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Abstract. This article presents a summary of the principal results found
in [MAR13]. Starting with the seminal works on transportation theory
of G. Monge and L. Kantorovich, while revisiting the works of Maurice
Fréchet, we will introduce direct derivations of the optimal transport
problem such as the so-called Alan Wilson’s Entropy Model and the Min-
imal Trade Problem. We will show that optimal solutions of those models
are mainly based in two dual principles: the independance and the in-
determination structure between two categorical variables. Thanks to
Mathematical Relational Analysis representation and the Antoine Cari-
tat’s (Condorcet) works on Relational Consensus, we will give an inter-
esting interpretation to the indeterminaion structure and underline the
duality Relationship between deviation to independence and deviation
to indetermination structures. Finally, these results will lead us to the
elaboration of a new criterion of modularization for large networks.
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1 Introduction

The main purpose of this article is to link the optimal transport problem to
problems originated in different fields, such as the Minimal Trade Problem and
the exchange Entropy Model. This allows to elaborate a new correlation measure
between discrete structures.

2 The Optimal Transport Problem: Monge and
Monge-Kantorovich Problems

Gaspard Monge studied first the optimal transport problem in his article
”Mémoire sur la théorie des déblais et des remblais” (1781) [MON81]. Later in
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1942, Leonid Kantorovich [KAN42] proposed a relaxation of the original prob-
lem, leading to the famous MKP Problem ”Monge Kantorovich Problem” and
mainly the ”Kantorovich duality” (for more details the interested reader can see
[VIL04], [VIL03], [CAR10] and [EVA97]).

Given two separable metric subsets of Rn: X and Y , the generalized Monge’s
problem consists in finding a transport map T : X → Y of mass initially lo-
cated at x ∈ X) to the destination T (x) ∈ Y at a minimum cost c(x, y). The
distribution of the initial mass and of the destination mass are represented by
the probability measures μ and ν respectively (where the mass conservation con-
straint entails: 0 < μ(X) = ν(Y ) ≤ 1)1. This problem is very complex to solve
and quite rigid.

In 1942, Leonid Kantorovich proposed a relaxation of the original problem
leading to the famous Monge-Kantorovich’s problem (MKP); this re-formulation
is given by the following minimization problem:

P [π∗] = inf
π∈Π(μ,ν)

∫
X×Y

c(x, y)dπ(x, y) (1)

where Π(μ, ν) is the set of Borel probability measures on the product set: X×Y
which have μ, and ν as marginal probabilities.

The linear Monge-Kantorovich problem has a dual formulation, essential to
establish the existence of optimal maps for certain cost functions, given by:

D[ϕ, ψ] = sup
(ϕ,ψ)

{
∫
X

ϕdμ+

∫
Y

ψdν : c(x, y) ≥ ϕ(x) + ψ(y) onX × Y } (2)

Let us define £ = {(ϕ, ψ)|ϕ, ψ : X → R, Y → R as the set of continuous
mappings of class C1 such as ϕ(x) + ψ(y) ≤ c(x, y)}. Now, the primal and dual
formulation (formula (1) and (2) respectively) lead us to the following theorem:

Theorem 1 (Kantorovich duality).
If there exists π∗ ∈ Π(μ, ν) and an admissible pair (ϕ∗, ψ∗) ∈ £ such that:

∫
X×Y

c(x, y)dπ∗(x, y) =
∫
X

ϕ∗(x)dμ(x) +
∫
Y

ψ∗(y)dν(y)

then π∗ is an Optimal Transport Plan and the pair (ϕ∗, ψ∗) solves the problem
(2). So there is no gap between the values: inf

π
P [π] = sup

(ϕ,ψ)

D[ϕ, ψ]

In the next sections we will consider mostly the discrete version of the Monge-
Kantorovich problem, this will allow us to link the works of Gaspard Monge,
Maurice Fréchet and Antoine Caritat de Condorcet.

