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Preface

Rapid recent advances in automated data collection routines in clinical sciences
have led to a tsunami of patient-oriented data stored in distributed, heterogeneous,
and large databases and datamarts. The lack of existing computing tools to enable
connectivity and interoperability between these fragmented sources and scattered
locations (issues concerning accessibility), and to perform machine learning on
heterogeneous and highly dimensional data sources (issues concerning complex-
ity), is an overbearing impediment, not only to healthcare sciences, but also to
computational research. Moreover, the rapid deployment of high speed networks
coupled with developments in knowledge discovery, bolstered by mobile tech-
nologies has amplified the emphatic demand for a unifying, coherent computing
resources designed to accommodate, enhance, and empower multidisciplinary, and
multi-institutional healthcare informatics research.

Healthcare data is complex, highly context-dependent, inherently heteroge-
neous, and high dimensional—generating an amalgamation of computing research
challenges that renders the extraction of insightful knowledge through interpre-
tation of raw data a challenging computational task. These data resources
encompass a spectrum of data types ranging from free-text notes to complex image
types such as position emission tomography scans. As clinical data collection
technologies continue to grow and storage costs continue to fall, more complex
data types such as hyperspectral images are becoming available in abundance.
These diverse and prolific data sources provide an outstanding research test bed for
development of the novel machine learning algorithms that are at the heart of the
current data-rich but information-poor paradigm, saddling many disciplines out-
side of just health care. It is evident that an integrated, panoramic view of data will
provide an opportunity for previously impossible clinical insights and discoveries.

The book provides a unique compendium of current and emerging machine
learning paradigms for healthcare informatics. Chapters provided by established
scientists in the area with the wealth of experience in the area, and have been
carefully selected to reflect the diversity, complexity, and the depth and breath of
this multidisciplinary area. Machine learning paradigms in healthcare informatics
such as the ones presented in the chapters offer the promise of precise, objective,
and accurate in-silico analysis of this emerging area using information learning
routines that reveal embedded patterns, trends, and anomalies in order to create
models for faster and more accurate physiological and healthcare discovery.
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Chapter 1 provides an introduction to machine learning in healthcare infor-
matics. The chapter provides an overview of the data and knowledge discovery
challenges associated in the field of healthcare informatics. It introduces the
challenges of machine learning in the area and the relevant areas of investigation
in the area. The chapter explains the taxonomy of the healthcare informatics area
and the current and provides an overview of the current efforts and emerging
challenges of the Electronic Health Records (EHR) systems.

Chapter 2 discusses a machine learning approach to screen arrhythmia from
normal sinus rhythm from the ECG. The methodology consists of R-point
detection using the Pan-Tompkins algorithm, discrete wavelet transform (DWT)
decomposition, subband principal component analysis (PCA), statistical validation
of features, and subsequent pattern classification. Different classifiers used were
Gaussian mixture model (GMM), error back propagation neural network (EB-
PNN), and support vector machine (SVM). Results indicate that the Symlet-2
wavelet basis function provided the highest accuracy in classification. Among the
classifiers, SVM yields the highest classification accuracy, whereas EBPNN yields
a higher accuracy than GMM.

Uncontrolled diabetes may lead to many serious complications. The result may
be ketosis, which is normally due to an increase of acetone (a toxic acid product)
and may lead to a situation such as diabetic coma. A fuzzy logic control system for
the regulation of glucose level for diabetic patients was proposed in Chap. 3. A
mathematical model describing the relationship between the human glucose level,
insulin, and food was first presented. Then, a generalized fuzzy logic controller,
including a set of fuzzy logic rules, is introduced to regulate glucose levels for
diabetic patients. Following the fuzzy logic controller, simulation is presented. The
results show that the fuzzy logic control is effective for handling the glucose level
based on feedback scheme.

An integrated methodology for electrocardiogram (ECG)-based differentiation
of arrhythmia and normal sinus rhythm using genetic algorithm optimized k-means
clustering was discussed in Chap. 4. Open source databases consisting of the MIT
BIH arrhythmia and MIT BIH normal sinus rhythm data were used. The meth-
odology consists of QRS-complex detection using the Pan-Tompkins algorithm,
principal component analysis (PCA), and subsequent pattern classification using
the k-means classifier, error back propagation neural network (EBPNN) classifier,
and genetic algorithm optimized k-means clustering. The k-means classifier pro-
vided an average accuracy of 91.21 % over all folds, whereas EBPNN provided a
greater average accuracy of 95.79 %. In the proposed method, the k-means clas-
sifier is optimized using the genetic algorithm (GA), and the accuracy of this
classifier is 95.79 %, which is equal to that of EBPNN.

Pixel/voxel-based machine learning (PML) is a powerful tool in computer-
aided diagnosis (CAD) schemes for detection of lesions in medical images.
Massive-training ANNs (MTANNs) were used for improving the performance
(i.e., both sensitivity and specificity) of CAD schemes for detection of lung
nodules in computer tomography (CT) and the detection of polyps in CT colo-
nography in Chap. 5. The MTANN supervised filter is effective for enhancement
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of lesions including lung nodules and colorectal polyps and suppression of non-
lesions in medical images, which contributed to the improvement of the sensitivity
as well as specificity in the initial lesion detection stage in CAD schemes, whereas
the classification MTANNs contributed to the improvement of specificity in the
false positive (FP) reduction stage in CAD schemes.

Understanding the biomechanics of the human foot during each stage of
walking is important for the objective evaluation of movement dysfunction,
accuracy of diagnosis, and prediction of foot impairment. In Chap. 6 Bayesian
Network (BN) was used to extract the probabilistic causal information of foot
function data, such as muscle activities, plantar pressures, and toe trajectories,
from different types of data on human walking phases. The graphical networks
extracted from the three stages of the stance phase of gait measurement data were
useful for understanding the foot function of the normal walking and simulated
hemiplegic walking. Thus, understanding the foot function during walking is
important for further analysis of diagnostic, therapy, and training programs for foot
impairment.

Successful application of machine learning in health care requires accuracy,
transparency, acceptability, ability to deal with complex data, ability to deal with
background knowledge, efficiency, and exportability. Rule learning is known to
satisfy the above criteria. Chapter 7 introduces rule learning in health care, pre-
sents very expressive attributional rules, briefly describes the AQ21 rule learning
system, and discusses three application areas in healthcare and health services
research.

In the past two decades, machine learning techniques have been extensively
applied for the detection of neurologic or neuropsychiatric disorders, especially
Alzheimer’s disease (AD) and its prodrome, mild cognitive impairment (MCI).
Chapter 8 presents some of the latest developments in the application of machine
learning techniques to AD and MCI diagnosis and prognosis. Discussion on how
various biomarkers as well as connectivity networks can be extracted from the
various modalities, such as structural T1-weighted imaging, diffusion-tensor
imaging (DTI), and resting-state functional magnetic resonance imaging (fMRI),
for effective diagnosis and prognosis was provided in detail.

Chapter 9 discusses several examples of how machine learning algorithms can
be used to guide clinical decision making, and to generate scientific insights about
these decisions. The focus of the chapter has been on rehabilitation in home care.
In clinical applications, it was shown that machine learning algorithms can pro-
duce better decisions than standard clinical protocols. A ‘‘simple’’ algorithm such
as KNN may work just as well as a more complex one such as the SVM. More
importantly, it was shown that machine learning algorithms can do much more
than make ‘‘black-box’’ predictions; they can generate important new clinical and
scientific insights. This can be used to make better decisions about treatment plans
for patients and about resource allocation for healthcare services, resulting in
better outcomes for patients, and in a more efficient and effective healthcare
system.
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The widespread adoption of electronic health records in large health systems,
combined with recent advances in data mining and machine methods, creates
opportunities for the rapid acquisition and translation of knowledge for use in
clinical practice. One area of great potential is in risk prediction of chronic pro-
gressive diseases from longitudinal medical records. Chapter 10 illustrates this
potential of using a case study involving prediction of heart failure. Throughout,
we discuss challenges and areas in need of further development.

Chapter 11 provides a framework to improve the physicians’ diagnostic accu-
racy with the aid of machine learning algorithm. The resulting system is effective
in predicting patient survival, and rehab/home outcome. A method has been
introduced that creates a variety of reliable rules that make sense to physicians by
combining CART and C4.5 and using only significant variables extracted via
logistic regression. A novel method for assessment of Traumatic Brain Injury
(TBI) has also been presented. The ability of such a system to assess levels of
Intracranial Pressure (ICP) as well as predict survival outcomes and days in ICU,
together encompasses a wholesome diagnostic tool, which can help improve
patient care as well as save time and reduce cost.

One of the most crucial problems facing the U.S. government is fraud in
healthcare system. Due to a large amount of data, it is impossible to manually audit
for fraud. Hence, many statistical approaches have been proposed to overcome this
problem. As fraud can be committed in complex and numerous ways, fraud
detection is challenging, and there is a greater need for working models for fraud
detection, including types of fraud that are not yet in use, as these models will not
be outdated quickly. To establish a well-functioning healthcare system, it is
important to have a good fraud detection system that can fight fraud that already
exists and fraud that may emerge in future. In Chap. 12 an attempt has been made
to classify fraud in the healthcare system, identify data sources, characterize data,
and explain the supervised machine learning fraud detection models.

A migraine is a neurological disorder that can be caused by many factors,
including genetic mutations, lifestyle, cardiac defects, endocrine pathologies, and
neurovascular impairments. In addition to these health problems, an association
between some types of migraines and increased cardiovascular risk has emerged in
the past 10 years. Moreover, researchers have demonstrated an association
between migraines and impaired cerebrovascular reactivity. It is possible to
observe carbon dioxide dysregulation in some migraineurs, while others show a
markedly decreased vasomotor reactivity to external stimuli. Therefore, the
assessment of the cerebrovascular pattern of migraineurs is important both for the
onset of a personalized therapy and for follow-up care. Chapter 13 discusses the
analysis of hemodynamic changes during external stimulation using near-infrared
spectroscopy (NIRS) signals.

The segmentation of the carotid artery wall is an important aid to sonographers
when measuring intima-media thickness (IMT). Automated and completely user-
independent segmentation techniques are gaining increasing importance, because
they avoid the bias coming from human interactions. Chapter 14 discusses the
calculation of the large and overabundant number of parameters extracted from
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ultrasound carotid images and then selects a smaller subset to classify the pixels
into three classes (lumen, intima-media complex, and adventitia). The selection
was obtained through a feature selection method based on rough set theory. In
particular, the use of QuickReduct Algorithm (QRA), the Entropy-Based Algo-
rithm (EBR), and the Improved QuickReduct Algorithm (IQRA) was discussed.

Many authors have contributed to this book with their tremendous hard work
and valuable time. We deeply thank them for their great contributions. In no
particular order, they are: Roshan Joy Martis, Chandan Chakraborty, Ajoy Kumar
Ray, K. Y. Zhu, W. D. Liu, Y. Xiao, Teik-Cheng Lim, Hari Prasad, Kenji Suzuki,
Myagmarbayar Nergui, Jun Inoue, Murai Chieko, Wenwei Yu, Janusz Wojtusiak,
Chong-Yaw Wee, Daoqiang Zhang, Luping Zhou, Pew-Thian Yap, Dinggang
Shen, Mu Zhu, Lu Cheng, Joshua J. Armstrong, Jeff W. Poss, John P. Hirdes, Paul
Stolee, Walter F. Stewart, Jason Roy, Jimeng Sun, Shahram Ebadollahi, Ashwin
Belle, Soo-Yeon Ji, Wenan Chen, Toan Huynh, and Kayvan Najarian, Sonali Bais,
Samanta Rosati, Gabriella Balestra, Filippo Molinari, Samanta Rosati, Gabriella
Balestra, and Jasjit S. Suri.
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Chapter 1
Introduction to Machine Learning
in Healthcare Informatics

Pradeep Chowriappa, Sumeet Dua and Yavor Todorov

Abstract Healthcare informatics, a multi-disciplinary field has become synony-
mous with the technological advancements and big data challenges. With the need
to reduce healthcare costs and the movement towards personalized healthcare, the
healthcare industry faces changes in three core areas namely, electronic record
management, data integration, and computer aided diagnoses. Machine learning a
complex field in itself offers a wide range of tools, techniques, and frameworks
that can be exploited to address these challenges. This chapter elaborates on the
intricacies of data handling the data rich filed of healthcare informatics, and the
potential role of machine learning to mitigate the challenges faced.

1.1 Introduction

Healthcare informatics deals with the acquisition, transmission, processing, stor-
age, and retrieval of information pertinent to healthcare for the early detection,
early diagnosis, and early treatment of diseases [1]. The scope of healthcare
informatics is confined to data associated with diseases, healthcare records, and the
computational techniques associated with handling of such data. With the intent of
providing affordable, quality, and seamless healthcare—traditional medical prac-
tices across the United States over the past few decades have invested on better
technology and computational support to researchers, medical practitioners, and
patients. These efforts have brought to the foray the benefits and importance of
using computational tools for referral and prescription aids, the creation and
management of electronic health records (EHR), and technological advances in
digital medical imaging.

P. Chowriappa (&) � S. Dua � Y. Todorov
Data Mining Research Laboratory (DMRL), Department of Computer Science, Louisiana
Tech University, LA, USA
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For instance, studies have shown the success of Computerized Physician Order
Entry (CPOE) have reduced medication errors and adverse drug events and
inadvertently improved the quality of care [2]. CPOE makes patient information
readily available to physicians at the time they enter the prescription for a patient
[3]. It provides necessary alerts to the physician about adverse reactions that could
arise specific to a patient’s history. Moreover, CPOE allows the physician to track
the order. This provides an additional mechanism for physicians to identify issues
in a prescription and re-design it to eliminating errors.

Machine learning is a natural extension of artificial intelligence. Researchers
and medical practitioners often resort to using machine learning to address com-
plex statistical analysis. The niche of combining both healthcare data and machine
learning with the goal of identifying patterns of interest is commonly referred to as
healthcare informatics. The goal of healthcare informatics is therefore used to
identify patterns in data, and then learn from the identified [4].

EHR systems have enabled easier access to and sharing of patient’s health
records between hospitals reducing the costs of healthcare manifolds. This
reduction in costs has been attributed to the elimination of redundant health tests
and reduction in operational costs [5]. However, with the current state of man-
agement of EHR systems makes it difficult to collate and mine clinical information
for patterns of trends across various populations. With efforts such as the American
Recovery and Reinvestment Act (ARRA) of 2009,1 strides are being taken to
digitize medical records to a universal format that enables the collation of medical
data to large repositories. Data from these large repositories can then be used for
machine learning to predict and understand trends across geographical locations
[6]. Research in this area is focused on computational bottlenecks of expansion,
sharing, and standardization of EHRs. The objective is to create open-access
databases that are secure and can handle various forms of cyber-threat, as these
databases contain confidential information of patients. Some of the prominent
medical databases in the area are listed in Table 1.1. There are several challenges
in creating these large data repositories of the health records (discussed in later
sections) that require significant investment computation research. For instance the
handling of evolving data structures in handling changing modalities of techno-
logical advances in medical devices and data generated from them.

Technological strides in medical imaging have brought about innovative means
to capturing diseases such as cancers, for quicker disease prognosis [7, 8]. These
advances have enabled effective detection and diagnosis of cancers. Prominent
imaging modalities such as computed tomography (CT), ultrasound, and magnetic
resonance imaging (MRI) have brought about minimally invasive surgery, image
guided therapy, and effective monitoring of treatment response [9]. These tech-
nologies have made it possible to provide in situ anatomical data on the size,
shape, and location of tumors and growths. Newer technologies such as, 3D-
ultrasound, electrical impedance tomography, tomosynthesis, diffuse optical

1 http://www.recovery.gov/About/Pages/The_Act.aspx
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tomography, diffusion-weighted magnetic resonance imaging (MRI), positron
emission tomography (PET) and single-photon-emission CT (SPECT) further
more provide functional activity of detected tumors, thereby revealing both
location and metabolic activity of disease. These imaging platforms take advan-
tage of molecular-targeted contrast agents to monitor the complex biochemical
processes in neoplastic transformations of tumors and cancers [10].

Undeniably, the role of machine learning is paramount to the testing and
development of these modalities and their practical application in a clinical setting.
Machine learning in the medical imaging field manifests itself as image seg-
mentation, image registration, image fusion, image-guided therapy, image anno-
tation, and image database retrieval. With advances in medical imaging, there is a
need for newer machine-learning algorithms/applications. Newer imaging tech-
nologies have brought about large variations and complexity to image data. It is
impractical and difficult to use existing machine learning techniques to extract
patterns or derive analytic solutions from newer imaging techniques. Researchers
in machine learning are in pursuit of creating algorithms that scale to the changes
in data. Because of its essential needs, machine learning in medical imaging is a
bourgeoning field [11].

Another issue that plagues the integration of machine learning and healthcare is
the use of software engineering to keep pace with the technological advances in
medical data capture (multi-modal images) and advances made with machine

Table 1.1 Prominent medical databases [5]

Database Access

NN/LM medical database Public access—resource provides access to three databases
related to biomedical and health science, these include—
PubMed, Medlineplus, and Locatorplus

Allen brain atlas Public access—a data portal that has a collection of multi-
modal, multi-resolution gene expression profiles of the
human and mouse brain

Alzheimer’s disease
neuroimaging initiative
(ADNI)

Public access—web-based resource containing clinical,
genetics, MRI, and PET data of individuals with
Alzheimer’s Disease

Australian EEG database User access required—web-based de-identified searchable
database of 18,500 EEG records

Unified medical language
system� (UMLS)�

Restricted access—contains a list of known biomedical
vocabularies and standards to facilitate interoperability
between computer systems

Epilepsiae European database on
epilepsy

Research community—database contains well documented
meta data related to epilepsy

Kaiser permanente national
research database

Kiaser permanente researchers and collaborating non-KP
researchers—contains clinical information of
approximately 3,000,000 patients of the Kaiser
Foundation Health Plan

National patient care database
(NPCD)

Research community—is the VHA’s centralized database for
integrated patient care data
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learning algorithms. The production of quality machine learning software is cur-
rently in a state of infancy and therefore has much to learn from advances in
software engineering, for instance model-driven engineering and cloud computing.
A large proportion of published work in machine learning comprises investigations
of algorithms and projects that are not deployed at scale in actual practice.
Therefore the realization of truly scalable, robust, and reliable machine learning
software’s are important. Future sections of this chapter highlight the challenges in
handling healthcare data, the role of machine learning and existing online health
informatics tools.

1.2 Challenges

The future of healthcare lies of effective storage and distribution of patient health
records in EHR data repositories. The benefits of creating an EHR data repository
lies in facilitating the productivity of healthcare personnel in the delivery of
quality healthcare and the optimal use of pervasive computing engine. The real-
ization of a pervasive computing engine is conceptualized as the logical sharing of
data across its components. Figure 1.1 represents the flow of information in across
the components of a pervasive computing engine. These include (a) data collec-
tion, (b) an EHR data repository, and (c) computer aided diagnosis tools. In this
section we emphasize challenges in the creation of a pervasive computing engine
in healthcare.

Data Collection 

EHR  
data repository Computer Aided 

Diagnosis tools 

Verification of 
information

Clinical use 
of EHR

Fig. 1.1 A schematic
representation of a pervasive
computing engine in
healthcare. The key
components that constitute
such a pervasive system pose
independent challenges
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1.2.1 Data Collection

Data collection and reporting is predominantly manual and largely paper based
[12], and is carried out by healthcare entities. These entities endeavor to collect
data in a cohesive and standardized manner. The procedure of patient data col-
lection entails (a) the consent of patient, (b) the de-identification of data, and (c) to
ensure that the data conforms to pre-set standards before the data is uploaded to a
database. Though this task entails trained personal to validate the data collected it
is still challenging to ensure standards are being maintained across different
entities of a large healthcare system. The following are the key challenges of data
collection.

1.2.1.1 Patient Consent

One of the biggest challenges in the realization of effective data collection lies on
the patients/subjects consent. Several patients are concerned with the privacy of
their personal information being stored over large repositories. There are several
standards in place to ensure effective de-identification of patient/subject infor-
mation before the data is stored on large data repositories. Typically healthcare
institutions opt for the open-consent process to share de-identified information
onto repositories.

1.2.1.2 Controlled Vocabulary

The biggest challenge in data collection is diversity and change/evolution of
controlled medical terminologies. In the past decade, significant efforts were made
to overcome the lack of standards in controlled medical terminologies (CMTs)
[13]. CMTs facilitate data entry, data retrieval, data analysis, and data sharing. The
overarching goal of introducing CMTs is to create efficient diagnostic decision-
support systems that would send out timely alerts and reminders to medical
practitioners. It also facilitates the creation of administrative systems for billing
and effective administration of large healthcare facilities.

A practical example of controlled is in the case of data collection for clinical
research the gathering of data is driven by variables that are relevant to ‘‘deter-
ministic outcome’’ referred to as a ‘research hypothesis.’ The variables associated
to the research hypothesis like ‘patient parameters’, ‘data items’, ‘data elements’,
or ‘questions’ are gathered and represented in a cohesive manner into a data-
collection form called the ‘Case Report Forms’ or CRFs.
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1.2.1.3 Standardization

It is the responsibility of the healthcare entity to ensure that the variables on a data
collection form adhere to acceptable standards. The most prominently adopted
standard is that of The International Organization for Standardization/International
Electro-technical Commission (ISO/IEC 11179 technical standard).2 The ISO/IEC
11179 identifies a data element as ‘that unit of data’ that has a definition, iden-
tification, representation, and values that are represented as a set of attributes.
These attributes include: the internal name, data type, caption presented to users, a
detailed description, and a validation scheme associated such as a range check or
set membership [12].

1.2.2 EHR Data Repositories

Large databases/repositories in healthcare are often acquired from a variety of
sources, with a corresponding variety of design and structure. This uncertainty in
the data can make linking of diverse data bases a challenge. The intended use data
also poses its own set of challenges. While technical, medical, and managerial
differ in intend use of data, the multifaceted nature of healthcare data calls for a
multifaceted perspective of handling data [14]. Furthermore the purpose of storing
EHR should systematically enable the use that machine learning strategies to mine
trends in data. This is relevant considering that these databases/repositories exhibit
and exponential growth in size. The following discussion highlights challenges in
the creation and maintenance of EHR repositories.

1.2.2.1 Feasibility of Information Technology (IT) Infrastructure

Keeping up with technological advancements is vital to the effective utilization
and maintenance of a pervasive computing resource. The IT infrastructure is an
integral component of large EHR data repositories. Typically, the infrastructure
should be able to scale to the growth of data that is continuously added on a regular
basis.
While evaluating IT in an EHR repository, one must take into account that IT is
only one part of a pervasive computing system of an organization. The objective of
carrying out the feasibility of IT infrastructure is to ensure that consistent
improvements are made in a timely manner to ensure longevity of the resource.
Many different questions can be asked in the assessment of IT [15]. These include:

• What type of IT should be selected and employed?
• What are the key healthcare processes that the EHR repository should facilitate?

2 http://metadata-standards.org/11179/
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• What are the technical and system aspects (e.g. performance, software quality)
of the IT that will bear upon its use?

• How does the IT infrastructure impact structural or process quality (time saving,
data quality, clinical workflow, patient administration) with regard to different
users (physicians, nurses, administrative staff)? Does it work effectively?

• How IT infrastructure impacts the quality of care?
• What are the capital and operational costs of information technology? Is it cost-

effective?

1.2.2.2 Privacy Preservation and Data Integration

To understand and treat an outbreak of large proportion, the analysis of the
prevalence, incidence, and risk factors of disease is crucial. To carry out such an
analysis, would have a substantial ramification on policy decisions. Data from
diverse repositories/databases have aggregated and integrated [16, 17]. It is vital at
this juncture that private and sensitive information be handled with care. There is
therefore a need for privacy preservation framework and data integration strategy
in place.

In creating an EHR database/repository is a requirement to gaining the approval
of the Institutional Review Board (IRB).3 The interest of the IRB is to ensure that
proper de-identification of all records is carried out before the release of data. It
also ensures that the HIPPA regulations and the Helsinki declaration are adopted
[18]. Moreover, it is important to ensure that despite the de-identification, the
integration of data from multiple sources is not hindered and clear to the end user.

1.2.2.3 The Human Element in Creating EHR Repositories

Though current EHRs have been successfully adopted and accepted in the
healthcare industry, significant challenges remain in exploring how the human
element influence EMR acceptance, implementation, and use. It is believed that
social intricacies and communication patterns influence the use of EHR and can be
utilized to enhance the delivery of healthcare.

Researchers have indicated that communication-patterns can be characterized
based on categorize of users and how individual categories users communicate
with the EHR. There are roughly three categories of users namely: high, medium,
and low. The users that belong to the high category are those that display high
integration of EHR use with work practices. Users of this category rely highly on
features of reports, flow sheets and/or tracking and treading features of the EHR.
The users of the medium category display moderate integration of EHR use with

3 http://www.thehastingscenter.org/Publications/IRB/Default.aspx/

1 Introduction to Machine Learning 7

http://www.thehastingscenter.org/Publications/IRB/Default.aspx/


work practices. Similarly, users of the low category rarely rely on the features
offered by the EHR [19]. It is believed that understanding the communication
patterns among users of an EHR can provide an understanding and achievement of
a flexible EHR.

1.2.3 Computer Aided Diagnostic (CAD) Tools

The creation of sophisticated CAD tools to analyze complex biological data has
been spruced by advances made in machine learning. Although results from cur-
rent CAD tools are promising, there are several hurdles to overcome before these
tools can be deployed in a clinical setting. Research efforts are on in the creation of
computer aided prognosis and diagnosis tools that use multimodal data fusion [20].
For instance, fusing computerized image analysis with digitized patient data such
genomic information for predicting outcomes and survival. The current fusion of
biomedical informatics and bioinformatics techniques would propel existing CAD
tools to a more patient specific diagnosis [21]. While CAD tools have proved to be
instrumental in healthcare, it suffers from the following challenges:

1.2.3.1 Data Preprocessing

CAD tools extensive use patient data from diverse sources. These could be image
sources such as position tomography (PET), computed tomography (CT), low-dose
computed tomography (LDCT), functional magnetic resonance imaging (fMRI),
and contrast-enhanced computed tomography (CE-CT) [22]. Other sources of
medical data could be obtained from signaling sources such as electrocardiogram
(ECG), and electroencephalogram (EEG). Typically data from medical sources
suffer from noise in the form of inconsistences in measurements. This noise could
significantly affect the quality performance of CAD tools. Researchers rely on data
preprocessing strategies to capture features of discrimination (or interest). Sig-
nificant ongoing efforts in this area rely on the creation of novel machine learning
techniques for effective data preprocessing.

1.2.3.2 Effective Software Design

The creation of quality machine learning software is currently in the state of
infancy. There are several challenges that need to be taken into consideration while
porting machine learning algorithm to functional CAD tools. It is the responsibility
of developers (in the USA) to ensure that their CAD tools conform to the standards
set by the FDA. The FDA certifies both CAD tools and CAD systems for use in
medical practice [4]. This requires fully traceable, auditable procedures for
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software development of the kind developed by software engineers over the past
decades.

To conform to software engineering it is firstly desired that the algorithms are
scalable. It is desired that the machine learning algorithms are tested to handle data
sets on a large scale as in actual practice. Furthermore, the algorithms should be
capable of delivering reliable and accurate results. This is a challenge as these
algorithms require intense testing procedures. Another desirable feature is cross
platform re-usability. This requires a more formal approach to modular code
abstraction, design, and specifications.

1.2.3.3 Validation and Verification

From existing research, there is a lack of consensus in the theoretical under-
standing especially from a non-physician’s perspective of CAD tools. This renders
certain CAD tools ineffective. It is believed that without a solid validation and
verification scheme physicians are unfairly susceptible to accepting recommen-
dations of CAD tools, questioning the quality of decisions made. This renders the
verification and validation of paramount importance.

Several publications use statistical methods to interpret and explain the various
criteria. However, with numerous clinical implementations of decision support
systems for a variety of medical applications, there is a need for robust and
systematic methods to verify, validate the performance of a CAD tool.

1.3 Healthcare Informatics and Personalized Medicine

Listed as one of the 14 grand engineering challenges by the US National Academy
of engineering for the twenty-first century, healthcare informatics is a multidis-
ciplinary field that derives advances from fields of biomedical engineering, data
analytics, and bioinformatics to solve day to day challenges of healthcare (refer
Fig. 1.2). The field of healthcare informatics is constantly evolving with advances
made in three core dimensions namely: Data acquisition, health record manage-
ment, and the role of machine learning (data analytics) for pattern analysis [23].
These advances are funneled to meet the healthcare goals of disease prevention
and personalized disease diagnosis and treatment. In this section we focus our
discussion on developments made in personalization of healthcare.

1.3.1 Future of Data Acquisition in Healthcare

New acquisition systems are being created. Traditional diagnostic tools for most
diseases rely on the manifestation of visible symptoms to identify the disease
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affecting the patient. This approach to identification of a disease is at time too late.
Research is underway in the creation of Nano-devices that allow for the detection
of pathogens and diseased cells at the early stages of disease progression. More-
over, new systems are being tested and designed in the form of wearable,
implantable, and ingestible devices to collect patient data with or without medical
supervision [24]. Another actively pursued area of research in biomedical moni-
toring is body sensor networks (BSN) [25]. With the objective of improving the
quality of healthcare, BNS’s is a cyber-physical system (CPS) that consists of a
diverse set of wearable sensors over the body of a patient. It would provide up to
date information of the patient.

This opens up several challenges of data integration from devices in a dynamic
environmental situation, requiring machine learning. There is a dearth of inno-
vative machine learning algorithms that could scale to the multi-dimensional data
that these systems and devices generate to help in decision support in health.

1.3.2 Patient Centric EHR

The prominence of use of EHR in healthcare has increased over the last decade.
With the overall goal of using EHR is to enable exchange of information inde-
pendent of the patient’s lactation, the creating of such a model comes with its
challenges as we take into consideration the different actors and organizations
involved.

These challenges are exacerbated when we consider issues of security and
efficient organization of EHR when we consider an EHR on a global scale. Fur-
thermore the health data for each individual spans over multiple dimensions/scales
from a genetic to cellular to tissue to system levels. Research efforts are on in the
formation of global databases for the retrieval of relevant information to the early
signaling of disease outbreaks [26].

With the prevalence of the internet, there has been an increasing trend in
patients seeking to use social media sites and web-based resources to seek
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healthcare information. Despite the benefits, flexibility, and ease of access to
information, the prevalence of EHR on the web is stemmed by issues of security.
However, there is a growing realization in the medical community of exploiting
the benefits of giving the patients more liberty to access and control their own
information. This is commonly referred to the transition towards a patient centric
EHR.

Providing patient’s access to their individual EHR is not a novel idea [26, 27].
With the objective of improving efficiency, reducing costs, and enhancing quality
of healthcare and patient satisfaction the model of online communication and
sharing of EHR with patients and healthcare providers has been proven beneficial.

There have been EHR systems that propose integration of data between insti-
tutions, and sharing data with patients since the beginning of the twenty-first
century [28]. However, there are studies that focus on aspects of security and
granting of access to EHR. It is believed that a patient-centric approach should
facilitate a novice user to interpret medical information and enable the user to act
appropriately. The success of any EHR system therefore lies on a design that is
able to balance both ease of use and security of information being disseminated.

There are several online systems aimed at providing users the freedom to
control, supervise, and recover and share their health information over the internet.
Two of the prominent tools are described in the following sections.

1.3.2.1 Cambio Healthcare Systems�

Since 1993, Cambio Healthcare Systems�4 a Swedish company has been a pioneer
in distributed healthcare administration systems. Consisting of approximately a
hundred office around the world providing service to about 50,000 users, the
objective of creating a healthcare solution to support healthcare at every stage of a
patient’s life, Cambio created a product called COSMIC

�
. At the heart of COSMIC

is the COSMIC Spider, an engine that connects a gamut of individual modules.
Each module is dedicated to specific task such as care documentation, order
management for both labs and referrals, e-Prescribing, patient management,
resource planning, and care administration consisting of billing, digital dictation,
and data warehousing.

1.3.2.2 Microsoft’s� Health Vault�

Microsoft’s� Health Vault�5 an online platform for health management provides
patients to ‘‘collect, store, and share’’ health information. It is a cloud service that
has built in functionality of privacy, security, and data provenance. Health Vault�,

4 http://www.cambio.se/
5 https://www.healthvault.com/us/en
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currently available only in the United States, supports nearly 300 applications, and
connectivity to 80 health and fitness devices, such as those that measure heart rate,
blood pressure, blood glucose, or peak airway flow.

1.3.3 Information Retrieval and Semantic Relationships

Rapid access to reliable information has been a perpetual need in healthcare
informatics. With the proliferation of medical resources across the internet, the
need for up to date medical care related information (e.g. published articles,
clinical trials, news, etc.) is important to both healthcare providers and patients
who prefer to be informed about their health.

The use of natural language processing (NLP) and machine learning (ML)
techniques to optimize searchers and classify relevant medical information in
documents [29] is not new in the field of health informatics. However, these
techniques have been known to be susceptible to vocabulary mismatch. Vocabu-
lary mismatches manifest in form of instances where relevant documents to a
user’s query may actually contain little or no shared terms. This hampers the
performance of keyword-based retrieval. Furthermore, certain queries are infer-
ence driven requiring inferences to determine related documents. There is there-
fore a need for an information retrieval system capable of overcoming the
mismatch between the terms found in documents and those in queries.

In the medical domain, the identification of sentences published in medical
abstracts as containing or not containing information about the queried disease or
treatment, and then establishing semantic relations to the prevention, cures, and
side effects associated with illness and treatments, in the context as expressed in
using these texts. This is brought about through domain ontologies [30].

1.3.3.1 Domain Ontology

The purpose of domain ontology in an EHR system is to represent medical terms
as they apply to a medical domain. Terms pertaining to meaning and use help
provide information and knowledge for better health informatics service. Of the
widely used medical ontologies used in EHR, namely: the Unified Medical Lan-
guage System (UMLS), Guide Line Interchange Format (GLIF), Generalized
Architecture for Languages (GALEN), International Classification of Diseases
(ICD), the Systematized Nomenclature of Medicine Clinical Terms (SNOMED
CT�)6 is the most predominant.

Touted for its power and efficiency in handling EHR, SNOMED CT� has been
scientifically validated, and viewed as a comprehensive resource of clinical

6 http://www.ihtsdo.org/snomed-ct/snomed-ct0/

12 P. Chowriappa et al.

http://www.ihtsdo.org/snomed-ct/snomed-ct0/


healthcare terminology that is accepted world-wide. SNOMED CT� provides an
abstraction through a hierarchical representation of encapsulated classes namely,
disorders, drug, and organisms. Moreover, it covers a huge number of concepts
and relationships.

As with any EHR management system, both information retrieval and infor-
mation extraction are significant issues. Moreover, it is important to ensure
accuracy and reporting (in a timely fashion). To overcome these issues and
facilitate application development, SNOMED CT� adopts a concept-oriented and
machine-readable design. Formal vocabulary in SNOMED CT� is maintained in a
knowledgebase. The knowledgebase grows in an incremental fashion with the
inclusion of newer domain specific concepts provided by experts in a domain.

1.4 Data Interoperability in EHR

The exchange of EHR data between institutions and care providers poses a great
challenge. To facilitate effective data communication, EHR adopts an archetype
standards developed by openEHR7 and CEN/ISO [31]. These standards enable
sharing of patient health information between healthcare providers in a multi-
disciplinary environment. The objective of adopting these standards is to provide
interoperability at different levels of functioning namely, within an enterprise,
regionally, nationally, and globally. Moreover, it facilitates interoperability
between software’s and vendors. Currently the use of archetypes in the deployment
of EHR’s are limited [32]. However, the benefits of providing interoperability
outweigh implementation challenges.

The evolution of healthcare has taken place in three avenues, namely: (a) the
evolution in the knowledge base. Here rules that were relevant yesterday can
become irrelevant with the addition of newer medical facts. (b) The refinement of
information. With newer more focused studies and the use of better technologies,
information is moving towards a finer grain with time. And (c) complexity; the
relationships between facts and existing information makes the execution of a
system complex. With intent to handle the evolution of healthcare the openEHR
archetypes was proposed. openEHR is constructed using a two-level approach [33]
that separates information structure from clinical knowledge base.

openEHR provides the necessary abstraction to domain experts to create con-
tent models for clinical concepts without worrying about the equipment used.
These content models can then collectively make up the information system. This
also facilitates EHR systems to accommodate changes in medical and health
service delivery practices over time.

7 http://www.openehr.org/
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1.4.1 Archetype Modeling and openEHR

Archetypes as the name suggest, are data models designed to store clinical data
and content. Archetypes are different from traditional data models in such that they
focus on providing three key data functionalities that are susceptible to time and
that are congruent to the clinical practice. These functionalities are semantic
interoperability, semantic interpretability, and syntactic interoperability. It should
be known that these three functionalities are aimed at providing free data exchange
between two or more entities.

1. Syntactic (data) interoperability: Syntactic interoperability refers to all aspects
of data representation. Here we strive to ensure that the structure and origin of
data is understood by the information system. Key emphasis is place on the
syntax of by which data is stored.

2. Semantic interpretability: Semantic interpretability ensures that concepts of
clinical significance are represented efficiently. Good semantic interpretability
is ensured when information can be easily interpreted by a domain expert.

3. Semantic interoperability: Semantic interoperability ensures data exchange on
the basis of shared, pre-defined and mutually accepted meanings of terms and
expressions. Semantic interoperability requires that a system understand the
semantics of data requested.

The openEHR archetype is touted as the comprehensive open specifications for
EHR systems. The openEHR architecture adopts a two level modeling approach to
building comprehensive EHR management systems. The first level also referred to
as the reference information model is pruned to carry the minimum information to
carryout effective record management. This level also ensures effective data
transmission between clinicians and providers thereby bring about the desired data
interoperability.

At the second level, openEHR brings about the semantic interoperability. This
is brought about by openEHR providing the required semantic to store/record
relevant information that needs to be processed. In other words, the archetype
represents domain specific concepts by providing the necessary rules or constraints
applicable in the openEHR information models. These constraints therefore rep-
resent the valid data structures, data types, and values that are define in advance.

This two level approach offered by the openEHR architecture enables a clear
separation between record keeping and clinical data collection, thereby isolating
the challenges of record keeping that can hinder the clinical data collection and
vice versa.
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1.4.2 Health Level 7 (HL7)

With respect to standards in healthcare data exchange and interoperability, health
level seven (HL7) is one of the most prominent interchange standard for clinical
data exchange, both in the US and around the world. Clinical data exchange based
on HL7 spreads the gamut ranging from numerical data, coded and text obser-
vations, orders, scheduled clinical work, and exchanges of master file records
(refer Fig. 1.3).

With the mission is to provide standards to improve care delivery, optimize
workflow, reduce ambiguity, and enhance knowledge transfer HL7 offers stan-
dards to a wide range of domains. These include clinical, clinical genomics,
administrative, clinical research, electronic claims attachments, public health,
personal health, etc., to name a few.
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The HL7 was initially designed and systematized using the unified service
action model (USAM). This design was used to create the ordering, scheduling,
and care planning capabilities, however, evolved to handle task with workflow
management.

In order to support effective decision support (DS) for medical care, comput-
erized guidelines are able to improve the quality and reduce the cost of healthcare.
However, objective and decidable guidelines are expensive to define, which
suggests a sharing of guidelines to reduce these expenses. The Arden Syntax, a
standard to define medical logical modules, was created to facilitate guideline
sharing and dissemination. However, despite the Arden’s considerable acceptance
in the industry, it did not lead to a broad-based guideline deployment.

The InterMed Collaboratory, an online medical collaboration facility created by
Columbia, Harvard, McGill, and Stanford proposed the guideline interchange
format (GLIF) to meet the same basic goals as Arden. GLIF was designed based
on experience with several research guideline systems (e.g. EON), is based on an
information model, it is a declarative rather than procedural language. It is
designed keeping in mind complex clinical protocols.

It is believed that sharing and deployment of guidelines has been limited
because of very practical reasons. Guidelines must be tied to the EHR, not
bothering the user with data entry. Yet, coupling generic shared guidelines to an
EHR is difficult to achieve as the structure and condition of clinical data varies
across medical institutions. In order to achieve coupling, the identification of
clinical variables is important and a well-known challenge. Furthermore the data in
databases are not of good condition and therefore challenging to create automated
decision systems that are reliable. This challenge is further exacerbated when
guidelines require unique or derived keys from the data which traditional EHR
does not support.

1.5 Machine Learning in Computer Aided Diagnostics
(CAD)

With the intent to decrease observation oversights by clinical domain experts,
computer aided diagnostics (CAD) have revolutionized medicine. CAD bridges
the gap between technological advances and clinical practice by introducing newer
modalities to understand diseases. These modalities include acquisition techniques
such as MRI’s, CT scans to name a few, and better storage technologies [34].

With the realization of various technologies that could potentially benefit
clinical practice. Research in computer aided diagnostics is moving towards
exploiting machine learning techniques for the following reasons.

1. Newer forms of data: With technological advances made in genetics, imaging,
signal monitoring, and radio-frequency identifications (RFID) to name a few,
medicine is moving towards personalized mentoring and treatment. This has
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also created a gamut of unconventional forms of data. There is therefore a need
for machine learning to scale up to the variety of data forms.

2. The scope of statistical analysis on data: Statistical learning is a user driven
process. It largely relies on confirming a set hypothesis and is driven by a set of
predefined assumptions. Moreover, statistical analysis used to carry out pre-
dictions of the general population. On the contrary, machine learning is used to
generate hypotheses. It is exploratory and driven by fewer assumptions. But the
one characteristic difference between statistical analysis and machine learning
is that machine learning is data driven.

3. The scalability of techniques: With the growth of data reaching exponential
rate, there is a need for algorithms and techniques that can exploit the generated
data and provide predictions that can scale to the changes in data, as well as
discover hidden and non-trivial observations that cannot be carried out
manually.

Machine learning is built around the popular KDD process [35], consists of key
steps namely the data exploratory phase, the training phase, and the validation
phase. The data exploratory phase consists of feature extraction and feature
selection strategies. The objective of the data exploratory phase is to discover
patterns. Each pattern will therefore result in an independent hypothesis for testing.
Moreover, the data exploratory phase is useful in identifying those factors that are
influential and contribute towards the hypothesis.

As part of the training phase, a learning model is fit on the data using the
influential factors discovered in the data exploratory phase. In the training phase,
data from known classes is used to create a model, that when tested in the veri-
fication stage to would yield results in favor of the hypothesis. Unlike statistical
testing, machine learning relies on domain experts and analytical skills to verify
the outputs obtained. Though promising, the application of machine learning for
medical diagnosis is challenging as it must meet the following criteria for success:
good performance, the transparency of diagnostic knowledge, the ability to explain
decisions, the ability of the algorithm to reduce the number of tests necessary to
obtain reliable diagnosis, and the ability to appropriately deal with missing data.

Machine learning community has a long tradition in classical knowledge dis-
covery applications and can be traced at least as far as the mid-1960s. Several
approaches have been proposed and find their application in the clinical data
analysis. The most prominently referred techniques include, neural networks (NN),
support vector machines (SVM), decision trees (DT), etc. [36]. Though popular,
the use of machine learning in healthcare or clinical data analysis, the following
needs have to be addressed while using machine learning, namely

1. Datasets: Typically datasets used for analysis are plagued with missing and
inappropriate values. These errors typically referred to as noise are brought
about by devise errors. Care should be taken to handle noise in datasets. The
application of appropriate data cleaning techniques has to be applied to data
before subjecting it to learning strategies.
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2. Model selection: For a given model, various model selection techniques can be
applied to determine quality of extracted knowledge [37]. However, with the
gamut of modeling techniques available—bootstrapping, hold-out techniques,
and k-fold cross validation to name a few—the choice of an appropriate model
becomes a challenge. An inappropriate model selection technique will result in
biased and over-fit estimates of results. Therefore care should be taken while
choosing an appropriate model selection technique.

3. Feature extraction and feature selection: It should be noted that most of the
data generated from newer technologies are high dimensional datasets. For
example, in the cases of positron emission tomography (PET) and single photon
emission computed tomography (SPECT) [38], and functional magnetic reso-
nance imaging (fMRI) rely on voxel identification and tracking. Voxel iden-
tification and tracking generates multi-dimensional data that requires effective
feature extraction from raw data [39].

Machine learning offers a wide array of learning approaches that can be chosen
to capture hidden patterns from the data [40]. We categorize these techniques into
three and provide a brief overview of these categories as follows:

1.5.1 Unsupervised Approaches

The unsupervised approaches of machine learning are those that find hidden
patterns or trends in data. These approaches seek to find key features that drive
differentiation among data samples [41]. Also referred to as clustering, these
approaches are prominently used in signal analysis frameworks. Some of the
commonly referred unsupervised approaches include, spectral clustering, Gaussian
mixture models [42], K-means [43], fuzzy clustering [44]. These approaches
however, suffer from a bottleneck as they are subject to predetermined thresholds.

1.5.2 Supervised Approaches

Unlike unsupervised approaches, supervised approaches are model building
approaches. These approaches use a preprocessed training set of sample to build a
model, where each sample in the training set has a determined class label. The
objective of supervised learning approaches is to determine characteristic sets of
rules that can be used to discriminate between samples of different classes. For
instance, decision trees (DT) is a supervised learning approach that is easy to
comprehend and relatively easy to implement. However, it is challenging to apply
to complex non-linear problems. Prominently used supervised approaches in
healthcare include support vector machines (SVM) [45], k-nearest neighbor (k-
NN) [46], Bayesian models [47] to name a few.
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1.5.3 Evolutionary Approaches

Evolutionary approaches to knowledge extraction, better referred to as genetic
algorithms (GA) [48] are prominently used in medical data analysis. These
approaches are based on the evolutionary ideas of natural selection and genetic
processes of biological organisms. As the natural populations evolve according to
the principles of natural selection and ‘‘survival of the fittest’’, GA are able to
evolve solutions to real-world problems. The objective of using GA is to find
optimal solutions even in the most complex of search spaces [49].

1.5.4 Hybrid or Ensemble Approaches

The hybrid or ensemble approaches rest on the assumption that a combination
multiple single models can generate effective discriminatory rules. Moreover, each
of the single models has its advantages, and inherent disadvantages, that can be
overcome by other models in the ensemble [50]. However, while combining dif-
ferent models to overcome the disadvantages of a single model can lead to issues
of over-fitting [51].

1.6 Application of Machine Learning in Healthcare

It is believed that with the integration of machine learning in healthcare can bring
us close to the elusive quest of improving both the efficiency and quality of
medical care. However, there are challenges and opportunities in doing so. As
discussed in the previous sections, machine learning provides a gamut of
approaches and techniques that have cascaded to a diverse set of tools to aid in
diagnostic and prognostic challenges faced in medical domains.

In this section we focus the effects of machine learning for the identification and
analysis of clinical parameters in understanding disease diagnosis and disease
progression. There is significant interest in the use of machine learning for the
extraction of features that could potentially lead to patient specific therapy planning
and support, that could eventually lead to reduction in medical costs [52]. Machine
learning is also being used to suggest real time clinical monitoring of patients. This
entails real time analysis of data to appropriately deal with monitoring data from
different sensors or devices, and the interpretation of continuous data to be used in
Intensive Care Units (ICU) [53]. On the same lines, over the past two decades, there
has been considerable research effort directed towards the monitoring and classi-
fication of physical activity patterns from body-fixed sensor data [25]. This effort
has been motivated by a number of important health-related applications. For
example, with the trend toward more sedentary lifestyles, there is growing interest
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in the link between levels of physical activity and common health problems, such as
diabetes, cardiovascular diseases, and osteoporosis. As self-reported measures have
been shown to be unreliable measures for activity profiling, sensor data measures
are beginning to play an important role in large-scale epidemiological studies in this
area. Computer aided diagnosis (CAD) and their associated tools have been
instrumental in the realization of the potential of machine learning. There are a wide
range of CAD tools in the area of cancer research [21]. This is attributed to the
abundant data resource that can be used to develop such tools. However, there is a
need in effective integration of data and knowledge from diverse data sources.
These tools also lack effective validation schemas. The fastest area to adopt CAD
tools is in the area of radiology. As several of these tools are in their inspection
stages of development they lack comprehensive datasets to include information of a
diverse set of illnesses, complications, and injuries.

Another area that can benefit from machine learning is emergency medicine
[21]. Though there are few CAD tools adopted in clinical practice, existing tools
have shown the potential of improving the quality of healthcare. Ongoing research
in the area is focused on making these tools to address a wider variety of illnesses
and trauma scenarios. The application of machine learning in cardiovascular CAD
tools has not received significant success as there is a lack of comprehensive
validation processes [54]. While most cardiovascular based CAD tools suffer from
high false positive rates, they often help in detecting the disease at an early stage.
Therefore there is a need for tools that incorporate a wider range of information to
reduce the false positive rates. Just as in the areas discussed above, digital radi-
ology finds its application in orthodentistry [55]. They enable early diagnosis of
dental complication at a stage. However, the CAD tools in this area are relatively
expensive and a bottle neck for wide adaptation.

1.7 Conclusion

The importance of healthcare to individuals and governments and its growing cost
to the economy have contributed to the emergence of healthcare as an important
area of research focal points for scholars in business and other researchers. Both
the quality of healthcare and the managing of medical care costs can be benefitted
from the use of pervasive computing. In addition pervasive computing is
responsible for effective data collection, standardization, storage, processing, and
timely communication of information to decision makers for better coordination of
healthcare. Pervasive computing relies on three interrelated components namely,
patient data collection and handling, effective ERM, and CAD tools. With
medicinal and clinical practice moving towards the personalized, more emphasis is
placed on the patient to control his medical information to reduce medical costs.
There is a growth in cheaper technologies to detect, tract, and understand diseases.
This chapter focuses on creating an awareness of these trends and brining to the
foray the role on machine learning in the future of healthcare.
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Chapter 2
Wavelet-based Machine Learning
Techniques for ECG Signal Analysis

Roshan Joy Martis, Chandan Chakraborty and Ajoy Kumar Ray

Abstract Machine learning of ECG is a core component in any of the ECG-based
healthcare informatics system. Since the ECG is a nonlinear signal, the subtle
changes in its amplitude and duration are not well manifested in time and fre-
quency domains. Therefore, in this chapter, we introduce a machine-learning
approach to screen arrhythmia from normal sinus rhythm from the ECG. The
methodology consists of R-point detection using the Pan-Tompkins algorithm,
discrete wavelet transform (DWT) decomposition, sub-band principal component
analysis (PCA), statistical validation of features, and subsequent pattern classifi-
cation. The k-fold cross validation is used in order to reduce the bias in choosing
training and testing sets for classification. The average accuracy of classification is
used as a benchmark for comparison. Different classifiers used are Gaussian
mixture model (GMM), error back propagation neural network (EBPNN), and
support vector machine (SVM). The DWT basis functions used are Daubechies-4,
Daubechies-6, Daubechies-8, Symlet-2, Symlet-4, Symlet-6, Symlet-8, Coiflet-2,
and Coiflet-5. An attempt is made to exploit the energy compaction in the wavelet
sub-bands to yield higher classification accuracy. Results indicate that the Symlet-
2 wavelet basis function provides the highest accuracy in classification. Among the
classifiers, SVM yields the highest classification accuracy, whereas EBPNN yields
a higher accuracy than GMM. The use of other time frequency representations
using different time frequency kernels as a future direction is also observed. The
developed machine-learning approach can be used in a web-based telemedicine
system, which can be used in remote monitoring of patients in many healthcare
informatics systems.
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2.1 Introduction

In the modern world cardiovascular disease (CVD) is one of the most common
causes of death, and is responsible for approximately 30 % of deaths worldwide,
and nearly 40 % of deaths in high-income, developed countries [1, 2]. Even
though the CVD rates are declining in high-income countries, the rates are
increasing in every other part of the world [1].

Generally, the sino-atrial (SA) node acts as the pacemaker of the heart, and the
primary source of electrical impulse. Cardiac arrhythmia (also known as dys-
rhythmia) represents a heterogeneous group of conditions in which there is
abnormal electrical activity in the heart. During arrhythmia, other impulse sources
may dominate the sinus node and act as independent sources of impulses.
Arrhythmia is one kind of CVD, which if left untreated may lead to life-threat-
ening medical emergencies that can result in cardiac arrest, hemodynamic col-
lapse, and sudden death. Abnormalities of both impulse formation and impulse
conduction can result in cardiac arrhythmias [3]. The heartbeat interval may be
regular or irregular, and may be too fast or too slow. Early intervention with
appropriate therapy is recommended in many arrhythmias; if left untreated, such
arrhythmias may lead more serious complications. Arrhythmias like ventricular
fibrillations and ventricular flutter are imminently life-threatening.

Increasing incidence of cardiovascular disease and death has drawn attention
worldwide to the research and development of methods for mass screening to
provide prognostic healthcare. One of the greatest challenges for both developed
and under-developed countries is the delivery of high-quality cardiac care to the
entire population. The lack of sufficiently qualified cardiac experts may, however,
limit individual attention for patients and force healthcare professionals to cater to
critical conditions and patients requiring immediate attention. The development of
automated tools to detect cardiac arrhythmias with considerable accuracy is
challenging. Widespread applications of such tools by qualified nurses or para-
medics trained to handle the equipment can greatly strengthen the screening
programs and aid in providing mass cardiac care with scarce resources.

Electrocardiography (ECG) is a noninvasive test for recording the electric
activity of the heart over time and can be captured by surface electrodes. ECG is
the simplest and most specific diagnostic test for many heart abnormalities,
including arrhythmia, and is especially essential in screening for heart problems.
The ECG pattern obtained from a normal subject is known as a normal sinus
rhythm. The assessment of alternations in the heart rhythm using an ECG is
commonly used to diagnose and assess the risk of any given arrhythmia. Different
computational tools and algorithms are being developed for the analysis of the
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ECG signal, and its automated diagnosis. In this chapter, the authors have made an
attempt to use machine-based classification of ECG signals to sort normal sinus
rhythm and arrhythmia signals into their respective classes.

Many methods for the detection of QRS complex (or the R-point) in the ECG
have been proposed [4–6]. The Pan-Tompkins algorithm is commonly used
because of its computational simplicity. The wavelet-based method proposed by
[5], later extended by [6], can also be used for R-point detection in the ECG. The
Pan-Tompkins algorithm has been used in the analysis in this chapter because of
its simplicity and higher detection rate.

Few approaches for the classification of arrhythmia beats have been described
in the literature [7, 8]. Most of these approaches use principal component analysis
(PCA) in the time domain signal [9]. Recently, [10] gave an account of the use of
PCA in DWT sub bands. Here, DWT sub-band features are compressed using
PCA. Since DWT provides compact supported basis space for the signal, the PCA
should provide higher compression than time domain counterparts.

2.2 Materials

In the proposed work, the open source data available at www.physionet.org from
MIT BIH arrhythmia and the MIT BIH normal sinus rhythm database is used. The
database is explained as follows.

R-point 
detection 

Discrete 
wavelet 
transform 

PCA on 
sub-bands 

Statistical 
test 

GMM 

EBPNN

SVM

Classifiers 

EC
G

Fig. 2.1 Machine-learning approach of ECG classification into normal sinus rhythm and
arrhythmia
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2.2.1 MIT- BIH Normal Sinus Rhythm Database

The MIT-BIH normal sinus rhythm database consists of 18 long term ECG
recordings of subjects referred to the Arrhythmia Monitoring Laboratory at Bos-
ton’s Beth Israel Deaconess Medical Center. Subjects included in this database
were found to have had no significant arrhythmias; they included five men, aged
26-45 and thirteen women, aged 20-50. The ECG data was digitized at 128 Hz.

2.2.2 MIT BIH Arrhythmia Database

The MIT BIH arrhythmia database consists of 48 half-hour excerpts of two
channel ambulatory ECG data obtained from 47 subjects studied by the BIH
arrhythmia laboratory between 1975 and 1979. Twenty-three recordings were
randomly taken from a set of 4,000 24 h ambulatory ECG data collected from a
mixed population including both inpatients (approximately 60 %) and outpatients
(approximately 40 %) at the medical center. The remaining 25 recordings were
selected from the same set to include less common but clinically significant
arrhythmias. The ECG recordings were sampled at 360 Hz per channel with an 11-
bit resolution over the 10 mV range.

2.3 Methodology

Figure 2.1 depicts the machine learning approach of the proposed ECG classifi-
cation system. The proposed methodology consists of an automated detection of
the R-point using the Pan-Tompkins algorithm, wavelet sub-band decomposition
using multiple DWT basis functions, principal component analysis (PCA) on
DWT sub-bands, statistical significance tests using independent sample t-tests, and
automated classification using three classifiers, Gaussian mixture model (GMM),
error back propagation neural network (EBPNN), and support vector machine
(SVM) classifiers.

Prior to R-point detection, some pre-processing is necessary to remove noise
and artifacts that the signal may contain. Also, the two classes of signals
(arrhythmia and normal sinus rhythm) are sampled at different rates. Therefore, re-
sampling is also required.
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2.3.1 Preprocessing

Since the signals considered for analysis are sampled at different rates, it is nec-
essary to choose a common sampling rate and re-sample the signals. We have
chosen 250 Hz as the common sampling rate, and both signals are re-sampled
using standard re-sampling techniques [11]. Also, the signals chosen are from an
open source database, and might contain noise, artifacts, and power line inter-
ference. It is, therefore, necessary to preprocess the signal. Some basic filters [12]
have been used here for noise and artifact filtering.

2.3.2 R-point Detection

The R-wave in the QRS complex of ECG has a high amplitude and an easily
detectable peak. The R-point is, therefore, chosen as a characteristic point for
registration. A number of algorithms are being reported in the literature for the
detection of R-point. The Pan-Tompkins algorithm (1985) is a popular approach
for QRS detection, which is computationally simple and, hence, takes less time to
run on a computer. In addition to this method, there is a method using the quadratic
spline-based discrete wavelet transform [6] that detects the beats accurately, but
this method is computationally exhaustive. We have chosen the Pan-Tompkins
method due to its computational simplicity and ease in implementation. An
extended version of the Pan-Tompkins algorithm consists of the following steps.

1. Compute the first derivative of ECG, and find its absolute value.
2. Smooth this signal by passing through a moving average filter as follows.

y nð Þ ¼ 1
4

x nð Þ þ 2x n� 1ð Þ þ xðn� 2Þgf ; ð2:1Þ

wherexðnÞand yðnÞ represent the input and output of the smoothing filter.
3. Compute the derivative of the smoothened signal and its absolute value.
4. Smooth the signal obtained from step 3 using the filter in Eq. (2.1).
5. Sum the signal obtained from steps 2 and 4.
6. Threshold the signal obtained from step 5, and obtain square pulses.
7. Compensate for the group delay due to the involved filters by advancing in

time.

The derivative gives the slope information, whereas smoothing removes high-
frequency noise. The above operations are multistage filtering methods with a non-
linear operation in between, which yields the R-point.
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2.3.3 DWT Computation

Though Fourier analysis [12] is a traditional tool for the analysis of global fre-
quencies present in the signal, it lacks in temporal resolution due to the increased
frequency resolution. Some frequency resolution can be exchanged to get better
time resolution. This exchange is performed by defining short duration waves
called mother wavelet functions so that the given signal for analysis is projected on
this basis function. In traditional Fourier transform, the data is projected on
sinusoidal basis functions which extend the span of time domain, i.e., �1 to þ1.
The wavelet basis function [13] is parameterized by the translation ‘b’ and dilation
‘a,’ such basis function is given by,

wa;b tð Þ ¼ 1
ffiffiffi

a
p wðt � b

a
Þ: ð2:2Þ

Equation (2.2) provides a basis for wavelet transformation. The ECG signals
are decomposed for translation and dilation in order to get a multi-resolution
representation. This is the case of continuous wavelet transform. This transform is
made discrete using a dyadic grid scale in order to get a discrete wavelet transform
(DWT) [14]. Such DWT at scale 2�m and time location n is given by

wm;n tð Þ ¼ 2
m
2 � wð2�m

2 � t � nÞ: ð2:3Þ

The dyadic grid sampled DWT are generally orthonormal. Using the basis
function in Eq. (2.3), the DWT can be expressed as the inner product between the
ECG signal xðtÞand the basis function as

Tm;n ¼
Z

1

�1

xðtÞwm;nðtÞdt ð2:4Þ

Tm;n is the wavelet coefficient at scale (or dilation) m and location (or trans-
lation) n, and it provides the detail (fine information) present in the signal.

The dyadic grid sampled orthonormal discrete wavelets are associated with
scaling functions and their dilation equations. The scaling function is associated
with signal smoothing and has the same form as the wavelet. It is given by,

;m;n tð Þ ¼ 2�m=2;ð2�m � t � nÞ; ð2:5Þ

where ;m;n tð Þ has the property R

1

�1
;0;0 tð Þdt ¼ 1.

Often ;0;0 tð Þ is referred to as the father scaling function or father wavelet. The
scaling function is orthogonal to the translations of itself, but not to dilations of
itself. The smoothing of the signal (or the coarse details or the envelope of the
signal) is obtained by convolving the scaling function with the signal, and the
obtained samples are called approximation coefficients and are defined as
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Sm;n ¼
Z

1

�1

xðtÞ;m;n tð Þdt: ð2:6Þ

A continuous approximation of the signal can be obtained at scale m using
following equation,

xm tð Þ ¼
X

1

n¼�1
Sm;n;m;n tð Þ; ð2:7Þ

where xm tð Þ is a smooth, scaling function-dependent version of the signal at scale
m. Using both approximation and wavelet (detail) coefficients, the signal can be
expressed as follows

x tð Þ ¼
X

1

n¼�1
Sm0;n;m0;n tð Þ þ

X

1

m¼�1

X

1

n¼�1
Tm;nwm;n tð Þ: ð2:8Þ

From Eq. (2.8), we can see that the original continuous signal is expressed as a
combination of an approximation of itself at arbitrary index, m0 added to a suc-
cession of signal details from scales m0 to negative infinity. The signal detail at
scale m is given by,

dm tð Þ ¼
X

1

n¼�1
Tm;nwm;n tð Þ: ð2:9Þ

From Eqs. (2.7) and (2.9), we can write

x tð Þ ¼ xm0 tð Þ þ
X

1

m¼�1
dm tð Þ: ð2:10Þ

From Eq. (2.10), it easily follows that

xm�1 tð Þ ¼ xm tð Þ þ dm tð Þ: ð2:11Þ

From Eq. (2.11), we can see that if we add the signal detail at an arbitrary scale
to the signal approximation at the same scale, we get the signal approximation at
an increased resolution. Hence, wavelet transformation provides multi-resolution
analysis (MRA) capability.

In this work, different basis functions are used. They are Daubechies-4,
Daubechies-6, Daubechies-8, Symlet-2, Symlet-4, Symlet-6, Symlet-8, Coiflet-2
and Coiflet-5. All the considered wavelet families are orthogonal.

The frequency components in each of the sub-bands are shown in Fig. 2.2.
Since the sampling frequency of the signal under study is 250 Hz, the maximum
frequency contained by the signal will be 125 Hz. Therefore, in the first level,
approximation will consist of 0–62.5 Hz frequencies, whereas first level detail
consists of 62.5–125 Hz frequencies.
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2.3.4 Sub-band Principal Component Analysis

There will be a large number of DWT coefficients in every sub-band of the ECG. If
all these coefficients are considered, they will create a large computational burden
on the classifier. Therefore, it is wise to represent these coefficients by fewer
components. In this study, we have used PCA [15] to reduce the number of
features in each of the sub-bands of interest. We identified four sub-bands based on
the frequency present in the signal. The four sub-bands are 2nd-level detail, 3rd-
level detail, 4th-level detail, and 4th-level approximation. Each of these sub-band
wavelet coefficients is subjected to PCA, and the components are chosen such that
they will contain 98 % or more of the total energy present in that sub-band.

Mathematically, PCA projects the data from the original coordinate system to a
new coordinate system in which the first coordinate corresponds to the direction of
maximum variance, and successive coordinates correspond to the directions in
decreasing order of variance. Some directions contribute less variability, and those
directions need not be preserved in our representation. In the new coordinate
system, the axes are called principal components (PCs). A bound of 98 % con-
tainment of total variability of segmented ECG is used as a threshold on the total
variance in all the considered PCs. PCA consists of following steps.

Compute data covariance matrix as

C ¼
X

N

i¼1

ðxi � xÞðxi � xÞT ; ð2:12Þ

where xi represents the ith pattern x represents the pattern mean vector, and N is
the number of patterns.

Compute the matrix V of Eigen vectors and diagonal matrix of Eigen values
D as

V�1CV ¼ D: ð2:13Þ

0     7.8125    15.625   31.25     62.5       125

1  d1 

2 d2

a3 d3

a

a

a4 d4

Frequency in HzFig. 2.2 Wavelet
decomposition: Distribution
of frequencies in various sub-
bands
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The Eigen vectors in V are sorted in descending order of Eigen values in D, and
the data is projected on these Eigen vector directions by taking the inner product
between the data matrix and the sorted Eigen vector matrix.

2.3.5 Statistical Test

The DWT features in compact supported basis space provide sparser representa-
tion for ECG in sub-bands. When PCA is applied on sub-bands, it should provide
higher compression, and the method is more meaningful. Therefore, it is expected
for the principal components of DWT features to provide better statistical sig-
nificance than time domain principal components. Both time domain features and
DWT features are compared against the two classes of signals for equality of class
group means using independent sample t test [16].

2.3.6 Classification

The significant DWT features obtained from statistical tests are used for sub-
sequent pattern classification. We have used three classifiers, Gaussian mixture
model (GMM), error back propagation neural network (EBPNN), and support
vector machine (SVM).

2.3.6.1 Gaussian Mixture Model

We have a two-class pattern classification of ECG into normal sinus rhythm and
arrhythmia classes. The GMM assumes that the features are normally distributed,
and each class is characterized by its mean (lk) and covariance matrix (Rk). Since
we have applied an orthogonal transformation in compact supported basis space,
the features are likely to be uncorrelated. The off-diagonal elements in the
covariance matrix are approximately zero. The probability density function of
GMM for every sample belonging to a given class k, is given by

P xnjxkð Þ ¼ 1

ð2pÞd=2jRkj1=2
exp � 1

2
ðxn � xkÞT jRkj�1ðxn � xkÞ

��

; ð2:14Þ

where

xk ¼
1
jXkj

X

xn2xk

xn ð2:15Þ
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and

Rk ¼
1
jXkj

X

ðxn � xkÞðxn � xkÞT ¼ diag r2
ii

� �

; 1� i� d ð2:16Þ

The corresponding posterior probabilities are given by Bayes’s rule as

P xkjxið Þ ¼ P xijxkð Þ
P2

k¼1 PðxkÞP xijxkð Þ
ð2:17Þ

Initially, the mean and covariance matrices are assigned with some random
values. The values are updated using an expectation maximization (EM) algorithm
and a maximum likelihood estimation method. The re-estimation formulae are as
follows.

blj ¼
PN

i¼1 xi � P xjjxi

� �

PN
i¼1 P xjjxi

� � ð2:18Þ

br2
j ¼

PN
i¼1ðxi � bljÞ2P xjjxi

� �

PN
i¼1 P xjjxi

� � ð2:19Þ

p bxj

� �

¼ 1
N

X

N

i¼1

P xjjxi

� �

ð2:20Þ

An initial model having parameters ðlk;RkÞ is assumed from the data. The EM
algorithm has two steps: an E step and an M step. During the E step, the class
conditional density is computed according to Eq. 2.14 and the posterior density is
also computed according to Eq. 2.17. During the M step, the model parameters are
re-estimated according to Eqs. 2.18-2.20. The process is continued until the new
model remains almost identical to the previous model. At this point, the algorithm
is said to be converged. The GMM optimizes the following objective function,

J ¼
Y

n

X

k

pðxkÞpðxnjxkÞ: ð2:21Þ

GMM minimizes the product over all the patterns, the total class conditional
density weighted with the respective prior probability.

