The Δ_2 -Condition and φ -Families of Probability Distributions

Rui F. Vigelis¹ and Charles C. Cavalcante²

¹ Computer Engineering, Campus Sobral, Federal University of Ceará, Sobral-CE, Brazil rfvigelis@ufc.br

² Wireless Telecommunication Research Group, Department of Teleinformatics Engineering, Federal University of Ceará, Fortaleza-CE, Brazil charles@ufc.br

Abstract. In this paper, we provide some results related to the Δ_2 condition of Musielak–Orlicz functions and φ -families of probability distributions, which are modeled on Musielak–Orlicz spaces. We show that
if two φ -families are modeled on Musielak–Orlicz spaces generated by
Musielak–Orlicz functions satisfying the Δ_2 -condition, then these φ families are equal as sets. We also investigate the behavior of the normalizing function near the boundary of the set on which a φ -family is
defined.

1 Introduction

In [10], φ -families of probability distributions are introduced as a generalization of exponential families of probability distributions [8,7]. The main idea leading to this generalization is the replacement of the exponential function with a φ function (a definition is given below). These families (of probability distributions) are subsets of the collection \mathcal{P}_{μ} of all μ -a.e. strictly positive probability densities. What the papers [8,7,10] provide is a framework endowing \mathcal{P}_{μ} with a structure of C^{∞} -Banach manifold [5], where a family constitutes a connected component of \mathcal{P}_{μ} . These families are modeled on Musielak–Orlicz spaces (exponential families are modeled on exponential Orlicz spaces) [6,4,9]. In many properties of these spaces, the Δ_2 -condition of Musielak–Orlicz functions plays a central role. For example, a Musielak–Orlicz space L^{Φ} is equal to the Musielak–Orlicz class \tilde{L}^{Φ} if and only if the Musielak–Orlicz function Φ satisfies the Δ_2 -condition. In this paper we investigate the Δ_2 -condition in the context of φ -families. In Sect. 2, we show that if two φ -families are modeled on Musielak–Orlicz spaces generated by Musielak–Orlicz functions satisfying the Δ_2 -condition, then these φ -families are equal as sets. In Sect. 3, we investigate the behavior of the normalizing function near the boundary of the set on which a φ -family is defined. In the rest of this section, φ -families are exposed.

A φ -family is the image of a mapping whose domain is a subset of a Musielak– Orlicz space. In what follows, this statement will be made more precise. Musielak– Orlicz spaces are just briefly introduced here. These spaces are thoroughly exposed in [6,4,9].

F. Nielsen and F. Barbaresco (Eds.): GSI 2013, LNCS 8085, pp. 729-736, 2013.

[©] Springer-Verlag Berlin Heidelberg 2013

Let (T, Σ, μ) be a σ -finite, non-atomic measure space. A function $\Phi: T \times [0, \infty) \to [0, \infty]$ is said to be a *Musielak–Orlicz function* if

(i) $\Phi(t, \cdot)$ is convex and lower semi-continuous for μ -a.e. $t \in T$,

(ii) $\Phi(t,0) = \lim_{u \downarrow 0} \Phi(t,u) = 0$ and $\lim_{u \to \infty} \Phi(t,u) = \infty$ for μ -a.e. $t \in T$,

(iii) $\Phi(\cdot, u)$ is measurable for each $u \ge 0$.

We notice that $\Phi(t, \cdot)$, by (i)–(ii), is not equal to 0 or ∞ on the interval $(0, \infty)$. A Musielak–Orlicz function Φ is said to be an *Orlicz function* if the functions $\Phi(t, \cdot)$ are the same for μ -a.e. $t \in T$.

Let L^0 denote the linear space of all real-valued, measurable functions on T, with equality μ -a.e. Given any Musielak–Orlicz function Φ , we denote the functional $I_{\Phi}(u) = \int_{T} \Phi(t, |u(t)|) d\mu$, for any $u \in L^0$. The *Musielak–Orlicz space*, *Musielak–Orlicz class*, and *Morse–Transue space* generated by a Musielak–Orlicz function Φ are defined by

$$L^{\Phi} = \{ u \in L^0 : I_{\Phi}(\lambda u) < \infty \text{ for some } \lambda > 0 \},$$

$$\tilde{L}^{\Phi} = \{ u \in L^0 : I_{\Phi}(u) < \infty \},$$

and

$$E^{\Phi} = \{ u \in L^0 : I_{\Phi}(\lambda u) < \infty \text{ for all } \lambda > 0 \},\$$

respectively. The Musielak–Orlicz space L^{Φ} is a Banach space when it is equipped with the $Luxemburg\ norm$

$$||u||_{\Phi} = \inf \left\{ \lambda > 0 : I_{\Phi}\left(\frac{u}{\lambda}\right) \le 1 \right\},$$

or the Orlicz norm

$$\|u\|_{\Phi,0} = \sup\bigg\{\bigg|\int_T uvd\mu\bigg| : v \in \tilde{L}^{\Phi^*} \text{ and } I_{\Phi^*}(v) \le 1\bigg\},$$

where $\Phi^*(t, v) = \sup_{u \ge 0} (uv - \Phi(t, u))$ is the *Fenchel conjugate* of $\Phi(t, \cdot)$. These norms are equivalent and the inequalities $||u||_{\Phi} \le ||u||_{\Phi,0} \le 2||u||_{\Phi}$ hold for all $u \in L^{\Phi}$.

