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Abstract. Projective shape consists of the information in a configura-
tion of points invariant under projective transformations. It is usually
studied through projective invariants, the most familiar example being
the cross ratio for four collinear points. In this paper a standardized rep-
resentation of the configuration is investigated which is better suited for
quantitative comparisons between different projective shapes.

1 Introduction

Kent and Mardia [1] gave a new approach to the study of projective shape
through the use of “Tyler standardized” configurations. In this paper we shall
give some further details about the implications of this standardization. We start
with a review of the projective shape of k landmarks in R

m, m ≥ 1, and describe
the relevance to machine vision. The classical approach to projective shape is
through the use of projective invariants. However, the use of Tyler standardiza-
tion is better suited for the construction of metrics to compare quantitatively
different projective shapes. A detailed examination is given for the 1-dimensional
case, m = 1, especially for k = 4 landmarks. Sections 1–3 are largely review;
Section 4 is mainly new material.

Start with a configuration X0(k ×m) of k points or landmarks in m dimen-
sional space. The projective shape of X0 consists of the information in X0 that is
invariant under projective transformations. The easiest way to deal with projec-
tive transformations is to introduce homogeneous coordinates. Thus introduce
an augmented matrix

X =
[
X0 1

]
,

where 1 is a k-vector of ones. Then X is a k × p matrix, where throughout the
paper we set p = m+ 1. We can write X in terms of its rows and columns as

X

⎡

⎢
⎣

xT1
...
xTk

⎤

⎥
⎦ =

[
x(1), . . . , x(p)

]
,

where xTi denotes the ith row (so that xi without the transpose denotes a column
vector), and x(j) denotes the jth column, j = 1, . . . , p.

From the point of view of homogeneous coordinates each row xi of X is well-
defined only up to a scalar multiple. Indeed the i row ofX0 can be recovered from
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the multiple λixi (λi �= 0) through simple division, (λixi1, . . . , λixim)/(λixip).
Note that the coordinate system for X is slightly more general than that for X0

because the ith row of X can have a vanishing pth entry, xip = 0, corresponding
to the ith row of X0 lying “at ∞”.

In homogeneous coordinates X represents an equivalence class of matrices,

X ≡ {DX : D = diag(di) is k × k diagonal with nonzero diagonal entries}.

A projective transformation on X0 corresponds simply to a linear transformation
on X , i.e. X → XBT , where B is p× p nonsingular. If

B =

[
B0 γ
0m 1

]

then B represents an affine transformation of X0, x
(0)
i → B0x

(0)
i + γ. If B is

replaced by cB, c �= 0, then the projective transformation is unchanged.
Projective shape consists of the information in X0 or X that is unchanged

under projective transformations. Algebraically, the projective shape of X can
be viewed as the equivalence class of configurations

[X ] = {DXBT : D(k × k) diagonal nonsingular, B(p× p) nonsingular}.

Projective shape is important in computer vision when using a camera to take
a film image in m = p − 1 dimensions of a scene in p dimensions containing
k points lying in an m-dimensional hyperplane. The most important cases in
practice are k ≥ 4 collinear points (m = 1) and k ≥ 5 coplanar points (m = 2).
The film image depends on the focal point of the camera and on the position of
the film. However, the projective shape is invariant under these choices and can
be recovered from the film image. For more information about the use projective
geometry in computer vision, see e.g. [2] or [3].

2 Representations of Projective Shape

The description of projective shape in terms of equivalence classes of configu-
rations is elegant mathematically; however, it is difficult to use this approach
to make quantitative comparisons between different projective shapes. For this
purpose we need to construct a metric on projective shape space.

In this section we describe two methods that have been used to give more
explicit representations of projective shape. The first method involves projective
invariants. Although these invariants are a classic tool in differential geometry,
they cannot be used directly to construct of a metric on projective shape space.
The second method is Tyler standardization, which does lead naturally to several
choices of metric.



Visualizing Projective Shape Space 337

2.1 Projective Invariants

Projective invariants of [X ] are usually defined as ratios of products of determi-
nants of p × p matrices. For example, if p = 3 and k ≥ 5, a typical projective
invariant is given by

| [x1 x2 x3
] | | [x3 x4 x5

] |
| [x1 x3 x4

] | | [x2 x3 x5
] | . (1)

The key properties are (i) each index should appear at most once in each deter-
minnt, and (ii) each index should appear as many times in the numerator as in
the denominator. Under these conditions it is easy to check that (1) is unchanged
if X is replaced by DXBT .

The simplest case is k = 4, p = 2 when there is essentially just one projective
invariant, the cross ratio, one definition of which is

τ =
| [x1 x2

] | | [x3 x4
] |

| [x1 x3
] | | [x2 x4

] | . (2)

Any other ordering of the indices leads to an invariant related to τ by a one-to-
one transformation. There are 6 choices in all,

τ, 1− τ, 1/(1− τ), 1/τ, −(1− τ)/τ, −τ/(1− τ). (3)

Projective invariants provide a concrete coordinate system to represent projec-
tive shape. But unfortunately they are not suitable for metric comparisons.

