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Abstract. In this paper, we provide some results related to the As-
condition of Musielak—Orlicz functions and @-families of probability dis-
tributions, which are modeled on Musielak—Orlicz spaces. We show that
if two (-families are modeled on Musielak—Orlicz spaces generated by
Musielak—Orlicz functions satisfying the As-condition, then these -
families are equal as sets. We also investigate the behavior of the nor-
malizing function near the boundary of the set on which a op-family is
defined.

1 Introduction

In [1I0], ¢-families of probability distributions are introduced as a generalization
of exponential families of probability distributions [8[7]. The main idea leading
to this generalization is the replacement of the exponential function with a ¢-
function (a definition is given below). These families (of probability distributions)
are subsets of the collection P, of all ui-a.e. strictly positive probability densities.
What the papers [8I7II0] provide is a framework endowing P,, with a structure of
C*°-Banach manifold [5], where a family constitutes a connected component of
P.. These families are modeled on Musielak—Orlicz spaces (exponential families
are modeled on exponential Orlicz spaces) [6/4/9]. In many properties of these
spaces, the As-condition of Musielak—Orlicz functions plays a central role. For
example, a Musielak-Orlicz space L? is equal to the Musielak-Orlicz class L®
if and only if the Musielak—Orlicz function ® satisfies the As-condition. In this
paper we investigate the As-condition in the context of p-families. In Sect. 2] we
show that if two p-families are modeled on Musielak—Orlicz spaces generated by
Musielak—Orlicz functions satisfying the As-condition, then these -families are
equal as sets. In Sect. B, we investigate the behavior of the normalizing function
near the boundary of the set on which a ¢-family is defined. In the rest of this
section, p-families are exposed.

A p-family is the image of a mapping whose domain is a subset of a Musielak—
Orlicz space. In what follows, this statement will be made more precise. Musielak—
Orlicz spaces are just briefly introduced here. These spaces are thoroughly
exposed in [6/419].
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Let (T,%,u) be a o-finite, non-atomic measure space. A function ®: T x
[0,00) — [0, 00] is said to be a Musielak—Orlicz function if

(i) ®(t,-) is convex and lower semi-continuous for p-a.e. t € T,
(il) @(¢,0) = limy 0 (¢, u) = 0 and lim,—, o ®(t,u) = oo for p-a.e. t € T,
(iii) ®(-,u) is measurable for each u > 0.

We notice that ®(t,-), by (i)—(ii), is not equal to 0 or oo on the interval (0, c0).
A Musielak—Orlicz function @ is said to be an Orlicz function if the functions
®(¢,-) are the same for p-a.e. t € T.

Let L° denote the linear space of all real-valued, measurable functions on
T, with equality p-a.e. Given any Musielak—Orlicz function ®, we denote the
functional I (u fT (t, |u(t)|)du, for any u € L°. The Musielak—Orlicz space,
Musielak— Orlzcz class, and Morse—Transue space generated by a Musielak—Orlicz
function ® are defined by

* = {ue L%: Is(\u) < oo for some A > 0},
®—{ueL’: Ip(u) < 0o},

and

®—{ueL°: Ip(Mu) < oo for all X > 0},

respectively. The Musielak—Orlicz space L is a Banach space when it is equipped
with the Luzemburg norm

lulle = inf{)\ >0: Lp(z) < 1},

or the Orlicz norm

ulle,0 = sup{’/ uvd,u‘ cveL? and Ig-(v) < 1},
T

where ®*(t,v) = sup,~o(uv — ®(t,u)) is the Fenchel conjugate of ®(t,-). These
norms are equivalent and the inequalities ||ulle < ||ullo0 < 2|lule hold for all
ue L.

Whereas exponential families are based on the exponential function, ¢-families
are based on ¢-functions. A function ¢: T'xR — (0, 00) is said to be a p-function
if the following conditions are satisfied:

(al) ¢(t,-) is convex for p-a.e. t € T,
(a2) limy—, oo @(t,u) = 0 and lim, o0 @(t,u) = oo for p-a.e. t € T,
(a3) (-, u) is measurable for each u € R.

