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Abstract. Side channel attacks take advantage of information leakages
in cryptographic devices. Template attacks form a family of side chan-
nel attacks which is reputed to be extremely effective. This kind of at-
tacks assumes that the attacker fully controls a cryptographic device
before attacking a similar one. In this paper, we propose to relax this
assumption by generalizing the template attack using a method based
on a semi-supervised learning strategy. The effectiveness of our proposal
is confirmed by software simulations, by experiments on a 8-bit micro-
controller and by a comparison to a template attack as well as to two
supervised machine learning methods.
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1 Introduction

Side Channel Attacks (SCA) take advantage of the fact that instantaneous power
consumption [18], execution time [17] or/and electromagnetic emanations leak-
ages [10] of a cryptographic device depend on the processed data and the per-
formed operations. Power analysis attack is a type of SCA which assumes that
the use of different keys implies differences in the power consumption. The evo-
lution along the years of the power analysis attacks has been characterized by
an increase in the complexity of the statistical analysis.

Simple Power Analysis (SPA) [18] was the first proposed approach to perform
power attacks. It relies on an interpretation of the trace (of the power consump-
tion) in order to retrieve information about the used key. In other words, the at-
tacker tries to derive (a part of) the key directly from a given trace by observing
patterns in it. For example, Hollestelle et al. [14] showed that such attack against
RSA implemented with a square and multiply algorithm allows the recovery of
the key. Differential Power Analysis (DPA) [18] uses more advanced statistical
analysis than SPA by modeling the theoretical power consumption for each key.
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The likelihood of the observed power consumption for each model is used to
predict the key.

Template Attacks (TA) [4] make an additional step by estimating the condi-
tional probability of the trace for each key during a profiling step. It extracts
all available information from each trace and can be considered as the strongest
form of side channel attack under the assumption that the distribution of traces
is known [4]. This kind of attacks is feasible if the attacker can access the values
of the keys during the profiling step.

Batina et al. [2] presented the Differential Cluster Analysis (DCA), a variant
of DPA, against a cryptographic device using an unknown fixed subkey. This
technique uses cluster analysis to detect internal collisions in the collected traces.
It builds a cluster for each value of a target (i.e. a function of the cryptographic
algorithm that handles the guessed key and a known value like the plaintext).
In the second step it regroups traces of the target device having the same value.
Finally it assesses the quality of the cluster separation by means of the “Sum-Of-
Squared-Error” criterion. However, DCA requires that the key does not change
during the attack.

Lerman et al. [19,20], Hospodar et al. [15,16], and Heuser et al. [13] discussed
the role of machine learning in TA. They showed that a supervised machine
learning procedure is able to outperform conventional TA. However their models
suppose that in the profiling step the attacker can have a full control of a device
identical to the attacked one. In other words, the attacker can choose both key
and plaintext.

Dyrkolbotn et al. [8] targeted the precise Hamming weight of data with tem-
plate attack. However, their research was based on a supervised method where
they supposed that they can also fully control a clone device in order to build
their classification model.

1.1 Our Contribution

This paper intends to make one further step on all of these previous works by
generalizing the TA. This generalization is made by relaxing the hypothesis that
the attacker has a full control of the device. It is performed thanks to a machine
learning approach inferring the precise Hamming weight of the subkey. More
precisely, in the machine learning domain, supervised learning is concerned with
the task of inferring a stochastic dependency from observed data. In a SCA
context, the purpose is to infer a secret information from a set of measured
traces. Unsupervised learning is any kind of model which tries to find hidden
structures in traces without knowing their respective keys. Our work introduces
Semi-Supervised Template Attack (SSTA) which combines supervised and unsu-
pervised learning [34]. In our approach the attacker needs to know the Hamming
weights of a small subset of all the set of possible target keys and their related
power consumption.

The results of this attack can be used as an input for other related attacks such
as algebraic side channel attacks combined with a template attack approach [25].
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We have analyzed the pertinence of our attack with simulations and real data
experiments. Furthermore we compared SSTA to several profiling Side Chan-
nel Attacks: a template attack as well as to two supervised machine learning
methods. Our evaluations show significant key-recovery success rates.

