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Preface

Rapid recent advances in automated data collection routines in clinical sciences
have led to a tsunami of patient-oriented data stored in distributed, heterogeneous,
and large databases and datamarts. The lack of existing computing tools to enable
connectivity and interoperability between these fragmented sources and scattered
locations (issues concerning accessibility), and to perform machine learning on
heterogeneous and highly dimensional data sources (issues concerning complex-
ity), is an overbearing impediment, not only to healthcare sciences, but also to
computational research. Moreover, the rapid deployment of high speed networks
coupled with developments in knowledge discovery, bolstered by mobile tech-
nologies has amplified the emphatic demand for a unifying, coherent computing
resources designed to accommodate, enhance, and empower multidisciplinary, and
multi-institutional healthcare informatics research.

Healthcare data is complex, highly context-dependent, inherently heteroge-
neous, and high dimensional—generating an amalgamation of computing research
challenges that renders the extraction of insightful knowledge through interpre-
tation of raw data a challenging computational task. These data resources
encompass a spectrum of data types ranging from free-text notes to complex image
types such as position emission tomography scans. As clinical data collection
technologies continue to grow and storage costs continue to fall, more complex
data types such as hyperspectral images are becoming available in abundance.
These diverse and prolific data sources provide an outstanding research test bed for
development of the novel machine learning algorithms that are at the heart of the
current data-rich but information-poor paradigm, saddling many disciplines out-
side of just health care. It is evident that an integrated, panoramic view of data will
provide an opportunity for previously impossible clinical insights and discoveries.

The book provides a unique compendium of current and emerging machine
learning paradigms for healthcare informatics. Chapters provided by established
scientists in the area with the wealth of experience in the area, and have been
carefully selected to reflect the diversity, complexity, and the depth and breath of
this multidisciplinary area. Machine learning paradigms in healthcare informatics
such as the ones presented in the chapters offer the promise of precise, objective,
and accurate in-silico analysis of this emerging area using information learning
routines that reveal embedded patterns, trends, and anomalies in order to create
models for faster and more accurate physiological and healthcare discovery.
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Chapter 1 provides an introduction to machine learning in healthcare infor-
matics. The chapter provides an overview of the data and knowledge discovery
challenges associated in the field of healthcare informatics. It introduces the
challenges of machine learning in the area and the relevant areas of investigation
in the area. The chapter explains the taxonomy of the healthcare informatics area
and the current and provides an overview of the current efforts and emerging
challenges of the Electronic Health Records (EHR) systems.

Chapter 2 discusses a machine learning approach to screen arrhythmia from
normal sinus rhythm from the ECG. The methodology consists of R-point
detection using the Pan-Tompkins algorithm, discrete wavelet transform (DWT)
decomposition, subband principal component analysis (PCA), statistical validation
of features, and subsequent pattern classification. Different classifiers used were
Gaussian mixture model (GMM), error back propagation neural network (EB-
PNN), and support vector machine (SVM). Results indicate that the Symlet-2
wavelet basis function provided the highest accuracy in classification. Among the
classifiers, SVM yields the highest classification accuracy, whereas EBPNN yields
a higher accuracy than GMM.

Uncontrolled diabetes may lead to many serious complications. The result may
be ketosis, which is normally due to an increase of acetone (a toxic acid product)
and may lead to a situation such as diabetic coma. A fuzzy logic control system for
the regulation of glucose level for diabetic patients was proposed in Chap. 3. A
mathematical model describing the relationship between the human glucose level,
insulin, and food was first presented. Then, a generalized fuzzy logic controller,
including a set of fuzzy logic rules, is introduced to regulate glucose levels for
diabetic patients. Following the fuzzy logic controller, simulation is presented. The
results show that the fuzzy logic control is effective for handling the glucose level
based on feedback scheme.

An integrated methodology for electrocardiogram (ECG)-based differentiation
of arrhythmia and normal sinus rthythm using genetic algorithm optimized k-means
clustering was discussed in Chap. 4. Open source databases consisting of the MIT
BIH arrhythmia and MIT BIH normal sinus rhythm data were used. The meth-
odology consists of QRS-complex detection using the Pan-Tompkins algorithm,
principal component analysis (PCA), and subsequent pattern classification using
the k-means classifier, error back propagation neural network (EBPNN) classifier,
and genetic algorithm optimized k-means clustering. The k-means classifier pro-
vided an average accuracy of 91.21 % over all folds, whereas EBPNN provided a
greater average accuracy of 95.79 %. In the proposed method, the k-means clas-
sifier is optimized using the genetic algorithm (GA), and the accuracy of this
classifier is 95.79 %, which is equal to that of EBPNN.

Pixel/voxel-based machine learning (PML) is a powerful tool in computer-
aided diagnosis (CAD) schemes for detection of lesions in medical images.
Massive-training ANNs (MTANNs) were used for improving the performance
(i.e., both sensitivity and specificity) of CAD schemes for detection of lung
nodules in computer tomography (CT) and the detection of polyps in CT colo-
nography in Chap. 5. The MTANN supervised filter is effective for enhancement


http://dx.doi.org/10.1007/978-3-642-40017-9_1
http://dx.doi.org/10.1007/978-3-642-40017-9_2
http://dx.doi.org/10.1007/978-3-642-40017-9_3
http://dx.doi.org/10.1007/978-3-642-40017-9_4
http://dx.doi.org/10.1007/978-3-642-40017-9_5

Preface vii

of lesions including lung nodules and colorectal polyps and suppression of non-
lesions in medical images, which contributed to the improvement of the sensitivity
as well as specificity in the initial lesion detection stage in CAD schemes, whereas
the classification MTANNSs contributed to the improvement of specificity in the
false positive (FP) reduction stage in CAD schemes.

Understanding the biomechanics of the human foot during each stage of
walking is important for the objective evaluation of movement dysfunction,
accuracy of diagnosis, and prediction of foot impairment. In Chap. 6 Bayesian
Network (BN) was used to extract the probabilistic causal information of foot
function data, such as muscle activities, plantar pressures, and toe trajectories,
from different types of data on human walking phases. The graphical networks
extracted from the three stages of the stance phase of gait measurement data were
useful for understanding the foot function of the normal walking and simulated
hemiplegic walking. Thus, understanding the foot function during walking is
important for further analysis of diagnostic, therapy, and training programs for foot
impairment.

Successful application of machine learning in health care requires accuracy,
transparency, acceptability, ability to deal with complex data, ability to deal with
background knowledge, efficiency, and exportability. Rule learning is known to
satisfy the above criteria. Chapter 7 introduces rule learning in health care, pre-
sents very expressive attributional rules, briefly describes the AQ21 rule learning
system, and discusses three application areas in healthcare and health services
research.

In the past two decades, machine learning techniques have been extensively
applied for the detection of neurologic or neuropsychiatric disorders, especially
Alzheimer’s disease (AD) and its prodrome, mild cognitive impairment (MCI).
Chapter 8 presents some of the latest developments in the application of machine
learning techniques to AD and MCI diagnosis and prognosis. Discussion on how
various biomarkers as well as connectivity networks can be extracted from the
various modalities, such as structural Tl1-weighted imaging, diffusion-tensor
imaging (DTI), and resting-state functional magnetic resonance imaging (fMRI),
for effective diagnosis and prognosis was provided in detail.

Chapter 9 discusses several examples of how machine learning algorithms can
be used to guide clinical decision making, and to generate scientific insights about
these decisions. The focus of the chapter has been on rehabilitation in home care.
In clinical applications, it was shown that machine learning algorithms can pro-
duce better decisions than standard clinical protocols. A “simple” algorithm such
as KNN may work just as well as a more complex one such as the SVM. More
importantly, it was shown that machine learning algorithms can do much more
than make “black-box” predictions; they can generate important new clinical and
scientific insights. This can be used to make better decisions about treatment plans
for patients and about resource allocation for healthcare services, resulting in
better outcomes for patients, and in a more efficient and effective healthcare
system.
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The widespread adoption of electronic health records in large health systems,
combined with recent advances in data mining and machine methods, creates
opportunities for the rapid acquisition and translation of knowledge for use in
clinical practice. One area of great potential is in risk prediction of chronic pro-
gressive diseases from longitudinal medical records. Chapter 10 illustrates this
potential of using a case study involving prediction of heart failure. Throughout,
we discuss challenges and areas in need of further development.

Chapter 11 provides a framework to improve the physicians’ diagnostic accu-
racy with the aid of machine learning algorithm. The resulting system is effective
in predicting patient survival, and rehab/home outcome. A method has been
introduced that creates a variety of reliable rules that make sense to physicians by
combining CART and C4.5 and using only significant variables extracted via
logistic regression. A novel method for assessment of Traumatic Brain Injury
(TBI) has also been presented. The ability of such a system to assess levels of
Intracranial Pressure (ICP) as well as predict survival outcomes and days in ICU,
together encompasses a wholesome diagnostic tool, which can help improve
patient care as well as save time and reduce cost.

One of the most crucial problems facing the U.S. government is fraud in
healthcare system. Due to a large amount of data, it is impossible to manually audit
for fraud. Hence, many statistical approaches have been proposed to overcome this
problem. As fraud can be committed in complex and numerous ways, fraud
detection is challenging, and there is a greater need for working models for fraud
detection, including types of fraud that are not yet in use, as these models will not
be outdated quickly. To establish a well-functioning healthcare system, it is
important to have a good fraud detection system that can fight fraud that already
exists and fraud that may emerge in future. In Chap. 12 an attempt has been made
to classify fraud in the healthcare system, identify data sources, characterize data,
and explain the supervised machine learning fraud detection models.

A migraine is a neurological disorder that can be caused by many factors,
including genetic mutations, lifestyle, cardiac defects, endocrine pathologies, and
neurovascular impairments. In addition to these health problems, an association
between some types of migraines and increased cardiovascular risk has emerged in
the past 10 years. Moreover, researchers have demonstrated an association
between migraines and impaired cerebrovascular reactivity. It is possible to
observe carbon dioxide dysregulation in some migraineurs, while others show a
markedly decreased vasomotor reactivity to external stimuli. Therefore, the
assessment of the cerebrovascular pattern of migraineurs is important both for the
onset of a personalized therapy and for follow-up care. Chapter 13 discusses the
analysis of hemodynamic changes during external stimulation using near-infrared
spectroscopy (NIRS) signals.

The segmentation of the carotid artery wall is an important aid to sonographers
when measuring intima-media thickness (IMT). Automated and completely user-
independent segmentation techniques are gaining increasing importance, because
they avoid the bias coming from human interactions. Chapter 14 discusses the
calculation of the large and overabundant number of parameters extracted from
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ultrasound carotid images and then selects a smaller subset to classify the pixels
into three classes (lumen, intima-media complex, and adventitia). The selection
was obtained through a feature selection method based on rough set theory. In
particular, the use of QuickReduct Algorithm (QRA), the Entropy-Based Algo-
rithm (EBR), and the Improved QuickReduct Algorithm (IQRA) was discussed.

Many authors have contributed to this book with their tremendous hard work
and valuable time. We deeply thank them for their great contributions. In no
particular order, they are: Roshan Joy Martis, Chandan Chakraborty, Ajoy Kumar
Ray, K. Y. Zhu, W. D. Liu, Y. Xiao, Teik-Cheng Lim, Hari Prasad, Kenji Suzuki,
Myagmarbayar Nergui, Jun Inoue, Murai Chieko, Wenwei Yu, Janusz Wojtusiak,
Chong-Yaw Wee, Daoqgiang Zhang, Luping Zhou, Pew-Thian Yap, Dinggang
Shen, Mu Zhu, Lu Cheng, Joshua J. Armstrong, Jeff W. Poss, John P. Hirdes, Paul
Stolee, Walter F. Stewart, Jason Roy, Jimeng Sun, Shahram Ebadollahi, Ashwin
Belle, Soo-Yeon Ji, Wenan Chen, Toan Huynh, and Kayvan Najarian, Sonali Bais,
Samanta Rosati, Gabriella Balestra, Filippo Molinari, Samanta Rosati, Gabriella
Balestra, and Jasjit S. Suri.

Sumeet Dua
U. Rajendra Acharya
Prerna Dua



Contents

1 Introduction to Machine Learning in Healthcare Informatics. . . . 1
Pradeep Chowriappa, Sumeet Dua and Yavor Todorov

2 Wavelet-based Machine Learning Techniques
for ECG Signal Analysis. . . ... ......... ... .. .. ... ..... 25
Roshan Joy Martis, Chandan Chakraborty and Ajoy Kumar Ray

3 Application of Fuzzy Logic Control for Regulation
of Glucose Level of Diabetic Patient . . . ... ................ 47
K. Y. Zhu, W. D. Liu and Y. Xiao

4  The Application of Genetic Algorithm for Unsupervised
Classification of ECG . . . .. ............................ 65
Roshan Joy Martis, Hari Prasad, Chandan Chakraborty
and Ajoy Kumar Ray

5  Pixel-based Machine Learning in Computer-Aided Diagnosis
of Lung and Colon Cancer . . .. ....... ... ... ... ......... 81
Kenji Suzuki

6  Understanding Foot Function During Stance Phase by Bayesian
Network Based Causal Inference. . . . ..................... 113
Myagmarbayar Nergui, Jun Inoue, Murai Chieko,

Wenwei Yu and U. Rajendra Acharya

7  Rule Learning in Healthcare and Health Services Research. . . . . 131
Janusz Wojtusiak

8 Machine Learning Techniques for AD/MCI
Diagnosis and Prognosis . . . ... .......... ... .. .. .. ..... 147
Dinggang Shen, Chong-Yaw Wee, Daogiang Zhang,
Luping Zhou and Pew-Thian Yap

xi


http://dx.doi.org/10.1007/978-3-642-40017-9_1
http://dx.doi.org/10.1007/978-3-642-40017-9_2
http://dx.doi.org/10.1007/978-3-642-40017-9_2
http://dx.doi.org/10.1007/978-3-642-40017-9_3
http://dx.doi.org/10.1007/978-3-642-40017-9_3
http://dx.doi.org/10.1007/978-3-642-40017-9_4
http://dx.doi.org/10.1007/978-3-642-40017-9_4
http://dx.doi.org/10.1007/978-3-642-40017-9_5
http://dx.doi.org/10.1007/978-3-642-40017-9_5
http://dx.doi.org/10.1007/978-3-642-40017-9_6
http://dx.doi.org/10.1007/978-3-642-40017-9_6
http://dx.doi.org/10.1007/978-3-642-40017-9_7
http://dx.doi.org/10.1007/978-3-642-40017-9_8
http://dx.doi.org/10.1007/978-3-642-40017-9_8

Xii

10

11

12

13

14

Contents

Using Machine Learning to Plan Rehabilitation for Home

Care Clients: Beyond “Black-Box” Predictions . . . .. ......... 181
Mu Zhu, Lu Cheng, Joshua J. Armstrong, Jeff W. Poss,

John P. Hirdes and Paul Stolee

Clinical Utility of Machine Learning and Longitudinal
EHRData . ...... ... .. ... . ... . . . .. . 209
Walter F. Stewart, Jason Roy, Jimeng Sun and Shahram Ebadollahi

Rule-based Computer Aided Decision Making for Traumatic

Brain Injuries . ......... .. .. .. .. .. .. .. 229
Ashwin Belle, Soo-Yeon Ji, Wenan Chen, Toan Huynh

and Kayvan Najarian

Supervised Learning Methods for Fraud Detection
in Healthcare Insurance . . . ... ......................... 261
Prerna Dua and Sonali Bais

Feature Extraction by Quick Reduction Algorithm:

Assessing the Neurovascular Pattern of Migraine

Sufferers from NIRS Signals. . . . ........................ 287
Samanta Rosati, Gabriella Balestra and Filippo Molinari

A Selection and Reduction Approach for the Optimization

of Ultrasound Carotid Artery Images Segmentation. . . . .. ... .. 309
Samanta Rosati, Gabriella Balestra, Filippo Molinari,

U. Rajendra Acharya and Jasjit S. Suri


http://dx.doi.org/10.1007/978-3-642-40017-9_9
http://dx.doi.org/10.1007/978-3-642-40017-9_9
http://dx.doi.org/10.1007/978-3-642-40017-9_9
http://dx.doi.org/10.1007/978-3-642-40017-9_9
http://dx.doi.org/10.1007/978-3-642-40017-9_10
http://dx.doi.org/10.1007/978-3-642-40017-9_10
http://dx.doi.org/10.1007/978-3-642-40017-9_11
http://dx.doi.org/10.1007/978-3-642-40017-9_11
http://dx.doi.org/10.1007/978-3-642-40017-9_12
http://dx.doi.org/10.1007/978-3-642-40017-9_12
http://dx.doi.org/10.1007/978-3-642-40017-9_13
http://dx.doi.org/10.1007/978-3-642-40017-9_13
http://dx.doi.org/10.1007/978-3-642-40017-9_13
http://dx.doi.org/10.1007/978-3-642-40017-9_14
http://dx.doi.org/10.1007/978-3-642-40017-9_14

Chapter 1
Introduction to Machine Learning
in Healthcare Informatics

Pradeep Chowriappa, Sumeet Dua and Yavor Todorov

Abstract Healthcare informatics, a multi-disciplinary field has become synony-
mous with the technological advancements and big data challenges. With the need
to reduce healthcare costs and the movement towards personalized healthcare, the
healthcare industry faces changes in three core areas namely, electronic record
management, data integration, and computer aided diagnoses. Machine learning a
complex field in itself offers a wide range of tools, techniques, and frameworks
that can be exploited to address these challenges. This chapter elaborates on the
intricacies of data handling the data rich filed of healthcare informatics, and the
potential role of machine learning to mitigate the challenges faced.

1.1 Introduction

Healthcare informatics deals with the acquisition, transmission, processing, stor-
age, and retrieval of information pertinent to healthcare for the early detection,
early diagnosis, and early treatment of diseases [1]. The scope of healthcare
informatics is confined to data associated with diseases, healthcare records, and the
computational techniques associated with handling of such data. With the intent of
providing affordable, quality, and seamless healthcare—traditional medical prac-
tices across the United States over the past few decades have invested on better
technology and computational support to researchers, medical practitioners, and
patients. These efforts have brought to the foray the benefits and importance of
using computational tools for referral and prescription aids, the creation and
management of electronic health records (EHR), and technological advances in
digital medical imaging.
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For instance, studies have shown the success of Computerized Physician Order
Entry (CPOE) have reduced medication errors and adverse drug events and
inadvertently improved the quality of care [2]. CPOE makes patient information
readily available to physicians at the time they enter the prescription for a patient
[3]. It provides necessary alerts to the physician about adverse reactions that could
arise specific to a patient’s history. Moreover, CPOE allows the physician to track
the order. This provides an additional mechanism for physicians to identify issues
in a prescription and re-design it to eliminating errors.

Machine learning is a natural extension of artificial intelligence. Researchers
and medical practitioners often resort to using machine learning to address com-
plex statistical analysis. The niche of combining both healthcare data and machine
learning with the goal of identifying patterns of interest is commonly referred to as
healthcare informatics. The goal of healthcare informatics is therefore used to
identify patterns in data, and then learn from the identified [4].

EHR systems have enabled easier access to and sharing of patient’s health
records between hospitals reducing the costs of healthcare manifolds. This
reduction in costs has been attributed to the elimination of redundant health tests
and reduction in operational costs [5]. However, with the current state of man-
agement of EHR systems makes it difficult to collate and mine clinical information
for patterns of trends across various populations. With efforts such as the American
Recovery and Reinvestment Act (ARRA) of 2009,' strides are being taken to
digitize medical records to a universal format that enables the collation of medical
data to large repositories. Data from these large repositories can then be used for
machine learning to predict and understand trends across geographical locations
[6]. Research in this area is focused on computational bottlenecks of expansion,
sharing, and standardization of EHRs. The objective is to create open-access
databases that are secure and can handle various forms of cyber-threat, as these
databases contain confidential information of patients. Some of the prominent
medical databases in the area are listed in Table 1.1. There are several challenges
in creating these large data repositories of the health records (discussed in later
sections) that require significant investment computation research. For instance the
handling of evolving data structures in handling changing modalities of techno-
logical advances in medical devices and data generated from them.

Technological strides in medical imaging have brought about innovative means
to capturing diseases such as cancers, for quicker disease prognosis [7, 8]. These
advances have enabled effective detection and diagnosis of cancers. Prominent
imaging modalities such as computed tomography (CT), ultrasound, and magnetic
resonance imaging (MRI) have brought about minimally invasive surgery, image
guided therapy, and effective monitoring of treatment response [9]. These tech-
nologies have made it possible to provide in situ anatomical data on the size,
shape, and location of tumors and growths. Newer technologies such as, 3D-
ultrasound, electrical impedance tomography, tomosynthesis, diffuse optical

! http://www.recovery.gov/About/Pages/The_Act.aspx
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Table 1.1 Prominent medical databases [5]

Database Access

NN/LM medical database Public access—resource provides access to three databases
related to biomedical and health science, these include—
PubMed, Medlineplus, and Locatorplus

Allen brain atlas Public access—a data portal that has a collection of multi-
modal, multi-resolution gene expression profiles of the
human and mouse brain

Alzheimer’s disease Public access—web-based resource containing clinical,
neuroimaging initiative genetics, MRI, and PET data of individuals with
(ADNI) Alzheimer’s Disease

Australian EEG database User access required—web-based de-identified searchable

database of 18,500 EEG records

Unified medical language Restricted access—contains a list of known biomedical
system® (UMLS)® vocabularies and standards to facilitate interoperability

between computer systems
Epilepsiae European database on Research community—database contains well documented

epilepsy meta data related to epilepsy
Kaiser permanente national Kiaser permanente researchers and collaborating non-KP
research database researchers—contains clinical information of

approximately 3,000,000 patients of the Kaiser
Foundation Health Plan
National patient care database Research community—is the VHA’s centralized database for
(NPCD) integrated patient care data

tomography, diffusion-weighted magnetic resonance imaging (MRI), positron
emission tomography (PET) and single-photon-emission CT (SPECT) further
more provide functional activity of detected tumors, thereby revealing both
location and metabolic activity of disease. These imaging platforms take advan-
tage of molecular-targeted contrast agents to monitor the complex biochemical
processes in neoplastic transformations of tumors and cancers [10].

Undeniably, the role of machine learning is paramount to the testing and
development of these modalities and their practical application in a clinical setting.
Machine learning in the medical imaging field manifests itself as image seg-
mentation, image registration, image fusion, image-guided therapy, image anno-
tation, and image database retrieval. With advances in medical imaging, there is a
need for newer machine-learning algorithms/applications. Newer imaging tech-
nologies have brought about large variations and complexity to image data. It is
impractical and difficult to use existing machine learning techniques to extract
patterns or derive analytic solutions from newer imaging techniques. Researchers
in machine learning are in pursuit of creating algorithms that scale to the changes
in data. Because of its essential needs, machine learning in medical imaging is a
bourgeoning field [11].

Another issue that plagues the integration of machine learning and healthcare is
the use of software engineering to keep pace with the technological advances in
medical data capture (multi-modal images) and advances made with machine
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Fig. 1.1 A schematic
representation of a pervasive Data Collection
computing engine in

healthcare. The key
components that constitute

such a pervasive system pose C )
independent challenges

EHR
Clinical use data repository [ Computer Aided
of EHR Diagnosis tools
&__/

Verification of
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learning algorithms. The production of quality machine learning software is cur-
rently in a state of infancy and therefore has much to learn from advances in
software engineering, for instance model-driven engineering and cloud computing.
A large proportion of published work in machine learning comprises investigations
of algorithms and projects that are not deployed at scale in actual practice.
Therefore the realization of truly scalable, robust, and reliable machine learning
software’s are important. Future sections of this chapter highlight the challenges in
handling healthcare data, the role of machine learning and existing online health
informatics tools.

1.2 Challenges

The future of healthcare lies of effective storage and distribution of patient health
records in EHR data repositories. The benefits of creating an EHR data repository
lies in facilitating the productivity of healthcare personnel in the delivery of
quality healthcare and the optimal use of pervasive computing engine. The real-
ization of a pervasive computing engine is conceptualized as the logical sharing of
data across its components. Figure 1.1 represents the flow of information in across
the components of a pervasive computing engine. These include (a) data collec-
tion, (b) an EHR data repository, and (c) computer aided diagnosis tools. In this
section we emphasize challenges in the creation of a pervasive computing engine
in healthcare.
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1.2.1 Data Collection

Data collection and reporting is predominantly manual and largely paper based
[12], and is carried out by healthcare entities. These entities endeavor to collect
data in a cohesive and standardized manner. The procedure of patient data col-
lection entails (a) the consent of patient, (b) the de-identification of data, and (c) to
ensure that the data conforms to pre-set standards before the data is uploaded to a
database. Though this task entails trained personal to validate the data collected it
is still challenging to ensure standards are being maintained across different
entities of a large healthcare system. The following are the key challenges of data
collection.

1.2.1.1 Patient Consent

One of the biggest challenges in the realization of effective data collection lies on
the patients/subjects consent. Several patients are concerned with the privacy of
their personal information being stored over large repositories. There are several
standards in place to ensure effective de-identification of patient/subject infor-
mation before the data is stored on large data repositories. Typically healthcare
institutions opt for the open-consent process to share de-identified information
onto repositories.

1.2.1.2 Controlled Vocabulary

The biggest challenge in data collection is diversity and change/evolution of
controlled medical terminologies. In the past decade, significant efforts were made
to overcome the lack of standards in controlled medical terminologies (CMTs)
[13]. CMTs facilitate data entry, data retrieval, data analysis, and data sharing. The
overarching goal of introducing CMTs is to create efficient diagnostic decision-
support systems that would send out timely alerts and reminders to medical
practitioners. It also facilitates the creation of administrative systems for billing
and effective administration of large healthcare facilities.

A practical example of controlled is in the case of data collection for clinical
research the gathering of data is driven by variables that are relevant to “deter-
ministic outcome” referred to as a ‘research hypothesis.” The variables associated
to the research hypothesis like ‘patient parameters’, ‘data items’, ‘data elements’,
or ‘questions’ are gathered and represented in a cohesive manner into a data-
collection form called the ‘Case Report Forms’ or CRFs.
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1.2.1.3 Standardization

It is the responsibility of the healthcare entity to ensure that the variables on a data
collection form adhere to acceptable standards. The most prominently adopted
standard is that of The International Organization for Standardization/International
Electro-technical Commission (ISO/IEC 11179 technical standard).” The ISO/IEC
11179 identifies a data element as ‘that unit of data’ that has a definition, iden-
tification, representation, and values that are represented as a set of attributes.
These attributes include: the internal name, data type, caption presented to users, a
detailed description, and a validation scheme associated such as a range check or
set membership [12].

1.2.2 EHR Data Repositories

Large databases/repositories in healthcare are often acquired from a variety of
sources, with a corresponding variety of design and structure. This uncertainty in
the data can make linking of diverse data bases a challenge. The intended use data
also poses its own set of challenges. While technical, medical, and managerial
differ in intend use of data, the multifaceted nature of healthcare data calls for a
multifaceted perspective of handling data [14]. Furthermore the purpose of storing
EHR should systematically enable the use that machine learning strategies to mine
trends in data. This is relevant considering that these databases/repositories exhibit
and exponential growth in size. The following discussion highlights challenges in
the creation and maintenance of EHR repositories.

1.2.2.1 Feasibility of Information Technology (IT) Infrastructure

Keeping up with technological advancements is vital to the effective utilization
and maintenance of a pervasive computing resource. The IT infrastructure is an
integral component of large EHR data repositories. Typically, the infrastructure
should be able to scale to the growth of data that is continuously added on a regular
basis.

While evaluating IT in an EHR repository, one must take into account that IT is
only one part of a pervasive computing system of an organization. The objective of
carrying out the feasibility of IT infrastructure is to ensure that consistent
improvements are made in a timely manner to ensure longevity of the resource.
Many different questions can be asked in the assessment of IT [15]. These include:

e What type of IT should be selected and employed?
e What are the key healthcare processes that the EHR repository should facilitate?

2 http://metadata-standards.org/11179/
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e What are the technical and system aspects (e.g. performance, software quality)
of the IT that will bear upon its use?

e How does the IT infrastructure impact structural or process quality (time saving,
data quality, clinical workflow, patient administration) with regard to different
users (physicians, nurses, administrative staff)? Does it work effectively?

e How IT infrastructure impacts the quality of care?

e What are the capital and operational costs of information technology? Is it cost-
effective?

1.2.2.2 Privacy Preservation and Data Integration

To understand and treat an outbreak of large proportion, the analysis of the
prevalence, incidence, and risk factors of disease is crucial. To carry out such an
analysis, would have a substantial ramification on policy decisions. Data from
diverse repositories/databases have aggregated and integrated [16, 17]. It is vital at
this juncture that private and sensitive information be handled with care. There is
therefore a need for privacy preservation framework and data integration strategy
in place.

In creating an EHR database/repository is a requirement to gaining the approval
of the Institutional Review Board (IRB).? The interest of the IRB is to ensure that
proper de-identification of all records is carried out before the release of data. It
also ensures that the HIPPA regulations and the Helsinki declaration are adopted
[18]. Moreover, it is important to ensure that despite the de-identification, the
integration of data from multiple sources is not hindered and clear to the end user.

1.2.2.3 The Human Element in Creating EHR Repositories

Though current EHRs have been successfully adopted and accepted in the
healthcare industry, significant challenges remain in exploring how the human
element influence EMR acceptance, implementation, and use. It is believed that
social intricacies and communication patterns influence the use of EHR and can be
utilized to enhance the delivery of healthcare.

Researchers have indicated that communication-patterns can be characterized
based on categorize of users and how individual categories users communicate
with the EHR. There are roughly three categories of users namely: high, medium,
and low. The users that belong to the high category are those that display high
integration of EHR use with work practices. Users of this category rely highly on
features of reports, flow sheets and/or tracking and treading features of the EHR.
The users of the medium category display moderate integration of EHR use with

® http://www.thehastingscenter.org/Publications/IRB/Default.aspx/
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work practices. Similarly, users of the low category rarely rely on the features
offered by the EHR [19]. It is believed that understanding the communication
patterns among users of an EHR can provide an understanding and achievement of
a flexible EHR.

