
Improved Side Channel Attacks
on Pairing Based Cryptography�

Johannes Blömer, Peter Günther, and Gennadij Liske

University of Paderborn, Germany
{johannes.bloemer,peter.guenther,gennadij.liske}@uni-paderborn.de

Abstract. Several known invasive and non-invasive attacks against pair-
ing algorithms only work if the second but not if the first argument of
the pairing is the secret. In this paper we extend some of these attacks
to the case where the first argument is the secret. Hence we conclude
that positioning the secret as the first argument of the pairing does not
necessarily improve the security against side channel attacks (SCAs), as
it sometimes has been suggested.

1 Introduction

Since the invention of the first fully functional identity based encryption (IBE)
scheme [4], that was based on bilinear pairings, pairings have become an im-
portant tool in cryptography. Today numerous schemes such as hierarchical
identity-based encryption, attribute based encryption, and identity based signa-
tures make use of pairings as their building blocks [6]. The adoption of pairings
in cryptographic applications is followed by the request for efficient implemen-
tations. Over the past years research efforts led to pairings that have efficient
implementations and can be implemented on resource constrained devices such
as smart cards [17]. It is well known that in this case, mathematical cryptanaly-
sis is not sufficient. Instead the vulnerability to side channel attacks (SCAs) has
to be evaluated as well.

Bilinear pairings are usually realized on groups of elliptic curves. Although
pairing based cryptography (PBC) uses methods from elliptic curve cryptogra-
phy (ECC), the vulnerability of PBC against SCAs is not well understood. In
ECC based schemes, such as ECDSA, the secret is a scalar multiplier of a point
on the curve. In PBC, the secret is usually a point on the curve. Often this point
is an argument of the pairing. Therefore, the pairing itself is an interesting tar-
get for SCAs. But when it comes to PBC the effort that has been spent on the
analysis of SCAs is much smaller than in the case of standard ECC. Neverthe-
less, there are some results that analyze the vulnerability of pairings to passive
attacks as well as to active attacks [12,8,21,11,22,13].

There is a variety of pairings that can be used for PBC, e.g., the Weil pairing, the
Tate pairing, the eta pairing, and their variations. Obviously, SCAs depend heav-
ily on the pairing and its specific implementation. Regarding non-invasive attacks,
� This work was funded by the German Ministry of Education and Research, grant

01IS10030C.

E. Prouff (Ed.): COSADE 2013, LNCS 7864, pp. 154–168, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Improved Side Channel Attacks on Pairing Based Cryptography 155

i.e., attacks that exploit timings, power consumption, or electro-magnetic radi-
ance, in [8] the authors have investigated attacks for implementations of the eta
pairing on supersingular curves in characteristic 2. In [21], differential power anal-
ysis (DPA) based attacks on the Tate pairing were analyzed. The authors showed
how to attack implementations of the Tate pairing if the second argument rep-
resents the secret. The two arguments play different roles in the algorithms that
compute the pairing. Hence, an attack on the second argument does not necessar-
ily imply an attack on the first argument of the pairing. Furthermore, the authors
of [21] conjectured that it may be more difficult to attack some implementations
of the Tate pairing if the first argument of the pairing is the secret. In [11] this
problem has been addressed for the case where the first argument is represented
in Jacobian coordinates. Here, a DPA of a modular multiplication and a DPA of
a modular addition was required to succeed.

In this paper we show that the attack from [21] that is based on a DPA of the
modular multiplication can be extended to the case where the first argument is
the secret. To achieve this, we assume that the first argument of the pairing is
defined over the base field while the second argument is defined over the extension
field. This setting is relevant for many efficient implementations [2]. Furthermore,
for the attack from [11] that needs a DPA of a modular multiplication and a DPA
of an addition we show that the first one is already sufficient. To do this we need
to limit the attack to an early iteration of the Miller algorithm. We further
show that twists, often used for more efficient implementations, entail further
possibilities to attack bilinear pairings with a DPA.

With respect to invasive SCAs, the first result in the context of PBC was
presented in [13]. The authors attacked two algorithms for the Tate pairing.
Later, the vulnerability of several algorithms for the Weil, Tate and eta pairings
in presence of fault attacks was studied in [22]. The authors of [10] analyze the
vulnerability of Miller’s algorithm against the same fault type as used in [13].
To apply these results to concrete pairing algorithms that are based on Miller’s
algorithm, stronger assumptions about the induced faults are necessary than in
[13] and [22].

In this paper we are especially interested in the fault attacks from [22] on an
algorithm for the eta pairing. One of the most realistic attacks in [22] is only
possible if the secret is used as the second argument of the pairing. We extend
this attack in two directions. First we show how a more general type of fault can
be handled. Furthermore we show that our approach can handle a secret first
argument just as well as a secret second argument.

Altogether, we conclude that schemes where the first argument is the secret
are not less vulnerable to non-invasive and invasive SCAs than schemes where
the second argument is the secret.

The work is organized as follows. In Section 2, we introduce the necessary
background on elliptic curve cryptography and pairing based cryptography. In
Section 3, we present one of our main results, namely a non-invasive attacks
on an implementation of the Tate pairing when the first argument is secret.
We do this by means of a DPA of the modular multiplication. A DPA for the



156 J. Blömer, P. Günther, and G. Liske

multiplication has been described in [21] that we use in a different manner. We
will also consider two approaches to circumvent our attacks. In Section 4 we
generalize the fault attacks of [22] and show that they are as powerful in the
case where the first argument of the pairing is the secret as in the case where
the second argument is the secret.