1 To satisfy this constraint ν must be the forward Measure of μ by the transport map
T , which is written ν = T#μ.
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3 Extensions and Variants of the MKP Problem

In this section we will introduce direct derivations from the Monge and Monge-
Kantorovich problems. Most of them originated from contexts having a priori
nothing to do with the pure transport problem. First, we present the discrete
version.

Let X = {1, ..., p} be a set of p origins and let Y = {1, ..., q} represent a
set of q destinations. Our objective is to transport a fixed total quantity of
goods located initially at X origins to Y destinations. The available data are
the unit transportation cost associated with the transfer from an origin u to
a destination v : c(u, v); the discrete probability distribution of the quantities
located at the p origins : {μ1, ..., μp}, and the discrete probability distribution of
the quantities to be delivered to the q destinations : {ν1, ..., νq}. Those quantities
can be identified as marginal probability distributions relative to the unkown
bi-dimensional probability distribution : πuv. In a balanced situation μ and ν
satisfy the mass preserving constraint (normalized to 1):

p∑
u=1

μu =

q∑
v=1

νv = 1 (3)

Finally, our problem is to find π∗
uv minimizing the total cost:

min
π

p∑
u=1

q∑
v=1

c(u, v)πuv (4)

subject to:
q∑
v=1

πuv = μu ∀u ∈ {1, 2, ..., p} (5)

p∑
u=1

πuv = νv ∀v ∈ {1, 2, ..., q} (6)

πuv ≥ 0 ∀u ∈ {1, ..., p}; v ∈ {1, ..., q} (7)

Indeed, this is the discrete version of the the MKP (see [EVA97] where πuv
plays the role of π(x, y) in (1) for the continuous case. We can find this problem
in various contexts: in the International Trade Exchange Models, we deal with
monetary exchanges between countries or geographical zones; in the ”Spatial
Interaction Models”, the figures represent people travelling from a region to
another one.

These exchanges system can be described by a rectangular table crossing the
p origins (in lines) and the q destinations (in columns). Besides, by multiplying
each value of such a table by the total quantity exchangedN and if all the figures
are integer we get a Contingency table where:
nuv = Nπuv : quantity of mass transported from u ∈ X to v ∈ Y ; nu. = Nπu.:

total mass located originaly at u; n.v = Nπ.v: total mass transported to v and
n.. = N Total exchange mass.
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In this case, the inequalities (3), (5), (6) and (7) are the basic constraints
of the so called Contingency Cells Adjustment to fixed margins, first studied by
[DES40] and later by Maurice Fréchet (see [FRE51] and [FRE60]).

4 Optimizing Transport Problem

In this section we consider two particular cost functions of the discrete transport
problem (4): the Alain Wilson’s Entropy Model and the Minimal Trade Model.
In both cases, the cost is a function of the unkown joint distribution h(π). Their
optimal solution will be deeply studied in the next sections due to the important
interpretation and duality they carry on in multivariate statistics and theory of
contingency.

1. Alan Wilson’s Entropy Model: h(πuv) = lnπuv: The Flows Entropy
Model of Alan Wilson was introduced in [WIL67] (see [WIL69] and [WIL70])
for Spatial Interaction Modeling. In his approach he considers a system whose
elements do not maintain affinities, the purpose is to determine the distribu-
tion of the normalized frequency flows πuv (supposing πuv > 0 ∀u, v) which
maximizes the entropy of the system. The objective function to be maxi-
mized is based upon the Boltzmann’s or Shannon’s Entropies:

max
π

−
p∑

u=1

q∑
v=1

πuv lnπuv (8)

Such a problem is called Program of Spatial Interaction System (PSIS). The
optimal solution is obtained by using the Lagrange’s multipliers to maximize
(8) subject to the contraints (5), (6) and (7). The explicit expression of the
optimal solution is shown in table 1, the degree of disorder has drastically
reduced. The flow maximizing entropy reveals statistical independence be-
tween the p suppliers and the q clients. Indeed, without specific affinities
between row and columns, fixing any column v the flow from a given line
to this column is proportional to its total marginals in the whole population.