2.3.6.2 Error Back Propagation Neural Network

An error back propagation neural network [17] is used in our study. The neural
network is trained on the training set of the data such that the weights get updated
recursively with respect to the patterns. This is also an optimization problem where
following objective function is minimized.
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J xð Þ ¼ 1
2

X

N

n¼1

X

c

k¼1

yk xn;xð Þ � tn
k

�� 2
; ð2:22Þ

where yk xn;xð Þ is the network response for the kth class neuron in the output layer
and tn

k is the target for kth class of nth observation feature vector.
The gradient descent method is used in the analysis to adapt the network

weights. We have used adaptive serial learning from the data using minimum
mean square error criterion. Once the network is trained, the test signal is fed to the
neural network and the data is classified to one of the two predefined classes.

2.3.6.3 Support Vector Machine

SVM [18] is a single layer, highly nonlinear network which optimizes the class
separation boundary such that the distance from the features falling in a given class
to the hyperplane gets simultaneously maximized. SVM is a supervised classifier
that has generalization ability [19] in the sense that it can classify an unseen
pattern correctly. If xi; yið Þ; i ¼ 1 : N is the data set, xi is the ith pattern point, and
yi is the corresponding class label, then let cþ and c� be the centroids for two
classes in binary classification problem. The classifier output will be

yi ¼ sgn x� cð Þ � wð Þ ¼ sgnð x:cþð Þ � x:c�ð Þ þ bÞ ð2:23Þ

where

b ¼ 1
2
ðjjc � jj2 � jjc þ jj2Þ: ð2:24Þ

The optimal hyperplane separating the two classes and satisfying condition
given in Eq. 2.23 is

minimizew;b
1
2

wk k2 ð2:25Þ

such that

yi w:xið Þ þ bð Þ� 1; i ¼ 1; . . .N: ð2:26Þ

The Lagrangian dual of Eq. 2.25 is a quadratic programming problem used to
find the optimal hyperplane separating the two classes.

2.3.7 k-fold Cross Validation

k-fold cross validation [20] is used for k ¼ 3. Here, the total number of samples are
sub-sampled into three ðkÞ sets; one set is used for testing, whereas the other two
sets are used to train the classifier. The process is repeated two more times such
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that every sub-partition is used as a testing set and the rest are used for classifier
training. The three accuracies are averaged to estimate the average classifier
performance. Using k-fold cross validation, the bias in choosing the samples from
the population can be overcome.

2.4 Results and Discussion

In order to apply our proposed methodology, a two-class ECG classification
problem has been formulated based on the MIT BIH arrhythmia and MIT BIH
normal sinus rhythm datasets (described in Sect. 2.2). The Pan-Tompkins algo-
rithm is used to detect the R-point because of its simplicity and accuracy. The
detection of the R-point is shown in Fig. 2.3, where the detected R-point is marked
with a black asterisk. It can be seen from Fig. 2.3 that the Pan-Tompkins method
detects the R-point with good precision. In fact, the Pan-Tompkins algorithm is a
multistage filtering (differentiation, smoothing, etc.) and a nonlinear element
(rectification) between the linear operations in the algorithmic steps.

Once the R-point is detected, a window (or one segment) of 200 samples is
extracted by choosing 99 points on the left of the R-point, and 100 points on the
right of the R-point and used for further classification. The power spectral density
(psd) is computed using an autoregressive method and is plotted for a normal sinus
rhythm and arrhythmia signal in Fig. 2.4. The objective of computing psd. is to
identify the frequencies of interest so that they can descriminate the two kinds of
beats (normal sinus rhythm and arrhythmia) distinctly. We can observe from
Fig. 2.4 that frequencies in the range of 0-50 Hz can be used for that purpose.
Hence, by referring to Fig. 2.2 and the graph in Fig. 2.4, it is observed that the sub-
bands of interest are detail 2, detail 3, detail 4, and approximation 4.
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Fig. 2.3 R-point detection in normal sinus rhythm signal
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The DWT using Daubechies-4 wavelet is shown for normal sinus rhythm signal
in Fig. 2.5. We can see that all the sub-bands of interest contain some signal
component that can be used for performing classification. Figure 2.6 shows the
DWT computed using the Daubechies-4 wavelet for an arrhythmia signal. We can
see that the DWT decompositions of the two signals look different. If these
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Fig. 2.4 The power spectrum of a Normal sinus rhythm, b Arrhythmia signal
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Fig. 2.5 DWT decomposition of normal sinus rhythm signal a Original signal, b Detail-2,
c Detail-3, d Detail-4, e Approximation-4 signals
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coefficients are compressed and represented by fewer components, they can be
used as features for subsequent classification. The reason for compression is that
using fewer components reduces the computational burden on the classifier.

PCA is applied on each sub-band of interest and different wavelet basis func-
tions are used. We use the Daubechies-4, Daubechies-6, Daubechies-8, Symlet-2,
Symlet-4, Symlet-6, Symlet-8, Coiflet-2, and Coiflet-5 wavelet basis functions.
PCA is an orthogonal transformation which maps the data into the directions of
maximum variability. Since DWT is a compact supported basis function, having
sparse representation, PCA on it should provide higher compression. The number
of principal components is chosen so that the components contain 98 % variability
of the respective sub-band. For different basis functions, the number of principal
components chosen from each of the sub-bands and the total variability of the data
contained is shown in Tables 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9.

The Eigen value profile for the Daubechies-4 wavelet is shown in Fig. 2.7.
After PCA, the compressed components are subjected to a statistical signifi-

cance test. Based on the p-value provided by the statistical test, the significance of
components is decided, and the significant features are used for further classifi-
cation. The statistical significance test is performed for every basis function and
the results are tabulated in Table 2.10. It is observed from Table 2.10 that the
DWT domain principal components are more significant than time domain com-
ponents on the basis of the statistical test.

The GMM classification for the Daubechies-6 wavelet basis function features is
shown in Fig. 2.8. We can see that the log likelihood in the graph increases and
becomes steady after convergence of the algorithm.
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Fig. 2.6 DWT decomposition of arrhythmia signal a Original signal, b Detail-2, c Detail-3,
d Detail-4, e Approximation-4 signals
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The classification by EBPNN is shown in Fig. 2.9, which shows that the total
mean-squared error reduces with epochs. We can observe that the EBPNN algo-
rithm converges in 19 epochs for Daubechies-6 wavelet family features. Fig-
ure 2.10 shows SVM classification with linear kernel. Since the data is linearly
separable, we have used only linear kernel SVM.

Table 2.1 DWT decomposition using Daubechies-4

Sub-band Number of PCs Energy in %

Detail 2 5 98.1770
Detail 3 3 99.2262
Detail 4 2 98.5930
Approximation 4 3 98.8920

Table 2.2 DWT decomposition using Daubechies-6

Sub-band Number of PCs Energy in %

Detail 2 3 98.1957
Detail 3 2 99.1075
Detail 4 2 99.4899
Approximation 4 2 98.3697

Table 2.3 DWT decomposition using Daubechies-8

Sub-band Number of PCs Energy in %

Detail 2 7 98.1937
Detail 3 2 99.4728
Detail 4 2 99.0444
Approximation 4 2 98.5753

Table 2.4 DWT decomposition using Symlet-2

Sub-band Number of PCs Energy in %

Detail 2 2 98.2329
Detail 3 3 99.4611
Detail 4 2 99.3243
Approximation 4 2 98.4532

Table 2.5 DWT decomposition using Symlet-4

Sub-band Number of PCs Energy in %

Detail 2 10 98.0661
Detail 3 2 99.0872
Detail 4 2 99.6493
Approximation 4 2 98.6254
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Table 2.11 shows classification accuracies of various schemes using different
wavelet basis functions. It can be observed from Table 2.11 that EBPNN provides
higher accuracy than GMM and SVM leads to the highest accuracy. Amongst
various wavelet families, it can be noted that Symlet-2 consistently performs better
for all the classifiers and has the highest possible accuracy.

Table 2.6 DWT decomposition using Sym-6

Sub-band Number of PCs Energy in %

Detail 2 3 98.1292
Detail 3 2 98.8807
Detail 4 2 99.5307
Approximation 4 2 98.1622

Table 2.7 DWT decomposition using Sym-8

Sub-band Number of PCs Energy in %

Detail 2 10 96.6749
Detail 3 2 98.8332
Detail 4 2 99.6216
Approximation 4 3 98.6306

Table 2.8 DWT decomposition using Coiflet-2

Sub-band Number of PCs Energy in %

Detail 2 10 96.9230
Detail 3 2 99.1172
Detail 4 2 96.6110
Approximation 4 3 98.6443

Table 2.9 DWT decomposition using Coiflet-5

Sub-band Number of PCs Energy in %

Detail 2 10 96.0415
Detail 3 2 98.2607
Detail 4 2 99.6023
Approximation 4 2 98.5899
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Fig. 2.7 PCA on DWT sub-bands a Detail 2, b Detail 3, c Detail 4, and d Approximation 4,
decomposition using the db6 wavelet
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Table 2.10 Statistical significance test for time domain and Daubechies-6 based DWT sub-band
features

Time domain PCs Statistical significance DWT domain PCs Statistical significance

t p t p

1 -61.998 0.000 1 -70.9029 0.000
2 -156.68 0.000 2 -52.5739 0.000
3 0.1702 0.8650 3 -3.4508 0.000
4 -1.7762 0.0763 4 -28.7637 0.000
5 0.4157 0.6778 5 37.3751 0.000
6 0.4035 0.6867 6 -27.1491 0.000
7 -0.1840 0.8541 7 22.3390 0.000
8 -0.3165 0.7517 8 10.5710 0.000
9 0.8103 0.4181 9 -93.7320 0.000
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2.5 Conclusion

In this chapter, a systematic approach is developed for screening arrhythmia and
normal sinus rhythm from their ECG profiles. We have extracted time frequency
features using various basis functions, including Daubechies, Symlet, and Coiflet
wavelet families. PCA is applied on time frequency sub-band features and, in this
compact supported basis space, higher compression is expected. Based on our
experiments, we have determined that different basis functions distribute energy in
different sub-bands in a unique way for a given wavelet. Our methodology exploits
this energy distribution so that the features are well represented, thus resulting in
higher accuracy. These time-frequency features are markers of disease, since these
features are able to discriminate the data into two classes. As a future direction,
other time-frequency representations can be used to see how the energy com-
paction is achieved. In addition, various other dimensionality reduction techniques
can be used for performance. The machine-learning methodology given in this
chapter can be used efficiently in telemedicine systems to identify abnormal events
in the ECG signals so that emergency cases can be identified and such patients can
be attended for critical care.
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Chapter 3
Application of Fuzzy Logic Control
for Regulation of Glucose Level
of Diabetic Patient

K. Y. Zhu, W. D. Liu and Y. Xiao

Abstract Diabetes can lead to many complications. If a patient cannot control his
or her glucose level properly, he or she may suffer serious consequences. The
result may be ketosis, which is normally due to an increase of acetone (a toxic acid
product) and may lead to a situation such as diabetic coma. A fuzzy logic control
system for the regulation of glucose level for diabetic patients is proposed in this
chapter. A mathematical model describing the relationship between the human
glucose level, insulin, and food is first presented. Then, a generalized fuzzy logic
controller, including a set of fuzzy logic rules, is introduced to regulate glucose
levels for diabetic patients. Following the fuzzy logic controller, simulation is
presented. The results show that the fuzzy logic control is effective for handling
the glucose level based on feedback scheme.

3.1 Introduction

It is known that the number of diabetic patients is increasing in the world, especially
in the developed countries and this increase is a challenging problem for healthcare
providers in the countries concerned. Diabetes, also called diabetes mellitus or
diabetes insipidus, is caused by insufficient production of insulin (either absolutely
or relative to the body’s needs), production of defective insulin (which is uncom-
mon), or the inability of cells to use insulin properly. Diabetes can occur as one of
two distinct types: Type I (also called as insulin dependent) or Type II (called as
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non-insulin-dependent) diabetes. The main objective for treating diabetes is regu-
lation of elevated blood sugars (glucose) without causing the blood sugar level to
drop too low. Both types of diabetes are treated with adequate exercise and special
diets. Type I diabetes is also treated with insulin, whereas Type II diabetes is treated
with weight reduction in addition to adequate exercise and a special diet. When
these methods are not successful, oral medications are commonly adopted. If oral
medications are ineffective, insulin medications may be prescribed.

Insulin is produced by the pancreas, the key which opens the little holes on the
cell membranes for the glucose to enter the cells in a normal way. Glucose is
essential energy, like fuel, required for every cell of our body. However, a diabetic
patient does not have enough insulin to open the little holes of the cell membranes.
This lack of insulin can prevent the glucose circulating in the blood stream from
entering cells. As a result, the blood glucose level increases and spills into the
urine. A diabetic patient without enough insulin is like a thirsty sailor in the ocean
who is surrounded by water but cannot drink it. For the diabetic his/her body cells
are surrounded by sugar, but cannot consume it as they need the insulin to make
the sugar enter each cell and be consumed.

Figure 3.1 shows the relationship among sugar, insulin, and fat in a diabetes
patient. This figure shows why a strict diet and insulin are so important to the
diabetes patients.

There are three types of insulin available to healthcare providers and diabetic
patients: regular insulin, Lente insulin, and Humulin. Regular insulin is extracted
from the pancreas of pork and beef. The effect from this insulin is rapid and lasts
from 4 to 6 h. Lente insulin comes from pork and beef (with a type of oily
substance for slower reabsorption) and its effects last longer than the effects from
regular insulin. Humulin insulin is a mixture of regular and Lente insulin. A
standard Humulin insulin syringe contains a mixture of 70 % Lente and 30 %
regular insulin. At the present time, Human insulin is the most used because some
patients will develop a resistance to insulin extracted from animals due to the
minor amino acid difference between animal insulin and human insulin. We can
manufacture Humulin insulin by synthesis.

Uncontrolled glucose level for diabetic patient may cause artherosclerosis, or
hardening the arteries and form blockage in the circulation, affecting the cardiac
arteries, brain, kidneys, liver, and feet. From the artherosclerosis, it is known that
heart attacks, strokes, and liver and kidney failure frequently occur. High glucose

Sugar meal

Fatty meal Sugar
Insufficient 

insulin 

Pancreas Deposit Liver, belly,
breasts, etc

+

+

Fig. 3.1 Relationship among sugar, insulin and fat
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levels can also cause the formation of microscopic aneurysms on the retina,
originating hemorrhage, and decrease of vision and can consequently cause
blindness. Circulation in the feet may also decrease, leading to artery hardening,
ulcers, infection, and even gangrene.

Although diabetes could cause severe damage to the human body, if the patients
control the disease by diet or insulin properly, all the complications could be
avoided or prevented. Research shows that we could reduce the mortality of
diabetic and non-diabetic ICU (Intensive Care Unit) patients by up to 50 % [1]
through tight control of blood glucose level. In order tightly control the blood
glucose level, diabetic patients need to monitor their daily intake and activity
strictly; this step could help maintain their blood sugar at adequate levels.
Unfortunately, this strict lifestyle may cause an ‘institutional’ psychology, and it
may be difficult to consistently maintain a strict daily regimen over several years.

We can use the devices to measure the glucose level and administer insulin, but
the measure and inject are two separate procedures which have no automated
interface. It is difficult for patients to perform these two procedures manually every
day, and the procedures may also introduce errors due to human miscalculation
and limitations. Furthermore, tightly controlling the blood glucose levels to the
basal level of 4.5 mmol-1 could significantly reduce the damage caused by long-
term exposure to elevated glucose levels. The Diabetes Control and Complications
Trial (DCCT), a study which followed almost 1,500 people with Type I diabetes
for 10 years, proved that tight control over blood glucose levels could reduce eye
disease in 62 % of patients, kidney disease in 56 % of patients, and nerve damage
in 60 % of patients with Type I diabetes. On the other hand, the UK Prospective
Diabetes Study (UKPDS), which followed over 5,000 patients with Type II dia-
betes in 23 clinics in Europe for 20 years, proved for the first time that better blood
glucose control reduces the risk of eye disease by a quarter, and early kidney
damage by a third in individuals with Type II diabetes. In these studies, restricting
control meant keeping the blood glucose levels as close to normal as possible,
which could extend the life expectation and provide protection against long-term
health risks for patients [1–3].

A typical day for an insulin therapy diabetic patient might involve injecting
long-acting insulin approximately three times and injecting rapid-acting insulin
before meals to reduce the post-meal blood glucose spike. Moreover, most com-
monly available glucose sensing devices are invasive and measure the blood
glucose content by a small finger-prick blood sample. The pain involved in the
finger pricking may cause diabetic patients to measure blood sugar level more
infrequently. Although new technologies have brought us products such as the
Continuous Glucose Monitoring System (CGMS), which could provide the
updated glucose level every 5 min, for up to 72 h and an insulin pump which could
inject rapid-acting insulin continuously over 24 h. These two technologies will be
discussed in later sections.

In 2006, the FDA approved the MiniMed Paradigm
�

REAL-Time Insulin Pump
with Continuous Glucose Monitoring System. This treatment system is the first to
provide real-time, continuous glucose monitoring. The MiniMed Paradigm REAL-
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Time system is composed of two components, a REAL-Time Continuous Glucose
Monitoring (CGM) System, and a MiniMed Paradigm insulin pump, but the
amount of insulin injected is determined by the patients. Patients will take
immediate action to improve their control of glucose control after the glucose
information is displayed on the insulin pump. Integrating an insulin pump with
real-time CGM is an attempt to develop a closed-loop insulin injection system that
may mimic some functions of the human pancreas.

In our research, we attempted to introduce a closed-loop system based on a
fuzzy logic control scheme, which could effectively control a diabetic patient’s
blood sugar level. This system may help patients more fully engage in the ‘normal’
routines of life with reduced risk of long-term adverse end-results. Figure 3.2
shows the block diagram of the modeled dynamics for the human glucose regu-
latory system. Our control system will be based on this glucose regulatory system.
The mathematical detailed of this model will be discussed in Sect. 3.3.

3.2 Mathematical Model of Glucose Regulatory System

A simple model which could capture all the essential dynamic behaviors is pre-
sented below. This model does not require unavailable data and is suitable to a
wide variety of subjects. There are also comprehensive models available, but these

Pancreas

(Produces endogenous 
insulin)

Exogenous Insulin input

(Insulin from outside by 
injection, pump etc.)

Remote Compartment

(This provides the time delay 
between insulin injection and the 

glucose utilization)

Plasma

(The utilization of the glucose by 
the insulin takes place here)

Liver

(Produces basal 
endogenous glucose) 

Exogenous glucose input

(Food intake, etc.) 

Fig. 3.2 Physiological block diagram of the modeled system
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models require several time points of input to generate the insulin infusion profile
and are unsuitable for real-time control.

A well-known and physiologically verified model originated from the work of
Bergman et al. The concept of this model is to use a remote compartment for the
storage of insulin to account for the time delay between the injection of insulin and
its utilization to reduce blood glucose levels. These mathematical models are:

_G ¼ �p1G� X G þ GBð Þ þ P tð Þ; ð3:1Þ

_X ¼ �p2X þ p3I; and ð3:2Þ

_I ¼ �n I þ IBð Þ þ u tð Þ=VI ; ð3:3Þ

where G is the concentration of the plasma glucose above the basal level
mmol/Lð Þ, GB is the basal level for plasma glucose concentration mmol/Lð Þ, i.e.

Gþ GB is the total glucose in the blood plasma, where GB ¼ 4:5 typically, X is the
utilization effect of insulin in a remote compartment min�1

ffi �

, I is the concen-
tration of the plasma insulin above basal level mU/Lð Þ, IB is the basal level for
plasma insulin concentration mU/Lð Þ, P tð Þ is the exogenous glucose infusion rate
mmol/L/minð Þ, u tð Þ is the exogenous insulin infusion rate mU/L/minð Þ, p3 is the

subject dependent model parameter mU/L/min2ð Þ, V1 is the insulin distribution
volume Lð Þ, and n, p1, p2 are the subject dependent model parameters min�1

ffi �

.
The parameters, p1, p2 and p3 may be changed to represent different conditions

of the glucose regulatory system [4]. The parameter p1 is the fractional clearance
of plasma glucose at basal insulin. For diabetic subjects,

p1 ¼ 0; p2 ¼ 0:025; p3 ¼ 0:000013 ð3:4Þ

The model is therefore patient specific and is adapted to each person before a
controller is developed.

In some conditions, e.g. ICU patients who have direct arterial/venous lines that
bypass the subcutaneous compartment, this model can be simplified as:

_G ¼ �p1G� SII Gþ GBð Þ þ P tð Þ ð3:5Þ

_I ¼ �n I þ IBð Þ þ u tð Þ=VI ; ð3:6Þ

where SI L/mU/minð Þ refers to patient specific parameters. In our experiments,
these parameters refer only to insulin sensitivity [5–12].

The model shown in Eqs. (3.1) through (3.3) was developed to model insulin
sensitivity, a measure of how efficiently the body responds to insulin input after
taking a glucose tolerance test (OGTT). The model is simple but accurately rep-
resents the essential dynamics of the human glucose regulatory system for a
variety of patients. These three equations represent insulin production and infu-
sion, insulin storage in a remote compartment, and glucose input and insulin
utilization in a second compartment. Equation (3.1) represents the glucose levels
in the blood stream and the dynamics of its reaction with insulin. Equation (3.2)
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defines the dynamics and delay in the transport of insulin from the subcutaneous
layer to the blood plasma and subsequent utilization. Insulin inputs are either
endogenous from the pancreas or exogenous from a pump or injection and rep-
resented in Eq. (3.3). Figure 3.3 is graphically outlines the glucose regulatory
system for the model with Eqs. (3.1)–(3.3).

The values of n, VI , GB, and IB employed for all simulations are defined, for an
average-weighted man as follows:

VI ¼ 12 L; n ¼ 5
54

min�1; GB ¼
4:5 mmol

L
; IB ¼ 15 mU/L ð3:7Þ

Endogenous & Exogenous Input Part System State & Equations Part

Endogenous glucose (produced by liver)

Exogenous glucose input (food intakes)

G = G (t, X, p(t))

Glucose production and utilization 
take place in plasma 

Endogenous insulin (produced by pancreas)

Exogenous insulin input (by pump, etc.)

X = X (t, I)

Remote Compartment 

I = I (t, u(t))

Insulin production 

Controller Part

G

P(t)

I

u(t)

Controller

Fig. 3.3 Model of the glucose regulatory system
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This controller forms a simple feedback loop which employs the blood glucose
level above basal, G, and its derivate, _G, as sensor input, and the exogenous insulin
infusion rate, u tð Þ, as the control output. There are only two forms of data available
to control the system: G and G. Therefore, the controller measures the output from
Eq. (3.1) while directly influencing the dynamics in Eq. (3.3) via the control
action. In between is the remote compartment represented in Eq. (3.2) which
describes the time delay and additional dynamics.

3.3 Fuzzy Logic Control System

Fuzzy logic control systems are essentially rule-based expert systems, which
consist of a set of linguistic rules in the form of ‘‘IF–THEN.’’ The fuzzy IF–THEN
rules are of the following form:

Ri: IF x1 is Fi
1 and…and xr is Fi

r, THEN y1 is Gi
1 and…and ym is Gi

m where Fi
j

j ¼ 1; 2; . . .rð Þ and Gi
k k ¼ 1; 2; . . .mð Þ are labels of fuzzy sets characterized by

appropriate membership function. X ¼ x1; x2; . . .xrð Þ and Y ¼ y1; y2; . . .ymð Þ 2 V
are input and output linguistic variables, respectively, and i ¼ 1; 2; . . .u means the
ith rule. Each of the fuzzy IF–THEN rules defines fuzzy set

Fi
1 � Fi

2 � � � �Fi
r ! Gi

1 þ Gi
2 þ � � �Gi

m; ð3:8Þ

where ‘‘þ’’ represents the union of independent variables. Since the outputs of a
multi-input and multi-output (MIMO) rule are independent, the general rule
structure of a MIMO fuzzy system can be represented as a collection of multi-input
and multi-output (MISO) fuzzy systems by decomposing the above rule into m
sub-rules with Fi as the single consequence of the ith sub-rule.

Adaptive fuzzy logic control systems consist of a collection of linguistic rules,
fuzzy implications, fuzzy model identifications, and an adaptive algorithm. This
adaptive fuzzy logic control system can be a two-level system. The first level, or
lower level, of the system is a simple fuzzy logic controller. The second level, or
higher level, is the fine-tuning system that is used for processes with changing
conditions. In a simple fuzzy logic control system, the measured nonfuzzy state
variable is compared with a given nonfuzzy set point. Then, the crisp nonfuzzy
value is converted into two fuzzy controller inputs, which are an error and a
change of error. Through the inference engine and knowledge base of given rules,
the expert system can obtain a linguistic value for the controller output. Because in
practice it is necessary to calculate the deterministic value of the controller output,
a defuzzier, which converts the output fuzzy set to a deterministic or crisp value
and send this value to the final control element, is needed.

The block diagram of the fuzzy control system for regulation of glucose level is
shown in Fig. 3.4. The learning rule is determined based on the errors, i.e. the error
and rate of change of the error for glucose level defined by
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e tð Þ ¼ G tð Þ ð3:9Þ

r tð Þ ¼ G tð Þ � G t � 1ð Þ; ð3:10Þ

where e tð Þ is the glucose level deviated from its basal level of GB, r tð Þ is the rate of
change of error at time t.

The fuzzy logic controller is composed of the following six components. Note
that e tð Þ and r tð Þ are scaled before fuzzification. E nTð Þ is scaled by a scalar
Gewhile r tð Þ is scaled by a scalar Gr . Then they are fuzzified by fuzzy sets shown
in Figs. 3.5 and 3.6, where L is the interval, jlej � 1 and jlrj � 1, which were
memberships of Gee tð Þ and Grr tð Þ, respectively.

The four fuzzy control learning rules are described linguistically and are related
to fuzzy sets for an increment of insulin Du tð Þ, which are listed below
Rule 1 IF Gee tð Þ is ‘‘positive’’ and Grr tð Þ is ‘‘positive,’’ then Du tð Þ is

‘‘positive.’’
Rule 2 IF Gee nTð Þ is ‘‘positive’’ and Grr nTð Þ is ‘‘negative,’’ then Du tð Þ is

‘‘zero.’’
Rule 3 IF Gee nTð Þ is ‘‘negative’’ and Grr nTð Þ is ‘‘positive,’’ then Du tð Þ is

‘‘zero.’’
Rule 4 IF Gee nTð Þ is ‘‘negative’’ and Grr nTð Þ is ‘‘negative,’’ then Du tð Þ is

‘‘negative.’’

Note that the output fuzzy sets describing Du tð Þ are three singleton fuzzy sets,
‘‘positive,’’ ‘‘zero,’’ and ‘‘negative,’’ as shown in Fig. 3.7.

Learning Rule 1 shows that if the glucose level is above the basal level and is
increasing, then Du tð Þ should be positive and the insulin infusion rate should be
increased. Learning Rule 2 says if the glucose level is above the basal one, but is
decreasing, Du tð Þ should be zero, which means the insulin infusion rate should not
be changed. Learning Rule 3 states that if the glucose level is lower than the basal
level and is increasing, Du tð Þ should be zero, which means the insulin infusion rate
should not be changed. Learning Rule 4 indicates if the glucose level is lower than
the basal level and is also decreasing, then DuðtÞ should be negative, i.e. the insulin
infusion rate should be decreased. These learning rules, though very simple,
represent rationally practical control strategy of human insulin infusion.

PatientFC1z

eG

rG

+
--

+ e(t)

r(t)

Glucose levelInsulin

BG

−

Fig. 3.4 Block diagram of fuzzy control system
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Consider that for the basal insulin infusion, we obtain the fuzzy logic controller

u tð Þ ¼
u0 þ Du tð Þ; if u tð Þ� 0

0; if u tð Þ\0
0

(

ð3:11Þ

where u0 represents the basal insulin required to maintain the basal glucose level.

3.4 Simulation Study

In this section, simulations using the glucose regulatory system and controllers
introduced in previous sections will be explained. First, we compare the steady
state without exogenous glucose between diabetes patients and normal individuals.
In our simulations, insulin infusion replaces the normal pancreatic function to help
the diabetes patients’ glucose concentration level at a basal infusion rate.

3.4.1 Steady-State Without Exogenous Glucose

At the steady state without exogenous glucose, patients need the basal infusion rate
u tð Þ ¼ u0 to maintain the glucose at the desired level Gþ GB ¼ GB. For the
normal individuals, the relationship between glucose and the insulin infusion rate
can be represented by Fig. 3.8a. However, Fig. 3.8b represents the relationship of
the diabetes patients. The exogenous insulin infusion of diabetes patients mimics
the pancreas secretion without food intake. The infusion rate is the basal rate at
this situation which is u0.

3.4.2 Oral Glucose Tolerance Test

The oral glucose tolerance test (OGTT) determines the state of carbohydrate
metabolism and is used to recognize an early stage of diabetes mellitus. In the test,
patients need to consume 400–800 kcal of glucose after more than 12 h fasting,
and their responding will be observed. Upon glucose load, the concentration of
glucose rises; OGTT determines the time needed for the concentration of glucose
to return to normal. This test simulates the physiologic intake of food under
standard conditions. This beta-cell function test represents a significant challenge
to the pancreas [13–19].

The OGTT can be mathematically represented by

P tð Þ ¼ Pm exp �a ln btð Þ � cð Þ2
� �

; ð3:12Þ
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Fig. 3.8 a Insulin secretion and glucose level without food intake for normal individuals,
b Exogenous insulin infusion and glucose level without food intake for diabetes patients
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where the Pm is the peak value and a, b, and c are constants, which determine the
slopes and curvature. It is smooth, continuously differentiable, and has zero initial
conditions and easily implemented and physiologically representative. OGTT is
easily modified to represent faster or slower absorption rates of exogenous glucose.
Figure 3.9 represents the OGTT curve with the parameters Pm ¼ 0:5, a ¼ 1, b ¼
0:5 and c ¼ 2.

Because a non-diabetic individual’s pancreas can produce enough insulin to
consume the plasma glucose and control the glucose concentration well, the
glucose concentration curve is represented in Fig. 3.10a. However, for a diabetic
individual, the glucose level increases and remains, as shown in Fig. 3.10b.

3.5 Glucose Level Control with Fuzzy Control System

The simulation study using the fuzzy logic control system described in the pre-
vious section is carried out for diabetic patients. In the fuzzy logic controller, the
scalars Ge and Gr will be selected with different values. Figure 3.11 shows the

simulation results with a ¼ GeGB
2 and Gr ¼ 0, where a is with different values and in

fact, a represents a gain. As we select Gr ¼ 0, the rate of change of error rðtÞ in the
glucose level is ignored. If the glucose level is much lower than the basal value, it
will cause unconsciousness and possible brain damage, resulting in a ¼ 1 provides
an adequate regulation of the glucose level.
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Figures 3.12 and 3.13 shows the simulation results with kp ¼ Ge
2 and kd ¼ Gr

2 .
Figure 3.12 shows what occurs if kp differs while kd is fixed. Figure 3.13 shows
what occurs if kd differs and kp differs. From the results, we can see that for
kp ¼ 0:8, kd ¼ 30, and the glucose level is curbed. Thus, we achieve better control
of performance.
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3.6 Conclusion

In this chapter, we describe a simulation study which controls glucose levels in
diabetics. First, a mathematical model representing the relationship between the
human glucose level and insulin is introduced. This model is useful for designing
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and simulating a control system. Then, a novel fuzzy logic controller is proposed
to regulate the glucose level for diabetes. Fuzzy rules applicable to real patient
control are proposed. A simulation study is also carried out, which includes the
study of different control parameters settings. The results show that a feedback
regulation is feasible if the glucose level measurement is realizable. The fuzzy
control system proposed here may also be applicable for open-loop regulation of
glucose level. It is quite interesting as in practice it is not easy to monitor and
acquire real-time glucose level.
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Chapter 4
The Application of Genetic Algorithm
for Unsupervised Classification of ECG

Roshan Joy Martis, Hari Prasad, Chandan Chakraborty
and Ajoy Kumar Ray

Abstract In this chapter,we have proposed an integrated methodology for
electrocardiogram (ECG) based differentiation of arrhythmia and normal sinus
rhythm using genetic algorithm optimized k-means clustering. Open source dat-
abases consisting of the MIT BIH arrhythmia and MIT BIH normal sinus rhythm
data are used. The methodology consists of QRS-complex detection using the
Pan-Tompkins algorithm, principal component analysis (PCA), and subsequent
pattern classification using the k-means classifier, error back propagation neural
network (EBPNN) classifier, and genetic algorithm optimized k-means clustering.
The m-fold cross-validation scheme is used in choosing the training and testing
sets for classification. The k-means classifier provides an average accuracy of
91.21 % over all folds, whereas EBPNN provides a greater average accuracy of
95.79 %. In the proposed method, the k-means classifier is optimized using the
genetic algorithm (GA), and the accuracy of this classifier is 95.79 %, which is
equal to that of EBPNN. In conclusion, the classification accuracy of simple
unsupervised classifiers can be increased to near that of supervised classifiers by
optimization using GA. The application of GA to other unsupervised algorithms to
yield higher accuracy as a future direction is also observed.
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4.1 Introduction

Cardiovascular diseases (CVD) comprise a group of diseases of the heart and
blood vessels. Globally, CVD accounts for 16.7 million deaths (29.2 % of total
deaths). Around 7.2 million deaths are due to coronary artery disease (CAD) or
ischemic heart disease (IHD). Approximately 80 % of all CVD deaths worldwide
occur in developing, low-and middle-income countries [1]. A primary concern
is that in many countries people of younger generations and those from rural
societies are increasingly affected, due to demographic changes and sedentary
lifestyles [2, 3]. It has been predicted that between 1990 and 2020 there will be
111 % increase in CVD deaths in India alone. Since the cost of treatment has
considerable effects on a country’s economy, the development of effective
approaches for the early detection and prevention of CAD is important for
reducing the burden of heart disease [4].

Arrhythmia occurs due to the anomaly of heart rhythm. Arrhythmias are gen-
erally caused by the abnormalities in impulse generation or its conduction or in
both. Cardiovascular diseases are the most common etiology for the development
of arrhythmias [5]. Many arrhythmias may be life-threatening and require early
diagnosis and proper treatment. Arrhythmias like ventricular fibrillation and
ventricular flutter are life-threatening medical emergencies.

Electrocardiogram (ECG) is a noninvasive tool for the diagnosis of heart-related
abnormalities. It provides both anatomical (i.e., structural) and physiological (i.e.,
functional) causes of these abnormalities. In normal circumstances, the physician
observes the pattern of evolving ECG, understands the disease process, and comes
to a diagnoses of the underlying disease. ECG thus has an important role in
screening heart abnormalities. Early diagnosis and treatment of heart diseases is
crucial; however, in many counties, because of the huge population and limited
healthcare resources, it is expensive for medical experts to screen every person.
There is, therefore, a need to develop automated screening tools that will make use
of some feature extractors and machine-learning algorithms. The work presented in
this chapter provides a mass screening method, by classifying arrhythmia and
normal sinus rhythm.

Feature extraction techniques, such as principal component analysis (PCA) [6]
and linear discriminant analysis (LDA) [6] are used before classification. After
feature extraction, pattern classification is to be performed [1, 7–9]. One of the
traditional classification algorithms is the k-means clustering algorithm was first
proposed by MacQueen [10]. The important disadvantage of the k-means algo-
rithm is that it will always converge to the local optimum of the objective function.
Another supervised classification algorithm is the error back propagation neural
network (EBPNN), which has the ability to separate complex data patterns. Again,
the EBPNN is also a local optimization of the objective function. A class of
classification methods, called evolutionary algorithms, are population-based
methods rather than sample-based methods and have heuristically adapted struc-
tures. These algorithms always converge to the global optimum of the objective
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function. Genetic algorithms are evolutionary algorithms, which borrow principles
from natural genetics. There are many works in the literature [11, 12] for a
comparative study of the GA.

As with GA, there are many methods of QRS or R-point detection. In this study,
we have used the Pan-Tompkins algorithm (1985) for R-point detection. In the
past, many automated methods have used the R-point for registration, including
some of our earlier works [13–15].

This chapter introduces the application of GA to the ECG classification prob-
lem of arrhythmia and normal sinus rhythm. Both normal sinus rhythm and
arrhythmia signals are subjected to QRS extraction, PCA, and subsequent pattern
classification. Different classifiers used are k-means clustering, EBPNN, and GA
optimized k-means clustering. The m-fold cross validation is used to select training
and testing patterns for the classifier. The results are compared and discussed
below.

The contribution of this chapter is the proposal of a new methodology for ECG
classification between arrhythmia and normal sinus rhythm and the use of GA in
optimizing the simple unsupervised classifiers like k-means clustering so as to
improve their classification accuracy. The extension of the application of GA to
other classifiers like fuzzy c-means clustering and Gaussian mixture model is also
observed.

Section 4.2 outlines materials, Sect. 4.3 contains the methodology, Sect. 4.4
includes results and a discussion, and Sect. 4.5 concludes the chapter.

4.2 Materials

In the proposed methodology, the MIT BIH normal sinus rhythm database and
MIT BIH arrhythmia database, which are available as open source from
www.physionet.org, are used. The MIT BIH normal sinus rhythm database con-
sists of 18 long term ECG recordings of subjects referred to the Arrhythmia
Laboratory at Boston’s Beth Israel Hospital. Subjects included in this database
were found to have had no significant arrhythmias; they include five men, aged
26–45, and 13 women, aged 20–50. The ECG data is digitized at 128 Hz.

The MIT BIH arrhythmia database consisted of 48 half-hour excerpts of two
channel ambulatory ECG data obtained from 47 subjects studied by the BIH
arrhythmia laboratory between 1975 and 1979. Twenty-three recordings were
randomly taken from a set of 4,000 24 h ambulatory ECG data collected from a
mixed population including both inpatients (approximately 60 %) and outpatients
(approximately 40 %) at Boston’s Beth Israel Hospital. The remaining 25
recordings were selected from the same set to include less common but clinically
significant arrhythmias. The ECG recordings are sampled at 360 Hz per channel
with 11-bit resolution over a 10 mV range.
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4.3 Methodology

The methodology presented in this chapter consists of preprocessing the ECG, R-
point detection using the Pan-Tompkins algorithm, feature compression using
principal component analysis (PCA), and subsequent pattern classification using
three classifiers, k-means clustering, error back propagation neural network
(EBNN), and genetic algorithm (GA) optimized k-means clustering. The meth-
odology presented in this chapter as a system approach is depicted in Fig. 4.1.

4.3.1 Preprocessing

The signals considered for our analysis are sampled at different rates; hence, it is
necessary to choose a common sampling frequency such that equal time spacing is
maintained for both signals. A common sampling rate of 250 Hz is chosen for both
signals, which are re-sampled using standard techniques [16]. Alternatively, they
can also be re-sampled using the fast Fourier transform-based method presented in
our previous work [13]. In addition, the open source data may contain muscle
artifacts due to movements, powerline interference, and external noise. These
unwanted components are removed from the signal by using standard filtering
techniques [17].
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R-point 

detection

Principal 
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algorithm

Error back 
propagation 
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GA optimized 
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algorithm

Automated
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Fig. 4.1 System approach of the proposed methodology
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4.3.2 R-point Detection

The R-point in the ECG has maximum amplitude, which is easily detectable using
signal processing methods. Hence, we have used R-point for registration. Other
samples are subsequently chosen with respect to the detected R-point. The Pan-
Tompkins algorithm is used for the detection of the R-point in our study because
of its computational simplicity and better accuracy. In addition, many other
methods for R-point detection have been described in the literature, including
Fourier transform-based methods [18], wavelet-based methods [19, 20], and
Hilbert transform-based methods [21]. The original Pan-Tompkins algorithm
consists of taking a derivative using multiple samples, squaring, multiple sample
averaging, and thresholding operations.

In this study, an extended version of the Pan-Tompkins algorithm is used. This
version uses all simpler operators consisting of computation of the first derivative,
rectification, smoothing using a moving average filter, followed by the computa-
tion of the second derivative, rectification, smoothing using a moving average
filter, summing the two smoothened signals, and thresholding. The derivative
provides the slope information, whereas rectification converts all negative mag-
nitudes into positive magnitudes, and smoothing enhances the pulse at the R-point
and removes or suppresses the noise components. Once the algorithm provides the
location, the R-point is detected by advancing by the number of samples equal to
the group delay of all the involved filters.

Based on the detected R-point, 99 samples are chosen to the left of R-point and
100 samples are chosen to the right of R-point, so that a segment of 200 samples is
obtained for every subject.

4.3.3 PCA

After segmentation, there is a segment of 200 samples for every subject. Each
segment has large dimensionality that imposes a large burden on computation for
subsequent classification using automated classifiers. If the information contained
in these 200 samples is represented in an efficient manner using fewer components,
the computation involved in subsequent classification is reduced due to fewer
features. In this study, therefore, PCA is used to reduce the dimensionality of the
input data. PCA projects the input data into a new coordinate system, which has
axes in the directions of maximum variability. This projection provides new
components in which the first component consists of the maximum variations, and
the other components consist of variations in decreasing order. Computation of
these components consists of computing a data covariance matrix after mean
subtraction, decomposing the covariance matrix using Eigen value decomposition,
sorting the Eigen vectors in the decreasing order of Eigen values, finally projecting

4 The Application of Genetic Algorithm 69



the data onto the new axes defined by the sorted Eigen vectors. A criterion of
containment of 98 % of the total energy of the signal is used to choose the number
of components after PCA.

4.3.4 The k-means Algorithm

The k-means clustering algorithm was first proposed by MacQueen [10]. The
algorithm is an unsupervised classification method, which assumes a fixed number
of clusters. It belongs to the central clustering category which uses Euclidean
distance as a distance metric. The algorithm minimizes the total mean squared
error between the cluster centroids and the data points. The algorithm then
implements the minimization of the following objective function

J ¼
X

k

i¼1

X

xj2Si

jjxj � lijj2; ð4:1Þ

where xj and li represent the jth pattern and ith cluster center, respectively.
The k-means algorithm is given step-by-step in the following.

Step 1: Initialization
Step 2: Data assignment

For a data vector; xn; set yn ¼ arg mink xn � lkk k2: ð4:2Þ

Step 3: Centroid calculation
For each cluster k; let Xk ¼ xnjyn ¼f kg; the centroid is estimated as

l
k¼ 1

jXk j

P

x2Xkx
: ð4:3Þ

Step 4: Stop the algorithm if yn nj ¼ 1; 2; . . .N does not change; otherwise go back
to Step 2.

The k-means algorithm can be initialized by choosing a set of k seed points.
Seed points can be the first k patterns chosen randomly from the pattern matrix.
The first seed point can also be chosen as the centroid of all the patterns, and
successive seed points are chosen such that they are a certain distance away from
the previously chosen seed points. Each pattern is assigned to a class based on
minimum Euclidean distance criterion. Different initial partitions can lead to
different clustering results because the k-means clustering approach based on the
square error criterion can converge to the local minima, rather than the global
minima. Therefore, sometimes the k-means algorithm must be run many times
with different initializations, such that if most of the runs lead to the same results,
then we will have some confidence that a global minimum is achieved.
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In the data assignment step, the data are partitioned into a class based on the
minimum distance between each pattern and the respective class centroid. In the
centroid computation step, the average pattern of all the patterns assigned to a
given class is computed and is replaced with the previous centroid. The k-means
algorithm terminates when the criterion function cannot be improved. The algo-
rithm terminates when the cluster labels for all the patterns do not change between
two successive iterations. A maximum number of iterations can be specified to
prevent endless oscillations. The computational complexity of the k-means algo-
rithm is of the order O NdkTð Þ, where N is the total number of patterns, d is the
number of features, k is the number of clusters, and T is the number of iterations.

4.3.5 EBPNN

An error back propagation neural network [22] is used in this study. It consists of
an interconnection of many neurons. The neural network that we have used con-
sists of three layers: the input layer, the hidden layer and the output layer. Initially,
random weights are assumed for these interconnections, and the input patterns are
fed to the neural network, the output is noted and is compared with the desired
output, i.e., class label and, accordingly, the error is back propagated to update the
weights. The method is also an optimization which minimizes the following
objective function:

J ¼ 1
2

X

N

n¼1

X

c

k¼1

yk xn;wð Þ � tn
k

ffi� 2
; ð4:4Þ

where yk xn;wð Þ is the network response for the kth class neuron in the output layer,
and tn

k is the target for the kth class of nth observation feature vector.
The error back propagation algorithm is as follows

1. Begin initialize: g; w, criterion, h; m 0
2. do m mþ 1
3. xm  training pattern selected sequentially
4. wji  wji þ gdjxi; wkj  wkj þ gdkyj

5. until rJ wð Þ\hk k
6. return w
7. end

Each pattern is selected sequentially. The network weights are updated using
the gradient descent method. If the gradient falls below the threshold h, the
algorithm is stopped.
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4.3.6 GA Optimized k-means Algorithm

The k-means algorithm discussed in Sect. 4.2 implements the objective function in
Eq. 4.1 as a local optimization problem. The k-means algorithm is a sample-based
optimization strategy. If population-based strategies are used, they may provide
the global minimum of the objective function. The genetic algorithm (GA) is an
evolutionary algorithm which is a population-based optimization method. We
employ GA to optimize the centroids of k-means clustering. This GA uses three
operators called selection (or reproduction), crossover, and mutation. The princi-
ples from natural genetics are used in the algorithm. In contrast to conventional
optimization procedures, the GA starts its search from a random set of solutions.
The metric used to represent the distance is called a fitness function in the context
of GA, which provides relative importance for every population. The GA is
depicted in Fig. 4.2 and is explained as follows.
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Fig. 4.2 Genetic algorithm-based optimization of cluster centers
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4.3.6.1 Coding and Decoding of Populations

The other traditional algorithms operate on a objective function of real values.
However the GA operates in a binary coded string space. Therefore, the centroids
which are the optimization variables are to be encoded into strings in binary.
Coding the decision variables in a binary string is used to achieve a pseudo
chromosomal representation of a solution. Each of the centroid value is repre-
sented with a given number of bits. A variable is coded to match each feature
present in each subject. Since our optimization variables are in floating point
format with xmax

i and xmin
i as the maximum and minimum value of the ith feature,

the decoded value of the centroid is given by,

xi ¼ xmin
i þ xmax

i � xmin
i

2li � 1
DV sið Þ; ð4:5Þ

Here li is the length of the string in order to encode the ith centroid value and
DV sið Þ is the fitness value after decoding from binary string si. Different variables
of decision can be encoded with different precision and number of bits.

4.3.6.2 Fitness Function Evaluation

Each binary string, is to be evaluated for its importance or merit called as fitness
value, considering the constraint and objective functions in view. In the current
problem, there is no constraint function and hence the fitness function is made
equal to the objective function. From the available solutions in the populations, the
objective function of Eq. 4.1 is computed by decoding the strings. The current
problem is minimization, the actual fitness function which is to be maximized is

M ¼ 1
J

ð4:6Þ

4.3.6.3 Reproduction

During reproduction, the strings which are fit are made multiple copies by keeping
strings with higher fitness value. The less important strings in terms of their fitness
value are discarded. Hence population size is maintained same. This process is
called as reproduction. There are many ways to implement the reproduction
operation. In the current study the proportionate selection method is used. In this
method the strings are multiplied based on the fraction of the total fitness value of
a given string.
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4.3.6.4 Crossover

The reproduction operation copies the solutions but cannot create any new solution.
In both crossover and mutation new populations are generated. In this step, ran-
domly two strings and a crossover site are chosen, and substrings are exchanged
between the two strings. In this study single point crossover operation is used. Here
in random a crossover bit position is chosen. The chromosome or string is broken
into two pieces at the crossover bit position. The two sub strings (or pieces)
belonging to two different strings are combined together and the population in the
next generation is created.

4.3.6.5 Mutation

Mutation is needed to keep diversity in the population. In this operation, some
random bits are chosen and the bit is flipped. Generally, mutation probability is
kept small, as is the case with natural genetics. The mutation operation alters the
bits in the string in order to create a better string so as to reach the global maxima
of the fitness function.

4.3.6.6 Termination

Reproduction, crossover, and mutation are repeated iteratively until the fitness
function becomes steady and its value does not change with newer iterations. The GA
is said to be converged, and the global maxima of the objective function is attained.

4.3.7 The m-fold Cross Validation

In order to choose the training and testing partition while classification the m-fold
cross validation [23] with m ¼ 3 is used in this study. Here the total number of
observations are disjointly divided into three sets. The first set is used for testing
and rest two sets are used for training the classifier in the first fold. The process is
repeated in other two sub sets as well to obtain three sub-classification perfor-
mances which are averaged to estimate final performance of the classifier.

4.4 Results and Discussion

The proposed methodology is implemented as a two-class pattern classification
problem using ECG features on the MIT BIH normal sinus rhythm and MIT BIH
arrhythmia databases (described in Sect. 4.2). Using the Pan-Tompkins algorithm,
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the QRS in the ECG is detected. The exact position of the R-point is obtained by
fine tuning, computing the group delays of all the involved filters in the algorithm,
and advancing in time by that number of samples. The Pan-Tompkins algorithm is
chosen in this study for R-point detection due to its simplicity and the efficient
detection of the R-point. Detection of the R-point is shown in Fig. 4.3, in which
the detected R-point is shown using a red asterisk. The algorithm consists of
multistage filtering (difference, smoothing, etc.) and a nonlinear element (rectifi-
cation) between the algorithmic steps.

Once the R-point is detected, the ECG signal is segmented into a window of
200 samples such that 99 samples are chosen from the left of the R point and 100
samples are chosen from the right of the R point, including the R-point itself. The
200 samples in every pattern are reduced by the PCA technique. PCA is an
orthogonal transformation which reduces the samples by projecting the data into
the directions of maximum variability. Eigen value decomposition is used in the
PCA to find the variability in each principal component direction. The first prin-
cipal component (PC) consists of the highest variability; the other PCs consist of
the variability in decreasing order. The variability (or the energy or the respective
Eigen value) is plotted with respect to the PC dimension in Fig. 4.4. It is observed
that the energy contained in these PCs reduces with respect to the dimension of
PC. Also, the Eigen values and the percentage energy contained in each dimension
are listed in Table 4.1. It is inferred from Fig. 4.4 and Table 4.1 that the first 13
PCs will contain a variability of more than 99.7 %. Therefore, these 13 PCs are
used as features for subsequent pattern classification.
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Fig. 4.3 Detection of the R-point in normal sinus rhythm ECG, the R-point is shown as a red
asterisk
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The 13 features obtained from PCA are used for subsequent pattern identifica-
tion using the k-means algorithm, EBPNN, and the GA optimized k-means algo-
rithm. The k-means algorithm is a local optimization algorithm, and its use does not
guarantee a global optimum. We can see from Table 4.2 that the k-means algorithm
provides an average accuracy of 91.2088 and a maximum accuracy of 92.3077.
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Table 4.1 Energy profile of principal components

PC index Eigen values Percentage of energy contained

1 13.1985 86.2342
2 1.6750 10.9438
3 0.2021 1.3204
4 0.0591 0.3864
5 0.0403 0.2636
6 0.0235 0.1533
7 0.0163 0.1067
8 0.0118 0.0773
9 0.0102 0.0663
10 0.0084 0.0546
11 0.0054 0.0350
12 0.0052 0.0342
13 0.0042 0.0272

Table 4.2 Classification accuracy for k-means, EBPNN, and GA optimized k-means classifiers

Classifier Accuracy (%)

Fold 1 Fold 2 Fold 3 Average

k-means algorithm 91.2088 92.3077 90.1099 91.2088
EBPNN 95.6044 94.5055 97.2527 95.7875
GA optimized k-means algorithm 95.6044 95.0549 96.7033 95.7875
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The EBPNN provides better clustering than the k-means algorithm does. The
decreasing mean-squared error (MSE) used for training the neural network is
shown in Fig. 4.5. In our study, we have used neural networks in serial mode. As
the epochs iteratively progress, the error is back propagated to update the network
weights. A predefined threshold on MSE is defined, and if the MSE reduces to
below this threshold, then the algorithm is said to be converged and the iterations
are stopped. In our study, the neural network converges in 26 epochs and the
threshold chosen is 10-04. We can see from Table 4.2 that EBPNN provides a
maximum accuracy of 97.2527 % and an average accuracy of 95.7875 % over the
three folds.

The GA optimized k-means clustering algorithm is used on the ECG data, in our
analysis, and the results are shown in Figs. 4.6, 4.7, 4.8. Figure 4.6 shows best and
mean fitness in each generation. Since our optimization is a minimization of the
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Fig. 4.5 Training of EBPNN: The MSE is decreasing with iterations
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objective function, it is expected that both the best and mean fitness should
decrease with generations. In Fig. 4.6, the mean and best fitness values decrease
with the generations as we have expected. Also, as the generations progress in GA,
the new individuals are fitter than the initial ones. Therefore, the average distance
between the individuals is expected to decrease with generations, as are the results
in Figs. 4.7, 4.8 shows that the best, worst, and average scores decrease with
generations in the GA.
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The classification accuracy of the GA optimized k-means algorithm provides a
maximum accuracy of 96.7033 % and average accuracy of 95.7875 % over all
three folds (as shown in Table 4.2).

4.5 Conclusion

In this chapter, a new methodology for the classification of ECG belonging to
normal sinus rhythm and arrhythmia classes is presented. The k-means algorithm,
EBPNN, and GA are used for classification. We have seen that the k-means
algorithm yields a lower accuracy than other supervised classifiers, i.e., EBPNN.
We have also seen that if a simple algorithm like k-means is optimized using GA,
the accuracy increases to that of supervised classifier, EBPNN. In the future, one
can optimize other unsupervised algorithms such as the fuzzy c-means and the
Gaussian mixture model algorithms. In addition, newer variants of the GA are
available for faster implementation. These new variants of GAs will be faster and
converge in fewer iterations. Also, there is a scope to identify novel operators in
the GA and thus to catalyze the algorithm. The methodology used will be of
immense utility in machine-learning applications for healthcare informatics.
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Chapter 5
Pixel-based Machine Learning
in Computer-Aided Diagnosis of Lung
and Colon Cancer

Kenji Suzuki

Abstract Computer-aided diagnosis (CAD) for detection of lesions in medical
images has been an active area of research. Machine learning plays an essential role
in CAD, because representing lesions and organs requires a complex model that has a
number of parameters to determine; thus, medical pattern recognition essentially
requires ‘‘learning from examples’’ to determine the parameters of the model.
Machine learning has been used to classify lesions into certain classes (e.g., abnormal
or normal, lesions or non-lesions, and malignant or benign) in CAD. Recently, as
available computational power increased dramatically, pixel/voxel-based machine
learning (PML) has emerged in medical image processing/analysis, which uses
pixel/voxel values in local regions (or patches) in images instead of features calcu-
lated from segmented regions as input information; thus, feature calculation or
segmentation is not required. Because PML can avoid errors caused by inaccurate
feature calculation and segmentation, the performance of PML can potentially be
higher than that of common classifiers. In this chapter, MTANNs (a class of PML) in
CAD schemes for detection of lung nodules in CT and for detection of polyps in CTC
are presented.

5.1 Introduction

Computer-aided diagnosis (CAD) for detection of lesions in medical images [1, 2]
has been an active area of research, because evidence indicates that CAD can help
improve the diagnostic performance of radiologists or physicians in their image
reading and interpretations [3–5]. A lot of investigators have participated in and
developed CAD schemes such as those for detection of lung nodules in chest
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radiographs [6–8] and in thoracic CT [9–12], for detection of microcalcifications/
masses in mammography [13], breast MRI [14], and breast US [15, 16], and for
detection of polyps in CT colonography (CTC) (also known as virtual colonos-
copy) [17–19].

Machine learning plays an essential role in CAD because objects such as
lesions and organs in medical images may not be represented accurately by a
simple equation. For example, a lung nodule is generally modeled as a solid
sphere, but there are nodules of various shapes and nodules with internal inho-
mogeneities, such as spiculated ones and ground-glass (or non-solid) nodules. A
polyp in the colon is modeled as a bulbous object, but there are also polyps which
exhibit a flat morphology [20]. Thus, diagnostic tasks in medical imaging essen-
tially require learning from examples (or data).

Machine learning has been used to classify lesions into certain classes (e.g.,
abnormal or normal, lesions or non-lesions, and malignant or benign) in CAD.
Machine-learning algorithms for classification include linear discriminant analysis
[21], quadratic discriminant analysis [21], multilayer perceptrons [22], and support
vector machines [23]. Such machine-learning algorithms have been applied to lung
nodule detection in chest radiography [24] and thoracic CT [10, 25], classification
of lung nodules into benign or malignant categories in chest radiography [26] and
thoracic CT [27], and polyp detection in CTC [17, 28].

Recently, as available computational power increased dramatically, pixel/
voxel-based machine learning (PML), which uses pixel/voxel values in images
instead of features calculated from segmented regions as input information, has
emerged in medical image processing/analysis; thus, feature calculation or seg-
mentation is not required. Because PML can avoid errors caused by inaccurate
feature calculation and segmentation, the performance of PML can potentially be
higher than that of common classifiers. By extension of ‘‘neural filters’’ [29] and
‘‘neural edge enhancers’’ [30, 31], which are ANN-based [22] supervised nonlinear
image-processing techniques, and an MTANN framework [9], which is a class
of PML, have been developed for accommodating the task of distinguishing a
specific opacity from other opacities in medical images.

In this chapter, MTANNs (a class of PML) in CAD schemes for detection of
lung nodules in CT and for detection of polyps in CTC are introduced. MTANNs
have been applied to removal of false-positive detections (FPs) in the computer-
ized detection of lung nodules in low-dose CT [9, 10] and chest radiography [6],
for distinction between benign and malignant lung nodules in CT [32], for sup-
pression of ribs and clavicles (i.e., bones) in chest radiographs [33], and for
reduction of FPs in computerized detection of polyps in CTC [18, 19, 34–36].
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5.2 Pixel-based Machine Learning (PML) in CAD

5.2.1 PML Overview

PML techniques have been developed for tasks in medical image processing/
analysis and computer vision. There are three classes of PML techniques: neural
filters [29, 37] (including neural edge enhancers [30, 31]), convolution neural
networks (NNs) [38–44] (including shift-invariant NNs [45–47]), and massive-
training ANNs (MTANNs) [18, 33, 48–50] (including multiple MTANNs [6, 10,
29, 32, 37, 48], a mixture of expert MTANNs [19, 34], a multi-resolution MTANN
[33], a Laplacian eigenfunction MTANN (LAP-MTANN), and a massive-training
support vector regression (MTSVR) [36, 51]). The class of neural filters has been
used for image-processing tasks such as edge-preserving noise reduction in
radiographs and other digital pictures [29, 37], edge enhancement in noisy images
[30], and enhancement of subjective edges traced by a physician in left ventric-
ulograms [31]. The class of convolution NNs has been applied to classification
tasks such as FP reduction in CAD schemes for detection of lung nodules in chest
radiographs (CXRs) [38–40], FP reduction in CAD schemes for detection of
microcalcifications [41] and masses [42] in mammography, face recognition [43],
and character recognition [44]. The class of MTANNs has been used for classi-
fication, such as FP reduction in CAD schemes for detection of lung nodules in
CXR [6] and CT [4, 10, 48], distinction between benign and malignant lung
nodules in CT [32], and FP reduction in a CAD scheme for polyp detection in CTC
[18, 19, 34, 51]. The MTANNs have also been applied to pattern enhancement and
suppression such as separation of bone from soft tissue in CXR [33, 49] and
enhancement of lung nodules in CT [50].

5.2.2 MTANN Filter for Lesion Enhancement

5.2.2.1 Architecture of an MTANN Filter

The architecture of a PML technique which consists of a machine-learning model
is shown in Fig. 5.1. In order to enhance actual lesions in medical images, we
developed an MTANN supervised filter, which is a class of PML. An MTANN
filter consists of a machine-learning regression model such as a linear-output
artificial neural network (ANN) model [30] which is a regression-type ANN
capable of operating on pixel/voxel data directly, and a support vector regression
model [36] which is a regression-type support vector machine. The MTANN filter
is trained with input CT images and the corresponding ‘‘teaching’’ images that
contain a map for the ‘‘likelihood of being lesions.’’ The input to the MTANN
filter consists of pixel values in a sub-region (or sub-volume), RS, extracted from
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an input image. The output of the MTANN filter is a continuous scalar value,
which is associated with the center pixel in the sub-region and is represented by

O x; y; z or tð Þ ¼ ML I x� i; y� j; z� k or t � kð Þj i; y; kð Þ 2 RSf g; ð5:1Þ

where x and y are the coordinate indices, MLð�Þ is the output of the machine-
learning regression model, and I x; y; z or tð Þ is a pixel value in the input image. The
linear-output ANN model [30] used as the machine-learning regression model in
the MTANN employs a linear function, fL uð Þ ¼ a � uþ 0:5, instead of a sigmoid
function, fS uð Þ ¼ 1= 1þ exp �uð Þf g, as the activation function of the output layer
unit because the characteristics and performance of an ANN were improved sig-
nificantly with a linear function when it was applied to the continuous mapping of
values in image processing [30]. Note that the activation function in the hidden
layers is still a sigmoid function. The input vector can be rewritten as

I
!

x;y;z or t ¼ I1; I2; . . .; Im; . . .; INIf g; ð5:2Þ

where m is an input unit number and NI is the number of input units. The output of
the nth unit in the hidden layer is represented by

OH
n ¼ fS

X

NI

m¼1

wH
mn � Im � wH

0n

( )

; ð5:3Þ
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y

x

Output object pixel value O(x,y,z or t)

Object pixel
I(x,y,z or t)

Local window (subregion) RS

t or z

t or z

Machine-learning model (e.g., 
linear-output ANN regression)

as a convolution kernel

Likelihood map

Input image

Fig. 5.1 Architecture of a
PML (e.g., MTANN)
technique consisting of a
machine-learning model (e.g.,
a linear-output ANN
regression model or support
vector regression) with sub-
region (or sub-volume) input
and single-pixel output. All
pixel values in a sub-region
extracted from an input image
are entered as input to the
machine-learning model. The
machine-learning model
outputs a single pixel value
for each sub-region, the
location of which
corresponds to the center
pixel in the sub-region. The
output pixel value is mapped
back to the corresponding
pixel in the output image
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where wH
mn is a weight between the mth unit in the input layer and the nth unit in

the hidden layer, and wH
0n is an offset of the nth unit in the hidden layer. The output

of the output layer unit is represented by

O x; y; z or tð Þ ¼ fL

X

NH

m¼1

wO
m � OH

m � wO
0

( )

; ð5:4Þ

where wO
m is a weight between the mth unit in the hidden layer and the unit in the

output layer, NH is the number of units in the hidden layer, and wO
0 is an offset of

the unit in the output layer. For processing the entire image, the scanning of an
input CT image with the MTANN is performed pixel-by-pixel, as illustrated in
Fig. 5.1.

5.2.2.2 Training of an MTANN Filter

For enhancement of lesions and suppression of non-lesions in CT images, the
teaching image T(x, y, z) contains a map for the ‘‘likelihood of being lesions,’’ as
illustrated in Fig. 5.2. In order to create the teaching image, lesions are first
segmented manually to obtain a binary image with 1 being lesion pixels and 0
being non-lesion pixels. Then, Gaussian smoothing is applied to the binary image
to smooth the edges of the segmented lesions, because the likelihood of a pixel
being a lesion should gradually diminish as the distance from the boundary of the
lesion decreases. Note that the ANN was not able to be trained when binary
teaching images were used.

The MTANN filter involves training with a large number of pairs of sub-regions
and pixels; we call it a massive-sub-region training scheme. In order to enrich the

PML (MTANN) “Teaching” image 
containing a map of the 

“likelihood of being 
lesions”

Input CT image

Fig. 5.2 Training of an MTANN filter for enhancement of lesions. The input CT image is
divided pixel-by-pixel into a large number of overlapping sub-regions. The corresponding pixels
are extracted from the teaching image containing a map for the ‘‘likelihood of being lesions.’’ The
MTANN filter is trained with pairs of the input sub-regions and the corresponding teaching pixels
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training samples, a training image, RT, extracted from the input CT image is
divided pixel by pixel into a large number of sub-regions. Note that close sub-
regions overlap each other. Single pixels are extracted from the corresponding
teaching image as teaching values. The MTANN filter is massively trained by
using each of a large number of input sub-regions together with each of the
corresponding teaching single pixels; hence, the term massive-training ANN. The
error to be minimized by training of the MTANN filter is given by

E ¼ 1
P

X

c

X

x;y;z or tð Þ2RT

Tc x; y; z or tð Þ � Oc x; y; z or tð Þf g2; ð5:5Þ

where c is a training case number, Oc is the output of the MTANN for the cth case,
Tc is the teaching value for the MTANN for the cth case, and P is the number of
training pixels in the training images, RT . The MTANN filter is trained by a linear-
output back-propagation algorithm, in which the generalized delta rule [22] is
applied to the linear-output ANN architecture [30]. After training, the MTANN
filter is expected to output the highest value when a lesion is located at the center
of the sub-region of the MTANN filter, a lower value as the distance from the sub-
region center increases, and zero when the input sub-region contains a non-lesion.

Once the trained MTANN enhances lesions in medical images, lesion candi-
dates can be detected by application of a segmentation technique. One of the
simplest ways to perform this technique is thresholding. Another segmentation
technique can be used for this purpose as well such as multiple thresholding,
region growing, level-set segmentation, and active contour segmentation. We used
a simple thresholding technique in this study because the MTANN enhanced
lesions effectively, i.e., the contrast of lesions was substantially high compared to
that of normal structures (see the results in the next section).

