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Abstract. Markov Chain Monte Carlo (MCMC) is an invaluable
means of inference with complicated models, and Hamiltonian Monte
Carlo, in particular Riemannian Manifold Hamiltonian Monte Carlo
(RMHMC), has demonstrated success in many challenging problems.
Current RMHMC implementations, however, rely on a Riemannian met-
ric that limits their application. In this paper I propose a new metric for
RMHMC without these limitations and verify its success on a distribu-
tion that emulates many hierarchical and latent models.

Riemannian Manifold Hamiltonian Monte Carlo provides a powerful tool for the
efficient sampling from complex distributions, but the applicability of existing
approaches has been limited by the dependency on the Fisher-Rao metric. In
this paper I introduce a new metric that admits a general implementation of
Riemannian Manifold Hamiltonian Monte Carlo and demonstrate its efficacy on
a distribution that mirrors the pathological behavior of common models.

1 Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) takes advantage of symplectic geometry to
yield efficient Markov transitions [3]. Augmenting an N -dimensional target den-
sity, π(q), with corresponding momenta, p, defines a joint density,

π(p,q) = π(p|q)π(q) = exp [log π(p|q)] exp [log π(q)]
∝ exp [−T (p,q)] exp [−V (q)] = exp [−H(p,q)] .

The Hamiltonian, H(p,q) = T (p,q)+V (q), defines trajectories between points
z = {p,q}. Because these trajectories preserve the value of the Hamiltonian and
the differential volume d2Nz, they also define Markovian transitions with the
stationary density π(p,q). Alternating this Hamiltonian evolution with condi-
tional samples of the momenta, p ∼ π(p|q) ∝ exp [−T (p,q)], yields an ergodic
Markov chain sampling from z and, because the marginal of π(p,q) is con-
structed to be the target distribution, the desired samples from π(q) follow by
simply disregarding the momenta.

No matter the choice of the kinetic energy, T (p,q), the evolution equations
incorporate the gradient of the potential, V (q), and hence higher order informa-
tion about the target distribution. This gradient guides the Markov chain along
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regions of high probability mass and reduces random walk behavior. Note that,
in practice, the Hamiltonian evolution cannot be performed analytically and we
must resort to numerical integration. Error in the integration scheme introduces
bias into the transitions, but this is readily avoided by considering the evolution
not as a transition but rather as the proposal for a Metropolis transition [5,14].

The first [5] and still most common choice of the conditional density, π(p|q), is
a standard gaussian, π(p|q) = N (p|0,M), or T (p,q) = 1

2p
T ·M−1 ·p, where the

mass matrix M allows for a global decorrelation and rescaling of the parameters
with respect to each other. This choice, however, ultimately limits the effective-
ness of HMC when applied to intricate target distributions. Because pT ·M−1 ·p
is a χ2 variate, in equilibrium ΔT ≈ N/2 and, with the Hamiltonian conserved
along each trajectory, this implies that the variation in the potential is also lim-
ited to ΔV ≈ N/2. When the target distribution is highly correlated, the typical
set spans a potential gap much larger than this: the resulting samples become
highly correlated no matter how long the trajectories are evolved [14] and the
Markov chain devolves towards a random walk.

Another issue with the simple choice above is that the inevitable numeri-
cal integration introduces a spatial scale into the system via a finite step-size.
Complicated target distributions will typically exhibit multiple spatial scales
depending on the particular value of the parameters, and any single choice of
a step-size will generate at least some inefficiency. If the step-size is chosen to
maximize efficiency, as common in adaptive schemes, regions of the target dis-
tribution with large curvature, and hence small spatial scales, can be missed
entirely by the numerical trajectories.

These weaknesses can be overcome by appealing to a more sophisticated choice
of the conditional density: a gaussian conditionally dependent on the q through
a covariance matrix, π(p|q) = N (p|0,Σ(q)), or

T (p,q) =
1

2
pT ·Σ−1(q) · p+

1

2
log |Σ(q) |.