2 Background

Before we will provide some background about ECC and especially PBC we will
introduce the notation that we follow throughout this work.

2.1 Notation

By Fqe we denote a field of size qe. For q prime, we always assume that elements
of Fq are stored in the binary representation of their representatives in Zq. We
view the degree e extension Fqe = Fq(α) of Fq as an e-dimensional vector field
with basis {1, α, . . . , αe−1} and emphasize this by writing elements a ∈ Fqe as
a =

∑e−1
i=0 a

(i)αi with a(i) ∈ Fq.
For a polynomial f ∈ Fq[x, y] we denote the degree of f in x and y by degx f

and degy f , respectively.

2.2 Elliptic Curve Arithmetic

For fields Fq of characteristic p > 3 we consider elliptic curves defined over Fq

in short Weierstrass form:

E : F (x, y) = y2 − x3 − a4x− a6 with a4, a6 ∈ Fq. (1)

We write E(Fqe) for the Fqe rational points on E, i.e. for points with coordinates
in the field Fqe .

It is well known that an additive group can be defined on E(Fqe) with the point
at infinity O as the neutral element [19]. The addition of two points R,P ∈ E
is based on the computation of the line trough R = (xR, yR) and P = (xP , yP )
with slope λR,P . The line intersects E at a third point −(R+ P ). For doubling
R the tangent to E at R is computed instead. It has slope λR,R and intersects
the curve at −2R:

λR,P =
yP − yR
xP − xR

λR,R =
3x2R + a4

2yR
. (2)

With the double and add algorithm, the scalar multiplication aP can be cal-
culated efficiently. The subgroup of the a-torsion points E(Fq)[a] ⊆ E(Fq) is
defined as the kernel of the multiplication by a.

In the following sections we will frequently be given a polynomial f (x, y) ∈
Fq[x, y] of fairly small degree. We will be interested in the zeros of f that are
points on a given elliptic curve. The next theorem based on the proof of [19,
Corollary 2.3.1] shows that this problem can be solved.



Improved Side Channel Attacks on Pairing Based Cryptography 157

Theorem 1. Given a finite field Fq of characteristic p > 3, let f (x, y) ∈ Fq[x, y]
be a polynomial of total degree n. Furthermore, let E be an elliptic curve defined
over Fq as in (1). Then there is an algorithm that finds all zeros of f (x, y) on
E (Fq) in expected running time O

(
n3 log q

)
.

Proof. Consider the polynomial f̂ (x, y) = f (x, y) f (x,−y) that we write as
f̂ (x, y) = f1

(
x, y2

)
+ yf2

(
x, y2

)
for f1, f2 ∈ Fq

[
x, y2

]
. Since f̂ is defined such

that f̂ (x, y) = f̂ (x,−y) we obtain yf2
(
x, y2

)
= −yf2

(
x, y2

)
. With the charac-

teristic of Fq not equal to 2 it holds that f2
(
x, y2

)
= 0. Hence, f̂ ∈ Fq

[
x, y2

]
.

With F (x, y) from (1) we can replace y2 by x3 + a4x + a6. Hence, we get a
univariate polynomial f̃ ∈ Fq [x] that is equivalent to f̂ in Fq [x, y] / (F (x, y)).

From the definition of f̂ it follows that degx f̂ ≤ 2 degx f and degy f̂ ≤
2 degy f . Since we replace y2 by x3 + a4x + a6 during the transformation of
f̂
(
x, y2

)
to f̃ (x) it holds that degx f ≤ 2 degx f + 3degy f ≤ 3n.

Finally, for (α, β) ∈ E (Fq) and f (α, β) = 0 it holds that f̂ (α, β) = 0 and
hence f̃ (α) = 0. Finding α as an element of the Fq-rational roots of f̃ can
be done with probabilistic algorithms like the Cantor-Zassenhaus factoring al-

gorithm in expected running time O
((

degx f̃
)3

log q

)

[18]. From F (x, y) and

α, the corresponding points (α, β) and (α,−β) can be computed and f can be
tested for f (α,±β) = 0 to return β.

��

2.3 Pairing Based Cryptography

The key element of pairing based cryptography is a bilinear map called pairing.
There are different pairings known in the literature, e.g. the Weil pairing and
the Tate pairing. Later in this section, we will introduce the Tate pairing and an
implementation that is based on the Miller algorithm [9]. We will then introduce
another pairing for the special case of characteristic 2, called the eta pairing [14].

For pairing based schemes, their implementation usually offers some degree of
freedom with respect to the arguments of the pairing. For example the secret key
can be chosen as either the first or the second argument. We are interested in
the case where the secret key is chosen as the first argument. In [21] it was con-
jectured that this makes passive SCAs more difficult. We will show in Section 3
that this is not necessarily the case.

Definition of the Tate Pairing. We will now define the reduced Tate pairing
with final exponentiation. Let P ∈ E(Fq)[l] and let fl,P denote a function on E
with divisor (fl,P ) = l (P )−l (O) [19]. Let k be the embedding degree (see [19]) of
l with respect to q. With k > 1, groups G1 = E(Fq)[l] and G2 ⊆ E(Fqk)/lE(Fqk),
the simplified Tate pairing [2] is defined as:

e : G1 ×G2 → F
∗
qk

(P,Q) �→ fl,P (Q)(q
k−1)/l.