5.2.3 MTANN for Classification

5.2.3.1 Training Method of an MTANN for Classification

Once lesion candidates are detected, the next step in a CAD scheme is classifi-
cation of the candidates into lesions or non-lesions. We can use a PML such as an
MTANN for this task as well. For distinction between lesions and non-lesions, the
teaching image contains a Gaussian distribution with standard deviation rT for a
lesion and zero (i.e., completely dark) for a non-lesion, as shown in Fig. 5.3. This
distribution represents a map for the ‘‘likelihood of being a lesion:’’

T x; y; z or tð Þ ¼
1
ffiffiffiffi

2p
p

rr
exp � x2þy2þz2 or t2ð Þ

2r2
r

� �

for a lesion

0 otherwise

8

<

:

ð5:6Þ
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For enrichment of training samples, a training region (or volume), RT, extracted
from the input image is divided pixel-by-pixel into a large number of overlapping
sub-regions. Single pixels are extracted from the corresponding teaching region as
teaching values. The MTANN is massively trained by use of each of a large
number of the input sub-regions together with each of the corresponding teaching
single pixels. After training, the MTANN is expected to output the highest value
when a lesion is located at the center of the sub-region of the MTANN, a lower
value as the distance from the sub-region center increases, and zero when the input
sub-region contains a non-lesion.

5.2.3.2 Scoring Method for Combining Output Pixels

For combining output pixels from a trained MTANN, we developed a scoring
method. A score for a given lesion candidate from the trained MTANN is defined
as

S ¼
X

x;y;z or tð Þ2RE

fG x; y; z or tð Þ � O x; y; z or tð Þ; ð5:7Þ

where

fG x; y; z or tð Þ ¼ 1
ffiffiffiffiffiffi

2p
p

r
exp � x2 þ y2 þ z2 or t2ð Þ

2r2

� �

ð5:8Þ

PML (MTANN) 

For a lesionLesion

Non-lesion For a non-lesion

Lesion 

candidates

“Teaching” 

images

Fig. 5.3 Training of a PML technique (i.e., an MTANN) for classification of candidates into a
lesion (e.g., a nodule) or a non-lesion (e.g., a non-nodule). A teaching image for a lesion contains
a Gaussian distribution at the center of the image, whereas that for a non-lesion contains zero
(i.e., is completely dark)
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is a Gaussian weighting function with standard deviation r, and its center corre-
sponds to the center of the region for evaluation, RE, and O x; y; z or tð Þ is the output
region of the n-th trained MTANN, where its center corresponds to the center of
RE. The use of the Gaussian weighting function allows us to combine the responses
(outputs) of a trained MTANN as a distribution. A Gaussian function is used for
scoring, because the output of a trained MTANN is expected to be similar to the
Gaussian distribution used in the teaching region. This score represents the
weighted sum of the estimates for the likelihood that the region (lesion candidate)
contains a lesion near the center, i.e., a higher score indicates a lesion, and a lower
score indicates a non-lesion.

5.2.3.3 Mixture of Expert MTANNs

In order to distinguish lesions from various types of non-lesions (i.e., FPs), we
have extended the capability of a single MTANN, and we have developed a
mixture of expert MTANNs. The architecture of the mixture of expert MTANNs is
shown in Fig. 5.4. The mixture of experts consists of several MTANNs that are
arranged in parallel. Each MTANN is trained independently by using the same

Expert 2D/3D MTANNs

Distinction 
between 

lesions and 
multiple 

types of non-
lesions

Input 
region/volume

No. 1

No. 2

No. N

Mixing ANN

Fig. 5.4 Architecture of a mixture of expert MTANNs for classification of lesion candidates into
lesions or multiple types of non-lesions
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lesions and a different set of non-lesions. Each MTANN acts as an expert for
distinction between lesions (e.g., nodules) and non-lesions (e.g., non-nodules)
representing a specific non-lesion type. The scores from the expert MTANNs are
combined by using a mixing ANN such that different types of non-lesions can be
distinguished from lesions. The mixing ANN consists of a linear-output ANN
model with a linear-output back-propagation training algorithm [30] for processing
continuous output/teaching values; the activation functions of the units in the
input, hidden, and output layers are an identity, a sigmoid, and a linear function,
respectively. One unit is employed in the output layer for distinction between a
lesion and a non-lesion. The scores of each expert MTANN are used for each input
unit in the mixing ANN; thus, the number of input units equals the number of
expert MTANNs, N. The scores of each expert MTANN act as the features for
distinguishing lesions from a specific type of non-lesion for which the expert
MTANN is trained. The output of the mixing ANN for the cth lesion candidate is
represented by

Mc ¼ NN Sn;c

� �

1� n�Nj
� �

ð5:9Þ

where NNð�Þ is the output of the linear-output ANN model and n is an MTANN
number. The teaching values for lesions are assigned the value one, and those for
non-lesions are assigned the value zero. Training of the mixing ANN may be
performed by using a leave-one-lesion-out cross-validation scheme [52]. After
training, the mixing ANN is expected to output a higher value for a lesion and a
lower value for a non-lesion. Thus, the output can be considered as the likelihood
of being a lesion. By thresholding the output, a distinction between lesions and
non-lesions can be made. The balance between a true-positive (TP) rate and a
false-positive (FP) rate is determined by the selected threshold value. If the scores
of each expert MTANN properly characterize the type of non-lesion for which the
expert MTANN is trained, the mixing ANN combining several expert MTANNs
will distinguish lesions from various types of non-lesions.

5.3 A CAD Scheme for Detection of Lung Nodules on CT
Images

5.3.1 Lung Cancer Detection in CT

Lung cancer continues to rank as the leading cause of cancer deaths among
American men and women [53, 54]; the number of lung cancer deaths each year is
greater than the combined number of breast, colon, and prostate cancer deaths.
Evidence suggests that early detection of lung cancer may allow more timely
therapeutic intervention and thus a more favorable prognosis for the patient [55–58].
Therefore, in the 1970s, screening programs for the early detection of lung cancer
were carried out with chest radiography and cytologic examination of sputum in the
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United States [59–61] and in Europe [62]. As the CT imaging techniques have
advanced, screening with low-dose helical CT has been performed for early
detection of lung cancer [63–70] since early 1990.

Because CT is more sensitive than chest radiography in detection of small nodules
due to lung carcinoma at an early stage [64, 68], lung cancer screening programs are
being conducted in the United States [63–66] and Japan [67–70] with a low-dose
single-detector CT as the screening modality. Recently, multi-detector-row CT
(MDCT) has been used for lung cancer screening. Helical CT and MDCT, however,
generate a large number of images that must be read by radiologists. Such readings
may lead to ‘‘information overload’’ for radiologists. Furthermore, radiologists may
fail to detect some cancers, which are visible in retrospect, during the interpretation
of CT images [71, 72]. Therefore, a CAD scheme for detecting lung nodules in CT
has been investigated as a tool for lung cancer screening, because the CAD scheme
may detect some cancers that are missed by radiologists [72], and it provides
quantitative detection results as a second opinion to assist radiologists in improving
their detection accuracy [73].

5.3.2 Database of Lung Nodules in Thick-Slice CT

In order to test the performance of our CAD scheme that utilizes MTANN filters,
we created a CT database consisting of 69 lung cancer images obtained from 69
patients [72]. The scans used for this study were acquired with a low-dose protocol
of 120 kVp, 25 or 50 mA, 10-mm collimation, and a 10-mm reconstruction
interval at a helical pitch of two. The reconstructed CT images were 512 9 512
pixels in size with a section thickness of 10 mm. The 69 CT scans consisted of
2,052 sections. All cancers were confirmed either by biopsy or surgically.

5.3.3 Detection of Nodule Candidates on Thick-Slice CT
Images

The flowchart of our CAD scheme utilizing an MTANN supervised lesion
enhancement filter and a mixture of expert MTANNs for classification is shown in
Fig. 5.5. In order to limit the processing area to the lungs, we segmented the lung
regions in a CT image by using thresholding based on Otsu’s threshold value
determination [74]. Then, we applied a rolling-ball technique along the outlines of
the extracted lung regions to include a nodule attached to the pleura in the seg-
mented lung regions [25].

In order to enhance lung nodules in CT images, we trained an MTANN filter
with 13 lung nodules in a training database and the corresponding teaching images
that contained maps for the ‘‘likelihood of being nodules,’’ as illustrated in
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Fig. 5.2. In order to obtain the training regions, RT, we applied a mathematical
morphology dilation filter to the manually segmented lung nodules (i.e., binary
regions) such that the training regions sufficiently covered nodules and sur-
rounding normal structures (i.e., a nine times larger area than the nodule region, on
average). A three-layer structure was employed for the MTANN filter, because any
continuous mapping can be approximated by a three-layer ANN [75]. The number
of hidden units was selected to be 20 by using a method for designing the structure
of an ANN [76, 77]. The size of the input sub-region, RS, was 9 9 9 pixels, which
was determined experimentally in our previous studies [9, 10, 78]. The slope of the
linear function, a, was 0.01. With the parameters above, the training of the
MTANN filter was performed by 1,000,000 iterations. In order to test the per-
formance, we applied the trained MTANN filter to the images of the entire lung.
We applied thresholding to the output images of the trained MTANN filter to
detect nodule candidates. We then compared the results of nodule-candidate
detection with and without the MTANN filter.

We applied the trained MTANN filter to the original CT images. The result of
the enhancement of nodules in CT images by the trained MTANN filter is shown
in Fig. 5.6. The MTANN filter enhances a nodule and suppresses most normal
structures in a CT image. Although some medium and large vessels in the hilum
remain in the output image, the nodule with spiculation is enhanced well. We
applied thresholding to the output images of the trained MTANN filter. There are a
smaller number of candidates in the MTANN-based image, whereas there are
many nodule candidates in the binary image obtained by using simple thresholding
without the MTANN filter. Note that the large vessels in the hilum can easily be
separated from nodules by using their areas.

Mixture of expert MTANNs 
for classification 

MTANN “lesion 
enhancement” filter 

Organ segmentation

CT image

Detection of lesions

Fig. 5.5 Flowchart of our
CAD scheme utilizing an
MTANN supervised lesion
enhancement filter and a
mixture of expert MTANNs
for classification
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5.3.4 Classification of Nodule Candidates in Thick-Slice CT
Images

Nodule candidates generally include more non-nodules (FPs) than nodules (TPs).
For reduction of FPs, we trained an MTANN filter for classification of nodule
candidates into nodules or non-nodules [9, 19]. We used 10 different-sized nodules
with various contrasts and 10 non-nodule images including medium-sized and
small vessels as training cases for the MTANN. Parameters such as the size of the
subregion of the MTANN, the standard deviation of the 2D Gaussian function in
the teaching image, and the size of the teaching image were determined by
experimental analysis [48] to be 9 9 9 pixels, 5.0 pixels, and 19 9 19 pixels,
respectively. We employed a three-layer structure for the MTANN, because it has
been proven theoretically that a three-layer ANN can approximate any continuous
mapping [75]. The number of hidden units in the MTANN was determined to be
20 by using a method for determining the structure of an ANN [76, 77]. Thus, the
numbers of input, hidden, and output units were 81, 20, and 1, respectively. With
the parameters above, the training of the MTANN was performed 500,000 times,
and it converged with a mean absolute error of 0.112.

To investigate the performance of the classification of MTANN, we applied the
trained MTANN to non-training cases. Figure 5.7 shows the output images of
the trained MTANN, where various-sized actual nodules with different contrasts
are represented by bright nodular distributions, whereas medium and small actual

Fig. 5.6 Enhancement of a lesion by using the trained lesion-enhancement MTANN filter for a
non-training case. a The original image of the segmented lung with a nodule (indicated by an
arrow). b Output image of the trained lesion-enhancement MTANN filter. The nodule is
enhanced in the output image, whereas most normal structures are suppressed
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vessels with different orientations are almost eliminated. In order to distinguish
nodules from various types of non-nodules, we trained 6 expert MTANNs with 10
typical nodules and 6 types of 10 non-nodules, medium vessels, small vessels,
large vessels, soft-tissue opacities, and abnormal opacities from a training data-
base. We applied the trained expert MTANNs to various types of nodules and non-
nodules. The trained expert MTANNs enhance nodules and suppress most normal
structures including various-sized lung vessels in CT images, as shown in Fig. 5.7.
The scores indicating the likelihood of being a nodule from the 6 expert MTANNs
were combined with a mixing ANN to form a mixture of expert classification-
MTANNs. We used a leave-one-out cross-validation test for testing the mixing
ANN in the mixture of expert MTANNs. We evaluated the performance by using
free-response receiver-operating-characteristic (FROC) analysis [79].

In order to test the performance of our CAD scheme utilizing the MTANN lesion
enhancement filter and the classification MTANNs, we applied it to the test data-
base containing 69 lung cancers. The MTANN lesion enhancement filter followed
by thresholding identified 97 % (67/69) of cancers with 6.7 FPs per section. In
contrast, the difference-image technique followed by multiple thresholding in a
previously reported CAD scheme [10] detected 96 % (66/69) of cancers with
19.3 FPs per section. Thus, the MTANN lesion-enhancement filter was effective in
improving the sensitivity and specificity of the CAD scheme. The classification-
MTANNs were applied to the nodule candidates for classification of the candidates
into nodules or non-nodules. The mixture of expert MTANNs was able to remove
60 % (8,172/13,688) or 93 % (12,667/13,688) of non-nodules with a loss of 1 true
positive or 10 true positives, respectively. Thus, our MTANN-based CAD scheme
achieved a 96 % (66/69) or 84 % (57/69) sensitivity with 2.7 (5,516/2,052) or 0.5
(1,021/2,052) FPs per section. In contrast, feature analysis and a rule-based scheme
in the previously reported CAD scheme [10] removed FPs and achieved 9.3 FPs per
section. Finally, with linear-discriminant analysis (LDA), the previously reported
CAD scheme yielded a sensitivity of 84 % (57/69) with 1.4 (2,873/2,052) FPs per
section. Thus, our CAD scheme utilizing MTANNs achieved a three times lower FP
rate at the same sensitivity level. Therefore, MTANNs were effective for improving
the sensitivity and specificity of our CAD scheme.

5.3.5 CAD Scheme for Thin-Slice CT

5.3.5.1 Database of Lung Nodules in Thin-Slice CT

Our database for thin slice CT contained 62 nodules in 32 scans acquired from 32
patients with a multi-detector-row CT (MDCT) system with a four-detector
scanner. The MDCT scan consisted of an average of 186 thin-slice CT images (the
slice thickness ranged from 1.0 to 2.5 mm). Each CT slice had an image matrix
size of 512 9 512 pixels. Nodule sizes ranged from 5 to 30 mm. All nodules were
confirmed by consensus of two chest radiologists.
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Fig. 5.7 Illustrations of (a) various types of nodules and the corresponding output images of the
trained MTANN for non-training cases, (b) various-sized lung vessels and the corresponding
output images, and (c) other types of non-nodules and the corresponding output images
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5.3.5.2 Detection of Nodule Candidates on Thin-Slice CT Images

We developed an initial nodule detection scheme based on a selective enhance-
ment filter [80] and a rule-based scheme with image features. For handling MDCT
slices with different slice thickness, we converted original CT data to isotropic
volumes. We applied the selective enhancement filter to the isotropic volumes for
enhancing nodules and suppressing vessels. Thresholding followed by the rule-
based scheme was applied to the filtered volumes for classification of candidates
into nodules and non-nodules.

5.3.5.3 Overall Performance of a CAD Scheme for Thin-Slice CT

With our initial scheme, a sensitivity of 97 % (60/62 nodules) together with an
average of 15 (476/32) FPs per patient was achieved. In order to remove eight
types of non-nodules (FPs) reported by our initial scheme, we developed a mixture
of eight expert 3D MTANNs. The size of the sub-volume and the size of the
training volume in the teaching volume were determined to be 7 9 7 9 7 voxels
and 15 9 15 9 15 voxels, respectively. Each 3D MTANN was trained 500,000
times with 10 representative nodules and 10 non-nodules in each of the 8 types.
For distinction between nodules and each type of non-nodule, a scoring method
was applied to the output volume of each trained 3D MTANN. The score was
defined by the product of the output volume and a 3D Gaussian weighting func-
tion. A higher score indicated a nodule, and a lower score indicated a non-nodule.
Eight expert 3D MTANNs were combined with a mixing ANN such that 8 types of
non-nodules could be eliminated.

The trained mixture of expert 3D MTANNs was applied for the reduction of the
FPs. Each 3D MTANN enhanced nodules and suppressed non-nodules repre-
senting the particular non-nodule type with which the 3D MTANN was trained,
namely, various nodules in the output volumes of the 3D MTANN were repre-
sented by bright distributions, whereas the eight types of non-nodules were almost
dark, as shown in Fig. 5.8. Although the distribution of scores for nodules and non-
nodules obtained by using the scoring method overlapped, each 3D MTANN
distinguished nodules from each type of non-nodule; therefore, the mixture of
expert 3D MTANNs removed many non-nodules. The performance of the mixture
of expert 3D MTANNs was evaluated by FROC analysis [79]. Results indicated
that 57 % (273/476) of FPs were removed without a loss of any TP by the mixture
of expert 3D MTANNs, as shown in Fig. 5.9. Thus, the FP rate of our CAD
scheme was improved to 6.3 (203/32) FPs per patient at an overall sensitivity of
97 % (60/62 nodules).
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5.4 CAD Scheme for Detection of Polyps in CTC

5.4.1 Colorectal Cancer Detection in CTC

Colorectal cancer is the second leading cause of cancer deaths in the United States
[53]. Evidence suggests that early detection of polyps (i.e., precursors of colorectal
cancer) can reduce the incidence of colorectal cancer [81, 82]. CT colonography
(CTC), also known as virtual colonoscopy, is a technique for detecting colorectal
neoplasms by using a CT scan of the colon [83]. The diagnostic performance of
CTC in detecting polyps, however, remains uncertain because of a propensity for
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Fig. 5.8 Illustrations of (a) various types of nodules and the corresponding output images of the
trained MTANN for non-training thin-slice CT images, and (b) various types of lung vessels and
the corresponding output images
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perceptual errors [84]. Computer-aided detection (CAD) of polyps has been
investigated in an effort to overcome the difficulty of CTC. CAD has the potential
to improve radiologists’ diagnostic performance in the detection of polyps.

Although CAD schemes are useful for improving radiologists’ sensitivity in the
detection of polyps in CTC, a major challenge for CAD schemes is reducing
the number of FPs, while maintaining a high sensitivity. Major sources of FPs
generated by CAD schemes include haustral folds, residual stool, rectal tubes, the
ileocecal valve, and extra-colonic structures such as the small bowel and stomach
[85]. Our purpose in this study was to develop a mixture of expert 3D MTANNs
for further reduction of FPs in a polyp-detection CAD scheme while a high
sensitivity is maintained.

5.4.2 CTC Database

CTC examinations were performed on 73 patients at The University of Chicago
Medical Center. The patients’ colons were prepared by standard pre-colonoscopy
cleansing with administration of cathartics following a water diet or low-fiber diet,
and they were insufflated with room air or carbon dioxide. Each patient was scanned
in both supine and prone positions. Our database thus contained 146 CTC datasets.
The CT scans were performed with either a single- or a multi-detector-row CT
scanner (HiSpeed CTi or LightSpeed QX/i, GE Medical Systems, Milwaukee, WI).
The CT scanning parameters included collimations between 2.5 and 5.0 mm,
reconstruction intervals of 1.0–5.0 mm [1.0 mm (n = 2, 1 % of the CTC datasets),
1.25 mm (n = 3, 2 %), 1.5 mm (n = 59, 41 %), 2.5 mm (n = 79, 54 %), and
5.0 mm (n = 3, 2 %)], and tube currents of 60–120 mA with 120 kVp. Each
reconstructed CT section had a matrix size of 512 9 512 pixels, with an in-plane
pixel size of 0.5–0.7 mm. The CT sections were interpolated in isotropic resolution
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by using linear interpolation in the transverse direction. All patients underwent
‘‘reference-standard’’ optical colonoscopy. Radiologists established the locations of
polyps in the CTC datasets by using the colonoscopy and pathology reports, as well
as multiplanar reformatted views of the CTC on a viewing workstation (GE
Advantage Windows Workstation v.4.2, GE Medical Systems, Milwaukee, WI). In
this study, we used 5 mm as the threshold for clinically significant polyps [86].
Fifteen patients had 28 polyps, 15 of which were 5–9 mm in diameter and 13 were
10–25 mm. No polyp was submerged in fluid. Fluid was minimized by using a
saline cathartic preparation as the standard preparation, not a colon gavage. We also
created a training database of non-polyps by manual extraction of volumes
containing non-polyps from 27 ‘‘normal’’ (non-polyp) CTC cases.

5.4.3 Performance of Our Initial CAD Scheme

Figure 5.10 is a block diagram of our CAD scheme for the detection of polyps in
CTC. We applied our previously reported CAD scheme [17, 87] to the 73 CTC cases.
The scheme included a centerline-based extraction of the colon [88], shape-based
detection of polyps [17, 89], and an initial reduction of FPs by using a Bayesian ANN
[90] based on geometric and texture features [87, 91]. The shape index used in the
initial polyp detection step is calculated by using the Hessian matrix. This index
determines to which of the following five topologic shapes an object belongs: cup,
rut, saddle, ridge, or cap, as shown in Fig. 5.11. Polypoid polyps can be identified
with the shape index as a cap shape. A haustral fold can be identified as a saddle or
ridge. The colonic wall can be identified as rut or cup. We evaluated supine and prone
CTC volumes independently. This CAD scheme achieved a 96.4 % (27/28 polyps)
by-polyp sensitivity with an average of 3.1 (224/73) FPs per patient. Forty-eight

CTC Volume

Segmentation of the colon

Detection of polyp candidates

Calculation of features from the polyp candidates

Classification of the polyp candidates by a classifier

False-positive reduction by a mixture of expert 
MTANNs

Detection of polyps

Fig. 5.10 Flowchart of our
CAD scheme utilizing the
mixture of expert MTANNs
for detection of polyps in
CTC
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true-positive polyp detections in both supine and prone CTC volumes represented
27 polyps. We combined our previously reported CAD scheme with the mixture of
expert 3D MTANNs for further reduction of FPs.

5.4.4 Training of Expert 3D MTANNs

We manually selected 10 representative polyp volumes (10 polyps) from the 48
true-positive volumes (containing 27 polyps) in our CTC database as the training
polyp cases for expert 3D MTANNs. We classified CAD-generated FP sources
into eight categories, i.e., rectal tubes, small bulbous folds, solid stool, stool with
bubbles, colonic walls with haustral folds, elongated folds, strip-shaped folds, and
the ileocecal valve. We manually selected 10 non-polyps in each of the 8 cate-
gories from the training non-polyp database (which was not used for testing). The
10 polyps and the 10 rectal tubes were the same as those used in our previous study
[18]. The number of sample volumes for each category was 10, because the
performance of an expert 3D MTANN was found to be highest when the number
of training sample volumes was 20 (i.e., 10 polyps and 10 non-polyps) in our
previous study [18], and the performance of 2D/3D MTANNs was not sensitive to
the number of sample regions/volumes over different types of non-lesions in our
previous studies [9, 18, 32, 78, 92].

The architecture of a mixture of expert 3D MTANNs is shown in Fig. 5.12. We
trained 8 expert 3D MTANNs with the 10 polyps and 10 non-polyps in each
category. A three-layer structure was employed for the expert 3D MTANNs [75].

Polypoid polyps Folds

Colonic walls

Cap Ridge

Saddle

Rut Cup

Fig. 5.11 Shape index for characterizing five shapes. Polypoid polyps can be identified with the
shape index as a cap. Haustral folds can be identified as a saddle or ridge. Colonic walls can be
identified as rut or cup
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The size of the training volume and the standard deviation of the 3D Gaussian
distribution in the teaching volume were 15 9 15 9 15 voxels (i.e., cubic shape)
and 4.5 voxels, respectively, which were determined empirically based on our
previous studies [9, 10, 18, 78]. The number of hidden units was selected to be 25
by using a method for designing the structure of an ANN [76, 77]. With the
parameters above, training of the expert 3D MTANNs was performed by 500,000
iterations. We selected four among the eight expert 3D MTANNs for the mixture
of expert 3D MTANNs by experimental analysis, because the mixture of these four
expert 3D MTANNs [(1) rectal tubes, (2) stool with bubbles, (3) colonic walls with
haustral folds, and (4) solid stool] demonstrated the highest performance.

5.4.5 Evaluation of the Performance for False-Positive
Reduction

We applied the trained expert 3D MTANNs to the 27 polyps (48 true-positive
volumes) and all 224 non-training FPs identified by our previously reported CAD
scheme. The output volumes for these testing cases are shown in Fig. 5.13. The
centers of the input volumes corresponded to the detection results provided by the

Expert 3D MTANNs

Distinction 
between 

polyps and 
non-polyps

Input volume

No. 1

No. 2

No. N

Mixing ANN

Scores

Fig. 5.12 A mixture of expert 3D MTANNs for distinguishing lesions (polypoid and flat lesions)
from various types of non-lesions. Each expert 3D MTANN consists of a linear-output ANN
regression model. Each MTANN is an expert for distinguishing lesions from a specific type of
non-nodule. The outputs of the expert 3D MTANNs are combined with a mixing ANN so that the
mixture of expert 3D MTANNs can remove various types of non-lesions
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CAD scheme (including both true positives and FPs); thus, this experiment
included the effect of actual off-centering of polyp candidates produced by the
initial CAD scheme. Various types of polyps, including a sessile polyp (the third
image from the left in Fig. 5.13a), are represented in the output by distributions of
bright voxels, whereas various types of non-polyps appear as darker voxels,
indicating the ability of the expert 3D MTANNs to enhance polyps and suppress
different types of non-polyps. We applied the 3D scoring method to the output
volumes for polyps and non-polyps. The 3D Gaussian weighting function used the
same standard deviation as that for the 3D Gaussian distribution in the polyp
teaching volume. Although two distributions of scores in each graph overlapped, a
substantial fraction of FPs was eliminated by using the expert 3D MTANNs.

(a) 

(b) 
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MTANN no. 1
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MTANN no. 2

Output images of 
MTANN no. 3

Output images of 
MTANN no. 4

Rectal tubes 

Input 
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Output 
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Stool with bubbles 

Input 
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Fig. 5.13 Illustrations of (a) various testing polyps and the corresponding output volumes of four
trained expert 3D MTANNs and (b) four different categories of testing FPs and the output
volumes from the corresponding expert 3D MTANNs. In the output volumes, polyps appear as
distributions of bright voxels (i.e., they are enhanced), whereas different types of FPs appear as
dark voxels (i.e., they are suppressed)
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We evaluated the overall performance of the mixture of expert 3D MTANNs for
FP reduction by using FROC analysis [79]. The FROC curve of the trained mixture
of expert 3D MTANNs is shown in Fig. 5.14. The FROC curve was obtained by a
change in the threshold value for the output of the mixing ANN. This FROC curve
indicates that the mixture of expert 3D MTANNs eliminated 63 % (142/224) of
non-polyps (FPs) without removal of any of the 27 polyps, i.e., a 96.4 % (27/28)
overall by-polyp sensitivity was achieved at an FP rate of 1.1 (82/73) per patient.

5.4.6 Evaluation of a CAD Scheme with False-Negative CTC
Cases

One of the limitations of current CAD research is a lack of evaluation of ‘‘diffi-
cult’’ polyps, particularly those which radiologists failed to detect by using stan-
dard techniques. Most previously reported studies used polyps detected by
radiologists in CTC (i.e., human true-positive (TP)polyps). CAD benefits cannot
be fully evaluated based on such TP polyps because these polyps are likely to be
detected by radiologists without CAD.

5.4.6.1 Database of False-Negative Polyps

In order to evaluate the performance of a CAD scheme with false-negative (FN)
polyps, we collected a database consisting of CTC scans obtained from a previous
multicenter clinical trial [93] that included an air-contrast barium enema, as well
as same-day CTC and colonoscopy. Six-hundred and fourteen high-risk subjects
participating in the original trial were scanned in both supine and prone positions
with a MDCT system. The reference standard was a final reconciliation of the
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unblinded lesions identified on all of the three examinations. In the original trial,
155 patients had 234 clinically significant polyps of 6 mm or larger. Among them,
69 patients had FN interpretations (i.e., the by-patient sensitivity was 55 %). These
patients had 114 ‘‘missed’’ polyps/masses which were not detected by reporting
radiologists during their initial clinical reading. Causes of errors included observer
errors, i.e., perceptual and measurement errors (51 %), technical errors (23 %),
and non-reconcilable cases (26 %) [94]. The perceptual errors were associated
with polyps that failed to be detected by observers. The measurement errors refer
to the errors associated with the undermeasurement of polyp size as compared to
colonoscopy findings as the ‘‘reference standard.’’ In our study, we focused on FN
cases with observer errors, because the aim of CAD is to prevent observer errors.

We used the inclusion criterion that each case had at least one ‘‘missed’’ polyp
due to the perceptual error. As a result, we obtained 24 FN cases with 23 polyps
and one mass. An experienced radiologist reviewed CTC cases carefully and
determined the locations of polyps with reference to colonoscopy reports. Polyp
sizes ranged from 6 to 15 mm, with an average of 8.3 mm. The mass size was
35 mm. Among them, 14 lesions were adenomas. The radiologist determined the
difficulty of detection for each polyp/mass as difficult, moderate, or easy, as well as
the morphology of each polyp.

5.4.6.2 CAD Performance for False-Negative Cases

Our initial polyp-detection scheme yielded a sensitivity of 63 % with 21.0 FPs per
patient. The 3D MTANNs [18, 19] removed many FPs, and our CAD scheme
achieved a sensitivity of 58 % (14/24) with 8.6 (207/24) FPs per patient for the 24
missed lesion cases, whereas the conventional CAD scheme with LDA instead of
the MTANNs achieved a sensitivity of 25 % at the same FP rate. There were
statistically significant differences [95] between the sensitivity of the MTANN
CAD scheme and that of the conventional LDA CAD scheme. Therefore, our
MTANN CAD scheme has the potential to detect 58 % of missed polyp/mass
cases with a reasonable number of FPs [34].

Among the 24 lesions, 17 polyps, 6 polyps, and 1 mass were classified as
difficult, moderate, and easy, respectively. Among the 23 polyps, 12, 9, and 2 were
categorized as sessile, sessile on a fold, and pedunculated, respectively. Figure 5.15
illustrates FN polyps detected by our MTANN CAD scheme. All examples were
graded as difficult to detect. We expect our CAD scheme to be helpful in the
detection of difficult polyps.
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5.4.7 Detection of Flat Neoplasms by CAD

5.4.7.1 Morphologically Flat Neoplasms (Flat Lesions) in CTC

Current efforts to prevent colorectal cancer focus on the detection and removal of
polypoid polyps (i.e., polypoid neoplasms). Recent studies, however, have shown
that colorectal cancer can also arise from flat colorectal neoplasms (also known as
flat lesions, non-polypoid lesions, superficial elevated lesions, or depressed
lesions) [96]. Flat lesions are more likely than polypoid polyps to contain in situ or
submucosal carcinoma. One study has shown that flat lesions contributed to 54 %
of superficial carcinomas [97]. Flat lesions are also a major challenge for current
gold-standard optical colonoscopy, because the subtle findings for these lesions

(a) (b)

Fig. 5.15 Illustrations of polyps missed by reporting radiologists during their initial reading in
the original trial in 2D axial views (upper images) and 3D endoluminal views (lower images),
which were detected by our MTANN CAD scheme. a A small polyp (6 mm; hyperplastic) in the
sigmoid colon was detected correctly by our CAD scheme (indicated by an arrow). This polyp
was missed in both CTC and reference-standard optical colonoscopy in the original trial. b A
sessile polyp on a fold (10 mm; adenoma) in the ascending colon

104 K. Suzuki



can be difficult to distinguish from those for the normal mucosa [98]. As compared
to the surrounding normal mucosa, flat lesions appear to be slightly elevated,
completely flat, or slightly depressed. Although flat lesions were believed to exist
primarily in Asian countries such as Japan [99, 100], recent studies have shown
their significance in other parts of the world [101] such as the European countries
[96] and the United States [97]. Flat lesions in the Western population, thus, may
have been missed in current gold-standard optical colonoscopy [102]. Although
the detection sensitivity of polyps in CTC is comparable to that in optical
colonoscopy [103], flat lesions are a potentially major source of FN CTC inter-
pretations in view of their uncommon morphology [104, 105]. Thus, detection of
flat lesions in CTC is essential in colorectal cancer screening.

5.4.7.2 Limitations of Current CAD Schemes for Flat-Lesion Detection

Although current CAD schemes could be useful for detection of polypoid polyps,
the detection of flat lesions is a major challenge [106], because existing CAD
schemes have focused on the detection of pedunculated and sessile polyps; thus,
they are designed for detecting the common polypoid shape. Existing CAD
schemes use geometric, morphologic, and textural characteristics to distinguish
polyps from normal structures in the colon (e.g., haustral folds, stool, the air/liquid
boundary, the ileocecal valve, and a rectal catheter). One of the most promising
methods for distinguishing these polyps is to use the mathematical descriptor
called the shape index to characterize the shape of a polyp [89]. A polyp is
characterized by the shape index as a cap-like structure. Haustral folds and the
colonic wall are characterized as saddle-like structures and cup-like structures,
respectively. Thus, existing CAD schemes are not likely to detect flat lesions
which exhibit a non-polypoid shape.

5.4.7.3 Flat-Lesion Database

To create a flat-lesion database, an expert radiologist measured lesions on CTC
images on a CTC viewing workstation (Vitrea 2 software, version 3.9, Vital
Images, Minnetonka, MN) [20, 107]. 2D images were viewed with three tailored
window/level settings: ‘‘lung,’’ ‘‘soft tissue,’’ and ‘‘flat.’’ Magnified axial, coronal,
and sagittal planes were reviewed in 2D for detection of the longest axis and the
maximal height of the lesion as seen on each dataset (supine and prone). On a
close-angle 3D endoluminal view, the lesion was viewed from various angles for
first deciding on its borders. The longest axis and maximal height were measured
on each dataset. Comparison of 2D and 3D images before measurements were
made were permitted for assessment of the lesion shape and borders in the same
session, because this approach corresponds to the method that would be used in
clinical practice when lesions are measured. Measurements of maximal thickness
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on the 3D-volume-rendered views required the observer to make a subjective best
estimate as to where to place the cursor.

We analyzed data from the 3D endoluminal view and the 2D view in each of
the three window/level settings to determine which measurements fit the defini-
tions of flat lesions as determined by a height\3 mm or a ratio of height\1/2 of
the long axis. Based on the measurements of 50 CTC cases by a radiologist, we
found 28 flat lesions in 25 patients (i.e., the prevalence of flat lesions was about
30 %). Eleven flat lesions among the 28 lesions were not detected by reporting
radiologists at their initial clinical reading in the original trial; i.e., these were
missed lesions; therefore, they can be considered ‘‘very difficult’’ lesions to detect.
Lesion sizes ranged from 6 to 18 mm with an average of 9 mm based on optical
colonoscopy measurements.

5.4.7.4 Development of a 3D MTANN for Flat Lesions

In order to investigate the feasibility of a 3D MTANN in the detection of flat
lesions, we applied a 3D MTANN to flat lesions in the flat-lesion database con-
taining 28 flat lesions in 25 patients. We trained the 3D MTANN with sessile polyps
(which are not flat lesions, but appear relatively flat compared to common bulbous
polyps) in a different database and with various non-polyps such as a rectal tube,
haustral folds, the ileocecal valve, and stool, which are major sources of FPs. We
applied the trained 3D MTANN to the 28 flat lesions in the flat-lesion database.

5.4.7.5 Evaluation of the Performance of the CAD Scheme

Our initial polyp-detection scheme without LDA yielded a 71 % by-polyp sensi-
tivity with 25 FPs per patient for the 28 flat lesions, including 11 lesions missed by
the reporting radiologists in the original clinical trial. With LDA, 105 FPs were
removed with the loss of one TP, thus yielding a 68 % by-polyp sensitivity with
16.3 FPs per patient. We applied the trained expert 3D MTANNs for further
reduction of the FPs. The 3D MTANNs removed 39 % of the FPs without removal
of any TPs. Thus, our CAD scheme achieved a by-polyp sensitivity of 68 % with
10 FPs per patient, including 6 of the 11 flat lesions missed by the reporting
radiologists in the original trial. Our MTANN CAD scheme detected 67 % and
70 % of flat lesions ranging from 6-9 mm and those 10 mm or larger, respectively,
including six lesions missed by the reporting radiologists in the original trial with
10 FPs per patient.

Figure 5.16 shows an example of a flat lesion which is very small. Some flat
lesions are known to be histologically aggressive; therefore, the detection of such
lesions is critical clinically, but they are difficult to detect because of their uncom-
mon morphology. Our CAD scheme detected such difficult flat lesions correctly. It
should be noted that this case was missed by the reporting radiologists in the original
trial; thus, the detection of the lesion may be considered ‘‘very difficult.’’
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5.5 Conclusion

PML is a powerful tool in CAD schemes for detection of lesions in medical
images. MTANNs, which are a class of PML, were useful for improving the
performance (i.e., both sensitivity and specificity) of CAD schemes for detection
of lung nodules in CT and the detection of polyps in CT colonography. The
MTANN supervised filter was effective for enhancement of lesions including lung
nodules and colorectal polyps and suppression of non-lesions in medical images,
which contributed to the improvement of the sensitivity as well as specificity in the
initial lesion detection stage in CAD schemes, whereas the classification MTANNs
contributed to the improvement of specificity in the FP reduction stage in CAD
schemes.
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Fig. 5.16 Illustration of a flat lesion which was detected by our MTANN CAD scheme: a 3D
endoluminal view, b 2D axial view, c 3D transparent colon view. A small flat lesion (6 mm;
adenoma) in the sigmoid colon was detected correctly by our CAD scheme (indicated by an
arrow). This polyp was missed in CTC in the original trial
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Chapter 6
Understanding Foot Function During
Stance Phase by Bayesian Network Based
Causal Inference

Myagmarbayar Nergui, Jun Inoue, Murai Chieko, Wenwei Yu
and U. Rajendra Acharya

Abstract Understanding the biomechanics of the human foot during each stage of
walking is important for the objective evaluation of movement dysfunction,
accuracy of diagnosis, and prediction of foot impairment. Extracting causal rela-
tions from amongst the muscle activities, toe trajectories, and plantar pressures
during walking assists in recognizing several disease conditions, and under-
standing the hidden complexity of human foot functions, thus, facilitating
appropriate therapy and treatment. To extract these relations, we applied the
Bayesian Network (BN) model to data collected in the stance phase of walking.
For a better understanding of foot function, the experimental data were divided
into three stages (initial contact, loading response to mid-stance, and terminal
stance to pre-swing). BNs were constructed for these three stages of data for
normal walking and simulated hemiplegic walking, then compared and analyzed.
Results showed that BNs extracted could express the underlying mechanism of
foot function.
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6.1 Introduction

A difference between an actual gait and a normal gait indicates a foot abnormality,
which may be caused by dysfunction of the neural or musculoskeletal systems.
Currently, most abnormalities of the foot are diagnosed and predicted empirically
after subjective assessment, by which correct therapy and rehabilitation for foot
impairment cannot be guaranteed. A better understanding of foot function could
make an objective assessment possible, and thus is of great significance to not only
research in the therapy and rehabilitation area, but also to research in the motor
control research area.

The main goal of this research is to develop new tools for identifying the nature
and cause of foot function impairment, and assist in treatment and rehabilitation of
foot function. Foot function during walking is a result of interaction among the
muscular, neural, and skeletal systems, and the walking environment.

In this study, we measured and recorded lower limb, major muscle activities
(corresponding to the cause of the motion), the trajectories of toe and ankle joints
(reflecting the effect of the motion), and plantar pressure distributions (repre-
senting the interaction between the human and environment) during the stance
phase. Then, Bayesian network (BN) was applied as the theoretical account of
probabilistic illation to extract the causal construction for foot function. Two kinds
of walking, normal walking and simulated hemiplegic walking, were measured
and analyzed to verify the BN’s ability to express and distinguish the significant
gait-dependent causal relations.

Our research differs from existing work in the literature in the following aspects.

1. The trajectory and pressure of the tiptoe stance were also recorded and mod-
eled.
Although the role of the toes in walking has been studied in robotics and gait
research [1–3], it has not been studied in a foot function model.

2. The information structure of foot function, expressed by the causal relation
among muscle activities, joint trajectories, and plantar pressure recordings were
inferred.
Several studies have been done for estimating foot abnormalities while eval-
uating normal foot function during walking [4–7]. For example, [5] have
reported that the study of using plantar pressures with muscle activities for
analyzing and estimating abnormalities of human gait. Also, some scientists
have shown that lower-leg muscle impuissance is influenced by upper-leg
muscles [8, 9]. Thus, empirical diagnosis cannot bring suitable treatment and
rehabilitation methods. Moreover, the probabilistic causal inference could
synthesize the information from several types of measurement, without any a
priori, for example, the physical connection and relationship between func-
tional components.

3. The BN is used to describe knowledge about an uncertainty. The BN principle
consists of probability theory, graph representation, and statistics, and is
employed to describe the probabilistic dependencies among random variables.
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To better describe knowledge about an uncertainty and represent the probabi-
listic dependencies among random variables, some researchers explored and
determined that the BN can be used to analyze biomedical signals and medical
applications. Some examples of this research can be found in [11–15]. In these
examples, BNs were applied as many kinds of tools, specifically, to extract the
causal relations amongst symptoms and diseases from medical databases, to
construct database from incomplete and partially correct statistics for multi-
disease diagnosis, and to handle uncertainties in a decision support system.

However, the BNs have been rarely applied to the real continuous sequence of
motion-related biomedical data. In [16], BN was used for the upper limb motion
categorization. A BN model was used to categorize the healthcare procedure for
wheelchair users with spinal injury [17].

This chapter is arranged in the following sections. In Sect. 6.2, the gait mea-
surement experiment for gathering data of normal walking and simulated hemi-
plegic walking is described. In Sect. 6.3, preprocessing experiment data during the
stance phase of walking is shown. In Sect. 6.4, BN, its search algorithm, and node
assignments for its construction are briefly outlined. In Sect. 6.5, the results of the
analysis are shown. In Sect. 6.6, we discussed and concluded.

6.2 Experiment Data Recording

In our experiment, we collected data for human normal walking and simulated
hemiplegic walking. We used an electromyogram (EMG) to record muscle
activities, a motion capture system to track foot motions during walking, and
plantar pressure and force measurement to measure foot forces (pressures) for
further analysis.

6.2.1 Subject

One healthy person, without previous foot abnormalities, took part in the exper-
iment. The subject was required to walk on a normal floor at his normal speed.
Table 6.1 shows the subject’s weight, health state, and walking speed. To measure
the artificial impairment walking (simulated hemiplegic walking), we asked the
healthy subject to wear a simulation set, which is a product of Tokushuiryo Co.
Ltd. The simulation set contributes constraints to the right-side ankle and knee
joint of the subject. Figure 6.1 shows the special lower extremity orthosis con-
straining the ankle joint by a plantar flexed to 105�.

Before each experiment, informed consent was required from subject.
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6.2.2 Making Records of Muscle Activities Using EMG
Sensors

In biomedical research, EMG signals are used as the primary control signal
sources to build interfaces for prosthetic applications [18]. Moreover, EMG signals
are used as the primary diagnostic tools for clinical neurophysiology, i.e., for
distinguishing neuromuscular diseases, and evaluating lower-back pain, kinesiol-
ogy, and disorders of motor control, etc. [19].

Three EMG sensors (TYK-2007, II Version, Sikikou Engineering) were
attached to the muscles shown in Fig. 6.2. The sampling frequency was 1600 Hz.

6.2.3 Making Records of Foot Trajectories by a Motion
Capture System

We used a motion capture system (CaptureEx, Library-Inc), containing three
cameras (Himawari GE60, 60 fps, Library-Inc) to make records of the trajectories
of reflected light markers tied at the thumb, II toe, phalange (heel) bone, cuneiform
bone, and ankle joint of right leg. Move-tr/3D software, also a product of Library-
Inc., was used to construct a prototype from the recorded reflective marker tra-
jectories and to calculate the toe angles from the prototype. Figure 6.3 shows the
procedures used to compute the toe angles from foot trajectories.

The motion tracking system was synchronized with the EMG measurement,
through the triggering function of the CaptureEx (Library-Inc).

Table 6.1 Subject data information

Subject Weight Health state Walking state Speed

Male 65 kgs Healthy Normal walking
Artificial impairment walking
(Simulated hemiplegic)

4 [km/h]
1 [km/h]

Fig. 6.1 Lower extremity
orthosis used for artificial
impairment walking
(simulated hemiplegic gait)
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6.2.4 Making Records of Foot Pressures by Plantar Pressure
and Force Measurement

We used the Plantar Pressure and Force Measurement system as an F-scan
(Tekscan� technology) system. This system measures dynamic foot pressure and
force data and shows interaction between the foot and ground. Conventional visual
observation of gait and foot function, in contrast to an F-scan, measures foot force,
contacted pressure distribution, and timing. The system consists of sensors,
scanning electronic devices, and software. Figure 6.4 shows the sequence of steps
for the plantar pressure experiment. This system is used in many applications: in

EDL PL TA

Fig. 6.2 Muscles used for gait measurement, EDL Extensor digitorim longus muscle, PL
peroneus longus muscle, TA Tibialis anterior muscle

Fig. 6.3 Procedures to compute toe angles from foot trajectories
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shoe analysis (footwear design), gait analysis, diagnosis of diabetes, and so on. It
supports biomechanical parameters, advanced analysis, and confirmation of the
effectiveness of treatments.

6.3 Preprocessing Experiment Data During Stance Phase
of Walking

6.3.1 Preprocessing EMG Signals in Order for Analysis

In order to analyze the data obtained from the experiment, we did following
procedures on measurement data. (1) rectified raw (measured) EMG signals using
full waves, (2) performed moving average on the signals, (3) down-sampled the
signals to 60 Hz (the sampling rate of the motion capture system), and (4) stan-
dardized them. Desired signals (obtained during the stance phase) were extracted
from the standardized data. Then, we discretizated the desired signals to three
values: Upper, Middle, and Lower. Table 6.2 shows the method used for dis-
cretization, which we implemented in MATLAB� 7.1 (MathWorks�, Inc).

6.3.2 Preprocessing Toe Angle Data for Analysis

The thumb and II toe angles were extracted from the trajectory data by the motion
capture system. These angles data were filtered and moving averaged, then
discretized to three values: Upper, Middle and Lower, as shown in Table 6.2.
Figure 6.5 shows an illustration of the angle of thumb and II toe.

Fig. 6.4 Sequence of steps in the plantar pressure and force measurement experiment
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6.3.3 Preprocessing Plantar Pressure Data for Analysis

Plantar pressure data were divided into three sections for further analysis.
Figure 6.6 shows these sections and the corresponding plantar pressures. After the
experiment, we calibrated experiment data according to the health condition of our
experiment subject. Here, we used 65 kgs as the calibration point because of the
weight of the subject. The desired plantar pressure data (obtained during stance
phase) were extracted from the overall experimental data. Then, the desired plantar
pressure data were discretized by three values: Upper, Middle, and Lower, shown
in Table 6.2.

6.4 Outline of Bayesian Network

6.4.1 Concept of Bayesian Network

Bayesian networks (BNs), also known as belief networks or directed acyclic
graphic models (DAG), are graphical representations of the probabilistic depen-
dencies among random variables and estimated probabilistic inference obtained by
using statistical and computational methods within those variables [20]. Bayesian
networks treat random variables, express these variables as a set of nodes, draw
arcs expressing probabilistic causal relations and conditional dependency between

Table 6.2 Discretization method

Discretizated value Threshold value

Upper 0.66*max ? 0.33*min \ value
Middle 0.66*max ? 0.33*min [ value [ 0.33*max ? 0.66*min
Lower 0.33*max ? 0.66*min [ value

Note Max is maximum value; min is minimum value

Angle   of 

Thumb & II toe   

Fig. 6.5 An illustration of toe angle
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a set of nodes, and extract these causal relations based on conditional probabilities
of a set of nodes.

Recently, the Bayesian networks have been employed for medical diagnostics
and predictions because they can be used to analyze biomedical signals and handle
uncertainty in decision making systems. Bayesian networks are also applied for
diagnosing faults in systems, body skill modeling, and so on.

6.4.2 Search Algorithms of BN Structure

There are two kinds of BN learning algorithms: parameter learning and structure
learning. The structure learning algorithm is divided by two categories.

1. Constraint-based algorithms learn the network structure by analyzing the
probabilistic relations entailed by the Markov property with conditional inde-
pendence tests and then construct a graph which satisfies the corresponding d-
separation statements. The resulting models are often interpreted as causal
models even when learned from observational data [20].

2. Score-based algorithms assign a score to each candidate in the Bayesian network
and try to maximize it with a heuristic search algorithm. Greedy search algo-
rithms are a common choice, but almost any kind of search procedure can be
used.

Fig. 6.6 Divided section of
plantar pressures
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We used a score-based algorithm of BNs as a greedy search algorithm and an
evaluation function of Bayes factors [9, 10, 20], implemented by a deal-package
of an R package [21].

6.4.3 Node Assignment for BN Construction

Each EMG sensor attached muscle, each toe angle, and each plantar pressure
section was designated a node in the graph.

In every experiment, five BNs were constructed. Each of these BNs expressed
causal relations among three nodes of muscles, three nodes of foot pressure sec-
tions, and two nodes of angle data. The node appointment is given in Table 6.3. For
all the nodes, three values, Upper, Middle and Lower, can be assumed. For further
analysis, based on prior knowledge of human walking, some arcs were proscribed
for the simplification of calculation. Table 6.4 shows the proscribed arcs.

6.5 Results

In this study, for a better understanding of foot function during the stance phase of
different walking patterns, we divided the experiment data into three stages: initial
contact (the strike of the heel on the ground), loading response to mid-stance, and
terminal stance to pre-swing (ends with the lift of the toe at the beginning of the
swing phase of gait). Figure 6.7 shows the three stages of a stance phase of
walking.

Table 6.4 Proscribed arcs Node1 Arc Node2

EDL ? Thumb
EDL / Thumb
TA ? II toe
TA / II toe
PL ? Thumb
PL / Thumb
PL ? II toe
PL / II toe

Table 6.3 Node appointment

Node Meaning Node Meaning

PL Peroneus longus muscle M Fore foot pressure
TA Tibialis anterior muscle I Toes pressure
EDL Extensor digitorim longus muscle Thumb Angle of thumb
P Rear foot pressure II toe Angle of II toe
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Figures 6.8 and 6.9 show a representation of EMG data, plantar pressure data,
and toe angle data before the discretization process for normal walking and sim-
ulated gait walking, respectively.

Fig. 6.7 Three stages of the stance phase of the foot

Fig. 6.8 Representation of
EMG data, plantar pressure
data, and toe angle data
before discretization (for
normal walking of healthy
subject)
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Figures 6.10, 6.11 and 6.12 show BN structures of muscle activities and foot
pressures for normal walking and simulated hemiplegic walking in three stages,
respectively. From Fig. 6.8, we see that the PL muscle is more active than other
muscles at Stage III of normal walking. From Fig. 6.11, we see that there are more
incoming arcs to the PL node than to other nodes, and it seems that the PL muscle
is more active than others. Comparing these two graphical representations, we can
tell that extracting the BN-based causal inference among muscle activities and foot
pressures is reasonable. From Fig. 6.9, we see that the PL muscle is more active
than other muscles at Stage I, and the EDL muscle is more active than other
muscles at Stage III of simulated gait walking.

From Figs. 6.11 and 6.12, in case of simulated gait walking, we see that there
are more incoming arcs to the PL node than to other nodes and more outgoing arcs
from the EDL node than from other nodes. From here, we can see that the PL
muscle is more active at Stage I and the EDL muscle is more active at Stage III.
From these results, the BN model-based causal inference among muscle activities
and foot pressures is reasonable. We also see that BN structures of Stage II are the
same in the case of normal walking and artificial impaired walking.

Figures 6.13 and 6.14 show the BN structures of muscle activities and toe
angles for normal walking and simulated gait walking with Stages I and III,
respectively.

Fig. 6.9 Representation of
EMG data, plantar pressure
data, and toe angle data
before discretization (for
simulated gait walking of
healthy subject)
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For Stage II, there are no BN structures extracted from the data because this
stage does not have muscle activities and toe motions. Figure 6.13 shows that the
BN structures of Stage I for normal walking and simulated gait walking are the
same. From Fig. 6.14, we see that there are more incoming arcs to the PL node
than to others, and the PL node is more active than others at Stage III of normal
walking (see Fig. 6.8).

As shown in this figure, the EDL muscle is more active than others in the case
of simulated gait walking (right side). This activity is also shown to be the same as
at EMG data representation in Fig. 6.9.

Fig. 6.10 BN structure of muscle activity and foot pressures for normal walking (left side is
Stage I, right side is Stage II)

Fig. 6.11 BN structures of muscle activity and foot pressures for simulated gait walking (left
side is Stage I, right side is Stage II)
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In the case of Stage II or loading response to mid-stance, BN structure was not
constructed amongst muscle activities and toe angles because all these values are
on one discretized value. From here, we can see that in this stage there is no
relation amongst muscle activities and toe angles, and it is a stable stage.

Figure 6.15 shows BN structures of muscle activities for the stance phase of
walking (the left side is normal walking and the right side is simulated gait
walking). From these two graphical representations, we can tell that causal rela-
tions amongst muscle activities during stance phase are the same in both cases
(normal walking and simulated gait walking). To construct more precise causal
relations and conditional dependence amongst foot functions during the stance

Fig. 6.12 BN structures of muscle activity and foot pressures (left side is Stage III for normal
walking, right side is Stage III for simulated gait walking)

Fig. 6.13 BN structures of muscle activity and toe angles (left side is Stage I for normal walking,
right side is Stage I for simulated gait walking)
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phase of walking, we divided our experiment data into three stages and discretized
three values.

In this study, we analyzed four trial data from measurement experiment data. The
resulting probability values are shown in Table 6.5. From this table, we see that two
trial data of normal walking and simulated gait walking are similar to each other.

We see from our results that the BNs of normal walking and simulated gait
walking are reasonable and good graphical representations of muscle activities,
plantar pressure sections, and toe angles.

Fig. 6.14 The BN structures of muscle activities and toe angles (left side is Stage III for normal
walking, right side is Stage III for simulated gait walking)

Fig. 6.15 BN structures of muscle activities for stance phase of walking (left side is normal
walking, right side is simulated gait walking)
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6.6 Discussion and Conclusions

The results presented in this chapter show that the BN structure is useful for a
better understanding of foot function during the stance phase of human normal and
simulated hemiplegic walking.

Biomedical signals are corrupted by external noise during the experiment. The
external noise can be environment noise (sound and light), experiment equipment
noise, and communication channel noise. To avoid such noise, we filtered and
standardized our experimental data.

Foot function during walking is a result of interactions among the muscular,
neural, and skeletal systems, and the walking environment.

In this study, we extracted causal structures for foot function by measuring and
recording lower-limb major muscle activities, the trajectories of toe and ankle
joints, and plantar pressure distributions during the stance phase, and then applied
BN as the theoretical account for probabilistic causal inference.

Table 6.5 Probability value of trial data

Node
name

Discretized
value

Normal walking (Probability) Simulated gait walking (Prob)

I trial data II trial data I trial data II trial data

I II III I II III I II III I II III

PL Upper 0 0 0.42 0 0 0.44 0.42 0 0 0.44 0 0
Middle 0 0 0.33 0 0 0.35 0.33 0 0 0.34 0 0
Lower 1 1 0.25 1 1 0.21 0.25 1 1 0.22 1 1

TA Upper 0.58 0 0 0.62 0 0 0.17 0 0.82 0.15 0 0.8
Middle 0.42 0 0.67 0.38 0 0.6 0.75 0 0.18 0.72 0 0.2
Lower 0 1 0.33 0 1 0.4 0.08 1 0 0.13 1 0

EDL Upper 0.25 0 0 0.22 0 0 0 0 0.55 0 0 0.58
Middle 0.25 0 0.42 0.23 0 0.4 0.25 0 0.27 0.25 0 0.28
Lower 0.5 1 0.58 0.55 1 0.6 0.75 1 0.18 0.75 1 0.14

P Upper 0.5 0.39 0 0.6 0.4 0 0.28 0.63 0 0.33 0.63 0
Middle 0.5 0.19 0 0.4 0.21 0 0.22 0.2 0 0.23 0.2 0
Lower 0 0.42 1 0 0.39 1 0.5 0.17 1 0.44 0.17 1

M Upper 0 0.35 0.66 0 0.4 0.6 0 0.62 0.55 0 0.64 0.56
Middle 0 0.26 0 0 0.25 0.2 0 0.38 0.18 0 0.36 0.19
Lower 1 0.39 0.33 1 0.35 0.2 1 0 0.27 1 0 0.25

I Upper 0 0.16 0.92 0 0.18 0.90 0 0.26 0.91 0 0.3 0.92
Middle 0 0.26 0.08 0 0.22 0.1 0 0.74 0.09 0 0.7 0.08
Lower 1 0.58 0 1 0.6 0 1 0 0 1 0 0

Thumb Upper 0 0 0.25 0 0 0.27 0 0 0.27 0 0 0.28
Middle 0 0 0.25 0 0 0.28 0 0 0.27 0 0 0.27
Lower 1 1 0.5 1 1 0.45 1 1 0.46 1 1 0.45

II toe Upper 0 0 0.25 0 0 0.26 0 0 0.27 0 0 0.27
Middle 0 0 0.25 0 0 0.27 0 0 0.27 0 0 0.26
Lower 1 1 0.5 1 1 0.47 1 1 046 1 1 047
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Two different styles of walking, normal and simulated hemiplegic walking of
one healthy subject who did not have previous foot abnormalities and weighed
65 kgs, were measured and analyzed to verify the BN’s ability to express and
distinguish the significant gait-dependent causal relations.

In this work, we assigned as the nodes of BNs to each muscle activity, each
plantar pressures section, and each toe angle trajectory, each of which represent
commonly cited modes of muscle control analysis and motion analysis. Recently,
there have been many Bayesian network models used to diagnose different dis-
eases [11–15, 17] and classify motion [16, 22].

But, our study is revealed to combine different measurements for experimental
data, plantar pressure data, muscle activity data, and toe motion data during the
stance phase of walking.

We standardized and discretized experiment data into three values and then
divided it into three stages during the stance phase of walking: initial contact,
loading response to mid-stance, and terminal stance to pre swing, for constructing
reasonable relation and dependency amongst muscle activities, plantar pressures,
and toe motions. Our preliminary results show that the BNs of normal walking and
artificial impairment (simulated hemiplegic walking) are reasonable, and there is
no difference between them. We have analyzed four sets of trial data for normal
walking and artificial impairment (simulated hemiplegic walking); there are no
differences between trial data from probability table.

In future studies, we will try to increase the number of subjects, particularly
those for impaired walking cases. We will also conduct experiments for several
walking conditions (climbing upstairs, different walking speeds, on gradient
walkways, etc.) Moreover, three muscles, three sections of plantar pressures, and
two toe angles were investigated in this study, though the other assignment
schemes, i.e., multiple muscles, multiple separation to plantar pressures, angle of
ankle, inside arch and outside arch of foot should also be studied.

In this study, we used the BN to extract the probabilistic causal information offoot
function data, such as muscle activities, plantar pressures, and toe trajectories, from
different types of data of human walking phases. The graphical networks extracted
from the three stages of the stance phase of gait measurement data are useful for
understanding the foot function of the normal walking and simulated hemiplegic
walking. Thus, understanding the foot function during walking is important for
further analysis of diagnostic, therapy, and training programs for foot impairment.
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Chapter 7
Rule Learning in Healthcare and Health
Services Research

Janusz Wojtusiak

Abstract Successful application of machine learning in healthcare requires
accuracy, transparency, acceptability, ability to deal with complex data, ability to
deal with background knowledge, efficiency, and exportability. Rule learning is
known to satisfy the above criteria. This chapter introduces rule learning in
healthcare, presents very expressive attributional rules, briefly describes the AQ21
rule learning system, and discusses three application areas in healthcare and health
services research.

Keywords Rule learning � Attributional calculus � AQ21 system � Health services
research � Aggregated data � Healthcare billing data

7.1 Introduction

Healthcare requires modern computational tools to handle the complexity of data
and workflows. The healthcare environment is dynamic and frequently changing:
New knowledge is published on a daily basis, new drugs are constantly available,
and the best practice guidelines change. Moreover, healthcare is a critical area in
which success is measured by patient survival and wellbeing. Unfortunately, many
existing treatment and reimbursement systems used in healthcare treat individual
patients as ‘‘average’’ cases without tailoring to patient characteristics.

The above reasons call for machine learning methods to manage the complexity
and automatically adapt to frequent changes. This chapter focuses on one of the
best known and most important methods in machine learning in healthcare: rule
learning. It briefly describes rule learning methods, discusses their use in
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healthcare delivery, research, administration and management, and presents
advantages of using rule learning rather than traditional computational approaches
and other machine learning methods.

In order to fully justify the use of rule learning in healthcare, the following
sections briefly outline aspects of machine learning that are particularly important
in this application area.

7.1.1 What is Needed in Healthcare and Health Services
Research?

Machine learning methods have a wide range of applications in healthcare
delivery, research, administration, and management. Many of these applications
are slowly emerging as the healthcare community becomes more familiar with
machine learning and its immense potential. On the other hand, most machine
learning researchers are not familiar with healthcare settings and over-trivialize
them. This mutual lack of understanding between healthcare and machine learning
communities results in the lack of advanced machine learning methods adoption.

Among the healthcare areas that benefit the most from machine learning are
those that rely on automated processes or that can be automated. The ability of
machine learning methods to adapt to dynamically changing environments, pre-
viously unseen situations, and new challenges make them ideal for these types of
applications. Two of the most common applications of machine learning in
healthcare are: decision support systems and knowledge discovery. Decision
support systems rely on computational models that aid decision makers in a variety
of situations. These models can be constructed and maintained using machine
learning. In addition, knowledge discovery, which primarily derives from medical
datasets, can be used to study patterns of healthcare delivery systems, manage-
ment, billing, etc. Machine learning has, thus, great potential when correctly
applied to hard problems that cannot be solved with more traditional computa-
tional methods or manually without the use of computers.

However, for machine learning to be adopted in healthcare, methods need to
fulfill several requirements. These requirements are eminent and applicable to
virtually all domains in which machine learning is or can be used. However, some
of these requirements are particularly important in healthcare when the adoption of
new technologies and results are exceptionally challenging.

• Accuracy. Models have to provide reliable predictions and/or reliably describe
data, which is, in most cases, their main function. Multiple measures of accuracy
are available, all of which perform some form of counting/scoring of correct and
incorrect predictions and combinations thereof. Some commonly used measures
of accuracy include precision, recall, sensitivity, specificity, F-score, and others.

• Transparency. Medical and healthcare studies require models to be easily
understood by people not trained in machine learning, statistics, and other
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advanced data analysis methods. In this sense, providing just the reliable
predictions is not sufficient, as models should also ‘‘explain’’ why a specific
prediction is made and what the model actually does. This corresponds not only
to methods that lead to creation of new knowledge, but also to autonomous
systems that because of their critical role need to leave an ‘‘audit trail’’ and be
analyzed/verified periodically.
The concept of understandability and interpretability has been well known since
early work on expert systems and artificial intelligence, but has been largely
ignored by many modern machine learning methods. One reason for this is that
it is very hard to measure the complexity of created models and hypotheses, and
use that measurement as one of knowledge representation selection criteria. It is
virtually impossible to consistently measure and compare the transparency of
models learned in different representations. (How do we compare transparency
of specific SVM-based, NN-based, and rule-based models for diagnosing liver
diseases? How do we generalize the measure?) Moreover, compound knowledge
representations, which are natural to people, tend to be difficult to learn through
machine learning methods. One such representation, called attributional calculus
consists of attributional rules, which are briefly outlined in Sect. 7.2.1.

• Acceptability. Models need to be accepted by their potential users. While partially
related to transparency, acceptability requires that the models that do not contradict
the knowledge of existing experts are otherwise ‘‘reasonably’’ congruent with what
is currently being done, and correspond to existing workflows. Acceptability is a
key issue in healthcare, more than in any other industry. Clinicians, administrators,
and supporting staff do not want to change the way they work, even if the
developed models being used are accurate and superior to methods currently being
used. The use of ML algorithms should immediately lead to improved work and
provide incentives to participants; otherwise results may not be adopted.

• Ability to handle complex types of data. Healthcare data are complex. Even
relatively simple applications of machine learning to healthcare data require
making numerous conversions, data pre-processing, encoding of variables, and so
on. In order to have widespread acceptance in healthcare, machine learning
methods should be able to operate directly with healthcare data without the need to
artificially encode. Healthcare data are not, and should not be, treated by ML tools
as a collection of numbers without meaning. Although more advanced ML
methods recognize a wide range of data types (nominal, structured, ordinal,
interval, ratio, absolute, compound, etc.), prevalent standards such as ICD-9, ICD-
10, CPT, SNOMED, and HL7 are currently not directly supported by ML tools.

• Ability to handle background knowledge. Computers require massive
amounts of data to make simple decisions or discover simple facts. Humans do
exactly the opposite—we are able to make important decisions and discover
important facts based on minimal information. Although there are many dif-
ferences in human and computer inference/learning processes, one of the most
important is the ability to use background knowledge to place problems into the
appropriate context. Similarly, machine learning algorithms that are provided
with large knowledge bases and a wealth of background knowledge need not
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have access to huge amounts of data. This allows machine learning algorithms
to focus on the discovery of novel facts and not what is already known to
experts. Extremely large repositories of medical and healthcare knowledge
(is often not coded and in many cases only available as text of published
manuscripts) can be incorporated into the machine learning process.

• Efficiency. Both model induction and model application algorithms need to be
efficient. Machine learning algorithms applied in healthcare should be able to
cope with very large amounts of data. The data may have many examples
(sometimes called records or datapoints), attributes (sometimes called variables
or features), or both. The theoretical estimates of algorithm complexity are often
available for many methods. More importantly users want the methods to be
executed in a specific period of time, even if it means that results are only
approximate or ‘‘good enough.’’

• Exportability. Results of machine learning should be directly transferable to
decision support and other systems where they can be immediately applied. It is
not unusual that the learned models will work along with already existing
models and thus need to be compatible. For example, learned models can be
translated or directly learned in the form of rules in Arden Syntax, a popular
representation language in clinical decision support systems. If models are
learned in completely different representations, they need to be translated
(usually approximately) to the target form.

This chapter focuses on the use of rules and rule learning methods in different
healthcare areas. Rules are known to be one of the most transparent knowledge
representations that also conform to other criteria outlined above.

7.2 Rule Learning

Over the past few decades multiple rule learning algorithms and software have
been developed. Multiple types of rules are considered in machine learning
research depending on their use and form, including: association rules (which are
used to represent regularities in data), decision rules (which are used to support
decisions) and their subtype classification rules (used to classify examples into
concepts), rules with exceptions (that include part describing when the rule does
not apply), m-of-n rules (used to count true values or statements), and attributional
rules (the most expressive form of rules considered here).