This paper is organized as follows: Section 2 introduces the notations and
the basics of TA approach. Section 3 presents our machine learning approach
applied to power analysis attack. A description of the experimental system and
the results of an attack based on a machine learning technique are described in
Section 4. Section 5 concludes the paper on a positive note and discusses future
works.

2 Template Attack

Let us consider a crypto device executing a cryptographic algorithm with the
binary key Ok, k = 1, . . . ,K, where K = 2B is the number of possible values of
the key andB the number of bits of the key. For each key we observeN times over
a time interval of length n the power consumption of such device and we denote

by trace the series of observations T
(k)
(i) =

{
T

(k)
(i)(t) ∈ R | t ∈ [1;n]

}
, i = 1, . . . , N

associated to the k-th key. The state-of-the-art TA [4] modelizes the stochastic
dependency between the key and a trace by means of a multivariate normal
conditional density:
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where μk ∈ R
n and Σk ∈ R

n×n are respectively the expected value and the
covariance of the n variate traces associated to the k-th key.

During the profiling step, a set of N traces T
(k)
(i) , i = 1, . . . , N , is collected for

each key. TA estimates the expected value μk and the covariance Σk by:
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1

N
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and:
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1

N − 1

N∑
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During the attacking step, once a new trace T is observed on the attacked device,
TA returns the key which maximizes the likelihood:

k̂ = argmax
k

P̂ (T |Ok) = argmax
k

P (T |Ok; μ̂k, Σ̂k) (4)

This approach makes implicitly the assumption that the distribution of the traces
for a given key follows a parametric Gaussian distribution, with (n2 + 3n)/2
parameters.
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We consider the power consumption T
(k)
(i)(t) of the device at time t depending

on an internal value fk(x) where x is (a part of) the plaintext and k is (a part
of) the key. In other words, we have that

T
(k)
(i)(t) = L(fk(x)) + ε (5)

where L is the data-dependent device leakage and ε is the independent random
noise following a Gaussian distribution with zero mean.

A lot of power analysis found in literature are based on the Hamming
weight (HW) model [8, 24, 27, 30, 32]. More precisely, that model assumes that

L is proportional to the Hamming weight of the internal value (i.e. T
(k)
(i)(t) =

λHW(fk(x)) + ξ + ε with λ ∈ R and ξ ∈ R).

3 The SSTA Approach

As seen in the previous section, template attacks are performed in two steps: a
profiling step (aka. learning step) and an attacking step (aka. validation or test
step). The state-of-the-art approach of TA assumes that during the profiling
step the attacker can fully control (choose the plaintext and the key) a copy of
a device he wants to attack. By changing the key (or a part of it) the attacker
can build a template for each value of the (sub)key.

In this paper we propose to relax this restrictive hypothesis (full control of
a cloned device). The attacker only needs to control the attacked device with
several known keys but he can still collect traces from the device with unknown
keys.

This section discusses Semi-Supervised Template Attack (SSTA) approach.

3.1 The SSTA Approach

In SSTA the attacker collects traces measured when the device executes crypto-
graphic operations. He can collect these traces while the device is used by differ-
ent users having different keys. We suppose that the device is such that each user
is linked to a particular key. In other words the attacker cannot change the key
but he knows that the same fixed key is used when he manipulates the device.
We suppose also that the keys are uniformly distributed which is relevant in case
of symmetric ciphers (this is not necessarily the case in asymmetric algorithms).
In SSTA, during the acquisition step, the attacker collects two sets of traces. The

first set of traces T
(k)
(i) ∈ T K is collected using several known keys. The second

set of traces T(i) ∈ T U is acquired with unknown keys.
For the sake of simplicity we restrict to consider attacks on the Hamming

weight of a single byte of the key. We assume that the power consumption is
dependent on the Hamming weight of the manipulated data.

Suppose that the cryptographic device manipulates the b-th byte of the key

k (namely kb) at time t (i.e. T
(k)
(i)(t) = λHW(kb) + ξ + ε). At the moment t when
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the (sub)key is manipulated by the device, the traces linked to two (sub)keys
having the same Hamming weight must be more similar than if (sub)keys had
different Hamming weights. Therefore, in the first part of the profiling step,
the attacker regroups traces from set T U that have similar power consumption
when the cryptographic device manipulated the b-th byte of the key. It is done
using the advantages offered by machine learning techniques [12]. More precisely,
clustering techniques allow us to find all traces that have the same Hamming
weight in order to group them into clusters.