(3)



158 J. Blömer, P. Günther, and G. Liske

Note that G1 is restricted to the l-torsion points that are defined over Fq and
that k > 1. This specific choice was made in [2] because it allows the efficient
computation of the pairing in (3) which invokes only one evaluation of fl,P . To
ensure non-degeneracy in this case, the second argument G2 has to be selected
such that G2 	⊆ E(Fq)[l] [3, Lemma IX.8]. We will later make use of this common
setup to apply a passive SCA.

Implementation of the Tate Pairing for General Characteristics. In this
section we recall how the Tate pairing from (3) can be computed efficiently for
finite fields Fq. Even though the degree of fl,P is exponential in log(l), V. Miller

Algorithm 1. Miller Algorithm for evaluating a function fl,P with divisor
(fP ) = l (P )− l (O) at Q. The function gU,V (Q) is defined in (4).
Require: P ∈ E[l](Fq), Q = (xQ, yQ) ∈ E(Fqk), binary representation l = (lt−1 . . . l0)
Ensure: fl,P (Q) where (fl,P ) = l (P )− l (O)
1: procedure fl,P (Q)
2: f ← 1, v ← 1, R← P
3: for j ← t− 1, . . . , 1 do
4: f ← f2 · gR,R(xQ, yQ), v ← v2 · g2R,−2R(xQ, yQ)
5: R← 2R
6: if lj = 1 then
7: f ← f · gR,P (xQ, yQ), v ← v · gR+P,−(R+P )(xQ, yQ)
8: R← R + P
9: end if

10: end for
11: return f/v
12: end procedure

introduced an efficient algorithm that iteratively computes the value of fl,P at
Q [9]. The running time of this algorithm is only linear in log(l). For the details
see Algorithm 1.

In order to construct the value of fl,P (Q), lines through R, V , and −(R+ V )
with V ∈ {P,R} are computed:

gR,V (x, y) = y − y−(R+V ) − λR,V (x− x−(R+V )). (4)

The slope λR,V is defined as in (2). Also note that with restricting G1 to points
in E(Fq)[l] the computation of the Miller algorithm becomes more efficient. For
example the point doubling and the point addition in Line 5 and in Line 8 of
the algorithm only requires arithmetic in Fq instead of arithmetic in Fqk .

Remark 1. In any iteration j, the point R of Algorithm 1 equals aP for some
a ∈ Zl. If j is known, the value a can be efficiently computed from j. Since l is
a prime, we can recover P from R with

P = (a−1 mod l)R. (5)



Improved Side Channel Attacks on Pairing Based Cryptography 159

Now, we extend the setting to Jacobian coordinates in order to avoid the costly
division in (2). Then, the affine representation (x, y) ∈ E(Fq)\{O} is mapped
to the equivalence class (X : Y : Z) = (xZ2 : yZ3 : Z) with Z ∈ F

∗
q . With the

Jacobian representation R + P as well as 2R in Algorithm 1 can be computed
without the costly division of (2):

λR,P = YPZ
3
R − YRZ

3
P λR,R = 3X2

R + a4Z
4
R. (6)

As a consequence, the line function (4) has to be adapted:

gR,V (x, y) = yZ3
−(R+V ) − Y−(R+V ) − λR,V

(
xZ2

−(R+V ) −X−(R+V )

)
(7)

with V ∈ {R,P}.

The Eta Pairing for Characteristic 2. The eta pairing was defined in [14]
for different types of algebraic curves. In [20] the authors introduced an effi-
cient method and an algorithm to compute this pairing for supersingular elliptic
curves. C. Whelan and M. Scott [22] presented a slightly modified version of this
algorithm for characteristic 2 (Algorithm 2). Both input points are in E (F2m) [l],
whereas the output of the pairing is an element of the multiplicative group of
F24m = F2m(α) = F2m [x]/(x4 + x+ 1), where α is a zero of x4 + x+ 1.

Algorithm 2. Algorithm to compute the eta pairing without final exponentiation
Require: P = (xP , yP ), Q = (xQ, yQ) ∈ E (F2m) [l]
Ensure: η (P,Q) ∈ F

∗
2m (α)

1: g ← 1, v ← 1, T ← P
2: for j ← m− 1 to 0 do
3: λj ← x2

T + 1
4: gj ← (yQ + yT + λj(xQ + xT + 1)) + (λj + xQ + 1)α+ (λj + xQ)α

2

5: g ← g2 · gj
6: T ← 2T
7: vj ← (xQ + xT + 1) + α+ α2

8: v ← v2 · vj
9: end for

10: return g/v

3 Passive Attack of the Tate Pairing with Secret P

In this section we consider the Tate pairing e(P,Q) from Section 2.3. We extend
the attack from [21] to the case where the first argument P is the secret. As in
[21] we also use a DPA of the modular multiplication as the basic tool. First, we
will introduce an attack based on the computation of (4) for affine coordinates.
Then, we will show an attack based on Jacobian coordinates that complements



160 J. Blömer, P. Günther, and G. Liske

Table 1. Summary of our passive attacks based on a DPA of the modular multiplica-
tion. Here, d denotes the twist degree (see Section 3.4 for some background on twists)
and k denotes the embedding degree of the pairing implementation.