The AQ21 system is particularly suitable for problematic healthcare situations
because of its flexibility, ability to deal with multiple types of attributes, handle
both large and small datasets, use background knowledge in different forms, learn
from individual and aggregated data, manage meta-values, cope with noise, per-
form constructive induction, generate alternative hypotheses, and many other
features. AQ21 uses attributional rules as the main form of knowledge represen-
tation. The following subsections briefly introduce attributional rules, and outlines
AQ21 main algorithms.

134 J. Wojtusiak



7.2.1 Attributional Rules

Healthcare applications require rules that are more expressive than typically used

CLASS IF CONDITION ð7:1Þ

Most software creates rules in which CONDITION is a conjunction of simple
conditions in the form ATTRIBUTE ¼ VALUE. Many such rules are needed to
describe even simple concepts. Attributional rules are currently the most expres-
sive form of rules induced by machine learning algorithms. They are the main
knowledge representation in a formal language called attributional calculus, AC
[9]. AC has been created to support natural induction, an inductive learning
process which has results that are natural to people because of their form and
content.

Natural induction requires that knowledge be equivalent to statements in natural
language (i.e. English), so those who are not experts in machine learning or
knowledge mining, or do not have a technical background may understand it.
Thus, medical doctors, healthcare administrators, nurses, and researchers should
be able to understand, interpret, modify, and apply knowledge learned by com-
puter systems. Such a goal requires that knowledge discovery programs use a
language that can either be automatically translated to natural language or easily
understood on its own.

Learned knowledge is represented in attributional calculus in the form of
attributional rules, which consist of attributional conditions. An attributional
condition takes the form:

L rel R : A½ �; ð7:2Þ

where L is an attribute, an internal conjunction or disjunction of attributes, a
compound attribute, a counting attribute, or an expression. rel is one of ¼,[,\, B,
C, :, or = . R is an attribute value, an internal disjunction of attribute values, an
attribute, an internal conjunction of values of attributes that are constituents of a
compound attribute, or an expression. A is an optional annotation that may list
statistical information describing the condition. The annotation often includes jpj
and jnj values for the condition, defined as the numbers of positive and negative
examples, respectively, that satisfy the condition, and the condition’s consistency
defined as jpj= jpj þ jnjð Þ.

There are several forms of attributional rules allowed by attributional calculus.
Three important forms of attributional rules are presented below:

CONSEQUENT \¼¼PREMISE ð7:3Þ

CONSEQUENT \¼¼PREMISE bEXCEPTION ð7:4Þ

CONSEQUENT \¼¼PREMISE dPRECONDITION ð7:5Þ
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where PREMISE, CONSEQUENT, EXCEPTION, and PRECONDITION are com-
plexes, that is, conjunctions of attributional conditions. An EXCEPTION can also be
an explicit list of examples that constitute exceptions to the rule. The rules without
exception or preconditions are interpreted as the CONSEQUENT is true whenever
the PREMISE is true. The rules with exceptions are interpreted that the CONSE-
QUENT is true whenever the PREMISE is true, except for when the EXCEPTION is
true. The rules with preconditions are interpreted that the CONSEQUENT is true
whenever the PREMISE is true, provided that the PRECONDITION is true. The
symbols b and d are used to denote exception and precondition, respectively. Each
rule may be optionally annotated with several parameters such as numbers of cov-
ered examples (positive and negative), the rule complexity, etc.

One class of the data is usually described using several rules, called a ruleset.
Rules considered here are independent, i.e., the truth status of one rule does not
affect interpretation of other rules. This is in contrast to many other rule learning
programs that learn sequential rules that need to be evaluated in a specific order. A
set of rulesets that describe all considered classes in the data (often defined by
possible values of an output/dependent attribute) is called a ruleset family, a.k.a.
classifier. Depending on the problem at hand, the goal may be learn a complete
classifier, a ruleset for one class of interest, or individual rules representing reg-
ularities/patterns in the data. Selected example attributional conditions and rules
along with explanations are presented in Table 7.1.

Table 7.1 Table with example conditions and rules

[Length [ 7.3]
The length of an entity is greater than 7.3 units (as defined in the attribute’s domain).
[Color = red v blue: 40, 2]
The color of an entity is red or blue. The condition is satisfied by forty positive and two negative

examples.
[Length & Height B 12]
An entity’s length and height are both smaller or equal to 12 units. The units are defined in the

attributes’ domains.
[Weather: sunny & windy]
The weather is sunny and windy. This is an example of a condition that includes a compound

attribute Weather.
[Part = acceptable] \== [Width = 7.12] & [Length \3] & [Material = steel v plastic]
A part is acceptable if its width is between 7 and 12, its length is less than 3 and its material is

steel or plastic.
[Activity = play] \== [Condition = cloudy v sunny: 7, 8] & [Temp = medium v high]
b[Condition = cloudy] & [Wind = yes] & [Temp = high] : p = 7, n = 0, q = 1
An activity is play if the condition is cloudy or sunny and temperature is medium or high, except

for when the condition is cloudy, there is wind and temperature is high. The rule covers 7
positive and no negative examples. Its quality of the rule is 1.
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7.2.2 AQ21

The well-known family of AQ programs originated with the simple version of the
Aq algorithm for solving the general covering problem used at the core of rule
learning [5]. Numerous implementations and extensions of the method were
developed over the years. Among the best known AQ implementations are AQ7 [6],
AQ11 [7], AQ15c [11], AQ17 [1], AQ19 [8], and most recently AQ21 [12–14].

The AQ21 system consists of two main modules for learning attributional rules,
and for their application (Fig. 7.1). The learning module consists of data and
background knowledge, a pre-processing module, a rule generation module, and a
post-processing module. Similarly, the testing module consists of a pre-processing
module which converts data and rules to common representation, a rule application
module which matches examples against rules, and a post-processing which
calculates summaries and statistics.

Rule learning starts with the pre-processing of data and background knowledge
which both need to be converted into the right representation and then prepared for
rule generation. The process may involve simple steps such as encoding of attri-
bute values, and/or more complex ones including constructive induction. The goal
for the latter is to automatically determine the representation space (a set of
attributes, their types, and domains). This method is best suitable for the learning
problem at hand. AQ21 implements two of three known classes of constructive
induction (data-driven (DCI) [3], knowledge-driven (KCI), hypothesis-driven
(HCI) [10], and multi-strategy [2]), DCI and KCI. The methods include operators
such as attribute selection, attribute generation, and attribute modification.

At the core of the AQ learning is its rule generation module. The method
pioneered the separate-and-conquer approach to rule learning, in which data
representing a target class being learned are sequentially covered in a way that
avoids negative examples. The AQ21 rule generation module starts by focusing on
a single example and generates possible generalizations of that example that are
consistent or partially consistent with the data and background knowledge. This
process, called star generation, results in a rule or set of rules that describe part of
the data. Multiple stars may be generated in parallel, in order to prevent erroneous

Rule Learning Rule Application & Testing

Input, output, user interface

Pre-processing

Rule Generation

Post-processing

Pre-processing

Rule Application

Post-processing

Fig. 7.1 AQ21 system architecture
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generalizations due to noise in the data. The process of star generation is repeated
until all data or a significant portion of data are covered (explained) by generated
rules. The quality of rules in AQ21 is evaluated using lexicographical evaluation
functional (LEF), a method which sequentially evaluates rules through multiple
criteria. Numerous variants of the AQ rule generation algorithm have been
investigated over the years and are widely described in literature.

The rule post-processing method includes rule optimization, selection of the
final rules to be used in a hypothesis or a set of alternative hypotheses, and
calculation of statistical parameters describing these rules. The final rules are
presented to the user or transferred to the testing and application module.

The rule testing and application module starts with the pre-processing of
hypotheses and examples in order to match their representation and prepare for the
actual application process. Each considered example (application case) is evalu-
ated against rules. In the case of application of rules in decision support, only one
example is usually considered. Rules can be evaluated strictly (when an example
either matches a rule or not) and flexibly (when a degree of match, DM, ranging
from zero to one is calculated). Multiple schemas [9] are available on how to
flexibly evaluate individual conditions, rules, and entire rule sets.

Unlike most classifiers that always give one definitive answer, the AQ21
application module may either provide multiple possible answers, or simply
answer ‘‘don’t know.’’ In this philosophy, it is better to provide users with more
than one plausible answer with high confidence, or not answer at all, than give a
likely incorrect definitive answer.

7.3 From Rule Learning to Decision Support

Decision support systems are broadly defined as computer systems that aid deci-
sion makers. This definition can include everything from simple spreadsheet
applications, through simulation models, to rule-based expert systems. In this
chapter, we focus on knowledge-based decision support systems in which com-
puters provide support to their users based on the content of their knowledge bases.

Traditionally, decision support systems are static in the sense that their
knowledge does not change over time without explicit intervention by the user.
Machine learning-based decision support systems can, however, evolve and adapt
to dynamically changing environments in which they operate. Adaptability is,
thus, one of two important areas in which machine learning can help in decision
support.

Consider an alert system which provides clinicians with messages informing
them about important events related to a specific patient, i.e., allergies, drug–drug
interactions, abnormal results. An oversensitive alert system that displays too
many messages causes a well-known phenomenon called alert fatigue. In such a
case, physicians no longer read alerts, but rather ignore all of them. A typical
approach to the problem is to create a system-wide policy/threshold so that alerts
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do not overwhelm users. This one-size-fits-all approach ignores all the differences
between physicians and the way they practice. A machine learning-based solution
is able to adapt to specific users (physicians) and show only alerts that have the
lowest chance of not being overwritten.

The second important area in which machine learning can be used in healthcare
is knowledge generation. The majority of decision support systems are based on
rules. These rules, sometimes called Medical Logic Modules (MLMs), are pre-
pared by panels of experts based on the best practice and known evidence. Their
creation is a long and difficult process. One of the important applications of
machine learning is knowledge generation—the knowledge if present in the right
forms can help in preparation of MLMs.

Because rules created by the AQ21 system are independent (i.e. unordered),
they can be easily incorporated into decision support systems. For example,
attributional rules described above can be directly written in ARDEN syntax [4].
The actual rules are written in the ‘‘logic’’ slot of MLMs while the ‘‘data’’ slot is
used to derive attribute values and translate then into the required format. Because
one MLM corresponds to a complete decision, it includes multiple rules forming a
complete ruleset family. Attributional rules can be also manually inspected by
experts and modified as rules and compliance requirements change.

7.4 Review of Selected Applications

This section describes three recent studies that applied rule learning in diverse
areas of healthcare. They span over medical, comparative effectiveness, and
managerial datasets.

7.4.1 Hospital Bills Classification

The purpose of the described study is to improve billing by advancing healthcare
provider operations and performance through the use of machine learning methods
[16]. Across the country, healthcare providers are experiencing ongoing pressure
from declining revenues. Payers are under increasing pressure to contain costs.
The implementation of healthcare reform through the Patient Protection and
Affordable Care Act (Public Law 111–148) will further exacerbate this issue.
These and additional demands to combat waste, fraud, and abuse are creating
mounting pressures to achieve ‘perfection’ in all phases of healthcare billing and
reimbursement authorization for hospitals and independent healthcare providers
(e.g. physicians and medical group practices). In order to ensure that payments are
appropriate, payers must ascertain that there is proper documentation of care prior
to reimbursement. Providers must be diligent in maintaining proper documentation
to receive the correct payment and avoid loss of revenue.
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The opposing pressures from payers and providers call for the use of decision
support/screening methods, to better manage the billing and revenue cycle and
detect inconsistencies in coverage, care/service documentation and payments, and
to guide financial and clinical personnel through this process. Specifically, we are
using machine learning to create models for screening billing information for
inconsistency. The initial, proof-of-concept, study presented here is based on the
batch processing of obstetrics data collected from a one year period in 2008.

In the first step, the data are pre-processed to match requirements of the
machine learning application used. Data available in multiple tables in the hospital
information system need to be converted into a flat file. Additional processing of
variables needs to be done. In the second step, the AQ21 machine learning system
[13], which creates predictive models in the form of highly transparent attribu-
tional rules, is used. In order to apply the method to create models, the data is
classified as ‘‘normal payment’’ and ‘‘abnormal payment’’ which correspond to
payments consistent and not consistent with contractual agreements, respectively.
Finally, after the rule learning phase, the models are used to predict whether a
specific bill is likely to receive normal payment in advance to its submission to the
payer.

Initial application of the method in analyzing billing information for obstetrics
patients covered by Medicaid achieved promising results. The presented method
provides two strong benefits in analyzing billing information. First, the use of
machine learning allows one to automatically create models for predicting bill
payments before their submission. The models allow screening of billing infor-
mation before the bill is sent to payees, therefore maximizing the chance of
receiving full payments, and reducing unnecessary denials. Second, the use of
highly transparent representations of models in the form of attributional rules,
allows for the detection of regularities in bill denials which may lead to potential
workflow improvement.

7.4.2 Comparative Effectiveness Research

The gold standard for biomedical research is randomized clinical trials (RCT). In
many cases, RCTs are impossible or unethical to perform, and only secondary
analysis of existing data form clinical records is possible. Rule learning is an
attractive approach to comparative effectiveness research of alternative treatments
or medications. The latter are often prescribed based on trial and error.

The problem considered in comparative effectiveness research is substantially
different from one considered in typical concept learning in which examples are
labeled with classes. Here, the data are in the form of rows including Ci, Ti, and Oi;
where Ci are the ith patient case characteristics, Ti is the applied treatment or
combination of treatments, and Oi indicates outcomes [15]. Models are created and
tested using the following three steps, also illustrated in Fig. 7.2.
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1. For each treatment or combination of treatments, T , select PT cases from the
database for which therapy T was successful and NT cases for which therapy T
was unsuccessful.

2. Apply rule learning to induce general models, MT ; based on PT and NT to
predict whether therapy T will be successful given a patient’s characteristics. A
collection of such models for all considered combinations of treatments will be
the final model M. Similarly, create models MNT to predict that a given therapy
will not be successful. The reason for creating both positive and negative
models is that using both models allows for better control of the level of
generalization, and thus increases the confidence in the final models.

3. Given a set of patient characteristics \c1; . . .ck [ , model M will return a set of
possible combinations of treatments fT1; . . .Tngthat are likely to be successful,
Mð\c1; . . .ck [ Þ ¼ fT1; . . .Tng. It is possible that for a given case more than
one combination of treatments is returned, i.e. n [ 1, or no considered com-
bination of treatments is returned, i.e. n ¼ 0. Similarly, models MNT are
applied, to create a list of potentially improper combinations of treatments.

4. Test model M on a subset of ‘‘unused’’ data consisting of P ‘‘successful’’ cases
and N ‘‘unsuccessful’’ cases. Results of the testing are reported in terms of
specificity, selectivity, and statistical significance of individual models and all
models together.

The created models define groups (or clusters) of patient characteristics that are
likely to have positive or negative outcomes. Note that the groups may be inter-
secting i.e., more than one combination of treatments may appropriate in a specific
case, and not exhaustive, i.e., there may be cases for which none of the examined
combinations of treatments is predicted to be successful. In the latter case, a
flexible interpretation of rules may be used to select the closest potentially suc-
cessful combination of therapies. Within groups of patients selected by machine
learning, traditional comparative effectiveness can be performed.
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7.4.3 Aggregated Data

There is a growing need to combine data originated from multiple clinical studies.
A majority of published studies describe relatively small cohorts and produce
platform-dependent results that often lack consistency. Individual measurements
of the clinical parameters are protected by The Health Insurance Portability and
Accountability Act (HIPAA), thus precluding a combination of multiple cohorts
into the large database to perform secondary analyses. A combination of multiple
studies, which is the goal of systematic reviews, relies on meta-analysis methods to
statistically combine results of the studies. Traditional meta-analysis, however,
does not perform knowledge discovery or build predictive/classification models
from aggregated data [14].

The problem addressed here is how to learn rules from aggregated data pub-
lished from multiple studies, rather than from individual examples (subjects). The
goal of the method is to discover a model M for diagnosing diseases D, from
published results in which data satisfy a set of criteria C. One important charac-
teristic of the method is that the studies do not need to describe diagnostic methods
for diseases D, but to only include relevant data summaries. Common inclusion
criteria that are prerequisites for the traditional meta-analysis methods are not
required either. It is sufficient that the criteria are disclosed, so they can serve as
inputs to the model along with the aggregated data. The process of the model
development is depicted in Fig. 7.3.

The rule learning problem considered here induces a rule-based classifier
M(X) ? D that can be used to diagnose X patients into diseases from D. The
model is induced using aggregated data describing groups of patients, not indi-
vidual datapoints as typically handled by machine learning algorithms. Specifi-
cally, the method uses aggregated data A, inclusion criteria C, and other groups’
information G to create model M. This process extends learning from aggregated
data that deals with multiple cohorts of patients described as mean ± standard
deviation of each clinical parameter.

The method has been applied to deriving diagnostic models for metabolic-
syndrome related liver complications from summarized (aggregated) descriptions
of the small cohorts of patients available from published manuscripts. The sig-
nificance of this topic is large because approximately 47 million people in the
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United States have metabolic syndrome (MS) and this number is on the rise. The
aggregated clinical data were retrieved from articles published in leading peer-
reviewed journals. By applying the developed rule learning methodology, we
arrived at several different possible rulesets (sets of rules that together form a
model to make a specific diagnosis) that can be used to predict three considered
complications of MS, namely non-alcoholic fatty liver disease (NAFLD), simple
steatosis (SS), and nonalcoholic steatohepatitis (NASH). It should be noted that the
NAFLD group comprises both SS and NASH cases, which means that values of
the output attribute form a hierarchy.

Seven NAFLD or NASH predicting rulesets were generated using the AQ21
system executed with different parameters. Resultant rulesets predicting NAFLD
or NASH were blindly validated using a well-defined NAFLD database containing
489 patients with biopsy-proven NAFLD, NASH or SS with extensive clinical and
laboratory data.

An example of typical automatically learned rule states that patients with BMI
[26.85 are likely to have NAFLD, except for when AST is at most 27.2 and
adiponectin level are at least 7.25 [14]. The rule is formally shown as:

Group ¼ NAFLD½ �\¼¼ BMI [ 26:85½ �
b AST � 27:2½ �& Adiponectin� 7:25½ �:

ð7:6Þ

Validation of this rule for predicting NAFLD resulted in a positive predictive
value (PPV) of 85–87 %, reflecting relatively high ‘‘rule-in’’ characteristic of the
algorithm. The best rule for the prediction of NASH relied on combination of
fasting insulin, HOMA and adiponectin values with an accuracy of 78 %, with
PPV of 71 % and negative predictive value (NPV) of 37 %.

7.5 Summary

This chapter briefly presented rule learning and its uses in healthcare and health
services research. The focus of this paper was on the AQ21 rule learning and
testing system because of the system’s applicability to healthcare problems. AQ21
can be viewed more like a laboratory for experimentation with healthcare data
rather that a single computer program, which can be executed on data and produce
rules. Rule learning performed by AQ21 is particularly suitable for healthcare
applications because its high transparency increases the chance that models will be
accepted by users.

Acceptability of machine learning methods is a central criterion among those
listed in Sect. 7.2. Other criteria (accuracy, transparency, etc.) lead to the
acceptability of models, which in healthcare community is very hard to achieve.
While other types of models, such as decision trees and Bayesian networks, are
known to be highly transparent, attributional rules follow most of the criteria listed
in Sect. 7.2.
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Among the numerous current and potential applications of rule learning in
healthcare and health services research, three diverse applications were briefly
presented in this chapter. Each application demonstrates that rule learning has
great potential and can give good results. The application of rule learning is,
however, always straight-forward, and significant work and preparations need to
be done before rule learning can be effectively/efficiently used.

Future work on rule learning should focus on four directions. (1) Richer and
more natural (to people) rule-based knowledge representations can be created by
extending attributional calculus to capture concepts that are natural to healthcare
practitioners and researchers. (2) Easy to use tools that deal directly with healthcare
data can be developed. One attempt to make computational intelligence and
machine learning (CIML) tools accessible to the healthcare community was
through CIML Virtual Organization [17]. The VO’s goal is to provide the health-
care community with access to CIML tools, advice, educational materials, and
networking. (3) Efficiency of rule learning methods can be improved. High com-
plexity or rule based representations require long computation times, particularly
when advanced methods, such as constructive induction, are used. (4) Machine
learning, in particular rule learning, can be popularized as an attractive approach to
data analysis and systems’ adaptability, to healthcare community.

References

1. Bloedorn E, Wnek J, Michalski RS, Kaufman K (1993) AQ17 A multistrategy learning
system the method and users guide. reports of the machine learning and inference laboratory:
MLI 93-12. School of Information Technology and Engineering. George Mason University,
Fairfax

2. Bloedorn E (1996) Multistrategy constructive induction. Ph.D. Dissertation, Reports of the
machine learning and inference laboratory : MLI 96-7. School of Information Technology
and Engineering. George Mason University, Fairfax

3. Bloedorn E, Michalski RS (1998) Data-driven constructive induction. IEEE intelligent
systems special issue on feature transformation and subset selection: 30–37

4. Hripcsak G (1994) Writing arden syntax medical logic modules. Comput Biol Med
5(24):331–363

5. Michalski RS (1969) On the quasi-minimal solution of the general covering problem. In:
Proceedings of the 5th international symposium on information processing (FCIP 69)
(Switching Circuits). A3: 125–128. Yugoslavia, Bled

6. Michalski RS, Larson J (1975) AQVAL/1 (AQ7) User’s guide and program description.
Department of Computer Science. University of Illinois, Urbana

7. Michalski RS, Larson J (1983) Incremental generation of VL1 hypotheses: the underlying
methodology and the description of program AQ11. Department of computer science: reports
of the intelligent systems group, ISG 83-5, UIUCDCS-F-83-905. University of Illinois,
Urbana

8. Michalski RS, Kaufman K (2001) The AQ19 system for machine learning and pattern
discovery: a general description and user’s guide. Reports of the machine learning and
inference laboratory: MLI 01-2. George Mason University, Fairfax

144 J. Wojtusiak



9. Michalski RS (2004) Attributional calculus: a logic and representation language for natural
induction. Reports of the machine learning and inference laboratory: MLI 04-2 George
Mason University, Fairfax

10. Wnek J, Michalski RS (1994) Hypothesis-driven constructive induction in AQ17-HCI: a
method and experiments. Mach Learn 14(2):139–168

11. Wnek J, Kaufman K, Bloedorn E, Michalski RS (1996) Inductive learning system AQ15c:
The method and user’s guide. Reports of the machine learning and inference laboratory: MLI
96-6 George Mason University, Fairfax

12. Wojtusiak J (2004) AQ21 User’s guide. Reports of the machine learning and inference
laboratory: MLI 04-3 George Mason University, Fairfax

13. Wojtusiak J, Michalski RS, Kaufman K, Pietrzykowski J (2006) The AQ21 natural induction
program for pattern discovery: initial version and its novel features. In: Proceedings of the
18th IEEE international conference on tools with artificial intelligence. Washington, D.C

14. Wojtusiak J, Michalski RS, Simanivanh T, Baranova AV (2009) Towards application of rule
learning to the meta-analysis of clinical data: an example of the metabolic syndrome. Int J
Med Informatics 78(12):104–111

15. Wojtusiak J, Alemi F (2010) Analyzing decisions using datasets with multiple attributes: a
machine learning approach. In: Yuehwern Y (ed) Handbook of healthcare delivery systems.
CRC Press, Boca Raton

16. Wojtusiak J, Shiver J, Ngufor C, Ewald R (2011) Machine learning in hospital billing
management. presentation. In: HIMSS 2011 acedemic forum. AUPHA, Orlando

17. Zurada JM, Mazurowski MA, Abdullin A, Ragade R, Wojtusiak J, Gentle JE (2009) Building
virtual community in computational intelligence and machine learning. Comput Intell Mag
4(1):43–54

7 Rule Learning in Healthcare and Health Services Research 145



Chapter 8
Machine Learning Techniques
for AD/MCI Diagnosis and Prognosis

Dinggang Shen, Chong-Yaw Wee, Daoqiang Zhang, Luping Zhou
and Pew-Thian Yap

Abstract In the past two decades, machine learning techniques have been exten-
sively applied for the detection of neurologic or neuropsychiatric disorders, espe-
cially Alzheimer’s disease (AD) and its prodrome, mild cognitive impairment
(MCI). This chapter presents some of the latest developments in the application of
machine learning techniques to AD and MCI diagnosis and prognosis. We will
divide our discussion into two parts: single modality and multimodality approaches.
We will discuss how various biomarkers as well as connectivity networks can be
extracted from the various modalities, such as structural T1-weighted imaging,
diffusion-tensor imaging (DTI) and resting-state functional magnetic resonance
imaging (fMRI), for effective diagnosis and prognosis. We will further demonstrate
how these modalities can be fused for further performance improvement.
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8.1 Background

Alzheimer’s disease (AD) is the most common form of dementia, characterized by
cognitive and intellectual deficits that interfere with daily life if effective treatment
is not available. AD gets worse over time by gradually destroying brain cells,
causing loss in memory and the ability to reason, make judgments, and commu-
nicate. In 2006 the worldwide prevalence of AD was 26.6 million, and it is pro-
jected that 1 in 85 persons will be affected by 2050 [1]. The number of people who
develop AD is expected to continue to increase as life expectancy increases. With
the aging of the world population, AD has become a serious problem and a huge
burden to the healthcare system. Recognizing the urgent need to slow down or
completely prevent the occurrence of a worldwide healthcare crisis, effort has been
under way to develop and administer effective pharmacological and behavioral
interventions for delaying the onset and progression of the disease.

A significant body of literature [2–4] suggests that pathological manifestation of
AD begins many years before it can be diagnosed using cognitive tests. At the
stage where symptoms can be observed, significant neurodegeneration has already
occurred. Studies suggest that individuals with mild cognitive impairment (MCI),
a prodrome of AD, are expected to convert to probable AD at an annual rate of
10–15 % [5], whereas healthy controls develop dementia at an annual rate of
1–2 % [6]. Compared to AD, MCI is more difficult to diagnose due to its very mild
cognitive impairment symptoms. At the present time, AD-related neurodegener-
ation such as structural atrophy [7], pathological amyloid depositions [8], and
metabolic alterations [9] have been identified as potential biomarkers.

Advanced statistical machine learning and pattern recognition techniques have
been actively applied to map neurodegenerative patterns during the early stage
[10–13]. Examples of machine learning techniques that are widely used in medical
imaging analysis include support vector machines (SVMs) [14], boosting-based
learning [15], artificial neural networks [16], k-nearest neighbor classifier [17], and
linear discriminant analysis [18]. In addition to determining group differences,
pattern classification methods can be trained to identify individuals who are at risk
for AD [11, 12, 19–23]. A recent study demonstrated that classification methods
are capable of identifying AD patients via their MRI scans and achieved accuracy
comparable to that obtained by experienced neuroradiologists [19]. Efforts have
also been undertaken to develop regression techniques for relating clinical scores
to imaging data [24–26], facilitating continuous monitoring of AD progression. In
this chapter, we will focus on machine learning based diagnosis and prognosis of
AD/MCI using information obtained from single and multiple modalities.
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8.1.1 Single-Modality-based Diagnosis and Prognosis

Single-modality-based methods are clinically more feasible due to simpler scan-
ning protocols and lesser image acquisition effort. For example, many methods use
only structural MRI brain images for classification between AD/MCI patients and
normal controls [12, 27, 28]. Popular neuroimaging measurements include:
regional brain volumes [29, 30], cortical thickness [31–33], and hippocampal
volume and shape [34, 35], etc.

The understanding of brain anatomical circuitry has been experiencing
remarkable progression due to the development of diffusion tensor imaging (DTI),
where white matter (WM) fiber bundles can be delineated through characterization
of water diffusion [36]. WM tracts connecting brain regions can be reconstructed
in vivo using diffusion tractography (or fiber tracking) to characterize brain cir-
cuitry [36]. Diffusion measures such as fractional anisotropy (FA) and mean dif-
fusivity (MD) are commonly utilized as features in statistical analysis to localize
WM changes related to AD and MCI [37, 38].

Functional connectivity is defined as the temporal correlation between regional
neurophysiological signal fluctuations [39, 40]. Blood oxygenation level depen-
dent (BOLD) signal, which extracted from functional magnetic resonance imaging
(fMRI) data, exhibits low-frequency spontaneous fluctuations in the resting brain
and shows a high degree of temporal correlation across different brain regions.
Since the seminal work of Biswal et al. [41], resting-state fMRI (rs-fMRI) has been
widely applied to the analysis of various neuropsychological diseases including
MCI [42] and AD [43]. One apparent advantage of resting-state fMRI over task-
activation fMRI is that no complicated experimental design is required. Experi-
ments can be performed easily with patients who may have difficulties performing
specific task inside the scanner, especially those with disorders that exhibits
prominent cognitive degeneration, such as AD [40].

Another important imaging modality for AD/MCI detection is fluorodeoxy-
glucose positron emission tomography (FDG-PET) [29]. With FDG-PET, reduc-
tion of glucose metabolism was found in the parietal, posterior cingulate and
temporal brain regions of AD patients [44]. Besides neuroimaging techniques,
biological or genetic biomarkers are effective alternatives for AD/MACI diagnosis.
Researchers found that (1) the increase of cerebrospinal fluid (CSF) total tau (t-tau)
and tau hyperphosphorylated at threonine 181 (p-tau) are related to neurofibrillary
tangle, (2) the decrease of amyloid b (Ab42) indicates amyloid plaque deposit, and
(3) the presence of the apolipoprotein E (APOE) e4 allele can predict cognitive
decline or conversion to AD [45].
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8.1.2 Multimodality-based Diagnosis and Prognosis

It has been demonstrated that different imaging modalities can provide comple-
mentary information to enhance AD/MCI diagnosis [45–47]. For example, it was
reported that FDG-PET and MRI measures may be complementarily and differ-
entially sensitive to memory in health and disease, with metabolism being the
stronger predictor in normal controls, and morphometry most related to memory
function in AD [47]. Also, it is shown that morphometric changes in AD and MCI,
although are related to CSF biomarkers, can provide complementary information
[45]. A more recent study, which compared the respective prognostic ability of
genetic, CSF, neuroimaging, and cognitive measures obtained from the same
participants, demonstrated that complementary information provided by these
different modalities can be used for enhanced AD/MCI diagnosis [46]. Inspired by
these findings, a number of studies used two or more biomarkers simultaneously to
detect AD and MCI: MRI and CSF [10, 13], MRI and cognitive testing [48], MRI
and PET [22, 49], MRI and APOE biomarkers [50], FDG-PET and CSF [51],
FDG-PET and cognitive testing [52], and MRI, CSF, and FDG-PET [53].

8.2 Single-Modality-based Diagnosis and Prognosis

AD and other similar progressive degenerative neurological diseases exhibit
spatially and temporally pathology, where the brain is damaged on a large-scale,
highly connected network, rather than in a single isolated region. In view of this, a
sensitive description of interregional connections is required to better delineate the
pathology of disease for accurate diagnosis. Models of whole-brain connectivity,
which comprise networks of brain regions connected either by anatomical tracts or
functional associations, have drawn a great deal of interest recently due to the
increasing reliability of network characterization through neurobiologically
meaningful and computationally efficient measures [54, 55]. In this section, we
will discuss some recently proposed network-based techniques using biomarkers
from single imaging modality for AD and MCI diagnosis and prognosis.

8.2.1 Structural Analysis via Enriched White Matter
Connectivity Networks

Recently, an enriched description of WM connections via diffusion tractography
[56] was proposed to convey topological and biophysical information of the
connections. This description is achieved by using a collection of diffusion
parameters that are derived during whole-brain streamline fiber tractography and is
aimed to effectively describe small variations on WM regions caused by
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pathological attacks. The MCI classification framework using this enriched
description is shown in Fig. 8.1.

Six diffusion parameters are included in the enriched description, i.e., fiber
count, fractional anisotropy (FA), mean diffusivity (MD), and principal diffusiv-
ities (k1, k2, k3). During tractography, the number of fibers passing through each
pair of regions is counted. Two regions are considered anatomically connected if
there are fibers passing through their respective masks. Counting the number of
connecting fibers between every possible pair of regions provides us the connec-
tion topology of the network. Connectivity networks of FA, MD, and principal
diffusivity can also be derived by taking the average values along the connecting
fibers. These five networks share identical connection topology as the fiber count
network, but conveying different biophysical properties. An example of the six
connectivity networks for one subject is provided in Fig. 8.2.

Network measures typically quantify connectivity profiles associated with the
nodes and reflect the way how these nodes are embedded in the network. Clus-
tering coefficients [57, 58], which measures the cliquishness of a network, is
commonly used to extract information from the constructed brain connectivity
networks for group analysis. The original clustering coefficient is formulated to
work only with unweighted graphs and is intended to provide a summary statistics
of the whole network. To increase sensitivity to pathology induced network
changes, a weighted version of local clustering coefficient [57] can be used instead.
However, the use of local fine-grained features will produce a high-dimensional

Fig. 8.1 Classification based on enriched description of WM connections
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feature pool which may cause the problem of curse of dimensionality, particularly
in the graph theoretic approach. Good classification performance is normally
difficult to achieve if all extracted features are directly used indiscriminately. This
difficulty arises because not all the features are equally important for classification.
A proper feature selection procedure needs to be employed to select an optimal
subset of features with the most discriminative power to improve generalization
performance.

The discriminative power of a feature can be quantitatively evaluated by its
relevance to classification as well as its generalizability. Relevancy of a feature to
classification is measured through its correlation with clinical labels [21]. Pearson
correlation coefficient is commonly used to rank features based on this relevancy.
Features with larger absolute value of the Pearson correlation coefficient are
considered to be more relevant to classification.

The generalizability of a feature is evaluated via leave-one-out cross-validation
(LOOCV) when measuring the correlation of the feature with respect to the
clinical labels [21]. Specifically, for n training samples, the worst absolute Pearson
correlation coefficient resulting from the n leave-one-out correlation measurement
is conservatively selected as the effective correlation coefficient. This approach is
particularly important for minimizing the effect of outliers when evaluating a huge
number of features.

Nevertheless, the ranking score is computed independently for each feature,
without considering the correlation with other features. This method inevitably
causes some redundant features to be selected, thus affecting classification per-
formance. To minimize this effect, a wrapper-based feature selection method
called an SVM-RFE algorithm [59, 60] is used to select the final optimal subset
based on feature ranking.

Fig. 8.2 Connectivity networks constructed with different diffusion parameters
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Classification performance of the enriched WM connectivity description
method is evaluated using a nested LOOCV strategy [56] to ensure a relatively
unbiased estimate of the generalization power of the classifiers to new subjects. In
each LOO case, one subject is first left out as the testing subject, and the remaining
subjects are used for feature extraction, feature selection and classifier training. A
second or inner LOO loop is applied to the training set to construct and optimize
an ensemble classifier. Specifically, for n total number of subjects involved in the
study, one is left out for testing, and the remaining n� 1 are used for training.
From the remaining n� 1 samples, n� 1 different training subsets are formed by
each time leaving one more sample out, giving us n� 2 subjects in each training
subset. For each subset, an SVM classifier is construct with its performance is
evaluated using the second left out subject. This procedure is repeated n� 1 times,
once for each training subset. This procedure ensures that the selected diffusion
parameters maximize the area under the receiver operating characteristic (ROC)
curve. When the unseen (omitted during the training and parameter optimization
process) test sample is to be classified, all n – 1 classifiers are used, and their
outcomes are averaged to provide the final classification decision. This process is
repeated n times, each time leaving out a different subject, finally leading to
overall cross-validation classification accuracy.

8.2.2 Functional Analysis via Multi-Spectral Connectivity
Networks

Over the past several years, rs-fMRI has emerged as a novel informative method
for investigating the development of large-scale functional networks in the human
brain. This method, first used to demonstrate coherent spontaneous low-frequency
fluctuations in BOLD signal within the adult somatomotor system [41], involves
measuring the hemodynamic response related to neural activity in the brain or
spinal cord from participants as they lay in the MRI scanner in the ‘‘resting
condition’’. This system was recently employed to identify individuals with MCI
from healthy controls and performed well in the tests [61].

Wee et al. [61] suggested an efficient characterization of rs-fMRI time series
via: (1) Multi-spectral characterization to quantify relatively small changes of
BOLD signal by decomposing the mean time series of each ROI into five distinct
frequency sub-bands, and (2) Graph theoretic analysis to characterize topological
properties and strengths of brain functional connectivity networks through
neurobiologically meaningful and computationally efficient measures [54, 55, 62].

In vivo neuroimaging studies suggest that normal aging [63] and AD [64, 65]
are associated with GM volume loss. There is an emerging body of evidence that
MRI can observe deterioration, including progressive loss of GM in the brain,
from MCI to full-blown AD [66]. It has been shown that the GM volume of the
human brain decreases linearly by approximately 5.0 % per decade throughout
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lifetime after 9 years of age [63]. It has been reported that local GM loss rates are
approximately 5.3 and 0.9 % per annum in AD and healthy aging, respectively,
with an asymmetric trend where a faster loss rate is observed in the left hemisphere
than in the right [65]. Furthermore, removal of signals from the ventricles and WM
can reduce the noise caused by the cardiac and respiratory cycles [67]. Based on
these observations, only the BOLD signal extracted from the GM is used. To
achieve this, tissue segmentation is performed on T1-weighted image of each
subject to label the GM, WM, and CSF. Then, the segmented GM image is used to
mask the fMRI images. This procedure eliminates signal contamination originat-
ing from WM and CSF in the fMRI time series. Anatomical parcellation is used to
divide the brain into different regions-of-interest (ROIs).

For each subject, the mean time series of each individual ROI is obtained by
averaging the GM-masked fMRI time series over all voxels in the ROI. Temporal
band-pass filtering with a frequency interval 0:025� f � 0:100 Hzð Þ is then applied
to the mean time series of each individual ROI, trading-off between avoiding the
physiological noise associated with higher-frequency oscillations [68] and the
measurement error associated with estimating very low-frequency correlations
from truncated time series [69]. In conventional approaches, the regional mean
time series of entire spectrum is directly employed to construct functional con-
nectivity networks. However, this whole-spectrum approach might not be sensitive
enough to describe complex yet subtle pathological patterns of the neurological
diseases.

In [61], a multi-spectral characterization of the regional mean time series is
proposed to construct functional connectivity networks. The band-pass filtered
GM-masked mean time series of each region is decomposed into five equally
divided frequency subbands using the fast Fourier transform (FFT). Using this
multi-spectral approach, small BOLD signal variations can be better preserved.

Functional connectivity, which indicates interregional correlations in neuronal
variability [39], can be measured using a pairwise Pearson correlation coefficient
between a given pair of ROIs. Given a set of N random variables, the Pearson
correlation matrix is a symmetric matrix in which each off-diagonal element is the
correlation coefficient between a pair of variables. The brain regions can be
considered a set of nodes and the correlation coefficients can be considered signed
weights on the set of edges. The normality of Pearson correlation coefficients is
improved by applying a Fisher’s r–to–z transformation. The feature extraction,
feature selection and high-dimensional multivariate classification steps used for
MCI diagnosis in [56] are similarly applied to the case of rs-fMRI.

Examples of the functional connectivity maps constructed using the multi-
spectral characterization for one normal control (NC) and one MCI patient are
shown in Fig. 8.3.
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8.2.3 Hierarchical Brain Networks from T1-Weighted MRI

Because of its clinical accessibility, T1-weighted MRI has been widely utilized for
the diagnosis and prognosis of MCI and AD. Conventionally, the mean tissue
volumes of GM, WM, and CSF are calculated locally within ROI, and used as
features for classification. Nevertheless, it is realized that disease-induced brain
structural changes may happen in several inter-related regions instead of isolated
spots. Therefore, it is proposed in [70] that compared with the traditional local
isolated measures, representing the brain as a system of interconnected regions
may be a more effective way to characterize subtle brain changes. For this purpose,
this approach constructs a hierarchical brain network to directly model the pair-
wise ROI relationships within a subject, with each node denoting a ROI and each
edge characterizing the pairwise connection. The node of ROI is represented by a
volumetric vector that consists of the mean volumes of GM, WM, and CSF in this
ROI. The relationship between two ROIs within the same subject is computed by
the Pearson correlation between the two corresponding volumetric vectors. The
correlation value indicates the similarity of the tissue compositions between a pair
of brain regions. When a patient is affected by MCI, the correlation values of some
brain regions with other regions will be affected, due possibly to factors such as
tissue atrophy.

By computing the pairwise correlation between ROIs, the approach in [70]
provides a second order measure of the ROI volume, while the conventional
approaches only employ the first order measure of the volume. As higher order
measures, the proposed new features may be more descriptive, but also more
sensitive to noise, such as registration errors. Therefore, a four-layer hierarchy of
multi-resolution ROIs (Fig. 8.4a) is introduced to increase the robustness of
classification. Effectively, the correlations are considered at different scales of
regions to provide different levels of noise suppression and discriminant infor-
mation, which can be further selected by the proposed classification scheme. This
approach considers the correlations both within and between different resolution

Fig. 8.3 Multi-spectral functional connectivity maps for a normal control (NC) and an MCI
patient
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scales (Fig. 8.5), because a certain ‘‘optimal’’ scale often cannot be known a priori.
The brain network could be very complicated as partially shown in Fig. 8.4b. To
efficiently construct the informative network features, a membership matrix is
created to indicate the relationship of ROIs from different layers. The membership
matrix is computed offline: it is fixed once the hierarchical structure has been
determined. For a new brain image, this approach only needs to compute the ROI
interactions on the bottommost layer that has the highest resolution of ROIs, and
then use the membership matrix to propagate the correlations to other layers
effectively.

L3

L4

L2

Fig. 8.4 a Hierarchical ROIs in three layers (the top layer is a whole brain which is not shown),
b Network connections between ROIs within different layers
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Note that the proposed brain network may not be sparse, as shown in the DTI
and fMRI networks [62], because the connections in this case are not based on
functional or real neuron-connections. The dense adjacency matrix resulting from
the correlation of tissue compositions implies that WM, GM, and CSF fractions of
brain regions are consistently similar. Note that the far-away region pairs can have
meaningful tissue composition similarity since distance information is not inclu-
ded in this approach. Because the network is fully connected, some commonly
used network features, such as local clustering coefficients, do not work as effi-
ciently as they do for the sparse networks in DTI and fMRI. Therefore, the weights
of edges are directly used as features, that is, the elements in the upper triangle
matrices of correlation matrices are concatenated to form the feature vectors.

This approach produces significantly larger number of features than conven-
tional methods. If improperly handled, classifier training may become intractable
due to this large number of features. Conventionally, there are usually two ways to
deal with the high dimensionality of features: (1) select the most discriminative
subset of features from the original features, known as feature selection, or
(2) combine the original features linearly or non-linearly to obtain a lower
dimensional new feature space, known as feature embedding. Zhou et al. proposed
a dimensionality reduction process to efficiently reduce the feature dimensionality
to a manageable level while preserving as much discriminative information as
possible [70]. This method combines feature selection and feature embedding via
partial least square (PLS) analysis [71] in an integrated optimization process. PLS
is a supervised learning method, which makes use of classification labels for data

Fig. 8.5 Schematics of the network model. a Two types of nodes are included in the hierarchical
network: the simple node in the bottommost layer and the compound node in other layers. Each
compound node is obtained by grouping several simple nodes in an agglomerative fashion. b Two
types of edges are included in the hierarchical network, modeling the within-layer and between-
layer interactions, respectively
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embedding. Therefore, it achieves a better discrimination than many of the popular
unsupervised methods, such as principal components analysis (PCA) and Lapla-
cian Eigenmap, and even than some advanced supervised methods, such as kernel
Fisher discriminant analysis (KFDA).

Taking advantage of PLS analysis, the approach presented in [70] employed
four steps to achieve good classification and generalization: rough feature selec-
tion, refined feature selection, feature embedding and linear classification. They
are elaborated as follows.

In Step 1, a rough feature selection is performed to filter out a large amount of
features that have little relevance to the classification. The relevance is computed
by the Pearson correlation between each original feature and the classification
label. Features with absolute correlation values lower than a threshold are treated
as irrelevant features and filtered out.

In Step 2, a refined feature selection is performed to pick out the candidate
features for the PLS feature embedding. For this purpose, the selected features in
Step 1 are used to train a PLS model, and then ranked by variable importance on
projection (VIP) score [72] to estimate their discriminative power for the PLS
model. After this step, about 60–80 discriminative features with the top VIP scores
are reserved for feature embedding in the next step.

In Step 3, a PLS embedding is performed to further reduce the dimensionality of
the network features. Using the refined selected features in Step 2, a new PLS
model is constructed to seek an embedding space that best preserves the dis-
crimination of features. Then the selected features in Step 2 are projected onto a
much lower dimensional space learned by PLS analysis in Step 3.

In Step 4, after PLS embedding, a small number of features in the new space
have been able to capture the major class discrimination. This greatly reduces the
complexity of relationships between data. Therefore, in Step 4, using the features
in the embedded space, a linear SVM has been sufficient for an accurate prediction
of MCI patients.

Note that the number of selected features in each step is determined by cross-
validation on the training data.

The merits of the proposed method are as follows. First, the proposed method
uses a second-order volumetric measure that is more descriptive than the con-
ventional first-order volumetric measure. Second, while the conventional
approaches only consider local volume changes, the proposed method considers
global information by pairing spatially separated ROIs. Third, at the top of the
hierarchy the proposed method introduces a whole-brain ROI, with which, each
ROI can provide a first-order measurement of local volume. In this way, the
proposed method seamlessly incorporates both the local volume features and the
proposed global network features into the classification. Fourth, the proposed
method involves only linear methods, leading to interpretability of classification
results, which is equally important as classification accuracy in neuroimaging
analysis. Finally, the proposed method investigates the relative speeds of disease
progression in different brain regions, providing a complementary perspective of
the spatial atrophy patterns to conventional methods.
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8.3 Multimodality-based Diagnosis and Prognosis

A number of studies have shown that biomarkers from different modalities may
contain complementary information useful for diagnosis of AD/MCI, and several
works on combining different modalities have been reported [10, 13, 27, 47, 50,
51, 73]. A common trait of these methods is that they concatenate all the features
from different modalities into a long feature vector. However, approaches as such
do not distinguish between modalities and are hence not the best way to combine
information from multiple sources. In this section, we provide an alternative
method that uses a multiple kernel combination to integrate biomarkers. Compared
with the direct feature concatenation method, the kernel combination method has
the following advantages: (1) It can combine heterogeneous data that cannot be
directly concatenated; (2) it provides more flexibility by using different weights on
the biomarkers of different modalities. Furthermore, to overcome the small sample
size problem in training multimodality classifier, we adopt a semi-supervised
learning technique that can learn from both labeled and unlabeled data.

8.3.1 Multimodality Data Fusion via Multi-Kernel SVM

Zhang et al. [74] recently proposed a general framework based on kernel methods
developed by Scholkopf and Smola [75] to combine multiple biomarkers (i.e.,
MRI, PET, and CSF) for discriminating between AD (or MCI) and normal con-
trols. The proposed method is based on kernel combination and can be easily
embedded into the conventional SVM classifier for high-dimensional pattern
classification. Moreover, unlike other kernel combination methods which can only
process one data type, i.e. numbers, this method can combine numeric data,
strings, and graphs, etc. The framework proposed by Zhang et al. [74] is explained
as below.

In SVM, by using a kernel-induced implicit mapping function, linearly non-
separable samples are first mapped to a higher or infinite dimensional space, where
they are more likely to be linearly separable than in the original space. A maxi-
mum margin hyperplane is then sought in the higher-dimensional space. Multiple-
kernel learning (MKL), which is pioneered by Lanckriet et al. [76] and Bach et al.
[77], is an additive extension of the single kernel SVM by incorporating multiple
kernels. Suppose that we are given n training samples and each of them contains

M modalities. Let X
ðmÞ
i denote a feature vector of the mth modality of the ith

sample, and its corresponding class label be yi 2 f�1; 1g.
Multiple-kernel based SVM solves the following primal problem:
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where WðmÞ, /ðmÞ and bm� 0 denote the normal vector of hyperplane, the kernel-
induced mapping function and the weighting factor of the mth modality,
respectively.

Similar to the conventional SVM, the dual form of multiple-kernel SVM can be
formulated as below:

maxa

X

n

i¼1

ai �
1
2

X

i;j

aiajyiyj

X

M

m¼1

bmk mð Þ x mð Þ
i ; x mð Þ

j

� �

s: t:
X

n

i¼1

aiyi ¼ 0

0� ai�C; i ¼ 1; . . .; n

ð8:2Þ

where k mð Þ x
mð Þ

i ; x
mð Þ

j

� �

¼ / mð Þ x
mð Þ

i

� �T
/ mð Þ x

mð Þ
j

� �

is the kernel function for the two
training samples on the mth modality.
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as the kernel between the test sample

and each training sample on the mth modality. Then, the decision function for the
predicted label can be obtained as below:
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Multiple-kernel based SVM can be naturally embedded into the conventional

single-kernel SVM if we denote k xi; xj

	 


¼
P
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i ; x mð Þ
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� �

as a mixed

kernel between the multimodality training samples Xi and Xj, and k xi; xð Þ ¼
P

m bmk mð Þ x
mð Þ

i ; x mð Þ
� �

as a mixed kernel between the multimodality training

sample Xi and the test sample X.
It is worth noting that the multiple-kernel SVM proposed by Zhang et al. [74] is

different from previous multi-kernel learning methods [78, 79]. One key difference
is that the weights bms are not jointly optimized with other SVM parameters (such
as a). Instead, Zhang et al. enforce the constraint

P

m bm ¼ 1 and use a coarse-grid
search through cross-validation on the training samples to select the optimal
values. The obtained bm values are used to combine kernels into a single mixed
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kernel, which can be incorporated into the standard SVM to be solved using
conventional SVM solvers, e.g., LIBSVM [80].

8.3.2 Semi-Supervised Learning Using Unlabeled Data

One challenge in AD patient identification is that the number of AD patients and
normal controls (NCs) is generally very small, thus making it difficult to train an
effective classifier. As a remedy, we note that MCI subjects, although their cog-
nitive status is uncertain, can be helpful for improving classifier construction. To
exploit the potential of using MCI subjects to aid classification between AD and
NC subjects, Zhang et al. [81] treat MCI subjects as unlabeled data (i.e., not
classified either as AD or NC), and then employ a semi-supervised learning
technique [82, 83] to solve the classification problem. In the following, we will
first introduce the semi-supervised learning technique, called Laplacian regular-
ized least squares (LapRLS) method [84], and then derive its multimodality
extension (mLapRLS).

8.3.2.1 Laplacian Regularized Least Squares

Assume we have l labeled data (from AD and NC samples), ðxi; yiÞ, i ¼ 1; . . .; l,
and u unlabeled data (from MCI samples), ðxj; yjÞ, j ¼ lþ 1; . . .; lþ u. Suppose
kð:; :Þ is a Mercer kernel function, and let H be the associated reproducing kernel
Hilbert space (RKHS) and jj:jj be the corresponding norm. The LapRLS algorithm
solves the following least-squared loss function [84]:

minf2H
1
l

Xl

i¼1
yi � f xið Þð Þ2þcA fk k2þ cB

uþ lð Þ2
f T L f ð8:4Þ

where f ¼ ½f ðx1Þ; . . .; f ðxlþ uÞ�T . L is the graph Laplacian given as L ¼ D�W ,
where Wijs are the edge weights in the adjacency graph defined on both labeled
and unlabeled data and the diagonal matrix D is given by Dii ¼

P

j
Wij. Symbols cA

and cB are the two regularization parameters. Intuitively, the first two terms in
Eq. (8.4) are for the supervised learning on only the labeled data (AD and NC
samples), while the last term in Eq. (8.4) involves both labeled and unlabeled data
(AD, NC and MCI samples) for unsupervised estimation of the intrinsic geometric
structure of the whole data. According to the Representer Theorem [84], the
solution to Eq. (8.4) is an expansion of kernel functions over both labeled and
unlabeled data:

f xð Þ ¼
Xlþu

i¼1
aikðx; xiÞ: ð8:5Þ
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Substituting Eqs. (8.5) into (8.4), we arrive at the dual form of Eq. (8.4) with

respect to the ðlþ uÞ-dimensional variable vector a ¼ ½a1; . . .; al þ u�T :

mina2Rlþu
1
l

Y � JKað ÞT Y � JKað Þ þ cAaT Kaþ cB

uþ lð Þ2
aT KLKa; ð8:6Þ

where K = {k(xi, xj)} is an (l ? u) 9 (l ? u) kernel matrix over all labeled and
unlabeled data; Y = [y1, …, yl, 0, … 0] is an (l ? u)-dimensional label vector, and
J = diag (1, …, 1, 0, …, 0) is an (l ? u) 9 (l ? u) diagonal matrix with the first
l diagonal entries as 1 and the rest as 0. By computing the derivative of Eq. (8.6)
with respect to a as zero, we obtain the following solution:

a ¼ JK þ cAlIþ cBl

ðuþ lÞ2

 !�1

Y; ð8:7Þ

where I is the identity matrix. It is worth noting that, when cB, Eq. (8.7) gives zero
coefficients over the unlabeled data, and the coefficients over the labeled data are
exactly those given by the standard regularized least squares (RLS) method, i.e.,
LapRLS degenerates to RLS.

8.3.2.2 Multimodality LapRLS

Now, we derive the multimodality extension of LapRLS, called mLapRLS, for
classification between AD and NC. Given l labeled data (from AD and NC
samples), (xi, yi), i = 1,…,l, and u unlabeled data (from MCI samples), (xj, yj),
j = l+1,…,l ? u, we assume each data xi is composed of M modalities, i.e.,
xj = {xi

(1),…, xi
(M)}, i = 1,…,l ? u.

Define the distance function between two multimodality data xi and xj as

d xi; xj

	 


¼
XM

m¼1
bmdðmÞ xðmÞi ; xðmÞj

� �

; ð8:8Þ

where d(m)(.,.) denotes the distance function on the mth modality, and bms are the
nonnegative weighting parameters used to balance the contributions of different
modalities. All bm s are constrained by

P

mbm = 1. According to Eq. (8.8), we can
compute the adjacency graph for the multimodality data, and then obtain the
corresponding edge weights matrix W and graph Laplacian L on the multimodality
data. Next, we can define the kernel function on two multimodality data x and xi as

k x; xið Þ ¼
XM

m¼1
bmk mð Þ xðmÞ; xðmÞi

� �

; ð8:9Þ

where k(m) denotes the kernel matrix over the mth modality, similar to the defi-
nition given above for the single modality case. With the definition of k(x, xi), the
(l ? u) 9 (l ? u) kernel matrix K on the multimodality data can be straightfor-
wardly obtained as K = k(xi, xj). Once we have the graph Laplacian L, the
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definition of the kernel function k(x, xi) on the multimodality data, and the kernel
matrix K, the mLapRLS solution to the multimodality data can be obtained in the
same way as LapRLS is obtained in Eq. (8.7). Similar to LapRLS, mLapRLS will
degenerate to the corresponding multimodality RLS (mRLS) when cB = 0. In this
case, mRLS uses only AD and NC samples for training.

8.4 AD/MCI Diagnosis and Prognosis

In this section, we will evaluate the machine learning based classification tech-
niques that are discussed in the previous sections for AD/MCI diagnosis and
prognosis using single and multiple modality data.

8.4.1 Single-Modality-based Diagnosis and Prognosis

8.4.1.1 MCI Diagnosis Using Enriched White Matter Connectivity
Description

The dataset contains images of 27 participants (10 MCI patients and 17 socio-
demographically matched NCs) who were recruited by the Duke-UNC Brain
Imaging and Analysis Center, North Carolina, USA. Informed consent was
obtained from all participants, and the experimental protocols were approved by
the institutional ethics board. Confirmation of diagnosis for all subjects was made
via expert consensus panels at the Joseph and Kathleen Bryan Alzheimer’s Disease
Research Center (Bryan ADRC) and the Department of Psychiatry at Duke Uni-
versity Medical Center. Diagnosis was based upon available data from a general
neurological examination, neuropsychological assessment evaluation, collateral
and subject symptom and functional capacity reports. Demographic information of
the participants is shown in Table 8.1.

A priori knowledge of the number of features that should be used for classifi-
cation is not available and this number is automatically determined as part of inner
loop of the nested LOOCV. Although it generally yields slightly lower classifi-
cation performance, the nested LOOCV provides a better indicator of the gener-
alizability of a classifier. The classification accuracy by the enriched description of
WM connections (with six parameters) is 88.9 %, which is at least an 14.8 %
increment from that using any single physiological parameter. The area under
receiver operating characteristic (ROC) curve (AUC) of the enriched description
method is 0.929, indicating its excellent diagnostic power. It is found that simple
connectivity description, which uses only a single diffusion parameter, is unable to
provide good generalization power, as indicated by the much smaller AUC values.
The classification performance of the enriched and simple connectivity descrip-
tions is provided in Table 8.2.
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A subset of most discriminant features is selected using the SVM-RFE algo-
rithm [59] in a backward sequential way to remove one feature at a time. The
selected subset is a group of features that yields the best classification performance
based on the training set. Since the selected subset of features might be different
for each LOO case, the most significant ROIs are determined as the regions
(features) with the highest selected frequency in all LOO cases. The most dis-
criminant regions that are selected during training stage are: (1) rectus gyrus,
which is located on the orbital surface of the frontal lobe; (2) insula, which is
located within lateral fissure between the temporal lobe and the frontal lobe; and
(3) precuneus, which is a part of the superior parietal lobe hidden in the medial
longitudinal fissure between the two cerebral hemispheres.

Note the classification framework is a data-driven approach where the
assumption of the set of brain measurements that optimally differentiate MCI
patients from cognitively normal individuals are not known a priori, but can only
be determined from the data. The LOOCV used guards against data overfitting, a
persistent problem in high dimensionality analyses of datasets with relatively small
sample size.

8.4.1.2 MCI Diagnosis Using Multi-Spectral Connectivity
Characterization

Thirty-seven participants (12 MCI patients and 25 socio-demographically matched
NCs) were recruited by the Duke-UNC Brain Imaging and Analysis Center, North

Table 8.1 Demographic information of the participant involved in the study

– MCI NC

No. of subjects 10 17
No. of males 5 8
Age (mean ± SD) 74.2 ± 8.6 72.1 ± 8.2
Years of education (mean ± SD) 17.7 ± 4.2 16.3 ± 2.4
MMSE score (mean ± SD) 28.4 ± 1.5 29.4 ± 0.9

Table 8.2 Classification performance and AUC values for enriched and simple connectivity
descriptions

Description Accuracy (%) AUC

Enriched 88.89 0.929
Fiber count 70.37 0.653
FA 74.07 0.859
MD 59.26 0.647
k1 59.26 0.629
k2 55.56 0.594
k3 59.26 0.612
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Carolina, USA. Informed consent was obtained from all participants, and the
experimental protocols were approved by the institutional ethics board. Demo-
graphic information of the participants is provided in Table 8.3.

Classification performance for the multi-spectral characterization of rs-fMRI
regional mean time series was compared with the conventional whole-spectrum
characterization. The nested LOOCV procedures described in the Sect. 8.2.1 were
applied for performance evaluation.

The effectiveness of GM-masked and unmasked BOLD signals was evaluated
in relation to the whole- and multi-spectral characterization methods. The com-
parison results are shown in Table 8.4.

In agreement with the hypothesis, GM-masked BOLD signal with multi-spec-
tral characterization outperforms the unmasked and whole-spectrum character-
ization methods. GM-masking, when used with the conventional whole-spectral
characterization, only shows slightly improvement in terms of classification
accuracy and AUC value. However, when combined with the multi-spectral
characterization, the classification accuracy increases by more than 18.9 % while
the AUC value increases by more than 0.24, indicating significant improvement in
diagnostic power. This marked improvement in performance demonstrates the
effectiveness and robustness of the GM-masked multi-spectral characterization in
providing relatively fine and localized analysis.

The most discriminant regions that are selected for classification are mainly
located in prefrontal cortex areas and temporal lobes. The selected regions
involved parts of frontal lobe such as rectus gyrus, orbitofrontal cortex and frontal
gyrus, parts of temporal lobe such as temporal poles, amygdala and parahippo-
campal gyrus, superior occipital gyrus of occipital lobe and precuneus of parietal
lobe.

Table 8.3 Demographic information of the participant involved in the rs-fMRI study

– MCI NC

No. of subjects 12 25
No. of males 6 9
Age (mean ± SD) 75.0 ± 8.0 72.9 ± 7.9
Years of education (mean ± SD) 18.0 ± 4.1 15.8 ± 2.4
MMSE score (mean ± SD) 28.5 ± 1.5a 29.3 ± 1.1

a One of the patients does not have a MMSE score

Table 8.4 Classification accuracies and AUC values of whole- and multi-spectral network
characterization methods

Approach Accuracy (%) AUC

Unmasked ? whole-spectrum 56.76 0.530
GM-masked ? whole-spectrum 59.46 0.543
Unmasked ? multi-spectral 67.57 0.620
GM-Masked ? multi-spectral 86.49 0.863
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8.4.1.3 MCI Diagnosis Using Hierarchical Brain Networks

A set of 125 normal control subjects and 100 progressive MCI (P-MCI) subjects
were involved in this study. This dataset was obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (www.loni.ucla.edu/ADNI).
The ADNI database contains approximately 200 cognitively normal elderly sub-
jects to be followed for 3 years, 400 subjects with MCI to be followed for 3 years,
and 200 subjects with early AD to be followed for 2 years. The P-MCI subjects
refer to converters who developed probable AD after the baseline scanning. The
diagnosis of AD is made according to the NINCDS/ADRDA criteria [85] for
probable AD. The demographic and clinical information of all the selected sub-
jects are summarized in Table 8.5.

The effectiveness of constructing hierarchical brain network from T1-weighted
MRI for MCI prediction was evaluated by the comparison of the discrimination
power of the network and the volumetric features, and the comparison of the
performance of different classifiers for the network features.

Comparison of Features

The 125 subjects were randomly partitioned into 20 training and test groups, each
with 150 subjects for training and 75 subjects for test. Five methods were tested in
the experiment: (1) FN: the proposed method, using the four-layer hierarchical
network features; (2) SN: using the network features from only the bottommost
layer with the highest resolution of ROIs; (3) FN-NC: using the network features
from all the four layers, but removing the edges across different layers; (4) SV:
using the volumetric features from only the bottommost layer with the highest
resolution of ROIs; (5) FV: using volumetric measures from all four layers.

Table 8.6 summarized the results. The classification accuracy is averaged
across all the training and test groups. In order to demonstrate the advantage of the
proposed network features, a paired t test is conducted between the proposed
method (FN) and the other four methods, respectively. The p-value of the paired t-
test is reported in Table 8.6. It can be seen that the proposed method (FN) is
always statistically better (at the significance level of 0.05) than any of the other
four methods.

Table 8.5 Demographic information of the subjects involved in the study

– P-MCI NC

No. of subjects 100 125
No. and percentage of males (%) 57 (57.0) 61 (48.8)
Baseline age (mean ± SD) 75.0 ± 7.1 76.1 ± 6.1
Baseline MMSE score (mean ± SD) 26.5 ± 1.7 29.1 ± 1.0
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From Table 8.6, the following results are observed:

• The proposed hierarchical network features in FN outperform the conventional
volumetric features in SV. The advantage may come from using both regional
correlations and the hierarchical structure.

• The better performance of network features over volumetric features with the
same hierarchical structure (SN vs. SV, and FN vs. FV) exhibit the benefits
purely from using the regional correlations.

• The better performance of the four-layer network features FN over the single
layer network features SN demonstrates the statistically significant benefit
purely from the hierarchy. Moreover, the result that the full hierarchy FN sta-
tistically outperforms the hierarchy without cross-layer correlations FN-NC
indicates the necessity of using the cross-layer edges in the network.

Comparison of Classifiers

The classification performance of the proposed classification scheme was com-
pared with other six possible schemes shown in Table 8.7. To facilitate the
description, the proposed scheme was denoted as P1, while the other six schemes
in comparison were denoted as P2–P7. In order for comparison, each of the six
schemes P2–P7 was also partitioned into four steps: rough feature selection,
refined feature selection, feature embedding and classification. Note that all
schemes P1–P7 employ the same rough feature selection as their first step.

The classification results are given in Fig. 8.6 and Table 8.7. In Table 8.7, the
overall classification accuracy is an average accuracy over different numbers of
training samples in Fig. 8.6. The results reveal that, among all the classification
schemes, the proposed scheme P1 (VIP selection ? PLS embedding ? a linear
SVM) achieves the best overall classification accuracy of 84.35 %. This is slightly
better than that of P2, where a nonlinear SVM is employed. As shown in
Table 8.7, the classification schemes with PLS embedding (P1–P4) outperform
those without PLS embedding (P5–P7), achieving an overall accuracy above
84.0 %. In addition, the supervised embedding methods, i.e., PLS (P1–P4) and
KFDA (P7), perform better than the unsupervised Laplacian Eigenmap embedding

Table 8.6 Comparison of discrimination efficacy of features

– Mean test accuracy (%) Paired t-test p-value

FN 85.07 –
SN 83.00 0.00272
FN-NC 83.13 0.00367
SV 81.93 0.00166
FV 81.47 0.00015
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(P6). Moreover, although it is a linear method, PLS embedding (P1–P4) even beats
the nonlinear supervised embedding of KFDA (P7).

Spatial Patterns

Some discriminative features resulting from the proposed two-step feature selec-
tion method are shown in Table 8.8. These features are consistently selected by
more than half of the 20 training and test groups. Note that each network feature
encodes the pairwise ROI relationship, instead of referring to only a single ROI.
There are two parts in Table 8.8. On the upper portion of the table, both ROIs

Table 8.7 Configuration of classification schemes

Scheme Configuration Accuracy (%)

P1 VIP selection ? PLS embedding ? linear SVM 84.35
P2 VIP selection ? PLS embedding ? nonlinear SVM 84.03
P3 No selection ? PLS embedding ? linear SVM 84.11
P4 No selection ? PLS embedding ? nonlinear SVM 84.10
P5 SVM-RFE selection ? no embedding ? nonlinear SVM 80.07
P6 No selection ? Laplacian Eigenmap embedding ? nonlinear SVM 79.16
P7 No selection ? KFDA embedding ? linear SVM 81.08

Fig. 8.6 Comparison of seven classification schemes on network features. The classification
accuracy at each number of training samples is averaged over 20 randomly partitioned training
and test groups. The scheme configurations are shown in Table 8.7
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associated with a network feature may be related to MCI diagnosis, such as hip-
pocampus, entorhinal cortex, fornix, cingulate, etc., as reported in the literature
[86, 87]. But the change speeds of tissue volumes are different over the two clinic
groups. Take the correlation between hippocampus and ventricle as an example. It
is known that the enlargement of ventricle is a biomarker for the diagnosis of the
AD [88]. However, different from the hippocampus volume loss that often occurs
at the very early stage of the dementia, the ventricle enlargement often appears in
the middle and late stages. On the lower portion of the table, the first ROI may be
affected by the disease, while the second ROI may remain constant to the disease.
For example, it has been reported in a DTI study [89] that the anterior and pos-
terior limbs of internal capsule and the occipital lobe WM may not significantly
differ between MCI and NCs. Table 8.8 may suggest that, it is the different pro-
gression pattern that makes the correlation between the two regions the discrim-
inative feature.