In addition, we assume a positive, measurable function ug: 7' — (0,00) can be
found such that, for every measurable function ¢: T — R for which ¢(¢, ¢(t)) is
in P,, we have that
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(ad) @(t, c(t) + Aug(t)) is p-integrable for all A > 0.

The exponential function is an example of p-function, since (¢, u) = exp(u)
satisfies conditions (al)—(a3) and (ad4) with ug = 17, where 14 is the indicator
function of a subset A C T'. Another example of ¢-function is the Kaniadakis’ k-
exponential (see [2] and [10, Example 1]). Let ¢/, (¢, ) denote the right derivative
of ¢(t,-). In what follows, ¢ and ¢’, denote the function operators (u)(t) :=
o(t,u(t)) and @', (u)(t) := ¢, (t,u(t)), respectively, for any real-valued function
u: T — R
A p-family is defined to be a subset of the collection

P,=1{peL’:p>0and E[p] =1},

where E[-] = [[.(-)du denotes integration with respect to yu. For each probability
density p € P, we associate a p-family ¥ C P, centered at p, where c: T'— R
is a measurable function such that p = ¢(c). The Musielak-Orlicz space L%®¢
on which the ¢-family F7? is modeled is given in terms of the Musielak-Orlicz
function
Dot u) = ol eft) +u) — plt, c(t)). (1)
We will use the notation L¥, fﬁf and E? in the place of L%, L% and E®-,
respectively, to indicate that ®. is given by (l). Because ¢(c) is p-integrable,
the Musielak—Orlicz space L¢ corresponds to the set of all functions u € L for
which there exists ¢ > 0 such that ¢(c+ Au) is p-integrable for all A € (—¢,¢).
The elements of the ¢-family F¥ C P, centered at p = ¢(c) € P, are given
by the one-to-one mapping

p.(u) :=p(c+u—P(u)ug), for each u € B?, (2)
where the set BY C L¢ is defined as the intersection of the convex set
K¢ ={ue L? :Elp(c+ \u)] < oo for some A > 1}
with the closed subspace
B¢ = {u e L? : Elug, ()] = 0},

and the normalizing function : B — [0,00) is introduced so that expression
(@) defines a probability distribution in P,. By [10, Lemma 2|, the set K¢ is
open in L¥, and hence BY is open in BY.

Its is clear that the collection {F¥ : ¢(c) € P,} covers the whole family
P... Moreover, p-families are maximal in the sense that if two ¢-families have a
non-empty intersection, then they coincide as sets. Let ¢ and F7, be two -
families centered at ¢(c1) € P, and ¢p(c2) € P, for some measurable functions
c1,c2: T — R.If the p-families 7 and F have non-empty intersection, then
F¢& = F¢ and the spaces LY and L¢, are equal as sets, and have equivalent
norms. Because the transition map ‘Pc_; op., : Bf — BY, is an affine transforma-
tion, the collection of charts {(B¢, ¢,)},(c)ep, is an atlas of class €, endowing
P, with a structure of C'°°-Banach manifold. A verification of these claims is
found in [10].
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2 The A,-Condition and ¢-Families

A Musielak—Orlicz function @ is said to satisfy the As-condition, or to belong
to the Ag-cla§3 (denoted by ® € Ay), if a constant K > 0 and a non-negative
function f € L® can be found such that

D(t,2u) < KO(t, u), for all u > f(t), and p-a.e.teT. (3)

It is easy to see that, if a Musielak—Orlicz function ® satisfies the As-condition,
then Ip(u) < oo for every u € L®. In this case, L®, L® and E® are equal as
sets. On the other hand, if the Musielak—Orlicz function ® does not satisfy the
Ay-condition, then E?® is a proper subspace of L®. In addition, we can state:

Lemma 1. Let ® be a Musielak—Orlicz function not satisfying the As-condition
and such that ®(t,bs(t)) = oo for p-a.e. t € T, where by(t) = sup{u > 0 :
®(t,u) < co}. Then we can find functions u. and u* in L* such that

Is(Auy) < oo, for0<A<1, @)
Is(Auy) =00, forl <A,

and
Is(Au*) < oo, for0< <1, (5)
Is(Au*) =00, forl <A

This lemma is a well established result for Orlicz functions (see [4] Sect. 8.4]). A
proof of Lemma [I]is given in [II]. The next result shows that we can always find
a -family modeled on a Musielak—Orlicz space generated by a Musielak—Orlicz
function not satisfying the Aq-condition.