Whereas exponential families are based on the exponential function, φ -families are based on φ -functions. A function $\varphi \colon T \times \mathbb{R} \to (0, \infty)$ is said to be a φ -function if the following conditions are satisfied:

(a1) $\varphi(t, \cdot)$ is convex for μ -a.e. $t \in T$, (a2) $\lim_{u \to -\infty} \varphi(t, u) = 0$ and $\lim_{u \to \infty} \varphi(t, u) = \infty$ for μ -a.e. $t \in T$, (a3) $\varphi(\cdot, u)$ is measurable for each $u \in \mathbb{R}$.

In addition, we assume a positive, measurable function $u_0: T \to (0, \infty)$ can be found such that, for every measurable function $c: T \to \mathbb{R}$ for which $\varphi(t, c(t))$ is in \mathcal{P}_{μ} , we have that (a4) $\varphi(t, c(t) + \lambda u_0(t))$ is μ -integrable for all $\lambda > 0$.

The exponential function is an example of φ -function, since $\varphi(t, u) = \exp(u)$ satisfies conditions (a1)–(a3) and (a4) with $u_0 = \mathbf{1}_T$, where $\mathbf{1}_A$ is the indicator function of a subset $A \subseteq T$. Another example of φ -function is the Kaniadakis' κ -exponential (see [2] and [10, Example 1]). Let $\varphi'_+(t, \cdot)$ denote the right derivative of $\varphi(t, \cdot)$. In what follows, φ and φ'_+ denote the function operators $\varphi(u)(t) := \varphi(t, u(t))$ and $\varphi'_+(u)(t) := \varphi'_+(t, u(t))$, respectively, for any real-valued function $u: T \to \mathbb{R}$.

A φ -family is defined to be a subset of the collection

$$\mathcal{P}_{\mu} = \{ p \in L^0 : p > 0 \text{ and } \mathbb{E}[p] = 1 \},\$$

where $\mathbb{E}[\cdot] = \int_T (\cdot) d\mu$ denotes integration with respect to μ . For each probability density $p \in \mathcal{P}_{\mu}$, we associate a φ -family $\mathcal{F}_c^{\varphi} \subset \mathcal{P}_{\mu}$ centered at p, where $c \colon T \to \mathbb{R}$ is a measurable function such that $p = \varphi(c)$. The Musielak–Orlicz space L^{Φ_c} on which the φ -family \mathcal{F}_c^{φ} is modeled is given in terms of the Musielak–Orlicz function

$$\Phi_c(t,u) = \varphi(t,c(t)+u) - \varphi(t,c(t)).$$
(1)

We will use the notation L_c^{φ} , \tilde{L}_c^{φ} and E_c^{φ} in the place of L^{Φ_c} , \tilde{L}^{Φ_c} and E^{Φ_c} , respectively, to indicate that Φ_c is given by (1). Because $\varphi(c)$ is μ -integrable, the Musielak–Orlicz space L_c^{φ} corresponds to the set of all functions $u \in L^0$ for which there exists $\varepsilon > 0$ such that $\varphi(c + \lambda u)$ is μ -integrable for all $\lambda \in (-\varepsilon, \varepsilon)$.

The elements of the φ -family $\mathcal{F}_c^{\varphi} \subset \mathcal{P}_{\mu}$ centered at $p = \varphi(c) \in \mathcal{P}_{\mu}$ are given by the one-to-one mapping

$$\varphi_c(u) := \varphi(c + u - \psi(u)u_0), \quad \text{for each } u \in \mathcal{B}_c^{\varphi},$$
(2)

where the set $\mathcal{B}_{c}^{\varphi} \subseteq L_{c}^{\varphi}$ is defined as the intersection of the convex set

$$\mathcal{K}_c^{\varphi} = \{ u \in L_c^{\varphi} : \mathbb{E}[\varphi(c + \lambda u)] < \infty \text{ for some } \lambda > 1 \}$$

with the closed subspace

$$B_c^{\varphi} = \{ u \in L_c^{\varphi} : \mathbb{E}[u\varphi'_+(c)] = 0 \},\$$

and the normalizing function $\psi \colon \mathcal{B}_c^{\varphi} \to [0, \infty)$ is introduced so that expression (2) defines a probability distribution in \mathcal{P}_{μ} . By [10, Lemma 2], the set \mathcal{K}_c^{φ} is open in L_c^{φ} , and hence \mathcal{B}_c^{φ} is open in \mathcal{B}_c^{φ} .