8.4.2 Multimodality-based Diagnosis and Prognosis

A series of experiments were performed on the multimodality data using the ADNI
database. Here, ADNI subjects with all corresponding MRI, PET, and CSF data at
baseline were used, leading to a total of 202 subjects, including 51 AD patients, 99
MCI patients, and 52 NCs. Table 8.9 lists the subject characteristics.

Standard image pre-processing was performed for all MRI and PET images.
Specifically, anterior commissure (AC)—posterior commissure (PC) correction is
first performed, followed by skull-stripping, removal of cerebellum, and seg-
mentation of structural MR images into three different tissues: GM, WM, and CSF.
Through atlas warping, we partitioned each subject image into 93 ROIs. For each
ROI, we calculated the GM tissue volume from the subject’s MRI image. For each

Table 8.8 Selected discriminative features

Hippocampus—amygdala

Hippocampus—lingual gyrus
Hippocampus—uncus
Hippocampus—prefrontal/superolateral frontal lobe
Hippocampus—globus palladus
Hippocampus—entorhinal cortex
Hippocampus—cingulate region
Hippocampus—ventricle
Hippocampus and amygdala and fornix—ventricle
Uncus—fornix
Hippocampus—posterior limb of internal capsule
Globus palladus—anterior limb of internal capsule
Hippocampus—occipital lobe WM
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PET image, we first rigidly aligned it with its corresponding MRI image, and then
calculated the average value of PET signals in each ROI. Therefore, for each
subject, we got totally 93 features from its MRI image, 93 features from its PET
image, and 3 features (Ab42, t-tau and p-tau) from the CSF biomarkers.

8.4.2.1 AD/MCI Diagnosis Using Multi-Kernel SVM

We used standard 10-fold cross-validation to measure the classification accuracy,
as well as the sensitivity and the specificity. Specifically, the whole set of subjects
were equally partitioned into 10 subsets, and each time the subjects within one
subset were selected as the testing set and all remaining subjects in the other 9
subsets were used for training the multiple-kernel classifier. This process was
repeated for 10 independent times. The SVM classifier was implemented using
LIBSVM toolbox [80], using a linear kernel and a default value for the parameter
C (i.e., C = 1). The weights in the multiple-kernel classification method were
selected from the training samples through a grid search in the range of 0–1 with a
step size of 0.1. For each feature fi in the training samples, feature normalization
was performed, i.e., fi ¼ ðfi � �fiÞ=ri, where �fi and ri are respectively the mean and
standard deviation of the ith feature across all training samples. The estimated �fi

and ri will be used to normalize the corresponding feature of each test sample.

Multimodality Classification Based on MRI, PET, and CSF

Table 8.10 shows the classification result of the multimodality classification
method, compared with the methods based on each individual modality only. It’s
worth noting that Table 8.10 reports the averaged results of 10 experiments, with
the minimal and maximal values given in brackets. As can be seen from
Table 8.10, the combined use of MRI, PET, and CSF consistently achieve more
accurate discrimination between AD (or MCI) patients and normal controls.
Specifically, for AD versus NC classification, the multimodality classification
method achieves a classification accuracy of 93.2 %, a sensitivity of 93.0 %, and a
specificity of 93.3 %, while the best accuracy on individual modality is only
86.5 % (when using PET). On the other hand, for MCI versus NC classification,

Table 8.9 Demographic information of the subjects involved in the study

– AD (n = 51, 18F/33M) MCI (n = 99, 32F/67 M) NC (n = 52, 18F/34 M)

Mean SD Range Mean SD Range Mean SD Range

Age 75.2 7.4 59–88 75.3 7.0 55–89 75.3 5.2 62–85
Education 14.7 3.6 4–20 15.9 2.9 8–20 15.8 3.2 8–20
MMSE 23.8 2.0 20–26 27.1 1.7 24–30 29.0 1.2 25–30
CDR 0.7 0.3 0.5–1 0.5 0.0 0.5–0.5 0.0 0.0 0–0
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the multimodality classification method achieves a classification accuracy of
76.4 %, a sensitivity of 81.8 %, and a specificity of 66.0 %, while the best
accuracy on individual modality is only 72.0 % (when using MRI).

Furthermore, to compare with other multimodality classification methods, we
also use direct feature concatenation as a baseline method for multimodality AD
(or MCI) classification. Specifically, for each subject, we first concatenated 93
features from MRI, 93 features from PET, and 3 features from CSF, into a 189
dimensional vector. Remember that each feature has been normalized to have zero
mean and unit standard deviation. Then, we performed SVM-based classification
on all samples, with corresponding results shown in the bottom row of Table 8.10.
As can be observed from Table 8.10, our kernel combination method consistently
outperforms the baseline method for each performance measure.

Comparison of Different Combination Schemes

To study the effect of different combining weights, i.e., bMRI, bCSF, bPET, on the
performance of the multimodality classification method, all the possible values,
ranging from 0 to 1 at a step size of 0.1, were tested under the constraint of
(bMRI ? bCSF ? bPET = 1). Figures 8.7 and 8.8 show the corresponding classi-
fication results, including accuracy (top row), sensitivity (bottom left), and spec-
ificity (bottom right), with respect to different combining weights of MRI, PET,
and CSF. Note that, in each subplot, only the squares in the upper triangular part
have valid values due to the constraint (bMRI ? bCSF ? bPET = 1). For each plot,
the three vertices of the upper triangle, i.e., the top left, top right, and bottom left
squares, denote individual-modality based classification results using only PET
(bPET = 1), CSF (bCSF = 1), and MRI (bMRI = 1), respectively.

Table 8.10 Comparison of performance of single-modal and multimodal classification methods

Method AD versus NC MCI versus NC

ACC (%) SEN (%) SPE (%) ACC (%) SEN (%) SPE (%)

MRI 86.2 86.0 86.3 72.0 78.5 59.6
(82.9–89.0) (82.7–88.7) (83.1–89.1) (68.4–74.7) (75.6–80.6) (55.1–63.7)

CSF 82.1 81.9 82.3 71.4 78.0 58.8
(80.o–84.9) (80.0–84.7) (80.0–85.1) (68.2–73.3) (75.6–79.4) (54.3–61.7)

PET 86.5 86.3 86.6 71.6 78.2 59.3
(82.9–90.5) (82.7–90.3) (83.1–90.6) (67.4–74.7) (75.0–80.6) (52.9–63.7)

Combined 93.2 93.0 93.3 76.4 81.8 66.0
(89.0–96.5) (88.7–96.3) (89.1–96.6) (73.5–79.7) (79.4–84.4) (62.6–70.3)

Baseline 91.5 91.4 91.6 74.5 80.4 63.3
(88.5–96.5) (88.3–96.3) (88.6–96.6) (71.9–78.2) (78.3–83.3) (59.7–68.3)

The numbers in each bracket denote the minimal and maximal classification rate in 10 inde-
pendent experiments
AD Alzheimer’s disease, MCI mild cognitive impairment, NC normal control, ACC classification
ACCuracy, SEN SENsitivity, SPE SPEcificity
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As can be seen from Figs. 8.7 and 8.8, nearly all inner squares of the upper
triangle have larger values (better classification) than the three vertices, demon-
strating the effectiveness of the multimodality combination in AD (or MCI)
classification. Furthermore, Figs. 8.7 and 8.8 also show that the squares with
higher accuracy appear mainly in the inner of each triangle, instead of the
boundary. This implies that each modality is indispensable for achieving good
classification. Similar to what can be observed from Table 8.10, Figs. 8.7 and 8.8
also show that, for AD classification, the differences among accuracy, sensitivity,
and specificity are small, while, for MCI classification, it tends to have a higher
sensitivity but lower specificity.

Diagnosis Using Semi-Supervised Multimodality Classification

The mLapRLS was compared with mRLS on the multimodality (MRI, PET, and
CSF) data. Specifically, a 10-fold cross-validation was performed on 51 AD
patients and 52 NC subjects to get the labeled training data and testing data.
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Fig. 8.7 AD Classification results with respect to different combining weights of MRI, PET and
CSF. Only the squares in the upper triangular part have valid values, due to the constraint:
(bMRI ? bCSF ? bPET = 1). Note that for each plot, the top left, top right, and bottom left
squares denote the individual-modality based classification results using PET (bPET = 1), CSF
(bCSF = 1), and MRI (bMRI = 1), respectively
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Unlabeled data were obtained from those 99 MCI subjects. A linear kernel was
used for both algorithms. Following [84], for mRLS, the parameters were set as
cA = 0.05/l and cB = 0, while for mLapRLS, they were set as cA = 0.05/l and
cB = 0.05(l ? u)2/l. Here, l denotes the number of AD and NC subjects, and u is
the number of MCI subjects. The Euclidean distance is used for each modality in
Eq. (8.8). For both algorithms, the values of the weighting parameters bms were
determined through cross-validation using grid search.

Figure 8.9 shows the classification results of both algorithms on the multimo-
dality data, which include classification accuracy, sensitivity, specificity, and
AUC. The results in Fig. 8.9 indicate that, by using the MCI subjects as additional
unlabeled data, mLapRLS significantly improves the performances of distin-
guishing AD from NC subjects, compared to those by mRLS that uses only AD
and NC subjects as samples for training classifier. Specifically, the AUC values of
mLapRLS and mRLS are 0.985 and 0.946, respectively. The results validate the
effectiveness of mLapRLS in using additional data (i.e., MCI subjects) to enhance
the AD classification.
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Fig. 8.8 MCI Classification results with respect to different combining weights of MRI, PET and
CSF. Only the squares in the upper triangular part have valid values, due to the constraint:
(bMRI ? bCSF ? bPET = 1). Note that for each plot, the top left, top right, and bottom left
squares denote the individual-modality based classification results using PET (bPET = 1), CSF
(bCSF = 1), and MRI (bMRI = 1), respectively
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Finally, in Fig. 8.10, we show the classification accuracy of the mLapRLS
algorithm with respect to different number of MCI subjects used for helping
training. As we can see from Fig. 8.10, as the number of included MCI subjects
increases, the classification accuracy of mLapRLS also steadily increases, which
again validates the usefulness of using MCI subjects for helping classification
between AD and NC.

Fig. 8.9 Classification
results on multimodality data

Fig. 8.10 Classification
accuracy with respect to the
different number of MCI
subjects used to help train the
multimodality classifier
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8.5 Summary

In the past two decades, machine learning techniques have been proven to be
important for effective neurodegenerative disorders diagnosis and prognosis,
particularly for AD and MCI. Essentially, machine learning techniques that have
been applied for AD and MCI diagnosis and prognosis can be categorized into
single modality and multimodality based approaches. Some recent developments
in this area have been discussed in this chapter. In single modality based
approaches, information on local microstructural characteristics of water diffusion
(DTI), hemodynamic response related to neural activity (fMRI) and structural
atrophy (T1-weighted imaging) is extracted using connectivity networks to pro-
vide a comprehensive representation of brain alterations for improved classifica-
tion performance. For DTI, a collection of physiological parameters are derived
along the tracked fibers for better characterization of brain circuitry. The multi-
spectral characterization provides a localized analysis of BOLD signals by
decomposing the frequency interval into several sub-bands. For T1-weighted
images, hierarchical brain connectivity networks derived from the structural
images provides a more effective way of characterizing subtle changes than by
using local isolated measures. It is widely accepted that different modalities can
convey complementary information and is useful for AD and MCI diagnosis and
prognosis. Based on this observation, many machine learning techniques have
been applied to integrate information from multiple modalities. Multi-kernel SVM,
when used to integrate complementary information from structural MRI, PET and
CSF, demonstrates significant improvements in AD and MCI diagnosis and
prognosis. As a remedy to small sample size problem, a semi-supervised learning
technique is introduced to derive additional information from MCI data for
improving the discriminative power of the constructed classifiers. The increased
accuracy, sensitivity, and specificity of these approaches indicate that machine
learning techniques are a viable alternative to clinical diagnosis of brain alterations
associated with cognitive impairment.
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Chapter 9
Using Machine Learning to Plan
Rehabilitation for Home Care Clients:
Beyond ‘‘Black-Box’’ Predictions

Mu Zhu, Lu Cheng, Joshua J. Armstrong, Jeff W. Poss,
John P. Hirdes and Paul Stolee

Abstract Resistance to adopting machine-learning algorithms in clinical practice
may be due to a perception that these are ‘‘black-box’’ techniques and incom-
patible with decision-making based on evidence and clinical experience. We
believe this resistance is unfortunate, given the increasing availability of large
databases containing assessment information that could benefit from machine-
learning and data-mining techniques, thereby providing a new and important
source of evidence upon which to base clinical decisions. We have focused our
investigation on the clinical applications of machine-learning algorithms on older
persons in a home care rehabilitation setting. Data for this research were obtained
from standardized client assessments using the comprehensive RAI-Home Care
(RAI-HC) assessment instrument. Our work has shown that machine-learning
algorithms can produce better decisions than standard clinical protocols. More
importantly, we have shown that machine-learning algorithms can do much more
than make ‘‘black-box’’ predictions; they can generate important new clinical and
scientific insights. These insights can be used to make better decisions about
treatment plans for patients and about resource allocation for healthcare services,
resulting in better outcomes for patients, and in a more efficient and effective
healthcare system.
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9.1 Introduction

Machine-learning algorithms (see, e.g., [5, 26]) have been used extensively in
biomedical applications, such as in predicting the role of genes and proteins [37].
Their use in clinical decision-making has been comparatively limited, although
some applications have been reported, for example, in predicting coronary syn-
dromes [25], in assessing the severity of pancreatitis [52], or in diagnosing breast
cancer [56] or melanoma [23]. Some of the resistance to adopting machine-
learning algorithms in clinical practice may be due to a perception that such
methods are ‘‘black-box’’ techniques [54] that are incompatible with decision-
making based on explicit evidence-based care pathways combined with the cli-
nician’s own experience and insights. Although understandable, we believe this
resistance is unfortunate, given the increasing availability of large databases
containing assessment information that could benefit from machine-learning and
data-mining techniques, thereby creating a new and important source of evidence
upon which to base clinical decisions. As we will illustrate in this chapter, inno-
vative applications of these algorithms can go beyond ‘‘black-box’’ predictions to
yield valuable clinical and scientific insights.

Because few studies have investigated the use of machine-learning methods on
rehabilitation for the elderly, this is where we have focused our investigation.
Several groups have used machine-learning approaches to classify walking con-
ditions [33, 35] or movement patterns [4]. Preliminary applications for predicting
rehabilitation outcomes have produced mixed results [51, 61]. Through the work
described in this chapter, we found that machine-learning algorithms generated
more accurate predictions than established clinical protocols [73, 74].

Our work has been conducted as a component of ‘‘InfoRehab’’
(www.inforehab.uwaterloo.ca), a multidisciplinary research program funded by
the Canadian Institutes of Health Research to enhance the rehabilitation of the
elderly through more effective use of health information. One of our research
objectives is to understand whether improved clinical decision-making and
improved client outcomes can be achieved through more sophisticated use of
routinely collected health assessment information. While rehabilitation can
improve the functional independence and quality of life of older persons, and thus
save the healthcare system money, resources for rehabilitation services (primarily
physical and occupational therapy) are limited, and many elderly patients who
could benefit from rehabilitation do not receive any therapy [31]. Thus, it is
critically important that limited rehabilitation resources be targeted to those per-
sons most likely to benefit. Recent reviews and consensus processes have identi-
fied a major research priority to improve methods for identifying the patients most
likely to benefit from rehabilitation [7, 60, 65].

The elderly may benefit from rehabilitation for a variety of reasons; common
reasons include musculoskeletal disorders (e.g., hip fracture and osteoarthritis),
stroke, or deconditioning resulting from prolonged hospital stays. The frailty,
clinical heterogeneity, medical complexity, and multiple comorbidities which are
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common in older patients present significant challenges to clinical decision-
making for rehabilitation in this population [65]. Cognitive impairment is an
example of these challenges. Cognitive function has been identified as an
important factor in predicting the success of rehabilitation for older patients [28]
and is often used as a key criterion in assessing rehabilitation potential [24], the
rationale being that adequate cognition is necessary to follow instructions for
therapy and exercise programs. On the other hand, clinicians are often able to
identify patients with lower cognitive function who would be suitable candidates
for rehabilitation [7].

Ghisla and colleagues [21] found that, while good cognition was associated
with functional gains in older geriatric rehabilitation patients, patients with poor
cognition could also improve in physical function as a result of rehabilitation.
Colombo and colleagues [11] found that mental status score was not correlated to
functional improvement in a geriatric rehabilitation ward. A randomized con-
trolled trial of an interdisciplinary care program with better access to rehabilitation
therapy for hip fracture patients [50] produced the surprising finding that, while the
intervention produced no overall benefit in patient outcomes, there was a trend
toward improvement in patients with cognitive impairment. Using cognitive
impairment as a selection criterion for rehabilitation is thus problematic, and it is
likely that the potential for successful rehabilitation in persons with cognitive
impairment is related to a varying combination of multiple factors such as mood,
premorbid and baseline physical function, motivation, comorbidities, presence of a
caregiver, and other client characteristics [7, 66].

InfoRehab has focused on rehabilitation in the home care setting. While the
growing importance of home care and other community-based healthcare services
is widely recognized, funding for home care services is still lower than funding for
hospitalization and other institutional services. In Ontario, where our research is
currently being conducted, reports suggest that already limited resources for home
care rehabilitation are being further constrained [27], adding urgency to research
that can support effective planning and allocation of rehabilitation services.

In Ontario, home care services are coordinated by Community Care Access
Centres (CCACs). CCAC case managers assess all long-stay home care clients
with the RAI-HC (also referred to as the MDS-HC, [36, 48]), a comprehensive
assessment system developed by an international research consortium (interRAI;
www.interrai.org), and one of a suite of assessment tools developed for use in care
planning, outcome measurement, quality improvement, and resource allocation
[29]. The RAI-HC, which contains more than 300 items measuring a wide range of
client characteristics, including functional status, diagnoses, cognition, commu-
nication, mood and behavior, informal supports, and other information, is currently
in use in many jurisdictions around the world. The assessment items can be used to
derive specific measures for health issues such as cognition, depression or ability
to perform activities of daily living (ADLs). They also form the basis of Clinical
Assessment Protocols (CAPs), which can be used to guide care planning and
decision-making. Clients are assessed on admission and at follow-up intervals of
approximately 6 months.
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The current available database of RAI-HC assessment information in Ontario
provides a rich resource for machine-learning and data-mining analyses. Recently,
these assessment data have been linked with administrative data using detailed
information on service utilization, as well as data on mortality and discharge
disposition (e.g., to hospital or to a long-term care home).

In this chapter, we will describe several examples of our investigation to apply
machine-learning techniques in clinical decision-making for both predictive and
explanatory tasks (see, e.g., [58]). For both types of tasks, we require data on
health outcomes. To do so, we combined the RAI-HC with client discharge and/or
service utilization information from the CCAC administrative records, often
within 6 months or 1 year of the initial assessment (See Fig. 9.1).

In the first example, we illustrate the application of machine learning for pre-
dictive purposes, and address an application relevant to the research priority
described earlier—how to identify elderly patients most likely to benefit from
rehabilitation. Whereas predictive tasks are the forte of machine-learning tech-
niques, clinicians are often concerned with explanatory tasks. In the second
example, we show how machine learning can be used to identify key variables
(client characteristics) that best explain who receives rehabilitation services. Given
resource limitations and the evidence that many home care clients who could
benefit do not receive rehabilitation [31], it is instructive to explore what client
characteristics may be guiding current clinical practices and decision-making
around rehabilitation services. The third example describes the application of an
off-the-shelf machine-learning algorithm for both prediction and explanation. We

Fig. 9.1 Schematic illustration of data set structure: RAI-HC assessment items are linked to
health outcome and/or service utilization data to facilitate our analysis
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try to predict institutionalization in a long-term care (LTC) home, as well as to
identify key risk factors for LTC placement.

Other than illustrating the use of a number of popular machine-learning algo-
rithms and addressing a number of pressing issues in the rehabilitation of older
persons, these examples also convey a number of general messages. In particular,
we will see that data-driven algorithms can often make better predictions than
expert-driven protocols, that complex algorithms are not necessarily superior to
simple ones, and that what appears to be a ‘‘black-box’’ algorithm can sometimes
contain useful scientific insights and other times be used to extract scientific
insights directly.

9.2 Example 1: Rehabilitation Potential (A Predictive
Task)

Clinical Assessment Protocols (CAPs) are triggered when specified combinations
of RAI-HC assessment items suggest that specific problems or risks are present
and warrant further investigation [14, 36, 48]. The tasks they perform, i.e., pre-
dicting whether certain risks exist, are well-suited for machine-learning algo-
rithms. Here, we illustrate the use of two machine-learning algorithms to predict
whether a client has rehabilitation potential. Accurate predictions of clients’
rehabilitation potential constitute one step toward solving the aforementioned
problem that many who could benefit from rehabilitation currently do not receive
it [31].

9.2.1 Focal Point: A Tale of Two Algorithms Versus
an Existing Protocol

The CAP most relevant to rehabilitation planning and the assessment of rehabil-
itation potential is the ADLCAP, where ‘‘ADL’’ stands for ‘‘Activities of Daily
Living.’’ In this section, we compare the ADLCAP with a simple machine-learning
algorithm known as the K-nearest neighbors (KNN), and with a mathematically
sophisticated, modern algorithm known as the support vector machine (SVM).

9.2.1.1 ADLCAP

The ADLCAP is derived using a number of nested if–then statements that use
different combinations of 19 variables (Table 9.1) from the RAI-HC instrument as
conditions [49]. The ADLCAP is triggered if the client is unable to perform two or
more of the ‘‘activities of daily living’’ items (H2A to H2J in Table 9.1), if the
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client is able to understand others (C3), and if any one of the conditions described
by the other covariates is present (P6 to H7C in Table 9.1). Although there is no
explicit weighting of the items, the protocol implies a particular importance for a
cognition item, the ability to understand others (C3). Considered necessary for the
success of a rehabilitative program, it is the single item that must always be
present for the ADLCAP to be triggered.

9.2.1.2 K-Nearest Neighbors

The K-nearest neighbors (KNN) algorithm [12] is a classic and extremely easy-to-
describe technique. Suppose we have a database consisting of a total of n obser-
vations, ðxi; yiÞ, for i ¼ 1; 2; . . .; n, where xi is a vector of covariates and yi is a
binary outcome of either zero or one. The database is called the training set. Given
any two observations, xi and xj, let dðxi; xjÞ be a distance metric. To predict the
response for a new observation xnew with the KNN algorithm, we first identify a
set, Nðxnew;KÞ, consisting of K observations from the training set that are closest to
xnew in terms of the metric dð�; �Þ. We then estimate the probability that ynew ¼ 1 by

bP ynew¼ 1jxnewð Þ ¼ 1
jN xnew;Kð Þj

X

xi2Nðxnew;KÞ
yi;

Table 9.1 The 19 RAI-HC items used by the ADLCAP to assess a client’s rehabilitation
potential: we recoded the values of these variables so that the machine-learning algorithms would
effectively interpret these predictors in exactly the same way as the ADLCAP

Predictor items from RAI-HC and descriptions Orig. value Recoded value % = 1

H2A Mobility in bed 0, 1, …, 8 0, 1 ? 0; else 1 9.5
H2B Transfer 0, 1, … , 8 0, 1 ? 0; else 1 18.0
H2C Locomotion in home 0, 1, …, 8 0, 1 ? 0; else 1 14.8
H2D Locomotion outside of home 0, 1, … , 8 0, 1 ? 0; else 1 38.2
H2E Dressing upper body 0, 1, … , 8 0, 1 ? 0; else 1 32.0
H2F Dressing lower body 0, 1, … , 8 0, 1 ? 0; else 1 37.8
H2G Eating 0, 1, … , 8 0, 1 ? 0; else 1 10.4
H2H Toilet use 0, 1, … , 8 0, 1 ? 0; else 1 19.8
H2I Personal hygiene 0, 1, … , 8 0, 1 ? 0; else 1 25.6
H2J Bathing 0, 1, … , 8 0, 1 ? 0; else 1 77.9
C3 Ability to understand others 0, 1, … , 4 0, 1, 2 ? 0; else 1 4.7
P6 Overall change in care need 0, 1, 2 0, 1 ? 0; else 1 34.8
H3 ADL decline 0, 1 0, 1 39.8
K8B Unstable conditions 0, 1 0, 1 29.1
K8C Flare-up of recurrent/chronic problem 0, 1 0, 1 7.8
K8D Treatment changed in last 30 days 0, 1 0, 1 16.6
H7A Client optimistic about improvement 0, 1 0, 1 22.6
H7B Caregivers optimistic about improvement 0, 1 0, 1 11.4
H7C Good prospect of recovery 0, 1 0, 1 10.7

Source Zhu et al. [74]
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where the notation jAj means the size of the set, A. That is, we compute the
proportion of neighbors that have binary outcomes equal to one, and predict ynew to
be one if this proportion exceeds a certain threshold, say, the fraction of obser-
vations with yi ¼ 1 in the training set. The reason why jN xnew;Kð Þj is not always
equal to K is because of the possibility of ties, meaning that two or more obser-
vations could sometimes have the same distance to xnew.

9.2.1.3 Support Vector Machine

The support vector machine (SVM) is a relatively new algorithm that has received
a tremendous amount of attention in the machine-learning community as of late
(e.g., [6, 13, 64]). To predict the outcome for xnew, the SVM uses quadratic
programming (e.g., [22]) to construct a model of the following form:

f xnewð Þ ¼ w0 þ
X

xi2SV

wiKðxnew; xiÞ;

where w0 and wi are model coefficients, and Kðu; vÞ is a kernel function specified
by the user. For our experiments, we used the radial basis kernel function. A key
feature of the SVM is that, once the parameters w0 and wi are computed, the final
model only depends on a subset of the training data, denoted in the equation above
by ‘‘SV.’’ These observations are called ‘‘support vectors’’ and are determined by
the SVM algorithm automatically. For the SVM, binary outcomes are coded as -1
and +1 rather than zero and one, and one predicts ynew to be +1 if f xnewð Þ[ 0 and
-1 if f xnewð Þ\0.

9.2.2 Data and Various Details of the Analysis

For this example, our data consisted of initial RAI-HC assessments of N = 24,724
clients from eight Ontario CCACs. The outcome variable was whether a client had
true rehabilitation potential.

We defined a client as having true potential ðy ¼ 1Þ if (1) there was an
improvement in the client’s ADL function, assessed using the interRAI ADL long
form measure [47], over a follow-up period of approximately 1 year, or if (2) the
client remained at home at the end of the treatment program. The rationale for this
definition was that, for frail elderly clients for whom the likely course was func-
tional decline, any improvement in ADL function was important. Also, persons
discharged from home care who remained in their own homes (i.e., were not
admitted to a long-term care home) could also be considered to have had a suc-
cessful outcome. Other disposition outcomes included discharge to a nursing
home, or death, which could be considered indications of rehabilitation failure. In
this dataset, 6,567 clients were so defined as having true rehabilitation potential.
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In order to make conservative and fair comparisons with the ADLCAP, we
allowed KNN and SVM to use only the 19 predictors considered by the ADLCAP.
Moreover, we recoded these 19 variables so that both KNN and SVM would
effectively interpret these predictors in exactly the same way as the ADLCAP did.

For example, the ADLCAP treats the predictor H2A (mobility in bed) in the
following way:

if H2A = 2, 3, 4, 5, 6, or 8 (indicating levels of dependence),
then consider as dependent;
else (meaning H2A = 0 or 1, indicating independence) consider as independent.
Suppose that client A had H2A ¼ 2 and client B had H2A ¼ 6. The ADLCAP

would not distinguish these two clients with regard to this variable. Therefore, the
variable H2A could be recoded as a binary variable: (2, 3, 4, 5, 6, and 8) as one,
and all other values (0 and 1) as zero. Table 9.1 summarizes how the 19 variables
were recoded according to the ADLCAP.

We used KNN and SVM to make predictions on the eight regional CCAC data
sets one-by-one. When making predictions for cases from a particular region, we
used a random sample of 2,500 clients from the other seven regions as the training
set. This methodology precluded each algorithm from using one’s own data to
predict one’s own outcome (and thereby creating a bias toward better prediction).
Furthermore, tuning parameters of the algorithms were selected by cross-valida-
tion on the training set alone, using the overall error rate as the guiding criterion.
Cross validation is a standard procedure in machine learning to determine the
value of various tuning parameters in any given algorithm (see, e.g., [26]). While
the role played by these tuning parameters is extremely important, we will not
describe cross validation in this chapter.

9.2.3 Results

Table 9.2 compares how the machine-learning algorithms performed against the
ADLCAP. For binary predictions, the false positive (FP) and false negative (FN)
rates are intuitive performance measures corresponding, respectively, to the
probabilities of the two types of errors one can make, namely, predicting a true
zero to be a one (FP) and predicting a true one to be a zero (FN). Clearly, the
smaller these values are, the better the results will be. The positive and negative
diagnostic likelihood ratios (DLR ? and DLR–, respectively) are somewhat less
intuitive. More details about these readings are given in the Appendix at the end of
the chapter. In short, an informative prediction method should have DLRþ[ 1
and DLR�\1. Moreover, given two prediction methods, A and B, A can be said
to be more informative than B if DLRþðAÞ[ DLRþ ðBÞ and if
DLR�ðAÞ\DLR� ðBÞ. Table 9.2 clearly shows that both KNN and SVM are
significantly better than the ADLCAP in predicting a client’s rehabilitation
potential. Data-driven algorithms can often make better predictions than expert-
driven protocols.
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However, Table 9.2 also shows that there is no substantive difference between
KNN and SVM. If the SVM is mathematically a much more sophisticated algo-
rithm than the KNN, then why did it not produce much better predictions? One
must bear in mind that the amount of information contained in the data is not
affected by the algorithm used to extract it. It is true that some algorithms have
natural limitations. For example, one cannot use a linear algorithm to estimate a
nonlinear decision boundary (unless one employs a trick to apply the linear
algorithm in a different input space altogether). But if a simple algorithm has
already extracted the right amount of information, then one cannot expect a
complex algorithm to magically find more information in the same data. Complex
algorithms are not necessarily superior to simple ones.

9.2.4 Discussion

The interRAI consortium has recently undertaken a review and revision of the
CAPs, including the ADLCAP. This work was informed in part by the results
found in our analyses. In this regard, machine learning has had some impact on the
planning of rehabilitation services in practice. In particular, machine-learning
algorithms can ‘‘set the bar’’ for clinical predictions, and be used to refine clinical
protocols in order to achieve improved performance.

While both KNN and SVM produced superior results, these algorithms have not
replaced the ADLCAP as the screening tool used in practice. This may relate to the
perception, discussed earlier, that these prediction procedures are ‘‘black-boxes.’’
Even though the predictions could be validated empirically to be more accurate, it
would be hard for clinicians to understand why a particular prediction was made
for any given case. We address this challenge next.

First, it is possible to explain the intuition of the KNN algorithm with a clinical
analogy. In particular, one can argue that physicians also rely on an implicit KNN
algorithm to make clinical decisions. A physician’s clinical decision is undoubt-
edly influenced by his or her past clinical experiences. For example, a physician
will likely recommend a particular treatment program to a new patient if the new
patient’s clinical profile matches those patients who have been successfully treated
by the physician in the past with the same program. Hence, a physician’s past
patients can be regarded as the training set. Matching the clinical profile of a new
patient to those of past patients is similar to finding a number of nearest neighbors
from the training set. In this sense, we can think of the KNN algorithm as an
artificial ‘‘super expert’’ who has had the ‘‘experience’’ of ‘‘treating’’ virtually
every patient recorded in the database and can, therefore, use this extensive
‘‘clinical experience’’ to make informed and intelligent decisions.

Next, instead of using the SVM to just make predictions, it is also possible to
derive useful scientific insights from its output. In SVM, observations chosen as
support vectors are either very close to or on the wrong side of the decision
boundary; non-support vectors, on the other hand, are on the correct side of the
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boundary and at least a certain distance away from it (see, e.g., [13, 26]). In other
words, non-support vectors are the easy-to-classify observations in the dataset. In
our context, these observations would be the clients that, according to SVM, either
clearly had or clearly did not have any rehabilitation potential. A careful exami-
nation of these two groups of clients, therefore, could yield additional insights.

Notice that this is different from simply comparing clients with y ¼ þ1 and
those with y ¼ �1. Observations near the decision boundary are often noisier than
the rest; thus, excluding them can often make it easier for us to understand the
exact nature of the class separation.

To illustrate this approach, we built an SVM with a random sample of 10,000
observations from all eight CCAC datasets and examined the resulting two groups
of non-support vectors. Table 9.3 shows these observations. In the table, each row
shows the fraction of observations with the corresponding covariate equal to 1 in
each of these two groups. Recall from Table 9.1 that all covariates had been
recoded as binary in our study. It is evident from Table 9.3 that these two groups
of clients are most different in terms of H2J (bathing), H7A (client optimistic about
functional improvement), and H7C (client rated as having good prospects of
recovery), suggesting that these three variables were the most important ones for
predicting rehabilitation potential. This indicates that the SVM, despite appearing
to be a ‘‘black-box’’ prediction algorithm, can be used nonetheless to derive useful
clinical and scientific insights.

Table 9.3 Fraction of clients with covariate = 1: Differences between those who most clearly
have and those who most clearly do not have rehabilitation potential, according to SVM

Covariate = 1 Clearly have potential Clearly no potential Absolute difference

H2A 0.01 0.10 0.09
H2B 0.08 0.16 0.08
H2C 0.04 0.15 0.11
H2D 0.22 0.37 0.15
H2E 0.11 0.32 0.21
H2F 0.17 0.37 0.20
H2G 0.01 0.12 0.12
H2H 0.03 0.24 0.20
H2I 0.07 0.27 0.20
H2J 0.29 1.00 0.71 *
C3 1.00 0.94 0.06
P6 0.49 0.11 0.37
H3 0.49 0.12 0.37
K8B 0.17 0.29 0.12
K8C 0.05 0.05 0.00
K8D 0.32 0.02 0.30
H7A 0.65 0.00 0.65 *
H7B 0.35 0.00 0.35
H7C 0.46 0.00 0.46 *

Source Zhu et al. [74]
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9.3 Example 2: Receipt of Rehabilitation Services (An
Explanatory Task)

As we have indicated, clinicians may be uncomfortable with the ‘‘black-box’’ type
of algorithms despite their superior predictive performance. Here, we illustrate the
use of machine-learning techniques to extract scientific insights directly, rather
than to make predictions. Our goal is to identify the most important factors for
determining whether a client will receive rehabilitation services. As described
earlier, this analysis provides important insights into the factors currently guiding
clinical decision-making.

9.3.1 Focal Point: Variable Screening by an Ensemble
Application of the LASSO

The study objective for this example, identifying the most important items from
the RAI-HC for predicting the binary outcome of receiving rehabilitation services,
constitutes a classic ‘‘variable selection’’ problem. In addition to more conven-
tional statistical approaches [42], there are many machine-learning algorithms for
performing this task, such as stepwise selection (e.g., [43]), SCAD [17], LARS
[16], the elastic net [69], PGA [72], and VISA [55], among many others. For this
example, we focus on an algorithm known as the LASSO [63].

9.3.1.1 Variable Selection by the LASSO

First proposed by [63], the LASSO algorithm has become the most studied vari-
able-selection tool by statisticians over the last decade. Many variations (e.g., [40,
69]) now exist. We use the following notations to denote the data and the model
parameters:

y ¼
y1

..

.

yn

2

6

4

3

7

5

;X ¼
x11 . . . x1d

..

. . .
. ..

.

xn1 . . . xnd

2

6

4

3

7

5

; b ¼
b0

..

.

bd

2

6

4

3

7

5

:

In our case, yi is, again, a binary outcome of either zero or one. As usual, xij is
the j-th predictor variable for subject i; and bj is the j-th regression coefficient. Let
lðb; X; yÞ denote the log-likelihood function based on modeling each yi as a
Bernoulli random variable with parameter pi � Pðyi ¼ 1Þ, and linking pi to the
predictors xi1; xi2; . . .; xid by the logistic equation,

log
pi

1� pi
¼ b0 þ xi1b1 þ xi2b2 þ � � � þ xidbd:
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Classical logistic regression (e.g., [38]) estimates the regression coefficients by
maximizing lðb; X; yÞ. The LASSO estimates these coefficients by solving the
following optimization problem instead:

maxb lðb; X; yÞ � kX bð Þ; ð9:1Þ

where

X bð Þ ¼
X

d

j¼1

jbjj

is a penalty function that is able to shrink the regression coefficients, b1; b2; . . .; bd,
and force some of them to become zero. If bj ¼ 0, then the j-th predictor has no
effect. Hence, only predictors with nonzero regression coefficients are ‘‘selected’’
by the model that the LASSO produces.

9.3.1.2 Variable Ranking by the LASSO

The non-negative parameter, k, controls the amount of shrinkage; more coeffi-
cients will become zero (and fewer predictors will be selected) as k is increased.
To a large extent, the choice of k controls which predictors end up being selected.
This means the value of k used must be carefully justified.

This ‘‘inconvenience’’ can be circumvented by taking into account not just one
solution to the optimization problem (9.1) given by one particular (and perhaps
subjective) choice of k, but the entire solution path (see, e.g., [16]) as k changes.
The idea is as follows. Start from a large k, so large that all regression coefficients
are forced to be zero and, hence, no predictor variable is selected. As k is gradually
decreased, the regression coefficients become nonzero and the predictor variables
enter the model sequentially; see Fig. 9.2 for an illustration. The relative impor-
tance of the predictor variables can be ranked by the order in which they enter the
model. As far as we are aware, such an application of the LASSO is novel.

9.3.1.3 Ensemble Approach

Furthermore, instead of ranking all the variables just once using the entire dataset, we
adopted the ‘‘ensemble approach’’ (e.g., [68, 71]) to obtain a more stable ranking. We
first drew 100 random subsamples from our data set, say, S1; S2; . . .; S100, each of size
n ¼ 10; 000. Let rðb; jÞ denote the rank of variable j based on sample Sb. We then
calculated the average rank over the 100 samples for each variable j,

r jð Þ ¼ 1
100

X

100

b¼1

rðb; jÞ;

as well as rðjÞ, the standard deviation of r jð Þ.
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9.3.2 Data and Various Details of the Analysis

For this example, our data consisted of initial RAI-HC assessments of N ¼
135; 184 home care clients from Ontario. The outcome variable was a binary
indicator of whether the client received rehabilitation services, which we defined
to mean the receipt of either physical or occupational therapy (PT or OT) within
6 months of a client’s initial assessment.

Altogether, a total of d ¼ 239 items from the RAI-HC were treated as potential
predictors. All items in RAI-HC were included except a few ‘‘obviously’’ irrele-
vant variables, for example, those in the BB8 section, which have to do with
responsibility for payment, and obvious ‘‘cues’’ for receiving rehabilitation service
such as P2O and P2P, receipt of OT and PT within last seven days, respectively.

In the actual implementation, we used a variation of the original LASSO
algorithm, called the ‘‘group LASSO’’ [39]. We used this variation because many
of our predictors were categorical. A categorical predictor is often coded by a
number of dummy variables in regression analysis, and the group LASSO forces
these dummy variables to enter or exit the model together as a group along the
solution path.

Fig. 9.2 Solution path of the
LASSO (illustration): There
are six predictors, X1, X2, … ,
and X6. When k is very large,
all six coefficients are forced
to be zero. As k decreases, the
coefficients become nonzero
(and the predictors enter the
model) in the following
order: X2, X1, X3, X5, X6, and
X4
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9.3.3 Results

Table 9.4 shows the results that we obtained from this analysis. The last column
(effect on odds ratio) was obtained as follows. First, a logistic regression model
was fitted using all the top-ranked variables in Table 9.4. For categorical variables
(all except K5—falls frequency), level ‘‘8’’ (which, where applicable, meant
‘‘activity did not occur’’) was not considered (standard interRAI practice), and
level ‘‘0’’ was treated as the baseline (see RAI-HC instrument).

For each of the other levels, a 95 % confidence interval was then obtained for
its odds-ratio relative to the baseline. Let L denote the minimum of lower confi-
dence limits over all levels, and U, the maximum of upper confidence limits over
all levels. The interval ðL;UÞ could be regarded as a kind of conservative, meta-
confidence interval. For a continuous variable (K5 in this case), this would be the
regular confidence interval. Finally, let M ¼ ðLþ UÞ=2 be the midpoint between
L and U. The effect on odds ratio was summarized to be positive (þ) if M [ 1, and
negative (-) otherwise. Other than H5 (stair climbing), none of these variables had
a meta-interval that included unity, i.e., either L\U\1 or 1\L\U. The positive
and negative effects summarized in Table 9.4 were, therefore, unambiguous,
except for H5.

While many of the variables identified by the LASSO algorithm as strongly
associated with the receipt of rehabilitation services were related to impairments in
gait (K6A) or ADL (H3) that could be improved through rehabilitation therapy,
others were associated with a reduced likelihood of receiving rehabilitation, such
as a cancer diagnosis (J1X) or recent receipt of chemotherapy (P2F). These
associations may be because rehabilitation is considered inappropriate for some

Table 9.4 Receipt of rehabilitation: top-ranked variables (average rank \20)

Predictor items from RAI-HC (j) and description �rðjÞ r jð Þ Effect on odds ratio

K6A Unsteady gait 1.00 (0.00) þ
H3 ADL decline 2.02 (0.01) þ
K6B Limits going outdoors 3.38 (0.15) þ
J1X Cancer (last 5 years) 3.58 (0.13) �
H7A Client believes can improve 3.68 (0.07) þ
K5 Falls frequency 4.59 (0.16) þ
K4C Pain intensity disrupts usual activity 5.63 (0.24) þ
P2F Chemotherapy during last 7 days 6.39 (0.27) �
P2W Nurse monitoring \ daily 8.75 (0.26) �
H4B Mode of locomotion—outdoors 9.49 (0.11) þ
H5 Stair climbing 13.39 (1.34) þ
H4A Mode of locomotion—indoors 14.30 (0.45) þ
H1FB Shopping—difficulty 16.57 (0.58) þ
P2V Daily nurse monitoring 17.04 (0.41) �
O2B Better-off if different environment 17.26 (0.29) �

If a variable has a positive/negative effect on the odds ratio, it means high levels of this variable
increase/decrease the probability of receiving PT/OT (within 6 months of initial assessment)
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persons with a terminal illness. However, this is an area that warrants further
investigation, as many cancer patients would benefit from, but do not receive,
rehabilitation services [62].

Also of note is that cognitive impairment was not specifically identified as an
important factor associated with not receiving rehabilitation. This disassociation
may be because other variables are acting as proxies for adequate cognitive
function, for example, H7A (client belief in potential for improvement) and/or
O2B (client seen as better off elsewhere). Alternatively, cognitive impairment may
not be currently used as a criterion to limit rehabilitation services, for reasons
suggested in the Introduction section.

We clearly see that machine-learning techniques not only can be used to make
good predictions, but also can be used to obtain useful scientific insights.

9.3.4 Discussion

The approach we took above to select/rank/screen predictor variables is an
example of the so-called ‘‘ensemble approach.’’ The ensemble approach for
solving prediction problems was first made popular in the machine-learning
community through such algorithms as boosting [18, 20], bagging [8], random
forest [9], and the gradient boosting machine [19]. The ensemble approach for
variable selection was pioneered by [72] and formalized by [68], while similar
ideas have appeared in the literature (e.g., [41]).

To describe the main idea, suppose there are p candidate variables. A variable-
selection ensemble (of size B) can be represented by a B� p matrix, say E, whose
j-th column contains B repeated measures of how important variable j is [68]. Let
Eðb; jÞ denote the ðb; jÞ-th entry of E. Using the ensemble E as a whole, one can
rank the importance of variable j using a majority-vote type of summary, such as

R jð Þ ¼ 1
B

X

B

b¼1

Eðb; jÞ: ð9:2Þ

The key for generating a variable-selection ensemble (VSE), therefore, lies in
producing multiple measures of importance for each candidate variable. By con-
trast, ‘‘regular’’ variable selection procedures typically produce just one such
measure, that is, B ¼ 1. It is easy to understand why averaging over a number of
repeated measures is often statistically beneficial. This benefit is the main reason
that VSEs are attractive and more powerful than many classical approaches.

The formal definition of VSEs above makes it clear that VSEs can be generated
in many ways. In Example 1, we identified that the most important variables for
predicting a client’s rehabilitation potential were H2J, H7A, and H7C by studying
the non-support vectors. This finding can be verified by a simple VSE. Recall that,
in Example 1, we had created eight training datasets. Using each of these datasets,
we performed stepwise variable selection on a standard logistic regression model
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using the Akaike Information Criterion (AIC, [1]) as the selection criterion. We
thus obtained eight slightly different subsets of selected variables. The only
variables that appeared in the intersection of all eight subsets were H2J, H7A, and
H7C.

We believe the ensemble approach we used in this example to screen predictor
variables has a good deal of potential in health informatics. We think variable
selection per se is usually not quite the right scientific objective, whereas variable
ranking is. Imagine the problem of searching for a few biomarkers that are
associated with a certain disease. What type of answer is more useful to a medical
doctor? Telling him or her that you think it is biomarkers A, B, and C that are
associated? Or giving him or her a ranked list of the biomarkers instead? We think
the latter is more useful, and such a list is precisely what the ensemble approach is
designed to provide.

Using an ensemble approach, variable selection is performed in two steps. We
first rank the variables, e.g., by (9.2), and then use a certain thresholding rule to
make the selection. As proponents of the ensemble approach, we believe that the
task of ranking is the more fundamental of the two steps. From a decision-theoretic
point of view, once the variables are ranked, the choice of the decision threshold
has more to do with one’s prior belief of how sparse the model is likely to be.
Hence, the variable importance measure (9.2) is a particularly nice feature of this
approach.

9.4 Example 3: Institutionalization (A Combined
Predictive and Explanatory Task)

In our third and final example, we illustrate the use of an off-the-shelf machine-
learning algorithm to perform both predictive and explanatory tasks.

Currently, within the province of Ontario, there is an increased emphasis on
‘‘aging at home’’ initiatives [67]. These initiatives are aimed at improving the
ability of seniors to remain independent in the community so that they can remain
out of institutional care (long-term care homes). As institutionalization is very
costly, these ‘‘aging at home’’ initiatives are also designed to ensure the sustain-
ability of the overall health system.

Here, we try to predict whether a home care client would be placed into a long-
term care (LTC) facility within a year of initial RAI-HC assessment, and to
identify the top risk factors for LTC placement. Home healthcare plays a critical
role in managing the transition between community and institutional living for
older adults; thus the ability to identify at-risk individuals in the home care pop-
ulation and to recognize factors that predict institutionalization can be most
valuable.
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9.4.1 Focal Point: Using the Random Forest as an Off-the-
Shelf Algorithm for Both Prediction and Explanation

Most machine-learning algorithms contain a few tuning parameters that must be
selected carefully by the user, for example, the parameter K—the number of
neighbors—in KNN. Some algorithms are quite sensitive to the choice of these
tuning parameters, e.g., the SVM, which makes them hard to use by a non-
specialist. The phrase ‘‘off-the-shelf’’ means the algorithm is relatively insensitive
to these choices. As a result, it is relatively easy to use and does not require much
customizing to produce reasonably good results. In this section, we illustrate the
use of the random forest [9], one of the best off-the-shelf prediction algorithms
available [71], to perform both predictive and explanatory tasks.

9.4.1.1 Using the Random Forest to Make Predictions

The random forest algorithm works by building a collection of decision trees.
Predictions are made by taking majority vote over all trees. The decision tree is a
deterministic algorithm. Given the same data set, the algorithm will produce
exactly the same tree in multiple runs. Naturally, a forest made up of many
identical copies of the same tree is not interesting or useful. To generate different
decision trees, the random forest algorithm employs two stochastic mechanisms.
First, the algorithm draws a bootstrap sample [15] from the data before building
each tree. Second, it forces each decision tree to optimize its splits over a randomly
selected subset of predictors. Table 9.5 describes the algorithm.

9.4.1.2 Using the Random Forest to Rank Predictors

Not only is the random forest algorithm capable of producing excellent predic-
tions, it is also capable of computing a variable-importance measure, which we
simply denote as RF-VIM, for each predictor. The RF-VIM is based on marginal
evaluations of the would-be deterioration in the overall model performance, had

Table 9.5 The random forest algorithm (for classification)

1. For each b = 1 to B, fit a maximal-depth decision tree, fb(x), as follows:
(a) (Bootstrap) Draw a bootstrap sample of the training data; call it D*b. Use D*b to fit fb.
(b) (Random Subset) When building fb, randomly select a subset of m \ d predictors before

making each split—call it S, and make the best split over the set S rather than over all
possible predictors.

End For.
2. Output an ensemble classifier, i.e., to classify xnew, simply take majority vote over all trees,

{fb(xnew), b = 1, 2,…, B}. Alternatively, rank the likelihood that xnew belongs to class k by
the fraction of times fb(xnew) = k, for b = 1, 2,…, B.
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the values of a predictor been permuted [10]. The rationale is that, if permuting the
value of a predictor does not have much effect on the model performance, it must
not be an important predictor, and vice versa. It turns out that these evaluations can
be performed efficiently inside the random forest algorithm because the bootstrap
step (Table 9.5, step 1a) implies that, on average, each observation is only used by
about 2/3 of the trees in the forest. We will not go into the technical details of this
aspect in this chapter; refer to [9].

9.4.2 Data and Various Details of the Analysis

For this example, the outcome of interest was a binary indicator of whether a client
was placed into an LTC facility within a year of initial assessment, and our data
consisted of RAI-HC assessments of N ¼ 13; 006 clients from eight Ontario
CCACs. These clients were from a subset of the data used in Example 1, including
only older adults (age 65þ) who remained within the home care system for more
than 30 days. Many older adults received a RAI-HC assessment but did not receive
any formal home care services. For example, some individuals were assessed but
did not require any supportive services, whereas others were assessed and placed
directly into LTC due to their low level of functioning and/or high care needs.
These clients were excluded from this analysis because, for the outcome of LTC
placement, it was more meaningful to focus only on the ‘‘active’’ home care
clients.

A total of d ¼ 189 predictors were used in this analysis, consisting of relevant
items in the RAI-HC instrument as well as some other measures that were
embedded within the RAI-HC system, such as the CHESS score (Changes in
Health, End-stage disease and Symptoms and Signs, [30]), a composite measure of
RAI-HC items that is used to predict mortality and to measure health instability in
geriatric populations, and the CPS (Cognitive Performance Scale, [46]), another
composite measure designed to measure the cognitive assets of individuals that has
been shown to correspond closely with the Mini-Mental State Examination
(MMSE). We also included a Frailty Index [57], a measure based on the idea that
the concept of frailty is a non-specific multi-factorial state that can be character-
ized by examining an individual’s accumulated deficits during his/her life course.
This measure was constructed for the RAI-HC data using procedures discussed by
[59].

For the predictive task, predicting whether a client would be placed into LTC,
we followed the same procedures as in Example 1, and made predictions on the
eight CCAC data sets one-by-one. When making predictions for cases from one
CCAC, we used cases from the other seven CCACs as the training set. We used a
default forest size of 500 trees, and ranked the clients by the fraction of trees (out
of 500) that predicted LTC placement within a year.

For the explanatory task, identifying key risk factors for LTC placement, we
followed the same procedures as in Example 2. As indicated above, a different
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training set was used for each of the eight CCAC datasets. Let sðb; jÞ be the RF-
VIM score for variable j based on training set b, for b ¼ 1; 2; . . .; 8. For each
predictor j, we computed

s jð Þ ¼ 1
8

X

8

b¼1

sðb; jÞ;

as well as rðjÞ, the standard deviation of sðjÞ.

9.4.3 Results

It is well-known that, when a numeric score is available to rank the likelihood of a
binary outcome, varying the decision threshold will generate a continuum of false
positive and false negative rates. In particular, lowering the threshold will lead to
more false positives, whereas raising the threshold will lead to more false nega-
tives. The receiver-operating characteristic (ROC) curve (see, e.g., [53]) is a
simple two-dimensional graph measuring a model’s false positive rate against its
true positive rate over all possible decision thresholds. The area under the ROC
curve, or simply ‘‘area under the curve’’ (AUC), is a common metric used in this
context for evaluating the effectiveness of the ranking produced [53]. A perfectly
ranked set of predictions would give AUC ¼ 1, and a randomly ranked set would
give AUC ¼ 0:5.

Using the AUC, Table 9.6 compares the predictive/ranking performance of the
random forest with that of an existing decision-support algorithm, MAPLe
(Method for Assigning Priority Levels, [32]). Designed for the Ontario home care
context to assist case managers in determining the relative priority of a client’s
need for support services, the MAPLe algorithm has been shown to be a strong
predictor of nursing home placement, caregiver distress, and for being rated as
requiring alternative placement to improve outlook [32].

Table 9.6 Predicting LTC placement: performance evaluation of the random forest and the
MAPLe algorithm

Area under the ROC Curve (AUC)

Region Random forest MAPLe

1 0.807 0.727
2 0.765 0.702
3 0.791 0.727
4 0.757 0.693
5 0.709 0.644
6 0.766 0.706
7 0.816 0.726
8 0.777 0.716
Mean 0.773 0.705
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Results for the explanatory task are displayed in Fig. 9.3 and Table 9.7. The top
two predictors, age and the Frailty Index (FI), clearly stood out from the rest. The
other top predictors were mostly related to cognition (e.g., CPS, B2A, C3) and the
ability to perform basic ADLs (e.g., H2J—bathing, and H2I—personal hygiene).

Fig. 9.3 a Potential risk factors for LTC placement within 1 year of initial RAI-HC assessment,
ranked by the variable-importance measure derived from the random forest algorithm (RF-
VIM)—mean and stdev from 8 CCAC datasets. b The top 10 risk factors—distribution of RF-
VIM from 8 CCAC datasets
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9.4.4 Discussion

While the MAPLe algorithm was developed using sophisticated methods, the aim
was nonetheless to produce an algorithm that was straightforward, comprehensi-
ble, defensible, and intuitively appealing, and that had input and buy-in from
clinical, health system, and policy experts. Our results suggest that the explicit
nature of the MAPLe, understandable given its application in assigning priorities
for long-term care placement, may be achieved at a cost to its predictive ability.
Although the MAPLe algorithm predicted LTC placement quite well
(AUC * 0.705), machine-learning approaches are often better able to address the
inter-dependencies and non-linear relationships of data that represent the complex
characteristics of human subjects and human systems [45].

As for results from the explanatory task, age came out as a key risk factor for
LTC placement. Other than age, it is interesting but perhaps not surprising that the
Frailty Index emerged as the biggest predictor of LTC placement in our analysis,
significantly ahead of other cognition and basic ADL items. Analyses reported by
the developers of the Frailty Index [44], as well as our own work [2] and that of
others (e.g., [34]) have found the FI to be a strong predictor of death, institu-
tionalization, and other adverse health outcomes. As a composite measure calcu-
lated based on an individual’s total number of measured deficits, the FI thus
reflects multiple risk factors. Therefore, our findings further validate the use of the
FI as a quantitative summary measure of vulnerability in older adults.

This example has illustrated that the random forest algorithm is a viable, off-
the-shelf method capable of making superior predictions, while also generating
explanatory information on factors associated with those predictions, thus gener-
ating clinical and scientific insights into what is going on inside the ‘‘black-box.’’

Table 9.7 Top 10 risk factors for LTC placement within 1 year of initial assessment, as ranked
by the variable-importance measure derived from the random forest algorithm (RF-VIM)—mean
and stdev from eight CCAC datasets

Risk factors (j) and descriptions RF-VIM

Mean �sðjÞ Stdev rðjÞ
Age Approximate age 135.79 (5.35)
FI Frailty index 85.28 (3.31)
CPS Cognitive performance scale 66.09 (2.73)
B2A Daily decision making 61.17 (2.67)
Dementia Presence of dementia 57.35 (2.57)
Q1 Number of medications 53.42 (1.95)
H2J Bathing 51.53 (2.39)
C3 Ability to understand others 47.76 (1.68)
H1DA Managing medications—performance 47.35 (2.10)
H2I Personal hygiene 43.87 (1.93)
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9.5 Summary

In this chapter, we have described several examples of how machine-learning
algorithms can be used to guide clinical decision making, and to generate scientific
insights about these decisions. Our specific focus has been on rehabilitation in
home care, but we believe these techniques have a much wider applicability. Our
examples have included a conventional application of a comparatively simple and
classic algorithm (KNN) to perform a predictive task, a novel application of a
more sophisticated algorithm of increasing importance (LASSO) to perform an
explanatory task, and a straight-forward application of an off-the-shelf algorithm
(random forest) to perform both.

In clinical applications, our work has shown that machine-learning algorithms
can produce better decisions than standard clinical protocols. Our work also
suggests that a ‘‘simple’’ algorithm such as the KNN may work just as well as a
more complex one such as the SVM. More importantly, we have shown that
machine-learning algorithms can do much more than make ‘‘black-box’’ predic-
tions; they can generate important new clinical and scientific insights. These
insights can be used to make better decisions about treatment plans for patients and
about resource allocation for healthcare services, resulting in better outcomes for
patients, and in a more efficient and effective healthcare system.

Acknowledgments The InfoRehab project is supported by the Canadian Institutes of Health
Research (CIHR). We thank Chloe Wu for her assistance with the management of data.

A.1 9.6 Appendix: Evaluation of Binary Predictions

Suppose we have a certain procedure (whether an algorithm or a protocol) for
predicting binary outcomes of either zero or one. The false positive (FP) and false
negative (FN) rates are intuitive measures of the prediction performance. They are
the probabilities of the two types of errors the procedure can make, namely, calling
a true zero a one (FP) and calling a true one a zero (FN).

The positive diagnostic likelihood ratio ðDLRþÞ, and the negative diagnostic
likelihood ratio ðDLR�Þ are less intuitive but extremely useful measures; they

‘‘quantify the change in the odds of [the true outcome] obtained by knowledge of [the
prediction]’’ or ‘‘the increase in knowledge about [the true outcome] gained through [the
prediction]’’ [53].

Let

prior � odds ¼ P outcome ¼ 1ð Þ
P outcome ¼ 0ð Þ ;
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posterior � odds predictionð Þ ¼ P outcome ¼ 1jpredictionð Þ
P outcome ¼ 0jpredictionð Þ :

By a simple application of Bayes’ theorem [3], it can be shown that

posterior � odds prediction ¼ 1ð Þ ¼ DLRþð Þ � prior � oddsð Þ;

posterior � odds prediction ¼ 0ð Þ ¼ DLR�ð Þ � prior � oddsð Þ:

Therefore, DLRþ can be interpreted as the factor by which a prediction of one
can increase the prior odds, and DLR� can be interpreted as the factor by which a
prediction of zero can decrease the prior odds. Therefore, informative prediction
procedures should have DLRþ[ 1 and DLR �\1. Given two prediction
methods, A and B, A can be said to be more informative than B if
DLRþðAÞ [ DLRþ ðBÞ and if DLR�ðAÞ\DLR� ðBÞ. The use of DLRþ and
DLR� to evaluate procedures for making binary predictions has been gaining
popularity in the last two decades [53].
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Chapter 10
Clinical Utility of Machine Learning
and Longitudinal EHR Data

Walter F. Stewart, Jason Roy, Jimeng Sun and Shahram Ebadollahi

Abstract The widespread adoption of electronic health records in large health
systems, combined with recent advances in data mining and machine learning
methods, creates opportunities for the rapid acquisition and translation of knowl-
edge for use in clinical practice. One area of great potential is in risk prediction of
chronic progressive diseases from longitudinal medical records. In this Chapter, we
illustrate this potential using a case study involving prediction of heart failure.
Throughout, we discuss challenges and areas in need of further development.

Keywords Electronic health records � Hearth failure � Machine learning � Pre-
diction models � Text mining

10.1 Introduction

The adoption of electronic health records (EHR) in clinical practice is increasing
as technology advances, and regulatory pressures from healthcare reform efforts.
Large health care delivery systems in the US adopted such systems early and are
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rapidly demonstrating the diversity of ways in which EHRs can be used to create
value by improving the quality, safety, and accessibility of care at a lower cost. In
particular, EHRs are used to accelerate the translation of knowledge for real-time
use in clinical practice. In this chapter, we consider how machine learning tools
may be used to develop decision aids and diagnostics for real-time use in clinical
practice.

The accessibility of EHRs presents significant opportunities for utilizing clin-
ical daata and other information in ways not possible with paper records. In
particular, longitudinal clinical care data are accessible from EHRs for disease risk
prediction and personalized decision making. The opportunities are particularly
compelling given the recent co-evolution of powerful machine learning and data
mining techniques. These techniques offer potentially promising means for the
rapid extraction of information from EHRs and translation of that information into
clinical care decision support.

The disciplines of data mining (DM) and machine learning (ML) are rapidly
maturing with great success in many applications such as search engines, image
analysis and recommendation systems. The opportunity in healthcare is to use
these tools to accurately derive insights from longitudinal patient data that can
effectively be used change the clinical pathway of the patient for an optimal
outcome.

Longitudinal EHR data are increasingly being used to predict future events or
outcomes for a given patient. For example, chronic diseases emerge over time,
mediated by early physiologic and pathological changes for which overt or sur-
rogate indicators are documented in a patient’s record (Fig. 10.1). The primary
goal of predictive modeling in this context is to move detection of the disease from

Fig. 10.1 Chronic disease progression from early non-observable events to early preclinical and
later stages
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a frank disease state to an earlier clinical or pre-clinical disease state so that the
natural history of the diseases itself can be changed. In this framework, population
level data can be mined to detect robust signals before an event or to influence the
course of events (e.g., optimizing choice of treatment). The time scale for pre-
diction depends on the clinical context. For example, effective use of a signal of
future risk of chronic progressive diseases like heart failure would likely require
that the disease be detected 1–2 years before usual diagnosis if the use of an
intervention at an earlier time is to be used to influence the natural course of
disease. In contrast, the time scale for predicting 30-day readmission risk is days to
weeks. The formula that is developed to quantify the signal can be applied to
individual patients in real time (i.e., algorithms applied to extracts of patient EHR
data) or in batches, as needed. Quantitative signals of this type have many
potential applications during routine encounters or for population level screening
or management (Table 10.1).

The focus of this chapter is on the use of data-mining and machine-learning
tools to detect a patient’s risk for chronic progressive diseases like diabetes,
dementia, kidney disease, and heart failure (HF), among others. These conditions
are and will continue to be the dominant drivers of healthcare costs as increasing
prevalence in aging populations drives the demand for healthcare and increases per
capita healthcare costs. While evidence indicates that medical home and other high
touch care models can improve patient outcomes and reduce the cost of care, the
options for success are narrowly defined given the deterministic nature of pro-
gressive illnesses. An alternative approach is to develop cost effective means of
early disease detection and intervention as a means to slow disease progression.
This approach is especially sensible when safe and low-cost diagnostic tests and
treatments are available and the health problem can be detected early enough to
change natural history. In this context, we view longitudinal EHR data as a clinical
care asset [1], where patient data can be searched using sophisticated data-mining
and machine-learning tools for early signals of disease or disease progression. In

Table 10.1 Examples of application of data mining and machine learning to EHR data

Examples Time scale Value of predictive model Who benefits?

Risk of chronic
progressive disease

12–36 months Slowing progression
preventing onset

Patient and payer

Risk of disease progression 12–60 months Slowing progression,
preventing rapid decline

Patient and payer

Optimizing choice
of interventions

Variable Patient and others

Time to inpatient discharge Days Improve discharge preparation,
reduce readmission

Hospital and
patient

Risk of 30-day
readmission

Days to weeks Reduce risk of re-admission Hospital and
patient

Identifying future
costly patients

12–36 months Prevention and case
management to reduce
cost of care

Payer and patient
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many respects, formalizing the use of such tools in clinical practice is akin to using
screening or diagnostic tests to identify patients at high risk of progressive dete-
rioration. In this chapter, we focus on recent work we have completed for the early
detection of heart failure.

10.1.1 Why Heart Failure?

Heart disease has long been the leading cause of death in the US. The routine
identification of risk factors (e.g., hypertension, hyperlipidemia, use of tobacco
products, changes to diet) and growth in the diversity and use of effective treat-
ments has contributed to a substantial decline in the rate of heart attacks and the
cause specific mortality rate over the past 60 years. As a consequence, the age
specific prevalence of heart failure has increased.

HF is a heterogeneous disease. Two common variants (i.e., diastolic HF and
systolic HF) account for 80–85 % of prevalent cases. Onset is subtle and detection
is difficult. The more common symptoms (e.g., shortness of breath on exertion,
ankle edema) are somewhat non-specific and can be explained away by e.g., poor
conditioning, weight, prolonged standing, venous insufficiency, and certain med-
ications. The emerging disease is often missed until it is more serious and has
concomitant expression of multiple symptoms (e.g., rales, shortness of breath
without exertion, tachycardia, pleural effusion) or because of a more explicit
diagnosis (i.e., ejection fraction \50 %) of underlying disease. While HF is usu-
ally first detected in primary care, it is often diagnosed at such a late stage that it
will continue to progress and the patient will deteriorate over a 5 year period.
Early detection of diastolic HF, in particular, is of interest because emerging
evidence indicates that low cost benign treatments may be effective in slowing
disease progression. Previous efforts at early detection using screening question-
naires have not worked [2]. We have begun to explore how longitudinal patient
data can be used in combination with data-mining and machine-learning tools to
detect patients at high risk of a future heart failure diagnosis.

In the sections that follow, we first describe issues with the use of electronic
health records data for predictive modeling and specific considerations of how to
use structured and unstructured data. We then describe approaches to modeling
and close with an explanation of how such tools might be used in clinical practice.

10.1.2 Use of EHR Data for Predictive Modeling

The format and accessibility of EHR data vary by manufacturer, clinical setting
(e.g., primary care or specialty care), organization, and time. Our focus in this
section is not on this aspect of EHR data. Rather, our focus is on the categories of
data routinely available in EHRs data and how these data might be used and
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represented for predictive modeling. We first consider the source population and
how it differs from traditional longitudinal studies, followed by a discussion of
features of structured data and the features of unstructured data.

10.1.2.1 Study Context

While a primary care population is similar to a general population sample, the
source of EHR data differs substantially from how data are collected in a typical
epidemiologic study. A longitudinal epidemiological study is usually initiated to
understand causal relations. A representative sample of the population of interest is
first identified and recruited. Selection bias can occur at the outset because the
option to participate or not is not random. The data and the data collection
schedule are fixed. That is, the data to be collected are defined beforehand by
protocol and are collected from individuals at fixed or defined time intervals.
Typically, subject participation erodes over time and the remaining participants are
less and less representative of the original source population. Nonetheless, out-
come status of the participants is determined both through routine follow-up and
by other means (e.g., death certificates, inpatient treatment).