2. The Minimal Trade Model: h(πuv) = πuv
In the Minimal Trade Model, the criterion is a quadratic function measuring
the squared deviation of the cells values from the no information situation
(the uniform joint distribution) in order to get a smooth ventilation of the
origins-destinations nuv values subject to the balanced marginals and mass
preserving constraints (5), (6) and (7) (see [STE77], [MAR84]). We are deal-
ing, then, with a least squared problem in order to get a smooth ventilation of
the origins-destinations nuv values (this explains the term Minimal Trade).
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We solve this problem by using the Lagrange multipliers, since the function
to optimize is convex, we are looking for a minimum. The optimal solution
2,3 is shown in table 1. The following inequality for the marginal values (see
[MAR84]) garantees the positivity of the optimal values π∗

uv:

pmin
u
μu + qmin

v
νv ≥ 1 =⇒ pmin

u
nu. + qmin

v
n.v ≥ N (9)

From now on we assume this condition is true. Furthermore this inequal-
ity guarantees 0 ≤ πuv ≤ 1. The optimal solution reveals ”indetermina-
tion structure” between the p suppliers and the q clients. This concept of
”indetermination structure” will be studied in details later on.

Table 1. Variants of the MKP problem

Model Objective function Subject to Optimal solution

Alan Wil-
son’s Entropy
Model

max
π

−
p∑

u=1

q∑

v=1

πuv ln πuv Contraints (5),(6)
and (7)

π∗
uv = μuνv∀(u, v)

n∗
uv = nu.n.v

N

The Minimal
Trade Model

min
π

p∑

u=1

q∑

v=1

(
πuv − 1

pq

)2

Contraints (5),(6)
and (7)

π∗
uv =

μu

q
+

νv
p

− 1

pq
n∗
uv = nu.

q
+ n.v

p
− N

pq

5 Monge and Anti-monge Matrices and Some Related
Structural Properties

Monge’s condition for matrices was originally studied by Gaspard Monge4 in his
well known Mémoire sur la théorie des déblais et des remblais [MON81]. From
this condition, it is possible to derive Anti-Monge’s condition, both conditions
are defined as follows:

Definition 1. A p× q real matrix {cuv} is called a Monge matrix, if C satisfies
the so called Monge’s property:

cuv + cu′v′ ≤ cuv′ + cu′v ∀ 1 ≤ u < u′ ≤ p, 1 ≤ v < v′ ≤ q (10)

2 Notice that for the Contingency Adjustment to Fixed Margins case, the associated
values nuv must be integer, the interested reader can find in [MAR84] a specific
paragraph on the conditions to add to get pure integers.

3 The Continuous version of the Minimal Trade Problem is treated in [MAR13]. The
optimal solution, obtained by considering the Kantorovich duality (2), is given by:

π∗(x, y) =
f(x)

B
+

g(y)

A
− 1

AB
∀ (x, y) ∈ [a, b]× [c, d]

where π : [a, b] × [c, d] −→ [0, 1] is defined on the product of two closed intervals of
the cartesian plan; A = (b − a) and B = (d− c) are respective the lengths of these
intervals; μ and ν (the marginals of π) have densities f and g respectively.

4 This notion of Monge matrix has been coined by [HOF63].
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Reciprocally, an ”Inverse Monge Matrix” (or Anti Monge matrix) C satisfies
the following inequality:

cuv + cu′v′ ≥ cuv′ + cu′v ∀ 1 ≤ u < u′ ≤ p, 1 ≤ v < v′ ≤ q (11)

In case both inequalities (10) and (11) hold:

cuv + cu′v′ = cuv′ + cu′v ∀ 1 ≤ u < u′ ≤ p, 1 ≤ v < v′ ≤ q (12)

The last property (12) is very important since it corresponds to the so called
Indetermination or indecision structure, which plays an important role in
Relational Analysis Theory when applied to Condorcet’s Voting Theory, or
Central Partition Clustering.