Its is clear that the collection $\{\mathcal{F}_{c}^{\varphi}:\varphi(c)\in\mathcal{P}_{\mu}\}\$ covers the whole family \mathcal{P}_{μ} . Moreover, φ -families are maximal in the sense that if two φ -families have a non-empty intersection, then they coincide as sets. Let $\mathcal{F}_{c_{1}}^{\varphi}$ and $\mathcal{F}_{c_{2}}^{\varphi}$ be two φ -families centered at $\varphi(c_{1})\in\mathcal{P}_{\mu}$ and $\varphi(c_{2})\in\mathcal{P}_{\mu}$, for some measurable functions $c_{1}, c_{2}: T \to \mathbb{R}$. If the φ -families $\mathcal{F}_{c_{1}}^{\varphi}$ and $\mathcal{F}_{c_{2}}^{\varphi}$ have non-empty intersection, then $\mathcal{F}_{c_{1}}^{\varphi} = \mathcal{F}_{c_{2}}^{\varphi}$ and the spaces $L_{c_{1}}^{\varphi}$ and $\mathcal{F}_{c_{2}}^{\varphi}$ have non-empty intersection, then $\mathcal{F}_{c_{1}}^{\varphi} = \mathcal{F}_{c_{2}}^{\varphi}$ and the spaces $L_{c_{1}}^{\varphi}$ and $\mathcal{F}_{c_{2}}^{\varphi}$ have non-empty intersection, then $\mathcal{F}_{c_{1}}^{\varphi} = \mathcal{F}_{c_{2}}^{\varphi}$ and the spaces $L_{c_{1}}^{\varphi}$ and $\mathcal{F}_{c_{2}}^{\varphi} = \varphi_{c_{1}}: \mathcal{B}_{c_{2}}^{\varphi} \to \mathcal{B}_{c_{2}}^{\varphi}$ is an affine transformation, the collection of charts $\{(\mathcal{B}_{c}^{\varphi}, \varphi_{c})\}_{\varphi(c)\in\mathcal{P}_{\mu}}$ is an atlas of class C^{∞} , endowing \mathcal{P}_{μ} with a structure of C^{∞} -Banach manifold. A verification of these claims is found in [10].

2 The Δ_2 -Condition and φ -Families

A Musielak–Orlicz function Φ is said to satisfy the Δ_2 -condition, or to belong to the Δ_2 -class (denoted by $\Phi \in \Delta_2$), if a constant K > 0 and a non-negative function $f \in \tilde{L}^{\Phi}$ can be found such that

$$\Phi(t, 2u) \le K\Phi(t, u),$$
 for all $u \ge f(t)$, and μ -a.e. $t \in T$. (3)

It is easy to see that, if a Musielak–Orlicz function Φ satisfies the Δ_2 -condition, then $I_{\Phi}(u) < \infty$ for every $u \in L^{\Phi}$. In this case, L^{Φ} , \tilde{L}^{Φ} and E^{Φ} are equal as sets. On the other hand, if the Musielak–Orlicz function Φ does not satisfy the Δ_2 -condition, then E^{Φ} is a proper subspace of L^{Φ} . In addition, we can state:

Lemma 1. Let Φ be a Musielak–Orlicz function not satisfying the Δ_2 -condition and such that $\Phi(t, b_{\Phi}(t)) = \infty$ for μ -a.e. $t \in T$, where $b_{\Phi}(t) = \sup\{u \ge 0 : \Phi(t, u) < \infty\}$. Then we can find functions u_* and u^* in L^{Φ} such that

$$\begin{cases} I_{\Phi}(\lambda u_*) < \infty, & \text{for } 0 \le \lambda \le 1, \\ I_{\Phi}(\lambda u_*) = \infty, & \text{for } 1 < \lambda, \end{cases}$$
(4)

and

$$\begin{cases} I_{\Phi}(\lambda u^*) < \infty, & \text{for } 0 \le \lambda < 1, \\ I_{\Phi}(\lambda u^*) = \infty, & \text{for } 1 \le \lambda. \end{cases}$$
(5)

This lemma is a well established result for Orlicz functions (see [4, Sect. 8.4]). A proof of Lemma 1 is given in [11]. The next result shows that we can always find a φ -family modeled on a Musielak–Orlicz space generated by a Musielak–Orlicz function not satisfying the Δ_2 -condition.

