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Abstract. Non-unitary joint diagonalization of complex symmetric ma-
trices is an important technique in signal processing. The so-called
complex oblique projective (COP) manifold has been shown to be an
appropriate manifold setting for analyzing the problem and developing
geometric algorithms for minimizing the off-norm cost function. How-
ever, the recent identification of the COP manifold as a collection of
rank-one orthogonal projector matrices is not a suitable framework for
the reconstruction error function due to its large memory requirement
compared to the actual dimension of the search space. In this work, we
investigate the geometry of the COP manifold as a quotient manifold,
which allows less memory requirement, and develop a conjugate gradient
algorithm to minimize the reconstruction error function.

Keywords: Joint diagonalization of complex symmetric matrices, com-
plex projective space, conjugate gradient algorithm.

1 Introduction

Joint diagonalization of a set of matrices plays an important role in various signal
processing problems, such as blind source separation [1], beamforming [2], and
direction of arrival estimation [3]. Early works on matrix joint diagonalization
are restricted to unitary transformations, cf. [4]. However, it has been shown
that unitary joint diagonalization (UJD) approaches may have a serious limit
of degraded performance in the presence of additive noise, cf. [5]. To avoid such
a limitation, non-unitary joint diagonalization (NUJD) has been proposed and
actively studied, cf. [6,7,8]. In this work, we are interested in jointly diagonalizing
a set of complex symmetric matrices, cf. [9,10].

In the literature, measurement of diagonality of matrices can be formulated
in three different forms, namely, off-norm formulation [11], log-likelihood formu-
lation [6], and reconstruction error formulation [12,13]. It is important to notice,
that the log-likelihood based criterion only applies to the case with positive def-
inite matrices, and the off-norm cost function is not column-wise scale invariant
with respect to the demixing matrix in general, except if the matrix is an exact
joint diagonalizer. In the work of [14], the complex oblique projective (COP)
manifold is identified as a set of rank-one orthogonal projectors. Unfortunately,
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such a representation requires a lot of memory compared to the actual dimen-
sion of the search space. In this work we study the representation of the COP
manifold as a quotient manifold. Based on the derived geometry, we develop a
conjugate gradient algorithm for solving the joint diagonalization problem.

This paper is organized as follows. In Section 2, we introduce the problem of
joint diagonalization of complex symmetric matrices, and review second order
statistics based approaches. Section 3 studies the geometry of the COP mani-
fold. In Section 4, we develop a conjugate gradient algorithm for minimizing the
reconstruction error cost function. Finally, Section 5 demonstrates the numerical
performance of the developed CG algorithm.

2 Problem Description and Preliminaries

Let us start with some notations and definitions. In this work, (·)T denotes the
matrix transpose, (·)H the Hermitian transpose, (·) the complex conjugate, and
�(z) the real part of z ∈ C. By Gl(m) we denote the set of all invertible (m×m)
complex matrices, by ‖ · ‖F the Frobenius norm of matrices, and by Im the
(m×m)-identity matrix.

Let {Ci}ni=1 be a set of m×m complex symmetric matrices, constructed by

Ci = AΩiA
T, i = 1, . . . n, (1)

where A ∈ Gl(m) is the mixing matrix and Ωi = diag
(
ωi1, . . . , ωim

) ∈ Cm×m

with Ωi �= 0 for all i = 1, . . . , n. Both A and the set of {Ωi}ni=1 are unknown.
The task is to find a matrix X ∈ Gl(m) such that the matrices

XTCiX, i = 1, . . . , n, (2)

are simultaneously diagonalized. Clearly, the mixing matrix can only be identi-
fied up to permutation and scaling. In this work, we only take care of the scaling
ambiguity, and define the set of all diagonal (m×m)-matrices by

D(m) := {D |D ∈ Gl(m) is diagonal}. (3)

Since D(m) admits a matrix group structure, we can define the following equiv-
alence class on Cm×m, cf. [15].

Definition 1 (Equivalence Relation). Let X,Y ∈ Gl(m), then X is said to
be equivalent to Y if there exists D ∈ D(m) such that X = Y D.

Accordingly, for a given X ∈ Gl(m), we define the equivalent class of X as

�X� := {XD ∈ Gl(m) |D ∈ D } (4)

and the quotient space as

Op(m) := {�X� |X ∈ Gl(m) }, (5)
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which we call the complex oblique projective (COP) manifold. Note, that the
COP manifold is a generalization of the so-called oblique manifold for solving
real valued matrix joint diagonalization problems, cf. [16]. By adapting the re-
construction error based cost function proposed in [13] to the current setting of
complex symmetric matrices, the cost function studied in this work is given by

f : Gl(m) → R, X 	→
n∑

i=1

1

4

∥
∥Ci −X−T ddiag(XTCiX)X−1

∥
∥2
F
, (6)

where ddiag(M) is the diagonal matrix whose diagonal entries are just those of
M . It can be shown that the function is column-wise complex scaling invariant,
i.e. f(X) = f(XD) with a diagonal matrix D ∈ D and therefore induces a
function on Op(m) as

f̂ : Op(m) → R, �X� 	→
n∑

i=1

1

4

∥
∥Ci −X−T ddiag(XTCiX)X−1

∥
∥2
F
. (7)

Since the COP manifold Op(m) has no representation in terms of (m × m)
complex matrices, we need to further explore its geometry to develop geometric
gradient based numerical algorithms, which take into account the dimension of
the underlying feasible set.