EHR data arise from a source population defined by the type of care provided.
Primary care practices represent the most general population sample, while spe-
cialty care patients usually represent a more select population depending on the
specialty, location (e.g., major medical center versus community provider), and
established referral patterns. The purpose in developing a predictive model will
dictate the source population that is most appropriate. Table 10.2 describes fea-
tures of a longitudinal study using EHR data on a primary care population versus a
traditional general population sample selected for longitudinal study (Table 10.2).
The nature of selection bias and missing data are somewhat different for these two
considerations.

For clinical care, a predictive model is developed to infer something predictive
who has sought care. That is, the predictive model is developed so that it can be
applied to the same type of individual longitudinal data that were available for the
development of the model in the first place. As such, notions of selection bias are
more difficult to define and depend on a number of factors. First, the equivalent of
patient recruitment and enrollment begins with the first visit to a given primary
care practice or a specific primary care provider (PCP). Patients choose their
provider rather than being selected for longitudinal follow-up. Second, the act of
seeking care and the frequency of encounters are related to health status and care
seeking behavior of the patient. In contrast to a traditional epidemiologic study, the
visit pattern itself may contain information about the patient. Third, ‘‘data col-
lection’’ in primary care is unscheduled. Data are obtained because a patient is
scheduled for a visit. While some data (e.g., weight, blood pressure, pulse,
temperature) are routinely collected, most data are related to the reason for visit.
That visit could be for routine care (e.g., periodic physical), for a specific need
(e.g., acute health problem, disabling pain, etc.), or for other possible reasons
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(e.g., prescription refill). The data that are obtained can vary among patients who
present with the same health problem. Finally, the extent of follow-up for health
problems also varies. Outcomes may or may not be captured depending on the type
(e.g., process of care, mediating measures such as blood pressure, or LDL, and
serious outcomes like stroke), the visit pattern, and continued use of a primary care
practice or network of practices connected to a common data repository (e.g.,
system level EHR). More generally, the predictive models that are developed must
be conditioned by what can be observed with regard to duration of time as a
patient, number of visits, and the data that are available.

In contrast to a traditional study framework, the application of machine-learning
to longitudinal EHR data poses unique challenges because data collection is
unscheduled. In part, the decision to seek care or to schedule a visit is under the
control of the patient and usually motivated by health problems. As such, infor-
mation about the patient is inherent to this unscheduled feature of the EHR data itself.

10.1.2.2 General Principles on Use of EHR Data

EHR data are recorded in a variety of formats. The types of measures and variables
can be characterized by the following features: static versus dynamic, the scale of
measure, whether the measure is hierarchical, repeated measures over time, and

Table 10.2 Comparative methods for a traditional prospective cohort and ‘‘study cohort’’
selected from a primary care practice with an EHR where retrospective data are used

Study
population or
design feature

Traditional prospective study Primary care EHR ‘‘Cohort’’

Identification
and
recruitment

The sampling frame is defined by the
investigator, and individuals are
identified to be representative of the
source population

Source population is selected by the
investigator from among those who
have sought care

Enrollment Active outreach and enrollment:
Individual decides to opt in or out

Individual ‘‘participates’’ by choosing a
PCP and seeking care as needed

Follow-up Active scheduling of participant at
defined intervals: Drop out or
censuring occurs because the
patient opts out or moves from area

Individual is defined as a participant as
long as they seek care from the PCP

Data collection Fixed by protocol Defined by patient need and purpose of
visit and decisions made by the
physician

Data standardization Fixed by protocol
Can vary over

time
Outcome

assessment
Fixed by protocol and obtained directly

from the individual and from other
sources

Passively ascertained through care that
is delivered and actively pursued
from other sources (e.g.,
hospitalizations, mortality)
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temporal relation to clinically meaningful anchors (Table 10.3). The approach to
representing features for a hypothetical patient is described in Fig. 10.2, which
shows that observation time begins with the first primary care visit and ends with
the diagnosis of heart failure or with an equivalent index time for a control. The
richness of the features for predictive modeling depends on the data domain which
is related, in part, to dynamicity. Importantly, every feature may have up to three
temporal descriptors.

(1) The measure can occur within or outside the observation window (i.e., the
time period for predictive measures obtained in advance of diagnosis).

(2) The time between the date of the measure and the date of diagnosis and
(3) The temporal correlation among measures from different domains in the

observation window may be particularly important for detecting more com-
plex but meaningful and robust signals.

Table 10.3 Common examples of EHR data and their features

Data source Feature Feature type

Demographics Age, gender, ethnicity Static
Diagnosis ICD9, HCC (higher level aggregation of ICD9) Temporal discrete
Imaging Imaging test order Temporal discrete
Medication Generic name, drug class and subclasses Temporal discrete
Lab Component name Temporal continuous
Vital Systolic and diastolic blood pressure, pulse,

temperature, weight, height
Temporal continuous

Social history Drinking and smoking history Temporal discrete
Symptom Framingham criteria and other related symptoms Temporal discrete
Temporal patterns Visitation frequency, frequently co-occurring

diagnosis codes and medication
Temporal discrete

Fig. 10.2 General representation of EHR data for predictive modeling
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The objective of modeling is to determine how each type of measure and
combination of measures can be used along with relevant temporal measures to
predict a future event with sufficient accuracy to be clinically useful.

A limited set of variables (e.g., demographics, blood pressure, beats per minute,
weight, sex, etc.) are routinely available on all or almost all patients. Most other
measures, however, are strongly dependent on the healthcare utilization tendencies
(e.g., scheduling routine physical exam) of a given patient and, more importantly,
on which health problems a patient experiences that motivate whether and when
healthcare is sought. Given this unique feature of how EHR data come to be, a
‘‘missing value’’ framework is useful in defining how to represent data in a model,
given that any variable may not be available on a subgroup of patients. That is, in
contrast to traditional epidemiologic studies, EHR data are captured in an
unscheduled manner and the specific value of a variable (e.g., diagnosis of a given
disease) for a given patient may not be known. This means that the act of docu-
menting data in the EHR may contain information about the future status of a
patient, above and beyond, the actual value of the variable itself at a specific time.
For some variables, the initial documentation of the feature itself will suffice and
can be represented by a binary 0/1 indicator. This representation is sensible if the
disease is almost always brought to the attention of a physician and diagnosed
(e.g., type II diabetes). But most health related measures are not routinely ascer-
tained. One simple technnique for this type of ‘‘missing data’’ Problem is to
represent a variable by a 0/1 binary variable indicating the availability of the
measure and an interaction term between the binary variable and the actual var-
iable value can be used to separately represent the value of the variable among
those who have one or more values. By using this type of representation a variable
is effectively ‘‘observed’’ for all subjects, and takes a value of zero if the variable
was never measured [3].

A diversity of variables can be measured repeatedly on a given patient, for
example, repeated measures of common disease mediators (e.g., LDL, blood
pressure). The number of repeated measures varies greatly among patients.
Moreover, the frequency of measurement is related to health status independent of
the variable values. Repeated measures can be represented by measures of central
tendency and variability, but these summary measures may be insensitive to
predicting future events. The most recent repeated measures within the observation
window may be the most relevant, but predictive power may also depend on the
value of previous repeated measures. For examples, the first documentation of
elevated blood pressure or hypertension indicates the beginning of a disease
process, but the impact of this process in mediating vascular pathology will vary
depending on the actual systolic and diastolic pressure over time. The temporal
effect of blood pressure can also be represented by an area defined by the pressure
level above or below a clinically recognized threshold (e.g., diastolic 80 mm Hg)
and the time above or below this limit. Finally, The temporal variance of repeated
measures of a disease mediator, in particular, may be a useful indicator of insta-
bility or change in latent disease state, especially if variability is increasing with
time.
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10.1.2.3 Relevant Features from Structured Data

While space does not permit a detailed description of how to use different types of
EHR variables, we consider the specific measures that are available in the most
common domains (Table 10.3). Demographic variables are usually available on all
patients in fixed field format and include sex, date of birth, and race or ethnicity.

Health behavior is a dominant mediator of disease risk, and tobacco and alcohol
use are among the two most important measures. While, these features are not
always available in the EHR, these data are likely to become more common given
meaningful use regulations. However, there is no national standard for collecting
data on smoking and alcohol use or on other health behaviors. Data obtained on
health behavior are likely to vary in specificity and to be represented in a variety of
formats. The simplest and most common format for smoking status is likely to be
represented by the patient’s status (i.e., current smoker, not currently using
tobacco, never used tobacco) and possibly some information on level of use.
Repeated measures of current status can be used to create a time dependent
exposure measure. However, documentation of smoking and alcohol status may be
missing or may be coded as ‘‘not asked.’’ If the value is missing, it may be best to
code the measure as missing or alternatively as a non-smoker and non-user of
alcohol. Sensitivity analysis can be used to determine the validity of assumptions
about missing data (i.e., whether not asked means not used versus unknown) and
can provide useful predictive information.

Prescription medications are represented in the EHR by a time stamped fixed
field order along with other descriptors. Each medication order includes infor-
mation that may be used to calculate or estimate the day’s supply. Order spans may
be strung together to define a period of potential active medication use. Specifi-
cally, the number of days between orders defines the time span during which
medication could have been used. The number of days’ supply of medication times
the medication dose can be used to calculate the total dosage available. Dividing
the total dosage by the time span gives the average daily dose. Dividing the days’
supply by the time span gives the proportion of days that a medication was taken
or the medication possession ratio (MPR). Medications will be switched from
time-to-time. However, it is important to distinguish medication switching (i.e.,
stop current medication and switch to another) from the addition of a medication
(i.e., add new medication to the current therapy).

One general limitation to EHR order data is that it does not indicate of the
patient actually picked up the medication and used it. Insurance claims data are
required to determine if the medication was obtained by the patient. National
efforts have been underway to return data on claims adjudication back to the
prescribing physician’s EHR. In the absence of the claims data, memorable
assumptions can be made regarding use of medications. For example, if a provider
submits sequential prescription orders for the same problem (e.g., type II diabetes)
over time, it is more likely than not that the patient was using the medication from
earlier orders. To make use of prescription order data, the following variables
should be considered.
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(1) Medication order start date, defined by order date;
(2) Medication order end date is not explicitly defined. It must be inferred by

either the date of the subsequent order for the same health problem or by the
number of days’ supply in the last order (i.e., add this to the last order date), or
the average time span between previous prescription orders.

(3) Number of days’ supply is defined by the number of pills per prescription and
the number of pills prescribed for use each day. The number of pills per day is
usually found in the medication sig, a free text field entered by the clinician at
the time of prescription. Comprehensive databases of sig field texts do not
exist, making it challenging to convert the sig into the number of pills per day.
Nonetheless, prescription orders are often for a standard number of days. For
chronic progressive conditions like hypertension, the number of days’ supply
is usually in monthly intervals versus an acute prescription (e.g., a bacterial
infection) which would usually be in days. It is common practice to determine
if the same patient had orders for other medications of the same class or
subclass that overlap the medication span.

(4) Medication switch versus add is usually dependent on the study aim. For
example, if the question of interest is focused on switching medications within a
drug sub-class (e.g., from one calcium channel blocker to another) for anti-
hypertensives (the major class), a switch will be defined differently than if the
question is focused on changing the medication from one sub-class to another
(e.g., calcium channel blockers to ACE inhibitors). If a new medication order
occurs prior to the end date for the previous medication, a decision needs to be
made on whether it was a medication switch or the addition of a second medi-
cation. This decision can be based on clinical judgment (i.e., is it common
practice to treat with combination therapy for the respective medications) and by
querying for re-orders in the future. That is, the new medication is not likely to be
a switch if it is ordered in the future along with the original medication, and

(5) Medication dose is determined by multiplying the dose within each pill (which
is found embedded within the medication name) and the number of pills per
day (which is identified by translating the medication sig). There may be
different combinations that result in the same dose per day. For example,
400 mg twice a day is the same dose as 200 mg four times a day. These
medication variables can be used to both create order spans and to link these
spans together to define a time period of active medication use. Considerations
can be made for the length of allowable gap in coverage (i.e., a new order
occurs 100 days after an order that had only 90 day supply). Finally, we note
that medication use is also documented in the active medication list that is
used by a nurse or provider to record medications that the patient verifies or
reports he or she is using at the time of an office visit encounter. An advantage
of this list is that it can be used to identify other important medications that are
not ordered by the physician, including use of over the counter medications
like aspirin. A disadvantage of this list is that there are no standards for how to
obtain these data from patients and the reliability and validity of the data has
not been established.
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As previously noted, documentation that a patient has a specific disease
depends, in part, on how the patient uses care. Serious diseases are likely to be
universally documented in the EHR. For example, most, if not all, patients who
have type II diabetes will eventually be diagnosed by a physician, even though
patients may vary by the time interval between actual disease onset and diagnosis.
For other health problems (e.g., depression) the likelihood of diagnosis will depend
on disease severity. Separate from the completeness of documentation, operational
criteria must be developed to designate whether a patient has a specific disease.
Typically, operational criteria for disease designations require the repeated doc-
umentation of selected ICD-9 codes in separate encounters occurring in a limited
time period (e.g., 12 months) along with supporting documentation from relevant
clinical measures. The appearance of an ICD-9 code as an encounter diagnosis or
with a medication order or on the problem list is usually meaningful. In contrast,
an ICD-9 code that appears with an image order may not be meaningful as it may
simply represent a possible diagnosis that had to be expressed to execute the order.
The sensitivity and specificity of operational criteria will vary by the number of
required mentions of an ICD-9 code. Operational criteria that are based on fewer
mentions (e.g., 2 or more) will be more sensitive, whereas operational criteria that
are based on more mentions (e.g., 3 or more) will be more specific. Examples of
operational criteria are summarized in Table 10.4. Finally, the duration of time
with a disease may be an important predictor of risk of other diseases like HF. The
first documentation of the presence of a disease in the EHR does not indicate that
the disease was first diagnosed. Distinguishing incident from prevalent conditions
requires a consideration of the time interval between the first primary care visit and

Table 10.4 Operational criteria for defining selected co-morbidities

Co-morbidity Relevant ICD-
9 codes

Minimal Operational
Criteria to indicate presence
of the health problem

Supplementary Data

Hypertension 401.**–405.** 2 encounter diagnosis or 2
medication orders with
an ICD-9 diagnostic
code for hypertension

Untreated blood pressure
indicating presence of
hypertension that is not
explained by other
factors

Diabetes 250.** 2 encounter diagnosis or 2
medication orders with
an ICD-9 diagnostic
code for diabetes

Untreated Hemoglogin A1c
or fasting glucose that
is consistent with
diabetes

Hypocholesterolemia 272.** 2 medication orders with an
ICD-9 diagnostic code
for hyperlipidemia

Untreated LDL measures
consistent with
hyperlipidemia

Asthma 493.** 2 encounter diagnosis or 2
medication orders with
an ICD-9 diagnostic
code for asthma

Untreated pulmonary
function test results
consistent with asthma
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the first documentation of a disease. A short time interval (e.g.,\6 months) more
likely than not indicates that the disease was diagnosed before the patient saw a
new primary care physician for the first time.

Vital sign measures are typically stored in fixed fields and are measured
repeatedly because they are obtained during most ambulatory encounters. Vital
signs include systolic and diastolic blood pressure, pulse, body temperature,
height, and weight. Of these, measures of height for adults tend to be incomplete
and can vary unexpectedly because of differences in how height was obtained
(e.g., with and without shoes). Median height may be the most sensible measure to
use when deriving other measures such as body mass index.

Laboratory measures are represented by an order and usually followed by a
result report. Some tests are ordered as part of routine care (e.g., basic metabolic
panel or lipids). Others are ordered to further study a particular disease (e.g.,
hemoglobin A1c used to evaluate diabetes). Additionally, the length of time
between tests may vary depending on the test that is being conducted. For
example, lipids may be tested every 5 years in a young, healthy adult but every
6–12 months for those with high cholesterol. Other tests are may be performed
repeatedly over the course of several days, especially if a patient has been hos-
pitalized. The lab result may be numeric (e.g., total cholesterol), text (e.g., blood
culture results are recorded as positive or negative), or both (eGFR is numeric if
\60 but then grouped into[60 when appropriate). A test that has a numeric result
may have a text result which may be very meaningful (e.g., LDL = ‘‘UNIN-
TERPRETABLE’’ when triglycerides are extremely elevated). Regardless of the
lab type, the data elements for a given test usually include the resulting value, and
date the test was administered.

10.1.3 Relevant Features from Unstructured Data

In addition to structured information, EHR data also contain unstructured infor-
mation, such as physician notes and radiology reports, which are in text format. In
fact, text data comprise a majority of all data available in an EHR. These text notes
often contain the medical practitioners’ documentation for various types of patient
encounters. Common types of encounter notes include ‘‘Office Visit,’’ ‘‘Case
Manager,’’ and ‘‘Radiology.’’ The practitioners uses a standard set of section labels
to characterize the content, most commonly in SOAP (subjective, objective,
assessment, and plan) format. Other types of sections in these notes include
Examination, History, and Comment. These notes often contain much more
detailed description about signs and symptoms, which are not usually available in
the structured data, but that may be quite useful for predictive modeling. For
example, progress notes can be used to identify the occurrences of sign and
symptoms as well as the context in which they are mentioned.Text mentions of
Framingham signs and symptoms may be particularly important. Specifically, text
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can indicate whether a symptom was defined as present or absent, severe, per-
sistent, and other important descriptors that indicate whether it was consistent with
heart failure or another disease (e.g., COPD).

10.2 Early Detection of Heart Failure: A Case Study
in Approaches to Machine Learning

In this section, illustrate a specific example involving heart failure prediction
modeling [4]. We begin with a description of initial work, which involved pre-
dictive modeling using structured data, and then describe ongoing enhancements
to the model by including variables created from text mining.

Data for the early detection of heart failure were obtained from the Geisinger
Clinic (GC) EHR. GC is a multispecialty group practice in central and northeastern
Pennsylvania that includes 41 outpatient community practice sites, each of which
offers primary care. GC primary care patients are similar to the population of the
region in age, sex, and race. GC has used EpicCare EHR since 2001 for all
practice-based tasks including viewing test results, clinical messaging, order entry,
and progress notes and for the storage and exchange of administrative and clinical
data (e.g., appointment, admission, financial, clinical results, and dictations). Since
1993, GC has been serviced by a single laboratory company.

10.2.1 Selection of Cases and Controls

We used a nested case-control design to develop apredictive model. Subjects who
met one of the following HF diagnosis criteria between January 1, 2003 and
December 31, 2006 were identified.

(1) HF diagnosis appeared at least once on the problem list,
(2) HF appeared in the EHR for two outpatient encounters, indicating consistency

in clinical assessment,
(3) At least two medications were prescribed with an associated ICD-9 diagnosis

of HF, or
(4) HF appeared on one or more outpatient encounter and at least one medication

was prescribed with an associated ICD-9 diagnosis for HF.

If a patient met one of these criteria, the date of diagnosis was defined as the
first appearance in the EHR of a HF diagnosis with an order, on the problem list, or
as a reason for visit or encounter diagnosis. To exclude prevalent cases, a patient
was defined as an incident case only if he or she had at least 1 year of care with a
GC primary care provider in which there was no previous documentation of a HF
diagnosis.
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10.2.1.1 Validation of HF Diagnosis Criteria

We completed a chart review of a random sample of 100 individuals who met the
operational criteria for HF. A clinician supervised two research staff, each of
whom independently reviewed the records of cases. We documented the first
appearance and related date of all major or minor Framingham criteria for HF. Of
the 100 HF cases, 86 met Framingham criteria for HF. Of the 14 cases that did not
meet Framingham criteria, 7 had two minor criteria, 2 had one major criterion, 2
had one minor criterion, and 2 had no Framingham criteria. The documentation of
Framingham criteria are expected to be incomplete for three reasons. Some criteria
(e.g., circulation time of 25 s) are dated and simply not used. The physician may
not be aware of all criteria or may simply adopt a practice of only using some of
thesigns and symptoms. Finally, text documentation may take more time when
compared to selecting a diagnosis from an EHR menu. For the 86 cases the
assigned date of diagnosis was earlier for 52 when using operational criteria,
earlier for 28 when using Framingham criteria, and the same for 8 cases when
using either criterion.

We only included patients who were between ages 50 and 79 at the date of
diagnosis. We also required that subjects had their first GC encounter at least
2 years prior to the diagnosis date, to ensure that there was sufficient prior data to
use in the prediction model. We identified a total of 536 incident HF cases.

10.2.1.2 Selection of Controls

We selected up to ten eligible clinic-, sex-, and age-matched (in 5-year age
intervals) controls for each incident heart failure case. Primary care patients who
had no history of HF diagnosis before December 31, 2006, had their first GC office
encounter within 12 months of the first office visit of a matching incident HF care,
and had at least one office encounter 30 days before or any time after the HF
diagnosis date, were eligible to be in the control group. In situations where ten
matches were not available, all available matches were selected. For 81 % of
cases, nine or ten controls were identified. A total of 3953 controls were included
in the analytic file.

10.2.2 Feature Creation and Missing Value Handling

For this analysis, the focus was on detecting HF diagnosis 6 months or more
before the actual diagnosis date. Thus, the index date was defined as the date
6 months prior to the diagnosis date. Controls were assigned the same index date
as their matched case. Only values in the EHR that occurred on or before the index
date were used in prediction modeling.
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Variables from all domains listed in Table 10.3 were used in the analysis. In
most cases, the most recent value prior to the index date was used as the time-
dependent variable. However, more than one type of feature was used for many of
the variables. For example, features of comorbidities included both an indicator of
diagnosis (e.g., diagnosis of diabetes) and the duration (e.g., time since diabetes
diagnosis). Other features were created from available variables, such as pulse
pressure and the proportions of widened (i.e., [40 mm Hg) and narrowed (i.e.,
\30 mm Hg) pulse pressure measurements out of all physician visits. For utili-
zation of health care, we created a variable that is a count of the number of
physician visits in each of a sequence of six-month windows prior to the HF
diagnosis date (or comparable date for controls). Finally, for each abnormal lab-
oratory measure, we created a variable that is the time between the first abnormal
lab measurement date and the 6-month prior diagnosis reference date.

As described in the previous section, whether or not a procedure (e.g., ECHO
image) was ordered might be an important signal separate from the findings for the
procedure. Further, the predictive model should depend on all information that was
available at the time of the prediction. Thus, the hypothetical values of labs that
were never ordered are not of practical use. Instead, we simply included an
indicator that the test was ordered and the result of the test (if ordered) as features.
Operationally, we include an indicator variable (e.g., indicator that hemoglobin
a1c was ordered) and the interaction between the value and the order indicator
(e.g., hemoglobin a1c value times hemoglobin a1c indicator variable). These
features are always observed, as the interaction is equal to 0 if the test was never
ordered [3].

A total of 179 unique features were created and considered for inclusion in the
analysis.

10.2.3 Machine-Learning Models and Feature Selection

Three machine-learning methods were compared: logistic regression, support
vector machine (SVM), and boosting. Logistic regression is a classical approach
for predicting a binary outcome using many features. SVM transforms the original
data variable space into a ‘‘feature space,’’ which is a higher dimensional space.
An advantage of this approach is that the search for a linear classification decision
boundary may be easier in the higher dimensional feature space than in the lower
dimensional input space. One popular machine-learning ensemble method is
boosting. Boosting combines the outputs of many ‘‘weak classifiers’’ to produce a
strong ‘‘committee.’’ At each iteration, the weights are adjusted based on classi-
fication errors from the previous run (misclassified cases from the previous iter-
ation get more weight at the next run). Thus, difficult-to-correctly-classify
observations receive ever-increasing weight, and are thus most influential.
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For logistic regression, variables were selected to minimize AIC or BIC. The
L1-norm variable selection technique was used for SVM [5]. For AdaBoost, we
used the variable importance scores to select features [6].

We used the generalized linear models step functions in R for fitting and var-
iable selection in the logistic regression models. For the SVM models, we used the
radial basis kernel with the default values from the kernlab R package. Finally, the
AdaBoost package in R was used for boosting.

Models were compared using the area under the curve (AUC) under a ten-fold
cross-validation analysis.

10.3 Results

Logistic regression and boosting performed similarly, with AUCs of about 0.77
and 0.75, respectively. SVM did not perform as well, with an AUC of just below
0.65. For logistic regression and boosting, an AUC of about 0.75 was achieved
with between 10–15 variables in the model. Features commonly selected across
methods and across the ten subsets of the data include past diuretic medication
orders, diagnosis of atrial fibrillation, and presence of respiratory symptoms.

While these results were promising, the predictive power of the models could
potentially be enhanced by including information that is not captured in structured
fields. Thus, current work is underway to use novel text mining methods to extract
key information from health records. We next describe this work.

10.3.1 Extension to Text Mining and Temporal Mining

We develop the text analytics for extracting Framingham symptoms using
advanced text analytics tools [7] for basic text processing and for building
application-specific dictionaries and grammars. The processing results were then
inserted into a comprehensive text analysis pipeline, built within the open source
Apache UIMA system (Unstructured Information Management Architecture) [8]
which provides for acquisition of the clinical note texts and the following three
major steps:

(1) Basic text processing encompassed application-independent analytics,
including paragraph and sentence boundary detection, tokenization, dictionary
look-up, morphological analysis, and part-of-speech tagging.

(2) Several dictionaries were created in an iterative fashion to recognize feature
candidates. These dictionaries included words and phrases used to recognize
Framingham risk criteria and other symptoms, grammar for annotating
segment header words and phrases (e.g., ‘‘Patient History:’’), grammar and
supporting information for annotating potential mentions of the Framingham
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Weight-Loss feature (e.g., ‘‘lost 15 pounds over three days’’), and a set of
grammar for creating NegatedContext annotations (e.g., ‘‘negative for pleural
effusion or rales’’).

(3) The development of Text Analysis Engines (TAEs) built with UIMA included
the following components: A segment annotator, based on the segment
headers found by the dictionaries and grammar; a WeightLoss annotator,
which filters WeightLoss mentions found by the dictionaries and grammar by
checking for a diuretic treatment, and the proper ranges for the amount of
weight lost and the time taken; an annotator which filters all candidate men-
tions by checking word co-occurrence constraints associated with each feature
type and by checking constraints on which features can appear in which
segment types; and a TAE which checks whether or not each feature appears
in a NegatedContext and outputs the feature to a file of asserted features or
denied features, accordingly.

In terms of evaluation, focusing on positive predictive value of asserted fea-
tures, we selected 5 cases at random and extracted features from the resulting set of
784 text files, yielding a file of 703 asserted features. One cardiologist manually
examined the resulting feature file and used the textual feature mentions and their
sentential contexts to assign a ‘‘correct’’ or ‘‘incorrect’’ label to each extracted
Framingham feature. A total of 93 % of the asserted features were identified as
‘‘correct’’ by manual review. We then processed the entire set of notes for the
cases and controls.

The average number of features per case was approximately twice that of the
controls, whereas the denial of features was only 9 % more common among cases.
Further, the ratio of denied to asserted features was more than twice as high for
controls as for cases.

Another extension for predictive modeling of HF is the ability to adopt frequent
temporal sequences as features. Specifically, we are interested in determining
whether there are important temporal sequences of events. We will leverage
previous temporal mining work [9, 10, 11], to mine frequent sequential patterns
from the longitudinal variables and use these patterns as features. The core idea
here is to develop and apply algorithms that extract frequent sequential patterns of
longitudinal events within and across patient cohorts. Once those patterns are
identified, we can include them as additional features to build the predictive model
and test the predictive power of the temporal features.

10.3.2 Challenges to Developing Scalable Solutions

Deploying predictive models for use in clinical care will eventually require a
scalable and well-integrated solution that can be used in existing EHR systems.
Typically, there are two major parts to the work :model building and model
scoring. In model building, an optimal model is trained based on training data. In
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model scoring, the trained model is deployed to score future data. Model building
is frequently an offline process, and model scoring should be performed in real
time. The challenge for model building is with the comlpex heterogeneous and
high-dimensional EHR data and the need for efficient means of processing and
preparing these data. To obtain a good model, the model needs to be constructed
on a subset of all available data (training set) and tested on the remaining data (test
set).

This training and testing process needs to be conducted multiple times to derive
statistically valid results. The final deployed model can be the ensemble of all
those models trained on different subsets. Or based on the training process, an
optimal set of training parameters are obtained and then or used the optimal set to
train another model on the entire data. In the context of HF prediction, the model
building process typically involves the following steps:

(1) Feature construction: A comprehensive set of variables is derived from lon-
gitudinal EHR data (note: we use the terms features, variables, covariates, and
characteristics interchangeably).

(2) Feature selection: Features that are most distinctive with respect to their
impact on prediction results are identified, given a specific time interval before
HF diagnosis and type of HF or other subgroup descriptors.

(3) Classification: Various machine learning methodologies are used for mapping
features to labels (HF or not HF in the prediction time interval).

(4) Model evaluation: Statistical validation of the quality of the predictive models
is provided. To really speed up the process, we often perform multiple runs of
the model building process in parallel. With the help of parallel computation
framework such as MapReduce, we can imagine to train a sophisticated model
on a large EHR dataset within a short period of time (say in hours).

The resulting model can then be deployed to operational environment for model
scoring on future data. Once there, a set of features will be constructed and scored
by the model for the risk of HF when a new encounter occurs based on the
patient’s historical EHR information. Then, based on the score and confidence,
different treatment protocols can be invoked. The challenge for model scoring is to
conduct all the above in real time. To achieve real-time performance, the appro-
priate indexing and caching mechanism can be performed a priori to speed up the
scoring process. The other option is to perform the computation in a scheduled
fashion. For example, the system can be configured to conduct the scoring process
automatically based on the doctor schedule and to cache the result in preparation
for patient visits. During the visit, the pre-computed HF score and corresponding
recommendation can be presented to the patient.
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10.4 Conclusions

Our preliminary work in applying text analytics, data mining, and machine
learning tools to clinical, laboratory, diagnostic, and other data routinely captured
in the EHR has shown promising results for the early detection of HF. Future work
in this area will include incorporating more features from unstructured data into
the model and translating prognostic tools for clinical practice. An important
aspect of this research will be in determining the value of these tools for improving
patient outcomes and reducing healthcare costs.
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Chapter 11
Rule-based Computer Aided Decision
Making for Traumatic Brain Injuries

Ashwin Belle, Soo-Yeon Ji, Wenan Chen, Toan Huynh
and Kayvan Najarian

Abstract This chapter provides an overview of various machine learning algo-
rithms which are typically adopted into many predictive computer-assisted deci-
sion making systems for traumatic injuries. The objective here is to compare some
existing machine learning methods using an aggregated database of traumatic
injuries. These methods are used towards the development of rule-based computer-
assisted decision-making systems that provide recommendations to physicians for
the course of treatment of the patients. Since physicians in trauma centers are
constantly required to make quick yet difficult decisions for patient care using a
multitude of patient information, such computer assisted decision support systems
are bound to play a vital role in improving healthcare. The content of this chapter
also presents a novel image processing method to assess traumatic brain injuries
(TBI).

A. Belle (&) � K. Najarian
Department of Computer Science, School of Engineering, Virginia Commonwealth
University, East Hall, Room 4248, 401 West Main Street, 843019Richmond, VA 23284-
3019, USA
e-mail: bellea@vcu.edu

K. Najarian
e-mail: knajarian@vcu.edu

S.-Y. Ji
Department of Computer Science, Bowie State University, Building Suite 207, 14000
Jericho Park Road, Bowie, MD 20715, USA
e-mail: sji@bowiestate.edu

W. Chen
Department of Biostatistics, Virginia Commonwealth University, Seventh Floor, 830 East
Main Street, 980032Richmond, VA 23298-0032, USA
e-mail: chenw6@vcu.edu

T. Huynh
The Department of General Surgery, Division of Trauma, Surgical Critical Care and Acute
Care Surgery, Carolinas Medical Center, 1000 Blythe Blvd, Charlotte, NC 28203, USA
e-mail: toan.huyhn@carolinashealthcare.org

S. Dua et al. (eds.), Machine Learning in Healthcare Informatics,
Intelligent Systems Reference Library 56, DOI: 10.1007/978-3-642-40017-9_11,
� Springer-Verlag Berlin Heidelberg 2014

229



11.1 Background

According to a Center for Disease Control (CDC) report in 2010, approximately
1.7 million new cases of traumatic brain injury (TBI) are reported annually [1]. Of
which nearly 52,000 of these cases results in death and amongst those who survive
many suffer permanent disabilities. TBI is a contributing factor to a third (30.5 %)
of all injury-related deaths in the United States. Almost half a million (473,947)
emergency department visits for TBI cases are made annually by children aged
0–14 years, of which a significant percentage suffer from neurological impairment
[2]. Reports also suggests that traumatic brain injuries are the most expensive
affliction in the United States, direct medical costs and indirect costs such as lost
productivity of TBI totaled an estimated $60 billion in the United States in 2000
[3].

TBIs usually occur due to specific causes and since their methods of treatment
are well established, long-term disabilities and fatal complications can be reduced
with the use of computer-aided systems. Decision making and resource allocation
for trauma care can also be significantly improved with such systems since they are
less subjective and more precise [4]. Furthermore, research suggests that the cost
of trauma care can be greatly reduced by utilizing an inclusive trauma care system
which focuses on computer-aided resource utilization [5].
The treatment of traumatic brain injuries demands optimal and prompt decisions
making which in turn can increase the likelihood of patient survival [6, 7]. Since
these injuries are highly time-sensitive, providing the ability to predict the possible
duration of stay in the Intensive Care Unit (ICU) can be an important factor when
deciding the means to transport a patient (i.e., ambulance or helicopter) from the
scene of the accident to the hospital. Patients with critical injuries stand to benefit
the most from helicopter transportation since they require immediate medical care
are expected to spend more time in intensive care units. In fact Cunningham’s [8]
comparison of the outcome of treatment given to trauma patients suggests that,
patients in critical condition are more likely to survive if transported via heli-
copter. However, due to the high costs of helicopter transportation, resource
allocation for all cases becomes an issue [9, 10].

In trauma medicine, several computer-assisted decision-making systems are
currently available. Such systems are typically designed to perform statistical
survey based on patient demographics found within trauma databases [11, 12].
However these systems are usually not sufficiently accurate or specific for practical
implantation. Some computer based decision making systems also use neural
network for prediction [12–15]. However, since the inner workings of such neural
network based systems are unknown, the reasoning behind their predictions and
recommendation decisions are not transparent. Currently multiple issues inherent
with such computer assisted diagnostic systems prevent its wide-spread use in
trauma centers. Some of the main reasons being: the use of ‘black-box’ like
methods, such as neural networks; the lack of a comprehensive database inte-
grating all relevant patient information for specific prediction processes; and
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exclusion of relevant attributes and the inclusion of irrelevant ones in developing
predictions specific to a certain task, resulting in rules that are clinically not
meaningful or unnecessarily complicated.

There are several common machine learning algorithms which are utilized
towards medical applications. These include support vector machines (SVM), and
decision tree algorithms such as C4.5 and Classification and Regression Trees
(CART). Boosting is also sometimes utilized for improving classification accu-
racy. Although these algorithms perform relatively well for medical applications,
they seem to suffer with large feature sets containing numerous attributes, as they
have limited success in separating and identifying the important variables with
respect to the specific application. This suggests that to better recognize and
understand patterns in medical data, machine learning concepts needs to be
combined with a method to identify the most correlated sets of attributes thereby
being able to create more reliable rules for predictions.

The literature of biomedical informatics reinforces the benefits of employment
of machine learning. This can be seen in research such as by Andrews et al. [16]
where decision tree and logistic regression methods are used to compare and
analyze similarities and differences between different medical databases. Kuhn-
ert’s research [17] emphasizes that methods, such as multivariate adaptive
regression splines and CART which are nonparametric based, can provide more
informative models. Signorini et al. [18] designed a simple model containing
variables such as age and Glasgow Coma Scale (GCS); however, due to the limited
number of variables, the reliability of the generated rules may be questionable.
Hasford [19] compares CART and logistic regression, and finds that CART is
more successful in outcome prediction than logistic regression alone. Guo [20] on
the other hand finds that CART is more effective when it is combined with the
logistic model.

Therefore, combining both statistical techniques and machine learning [21, 22]
could be a more promising approach towards creating more accurate and reliable
rules generating systems for decision making. In this chapter the performance
analysis of several combinations of logistic regression and machine learning
algorithms is discussed, in particular, the focus is on the extraction of significant
variable that aid in the generation of reliable predictions. In the interest of com-
parison, other methods (such as neural networks) are also compared with the
transparent rule-based systems. The research study presented in this chapter is
based on a previously published article in BMC Medical Informatics and Decision
Making 2009 [23]. The final outcomes, such as home/rehab, alive/dead or pre-
dicted length of stay in ICU are predicted based on a developed computational
model. In addition, factors and attributes which affect the decision making process
the most during the treatment of traumatic injuries are also identified.
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11.2 Description of Data Used

For this study, an aggregated database of Traumatic Brain Injury cases was used.
This database primarily contains three different sources of datasets, on-site, offsite,
and helicopter. The datasets were provided by the Carolinas Healthcare System
(CHS) and the National Trauma Data Bank (NTDB).

11.2.1 On-Site Dataset

The on-site dataset as the name suggests contains patients’ data captured at the site
of the accident. Decision making based on the limited variables available at the
scene an accident is particularly difficult and critical, especially due to the
incomplete access of important patient information such as pre-existing conditions
(comorbidities), demographic information, etc. Therefore decisions under such
critical circumstances must be made without such key information and certain
physiological measurements, which usually are collected only after the arrival at
the hospital. In Table 11.1, four categorical and six numerical attributes collected
for this dataset is presented.

11.2.2 Off-Site Dataset

The off-site dataset is a more comprehensive dataset with several variables
including additional information on comorbidities and complications. Both cate-
gorical and numerical attributes are included as inputs. A total of 1589 cases are
included in the database of which 588 fatal and 1001 non-fatal. Here predicted
outcomes are defined by either ‘alive’ or ‘dead’ which refers to the patient’s

Table 11.1 On-site dataset

Variable Possible values

Gender* (Male, Female)
Blunt* Blunt, penetrating
ChiefComp* MVC, fall, pedestrian, motorcycle crash, etc.
Position* Passenger, driver, cyclist, motorcycle passenger, etc.
Age Patient’s age
FSBP (Initial Blood Pressure) 0 B FSBP B 300
GCS (Glasgow Coma Score) 3 B GCS B 15
ISS (Total Injury Severity Score) 0 B ISS B 75
Pulse 0 B Pulse B 230
Respiration rate 0 B Respiration B 68

Categorical variables are starred (Table Source [23])
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survival outcome. Amongst those predicted to survive, a more exact outcome is
further classified into categories of either ‘rehab’ or ‘home’. Table 11.2 presents
the attributes of the off-site dataset. Here ‘‘Prexcomor’’ is a categorical dataset
which represents any comorbidities that could possibly have negative impact on
the patient’s chances of recovery from injury and any complications. Other terms
used are defined in the table description.

Table 11.2 Off-site dataset

Variables Alive Dead Rehab Home

Cases 1001 588 628 213
Male* 704 (70.3 %) 404 (68.7 %) 443 (70.5 %) 150 (70.4 %)
Female* 297 (29.7 %) 184 (31.3 %) 185 (29.5 %) 63 (29.6 %)
Age 41.2 ± 19.6 49.2 ± 24.1 39.6 ± 19.3 37.2 ± 16.6
FSBP 126 ± 33.4 119.3 ± 45.6 125.3 ± 31.6 124.5 ± 34.1
FURR 15.3 ± 10.9 13.9 ± 11.9 14.4 ± 11.1 18.2 ± 10.5
GCS 8.7 ± 5.3 27.5 ± 5.2 7.9 ± 5.2 10.5 ± 5.1
ISS 30.5 ± 12.8 35.3 ± 14.7 32 ± 13.2 27.1 ± 11.7
EDEYE 2.4 ± 1.4 2.1 ± 1.4 2.2 ± 1.4 2.8 ± 1.4
ED verbal 2.7 ± 1.8 2.3 ± 1.7 2.4 ± 1.8 3.3 ± 1.8
EDRT 4.6 ± 3.2 3.8 ± 3.3 4.1 ± 3.3 5.7 ± 2.89
Head AIS 3.0 ± 1.6 3.6 ± 1.6 3.1 ± 1.8 2.5 ± 1.4
Thorax AIS 2.3 ± 1.7 2.4 ± 1.8 2.3 ± 1.8 2.4 ± 1.7
Abdomen AIS 1.1 ± 1.5 1.1 ± 1.6 1.0 ± 1.5 1.5 ± 1.7
Intubation* Yes/No
Prexcomor* Values: Acquired Coagulopathy, Chronic Alcohol Abuse, Chronic Obstructive

Pulmonary Disease, Congestive Heart Failure, Coronary Artery Disease,
Coumadin Therapy, Documented history of Cirrhosis, Gastric or Esophageal
Varices, Hypertension, Insulin Dependent, Myocardial infarction, non-
insulin Dependent, obesity, Pre-existing Anemia, Routine Steroid Use,
serum Creatinine [2 mg % (on Admission), Spinal Cord Injury

Complications* Acute Respiratory Distress Syndrome (ARDS), Aspiration Pneumonia,
Bacteremia, Coagulopathy, Intra-Abdominal Abscess, Pneumonia,
Pulmonary Embolus

Safety* Seat belt, none used, air bag deployed, helmet, other, infant/child car seat,
protective clothing

First, the number of Cases in each group (Alive, Dead—and within the surviving patients, Rehab
and Home) is listed. For the numerical attributes the table provides Mean ± standard deviation.
Finally, the categorical variables are listed with their possible values. ISS provides the overall
injury severity score (ISS) for patients with multiple injuries, and GCS is the Glasgow Coma
Score. Many studies make heavy use of GCS and ISS, as these measures are considered standard
metrics in assessing patient condition and degree of injury. Note that surviving patients who were
transported to other hospitals are not included in the rehab ? home total (Table Source [23])

11 Rule-based Computer Aided Decision Making 233



11.2.3 Helicopter Dataset

This dataset comprises of data accumulated from those patients who were trans-
ported to a hospital in a helicopter. The variables are cheifcomp (the type of injury),
age, gender, blood pressure, prefluids (the amount of blood provided to the
patients), airway (the type of device used to assist patients with breathing), GCS,
heart rate, respiration rate, ISS (Injury Severity Score) and ISS-Head and Neck. In
particular Age, blood pressure, Glasgow Coma Scale (GCS), heart rate, Injury
Severity Score (ISS), ISS-Head and Neck, and respiration rate are classified as
numerical variables. The number of days spent in ICU is considered as the most
informative measure when deciding the means of transport to the hospital, hence
this is used as the final outcomes measure. In this dataset, duration of ICU stay
attribute ranges between 0 and 49 days. When relatively small dataset with multiple
outcomes are used for such predictions the resultant model generated may become
unnecessarily complex and hard to understand. Hence, to eliminate complexity, the
dataset is classified into just two groups, non-severe and severe, as done so by
Pfahringer [24]. The non-severe group contains patients who stayed in the ICU less
than 2 days while the severe group consists of patients who stayed in the ICU more
than 2 days. This threshold was developed after obtaining feedback and consulta-
tion from trauma experts. In total, the dataset contains 497 cases: 196 severe and
301 non-severe. Table 11.3 provides the details of the helicopter dataset.

11.3 Special Topic: A Novel Method for Assessment
of Traumatic Brain Injuries

Typically, traumatic brain injuries (TBI) often cause changes in the size and
position of the ventricular system inside the brain. However the severity of TBIs
can be characterized by the shift in the midline of the brain. Being able to identify

Table 11.3 Helicopter dataset

Variable Severe (ICU stay [ 2 days) Non-severe (ICU stay B 2 days)

Cases 301 196
Male 201 (66.8 %) 132 (67.3 %)
Female 100 (33.2 %) 64 (32.7 %)
Age 30.6 ± 16.6 32.9 ± 17.2
FSBP 137.7 ± 23.2 127.6 ± 28.0
ISS 14.2 ± 8.1 23.7 ± 9.47
Pulse 101.4 ± 22.3 108.2 ± 26.6
Resp rate 15.6 ± 9.44 6.45 ± 10.6
ISS-HN 2.83 ± 0.86 3.46 ± 0.91

The number of severe and non-severe cases is listed, along with the percentages of each that are
male and female. Mean ± standard deviation is given for each numerical attribute (Table Source
[23])
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the midline shift may allow us to predict the intracranial pressure (ICP) to some
extent. Having an estimate of ICP is important when treating TBI patients, since
elevated ICP often results in secondary injuries in TBI causing potentially deadly
consequences such as ischemia or herniation, which can be fatal if unrecognized or
untreated.

A standard and accurate method of monitoring ICP is inserting pressure sensors
inside ventricles through a brain surgery, which may cause infection and both
short-term and long-term damages to the brain. Hence non-invasive measurement
of ICP can be vital and useful for TBI cases.

The method described here for assessment of TBI, is based on a novel
framework for automated midline shift measurement using CT (Computer
Tomography) images [25]. A brief description is presented here, further details of
this method can be found in [25].

11.3.1 Dataset

The testing CT dataset was provided by the Carolinas Healthcare System (CHS).
All subjects in this dataset were diagnosed to have either mild or severe cases of
TBI upon admission into the hospital. The dataset has 40 patients, comprising of
391 axial CT scan slices which show ventricles or region that should have con-
tained ventricles.

11.3.2 Method

The midline shift measurement can be divided into three steps as seen in Fig. 11.1.
The patients CT scans are taken and first the ideal midline of the brain, i.e., the
expected midline before injury, is found via a hierarchical search based on skull
symmetry and tissue features. Second, the ventricular system is segmented from
the brain CT slices. Third, the actual midline is estimated from the deformed
ventricles by shape matching method.

The horizontal shift in the ventricles is then calculated based on the estimation
of ideal midline and the actual midline in TBI CT images. After the midline shift is
successively estimated, features including midline shift, texture information of CT
images, as well as other demographic information are used to predict ICP.

11.3.3 Detection of Ideal Midline

Increased ICP can cause the actual midline of the brain to shift from its original
position. There are two important purposes for computing the ideal midline—i.e.,
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the midline as expected in a healthy brain with ICP under normal levels. The first
purpose is that the ideal midline can be utilized as a reference line to measure
shifts in the brain tissue from its ideal position. The second purpose for computing
the ideal midline is to utilize it for calibrating each scan based on head orientation
and rotation, since depending on the patient’s position there can be variations in
how the head rotation is captured between different CT scans.

Usually the symmetry of the brain can be used as a feature to roughly
approximate the ideal midline. However, for a more accurate detection of the ideal
midline some anatomical features must be considered in the computation. Certain
anatomical features of the skull do not get affected by shifts in the midline of the
brain. Therefore these features such as the falx cerebri fold present in the lower
part of the skull and the bone protrusion in the upper part of the skull can be used
effectively in locating or computing the ideal midline. Although the ideal midline
can be roughly approximated using the symmetry of the brain, the anatomical
features must be considered for more accurate detection. The ideal midline
detection method has three steps:

1. Detect the approximate midline using symmetry.
2. Detect the falx-cerebri and anterior bone protrusion.
3. Use these features to refine the midline position.

At first, each slice is processed independently to detect the ideal midline. To
compensate the certain inaccuracies in computing individual slices an adjustment
is applied across the identified midlines of all scans.

Fig. 11.1 Methodology overview
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11.3.4 Ventricular System Segmentation

In CT scans, the ventricle system is typically seen as a darker color as compared to
other tissue matter. However, CT scans usually also contain noise (which spans
across different grayscale values) in tissue areas which could be misrepresented as
ventricles. Another challenge usually faced during CT analysis is the blurriness
between different tissue structures. Hence to combat these issues the ventricular
system segmentation process is separated into two parts. First an initial low level
segmentation method is applied to group pixels into different parts. Specifically,
Iterated Conditional Modes (ICM) [26] and Maximum A posteriori Spatial Prob-
ability (MASP) [27] algorithms are adopted for low level CT brain segmentation.
Next a high level template matching is used to identify ventricles from segmented
result. The template matching is employed to further identify ventricle areas.

11.3.5 Midline Shift Estimation

Using the segmentation information of the ventricles, the actual midline can be
computed as the line that lies between the left and the right lateral ventricles. The
results of the ventricle segmentation is a in the form of a binary image (with
ventricle regions considered as object and non-ventricle regions as background).
With the binary format, the only information which can be obtained is usually the
shape information. In order to identify separate regions of the ventricles and
estimate the actual midline, a mapping is built between the segmented shapes and
the standard ventricle template with its respective annotated information. Using
the slice of the bilateral ventricle, the point that lies in the middle of the edges of
the left and right lateral ventricles is computed. This mid-point is then used to
estimate the midline which separates the left and the right sides. The midline shift
is then calculated using the estimated actual midline and the ideal midline com-
puted from the first step.

Finally once the midline shift has been estimated, other features are extracted
from the CT images such as texture analysis, estimation of blood amount, etc.
Using these extracted features as well as demographic information of the patient,
the ICP levels are predicted. Further details on feature extraction and ICP calcu-
lation can be found in [25].

11.4 Comparative Analysis

In trauma cases, the treatment outcomes for patients with similar conditions may
turn out to be significantly different. Hence recognizing patterns in trauma cases is
not very straight forward. Linear methods sometimes have proven insufficient for
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pattern analysis even for trivial cases. Therefore because of the under-performance
of linear regression methods for computer-aided trauma systems, non-linear tech-
niques are encouraged for such applications [28]. Amongst non-linear techniques,
neural network has been a popular choice, however due to their non-transparent
nature the learning structure and weights of the trained network model remain
unknown [29]. Some methods do exist which are capable of extracting approximate
rules to represent this hidden knowledge; however, they fail in truly representing
the trained networks [30]. Machine learning techniques such as AdaBoost and
Support Vector Machines (SVM’s) also hide the content of the trained network. The
knowledge of the developed model for these techniques is also not visible, which is
an extremely important requirement in medical applications.

Hence the use of certain rule-based methods such as C4.5 and CART can be
useful for this purpose. Since these rule-based machine learning methods utilize
some nonlinear capabilities while still providing transparency within the decision
making process.

A brief description of each of the machine learning technique used in this
comparative study has been given below.

11.4.1 Learning Algorithms

11.4.1.1 Neural Networks

An artificial neuron is an information processing and learning paradigm which was
largely inspired by the biological processes of the human brain. A neural network
is a network of artificial neurons. It is basically composed multiple processing
elements or neurons which are highly interconnected to form a dense network.
These neurons within the network work in alliance to solve specific problems.

A neural network learns by examples, it processes training examples individually
which it then compares its initial classification (usual arbitrary) of the input with the
true classes of the input examples. In particular, neural networks based on Radial
Basis Function (RBF), are ideal for solving pattern classification problems. This is
due to their capability for faster learning and their simple topological structure.

A standard RBF network comprises of a feed-forward back propagation neural
network which is supervised. This network has an input layer, a hidden layer and an
output layer. The families of Gaussian functions are usually most popular basis
functions used within the hidden layer of the network. The outputs of these Gaussian
functions are inversely proportional to the distance from the neuron center.

Given a finite set of training data xj; yj

ffi �

jj ¼ 1; . . .;m
� �

, where ci is the center
vector of the basis function, the equation for a standard output is as follows:

yi ¼ u xð Þ ¼
X

N

i¼1

aiq xj�ci

�

�

�

�

�

�

�

�

ffi �

: ð11:1Þ
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where N is the number of neurons within the hidden layer, ai is the set of weights
which minimize the least square between approximate output and the real output.

Typically the basis function used is given by the Gaussian activation function
which produces the radial function representing the distance between each pattern
vector and each hidden unit weight vector. This function is given as:

q xi � cij jj jð Þ ¼ exp � xi � cij jj j
r2

� �

ð11:2Þ

Here the neuron radius is given by r [31, 32]. The weight of each neuron in
RBFs is calculated using their distance in the feature space.

11.4.1.2 Support Vector Machine

Support Vector Machines (SVMs) [33] are methods based on supervised learning
and are primarily used for classification. A SVM splits its input data into two sets
of vectors positive and negative examples, in an n-dimensional space. Using this
space the SVM algorithm computes an optimal hyperplane that maximizes the
distance between the two vector set [34]. SVM’s are typically used in solving
problems such as image classification, text categorization, cancer data classifica-
tion, protein analysis, and hand writing recognition. SVM works well for such
applications due to its ability to handle large feature spaces [35].

Consider a labeled training example set of size N. D ¼ x1; y1ð Þ; . . .; xn; ynð Þ
with yi 2 þ1;�1f g and x 2 Rd , where d is the dimensionality of the input. Let
; : Rd ! F represent a function that maps the input space to the feature space.
Here the SVM algorithm finds a hyperplane w; bð Þ that maximizes the margin
between the two classes given that the classes are linearly separable.

c ¼ mini yi\w; ; xið Þ[ � bf g ð11:3Þ

where b is a real number or the bias term and w and F have the same dimensions.
For an unknown input vector xj, classification would be defined by:

f xið Þ ¼ sgn yi\w; ; xið Þ[ � bð Þ ð11:4Þ

This minimization occurs when w ¼
P

i aici;ðxiÞ, where ai represents the
strength of training point xi and is a positive real number in the final classification
decision. The set of points closest to the hyperplane is the set of points with non-
zero ai. These non-zero points represented the actual support vectors. Despite
SVM being computationally expensive, its ability to handle large feature spaces
makes it popular for application in many real world problems [35].
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11.4.1.3 Adaptive Boost (AdaBoost)

AdaBoost, which stands for Adaptive Boosting, was introduced by Yoav Freund
and Rovbert Schapire [36]. It is a machine learning algorithm which uses a linear
combination of weak classifiers to construct a robust classifier. The AdaBoost
method works by repeatedly calling a particular learning algorithm which is
perceived to be weak in a set of rounds t ¼ 1; . . .; T . In this method for the training
set a weights distribution is maintained, where Dt(k) is the distribution’s weight for
a particular training example k in round t. The aim here is to find a good weak
hypothesis for a weak learner such as ht : X ! �1;þ1f g for the distribution Dt,
where the goodness measure is computed by the error of the hypothesis with
respect to Dt. Following which Dt is updated by increasing the weights of the
examples that were incorrectly classified. In contrast those examples which were
classified correctly are given lesser weights. This forces the weak classifier to
focus on more difficult training examples.

To highlight the importance of ht, AdaBoost selects some parameter at. After
the completion of all the rounds t, the final hypothesis H is denoted by a weighted
majority vote of all weak hypothesis T . Similar to other boosting algorithms it has
been proven that if each computed hypothesis is at least slightly better than ran-
dom, then the training error reduces at an exponential rate. However, Adaboost is
also able to adapt to the error rates of individual weak hypotheses, so each sub-
sequent classifier is adjusted in favor of examples mislabeled by previous classi-
fiers [37].

11.4.1.4 Classification and Regression Tree

Classification and Regression Tree (CART) has become a popular and funda-
mental method in building statistical model from simple feature set. Binary
decision trees were invented by Leo Breiman and his colleagues who named them
classification and regression trees or in short CART [38]. CART is powerful due to
its ability to deal with multiple types of features (enumerated sets, floats, etc.) both
in terms of input features and predicted features. It can also deals with incomplete
data (i.e., missing value) and the output generated trees produces rules which are
humanly readable. CART applies information theoretic concepts to create a
decision tree. These decision trees contain binary questions at each node of the tree
(e.g. ‘‘Is this patient’s ISS [ 15’’ with Yes/No answers). This allows rather
complex patterns to be observed within a given data, and generate expression in
the form of transparent grammatical rules [39]. CART’s nonlinear extensions
makes it highly suitable for application in machine learning and data mining, due
to the efficiency of the algorithm in dealing with a variety of data types [40] and
missing data. In cases of missing data, CART simply uses a substitution value
which is a pattern similar to the best split value in the node [38].

Furthermore, the basic CART building algorithm is a greedy algorithm, which
chooses the best discriminatory variable at each stage locally in the process. To
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find the optimal splitting rules of each node, CART performs an exhaustive search
of all the split values and the variables. Therefore, making it easy to recognize
which variables are important to predict the outcomes. The splitting then stops at
the pure node containing fewest samples.

11.4.1.5 C4.5

C4.5 is a statistical classifier algorithm developed by Ross Quinlan [41–43]. It is
based on Quinlan’s basic ID3 decision tree algorithm [44]. C4.5 is a more com-
putationally efficient algorithm which is successful in avoiding overfitting issues
and is also able to handle cases with continuous variables. The C4.5 algorithm
generates rules by employing a divide and conquer method to data used for
training into regions of disjoint variable space. The different variable space regions
are created using the pre-assigned target labels of the training set [9]. Using the
gain criterion the C4.5 algorithm performs a split on the best attribute. The gain
criterion is based on the measure of randomness also known as entropy of the class
distribution within the dataset. The greatest difference in entropy of the class
probability distribution of the current subset S and the subsets generated by the
split becomes the criterion.

Info Sð Þ ¼ �
X

n

i¼1

p ki; Sð Þ � log2 p ki�; Sð Þ ð11:5Þ

where p ki; Sð Þ is the relative frequency of examples in S that belongs to class ki.
The split that reduces this value the most is considered as the best split. The output
of the algorithm is a decision tree. Such decision tress can be further represented as
a set of symbolic IF-THEN rules.

Note: The datasets contain variables of nominal categorical, such as gender and
complication type. Gender is replaced by a binary variable where 0 is for male and
1 is for female. Every nominal value is coded from Yes/No to a binary value of 1/0
respectively. These values are also treated as individual attribute. Ten-fold cross-
validation is used to measure the generalization quality and scalability of the rules.
Each dataset is divided into 10 mutually exclusive subsets [45], and in each stage 9
of these subsets are used for training while the remaining subset is used for testing.
Therefore, in this manner ten different trees are formed for each dataset.

11.4.2 Rule Performance Metrics

Upon having generated a variety of rules, the performance of each rule is measured
as the probability of correct prediction. Assume that D is a dataset with each
instance given by xi; yið Þ, where yi is the actual survival outcome. Let Dr be the
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training set, and a subset Dt 2 D=Drð Þ be used for testing. The performance of the
rule is calculated as:

accR ¼ prob yi ¼ yRj xi; yið Þ 2 Dt

ffi �

ð11:6Þ

where the outcome produced by induction is given by yR which is the expected
classification. The accuracy of the rule is measured by the number of positive
matches in the testing set. The accuracy of the rules can also be estimated as
follows:

Accuracy ¼ TPþ TN

TPþ TN þ FPþ FN
ð11:7Þ

where the number of true positives is given by TP and the number of false positives
is given by FP. TN is the number of true negatives and FN is the number of false
negatives. Quality of these rules is then judged by the values computed by the
sensitivity and specificity equations. Since these measures calculate the probability
of false positives and false negatives separately, they can be very useful. When one
of these measures is found to be considerably higher than the other, it may not be
observed in a single average error measure. The equations of these measures are as
follows.

Sensitivity ¼ TP

TPþ FN
ð11:8Þ

Specificity ¼ TN

FPþ TN
ð11:9Þ

In this application, high sensitivity is more important than high specificity.
When patient lives are at stake—for example, while deciding the type of trans-
portation to be provided for the patient—false positives are preferable to false
negatives, despite the increased financial cost.

11.4.3 Improving Rule Quality

After having extracted the most valuable rules, to improve the quality of the rules
direct maximum likelihood estimation with logistic regression is used. The
expected probability of a dichotomy in the logistic function is calculated as:

pi ¼ prðY ¼ 1jXÞ ¼ 1

1þ e� b0þb1X1þb2X2þ���ð Þ ð11:10Þ

where Xi are variables with numeric values, Y is the outcome where 0 or 1
represents either alive/dead respectively, and the b’s are the regression coefficients
that quantify the contributions of the numeric variables to the overall probability
[20].
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Logistic regression provides knowledge of the relationships and strengths
among the response variable and the multiple independent variables. It does not
require any distribution on the independent variables; they do not have to be
normally distributed. Furthermore, Logistic regression does not require linear
relation or equal variance within each group. However, odds ratio is the most
important interpretation from logistic regression, which measures the strength of
the partial relationship between an individual predictor and the outcome event
[46].

Logit function was introduced by Joseph Berkson in 1944. The logit function
can be used as a special case of a link function in a generalized linear model of
logistic regression: it is the canonical link function for the binomial distribution.
Since the relationship between the logit and the predictors is linear, it is advan-
tageous to use the logit scale for interpretation. Residual analysis and scatter plots
are used to check the linearity assumption. It is seen in the results that there exists
a linear relationship for all variables, although in comparison some relationships
were found to be weaker than the others.

For sake of brevity, the results for only two variables: Head AIS and Age are
presented. The scatter plot between the logit and its predictor is presented; also
using regression analysis the residual plot between them is also given. A random
variation without nay recognizable pattern can be expected from the residuals in
the case where the linearity assumption is satisfied. In cases where a curve for-
mation is observed in the residual plot, it can be assumed that there may be a
nonlinear relationship in the variable. Statistical Analysis Software or SAS was the
tool used to perform this analysis. Figures 11.2 and 11.3 present the scatter plots
and residual plots using Age and Head AIS as the predictors for patient survival.

In the plots showing residuals against the predictors, if a curvature of some
form is seen then a quadratic term should be used for testing the statistical sig-
nificance thereby suggesting improved versions of the model. In fact, the quadratic
term should also be included if the coefficient for the quadratic term is found to be
significant.

Although the model presented here does not depict any string curvature, for the
purpose of validating the results the Head AIS variable is tested using a quadratic
term. The model is as follows:

logit ¼ aþ bxþ cx2 ð11:11Þ

where the intercept term is given by a, the parameter of the predictor is given by b,
and the parameter of squared predictor is given by c. For the Head AIS variable,
the estimate of b is -0.1820 (p value = 0.0015), and the estimate of c is -0.0124
(p value = 0.2058). The p values here show that the Head AIS does not require a
term which is quadratic. Because of which, there exists a linear relationship
between the logit and its predictor.

For the purpose of testing the significance of individual variables a comparison
is performed between a full model using log likelihood test and a reduced model
that drops one of the independent variables. The likelihood ratio test alone does not
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Fig. 11.2 Scatter plots of logits and predictors. This figure presents two scatter plots, used to
demonstrate that the relationship between the logit and the predictors is linear. The first scatter
plot is of logit versus age (a continuous variable), and the second is of logit versus head AIS (a
discrete variable) (Figure source [23])

244 A. Belle et al.



reveal the importance of any particular independent variables over others. The
difference between the results obtained for a nested reduced model which drops
one of the independent variables and the results for the full model can be computed
by estimating the maximum likelihood. An insignificant difference indicates that
there was no effect on the performance of the model, thereby justifying the
dropping of a particular variable. This is called directed MLE.

The test takes the ratio of the maximized value of the likelihood function for the
full model (L1) over the maximized value of the likelihood function for the simpler
model (L0). The resulting likelihood ratio is given by:

Fig. 11.3 Residual plots for logits and predictors. This figure presents two residual plots, used to
demonstrate that the relationship between the logit and the predictors is linear. These plots were
made using regression analysis. The first residual plot is between logit and age (a continuous
variable), and the second is between logit and head AIS (a discrete variable) (Figure source [23])
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�2log
L0

L1

� �

¼ �2 log L0ð Þ � log L1ð Þ½ � ¼ �2 L0 � L1ð Þ ð11:12Þ

If the Chi-square value for this test is significant, the variable is considered to
be a significant predictor. Following these tests, only the significant variables (p
value B 0.05) are selected.

It is to be noted that other methods such as forward and stepwise model
selections are also available for identifying the significance of individual attributes
[17, 44]. The stepwise method considers all possible combinations of variables and
is commonly used to find the best subset of variables for outcome prediction.
However, the stepwise approach does not guarantee that the variables with the
highest significance are always selected due to the repetition of insertion and
deletion. For example, the variable ‘age’ may not be selected as an important
variable; but physicians may consider that the patients’ age is an important factor
for deciding specific treatment options. Therefore, the use of directed MLE is
preferred for such medical applications. Another reason for employing MLE is
empirical; in previous study [10], it was found that the direct MLE method has a
slightly higher accuracy in determining the significant variables as compared to
stepwise or forward model selection. In this case as well, SAS was used as the
statistical analysis tool to calculate the significance of each variable.

11.4.4 Constructing Reliable Rules

As mentioned previously, neural networks and SVM are not designed to produce
any grammatical rules. Only C4.5 and CART methods designed for rule extrac-
tion. The variables which are recognized as significant are typically used as input
variables to C4.5 and CART. Moreover, rules that are generated to adhere to only
one or two examples may be considered to be unnecessarily specific for appli-
cation to the entire population. Hence those rules with both a sufficiently large
number of supporting examples and high accuracy are used to generate a rule base.

Note that AdaBoost, Neural Networks and SVM are still tested here for the
reasons of performance comparison, despite the fact that they are not designed for
generating rules. Due to the prevalence of these methods using them for com-
parison with C4.5 and CART algorithms helps in validating the stability and the
accuracy of these rule based systems.

11.4.5 Analysis Results

The rule-based system employed in this study allows physicians and trauma
experts to use these generated rules to predict the likelihood of patient’s survival.
Given the transparency of the reasoning behind these generated rules, the
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physicians can also benefit by being able to allocate their resources in a more
efficient manner. Following expert opinions from physicians, initially only rules
with at least 85 % prediction accuracy on the testing set are included in the rule
base, especially considering the total number of examples for training is rather
small. However, rules with accuracy between 75 and 85 % are also incorporated.

There reasons for this are dual; firstly, the lack of accuracy of a rule may not be
due to a flaw in the rule itself, rather it may be low due to the incompleteness of
certain entities within the database. Secondly despite a rule having low accuracy, it
might contain knowledge of unrecognized relationships amidst variables. As an
example, almost all of the trauma experts consulted strongly suggested that a patient
with an ISS score of over 25 has very little chance of survival. However a patient with
a high ISS score but low thorax and head AIS score might have a higher probability
of survival considering that prompt and appropriate medical treatment was provided
to the patient. Rules with an accuracy lying between 75 and 85 % are usually
considered as ‘‘supporting rules’’ for deciding and suggesting treatment options.

Average accuracy of survival prediction without the knowledge of any of the
pre-existing conditions is around 73.9 %. However with the inclusion of the
knowledge regarding pre-existing the accuracy increases to around 75.8 %. Hence
for advanced prediction tests off-site data is also incorporated into the assessment
since it has vital information about pre-existing conditions of the patients.

When using C4.5 and CART, the knowledge representing these conditions
tends to appear at the highest levels of the tree. This indicates that they are
important in the overall decision making process.

A good example of an important pre-existing condition would be coagulopathy
or bleeding disorder. Patients with this disorder can have severe hemorrhage and
thus could potentially be a life threatening condition. Therefore, the knowledge of
the existence of this or similar disorders can be one of the most important factors
to be considered for patients with TBI.