A frequency matrix (or a contingency table if we multiply every entry by N)
satisfaying both Monge and Anti-Monge conditions verifies interesting properties
formulated in the following theorem:

Theorem 2. Let {πuv} be a p × q real nonnegative frequency Matrix, then the
following properties hold and are equivalent:

i) If {πuv} is a Monge and Anti-Monge Matrix then:
πuv + πu′v′ = πuv′ + πu′v ∀ 1 ≤ u < u′ ≤ p, 1 ≤ v < v′ ≤ q

ii) πuv =

(
μu
q

+
νv
p

− 1

pq

)
is a minimizer of the Minimal Trade Model.

iii) All the sub tables {u, v, u, v} of size 2×2 with 1 ≤ u < u′ ≤ p, 1 ≤ v < v′ ≤ q
have the sum of their diagonals equal to the sum of their anti-diagonals.

Other interesting properties can be derived from those Monge and Anti Monge
conditions, which concern positive matrices only (i.e. cuv > 0∀u, v):
Definition 2. A p× q positive real matrix {cuv} is called a Log Monge matrix,
if C satisfies the Log-Monge’s property:

ln cuv + ln cu′v′ ≤ ln cuv′ + ln cu′v ∀ 1 ≤ u < u′ ≤ p, 1 ≤ v < v′ ≤ q (13)

Reciprocally, an ”Inverse Log-Monge Matrix” (or Log-Anti-Monge matrix) C
satisfies the following inequality:

ln cuv + ln cu′v′ ≥ ln cuv′ + ln cu′v ∀ 1 ≤ u < u′ ≤ p, 1 ≤ v < v′ ≤ q (14)

In case both inequalities (13) and (14) hold:

ln cuv + ln cu′v′ = ln cuv′ + ln cu′v ∀ 1 ≤ u < u′ ≤ p, 1 ≤ v < v′ ≤ q (15)

Property (15) corresponds to the situation of statistical independence, because
from it we can derive: cuvcu′v′ = cuv′cu′v ∀ 1 ≤ u < u′ ≤ p, 1 ≤ v < v′ ≤ q.

From the previous explanations,we can derive the following theorem concerning
Log-Monge and Log Anti Monge matrices:
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Theorem 3. Let {πuv} be a p × q real positive frequency Matrix, then the
following properties hold and are equivalent:

i) If {πuv} is a Log-Monge and Log-Anti-Monge Matrix then:
lnπuv + lnπu′v′ = lnπuv′ + lnπu′v ∀ 1 ≤ u < u′ ≤ p, 1 ≤ v < v′ ≤ q

ii) πuv = μuνv ∀ 1 ≤ u < u′ ≤ p, 1 ≤ v < v′ ≤ q is a minimizer of the Alan
Wilson’s Program of Spatial Interaction System based upon Entropy Model,
with fixed Margins.

iii) All the sub tables {u, v, u, v} of size 2 × 2 with 1 ≤ u < u′ ≤ p, 1 ≤ v <
v′ ≤ q have the product of their diagonal terms equal to the product of their
anti-diagonals terms.

6 Duality Related to ”Independence” and
”Indetermination” Structures

An important number of statistical indexes and criteria have been proposed in
the scientific literature for measuring the relationships between two categorical
variables. Among those indexes, some (very well known) are built up basically
by measuring their deviation to the situation of ”independence” and some (lesser
known) are built by measuring their deviation to the situation of ”indetermina-
tion”. The reader will find the explicit expressions of those indexes as well as
their behavour in case of independence or in case of indetermination structures
in [MAR84] and [MAR13]. In this summary we will focus on the Mutual Infor-
mation index and the Deviation to indetermination Index. First of all, we define
the quantities:

– The Mutual Information index (MI): it compares the Alan Wilson’s
Entropy S(X,Y ) = −∑p

u=1

∑q
v=1 πuv lnπuv to S(X) = −∑p

u=1 μu lnμu
and S(Y ) = −∑q

v=1 νv ln νv. The explicit expression of the mutual informa-
tion index ρMI is given in table (2). It represents the quantity of information
which is present (in duplication) into X and Y simultaneously. Clearly this
index measures the departure from independence and behaves nearly as the
χ2 criterion does in the neighborhood of independence.