In the second step, the attacker has to find the value of the Hamming weight
of each cluster. For this, we have to consider the density distribution of the
Hamming weights of a byte. There is asymptotically 1

256 of the set of traces that
is measured when the cryptographic device used a key with a Hamming weight
of 0 or 8, 8

256 of the set of traces that is measured when the cryptographic device
used a key with a Hamming weight of 1 or 7, etc. So, the attacker can recover the
value of the Hamming weight of each cluster by observing the relative number
of traces and their energy consumption in each cluster (we suppose that the
power consumption of the attacked device is a strictly increasing or a strictly
decreasing function of Hamming weight of the key). For example, in order to
distinguish the clusters 0 from 8, considering that the energy consumption is a
strictly increasing function, the first cluster will have a lower power consumption
than the second cluster.

Finally, in the attacking step, the attacker measures a trace T on the attacked
device. Afterwards the model returns the estimated Hamming weight ĥ of kb
which minimizes:

ĥ, î = argmin
h,i

dt(T, T
(h)
(i) ) (6)

where dt is a distance measure (e.g Euclidean or Manhattan distance) between
two traces on the instant t (where kb is manipulated). In our case, the distance
measure dt is the Euclidean distance.

Note that since the trace could be misclassified the model can give a wrong
Hamming weight. In order to handle this issue the attacker can proceed by local
search (e.g. trying ĥ+ 1 and ĥ− 1 in the neighborhood of ĥ).

Once the Hamming weight is known, the attacker can find the value of the
attacked byte by brute-force attack (i.e. try each key which has the Hamming

weight ĥ). Brute-force enumeration, in case Hamming weight is known, would
require less attempts than the classical brute-force which enumerates all 256
possible values. We can also use this Hamming weight as an input to other attacks
such as an Algebraic Side Channel Attack [25] or a classical DPA combined with
a template attack approach [26].

Furthermore after the classification of a trace from the attacked device, this
trace can be added in the model in order to improve the accuracy of further
executions. In other words, the model may improve its success rate at each
execution of the attacked device by inserting the new trace in the set of traces
used in the profiling step.
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Up to now, we supposed that the instant t when the device manipulates
the attacked byte is known. In order to find this instant t, we suppose that
the attacker has a small subset of keys of known Hamming weights. Thanks
to methods of dependency (e.g. Pearson correlation, Kolmogorov-Smirnov) the
attacker can find the instant where the cryptographic device manipulates the
key. More precisely, SSTA choose the instant t in the set of traces T K which
has the highest dependence with the known Hamming weights of the keys. In
our experiment we chose the instant t that maximizes the mutual information
between traces at instant t and known Hamming weights.

Finally, Algorithm 1 (in appendix A) gives a pseudo-code of SSTA on a single
byte of the key.

3.2 Assumptions

In this section we will discuss main issues which are important for the profiling
step: the probability of having several keys of different Hamming weights and
the required number of traces to collect in order to have at least one trace per
Hamming weight.

Probability of Having Several Keys of Different HW. We suppose that
the attacker has several keys of different Hamming weights. In order to find the
best point in the collected traces, during the profiling step, the attacker has to
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Fig. 1. Empirical probability of having several one byte sub-keys of different Hamming
weights. It shows the probability of having 3 to 9 different Hamming weights when the
attacker has 0 to 1500 different keys. The X axis is scaled logarithmically.
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obtain as many keys of different Hamming weights as possible. We assume that
the attacker cannot either set nor choose values of these keys. Figure 1 shows
the probability that the attacker has several keys of different Hamming weights
depending on the total number of keys he has. From Figure 1 we observe that an
attacker needs few known keys if he wants 3 keys of different Hamming weights
while a larger number of known keys is required if all the Hamming weights are
needed. For example the attacker has 94% of chance to have 4 keys of different
Hamming weights from a set of 10 randomly chosen known keys.

Number of Traces to Collect in Order to Have at Least One Trace per
HW. Once the attacker knows when the key is manipulated he should collect
traces in order to build the model. We estimate here how many traces should
be collected. We must have at least one trace per value of Hamming weight in
order to build each template.