Proposition 1. Given any φ -function φ , we can find a measurable function $c: T \to \mathbb{R}$ with $\mathbb{E}[\varphi(c)] = 1$ such that the Musielak–Orlicz function $\Phi_c(t, u) = \varphi(t, c(t) + u) - \varphi(t, c(t))$ does not satisfy the Δ_2 -condition.

Proof. Let A and B be two disjoint, measurable sets satisfying $0 < \mu(A) < \infty$ and $0 < \mu(B) < \infty$. Fixed any measurable function \tilde{c} such that $\mathbb{E}[\varphi(\tilde{c})] = 1$, we take any non-integrable function f supported on A such that $\varphi(\tilde{c})\mathbf{1}_A \leq f\mathbf{1}_A < \infty$. Let $u: T \to [0, \infty)$ be a measurable function supported on A such that $\varphi(\tilde{c})\mathbf{1}_A \leq f\mathbf{1}_A < \omega$. Let $u: T \to [0, \infty)$ be a measurable function supported on A such that $\varphi(\tilde{c})\mathbf{1}_A \leq f\mathbf{1}_A < \omega$. Let $u: T \to [0, \infty)$ be a measurable function $f(\tilde{c})\mathbf{1}_A = f\mathbf{1}_A$. If $\beta > 0$ is such that $\mathbb{E}[\varphi(\tilde{c})-u\mathbf{1}_A]+\beta\mu(B)+\mathbb{E}[\varphi(\tilde{c})\mathbf{1}_{T\setminus(A\cup B)}]=1$, then we define

$$c = (\widetilde{c} - u)\mathbf{1}_A + \overline{c}\mathbf{1}_B + \widetilde{c}\mathbf{1}_{T\setminus(A\cup B)},$$

where $\overline{c}: T \to \mathbb{R}$ is a measurable function supported on B such that $\varphi(t, \overline{c}(t)) = \beta$, for μ -a.e. $t \in B$. Because the function u is supported on A, we can write

$$\mathbb{E}[\boldsymbol{\varphi}(c+u)] = \mathbb{E}[\boldsymbol{\varphi}(\widetilde{c})\mathbf{1}_A] + \mathbb{E}[\boldsymbol{\varphi}(\overline{c})\mathbf{1}_B] + \mathbb{E}[\boldsymbol{\varphi}(\widetilde{c})\mathbf{1}_{T\setminus(A\cup B)}] < \infty.$$

On the other hand, since f is non-integrable, we have

$$\mathbb{E}[\boldsymbol{\varphi}(c+2u)] > \mathbb{E}[\boldsymbol{\varphi}(\widetilde{c}+u)\mathbf{1}_A] = \mathbb{E}[f] = \infty.$$

Therefore, the Musielak–Orlicz function Φ_c does not satisfy the Δ_2 -condition.

The main result of this section is a consequence of the following proposition:

Proposition 2. Let $b: T \to \mathbb{R}$ be a measurable function such that $\mathbb{E}[\varphi(b)] = 1$. Then $L_b^{\varphi} \subseteq L_c^{\varphi}$ for every measurable function $c: T \to \mathbb{R}$ such that $\mathbb{E}[\varphi(c)] = 1$ if, and only if, the Musielak–Orlicz function $\Phi_b(t, u) = \varphi(t, b(t) + u) - \varphi(t, b(t))$ satisfies the Δ_2 -condition.

Proof. Assume that Φ_b satisfies the Δ_2 -condition. Let $c: T \to \mathbb{R}$ be any measurable function such that $\mathbb{E}[\varphi(c)] = 1$. Denoting $A = \{t \in T : c(t) \ge b(t)\}$, it is clear that the function $(c-b)\mathbf{1}_A$ is in L_b^{φ} . Hence, for any function $u \in L_b^{\varphi}$, we can write

$$\mathbb{E}[\boldsymbol{\varphi}(c+|u|)] = \mathbb{E}[\boldsymbol{\varphi}(b+(c-b)+|u|)] \le \mathbb{E}[\boldsymbol{\varphi}(b+(c-b)\mathbf{1}_A+|u|)] < \infty.$$

since $(c-b)\mathbf{1}_A + |u|$ is in L_b^{φ} , and the sets L_b^{φ} and \tilde{L}_b^{φ} are equal. Thus, $L_b^{\varphi} \subseteq L_c^{\varphi}$.