Section Target Multiplication Restrictions

3.2 λR,R · (xQ − x−2R) does not apply for the case d = k = 2
3.3 Z2

−2R · xQ or Z3
−2R · yQ an early iteration of Alg. 1

3.4 yQ · (−y−2P + λP,Px−2P ) twists of degree 4 or 6, 1st iteration of Alg. 1

the results of [11] by getting rid of the additional DPA of the modular addition.
Finally, we will show an additional possibility to attack a pairing when its imple-
mentation is based on twists of degree d ∈ {4, 6}. Twists are isomorphic curves
that enable faster implementations [5]. Table 1 summarizes the main results of
this section.

We are interested in the implementation of a pairing from Algorithm 1 and
we assume P ∈ E (Fq) and Q ∈ E

(
Fqk

)
, Q 	∈ E (Fq) \{O}. This assumption was

justified in Section 2.3. The most important reason is that it offers very efficient
implementations of a non-degenerate pairing. For clarity we restrict ourselves to
fields of large prime characteristic. Nevertheless, at least the results of Section 3.2
are directly applicable also to fields of characteristic 2 or 3.

3.1 DPA of Modular Multiplication

In [21], the modular multiplication a · b of elements in Fq was exploited to leak
information about one argument of the multiplication. Assume our goal is to
learn a. As one part of the DPA we have to predict the result of a · b for different
hypotheses of a. Hence it is a requirement for a successful DPA to be able to
freely choose the other argument b of the multiplication. In the following sections
we will show how it is possible to satisfy this requirement during the computation
of the Tate pairing and consequently how to recover the secret argument of the
pairing.

3.2 Generic Attack Based on Affine Coordinates

Although Jacobian coordinates are often assumed to be more efficient than affine
coordinates, recent results [1] indicate that the latter become more relevant for
modern processors. Among other things, this motivates our analysis of affine
coordinates with respect to SCAs. To apply our attack, we will use the fact that
P is already defined over Fq, as explained in Section 2.3. Our attack is in two
steps. First we give definitions for a and b that fulfill the requirements of the
DPA. In our case the DPA will not give us the secret point P directly. Instead
it will result in an element a of Fq that is related to P . Thus, in a second step
we show how P can be recovered from a.



Improved Side Channel Attacks on Pairing Based Cryptography 161

Defining the Targets a and b of the DPA. As in [21] we will use the
computation of the function gR,V (x, y) from (4) as the target of our attack.
Recall the outline of Miller’s algorithm from Section 2.3. With the notation
introduced there, we fix an iteration j and write the value of the point R in
Line 4 as R = (xR, yR). The function gR,V (x, y) is evaluated with V = R,
x = xQ, and y = yQ. Note that R is a multiple of the secret P . We now insert
R, xQ, and yQ into (4) and get

gR,R(xQ, yQ) = yQ − y−2R − λR,R(xQ − x−2R) (8)

with λR,R from (2) as calculated during the doubling of R in iteration j. Notice
that λR,R is multiplied with (xQ−x−2R). Since we assumed P ∈ E (Fq) it follows
that x−2R ∈ Fq and with our definition of extension fields we can write x−2R as
x−2R = x−2Rα

0 + 0α1 + · · · + 0αk−1 ∈ Fqk . We further assume that either no
twist (see Section 3.4) of degree d = 2 is used or that the embedding degree k
is larger than 2. Then Q 	∈ E (Fq) \{O} implies xQ 	∈ Fq [5]. Hence, xQ is of the
form xQ =

∑k−1
i=0 x

(i)
Q αi and there exists an i ≥ 2 such that x(i)Q 	= 0. Therefore,

we get xQ − x−2R =
(
x
(0)
Q − x−2R

)
α0 +

∑k−1
i=1 x

(i)
Q αi. In settings of DPA we set

a = λR,R and b = x
(i)
Q for x(i)Q 	= 0. Hence, a only depends on P , while b only

depends on Q. The latter is under our control.

Recovery of P from λR,R = a. According to (2), we can consider λR,R as
a rational function in the coordinates (xR, yR) of R. Hence, we can clear the
denominator of λR,R − a to obtain the polynomial f(xR, yR) = (3x2R + a4) −
2yRa with degxR

f = 2 and degyR
f = 1. If λR,R was correctly recovered (i.e.

λR,R(xR, yR) = a), then this polynomial has at least one zero in E(Fq), namely
R. According to Theorem 1 all zeros can be determined in expected polynomial
time of O(log q). Furthermore, there are at most four possible candidates. If the
iteration j is known, these solutions directly translate to at most four candidates
for P by applying (5). Now, P can be found by testing all candidates. For
example in an encryption scheme, the ciphertext of an arbitrary message could
be decrypted with all candidates. Then the point P that leads to the original
message is the correct key. If otherwise, the iteration j is not known, we can still
try all log(l) possibilities for j.

Summary of the Attack. To summarize, we made use of a reasonable restric-
tion of the arguments of the pairing in the sense of efficient implementations:
P ∈ E(Fq), Q 	∈ E(Fq). This enabled us to find a coefficient of xQ − x−2R ∈ Fqk

in (4) that does not depend on P . Based on this we were able to apply a DPA
similar to the one presented in [21] also to the case where the first argument P
is secret.

3.3 Attack Based on Projective Coordinates

As in the previous attack we will apply the DPA to the computation of (4) in
Algorithm 1. But this time, we will look at the representation of the variable



162 J. Blömer, P. Günther, and G. Liske

point R in Jacobian coordinates. We assume that the input P is normalized such
that P = (xP : yP : 1). These mixed coordinates are common for efficient imple-
mentations because they save multiplications with ZP in (7) at every iteration
that performs the addition with P [15]. While the attack of [11] on Jacobian
coordinates requires to attack one modular multiplication and one addition, the
assumption ZP = 1 allows us to avoid the attack on the addition. However, our
approach is restricted to one of the early iterations of Algorithm 1.