– The Deviation to indetermination Index (IND): it is null if and only if
the variables verify the indetermination structure. It compares the Minimal

Trade Criterion multiplied by pq: K(X,Y ) = pq
∑p
u=1

∑q
v=1

(
πuv − 1

pq

)2

to

the quantities K(X) = p
∑p
u=1

(
μu − 1

p

)2

and K(Y ) = q
∑q

v=1

(
νv − 1

q

)2

.

In fact, K(X,Y ) plays a role analogue to that of the Entropy S(X,Y )
for the Independence Structure. The explicit expression of the deviation to
indetermination index ρIND is given in table (2)
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Table 2. Duality between independence and indetermination structures

The Independence case The Indetermination case

S(X,Y ) ≤ S(X) + S(Y ) K(X, Y ) ≥ K(X) +K(Y )
∀X,Y |X ∼ μ , Y ∼ ν , (X,Y ) ∼ π ∀X,Y |X ∼ μ , Y ∼ ν , (X,Y ) ∼ π
with equality in case of independence with equality in case of indetermination
ρMI(X,Y ) = S(X) + S(Y )− S(X,Y )

ρMI[π] =

p∑

u=1

q∑

v=1

πuv ln

(
πuv

μuνv

) ρIND(X,Y ) = K(X, Y )−K(X)−K(Y )

ρIND[π] = pq

p∑

u=1

q∑

v=1

(
πuv − μu

q
+

νv
p

+
1

pq

)2

7 Relational Analysis Approach

We assume the reader is familiar with Relational Analysis theory (the unfamiliar
reader can see [MAM79], [MAR84], [MIC87], [MAY91], [AHM07], etc... ). The
principle on which Relational Analysis (RA) is based consists in representing
relations between objects by binary coding. For the discrete transport problem,
the variables origins and destinations split the set of objects in p and q clus-
ters respectively of sizes defined by marginal distributions. In RA a partition is
nothing but an equivalence relation on the set of objects, which is represented
by a relational N ×N matrix X, whose entries are defined as follows:

xij =

{
1 if i and j belong to the same cluster.

0 otherwise.
(16)

As X is an equivalence Relation, it must be Reflexive, Symmetric and Transitive,
those properties can be turned into linear constraints on the general terms of
the relational matrix X . We define, as well, the inverse relation of X by: x̄ij =
1− xij ∀(i, j).

Using the ”Relational Transfer Principle” (see [KEN70] and [MAR84]) we can
write the deviation to indetermination index in relational notation (where X and
Y represent the Relational matrices of the two variables):

N2ρIND(X,Y ) = pq

N∑
i=1

N∑
j=1

xijyij − p

N∑
i=1

N∑
j=1

xij − q

N∑
i=1

N∑
j=1

yij +N2 (17)

The quantities
∑N

i=1

∑N
j=1 xijyij and

∑N
i=1

∑N
j=1 x̄ij ȳij represent the situations

where X and Y are in agreement with respect to the population, whereas,∑N
i=1

∑N
j=1 x̄ijyij and

∑N
i=1

∑N
j=1 xij ȳij represent the configurations where X

and Y are in disagreement. It has been shown in [MAR85] that if X and Y are
in an ”indeterminate” cross relationship, the mean (cell by cell) of their Agree-
ments is equal to the mean of their disagreements (and ρIND is null in that case,
see (17), therefore we are faced with a situation of complete indetermination or
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indecision. If p = q = 2 the ρIND index becomes (2ρRAND − 1), that is, an affine
function of the well known Rand index, which, in relational notation is equal
to the famous Condorcet’s Criterion C(X,Y ) normalized by N2. Therefore, in

the situation of indetermination (2ρRAND − 1) = 0 ⇒ ρRAND = C(X,Y )
N2 = 1

2 .
In voting theory, getting a value of the Condorcet Criterion equal to 1

2 implies
the existence of 50% of votes in favor and 50% of votes against, therefore, the
indetermination or indecision situation.