1.2.3 Computer Aided Diagnostic (CAD) Tools

The creation of sophisticated CAD tools to analyze complex biological data has
been spruced by advances made in machine learning. Although results from cur-
rent CAD tools are promising, there are several hurdles to overcome before these
tools can be deployed in a clinical setting. Research efforts are on in the creation of
computer aided prognosis and diagnosis tools that use multimodal data fusion [20].
For instance, fusing computerized image analysis with digitized patient data such
genomic information for predicting outcomes and survival. The current fusion of
biomedical informatics and bioinformatics techniques would propel existing CAD
tools to a more patient specific diagnosis [21]. While CAD tools have proved to be
instrumental in healthcare, it suffers from the following challenges:

1.2.3.1 Data Preprocessing

CAD tools extensive use patient data from diverse sources. These could be image
sources such as position tomography (PET), computed tomography (CT), low-dose
computed tomography (LDCT), functional magnetic resonance imaging (fMRI),
and contrast-enhanced computed tomography (CE-CT) [22]. Other sources of
medical data could be obtained from signaling sources such as electrocardiogram
(ECG), and electroencephalogram (EEG). Typically data from medical sources
suffer from noise in the form of inconsistences in measurements. This noise could
significantly affect the quality performance of CAD tools. Researchers rely on data
preprocessing strategies to capture features of discrimination (or interest). Sig-
nificant ongoing efforts in this area rely on the creation of novel machine learning
techniques for effective data preprocessing.

1.2.3.2 Effective Software Design

The creation of quality machine learning software is currently in the state of
infancy. There are several challenges that need to be taken into consideration while
porting machine learning algorithm to functional CAD tools. It is the responsibility
of developers (in the USA) to ensure that their CAD tools conform to the standards
set by the FDA. The FDA certifies both CAD tools and CAD systems for use in
medical practice [4]. This requires fully traceable, auditable procedures for
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software development of the kind developed by software engineers over the past
decades.

To conform to software engineering it is firstly desired that the algorithms are
scalable. It is desired that the machine learning algorithms are tested to handle data
sets on a large scale as in actual practice. Furthermore, the algorithms should be
capable of delivering reliable and accurate results. This is a challenge as these
algorithms require intense testing procedures. Another desirable feature is cross
platform re-usability. This requires a more formal approach to modular code
abstraction, design, and specifications.

1.2.3.3 Validation and Verification

From existing research, there is a lack of consensus in the theoretical under-
standing especially from a non-physician’s perspective of CAD tools. This renders
certain CAD tools ineffective. It is believed that without a solid validation and
verification scheme physicians are unfairly susceptible to accepting recommen-
dations of CAD tools, questioning the quality of decisions made. This renders the
verification and validation of paramount importance.

Several publications use statistical methods to interpret and explain the various
criteria. However, with numerous clinical implementations of decision support
systems for a variety of medical applications, there is a need for robust and
systematic methods to verify, validate the performance of a CAD tool.

1.3 Healthcare Informatics and Personalized Medicine

Listed as one of the 14 grand engineering challenges by the US National Academy
of engineering for the twenty-first century, healthcare informatics is a multidis-
ciplinary field that derives advances from fields of biomedical engineering, data
analytics, and bioinformatics to solve day to day challenges of healthcare (refer
Fig. 1.2). The field of healthcare informatics is constantly evolving with advances
made in three core dimensions namely: Data acquisition, health record manage-
ment, and the role of machine learning (data analytics) for pattern analysis [23].
These advances are funneled to meet the healthcare goals of disease prevention
and personalized disease diagnosis and treatment. In this section we focus our
discussion on developments made in personalization of healthcare.

1.3.1 Future of Data Acquisition in Healthcare

New acquisition systems are being created. Traditional diagnostic tools for most
diseases rely on the manifestation of visible symptoms to identify the disease
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Fig. 1.2 The multidisciplinary field of healthcare informatics

affecting the patient. This approach to identification of a disease is at time too late.
Research is underway in the creation of Nano-devices that allow for the detection
of pathogens and diseased cells at the early stages of disease progression. More-
over, new systems are being tested and designed in the form of wearable,
implantable, and ingestible devices to collect patient data with or without medical
supervision [24]. Another actively pursued area of research in biomedical moni-
toring is body sensor networks (BSN) [25]. With the objective of improving the
quality of healthcare, BNS’s is a cyber-physical system (CPS) that consists of a
diverse set of wearable sensors over the body of a patient. It would provide up to
date information of the patient.

This opens up several challenges of data integration from devices in a dynamic
environmental situation, requiring machine learning. There is a dearth of inno-
vative machine learning algorithms that could scale to the multi-dimensional data
that these systems and devices generate to help in decision support in health.

1.3.2 Patient Centric EHR

The prominence of use of EHR in healthcare has increased over the last decade.
With the overall goal of using EHR is to enable exchange of information inde-
pendent of the patient’s lactation, the creating of such a model comes with its
challenges as we take into consideration the different actors and organizations
involved.

These challenges are exacerbated when we consider issues of security and
efficient organization of EHR when we consider an EHR on a global scale. Fur-
thermore the health data for each individual spans over multiple dimensions/scales
from a genetic to cellular to tissue to system levels. Research efforts are on in the
formation of global databases for the retrieval of relevant information to the early
signaling of disease outbreaks [26].

With the prevalence of the internet, there has been an increasing trend in
patients seeking to use social media sites and web-based resources to seek
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healthcare information. Despite the benefits, flexibility, and ease of access to
information, the prevalence of EHR on the web is stemmed by issues of security.
However, there is a growing realization in the medical community of exploiting
the benefits of giving the patients more liberty to access and control their own
information. This is commonly referred to the transition towards a patient centric
EHR.

Providing patient’s access to their individual EHR is not a novel idea [26, 27].
With the objective of improving efficiency, reducing costs, and enhancing quality
of healthcare and patient satisfaction the model of online communication and
sharing of EHR with patients and healthcare providers has been proven beneficial.

There have been EHR systems that propose integration of data between insti-
tutions, and sharing data with patients since the beginning of the twenty-first
century [28]. However, there are studies that focus on aspects of security and
granting of access to EHR. It is believed that a patient-centric approach should
facilitate a novice user to interpret medical information and enable the user to act
appropriately. The success of any EHR system therefore lies on a design that is
able to balance both ease of use and security of information being disseminated.

There are several online systems aimed at providing users the freedom to
control, supervise, and recover and share their health information over the internet.
Two of the prominent tools are described in the following sections.

1.3.2.1 Cambio Healthcare Systems®

Since 1993, Cambio Healthcare Systems®* a Swedish company has been a pioneer
in distributed healthcare administration systems. Consisting of approximately a
hundred office around the world providing service to about 50,000 users, the
objective of creating a healthcare solution to support healthcare at every stage of a
patient’s life, Cambio created a product called COSMIC". At the heart of COSMIC
is the COSMIC Spider, an engine that connects a gamut of individual modules.
Each module is dedicated to specific task such as care documentation, order
management for both labs and referrals, e-Prescribing, patient management,
resource planning, and care administration consisting of billing, digital dictation,
and data warehousing.

1.3.2.2 Microsoft’s® Health Vault®

Microsoft’s® Health Vault® an online platform for health management provides
patients to “collect, store, and share” health information. It is a cloud service that
has built in functionality of privacy, security, and data provenance. Health Vault®,

4 http://www.cambio.se/
3 https://www.healthvault.com/us/en
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currently available only in the United States, supports nearly 300 applications, and
connectivity to 80 health and fitness devices, such as those that measure heart rate,
blood pressure, blood glucose, or peak airway flow.

1.3.3 Information Retrieval and Semantic Relationships

Rapid access to reliable information has been a perpetual need in healthcare
informatics. With the proliferation of medical resources across the internet, the
need for up to date medical care related information (e.g. published articles,
clinical trials, news, etc.) is important to both healthcare providers and patients
who prefer to be informed about their health.

The use of natural language processing (NLP) and machine learning (ML)
techniques to optimize searchers and classify relevant medical information in
documents [29] is not new in the field of health informatics. However, these
techniques have been known to be susceptible to vocabulary mismatch. Vocabu-
lary mismatches manifest in form of instances where relevant documents to a
user’s query may actually contain little or no shared terms. This hampers the
performance of keyword-based retrieval. Furthermore, certain queries are infer-
ence driven requiring inferences to determine related documents. There is there-
fore a need for an information retrieval system capable of overcoming the
mismatch between the terms found in documents and those in queries.

In the medical domain, the identification of sentences published in medical
abstracts as containing or not containing information about the queried disease or
treatment, and then establishing semantic relations to the prevention, cures, and
side effects associated with illness and treatments, in the context as expressed in
using these texts. This is brought about through domain ontologies [30].

1.3.3.1 Domain Ontology

The purpose of domain ontology in an EHR system is to represent medical terms
as they apply to a medical domain. Terms pertaining to meaning and use help
provide information and knowledge for better health informatics service. Of the
widely used medical ontologies used in EHR, namely: the Unified Medical Lan-
guage System (UMLS), Guide Line Interchange Format (GLIF), Generalized
Architecture for Languages (GALEN), International Classification of Diseases
(ICD), the Systematized Nomenclature of Medicine Clinical Terms (SNOMED
CT®)° is the most predominant.

Touted for its power and efficiency in handling EHR, SNOMED CT® has been
scientifically validated, and viewed as a comprehensive resource of clinical

S http://www.ihtsdo.org/snomed-ct/snomed-ct0/
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healthcare terminology that is accepted world-wide. SNOMED CT® provides an
abstraction through a hierarchical representation of encapsulated classes namely,
disorders, drug, and organisms. Moreover, it covers a huge number of concepts
and relationships.

As with any EHR management system, both information retrieval and infor-
mation extraction are significant issues. Moreover, it is important to ensure
accuracy and reporting (in a timely fashion). To overcome these issues and
facilitate application development, SNOMED CT® adopts a concept-oriented and
machine-readable design. Formal vocabulary in SNOMED CT® is maintained in a
knowledgebase. The knowledgebase grows in an incremental fashion with the
inclusion of newer domain specific concepts provided by experts in a domain.

1.4 Data Interoperability in EHR

The exchange of EHR data between institutions and care providers poses a great
challenge. To facilitate effective data communication, EHR adopts an archetype
standards developed by openEHR’ and CEN/ISO [31]. These standards enable
sharing of patient health information between healthcare providers in a multi-
disciplinary environment. The objective of adopting these standards is to provide
interoperability at different levels of functioning namely, within an enterprise,
regionally, nationally, and globally. Moreover, it facilitates interoperability
between software’s and vendors. Currently the use of archetypes in the deployment
of EHR’s are limited [32]. However, the benefits of providing interoperability
outweigh implementation challenges.

The evolution of healthcare has taken place in three avenues, namely: (a) the
evolution in the knowledge base. Here rules that were relevant yesterday can
become irrelevant with the addition of newer medical facts. (b) The refinement of
information. With newer more focused studies and the use of better technologies,
information is moving towards a finer grain with time. And (c) complexity; the
relationships between facts and existing information makes the execution of a
system complex. With intent to handle the evolution of healthcare the openEHR
archetypes was proposed. openEHR is constructed using a two-level approach [33]
that separates information structure from clinical knowledge base.

openEHR provides the necessary abstraction to domain experts to create con-
tent models for clinical concepts without worrying about the equipment used.
These content models can then collectively make up the information system. This
also facilitates EHR systems to accommodate changes in medical and health
service delivery practices over time.

7 http://www.openehr.org/
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1.4.1 Archetype Modeling and openEHR

Archetypes as the name suggest, are data models designed to store clinical data
and content. Archetypes are different from traditional data models in such that they
focus on providing three key data functionalities that are susceptible to time and
that are congruent to the clinical practice. These functionalities are semantic
interoperability, semantic interpretability, and syntactic interoperability. It should
be known that these three functionalities are aimed at providing free data exchange
between two or more entities.

1. Syntactic (data) interoperability: Syntactic interoperability refers to all aspects
of data representation. Here we strive to ensure that the structure and origin of
data is understood by the information system. Key emphasis is place on the
syntax of by which data is stored.

2. Semantic interpretability: Semantic interpretability ensures that concepts of
clinical significance are represented efficiently. Good semantic interpretability
is ensured when information can be easily interpreted by a domain expert.

3. Semantic interoperability: Semantic interoperability ensures data exchange on
the basis of shared, pre-defined and mutually accepted meanings of terms and
expressions. Semantic interoperability requires that a system understand the
semantics of data requested.

The openEHR archetype is touted as the comprehensive open specifications for
EHR systems. The openEHR architecture adopts a two level modeling approach to
building comprehensive EHR management systems. The first level also referred to
as the reference information model is pruned to carry the minimum information to
carryout effective record management. This level also ensures effective data
transmission between clinicians and providers thereby bring about the desired data
interoperability.

At the second level, openEHR brings about the semantic interoperability. This
is brought about by openEHR providing the required semantic to store/record
relevant information that needs to be processed. In other words, the archetype
represents domain specific concepts by providing the necessary rules or constraints
applicable in the openEHR information models. These constraints therefore rep-
resent the valid data structures, data types, and values that are define in advance.

This two level approach offered by the openEHR architecture enables a clear
separation between record keeping and clinical data collection, thereby isolating
the challenges of record keeping that can hinder the clinical data collection and
vice versa.
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Fig. 1.3 HL7 standards and associated domains

1.4.2 Health Level 7 (HL7)

With respect to standards in healthcare data exchange and interoperability, health
level seven (HL7) is one of the most prominent interchange standard for clinical
data exchange, both in the US and around the world. Clinical data exchange based
on HL7 spreads the gamut ranging from numerical data, coded and text obser-
vations, orders, scheduled clinical work, and exchanges of master file records
(refer Fig. 1.3).

With the mission is to provide standards to improve care delivery, optimize
workflow, reduce ambiguity, and enhance knowledge transfer HL7 offers stan-
dards to a wide range of domains. These include clinical, clinical genomics,
administrative, clinical research, electronic claims attachments, public health,
personal health, etc., to name a few.
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The HL7 was initially designed and systematized using the unified service
action model (USAM). This design was used to create the ordering, scheduling,
and care planning capabilities, however, evolved to handle task with workflow
management.

In order to support effective decision support (DS) for medical care, comput-
erized guidelines are able to improve the quality and reduce the cost of healthcare.
However, objective and decidable guidelines are expensive to define, which
suggests a sharing of guidelines to reduce these expenses. The Arden Syntax, a
standard to define medical logical modules, was created to facilitate guideline
sharing and dissemination. However, despite the Arden’s considerable acceptance
in the industry, it did not lead to a broad-based guideline deployment.

The InterMed Collaboratory, an online medical collaboration facility created by
Columbia, Harvard, McGill, and Stanford proposed the guideline interchange
format (GLIF) to meet the same basic goals as Arden. GLIF was designed based
on experience with several research guideline systems (e.g. EON), is based on an
information model, it is a declarative rather than procedural language. It is
designed keeping in mind complex clinical protocols.

It is believed that sharing and deployment of guidelines has been limited
because of very practical reasons. Guidelines must be tied to the EHR, not
bothering the user with data entry. Yet, coupling generic shared guidelines to an
EHR is difficult to achieve as the structure and condition of clinical data varies
across medical institutions. In order to achieve coupling, the identification of
clinical variables is important and a well-known challenge. Furthermore the data in
databases are not of good condition and therefore challenging to create automated
decision systems that are reliable. This challenge is further exacerbated when
guidelines require unique or derived keys from the data which traditional EHR
does not support.

1.5 Machine Learning in Computer Aided Diagnostics
(CAD)

With the intent to decrease observation oversights by clinical domain experts,
computer aided diagnostics (CAD) have revolutionized medicine. CAD bridges
the gap between technological advances and clinical practice by introducing newer
modalities to understand diseases. These modalities include acquisition techniques
such as MRI’s, CT scans to name a few, and better storage technologies [34].

With the realization of various technologies that could potentially benefit
clinical practice. Research in computer aided diagnostics is moving towards
exploiting machine learning techniques for the following reasons.

1. Newer forms of data: With technological advances made in genetics, imaging,
signal monitoring, and radio-frequency identifications (RFID) to name a few,
medicine is moving towards personalized mentoring and treatment. This has
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also created a gamut of unconventional forms of data. There is therefore a need
for machine learning to scale up to the variety of data forms.

2. The scope of statistical analysis on data: Statistical learning is a user driven
process. It largely relies on confirming a set hypothesis and is driven by a set of
predefined assumptions. Moreover, statistical analysis used to carry out pre-
dictions of the general population. On the contrary, machine learning is used to
generate hypotheses. It is exploratory and driven by fewer assumptions. But the
one characteristic difference between statistical analysis and machine learning
is that machine learning is data driven.

3. The scalability of techniques: With the growth of data reaching exponential
rate, there is a need for algorithms and techniques that can exploit the generated
data and provide predictions that can scale to the changes in data, as well as
discover hidden and non-trivial observations that cannot be carried out
manually.

Machine learning is built around the popular KDD process [35], consists of key
steps namely the data exploratory phase, the training phase, and the validation
phase. The data exploratory phase consists of feature extraction and feature
selection strategies. The objective of the data exploratory phase is to discover
patterns. Each pattern will therefore result in an independent hypothesis for testing.
Moreover, the data exploratory phase is useful in identifying those factors that are
influential and contribute towards the hypothesis.

As part of the training phase, a learning model is fit on the data using the
influential factors discovered in the data exploratory phase. In the training phase,
data from known classes is used to create a model, that when tested in the veri-
fication stage to would yield results in favor of the hypothesis. Unlike statistical
testing, machine learning relies on domain experts and analytical skills to verify
the outputs obtained. Though promising, the application of machine learning for
medical diagnosis is challenging as it must meet the following criteria for success:
good performance, the transparency of diagnostic knowledge, the ability to explain
decisions, the ability of the algorithm to reduce the number of tests necessary to
obtain reliable diagnosis, and the ability to appropriately deal with missing data.

Machine learning community has a long tradition in classical knowledge dis-
covery applications and can be traced at least as far as the mid-1960s. Several
approaches have been proposed and find their application in the clinical data
analysis. The most prominently referred techniques include, neural networks (NN),
support vector machines (SVM), decision trees (DT), etc. [36]. Though popular,
the use of machine learning in healthcare or clinical data analysis, the following
needs have to be addressed while using machine learning, namely

1. Datasets: Typically datasets used for analysis are plagued with missing and
inappropriate values. These errors typically referred to as noise are brought
about by devise errors. Care should be taken to handle noise in datasets. The
application of appropriate data cleaning techniques has to be applied to data
before subjecting it to learning strategies.
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2. Model selection: For a given model, various model selection techniques can be
applied to determine quality of extracted knowledge [37]. However, with the
gamut of modeling techniques available—bootstrapping, hold-out techniques,
and k-fold cross validation to name a few—the choice of an appropriate model
becomes a challenge. An inappropriate model selection technique will result in
biased and over-fit estimates of results. Therefore care should be taken while
choosing an appropriate model selection technique.

3. Feature extraction and feature selection: It should be noted that most of the
data generated from newer technologies are high dimensional datasets. For
example, in the cases of positron emission tomography (PET) and single photon
emission computed tomography (SPECT) [38], and functional magnetic reso-
nance imaging (fMRI) rely on voxel identification and tracking. Voxel iden-
tification and tracking generates multi-dimensional data that requires effective
feature extraction from raw data [39].

Machine learning offers a wide array of learning approaches that can be chosen
to capture hidden patterns from the data [40]. We categorize these techniques into
three and provide a brief overview of these categories as follows:

1.5.1 Unsupervised Approaches

The unsupervised approaches of machine learning are those that find hidden
patterns or trends in data. These approaches seek to find key features that drive
differentiation among data samples [41]. Also referred to as clustering, these
approaches are prominently used in signal analysis frameworks. Some of the
commonly referred unsupervised approaches include, spectral clustering, Gaussian
mixture models [42], K-means [43], fuzzy clustering [44]. These approaches
however, suffer from a bottleneck as they are subject to predetermined thresholds.

1.5.2 Supervised Approaches

Unlike unsupervised approaches, supervised approaches are model building
approaches. These approaches use a preprocessed training set of sample to build a
model, where each sample in the training set has a determined class label. The
objective of supervised learning approaches is to determine characteristic sets of
rules that can be used to discriminate between samples of different classes. For
instance, decision trees (DT) is a supervised learning approach that is easy to
comprehend and relatively easy to implement. However, it is challenging to apply
to complex non-linear problems. Prominently used supervised approaches in
healthcare include support vector machines (SVM) [45], k-nearest neighbor (k-
NN) [46], Bayesian models [47] to name a few.
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1.5.3 Evolutionary Approaches

Evolutionary approaches to knowledge extraction, better referred to as genetic
algorithms (GA) [48] are prominently used in medical data analysis. These
approaches are based on the evolutionary ideas of natural selection and genetic
processes of biological organisms. As the natural populations evolve according to
the principles of natural selection and “survival of the fittest”, GA are able to
evolve solutions to real-world problems. The objective of using GA is to find
optimal solutions even in the most complex of search spaces [49].

1.5.4 Hybrid or Ensemble Approaches

The hybrid or ensemble approaches rest on the assumption that a combination
multiple single models can generate effective discriminatory rules. Moreover, each
of the single models has its advantages, and inherent disadvantages, that can be
overcome by other models in the ensemble [50]. However, while combining dif-
ferent models to overcome the disadvantages of a single model can lead to issues
of over-fitting [51].

1.6 Application of Machine Learning in Healthcare

It is believed that with the integration of machine learning in healthcare can bring
us close to the elusive quest of improving both the efficiency and quality of
medical care. However, there are challenges and opportunities in doing so. As
discussed in the previous sections, machine learning provides a gamut of
approaches and techniques that have cascaded to a diverse set of tools to aid in
diagnostic and prognostic challenges faced in medical domains.

In this section we focus the effects of machine learning for the identification and
analysis of clinical parameters in understanding disease diagnosis and disease
progression. There is significant interest in the use of machine learning for the
extraction of features that could potentially lead to patient specific therapy planning
and support, that could eventually lead to reduction in medical costs [52]. Machine
learning is also being used to suggest real time clinical monitoring of patients. This
entails real time analysis of data to appropriately deal with monitoring data from
different sensors or devices, and the interpretation of continuous data to be used in
Intensive Care Units (ICU) [53]. On the same lines, over the past two decades, there
has been considerable research effort directed towards the monitoring and classi-
fication of physical activity patterns from body-fixed sensor data [25]. This effort
has been motivated by a number of important health-related applications. For
example, with the trend toward more sedentary lifestyles, there is growing interest
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in the link between levels of physical activity and common health problems, such as
diabetes, cardiovascular diseases, and osteoporosis. As self-reported measures have
been shown to be unreliable measures for activity profiling, sensor data measures
are beginning to play an important role in large-scale epidemiological studies in this
area. Computer aided diagnosis (CAD) and their associated tools have been
instrumental in the realization of the potential of machine learning. There are a wide
range of CAD tools in the area of cancer research [21]. This is attributed to the
abundant data resource that can be used to develop such tools. However, there is a
need in effective integration of data and knowledge from diverse data sources.
These tools also lack effective validation schemas. The fastest area to adopt CAD
tools is in the area of radiology. As several of these tools are in their inspection
stages of development they lack comprehensive datasets to include information of a
diverse set of illnesses, complications, and injuries.

Another area that can benefit from machine learning is emergency medicine
[21]. Though there are few CAD tools adopted in clinical practice, existing tools
have shown the potential of improving the quality of healthcare. Ongoing research
in the area is focused on making these tools to address a wider variety of illnesses
and trauma scenarios. The application of machine learning in cardiovascular CAD
tools has not received significant success as there is a lack of comprehensive
validation processes [54]. While most cardiovascular based CAD tools suffer from
high false positive rates, they often help in detecting the disease at an early stage.
Therefore there is a need for tools that incorporate a wider range of information to
reduce the false positive rates. Just as in the areas discussed above, digital radi-
ology finds its application in orthodentistry [55]. They enable early diagnosis of
dental complication at a stage. However, the CAD tools in this area are relatively
expensive and a bottle neck for wide adaptation.

1.7 Conclusion

The importance of healthcare to individuals and governments and its growing cost
to the economy have contributed to the emergence of healthcare as an important
area of research focal points for scholars in business and other researchers. Both
the quality of healthcare and the managing of medical care costs can be benefitted
from the use of pervasive computing. In addition pervasive computing is
responsible for effective data collection, standardization, storage, processing, and
timely communication of information to decision makers for better coordination of
healthcare. Pervasive computing relies on three interrelated components namely,
patient data collection and handling, effective ERM, and CAD tools. With
medicinal and clinical practice moving towards the personalized, more emphasis is
placed on the patient to control his medical information to reduce medical costs.
There is a growth in cheaper technologies to detect, tract, and understand diseases.
This chapter focuses on creating an awareness of these trends and brining to the
foray the role on machine learning in the future of healthcare.
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Chapter 2
Wavelet-based Machine Learning
Techniques for ECG Signal Analysis

Roshan Joy Martis, Chandan Chakraborty and Ajoy Kumar Ray

Abstract Machine learning of ECG is a core component in any of the ECG-based
healthcare informatics system. Since the ECG is a nonlinear signal, the subtle
changes in its amplitude and duration are not well manifested in time and fre-
quency domains. Therefore, in this chapter, we introduce a machine-learning
approach to screen arrhythmia from normal sinus rhythm from the ECG. The
methodology consists of R-point detection using the Pan-Tompkins algorithm,
discrete wavelet transform (DWT) decomposition, sub-band principal component
analysis (PCA), statistical validation of features, and subsequent pattern classifi-
cation. The k-fold cross validation is used in order to reduce the bias in choosing
training and testing sets for classification. The average accuracy of classification is
used as a benchmark for comparison. Different classifiers used are Gaussian
mixture model (GMM), error back propagation neural network (EBPNN), and
support vector machine (SVM). The DWT basis functions used are Daubechies-4,
Daubechies-6, Daubechies-8, Symlet-2, Symlet-4, Symlet-6, Symlet-8, Coiflet-2,
and Coiflet-5. An attempt is made to exploit the energy compaction in the wavelet
sub-bands to yield higher classification accuracy. Results indicate that the Symlet-
2 wavelet basis function provides the highest accuracy in classification. Among the
classifiers, SVM yields the highest classification accuracy, whereas EBPNN yields
a higher accuracy than GMM. The use of other time frequency representations
using different time frequency kernels as a future direction is also observed. The
developed machine-learning approach can be used in a web-based telemedicine
system, which can be used in remote monitoring of patients in many healthcare
informatics systems.
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2.1 Introduction

In the modern world cardiovascular disease (CVD) is one of the most common
causes of death, and is responsible for approximately 30 % of deaths worldwide,
and nearly 40 % of deaths in high-income, developed countries [1, 2]. Even
though the CVD rates are declining in high-income countries, the rates are
increasing in every other part of the world [1].

Generally, the sino-atrial (SA) node acts as the pacemaker of the heart, and the
primary source of electrical impulse. Cardiac arrhythmia (also known as dys-
rhythmia) represents a heterogeneous group of conditions in which there is
abnormal electrical activity in the heart. During arrhythmia, other impulse sources
may dominate the sinus node and act as independent sources of impulses.
Arrhythmia is one kind of CVD, which if left untreated may lead to life-threat-
ening medical emergencies that can result in cardiac arrest, hemodynamic col-
lapse, and sudden death. Abnormalities of both impulse formation and impulse
conduction can result in cardiac arrhythmias [3]. The heartbeat interval may be
regular or irregular, and may be too fast or too slow. Early intervention with
appropriate therapy is recommended in many arrhythmias; if left untreated, such
arrhythmias may lead more serious complications. Arrhythmias like ventricular
fibrillations and ventricular flutter are imminently life-threatening.

Increasing incidence of cardiovascular disease and death has drawn attention
worldwide to the research and development of methods for mass screening to
provide prognostic healthcare. One of the greatest challenges for both developed
and under-developed countries is the delivery of high-quality cardiac care to the
entire population. The lack of sufficiently qualified cardiac experts may, however,
limit individual attention for patients and force healthcare professionals to cater to
critical conditions and patients requiring immediate attention. The development of
automated tools to detect cardiac arrhythmias with considerable accuracy is
challenging. Widespread applications of such tools by qualified nurses or para-
medics trained to handle the equipment can greatly strengthen the screening
programs and aid in providing mass cardiac care with scarce resources.

Electrocardiography (ECG) is a noninvasive test for recording the electric
activity of the heart over time and can be captured by surface electrodes. ECG is
the simplest and most specific diagnostic test for many heart abnormalities,
including arrhythmia, and is especially essential in screening for heart problems.
The ECG pattern obtained from a normal subject is known as a normal sinus
rhythm. The assessment of alternations in the heart rhythm using an ECG is
commonly used to diagnose and assess the risk of any given arrhythmia. Different
computational tools and algorithms are being developed for the analysis of the
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Fig. 2.1 Machine-learning approach of ECG classification into normal sinus rhythm and
arrhythmia

ECG signal, and its automated diagnosis. In this chapter, the authors have made an
attempt to use machine-based classification of ECG signals to sort normal sinus
rhythm and arrhythmia signals into their respective classes.

Many methods for the detection of QRS complex (or the R-point) in the ECG
have been proposed [4-6]. The Pan-Tompkins algorithm is commonly used
because of its computational simplicity. The wavelet-based method proposed by
[5], later extended by [6], can also be used for R-point detection in the ECG. The
Pan-Tompkins algorithm has been used in the analysis in this chapter because of
its simplicity and higher detection rate.

Few approaches for the classification of arrhythmia beats have been described
in the literature [7, 8]. Most of these approaches use principal component analysis
(PCA) in the time domain signal [9]. Recently, [10] gave an account of the use of
PCA in DWT sub bands. Here, DWT sub-band features are compressed using
PCA. Since DWT provides compact supported basis space for the signal, the PCA
should provide higher compression than time domain counterparts.

2.2 Materials

In the proposed work, the open source data available at www.physionet.org from
MIT BIH arrhythmia and the MIT BIH normal sinus rhythm database is used. The
database is explained as follows.


http://www.physionet.org
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2.2.1 MIT- BIH Normal Sinus Rhythm Database

The MIT-BIH normal sinus rhythm database consists of 18 long term ECG
recordings of subjects referred to the Arrhythmia Monitoring Laboratory at Bos-
ton’s Beth Israel Deaconess Medical Center. Subjects included in this database
were found to have had no significant arrhythmias; they included five men, aged
26—45 and thirteen women, aged 20—50. The ECG data was digitized at 128 Hz.

2.2.2 MIT BIH Arrhythmia Database

The MIT BIH arrhythmia database consists of 48 half-hour excerpts of two
channel ambulatory ECG data obtained from 47 subjects studied by the BIH
arrhythmia laboratory between 1975 and 1979. Twenty-three recordings were
randomly taken from a set of 4,000 24 h ambulatory ECG data collected from a
mixed population including both inpatients (approximately 60 %) and outpatients
(approximately 40 %) at the medical center. The remaining 25 recordings were
selected from the same set to include less common but clinically significant
arrhythmias. The ECG recordings were sampled at 360 Hz per channel with an 11-
bit resolution over the 10 mV range.

2.3 Methodology

Figure 2.1 depicts the machine learning approach of the proposed ECG classifi-
cation system. The proposed methodology consists of an automated detection of
the R-point using the Pan-Tompkins algorithm, wavelet sub-band decomposition
using multiple DWT basis functions, principal component analysis (PCA) on
DWT sub-bands, statistical significance tests using independent sample #-tests, and
automated classification using three classifiers, Gaussian mixture model (GMM),
error back propagation neural network (EBPNN), and support vector machine
(SVM) classifiers.