2.2 Tyler Standardization

Using results of Tyler ([4] and [5]), it was shown in [1] that up to mild regularity
conditions on X , it is possible to find a member of the equivalence class such
that

XTX = (k/p)Ip, xTi xi = 1, i = 1, . . . , k. (4)

That is, up to a scaling constant the columns of X are orthonormal, and the
rows of X are unit vectors. Then X is unique up to (i) multiplication on the
right by a p× p orthogonal matrix and (ii) the choice of sign of each row.

The arbitrary choice of orthogonal transformation can by removed by looking
at the inner product matrix M = XXT , with elements,

M = (mij), mij = xTi xj , i, j = 1, . . . , k. (5)

The arbitrary sign for each row of X , or equivalently each row and column of
M , can be removed by squaring each element. Define a matrix N by

N = (nij), nij = m2
ij . (6)

Then N can be viewed as a matrix-valued projective invariant.
If p = 2, it can be shown that N determines the Tyler standardized con-

figuration X , up to an orthogonal transformation on the right and a possible
sign change of each row. Work is in progress to determine an analogous set of
summary features which determine the projective shape when p > 2. Hence for
the remainder of the paper, we restrict attention to the case p = 2.
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3 The General Case p = 2

If X is Tyler standardized, then each row of X is a unit vector and takes the
form xTi = v(θi)

T , i = 1, . . . , k, for some collection of angles {θi}, where v(θ)T =
(cos θ, sin θ). The various indeterminacies in X can be summarized as follows.

(a) The sign change from xi to −xi corresponds to replacing θi by θi + π.
(b) A rotation of X corresponds to replacing θi by θi−ψ for all i = 1, . . . , k, for

some angle ψ.
(c) A reflection of X about the direction θ = 0 correponds to replacing θi by

−θi, i = 1, . . . , k.

The indeterminacies can be removed as follows:

(a) Angle doubling. Replace θi by φi = 2θi, and set yi = v(φi), i = 1, . . . , k.
Let Y (k × 2) denote the corresponding angle-doubled configuration.

(b,c) Inner products. The inner products for the angle-doubled landmarks take
the form

yTi yj = cos(φi − φj),= 2 cos2(θi − θj)− 1 = 2nij − 1.

Thus the inner products for Y contain the same information as N , and do
not depend on the indeterminacies in X .

Several proposals were given in [1] for metrics on projective shape space, two of
them based on the embedding defined by N . One choice is given by Euclidean
distance between the N matrices for two projective shapes. The other choice is
given by Euclidean distance between the abs(M) matrices. For a Tyler standard-
ized configuration, the matrix abs(M) is defined by taking elementwise absolute
values in M ; that is abs(M) = (abs(mij)) has elements

abs(mij) = |mij | = n
1/2
ij .

4 The Special Case p = 2, k = 4

In this case the matrix X takes a particularly simple form. For later convenience,
label the landmarks by the letters A,B,C,D. Up to the labelling of the land-
marks, the sign of each row, and rotation, it is shown in [1] that the θ angles
take the form

(θA, θB, θC , θD) = (−δ/2, δ/2, π/2− δ/2, π/2 + δ/2). (7)

When the 4 landmarks in X are distinct, the angle δ lies in the interval (0, π/2).
Note that landmarks A and C are orthogonal, as are landmarks B and D. The
corresponding inner product matrix M takes the form

M =

⎡

⎢
⎢
⎣

1 cos δ 0 − sin δ
cos δ 1 sin δ 0
0 sin δ 1 cos δ

− sin δ 0 cos δ 1

⎤

⎥
⎥
⎦ . (8)
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Fig. 1. Representation of projective shape space, p = 2, k = 4 as spherical triangle,
by embedding abs(M) in R

3. The vertex labels, e.g. A = B describe the landmark
coincidences, the edge labels, e.g. A ∼ B, describe the landmark separation, and the
outer labels give the corresponding values of the cross ratio. Figure adapted from [1].

Ignoring the diagonal element, each row is a unit vector of length 3 with a struc-
tural zero. Under relabelling of the landmarks, the structural zero can lie in one
of three places. After taking absolute values, all 4 rows contain the same infor-
mation. Hence 1

2abs(M) can be isometrically embedded as a spherical triangle
on the unit sphere in R

3; see Figure 1.
It is worth emphasing several features of this representation.

(a) edge labels. The edge labels indicate the “separation” properties of the 4
landmarks. For example, if the landmarks are ordered ABCD, then A is
separated from C (and also B is separated fromD); this separation is written
concisely as A ∼ C.
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(b) vertex labels. The vertex labels indicate the landmark coincidences, which
always occur in pairs under Tyler standardization. For example the coinci-
dence A = B also implies C = D, and is written concisely as A = B.

(c) angle δ. Each edge of the spherical triangle is indexed by the angle δ. As
δ moves through the interval (0, π/2), the projective shape moves from one
vertex to the other, in a counterclockwise direction, say. More information
on visualizing and interpreting δ is given in Section 4.