Because the resulting Hamiltonian trajectories are related to geodesics on a
Riemannian manifold with metric Σ(q), this choice is known as Riemannian
Manifold Hamiltonian Monte Carlo (RMHMC) [8]. Similarly, the constant met-
ric introduced above can be thought of as emulating dynamics on a Euclidean
manifold, and to be consistent I will refer to use of the simpler Hamiltonian as
Euclidean Manifold Hamiltonian Monte Carlo (EMHMC).

The freedom in specifying a metric admits two significant improvements: a
proper choice of Σ(q) can dynamically decorrelate and rescale the target dis-
tribution to avoid inefficiencies in the numerical integration, while also yielding
a dynamic determinant whose variations can compensate for much larger varia-
tions in the potential.

What, however, exactly defines a proper choice for the metric? When the
target distribution is a multivariate gaussian, V (q) = 1

2q
T · S−1 · q, the target

distribution is standarized by taking Σ(q) = S−1 [14]. In a convex neighborhood
any target distribution can be approximated by a multivariate gaussian, π(q) ≈
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N (
q|0,H−1

)
or, equivalently, V (q) ≈ 1

2q
T ·H ·q with the Hessian matrix Hij =

∂2V/∂qi∂qj , which immediately motivates the candidate metric Σ(q) = H.
This metric quickly runs into problems, however, when the target distribution

is not globally convex. In neighborhoodswhere the Hessian is not positive-definite,
for example, the conditional density π(p|q) becomes improper. Moreover, in the
neighborhoods where the signature of the Hessian changes, the log determinant
diverges and the Hamiltonian evolution becomes singular. These neighborhoods
effectively partition the support of the target distribution into a disjoint union of
compact neighborhoods between which the Markov chain cannot transition.

One way to avoid indefinite metrics is to take advantage of any conditioning
variables, y, in the target distribution. Marginalizing the Hessian over these con-
ditioning variables yields the Fisher-Rao metric [2],Σij = Ey

[
∂2V (q|y) /∂qi∂qj],

which is guaranteed to be positive-semidefinite. For all but the simplest condi-
tional distributions, however, the marginalization is unfeasible and, even when
it can be performed analytically, the resulting metric can still be singular. More-
over, the marginalization removes the correlation between variables in many
hierarchical and latent models, almost eliminating the effectiveness of the met-
ric. Of course, all of this is immaterial if the target distribution lacks natural
conditioning variables.

We need a means of constructing a metric from the Hessian that is not only
everywhere well-behaved but also practical to compute for any given target dis-
tribution.

2 The SoftAbs Metric

With a careful application of matrix functions, it is possible to maintain the
desirable behavior of the Hessian in convex neighborhoods while avoiding its
singular behavior elsewhere. Moreover, because the functions are local the re-
sulting metric is readily implemented for general distributions.

2.1 Definition

The exponential map [15], exp, is a matrix function from the space of all matrices
to the component of the general linear group, GL(n), connected to the identity
matrix: an isomorphism of the space of positive-definite matrices. Because this
mapping preserves the symmetric part of the domain, any symmetric matrix,
such as the Hessian, is guaranteed to be mapped to a symmetric, positive-definite
matrix admissible as a Riemannian metric.

One benefit of the exponential map is that it preserves the eigenbasis of the
input matrix, X. If X = Q · λ · QT is the eigendecomposition of X with λ =
Diag (λi) the diagonal matrix of eigenvalues and Q the corresponding matrix of
eigenvectors, then the exponential map yields expX = Q ·expλ ·QT . The metric
expH provides the same decorrelation as the Hessian but also severely warps the
eigenvalues and the corresponding rescaling of the local parameters.
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By combining multiple exponential mappings, however, we can largely pre-
serve the spectral decomposition of the Hessian. In particular, the SoftAbs map

�X� ≡ [exp(αX) + exp(−αX)] ·X · [exp(αX)− exp(−αX)]−1

approximates the absolute value of the eigenspectrum with a smooth function:
�X� = Q · �λ� ·QT , where

�λ� = Diag

(
λi

eαλi + e−αλi

eαλi − e−αλi

)
= Diag (λi cothαλi) .