Proposition 1. Given any @-function ¢, we can find a measurable function
c: T — R with E[p(c)] = 1 such that the Musielak—Orlicz function ®.(t,u) =
o(t, c(t) +u) — p(t, c(t)) does not satisfy the Aq-condition.

Proof. Let A and B be two disjoint, measurable sets satisfying 0 < u(A) < oo
and 0 < p(B) < oo. Fixed any measurable function ¢ such that E[p(¢)] = 1, we
take any non-integrable function f supported on A such that ¢(¢)14 < f14 <
00. Let u: T — [0, 00) be a measurable function supported on A such that ¢(c+
u)la = fla.If B> 01is such that E[p(c—u)1a]+Bu(B)+E[p(c)1m aup)) = 1,
then we define
c=(c—u)la+clp+cly(aus),

where ¢: T — R is a measurable function supported on B such that ¢(¢, c(t)) =
B, for p-a.e. t € B. Because the function u is supported on A, we can write

Elp(c +u)] = E[p(€)1a] + Elp(c)18] + E[p(¢) 11\ (aum)] < oo
On the other hand, since f is non-integrable, we have
Elp(c+2u)] > E[p(c+ u)14] = E[f] = oc.

Therefore, the Musielak—Orlicz function ®. does not satisfy the As-condition.
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The main result of this section is a consequence of the following proposition:

Proposition 2. Let b: T — R be a measurable function such that E[e(b)] = 1.
Then L{ C L¢ for every measurable function ¢ : T — R such that E[p(c)] =1
if, and only if, the Musielak—Orlicz function ®y(t,u) = (¢, b(t) +u) — (¢, b(t))
satisfies the As-condition.

Proof. Assume that @, satisfies the As-condition. Let ¢ : T — R be any mea-
surable function such that E[p(c)] = 1. Denoting A = {t € T : ¢(t) > b(t)}, it is
clear that the function (¢ —b)14 is in L. Hence, for any function v € L, we
can write

Elp(c+ [ul)] = Elp(b+ (¢ = b) + [u])] <E[p(b+ (¢ = b)1a + |u])] < o0

since (c—b)14 + |ul is in LY, and the sets LY and LY are equal. Thus, L{ C L?.

Now we suppose that ®, does not satisfy the As-condition. From Lemma [T,
there exists a non-negative function u € L® such that I, (M) = oo forall A > 1.
Using the function u, we will provide a measurable function ¢ : T — R with
E[p(c)] = 1 for which L is not contained in L¢. By [1] or [3, Lemma 2|, we can
find a sequence of non-decreasing, measurable sets {T,,}, satisfying u(7,) < oo
and (T \ Uy~ T,) = 0, such that

ess sup @, (t, u) < oo, for all v > 0, and each n > 1. (6)
teT,
Thus, for a sufficiently large ng > 1, the set A = {t € T, : u(t) < ng} satisfies
E[p (b—I— u)1p\ 4] < 1. Observing that

Ip,(Auly) < {ess sup Dy (¢, )\no)} w(Th,) < oo, for each A > 0,
tEThn,

we can infer that
Iy, (Mulpy a) = lo,(Au) — I, (Aula) = oo, for all A > 1. (7)
Let o > 0 be such that au(A) +E[p(b+ u)1p\ 4] = 1. Then we define
c=clyg+ (b+u)lpa,

where ¢: T — R is a measurable function supported on A such that ¢(¢,c(t)) =
a, for p-a.e. t € A. Tt is clear that E[p(c)] = 1. According to [10, Proposition 4], if
¢1,c2: T — R are measurable functions such that E[ep(c1)] = 1 and E[p(c2)] = 1,
then (c1 —¢2) € LY, is a necessary and sufficient condition for Ly C Lg,. Thus,
to show that L; is not contained in L¥, we have to verify that (b —c) ¢ L¢.