There is an interesting duality relationship between the ”deviation to inde-
pendence” (numerator of the χ2 index), and the ”deviation to indetermination”
(numerator of the Janson-Vegelius’s index) (see [JAV82] and [AHM07]), which
induces a reverse formalism while transforming them from contingency notations
into relational ones using the following transfer formulas:

p∑
u=1

q∑
v=1

n2
uv =

N∑
i=1

N∑
j=1

xijyij ;

p∑
u=1

n2
u. =

N∑
i=1

N∑
j=1

xij ;

q∑
v=1

n2
v. =

N∑
i=1

N∑
j=1

yij ;

p∑
u=1

q∑
v=1

nuvnu.n.v =

N∑
i=1

N∑
j=1

(
xi. + x.j

2

)
yij =

N∑
i=1

N∑
j=1

(
yi. + y.j

2

)
xij ;

p∑
u=1

q∑
v=1

n2
uv

nu.n.v
=

N∑
i=1

N∑
j=1

xij
xi.

yij
y.j

; where xi. =
N∑
i=1

xij ; y.j =
N∑
j=1

yij

we get the figures shown in table (3):

Table 3. Duality between deviation to independence and deviation to indetermination

Contingency coding Relational coding

numerator of the
χ2 index
Measuring the devia-
tion to independence

p∑

u=1

q∑

v=1

(
nuv −

nu.n.v

N

)2 N∑

i=1

N∑

j=1

(
xij −

xi.

N
−

x.j

N
+

x..

N2

)(
yij −

yi.

N
−

y.j

N
+

y..

N2

)

Numerator
of Janson-
Vegelius’s index
Measuring the
deviation to
indetermination

p∑

u=1

q∑

v=1

(
nuv −

nu.

q
−

n.v

p
+

N

pq

)2 N∑

i=1

N∑

j=1

(
xij −

1

p

)(
yij −

1

q

)

It appears clearly that the relational formalism induces a reverse structure for
the indexes. The representation of independence in contingency space is trans-
lated into a representation of indetermination in relational space and vice versa.

8 Linear Graph Modularization Criteria

Nowadays, the increasing use of social networks has considerably reinforced their
complexity. Then, to analyze them it is necessary to decompose them in small ho-
mogeneous components. The process of splitting a network has received different
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names: graph clustering (in data analysis) or modularization. Different modu-
larization criteria have been defined in the last few years. The most famous of
them is the Newman-Girvan modularity (see [NEW04]). This criterion is based
on the deviation to the independance structure. Considering the duality between
independance and indetermination structures shown in the previous section, we
introduce a new modularization criteria called the deviation to indetermination
index. The expression of this two functions are given in the following table:

Table 4. Modularization criteria

Newman-Girvan modularity Deviation to indetermination index

N∑

i=1

N∑

i′=1

(
aii′ − ai.a.i′

2M

)
xii′

N∑

i=1

N∑

i′=1

(
aii′ − ai.

N
− a.i′

N
+

2M

N2

)
xii′

Where aii′ is the general term of the adjacency matrix of the graph G(V,E);
N = |V | is the number of nodes,M is the number of edges and xii′ is the general
term of the relational matrix defined by (16).

The behavior of this new criterion is close to that of Newman-Girvan modu-
larity mainly due to the fact that they have many common properties: they are
linear, separable and null models.
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