3 The Geometry of the COP Manifold

In this section, we derive the necessary geometric concepts of the COP manifold
in order to implement a geometric conjugate gradient method. We refer to [17]
for a detailed overview of optimization methods on matrix manifolds. Firstly,
notice that Op(m) is an open and dense Riemannian submanifold of the m-
times product of CPm−1 with the Euclidean product metric, i.e.

Op(m) = CP
m−1 × . . .× CP

m−1

︸ ︷︷ ︸
m−times

=:
(
CP

m−1
)m

, (8)

where Op(m) denotes the closure of Op(m). Thus, the tangent spaces, the
geodesics, and the parallel transport for Op(m) locally coincide with those of
(CPm−1)m. In what follows, we study the geometry of CPm−1 by considering it
as the quotient space CP

m−1 = Sm/S1, where

Sm := {x ∈ C
m | xHx = 1} (9)

denotes the complex unit sphere and the equivalence classes �x� ∈ CP
m−1 are

defined through the relation

x ∼ y ⇐⇒ ∃z ∈ S1 such that x = yz. (10)

The tangent space at x ∈ Sm is given by

TxS
m := {h ∈ C

m | �(hHx) = 0}. (11)
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Endowing the tangent space with the metric

〈g, h〉 := �(gHh), for g, h ∈ TxS
m, (12)

turns Sm into a Riemannian manifold. Although the complex projective space
CP

m−1 cannot be represented in terms of vectors in Cm, its tangent spaces do
have a vector representation. This allows to derive geometric gradient descent
and conjugate gradient descent methods for optimizing over CPm−1 where each
iterate is a representative of the respective equivalence class and thus can be
implemented in terms of vectors in Sm. We identify the tangent space at �x� ∈
CP

m−1 with the horizontal lift of the tangent space at x. In our case, this is just
the intersection of all tangent spaces in the respective equivalence class, i.e.

T�x�CP
m−1 =

⋂

z∈S1

TxzS
m

=
⋂

z∈S1

{h ∈ C
m | �(hHxz) = 0}

= {h ∈ C
m | hHx = 0}.

(13)

The orthogonal projection onto the tangent space is given in the following lemma.

Lemma 1. The orthogonal projection of a vector h ∈ Cm onto the tangent space
T�x�CP

m−1 with respect to the inner product 〈x, y〉 = �(xHy) is given by

π�x�(h) := (Im − xxH)h. (14)

Proof. It is easy to see that for h ∈ C
m, we have

xHπ�x�(h) = xH(Im − xxH)h = 0, (15)

i.e. π�x�(h) ∈ T�x�CP
m−1. To see that π�x� is orthogonal, we observe that

〈h− π�x�(h), π�x�(h)〉 = 〈h, π�x�(h)〉−〈π�x�(h), π�x�(h)〉
=�(hH(Im−xxH)h

)−(
(Im−xxH)h

)H(
Im−xxH

)
h

=0.

(16)

Theorem 1. The geodesics in CP
m−1 through �x� are given by �γ(t)� with

γ(t) := et(hx
H−xhH)x. (17)

Proof. Clearly, �γ(t)� ⊂ CP
m−1 for all t ∈ R. Taking the first derivative of γ

yields

γ̇(t) = et(hx
H−xhH)(hxH − xhH)x (18)

with γ̇(0) = h. It remains to show that γ̈(t) is orthogonal to the tangent space
at �γ(t)�. The second derivative of γ is given by

γ̈(t) = et(hx
H−xhH)(hxH − xhH)2x. (19)
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Orthogonality to the tangent space holds because the orthogonal projection of
γ̈(t) vanishes, i.e.

π�γ(t)�(γ̈(t)) =
(
Im − γ(t)(γ(t))H

)
γ̈(t)

=
(
Im−et(hx

H−xhH)xxHe−t(hxH−xhH)
)
et(hx

H−xhH)(hxH−xhH)2x

=0.

(20)

Theorem 2. The parallel transport from T�γ(0)�CP
m−1 to T�γ(t)�CP

m−1 along
the geodesic �γ(t)� is given by

τ(t) := et(hx
H−xhH)h. (21)

Proof. We have to show that π�γ(t)�(τ̇ (t)) = 0. This holds true since, using

xHh = 0, we have

τ̇ (t) = −‖h‖2γ(t), (22)

and thus its projection to the tangent space vanishes.

Finally, by exploring the structure of the product manifold, the projection onto
the tangent space of Op(m), the geodesics and the parallel transport are verified
straightforwardly and given without proof.

