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Abstract. We consider a nonlinear fourth-order diffusion equation that
arises in denoising of image densities. We propose an implicit time-
stepping scheme that employs a primal-dual method for computing the
subgradient of the total variation seminorm. The constraint on the dual
variable is relaxed by adding a penalty term, depending on a parameter
that determines the weight of the penalisation. The paper is furnished
with some numerical examples showing the denoising properties of the
model considered.

1 Introduction

For an open and bounded domain Ω ⊂ R
2 with Lipschitz boundary, we consider

the following equation for u = u(t, x)

ut = ∇ · (u∇q), q ∈ ∂E(u), in Ω × (0, T ),

u(0, x) = u0(x) ≥ 0 in Ω,
(1.1)

with normalised mass
∫
Ω
u0 dx = 1 and where the total variation (TV) functional

E (see [2,20]) is defined by

E(u) := |Du|(Ω) = sup
g∈C∞

0 (Ω;Rd),‖g‖∞≤1

∫

Ω

u ∇ · g dx, (1.2)

d = 1, 2. Equation (1.1) can be formally derived as the L2-Wasserstein gradient
flow of the TV functional E in (1.2) and constitutes a nonlinear fourth-order
diffusion equation. In this paper we study this equation as a regularising proce-
dure for u0 being a noisy image. Motivated by previous contributions in higher-
order regularisation (see [8,6,16,24,25]), this approach promises to maintain the
desirable properties of TV regularisation, such as preservation of edges in the
image, while at the same time reducing well-known artifacts of TV such as stair-
caising.
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Originally, (1.1) has been proposed in [11] for density estimation and smooth-
ing. Therein, the authors propose to compute a smoothed version u of a given
probability density u0 as a minimiser of

1

2
W2(u0L

d, uLd)2 + αE(u). (1.3)

Here, W2(u0L
d, uLd) is the L2–Wasserstein distance between u0L

d and uLd (Ld

denotes the Lebesgue measure in R
d, d = 1, 2) and defines a distance within the

space of probability measures [3,27,28,1,22]. This minimisation problem can be
interpreted as a discrete approximation of a solution of the gradient flow (1.1)
of E(u) with respect to the L2-Wasserstein metric. More precisely, the minimisa-
tion of (1.3) represents one timestep of De Giorgi’s minimising movement scheme
(see, e.g. [3,21]) to the functional E(u) with timestep α. By construction the reg-
ularisation method (1.3) proposed in [11] is non-smooth, i.e., edge preserving,
and conserves mass, i.e., is density preserving. In [11] the numerical solution of
(1.3) has been accomplished by a combination of the Benamou-Brenier formu-
lation [4] for the Wasserstein distance, an augmented Lagrangian method, and
an operator splitting technique [9]. This numerical procedure is in the flavour
of several recently proposed numerical schemes for equations with gradient flow
structure, cf., e.g., [13,7,18,10] and references therein.

Equation (1.1) has been further investigated in [19], where the authors nu-
merically study the scale space properties and high-contrasting effects of the
equation by solving it with a dimensional alternating direction implicit (ADI)
operator splitting approach. There, the subgradient q of the TV seminorm in
(1.1) is approximated by an ε-regularisation of the form

q ≈ ∇ ·
(

∇u
√|∇u|2 + ε

)

, 1 � ε > 0. (1.4)

From a computational point of view, finding numerical schemes that solve higher-
order equations like (1.1) is a challenging problem. Dealing with an evolutionary
nonlinear fourth-order partial differential equation, we aim to find an efficient
and reliable method avoiding a naive explicit discretisation in time that might
present time step size restrictions (compare [26]) and, because of the strong non-
linearity of the subgradients of TV, additionally add constraints to the stability
condition of the discrete time stepping scheme, compare [15,17,12].

In this paper we propose a formulation of (1.1) which characterises the ele-
ments of the subdifferential of TV in an alternative way. Instead of considering
a characterisation of the type (1.4) for these elements, we use the approach pro-
posed in [5,23] and deal with a relaxed primal-dual formulation of (1.1). In [12]
the authors consider such a kind of approach applied to a similar fourth-order
PDE as well as a directional splitting strategy that has proposed there as a
direction for future research.