Prior to R-point detection, some pre-processing is necessary to remove noise
and artifacts that the signal may contain. Also, the two classes of signals
(arrhythmia and normal sinus rhythm) are sampled at different rates. Therefore, re-
sampling is also required.
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2.3.1 Preprocessing

Since the signals considered for analysis are sampled at different rates, it is nec-
essary to choose a common sampling rate and re-sample the signals. We have
chosen 250 Hz as the common sampling rate, and both signals are re-sampled
using standard re-sampling techniques [11]. Also, the signals chosen are from an
open source database, and might contain noise, artifacts, and power line inter-
ference. It is, therefore, necessary to preprocess the signal. Some basic filters [12]
have been used here for noise and artifact filtering.

2.3.2 R-point Detection

The R-wave in the QRS complex of ECG has a high amplitude and an easily
detectable peak. The R-point is, therefore, chosen as a characteristic point for
registration. A number of algorithms are being reported in the literature for the
detection of R-point. The Pan-Tompkins algorithm (1985) is a popular approach
for QRS detection, which is computationally simple and, hence, takes less time to
run on a computer. In addition to this method, there is a method using the quadratic
spline-based discrete wavelet transform [6] that detects the beats accurately, but
this method is computationally exhaustive. We have chosen the Pan-Tompkins
method due to its computational simplicity and ease in implementation. An
extended version of the Pan-Tompkins algorithm consists of the following steps.

1. Compute the first derivative of ECG, and find its absolute value.
2. Smooth this signal by passing through a moving average filter as follows.

y(n) :%{x(n)—i—Zx(n— 1) +x(n—2)}, (2.1)

wherex(n)and y(n) represent the input and output of the smoothing filter.

. Compute the derivative of the smoothened signal and its absolute value.

. Smooth the signal obtained from step 3 using the filter in Eq. (2.1).

. Sum the signal obtained from steps 2 and 4.

. Threshold the signal obtained from step 5, and obtain square pulses.

. Compensate for the group delay due to the involved filters by advancing in
time.

~N N AW

The derivative gives the slope information, whereas smoothing removes high-
frequency noise. The above operations are multistage filtering methods with a non-
linear operation in between, which yields the R-point.
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2.3.3 DWT Computation

Though Fourier analysis [12] is a traditional tool for the analysis of global fre-
quencies present in the signal, it lacks in temporal resolution due to the increased
frequency resolution. Some frequency resolution can be exchanged to get better
time resolution. This exchange is performed by defining short duration waves
called mother wavelet functions so that the given signal for analysis is projected on
this basis function. In traditional Fourier transform, the data is projected on
sinusoidal basis functions which extend the span of time domain, i.e., —co to 4-0c0.
The wavelet basis function [13] is parameterized by the translation ‘b’ and dilation

[P]

a,” such basis function is given by,

1 t—b
N
Equation (2.2) provides a basis for wavelet transformation. The ECG signals
are decomposed for translation and dilation in order to get a multi-resolution
representation. This is the case of continuous wavelet transform. This transform is
made discrete using a dyadic grid scale in order to get a discrete wavelet transform
(DWT) [14]. Such DWT at scale 27 and time location » is given by

lpm.,nO) = 2% : lp(27% = I’l) (23)

The dyadic grid sampled DWT are generally orthonormal. Using the basis
function in Eq. (2.3), the DWT can be expressed as the inner product between the
ECG signal x(#)and the basis function as

lrba,b(l‘) =

). (2.2)

Ton = /x(t)zpmm(t)dt (2.4)

T, is the wavelet coefficient at scale (or dilation) m and location (or trans-
lation) n, and it provides the detail (fine information) present in the signal.

The dyadic grid sampled orthonormal discrete wavelets are associated with
scaling functions and their dilation equations. The scaling function is associated
with signal smoothing and has the same form as the wavelet. It is given by,

D (£) = 272027 - 1t — ), (2.5)

where 0,,,,() has the property | 0oo(f)dt = 1.

Often (o o(¢) is referred to as the father scaling function or father wavelet. The
scaling function is orthogonal to the translations of itself, but not to dilations of
itself. The smoothing of the signal (or the coarse details or the envelope of the
signal) is obtained by convolving the scaling function with the signal, and the
obtained samples are called approximation coefficients and are defined as
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Son = / ()0 (). (2.6)

A continuous approximation of the signal can be obtained at scale m using
following equation,

X (1) = Z D (2), (2.7)

where x,,(¢) is a smooth, scaling function-dependent version of the signal at scale
m. Using both approximation and wavelet (detail) coefficients, the signal can be
expressed as follows

x(t) = Z Smo,n(bmo-,n(t)_k Z Z Tm-,n'vbm,n(t)' (28)

n=—00 m=—00 n=—00

From Eq. (2.8), we can see that the original continuous signal is expressed as a
combination of an approximation of itself at arbitrary index, m( added to a suc-
cession of signal details from scales my to negative infinity. The signal detail at
scale m is given by,

dm(t) == i Tm,nl//m,n(t)- (29)

n=—0o0

From Egs. (2.7) and (2.9), we can write

xX(t) =Xy (1) + Y du(2). (2.10)
From Eq. (2.10), it easily follows that
Xm—1(t) = xp(t) + d(2). (2.11)

From Eq. (2.11), we can see that if we add the signal detail at an arbitrary scale
to the signal approximation at the same scale, we get the signal approximation at
an increased resolution. Hence, wavelet transformation provides multi-resolution
analysis (MRA) capability.

In this work, different basis functions are used. They are Daubechies-4,
Daubechies-6, Daubechies-8, Symlet-2, Symlet-4, Symlet-6, Symlet-8, Coiflet-2
and Coiflet-5. All the considered wavelet families are orthogonal.

The frequency components in each of the sub-bands are shown in Fig. 2.2.
Since the sampling frequency of the signal under study is 250 Hz, the maximum
frequency contained by the signal will be 125 Hz. Therefore, in the first level,
approximation will consist of 0-62.5 Hz frequencies, whereas first level detail
consists of 62.5-125 Hz frequencies.
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2.3.4 Sub-band Principal Component Analysis

There will be a large number of DWT coefficients in every sub-band of the ECG. If
all these coefficients are considered, they will create a large computational burden
on the classifier. Therefore, it is wise to represent these coefficients by fewer
components. In this study, we have used PCA [15] to reduce the number of
features in each of the sub-bands of interest. We identified four sub-bands based on
the frequency present in the signal. The four sub-bands are 2nd-level detail, 3rd-
level detail, 4th-level detail, and 4th-level approximation. Each of these sub-band
wavelet coefficients is subjected to PCA, and the components are chosen such that
they will contain 98 % or more of the total energy present in that sub-band.

Mathematically, PCA projects the data from the original coordinate system to a
new coordinate system in which the first coordinate corresponds to the direction of
maximum variance, and successive coordinates correspond to the directions in
decreasing order of variance. Some directions contribute less variability, and those
directions need not be preserved in our representation. In the new coordinate
system, the axes are called principal components (PCs). A bound of 98 % con-
tainment of total variability of segmented ECG is used as a threshold on the total
variance in all the considered PCs. PCA consists of following steps.

Compute data covariance matrix as

(x; = %) (x; — %), (2.12)

C =

N
-
where x; represents the ith pattern X represents the pattern mean vector, and N is
the number of patterns.

Compute the matrix V of Eigen vectors and diagonal matrix of Eigen values

D as

v-lcv =D. (2.13)
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The Eigen vectors in V are sorted in descending order of Eigen values in D, and
the data is projected on these Eigen vector directions by taking the inner product
between the data matrix and the sorted Eigen vector matrix.

2.3.5 Statistical Test

The DWT features in compact supported basis space provide sparser representa-
tion for ECG in sub-bands. When PCA is applied on sub-bands, it should provide
higher compression, and the method is more meaningful. Therefore, it is expected
for the principal components of DWT features to provide better statistical sig-
nificance than time domain principal components. Both time domain features and
DWT features are compared against the two classes of signals for equality of class
group means using independent sample ¢ test [16].

2.3.6 Classification

The significant DWT features obtained from statistical tests are used for sub-
sequent pattern classification. We have used three classifiers, Gaussian mixture
model (GMM), error back propagation neural network (EBPNN), and support
vector machine (SVM).

2.3.6.1 Gaussian Mixture Model

We have a two-class pattern classification of ECG into normal sinus thythm and
arrhythmia classes. The GMM assumes that the features are normally distributed,
and each class is characterized by its mean (y,) and covariance matrix (X;). Since
we have applied an orthogonal transformation in compact supported basis space,
the features are likely to be uncorrelated. The off-diagonal elements in the
covariance matrix are approximately zero. The probability density function of
GMM for every sample belonging to a given class k, is given by

P (x| ) l(x,, — %) 12 (xa —xk)}, (2.14)

1
= 7,5 Xpy —
(Zﬂ)d/2‘2k|l/2 { 2

where

1
=S X, 2.15
X |Xk|Zx (2.15)

Xp €EW
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and
1 _ _\T . 2 .
3, — - — " — =d ), 1<i<d 2.16
K |Xk|E (0 — X) (6w — %) = diag (o), 1 <i (2.16)

The corresponding posterior probabilities are given by Bayes’s rule as
P(x;|ox)

PO = e Pafan) @17

Initially, the mean and covariance matrices are assigned with some random
values. The values are updated using an expectation maximization (EM) algorithm

and a maximum likelihood estimation method. The re-estimation formulae are as
follows.

7= i % Poyl)
! PO P(w]x;)

o S = 1) P(wj]x)
Soini Pwjlx)

N

p(@;) = JLVZP(wj\xi) (2.20)

i=1

(2.18)

(2.19)

An initial model having parameters (i, X;) is assumed from the data. The EM
algorithm has two steps: an E step and an M step. During the E step, the class
conditional density is computed according to Eq. 2.14 and the posterior density is
also computed according to Eq. 2.17. During the M step, the model parameters are
re-estimated according to Eqs. 2.18—2.20. The process is continued until the new
model remains almost identical to the previous model. At this point, the algorithm
is said to be converged. The GMM optimizes the following objective function,

J = H Zp(wk)p(x,,|wk). (2.21)
n k

GMM minimizes the product over all the patterns, the total class conditional
density weighted with the respective prior probability.

2.3.6.2 Error Back Propagation Neural Network

An error back propagation neural network [17] is used in our study. The neural
network is trained on the training set of the data such that the weights get updated
recursively with respect to the patterns. This is also an optimization problem where
following objective function is minimized.
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J(w) = %Z Z [k, ) — 212, (2.22)

n=1 k=1

where yi(x,, @) is the network response for the kth class neuron in the output layer
and 1} is the target for kth class of nth observation feature vector.

The gradient descent method is used in the analysis to adapt the network
weights. We have used adaptive serial learning from the data using minimum
mean square error criterion. Once the network is trained, the test signal is fed to the
neural network and the data is classified to one of the two predefined classes.

2.3.6.3 Support Vector Machine

SVM [18] is a single layer, highly nonlinear network which optimizes the class
separation boundary such that the distance from the features falling in a given class
to the hyperplane gets simultaneously maximized. SVM is a supervised classifier
that has generalization ability [19] in the sense that it can classify an unseen
pattern correctly. If (x;,y;),i = 1 : N is the data set, x; is the ith pattern point, and
y; is the corresponding class label, then let c+ and c— be the centroids for two
classes in binary classification problem. The classifier output will be

yi = sgn((x —¢) - w) = sgn((x.c+) — (x.c=) + b) (2.23)
where
b=l I~ llc +1P). (224)

The optimal hyperplane separating the two classes and satisfying condition
given in Eq. 2.23 is

1
minimize,, 5 [[w]|? (2.25)

such that
yi(wx;))+b)>1,i=1,...N. (2.26)

The Lagrangian dual of Eq. 2.25 is a quadratic programming problem used to
find the optimal hyperplane separating the two classes.

2.3.7 k-fold Cross Validation

k-fold cross validation [20] is used for k = 3. Here, the total number of samples are
sub-sampled into three (k) sets; one set is used for testing, whereas the other two
sets are used to train the classifier. The process is repeated two more times such
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Fig. 2.3 R-point detection in normal sinus rhythm signal

that every sub-partition is used as a testing set and the rest are used for classifier
training. The three accuracies are averaged to estimate the average classifier
performance. Using k-fold cross validation, the bias in choosing the samples from
the population can be overcome.

2.4 Results and Discussion

In order to apply our proposed methodology, a two-class ECG classification
problem has been formulated based on the MIT BIH arrhythmia and MIT BIH
normal sinus rhythm datasets (described in Sect. 2.2). The Pan-Tompkins algo-
rithm is used to detect the R-point because of its simplicity and accuracy. The
detection of the R-point is shown in Fig. 2.3, where the detected R-point is marked
with a black asterisk. It can be seen from Fig. 2.3 that the Pan-Tompkins method
detects the R-point with good precision. In fact, the Pan-Tompkins algorithm is a
multistage filtering (differentiation, smoothing, etc.) and a nonlinear element
(rectification) between the linear operations in the algorithmic steps.

Once the R-point is detected, a window (or one segment) of 200 samples is
extracted by choosing 99 points on the left of the R-point, and 100 points on the
right of the R-point and used for further classification. The power spectral density
(psd) is computed using an autoregressive method and is plotted for a normal sinus
rhythm and arrhythmia signal in Fig. 2.4. The objective of computing psd. is to
identify the frequencies of interest so that they can descriminate the two kinds of
beats (normal sinus rhythm and arrhythmia) distinctly. We can observe from
Fig. 2.4 that frequencies in the range of 0—50 Hz can be used for that purpose.
Hence, by referring to Fig. 2.2 and the graph in Fig. 2.4, it is observed that the sub-
bands of interest are detail 2, detail 3, detail 4, and approximation 4.
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Fig. 2.5 DWT decomposition of normal sinus rhythm signal a Original signal, b Detail-2,
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The DWT using Daubechies-4 wavelet is shown for normal sinus rhythm signal
in Fig. 2.5. We can see that all the sub-bands of interest contain some signal
component that can be used for performing classification. Figure 2.6 shows the
DWT computed using the Daubechies-4 wavelet for an arrhythmia signal. We can
see that the DWT decompositions of the two signals look different. If these
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Fig. 2.6 DWT decomposition of arrhythmia signal a Original signal, b Detail-2, ¢ Detail-3,
d Detail-4, e Approximation-4 signals

coefficients are compressed and represented by fewer components, they can be
used as features for subsequent classification. The reason for compression is that
using fewer components reduces the computational burden on the classifier.

PCA is applied on each sub-band of interest and different wavelet basis func-
tions are used. We use the Daubechies-4, Daubechies-6, Daubechies-8, Symlet-2,
Symlet-4, Symlet-6, Symlet-8, Coiflet-2, and Coiflet-5 wavelet basis functions.
PCA is an orthogonal transformation which maps the data into the directions of
maximum variability. Since DWT is a compact supported basis function, having
sparse representation, PCA on it should provide higher compression. The number
of principal components is chosen so that the components contain 98 % variability
of the respective sub-band. For different basis functions, the number of principal
components chosen from each of the sub-bands and the total variability of the data
contained is shown in Tables 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9.

The Eigen value profile for the Daubechies-4 wavelet is shown in Fig. 2.7.

After PCA, the compressed components are subjected to a statistical signifi-
cance test. Based on the p-value provided by the statistical test, the significance of
components is decided, and the significant features are used for further classifi-
cation. The statistical significance test is performed for every basis function and
the results are tabulated in Table 2.10. It is observed from Table 2.10 that the
DWT domain principal components are more significant than time domain com-
ponents on the basis of the statistical test.

The GMM classification for the Daubechies-6 wavelet basis function features is
shown in Fig. 2.8. We can see that the log likelihood in the graph increases and
becomes steady after convergence of the algorithm.
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Table 2.1 DWT decomposition using Daubechies-4

39

Sub-band Number of PCs Energy in %
Detail 2 5 98.1770
Detail 3 3 99.2262
Detail 4 2 98.5930
Approximation 4 3 98.8920

Table 2.2 DWT decomposition using Daubechies-6

Sub-band Number of PCs Energy in %
Detail 2 3 98.1957
Detail 3 2 99.1075
Detail 4 2 99.4899
Approximation 4 2 98.3697
Table 2.3 DWT decomposition using Daubechies-8

Sub-band Number of PCs Energy in %
Detail 2 7 98.1937
Detail 3 2 99.4728
Detail 4 2 99.0444
Approximation 4 2 98.5753
Table 2.4 DWT decomposition using Symlet-2

Sub-band Number of PCs Energy in %
Detail 2 2 98.2329
Detail 3 3 99.4611
Detail 4 2 99.3243
Approximation 4 2 98.4532

Table 2.5 DWT decomposition using Symlet-4

Sub-band Number of PCs Energy in %
Detail 2 10 98.0661
Detail 3 2 99.0872
Detail 4 2 99.6493
Approximation 4 2 98.6254

The classification by EBPNN is shown in Fig. 2.9, which shows that the total
mean-squared error reduces with epochs. We can observe that the EBPNN algo-
rithm converges in 19 epochs for Daubechies-6 wavelet family features. Fig-
ure 2.10 shows SVM classification with linear kernel. Since the data is linearly

separable, we have used only linear kernel SVM.
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Table 2.6 DWT decomposition using Sym-6

Sub-band Number of PCs Energy in %
Detail 2 3 98.1292
Detail 3 2 98.8807
Detail 4 2 99.5307
Approximation 4 2 98.1622
Table 2.7 DWT decomposition using Sym-8

Sub-band Number of PCs Energy in %
Detail 2 10 96.6749
Detail 3 2 98.8332
Detail 4 2 99.6216
Approximation 4 3 98.6306
Table 2.8 DWT decomposition using Coiflet-2

Sub-band Number of PCs Energy in %
Detail 2 10 96.9230
Detail 3 2 99.1172
Detail 4 2 96.6110
Approximation 4 3 98.6443
Table 2.9 DWT decomposition using Coiflet-5

Sub-band Number of PCs Energy in %
Detail 2 10 96.0415
Detail 3 2 98.2607
Detail 4 2 99.6023
Approximation 4 2 98.5899

Table 2.11 shows classification accuracies of various schemes using different
wavelet basis functions. It can be observed from Table 2.11 that EBPNN provides
higher accuracy than GMM and SVM leads to the highest accuracy. Amongst
various wavelet families, it can be noted that Symlet-2 consistently performs better
for all the classifiers and has the highest possible accuracy.
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Table 2.10 Statistical significance test for time domain and Daubechies-6 based DWT sub-band
features

Time domain PCs  Statistical significance DWT domain PCs  Statistical significance
t p t p
1 —61.998 0.000 1 —70.9029 0.000
2 —156.68 0.000 2 —52.5739 0.000
3 0.1702 0.8650 3 —3.4508 0.000
4 —1.7762 0.0763 4 —28.7637 0.000
5 0.4157 0.6778 5 37.3751 0.000
6 0.4035 0.6867 6 —27.1491 0.000
7 —0.1840 0.8541 7 22.3390 0.000
8 —0.3165 0.7517 8 10.5710 0.000
9 0.8103 0.4181 9 —93.7320 0.000
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Fig. 2.8 GMM classification, log-likelihood increasing with iterations
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Table 2.11 The average classification accuracies of various classifiers using different wavelet
basis functions

Wavelet basis function GMM EBPNN SVM
Db4 87.36 93.41 95.60
Db6 88.52 94.23 96.72
Db8 85.27 93.78 95.39
Sym?2 89.78 95.17 97.23
Sym4 85.18 93.79 96.81
Sym 6 88.21 94.18 97.14
Sym8 84.39 93.89 96.68
Coif 2 85.91 92.96 95.95
Coif 5 85.16 92.83 95.42

2.5 Conclusion

In this chapter, a systematic approach is developed for screening arrhythmia and
normal sinus rhythm from their ECG profiles. We have extracted time frequency
features using various basis functions, including Daubechies, Symlet, and Coiflet
wavelet families. PCA is applied on time frequency sub-band features and, in this
compact supported basis space, higher compression is expected. Based on our
experiments, we have determined that different basis functions distribute energy in
different sub-bands in a unique way for a given wavelet. Our methodology exploits
this energy distribution so that the features are well represented, thus resulting in
higher accuracy. These time-frequency features are markers of disease, since these
features are able to discriminate the data into two classes. As a future direction,
other time-frequency representations can be used to see how the energy com-
paction is achieved. In addition, various other dimensionality reduction techniques
can be used for performance. The machine-learning methodology given in this
chapter can be used efficiently in telemedicine systems to identify abnormal events
in the ECG signals so that emergency cases can be identified and such patients can
be attended for critical care.
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Chapter 3

Application of Fuzzy Logic Control
for Regulation of Glucose Level

of Diabetic Patient

K. Y. Zhu, W. D. Liu and Y. Xiao

Abstract Diabetes can lead to many complications. If a patient cannot control his
or her glucose level properly, he or she may suffer serious consequences. The
result may be ketosis, which is normally due to an increase of acetone (a toxic acid
product) and may lead to a situation such as diabetic coma. A fuzzy logic control
system for the regulation of glucose level for diabetic patients is proposed in this
chapter. A mathematical model describing the relationship between the human
glucose level, insulin, and food is first presented. Then, a generalized fuzzy logic
controller, including a set of fuzzy logic rules, is introduced to regulate glucose
levels for diabetic patients. Following the fuzzy logic controller, simulation is
presented. The results show that the fuzzy logic control is effective for handling
the glucose level based on feedback scheme.

3.1 Introduction

It is known that the number of diabetic patients is increasing in the world, especially
in the developed countries and this increase is a challenging problem for healthcare
providers in the countries concerned. Diabetes, also called diabetes mellitus or
diabetes insipidus, is caused by insufficient production of insulin (either absolutely
or relative to the body’s needs), production of defective insulin (which is uncom-
mon), or the inability of cells to use insulin properly. Diabetes can occur as one of
two distinct types: Type I (also called as insulin dependent) or Type II (called as
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Fig. 3.1 Relationship among sugar, insulin and fat

non-insulin-dependent) diabetes. The main objective for treating diabetes is regu-
lation of elevated blood sugars (glucose) without causing the blood sugar level to
drop too low. Both types of diabetes are treated with adequate exercise and special
diets. Type I diabetes is also treated with insulin, whereas Type II diabetes is treated
with weight reduction in addition to adequate exercise and a special diet. When
these methods are not successful, oral medications are commonly adopted. If oral
medications are ineffective, insulin medications may be prescribed.

Insulin is produced by the pancreas, the key which opens the little holes on the
cell membranes for the glucose to enter the cells in a normal way. Glucose is
essential energy, like fuel, required for every cell of our body. However, a diabetic
patient does not have enough insulin to open the little holes of the cell membranes.
This lack of insulin can prevent the glucose circulating in the blood stream from
entering cells. As a result, the blood glucose level increases and spills into the
urine. A diabetic patient without enough insulin is like a thirsty sailor in the ocean
who is surrounded by water but cannot drink it. For the diabetic his/her body cells
are surrounded by sugar, but cannot consume it as they need the insulin to make
the sugar enter each cell and be consumed.

Figure 3.1 shows the relationship among sugar, insulin, and fat in a diabetes
patient. This figure shows why a strict diet and insulin are so important to the
diabetes patients.

There are three types of insulin available to healthcare providers and diabetic
patients: regular insulin, Lente insulin, and Humulin. Regular insulin is extracted
from the pancreas of pork and beef. The effect from this insulin is rapid and lasts
from 4 to 6 h. Lente insulin comes from pork and beef (with a type of oily
substance for slower reabsorption) and its effects last longer than the effects from
regular insulin. Humulin insulin is a mixture of regular and Lente insulin. A
standard Humulin insulin syringe contains a mixture of 70 % Lente and 30 %
regular insulin. At the present time, Human insulin is the most used because some
patients will develop a resistance to insulin extracted from animals due to the
minor amino acid difference between animal insulin and human insulin. We can
manufacture Humulin insulin by synthesis.

Uncontrolled glucose level for diabetic patient may cause artherosclerosis, or
hardening the arteries and form blockage in the circulation, affecting the cardiac
arteries, brain, kidneys, liver, and feet. From the artherosclerosis, it is known that
heart attacks, strokes, and liver and kidney failure frequently occur. High glucose
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levels can also cause the formation of microscopic aneurysms on the retina,
originating hemorrhage, and decrease of vision and can consequently cause
blindness. Circulation in the feet may also decrease, leading to artery hardening,
ulcers, infection, and even gangrene.

Although diabetes could cause severe damage to the human body, if the patients
control the disease by diet or insulin properly, all the complications could be
avoided or prevented. Research shows that we could reduce the mortality of
diabetic and non-diabetic ICU (Intensive Care Unit) patients by up to 50 % [1]
through tight control of blood glucose level. In order tightly control the blood
glucose level, diabetic patients need to monitor their daily intake and activity
strictly; this step could help maintain their blood sugar at adequate levels.
Unfortunately, this strict lifestyle may cause an ‘institutional’ psychology, and it
may be difficult to consistently maintain a strict daily regimen over several years.

We can use the devices to measure the glucose level and administer insulin, but
the measure and inject are two separate procedures which have no automated
interface. It is difficult for patients to perform these two procedures manually every
day, and the procedures may also introduce errors due to human miscalculation
and limitations. Furthermore, tightly controlling the blood glucose levels to the
basal level of 4.5 mmol ' could significantly reduce the damage caused by long-
term exposure to elevated glucose levels. The Diabetes Control and Complications
Trial (DCCT), a study which followed almost 1,500 people with Type I diabetes
for 10 years, proved that tight control over blood glucose levels could reduce eye
disease in 62 % of patients, kidney disease in 56 % of patients, and nerve damage
in 60 % of patients with Type I diabetes. On the other hand, the UK Prospective
Diabetes Study (UKPDS), which followed over 5,000 patients with Type II dia-
betes in 23 clinics in Europe for 20 years, proved for the first time that better blood
glucose control reduces the risk of eye disease by a quarter, and early kidney
damage by a third in individuals with Type II diabetes. In these studies, restricting
control meant keeping the blood glucose levels as close to normal as possible,
which could extend the life expectation and provide protection against long-term
health risks for patients [1-3].

A typical day for an insulin therapy diabetic patient might involve injecting
long-acting insulin approximately three times and injecting rapid-acting insulin
before meals to reduce the post-meal blood glucose spike. Moreover, most com-
monly available glucose sensing devices are invasive and measure the blood
glucose content by a small finger-prick blood sample. The pain involved in the
finger pricking may cause diabetic patients to measure blood sugar level more
infrequently. Although new technologies have brought us products such as the
Continuous Glucose Monitoring System (CGMS), which could provide the
updated glucose level every 5 min, for up to 72 h and an insulin pump which could
inject rapid-acting insulin continuously over 24 h. These two technologies will be
discussed in later sections. ‘

In 2006, the FDA approved the MiniMed Paradigm® REAL-Time Insulin Pump
with Continuous Glucose Monitoring System. This treatment system is the first to
provide real-time, continuous glucose monitoring. The MiniMed Paradigm REAL-
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Fig. 3.2 Physiological block diagram of the modeled system

Time system is composed of two components, a REAL-Time Continuous Glucose
Monitoring (CGM) System, and a MiniMed Paradigm insulin pump, but the
amount of insulin injected is determined by the patients. Patients will take
immediate action to improve their control of glucose control after the glucose
information is displayed on the insulin pump. Integrating an insulin pump with
real-time CGM is an attempt to develop a closed-loop insulin injection system that
may mimic some functions of the human pancreas.

In our research, we attempted to introduce a closed-loop system based on a
fuzzy logic control scheme, which could effectively control a diabetic patient’s
blood sugar level. This system may help patients more fully engage in the ‘normal’
routines of life with reduced risk of long-term adverse end-results. Figure 3.2
shows the block diagram of the modeled dynamics for the human glucose regu-
latory system. Our control system will be based on this glucose regulatory system.
The mathematical detailed of this model will be discussed in Sect. 3.3.

3.2 Mathematical Model of Glucose Regulatory System

A simple model which could capture all the essential dynamic behaviors is pre-
sented below. This model does not require unavailable data and is suitable to a
wide variety of subjects. There are also comprehensive models available, but these
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models require several time points of input to generate the insulin infusion profile
and are unsuitable for real-time control.

A well-known and physiologically verified model originated from the work of
Bergman et al. The concept of this model is to use a remote compartment for the
storage of insulin to account for the time delay between the injection of insulin and
its utilization to reduce blood glucose levels. These mathematical models are:

G=-pG-X(G + Gp)+P(t), (3.1)
X =—p,X +p3l, and (3.2)
I =—n(l+1Ip) +u(t)/V, (3.3)

where G is the concentration of the plasma glucose above the basal level
(mmol/L), Gp is the basal level for plasma glucose concentration (mmol/L), i.e.
G + Gg is the total glucose in the blood plasma, where G = 4.5 typically, X is the
utilization effect of insulin in a remote compartment (min’l), I is the concen-
tration of the plasma insulin above basal level (mU/L), I is the basal level for
plasma insulin concentration (mU/L), P(¢) is the exogenous glucose infusion rate
(mmol/L/min), u(t) is the exogenous insulin infusion rate (mU/L/min), p3 is the
subject dependent model parameter (mU/L/min2), V; is the insulin distribution
volume (L), and n, py, p, are the subject dependent model parameters (min’l).

The parameters, pi, p» and p3 may be changed to represent different conditions
of the glucose regulatory system [4]. The parameter p; is the fractional clearance
of plasma glucose at basal insulin. For diabetic subjects,

p1 =0, p» = 0.025, p; = 0.000013 (3.4)

The model is therefore patient specific and is adapted to each person before a
controller is developed.

In some conditions, e.g. ICU patients who have direct arterial/venous lines that
bypass the subcutaneous compartment, this model can be simplified as:

G = —p1G — S11(G + Gg) + P(1) (3.5)

I= —n(I + Ip) + u(t)/VI, (36)

where S;(L/mU/min) refers to patient specific parameters. In our experiments,
these parameters refer only to insulin sensitivity [5—12].

The model shown in Egs. (3.1) through (3.3) was developed to model insulin
sensitivity, a measure of how efficiently the body responds to insulin input after
taking a glucose tolerance test (OGTT). The model is simple but accurately rep-
resents the essential dynamics of the human glucose regulatory system for a
variety of patients. These three equations represent insulin production and infu-
sion, insulin storage in a remote compartment, and glucose input and insulin
utilization in a second compartment. Equation (3.1) represents the glucose levels
in the blood stream and the dynamics of its reaction with insulin. Equation (3.2)
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This controller forms a simple feedback loop which employs the blood glucose
level above basal, G, and its derivate, G, as sensor input, and the exogenous insulin
infusion rate, u(t), as the control output. There are only two forms of data available
to control the system: G and G. Therefore, the controller measures the output from
Eq. (3.1) while directly influencing the dynamics in Eq. (3.3) via the control
action. In between is the remote compartment represented in Eq. (3.2) which
describes the time delay and additional dynamics.