11.4.6 Significant Variable Selection

Identifying key variables in the dataset is essential in order to improve the rule
quality and accuracy. Additionally, rules that are shorter and based on fewer and
more significant variables are clinically useful for physicians. To accurately
extract these key variables, direct MLE with logistic regression is used in the
helicopter and off-site datasets. The results for the off-site dataset are presented in
Table 11.4; here nine important variables are identified. To find the relationship
between variables which can be expressed as a statistical model, Wald test is used.
Wald Chi squares test is performed on each of the variable using standard devi-
ations. The resulting odd ratios are identified as a strong relationship between the
outcome and the independent variables. Table 11.5 presents the extracted signif-
icant and prominent variables from the helicopter dataset. As it turns out only five
out of the eleven original variables are identified to be significant.

11 Rule-based Computer Aided Decision Making 247



In this study the scale of the data is small and several variables are unknown, so
participating physicians assisted in identifying significant variables. Age, GCS,
blood pressure, pulse rate, respiration rate, and airway were selected as the
important factors.

11.4.7 Measuring Performance

The prediction results of five different machine learning methods are compared in
Table 11.6. When only significant variables are used, the performance of each of
the algorithm is very good. In addition, using only the most significant variables is
shown to result in a more balanced testing-training performance. For physicians,
being able to recognize and understand the reasoning behind decisions from such
systems can be very useful. Especially when their decision matches the decision
presented by the algorithm, their confidence in the system may be increased.
Sometime, if the systems’ reasoning is found clinically meaning or misguided, the
physician can choose to disregard its recommendation. However, if the reasoning
and decision of the system reveals some clinical merit, this may alert them to
previously hidden factors affecting patient outcome.

Table 11.4 Significant variables of off-site dataset

Variable Coefficient Walds v2 P value Odd ratios Mean ± SD

AIS Head -0.58 23.61 \0.0001 0.56 3.25 ± 1.64
AIS Thorax -0.13 4.37 0.003 0.88 2.33 ± 1.78
ID* 1.27 5.70 0.02 3.55 –
MI* 1.43 19.44 \0.0001 4.18 –
ARDS* 0.98 20.24 \0.0001 2.66 –
Cg* 0.63 24.96 \0.0001 1.88 –
Age -0.03 29.22 \0.0001 1.03 44.15 ± 21.7
EDRTS -0.27 4.94 0.03 0.77 12.1 ± 16.03
ISS 0.02 6.06 0.01 1.02 15.82 ± 19.03

Categorical variables are starred. Cg stands for Coagulapathy, MI for Myocardial Infarction,
ARDS for Acute Respiratory Distress Syndrome, ID for Insulin Dependent, EDRTS for Emer-
gency Department Revised Traume Score. (Table Source [23])

Table 11.5 Significant variable of helicopter dataset

Variable Coefficient Walds v2 P-value Odd ratios Mean ± SD

Age -0.02 3.17 \0.0001 0.98 31.79 ± 17.5
Blood Pressure 0.01 2.85 0.01 0.01 129.45 ± 30.51
ISS-HN 0.01 0.003 0.25 1.11 3.00 ± 1.0
ISS -0.14 36.47 0.02 0.87 19.56 ± 11.09

ISS stands for Injury Severity Score, ISS-HN for Head/Neck Injury Severity Score (Table Source
[23])
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Table 11.7 presents the performance accuracy in outcome prediction (rehabil-
itation or home) for the off-site dataset, and prediction of ICU days for the heli-
copter dataset. In both cases, only the significant variables are used. All available
variables are not put to use, since the survival prediction test has already confirmed
the improved performance when only significant variables are being utilized.

Receiver Operating Characteristic (ROC) curves is also generated in order to
evaluate the model performance. ROC curves are plots of the true positive rate
(sensitivity) versus the false positive rate (1-specificity). First, ROC analysis is
performed on the patient survival prediction results. Table 11.8 compares the Area
Under the Curve (AUC) for the ROC curves generated using all available variables
and significant-only variables. Improvement is seen in the results when only sig-
nificant variables are used in the model. Therefore, when dealing with the heli-
copter dataset, only ROC analysis is performed on the significant- variable-only
model.

From Table 11.9, it can be seen that there does not exist any significant dif-
ference in ROC analysis results among the various machine learning methods.
However, when the size of the given dataset is small—logistic regression out-
performs the other methods as can be seen with the dataset used in this study for
ICU days prediction. Figures 11.4 and 11.5 present sample ROC plots for logistic
regression using only significant variables for survival and ICU days prediction
respectively.

Table 11.6 Performance comparison if five machine learning methods

Logistic
(%)

AdaBoost
(%)

C4.5
(%)

CART
(%)

SVM
(%)

RBF NN
(%)

All variables 69.4 70 68 75.6 73 67.2
Significant vars. only 72.9 73 75.2 77.6 79 79.04

The five chosen machine learning algorithms are AdaBoost, C4.5, CART, SVM, and RBF Neural
Network (Table Source [23])

Table 11.7 Prediction results for outcomes and ICU days

Logistic (%) AdaBoost (%) C4.5 (%) CART (%) SVM (%) RBF NN (%)

Exact outcome 74.6 73 75.6 72 72.6 72.8
Days in ICU 80.6 78.7 77.1 77.4 80.1 77.4

This table compares the performance of logistic regression alone and the five chosen machine
learning algorithms in predicting exact outcome (for off-site dataset) and ICU length of stay (for
helicopter dataset) (Table Source [23])

Table 11.8 Performance comparison of AUC in ROC curve analysis

Logistic (%) AdaBoost (%) C4.5 (%) CART (%) SVM (%)

All variables 63.7 63.1 58.1 60 64.5
Significant vars. only 66.9 67.5 63.2 64.6 67.6

Table Source [23]
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11.4.8 Constructed Database Using CART and C4.5

Using CART and C4.5 rule extraction algorithms, multiple rules were generated.
Following discussion with trauma experts, it was identified that the robust rules are
those with over 85 % accuracy. For survival prediction, the average rule accuracy
using all available variables is 82, and 83.9 % when using only the most significant
variables. Table 11.10 presents some examples of the most reliable generated rules
for survival prediction ([85 % accuracy). Table 11.11 contains a few examples of
survival rules with accuracy between 75 and 85 %. A more comprehensive list of
the rules can be found in [23].

Table 11.12 presents some examples of the most reliable rules for generated
outcome prediction ([85 % accuracy), and Table 11.13 contains examples of
outcome rules with accuracy between 75 and 85 %. Finally, Table 11.14 presents
some examples the most reliable generated rules for ICU days prediction ([85 %
accuracy), and Table 11.15 contains ICU days rules with accuracy between 75 and

ROC curve for survival prediction with significant variables

Fig. 11.4 ROC plot for Logistic regression on survival prediction. This figure presents the ROC
plot obtained when applying logistic regression for survival prediction, using only significant
variables. Tables 11.8 and 11.9 contain AUC (area under curve) results for the other machine
learning methods and the other prediction scenarios (Figure source [23])

Table 11.9 ROC performance in exact outcome and ICU days’ prediction

Variable Logistic (%) AdaBoost (%) C4.5 (%) CART (%) SVM (%)

Exact outcome 76.8 76.4 71.9 71.5 68.7
Days in ICU 79.2 74.6 76.6 73 71.9

Table Source [23]

250 A. Belle et al.



ROC curve for ICU days prediction

Fig. 11.5 ROC plot for logistic regression on ICU days prediction. This figure presents the ROC
plot obtained when applying logistic regression for ICU day’s prediction, using only significant
variables (Figure source [23])

Table 11.10 Extracted reliable rules for survival prediction ([85 % accuracy)
Rules Test accuracy Method

(Cg = ‘Yes’) and HEAD \ 2 and AGE \ 76.65 Then Alive 29/34 (85.3 %) CART
Cg = ‘No’) and (MI = ‘No’) and AGE \ 61.70 and

HEAD B 4 and (ARDS = ‘No’)Then Alive
334/375 (89.1 %) CART

(Cg = ‘No’) and (MI = ‘No’) and HEAD C 5 and
AGE \ 22.35 Then Alive

55/64 (85.9 %) CART

ISS C 28 and (Cg = ‘No’) and THORAX B 4 AND
62.25 B AGE \ 69.00 and EDRTS C 2.88 Then Alive

10/11 (90.9 %) CART

ISS C 23 and (Cg = ‘No’) and THORAX B 4 and
69 B AGE \ 72.35 Then Alive

13/15 (86.7 %) CART

HEAD B 2 and (MI = ‘No’) and (Cg = ‘No’) and
AGE B 62 Then Alive

182/206 (88.3 %) C4.5

(MI = ‘Yes’) and AGE B 62 and EDRTS [ 5.39
and ISS B 25 Then alive

19/209 (95 %) C4.5

THORAX [ 3 and HEAD B 4 and (ARDS = ‘No’)
and AGE B 62 Then Alive

126/148 (85.1 %) C4.5

THORAX C 2 and EDRTS \ 0.87 and ISS [ 38 Then Dead 12/13 (92.3 %) C4.5
(MI = ‘Yes’) and AGE [ 82.6 Then Dead 16/18 (88.9 %) C4.5
(MI = ‘Yes’) and ISS [ 30 Then Dead 45/50 (90 %) C4.5
HEAD [ 4 and (MI = ‘Yes’) Then Dead 25/27 (92.6 %) C4.5
(Cg = ‘Yes’) and HEAD B 4 and AGE [ 78 Then Dead 12/14 (85.7 %) C4.5

Reliable rules are defined as those with accuracy greater than 85 %. Cg stands for coagulopathy, MI for
myocardial infarction, ARDS for acute Respiratory Distress Syndropme, EDRTS for Emergency
Department Revised Trauma Score, ISS for injury Severity Score, ID for Insulin-Dependent (Table
Source [23])
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85 %. Note that the rules with accuracy between 75 and 85 % may not be suffi-
ciently reliable, yet may contain useful pattern information, as described in the
discussion section. A more comprehensive list of rules for each of these tables can
be found in [23].

11.5 Discussion

In this study computer-aided rule-base system was developed using significant
variables selected via logistic regression. It was seen that the rule quality was
increased with approximations of the variables. The intent of this study is to

Table 11.11 Extracted supporting rules for survival prediction (75–85 % accuracy)

Rules Test
Accuracy

Method

(Cg = ‘Yes’) and 2.5 B HEAD \ 3.5 and EDRTS \ 6.07
and 35.65 B AGE \ 55.25 Then Alive

10/12 (83.3 %) CART

(Cg = ‘Yes’) and HEAD C 3 and EDRTS C 6.07 and
THORAX \ 1 Then Alive

33/43 (76.7 %) CART

(Cg = ‘No’) and (MI = ‘No’) and AGE \ 61.70 and
(ARDS = ‘Yes’) and HEAD \ 3 Then Alive

50/59 (84.7 %) CART

(Cg = ‘No’) and (MI = ‘No’) and ISS = 24 and
61.70 = AGE \ 68.90 and HEAD B 3 Then Dead

11/13 (84.6 %) CART

AGE \ 61.70 and HEAD B 4 and (MI = ‘No’) Then Alive 625/793 (78.8 %) CART
HEAD C 5 and (Cg = ‘No’) and AGE \ 22.85 Then Alive 60/73 (82.2 %) CART
HEAD C 5 and (Cg = ‘No’) and EDRTS \ 5.02 and

22.85 B AGE \ 28 and ISS C 33 Then Dead
11/13 (84.6 %) CART

ISS C 23 and (ID = ‘Yes’) and AGE C 80.50 Then Dead 42/51 (82.4 %) CART
(MI = ‘No’) and (ID = ‘Yes’) and (Cg = ‘Yes’) and

AGE [ 61.6 Then Dead
24/32 (75 %) C4.5

(ID = ‘No’) and HEAD B 3 and AGE B 82.6 and
ISS B 22 Then Alive

236/305 (77.4 %) C4.5

HEAD B 4 and (MI = ‘No’) and AGE B 60.8 and
ISS B 38 Then Alive

504/607 (83 %) C4.5

HEAD B 4 and AGE B 78 and EDRTS [ 7.55
and ISS B 30 Then Alive

207/263 (78.7 %) C4.5

(MI = ‘Yes’) and ISS [ 27 Then Dead 50/60 (83.3 %) C4.5
HEAD B 3 and AGE B 78 and 11 \ ISS B 27 Then Alive 290/368 (78.8 %) C4.5
(Cg = ‘No’) and HEAD B 3 and AGE B 78 Then Alive 353/459 (76.9 %) C4.5
(MI = ‘Yes’) and EDRTS B 5. 39 Then Dead 41/51 (80.4 %) C4.5
(Cg = ‘No’) and (MI = ‘No’) and 2 \ HEAD B 4 and

EDRTS B 1.47 and (ARDS = ‘Yes’) and ISS B 41
Then Dead

13/17 (76.5 %) C4.5

Though these rules are not reliable enough for practical use, they can contain pattern information
which may be of interest to physicians. Cg stands for coagulopathy, MI for myocardial infarction,
ARDS for Acute Respiratory Distress Syndrome, EDRTS stands for Emergency Department Revised
Trauma Score, ISS for Injury Severity Score, ID for Insulin-Dependent (Table Source [23])
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develop a computer-assisted decision making system which extracts and formu-
lates diagnostic knowledge into equivalent sets of transparent decision rules which
presents a clear reasoning behind every decisions. Direct maximization likelihood
estimation is employed along with logistic regression in this method to extract the
most significant variables among all possible variables. The comparison of per-
formances between AdaBoost, CART, SVM, C4.5 and RBF Neural Network,
reveals that by using only significant variables for the computation, a considerable

Table 11.12 Extracted rules for outcome prediction ([85 % accuracy)

Rules Test accuracy Method

HEAD B 3 and AGE \ 43.45 and FSBP \ 143.50 and
ISS B 33 and EDRTS \ 0.87 and THORAX C 2
Then Rehab

17/19 (89.5 %) CART

EDRTS \ 5.36 and HEAD B 3 and 33 B FSBP B 143
and ISS C 33.50 Then Rehab

69/79 (87.3 %) CART

HEAD C 4 and FSBP \ 171 and EDRTS \ 2.25 Then Rehab 125/135 (92.6 %) CART
2.25 B EDRTS \ 5.36 and HEAD C 4 and FSBP \ 171 and

AGE C 10.90 Then Rehab
45/52 (86.5 %) CART

EDRTS C 5.36 and AGE \ 48.15 and THORAX C 1 and
ISS B 21 Then Home

23/27 (85.2 %) CART

EDRTS C 5.36 and AGE C 48.15 and EDGCSTOTAL C 9
and ISS B 25 Then Rehab

61/65 (93.8 %) CART

EDRTS \ 5.02 and HEAD B 3 and 11.65 B AGE \ 24.40
and EDGCSTOTAL B 8 and FSBP C 108 and
THORAX B 4 Then Rehab

24/28 (85.7 %) CART

EDRTS \ 5.02 and HEAD B 3 and 26.05 B AGE \ 37.30
and EDGCSTOTAL B 8 and FSBP C 108 Then Rehab

22/24 (91.7 %) CART

EDRTS \ 5.02 and HEAD C 4 Then Rehab 179/201 (89.1 %) CART
EDRTS \ 2.69 and HEAD B 3 and AGE \ 38.30 and

108 B FSBP \ 192 Then Rehab
38/43 (88.4 %) C4.5

EDRTS \ 2.69 and HEAD C 4 Then Rehab 132/146 (90.4 %) C4.5
EDRTS C 2.69 and AGE \ 48.15 and 84 B FSBP B 93

Then Rehab
18/21 (85.7 %) C4.5

2.69 B EDRTS \ 4.75 and 11.65 B AGE \ 48.15 and
FSBP C 122 and (ARDS = ‘No’) Then Rehab

33/36 (91.7 %) C4.5

EDRTS C 2.69 and AGE C 48.15 and ISS C 26 Then Rehab 66/71 (93.0 %) C4.5
EDGCSTOTAL B 5 and ISS C 15 and FSBP B 177 and

THORAX C 4 Then Rehab
252/284 (88.7 %) C4.5

EDGCSTOTAL C 6 and AGE C 48.15 and ISS C 26
Then Rehab

66/72 (91.7 %) C4.5

THORAX B 2 and AGE B 33.9 and EDRTS B 5.03 Then Rehab 62/72 (86.1 %) C4.5
(ID = ‘Yes’) and (Cg = ‘No’) Then Rehab 11/12 (91.7 %) C4.5
HEAD B 0 and THORAX B 1 and AGE B 59.7 and

ISS [ 5 Then Rehab
28/32 (87.5 %) C4.5

Reliable rules are defined as those with accuracy greater than 85 %. FSBP represents initial blood
pressure, ISS stands for Injury Severity Score, EDGCSTOTAL is the total Glasgow Coma Score
recorded in the emergency department, EDRTS is the Emergency Department Revised Trauma
Score, ARDS stands for Acute Respiratory Distress Syndrome (Table Source [23])
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improvement can be seen in performance as opposed to the performance of these
machine learning algorithms using all available variables. The proposed selection
method seems robust and efficient sing all five methods show improvement across
all-available and only-significant-variables.

By comparing the performance measure of each rule, it can be established that
the rules with accuracy greater than 85 % can be considered as reliable rules. All
rules that were selected were acknowledged as reliable only if the frequency of
cases within the dataset matching the rule was greater than a specified threshold.
After measuring rule sensitivity and specificity, for the given outcome pairs
(home/rehab, severe/non-severe and alive/dead) the sensitivity was found to be
87.4 % while the specificity was found to be 88.4 %. This validates the good
performance of the presented method. To improve rule quality some additional
factors may be needed. In particular, large and well balanced datasets across all
outcome classes could improve overall quality, as well as sensitivity and speci-
ficity. The sensitivity and specificity results for each of the datasets are presented
in Table 11.16.

Table 11.13 Extracted supporting rules for outcome prediction (75–85 % accuracy)

Rules Test accuracy Method

EDRTS C 5.36 and EDGCSTOTAL C 9 and
ISS B 24 and THORAX B 3 and AGE C 53.95
and FSBP C 93 Then Rehab

49/62 (79.0 %) CART

EDRTS C 7.12 and AGE \ 47.55 and THORAX C 1
and 28 B ISS \ 35 and 94 B FSBP B 135 Then Rehab

16/20 (80.0 %) CART

EDRTS C 2.69 and AGE \ 22.80 and THORAX C 1
and ISS C 22 and 123 B FSBP B 139 Then Rehab

11/13 (84.6 %) CART

EDRTS C 7.70 and 22.80 B AGE \ 45.90 and
THORAX C 1 and ISS C 28 and FSBP C 76
Then Rehab

31/39 (79.5 %) CART

5.02 B EDRTS \ 7.12 and AGE \ 45.90 and
THORAX C 1 and 22 B ISS B 39 Then Rehab

9/12 (75.0 %) CART

EDRTS C 7.12 and AGE \ 48.15 and ISS C 25
and HEAD B 4 and THORAX C 1 and
69 B FSBP \ 98 Then Rehab

15/19 (78.9 %) CART

EDRTS C 2.69 and AGE \ 47.80 and
ISS B 24 and HEAD B 2 and Then Home

43/56 (76.8 %) CART

2.69 B EDRTS \ 5.02 and 26.75 B AGE \ 47.80
and ISS C 25 and HEAD C 1 Then Rehab

28/34 (82.4 %) CART

(ID = ‘Yes’) and AGE [ 44 and (ARDS = ‘Yes’)
Then Rehab

30/39 (76.9 %) C4.5

THORAX B 3 and ISS [ 18 Then Rehab 342/431 (79.4 %) C4.5
(Cg = ‘No’) and 18.4 \ AGE B 59.7 and ISS [ 30 Then Rehab 162/199 (81.4 %) C4.5

Though these rules are not reliable enough for practical use, they can contain pattern information
which may be of interest to physicians. FSBP represents initial blood pressure, ISS stands for
Injury Severity Score, EDGCSTOTAL is the total Glasgow Coma Score recorded in the emer-
gency department, EDRTS is the Emergency Department Revised Trauma Score, ARDS stands
for Acute Respiratory Distress Syndrome, Cg for coagulopathy (Table Source [23])
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The issue of dealing with rules with accuracy below 85 % is also an important
factor for extracting certain knowledge. Since, when using only rules with accu-
racy over 85 %, some medical knowledge in the database might have been
ignored. The accuracy of certain rules might have been low due to the lack of a
comprehensive database, rather than a flaw within the rule itself. Therefore, rules
with accuracies lesser than 85 % are not completely removed from the rule based
system. Instead such rules are utilized as additional ‘‘supporting rules’’ in sug-
gesting possible treatments and procedures. For example, according to trauma
experts, patients with a high ISS score ([25) are least likely to survive. However,
some rules with surprising implications were found. For instance, one of these
‘‘counterintuitive’’ rules pointed to the fact that there are 52 alive cases (3.3 %)
with ISS high scores (38). Of these 52 patients, 33 (63.5 %) have high AIS head

Table 11.14 Extracted reliable rules for ICU days prediction ([85 % accuracy)

Rules Test accuracy Method

(AIRWAY = ‘Need’) and 115 B ED-BP \ 156
and AGE C 47.05 and Then ICU stay days C 3

14/15 (93.3 %) CART

(AIRWAY = ‘Need’) and 115 B ED-BP \ 156
and ED-RESP \ 18 and 4.35 B AGE \ 14.5
Then ICU stay days C 3

12/12 (100 %) CART

(AIRWAY = ‘No Need’) and ED-RESP C 21 and
45 B AGE \ 55.85 and Then ICU stay days B 2

10/11 (90.1 %) CART

(AIRWAY = ‘Need’) and ED-BP \ 91 Then ICU stay days C 3 14/14 (100 %) CART
(AIRWAY = ‘Need’) and 93.5 B ED-BP \ 156.5 and

ED-PULSE C 60.5 and AGE C 54.2 Then ICU stay days C 3
10/10 (100 %) CART

(AIRWAY = ‘Need’) and 94 B ED-BP \ 156 and
ED-PULSE C 61 and ED-RESP \ 19 and
18.45 B AGE \ 44.5 Then ICU stay days C 3

60/76 (86.6 %) CART

(AIRWAY = ‘No Need’) and AGE \ 52.9 and ED-BP C 107
and ED-GCS C 11 Then ICU stay days B 2

175/192 (91.1 %) CART

(AIRWAY = ‘Need’) and ED-BP \ 150.5 and
ED-RESP \ 19 and AGE C 4.9 and
ED-PULSE C 138 Then ICU stay days C 3

18/20 (90 %) CART

(AIRWAY = ‘Need’) and ED-RESP \ 19 and
ED-RESP \ 19 and ED-PULSE \ 138
and ED-bp \ 115 AND 10.9 B AGE \ 47.3
Then ICU stay days C 3

31/33 (93.9 %) CART

(AIRWAY = ‘No Need’) and AGE \ 37.1 and
ED-GCS C 11 and ED-BP C 125 Then ICU
stay days B 2

89/90 (98.9 %) CART

Age B 42 and (Airway = ‘No Need’) and
ED-PULSE B 137 and ED-RESP [ 19
Then ICU stay days B 2

100/116 (86.2 %) C4.5

Age [ 37 and ED-BP B 95 Then ICU stay days C 3 14/14 (100 %) C4.5

Reliable rules are defined as those with accuracy grater than 85 %. ED-BP is Emergency
Department Blood Pressure, ED-RESP is Emergency Department Respiratory Rate, ED-PULSE
is Emergency Department Pulse Rate, ED-GCS is Emergency Department Glasgow Come Score
(Table Source [23])
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Table 11.15 Extracted supporting for ICU days prediction (75–85 % accuracy)

Rules Test Accuracy Method

(AIRWAY = ‘No Need’) and ED-RESP \ 21
ED-BP \ 142 ED- PULSE \ 79 and
37.05 B AGE \ 44.15 Then ICU stay days B 2

13/16 (81.3 %) CART

(AIRWAY = ‘No Need’) and AGE C 52.9 and
ED-BP C 141 Then ICU stay days B 2

12/15 (80 %) CART

(AIRWAY = ‘Need’) and 117 B ED-BP \ 135
and ED-RESP \ 19 and 68 B ED-PULSE \ 138
and 15.05 B AGE \ 46.4 Then ICU stay days C 3

23/28 (82.1 %) CART

(AIRWAY = ‘Need’) and 136 B ED-BP \ 150 and
ED-RESP \ 19 and ED-PULSE \ 138 and
15.05 B AGE \ 23.25 Then ICU stay days C 3

10/13 (77 %) CART

(AIRWAY = ‘No Need’) and 96 B ED-BP \ 163 and
39.15 B AGE \ 69.05 Then ICU stay days B 2

44/55 (80 %) CART

(AIRWAY = ‘Need’) and ED-BP \ 156 and AGE C 24.35
Then ICU stay days C 3

76/96 (79.2 %) CART

(AIRWAY = ‘Need’) and ED-BP \ 146 and AGE \ 17.85
and 135 B ED-PULSE \ 181 Then ICU stay days C 3

9/11(81.2 %) CART

(AIRWAY = ‘Need’) and ED-BP \ 146.5 and AGE \ 17.85
and ED-PULSE \ 131 and ED-RESP \ 18 Then ICU
stay days C 3

15/20 (75 %) CART

(AIRWAY = ‘No Need’) and ED-BP C 141 Then ICU
stay days B 2

223/265 (84.2 %) CART

(AIRWAY = ‘Need’) and Ed-BP \ 114 Then ICU
stay days C 3

44/52 (84.6 %) CART

(AIRWAY = ‘Need’) and 114 B ED-BP \ 135.5 and
ED-PULSE \ 97 and 17.2 B AGE \ 46.95 and
ED-RESP \ 7 Then ICU stay days C 3

10/13 (77 %) CART

(AIRWAY = ‘No Need’) and AGE C 52.9 and
ED-BP C 141 Then ICU stay days B 2

12/15 (80 %) CART

(AIRWAY = ‘Need’) and ED-BP \ 114 Then ICU
stay days C 3

44/52 (84.6 %) CART

(AIRWAY = ‘Need’) and 110.5 B ED-BP \ 180.5
and ED-PULSE C 62 and 4.35 B AGE \ 44.5
and ED-GCS \ 10 Then ICU stay days C 3

35/46 (76.1 %) CART

Though these rules are not reliable enough for practical use, they can contain pattern information
which may be of interest to physicians. ED-BP is Emergency Department Blood Pressure, ED-
RESP is Emergency Department Respiratory Rate, ED-PULSE is Emergency Glasgow Coma
Score (Table Source [23])

Table 11.16 Rule sensitivity and specificity

Off-site dataset Off-site dataset Helicopter dataset
Predictive outcome Alive/Dead (%) Home/Rehab ICU stay days

Sensitivity ([85 % rules) 91.9 88.7 90.6
Specificity ([85 % rules) 89.2 87.7 91
Sensitivity (75–85 % rules) 86.2 79 82.5
Specificity (75–85 % rules) 80.4 80.1 80.4

Table Source [23]
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scores (C4), and 38 patients (73 %) are male. Considering the above conditions,
surviving patients have lower thorax (average score = 2.61) and lower abdomen
AIS scores (average score = 1.03) than those patients under fatal cases. These
fatal cases typically have a higher head AIS score (average score = 5.08) than
surviving patients (average head score = 3.90). In addition, it was found that none
of the surviving patients have complications such as coagulopathy, and only a few
had a pre-existing disease (in particular, Insulin Dependency and Myocardial
Infarction).

Usually while considering an impact factor in predicting survival, only Acute
Respiratory Distress Syndrome (ARDS) is considered as a significant factor.
However, according to the rules created, pre-existing conditions, Acute Respira-
tory Distress Syndrome (ARDS), Insulin Dependency, Myocardial Infarction, and
Coagulopathy all have a significant impact on survival prediction. Furthermore,
airway status (needed/not needed) was identified as a primary factor in predicting
the number of ICU days for patients transported via helicopter. Note that for
predicting the ICU length of stay, 74.6 % of patients stayed at in ICU less than
2 days. Only 25.4 % of patients stayed more than 2 days, and only 2.9 % of those
were in ICU for more than 20 days. This reinforces Eckstein’s point [47] that
many patients are transported via helicopter unnecessarily.

By using advanced image and signal processing systems, such as the ICP
estimation and midline shift detection discussed earlier, more astute information
can be added into the decision making process thereby increasing the precision and
reliability of the rules generated. Therefore, the use of accurate prediction rules for
potential number of ICU days may help improve the efficiency and reduce oper-
ational cost of helicopter transportation, as well as provide timely treatment for
patients in critical condition.

11.6 Conclusion

The results from this study provide a framework to improve the physicians’
diagnostic accuracy with the aid of machine learning algorithm. The resulting
system is effective in predicting patient survival, and rehab/home outcome. A
method has been introduced that creates a variety of reliable rules that make sense
to physicians by combining CART and C4.5 and using only significant variables
extracted via logistic regression.

A novel method for assessment of Traumatic Brain Injury (TBI) has also been
presented. The ability of such a system to assess levels of Intracranial Pressure
(ICP) as well as predict survival outcomes and days in ICU, together encompasses
a wholesome diagnostic tool, which can help improve patient care as well as save
time and reduce cost. The resulting computer-assisted decision-making system has
significant benefits, both in providing rule-based recommendations and in enabling
optimal resource utilization. This may ultimately assist physicians in providing the
best possible care to their patients.
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Chapter 12
Supervised Learning Methods for Fraud
Detection in Healthcare Insurance

Prerna Dua and Sonali Bais

Abstract Fraud in the healthcare system is a major problem whose rampant
growth has deeply affected the US government. In addition to financial losses
incurred due to this fraud, patients who genuinely need medical care suffer because
of unavailability of services which in turn incur due lack of funds. Healthcare fraud
is committed in different ways at different levels, making the fraud detection
process more challenging. The data used for detecting healthcare fraud, primarily
provided by insurance companies, is massive, making it impossible to audit
manually for fraudulent behavior. Data-mining and Machine-Learning techniques
holds the promise to provide sophisticated tools for the analysis of fraudulent
patterns in these vast health insurance databases. Among the data mining meth-
odologies, supervised classification has emerged as a key step in understanding the
activity of fraudulent and non-fraudulent transactions as they can be trained and
adjusted to detect complex and growing fraud schemes. This chapter provides a
comprehensive survey of those data-mining fraud detection models based on
supervised machine-learning techniques for fraud detection in healthcare.
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12.1 Introduction

Healthcare fraud, a severe and challenging problem faced by medical providers, can
be defined as an offense committed by an individual or group of individuals who
place false medical claims for services that have never been used to gain unau-
thorized financial benefits. According to the data provided by Centers for Medicare
and Medicaid Services (CMS), the United States spent overall $2.5 trillion after
healthcare during the 2009 fiscal year. This expenditure signifies $8,086 per person
or 17.6 % of the Gross Domestic Product (GDP), increased from 16.6 % in the
2008 fiscal year [1]. It is estimated that over five billion health insurance claims
were paid that year [2], and some of them were fraudulent. Even though these
fraudulent claims composed only a small portion of the claims, they carried a very
high cost value. It is predicted by CMS that the healthcare expenditure may increase
up to $4.14 trillion by 2016, signifying 19.6 % of the GDP [3]. Information pro-
vided by National Health Care Anti-Fraud Association (NHCAA) shows that
approximately $60 billion, or 3 %, of healthcare spending has been expended on
healthcare fraud [4]. This quantity of money is more than the GDP of 120 countries
including Kenya, Ecuador, and Iceland [5]. If steps against healthcare fraud are not
taken, such expenses can affect quality of life and national economies. The Federal
Bureau of Investigation (FBI) approximates that between $70 and $234 billion are
stolen from US citizens in healthcare annually due to fraud in the healthcare system
[6]. Even if the financial loss is disregarded, healthcare fraud can hamper the
healthcare system of the US from offering good services and care to patients.
Hence, the efficient detection of fraud is vital, as it allows for quality enhancements
and the lowering the expenditures to healthcare services.

To detect fraud within the healthcare system, the process of auditing is followed
by investigation. If accounts are carefully audited, it is possible to identify sus-
picious policy holders and providers. Ideally, all claims should be audited carefully
and individually. However, it is impossible to audit all claims by any practical
means as these form huge piles of data involving sorting operations and complex
computation [23]. Moreover, it is difficult to audit service providers without clues
as to what auditors should be looking for. A sensible approach is to make short
lists for scrutiny and audit patients and providers based on these lists. A variety of
analytic techniques can be used to compile audit short lists. Fraudulent claims
frequently build into patterns that can be perceived using predictive models.

12.2 Types of Fraud in Health Care

Healthcare fraud can be divided into four types: (2.1) medical service providers,
(2.2) medical resource providers, (2.3) insurance policy holders, and (2.4) insur-
ance policy providers. Figure 12.1 demonstrates the overview of fraudulent
activities found in healthcare.
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12.2.1 Medical Service Providers

Medical service providers can be hospitals, doctors, nurses, radiologists and other
laboratory service providers, and ambulance companies. Activities involving
Medical Service Providers may include:

• Forging a patient diagnoses to rationalize services and procedures that are not
medically required [7],

• Billing for services which were never performed using authentic patient infor-
mation, aiding in identity theft, or modifying claims with extra charges for the
services or procedures that were never performed [7],

• Billing the insurance companies more by waiving patient co-pays, deductibles,
or co-insurance [7],

• Billing for unnecessary services or procedures, such as daily checkups rather
than monthly ones, only to create insurance payments [3, 7],

• Billing each phase of a process as if it were a different process, known as
unbundling [7], for example billing tests within test ‘‘sessions’’ as if they were
independent sessions [3],

• Billing for expensive services instead of billing for low cost services or proce-
dures which were performed, known as upcoding or coding a patient diagnosis to
a more critical and expensive charge and applying charges with false CPT codes,
such as charging a 30 min group therapy as a 50 min personal therapy [3, 7],

Fig. 12.1 Types of fraud in healthcare system
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• Billing for duplicate claims for a particular service or an item, in which the
provider changes part of the claim for example the date on which the service
was provided to fool the health insurance company into paying for a single
service or item twice [3], and

• Accepting illegal kickback schemes in which healthcare providers trade money
or something of value for patient referrals, for those healthcare services that can
be paid by Medicaid or Medicare [3].

An example of fraud by healthcare providers is the Federal indictment of the
Benitez brothers, owners of a chain of medical clinics in the Miami area that
treated HIV-infected Medicare beneficiaries. The Benitez brothers were accused of
submitting fraudulent insurance claims that cost Medicare approximately $110
million. For these claims, they performed unnecessary procedures on the patients.
They also offered kickbacks to the patients in exchange of their Medicare infor-
mation, which was used to submit false claims to Medicare for compensation [9].

12.2.2 Medical Resource Providers

Medical resource providers can be pharmaceutical companies, medical equipment
companies that supply products like wheelchairs, walkers, specialized hospital beds
and medical kits. Activities involving Medical Resource Providers may include:

• Medical equipments manufacturer put forward complimentary products before
the patients. Then they charge patients insurance company for the free product
which is either not required or was never delivered [26],

• Sometimes needless or false tests are provided to the individuals at shopping
malls, old-age homes, and health clubs and billed to insurance companies or
Medicare [26],

• Medical resource providers also bills individuals insurance companies for
resources never been delivered by altering the bills or submitting forge ones [26],

• The common target of medical resource providers are the senior citizens who
are offered free products by these providers in exchange of their Medicare
insurance number. In order to get paid by the Medicare, the doctor is required to
sign a form certifying that the equipment is required by the patient as a part of
medical treatment. To achieve this, medical resource provider either bribes the
corrupt doctors or provide fake signature for billing Medicare for the equip-
ments which are either not delivered or not required [26],

• Up-coding items, for instance sending a patient an essential, manually pushed
wheelchair but billing the patient’s health insurance plan for a power-driven
wheelchair [3] and

• Providing excessive services that the patient does not need, for example,
delivering and billing for 40 injury care kits per week for a patient in hospital
who only needs a change of dressings once per day [3].
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In August 2004, Pfizer employees were convicted of being involved in illegal
kickback schemes and off-label endorsements. In this case, a Pfizer northeast
regional manager directed around a hundred sales employees to market a painkiller
called Bextra, which was prohibited by FDA. The FDA had approved Bextra for
distribution in U.S., but citing augmented occurrences of strokes, heart attacks, and
severe skin reaction to drug, petitioned Pfizer to withdraw this drug from U.S.
market [3].

12.2.3 Insurance Policy Holders

Insurance policy holders consist of individuals and groups who carry insurance
policies, including both patients and employers of patients. Activities involving
Insurance Policy Holders may include:

• Faking documents related to employment or eligibility to obtain low premium
rates and good benefits [20],

• Filing claims for medical services or procedures which never took place [20],
• Claiming insurance benefits illegally using someone else’s coverage or insur-

ance card information [20], and
• Taking advantage of insurance benefits by finding loopholes in the policy.
• In 2007, a fraud case was committed by falsely filing a life insurance claim. The

fraudulent owner faked his own death in a canoeing accident and lived a secret
life in his house for five years. His family claimed the money from the insurance
company, so that he and his family could start a hotel business for canoeing
holidays in Panama [27].

12.2.4 Insurance Policy Providers

Insurance policy providers are the entities that pay medical expenses to a policy
holder in return for their monthly premiums. Insurance policy providers can be
private insurance companies or government administrated healthcare departments
including agents and brokers. Very little research has been conducted regarding
fraud committed by insurance policy providers as most insurance fraud data are
provided by the providers. It is estimated that around $85 billion are lost yearly
due fraud committed by insurance companies [28]. Activities involving Insurance
Policy Providers may include:

• Forging returns and benefit/service statements by under paying claims [20],
• Insurance company wrongfully denies valid claims to try to discourage the

policy holder and hoping that the patient will eventually give up [28],
• Freezing claims without investigating the merits of claims [28],
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• Overcharging the premiums from policy holders by misinterpreting the infor-
mation to the client and making them pay for those coverage which they don’t
actually have [28],

• Creating confusing policies that mislead policyholders on coverage issues [28],
and

• Making fraudulent sales of fake policies which are of no use to the policy
holders and are mainly intended to get high premium from them.

During September 2009, an individual lost her health coverage by Blue Cross
Insurance Company because the company discovered her pre-existing condition.
This company terminated her coverage because she never mentioned her pre-
existing condition, which she herself was unware of initially. Hence, the company
abruptly cancelled her coverage after she was diagnosed of thyroid disorder and
fluid in the heart leaving her in a debt of $25,000 in medical bills [40].

Among these four types of fraud discussed above, the service providers alone
commit the majority of the fraud. Although most service providers are trustworthy,
those few dishonest service providers commit fraud and cause the loss of millions
of dollars to the healthcare system. In some cases, more than one of the above
types is involved in committing healthcare fraud. Detecting fraud in such a hybrid
cases can be complex and challenging [20]. Hence, it is urgent that researchers find
effective ways to discover patterns and relationships in data that may be used to
make a valid prediction about fraudulent claims. Due to this pressing need, high
end data mining and machine learning techniques holds a promise to provide
sophisticated tools to identify possible predictors that characterize the fraudulent
behaviors based on the historical data [20].

12.3 Data Mining for the Fraud Detection in Healthcare

Data mining is a popular means for detecting fraud and abuse in the healthcare
system. The vast quantities of data produced by healthcare insurance companies
are difficult to process and evaluate using conventional methods. Data mining
provides the techniques and expertise to convert these heaps of data into the useful
collection of facts for decision making [8]. This kind of analysis is becoming
increasingly important, as financial pressure has increased the requirement for
healthcare industries to construct judgments based on the study of fiscal and
clinical data. Information and analyses obtained through data mining can improve
operating efficiency, decrease costs, and increase profits while preserving a high-
level of care [30].

Additional reasons behind the increasing popularity of data mining include the
use of fee and categorization systems. For example as an outcome of the Balanced
Budget Act of 1997, CMS have to employ a potential fee system supported cat-
egorizing patients into case-mix clusters, with the help of empirical proof that
supplies utilized within every case-mix cluster are comparatively constant. CMS
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has utilized data-mining techniques to build a potential reimbursement system for
inpatient treatment [31].

The data-mining applications generally establish norms for detecting fraud and
abuse. Then, these applications identify unusual patters of claims by clinics,
laboratories, and physicians. Along with other details, these data-mining appli-
cations can provide information about out of place referrals, prescriptions, medical
claims and fraudulent insurance claims. For example, the Texas Medicaid Fraud
and Abuse Detection System collected a great deal of data produced by millions of
treatment courses, operations, and prescriptions to recognize abnormal behaviors
and discover fraud. It recovered $2.2 million and successfully recognized 1,400
suspects for inquiry in 1998. This result is impressive considering that it was
obtained after only a few months of use [32]. Due to this achievement, the Texas
system was awarded a national prize for this innovative utilization of the expertise.

Data-mining techniques can be categorized into supervised methods and
unsupervised methods.

Supervised Data-Mining Methods
Supervised machine-learning techniques consists of algorithms that reason from

outwardly given instances to construct universal theorems which then predict
upcoming instances. Supervised machine learning is used to construct a brief
model of the allotment of class labels which refer to predictor features. Then, the
testing instances are assigned class labels based on the resulting classifier, in which
the predictor feature significance is known, but the value of the class label is
unknown [22].

In this context, the weightage is given to those healthcare fraud detection
models which implement supervised machine-learning techniques. Supervised
methods like Neural Networks [13, 16], Association Rules [14, 15, 17], Genetic
Algorithms [10], Fuzzy Bayesian classifier [11], Logical Regression methods [16,
21], Bayesian Networks [12, 19], KNN classifiers [10], and Classification Trees
[16] have been used by researchers to detect fraud in the healthcare system.

Unsupervised Data-Mining Methods
Unlike supervised data-mining methods, unsupervised methods do not get any

objective output or benefits from their surroundings. Although it is difficult to
visualize how a machine can be trained without any response from its surround-
ings, these methods work well. It is very likely to build a proper model for
unsupervised learning methods supported on the idea that the mechanism’s aim is
to use input characterization to foresee prospective input, effectively communi-
cating the input to another mechanism, decision making, and so on. It can be said
that unsupervised learning can find patterns in a data which can also be unstruc-
tured noise. Clustering and dimensionality reduction are the classic examples of
unsupervised learning [22].

The benefit of using supervised techniques over unsupervised is that once the
classifier has been trained, it can be easily utilized on any same kind of datasets [41]
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which makes it a best choice for a fraud detection program which involves
screening and monitoring. In this chapter, we only consider fsupervised machine-
learning techniques and provide an in-depth survey of their application in detecting
fraud in the healthcare system.

12.3.1 Data Sources

The raw data for detecting healthcare fraud is obtained from insurance companies
which explain the reason for decreased research performed in detecting fraud
committed by insurance companies. The insurance company designation can
include government administered healthcare departments like Medicare or private
insurance companies [20]. The following data sources that have been developed
and published in various sources through supervised machine-learning techniques
have helped shape the healthcare detection fraud model:

• Health Insurance Commission (HIC) of Australia [10, 14],
• Medicare Australia’s Enterprise Data Warehouse, Prism [17],
• National Health Insurance (NHI) Program in Taiwan [15],
• Taiwan’s National Health Insurance (NHI) System [16],
• ISAPRE (A private health insurance company in Chile) [13, 21] and Banmedica

S.A. [13], and
• Taipei Health Insurance Bureau [11].

Generally, the raw data provided from the above sources consists of insurance
claims. The content of insurance claims is related to the service provider and
insurance subscriber. These databases contain rich features that are helpful to the
fraud detection model in identifying fraudulent patterns of behavior by insurance
holders and healthcare service providers. It is possible to gain an overall per-
spective of both insurance holder and healthcare service provider behavior over
time using this information. This overall perspective helps detect fraud committed
by these entities [20].

12.3.2 Algorithms

This section provides a discussion on the algorithms based on supervised models
for detecting fraud in healthcare.

268 P. Dua and S. Bais



12.3.2.1 Neural Network

A neural network imitates just like the brain of human beings in order to forecast
and classify data. A neural network is composed of a set of connected, simulated
neurons, few of which get scalar information from other neurons and convert that
information into a singular output signal. All the inter associations are weighted
among them and customization is done to these weights while the neural network
runs on training data. A neural network comprises of a layered, feedforward,
completely connected network of artificial neuron, or nodes. The term feedforward
suggests that the data flows in one direction from input to the output layer. A
classic neural network for classifying data can contain two or more layers,
although most contain three layers such as, input, hidden and an output layer [42].
Multilayer Perceptron (MLP) is a classic example of a multilayer feed-forward
network with one or more hidden layers between the input and output layer.
Neurons in the hidden layer obtains a weighted summation of the input variable,
and convert that total to a signal in the form of output with the help of a threshold
function such as a sigmoid or step function. The weighted summation, which is
obtained from the hidden layer, is given to the single node of an output layer and is
transformed into a classification signal. Neural networks set up an association
amid the input and yielded data, and are efficient with noisy data [16].

Ortega et al. [13] proposed a fraud detection system which utilizes committee
of MLP networks for each entity (such as, medical claims, affiliates, medical
professionals and employers) involved in the fraud, in a Chilean private health
insurance company. Figure 12.2 demonstrates the four sub-models which are a
working group of neural networks for all entities. The inputs are pre-calculated
attribute vectors that represent the specific exploitation and fraud sub-problem.
Whenever a medical claim is obtained by the ISAPRE (a private pre-paid health
insurance plan) system, the output of each committee conveys a predictive value.
These values provide supplementary inputs to the sub-models, offering a response
technique for merging the diverse outcomes. Models are assessed at fixed time
intervals as per the predetermined agenda. The model representing medical claim
is implemented every day to process inward entries while the other models are
implemented once in a month. Every sub-model is trained again on monthly basis.
A data renewal process has been defined for keeping the training models
descriptive for historical and new fraud patterns. With the help of experts new
training samples are selected and thoroughly classified. Then a subclass of
equivalent amounts of normal and fraud conditions are chosen and included to the
training dataset. Hence, the model retains knowledge of new kinds of fraud, and is
able to prevent these emerging categories [13].

The drawback of using a neural network is that it cannot identify the importance
of individual variables. To overcome this problem, Liou et al. [16] used neural nets
in detecting fraud and claim abuse based on diabetic outpatient services, which
helped perform sensitivity analysis among variables. The authors then presented
those variables which were most significant for classification. The end result
specified the order of every variable’s relational significance in categorizing the

12 Supervised Learning Methods for Fraud Detection in Healthcare Insurance 269



data like averages of different types of claims like dispensary visiting service fees,
diagnosis and prognosis fess, daily medical expenses, cost of medicine per patient,
cost of medicine per patient per day, session and disease curing fees, healthcare
expenditure, and insurance claimed. The results of applying neural network
algorithm to the whole test sample and normal samples were 95.73 and 91.47 %
respectively. This results further showed that the neural network model had an
error rate of 9 % for classifying normal providers [16].

12.3.2.2 Bayesian Belief Network

Bayesian Belief Networks are dense networks of probabilities which capture
information of the probabilistic relationships between variables as well as the past
information about the relationships. This technique is very beneficial in those
situations where some information is previously known and the incoming data is
uncertain. These networks also give reliable semantics for characterizing effects
and causes through an intuitive graphical representation. Due to these reasons it is
used widely in those domains where automated reasoning is required [43].

In the research conducted by Ormerod et al. [12], a Mass Detection Tool
(MDT) based on Bayesian Belief Network has been developed to detect healthcare
fraud. This tool offers a real-time response as to the likelihood of several methods
of fraud. It also recommends those unfamiliar indicators that can affect fraud
possibilities and helps the claims handler improve online decision making.

Fig. 12.2 Fraud detection
scheme by using sub-models
with feedback connections
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Figure 12.3 shows the MDT framework, which helps link indicators to explicit
types of fraud through a node-link topology. To forecast possible types of fraud for
permutations of pointers, the network uses stored probability data. The most
important advantage of the Bayesian Belief Networks is automated information
updating. This updating is accomplished by the MDT in following three ways [12].

1. With the help of case result information from the other tool called Suspicion
Building Tool (SBT), the provisional and previous possibilities of pointers and
their associated fraud types are processed.

2. The claims handler classifies unexpected anomalies which uses the taxonomy
educed in the ethnography. Then, each abnormality takes over the base rate
possibility of identified fraud pointers in the similar subcategory. The infor-
mation of prospective anomaly helps in reweighting the Bayesian Belief Net-
works, permitting the set of connections to acquire an explanation of
unanticipated information as it arises.

3. A trace of anomalies and their results is developed over each instance. If an
anomaly achieves better predictive power than a known pointer, then one is
substituted by the other. Bayesian Belief Networks topology is updated with the
help of SBT argumentation engine’s output.

Hence, by this means the entire classification method maintains pace with the
evolving types.

IBM teamed up with fraud investigation specialists and healthcare industry
experts to develop a system to help detect fraud in insurance companies, health
management organizations (HMOs) and for risk-bearing health care professionals.
The system is known as Fraud and Abuse Management System (FAMS) and uses
Fuzzy modeling along with decision support techniques for detection, investiga-
tion, prevention, and settlement [24]. Used with the Fuzzy modeling system,
FAMS assigns a score to those providers who deviate from the normal behavior of
their peer group. It has over 650 standard, individual behavior patterns such as
percentage of specialty diagnoses and the average number of procedures per visit.
For creating an analysis model, users choose and link behavior patterns suitable to
the peer group they want to inspect from a library of functional objects. This model
consists of around 25–30 behaviors. FAMS, used with analyses of claims data,
calculates values for each provider in the model. Then, each value is allocated a
score between 0 and 1,000 depending on the degree of deviation from the
respective peer group norms. The score is higher if the deviation is greater. For
scoring the behavior of each provider, FAMS uses Fuzzy membership functions.
The values for each behavior pattern for all providers in the peer group are
calculated, and the allocation of these values is analyzed by the system. Only
providers are assigned scores with values greater than the peer group median. The
investigation priority list is compiled of providers having the highest scores. By
using the FAMS analysis tools, the suspected providers can be checked for
fraudulent behavior [24]. The overall working of FAM is shown in Fig. 12.4.

12 Supervised Learning Methods for Fraud Detection in Healthcare Insurance 271



12.3.2.3 Fuzzy Bayesian Classifier

Bayesian classifier is an important data mining technique, which can efficiently
achieve optimal results when probability distribution is provided. Bayes rules can
be used to computed the posterior from the likelihood and the prior, as the latter
two is usually easy to be computed from a probability model [29].

Chan et al. [11] developed a new Fuzzy Bayesian classifier to audit health
insurance fee data. Based on Bayesian inference, the Bayesian classifier acquires
every attribute influencing the classification outcome. The Bayesian classifier
classifies the case set more visibly by having an excellent control and under-
standing in the interpretation of the results. However, Bayesian inference requires

Fig. 12.3 Bayesian belief networks fuzzy modeling
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putting together diverse probability distributions while handling continuous attri-
butes. Computation in this scenario will be very complex. This complexity can be
overridden when this method is used along with Fuzzy set theory. With this hybrid
method, it is possible to convert continuous attributes into discrete attributes. For
their experiments, Chan et al. used 800 records containing health insurance fee
data. Of these records, 166 were fraudulent and 634 were normal. They used three
methods (80/20, 70/30, 60/40) to divide the training and testing datasets. Then, the
training data was fed to Bayesian classifier for training the classification rules, and
the remaining, testing, dataset was classified. The values of sensitivity, specificity,
and accuracy were computed for all three methods. It was found that the quality of
the proportion 80/20 was best, as it had the highest sensitivity (0.639), the highest
specificity (0.968), and the highest accuracy (0.894), respectively. It is observed
that the overall accuracy of the classifier is good, but sensitivity is slightly less than
required. The reason for this low sensitivity is that the attributes chosen for
detecting the fraud from the health insurance fee data are not adequately repre-
sented. Figure 12.5 demonstrates the overview of Fuzzy Bayesian classifier.

Fig. 12.4 FAMS fraud
detection system
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12.3.2.4 Logistic Regression

Logistic Regression is a technique that is nonlinear and is used to represent the
variables that are binary dependent. There can be only two values for classification
variables, a value that signifies success or a value that signifies failure. The
advantage of the logistic regression function is that it can be easily interpreted. The
logistic regression technique was used by Liou et al. [16] to detect fraudulent and
normal hospitals. In their experiments, they defined that claim was related with the
value of zero if it was a regular claim and with the value of one if it was an
irregular claim. As shown in Fig. 12.6 nine expense related variables were selected
for the detection model. Logical regression was executed on all of these models
independently to recognize the most efficient factors. Eight out of nine variables
were observed to contain predictive power. The variable that was left out was the
average medical expenditure. These eight detectors were then employed to form a
complete logistic regression model. The model’s successive rate was 100 % for
detecting those hospitals involved in fraudulent activities. Along with this rate, the
model also had an 84.6 % identification rate for normal hospitals. This rate shows
that the logistic regression model has error rate of 15 % in classifying normal
providers. The entire sample had a 92.2 % correct identification rate.

In another case, the logistic binomial regression technique was utilized by
Table et al. [21] in detecting the health care fraud. Dependent, dichotomous
variables were used to represent either fraudulent or non-fraudulent values. Four
variables were selected from the database. They were (1) number of days of sick
leave granted by the attending physician, (2) amount to be paid for granted days of
sick leave, (3) classification of disease by whether it was diagnosable (true) or not
(false), and (4) history of health insurance reimbursement claims. With these

Fig. 12.5 Fuzzy bayesian
classifier data mining model
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variables, a binomial logistic regression model was developed with the help of
following equation.

PFLMC ¼ b0 þ b1Dð Þ þ b2Mð Þ þ b3Cð Þ þ b4Nð Þ;

where PFLMC ¼ probability of fraud, b0 ¼ constant regression, b1�4 ¼ specific
beta coefficients for each of the four independent variables, D ¼ days of medical
leave granted by the treating physician, M ¼ amount to be paid in cash for sick
days, C ¼ diagnostic classification, and N ¼ number of sick leave accumulated by
an individual.

The variables with diagnostic classification and existence of multiple requests
for leave of absence of an individual had strong predictive power, while variables
demonstrating leave and total pay showed a marginally significant predictive
power. The most characteristic features of these fraudulent behaviors were the
existence of multiple requests for leaves of absence for one person and difficult
diagnostic testing. If the number of sick days increase, then it was more likely that

Fig. 12.6 Logistic
regression. model for
detection of fraudulent claims
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fraud is taking place. The model performed well with sensitivity (99.71 %) and
specificity (99.86 %). The positive predictive value, or percentage of fault detected
correctly by the model, was around 98.59 %, and the negative predictive value, or
the percentage of non-fraudulent cases detected correctly by the model, was
99.97 %.

12.3.2.5 Classification Tree

Classification trees are built with the help of rules, training sets, samples in the
dataset, and can directly be applied in the form of a simple detection algorithm.
The sequence of classification rules is signified by the ‘‘every probable pathway
from the root node to a leaf node’’ technique as shown in Fig. 12.7. Liou et al. [16]
were able to detect 100 % of fraudulent hospitals using a classification rule. The
correct identification rate for the fraudulent hospitals was 99.30 % for the entire
dataset and 98.73 % for the normal hospitals. This results showed 1 % fault rate in
categorizing normal providers. Sequence of some classification rules for fraud
detection can be seen in Fig. 12.7 and more rules depending on the requirement of
the system can be added further.

12.3.2.6 Genetic Algorithm

Genetic algorithm (GA) is a search heuristic which is based on the process of
natural selection and genetics. GA’s not only perform better than other traditional
methods in the majority of the problem link but also offers different methods in the
majority of the problem link. GA has the ability of finding optimal parameters for
the real world problems which is quite hard in the case of traditional methods [44].

The GA is considered as an ideal technique to solve optimization problems. Its
application gets better matches amid when used with examination by expert
consultants and the classifications of a system. He et al. [10] used the GA for
selection, crossover, mutation, and cost functions to discover the best possible
weighting of attributes utilized to categorize the practice profile of general prac-
titioners. They utilized a validation dataset to optimize the weight. In this research,
the GA proved to be effective, as each run required only a 2,000 generation,
getting the preferred agreement rate for the given validation dataset. Figure 12.8
demonstrates the working of GA.

12.3.2.7 K Nearest Neighbor

K-nearest neighbor (KNN) is an extensively employed profile-matching method
that establishes categorizations of every case on its nearest neighbors by applying
several decision rules. As shown in Fig. 12.9, He et al. [10] used the weights of the
features determined by genetic algorithm in the KNN technique to recognize the
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Fig. 12.7 A snapshot of rules involved in a classification tree

Fig. 12.8 Working of
genetic algorithm
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nearest neighbor profile of the general practitioners. Then, the majority and
Bayesian rules were used to classify the general practitioner profiles. The KNN
classifier was trained with the help of the nearest neighbor examples provided by
the profiles in the training dataset. The trained classifier was then tested on the test
dataset. The KNN classifier, along with the genetic algorithm for optimizing the
weights, uses Euclidean distance to improve the results of classification. The
statistic employed to measure the efficiency of the KNN classifier and variants was
the synchronization rate that is basically the percentage of synchronization amid
the categorizations of both the KNN classifier and that of expert consultants
partitioned by the number of cases in the dataset. Using the majority and the
Bayesian rule along with the KNN classifier helped achieve the high agreement
rate in this scenario.

12.3.2.8 Association Rules

The use of association rules is one of the many data-mining techniques applied to
discover corresponding relationships and remarkable association among a huge
array of data items. Association rules demonstrate feature value states which take
place together in a known dataset repeatedly. This type of information is given in
if-then statements by these rules. These rules are determined from the data set
provided. Unlike, if-then rules that have logical characteristics, association rules
have probabilistic attributes. Along with the precursor that is the ‘if’ part and the
descendent ‘then’ part, an association rule has an additional two numbers which
state the measure of improbability regarding the rule. In association analysis, the

Fig. 12.9 Application of
KNN classifier
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precursor and descendent are itemsets which do not have mutual entries. The first
number is identified as support for the rule which is basically the number of
transactions that contain every item in the precursor and descendent section of the
rule. Sometimes support is denoted as a fraction of the sum of entire records in the
database. The second number is identified as the confidence of the rule which is the
relative amount of the number of transaction that contain every items in the
precursor as well as the descendent to the number of transactions that contain
every items in the descendent [18].

Association rules have been widely used [14, 15, 17] for detecting fraud
committed by medical service providers in the healthcare system. Until recently,
positive association rules have been used to discover frequent patterns. However,
the use of negative association rules [17] has proved effective in detecting fraud in
the healthcare system. Shan et al. [17] identified around 215 association rules from
the dataset, which consisted of 23 positive and 192 negative association rules for
detecting inappropriate billing by specialists. The negative association rules out-
numbered positive association rules because negative rules of both the presence
and absence of the item were found, while only presence of item was considered
for positive rules. In addition, negative rules were stronger than positive rules in
terms of confidence; minimum confidence of negative association rules was
95.95 %, while for positive rules it was 80.25 %. The common patterns corre-
sponding to negative rules were considered reliable, with the billing regulations
enclosed under the Medicare Benefit Schedule. It was found that negative rules
proved to be more intuitive and useful for locating violations than positive rules
were. The violations of negative rules included billing items that were not gen-
erally billed by the majority of specialists. Those specialists who were found to be
violating these rules repeatedly were marked unusual from their peers. Among 192
negative rules, 30 were found to have confidence value of 1.0 and were considered
unimportant for fulfillment. Hence, these rules were removed. The remaining 162
rules were divided into three groups based on the probability of improper billing
by a subject matter expert. A high rating suggested that a rule was crucial, and if
this rule was broken then there was a high probability of inappropriate billing to
Medicare Australia. On the other hand, a low rating suggested that if a rule was
broken, then this behavior may indicate inappropriate billing or another valid
explanation for billing may also exist. Hence, it was determined that a low rating
may not be powerful for finding inappropriate billing information, but may be
helpful in obtaining useful information on identifying specialists that had related
compliance activities. It was proven from the experiment that more than half of the
rules, i.e. 56.18 %, were considered high and/or medium rated and was regarded as
suitable for detecting inappropriate billing. With the help of a consultant, 162
negative rules were rated from high to low. The specialists who were discovered
breaking these rules more, were often classified as high risk providers. These rule
violations helped indicate how much one specialist deviated from their peers.
Using a database called Program of Research Informing Stroke Management
(PRISM), maintained by Medicare Australia and containing information from
those specialists who were approached for previous compliance activities, were
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matched with suspected specialists who broke the rules. The specialists who broke
rules were further divided into three classes:

1. Occasions [ = 1,
2. Occasions [ = 5, and
3. Occasions [ 20.

It was found that ten specialists broke the rules on more than twenty occasions.
Of these, five had a record in PRISM. This number showed the accuracy of these
association rules to be 50 %. For those who broke the rules on more than five
occasions, the accuracy was found to be 25.81 %, whereas the accuracy was
29.46 % for the ones who broke rules on one or more occasion. Hence, these
results suggest that even breaking one negative rule can be a good indication of
noncompliant practice. Figure 12.10 demonstrated the application of Association
Rules on PRISM database.

Fig. 12.10 Application of association rules
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In another research conducted by Viveros et al. [14] association rules were
applied to the episode database used for pathology services, in which the visit of
each patient was linked to a record in the database. Hence, with a unique identifier,
a database tuple was obtained. This tuple could consist of one or more medical
tests performed in any instance of time with a maximum number of 20 tests per
episode. Association rules were obtained with the setting of 50 % minimum
confidence and values of 1, 0.5, and 0.25 % for minimum support. With a mini-
mum confidence of 50 % and a minimum support of 1 %, 24 association rules
were obtained. For a minimum confidence of 50 % and a minimum support of
0.5 %, 64 association rules were obtained. Further using a minimum confidence of
50 % and a minimum support of 0.25 %, 135 association rules were obtained. It
was found that more knowledge of the behavior patterns was obtained by setting
the minimum support 0.5 % rather than to 1 %.

12.4 Summary

In summary, the Supervised data-mining methods can be effective in discovering
fraudulent transactions in healthcare system as they require accurate identification
of fraudulent transactions and are trained to discriminate non-fraudulent and
fraudulent transactions. Among all the supervised data-mining methods mentioned
above, the neural network and association rules perform the best and, thus, are
more often used by researchers to detect fraudulent patterns in healthcare data.
Table 12.1 provides a summary of the supervised methods discussed in this
chapter.

12.4.1 Advantages of Fraud Detection

The following are the advantages [25] that can be gained by efficiently detecting
fraud in the healthcare system using information technology related tools like data
mining and machine learning techniques:

• Yearly recovery of expenditures by the government and private sector for
fraudulent claims,

• Reduction of the probability of fraudulent up-coding,
• Detection of new leads from increased accessibility of supplementary digital

fingerprints,
• Authentication and confirmation of genuine services by call-back or web-based

services,
• Digital authentication of services submitted by patients and providers,
• Decrease in record gathering time by use of a common identifier and growing

digital media,
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• Computerized digital verification for claims billing and payment,
• Real-time billing and confirmation of eligibility reimbursement,
• Decrease in customer time used in dealing with fraudulent claims,
• Prevention of duplication of imaging and laboratory tests,
• Prevention of creation of superfluous information which is already accessible

digitally,
• Decrease in labor time to validate qualification,
• Decrease in material and effort to examine paper documentation,
• Decrease in time to store and retrieve paper records,
• Decrease in time used by a consumer in phone trees and taping redundant

information,
• Decrease in communal medical fee and loss of life due to medication faults,
• Decrease in communal medical fee and loss of life due to clinical faults,
• Decrease in communal medical fee of duplicate diagnostic tests,
• Decrease in communal medical fee and loss of unnecessary medical surgeries,
• Decrease in referral visits to monitor prospective care provider through

screening from a pay for performance initiative, and
• Decrease in provider time, bundling, accumulating, and forwarding of docu-

mentations to health plans, providers, and patients.

Hence, many benefits can be gained from new fraud detection techniques,
which can help provide better medical services to authentic patients, help save
money, and improve the healthcare experience for patients with genuine needs.

12.5 Conclusion

One of the most crucial problems facing the US government is fraud in healthcare
system. Due to a large amount of data, it is impossible to manually audit for fraud.
Hence, many statistical approaches have been proposed to overcome this problem.
As fraud can be committed in complex and numerous ways, fraud detection is
challenging, and there is a greater need for working models for fraud detection,
including types of fraud that are not yet in use, as these models will not be outdated
quickly.

To establish a well-functioning healthcare system, it is important to have a good
fraud detection system that can fight fraud that already exists and fraud that may
emerge in future. In this chapter, an attempt has been made to classify fraud in the
healthcare system, identify data sources, characterize data, and explain the
supervised machine-learning fraud detection models. Even though a large amount
of research has been done in this area, more challenges need to be worked out.
Fraud detection is not limited to finding fraudulent patterns, but to also providing
faster approaches with less computational cost when applied to huge-sized
datasets.
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Chapter 13
Feature Extraction by Quick Reduction
Algorithm: Assessing the Neurovascular
Pattern of Migraine Sufferers from NIRS
Signals

Samanta Rosati, Gabriella Balestra and Filippo Molinari

Abstract A migraine is a neurological disorder that can be caused by many factors,
including genetic mutations, life-style, cardiac defects, endocrine pathologies, and
neurovascular impairments. In addition to these health problems, an association
between some types of migraines and increased cardiovascular risk has emerged in
the past 10 years. Moreover, researchers have demonstrated an association between
migraines and impaired cerebrovascular reactivity. It is possible to observe carbon
dioxide dysregulation in some migraineurs, while others show a markedly
decreased vasomotor reactivity to external stimuli. Therefore, the assessment of the
cerebrovascular pattern of migraineurs is important both for the onset of a per-
sonalized therapy and for follow-up care. Near-infrared spectroscopy is a widely
used tool for the non-invasive monitoring of brain oxygenation. It can be used to
track hemodynamic changes during external stimulation (i.e. vaso-active maneu-
vers such as hypercapnia or hyperventilation). Unfortunately, near-infrared spec-
troscopy (NIRS) signals acquired during vaso-active maneuvers are non-stationary
and require a time–frequency processing approach. To fully describe the cerebro-
vascular patterns of migraineurs, we extracted several parameters from the NIRS
signals. Using these parameters, we compiled a dataset in which complexity was
very high and the clinical/physiological information was impossible to track.

13.1 Introduction

In this chapter, we present our latest feature selection approach. This approach is
based on the quick reduction algorithm (QRA). We compared the results of this
automated technique with the traditional ANOVA (ANalysis Of VAriance
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between groups) analysis. An artificial neural network (ANN) was employed in
order to classify the subjects, using the extracted features as input parameters for
the net. Our QRA-based system correctly classified 97.5 % of subjects using only
nine of twenty-six features from the dataset. The ANOVA analysis extracted three
features, but classified only 75 % of subjects correctly. Our QRA-based procedure
is fully automated and has proven effective when tested on real clinical data. The
extracted features will be used in a real clinical applications for the cerebrovas-
cular assessment of migraineurs with and without aura disturbances.

13.1.1 Background

It has been shown that a migraine is a neurological disorder that correlates with an
increased risk of subclinical cerebral vascular lesions [1]. Epidemiological studies
showed that migraineurs are prone to an increased risk of vascular accidents [2],
and this has led many researchers to consider a migraine as a systemic vascu-
lopathy [3]. The association between a migraine and impaired cerebral autoreg-
ulation or vasomotor tone has been investigated and assessed widely [4–6].