c)

Denoting F' = {t €T :c(t) >b(t)}, for any A > 0, we can write

Ele (C+>\|b*0\)] Elp(c+ (e —b))1p]
Elp(b+ (14 A)(c—b))1F]
Elp(d+ (14 Au)lr 4] (8)
= 00, 9)
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where in (8) we used that T\ A C F' and (¢ — b)17\ 4 = ulpy 4, and (@) follows
from (7). We conclude that (b — ¢) ¢ L¢, and hence L} is not contained in

L?. Therefore, if Ly C L¢ for any measurable function ¢ : T — R such that
E[¢(c)] = 1, then the Musielak—Orlicz function ®; satisfies the Ag-condition.

Now we can state the main result of this section:

Proposition 3. Let b,c: T — R be measurable functions such that E[p(b)] =1
and Elp(c)] = 1. If the Musielak-Orlicz functions ®p(t,u) = @(t,b(t) + u) —
e(t,b(t)) and D.(t,u) = p(t,c(t) + u) — (t, c(t)) satisfy the Ay-condition, then
LY and L¢ are equal as sets. Moreover, F = F¥.

Proof. The conclusion that L{ and L are equal as sets follows from Proposi-
tion 2 By [10, Proposition 4], it is clear that (¢ — b) € K. Let a > 0 be such
that u = (c—b)+aug belongs to By . If 41 is the normalizing function associated
with F7, then ¢ (u) = o and ¢y(u) = @(b+ u — 1 (u)ug) = ¢(c). Thus the
p-families F;” and F¢ have a non-empty intersection, and hence 7 = F¥.

3 The Behavior of ¢ Near the Boundary of BY

In this section, we investigate the behavior of the normalizing function ¢ near
the boundary of B? (with respect to the topology of B¥). More specifically, given
any function u in the boundary of B¥, which we denote by B¢, we want to know
whether ¢)(Au) converges to a finite value or not as A 1 1. For this purpose, we
establish under what conditions the set B has a non-empty boundary. This
result is related to the Ag-condition. By definition, a function v € LY is in
K¢ if there exists € > 0 such that E[p(c + Au)] < oo for all A € (—¢,1 + &).
Because the set BY = KY N B is open in Bf, we conclude that a function
u € B? belongs to the boundary of BY? if and only if E[p(c + Au)] < oo for all
A€ (0,1), and E[p(c+ Au)] = oo for each A > 1. If the Musielak—Orlicz function
O, = p(t, c(t)+u)—p(t, c(t)) satisfies the Ag-condition, then E[p(c+u)] < oo for
all w € L¥. In this case, the set BY coincides with the closed subspace BY, and
the boundary of BY is empty. On the other hand, if ®. does not satisfies the As-
condition, then the boundary of BY is non-empty. Moreover, not all functions « in
the boundary of BY satisfy E[¢(c+u)] < 0o (or E[¢p(c+u)] = 00). In other words,
we can always find functions w, and w* in 9B¢ for which E[p(c+w.)] < co and
E[p(c + w*)] = co. This result, which is a consequence of Lemma [I] is provided
by the following proposition:

Proposition 4. The boundary of BY is non-empty if and only if the Musielak—
Orlicz function ®. = (t, c(t) +u) — p(t, c(t)) does not satisfy the Aqg-condition.
Moreover, in any of these cases, there exist functions w, and w* in OBY such
that Elp(c + wy)] < 00 and Elp(c +w*)] = oo.

Proof. Given non-negative functions u, and «* in L¥ satisfying @) and (&) in
Lemma [Tl we consider the functions

Efu.¢, (0)]
Efuo, (c)]

. x Eluel(c)]

Wy = Uy — U, and w* =u* — U,
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which are in Bf. Next we show that w, is in B¢ and satisfies E[p(c+w.)] < oo.
For any 0 < A < 1, its clear that

Elp(c+ Aw.)] < E[p(c + Auy)] < oo.