Defining the Targets a and b of the DPA. Again, we fix an iteration j of
Algorithm 1 and analyze the doubling step in Line 4 of Algorithm 1. But this
time for the version in Jacobian coordinates from (7) with V = R. Since P is
the secret argument of the pairing, as always we assume that Q = (xQ, yQ) is
under our control. Then there are two obvious operations to attack with the
tools from Section 3.1: xQ · Z2

−2R and yQ · Z3
−2R. We describe the case where

we decide to attack xQ · Z2
−2R, but yQ · Z3

−2R can be approached in the same
way. With P ∈ E(Fq), Q ∈ E(Fqk), and Fqk = Fq(α), we get Z−2R ∈ Fq,
xQ =

∑k−1
i=0 x

(i)
Q αi, x

(i)
Q ∈ Fq. We observe that x(0)Q , . . . , x

(k−1)
Q can be controlled

so we choose a = Z2
−2R and b = x

(i)
Q for a fixed i as input of the DPA. If the

DPA is successful, we obtain the value Z2
−2R = a for iteration j.

If we decided to attack yQ · Z3
−2R we get Z3

−2R = a as the result of the DPA.
Hence we proceed with Zτ

−2R and τ ∈ {2, 3}.

Recovery of P from Zτ
−2R = a. The point R in iteration j is obtained by

repeated application of the addition and doubling formulas for Jacobian coor-
dinates to P . These formulas define a polynomial mapping for points on the
curve (1). For efficiency, we assumed the representation P = (xP : yp : 1) as
explained above. Therefore, Z−2R can be expressed as a polynomial in xP and
yP . Hence we are interested in points on the curve (1) that are roots of the
polynomial Zτ

−2R(xP , yP ) − a. The problem lies in the degree of Zτ
−2R(xP , yP )

that is exponential in the attacked iteration j. But if j is not too large this
polynomial can be constructed recursively from the formulas for doubling and
adding points in Jacobian coordinates. Furthermore, we can apply Theorem 1
from Section 2.2 to find all candidates for P . In our simulation with a Pari/GP
based implementation, we were able to recover P from Zτ

−2R for j ≤ 5 and fields
of size log(q) = 1024 in a few minutes. As described in Section 3.2 we can try
all resulting candidates for P and also j to find the correct one.

Summary of the Attack. In summary, we described how to apply the DPA
on the multiplication to recover the Z-coordinate of an intermediate point. We
further assumed a normalized argument P = (xP : yp : 1) of the pairing. This
assumption is reasonable because it offers more efficient implementations. We
showed that under this assumption it is possible to recover the secret point
P directly from the obtained Z-coordinate if one of the early iterations of



Improved Side Channel Attacks on Pairing Based Cryptography 163

Algorithm 1 is attacked. We thus can avoid to additionally attack the
modular addition like it was required in [11].

3.4 Attack Based on Twists

In this section we explain how the structure imposed by so-called twists gives
us further possibilities to attack pairings with secret in the first argument. Fol-
lowing the same strategy as in the previous sections, we will point to other
invocations of a modular multiplication that can be attacked and therefore need
to be considered when securing the implementation of pairings against SCAs.
First we give the required background on twists.

Background on Twists. As explained in Section 2.3, we are considering imple-
mentations of the Tate pairing e : G1 × G2 → F

∗
qk from (3) on the Fqk -rational

points of an elliptic curve E with G2 ⊆ E(Fqk). For some curves E there exists a
curve E′, an integer d|k, and a map ψ : E′ → E with the following properties [5]:

1. ψ defines an isomorphism from E′(Fqk) to E(Fqk)
2. E(Fqk)[l] � E(Fq)[l]⊕ ψ(E′(Fqk/d)[l])
3. ψ can be computed efficiently.

Hence, we can choose G2 = ψ(E′(Fqk/d)[l]) and we call E′ a degree d twist of
E. This enables more efficient implementations because arithmetic in G2 can be
moved to the subgroup E′(Fqk/d)[l] that is already defined over the smaller field
Fqk/d . Naturally, the use of twists is a common optimization for the computation
of the Tate pairing. Furthermore, for fields of characteristic not equal to 2 or 3
it holds that d ∈ {2, 3, 4, 6} [19]. As explained in [5], one often chooses Fqk , E,
E′, and ψ such that Fqk = Fqk/d(α) and

ψ : E′(Fqk/d) → E(Fqk)
(x, y) �→ (α2x, α3y).

(9)

Assuming this definition, the map ψ can be implemented more efficiently. This
is because a multiplication of x, y ∈ Fqk/d with αi ∈ Fqk , i ∈ {2, 3} simply
selects the index i mod d of x and y of the d-dimensional vectors representing
ψ(x, y) ∈ Fqk . For i ≥ d, only an additional multiplication with αd in Fqk/d is
required.