3.3 Fuzzy Logic Control System

Fuzzy logic control systems are essentially rule-based expert systems, which
consist of a set of linguistic rules in the form of “IF-THEN.” The fuzzy IF-THEN
rules are of the following form:

Ri: IF x; is F| and...and x, is F}, THEN y, is G| and...and y,, is G|, where F
(j=1,2,...r) and G, (k=1,2,...m) are labels of fuzzy sets characterized by
appropriate membership function. X = (x1,x,,...x,) and ¥ = (y1,y2,...ym) €V
are input and output linguistic variables, respectively, and i = 1,2, ...u means the
ith rule. Each of the fuzzy IF-THEN rules defines fuzzy set

FixFyx-F -G +G,+--G, (3.8)
where “+” represents the union of independent variables. Since the outputs of a
multi-input and multi-output (MIMO) rule are independent, the general rule
structure of a MIMO fuzzy system can be represented as a collection of multi-input
and multi-output (MISO) fuzzy systems by decomposing the above rule into m
sub-rules with F; as the single consequence of the ith sub-rule.

Adaptive fuzzy logic control systems consist of a collection of linguistic rules,
fuzzy implications, fuzzy model identifications, and an adaptive algorithm. This
adaptive fuzzy logic control system can be a two-level system. The first level, or
lower level, of the system is a simple fuzzy logic controller. The second level, or
higher level, is the fine-tuning system that is used for processes with changing
conditions. In a simple fuzzy logic control system, the measured nonfuzzy state
variable is compared with a given nonfuzzy set point. Then, the crisp nonfuzzy
value is converted into two fuzzy controller inputs, which are an error and a
change of error. Through the inference engine and knowledge base of given rules,
the expert system can obtain a linguistic value for the controller output. Because in
practice it is necessary to calculate the deterministic value of the controller output,
a defuzzier, which converts the output fuzzy set to a deterministic or crisp value
and send this value to the final control element, is needed.

The block diagram of the fuzzy control system for regulation of glucose level is
shown in Fig. 3.4. The learning rule is determined based on the errors, i.e. the error
and rate of change of the error for glucose level defined by



54 K. Y. Zhu et al.

. Glucose level
Insulin

FC > Patient £

Fig. 3.4 Block diagram of fuzzy control system

e(t) = G(1) (3.9)
r(f) = G(t) — G(t — 1), (3.10)

where e(t) is the glucose level deviated from its basal level of Gg, r(t) is the rate of
change of error at time .
The fuzzy logic controller is composed of the following six components. Note
that e(¢) and r(¢) are scaled before fuzzification. E(nT) is scaled by a scalar
G,.while r(r) is scaled by a scalar G,. Then they are fuzzified by fuzzy sets shown
in Figs. 3.5 and 3.6, where L is the interval, |g,| <1 and |g,| <1, which were
memberships of G.e(t) and G,r(z), respectively.
The four fuzzy control learning rules are described linguistically and are related
to fuzzy sets for an increment of insulin Au(r), which are listed below
Rule 1 IF Ge(t) is “positive” and G,r(t) is “positive,” then Au(t) is
“positive.”

Rule 2 IF G.e(nT) is “positive” and G,r(nT) is “negative,” then Au(r) is
“zero.”

Rule 3 IF G.e(nT) is “negative” and G,r(nT) is “positive,” then Au(t) is
“zero.”

Rule 4 IF G.e(nT) is “negative” and G,r(nT) is “negative,” then Au() is
“negative.”

Note that the output fuzzy sets describing Au(t) are three singleton fuzzy sets,
“positive,” “zero,” and “negative,” as shown in Fig. 3.7.

Learning Rule 1 shows that if the glucose level is above the basal level and is
increasing, then Au(r) should be positive and the insulin infusion rate should be
increased. Learning Rule 2 says if the glucose level is above the basal one, but is
decreasing, Au(r) should be zero, which means the insulin infusion rate should not
be changed. Learning Rule 3 states that if the glucose level is lower than the basal
level and is increasing, Au(t) should be zero, which means the insulin infusion rate
should not be changed. Learning Rule 4 indicates if the glucose level is lower than
the basal level and is also decreasing, then Au(¢) should be negative, i.e. the insulin
infusion rate should be decreased. These learning rules, though very simple,
represent rationally practical control strategy of human insulin infusion.

]
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Consider that for the basal insulin infusion, we obtain the fuzzy logic controller

u(t) = { uo + Au(t), if u(t)>0

, (3.11)
0, if u(r)<0

where u represents the basal insulin required to maintain the basal glucose level.

3.4 Simulation Study

In this section, simulations using the glucose regulatory system and controllers
introduced in previous sections will be explained. First, we compare the steady
state without exogenous glucose between diabetes patients and normal individuals.
In our simulations, insulin infusion replaces the normal pancreatic function to help
the diabetes patients’ glucose concentration level at a basal infusion rate.

3.4.1 Steady-State Without Exogenous Glucose

At the steady state without exogenous glucose, patients need the basal infusion rate
u(t) = up to maintain the glucose at the desired level G + Gp = Gg. For the
normal individuals, the relationship between glucose and the insulin infusion rate
can be represented by Fig. 3.8a. However, Fig. 3.8b represents the relationship of
the diabetes patients. The exogenous insulin infusion of diabetes patients mimics
the pancreas secretion without food intake. The infusion rate is the basal rate at
this situation which is ug.

3.4.2 Oral Glucose Tolerance Test

The oral glucose tolerance test (OGTT) determines the state of carbohydrate
metabolism and is used to recognize an early stage of diabetes mellitus. In the test,
patients need to consume 400-800 kcal of glucose after more than 12 h fasting,
and their responding will be observed. Upon glucose load, the concentration of
glucose rises; OGTT determines the time needed for the concentration of glucose
to return to normal. This test simulates the physiologic intake of food under
standard conditions. This beta-cell function test represents a significant challenge
to the pancreas [13-19].
The OGTT can be mathematically represented by

P(t) = P, exp(—a(ln(bt) - c)2>7 (3.12)
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where the P,, is the peak value and a, b, and c are constants, which determine the
slopes and curvature. It is smooth, continuously differentiable, and has zero initial
conditions and easily implemented and physiologically representative. OGTT is
easily modified to represent faster or slower absorption rates of exogenous glucose.
Figure 3.9 represents the OGTT curve with the parameters P,, =0.5,a=1,b =
0.5 and ¢ = 2.

Because a non-diabetic individual’s pancreas can produce enough insulin to
consume the plasma glucose and control the glucose concentration well, the
glucose concentration curve is represented in Fig. 3.10a. However, for a diabetic
individual, the glucose level increases and remains, as shown in Fig. 3.10b.

3.5 Glucose Level Control with Fuzzy Control System

The simulation study using the fuzzy logic control system described in the pre-
vious section is carried out for diabetic patients. In the fuzzy logic controller, the
scalars G, and G, will be selected with different values. Figure 3.11 shows the

simulation results with oo = % and G, = 0, where « is with different values and in

fact, o represents a gain. As we select G, = 0, the rate of change of error r(¢) in the
glucose level is ignored. If the glucose level is much lower than the basal value, it
will cause unconsciousness and possible brain damage, resulting in o = 1 provides
an adequate regulation of the glucose level.
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Figures 3.12 and 3.13 shows the simulation results with k, = % and k; = %.
Figure 3.12 shows what occurs if k, differs while k; is fixed. Figure 3.13 shows
what occurs if k; differs and k, differs. From the results, we can see that for
k, = 0.8, ks = 30, and the glucose level is curbed. Thus, we achieve better control

of performance.
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3.6 Conclusion

In this chapter, we describe a simulation study which controls glucose levels in
diabetics. First, a mathematical model representing the relationship between the
human glucose level and insulin is introduced. This model is useful for designing
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and simulating a control system. Then, a novel fuzzy logic controller is proposed
to regulate the glucose level for diabetes. Fuzzy rules applicable to real patient
control are proposed. A simulation study is also carried out, which includes the
study of different control parameters settings. The results show that a feedback
regulation is feasible if the glucose level measurement is realizable. The fuzzy
control system proposed here may also be applicable for open-loop regulation of
glucose level. It is quite interesting as in practice it is not easy to monitor and
acquire real-time glucose level.
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Chapter 4
The Application of Genetic Algorithm
for Unsupervised Classification of ECG

Roshan Joy Martis, Hari Prasad, Chandan Chakraborty
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Abstract In this chapter,we have proposed an integrated methodology for
electrocardiogram (ECG) based differentiation of arrhythmia and normal sinus
rhythm using genetic algorithm optimized k-means clustering. Open source dat-
abases consisting of the MIT BIH arrhythmia and MIT BIH normal sinus rhythm
data are used. The methodology consists of QRS-complex detection using the
Pan-Tompkins algorithm, principal component analysis (PCA), and subsequent
pattern classification using the k-means classifier, error back propagation neural
network (EBPNN) classifier, and genetic algorithm optimized k-means clustering.
The m-fold cross-validation scheme is used in choosing the training and testing
sets for classification. The k-means classifier provides an average accuracy of
91.21 % over all folds, whereas EBPNN provides a greater average accuracy of
95.79 %. In the proposed method, the k-means classifier is optimized using the
genetic algorithm (GA), and the accuracy of this classifier is 95.79 %, which is
equal to that of EBPNN. In conclusion, the classification accuracy of simple
unsupervised classifiers can be increased to near that of supervised classifiers by
optimization using GA. The application of GA to other unsupervised algorithms to
yield higher accuracy as a future direction is also observed.
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4.1 Introduction

Cardiovascular diseases (CVD) comprise a group of diseases of the heart and
blood vessels. Globally, CVD accounts for 16.7 million deaths (29.2 % of total
deaths). Around 7.2 million deaths are due to coronary artery disease (CAD) or
ischemic heart disease (IHD). Approximately 80 % of all CVD deaths worldwide
occur in developing, low-and middle-income countries [1]. A primary concern
is that in many countries people of younger generations and those from rural
societies are increasingly affected, due to demographic changes and sedentary
lifestyles [2, 3]. It has been predicted that between 1990 and 2020 there will be
111 % increase in CVD deaths in India alone. Since the cost of treatment has
considerable effects on a country’s economy, the development of effective
approaches for the early detection and prevention of CAD is important for
reducing the burden of heart disease [4].

Arrhythmia occurs due to the anomaly of heart thythm. Arrhythmias are gen-
erally caused by the abnormalities in impulse generation or its conduction or in
both. Cardiovascular diseases are the most common etiology for the development
of arrhythmias [5]. Many arrhythmias may be life-threatening and require early
diagnosis and proper treatment. Arrhythmias like ventricular fibrillation and
ventricular flutter are life-threatening medical emergencies.

Electrocardiogram (ECG) is a noninvasive tool for the diagnosis of heart-related
abnormalities. It provides both anatomical (i.e., structural) and physiological (i.e.,
functional) causes of these abnormalities. In normal circumstances, the physician
observes the pattern of evolving ECG, understands the disease process, and comes
to a diagnoses of the underlying disease. ECG thus has an important role in
screening heart abnormalities. Early diagnosis and treatment of heart diseases is
crucial; however, in many counties, because of the huge population and limited
healthcare resources, it is expensive for medical experts to screen every person.
There is, therefore, a need to develop automated screening tools that will make use
of some feature extractors and machine-learning algorithms. The work presented in
this chapter provides a mass screening method, by classifying arrhythmia and
normal sinus rhythm.

Feature extraction techniques, such as principal component analysis (PCA) [6]
and linear discriminant analysis (LDA) [6] are used before classification. After
feature extraction, pattern classification is to be performed [1, 7-9]. One of the
traditional classification algorithms is the k-means clustering algorithm was first
proposed by MacQueen [10]. The important disadvantage of the k-means algo-
rithm is that it will always converge to the local optimum of the objective function.
Another supervised classification algorithm is the error back propagation neural
network (EBPNN), which has the ability to separate complex data patterns. Again,
the EBPNN is also a local optimization of the objective function. A class of
classification methods, called evolutionary algorithms, are population-based
methods rather than sample-based methods and have heuristically adapted struc-
tures. These algorithms always converge to the global optimum of the objective
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function. Genetic algorithms are evolutionary algorithms, which borrow principles
from natural genetics. There are many works in the literature [11, 12] for a
comparative study of the GA.

As with GA, there are many methods of QRS or R-point detection. In this study,
we have used the Pan-Tompkins algorithm (1985) for R-point detection. In the
past, many automated methods have used the R-point for registration, including
some of our earlier works [13-15].

This chapter introduces the application of GA to the ECG classification prob-
lem of arrhythmia and normal sinus rhythm. Both normal sinus rhythm and
arrhythmia signals are subjected to QRS extraction, PCA, and subsequent pattern
classification. Different classifiers used are k-means clustering, EBPNN, and GA
optimized k-means clustering. The m-fold cross validation is used to select training
and testing patterns for the classifier. The results are compared and discussed
below.

The contribution of this chapter is the proposal of a new methodology for ECG
classification between arrhythmia and normal sinus rhythm and the use of GA in
optimizing the simple unsupervised classifiers like k-means clustering so as to
improve their classification accuracy. The extension of the application of GA to
other classifiers like fuzzy c-means clustering and Gaussian mixture model is also
observed.

Section 4.2 outlines materials, Sect. 4.3 contains the methodology, Sect. 4.4
includes results and a discussion, and Sect. 4.5 concludes the chapter.

4.2 Materials

In the proposed methodology, the MIT BIH normal sinus rhythm database and
MIT BIH arrhythmia database, which are available as open source from
www.physionet.org, are used. The MIT BIH normal sinus rhythm database con-
sists of 18 long term ECG recordings of subjects referred to the Arrhythmia
Laboratory at Boston’s Beth Israel Hospital. Subjects included in this database
were found to have had no significant arrhythmias; they include five men, aged
26-45, and 13 women, aged 20-50. The ECG data is digitized at 128 Hz.

The MIT BIH arrhythmia database consisted of 48 half-hour excerpts of two
channel ambulatory ECG data obtained from 47 subjects studied by the BIH
arrhythmia laboratory between 1975 and 1979. Twenty-three recordings were
randomly taken from a set of 4,000 24 h ambulatory ECG data collected from a
mixed population including both inpatients (approximately 60 %) and outpatients
(approximately 40 %) at Boston’s Beth Israel Hospital. The remaining 25
recordings were selected from the same set to include less common but clinically
significant arrhythmias. The ECG recordings are sampled at 360 Hz per channel
with 11-bit resolution over a 10 mV range.
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4.3 Methodology

The methodology presented in this chapter consists of preprocessing the ECG, R-
point detection using the Pan-Tompkins algorithm, feature compression using
principal component analysis (PCA), and subsequent pattern classification using
three classifiers, k-means clustering, error back propagation neural network
(EBNN), and genetic algorithm (GA) optimized k-means clustering. The meth-
odology presented in this chapter as a system approach is depicted in Fig. 4.1.

4.3.1 Preprocessing

The signals considered for our analysis are sampled at different rates; hence, it is
necessary to choose a common sampling frequency such that equal time spacing is
maintained for both signals. A common sampling rate of 250 Hz is chosen for both
signals, which are re-sampled using standard techniques [16]. Alternatively, they
can also be re-sampled using the fast Fourier transform-based method presented in
our previous work [13]. In addition, the open source data may contain muscle
artifacts due to movements, powerline interference, and external noise. These
unwanted components are removed from the signal by using standard filtering
techniques [17].
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4.3.2 R-point Detection

The R-point in the ECG has maximum amplitude, which is easily detectable using
signal processing methods. Hence, we have used R-point for registration. Other
samples are subsequently chosen with respect to the detected R-point. The Pan-
Tompkins algorithm is used for the detection of the R-point in our study because
of its computational simplicity and better accuracy. In addition, many other
methods for R-point detection have been described in the literature, including
Fourier transform-based methods [18], wavelet-based methods [19, 20], and
Hilbert transform-based methods [21]. The original Pan-Tompkins algorithm
consists of taking a derivative using multiple samples, squaring, multiple sample
averaging, and thresholding operations.

In this study, an extended version of the Pan-Tompkins algorithm is used. This
version uses all simpler operators consisting of computation of the first derivative,
rectification, smoothing using a moving average filter, followed by the computa-
tion of the second derivative, rectification, smoothing using a moving average
filter, summing the two smoothened signals, and thresholding. The derivative
provides the slope information, whereas rectification converts all negative mag-
nitudes into positive magnitudes, and smoothing enhances the pulse at the R-point
and removes or suppresses the noise components. Once the algorithm provides the
location, the R-point is detected by advancing by the number of samples equal to
the group delay of all the involved filters.

Based on the detected R-point, 99 samples are chosen to the left of R-point and
100 samples are chosen to the right of R-point, so that a segment of 200 samples is
obtained for every subject.

4.3.3 PCA

After segmentation, there is a segment of 200 samples for every subject. Each
segment has large dimensionality that imposes a large burden on computation for
subsequent classification using automated classifiers. If the information contained
in these 200 samples is represented in an efficient manner using fewer components,
the computation involved in subsequent classification is reduced due to fewer
features. In this study, therefore, PCA is used to reduce the dimensionality of the
input data. PCA projects the input data into a new coordinate system, which has
axes in the directions of maximum variability. This projection provides new
components in which the first component consists of the maximum variations, and
the other components consist of variations in decreasing order. Computation of
these components consists of computing a data covariance matrix after mean
subtraction, decomposing the covariance matrix using Eigen value decomposition,
sorting the Eigen vectors in the decreasing order of Eigen values, finally projecting
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the data onto the new axes defined by the sorted Eigen vectors. A criterion of
containment of 98 % of the total energy of the signal is used to choose the number
of components after PCA.

4.3.4 The k-means Algorithm

The k-means clustering algorithm was first proposed by MacQueen [10]. The
algorithm is an unsupervised classification method, which assumes a fixed number
of clusters. It belongs to the central clustering category which uses Euclidean
distance as a distance metric. The algorithm minimizes the total mean squared
error between the cluster centroids and the data points. The algorithm then
implements the minimization of the following objective function

k
I=3 I —mlP, (4.1)

i=1 xe8;

where x; and p; represent the jth pattern and ith cluster center, respectively.
The k-means algorithm is given step-by-step in the following.

Step 1: Initialization
Step 2: Data assignment

For a data vector, x,, sety, = arg ming||x, — 1i]|*. (4.2)

Step 3: Centroid calculation
For each cluster k, letX; = {x,|y, =k}, the centroid is estimated as

l’lk:‘x#k‘X:xEka' (43>

Step 4: Stop the algorithm if y,|n = 1,2,...N does not change; otherwise go back
to Step 2.

The k-means algorithm can be initialized by choosing a set of k seed points.
Seed points can be the first k patterns chosen randomly from the pattern matrix.
The first seed point can also be chosen as the centroid of all the patterns, and
successive seed points are chosen such that they are a certain distance away from
the previously chosen seed points. Each pattern is assigned to a class based on
minimum Euclidean distance criterion. Different initial partitions can lead to
different clustering results because the k-means clustering approach based on the
square error criterion can converge to the local minima, rather than the global
minima. Therefore, sometimes the k-means algorithm must be run many times
with different initializations, such that if most of the runs lead to the same results,
then we will have some confidence that a global minimum is achieved.
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In the data assignment step, the data are partitioned into a class based on the
minimum distance between each pattern and the respective class centroid. In the
centroid computation step, the average pattern of all the patterns assigned to a
given class is computed and is replaced with the previous centroid. The k-means
algorithm terminates when the criterion function cannot be improved. The algo-
rithm terminates when the cluster labels for all the patterns do not change between
two successive iterations. A maximum number of iterations can be specified to
prevent endless oscillations. The computational complexity of the k-means algo-
rithm is of the order O(NdkT), where N is the total number of patterns, d is the
number of features, k is the number of clusters, and 7T is the number of iterations.

4.3.5 EBPNN

An error back propagation neural network [22] is used in this study. It consists of
an interconnection of many neurons. The neural network that we have used con-
sists of three layers: the input layer, the hidden layer and the output layer. Initially,
random weights are assumed for these interconnections, and the input patterns are
fed to the neural network, the output is noted and is compared with the desired
output, i.e., class label and, accordingly, the error is back propagated to update the
weights. The method is also an optimization which minimizes the following
objective function:

J= %Zi {ou(xn, w) — 1 g (4.4)

n=1 k=1

where yi (x,, w) is the network response for the kth class neuron in the output layer,
and 1} is the target for the kth class of nth observation feature vector.
The error back propagation algorithm is as follows

. Begin initialize: #, w, criterion, 0, m «— 0
dom—m+1

. x™ « training pattern selected sequentially
Wi — Wi -+ OjXi; Wij = Wij + 101

. until |[VJ(w) <0

. return w

end

Each pattern is selected sequentially. The network weights are updated using
the gradient descent method. If the gradient falls below the threshold 0, the
algorithm is stopped.
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4.3.6 GA Optimized k-means Algorithm

The k-means algorithm discussed in Sect. 4.2 implements the objective function in
Eq. 4.1 as a local optimization problem. The k-means algorithm is a sample-based
optimization strategy. If population-based strategies are used, they may provide
the global minimum of the objective function. The genetic algorithm (GA) is an
evolutionary algorithm which is a population-based optimization method. We
employ GA to optimize the centroids of k-means clustering. This GA uses three
operators called selection (or reproduction), crossover, and mutation. The princi-
ples from natural genetics are used in the algorithm. In contrast to conventional
optimization procedures, the GA starts its search from a random set of solutions.
The metric used to represent the distance is called a fitness function in the context
of GA, which provides relative importance for every population. The GA is
depicted in Fig. 4.2 and is explained as follows.
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4.3.6.1 Coding and Decoding of Populations

The other traditional algorithms operate on a objective function of real values.
However the GA operates in a binary coded string space. Therefore, the centroids
which are the optimization variables are to be encoded into strings in binary.
Coding the decision variables in a binary string is used to achieve a pseudo
chromosomal representation of a solution. Each of the centroid value is repre-
sented with a given number of bits. A variable is coded to match each feature
present in each subject. Since our optimization variables are in floating point
format with x"* and x/"" as the maximum and minimum value of the ith feature,
the decoded value of the centroid is given by,

. ymax xmin
Xi :X?nn +ﬁDV(S,), (45)
Here /; is the length of the string in order to encode the ith centroid value and
DV (s;) is the fitness value after decoding from binary string s;. Different variables
of decision can be encoded with different precision and number of bits.

4.3.6.2 Fitness Function Evaluation

Each binary string, is to be evaluated for its importance or merit called as fitness

value, considering the constraint and objective functions in view. In the current

problem, there is no constraint function and hence the fitness function is made

equal to the objective function. From the available solutions in the populations, the

objective function of Eq. 4.1 is computed by decoding the strings. The current

problem is minimization, the actual fitness function which is to be maximized is
1

M= (4.6)

4.3.6.3 Reproduction

During reproduction, the strings which are fit are made multiple copies by keeping
strings with higher fitness value. The less important strings in terms of their fitness
value are discarded. Hence population size is maintained same. This process is
called as reproduction. There are many ways to implement the reproduction
operation. In the current study the proportionate selection method is used. In this
method the strings are multiplied based on the fraction of the total fitness value of
a given string.
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4.3.6.4 Crossover

The reproduction operation copies the solutions but cannot create any new solution.
In both crossover and mutation new populations are generated. In this step, ran-
domly two strings and a crossover site are chosen, and substrings are exchanged
between the two strings. In this study single point crossover operation is used. Here
in random a crossover bit position is chosen. The chromosome or string is broken
into two pieces at the crossover bit position. The two sub strings (or pieces)
belonging to two different strings are combined together and the population in the
next generation is created.

4.3.6.5 Mutation

Mutation is needed to keep diversity in the population. In this operation, some
random bits are chosen and the bit is flipped. Generally, mutation probability is
kept small, as is the case with natural genetics. The mutation operation alters the
bits in the string in order to create a better string so as to reach the global maxima
of the fitness function.

4.3.6.6 Termination

Reproduction, crossover, and mutation are repeated iteratively until the fitness
function becomes steady and its value does not change with newer iterations. The GA
is said to be converged, and the global maxima of the objective function is attained.

4.3.7 The m-fold Cross Validation

In order to choose the training and testing partition while classification the m-fold
cross validation [23] with m = 3 is used in this study. Here the total number of
observations are disjointly divided into three sets. The first set is used for testing
and rest two sets are used for training the classifier in the first fold. The process is
repeated in other two sub sets as well to obtain three sub-classification perfor-
mances which are averaged to estimate final performance of the classifier.

4.4 Results and Discussion

The proposed methodology is implemented as a two-class pattern classification
problem using ECG features on the MIT BIH normal sinus rhythm and MIT BIH
arrhythmia databases (described in Sect. 4.2). Using the Pan-Tompkins algorithm,
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Fig. 4.3 Detection of the R-point in normal sinus rhythm ECG, the R-point is shown as a red
asterisk

the QRS in the ECG is detected. The exact position of the R-point is obtained by
fine tuning, computing the group delays of all the involved filters in the algorithm,
and advancing in time by that number of samples. The Pan-Tompkins algorithm is
chosen in this study for R-point detection due to its simplicity and the efficient
detection of the R-point. Detection of the R-point is shown in Fig. 4.3, in which
the detected R-point is shown using a red asterisk. The algorithm consists of
multistage filtering (difference, smoothing, etc.) and a nonlinear element (rectifi-
cation) between the algorithmic steps.

Once the R-point is detected, the ECG signal is segmented into a window of
200 samples such that 99 samples are chosen from the left of the R point and 100
samples are chosen from the right of the R point, including the R-point itself. The
200 samples in every pattern are reduced by the PCA technique. PCA is an
orthogonal transformation which reduces the samples by projecting the data into
the directions of maximum variability. Eigen value decomposition is used in the
PCA to find the variability in each principal component direction. The first prin-
cipal component (PC) consists of the highest variability; the other PCs consist of
the variability in decreasing order. The variability (or the energy or the respective
Eigen value) is plotted with respect to the PC dimension in Fig. 4.4. It is observed
that the energy contained in these PCs reduces with respect to the dimension of
PC. Also, the Eigen values and the percentage energy contained in each dimension
are listed in Table 4.1. It is inferred from Fig. 4.4 and Table 4.1 that the first 13
PCs will contain a variability of more than 99.7 %. Therefore, these 13 PCs are
used as features for subsequent pattern classification.
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Table 4.1 Energy profile of principal components

6 8 10

dimension of data

12 14

PC index Eigen values Percentage of energy contained
1 13.1985 86.2342
2 1.6750 10.9438
3 0.2021 1.3204
4 0.0591 0.3864
5 0.0403 0.2636
6 0.0235 0.1533
7 0.0163 0.1067
8 0.0118 0.0773
9 0.0102 0.0663
10 0.0084 0.0546
11 0.0054 0.0350
12 0.0052 0.0342
13 0.0042 0.0272

Table 4.2 Classification accuracy for k-means, EBPNN, and GA optimized k-means classifiers

Classifier Accuracy (%)

Fold 1 Fold 2 Fold 3 Average
k-means algorithm 91.2088 92.3077 90.1099 91.2088
EBPNN 95.6044 94.5055 97.2527 95.7875
GA optimized k-means algorithm 95.6044 95.0549 96.7033 95.7875

The 13 features obtained from PCA are used for subsequent pattern identifica-
tion using the k-means algorithm, EBPNN, and the GA optimized k-means algo-
rithm. The k-means algorithm is a local optimization algorithm, and its use does not
guarantee a global optimum. We can see from Table 4.2 that the k-means algorithm
provides an average accuracy of 91.2088 and a maximum accuracy of 92.3077.
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Fig. 4.6 GA classification: The fitness value decreases with the generations

The EBPNN provides better clustering than the k-means algorithm does. The
decreasing mean-squared error (MSE) used for training the neural network is
shown in Fig. 4.5. In our study, we have used neural networks in serial mode. As
the epochs iteratively progress, the error is back propagated to update the network
weights. A predefined threshold on MSE is defined, and if the MSE reduces to
below this threshold, then the algorithm is said to be converged and the iterations
are stopped. In our study, the neural network converges in 26 epochs and the
threshold chosen is 107%*. We can see from Table 4.2 that EBPNN provides a
maximum accuracy of 97.2527 % and an average accuracy of 95.7875 % over the
three folds.

The GA optimized k-means clustering algorithm is used on the ECG data, in our
analysis, and the results are shown in Figs. 4.6, 4.7, 4.8. Figure 4.6 shows best and
mean fitness in each generation. Since our optimization is a minimization of the
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objective function, it is expected that both the best and mean fitness should
decrease with generations. In Fig. 4.6, the mean and best fitness values decrease
with the generations as we have expected. Also, as the generations progress in GA,
the new individuals are fitter than the initial ones. Therefore, the average distance
between the individuals is expected to decrease with generations, as are the results
in Figs. 4.7, 4.8 shows that the best, worst, and average scores decrease with
generations in the GA.
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The classification accuracy of the GA optimized k-means algorithm provides a
maximum accuracy of 96.7033 % and average accuracy of 95.7875 % over all
three folds (as shown in Table 4.2).

4.5 Conclusion

In this chapter, a new methodology for the classification of ECG belonging to
normal sinus rhythm and arrhythmia classes is presented. The k-means algorithm,
EBPNN, and GA are used for classification. We have seen that the k-means
algorithm yields a lower accuracy than other supervised classifiers, i.e., EBPNN.
We have also seen that if a simple algorithm like k-means is optimized using GA,
the accuracy increases to that of supervised classifier, EBPNN. In the future, one
can optimize other unsupervised algorithms such as the fuzzy c-means and the
Gaussian mixture model algorithms. In addition, newer variants of the GA are
available for faster implementation. These new variants of GAs will be faster and
converge in fewer iterations. Also, there is a scope to identify novel operators in
the GA and thus to catalyze the algorithm. The methodology used will be of
immense utility in machine-learning applications for healthcare informatics.
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Chapter 5

Pixel-based Machine Learning

in Computer-Aided Diagnosis of Lung
and Colon Cancer

Kenji Suzuki

Abstract Computer-aided diagnosis (CAD) for detection of lesions in medical
images has been an active area of research. Machine learning plays an essential role
in CAD, because representing lesions and organs requires a complex model that has a
number of parameters to determine; thus, medical pattern recognition essentially
requires “learning from examples” to determine the parameters of the model.
Machine learning has been used to classify lesions into certain classes (e.g., abnormal
or normal, lesions or non-lesions, and malignant or benign) in CAD. Recently, as
available computational power increased dramatically, pixel/voxel-based machine
learning (PML) has emerged in medical image processing/analysis, which uses
pixel/voxel values in local regions (or patches) in images instead of features calcu-
lated from segmented regions as input information; thus, feature calculation or
segmentation is not required. Because PML can avoid errors caused by inaccurate
feature calculation and segmentation, the performance of PML can potentially be
higher than that of common classifiers. In this chapter, MTANNSs (a class of PML) in
CAD schemes for detection of lung nodules in CT and for detection of polyps in CTC
are presented.