Now we suppose that Φ_b does not satisfy the Δ_2 -condition. From Lemma 1, there exists a non-negative function $u \in \tilde{L}^{\Phi_b}$ such that $I_{\Phi_b}(\lambda u) = \infty$ for all $\lambda > 1$. Using the function u, we will provide a measurable function $c : T \to \mathbb{R}$ with $\mathbb{E}[\varphi(c)] = 1$ for which L_b^{φ} is not contained in L_c^{φ} . By [1] or [3, Lemma 2], we can find a sequence of non-decreasing, measurable sets $\{T_n\}$, satisfying $\mu(T_n) < \infty$ and $\mu(T \setminus \bigcup_{n=1}^{\infty} T_n) = 0$, such that

$$\operatorname{ess\,sup}_{t \in T_n} \Phi_b(t, u) < \infty, \qquad \text{for all } u > 0, \text{ and each } n \ge 1. \tag{6}$$

Thus, for a sufficiently large $n_0 \ge 1$, the set $A = \{t \in T_{n_0} : u(t) \le n_0\}$ satisfies $\mathbb{E}[\varphi(b+u)\mathbf{1}_{T\setminus A}] < 1$. Observing that

$$I_{\Phi_b}(\lambda u \mathbf{1}_A) \le \left[\operatorname{ess\,sup}_{t \in T_{n_0}} \Phi_b(t, \lambda n_0) \right] \mu(T_{n_0}) < \infty, \quad \text{for each } \lambda > 0,$$

we can infer that

$$I_{\Phi_b}(\lambda u \mathbf{1}_{T \setminus A}) = I_{\Phi_b}(\lambda u) - I_{\Phi_b}(\lambda u \mathbf{1}_A) = \infty, \quad \text{for all } \lambda > 1.$$
(7)

Let $\alpha > 0$ be such that $\alpha \mu(A) + \mathbb{E}[\varphi(b+u)\mathbf{1}_{T \setminus A}] = 1$. Then we define

$$c = \overline{c} \mathbf{1}_A + (b+u) \mathbf{1}_{T \setminus A},$$

where $\overline{c}: T \to \mathbb{R}$ is a measurable function supported on A such that $\varphi(t, \overline{c}(t)) = \alpha$, for μ -a.e. $t \in A$. It is clear that $\mathbb{E}[\varphi(c)] = 1$. According to [10, Proposition 4], if $c_1, c_2: T \to \mathbb{R}$ are measurable functions such that $\mathbb{E}[\varphi(c_1)] = 1$ and $\mathbb{E}[\varphi(c_2)] = 1$, then $(c_1 - c_2) \in L_{c_2}^{\varphi}$ is a necessary and sufficient condition for $L_{c_1}^{\varphi} \subseteq L_{c_2}^{\varphi}$. Thus, to show that L_b^{φ} is not contained in L_c^{φ} , we have to verify that $(b - c) \notin L_c^{\varphi}$. Denoting $F = \{t \in T : c(t) \ge b(t)\}$, for any $\lambda > 0$, we can write

$$\mathbb{E}[\boldsymbol{\varphi}(c+\lambda|b-c|)] \geq \mathbb{E}[\boldsymbol{\varphi}(c+\lambda(c-b))\mathbf{1}_{F}]$$

$$= \mathbb{E}[\boldsymbol{\varphi}(b+(1+\lambda)(c-b))\mathbf{1}_{F}]$$

$$\geq \mathbb{E}[\boldsymbol{\varphi}(b+(1+\lambda)u)\mathbf{1}_{T\setminus A}] \qquad (8)$$

$$= \infty, \qquad (9)$$

where in (8) we used that $T \setminus A \subseteq F$ and $(c-b)\mathbf{1}_{T\setminus A} = u\mathbf{1}_{T\setminus A}$, and (9) follows from (7). We conclude that $(b-c) \notin L_c^{\varphi}$, and hence L_b^{φ} is not contained in L_c^{φ} . Therefore, if $L_b^{\varphi} \subseteq L_c^{\varphi}$ for any measurable function $c: T \to \mathbb{R}$ such that $\mathbb{E}[\varphi(c)] = 1$, then the Musielak–Orlicz function Φ_b satisfies the Δ_2 -condition.

Now we can state the main result of this section:

Proposition 3. Let $b, c: T \to \mathbb{R}$ be measurable functions such that $\mathbb{E}[\varphi(b)] = 1$ and $\mathbb{E}[\varphi(c)] = 1$. If the Musielak–Orlicz functions $\Phi_b(t, u) = \varphi(t, b(t) + u) - \varphi(t, b(t))$ and $\Phi_c(t, u) = \varphi(t, c(t) + u) - \varphi(t, c(t))$ satisfy the Δ_2 -condition, then L_b^{φ} and L_c^{φ} are equal as sets. Moreover, $\mathcal{F}_b^{\varphi} = \mathcal{F}_c^{\varphi}$.