Notation. We denote by u the solution of the continuous equations and by U
the solution of the time discrete numerical schemes we are going to present. We
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write Un to indicate the approximation of u(nΔt, ·), n ≥ 1, where Δt is the time
step size. We will typically consider a rectangular domain Ω = [a, b]× [c, d] and
approximate it by a finite grid {a = x1 < . . . < xN = b} × {c = y1 < . . . <
yM = d} with equidistant step-size h = (b − a)/N = (d − c)/M . For vectors,

we will indicate their components using the superscripts notation: y =
(
y1 y2

)�
.

With a little abuse of notation, we will still use the notations ∇ and ∇· to
indicate the differential operators discretised with either forward or backward
finite differences applied to the discretised quantities (see Section 3).

2 Primal-Dual Formulation of the TV -Wasserstein Flow

We aim to characterise the elements in the subdifferential of the TV seminorm
(1.2) by primal-dual iterations, as suggested, for instance, in [5,23] when dealing
with the classical second-order TV -denoising model. In what follows we discuss
such a strategy combined with an implicit time stepping method for solving
equation (1.1). By definition of the subdifferential, the property q ∈ ∂|Du|(Ω)
means:

q ∈ ∂|Du|(Ω) ⇐⇒ |Du|(Ω)−
∫

Ω

qu dx ≤ |Dv|(Ω) −
∫

Ω

qv dx, ∀v ∈ L2(Ω).

(2.1)
Equivalently, if u ∈ BV (Ω) ⊂ L2(Ω) achieves the minimum of the following
variational problem

min
u∈BV (Ω)

{

|Du|(Ω)−
∫

Ω

qu dx

}

, (2.2)

then, by definition of being minimum, (2.1) is fulfilled and then q ∈ ∂|Du|(Ω).
Inserting the definition of the total variation seminorm (1.2) into (2.2) we receive

min
u∈BV (Ω)

{

sup
p∈C∞

0 (Ω;R2), ‖p‖∞≤1

∫

Ω

u∇ · p dx−
∫

Ω

qu dx

}

(2.3)

which is typically known as the primal-dual formulation of the problem (1.1).
The constraint on p appearing in (2.3) can be relaxed, for instance, by a penalty
method. To this end we remove the constraint from the minimisation in (2.3)
and instead add a term to the functional that penalises it if ‖p‖∞ > 1. A typical
example for such a penalty term F is

F (s) =
1

2
‖max{s, 0}‖22 .

With these considerations we reformulate (2.3) into the following minimisation
problem

min
u∈BV (Ω)

sup
p∈C∞

0 (Ω;R2)

{∫

Ω

u∇ · p dx− 1

ε
F (|p| − 1)−

∫

Ω

qu dx

}

, (2.4)
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where the parameter 1 � ε > 0 is small and measures the weight of our penal-
isation. We can then find the optimality conditions for both p and u in (2.4)
which, merged with the original equation (1.1), allow us to consider the following,
alternative formulation of the TV -Wasserstein model:

⎧
⎪⎪⎨

⎪⎪⎩

ut = ∇ · (u∇q),

q = ∇ · p,
0 = −∇u− 1

ε
H(p).

(2.5)

In the system above H denotes the derivative of the penalty term F (|p|−1), i.e.

H(p) = �{|p|≥1}sgn(p)(|p| − 1),

which we linearise via its first-order Taylor approximation

H(p) ≈ H(p̃) +H ′(p̃)(p− p̃),

where with H ′ we indicate the Jacobian of H . In order to guarantee the invert-
ibility of the now linear operator that defines the system, we add an additional
damping term in p, as suggested, for instance, in [23]. Collecting everything, we
propose the following numerical scheme for solving (2.5),

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U
(k)
n+1 − Un

Δt
= ∇ · (Un∇Q

(k)
n+1)

Q
(k)
n+1 = ∇ ·P(k)

n+1,

0 = −∇U
(k)
n+1 −

1

ε
H(P

(k−1)
n+1 )

− 1

ε
H ′(P(k−1)

n+1 )(P
(k)
n+1 −P

(k−1)
n+1 )− τk(P

(k)
n+1 −P

(k−1)
n+1 ).