5.1 Introduction

Computer-aided diagnosis (CAD) for detection of lesions in medical images [1, 2]
has been an active area of research, because evidence indicates that CAD can help
improve the diagnostic performance of radiologists or physicians in their image
reading and interpretations [3—5]. A lot of investigators have participated in and
developed CAD schemes such as those for detection of lung nodules in chest
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radiographs [6-8] and in thoracic CT [9-12], for detection of microcalcifications/
masses in mammography [13], breast MRI [14], and breast US [15, 16], and for
detection of polyps in CT colonography (CTC) (also known as virtual colonos-
copy) [17-19].

Machine learning plays an essential role in CAD because objects such as
lesions and organs in medical images may not be represented accurately by a
simple equation. For example, a lung nodule is generally modeled as a solid
sphere, but there are nodules of various shapes and nodules with internal inho-
mogeneities, such as spiculated ones and ground-glass (or non-solid) nodules. A
polyp in the colon is modeled as a bulbous object, but there are also polyps which
exhibit a flat morphology [20]. Thus, diagnostic tasks in medical imaging essen-
tially require learning from examples (or data).

Machine learning has been used to classify lesions into certain classes (e.g.,
abnormal or normal, lesions or non-lesions, and malignant or benign) in CAD.
Machine-learning algorithms for classification include linear discriminant analysis
[21], quadratic discriminant analysis [21], multilayer perceptrons [22], and support
vector machines [23]. Such machine-learning algorithms have been applied to lung
nodule detection in chest radiography [24] and thoracic CT [10, 25], classification
of lung nodules into benign or malignant categories in chest radiography [26] and
thoracic CT [27], and polyp detection in CTC [17, 28].

Recently, as available computational power increased dramatically, pixel/
voxel-based machine learning (PML), which uses pixel/voxel values in images
instead of features calculated from segmented regions as input information, has
emerged in medical image processing/analysis; thus, feature calculation or seg-
mentation is not required. Because PML can avoid errors caused by inaccurate
feature calculation and segmentation, the performance of PML can potentially be
higher than that of common classifiers. By extension of “neural filters” [29] and
“neural edge enhancers” [30, 31], which are ANN-based [22] supervised nonlinear
image-processing techniques, and an MTANN framework [9], which is a class
of PML, have been developed for accommodating the task of distinguishing a
specific opacity from other opacities in medical images.

In this chapter, MTANNS (a class of PML) in CAD schemes for detection of
lung nodules in CT and for detection of polyps in CTC are introduced. MTANNSs
have been applied to removal of false-positive detections (FPs) in the computer-
ized detection of lung nodules in low-dose CT [9, 10] and chest radiography [6],
for distinction between benign and malignant lung nodules in CT [32], for sup-
pression of ribs and clavicles (i.e., bones) in chest radiographs [33], and for
reduction of FPs in computerized detection of polyps in CTC [18, 19, 34-36].
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5.2 Pixel-based Machine Learning (PML) in CAD
5.2.1 PML Overview

PML techniques have been developed for tasks in medical image processing/
analysis and computer vision. There are three classes of PML techniques: neural
filters [29, 37] (including neural edge enhancers [30, 31]), convolution neural
networks (NNs) [38—44] (including shift-invariant NNs [45-47]), and massive-
training ANNs (MTANNSs) [18, 33, 48-50] (including multiple MTANNS [6, 10,
29, 32, 37, 48], a mixture of expert MTANNS [19, 34], a multi-resolution MTANN
[33], a Laplacian eigenfunction MTANN (LAP-MTANN), and a massive-training
support vector regression (MTSVR) [36, 51]). The class of neural filters has been
used for image-processing tasks such as edge-preserving noise reduction in
radiographs and other digital pictures [29, 37], edge enhancement in noisy images
[30], and enhancement of subjective edges traced by a physician in left ventric-
ulograms [31]. The class of convolution NNs has been applied to classification
tasks such as FP reduction in CAD schemes for detection of lung nodules in chest
radiographs (CXRs) [38-40], FP reduction in CAD schemes for detection of
microcalcifications [41] and masses [42] in mammography, face recognition [43],
and character recognition [44]. The class of MTANNSs has been used for classi-
fication, such as FP reduction in CAD schemes for detection of lung nodules in
CXR [6] and CT [4, 10, 48], distinction between benign and malignant lung
nodules in CT [32], and FP reduction in a CAD scheme for polyp detection in CTC
[18, 19, 34, 51]. The MTANNS have also been applied to pattern enhancement and
suppression such as separation of bone from soft tissue in CXR [33, 49] and
enhancement of lung nodules in CT [50].

5.2.2 MTANN Filter for Lesion Enhancement

5.2.2.1 Architecture of an MTANN Filter

The architecture of a PML technique which consists of a machine-learning model
is shown in Fig. 5.1. In order to enhance actual lesions in medical images, we
developed an MTANN supervised filter, which is a class of PML. An MTANN
filter consists of a machine-learning regression model such as a linear-output
artificial neural network (ANN) model [30] which is a regression-type ANN
capable of operating on pixel/voxel data directly, and a support vector regression
model [36] which is a regression-type support vector machine. The MTANN filter
is trained with input CT images and the corresponding “teaching” images that
contain a map for the “likelihood of being lesions.” The input to the MTANN
filter consists of pixel values in a sub-region (or sub-volume), Ry, extracted from
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Fig. 5.1 Architecture of a Local window (subregion) R
PML (e.g., MTANN) X
technique consisting of a /\/
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a linear-output ANN
regression model or support
vector regression) with sub-
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and single-pixel output. All
pixel values in a sub-region
extracted from an input image
are entered as input to the
machine-learning model. The
machine-learning model
outputs a single pixel value
for each sub-region, the
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corresponds to the center
pixel in the sub-region. The
output pixel value is mapped
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an input image. The output of the MTANN filter is a continuous scalar value,
which is associated with the center pixel in the sub-region and is represented by

O(x,y,zort) = ML{I(x — i,y — j,z — kort — k)|(i,y,k) € Rs}, (5.1)

where x and y are the coordinate indices, ML(-) is the output of the machine-
learning regression model, and I(x, y, zor ) is a pixel value in the input image. The
linear-output ANN model [30] used as the machine-learning regression model in
the MTANN employs a linear function, f7(u) = a - u + 0.5, instead of a sigmoid
function, fs(u) = 1/{1 4+ exp(—u)}, as the activation function of the output layer
unit because the characteristics and performance of an ANN were improved sig-
nificantly with a linear function when it was applied to the continuous mapping of
values in image processing [30]. Note that the activation function in the hidden
layers is still a sigmoid function. The input vector can be rewritten as

—
Iiyzore = {00, Dy Iy b (5.2)

where m is an input unit number and N, is the number of input units. The output of
the nth unit in the hidden layer is represented by

Ni
O =fs3> wit L —wiy, ¢, (5.3)

m=1
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[m]

Input CT image PML (MTANN) “Teaching” image
containing a map of the
“likelihood of being
lesions”

Fig. 5.2 Training of an MTANN filter for enhancement of lesions. The input CT image is
divided pixel-by-pixel into a large number of overlapping sub-regions. The corresponding pixels
are extracted from the teaching image containing a map for the “likelihood of being lesions.” The
MTANN filter is trained with pairs of the input sub-regions and the corresponding teaching pixels

where w!l is a weight between the mth unit in the input layer and the nth unit in
the hidden layer, and w is an offset of the nth unit in the hidden layer. The output
of the output layer unit is represented by

Nu
O(x,y,zort):fL{ZwZ.OZ—wg}, (5.4)
m=1

O is a weight between the mth unit in the hidden layer and the unit in the

output layer, Ny is the number of units in the hidden layer, and w§ is an offset of
the unit in the output layer. For processing the entire image, the scanning of an
input CT image with the MTANN is performed pixel-by-pixel, as illustrated in
Fig. 5.1.

where w

5.2.2.2 Training of an MTANN Filter

For enhancement of lesions and suppression of non-lesions in CT images, the
teaching image 7(x, y, z) contains a map for the “likelihood of being lesions,” as
illustrated in Fig. 5.2. In order to create the teaching image, lesions are first
segmented manually to obtain a binary image with 1 being lesion pixels and 0
being non-lesion pixels. Then, Gaussian smoothing is applied to the binary image
to smooth the edges of the segmented lesions, because the likelihood of a pixel
being a lesion should gradually diminish as the distance from the boundary of the
lesion decreases. Note that the ANN was not able to be trained when binary
teaching images were used.

The MTANN filter involves training with a large number of pairs of sub-regions
and pixels; we call it a massive-sub-region training scheme. In order to enrich the
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training samples, a training image, Ry, extracted from the input CT image is
divided pixel by pixel into a large number of sub-regions. Note that close sub-
regions overlap each other. Single pixels are extracted from the corresponding
teaching image as teaching values. The MTANN filter is massively trained by
using each of a large number of input sub-regions together with each of the
corresponding teaching single pixels; hence, the term massive-training ANN. The
error to be minimized by training of the MTANN filter is given by

E:;_JZ Z {Te(x,y,zort) — O.(x,y,zor1)}?, (5.5)

¢ (xyzort)eRy

where c is a training case number, O, is the output of the MTANN for the cth case,
T. is the teaching value for the MTANN for the cth case, and P is the number of
training pixels in the training images, Ry. The MTANN filter is trained by a linear-
output back-propagation algorithm, in which the generalized delta rule [22] is
applied to the linear-output ANN architecture [30]. After training, the MTANN
filter is expected to output the highest value when a lesion is located at the center
of the sub-region of the MTANN filter, a lower value as the distance from the sub-
region center increases, and zero when the input sub-region contains a non-lesion.

Once the trained MTANN enhances lesions in medical images, lesion candi-
dates can be detected by application of a segmentation technique. One of the
simplest ways to perform this technique is thresholding. Another segmentation
technique can be used for this purpose as well such as multiple thresholding,
region growing, level-set segmentation, and active contour segmentation. We used
a simple thresholding technique in this study because the MTANN enhanced
lesions effectively, i.e., the contrast of lesions was substantially high compared to
that of normal structures (see the results in the next section).

5.2.3 MTANN for Classification

5.2.3.1 Training Method of an MTANN for Classification

Once lesion candidates are detected, the next step in a CAD scheme is classifi-
cation of the candidates into lesions or non-lesions. We can use a PML such as an
MTANN for this task as well. For distinction between lesions and non-lesions, the
teaching image contains a Gaussian distribution with standard deviation o for a
lesion and zero (i.e., completely dark) for a non-lesion, as shown in Fig. 5.3. This
distribution represents a map for the “likelihood of being a lesion:”

1 (x2+y2+z2 or t2) .
eXpy — 5,7 ¢ for a lesion
T(x,y,zort) = { V2uo, a?

0 otherwise

(5.6)
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Lesion “Teaching”
candidates images

Lesion For a lesion

PML (MTANN)

Non-lesion For a non-lesion

Fig. 5.3 Training of a PML technique (i.e., an MTANN) for classification of candidates into a
lesion (e.g., a nodule) or a non-lesion (e.g., a non-nodule). A teaching image for a lesion contains
a Gaussian distribution at the center of the image, whereas that for a non-lesion contains zero
(i.e., is completely dark)

For enrichment of training samples, a training region (or volume), Ry, extracted
from the input image is divided pixel-by-pixel into a large number of overlapping
sub-regions. Single pixels are extracted from the corresponding teaching region as
teaching values. The MTANN is massively trained by use of each of a large
number of the input sub-regions together with each of the corresponding teaching
single pixels. After training, the MTANN is expected to output the highest value
when a lesion is located at the center of the sub-region of the MTANN, a lower
value as the distance from the sub-region center increases, and zero when the input
sub-region contains a non-lesion.

5.2.3.2 Scoring Method for Combining Output Pixels

For combining output pixels from a trained MTANN, we developed a scoring
method. A score for a given lesion candidate from the trained MTANN is defined
as

S= Z Jfo(x,y,zort) X O(x,y,zorr), (5.7)

(x.y,zort)ERE

where

1 2 4+y:+2ors?
fG(x7va0rt): exXp _( Y B )
V27o 20
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Fig. 5.4 Architecture of a mixture of expert MTANNS for classification of lesion candidates into
lesions or multiple types of non-lesions

is a Gaussian weighting function with standard deviation ¢, and its center corre-
sponds to the center of the region for evaluation, Rg, and O(x, y,zor) is the output
region of the n-th trained MTANN, where its center corresponds to the center of
Rg. The use of the Gaussian weighting function allows us to combine the responses
(outputs) of a trained MTANN as a distribution. A Gaussian function is used for
scoring, because the output of a trained MTANN is expected to be similar to the
Gaussian distribution used in the teaching region. This score represents the
weighted sum of the estimates for the likelihood that the region (lesion candidate)
contains a lesion near the center, i.e., a higher score indicates a lesion, and a lower
score indicates a non-lesion.

5.2.3.3 Mixture of Expert MTANNSs

In order to distinguish lesions from various types of non-lesions (i.e., FPs), we
have extended the capability of a single MTANN, and we have developed a
mixture of expert MTANNS. The architecture of the mixture of expert MTANNS is
shown in Fig. 5.4. The mixture of experts consists of several MTANNSs that are
arranged in parallel. Each MTANN is trained independently by using the same



5 Pixel-based Machine Learning in Computer-Aided Diagnosis 89

lesions and a different set of non-lesions. Each MTANN acts as an expert for
distinction between lesions (e.g., nodules) and non-lesions (e.g., non-nodules)
representing a specific non-lesion type. The scores from the expert MTANNS are
combined by using a mixing ANN such that different types of non-lesions can be
distinguished from lesions. The mixing ANN consists of a linear-output ANN
model with a linear-output back-propagation training algorithm [30] for processing
continuous output/teaching values; the activation functions of the units in the
input, hidden, and output layers are an identity, a sigmoid, and a linear function,
respectively. One unit is employed in the output layer for distinction between a
lesion and a non-lesion. The scores of each expert MTANN are used for each input
unit in the mixing ANN; thus, the number of input units equals the number of
expert MTANNSs, N. The scores of each expert MTANN act as the features for
distinguishing lesions from a specific type of non-lesion for which the expert
MTANN is trained. The output of the mixing ANN for the cth lesion candidate is
represented by

M. =NN[{S,.}|l <n<N] (5.9)

where NN(-) is the output of the linear-output ANN model and n is an MTANN
number. The teaching values for lesions are assigned the value one, and those for
non-lesions are assigned the value zero. Training of the mixing ANN may be
performed by using a leave-one-lesion-out cross-validation scheme [52]. After
training, the mixing ANN is expected to output a higher value for a lesion and a
lower value for a non-lesion. Thus, the output can be considered as the likelihood
of being a lesion. By thresholding the output, a distinction between lesions and
non-lesions can be made. The balance between a true-positive (TP) rate and a
false-positive (FP) rate is determined by the selected threshold value. If the scores
of each expert MTANN properly characterize the type of non-lesion for which the
expert MTANN is trained, the mixing ANN combining several expert MTANNs
will distinguish lesions from various types of non-lesions.

5.3 A CAD Scheme for Detection of Lung Nodules on CT
Images

5.3.1 Lung Cancer Detection in CT

Lung cancer continues to rank as the leading cause of cancer deaths among
American men and women [53, 54]; the number of lung cancer deaths each year is
greater than the combined number of breast, colon, and prostate cancer deaths.
Evidence suggests that early detection of lung cancer may allow more timely
therapeutic intervention and thus a more favorable prognosis for the patient [S5-58].
Therefore, in the 1970s, screening programs for the early detection of lung cancer
were carried out with chest radiography and cytologic examination of sputum in the



90 K. Suzuki

United States [59-61] and in Europe [62]. As the CT imaging techniques have
advanced, screening with low-dose helical CT has been performed for early
detection of lung cancer [63-70] since early 1990.

Because CT is more sensitive than chest radiography in detection of small nodules
due to lung carcinoma at an early stage [64, 68], lung cancer screening programs are
being conducted in the United States [63—-66] and Japan [67-70] with a low-dose
single-detector CT as the screening modality. Recently, multi-detector-row CT
(MDCT) has been used for lung cancer screening. Helical CT and MDCT, however,
generate a large number of images that must be read by radiologists. Such readings
may lead to “information overload” for radiologists. Furthermore, radiologists may
fail to detect some cancers, which are visible in retrospect, during the interpretation
of CT images [71, 72]. Therefore, a CAD scheme for detecting lung nodules in CT
has been investigated as a tool for lung cancer screening, because the CAD scheme
may detect some cancers that are missed by radiologists [72], and it provides
quantitative detection results as a second opinion to assist radiologists in improving
their detection accuracy [73].

5.3.2 Database of Lung Nodules in Thick-Slice CT

In order to test the performance of our CAD scheme that utilizes MTANN filters,
we created a CT database consisting of 69 lung cancer images obtained from 69
patients [72]. The scans used for this study were acquired with a low-dose protocol
of 120 kVp, 25 or 50 mA, 10-mm collimation, and a 10-mm reconstruction
interval at a helical pitch of two. The reconstructed CT images were 512 x 512
pixels in size with a section thickness of 10 mm. The 69 CT scans consisted of
2,052 sections. All cancers were confirmed either by biopsy or surgically.

5.3.3 Detection of Nodule Candidates on Thick-Slice CT
Images

The flowchart of our CAD scheme utilizing an MTANN supervised lesion
enhancement filter and a mixture of expert MTANNS for classification is shown in
Fig. 5.5. In order to limit the processing area to the lungs, we segmented the lung
regions in a CT image by using thresholding based on Otsu’s threshold value
determination [74]. Then, we applied a rolling-ball technique along the outlines of
the extracted lung regions to include a nodule attached to the pleura in the seg-
mented lung regions [25].

In order to enhance lung nodules in CT images, we trained an MTANN filter
with 13 lung nodules in a training database and the corresponding teaching images
that contained maps for the “likelihood of being nodules,” as illustrated in
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Fig. 5.2. In order to obtain the training regions, Ry, we applied a mathematical
morphology dilation filter to the manually segmented lung nodules (i.e., binary
regions) such that the training regions sufficiently covered nodules and sur-
rounding normal structures (i.e., a nine times larger area than the nodule region, on
average). A three-layer structure was employed for the MTANN filter, because any
continuous mapping can be approximated by a three-layer ANN [75]. The number
of hidden units was selected to be 20 by using a method for designing the structure
of an ANN [76, 77]. The size of the input sub-region, Rg, was 9 x 9 pixels, which
was determined experimentally in our previous studies [9, 10, 78]. The slope of the
linear function, a, was 0.01. With the parameters above, the training of the
MTANN filter was performed by 1,000,000 iterations. In order to test the per-
formance, we applied the trained MTANN filter to the images of the entire lung.
We applied thresholding to the output images of the trained MTANN filter to
detect nodule candidates. We then compared the results of nodule-candidate
detection with and without the MTANN filter.

We applied the trained MTANN filter to the original CT images. The result of
the enhancement of nodules in CT images by the trained MTANN filter is shown
in Fig. 5.6. The MTANN filter enhances a nodule and suppresses most normal
structures in a CT image. Although some medium and large vessels in the hilum
remain in the output image, the nodule with spiculation is enhanced well. We
applied thresholding to the output images of the trained MTANN filter. There are a
smaller number of candidates in the MTANN-based image, whereas there are
many nodule candidates in the binary image obtained by using simple thresholding
without the MTANN filter. Note that the large vessels in the hilum can easily be
separated from nodules by using their areas.
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Fig. 5.6 Enhancement of a lesion by using the trained lesion-enhancement MTANN filter for a
non-training case. a The original image of the segmented lung with a nodule (indicated by an
arrow). b Output image of the trained lesion-enhancement MTANN filter. The nodule is
enhanced in the output image, whereas most normal structures are suppressed

5.3.4 Classification of Nodule Candidates in Thick-Slice CT
Images

Nodule candidates generally include more non-nodules (FPs) than nodules (TPs).
For reduction of FPs, we trained an MTANN filter for classification of nodule
candidates into nodules or non-nodules [9, 19]. We used 10 different-sized nodules
with various contrasts and 10 non-nodule images including medium-sized and
small vessels as training cases for the MTANN. Parameters such as the size of the
subregion of the MTANN, the standard deviation of the 2D Gaussian function in
the teaching image, and the size of the teaching image were determined by
experimental analysis [48] to be 9 x 9 pixels, 5.0 pixels, and 19 x 19 pixels,
respectively. We employed a three-layer structure for the MTANN, because it has
been proven theoretically that a three-layer ANN can approximate any continuous
mapping [75]. The number of hidden units in the MTANN was determined to be
20 by using a method for determining the structure of an ANN [76, 77]. Thus, the
numbers of input, hidden, and output units were 81, 20, and 1, respectively. With
the parameters above, the training of the MTANN was performed 500,000 times,
and it converged with a mean absolute error of 0.112.

To investigate the performance of the classification of MTANN, we applied the
trained MTANN to non-training cases. Figure 5.7 shows the output images of
the trained MTANN, where various-sized actual nodules with different contrasts
are represented by bright nodular distributions, whereas medium and small actual
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vessels with different orientations are almost eliminated. In order to distinguish
nodules from various types of non-nodules, we trained 6 expert MTANNSs with 10
typical nodules and 6 types of 10 non-nodules, medium vessels, small vessels,
large vessels, soft-tissue opacities, and abnormal opacities from a training data-
base. We applied the trained expert MTANNS to various types of nodules and non-
nodules. The trained expert MTANNSs enhance nodules and suppress most normal
structures including various-sized lung vessels in CT images, as shown in Fig. 5.7.
The scores indicating the likelihood of being a nodule from the 6 expert MTANNSs
were combined with a mixing ANN to form a mixture of expert classification-
MTANNSs. We used a leave-one-out cross-validation test for testing the mixing
ANN in the mixture of expert MTANNs. We evaluated the performance by using
free-response receiver-operating-characteristic (FROC) analysis [79].

In order to test the performance of our CAD scheme utilizing the MTANN lesion
enhancement filter and the classification MTANNSs, we applied it to the test data-
base containing 69 lung cancers. The MTANN lesion enhancement filter followed
by thresholding identified 97 % (67/69) of cancers with 6.7 FPs per section. In
contrast, the difference-image technique followed by multiple thresholding in a
previously reported CAD scheme [10] detected 96 % (66/69) of cancers with
19.3 FPs per section. Thus, the MTANN lesion-enhancement filter was effective in
improving the sensitivity and specificity of the CAD scheme. The classification-
MTANNS were applied to the nodule candidates for classification of the candidates
into nodules or non-nodules. The mixture of expert MTANNSs was able to remove
60 % (8,172/13,688) or 93 % (12,667/13,688) of non-nodules with a loss of 1 true
positive or 10 true positives, respectively. Thus, our MTANN-based CAD scheme
achieved a 96 % (66/69) or 84 % (57/69) sensitivity with 2.7 (5,516/2,052) or 0.5
(1,021/2,052) FPs per section. In contrast, feature analysis and a rule-based scheme
in the previously reported CAD scheme [10] removed FPs and achieved 9.3 FPs per
section. Finally, with linear-discriminant analysis (LDA), the previously reported
CAD scheme yielded a sensitivity of 84 % (57/69) with 1.4 (2,873/2,052) FPs per
section. Thus, our CAD scheme utilizing MTANNS achieved a three times lower FP
rate at the same sensitivity level. Therefore, MTANNs were effective for improving
the sensitivity and specificity of our CAD scheme.

5.3.5 CAD Scheme for Thin-Slice CT

5.3.5.1 Database of Lung Nodules in Thin-Slice CT

Our database for thin slice CT contained 62 nodules in 32 scans acquired from 32
patients with a multi-detector-row CT (MDCT) system with a four-detector
scanner. The MDCT scan consisted of an average of 186 thin-slice CT images (the
slice thickness ranged from 1.0 to 2.5 mm). Each CT slice had an image matrix
size of 512 x 512 pixels. Nodule sizes ranged from 5 to 30 mm. All nodules were
confirmed by consensus of two chest radiologists.
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Fig. 5.7 Illustrations of (a) various types of nodules and the corresponding output images of the
trained MTANN for non-training cases, (b) various-sized lung vessels and the corresponding
output images, and (c) other types of non-nodules and the corresponding output images



5 Pixel-based Machine Learning in Computer-Aided Diagnosis 95
5.3.5.2 Detection of Nodule Candidates on Thin-Slice CT Images

We developed an initial nodule detection scheme based on a selective enhance-
ment filter [80] and a rule-based scheme with image features. For handling MDCT
slices with different slice thickness, we converted original CT data to isotropic
volumes. We applied the selective enhancement filter to the isotropic volumes for
enhancing nodules and suppressing vessels. Thresholding followed by the rule-
based scheme was applied to the filtered volumes for classification of candidates
into nodules and non-nodules.

5.3.5.3 Overall Performance of a CAD Scheme for Thin-Slice CT

With our initial scheme, a sensitivity of 97 % (60/62 nodules) together with an
average of 15 (476/32) FPs per patient was achieved. In order to remove eight
types of non-nodules (FPs) reported by our initial scheme, we developed a mixture
of eight expert 3D MTANNS. The size of the sub-volume and the size of the
training volume in the teaching volume were determined to be 7 x 7 x 7 voxels
and 15 x 15 x 15 voxels, respectively. Each 3D MTANN was trained 500,000
times with 10 representative nodules and 10 non-nodules in each of the 8 types.
For distinction between nodules and each type of non-nodule, a scoring method
was applied to the output volume of each trained 3D MTANN. The score was
defined by the product of the output volume and a 3D Gaussian weighting func-
tion. A higher score indicated a nodule, and a lower score indicated a non-nodule.
Eight expert 3D MTANNSs were combined with a mixing ANN such that 8 types of
non-nodules could be eliminated.

The trained mixture of expert 3D MTANNSs was applied for the reduction of the
FPs. Each 3D MTANN enhanced nodules and suppressed non-nodules repre-
senting the particular non-nodule type with which the 3D MTANN was trained,
namely, various nodules in the output volumes of the 3D MTANN were repre-
sented by bright distributions, whereas the eight types of non-nodules were almost
dark, as shown in Fig. 5.8. Although the distribution of scores for nodules and non-
nodules obtained by using the scoring method overlapped, each 3D MTANN
distinguished nodules from each type of non-nodule; therefore, the mixture of
expert 3D MTANNSs removed many non-nodules. The performance of the mixture
of expert 3D MTANNs was evaluated by FROC analysis [79]. Results indicated
that 57 % (273/476) of FPs were removed without a loss of any TP by the mixture
of expert 3D MTANN:Ss, as shown in Fig. 5.9. Thus, the FP rate of our CAD
scheme was improved to 6.3 (203/32) FPs per patient at an overall sensitivity of
97 % (60/62 nodules).
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Fig. 5.8 Illustrations of (a) various types of nodules and the corresponding output images of the
trained MTANN for non-training thin-slice CT images, and (b) various types of lung vessels and
the corresponding output images

5.4 CAD Scheme for Detection of Polyps in CTC
5.4.1 Colorectal Cancer Detection in CTC

Colorectal cancer is the second leading cause of cancer deaths in the United States
[53]. Evidence suggests that early detection of polyps (i.e., precursors of colorectal
cancer) can reduce the incidence of colorectal cancer [81, 82]. CT colonography
(CTC), also known as virtual colonoscopy, is a technique for detecting colorectal
neoplasms by using a CT scan of the colon [83]. The diagnostic performance of
CTC in detecting polyps, however, remains uncertain because of a propensity for
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perceptual errors [84]. Computer-aided detection (CAD) of polyps has been
investigated in an effort to overcome the difficulty of CTC. CAD has the potential
to improve radiologists’ diagnostic performance in the detection of polyps.

Although CAD schemes are useful for improving radiologists’ sensitivity in the
detection of polyps in CTC, a major challenge for CAD schemes is reducing
the number of FPs, while maintaining a high sensitivity. Major sources of FPs
generated by CAD schemes include haustral folds, residual stool, rectal tubes, the
ileocecal valve, and extra-colonic structures such as the small bowel and stomach
[85]. Our purpose in this study was to develop a mixture of expert 3D MTANNSs
for further reduction of FPs in a polyp-detection CAD scheme while a high
sensitivity is maintained.

5.4.2 CTC Database

CTC examinations were performed on 73 patients at The University of Chicago
Medical Center. The patients’ colons were prepared by standard pre-colonoscopy
cleansing with administration of cathartics following a water diet or low-fiber diet,
and they were insufflated with room air or carbon dioxide. Each patient was scanned
in both supine and prone positions. Our database thus contained 146 CTC datasets.
The CT scans were performed with either a single- or a multi-detector-row CT
scanner (HiSpeed CTi or LightSpeed QX/i, GE Medical Systems, Milwaukee, WI).
The CT scanning parameters included collimations between 2.5 and 5.0 mm,
reconstruction intervals of 1.0-5.0 mm [1.0 mm (n = 2, 1 % of the CTC datasets),
1.25mm (n =3, 2 %), 1.5 mm (n = 59, 41 %), 2.5 mm (n = 79, 54 %), and
50mm (n =3, 2 %)], and tube currents of 60-120 mA with 120 kVp. Each
reconstructed CT section had a matrix size of 512 x 512 pixels, with an in-plane
pixel size of 0.5-0.7 mm. The CT sections were interpolated in isotropic resolution
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by using linear interpolation in the transverse direction. All patients underwent
“reference-standard” optical colonoscopy. Radiologists established the locations of
polyps in the CTC datasets by using the colonoscopy and pathology reports, as well
as multiplanar reformatted views of the CTC on a viewing workstation (GE
Advantage Windows Workstation v.4.2, GE Medical Systems, Milwaukee, WI). In
this study, we used 5 mm as the threshold for clinically significant polyps [86].
Fifteen patients had 28 polyps, 15 of which were 5-9 mm in diameter and 13 were
10-25 mm. No polyp was submerged in fluid. Fluid was minimized by using a
saline cathartic preparation as the standard preparation, not a colon gavage. We also
created a training database of non-polyps by manual extraction of volumes
containing non-polyps from 27 “normal” (non-polyp) CTC cases.