Proof. The conclusion that L_b^{φ} and L_c^{φ} are equal as sets follows from Proposition 2. By [10, Proposition 4], it is clear that $(c-b) \in \mathcal{K}_b^{\varphi}$. Let $\alpha \geq 0$ be such that $u = (c-b) + \alpha u_0$ belongs to \mathcal{B}_b^{φ} . If ψ_1 is the normalizing function associated with \mathcal{F}_b^{φ} , then $\psi_1(u) = \alpha$ and $\varphi_b(u) = \varphi(b+u-\psi_1(u)u_0) = \varphi(c)$. Thus the φ -families \mathcal{F}_b^{φ} and \mathcal{F}_c^{φ} have a non-empty intersection, and hence $\mathcal{F}_b^{\varphi} = \mathcal{F}_c^{\varphi}$.

3 The Behavior of ψ Near the Boundary of $\mathcal{B}_{c}^{\varphi}$

In this section, we investigate the behavior of the normalizing function ψ near the boundary of $\mathcal{B}^{\varphi}_{c}$ (with respect to the topology of $\mathcal{B}^{\varphi}_{c}$). More specifically, given any function u in the boundary of $\mathcal{B}_{c}^{\varphi}$, which we denote by $\partial \mathcal{B}_{c}^{\varphi}$, we want to know whether $\psi(\lambda u)$ converges to a finite value or not as $\lambda \uparrow 1$. For this purpose, we establish under what conditions the set $\mathcal{B}_{c}^{\varphi}$ has a non-empty boundary. This result is related to the Δ_2 -condition. By definition, a function $u \in L^0$ is in \mathcal{K}_c^{φ} if there exists $\varepsilon > 0$ such that $\mathbb{E}[\varphi(c + \lambda u)] < \infty$ for all $\lambda \in (-\varepsilon, 1 + \varepsilon)$. Because the set $\mathcal{B}_c^{\varphi} = \mathcal{K}_c^{\varphi} \cap B_c^{\varphi}$ is open in B_c^{φ} , we conclude that a function $u \in B_c^{\varphi}$ belongs to the boundary of \mathcal{B}_c^{φ} if and only if $\mathbb{E}[\varphi(c+\lambda u)] < \infty$ for all $\lambda \in (0,1)$, and $\mathbb{E}[\varphi(c+\lambda u)] = \infty$ for each $\lambda > 1$. If the Musielak–Orlicz function $\Phi_c = \varphi(t, c(t)+u) - \varphi(t, c(t))$ satisfies the Δ_2 -condition, then $\mathbb{E}[\varphi(c+u)] < \infty$ for all $u \in L_c^{\varphi}$. In this case, the set \mathcal{B}_c^{φ} coincides with the closed subspace B_c^{φ} , and the boundary of \mathcal{B}_c^{φ} is empty. On the other hand, if Φ_c does not satisfies the Δ_2 condition, then the boundary of $\mathcal{B}^{\varphi}_{c}$ is non-empty. Moreover, not all functions u in the boundary of \mathcal{B}_c^{φ} satisfy $\mathbb{E}[\varphi(c+u)] < \infty$ (or $\mathbb{E}[\varphi(c+u)] = \infty$). In other words, we can always find functions w_* and w^* in $\partial \mathcal{B}_c^{\varphi}$ for which $\mathbb{E}[\varphi(c+w_*)] < \infty$ and $\mathbb{E}[\varphi(c+w^*)] = \infty$. This result, which is a consequence of Lemma 1, is provided by the following proposition:

Proposition 4. The boundary of \mathcal{B}_c^{φ} is non-empty if and only if the Musielak– Orlicz function $\Phi_c = \varphi(t, c(t) + u) - \varphi(t, c(t))$ does not satisfy the Δ_2 -condition. Moreover, in any of these cases, there exist functions w_* and w^* in $\partial \mathcal{B}_c^{\varphi}$ such that $\mathbb{E}[\varphi(c+w_*)] < \infty$ and $\mathbb{E}[\varphi(c+w^*)] = \infty$.

Proof. Given non-negative functions u_* and u^* in L_c^{φ} satisfying (4) and (5) in Lemma 1, we consider the functions

$$w_* = u_* - \frac{\mathbb{E}[u_*\varphi'_+(c)]}{\mathbb{E}[u_0\varphi'_+(c)]}u_0, \quad \text{and} \quad w^* = u^* - \frac{\mathbb{E}[u^*\varphi'_+(c)]}{\mathbb{E}[u_0\varphi'_+(c)]}u_0,$$

which are in B_c^{φ} . Next we show that w_* is in $\partial \mathcal{B}_c^{\varphi}$ and satisfies $\mathbb{E}[\varphi(c+w_*)] < \infty$. For any $0 \leq \lambda \leq 1$, its clear that

$$\mathbb{E}[\boldsymbol{\varphi}(c+\lambda w_*)] \leq \mathbb{E}[\boldsymbol{\varphi}(c+\lambda u_*)] < \infty.$$