Defining the Targets a and b of the DPA. From (9) we see that ψ imposes
an additional structure on the representation of group elements in G2. For d ∈
{4, 6} we show how this structure enables further possibilities to recover the
secret point P by means of the DPA from Section 3.1. We assume that Fqk is
represented by the basis {1, α, . . . , αd−1}. Hence, α2 and α3 are not in Fqk/d . We
target the very first iteration of Algorithm 1 where we obtain the following value
after the execution of Line 4:

gP,P (ψ(xQ, yQ)) = (−y−2P + λP,Px−2P ) + 0α− λP,PxQα
2 + yQα

3 ∈ Fqk . (10)



164 J. Blömer, P. Günther, and G. Liske

Note that depending on the second most significant bit (MSB) of l, this value
will be multiplied with gP,2P (xQ, yQ) in Line 7 or squared in Line 4 of the second
iteration. The outline of the attack is the same for both cases, so we look at the
latter case where we square (10). This squaring in Fqk involves a multiplication
in Fqk/d of yQ with −y−2P + λP,Px−2P . Consequently, we can again apply the
DPA of the modular multiplication with a = −y−2P + λP,Px−2P and b = yQ to
recover a = −y−2P + λP,Px−2P . We are able to express x−2P , y−2P , and λP,P

as functions of xP and yP . After clearing the denominator of λP,P in (2) we
obtain the polynomial f(xP , yP ) = −2yPy−2P +(3x2P +a4)xP −a2yP . From this
polynomial we can efficiently recover the root P by Theorem 1.

Summary of the Attack. To summarize, we assumed an implementation
based on twists of degree 4 or 6. In this case, the map ψ from the twisted curve
to the original curve allowed us to separate −y−2P +λP,Px−2P from yQ in (10).
This gave us the possibility to apply a DPA at an additional location compared
to the previous sections.

3.5 Countermeasures

Several countermeasures like point blinding [13], randomized projective coordi-
nates [8], and randomization of intermediate values [16] have been proposed to
secure the Tate pairing against SCAs. We will now recall two of them that also
protect against the attacks of the previous section.

We slightly modify the approach of the additive blinding from [13] and initially
share the secret P as P = P1 + P2 in a secure environment with P1 uniformly
from G1. Then we make use of the bilinearity and compute the pairing as

e(P,Q) = e(P1, Q) e(P2, Q).

Before the next invocation of the pairing computation we refresh the shares by
computing P ′

1 = P1 + T and P ′
2 = P2 − T for uniform T ∈ G1. The attacks we

described in the previous sections are all defeated by this countermeasure.
To save one exponentiation with (qk − 1)/l we actually propose the following

implementation

e(P,Q) = (fl,P1(Q)fl,P2(Q))
(qk−1)/l

.

On the one hand, this technique is relatively expensive because it requires two
runs of Algorithm 1 instead of one. On the other hand, it is quite general. The
reason is that the computation of the pairing is secured against all first order
DPAs, i.e. DPAs that are restricted to one operation of the overall computation.
Another advantage is that the computation of fl,P by Algorithm 1 itself does
not need to be adapted. This makes it easy to seamlessly switch between fast
but unprotected implementations and protected but slower implementations.
Further note that the approach of sharing P can be generalized to n shares in
order to defeat against attacks of order n− 1.



Improved Side Channel Attacks on Pairing Based Cryptography 165

Another approach to circumvent our attacks are randomized projective coor-
dinates [8]. Here, the implementation of the pairing has to be based on Jacobian
coordinates as described in Section 3.3. But now we drop the assumption that
the argument P of the pairing is normalized to P = (xP : yP : 1). Instead we
choose Z uniformly at random from Fq before the computation of the pairing
and set P = (xPZ

2 : yPZ
3 : Z). Hence Zτ

−2R, the target of the DPA, is ran-
domized. This prevents the specific attack on Jacobian coordinates because the
target is changing between two invocations of the pairing. The additional costs
for this countermeasure are one squaring and four multiplications in the addition
of R + P in Line 7 of Algorithm 1 [15, Chapter 13.2].

4 Fault Attack on Pairing Based Cryptography

Until now we only considered passive attacks. In this section we will look at
fault attacks. Here, the adversary corrupts the computation of the cryptographic
algorithm to produce invalid outputs that allow the recovery of the secret key.
In the context of PBC a few theoretical results are known [13,22,10]. See also [6,
Chapter 14] or [7, Chapter 13] for an overview.

In [22] the authors considered fault attacks against several pairing algorithms
under the assumption that random faults can be produced at particular mem-
ory cells. They concluded that pairings without final exponentiation are more
vulnerable against this type of attacks. In particular, fault attacks for the eta
pairing without final exponentiation were presented (see Algorithm 2 for details).
The algorithm computes the eta pairing iteratively as

η (P,Q) =

∏m
i=1 (gm−i(Q))

2m−i

∏m
i=1 (vm−i(Q))

2m−i . (11)

The main idea behind the fault attacks of [22] is to attack one single iteration
in order to isolate a factor of (11) in the first step. In the second step the secret
is recovered from this factor. Recall the special form of gj(Q) in Algorithm 2:

gj(Q) = gj(Q)(0) + gj(Q)(1)α+
(
1 + gj(Q)(1)

)
α2 (12)

where α is the defining element of the extension F24m of F2m (see Section 2.1)
and

gj(Q)(0) = yQ + yT + λj(xQ + xT + 1) gj(Q)(1) = λj + xQ + 1. (13)

The two most realistic attacks from [22] consider a fault at g0(Q)(0) or v0(Q)(0),
respectively. But for the first case, the authors were able to recover the secret
only if it is Q. We consider attacks on the computation of gj(Q) and extend [22]
in two directions. At first we show how to handle additional locations for the
faults in a unified way. Secondly, our approach equally allows recovery of secret
P or secret Q.