The probability p to obtain at least one trace per value of Hamming
weight is:

p = P (G0 > 0 ∧G1 > 0 ∧G3 > 0 ∧ ... ∧G8 > 0) (7)

where Gi is the number of traces linked to a key which has a Hamming weight
of i.

Under the hypothesis of independency, the equation (7) can be rewritten as:

p = P (G0 > 0)× P (G1 > 0)× P (G3 > 0)× ...× P (G8 > 0) (8)

where P (Gi > j) follows a Binomial distribution with two parameters (the
number of trials and the success probability in each trial): n and pi. Based on
the equation (8) the Figure 1 shows the number of traces n which should be
collected depending on p. This figure shows that the attacker has to collect at
least 1226 traces in order to have 99% of chance to have at least one trace per
value of Hamming weight. Since the same traces can be used in order to attack
any byte of the key, we need overall 1226 traces in order to find a key of any
length.

4 Experiments

We validate our approach by conducting software simulations of our attack.
During software simulations, physical leakages targeted by this attack (i.e. key
manipulation) were simulated as the Hamming weight of the attacked part of
the key.

In order to confirm the results of these simulations, we performed real data
experiments: we attacked the initial AddRoundKey and the first round of AES [6]
implemented on a microcontroller.

Afterwards we compared the SSTA approach with the TA approach and with
two supervised machine learning methods based on the same datasets.
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Validation
In order to assess the quality of SSTA, we adopt a holdout validation tech-
nique [1]. This technique needs two sets of traces. The first one (learning set)
is used to build the model (i.e. find the best point in a trace and build each
template). The second one (validation set) is used in order to assess the gener-
alization accuracy. Typical values for a learning set are between 70% and 90%
of all dataset and the rest is used for the validation set.

4.1 Software Simulations

In this first step of our experiment, we simulated the power consumption of an
8-bit microcontroller. Therefore we considered the case of an univariate problem
where each trace has one point linked to the Hamming weight of an 8-bit key.

The estimation of the success rate1 of the attack depending on the noise
in the traces is shown in Figure 2. Note that the standard deviation is low
compared to the average success rates. An R implementation of “Partitioning
Around Medoids” [28]2 clustering technique was used. The complexity of this
clustering algorithm is O

(
i × k × (N − k)2

)
[29, 31] where i is the number of

iterations, k is the number of clusters andN is the number of traces. The holdout
technique used 3500 traces in the learning set and 1500 in the validation set. As
expected we can see that the more noise we have, the more difficult it is to
succeed the attack.

4.2 Real Data Experiments

After a simulation where each parameter can be controlled, we performed two
real data experiments. The first one was meant to test SSTA on a simple case.
The second experiment is a generalization of the first one. Table 1 summarizes
both experiments.

Measurement Setup
We used an 8-bit microcontroller ATmega328P. The microcontroller was
programmed using an Arduino Uno board [33]. In order to cut off any noise
(generated by other parts of the Arduino Uno board’s circuits) the microcon-
troller was removed from the board and placed on an external protoboard. The
microcontroller was powered up using 5.3 V supply. It used an external 16 MHz
clock. We measured the power consumption by inserting a 47 Ω resistor on
the power pin VCC of ATmega328P. For all acquisitions we used an Agilent
Infiniium 80000B Series oscilloscope 2 GHz 40 GSa/s (maximum capabilities).
In practice we used 2 GHz and 250 MSa/s settings. See the acquisition scheme
in Figure 4 in Appendix A.

1 Which is the average of 10 success rates obtained in same conditions (i.e. with the
same value of the standard deviation of the noise).

2 Package “cluster” [23] available on CRAN.
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Fig. 2. Average success rates depending on the value of the noise. The noise is the
value of standard deviation of ε in equation (5). It was generated using 10 experiments
on a simulated device. “Partitioning Around Medoids” clustering technique was used.

First Experiment
The attack was performed with a plaintext of 16 bytes (all set to zero). All 16
bytes of the key (except the attacked byte) were also set to zero. The reason
of these fixed values is to decrease the complexity of subsequent steps of the
analysis. We chose to attack the 13-th byte of the key3 which value ranges
between 0 to 255.

For each value of the attacked byte we performed 10 average acquisitions. By
average acquisition we mean the average, performed on the oscilloscope, of 128
single acquisitions using the same key and plaintext. The parameters 10 and 128
were chosen on the basis of practical and logistical issues.