This map not only ensures that the transformed eigenvalues are positive but also
regularizes any small eigenvalues that might introduce numerical instabilities.

Applying the SoftAbs map to the Hessian guarantees a well-behaved metric
for RMHMC, �H�, that preserves the desired properties of the Hessian while reg-
ularizing its numerical singularities. In a practical implementation, α limits the
scaling of the integration step-size and restrains the numerical integrator from
unwise extrapolations, emulating a trust region common in nonlinear optimiza-
tion [4].

2.2 Implementation

In practice, exponential maps can be difficult to implement [11]; the eigendecom-
position used above, for example, can suffer from numerical instabilities when
applied to general matrices because of ambiguities among the eigenvectors. The
Hessian, however, is symmetric and the eigenvectors are guaranteed to be or-
thogonal. Consequently, the eigendecomposition is well-behaved and provides a
practical means of computing the SoftAbs map.

To implement the SoftAbs metric we first perform the eigendecomposition of
the HessianH = Q ·λ ·QT , and then reconstruct the metric as �H� = Q · �λ� ·QT ,
with �λ� = Diag (λi cothαλi).

Hamiltonian evolution also requires two derivatives: the gradient of the
quadratic form, pT · �H�−1 · p, and the log determinant, log |�H�|. The latter
can be computed as [1,16]

∂
(
pT · �H�−1 · p

)
= pT · ∂�H�−1 · p
= −pT · �H�−1 · ∂�H� · �H�−1 · p
= − (

QT · p)T [
J ◦QT · ∂H ·Q] (

QT · p) ,
where ◦ denotes the Hadamard product and

Jij ≡ λi cothαλi − λj cothαλj

λi − λj
.

Note that when λi = λj , such as for the diagonal elements or degenerate eigen-
values, this becomes the derivative, Jij → ∂/∂λi (λi cothαλi).
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Unfortunately, this form of the gradient is computationally inefficient, requir-
ing O

(
N3

)
for each component of the gradient, and hence O

(
N4

)
overall. Taking

advantage of the properties of the Hadamard product [10], however, the gradient
can be manipulated to give

∂
(
pT �H�−1

p
)
= −Tr

[
Q ·D · J ·D ·QT · ∂H]

,

where D = Diag
((
QT · p)

i

)
. If the matrix Q ·D ·J ·D ·QT is first cached, then

each component of the gradient can be computed in only O
(
N2

)
so that the

complete gradient does not exceed the O
(
N3

)
complexity of the decomposition

itself.
Similar Hadamard identities reduce the gradient of the log determinant to

∂ log |�H�| = Tr
[
Q (R ◦ J)QT · ∂H]

,

where R = Diag (1/λi cothαλi). Once again, caching the intermediate matrix,
Q (R ◦ J)QT , enables the full gradient to be computed in O

(
N3

)
.

Table 1. When comparing the effective sample size of the latent variable, v, in the fun-
nel distribution, hand-tuned EMHMC is over three times less effective than adaptively-
tuned RMHMC. CPU time was measured with the clock function in the C++ library
time.

Algorithm Warm-Up Samples ε Accept Rate CPU Time ESS ESS/Time

Iterations (s) (s−1)

EMHMC 103 105 0.001 0.999 1627 70.3 0.0432

RMHMC 103 103 0.21 0.946 6282 856 0.136

3 Experiments

The utility of the SoftAbs metric is best demonstrated on complex distributions.
Neal’s funnel distribution [13]

π(x, v) =
n∏

i=1

N (
xi|0, e−v

) · N (v|0, 9) ,

emulates many pathological features of popular distributions, such as those aris-
ing in hierarchical [6] and latent [12] models. Note that, by construction, the
marginal distribution of v is simply v ∼ N (0, 9)1, independent of n, admitting
v and its marginal distribution as a simple diagnostic of bias in any sampling
procedure.

In each experiment a Markov chain is randomly initialized, qi ∼ U(−1, 1),
and then taken through a series of warm-up iterations before sampling begins.