Lemma 2. The orthogonal projection of a matrix H ∈ C
m×m to the tangent

space T�X�Op(m) with respect to the inner product 〈X,Y 〉 = tr(�(XHY )) is
given by

Π�X�(H) = H −X ddiag
(� (

XHH
))

. (23)

Theorem 3. The geodesics in the COP manifold through �X� ∈ Op(m) are
given by �Γ (t)� with

Γ (t) :=
[
et(h1x

H
1−x1h

H
1)x1, . . . , e

t(hmxH
m−xmhH

m)xm

]
. (24)

Its associated parallel transport is given by

T (t) :=
[
et(h1x

H
1−x1h

H
1)h1, . . . , e

t(hmxH
m−xmhH

m)hm

]
. (25)

4 A CG Algorithm for Simultaneous Non-unitary
Diagonalization of Complex Symmetric Matrices

In this section, we derive a conjugate gradient algorithm for minimizing the cost
function f̂ as defined in (7). For the sake of simplicity, we denote Ei(X) :=

X−T ddiag(XTCiX)X−1. Firstly, we compute the derivative of f̂ as

Df̂(�X�)H=
n∑

i=1

1
2 trH

HEi(X)(Ci−Ei(X))X−H+X−1(Ci−Ei(X))Ei(X)H

− ddiag
(
HHCiX

)
X

−1
(Ci − Ei(X))X−H

− ddiag
(
XTCiH

)
X−1(Ci − Ei(X))X−T.

(26)
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It is easily seen that an exact joint diagonalizer �X∗� is a critical point of the

function f̂ , i.e. D f̂(�X∗�)H = 0 for all H ∈ T�X∗�Op(m). Then, by Lemma 2,

the Riemannian gradient of f̂ is computed as

grad f̂�X� =
n∑

i=1

Π�X�
(
Ei(X)

(
Ci − Ei(X)

)
X−H − Zi(X)

)
, (27)

where Zi(X) := [zi1(X), . . . , zim(X)] with

zij(X) := Cixj(X
−1

(Ci − Ei(X))X−H)jj , (28)

where (·)jj denotes the j-th diagonal entry of a matrix.
We now construct a conjugate gradient algorithm for minimizing the function

f̂ as defined in (7), and discuss a few details of it. By following the derivation
above, we summarize a CG algorithm in Algorithm 1. Step 4 requires to find the
local or global minimum of a restricted cost function, which is often unfeasible
in practice. In this work, we employ a one-dimensional Newton step instead, i.e.

λ∗ = −
d
d t

̂f◦�Γ (t)�
∣
∣
t=0

d2

d t2
̂f◦�Γ (t)�

∣∣
t=0

, (29)

where the numerator and the denominator can be obtained by a tedious but
straightforward computation. Finally, for updating the direction parameter γ
in Step 5, we confine ourselves to a formula, which was proposed in [18] and
adapted to the manifold setting in [19], as

γ =
〈G(j+1),G(j+1)−TG(j)〉

〈H(j),G(j)〉 . (30)

5 Numerical Experiments

In our experiment, we investigate the performance of our method compared
with the AC/DC algorithm in [20], and the CG algorithm on minimizing the
off-norm algorithm [14]. The task of our experiment is to jointly diagonalize a
set of complex symmetric matrices {Ci}ni=1 constructed by

Ci = AΩiA
T + εE, (31)

where A ∈ Gl(m) is randomly picked, the diagonal entries of Ωi are drawn
from a uniform distribution on the interval (0, 10), the matrix E ∈ Cm×m is
a complex symmetric matrix, whose real and imaginary parts are generated
from a uniform distribution on the unit interval (−0.5, 0.5), representing additive
stationary noise, and ε ∈ R is the noise level.

We set m = 5, n = 5, ε = 0.01, and run 100 tests. The quartile based
boxplot of Amari errors for each method are drawn in Figure 1. Our proposed
CG approach outperforms consistently the other two methods in terms of both
average performance and convergence stability.
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Algorithm 1. A CG Joint Diagonalization Algorithm

Input : A set of matrices
{
Ci

} ⊂ C
m×m for i = 1, . . . , n ;

Output: A matrix representation of the joint diagonalizer X ∈ Gl(m) ;

Step 1: Generate an initial guess �X(0)� = [�x1� . . . , �xm�] ∈ Op(m) and set
j = 1 ;

Step 2: Compute G(1) = H(1) ← − grad f̂�X(0)� using Eq. (27) ;

Step 3: Set j = j + 1 ;

Step 4: Update Xj+1 ← Γ (λj), where λj is computed as in (29) ;

Step 5: Update H(j+1) ← −G(j+1) + γjT (λj), where G(j+1) = grad f̂�X(j)�, and
γj is chosen according to Eq. (30) ;

Step 6: If j mod 2m(m− 1)− 1 = 0, set H(j+1) ← −G(j+1) ;

Step 7: If
∥∥G(j+1)

∥∥ is small enough, stop. Otherwise, go to Step 3;
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Fig. 1. Separation performance of the proposed algorithm
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