The result of a measure (an average of 128 acquisitions) is a trace such as the
one plotted in Figure 5 in Appendix A. Traces were aligned using a trigger on
the “encipher” signal sent to the device. We achieved a preprocessing step which
selected each fifth point in each trace.

Two different signals (handled using interruptions) could be sent to the mi-
crocontroller, one to change the value of the attacked byte of the key (i.e. to
increment its value), the other to order to encipher the plaintext using the cur-
rent value of the key.

3 This value has been randomly chosen and do not impact on the results because of
the 8-bit architecture.
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(a) First experiment
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(b) Second experiment

Fig. 3. Empirical probability to find the best point in a trace depending on the size of
T K. In each experiment, repeated 100 times, the set T K was randomly chosen.

We performed our experiment based on the “holdout” technique with a
learning set of 8 traces per byte value and with 2 traces per byte value in the
validation set4. The best point found by the feature selection model was located
at the end of the initial AddRoundKey, which is the moment in time where the
attacked key byte (i.e. the 13-th) is manipulated. The best point is the point
which is the most correlated to the target value. In our case we used mutual
information5 between the energy consumption and the HW of the key.

Figure 3(a) shows the probability to find the best point in a trace depending
on the number of traces in T K. It is worth to note that a small subset of the
set of traces is enough in order to find the best point in each trace. For instance
there is more than 95% chances to find the best point using only 20 traces linked
to known keys.

In this experiment we also used the “Partitioning Around Medoids” clustering
technique. The result of our attack is shown in Table 1

The success rate is 61.5% which is higher than the success rate of the naive
model which is based on the probability density function of Hamming weight.
This model will always give the answer 4 for the Hamming weight of a byte, since
it is the most probable value. Its success rate is 70

256 ≈ 27.34% (see Table 2).
The success rate of our attack can be improved by allowing a misclassification.

Our model approximates the Hamming weight 89.77% of the time with an error
of at most 1 (i.e. an error of at most 1 is represented by |h − ĥ| ≤ 1 where h is

the actual Hamming weight of a byte and ĥ is the Hamming weight given by our
model). Moreover, our model approximates the Hamming weight with a success
of 100% with an error of at most 2.

4 Standard values for theses parameters.
5 Package “sideChannelAttack” [21] available on CRAN.
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Second Experiment
The second experiment is more general than the first one and it is meant to
confirm the results of the first one by using random values for keys, by using
fewer keys and by allowing noisier traces.

We used the same settings and same devices as in the first experiment, apart
from what discussed below.

All bytes of the key were randomly generated. We generated 210 different keys.
Based on Figure 1, 31.33% bytes of the key should have all possible Hamming
weight values (i.e. we should be able to attack 5 bytes). In practice we were able
to attack 6 bytes of the key.

The attack was performed with fixed plaintexts of 16 bytes. This times we
chose to attack the 15-th byte of the key.

In this experiment we performed 10 average acquisitions per key/plaintext
pair. Each acquisition is the average of 100 single acquisitions using the same
key and plaintext.

Figure 3(b) shows the probability to find the best point in a trace depending
on the number of traces in T K. The results are similar to the first experiment.
However, in this new experiment, the attacker needs more traces compared to
the previous experiment due to noisier traces.

The result of this experiment is shown in Table 1. Using 210 traces the model
gives the correct Hamming weight in 53% of cases. Moreover, 85.31% of the time
our model approximate the Hamming weight, with an error of at most 1.

4.3 Discussions

The experimental results of the previous section suggest that the SSTA is a
practical attack. We compare the SSTA approach with several profiling Side

Table 1. Success rates of experiments of SSTA, TA, RF (Random Forest) [3] and SVM
(Support Vector Machine) [5]. LS/VS is the number of traces in the learning set and
in the validation set.