Now suppose that $\mathbb{E}[\varphi(c+\lambda_0w_*)] < \infty$ for some $\lambda_0 > 1$. In view of $1 \leq \mathbb{E}[\varphi(c+\lambda_0w_*)] < \infty$, we can find $\alpha_0 \geq 0$ such that $\mathbb{E}[\varphi(c+\lambda_0w_*-\alpha_0u_0)] = 1$. By the definition of u_0 , fixed any measurable function \tilde{c} such that $\mathbb{E}[\varphi(\tilde{c})] = 1$, we have that $\mathbb{E}[\varphi(\tilde{c}+\alpha u_0)] < \infty$ for all $\alpha \in \mathbb{R}$. Hence, considering $\tilde{c} = c + \lambda_0 w_* - \alpha_0 u_0$ and

$$\alpha = \lambda_0 \frac{\mathbb{E}[u_* \boldsymbol{\varphi}'_+(c)]}{\mathbb{E}[u_0 \boldsymbol{\varphi}'_+(c)]} + \alpha_0,$$

we obtain that $\mathbb{E}[\varphi(c+\lambda_0 u_*)] = \mathbb{E}[\varphi(\tilde{c}+\alpha u_0)] < \infty$, which is a contradiction. Consequently, $\mathbb{E}[\varphi(c+\lambda w_*)] = \infty$ for all $\lambda > 1$, and w_* belongs to $\partial \mathcal{B}_c^{\varphi}$ and satisfies $\mathbb{E}[\varphi(c+w_*)] < \infty$.

Proceeding as above, we show that $\mathbb{E}[\varphi(c+\lambda w^*)] < \infty$ for all $0 \le \lambda < 1$, and $\mathbb{E}[\varphi(c+\lambda w^*)] = \infty$ for all $\lambda \ge 1$. This result implies that w^* belongs to $\partial \mathcal{B}_c^{\varphi}$ and is such that $\mathbb{E}[\varphi(c+w^*)] = \infty$.

For a function u in $\partial \mathcal{B}_c^{\varphi}$, the behavior of the normalizing function $\psi(\lambda u)$ as $\lambda \uparrow 1$ depends on whether $\varphi(c+u)$ is μ -integrable or not. This behavior is partially elucidated by the following proposition:

Proposition 5. Let u be a function in the boundary of \mathcal{B}_c° . For $\lambda \in [0, 1)$, denote $\psi_u(\lambda) := \psi(\lambda u)$, whose right derivative we indicate by $(\psi_u)'_+(\lambda)$. If $\mathbb{E}[\varphi(c+u)] < \infty$ then $\psi_u(\lambda) = \psi(\lambda u)$ converges to some $\alpha \in (0, \infty)$ as $\lambda \uparrow 1$. On the other hand, if $\mathbb{E}[\varphi(c+u)] = \infty$ then $(\psi_u)'_+(\lambda)$ tends to ∞ as $\lambda \uparrow 1$.

Proof. Observing that the normalizing function ψ is convex with $\psi(0) = 0$, we conclude that $\psi_u(\lambda) = \psi(\lambda u)$ is non-decreasing and continuous in [0, 1). Moreover, $(\psi_u)'_+(\lambda)$ is non-decreasing in [0, 1). Fix any function u in the boundary of \mathcal{B}_c^{φ} such that $\mathbb{E}[\varphi(c+u)] < \infty$. Assume that $\psi(\lambda u)$ tends to ∞ as $\lambda \uparrow 1$. In this case, it is clear that

$$\varphi(c + \lambda u - \psi(\lambda u)u_0) \le \varphi(c + u\mathbf{1}_{\{u > 0\}} - \psi(\lambda u)u_0) \to 0, \quad \text{as } \lambda \uparrow 1.$$

Since $\varphi(c + \lambda u - \psi(\lambda u)u_0) \leq \varphi(c + u\mathbf{1}_{\{u>0\}})$, we can use the Dominated Convergence Theorem to write

$$\mathbb{E}[\boldsymbol{\varphi}(c + \lambda u - \psi(\lambda u)u_0)] \to 0, \quad \text{as } \lambda \uparrow 1,$$

which is a contradiction to $\mathbb{E}[\varphi(c + \lambda u - \psi(\lambda u)u_0)] = 1$. Thus $\psi(\lambda u)$ is bounded in [0, 1), and $\psi(\lambda u)$ converges to some $\alpha \in (0, \infty)$ as $\lambda \uparrow 1$.

