], we have shown that
for a t-bit hardware multiplier the leakage probability does not depend only of t
but more of the values τ and ν we described previously. It is of particular interest
when t = 32 as previous studies considered using such a hardware multiplier
hardware rendered the SSCA not available if the blinded exponentiation was
using big enough random values. But we have shown that it is not true. Indeed,
whatever the random size used for blinding and base t value are, if the value ν
(resp. τ) is much smaller than t (much bigger than 0) then SSCA can defeat
a state of the art blinded exponentiation. It is then important to determine
for leakage models [A1] and [A2] the values τ and ν leading to a power tag
of the selected multiplier in order to determine the exact power leakage of an
exponentiation. Once these exact values are determined a developer can select
the appropriate algorithm and countermeasure(s) he must use (or not use) for
his implementation to be secure enough.

Moreover it is obvious that hardware countermeasures such as jitter, clock
divider or in best cases balanced consumption circuits should be also present
in the embedded product to enforce the resistance to side-channel analysis and
render enhanced SSCA more difficult.

The previous study recommendation still applies: ”λ (random bit-length)
value must be bigger than 32 bits whatever the value of τ and ν still applies. It
is also still recommended to use a constant (rather than random) value for r2.
For instance r2 could be equal to 2λ − 1.”

Exponentiation Algorithm Choice. For better resistance we recommend to
select an exponentiation algorithm resistant to this analysis. The best solution to
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us consists in always using right-to-left blinded exponentiation algorithm instead
of left-to-right classical ones. As already highlighted by Fouque et al. in [13]
this implementation is much more resistant to the many side-channel attacks
than the left-to-right ones. Indeed the square operations being applied on the
message value the operands used in multiplications are never the same and it is
not possible any more to observe tags on any message multiplication in a same
trace. Developers can also decide to apply a new message randomization on
the message operand m used in exponentiation after each multiplying (squaring
and multiplying) operation, for instance by using for message the new value
m = m + n mod r2 · n. It is also interesting to notice than in case of Barrett
or Montgomery reduction methods, the resistant reduction algorithms given in
[12] offers a good protection.

6 Conclusion

We have presented some SSCA improvements enhancing simple side-channel
analysis to recover of the secret exponent manipulated during state of the art
blinded embedded exponentiations, when all the other side-channel techniques
are inefficient. We have also demonstrated how to build a chosen message more
significantly to reduce the number of needed execution for SSCA attack to suc-
ceed with a higher probability. Moreover we have shown that, contrarily to a
common belief, simple side-channel analysis can be successful also in some hashed
message models. Our results depend on the size of the random values used for
blinding and the way they are generated, as well as on the hardware multiplier
leakage properties. We have also presented two new side-channel leakage models
we consider realistic and well suited for long integer multiplications and expo-
nentiation side-channel analysis. We observe that SSCA remains a very powerful
side-channel analysis to defeat blinded exponentiation even when using big ran-
dom values and big multipliers. Indeed it requires a deep characterization of the
hardware multiplier used.

Our new analysis strengthens again the advice previously given by Fouque
and Valette at CHES 2003: “Upwards is better than downwards!”. Although less
often used than left-to-right exponentiation, right-to-left methods appear to be
much more resistant against the numerous side-channel attacks.
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