Model Experiment LS/VS
#Traces

#Keys
Success rate (%)

for average |h− ĥ| = 0 |h− ĥ| ≤ 1 |h− ĥ| ≤ 2

SSTA
First 8/2 128 256 61.5 89.77 100

Second 8/2 100 210 53.0 85.31 100

TA
First 8/2 128 256 84.18 99.80 100

Second 8/2 100 210 71.56 98.58 100

RF
First 8/2 128 256 77.54 99.61 100

Second 8/2 100 210 73.46 99.53 100

SVM
First 8/2 128 256 83.98 100 100

Second 8/2 100 210 78.91 100 100
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Table 2. Success rate of a Naive model

Naive model

Success rate (%)

|h− ĥ| = 0 |h− ĥ| ≤ 1 |h− ĥ| ≤ 2 |h− ĥ| ≤ 3 |h− ĥ| ≤ 4

27.34 71.09 92.97 99.22 100

Channel Attacks. The first one is an univariate TA where the best point was
also found thanks to a mutual information approach. Thus we performed a TA
against the same datasets used in both experiments presented previously. The
results are shown in Table 1. The performance of TA is better in each experiment.
For example in the first experiment the success rates increase in average by 10.90
percentage points while in the second experiment the success rates increase in
average by 10.61 percentage points.

Another comparison was performed against two state-of-the-art univariate
supervised machine learning methods: the Random Forest6 and the Support
Vector Machine7. The results are shown in Table 1. The table shows that these
models are as competitive as the TA.

Performances of TA, RF and SVM can be explained by their profiling step.
Indeed these approaches assume that the attacker has a full control of (a copy
of) the cryptographic device which is not the case of SSTA.

It is worth to note that the success rate of SSTA could be improved by using
the knowledge of the set of traces T K during the clustering step. Indeed, this
prior information can allow to improve the clustering method by the fact that

we know in which cluster should be placed each trace T
(k)
(i) ∈ T K.

5 Conclusions

We presented and assessed a generalization of the template attack, based on
a semi-supervised technique of machine learning, able to infer a model from
power consumption observations. This model predicts the Hamming weight of
the attacked byte of a key. The contribution is done on the profiling step where
the attacker needs to know only a subset of keys of different Hamming weights.
We implemented our technique in a simulated and real data settings. In both
cases we show that we can retrieve the Hamming weight of a byte of the key
faster than the naive model.

The added value of SSTA compared to TA and to supervised machine learning
approaches is that SSTA has less constraints. Indeed TA, RF and SVM suppose

6 We used 500 trees in the RF which is the default value in the used implementation
available on CRAN [22].

7 We used the radial kernel in the SVM which is the default kernel in the implemen-
tation available on CRAN [7].
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that the attacker has full control of the device during the profiling step which
is not the case of SSTA. Therefore SSTA offers good performances, thus can be
used in practice, while having less constraints.

We analyzed the limits of our attack by (1) estimating the probabilities that
the attacker has as subset of keys with different Hamming weights and (2) by
computing the number of traces to be collected in order to complete a real data
attack.

Future works will focus on the generalization of these preliminary results:
firstly by assessing the impact of the plaintext on the prediction accuracy, sec-
ondly by considering larger parts of the key, thirdly by considering all rounds of
AES as well as other algorithms and by varying the cryptographic device and its
architecture. Another idea is to build templates with different devices for each
key. Interesting future research perspectives are also to consider other univariate
clustering methods [9] the adaptation of clustering multivariate techniques [11]
as well as specific feature selection techniques for the dimensionality reduction
of traces. We would also like to relax the hypothesis of the fact that the attacker
knowns a subset of keys during the profiling step. Another possibility is to use
the SSTA as a preprocessing to other attacks such as an Algebraic Side Chan-
nel Attack [25] or a classical DPA [26]. Eventually, protected implementations
against this kind of analysis will be investigated.
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A Appendix

A.1 Algorithm

Algorithm 1. SSTA Algorithm: pseudo-code

Require: attackedTrace, tracesUnknownKeys, tracesKnownKeys, attackersKeys
Ensure: byteHW

1: manipInst = byteManipulationInstant(tracesKnownKeys, attackersKeys)
{correlation}

2: SetOfClusters clusters = emptySet
3: traces = [tracesUnknownKeys, tracesKnownKeys]
4: for all trace in traces do
5: putIntoCluster(trace, clusters,manipInst)
6: end for
7: HW = prediction(attackedTrace, clusters,manipInst)

A.2 Figures

Fig. 4. Trace acquisition scheme

Fig. 5. Average of 128 traces. Mapping of AES steps on the trace: KEY EXP –
KeyExpansion, ARK – AddRoundKey, SB – SubBytes, SR – ShiftRows, MC – Mix-
Columns.
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