Now suppose that E[¢p(c + Aw. )] < oo for some Ao > 1. In view of 1 < E[p(c+
Aowy)] < oo, we can find ag > 0 such that E[p(c + Aows — apug)] = 1. By
the definition of ug, fixed any measurable function ¢ such that E[p(¢)] = 1, we
have that E[@ (¢ + aug)] < oo for all @ € R. Hence, considering ¢ = ¢ + Agw,
— apup and
Efu. el (c)
Efuoe’y (o))
we obtain that E[p(c + Aus)] = E[p(¢ + aup)] < oo, which is a contradiction.
Consequently, E[p(c + Aw,)] = oo for all A > 1, and w, belongs to IB¥ and
satisfies E[ep(c + w,)] < oo.

Proceeding as above, we show that E[¢p(c+ Aw*)] < oo for all 0 < A < 1, and
E[p(c + Aw*)] = oo for all A > 1. This result implies that w* belongs to 08¢
and is such that E[p(c + w*)] = 0.

a= A\ + ap,

For a function u in 98¢, the behavior of the normalizing function ¢ (Au) as A 11
depends on whether ¢(c + u) is p-integrable or not. This behavior is partially
elucidated by the following proposition:

Proposition 5. Letu be a function in the boundary of B. For \ € [0,1), denote
Yy (N) := ¥(Au), whose right derivative we indicate by ()" (N). If Elp(c+u)] <
oo then ¥, (A) = Y(Au) converges to some a € (0,00) as A T 1. On the other
hand, if E[ep(c+ u)] = oo then (1,,)! (A) tends to oo as A T 1.

Proof. Observing that the normalizing function 1 is convex with ¥ (0) = 0, we
conclude that 1, (A) = ¥(Au) is non-decreasing and continuous in [0, 1). More-
over, (1)’ (A) is non-decreasing in [0, 1). Fix any function v in the boundary of
B¢ such that E[p(c + u)] < co. Assume that 1p(Au) tends to oo as A 1 1. In this
case, it is clear that

plc+ M —p(Au)uo) < p(c+ulysoy — P(Au)ug) — 0, as A1 1.

Since ¢ (c + Au — p(Au)ug) < (¢ + ulgysoy), we can use the Dominated Con-
vergence Theorem to write

E[p(c+ Au — ¢(Au)ug)] — 0, as A 11,

which is a contradiction to E[p(c+ Au — ¥ (Au)ug)] = 1. Thus ¢(Au) is bounded
in [0,1), and ¢ (Au) converges to some « € (0,00) as A 1 1.

Now consider any function u in the boundary of BY satisfying E[p(c + u)] =
oo. Suppose that (¢,)" (\) converges to some $ € (0,00) as A 1 1. Then
() = Y(Au) converges to some a € (0,00) as A T 1. From Fatou’s Lemma, it
follows that

E[p(c+u — aug)] < lirf\lTilanE[cp(c + Au — p(Au)ug)] = 1.
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Since ¢(t, ) is convex, for any A € (0,1), we can write

plc+ Au—p(Au)ug) = Lp()\(c +u—auy)+ (1 —A) (c — aug + o~ ¢(du) u0)>

1-X
< Ap(c+u—aug) + (1 — )\)go(c— aug + a;%(})\\u)uo).

Observing that § = limyy () (A) = limyp o — ¥(Au)]/(1 — A), we can
infer that

w(c+ M — Pp(Au)ug) < p(c+u — aug) + ¢(c — aug + fug),

showing that ¢ (c+ Au— 1 (Au)ug) is dominated by an integrable function. Thus,
by the Dominated Convergence Theorem, it follows that

Elp(c+u—aug)] = ]E[l/\lgl p(ct+Au—v(Au)ug)] = 1/\1%1 Elp(c+Iu—1v(Au)ug)] = 1.

The definition of ug tells us that E[p (¢ + Aug)] < oo for all A € R and any
measurable function ¢ such that E[p(¢)] = 1. In particular, considering ¢ =
¢+ u—oauy and A = a, we have that E[p(c + u)] < oco. This contradicts the
assumption that E[p(c 4+ u)] = oo. Therefore, limxy1(¢u)’, (A) = oo.
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