5.4.3 Performance of Our Initial CAD Scheme

Figure 5.10 is a block diagram of our CAD scheme for the detection of polyps in
CTC. We applied our previously reported CAD scheme [17, 87] to the 73 CTC cases.
The scheme included a centerline-based extraction of the colon [88], shape-based
detection of polyps [17, 89], and an initial reduction of FPs by using a Bayesian ANN
[90] based on geometric and texture features [87, 91]. The shape index used in the
initial polyp detection step is calculated by using the Hessian matrix. This index
determines to which of the following five topologic shapes an object belongs: cup,
rut, saddle, ridge, or cap, as shown in Fig. 5.11. Polypoid polyps can be identified
with the shape index as a cap shape. A haustral fold can be identified as a saddle or
ridge. The colonic wall can be identified as rut or cup. We evaluated supine and prone
CTC volumes independently. This CAD scheme achieved a 96.4 % (27/28 polyps)
by-polyp sensitivity with an average of 3.1 (224/73) FPs per patient. Forty-eight
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Fig. 5.11 Shape index for characterizing five shapes. Polypoid polyps can be identified with the
shape index as a cap. Haustral folds can be identified as a saddle or ridge. Colonic walls can be
identified as rut or cup

true-positive polyp detections in both supine and prone CTC volumes represented
27 polyps. We combined our previously reported CAD scheme with the mixture of
expert 3D MTANNS for further reduction of FPs.

5.4.4 Training of Expert 3D MTANNs

We manually selected 10 representative polyp volumes (10 polyps) from the 48
true-positive volumes (containing 27 polyps) in our CTC database as the training
polyp cases for expert 3D MTANNs. We classified CAD-generated FP sources
into eight categories, i.e., rectal tubes, small bulbous folds, solid stool, stool with
bubbles, colonic walls with haustral folds, elongated folds, strip-shaped folds, and
the ileocecal valve. We manually selected 10 non-polyps in each of the 8 cate-
gories from the training non-polyp database (which was not used for testing). The
10 polyps and the 10 rectal tubes were the same as those used in our previous study
[18]. The number of sample volumes for each category was 10, because the
performance of an expert 3D MTANN was found to be highest when the number
of training sample volumes was 20 (i.e., 10 polyps and 10 non-polyps) in our
previous study [18], and the performance of 2D/3D MTANNs was not sensitive to
the number of sample regions/volumes over different types of non-lesions in our
previous studies [9, 18, 32, 78, 92].

The architecture of a mixture of expert 3D MTANNS is shown in Fig. 5.12. We
trained 8 expert 3D MTANNs with the 10 polyps and 10 non-polyps in each
category. A three-layer structure was employed for the expert 3D MTANNS [75].
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Fig. 5.12 A mixture of expert 3D MTANNSs for distinguishing lesions (polypoid and flat lesions)
from various types of non-lesions. Each expert 3D MTANN consists of a linear-output ANN
regression model. Each MTANN is an expert for distinguishing lesions from a specific type of
non-nodule. The outputs of the expert 3D MTANNS are combined with a mixing ANN so that the
mixture of expert 3D MTANNSs can remove various types of non-lesions

The size of the training volume and the standard deviation of the 3D Gaussian
distribution in the teaching volume were 15 x 15 x 15 voxels (i.e., cubic shape)
and 4.5 voxels, respectively, which were determined empirically based on our
previous studies [9, 10, 18, 78]. The number of hidden units was selected to be 25
by using a method for designing the structure of an ANN [76, 77]. With the
parameters above, training of the expert 3D MTANNs was performed by 500,000
iterations. We selected four among the eight expert 3D MTANNS for the mixture
of expert 3D MTANNSs by experimental analysis, because the mixture of these four
expert 3D MTANN:S [(1) rectal tubes, (2) stool with bubbles, (3) colonic walls with
haustral folds, and (4) solid stool] demonstrated the highest performance.

5.4.5 Evaluation of the Performance for False-Positive
Reduction

We applied the trained expert 3D MTANNSs to the 27 polyps (48 true-positive
volumes) and all 224 non-training FPs identified by our previously reported CAD
scheme. The output volumes for these testing cases are shown in Fig. 5.13. The
centers of the input volumes corresponded to the detection results provided by the
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Fig. 5.13 Illustrations of (a) various testing polyps and the corresponding output volumes of four
trained expert 3D MTANNSs and (b) four different categories of testing FPs and the output
volumes from the corresponding expert 3D MTANNS. In the output volumes, polyps appear as
distributions of bright voxels (i.e., they are enhanced), whereas different types of FPs appear as
dark voxels (i.e., they are suppressed)

CAD scheme (including both true positives and FPs); thus, this experiment
included the effect of actual off-centering of polyp candidates produced by the
initial CAD scheme. Various types of polyps, including a sessile polyp (the third
image from the left in Fig. 5.13a), are represented in the output by distributions of
bright voxels, whereas various types of non-polyps appear as darker voxels,
indicating the ability of the expert 3D MTANNS to enhance polyps and suppress
different types of non-polyps. We applied the 3D scoring method to the output
volumes for polyps and non-polyps. The 3D Gaussian weighting function used the
same standard deviation as that for the 3D Gaussian distribution in the polyp
teaching volume. Although two distributions of scores in each graph overlapped, a
substantial fraction of FPs was eliminated by using the expert 3D MTANNS.
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We evaluated the overall performance of the mixture of expert 3D MTANNSs for
FP reduction by using FROC analysis [79]. The FROC curve of the trained mixture
of expert 3D MTANNS is shown in Fig. 5.14. The FROC curve was obtained by a
change in the threshold value for the output of the mixing ANN. This FROC curve
indicates that the mixture of expert 3D MTANNSs eliminated 63 % (142/224) of
non-polyps (FPs) without removal of any of the 27 polyps, i.e., a 96.4 % (27/28)
overall by-polyp sensitivity was achieved at an FP rate of 1.1 (82/73) per patient.

5.4.6 Evaluation of a CAD Scheme with False-Negative CTC
Cases

One of the limitations of current CAD research is a lack of evaluation of “diffi-
cult” polyps, particularly those which radiologists failed to detect by using stan-
dard techniques. Most previously reported studies used polyps detected by
radiologists in CTC (i.e., human true-positive (TP)polyps). CAD benefits cannot
be fully evaluated based on such TP polyps because these polyps are likely to be
detected by radiologists without CAD.

5.4.6.1 Database of False-Negative Polyps

In order to evaluate the performance of a CAD scheme with false-negative (FN)
polyps, we collected a database consisting of CTC scans obtained from a previous
multicenter clinical trial [93] that included an air-contrast barium enema, as well
as same-day CTC and colonoscopy. Six-hundred and fourteen high-risk subjects
participating in the original trial were scanned in both supine and prone positions
with a MDCT system. The reference standard was a final reconciliation of the
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unblinded lesions identified on all of the three examinations. In the original trial,
155 patients had 234 clinically significant polyps of 6 mm or larger. Among them,
69 patients had FN interpretations (i.e., the by-patient sensitivity was 55 %). These
patients had 114 “missed” polyps/masses which were not detected by reporting
radiologists during their initial clinical reading. Causes of errors included observer
errors, i.e., perceptual and measurement errors (51 %), technical errors (23 %),
and non-reconcilable cases (26 %) [94]. The perceptual errors were associated
with polyps that failed to be detected by observers. The measurement errors refer
to the errors associated with the undermeasurement of polyp size as compared to
colonoscopy findings as the “reference standard.” In our study, we focused on FN
cases with observer errors, because the aim of CAD is to prevent observer errors.

We used the inclusion criterion that each case had at least one “missed” polyp
due to the perceptual error. As a result, we obtained 24 FN cases with 23 polyps
and one mass. An experienced radiologist reviewed CTC cases carefully and
determined the locations of polyps with reference to colonoscopy reports. Polyp
sizes ranged from 6 to 15 mm, with an average of 8.3 mm. The mass size was
35 mm. Among them, 14 lesions were adenomas. The radiologist determined the
difficulty of detection for each polyp/mass as difficult, moderate, or easy, as well as
the morphology of each polyp.

5.4.6.2 CAD Performance for False-Negative Cases

Our initial polyp-detection scheme yielded a sensitivity of 63 % with 21.0 FPs per
patient. The 3D MTANNSs [18, 19] removed many FPs, and our CAD scheme
achieved a sensitivity of 58 % (14/24) with 8.6 (207/24) FPs per patient for the 24
missed lesion cases, whereas the conventional CAD scheme with LDA instead of
the MTANNSs achieved a sensitivity of 25 % at the same FP rate. There were
statistically significant differences [95] between the sensitivity of the MTANN
CAD scheme and that of the conventional LDA CAD scheme. Therefore, our
MTANN CAD scheme has the potential to detect 58 % of missed polyp/mass
cases with a reasonable number of FPs [34].

Among the 24 lesions, 17 polyps, 6 polyps, and 1 mass were classified as
difficult, moderate, and easy, respectively. Among the 23 polyps, 12, 9, and 2 were
categorized as sessile, sessile on a fold, and pedunculated, respectively. Figure 5.15
illustrates FN polyps detected by our MTANN CAD scheme. All examples were
graded as difficult to detect. We expect our CAD scheme to be helpful in the
detection of difficult polyps.
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(b)

Fig. 5.15 Illustrations of polyps missed by reporting radiologists during their initial reading in
the original trial in 2D axial views (upper images) and 3D endoluminal views (lower images),
which were detected by our MTANN CAD scheme. a A small polyp (6 mm; hyperplastic) in the
sigmoid colon was detected correctly by our CAD scheme (indicated by an arrow). This polyp
was missed in both CTC and reference-standard optical colonoscopy in the original trial. b A
sessile polyp on a fold (10 mm; adenoma) in the ascending colon

5.4.7 Detection of Flat Neoplasms by CAD

5.4.7.1 Morphologically Flat Neoplasms (Flat Lesions) in CTC

Current efforts to prevent colorectal cancer focus on the detection and removal of
polypoid polyps (i.e., polypoid neoplasms). Recent studies, however, have shown
that colorectal cancer can also arise from flat colorectal neoplasms (also known as
flat lesions, non-polypoid lesions, superficial elevated lesions, or depressed
lesions) [96]. Flat lesions are more likely than polypoid polyps to contain in situ or
submucosal carcinoma. One study has shown that flat lesions contributed to 54 %
of superficial carcinomas [97]. Flat lesions are also a major challenge for current
gold-standard optical colonoscopy, because the subtle findings for these lesions
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can be difficult to distinguish from those for the normal mucosa [98]. As compared
to the surrounding normal mucosa, flat lesions appear to be slightly elevated,
completely flat, or slightly depressed. Although flat lesions were believed to exist
primarily in Asian countries such as Japan [99, 100], recent studies have shown
their significance in other parts of the world [101] such as the European countries
[96] and the United States [97]. Flat lesions in the Western population, thus, may
have been missed in current gold-standard optical colonoscopy [102]. Although
the detection sensitivity of polyps in CTC is comparable to that in optical
colonoscopy [103], flat lesions are a potentially major source of FN CTC inter-
pretations in view of their uncommon morphology [104, 105]. Thus, detection of
flat lesions in CTC is essential in colorectal cancer screening.

5.4.7.2 Limitations of Current CAD Schemes for Flat-Lesion Detection

Although current CAD schemes could be useful for detection of polypoid polyps,
the detection of flat lesions is a major challenge [106], because existing CAD
schemes have focused on the detection of pedunculated and sessile polyps; thus,
they are designed for detecting the common polypoid shape. Existing CAD
schemes use geometric, morphologic, and textural characteristics to distinguish
polyps from normal structures in the colon (e.g., haustral folds, stool, the air/liquid
boundary, the ileocecal valve, and a rectal catheter). One of the most promising
methods for distinguishing these polyps is to use the mathematical descriptor
called the shape index to characterize the shape of a polyp [89]. A polyp is
characterized by the shape index as a cap-like structure. Haustral folds and the
colonic wall are characterized as saddle-like structures and cup-like structures,
respectively. Thus, existing CAD schemes are not likely to detect flat lesions
which exhibit a non-polypoid shape.

5.4.7.3 Flat-Lesion Database

To create a flat-lesion database, an expert radiologist measured lesions on CTC
images on a CTC viewing workstation (Vitrea 2 software, version 3.9, Vital
Images, Minnetonka, MN) [20, 107]. 2D images were viewed with three tailored
window/level settings: “lung,” “soft tissue,” and “flat.” Magnified axial, coronal,
and sagittal planes were reviewed in 2D for detection of the longest axis and the
maximal height of the lesion as seen on each dataset (supine and prone). On a
close-angle 3D endoluminal view, the lesion was viewed from various angles for
first deciding on its borders. The longest axis and maximal height were measured
on each dataset. Comparison of 2D and 3D images before measurements were
made were permitted for assessment of the lesion shape and borders in the same
session, because this approach corresponds to the method that would be used in
clinical practice when lesions are measured. Measurements of maximal thickness
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on the 3D-volume-rendered views required the observer to make a subjective best
estimate as to where to place the cursor.

We analyzed data from the 3D endoluminal view and the 2D view in each of
the three window/level settings to determine which measurements fit the defini-
tions of flat lesions as determined by a height <3 mm or a ratio of height <1/2 of
the long axis. Based on the measurements of 50 CTC cases by a radiologist, we
found 28 flat lesions in 25 patients (i.e., the prevalence of flat lesions was about
30 %). Eleven flat lesions among the 28 lesions were not detected by reporting
radiologists at their initial clinical reading in the original trial; i.e., these were
missed lesions; therefore, they can be considered “very difficult” lesions to detect.
Lesion sizes ranged from 6 to 18 mm with an average of 9 mm based on optical
colonoscopy measurements.

5.4.7.4 Development of a 3D MTANN for Flat Lesions

In order to investigate the feasibility of a 3D MTANN in the detection of flat
lesions, we applied a 3D MTANN to flat lesions in the flat-lesion database con-
taining 28 flat lesions in 25 patients. We trained the 3D MTANN with sessile polyps
(which are not flat lesions, but appear relatively flat compared to common bulbous
polyps) in a different database and with various non-polyps such as a rectal tube,
haustral folds, the ileocecal valve, and stool, which are major sources of FPs. We
applied the trained 3D MTANN to the 28 flat lesions in the flat-lesion database.

5.4.7.5 Evaluation of the Performance of the CAD Scheme

Our initial polyp-detection scheme without LDA yielded a 71 % by-polyp sensi-
tivity with 25 FPs per patient for the 28 flat lesions, including 11 lesions missed by
the reporting radiologists in the original clinical trial. With LDA, 105 FPs were
removed with the loss of one TP, thus yielding a 68 % by-polyp sensitivity with
16.3 FPs per patient. We applied the trained expert 3D MTANNSs for further
reduction of the FPs. The 3D MTANNSs removed 39 % of the FPs without removal
of any TPs. Thus, our CAD scheme achieved a by-polyp sensitivity of 68 % with
10 FPs per patient, including 6 of the 11 flat lesions missed by the reporting
radiologists in the original trial. Our MTANN CAD scheme detected 67 % and
70 % of flat lesions ranging from 6-9 mm and those 10 mm or larger, respectively,
including six lesions missed by the reporting radiologists in the original trial with
10 FPs per patient.

Figure 5.16 shows an example of a flat lesion which is very small. Some flat
lesions are known to be histologically aggressive; therefore, the detection of such
lesions is critical clinically, but they are difficult to detect because of their uncom-
mon morphology. Our CAD scheme detected such difficult flat lesions correctly. It
should be noted that this case was missed by the reporting radiologists in the original
trial; thus, the detection of the lesion may be considered “very difficult.”
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Fig. 5.16 Illustration of a flat lesion which was detected by our MTANN CAD scheme: a 3D
endoluminal view, b 2D axial view, ¢ 3D transparent colon view. A small flat lesion (6 mm;
adenoma) in the sigmoid colon was detected correctly by our CAD scheme (indicated by an
arrow). This polyp was missed in CTC in the original trial

5.5 Conclusion

PML is a powerful tool in CAD schemes for detection of lesions in medical
images. MTANNs, which are a class of PML, were useful for improving the
performance (i.e., both sensitivity and specificity) of CAD schemes for detection
of lung nodules in CT and the detection of polyps in CT colonography. The
MTANN supervised filter was effective for enhancement of lesions including lung
nodules and colorectal polyps and suppression of non-lesions in medical images,
which contributed to the improvement of the sensitivity as well as specificity in the
initial lesion detection stage in CAD schemes, whereas the classification MTANNs
contributed to the improvement of specificity in the FP reduction stage in CAD
schemes.
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Abstract Understanding the biomechanics of the human foot during each stage of
walking is important for the objective evaluation of movement dysfunction,
accuracy of diagnosis, and prediction of foot impairment. Extracting causal rela-
tions from amongst the muscle activities, toe trajectories, and plantar pressures
during walking assists in recognizing several disease conditions, and under-
standing the hidden complexity of human foot functions, thus, facilitating
appropriate therapy and treatment. To extract these relations, we applied the
Bayesian Network (BN) model to data collected in the stance phase of walking.
For a better understanding of foot function, the experimental data were divided
into three stages (initial contact, loading response to mid-stance, and terminal
stance to pre-swing). BNs were constructed for these three stages of data for
normal walking and simulated hemiplegic walking, then compared and analyzed.
Results showed that BNs extracted could express the underlying mechanism of
foot function.
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6.1 Introduction

A difference between an actual gait and a normal gait indicates a foot abnormality,
which may be caused by dysfunction of the neural or musculoskeletal systems.
Currently, most abnormalities of the foot are diagnosed and predicted empirically
after subjective assessment, by which correct therapy and rehabilitation for foot
impairment cannot be guaranteed. A better understanding of foot function could
make an objective assessment possible, and thus is of great significance to not only
research in the therapy and rehabilitation area, but also to research in the motor
control research area.

The main goal of this research is to develop new tools for identifying the nature
and cause of foot function impairment, and assist in treatment and rehabilitation of
foot function. Foot function during walking is a result of interaction among the
muscular, neural, and skeletal systems, and the walking environment.

In this study, we measured and recorded lower limb, major muscle activities
(corresponding to the cause of the motion), the trajectories of toe and ankle joints
(reflecting the effect of the motion), and plantar pressure distributions (repre-
senting the interaction between the human and environment) during the stance
phase. Then, Bayesian network (BN) was applied as the theoretical account of
probabilistic illation to extract the causal construction for foot function. Two kinds
of walking, normal walking and simulated hemiplegic walking, were measured
and analyzed to verify the BN’s ability to express and distinguish the significant
gait-dependent causal relations.

Our research differs from existing work in the literature in the following aspects.

1. The trajectory and pressure of the tiptoe stance were also recorded and mod-
eled.

Although the role of the toes in walking has been studied in robotics and gait
research [1-3], it has not been studied in a foot function model.

2. The information structure of foot function, expressed by the causal relation

among muscle activities, joint trajectories, and plantar pressure recordings were
inferred.
Several studies have been done for estimating foot abnormalities while eval-
uating normal foot function during walking [4-7]. For example, [5] have
reported that the study of using plantar pressures with muscle activities for
analyzing and estimating abnormalities of human gait. Also, some scientists
have shown that lower-leg muscle impuissance is influenced by upper-leg
muscles [8, 9]. Thus, empirical diagnosis cannot bring suitable treatment and
rehabilitation methods. Moreover, the probabilistic causal inference could
synthesize the information from several types of measurement, without any a
priori, for example, the physical connection and relationship between func-
tional components.

3. The BN is used to describe knowledge about an uncertainty. The BN principle
consists of probability theory, graph representation, and statistics, and is
employed to describe the probabilistic dependencies among random variables.
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To better describe knowledge about an uncertainty and represent the probabi-
listic dependencies among random variables, some researchers explored and
determined that the BN can be used to analyze biomedical signals and medical
applications. Some examples of this research can be found in [11-15]. In these
examples, BNs were applied as many kinds of tools, specifically, to extract the
causal relations amongst symptoms and diseases from medical databases, to
construct database from incomplete and partially correct statistics for multi-
disease diagnosis, and to handle uncertainties in a decision support system.

However, the BNs have been rarely applied to the real continuous sequence of
motion-related biomedical data. In [16], BN was used for the upper limb motion
categorization. A BN model was used to categorize the healthcare procedure for
wheelchair users with spinal injury [17].

This chapter is arranged in the following sections. In Sect. 6.2, the gait mea-
surement experiment for gathering data of normal walking and simulated hemi-
plegic walking is described. In Sect. 6.3, preprocessing experiment data during the
stance phase of walking is shown. In Sect. 6.4, BN, its search algorithm, and node
assignments for its construction are briefly outlined. In Sect. 6.5, the results of the
analysis are shown. In Sect. 6.6, we discussed and concluded.

6.2 Experiment Data Recording

In our experiment, we collected data for human normal walking and simulated
hemiplegic walking. We used an electromyogram (EMG) to record muscle
activities, a motion capture system to track foot motions during walking, and
plantar pressure and force measurement to measure foot forces (pressures) for
further analysis.

6.2.1 Subject

One healthy person, without previous foot abnormalities, took part in the exper-
iment. The subject was required to walk on a normal floor at his normal speed.
Table 6.1 shows the subject’s weight, health state, and walking speed. To measure
the artificial impairment walking (simulated hemiplegic walking), we asked the
healthy subject to wear a simulation set, which is a product of Tokushuiryo Co.
Ltd. The simulation set contributes constraints to the right-side ankle and knee
joint of the subject. Figure 6.1 shows the special lower extremity orthosis con-
straining the ankle joint by a plantar flexed to 105°.
Before each experiment, informed consent was required from subject.
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Table 6.1 Subject data information

Subject Weight Health state Walking state Speed
Male 65 kgs Healthy Normal walking 4 [km/h]
Artificial impairment walking 1 [km/h]

(Simulated hemiplegic)

Fig. 6.1 Lower extremity

orthosis used for artificial
impairment walking

(simulated hemiplegic gait)

6.2.2 Making Records of Muscle Activities Using EMG
Sensors

In biomedical research, EMG signals are used as the primary control signal
sources to build interfaces for prosthetic applications [18]. Moreover, EMG signals
are used as the primary diagnostic tools for clinical neurophysiology, i.e., for
distinguishing neuromuscular diseases, and evaluating lower-back pain, kinesiol-
ogy, and disorders of motor control, etc. [19].

Three EMG sensors (TYK-2007, II Version, Sikikou Engineering) were
attached to the muscles shown in Fig. 6.2. The sampling frequency was 1600 Hz.

6.2.3 Making Records of Foot Trajectories by a Motion
Capture System

We used a motion capture system (CaptureEx, Library-Inc), containing three
cameras (Himawari GE60, 60 fps, Library-Inc) to make records of the trajectories
of reflected light markers tied at the thumb, II toe, phalange (heel) bone, cuneiform
bone, and ankle joint of right leg. Move-tr/3D software, also a product of Library-
Inc., was used to construct a prototype from the recorded reflective marker tra-
jectories and to calculate the toe angles from the prototype. Figure 6.3 shows the
procedures used to compute the toe angles from foot trajectories.

The motion tracking system was synchronized with the EMG measurement,
through the triggering function of the CaptureEx (Library-Inc).
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Fig. 6.2 Muscles used for gait measurement, EDL Extensor digitorim longus muscle, PL
peroneus longus muscle, TA Tibialis anterior muscle

Reflective marker—.

Camera =y Get 2D data =sssss—jp-Calculate 3D data =======je- Calculate angle etc.

Fig. 6.3 Procedures to compute toe angles from foot trajectories

6.2.4 Making Records of Foot Pressures by Plantar Pressure
and Force Measurement

We used the Plantar Pressure and Force Measurement system as an F-scan
(Tekscan® technology) system. This system measures dynamic foot pressure and
force data and shows interaction between the foot and ground. Conventional visual
observation of gait and foot function, in contrast to an F-scan, measures foot force,
contacted pressure distribution, and timing. The system consists of sensors,
scanning electronic devices, and software. Figure 6.4 shows the sequence of steps
for the plantar pressure experiment. This system is used in many applications: in
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1. Trim 2. Connect 3. Collect 4. Analyze

Fig. 6.4 Sequence of steps in the plantar pressure and force measurement experiment

shoe analysis (footwear design), gait analysis, diagnosis of diabetes, and so on. It
supports biomechanical parameters, advanced analysis, and confirmation of the
effectiveness of treatments.

6.3 Preprocessing Experiment Data During Stance Phase
of Walking

6.3.1 Preprocessing EMG Signals in Order for Analysis

In order to analyze the data obtained from the experiment, we did following
procedures on measurement data. (1) rectified raw (measured) EMG signals using
full waves, (2) performed moving average on the signals, (3) down-sampled the
signals to 60 Hz (the sampling rate of the motion capture system), and (4) stan-
dardized them. Desired signals (obtained during the stance phase) were extracted
from the standardized data. Then, we discretizated the desired signals to three
values: Upper, Middle, and Lower. Table 6.2 shows the method used for dis-
cretization, which we implemented in MATLAB® 7.1 (MathWorks®, Inc).

6.3.2 Preprocessing Toe Angle Data for Analysis

The thumb and II toe angles were extracted from the trajectory data by the motion
capture system. These angles data were filtered and moving averaged, then
discretized to three values: Upper, Middle and Lower, as shown in Table 6.2.
Figure 6.5 shows an illustration of the angle of thumb and II toe.
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Table 6.2 Discretization method

Discretizated value Threshold value

Upper 0.66*max + 0.33*min < value

Middle 0.66*max + 0.33*min > value > 0.33*max + 0.66*min
Lower 0.33*max + 0.66*min > value

Note Max is maximum value; min is minimum value

Fig. 6.5 An illustration of toe angle

6.3.3 Preprocessing Plantar Pressure Data for Analysis

Plantar pressure data were divided into three sections for further analysis.
Figure 6.6 shows these sections and the corresponding plantar pressures. After the
experiment, we calibrated experiment data according to the health condition of our
experiment subject. Here, we used 65 kgs as the calibration point because of the
weight of the subject. The desired plantar pressure data (obtained during stance
phase) were extracted from the overall experimental data. Then, the desired plantar
pressure data were discretized by three values: Upper, Middle, and Lower, shown
in Table 6.2.

6.4 Outline of Bayesian Network
6.4.1 Concept of Bayesian Network

Bayesian networks (BNs), also known as belief networks or directed acyclic
graphic models (DAG), are graphical representations of the probabilistic depen-
dencies among random variables and estimated probabilistic inference obtained by
using statistical and computational methods within those variables [20]. Bayesian
networks treat random variables, express these variables as a set of nodes, draw
arcs expressing probabilistic causal relations and conditional dependency between
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Fig. 6.6 Divided section of
plantar pressures

a set of nodes, and extract these causal relations based on conditional probabilities
of a set of nodes.

Recently, the Bayesian networks have been employed for medical diagnostics
and predictions because they can be used to analyze biomedical signals and handle
uncertainty in decision making systems. Bayesian networks are also applied for
diagnosing faults in systems, body skill modeling, and so on.

6.4.2 Search Algorithms of BN Structure

There are two kinds of BN learning algorithms: parameter learning and structure
learning. The structure learning algorithm is divided by two categories.

1. Constraint-based algorithms learn the network structure by analyzing the
probabilistic relations entailed by the Markov property with conditional inde-
pendence tests and then construct a graph which satisfies the corresponding d-
separation statements. The resulting models are often interpreted as causal
models even when learned from observational data [20].

2. Score-based algorithms assign a score to each candidate in the Bayesian network
and try to maximize it with a heuristic search algorithm. Greedy search algo-
rithms are a common choice, but almost any kind of search procedure can be
used.
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Table 6.3 Node appointment

Node Meaning Node Meaning

PL Peroneus longus muscle M Fore foot pressure
TA Tibialis anterior muscle I Toes pressure
EDL Extensor digitorim longus muscle Thumb Angle of thumb
P Rear foot pressure 1I toe Angle of II toe

Table 6.4 Proscribed arcs Nodel Arc Node2
EDL - Thumb
EDL « Thumb
TA — II toe
TA « II toe
PL N Thumb
PL « Thumb
PL - II toe
PL « II toe

We used a score-based algorithm of BNs as a greedy search algorithm and an
evaluation function of Bayes factors [9, 10, 20], implemented by a deal-package
of an R package [21].

6.4.3 Node Assignment for BN Construction

Each EMG sensor attached muscle, each toe angle, and each plantar pressure
section was designated a node in the graph.

In every experiment, five BNs were constructed. Each of these BNs expressed
causal relations among three nodes of muscles, three nodes of foot pressure sec-
tions, and two nodes of angle data. The node appointment is given in Table 6.3. For
all the nodes, three values, Upper, Middle and Lower, can be assumed. For further
analysis, based on prior knowledge of human walking, some arcs were proscribed
for the simplification of calculation. Table 6.4 shows the proscribed arcs.

6.5 Results

In this study, for a better understanding of foot function during the stance phase of
different walking patterns, we divided the experiment data into three stages: initial
contact (the strike of the heel on the ground), loading response to mid-stance, and
terminal stance to pre-swing (ends with the lift of the toe at the beginning of the
swing phase of gait). Figure 6.7 shows the three stages of a stance phase of
walking.
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Fig. 6.7 Three stages of the stance phase of the foot

Fig. 6.8 Representation of
EMG data, plantar pressure
data, and toe angle data
before discretization (for
normal walking of healthy
subject)
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Figures 6.8 and 6.9 show a representation of EMG data, plantar pressure data,
and toe angle data before the discretization process for normal walking and sim-
ulated gait walking, respectively.
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Fig. 6.9 Representation of

EMG data for simulated gait walking

EMG data, plantar pressure ' —FL
— A
—— EDL

data, and toe angle data
before discretization (for
simulated gait walking of
healthy subject)

Muscle activity [V]

Time (Seconds)

Foot force for simulated gait walking

50 T T T T T
. —1
40+ W MY
o A
\ Ll =P
Ewl R _,-/ d
g —~—— \
g 20k _d__'_./"'__ N Y 4
w f Vel ™ \
10} P Sse 3 .
I = %
o e — R~
0 10 20 a0 40 50 60

Time (Seconds)

Anale data of toes for simulated cait walking

normalized angle data

Time (Seconds)

Figures 6.10, 6.11 and 6.12 show BN structures of muscle activities and foot
pressures for normal walking and simulated hemiplegic walking in three stages,
respectively. From Fig. 6.8, we see that the PL muscle is more active than other
muscles at Stage III of normal walking. From Fig. 6.11, we see that there are more
incoming arcs to the PL node than to other nodes, and it seems that the PL muscle
is more active than others. Comparing these two graphical representations, we can
tell that extracting the BN-based causal inference among muscle activities and foot
pressures is reasonable. From Fig. 6.9, we see that the PL muscle is more active
than other muscles at Stage I, and the EDL muscle is more active than other
muscles at Stage III of simulated gait walking.

From Figs. 6.11 and 6.12, in case of simulated gait walking, we see that there
are more incoming arcs to the PL node than to other nodes and more outgoing arcs
from the EDL node than from other nodes. From here, we can see that the PL
muscle is more active at Stage I and the EDL muscle is more active at Stage III.
From these results, the BN model-based causal inference among muscle activities
and foot pressures is reasonable. We also see that BN structures of Stage II are the
same in the case of normal walking and artificial impaired walking.