1 Note the use of the convention N (
μ, σ2

)
.
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Where noted, the integrator step-size, ε, is adapted with dual-averaging to yield
a target Metropolis acceptance rate [9]. The number of integration steps is set
by hand to approximate the half-period of the oscillating trajectories.

Autocorrelations, ρi, of v are computed with an initial monotone se-
quence estimator [7] and the effective sample size (ESS) is defined as ESS =

I
(
1 + 2

∑I
i=1 ρi

)−1

, where I is the total number of generated samples.

The above procedure is applied to EMHMC with step-size adaptation,
EMHMC without step-size adaption, and RMHMC with the SoftAbs metric.

3.1 EMHMC with Adaptation

Despite its simplicity, the funnel demonstrates many of the limitations of
EMHMC. When adaptively tuned to the nominal acceptance rate r = 0.65 [14],
the integrator step-size exceeds the spatial scale of the narrow neck; even though
the probability mass of the mouth and neck of the funnel is comparable, the re-
sulting trajectories overlook the neck entirely and bias resulting expectations,
empirically v ∼ N (1, 4) which is inconsistent with the true marginal v ∼ N (0, 9),
without any obvious indication.

3.2 EMHMC without Adaptation

Because we know the truth in this case, we can abandon adaptive tuning and
instead tune the step-size by hand; a smaller step-size ensures that the tra-
jectories explore most of the funnel’s probability mass and that the marginal
distribution p(v) is correct within Monte Carlo error. Unfortunately, the funnel
also exhibits the limitations of a position-independent kinetic energy. The vari-
ation of the potential within the typical set is huge, and the meager variation of
the kinetic energy dramatically restricts the distance of each transition (Figure
1). The EMHMC transitions struggle to cross between the mouth and neck of
the funnel, and the Markov chain becomes little more than a random walk across
the distribution (Figure 2).

3.3 RMHMC with the SoftAbs Metric

On the other hand, the SoftAbs metric, here with α = 106, allows RMHMC
to explore the entire distribution within a single trajectory (Figure 1). Because
the metric accounts for local curvature, the step-size can be adaptively tuned2

without introducing any bias. The huge autocorrelations of EMHMC vanish
(Figure 2) and, despite the increased computation required for each transition,
RMHMC yields a more efficient generation of effective samples (Table 1).

2 The increased information encoded in the metric should admit a larger acceptance
rate, r, for RMHMC than the EMHMC case of r = 0.65. Motivated by some simple
experiments, here the target rate for RMHMC is set to r = 0.95.
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EMHMC (No Stepsize Adaptation)

Large V

Small V

-15 -10 -5  0  5  10  15

x1

-10

-5

 0

 5

 10

v

(a)

RMHMC with SoftAbs Metric

Large V

Small V

-15 -10 -5  0  5  10  15

x1

-10

-5

 0

 5

 10

v
(b)

Fig. 1.While (a) EMHMC trajectories are limited to ΔV ∼ (n+1)/2 and consequently
explore only a small neighborhood of the funnel, (b) RMHMC trajectories to explore
the entire distribution and the dynamic decorrelation/scaling ensures that a single
integrator step-size is efficient across the entire distribution.
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Fig. 2. Although samples of v from both (a) EMHMC and (b) RMHMC are consistent
with the true marginal, N (0, 9), the far-reaching trajectories of RMHMC present little
autocorrelation.

Nominally, the O
(
N3

)
computational burden of RMHMC is significantly

worse than the O(N) burden of EMHMC. The pathological behavior of dis-
tributions like the funnel, however, scales much faster, often exponentially, and
the benefit of RMHMC with the SoftAbs metric only increases with dimen-
sion. Moreover, this concern ignores the burden of computing the potential itself
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which, as in the case of Bayesian posteriors with many data, can overwhelm the
O
(
N3

)
burden entirely.

4 Conclusions

By smoothly regularizing the eigendecomposition of the Hessian, the SoftAbs
metric admits a general implementation of RMHMC robust against the many
pathologies to which EMHMC can be vulnerable. Despite its apparently steep
computational burden, the SoftAbs metric allows for practical inference on com-
plex models never before deemed feasible.
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