166 J. Blömer, P. Günther, and G. Liske

We consider arbitrary faults at xQ, yQ, xT , yT , λj , gj(Q)(0), and gj(Q)(1) that
affect only one iteration. For example a temporary fault in iteration j on xQ may
be injected while loading this fixed value into the CPU registers. As we can see
in (12), all these examples have in common that the modification of gj(Q)(1)

equally applies to gj(Q)(2) = gj(Q)(1) + 1. This motivates our analysis of the
case where gj(Q) is modified into gj(Q) +Δ with Δ = Δ(0) +Δ(1)

(
α+ α2

)
. In

[22] only faults of g(Q)(0) were considered. Note that our model implicitly covers
this case with Δ(1) = 0. A more careful analysis of the special structure of gj(Q)
from Algorithm 2 enables our generalization as we will explain now.

Recovery of a Single Factor gj. We start with the correct result of the pairing
η (P,Q). Then we execute the pairing computation to mount a fault attack. As
explained above, we assume a fault that modifies gj(Q) into g′j(Q) = gj(Q) +Δ

and results in the faulty result η (P,Q)′. Dividing the result of the corrupted
execution by the result of the uncorrupted execution we obtain:

Uj :=
η (P,Q)

′

η (P,Q)
=

(
gj(Q) +Δ

gj(Q)

)2j

. (14)

All other factors from (11) are canceled.
With Uj = ((A+Δ)/A)2

j

, where A = a(0) + a(1)α+
(
1 + a(1)

)
α2 we are able

to describe all solutions of (14) that explain the observed value of Uj . First note
that square roots are unique in characteristic 2. This allows us to write (14)
as A

(
1 +

∑3
i=0 u

(i)αi
)
= Δ = Δ(0) +Δ(1)

(
α+ α2

)
with U2−j

j =
∑3

i=0 u
(i)αi.

Expanding the left side and applying the equivalence α4 = α + 1 in F24m gives
us a system of four equations over F2m with one equation for each coefficient
and variables Δ(0), Δ(1), a(0), and a(1):

⎛

⎜
⎜
⎝

1 0 u(0) + 1 u(2) + u(3)

0 1 u(1) 1 + u(0) + u(2)

0 1 u(2) 1 + u(0) + u(1) + u(3)

0 0 u(3) u(1) + u(2)

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

Δ(0)

Δ(1)

a(0)

a(1)

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

u(2)

u(2) + u(3)

1 + u(0) + u(3)

u(1)

⎞

⎟
⎟
⎠ .

Adding the second line to the third line leaves us with the following system for
a(0) and a(1):

(
u(1) + u(2) u(1) + u(2) + u(3)

u(3) u(1) + u(2)

)(
a(0)

a(1)

)

=

(
1 + u(0) + u(2)

u(1)

)

. (15)

This system has at least one solution, namely a(0) = gj(Q)(0) and a(1) = gj(Q)(1).
Actually, this is the only solution because of the special structure of a(0) =
gj(Q)(0) and Δ. To see this, consider another solution B,Γ of (14) with the
same structure as A and Δ. From U2−j

j = (A+Δ)/A = (B + Γ )/B we get
(
b(0) + b(1)α+

(
1 + b(1)

)
α2

)(
Δ(0) +Δ(1)

(
α+ α2

))

=
(
a(0) + a(1)α+

(
1 + a(1)

)
α2

)(
Γ (0) + Γ (1)

(
α+ α2

))
. (16)



Improved Side Channel Attacks on Pairing Based Cryptography 167

Expanding both sides and applying α4 = α+ 1 provides four equations:
⎛

⎜
⎜
⎝

b(0) b(1) + 1
b(1) b(0) + b(1) + 1

b(1) + 1 b(0) + b(1)

0 1

⎞

⎟
⎟
⎠

(
Δ(0)

Δ(1)

)

=

⎛

⎜
⎜
⎝

a(0) a(1) + 1
a(1) a(0) + a(1) + 1

a(1) + 1 a(0) + a(1)

0 1

⎞

⎟
⎟
⎠

(
Γ (0)

Γ (1)

)

.

From the fourth line we immediately see Δ(1) = Γ (1). The second and the third
line imply Δ(0) +Δ(1) = Γ (0) + Γ (1) and hence Δ = Γ . It follows that A = B
and this shows that the solution A is actually unique. Hence we can solve (15)
to find the factor gj(Q) = a(0) + a(1)α+

(
1 + a(1)

)
α2.

In [22] the authors only used one of the equations resulting from (14) and
used the Weierstrass equation to determine gj(Q). In this way, they were not
able to handle the general type of faults we consider here.

Recovery of the Secret From gj(Q). Once we know gj(Q) and therefore
gj(Q)(1) we can solve (13) for either (xQ, yQ) or (xT , yT ), depending whether Q
or P is the secret. If P is the secret, we can finally compute P =

(
2−j mod l

)
T

with T = (xT , yT ) (see also Remark 1).
Thus, we can completely recover the secret point in both cases when corrupt-

ing gj(Q) with faults of the type Δ(0) + Δ(1)(α + α2). This is due to a more
careful analysis of (14) compared to [22].

5 Open Problems and Conclusion

For the most efficient implementations of the Tate pairing the first argument is
defined over the base field and the second argument is defined over the extension
field [2]. Extending the results of [21,11] we showed that it is in principle possible
to attack the pairing no matter whether the secret is the first or the second
argument of the pairing.