Figures 6.13 and 6.14 show the BN structures of muscle activities and toe
angles for normal walking and simulated gait walking with Stages I and III,
respectively.
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Fig. 6.10 BN structure of muscle activity and foot pressures for normal walking (left side is
Stage 1, right side is Stage II)

Score: -59.82728

“e. 004447759

Fig. 6.11 BN structures of muscle activity and foot pressures for simulated gait walking (left
side is Stage 1, right side is Stage II)

For Stage II, there are no BN structures extracted from the data because this
stage does not have muscle activities and toe motions. Figure 6.13 shows that the
BN structures of Stage I for normal walking and simulated gait walking are the
same. From Fig. 6.14, we see that there are more incoming arcs to the PL node
than to others, and the PL node is more active than others at Stage III of normal
walking (see Fig. 6.8).

As shown in this figure, the EDL muscle is more active than others in the case
of simulated gait walking (right side). This activity is also shown to be the same as
at EMG data representation in Fig. 6.9.
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Fig. 6.12 BN structures of muscle activity and foot pressures (left side is Stage 11l for normal
walking, right side is Stage III for simulated gait walking)
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Fig. 6.13 BN structures of muscle activity and toe angles (/eft side is Stage I for normal walking,
right side is Stage I for simulated gait walking)

In the case of Stage II or loading response to mid-stance, BN structure was not
constructed amongst muscle activities and toe angles because all these values are
on one discretized value. From here, we can see that in this stage there is no
relation amongst muscle activities and toe angles, and it is a stable stage.

Figure 6.15 shows BN structures of muscle activities for the stance phase of
walking (the left side is normal walking and the right side is simulated gait
walking). From these two graphical representations, we can tell that causal rela-
tions amongst muscle activities during stance phase are the same in both cases
(normal walking and simulated gait walking). To construct more precise causal
relations and conditional dependence amongst foot functions during the stance
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Fig. 6.14 The BN structures of muscle activities and toe angles (left side is Stage III for normal
walking, right side is Stage III for simulated gait walking)
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Fig. 6.15 BN structures of muscle activities for stance phase of walking (left side is normal
walking, right side is simulated gait walking)

phase of walking, we divided our experiment data into three stages and discretized
three values.

In this study, we analyzed four trial data from measurement experiment data. The
resulting probability values are shown in Table 6.5. From this table, we see that two
trial data of normal walking and simulated gait walking are similar to each other.

We see from our results that the BNs of normal walking and simulated gait
walking are reasonable and good graphical representations of muscle activities,
plantar pressure sections, and toe angles.
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Table 6.5 Probability value of trial data

Node Discretized ~ Normal walking (Probability) Simulated gait walking (Prob)
name value

I trial data 1I trial data I trial data II trial data
| oI o I I m I I m 1 I 11
PL Upper 0 0 042 0 0 044 042 0 0 044 0 0
Middle 0 0 033 0 0 0.35 033 0 0 034 0 0
Lower 1 1 025 1 1 0.21 025 1 1 022 1 1
TA Upper 0.58 0 0 0.62 0 0 0.17 0 0.82 0.15 0 0.8
Middle 042 0 0.67 0.38 0 0.6 075 0 0.18 0.72 0 0.2
Lower 0 1 033 0 1 04 008 1 0 0.13 1 0
EDL Upper 025 0 0 022 0 0 0 0 0.55 0 0 0.58
Middle 025 0 042 023 0 04 0250 0.27 025 0 0.28
Lower 05 1 0.58 0.55 1 0.6 075 1 0.18 0.75 1 0.14
P Upper 0.5 039 0 0.6 04 0 0.28 0.63 0 0.33 0.63 0
Middle 0.5 019 0 04 021 0 022 02 0 023 02 0
Lower 0 042 1 0 0.39 1 0.5 0.17 1 044 0.17 1
M Upper 0 0.35 0.66 0 04 06 0 0.62 055 0 0.64 0.56
Middle 0 0.26 0 0 025 02 0 0.38 0.18 0 0.36 0.19
Lower 1 0.39 033 1 035 02 1 0 027 1 0 0.25
I Upper 0 0.16 092 0 0.18 090 0 0.26 091 0 0.3 092
Middle 0 0.26 0.08 0 022 0.1 0 0.74 0.09 0 0.7 0.08
Lower 1 0.58 0 1 06 0 1 0 0 1 0 0
Thumb  Upper 0 0 0.25 0 0 0.27 0 0 0.27 0 0 0.28
Middle 0 0 025 0 0 0.28 0 0 027 0 0 0.27
Lower 1 1 05 1 1 045 1 1 046 1 1 0.45
II toe Upper 0 0 025 0 0 0.26 0 0 027 0 0 0.27
Middle 0 0 025 0 0 027 0 0 027 0 0 0.26
Lower 1 1 0.5 1 1 047 1 1 046 1 1 047

6.6 Discussion and Conclusions

The results presented in this chapter show that the BN structure is useful for a
better understanding of foot function during the stance phase of human normal and
simulated hemiplegic walking.

Biomedical signals are corrupted by external noise during the experiment. The
external noise can be environment noise (sound and light), experiment equipment
noise, and communication channel noise. To avoid such noise, we filtered and
standardized our experimental data.

Foot function during walking is a result of interactions among the muscular,
neural, and skeletal systems, and the walking environment.

In this study, we extracted causal structures for foot function by measuring and
recording lower-limb major muscle activities, the trajectories of toe and ankle
joints, and plantar pressure distributions during the stance phase, and then applied
BN as the theoretical account for probabilistic causal inference.
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Two different styles of walking, normal and simulated hemiplegic walking of
one healthy subject who did not have previous foot abnormalities and weighed
65 kgs, were measured and analyzed to verify the BN’s ability to express and
distinguish the significant gait-dependent causal relations.

In this work, we assigned as the nodes of BNs to each muscle activity, each
plantar pressures section, and each toe angle trajectory, each of which represent
commonly cited modes of muscle control analysis and motion analysis. Recently,
there have been many Bayesian network models used to diagnose different dis-
eases [11-15, 17] and classify motion [16, 22].

But, our study is revealed to combine different measurements for experimental
data, plantar pressure data, muscle activity data, and toe motion data during the
stance phase of walking.

We standardized and discretized experiment data into three values and then
divided it into three stages during the stance phase of walking: initial contact,
loading response to mid-stance, and terminal stance to pre swing, for constructing
reasonable relation and dependency amongst muscle activities, plantar pressures,
and toe motions. Our preliminary results show that the BNs of normal walking and
artificial impairment (simulated hemiplegic walking) are reasonable, and there is
no difference between them. We have analyzed four sets of trial data for normal
walking and artificial impairment (simulated hemiplegic walking); there are no
differences between trial data from probability table.

In future studies, we will try to increase the number of subjects, particularly
those for impaired walking cases. We will also conduct experiments for several
walking conditions (climbing upstairs, different walking speeds, on gradient
walkways, etc.) Moreover, three muscles, three sections of plantar pressures, and
two toe angles were investigated in this study, though the other assignment
schemes, i.e., multiple muscles, multiple separation to plantar pressures, angle of
ankle, inside arch and outside arch of foot should also be studied.

In this study, we used the BN to extract the probabilistic causal information of foot
function data, such as muscle activities, plantar pressures, and toe trajectories, from
different types of data of human walking phases. The graphical networks extracted
from the three stages of the stance phase of gait measurement data are useful for
understanding the foot function of the normal walking and simulated hemiplegic
walking. Thus, understanding the foot function during walking is important for
further analysis of diagnostic, therapy, and training programs for foot impairment.
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Chapter 7
Rule Learning in Healthcare and Health
Services Research

Janusz Wojtusiak

Abstract Successful application of machine learning in healthcare requires
accuracy, transparency, acceptability, ability to deal with complex data, ability to
deal with background knowledge, efficiency, and exportability. Rule learning is
known to satisfy the above criteria. This chapter introduces rule learning in
healthcare, presents very expressive attributional rules, briefly describes the AQ21
rule learning system, and discusses three application areas in healthcare and health
services research.

Keywords Rule learning - Attributional calculus - AQ21 system - Health services
research - Aggregated data - Healthcare billing data

7.1 Introduction

Healthcare requires modern computational tools to handle the complexity of data
and workflows. The healthcare environment is dynamic and frequently changing:
New knowledge is published on a daily basis, new drugs are constantly available,
and the best practice guidelines change. Moreover, healthcare is a critical area in
which success is measured by patient survival and wellbeing. Unfortunately, many
existing treatment and reimbursement systems used in healthcare treat individual
patients as “average” cases without tailoring to patient characteristics.

The above reasons call for machine learning methods to manage the complexity
and automatically adapt to frequent changes. This chapter focuses on one of the
best known and most important methods in machine learning in healthcare: rule
learning. It briefly describes rule learning methods, discusses their use in
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healthcare delivery, research, administration and management, and presents
advantages of using rule learning rather than traditional computational approaches
and other machine learning methods.

In order to fully justify the use of rule learning in healthcare, the following
sections briefly outline aspects of machine learning that are particularly important
in this application area.

7.1.1 What is Needed in Healthcare and Health Services
Research?

Machine learning methods have a wide range of applications in healthcare
delivery, research, administration, and management. Many of these applications
are slowly emerging as the healthcare community becomes more familiar with
machine learning and its immense potential. On the other hand, most machine
learning researchers are not familiar with healthcare settings and over-trivialize
them. This mutual lack of understanding between healthcare and machine learning
communities results in the lack of advanced machine learning methods adoption.

Among the healthcare areas that benefit the most from machine learning are
those that rely on automated processes or that can be automated. The ability of
machine learning methods to adapt to dynamically changing environments, pre-
viously unseen situations, and new challenges make them ideal for these types of
applications. Two of the most common applications of machine learning in
healthcare are: decision support systems and knowledge discovery. Decision
support systems rely on computational models that aid decision makers in a variety
of situations. These models can be constructed and maintained using machine
learning. In addition, knowledge discovery, which primarily derives from medical
datasets, can be used to study patterns of healthcare delivery systems, manage-
ment, billing, etc. Machine learning has, thus, great potential when correctly
applied to hard problems that cannot be solved with more traditional computa-
tional methods or manually without the use of computers.

However, for machine learning to be adopted in healthcare, methods need to
fulfill several requirements. These requirements are eminent and applicable to
virtually all domains in which machine learning is or can be used. However, some
of these requirements are particularly important in healthcare when the adoption of
new technologies and results are exceptionally challenging.

e Accuracy. Models have to provide reliable predictions and/or reliably describe
data, which is, in most cases, their main function. Multiple measures of accuracy
are available, all of which perform some form of counting/scoring of correct and
incorrect predictions and combinations thereof. Some commonly used measures
of accuracy include precision, recall, sensitivity, specificity, F-score, and others.

e Transparency. Medical and healthcare studies require models to be easily
understood by people not trained in machine learning, statistics, and other
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advanced data analysis methods. In this sense, providing just the reliable
predictions is not sufficient, as models should also “explain” why a specific
prediction is made and what the model actually does. This corresponds not only
to methods that lead to creation of new knowledge, but also to autonomous
systems that because of their critical role need to leave an “audit trail” and be
analyzed/verified periodically.

The concept of understandability and interpretability has been well known since
early work on expert systems and artificial intelligence, but has been largely
ignored by many modern machine learning methods. One reason for this is that
it is very hard to measure the complexity of created models and hypotheses, and
use that measurement as one of knowledge representation selection criteria. It is
virtually impossible to consistently measure and compare the transparency of
models learned in different representations. (How do we compare transparency
of specific SVM-based, NN-based, and rule-based models for diagnosing liver
diseases? How do we generalize the measure?) Moreover, compound knowledge
representations, which are natural to people, tend to be difficult to learn through
machine learning methods. One such representation, called attributional calculus
consists of attributional rules, which are briefly outlined in Sect. 7.2.1.

¢ Acceptability. Models need to be accepted by their potential users. While partially
related to transparency, acceptability requires that the models that do not contradict
the knowledge of existing experts are otherwise “reasonably” congruent with what
is currently being done, and correspond to existing workflows. Acceptability is a
key issue in healthcare, more than in any other industry. Clinicians, administrators,
and supporting staff do not want to change the way they work, even if the
developed models being used are accurate and superior to methods currently being
used. The use of ML algorithms should immediately lead to improved work and
provide incentives to participants; otherwise results may not be adopted.

o Ability to handle complex types of data. Healthcare data are complex. Even
relatively simple applications of machine learning to healthcare data require
making numerous conversions, data pre-processing, encoding of variables, and so
on. In order to have widespread acceptance in healthcare, machine learning
methods should be able to operate directly with healthcare data without the need to
artificially encode. Healthcare data are not, and should not be, treated by ML tools
as a collection of numbers without meaning. Although more advanced ML
methods recognize a wide range of data types (nominal, structured, ordinal,
interval, ratio, absolute, compound, etc.), prevalent standards such as ICD-9, ICD-
10, CPT, SNOMED, and HL7 are currently not directly supported by ML tools.

e Ability to handle background knowledge. Computers require massive
amounts of data to make simple decisions or discover simple facts. Humans do
exactly the opposite—we are able to make important decisions and discover
important facts based on minimal information. Although there are many dif-
ferences in human and computer inference/learning processes, one of the most
important is the ability to use background knowledge to place problems into the
appropriate context. Similarly, machine learning algorithms that are provided
with large knowledge bases and a wealth of background knowledge need not
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have access to huge amounts of data. This allows machine learning algorithms
to focus on the discovery of novel facts and not what is already known to
experts. Extremely large repositories of medical and healthcare knowledge
(is often not coded and in many cases only available as text of published
manuscripts) can be incorporated into the machine learning process.

¢ Efficiency. Both model induction and model application algorithms need to be
efficient. Machine learning algorithms applied in healthcare should be able to
cope with very large amounts of data. The data may have many examples
(sometimes called records or datapoints), attributes (sometimes called variables
or features), or both. The theoretical estimates of algorithm complexity are often
available for many methods. More importantly users want the methods to be
executed in a specific period of time, even if it means that results are only
approximate or “good enough.”

¢ Exportability. Results of machine learning should be directly transferable to
decision support and other systems where they can be immediately applied. It is
not unusual that the learned models will work along with already existing
models and thus need to be compatible. For example, learned models can be
translated or directly learned in the form of rules in Arden Syntax, a popular
representation language in clinical decision support systems. If models are
learned in completely different representations, they need to be translated
(usually approximately) to the target form.

This chapter focuses on the use of rules and rule learning methods in different
healthcare areas. Rules are known to be one of the most transparent knowledge
representations that also conform to other criteria outlined above.

7.2 Rule Learning

Over the past few decades multiple rule learning algorithms and software have
been developed. Multiple types of rules are considered in machine learning
research depending on their use and form, including: association rules (which are
used to represent regularities in data), decision rules (which are used to support
decisions) and their subtype classification rules (used to classify examples into
concepts), rules with exceptions (that include part describing when the rule does
not apply), m-of-n rules (used to count true values or statements), and attributional
rules (the most expressive form of rules considered here).

The AQ21 system is particularly suitable for problematic healthcare situations
because of its flexibility, ability to deal with multiple types of attributes, handle
both large and small datasets, use background knowledge in different forms, learn
from individual and aggregated data, manage meta-values, cope with noise, per-
form constructive induction, generate alternative hypotheses, and many other
features. AQ21 uses attributional rules as the main form of knowledge represen-
tation. The following subsections briefly introduce attributional rules, and outlines
AQ21 main algorithms.
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7.2.1 Attributional Rules

Healthcare applications require rules that are more expressive than typically used
CLASS IF CONDITION (7.1)

Most software creates rules in which CONDITION is a conjunction of simple
conditions in the form ATTRIBUTE = VALUE. Many such rules are needed to
describe even simple concepts. Attributional rules are currently the most expres-
sive form of rules induced by machine learning algorithms. They are the main
knowledge representation in a formal language called attributional calculus, AC
[9]. AC has been created to support natural induction, an inductive learning
process which has results that are natural to people because of their form and
content.

Natural induction requires that knowledge be equivalent to statements in natural
language (i.e. English), so those who are not experts in machine learning or
knowledge mining, or do not have a technical background may understand it.
Thus, medical doctors, healthcare administrators, nurses, and researchers should
be able to understand, interpret, modify, and apply knowledge learned by com-
puter systems. Such a goal requires that knowledge discovery programs use a
language that can either be automatically translated to natural language or easily
understood on its own.

Learned knowledge is represented in attributional calculus in the form of
attributional rules, which consist of attributional conditions. An attributional
condition takes the form:

[LrelR : A, (7.2)

where L is an attribute, an internal conjunction or disjunction of attributes, a
compound attribute, a counting attribute, or an expression. rel is one of =, >, <, <,
>, 1, 0r # . R is an attribute value, an internal disjunction of attribute values, an
attribute, an internal conjunction of values of attributes that are constituents of a
compound attribute, or an expression. A is an optional annotation that may list
statistical information describing the condition. The annotation often includes |p|
and |n| values for the condition, defined as the numbers of positive and negative
examples, respectively, that satisfy the condition, and the condition’s consistency
defined as |p|/(|p| + |n).

There are several forms of attributional rules allowed by attributional calculus.
Three important forms of attributional rules are presented below:

CONSEQUENT < == PREMISE (7.3)
CONSEQUENT < == PREMISE | EXCEPTION (7.4)

CONSEQUENT < == PREMISE | PRECONDITION (7.5)
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Table 7.1 Table with example conditions and rules

[Length > 7.3]

The length of an entity is greater than 7.3 units (as defined in the attribute’s domain).

[Color = red v blue: 40, 2]

The color of an entity is red or blue. The condition is satisfied by forty positive and two negative
examples.

[Length & Height < 12]

An entity’s length and height are both smaller or equal to 12 units. The units are defined in the
attributes’ domains.

[Weather: sunny & windy]

The weather is sunny and windy. This is an example of a condition that includes a compound
attribute Weather.

[Part = acceptable] <== [Width = 7.12] & [Length <3] & [Material = steel v plastic]

A part is acceptable if its width is between 7 and 12, its length is less than 3 and its material is
steel or plastic.

[Activity = play] <== [Condition = cloudy v sunny: 7, 8] & [Temp = medium v high]

[[Condition = cloudy] & [Wind = yes] & [Temp = high] : p=7,n=0,q =1

An activity is play if the condition is cloudy or sunny and temperature is medium or high, except
for when the condition is cloudy, there is wind and temperature is high. The rule covers 7
positive and no negative examples. Its quality of the rule is 1.

where PREMISE, CONSEQUENT, EXCEPTION, and PRECONDITION are com-
plexes, that is, conjunctions of attributional conditions. An EXCEPTION can also be
an explicit list of examples that constitute exceptions to the rule. The rules without
exception or preconditions are interpreted as the CONSEQUENT is true whenever
the PREMISE is true. The rules with exceptions are interpreted that the CONSE-
QUENT is true whenever the PREMISE is true, except for when the EXCEPTION is
true. The rules with preconditions are interpreted that the CONSEQUENT is true
whenever the PREMISE is true, provided that the PRECONDITION is true. The
symbols | and [ are used to denote exception and precondition, respectively. Each
rule may be optionally annotated with several parameters such as numbers of cov-
ered examples (positive and negative), the rule complexity, etc.

One class of the data is usually described using several rules, called a ruleset.
Rules considered here are independent, i.e., the truth status of one rule does not
affect interpretation of other rules. This is in contrast to many other rule learning
programs that learn sequential rules that need to be evaluated in a specific order. A
set of rulesets that describe all considered classes in the data (often defined by
possible values of an output/dependent attribute) is called a ruleset family, a.k.a.
classifier. Depending on the problem at hand, the goal may be learn a complete
classifier, a ruleset for one class of interest, or individual rules representing reg-
ularities/patterns in the data. Selected example attributional conditions and rules
along with explanations are presented in Table 7.1.
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Fig. 7.1 AQ?21 system architecture
7.2.2 AQ21

The well-known family of AQ programs originated with the simple version of the
A7 algorithm for solving the general covering problem used at the core of rule
learning [5]. Numerous implementations and extensions of the method were
developed over the years. Among the best known AQ implementations are AQ7 [6],
AQI11 [7], AQ15c [11], AQ17 [1], AQI19 [8], and most recently AQ21 [12—-14].

The AQ21 system consists of two main modules for learning attributional rules,
and for their application (Fig. 7.1). The learning module consists of data and
background knowledge, a pre-processing module, a rule generation module, and a
post-processing module. Similarly, the testing module consists of a pre-processing
module which converts data and rules to common representation, a rule application
module which matches examples against rules, and a post-processing which
calculates summaries and statistics.

Rule learning starts with the pre-processing of data and background knowledge
which both need to be converted into the right representation and then prepared for
rule generation. The process may involve simple steps such as encoding of attri-
bute values, and/or more complex ones including constructive induction. The goal
for the latter is to automatically determine the representation space (a set of
attributes, their types, and domains). This method is best suitable for the learning
problem at hand. AQ21 implements two of three known classes of constructive
induction (data-driven (DCI) [3], knowledge-driven (KCI), hypothesis-driven
(HCI) [10], and multi-strategy [2]), DCI and KCI. The methods include operators
such as attribute selection, attribute generation, and attribute modification.

At the core of the AQ learning is its rule generation module. The method
pioneered the separate-and-conquer approach to rule learning, in which data
representing a target class being learned are sequentially covered in a way that
avoids negative examples. The AQ21 rule generation module starts by focusing on
a single example and generates possible generalizations of that example that are
consistent or partially consistent with the data and background knowledge. This
process, called star generation, results in a rule or set of rules that describe part of
the data. Multiple stars may be generated in parallel, in order to prevent erroneous
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generalizations due to noise in the data. The process of star generation is repeated
until all data or a significant portion of data are covered (explained) by generated
rules. The quality of rules in AQ21 is evaluated using lexicographical evaluation
functional (LEF), a method which sequentially evaluates rules through multiple
criteria. Numerous variants of the AQ rule generation algorithm have been
investigated over the years and are widely described in literature.

The rule post-processing method includes rule optimization, selection of the
final rules to be used in a hypothesis or a set of alternative hypotheses, and
calculation of statistical parameters describing these rules. The final rules are
presented to the user or transferred to the testing and application module.

The rule testing and application module starts with the pre-processing of
hypotheses and examples in order to match their representation and prepare for the
actual application process. Each considered example (application case) is evalu-
ated against rules. In the case of application of rules in decision support, only one
example is usually considered. Rules can be evaluated strictly (when an example
either matches a rule or not) and flexibly (when a degree of match, DM, ranging
from zero to one is calculated). Multiple schemas [9] are available on how to
flexibly evaluate individual conditions, rules, and entire rule sets.

Unlike most classifiers that always give one definitive answer, the AQ21
application module may either provide multiple possible answers, or simply
answer “don’t know.” In this philosophy, it is better to provide users with more
than one plausible answer with high confidence, or not answer at all, than give a
likely incorrect definitive answer.

7.3 From Rule Learning to Decision Support

Decision support systems are broadly defined as computer systems that aid deci-
sion makers. This definition can include everything from simple spreadsheet
applications, through simulation models, to rule-based expert systems. In this
chapter, we focus on knowledge-based decision support systems in which com-
puters provide support to their users based on the content of their knowledge bases.

Traditionally, decision support systems are static in the sense that their
knowledge does not change over time without explicit intervention by the user.
Machine learning-based decision support systems can, however, evolve and adapt
to dynamically changing environments in which they operate. Adaptability is,
thus, one of two important areas in which machine learning can help in decision
support.

Consider an alert system which provides clinicians with messages informing
them about important events related to a specific patient, i.e., allergies, drug—drug
interactions, abnormal results. An oversensitive alert system that displays too
many messages causes a well-known phenomenon called alert fatigue. In such a
case, physicians no longer read alerts, but rather ignore all of them. A typical
approach to the problem is to create a system-wide policy/threshold so that alerts
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do not overwhelm users. This one-size-fits-all approach ignores all the differences
between physicians and the way they practice. A machine learning-based solution
is able to adapt to specific users (physicians) and show only alerts that have the
lowest chance of not being overwritten.

The second important area in which machine learning can be used in healthcare
is knowledge generation. The majority of decision support systems are based on
rules. These rules, sometimes called Medical Logic Modules (MLMs), are pre-
pared by panels of experts based on the best practice and known evidence. Their
creation is a long and difficult process. One of the important applications of
machine learning is knowledge generation—the knowledge if present in the right
forms can help in preparation of MLMs.

Because rules created by the AQ21 system are independent (i.e. unordered),
they can be easily incorporated into decision support systems. For example,
attributional rules described above can be directly written in ARDEN syntax [4].
The actual rules are written in the “logic” slot of MLMs while the “data” slot is
used to derive attribute values and translate then into the required format. Because
one MLM corresponds to a complete decision, it includes multiple rules forming a
complete ruleset family. Attributional rules can be also manually inspected by
experts and modified as rules and compliance requirements change.

7.4 Review of Selected Applications

This section describes three recent studies that applied rule learning in diverse
areas of healthcare. They span over medical, comparative effectiveness, and
managerial datasets.

7.4.1 Hospital Bills Classification

The purpose of the described study is to improve billing by advancing healthcare
provider operations and performance through the use of machine learning methods
[16]. Across the country, healthcare providers are experiencing ongoing pressure
from declining revenues. Payers are under increasing pressure to contain costs.
The implementation of healthcare reform through the Patient Protection and
Affordable Care Act (Public Law 111-148) will further exacerbate this issue.
These and additional demands to combat waste, fraud, and abuse are creating
mounting pressures to achieve ‘perfection’ in all phases of healthcare billing and
reimbursement authorization for hospitals and independent healthcare providers
(e.g. physicians and medical group practices). In order to ensure that payments are
appropriate, payers must ascertain that there is proper documentation of care prior
to reimbursement. Providers must be diligent in maintaining proper documentation
to receive the correct payment and avoid loss of revenue.
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The opposing pressures from payers and providers call for the use of decision
support/screening methods, to better manage the billing and revenue cycle and
detect inconsistencies in coverage, care/service documentation and payments, and
to guide financial and clinical personnel through this process. Specifically, we are
using machine learning to create models for screening billing information for
inconsistency. The initial, proof-of-concept, study presented here is based on the
batch processing of obstetrics data collected from a one year period in 2008.

In the first step, the data are pre-processed to match requirements of the
machine learning application used. Data available in multiple tables in the hospital
information system need to be converted into a flat file. Additional processing of
variables needs to be done. In the second step, the AQ21 machine learning system
[13], which creates predictive models in the form of highly transparent attribu-
tional rules, is used. In order to apply the method to create models, the data is
classified as “normal payment” and “abnormal payment” which correspond to
payments consistent and not consistent with contractual agreements, respectively.
Finally, after the rule learning phase, the models are used to predict whether a
specific bill is likely to receive normal payment in advance to its submission to the
payer.

Initial application of the method in analyzing billing information for obstetrics
patients covered by Medicaid achieved promising results. The presented method
provides two strong benefits in analyzing billing information. First, the use of
machine learning allows one to automatically create models for predicting bill
payments before their submission. The models allow screening of billing infor-
mation before the bill is sent to payees, therefore maximizing the chance of
receiving full payments, and reducing unnecessary denials. Second, the use of
highly transparent representations of models in the form of attributional rules,
allows for the detection of regularities in bill denials which may lead to potential
workflow improvement.

7.4.2 Comparative Effectiveness Research

The gold standard for biomedical research is randomized clinical trials (RCT). In
many cases, RCTs are impossible or unethical to perform, and only secondary
analysis of existing data form clinical records is possible. Rule learning is an
attractive approach to comparative effectiveness research of alternative treatments
or medications. The latter are often prescribed based on trial and error.

The problem considered in comparative effectiveness research is substantially
different from one considered in typical concept learning in which examples are
labeled with classes. Here, the data are in the form of rows including C;, T;, and O;,
where C; are the ith patient case characteristics, 7; is the applied treatment or
combination of treatments, and O; indicates outcomes [15]. Models are created and
tested using the following three steps, also illustrated in Fig. 7.2.
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Fig. 7.2 Creation of models for comparative effectiveness research

1. For each treatment or combination of treatments, 7, select Py cases from the
database for which therapy T was successful and Ny cases for which therapy T
was unsuccessful.

2. Apply rule learning to induce general models, My, based on Py and Ny to
predict whether therapy T will be successful given a patient’s characteristics. A
collection of such models for all considered combinations of treatments will be
the final model M. Similarly, create models My to predict that a given therapy
will not be successful. The reason for creating both positive and negative
models is that using both models allows for better control of the level of
generalization, and thus increases the confidence in the final models.

3. Given a set of patient characteristics <cy,...cy > , model M will return a set of
possible combinations of treatments {7}, ...T, }that are likely to be successful,
M(<cy,...ck > ) ={Ty,...T,}. It is possible that for a given case more than
one combination of treatments is returned, i.e. n > 1, or no considered com-
bination of treatments is returned, i.e. n = 0. Similarly, models My; are
applied, to create a list of potentially improper combinations of treatments.

4. Test model M on a subset of “unused” data consisting of P “successful” cases
and N “unsuccessful” cases. Results of the testing are reported in terms of
specificity, selectivity, and statistical significance of individual models and all
models together.

The created models define groups (or clusters) of patient characteristics that are
likely to have positive or negative outcomes. Note that the groups may be inter-
secting i.e., more than one combination of treatments may appropriate in a specific
case, and not exhaustive, i.e., there may be cases for which none of the examined
combinations of treatments is predicted to be successful. In the latter case, a
flexible interpretation of rules may be used to select the closest potentially suc-
cessful combination of therapies. Within groups of patients selected by machine
learning, traditional comparative effectiveness can be performed.
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7.4.3 Aggregated Data

There is a growing need to combine data originated from multiple clinical studies.
A majority of published studies describe relatively small cohorts and produce
platform-dependent results that often lack consistency. Individual measurements
of the clinical parameters are protected by The Health Insurance Portability and
Accountability Act (HIPAA), thus precluding a combination of multiple cohorts
into the large database to perform secondary analyses. A combination of multiple
studies, which is the goal of systematic reviews, relies on meta-analysis methods to
statistically combine results of the studies. Traditional meta-analysis, however,
does not perform knowledge discovery or build predictive/classification models
from aggregated data [14].

The problem addressed here is how to learn rules from aggregated data pub-
lished from multiple studies, rather than from individual examples (subjects). The
goal of the method is to discover a model M for diagnosing diseases D, from
published results in which data satisfy a set of criteria C. One important charac-
teristic of the method is that the studies do not need to describe diagnostic methods
for diseases D, but to only include relevant data summaries. Common inclusion
criteria that are prerequisites for the traditional meta-analysis methods are not
required either. It is sufficient that the criteria are disclosed, so they can serve as
inputs to the model along with the aggregated data. The process of the model
development is depicted in Fig. 7.3.