(2.6)

We apply Newton’s method to solve (2.6). The scheme consists of two nested
iterations. The subscripts n are related to the outer time step evolution of the
process evolving U . At each time step an implicit approximation of the quantities
Un+1, Qn+1 and Pn+1 is obtained by the application of an inner damped Newton
process that runs depending on the superscript k. The sequence of parameters
τk controls the damping of the Newton iterations: it starts from a large value
τ0 and then decreases, thus ensuring faster convergence. System (2.6) could now
be discretised in space as described in Section 3. For computational simplicity
we consider a slightly different penalty term F (see [23]):

F (p) = F (p1, p2) =
1

2

∥
∥max{|p1| − 1, 0}∥∥2

2
+

1

2

∥
∥max{|p2| − 1, 0}∥∥2

2
,

that results into an anisotropic TV term. Whence

H(p1, p2)=

(
sgn(p1)(|p1| − 1)�{|p1|≥1}
sgn(p2)(|p2| − 1)�{|p2|≥1}

)

, H ′(p1, p2)=

(
�{|p1|≥1} 0

0 �{|p2|≥1}

)

.
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3 Numerical Results

We discretise the gradient and the divergence operators appearing in the system
above using standard forward and backward finite differences, thus preserving
the adjointness properties of the operators as described in [14] and used also in
[5,23]. We then build up the matrices representing system (2.6). In each step
of Newton’s method the block-structure of the Jacobian matrix is exploited by
inverting it with a Schur complement strategy. For all the following tests we use

the following stopping criterion:
∥
∥
∥U

(k)
n+1 − U

(k−1)
n+1

∥
∥
∥/
∥
∥
∥U

(k)
n+1

∥
∥
∥ ≤ εtol, where ‖·‖ is

the 	2-norm and εtol the tolerance.

Fig. 1. Initial condition (l.) and solution of the TV -Wasserstein gradient flow after
10000 iterations (r.). ε = 10−3, τ 0 = 1.

(a) Initial condition (b) Solution after 100 iterations

(c) Solution after 300 iterations (d) Solution after 600 iterations

Fig. 2. Time evolution of (2.6) with ε = 10−7, τ 0 = 1
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Figure 1 shows the solution of (1.1) computed via (2.6) on a 100× 100 pixels
initial condition of a square. The result shows the difference between the TV -
Wasserstein approach and the pure TV one. The latter, in fact, would just
decrease the intensity of the square and increase the intensity of the background
without changing its support. Because of the mass preservation properties the
solution of (1.1) enlarge their support, as pointed out in [11] where the authors
show the self-similarity of the solutions.

Figure 2 shows the time evolution of the method (2.6) applied to a pyramidal
initial condition defined on the domain Ω = [0, 1]× [0, 1].

We now apply our method to a denoising problem. Figure 3 shows the pyramid
and a noisy version of it obtained by adding Gaussian noise with variance 0.001.
The denoised version is obtained both with the primal-dual TV method with
penalty term described in [23] and with our method. We observe that while the
simple application of the TV model creates staircaising, the use of higher-order
models reduces artifacts and preserves structures.

We consider in Figure 4 a real-world image of a LEGO man. The dimension
of the image is 200× 200 pixels. We add a Gaussian noise with zero mean and
variance equal to 0.005 and we show the result of time evolution of the process

(a) Initial condition
(b) Noisy pyramid with Gaussian noise of
variance 0.001

(c) Denoised pyramid with TV primal-
dual model

(d) Denoised pyramid with TV -
Wasserstein primal-dual model (2.6)

Fig. 3.Denoising with TV and TV -Wasserstein primal-dual methods. ε = 10−5, τ 0 = 1.



A Primal-Dual Approach for a Total Variation Wasserstein Flow 419

(a) Original (b) Noisy image (c) TV primal-dual result

(d) TV -Wasserstein result
after 100 iterations

(e) TV -Wasserstein result
after 200 iterations

(f) TV -Wasserstein result
after 350 iterations

Fig. 4. Comparison with TV primal-dual denoising model and TV -Wasserstein. ε =
10−7, τ 0 = 1.

after some time iterations. A result with the application of the TV primal-dual
method is given for comparison as well.

Conclusions. We proposed a numerical method to solve (1.1). Our strategy
consists in a relaxation of the characterisation of the subgradients of the total
variation via the addition of a penalty term. The optimality conditions of the
primal-dual formulation form a system of equations that can be solved via a
damped Newton’s method. The scheme shows good smoothing properties and
reduced artifacts in comparison to the pure TV method when applied to denois-
ing problems.
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