However, there is a difference in the cardiovascular and cerebrovascular risks
associated to the two types of migraines. Subjects suffering from migraine with
aura (MwA) showed greater impairments than subjects suffering from migraines
without aura (MwoA) [1–6]. Given the correlation between migraines and vascular
disorders, migraine sufferers usually undergo an assessment of the cerebrovascular
status. The accurate assessment of the cerebrovascular reactivity can be of para-
mount importance for the onset of a personalized and proper therapy.

Near-infrared spectroscopy (NIRS) is a non-invasive, real-time, and cost-
effective monitoring technique for the assessment of the cerebral autoregulation of
subjects [4]. In NIRS, infrared light is injected into the skull, and the changes in
the concentration of oxygenated (O2Hb) and deoxygenated (or reduced) (HHb)
hemoglobin are instantaneously measured. The assessment of cerebral vasomotor
reactivity (i.e., the arteries’ capacity of compensating systemic blood pressure
alterations) is of primary importance to assess the overall status of the artery bed.
Usually, the active maneuvers like breath-holding (BH), hyperventilation (HYP),
or Valsalva, are performed during the monitoring phase in order to assess cerebral
autoregulation and vasomotor reactivity [4, 7, 8]. Such maneuvers are easy to
perform and are safe for pathological subjects. Specifically, BH is a stimulus that
determines vasodilation, because it increases the concentration of the carbon
dioxide in the blood. Conversely, HYP triggers cerebral vasoconstriction, because
of the increase of oxygen in the blood. Therefore, overall, the NIRS is a suitable
system for long-term, bedside, or home monitoring and assessment. The use of
NIRS for the assessment of migraineurs is gaining clinical importance. Recently,
Watanabe et al. used NIRS to monitor the hemodynamical changes occurring
during a migraine attack after the administration of sumatripan [9]. Viola et al.
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studied the pathophysiology of prolonged migraine attacks by monitoring the
cerebral oxygenation [10].

However, the accurate assessment of the cerebral autoregulation of migraineurs
is complicated by many factors: it has been shown that cerebral oxygenation
changes in the presence of smoke habits [2], of patent foramen ovale and other
atrial septal defects [11–13], and of mutations of the 677-MTHFR gene [14]. In a
recent paper, Giustetto et al. showed that there is a relationship between the
vascular pattern of migraineurs, as assessed by NIRS, and some hematological
parameters [14]. These relationships were different between subjects suffering
from MwA and MwoA.

Another complication is given by the fact that NIRS concentration signals are
usually considered nonstationary when recorded during vaso-active maneuvers
(i.e., breath-holding and hyperventilation). Researchers studied the spontaneous
cerebral low-frequency oscillations of NIRS signals recorded during active
maneuvers [15]. They studied a group of healthy volunteers, which were used to
derive the basis of frequency-derived parameters used to assess cerebral auto-
regulation. In fact, several studies showed that different cerebral hemodynamic
signals (including NIRS signals, transcranial Doppler signals, and the fMRI BOLD
signals) show a power spectrum essentially consisting of two bands [16].

1. A very low-frequency band (VLF—also called B-waves) that reflects the long-
term autoregulation. Even though the actual origin of this band is still debated,
VLFs are thought to be generated by brain stem nuclei, which modulate the
lumen of the small intra-cerebral vessels. In humans, the frequency range of the
VLF band is typically 20–40 mHz.

2. A low-frequency band (LF—also called M-waves) that is common to most
mammalians. This frequency band reflects the systemic oscillations of the
arterial blood pressure and, therefore, mainly reflects the sympathetic system
activity. The frequency range of the LF band is typically 40–140 mHz.

Figure 13.1a shows an example of NIRS signals recorded during the BH,
whereas Fig. 13.1b shows an example of HYP (the subject was a healthy
volunteer).

In this study, we present a robust feature extraction technique for the assess-
ment of the vascular pattern of migraineurs. The idea was based on the well-known
fact that increasing the number of features used to build a classifier does not mean
increasing its accuracy: several attributes may be irrelevant or, even worse, may
introduce noise that decreases the classifier performance. To improve the classi-
fication accuracy, it is then important to select the useful features that reduce the
number of attributes. This reduction can be obtained through selection or con-
struction [17].

In construction, new attributes are created on the basis of some original fea-
tures. Construction has the disadvantage that the results are difficult to interpret
because they do not correspond to the original features.
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Feature selection is based on the idea of reducing the number of attributes by
collecting the smallest number of important features from the original set without
significantly deteriorating the classification accuracy. When feature selection is
needed, there must be an appropriate and well-defined criterion to measure the
relevance of the chosen features. However, as the number of initial features is
usually large, it is computationally impossible to test all possible subsets of them,
even if the criterion is simple to evaluate. A heuristic procedure is then applied to
find a good set of features in a reasonable amount of time. Another important
difference among the possible feature selection methods is the hypothesis that
some systems are linear, and this requirement is needed in order to provide good
results. Moreover, because most real situations are non-linear, two features may be
useless when taken individually but will become highly predictive when used
together. In addition, the required training set should be larger for a larger number
of features [18, 19].

We chose two of several approaches available for dimensionality reduction.
The first method, based on the Rough-Set Theory (RST), consists of the Quick-
Reduct Algorithm (QRA); the second method, based on a linear model of data, is
the ANalysis Of VAriance (ANOVA). RST offers a formal methodology for
feature selection. Computationally, the approach is efficient. Unlike statistical
correlation-reducing approaches, it requires no human input, and it preserves the
semantics of the data, which makes the results more understandable.

In this study, we present a comparison of the two method’s performances when
applied to a dataset of features that describe the time and frequency changes of the
hemoglobin (both in its oxygenated and reduced form) concentrations as measured
by NIRS in a population of women suffering from MwA and MwoA.

13.2 NIRS System and Measurement Protocol

NIRS is a spectroscopic technique used for the monitoring of the concentration of
oxygenated (O2Hb) and reduced (HHb) hemoglobin in the human brain. NIRS
allows non-invasive and real-time examinations. The possibility of quantifying the
concentration of O2Hb and HHb is given by the different optical properties of the

Fig. 13.1 NIRS signals recorded on a healthy volunteer during breath-holding (a) and
hyperventilating (b). The red line represents the O2Hb concentration signal, the blue line the
HHb signal. The black vertical dashed lines mark the onset and offset of the breath—holding
(a) and hyperventilation (b). In a recent paper, Molinari et al. measured the VLF and LF power
changes in the NIRS signals of migraineurs during active stimulations [25] and documented the
cerebral hemodynamics observed between MwA and MwoA sufferers. They applied principal
component analysis (PCA) to the power spectral parameters of the NIRS signals recorded during
BH and HYP. Results showed a clear correlation between vascular parameters and pathology.
The methodology, however, was based on a strong feature reduction procedure, and it was shown
that by changing the features used for PCA, the association between the vascular pattern and
pathology changed

b
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two hemoglobin types. In fact, the two hemoglobins have different absorption
spectra. Therefore, it is possible to differentiate their concentration by irradiating
the brain with two light wavelengths. A substance that absorbs light at a particular
wavelength is called chromophore. The most important cerebral NIRS chro-
mophores are O2Hb, HHb, and the cytochrome-c-oxidase (which is a neuronal
metabolic marker). These three chromophores have absorption peaks at wave-
lengths shorter than water, lipids, plasma, muscles, and bones. Hence, most of the
tissues of the head and brain complex can be neglected since their absorption
peaks are far from the infrared region [20, 21]. Being the cytochrome-c-oxidase
mainly a metabolic marker (hence linked to a functional aspect of brain activation
rather than to a hemodinamic aspect), we did not consider it in this present study.

In NIRS systems, an electromagnetic field in the infrared band (wavelengths
ranging from 650 to 870 nm are usually used) is used to irradiate the skull. The
source is usually a photoemitter (LED or laser diodes can be used) placed on the
scalp. The receiver is usually placed few centimeters aside the source. The mea-
surement of the chromophores concentrations is made by comparing the emitted
light intensity to the received intensity. The light photons travelling in the tissues
can be absorbed or scattered. Since the NIRS systems have the receiver placed
close to the source, they work on the scattering basis. Only in newborn infants,
who have a very soft and not fully calcified skull, it is possible to perform an
absorption-based NIRS analysis.

Scattering introduces errors and forces the modification of the traditional
absorption equation, which cannot be used in its raw version to measure the
chromophore concentration changes. The traditional absorption Beer–Lambert law
is redefined as (modified Beer–Lambert law):

DA kð Þ ¼ L kð Þln 10ð Þ
X

i

2i kð ÞDci; ð13:1Þ

where

• DAðkÞ is the attenuation change at the wavelength k;
• LðkÞ is the total pathlength (mm) traveled by the photons at wavelength k;
• Dci is the concentration change (lmol�l-1) of the i-th chromophore at the

wavelength k;
• 2i kð Þ is the decadic extinction coefficient (lmol-1�l�mm-1) of the i-th chro-

mophore at the wavelength k.

The solution of Eq. (13.1) gives the chromophore concentration change Dci. In
fact, in Eq. (13.1) the attenuation and the chromophore concentration changes are
linearly dependent. The total distance LðkÞ models the actual path the photons
travel into brain. This path depends on the source—detector distance and it is
usually modified by considering a specific coefficient (given by scattering). This
numeric multiplier is called differential pathlength factor. In Ref. [22] modeled the
propagation of infrared photons in adult human skull and proposed the value of
5.97.
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13.2.1 Studied Population

The study involved 80 subjects, divided in 3 groups based on pathology: 15
healthy subjects as healthy controls (age: 29.2 ± 8.5), 14 women who suffered
from MwoA (age: 44.4 ± 9.7), and 51 women who suffered from MwA (age:
38.0 ± 12.1). All diagnoses were performed by expert and in accordance to the
criteria of the International Headache Society [23]. Migraine subjects were tested
in their interictal periods (i.e., when they were free of pain).

The IRB of the Gradenigo Hospital of Turin (Italy) (where we conducted all the
tests) approved the experimental protocol described below. All the patients were
instructed about the examinations and about the aims of this study and they were
asked to sign an informed consent.

13.2.2 Experimental Protocol

The recordings were performed in a quiet room, with dimmed lighting and with a
constant room temperature of 24–25 �C. The subjects were asked to lay in a supine
position, with their eyes closed and breathing room air. Before and after active
maneuvers, they performed a resting period of 120 s.

A commercial NIRS device (NIRO 300, Hammamatsu Photonics, Australia)
was used to perform the experiments. The light source was placed on the left side
of the forehead, about 2 cm alongside the midline and 3 cm above the supraorbital
ridge. The distance between the source and the receiver was equal to 5 cm, and the
differential path length factor was set to 5.97. The sampling frequency of the
signals was equal to 2 Hz.

13.3 Feature Extraction

As discussed in the introduction, the assessment of the cerebral autoregulation of
migraineurs is complicated by many factors, ranging from life-style habits (e.g.,
current smoke) to genetic mutations. Therefore, to obtain a complete description of
the overall ‘‘system’’, many instrumental, biochemical, and genetic data are
required. As happens in the analysis of complex systems, often researchers come
up with a wide database consisting of inhomogeneous data. In this section, we will
describe our processing procedure for the analysis of the NIRS signals and feature
extraction paradigms.
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13.3.1 Time-Frequency and Coherency Analysis

As indicated in Fig. 13.1, the vasodilatation due to BH produces an increase in the
O2Hb and a decrease in the HHb concentration (Fig. 13.1a), whereas the vaso-
constriction induced by HYP causes a decrease in the O2Hb and an increase in the
HHb concentration (Fig. 13.1b). Moreover, in Fig. 13.1b a periodic trend is visible
on both the signals reflecting the respiratory rate.

Because of the rapid changes in NIRS signals, especially during active stimuli,
the signals must be considered nonstationary. Hence, traditional Fourier-based
spectral analysis cannot be applied for NIRS signal processing, and time-frequency
distributions should be preferred. Specifically, a time-frequency distribution
belonging to the Cohen’s class Dxx t; fð Þ was chosen in this study, for which the
generic definition can be given as:

Dxx t; fð Þ ¼
ZZ Z

þ1

�1

x t0 � s
2

ffi �

x� t0 þ s
2

ffi �

gðs; hÞe�j2ph t0�tð Þe�j2pf sdt0dhds; ð13:2Þ

when xðtÞ is the signal, h and s are the frequency and time lags respectively, and
gðs; hÞ is the kernel of the time-frequency distribution.

The Choi-Williams transform used in this study [24] has a kernel that is
expressed as:

g s; hð Þ ¼ e�ðs
2h2=rÞ; ð13:3Þ

where r is a parameter influencing the kernel selectivity: a lower r value will
create a higher attenuation of interference terms. A Choi-Williams representation
of the HHb NIRS signal during BH for a healthy subject is reported in Fig. 13.2.

Moreover, the time-frequency squared coherence function (SCF), between the
concentration signals of O2Hb and HHb, was computed on the basis of the Choi-
Williams representation of the two signals as:

SCFxy t; fð Þ ¼ jDxy t; fð Þj2

Dxx t; fð Þ � Dyyðt; f Þ ð13:4Þ

where Dxyðt; f Þ is the cross time–frequency transform of the O2Hb and HHb
concentration signals, and Dxxðt; f Þ and Dyyðt; f Þ are the time-frequency repre-
sentations of the O2Hb and HHb signals, respectively. As the SCF is a quadratic
function, it assumes only values between 0, if the two signals are uncorrelated, and
1, if they are totally correlated. Figure 13.3 represents an example of time-fre-
quency SCF between the two NIRS signals during BH relative to a healthy subject.

We analyzed signal epochs of 256 s having the active maneuvers (either BH or
HYP) in the middle of the window (see Fig. 13.1). We obtained a theoretical
spectral resolution that was slightly better than 4 mHz. This value was shown to be
suitable to clearly separate the two frequency bands of interest [4, 15].
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Before calculating their time-frequency distributions, pre-elaboration was per-
formed on all the signals, in order to remove the mean value and the trend. The
trend removal was obtained by means of a high-pass Chebychev filter with a ripple
in the stopband and a cutoff frequency equal to 15 mHz.

The time-frequency distributions, concerning both the Choi-Williams trans-
forms of the two signals and the SCF, were analyzed in two specific bands, VLF

Fig. 13.2 HHb concentration signal (upper panel) recorded on a healthy subject and lasting
256 s with the BH in the middle of the analysis window. The onset and the offset of the event are
marked by vertical lines. The lower panel shows the Choi-Williams distribution of the signal
(r = 0.05) by 15-level curves. The yellow zone represents the VLF band (20–40 mHz), while the
pink zone indicates the LF band (40–140 mHz). The graphs show that the NIRS signals become
nonstationary as a consequence of the active stimuli
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and LF, before and after BH and HYP. The percentage of signal power in the two
bands (referred to the total power of the signal) was calculated before and after
each event. In this way, the following 24 variables deriving from the time-fre-
quency representations have been measured:

• the HHb and O2Hb power in the VLF and LF bands, before and after BH (for 8
variables),

Fig. 13.3 The HHb (blue line) and O2Hb (red line) signals during BH (upper panel) relative to a
healthy subject. The onset and the offset of the event are marked by vertical lines. The lower
panel shows the 15-level contour plot of the time-frequency SCF between the two signals. The
yellow zone represents the VLF band (20–40 mHz), and the pink zone indicates the LF band
(40–140 mHz)
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• the HHb and O2Hb power in the VLF and LF bands, before and after HYP (for 8
variables), and

• the O2Hb and HHb SCF value in the two bands, before and after BH and HYP
(for 8 variables).

Moreover, two additional variables, derived from the analysis in the time
domain, were measured: the BHI indexes for HHb and O2Hb signals calculated as:

BHIO2Hb ¼
½O2Hb�BH � ½O2Hb�BASE

DBH
; ð13:5Þ

where the numerator represents the variation of the O2Hb concentration as an
effect of BH, while the denominator represents the BH duration. Similarly, it is
possible to calculate the BHIHHb. A deeper description of the methods for signal
analysis used in this chapter can be found in [25]. The 26 final variables, calculated
as described above, are reported in the first column of Table 13.1.

13.3.2 Feature Selection

In this study, the QuickReduct Algorithm (QRA), a feature selection procedure
based on the Rough-Set Theory (RST), was performed. This method was compared
with the ANalysis Of Variance (ANOVA), assuming a linear model of data.

Both procedures have been implemented in a MATLAB environment. Data
were organized in a matrix in which each row corresponds to the number of
patients involved in the study and each column contains the measured features.

13.3.2.1 Rough Set Theory

Rough set theory (RST), as defined by Pawlak in Ref. [26], is a powerful tool that
models imperfect and incomplete knowledge and does not require any a priori
information or model assumptions about data.

In RST, a decision system (or decision table—DT) is defined as pair
DT ¼ ðU;AÞ, where U is a non-empty set of objects (the universe of discourse)
and A is a non-empty set of attributes. The latter is made up of a certain number of
conditional attributes C, which represent the input features, and a decision attri-
bute D, which is the class the objects belong to. This can be formally depicted as
A ¼ fC[Dg and C \Df g ¼ ;.

The basic principle of RST says that if two objects have the same values for a
certain set of conditional attributes, then these objects should be classified into the
same class. Hence, it is necessary to introduce the indiscernibility relation with
respect to a non-empty subset P � A as:
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IND Pð Þ ¼ f x; yð Þ 2 U2 : 8a2P; a xð Þ ¼ aðyÞg ð13:6Þ

where a 2 A denotes the value of attribute a for a specific object and ðx; yÞ is a pair
of objects indiscernible with respect to the P attributes. INDðPÞ determines a
partition of the universe U denoted as U=INDðPÞ or simply U=P.

According to RST, each X � U can be divided into two disjoint subsets named
lower and upper approximations, using only the information contained in P and
defined, respectively, as:

PX ¼ fx 2 Uj½x�P � Xg; ð13:7Þ

PX ¼ x 2 Uj x½ �P\X ¼ ;
� �

; ð13:8Þ

Table 13.1 Feature selection results

Features QRA results ANOVA results (p-value) (%)

PVLF preBH O2Hb 74.09
PVLF postBH O2Hb 65.42
PLF preBH O2Hb 84.20
PLF postBH O2Hb 22.18
PVLF preBH HHb 51.45
PVLF postBH HHb 1 71.68
PLF preBH HHb 21.96
PLF postBH HHb 50.65
PVLF preHYP O2Hb 17.16
PVLF postHYP O2Hb 70.92
PLF preHYP O2Hb 1 69.94
PLF postHYP O2Hb 2.94*
PVLF preHYP HHb 73.27
PVLF postHYP HHb 55.18
PLF preHYP HHb 94.65
PLF postHYP HHb 1 46.71
SVLF preBH 1 79.05
SVLF postBH 75.17
SLF preBH 38.53
SLF postBH 84.55
SVLF preHYP 1 13.66
SVLF postHYP 1 90.97
SLF preHYP 1 62.81
SLF postHYP 1 27.25
BHIO2 1 4.93*
BHICO2 0.00*

The results of two feature-selection procedures. The first column contains the 26 variables used as
input for the feature selection strategies. In the second column, results of QRA are reported (1:
feature selected). Results of one-way ANOVA analysis, in terms of p-value, are collected in the
third column. The significant parameters (p-value \ 5 %), obtained considering as independent
variable the subject pathology (no migraine, MwA and MwoA), are indicated with asterisk
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where x½ �P denotes the equivalence classes of the indiscernibility relation with
respect to P. The P-lower approximation of X is the complete set of objects
certainly belonging to the target set X, according to the information carried on P,
while the P-upper approximation of X includes the objects of U which may belong
to X. The couple (PX;PX) defines a rough set.

Based on the two approximation concepts depicted above, three regions can be
defined:

• the positive region ðPOSP Dð ÞÞ, including all the objects of universe that can be
certainly classified into U=D classes by using only the attributes P:

POSP Dð Þ ¼ [X2U=DPX; ð13:9Þ

• the negative region ðNEGP Dð ÞÞ, being the complete set of objects that certainly
does not belong to the U=D classes, according to the attributes P:

NEGP Dð Þ ¼ U � [X2U=DPX ð13:10Þ

and,
• the boundary region ðBNDP Dð ÞÞ, containing the objects that can possibly, but

not certainly, be classified into U=D classes:

BNDP Dð Þ ¼ [X2U=DPX � [X2U=DPX ð13:11Þ

Let P � A be a subset of conditional features and D � A be the decision feature.
It is possible to measure the importance of P in classifying the objects of U into D
by means of the dependency degree:

cp Dð Þ ¼
posp Dð Þ
�

�

�

�

Uj j ð13:12Þ

where jj denotes the cardinality of set. If cP Dð Þ ¼ 1, Q depends on the attributes in
P, whereas values of cP Dð Þ between 0 and 1 mean that D only partially depends on
P.

The minimal subset of conditional attributes R � A is called a reduct of the
whole set of conditional features C if cR Dð Þ ¼ cCðDÞ [27]. A reduct indicates that
no attribute can be removed from the subset without affecting the dependency
degree, formally:

cR� af g Dð Þ 6¼ cR Dð Þ for all a 2 R: ð13:13Þ

As for a given dataset, many reduct subsets may exist. The intersection of all
reducts is called the core and is made up of those attributes that cannot be elim-
inated without information loss.

In the past, RST has found various areas of application, such as machine
learning [28], knowledge acquisition [29, 30], decision analysis [31, 32], pattern
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recognition [33], knowledge discovery from databases, and expert systems [34].
Recently, feature selection has been one of the most important fields in which RST
has been employed, with satisfactory results.

Feature selection is a procedure that permits the dimensional reduction of
multivariate data, in order to extract the most significant information from a high-
dimensional dataset. By using RST, it is possible to find the most informative
subset (reduct) of the original attributes, starting from a dataset with discretized
attribute values; all other attributes can be removed from the dataset with minimal
information loss [27]. In such a way, it is possible to highlight the relevant features
while reducing the computational time and maintaining the quality of object
classification.

The most obvious way to find the reduct with the minimal cardinality is to
generate all possible reducts and then choose the smallest one. As this method is
not effective and is often inapplicable for large datasets, several techniques for
attribute reduction have been developed, as depicted in Ref. [35]. Section 13.3.2.2
focuses on the simplest and most used method for feature selection based on the
RST: the QuickReduct Algorithm (QRA).

13.3.2.2 QuickReduct Algorithm

QRA, introduced in Ref. [36], is a basic tool for resolving reduct search problems
without generating all possible subsets. QRA is based on the dependency degree
measured between a decision attribute D and the subset of conditional features
C analyzed in order to be a reduct.

The algorithm starts from an empty subset of features and adds to it the best
attributes, until a stopping criterion is satisfied. As the goal of QRA is to find a
reduct with the same dependency degree as the entire set of attributes, this
parameter is chosen as a stopping criterion. The maximum dependence value
results in 1 if the dataset is consistent. Consequently, attributes added to the reduct
subset are those producing a larger increase in the dependency degree. The
pseudo-code of QRA [27] is depicted in Fig. 13.4.

This algorithm, however, is not guaranteed to find a minimal reduct, because
the obtained feature subset might still contain irrelevant attributes. It was shown
that the classification performance could be degraded by feature subsets with
irrelevant features [37].

13.3.2.3 ANOVA Analysis

ANOVA allows a comparison of two or more datasets, by analyzing the variance
within and between data groups. In this study the one-way ANOVA analysis was
performed using the pathology as an independent variable and the 26 parameters
for each subject as dependent variables, one at a time. Then, the observations with
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a P-value greater than 5 % were neglected for the study. This technique allows
feature reduction based on a linear model extracted from data.

13.3.3 Artificial Neural Networks

In this chapter, two feature selection strategies were used, and their performances
were compared using an artificial neural network (ANN). The purpose of this
method was to use a good feature selection procedure to remove redundant fea-
tures. With this method, the reduct provides the same quality of classification of
the original set [38] or even improves it. Specifically, we built three networks,
using all 26 attributes as input data in one network, those selected by means of
QRA in a second network, and those resulting from the ANOVA analysis in the
third network. For the ANN structure, we chose only one hidden layer with a
number of neurons approximately equal to half the input neurons. As for the
neuron activation functions, we used a logarithmic sigmoid function for the hidden
layer and a linear function for the output layer. Back-propagation was chosen as
the learning algorithm, and the mean squared error was used as the performance
function. The initial values of the interconnection weights were set randomly. As
we only wanted to have a tool to compare the performances of the two feature
selection methods, we did not optimize the parameters of the ANNs, but used three
comparable ANNs. A schematic description of the three ANNs is reported in
Fig. 13.5.

The ANNs were implemented using the Neural Network Matlab toolbox. Sixty
percent of input data randomly collected was used as a training set, and the

Fig. 13.4 QuickReduct
Algorithm pseudo-code
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complete dataset was used as a test set. The sample numerosity for each class was
non-homogeneous, which could influence the training step. As a matter of fact, it is
possible that some classes were less represented than others in the sample used for
the neural network training. This aspect, beyond our control, obviously influences
the ANN final performances. To avoid this problem, we repeated the training ten
times and gave as result the best performance for each ANN.

13.4 NIRS Features Reduction and Subjects Classification

The QRA returned nine variables: the CO2 power in the VLF band after BH (PVLF

post BH–HHb), the O2 power in the LF band before HYP (PLF pre HYP–O2Hb),
the CO2 power in the LF band after HYP (PLF post HYP–HHb), the coherence
value in the VLF band before BH (SVLF pre BH), the coherence values in the VLF
and LF band before and after HYP (SVLF pre HYP, SVLF post HYP, SLF pre HYP,

Fig. 13.5 Schematic description of ANNs employed in order to test the two feature selection
strategies. a ANN using the whole set of 26 available features as input data. b ANN using the
QRA subset of features (9 parameters) as input data. c ANN using the ANOVA subset of features
(3 parameters) as input data. All three networks consist of a hidden layer composed of a number
of neurons that are variable according to the number of input features and with logarithmic
sigmoid activation function. The output layer is made up of only one neuron with a linear
activation function
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SLF post HYP), and the BHIO2. A one in the second column of Table 13.1 indi-
cates the selected features.

The third column of Table 13.1 reports the results of the ANOVA analysis
considering the subject pathology as an independent variable and the 26 previously
described parameters as dependent variables. In this study, only the features with
P-values lower than 5 % were deemed as descriptive of the subjects’ classification.
This allowed for removing the features with a poor correlation with the inde-
pendent variably (i.e. migraine type). Three of these features emerged from this
analysis (marked with asterisk in third column of Table 13.1): the O2 power in the
LF band post HYP (PLF pre HYP–O2Hb), the BHIO2, and the BHICO2. Only the
last variable was recognized as relevant by the QRA procedure.

In order to test the performance of the two feature-selection procedures, ANNs
were used, and the results for each net are reported in Fig. 13.6.

The whole set of features gives the correct classification for 100 % of subjects.
Using the nine parameters highlighted with the QRA, the classification accuracy of
the subjects is 97.5 %. The network performance decreases when it takes the three
features selected with ANOVA analysis as input. In this case, the correct classi-
fication rate drops to about 75 %.

13.5 Data Interpretation and Discussion

As often happens in the analysis of complex physiological systems, many variables
must be considered in order to gain a description of the system that is as complete
as possible. When the physiological systems comprise pathology (or, as in this
study, two pathologies) large feature datasets are required. We analyzed the vas-
cular pattern of subjects suffering from MwA and MwoA by the time-frequency
analysis of cerebral oxygenation NIRS signals. Overall, we derived a dataset of 26
variables (Table 13.1).

The purpose of this study was to compare the performances of two feature
selection methods for identifying a minimal subset of variables able to keep the
same amount of relevant information contained in the entire set of parameters
derived from NIRS signals. Such a procedure allowed emphasizing the attributes
that were relevant to obtain a reliable classification. The subject classification was
assessed by means of ANNs, an unsupervised procedure in which knowledge is
acquired by the network through a learning process.

The results described in the Sect. 13.4 lead to the observation that the features
selected by QRA give the best results. From a physiological point of view, the
results of QRA are in accordance with previously published results. It is widely
accepted that migraine (and, particularly, MwA) is a pathology with a vascular
component involving carbon dioxide dysregulation [6, 25, 39]. Among the nine
features that were considered most important by QRA, five are relative to the
coherence between oxygenated and reduced hemoglobin in vasoactive maneuvers.
For example, it is interesting to notice that MwA sufferers differed from MwoA

13 Feature Extraction by Quick Reduction Algorithm 303



sufferers in the coherence levels before and after hyperventilation, in both VLF
and LF band. Hyperventilation is a stimulus causing a strong vasoconstriction and,
therefore, a strong autoregulation is needed in order to maintain the correct pro-
portion between the two hemoglobin types in the brain tissues. Since MwA is
associated with impaired autoregulation [6, 25, 39], we believe that QRA effec-
tively found the most important variables associated with the physiological system
under analysis.

The principal innovation of this study is the development of a completely
automated procedure for feature set reduction. Comparison of performance was
made against a linear discriminator based on ANOVA and PCA, which we pre-
viously developed. The feature set extracted by this technique, which was coupled
to an ANN, outperformed the previous method. A major drawback of the previous
method was the need for the selection of a significance threshold, which we fixed
equal to 5 %. Therefore, all the features that did not explain at least 5 % of the
data variance with respect to the independent variable were discarded. This

Fig. 13.6 ANNs result in
terms of subject
classification. Diamonds
represent healthy subjects,
circles are relative to MwA,
and squares indicate MwoA.
a ANN outputs using all
features as input, b ANN
outputs obtained with the
nine features extracted by
QRA, c ANN outputs relative
to the three features
highlighted with ANOVA
analysis

304 S. Rosati et al.



selection was arbitrary and unsupported by any clinical observation. Moreover,
ANOVA cannot correctly deal with non-linear correlation among the variables.

Using this approach, we overcame such limitations, because the feature
selection procedure was able to cope with nonlinearities. In addition, this approach
is less arbitrary than other methods because the only choices the user must face are
what discretization ranges to use for each feature. It may become fully user
independent using a computerized procedure for the discretization based on a
validated training set.

Unfortunately, a direct comparison of our results with literature is impossible,
because we could not find any other classification or feature extraction study based
on NIRS signals in migraines.

A possible limitation of this study is the lack of comparison with other feature
extraction strategies. Because classification is not the main purpose of this paper,
we simply implemented an ANN, and we did not test further classifiers. We are
now working to enlarge the database and build other classification schemes, to
further validate the QRA methodology in this specific application. The application
scenario that we foresee for this approach is the home monitoring by NIRS of
subjects affected by chronic neurological or cerebrovascular impairments.

In conclusion, we applied an automated feature selection strategy to NIRS
signals recorded from migraine patients during vasoactive maneuvers. The
objective of this step was the dimensional reduction of a dataset of 26 variables,
derived from the NIRS signals, which were correlated to the vascular pattern of the
patients.

Our method extracted nine features, which lead to a classification accuracy of
97.5 %. Moreover, the extracted features were relevant for the pathology, since
they were the most correlated to the carbon dioxide dysregulation typical of
migraine with aura sufferers.
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Chapter 14
A Selection and Reduction Approach
for the Optimization of Ultrasound
Carotid Artery Images Segmentation

Samanta Rosati, Gabriella Balestra, Filippo Molinari,
U. Rajendra Acharya and Jasjit S. Suri

Abstract The segmentation of the carotid artery wall is an important aid to so-
nographers when measuring intima-media thickness (IMT). Automated and
completely user-independent segmentation techniques are gaining increasing
importance, because they avoid the bias coming from human interactions. How-
ever, automated techniques still underperform semi-automated IMT measurement
methods. Automated techniques cannot reproduce human expertise in selecting the
optimal point where IMT should be measured. Hence, superior intelligence must
be embedded into automated techniques in order to overcome the performance
limitations. A possible solution is to extract more information from the image,
which could be obtained by an accurate analysis of the image at pixel level. In this
study, we applied a feature selection and reduction approach to ultrasound carotid
images, and measured 141 features for each image pixel and supposed that a pixel
could belong to one of three classes: artery lumen, intima or media layer, or the
adventitia layer. Among several approaches that are available for dimensional
reduction, we chose to test three based on the Rough-Set Theory (RST): the
QuickReduct Algorithm (QRA), the Entropy-Based Algorithm (EBR) and the
Improved QuickReduct Algorithm (IQRA). QRA achieved the best performance
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and correctly classified 97.5 % of the pixels on a reduced testing image dataset and
about 91.5 % for a large validation dataset. On average, QRA reduced the com-
plexity of the system from 141 to 8 or 9 features. This result could represent a pilot
study for developing an intelligent pre-classifier to improve the image segmen-
tation performance of automated techniques in carotid ultrasound imaging.

Keywords Ultrasound imaging � Intima-media thickness � Atherosclerosis �
Segmentation � Feature extraction � Feature selection � Quickreduct algorithm �
Entropy � Rough set � Artificial neural networks

14.1 Background

Atherosclerosis is a life threatening disease that may result in the loss of elasticity
of the arterial wall and the deposition within the wall itself, which include lipids
and other blood-borne molecules [2, 44]. This loss of elasticity results, in a range
of about 5–10 years, in possible impairments to the blood circulation that could
damage the principal organs (i.e. liver, kidneys, heart and brain).

The ultrasound scan of the arterial bed is the most widely diffused clinical
examination in the field of atherosclerosis prevention and monitoring [7]. Large
arteries, such as the carotid artery, femoral artery, brachial artery, and aorta are
imaged through acoustic waves in order to visualize inner wall composition. This
imaging is performed because the intima-media thickness (IMT) of the major
arteries is an important indicator of atherosclerosis [3, 31, 35]. The most widely used
atherosclerosis indicator is the IMT of the carotid artery (CA), which has been used
in several different multi-center studies around the world [3, 10, 27, 33–36, 42].

The clinical measurement of the carotid IMT is not a trivial task. Usually, a
trained sonographer acquires a longitudinal projection of the CA and manually
measures the IMT by placing two markers in correspondence of the two most
evident interfaces of the image:

• The lumen-intima (LI) interface (depicted by the white line in Fig. 14.1), and
• The media-adventitina (MA) interface (depicted by the black line in Fig. 14.1).

The IMT is then defined as the geometrical distance (expressed in mm) between
the LI and the MA interfaces.

Manual measurements, besides being prone to errors and subjective interpre-
tations, are time consuming and little adapt to the new quality standard required by
modern clinical guidelines. For this reason, work following the pioneer research of
[30] has used computer methods to aid clinicians in measuring the carotid IMT.
Recently, Molinari et al. reviewed the most used IMT measurement techniques for
the carotid wall segmentation and IMT measurement from ultrasound images [20–
22]. The most diffused IMT measurement techniques are semi-automated, which
means that the human operator interacts with the computer program to drive (and
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optimize) the IMT measurement. The interaction between expert sonographers and
computer methods increases the accuracy and repeatability of IMT measurements
[8], but still lacks complete automation. Thus, the result depends on the human
operator.

In last five years, fully automated measurement techniques have been widely
developed. This growth in development is mainly because such techniques allow for
a complete independence from the user; thus, they are indicated for the processing of
large datasets, typical of multi-centric and epidemiological studies. Automated
techniques still underperform user-driven algorithms, because it is very difficult for
an automated algorithm to mimic the behavior of an expert sonographer.

In fact, when human operators drive the segmentation and an IMT measurement
in ultrasound images, they select the optimal image region based on experience. In
this scenario, skilled operators can select the correct morphological region (within
1 cm of the carotid bulb), with the lower influence given by noise. It is extremely
hard to reproduce this same process using an automated strategy. As a conse-
quence, usually user-independent methods segment image regions with suboptimal
characteristics (e.g., with artifacts, excessive noise, and defocused wall layers). To
give some normative data, considering the IMT thickness of 1 mm (in presence of
atherosclerosis), the average IMT measurement error for user-driven techniques
can be about 0.02 ± 0.01 mm [8], about 2 % of the nominal value. Despite
intelligent and optimized segmentation strategies, most of the automated tech-
niques reach performances that are about 0.03 ± 0.10 mm [20, 22–25], which
means about 3 % of the IMT value. However, it must be noted that the mea-
surement reproducibility (i.e., the standard deviation of the error) is roughly ten
times higher for automated methods.

A possible solution to cope with this underperformance of automated methods
is the extraction of further information from the ultrasound image. In a theoretical
and optimal processing pipeline, such information should be used by the seg-
mentation strategy to mimic the human operator decision process, and thus to
optimize segmentation. The idea presented in this chapter is to start analyzing the
information content of the ultrasound image at the pixel level.

Fig. 14.1 Longitudinal
projection of the CA. The
white line corresponds to the
lumen-intima (LI) interface
while the black line marks out
the media adventitina (MA)
interface
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In this study, we present a feature extraction technique for the classification of
ultrasound carotid artery pixels. This idea is based on hypothesis that increasing
the number of features used to build a classifier does not automatically increase
classifier accuracy, as several attributes may be irrelevant or, even worse, may
introduce noise which decreases classifier performance. To improve the classifi-
cation accuracy, it is then important to select useful features. A procedure per-
formed through selection or construction [16] usually reduces the number of
features. During construction, new attributes are created on the basis of some
original features. The disadvantage of this phase is that the results are difficult to
interpret because they do not correspond to the original features.

Feature selection is based on the idea that the number of attributes can be
reduced by collecting the smallest number of important features from the original
set, without negatively affecting classification accuracy. When feature selection is
needed, there must be an appropriate and well-defined criterion to measure the
relevance of the chosen features. However, the number of initial features is usually
large. It is computationally impossible to test all possible subsets, even if the
criterion is simple to evaluate. A heuristic procedure is then applied to find a good
set of features in a reasonable amount of time. Another important difference among
the possible feature selection methods is the fundamental hypothesis of linearity,
which is required by some of these. Most real situations are non-linear; for
example, two features may be useless individually but will become highly pre-
dictive if used together. In addition, it is important to notice that the required
training set should be larger for a larger number of features [12, 38].

From among the several approaches that are available for dimensional reduc-
tion, we chose to test three algorithms based on the Rough-Set Theory (RST):
QuickReduct Algorithm (QRA), Entropy-Based Algorithm (EBR), and Improved
QuickReduct Algorithm (IQRA) [14]. RST provides a formal methodology for
feature selection. Computationally, the approach is efficient and, unlike statistical
correlation-reducing approaches, requires no human input and preserves the
semantics of data making the results more understandable.

The purpose of this study is to promote calculating the large and overabundant
number of parameters extracted from ultrasound carotid images and then select a
smaller subset to classify the pixels into three classes (lumen, intima-media
complex, and adventitia). The selection was obtained through a feature selection
method based on rough set theory. In particular, we describe the use of QRA, EBR,
and IQRA and compare their performances.

14.2 Features Extraction and Selection

We tested a database consisting of 300 images from two institutions. One hundred
images were acquired at the Cyprus Institute of Neurology (Nicosia, Cyprus) from
100 healthy patients (age: 54 ± 24 years; range: 25–95 years) using a Philips ATL
HDI 3000 ultrasound scanner equipped by a linear 7–10 MHz probe. These images
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were resampled at a density of 16.67 pixels/mm, obtaining a pixel size of 60 lm.
The remaining 200 images were acquired at the Neurology Dept. of the Gradenigo
Hospital of Torino, Italy, from 150 patients (age: 69 ± 16 years; range:
50–83 years) using a Philips ATL HDI 5000 scanner. Resampling was set to
16 pixels/mm, leading to a calibration factor of 62.5 lm/pixel. Both institutions
obtained written, informed consent from the patients prior to enrolling them in the
study. The respective local ethical committees approved the acquisition of the
images, and all the subjects gave their informed consent. Three expert sonogra-
phers (a neurologist, vascular surgeon, and cardiologist) manually segmented the
images. They traced the boundaries of the lumen-intima (LI) and media-adventitia
(MA) interfaces. The average tracings were considered ground-truth (GT). The
images were first auto-cropped to remove the surrounding black frame, which
created the region of interest containing only the ultrasound data. The structure of
the auto-cropping technique is beyond the scope of this chapter [19].

This database included both healthy and pathological vessels. In addition, all
the possible carotid morphologies were represented: straight and horizontal vessels
(Fig. 14.2a), inclined vessels (Fig. 14.2b), and curved arteries (Fig. 14.2c).

14.3 Feature Extraction

In order to build the dataset used for feature selection, we identified three classes
of pixels according to their physiological meaning: lumen, intima-media complex,
and adventitia from ultrasound carotid images.

Fifty of the images were randomly selected. From each image, ten pixels per
class were chosen, for a total of 1,500 pixels. For each single pixel, we considered
intensity and parameters based on the intensity of the pixels around each test pixel.
That is if intensity and parameters belonged to statistical moments, estimates, and
texture features.

Texture is naturally used by humans when analyzing an image [1] and, in this
context, texture features are a set of digital parameters based on the spatial dis-
placement of the intensity levels in an image. They are based on the gray level co-
occurrence matrix (GLCM) [40], which can be calculated on an image I as:

GLCMDx;Dy i; jð Þ ¼
X

m

p¼1

X

n

q¼1

1 if I p; qð Þ ¼ i and I pþ Dx; qþ Dyð Þ ¼ j

0 otherwise
;

ffi

ð14:1Þ

where m� n is the image size and d ¼ Dx;Dyð Þ is the displacement. This matrix
reports how often a pixel with a gray level i occurs at distance Dx and Dy from
another pixel with a grey level j.

Image descriptors used in this work include:
Intensity of the single pixel,
First order statistics, including mean value, standard deviation, skewness and

kurtosis, and
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Texture features based on the spatial G = gray level dependence matrix
(SGLDM) [6]:

SGLDMDx;Dy i; jð Þ ¼ GLCMDx;Dy i; jð Þ
P

i

P

j GLCMDx;Dy i; jð Þ ð14:2Þ

We calculated the following parameters [40] with a displacement d ¼ 0; 1ð Þ:
Energy:

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

i

X

j

SGDLMDx;Dy i; jð Þ
� �2

s

ð14:3Þ

Fig. 14.2 Examples of the
possible carotid
morphologies: straight and
horizontal vessel (a), inclined
vessels (b), and curved
arteries (c). The white line
corresponds to the lumen-
intima (LI) interface while
the black line marks out the
media-adventitina (MA)
interface
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Contrast:

Co ¼
X

i

X

j

i� jð Þ2 � SGDLMDx;Dy i; jð Þ ð14:4Þ

Homogeneity:

H ¼
X

i

X

j

SGLDMDx;Dy i; jð Þ
1þ ði� jÞ2

ð14:5Þ

Entropy:

En ¼ �
X

i

X

j

SGLDMDx;Dy i; jð Þ � log SGLDMDx;Dy i; jð Þ ð14:6Þ

Moments m1, m2 and m4:

mg ¼
X

i

X

j

ði� jÞg � SGLDMDx;Dy i; jð Þ ð14:7Þ

Each of these parameters was based on the gray level difference method
(GLDM) [40]:

GLDMd kð Þ ¼
X

i

X

j

GLCMDx;Dy i; jð Þ; ð14:8Þ

where k ¼ ji� jj; k ¼ 0; 1; . . .; n� 1; n is the number of gray levels and d is the
difference between two pixels, we calculated the following descriptors [6] with a
displacement d ¼ ð0; 1Þ:

Contrast:

Con ¼
X

n�1

k¼1

GLDMd kð Þ ð14:9Þ

Angular Second Moment:

ASM ¼
X

n�1

k¼0

GLDMd kð Þ2 ð14:10Þ

Entropy:

Ent ¼ �
X

n�1

k¼0

GLDMd kð Þ � log GLDMd kð Þ ð14:11Þ

Mean:.

Mean ¼
X

n�1

k¼0

k � GLDMd kð Þ ð14:12Þ
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We calculated these measures based on the gray level run length matrix
(GLRLM) [6], in which each cell GLRLMdði; jÞ represents the number of occur-
rences of the j adjacent elements in direction d with gray level i. We calculated the
following features [6] for d equal to 0, 45, 90 and 135�:

Short Run Emphasis:

SRE ¼
P

i

P

j
GLRLMdði;jÞ

j2

�

P

i

P

j GLRLMdði; jÞ ð14:13Þ

Long Run Emphasis:

LRE ¼
P

i

P

j j2 � GLRLMdði; jÞ
.

P

i

P

j GLRLMdði; jÞ ð14:14Þ

Gray Level Distribution:

GLD ¼
P

i

P

j GLRLMd i; jð Þ
j k2�

P

i

P

j GLRLMd i; jð Þ ð14:15Þ

Run Length Distribution:

RLD ¼
P

j

P

i GLRLMd i; jð Þ
� �2

�

P

i

P

j GLRLMd i; jð Þ ð14:16Þ

Run Percentages:

RP ¼
P

i

P

j GLRLMdði; jÞ
.

A; ð14:17Þ

where A is the area of interest. Each of the above described features was calculated
on four areas centered on the selected pixel, with sizes 7 9 15, 15 9 7, 7 9 3, and
3 9 7 pixels. In this way, we obtained a total of 141 features for all analyzed
pixels.

14.4 Feature Selection

A literature survey provided us with applications for QRA, EBR, and IQRA, but
did not help us choose an experiment, and all of these methods were used for
experimentation.

All procedures were implemented in a MATLAB environment. Data was
organized in a matrix with each row corresponding to the extracted pixel and the
columns contain the 141 measured features.
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14.5 Rough Set Theory

Rough set theory (RST) is a powerful tool to model imperfect and incomplete
knowledge. As defined by Pawlak (2009), it does not require any apriori infor-
mation or model assumptions about data. In RST, data are organized in a decision
system (or decision table-DT), defined as a pair DT ¼ U;Að Þ where U is a non-
empty set of objects (the universe of discourse) and A is a non-empty set of
attributes. The attributes belong to two categories: conditional attributes C, which
represent the input features, and decision attribute D, which is the class of the
objects. These attributes can be formally depicted as A ¼ fC [ Dg and C \ D ¼ ;.

The principle of RST is that if two objects are indiscernible with respect to a
certain variable, then they should be classified in the same class. Hence, the
indiscernibility relation needs to be introduced with respect to a non-empty subset
P � A as:

IND Pð Þ ¼ x; yð Þ 2 U2 : 8a2P;a xð Þ ¼ a yð Þ
	 


ð14:18Þ

where a 2 A denotes the value of attribute a for a specific object and x; yð Þ is a pair
of objects indiscernible with respect to the P attributes. IND Pð Þ determines a
partition of the universe U denoted as U=IND Pð Þ or simply U=P.

Let X � U; X can be divided into two disjoint subsets using only the infor-
mation contained in P. The lower and upper approximations are defined respec-
tively as:

PX ¼ x 2 Uj½x�P � X
	 


ð14:19Þ

�PX ¼ x 2 Uj x½ �P \X ¼ ;
	 


; ð14:20Þ

where x½ �P denotes the equivalence classes of the indiscernibility relation with
respect to P. The P-lower approximation of Xs is the complete set of objects
certainly belonging to the target set X, according to the information carried on P,
while the P-upper approximation of X include the objects of Us which may
possibly belong to X. The couple PX;PX

� �

defines a rough set.
Using the two approximation concepts depicted above, three regions can be

defined: positive region, negative region, and boundary region.

• The positive region POSP Dð Þð Þ, includes all the objects of universe that can be
certainly classified into U=D classes by using only the attributes P:

POSP Dð Þ ¼
[

X2U=DPX: ð14:21Þ

• The negative region NEGP Dð Þð Þ is the complete set of objects that certainly
does not belong to the U=D classes, according to the attributes P:

•

NEGP Dð Þ ¼ U � [X2U=DPX: ð14:22Þ
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• The boundary region BNDP Dð Þð Þ contains objects that can possibly, but not
certainly, be classified into U=D classes:

BNDP Dð Þ ¼ [X2U=DPX � [
X2U=D

PX: ð14:23Þ

Let P � A be a subset of conditional features and D � A be the decision feature,
then the dependency degree between Pand D can be measured as:

cP Dð Þ ¼ jPOSP Dð Þj
jUj ; ð14:24Þ

where jj denotes the cardinality of set. This parameter expresses the importance of
P in classifying the objects of U into D. If cP Dð Þ ¼ 1 all values from D are
uniquely determined by values of attributes P [14] and the dataset is defined as
consistent. Real datasets are usually not consistent so the maximum value for
cP Dð Þ is less than 1 because D partially depends on P.

The minimal subset of conditional attributes R � A is called a reduct of the set
of conditional features C if cR Dð Þ ¼ cCðDÞ [14]. As a reduct, no attribute can be
removed from the subset without affecting the dependency degree, formally:

cR� af g Dð Þ 6¼ cR Dð Þ forall a 2 R: ð14:25Þ

As for a given dataset many reduct subsets may exist; the intersection of all
reducts is called the core and is composed of those attributes that cannot be
eliminated without information loss.

In the past, RST has found different areas of application, such as machine
learning [26], knowledge acquisition [9, 18], decision analysis [11, 29], pattern
recognition [39], knowledge discovery from databases, and expert systems [43].
Recently, feature selection has been an important field in which RST has been
employed, with satisfactory results.

Feature selection is a procedure that permits the dimensional reduction of
multivariate data, in order to extract the most significant information from a high-
dimensional dataset. The main concept is that, given a dataset with discretized
attribute values, it is possible to find a subset (reduct) of the original attributes,
using RST, which is the most informative; all other attributes can be removed from
the dataset with minimal information loss [14]. Using this method, it is possible to
highlight relevant features while reducing computational time and maintaining the
quality of object classification. All feature selection strategies based on the rough-
set method can be divided in two steps: (1) discretization of real numerical fea-
tures, and (2) application of a feature selection technique.

As the classical rough-set approach uses only discrete data, we discretized the
continuous features by looking to the data plots of each feature. For each variable,
different intervals of values have been identified enabling the passage from con-
tinuous values to a number of discrete elements. The discretized dataset has then
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been used for the feature selection and evaluated by means of the dependency
degree measure.

The most obvious way to find a reduct with the minimal cardinality is to
generate all possible reducts and then choose the smallest. As this method is not
effective and often inapplicable for large datasets, several techniques for attribute
reduction have been developed over the past few years, as depicted in [41]. The
next section focuses on the simplest and most used method for feature selection
based on the RST: the QuickReduct Algorithm (QRA).

14.6 QuickReduct Algorithm

QRA, introduced in [37], is a basic tool that allows users to resolve reduct search
problems without generating all the possible subsets. The method is based on the
dependency degree measured between a decision attribute D and the subset of
conditional features C analyzed to be a reduct.

The algorithm starts from an empty subset of features and adds the best attri-
butes to it until a stopping criterion is satisfied. As the goal of QRA is to find a
reduct, with the same dependency degree of the entire set of attributes, this
parameter is chosen as stopping criterion. The maximum dependence value results
in 1 if the dataset is consistent. Consequently, attributes added to the reduct subset
are those producing a larger increase in the dependency degree. The pseudo-code
of QRA [14] is depicted in Fig 14.3.

This algorithm, however, is not guaranteed to find a minimal reduct, that is the
feature subset discovered may contain irrelevant attributes. The classification
accuracy may be degraded when designing a classifier using a feature subset with
irrelevant features [5].

Fig. 14.3 QuickReduct
algorithm pseudo-code
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14.7 Entropy-based Reduct

A further easy feature selection algorithm, with structure similar to the QRA, is the
Entropy-based Reduct (EBR) algorithm, developed by [13]. This algorithm is
based on the measure of conditional information entropy H DjAð Þð Þ produced by an
attribute A with respect to the decision feature D:

H DjAð Þ ¼ �
X

m

j¼1

p aj

� �

X

n

i¼1

p cijaj

� �

� log2 p cijaj

� �

 !

; ð14:26Þ

where a1. . .am and c1. . .cn are the values of attributes A and D, while p aj

� �

is the
probability that the value aj occurs and p cijaj

� �

is the conditional probability of aj

given ci.
This measure allows the evaluation of the information content generated by an

information source [17]. The equation written above can be extended from one
conditional attribute to the whole set of attributes, so that it can be used as a
stopping criterion for the EBR algorithm. For a consistent dataset, the maximum
value of entropy is 0. In this way, an algorithm similar to QRA can be imple-
mented adding to the current subset, in each iteration, those features resulting in a
higher decrease of entropy. The reduct search stops when the resulting subset
reaches the same entropy of all the available attributes. Figure 14.4 shows the EBR
pseudo-code [14].

As this algorithm has the same structure of QRA, it suffers from the same limits
of the QRA and does not guarantee to find a minimal reduct.

Fig. 14.4 Entropy-based
reduct algorithm pseudo-code
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14.8 Variable Precision Rough-Set

Although widely used for classification tasks and feature selection problems, RST
has some limitations, and may manage only objects that have entirely correct or
certain classifications. This requirement means that no degree of classification
uncertainty is admitted, even if the information about data are only partial. In
addition, RST assumes that the entire universe U is composed only of the data
under consideration. Then, the conclusions derived from this model are applicable
exclusively to this set of elements [45].

Reference [45] introduced the variable precision rough set (VPRS) theory, a
generalization of the standard RST, which surpasses the above depicted limits and
admits a degree of misclassification. Thus, RST becomes a special case of VPRS.

Let X and Y be non-empty subsets of a universe U of objects. VPRS introduces the
measure of relative degree of misclassification c(X, Y) of set X with respect to set Y:

c X; Yð Þ ¼ 1� jX \ Y j
jXj ; ð14:27Þ

where jj denotes the set cardinality. If 0� b\0:5 is the admissible classification
error, it is possible to redefine all rough-set concepts starting from the majority
inclusion relation that may be generalized as:

Yb
	X if and only if c X; Yð Þ� b ð14:28Þ

By replacing the standard inclusion relationship with this generalized relation,
the b-approximations and the b-regions can be defined as:

PbX ¼ x 2 Uj x½ �P
b
�X

n o

¼ x 2 Ujc x½ �P;X
� �

� b
	 


PbX ¼ x 2 Ujc x½ �P;X
� �

� 1� b
	 


POSP;b Dð Þ ¼
[

X2U=D

PbX ¼
[

X2U=D

x 2 Ujc x½ �P;X
� �

� b
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BNDP;b Dð Þ ¼
[

X2U=D
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�
[

X2U=D

PbX ¼
[

X2U=D

x 2 Ujb\c x½ �P;X
� �

\1� b
	 


ð14:29Þ

Let P � A be a subset of conditional features and D � A the decision feature, it
is possible to measure the b-dependency degree as:

cP;b Dð Þ ¼ jPOSP;b Dð Þj
jUj ð14:30Þ

The standard RST definitions are obtained from the above equations setting
b ¼ 0.
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14.8.1 Improved QuickReduct Algorithm

As with RST, QRA has some limits due to the assumption about the monotonicity
of dependency degree. This assumption means that c increases at each iteration
and differs from zero at the first iteration. If these conditions are not satisfied, a
random choice of features is performed, leading to a reduct with more attributes.
Moreover, QRA ignores the redundancy in the dataset objects and the objects
included in the positive region in an intermediate iteration will not contribute/add
any more knowledge to the rest of iterations [32]. Deleting redundant elements
from dataset reduces computational time for QRA.

These limitations led practitioners to modify the standard algorithm using
different strategies, in order to improve the feature selection phase and conse-
quently the classification task. One such approach, based on VPRS, is proposed in
[32]. In this study the authors present the improved quick reduct algorithm
(IQRA), which deletes redundant elements from the analyzed dataset. The IQRA
pseudocode is depicted in Fig. 14.5.

IQRA is similar to QRA. The algorithm starts with an empty features subset and
then adds, at every iteration, those attributes which induce the greatest increment

Fig. 14.5 Improved
QuickReduct Algorithm
pseudo-code
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in the dependency degree cR;1 Dð Þ
� �

: If no increase during iteration occurs, the
VPRS is taken into account. In such a situation the dependency degree with
tolerance b cR;b Dð Þ

� �

is calculated, until a new feature is found or b cannot be
reduced any further. In the latter case, the first available feature is included in
R. After including a new attribute, the positive region with tolerance 1
POSR;1 Dð Þ
� �

is calculated and the objects belonging to this set are deleted from the
decision table (DT). These elements would be redundant for the next iterations. At
the end of the current cycle, the algorithm restarts until the dependency degree
with tolerance 1 reaches the maximum value.

14.9 Classification

In this chapter, three different feature selection strategies were used and their
performances were compared using an artificial neural network (ANN). The idea
behind this method is that a good feature selection procedure allows for removing
redundant features so that the reduct provides the same quality of classification of
the original set [5] or even improves it.

For the ANN structure, we started the network with one neuron for each feature
in the input layer and terminated with one output neuron, progressively reducing
the number of neurons of one element through every hidden layer. As for the
neuron activation functions, we used a logarithmic sigmoid function for the hidden
layers and a linear function for the output layer. Back-propagation was chosen as
the learning algorithm and the mean squared error was used as a performance
function. The initial values of interconnection weights were set randomly. The
ANNs were implemented by means of the Neural Network Matlab toolbox, using
the entire input dataset as training set. A schematic description of the three ANNs
is reported in Fig. 14.6.

Fig. 14.6 Schematic description of ANNs employed in order to test different feature selection
strategies. The network consists of an input layer made up of a number of neurons equal to the
number of input features, a certain number of hidden layers with logarithmic sigmoid activation
function and with a number of neurons progressively reduced of one element so that the output
layer results made up of only one neuron with a linear activation function
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14.10 Feature Selection Process

The process performed to optimize feature selection for pixel classification con-
sisted of several steps that are depicted in Fig. 14.7. Each pixel has 141 associated
features and it belongs to one of the three classes.

We began with the application of QRA, EBR, and IQRA to an initial dataset
(DS1) of 500 elements for each class. As shown in Table 14.1, each tested
reduction method, applied on the same dataset, returned a different subset of
features (respectively, FSQRA, FSEBR, and FSIQRA) containing 10 or 11 attributes
with a dependency degree slightly lower than 1.

The performances of the subsets were then compared using ANNs. For this
portion of the experiment, we built three networks, each with a structure similar to
that depicted in the previous section, using the attributes selected by means of
QRA, the attributes chosen from EBR, and the attributes extracted by IQRA as
input data. All networks were tested with the same dataset used as training set.

Although the accuracy for correct classification was more than 91 % for all
methods, FSQRA achieved a classification accuracy of 97.47 %.

Figure 14.8 shows the percentage of correct classification for pixels belonging
to each class for each feature selection procedure. Table 14.2 shows that while
more than 95 % of lumen pixels are classified in the right class, the percentage of
correct classification slightly decreases for the other two classes, while remaining
above 85 % (Fig. 14.8).

Two more datasets (DS2 and DS3) similar to the first one but containing the
characteristics of different pixels were used first to validate the results and then to
classify all the pixels of 50 test images. The classification results on the three
datasets were equivalent. The classification errors related to each dataset corre-
sponded to different pixels, indicating the need of further increasing the classifi-
cation accuracy. To improve the correct classification of the image pixels, we built
a classifier based on the combination of three ANNs each trained with a different
dataset and a voting system [15]. Classifier results depicted the class with at least
two votes. If each ANN output was different, the pixel was not classified. The
image pixel classification obtained with this classifier was better than the classi-
fication obtained separately by each ANN. Figure 14.9a shows the results achieved
by applying the classifier to a portion of the carotid image. Similar results were
obtained on all the other images.

To reduce the classification error further, we decided to increment the initial
datasets adding 300 pixels manually selected, on the tested images, among those
resulting in a wrong. Such a procedure increased the number of pixel in each
dataset up to 1,800. An example of a pixels zone added to the 1,500 pixels datasets
is showed in Fig. 14.9a.

Each incremented dataset (we called DS1a the incremented dataset obtained by
DS1; the same was for DS2a, and DS3a, which were obtained by DS2 and DS3,
respectively) was used to perform new feature extractions using only QRA. This
procedure returned three feature subsets (FSDS1a, FSDS3a, and FSDS3a), with a
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between eight and nine selected features and a dependency degree equal to 1 in all
three cases (Table 14.3).

The three subsets were then compared using the ANNs in which each dataset
was used both as testing set and as training set. The percentage of correct

Fig. 14.7 Schematic representation of the process performed to optimize feature selection using
the classical symbols of flowcharts. In this image, the process symbols are identified the
procedural steps, the data symbol represents the input of the single step, and the document symbol
indicates the output of the steps. The two data symbols on the diagram top represent the input of
the entire system
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Table 14.1 Features selected from QRA

FSQRA

Rectangle dimension 7 9 15 Standard deviation
SGLDM—m4

GLDM-SRE 0�
15 9 7 SGLDM—m1

GLDM-Con
GLDM-GLD 0�
GLDM-SRE 90�

7 9 3 Standard deviation
SGLDM—m1

3 9 7 Mean value
GLRLM-RLD 0�

Features extracted applying QRA on a dataset made up of 1,500 pixels (FSQRA)

Fig. 14.8 The percentage of correct classification for pixels belonging to lumen, IM complex
and adventitia for three tested feature selection procedures

Table 14.2 Feature selection method performances

FS method Number of features c Percentage of correct classification (%)

QRA 11 0.996 97.47
EBR 10 0.996 91.73
IQRA 10 0.995 91.87

The table below shows the results of three tested reduction methods, listed in the first column,
applied on the same dataset made up of 1,500 pixels. The second and third columns contain the
number of selected features and the reduct dependency degree, respectively. The last column
reports the method performances in terms of percentage of correct classification

326 S. Rosati et al.



classification resulted higher than 82 % for all nets (Table 14.3, third column),
while the best performances were obtained with FSDS2a that allowed identifying
the right class for the 91.56 % of pixels.

Fig. 14.9 Comparison between the first version of voting classifier, a trained with three datasets
of 1,500 pixels each and the final voting classifier, b trained with three datasets of 1,800 pixels
each. Red, blue, and green points mark the pixels classified as belonging to lumen, IM, and
adventitia classes, respectively. Pixels not classified by the voting procedure are indicated with
yellow points. The white circle highlights an example of pixels zone added to the initial datasets.
These pixels are chosen among those pixels resulting in a wrong class from the first voting
classification (a) and in the last classifier the same pixels result in correct class (b). The white line
corresponds to the lumen-intima (LI) interface, the black line marks out the media-adventitina
(MA) interface, and the yellow line delimits the far adventitia layer

Table 14.3 QRA results

Dataset used for FS Number of features c Percentage of correct classification (%)

DS1a 9 1 82.94
DS2a 8 1 91.56
DS3a 9 1 86.06

Results of feature reduction performed by means of QRA on three datasets made of 1,800 pixels
each. The second and third columns contain the number of selected features and the reduct
dependency degree, respectively. The last column reports the methods performances in terms of
percentage of correct classification
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Figure 14.10 shows the percentage of correct classification of pixels belonging
to the different classes for each extracted subset. It can be noted that while more
than 95 % of lumen pixels are classified in the right class, the percentage of correct
classification slightly decreases for the other two classes.

The features extracted from DS2a, listed in Table 14.4, were selected to perform
a new validation step and then to classify all the pixels of the test images. Again we
built a classifier based on three ANNs and a voting system. By comparing the
results of the two classifiers, it can be seen that the total error was reduced.
Fig. 14.9b shows the pixel classification performed on a portion of the US carotid
artery image with the new classifier. Even if there were still misclassified pixels, the
performances of the new classifier were acceptable and similar on all the test
images. As an example, we report two images of a carotid without (panel A) and
with plaque (panel B) in Fig. 14.11.

Fig. 14.10 Percentage of correct classification for pixels belonging to lumen, IM complex, and
adventitia using three feature subsets extracted by means of QRA applied on three datasets

Table 14.4 Features selected: features extracted applying QRA on the second dataset made up
of 1,800 pixels (FSDS2a)

FSDS2a

Rectangle dimension 7 9 15 Mean value
GLDM-Con
GLRLM-LRE 0�
GLRLM-GLD 0�

15 9 7 Standard deviation
GLDM-ASM

7 9 3 GLRLM-GLD 45�
GLRLM-RLD 90�

3 9 7 GLRLM-SRE 0�

328 S. Rosati et al.



From this analysis, the subset with the best performance was selected and a new
voting classifier was built based on the outcomes of three ANNs. As for the previous
classifier, the three networks were obtained using three datasets as a training set.

14.11 Data Interpretation and Discussion

Because of the complexity and the variety of the typology of analyzed images, many
variables must be considered in order to gain a complete description of the system.
For this study, we derived 141 features entailing the construction of large datasets.

First, we compared the performances of three feature selection methods in
identifying a minimal subset of variables to keep the same amount of relevant
information contained in the set of parameters derived from the US carotid images.
Such a procedure allowed us to emphasize the relevant attributes to obtain reliable
classification. The pixel classification was assessed by means of ANNs, an
unsupervised procedure in which knowledge is acquired by the network through a
learning process.

Results presented in the previous section lead to the observation that the fea-
tures selected by QRA give the best results. Although the single pixel classification
using the two feature subsets derived from QRA and listed in Tables 14.2 and 14.4
is encouraging, the selected subset of features changes using different data sets;

Fig. 14.11 The final voting
classifier performance in
classifying a portion of two
carotid images without
plaque (a) and with plaque
(b)
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because, there is no correlation among the variables included in the subsets and the
classification applied to the test images was acceptable.

A possible limitation of the procedure implemented in this study is its low
robustness in the feature extraction stage: if the dataset is too small, the procedure
could not extract all the features required for a proper classification. This limitation
may be removed by increasing the number of elements that compose the dataset, so
that all possible typologies of pixels can be taken into account for the feature
selection. This step is important when dealing with multi-institutional and multi-
ethnic databases, where a wide variety of pixel characteristics could be expected, for
example in ultrasound imaging. Ultrasounds are user-dependent imaging modalities,
since different sonographers could acquire different images of the same patient.
Variability in ultrasound images is also increased by noise (and, particularly, speckle
noise, which is typical of the multi-scattering of the ultrasound pulse), by the settings
of the ultrasound device (i.e., intensity compensation, overall gain, time compen-
sation, grayscale settings, dynamic range), and by the type and frequency of ultra-
sound probe. In summary, many causes determine the variability of the pixel
intensities, distribution, and classes. Therefore, extensive and large validation studies
are required to characterize the performance of feature selection approaches fully.

Despite the challenges that still need to be faced, this method is a novel approach
toward automated feature selection in ultrasound carotid imaging that was specif-
ically designed to improve the overall far wall segmentation performance.

In this optic, the results we showed, even though still preliminary, are
encouraging. Figures 14.9 and 14.11 show the first classification samples. It can be
observed that the overall classification of the pixels is good, despite the presence of
some misclassified points in the three classes. However, Figs. 14.9 and 14.11
demonstrate that the class boundaries are correctly traced in correspondence of the
manually traced LI and MA ground-truth profiles. The classification procedure was
not influenced by the artery morphology and could correctly process normal
(Fig. 14.11a) as well as plaqued (Fig. 14.11b) carotids.

In conclusion, selection and reduction could be an important pre-processing
strategy for increasing the segmentation performance of automated ultrasound
techniques. This step, which is to be performed prior of the actual IMT mea-
surement, can foster the image knowledge discovery at pixel level, thus providing
a reduced and organized set of parameters to segmentation techniques.
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