Now consider any function u in the boundary of \mathcal{B}_c^{φ} satisfying $\mathbb{E}[\varphi(c+u)] = \infty$. Suppose that $(\psi_u)'_+(\lambda)$ converges to some $\beta \in (0,\infty)$ as $\lambda \uparrow 1$. Then $\psi_u(\lambda) = \psi(\lambda u)$ converges to some $\alpha \in (0,\infty)$ as $\lambda \uparrow 1$. From Fatou's Lemma, it follows that

$$\mathbb{E}[\varphi(c+u-\alpha u_0)] \leq \liminf_{\lambda \uparrow 1} \mathbb{E}[\varphi(c+\lambda u - \psi(\lambda u)u_0)] = 1.$$

Since $\varphi(t, \cdot)$ is convex, for any $\lambda \in (0, 1)$, we can write

$$\varphi(c+\lambda u-\psi(\lambda u)u_0) = \varphi\Big(\lambda(c+u-\alpha u_0)+(1-\lambda)\Big(c-\alpha u_0+\frac{\alpha-\psi(\lambda u)}{1-\lambda}u_0\Big)\Big)$$

$$\leq \lambda\varphi(c+u-\alpha u_0)+(1-\lambda)\varphi\Big(c-\alpha u_0+\frac{\alpha-\psi(\lambda u)}{1-\lambda}u_0\Big).$$

Observing that $\beta = \lim_{\lambda \uparrow 1} (\psi_u)'_+(\lambda) = \lim_{\lambda \uparrow 1} [\alpha - \psi(\lambda u)]/(1 - \lambda)$, we can infer that

$$\varphi(c + \lambda u - \psi(\lambda u)u_0) \le \varphi(c + u - \alpha u_0) + \varphi(c - \alpha u_0 + \beta u_0),$$

showing that $\varphi(c + \lambda u - \psi(\lambda u)u_0)$ is dominated by an integrable function. Thus, by the Dominated Convergence Theorem, it follows that

$$\mathbb{E}[\varphi(c+u-\alpha u_0)] = \mathbb{E}[\lim_{\lambda \uparrow 1} \varphi(c+\lambda u - \psi(\lambda u)u_0)] = \lim_{\lambda \uparrow 1} \mathbb{E}[\varphi(c+\lambda u - \psi(\lambda u)u_0)] = 1.$$

The definition of u_0 tells us that $\mathbb{E}[\boldsymbol{\varphi}(\tilde{c} + \lambda u_0)] < \infty$ for all $\lambda \in \mathbb{R}$ and any measurable function \tilde{c} such that $\mathbb{E}[\boldsymbol{\varphi}(\tilde{c})] = 1$. In particular, considering $\tilde{c} = c + u - \alpha u_0$ and $\lambda = \alpha$, we have that $\mathbb{E}[\boldsymbol{\varphi}(c+u)] < \infty$. This contradicts the assumption that $\mathbb{E}[\boldsymbol{\varphi}(c+u)] = \infty$. Therefore, $\lim_{\lambda \uparrow 1} (\psi_u)'_+(\lambda) = \infty$.

References

- Kamińska, A.: Some convexity properties of Musielak-Orlicz spaces of Bochner type. In: Proceedings of the 13th Winter School on Abstract Analysis (Srní, 1985), vol. 10, pp. 63–73 (1986)
- Kaniadakis, G.: Statistical mechanics in the context of special relativity. Phys. Rev. E (3), 66(5), 056125, 17 (2002)
- Kolwicz, P., Płuciennik, R.: On P-convex Musielak-Orlicz spaces. Comment. Math. Univ. Carolin. 36(4), 655–672 (1995)
- Krasnoselśkiĭ, M.A., Rutickiĭ, J.: Convex functions and Orlicz spaces. Translated from the first Russian edition by Leo F. Boron. P. Noordhoff Ltd., Groningen (1961)
- Lang, S.: Differential and Riemannian manifolds, 3rd edn. Graduate Texts in Mathematics, vol. 160. Springer, New York (1995)
- Musielak, J.: Orlicz spaces and modular spaces. Lecture Notes in Mathematics, vol. 1034. Springer, Berlin (1983)
- 7. Pistone, G., Rogantin, M.P.: The exponential statistical manifold: mean parameters, orthogonality and space transformations. Bernoulli 5(4), 721–760 (1999)
- Pistone, G., Sempi, C.: An infinite-dimensional geometric structure on the space of all the probability measures equivalent to a given one. Ann. Statist. 23(5), 1543–1561 (1995)
- Rao, M.M., Ren, Z.D.: Theory of Orlicz spaces. Monographs and Textbooks in Pure and Applied Mathematics, vol. 146, p. 449. Marcel Dekker Inc., New York (1991)
- Vigelis, R.F., Cavalcante, C.C.: On φ-families of probability distributions. J. Theor. Probab., 1–15 (2011) (article in press), doi:10.1007/s10959-011-0400-5
- 11. Vigelis, R.F., Cavalcante, C.C.: Smoothness in Musielak–Orlicz function spaces equipped with the Orlicz norm (2012) (submitted for publication)