Several countermeasures like point blinding have been proposed to protect the
pairing against SCAs [21,13,22]. They are all heuristic in the sense that they pre-
vent a special attack and that their effectiveness is not rigorously proven. Hence,
an important field of research is to find sound models that allow provable secure
countermeasures that are efficient enough for the implementation on constraint
devices like smart cards.

References

1. Acar, T., Lauter, K., Naehrig, M., Shumow, D.: Affine Pairings on ARM. IACR
Cryptology ePrint Archive 2011, 243 (2011)

2. Barreto, P.S.L.M., Lynn, B., Scott, M.: On the Selection of Pairing-Friendly
Groups. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006,
pp. 17–25. Springer, Heidelberg (2004)



168 J. Blömer, P. Günther, and G. Liske

3. Blake, I.F., Seroussi, G., Smart, N.P. (eds.): Advances in Elliptic Curve
Cryptography. London Mathematical Society Lecture Note Series, vol. 317.
Cambridge University Press (2005)

4. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing.
SIAM Journal on Computing 32(3), 586–615 (2003)

5. Hess, F., Smart,N.P.,Vercauteren,F.:TheEtaPairingRevisited. IEEETransactions
on Information Theory 52(10), 4595–4602 (2006)

6. Joye, M., Neven, G. (eds.): Identity-Based Cryptography. In: Cryptology and
Information Security, vol. 2. IOS Press (2009)

7. Joye, M., Tunstall, M. (eds.): Fault Attacks in Cryptography. Information Security
and Cryptography. Springer (2012)

8. Kim, T., Takagi, T., Han, D.G., Kim, H., Lim, J.: Side Channel Attacks
and Countermeasures on Pairing Based Cryptosystems over Binary Fields. In:
Pointcheval, D., Mu, Y., Chen, K. (eds.) CANS 2006. LNCS, vol. 4301, pp. 168–181.
Springer, Heidelberg (2006)

9. Miller, V.S.: The Weil Pairing, and Its Efficient Calculation. Journal of Cryptology
17(4), 235–261 (2004)

10. El Mrabet, N.: What about Vulnerability to a Fault Attack of the Miller’s
Algorithm During an Identity Based Protocol? In: Park, J.H., Chen, H.-H.,
Atiquzzaman, M., Lee, C., Kim, T.-h., Yeo, S.-S. (eds.) ISA 2009. LNCS, vol. 5576,
pp. 122–134. Springer, Heidelberg (2009)

11. Mrabet, N.E., Flottes, M.L., Natale, G.D.: A practical Differential Power Analysis
attack against theMiller algorithm. In:Research in Microelectronics and Electronics,
pp. 308–311 (2009)

12. Page, D., Vercauteren, F.: Fault and Side-Channel Attacks on Pairing Based
Cryptography. IACR Cryptology ePrint Archive 2004, 283 (2004)

13. Page, D., Vercauteren, F.: A Fault Attack on Pairing-Based Cryptography.
IEEE Transactions on Computers 55(9), 1075–1080 (2006)

14. Barreto, P.S.L.M., Galbraith, S.D., Héigeartaigh, C.Ó.: Efficient Pairing Computa-
tion on Supersingular Abelian Varieties. Designes, Codes and Cryptography 42(3),
239–271 (2007)

15. Rosen, K.H. (ed.): Handbook of Elliptic and Hyperelliptic Curve Cryptography.
Discrete Mathematics and its Applications. Chapman & Hall/CRC (2006)

16. Scott, M.: Computing the Tate Pairing. In: Menezes, A. (ed.) CT-RSA 2005. LNCS,
vol. 3376, pp. 293–304. Springer, Heidelberg (2005)

17. Scott, M., Costigan, N., Abdulwahab, W.: Implementing Cryptographic Pairings
on Smartcards. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249,
pp. 134–147. Springer, Heidelberg (2006)

18. Shoup, V.: A computational introduction to number theory and algebra.
Cambridge University Press (2006)

19. Silverman, J.H.: The Arithmetic of Elliptic Curves, 2nd edn. Graduate Texts in
Mathematics, vol. 106. Springer (2009)

20. Galbraith, S.D., Héigeartaigh, C.Ó., Sheedy,C.: SimplifiedPairing Computation and
Security Implications. Journal of Mathematical Cryptology 1(3), 267–281 (2007)

21. Whelan, C., Scott, M.: Side Channel Analysis of Practical Pairing Implementations:
Which Path is More Secure? In: Nguyên, P.Q. (ed.) VIETCRYPT 2006. LNCS,
vol. 4341, pp. 99–114. Springer, Heidelberg (2006)

22. Whelan, C., Scott, M.: The Importance of the Final Exponentiation in Pair-
ings When Considering Fault Attacks. In: Takagi, T., Okamoto, T., Okamoto, E.,
Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp. 225–246. Springer,
Heidelberg (2007)


	Improved Side Channel Attackson Pairing Based Cryptography
	1Introduction
	2Background
	2.1 Notation
	2.2Elliptic Curve Arithmetic
	2.3Pairing Based Cryptography

	3Passive Attack of the Tate Pairing with Secret P
	3.1DPA of Modular Multiplication
	3.2Generic Attack Based on Affine Coordinates
	3.3Attack Based on Projective Coordinates
	3.4Attack Based on Twists
	3.5Countermeasures

	4Fault Attack on Pairing Based Cryptography
	5Open Problems and Conclusion
	References