(d) relationship to cross ratio. Each value of the cross ratio τ in the extended
real line corresponds to one point on this triangle. Figure 1 shows the cor-
respondences for selected values of the cross ratio. The effects on the cross
ratio in (3) from relabelling the landmarks correspond to one of six possible
reflections and rotations of this figure.

Thus every projective shape can by described by an angle δ and a discrete label
giving one of the 3 edges. Each edge includes 24!/3 = 8 orderings of the 4
landmarks.

4.1 Why Does the Triangle for Projective Shape Space Have
Corners?

The spherical triangle representation of projective shape space has 3 distinct
corners or vertices. However, the reason for such corners is not clear when looking
at the cross ratio.

Represent the landmarks by four real numbers A,B,C,D. The cross ratio
in (2) can be written as τ = {A − B)(C − D)}/{A − C)(B − D)}. Hold A <
C < D fixed and let B vary. If we allow B to vary through the extended real
line, then the cross ratio varies in a bijective fashion through the extended real
line. If we avoid the singularity at B = D, then the cross ratio is an infinitely
differentiable function of B. In particular, there is no hint of a singularity as B
passes through A and C. At these points the cross ratio takes the values 0 and
1, respectively, corresponding to two of the vertices in projective shape space.
Hence it is natural to ask where the singularities (i.e. vertices or corners) come
from in our representation for projective shape shape? This question can be
addressed from several perspectives.

(a) The first answer is that when B approaches one of the other three landmarks,
Tyler standardization forces the other two landmarks to come together as
well. Thus the three situations where B matches one of the other landmarks
are single-pair singularities in the simple cross ratio description, but are
actually double-pair singularities in the Tyler-standardized description.

(b) Further, there are two distinct ways to move away from a singularity in terms
of the ordering of the landmarks, where for the moment we allow all four
landmarks to move. Suppose the singularity corresponds to A = B < C = D.
After breaking the singularity, there are two choices. The first choice involves
two subchoices,

A < B << C < D or B < A << D < C,
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Fig. 2. Geometric construction of the focal point which yields Tyler standardized co-
ordinates, starting from four collinear points

both of which correspond to moving from the vertex into one particular edge
of the triangle (labelled A ∼ C in Figure 1). The notation indicates that two
landmarks in each pair are close together, relative to the distance between
the two pairs.

The other choice involves the two subchoices

A < B << D < C or B < A << C < D,

which corresponds to moving into the other edge (labelled A ∼ D in Figure
1) at that vertex.

(c) The phrase “mild regularity conditions” in the construction of a Tyler stan-
dardized version of X hides some subtleties. Although the regularity condi-
tion always holds without any problems for projective shapes lying in the
interior of each edge, it holds only in a limiting sense at the vertices.

(d) Another way of looking at the lack of Tyler regularity at the vertices can
be given in terms of the double angle configuration Y . This matrix has rank
2 for a configuration lying on the interior of an edge, but it only has rank
1 at the vertices. For a projective shape lying at a vertex, two of the {yi}
describe the same direction on the circle; the other two lie in the opposite
direction. Hence all four of the {yi} lie on the same line through the origin.

4.2 Does the Angle δ Have a More Direct Geometric Interpretation?

The answer is yes. Consider four landmarks on the line in increasing order,
A < B < C < D, and construct two semicircles in the upper half plane, the first
having A and C at opposite sides of a diameter, and the other having B and D
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at opposite sides of a diameter; see Figure 2. These two semicircles intersect at a
point O, say. This point is precisely the choice of focal point which is needed to
produce Tyler standardized coordinates. Figure 2 shows a circular “film” about
O. Treating the focal point as the origin and projecting the data onto the film
yields a Tyler-standardized configuration. For this figure the cross ratio is τ = 0.5
with corresponding angle δ = π/4.

To understand why, note that the angle AOC is a right angle since the cor-
responding triangle is inscribed in a semicircle; so is BOD. Thus the four lines
through O form two orthogonal frames. Let δ denote the angle AOB. If the
landmarks A,C,D are held fixed and B is allowed to vary between A and C,
then δ lies in the range (0, π/2) and the corresponding projective shape lies on
the bottom edge of projective shape space (A ∼ C) in Figure 1. Further, if the
coordinate system on the circular film is chosen to that the zero direction lies
midway between the rays OA and OC, then the angular coordinates of the four
landmarks take the form given in (7).

In many ways projective shape space for the case of four collinear landmarks
(k = 4, m = 1) is very special. It is possible to visualize projective shape space
completely in this case, and the singular points are very distinctive. However,
many of the general principles extend to higher values of k and m. In particular,
the Procrustes approach allows questions about similarities and differences be-
tween different projective shapes to be tackled independently of a particular view
of a set of k landmarks in an m-dimensional image of a scene in R

p, p = m+1,
provided the landmarks lie in an m-dimensional hyperplane.
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