The rule learning problem considered here induces a rule-based classifier
M(X) — D that can be used to diagnose X patients into diseases from D. The
model is induced using aggregated data describing groups of patients, not indi-
vidual datapoints as typically handled by machine learning algorithms. Specifi-
cally, the method uses aggregated data A, inclusion criteria C, and other groups’
information G to create model M. This process extends learning from aggregated
data that deals with multiple cohorts of patients described as mean =+ standard
deviation of each clinical parameter.

The method has been applied to deriving diagnostic models for metabolic-
syndrome related liver complications from summarized (aggregated) descriptions
of the small cohorts of patients available from published manuscripts. The sig-
nificance of this topic is large because approximately 47 million people in the
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United States have metabolic syndrome (MS) and this number is on the rise. The
aggregated clinical data were retrieved from articles published in leading peer-
reviewed journals. By applying the developed rule learning methodology, we
arrived at several different possible rulesets (sets of rules that together form a
model to make a specific diagnosis) that can be used to predict three considered
complications of MS, namely non-alcoholic fatty liver disease (NAFLD), simple
steatosis (SS), and nonalcoholic steatohepatitis (NASH). It should be noted that the
NAFLD group comprises both SS and NASH cases, which means that values of
the output attribute form a hierarchy.

Seven NAFLD or NASH predicting rulesets were generated using the AQ21
system executed with different parameters. Resultant rulesets predicting NAFLD
or NASH were blindly validated using a well-defined NAFLD database containing
489 patients with biopsy-proven NAFLD, NASH or SS with extensive clinical and
laboratory data.

An example of typical automatically learned rule states that patients with BMI
>26.85 are likely to have NAFLD, except for when AST is at most 27.2 and
adiponectin level are at least 7.25 [14]. The rule is formally shown as:

[Group = NAFLD] <==[BMI > 26.85]

. . (7.6)
[[AST <27.2] & [Adiponectin > 7.25].

Validation of this rule for predicting NAFLD resulted in a positive predictive
value (PPV) of 85-87 %, reflecting relatively high “rule-in” characteristic of the
algorithm. The best rule for the prediction of NASH relied on combination of
fasting insulin, HOMA and adiponectin values with an accuracy of 78 %, with
PPV of 71 % and negative predictive value (NPV) of 37 %.

7.5 Summary

This chapter briefly presented rule learning and its uses in healthcare and health
services research. The focus of this paper was on the AQ21 rule learning and
testing system because of the system’s applicability to healthcare problems. AQ21
can be viewed more like a laboratory for experimentation with healthcare data
rather that a single computer program, which can be executed on data and produce
rules. Rule learning performed by AQ21 is particularly suitable for healthcare
applications because its high transparency increases the chance that models will be
accepted by users.

Acceptability of machine learning methods is a central criterion among those
listed in Sect. 7.2. Other criteria (accuracy, transparency, etc.) lead to the
acceptability of models, which in healthcare community is very hard to achieve.
While other types of models, such as decision trees and Bayesian networks, are
known to be highly transparent, attributional rules follow most of the criteria listed
in Sect. 7.2.
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Among the numerous current and potential applications of rule learning in
healthcare and health services research, three diverse applications were briefly
presented in this chapter. Each application demonstrates that rule learning has
great potential and can give good results. The application of rule learning is,
however, always straight-forward, and significant work and preparations need to
be done before rule learning can be effectively/efficiently used.

Future work on rule learning should focus on four directions. (1) Richer and
more natural (to people) rule-based knowledge representations can be created by
extending attributional calculus to capture concepts that are natural to healthcare
practitioners and researchers. (2) Easy to use tools that deal directly with healthcare
data can be developed. One attempt to make computational intelligence and
machine learning (CIML) tools accessible to the healthcare community was
through CIML Virtual Organization [17]. The VO’s goal is to provide the health-
care community with access to CIML tools, advice, educational materials, and
networking. (3) Efficiency of rule learning methods can be improved. High com-
plexity or rule based representations require long computation times, particularly
when advanced methods, such as constructive induction, are used. (4) Machine
learning, in particular rule learning, can be popularized as an attractive approach to
data analysis and systems’ adaptability, to healthcare community.
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Chapter 8

Machine Learning Techniques
for AD/MCI Diagnosis and Prognosis

Dinggang Shen, Chong-Yaw Wee, Daogiang Zhang, Luping Zhou
and Pew-Thian Yap

Abstract In the past two decades, machine learning techniques have been exten-
sively applied for the detection of neurologic or neuropsychiatric disorders, espe-
cially Alzheimer’s disease (AD) and its prodrome, mild cognitive impairment
(MCI). This chapter presents some of the latest developments in the application of
machine learning techniques to AD and MCI diagnosis and prognosis. We will
divide our discussion into two parts: single modality and multimodality approaches.
We will discuss how various biomarkers as well as connectivity networks can be
extracted from the various modalities, such as structural T1-weighted imaging,
diffusion-tensor imaging (DTI) and resting-state functional magnetic resonance
imaging (fMRI), for effective diagnosis and prognosis. We will further demonstrate
how these modalities can be fused for further performance improvement.
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8.1 Background

Alzheimer’s disease (AD) is the most common form of dementia, characterized by
cognitive and intellectual deficits that interfere with daily life if effective treatment
is not available. AD gets worse over time by gradually destroying brain cells,
causing loss in memory and the ability to reason, make judgments, and commu-
nicate. In 2006 the worldwide prevalence of AD was 26.6 million, and it is pro-
jected that 1 in 85 persons will be affected by 2050 [1]. The number of people who
develop AD is expected to continue to increase as life expectancy increases. With
the aging of the world population, AD has become a serious problem and a huge
burden to the healthcare system. Recognizing the urgent need to slow down or
completely prevent the occurrence of a worldwide healthcare crisis, effort has been
under way to develop and administer effective pharmacological and behavioral
interventions for delaying the onset and progression of the disease.

A significant body of literature [2—4] suggests that pathological manifestation of
AD begins many years before it can be diagnosed using cognitive tests. At the
stage where symptoms can be observed, significant neurodegeneration has already
occurred. Studies suggest that individuals with mild cognitive impairment (MCI),
a prodrome of AD, are expected to convert to probable AD at an annual rate of
10-15 % [5], whereas healthy controls develop dementia at an annual rate of
1-2 % [6]. Compared to AD, MCI is more difficult to diagnose due to its very mild
cognitive impairment symptoms. At the present time, AD-related neurodegener-
ation such as structural atrophy [7], pathological amyloid depositions [8], and
metabolic alterations [9] have been identified as potential biomarkers.

Advanced statistical machine learning and pattern recognition techniques have
been actively applied to map neurodegenerative patterns during the early stage
[10-13]. Examples of machine learning techniques that are widely used in medical
imaging analysis include support vector machines (SVMs) [14], boosting-based
learning [15], artificial neural networks [16], k-nearest neighbor classifier [17], and
linear discriminant analysis [18]. In addition to determining group differences,
pattern classification methods can be trained to identify individuals who are at risk
for AD [11, 12, 19-23]. A recent study demonstrated that classification methods
are capable of identifying AD patients via their MRI scans and achieved accuracy
comparable to that obtained by experienced neuroradiologists [19]. Efforts have
also been undertaken to develop regression techniques for relating clinical scores
to imaging data [24-26], facilitating continuous monitoring of AD progression. In
this chapter, we will focus on machine learning based diagnosis and prognosis of
AD/MCI using information obtained from single and multiple modalities.
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8.1.1 Single-Modality-based Diagnosis and Prognosis

Single-modality-based methods are clinically more feasible due to simpler scan-
ning protocols and lesser image acquisition effort. For example, many methods use
only structural MRI brain images for classification between AD/MCI patients and
normal controls [12, 27, 28]. Popular neuroimaging measurements include:
regional brain volumes [29, 30], cortical thickness [31-33], and hippocampal
volume and shape [34, 35], etc.

The understanding of brain anatomical circuitry has been experiencing
remarkable progression due to the development of diffusion tensor imaging (DTI),
where white matter (WM) fiber bundles can be delineated through characterization
of water diffusion [36]. WM tracts connecting brain regions can be reconstructed
in vivo using diffusion tractography (or fiber tracking) to characterize brain cir-
cuitry [36]. Diffusion measures such as fractional anisotropy (FA) and mean dif-
fusivity (MD) are commonly utilized as features in statistical analysis to localize
WM changes related to AD and MCI [37, 38].

Functional connectivity is defined as the temporal correlation between regional
neurophysiological signal fluctuations [39, 40]. Blood oxygenation level depen-
dent (BOLD) signal, which extracted from functional magnetic resonance imaging
(fMRI) data, exhibits low-frequency spontaneous fluctuations in the resting brain
and shows a high degree of temporal correlation across different brain regions.
Since the seminal work of Biswal et al. [41], resting-state fMRI (rs-fMRI) has been
widely applied to the analysis of various neuropsychological diseases including
MCI [42] and AD [43]. One apparent advantage of resting-state fMRI over task-
activation fMRI is that no complicated experimental design is required. Experi-
ments can be performed easily with patients who may have difficulties performing
specific task inside the scanner, especially those with disorders that exhibits
prominent cognitive degeneration, such as AD [40].

Another important imaging modality for AD/MCI detection is fluorodeoxy-
glucose positron emission tomography (FDG-PET) [29]. With FDG-PET, reduc-
tion of glucose metabolism was found in the parietal, posterior cingulate and
temporal brain regions of AD patients [44]. Besides neuroimaging techniques,
biological or genetic biomarkers are effective alternatives for AD/MACI diagnosis.
Researchers found that (1) the increase of cerebrospinal fluid (CSF) total tau (#-tau)
and tau hyperphosphorylated at threonine 181 (p-tau) are related to neurofibrillary
tangle, (2) the decrease of amyloid f (Af4,) indicates amyloid plaque deposit, and
(3) the presence of the apolipoprotein E (APOE) &4 allele can predict cognitive
decline or conversion to AD [45].
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8.1.2 Multimodality-based Diagnosis and Prognosis

It has been demonstrated that different imaging modalities can provide comple-
mentary information to enhance AD/MCI diagnosis [45—47]. For example, it was
reported that FDG-PET and MRI measures may be complementarily and differ-
entially sensitive to memory in health and disease, with metabolism being the
stronger predictor in normal controls, and morphometry most related to memory
function in AD [47]. Also, it is shown that morphometric changes in AD and MCI,
although are related to CSF biomarkers, can provide complementary information
[45]. A more recent study, which compared the respective prognostic ability of
genetic, CSF, neuroimaging, and cognitive measures obtained from the same
participants, demonstrated that complementary information provided by these
different modalities can be used for enhanced AD/MCI diagnosis [46]. Inspired by
these findings, a number of studies used two or more biomarkers simultaneously to
detect AD and MCI: MRI and CSF [10, 13], MRI and cognitive testing [48], MRI
and PET [22, 49], MRI and APOE biomarkers [50], FDG-PET and CSF [51],
FDG-PET and cognitive testing [52], and MRI, CSF, and FDG-PET [53].

8.2 Single-Modality-based Diagnosis and Prognosis

AD and other similar progressive degenerative neurological diseases exhibit
spatially and temporally pathology, where the brain is damaged on a large-scale,
highly connected network, rather than in a single isolated region. In view of this, a
sensitive description of interregional connections is required to better delineate the
pathology of disease for accurate diagnosis. Models of whole-brain connectivity,
which comprise networks of brain regions connected either by anatomical tracts or
functional associations, have drawn a great deal of interest recently due to the
increasing reliability of network characterization through neurobiologically
meaningful and computationally efficient measures [54, 55]. In this section, we
will discuss some recently proposed network-based techniques using biomarkers
from single imaging modality for AD and MCI diagnosis and prognosis.

8.2.1 Structural Analysis via Enriched White Matter
Connectivity Networks

Recently, an enriched description of WM connections via diffusion tractography
[56] was proposed to convey topological and biophysical information of the
connections. This description is achieved by using a collection of diffusion
parameters that are derived during whole-brain streamline fiber tractography and is
aimed to effectively describe small variations on WM regions caused by
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Fig. 8.1 Classification based on enriched description of WM connections

pathological attacks. The MCI classification framework using this enriched
description is shown in Fig. 8.1.

Six diffusion parameters are included in the enriched description, i.e., fiber
count, fractional anisotropy (FA), mean diffusivity (MD), and principal diffusiv-
ities (4, 42, 43). During tractography, the number of fibers passing through each
pair of regions is counted. Two regions are considered anatomically connected if
there are fibers passing through their respective masks. Counting the number of
connecting fibers between every possible pair of regions provides us the connec-
tion topology of the network. Connectivity networks of FA, MD, and principal
diffusivity can also be derived by taking the average values along the connecting
fibers. These five networks share identical connection topology as the fiber count
network, but conveying different biophysical properties. An example of the six
connectivity networks for one subject is provided in Fig. 8.2.

Network measures typically quantify connectivity profiles associated with the
nodes and reflect the way how these nodes are embedded in the network. Clus-
tering coefficients [57, 58], which measures the cliquishness of a network, is
commonly used to extract information from the constructed brain connectivity
networks for group analysis. The original clustering coefficient is formulated to
work only with unweighted graphs and is intended to provide a summary statistics
of the whole network. To increase sensitivity to pathology induced network
changes, a weighted version of local clustering coefficient [57] can be used instead.
However, the use of local fine-grained features will produce a high-dimensional
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Fiber Count

Fig. 8.2 Connectivity networks constructed with different diffusion parameters

feature pool which may cause the problem of curse of dimensionality, particularly
in the graph theoretic approach. Good classification performance is normally
difficult to achieve if all extracted features are directly used indiscriminately. This
difficulty arises because not all the features are equally important for classification.
A proper feature selection procedure needs to be employed to select an optimal
subset of features with the most discriminative power to improve generalization
performance.

The discriminative power of a feature can be quantitatively evaluated by its
relevance to classification as well as its generalizability. Relevancy of a feature to
classification is measured through its correlation with clinical labels [21]. Pearson
correlation coefficient is commonly used to rank features based on this relevancy.
Features with larger absolute value of the Pearson correlation coefficient are
considered to be more relevant to classification.

The generalizability of a feature is evaluated via leave-one-out cross-validation
(LOOCV) when measuring the correlation of the feature with respect to the
clinical labels [21]. Specifically, for n training samples, the worst absolute Pearson
correlation coefficient resulting from the n leave-one-out correlation measurement
is conservatively selected as the effective correlation coefficient. This approach is
particularly important for minimizing the effect of outliers when evaluating a huge
number of features.

Nevertheless, the ranking score is computed independently for each feature,
without considering the correlation with other features. This method inevitably
causes some redundant features to be selected, thus affecting classification per-
formance. To minimize this effect, a wrapper-based feature selection method
called an SVM-RFE algorithm [59, 60] is used to select the final optimal subset
based on feature ranking.
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Classification performance of the enriched WM connectivity description
method is evaluated using a nested LOOCV strategy [56] to ensure a relatively
unbiased estimate of the generalization power of the classifiers to new subjects. In
each LOO case, one subject is first left out as the testing subject, and the remaining
subjects are used for feature extraction, feature selection and classifier training. A
second or inner LOO loop is applied to the training set to construct and optimize
an ensemble classifier. Specifically, for n total number of subjects involved in the
study, one is left out for testing, and the remaining n — 1 are used for training.
From the remaining n — 1 samples, n — 1 different training subsets are formed by
each time leaving one more sample out, giving us n — 2 subjects in each training
subset. For each subset, an SVM classifier is construct with its performance is
evaluated using the second left out subject. This procedure is repeated n — 1 times,
once for each training subset. This procedure ensures that the selected diffusion
parameters maximize the area under the receiver operating characteristic (ROC)
curve. When the unseen (omitted during the training and parameter optimization
process) test sample is to be classified, all n — 1 classifiers are used, and their
outcomes are averaged to provide the final classification decision. This process is
repeated n times, each time leaving out a different subject, finally leading to
overall cross-validation classification accuracy.

8.2.2 Functional Analysis via Multi-Spectral Connectivity
Networks

Over the past several years, rs-fMRI has emerged as a novel informative method
for investigating the development of large-scale functional networks in the human
brain. This method, first used to demonstrate coherent spontaneous low-frequency
fluctuations in BOLD signal within the adult somatomotor system [41], involves
measuring the hemodynamic response related to neural activity in the brain or
spinal cord from participants as they lay in the MRI scanner in the “resting
condition”. This system was recently employed to identify individuals with MCI
from healthy controls and performed well in the tests [61].

Wee et al. [61] suggested an efficient characterization of rs-fMRI time series
via: (1) Multi-spectral characterization to quantify relatively small changes of
BOLD signal by decomposing the mean time series of each ROI into five distinct
frequency sub-bands, and (2) Graph theoretic analysis to characterize topological
properties and strengths of brain functional connectivity networks through
neurobiologically meaningful and computationally efficient measures [54, 55, 62].

In vivo neuroimaging studies suggest that normal aging [63] and AD [64, 65]
are associated with GM volume loss. There is an emerging body of evidence that
MRI can observe deterioration, including progressive loss of GM in the brain,
from MCI to full-blown AD [66]. It has been shown that the GM volume of the
human brain decreases linearly by approximately 5.0 % per decade throughout
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lifetime after 9 years of age [63]. It has been reported that local GM loss rates are
approximately 5.3 and 0.9 % per annum in AD and healthy aging, respectively,
with an asymmetric trend where a faster loss rate is observed in the left hemisphere
than in the right [65]. Furthermore, removal of signals from the ventricles and WM
can reduce the noise caused by the cardiac and respiratory cycles [67]. Based on
these observations, only the BOLD signal extracted from the GM is used. To
achieve this, tissue segmentation is performed on TI1-weighted image of each
subject to label the GM, WM, and CSF. Then, the segmented GM image is used to
mask the fMRI images. This procedure eliminates signal contamination originat-
ing from WM and CSF in the fMRI time series. Anatomical parcellation is used to
divide the brain into different regions-of-interest (ROIs).

For each subject, the mean time series of each individual ROI is obtained by
averaging the GM-masked fMRI time series over all voxels in the ROI. Temporal
band-pass filtering with a frequency interval (0.025 <f <0.100 Hz) is then applied
to the mean time series of each individual ROI, trading-off between avoiding the
physiological noise associated with higher-frequency oscillations [68] and the
measurement error associated with estimating very low-frequency correlations
from truncated time series [69]. In conventional approaches, the regional mean
time series of entire spectrum is directly employed to construct functional con-
nectivity networks. However, this whole-spectrum approach might not be sensitive
enough to describe complex yet subtle pathological patterns of the neurological
diseases.

In [61], a multi-spectral characterization of the regional mean time series is
proposed to construct functional connectivity networks. The band-pass filtered
GM-masked mean time series of each region is decomposed into five equally
divided frequency subbands using the fast Fourier transform (FFT). Using this
multi-spectral approach, small BOLD signal variations can be better preserved.

Functional connectivity, which indicates interregional correlations in neuronal
variability [39], can be measured using a pairwise Pearson correlation coefficient
between a given pair of ROIs. Given a set of N random variables, the Pearson
correlation matrix is a symmetric matrix in which each off-diagonal element is the
correlation coefficient between a pair of variables. The brain regions can be
considered a set of nodes and the correlation coefficients can be considered signed
weights on the set of edges. The normality of Pearson correlation coefficients is
improved by applying a Fisher’s r—to—z transformation. The feature extraction,
feature selection and high-dimensional multivariate classification steps used for
MCI diagnosis in [56] are similarly applied to the case of rs-fMRI.

Examples of the functional connectivity maps constructed using the multi-
spectral characterization for one normal control (NC) and one MCI patient are
shown in Fig. 8.3.
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Fig. 8.3 Multi-spectral functional connectivity maps for a normal control (NC) and an MCI
patient

8.2.3 Hierarchical Brain Networks from T1-Weighted MRI

Because of its clinical accessibility, T1-weighted MRI has been widely utilized for
the diagnosis and prognosis of MCI and AD. Conventionally, the mean tissue
volumes of GM, WM, and CSF are calculated locally within ROI, and used as
features for classification. Nevertheless, it is realized that disease-induced brain
structural changes may happen in several inter-related regions instead of isolated
spots. Therefore, it is proposed in [70] that compared with the traditional local
isolated measures, representing the brain as a system of interconnected regions
may be a more effective way to characterize subtle brain changes. For this purpose,
this approach constructs a hierarchical brain network to directly model the pair-
wise ROI relationships within a subject, with each node denoting a ROI and each
edge characterizing the pairwise connection. The node of ROI is represented by a
volumetric vector that consists of the mean volumes of GM, WM, and CSF in this
ROI. The relationship between two ROIs within the same subject is computed by
the Pearson correlation between the two corresponding volumetric vectors. The
correlation value indicates the similarity of the tissue compositions between a pair
of brain regions. When a patient is affected by MCI, the correlation values of some
brain regions with other regions will be affected, due possibly to factors such as
tissue atrophy.

By computing the pairwise correlation between ROIs, the approach in [70]
provides a second order measure of the ROI volume, while the conventional
approaches only employ the first order measure of the volume. As higher order
measures, the proposed new features may be more descriptive, but also more
sensitive to noise, such as registration errors. Therefore, a four-layer hierarchy of
multi-resolution ROIs (Fig. 8.4a) is introduced to increase the robustness of
classification. Effectively, the correlations are considered at different scales of
regions to provide different levels of noise suppression and discriminant infor-
mation, which can be further selected by the proposed classification scheme. This
approach considers the correlations both within and between different resolution
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Fig. 8.4 a Hierarchical ROISs in three layers (the fop layer is a whole brain which is not shown),
b Network connections between ROIs within different layers

scales (Fig. 8.5), because a certain “optimal” scale often cannot be known a priori.
The brain network could be very complicated as partially shown in Fig. 8.4b. To
efficiently construct the informative network features, a membership matrix is
created to indicate the relationship of ROIs from different layers. The membership
matrix is computed offline: it is fixed once the hierarchical structure has been
determined. For a new brain image, this approach only needs to compute the ROI
interactions on the bottommost layer that has the highest resolution of ROIs, and
then use the membership matrix to propagate the correlations to other layers
effectively.
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Fig. 8.5 Schematics of the network model. a Two types of nodes are included in the hierarchical
network: the simple node in the bottommost layer and the compound node in other layers. Each
compound node is obtained by grouping several simple nodes in an agglomerative fashion. b Two
types of edges are included in the hierarchical network, modeling the within-layer and between-
layer interactions, respectively

Note that the proposed brain network may not be sparse, as shown in the DTI
and fMRI networks [62], because the connections in this case are not based on
functional or real neuron-connections. The dense adjacency matrix resulting from
the correlation of tissue compositions implies that WM, GM, and CSF fractions of
brain regions are consistently similar. Note that the far-away region pairs can have
meaningful tissue composition similarity since distance information is not inclu-
ded in this approach. Because the network is fully connected, some commonly
used network features, such as local clustering coefficients, do not work as effi-
ciently as they do for the sparse networks in DTT and fMRI. Therefore, the weights
of edges are directly used as features, that is, the elements in the upper triangle
matrices of correlation matrices are concatenated to form the feature vectors.

This approach produces significantly larger number of features than conven-
tional methods. If improperly handled, classifier training may become intractable
due to this large number of features. Conventionally, there are usually two ways to
deal with the high dimensionality of features: (1) select the most discriminative
subset of features from the original features, known as feature selection, or
(2) combine the original features linearly or non-linearly to obtain a lower
dimensional new feature space, known as feature embedding. Zhou et al. proposed
a dimensionality reduction process to efficiently reduce the feature dimensionality
to a manageable level while preserving as much discriminative information as
possible [70]. This method combines feature selection and feature embedding via
partial least square (PLS) analysis [71] in an integrated optimization process. PLS
is a supervised learning method, which makes use of classification labels for data
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embedding. Therefore, it achieves a better discrimination than many of the popular
unsupervised methods, such as principal components analysis (PCA) and Lapla-
cian Eigenmap, and even than some advanced supervised methods, such as kernel
Fisher discriminant analysis (KFDA).

Taking advantage of PLS analysis, the approach presented in [70] employed
four steps to achieve good classification and generalization: rough feature selec-
tion, refined feature selection, feature embedding and linear classification. They
are elaborated as follows.

In Step 1, a rough feature selection is performed to filter out a large amount of
features that have little relevance to the classification. The relevance is computed
by the Pearson correlation between each original feature and the classification
label. Features with absolute correlation values lower than a threshold are treated
as irrelevant features and filtered out.

In Step 2, a refined feature selection is performed to pick out the candidate
features for the PLS feature embedding. For this purpose, the selected features in
Step 1 are used to train a PLS model, and then ranked by variable importance on
projection (VIP) score [72] to estimate their discriminative power for the PLS
model. After this step, about 60-80 discriminative features with the top VIP scores
are reserved for feature embedding in the next step.

In Step 3, a PLS embedding is performed to further reduce the dimensionality of
the network features. Using the refined selected features in Step 2, a new PLS
model is constructed to seek an embedding space that best preserves the dis-
crimination of features. Then the selected features in Step 2 are projected onto a
much lower dimensional space learned by PLS analysis in Step 3.

In Step 4, after PLS embedding, a small number of features in the new space
have been able to capture the major class discrimination. This greatly reduces the
complexity of relationships between data. Therefore, in Step 4, using the features
in the embedded space, a linear SVM has been sufficient for an accurate prediction
of MCI patients.

Note that the number of selected features in each step is determined by cross-
validation on the training data.

The merits of the proposed method are as follows. First, the proposed method
uses a second-order volumetric measure that is more descriptive than the con-
ventional first-order volumetric measure. Second, while the conventional
approaches only consider local volume changes, the proposed method considers
global information by pairing spatially separated ROIs. Third, at the top of the
hierarchy the proposed method introduces a whole-brain ROI, with which, each
ROI can provide a first-order measurement of local volume. In this way, the
proposed method seamlessly incorporates both the local volume features and the
proposed global network features into the classification. Fourth, the proposed
method involves only linear methods, leading to interpretability of classification
results, which is equally important as classification accuracy in neuroimaging
analysis. Finally, the proposed method investigates the relative speeds of disease
progression in different brain regions, providing a complementary perspective of
the spatial atrophy patterns to conventional methods.
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8.3 Multimodality-based Diagnosis and Prognosis

A number of studies have shown that biomarkers from different modalities may
contain complementary information useful for diagnosis of AD/MCI, and several
works on combining different modalities have been reported [10, 13, 27, 47, 50,
51, 73]. A common trait of these methods is that they concatenate all the features
from different modalities into a long feature vector. However, approaches as such
do not distinguish between modalities and are hence not the best way to combine
information from multiple sources. In this section, we provide an alternative
method that uses a multiple kernel combination to integrate biomarkers. Compared
with the direct feature concatenation method, the kernel combination method has
the following advantages: (1) It can combine heterogeneous data that cannot be
directly concatenated; (2) it provides more flexibility by using different weights on
the biomarkers of different modalities. Furthermore, to overcome the small sample
size problem in training multimodality classifier, we adopt a semi-supervised
learning technique that can learn from both labeled and unlabeled data.

8.3.1 Multimodality Data Fusion via Multi-Kernel SVM

Zhang et al. [74] recently proposed a general framework based on kernel methods
developed by Scholkopf and Smola [75] to combine multiple biomarkers (i.e.,
MRI, PET, and CSF) for discriminating between AD (or MCI) and normal con-
trols. The proposed method is based on kernel combination and can be easily
embedded into the conventional SVM classifier for high-dimensional pattern
classification. Moreover, unlike other kernel combination methods which can only
process one data type, i.e. numbers, this method can combine numeric data,
strings, and graphs, etc. The framework proposed by Zhang et al. [74] is explained
as below.

In SVM, by using a kernel-induced implicit mapping function, linearly non-
separable samples are first mapped to a higher or infinite dimensional space, where
they are more likely to be linearly separable than in the original space. A maxi-
mum margin hyperplane is then sought in the higher-dimensional space. Multiple-
kernel learning (MKL), which is pioneered by Lanckriet et al. [76] and Bach et al.
[77], is an additive extension of the single kernel SVM by incorporating multiple
kernels. Suppose that we are given n training samples and each of them contains

M modalities. Let Xl(m) denote a feature vector of the mth modality of the ith

sample, and its corresponding class label be y; € {—1,1}.
Multiple-kernel based SVM solves the following primal problem:
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where W), (jb('”) and f3,, > 0 denote the normal vector of hyperplane, the kernel-
induced mapping function and the weighting factor of the mth modality,
respectively.

Similar to the conventional SVM, the dual form of multiple-kernel SVM can be
formulated as below:

n M
max,, Z o — %Z OC,'Oij,'yj Z ﬁmk(m) <XEM) , Xj(m))
i=1 ij m=1
s.t. Zn: oy = 0
i=1

0<w<C,i=1,...n

(8.2)

i % i Jj
training samples on the mth modality.

For a new test sample x= {x() x® .. x™1}  we first denote

T
k) (x(m) x('")> = ¢ (x(m)) o™ (x\™) as the kernel between the test sample

T
where k@ (x" x(m)) = ¢(m) xw) ¢(m> (xw)) is the kernel function for the two

and each training sample on the mth modality. Then, the decision function for the
predicted label can be obtained as below:

n M
F(x) = sign (Z yiou 3 Bk () 1) . (8.3)
i=1 m=1

Multiple-kernel based SVM can be naturally embedded into the conventional
single-kernel SVM if we denote k(xi,xj) => . B,k (xl(m),x;m)) as a mixed

kernel between the multimodality training samples X; and X, and k(x;,x) =

>om B,k (xl(m),x(’")) as a mixed kernel between the multimodality training

sample X; and the test sample X.

It is worth noting that the multiple-kernel SVM proposed by Zhang et al. [74] is
different from previous multi-kernel learning methods [78, 79]. One key difference
is that the weights f,,s are not jointly optimized with other SVM parameters (such
as ). Instead, Zhang et al. enforce the constraint ) f,, = 1 and use a coarse-grid
search through cross-validation on the training samples to select the optimal
values. The obtained f3,, values are used to combine kernels into a single mixed
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kernel, which can be incorporated into the standard SVM to be solved using
conventional SVM solvers, e.g., LIBSVM [80].

8.3.2 Semi-Supervised Learning Using Unlabeled Data

One challenge in AD patient identification is that the number of AD patients and
normal controls (NCs) is generally very small, thus making it difficult to train an
effective classifier. As a remedy, we note that MCI subjects, although their cog-
nitive status is uncertain, can be helpful for improving classifier construction. To
exploit the potential of using MCI subjects to aid classification between AD and
NC subjects, Zhang et al. [81] treat MCI subjects as unlabeled data (i.e., not
classified either as AD or NC), and then employ a semi-supervised learning
technique [82, 83] to solve the classification problem. In the following, we will
first introduce the semi-supervised learning technique, called Laplacian regular-
ized least squares (LapRLS) method [84], and then derive its multimodality
extension (mLapRLS).

8.3.2.1 Laplacian Regularized Least Squares

Assume we have [ labeled data (from AD and NC samples), (x;,y;), i =1,...,1,
and u unlabeled data (from MCI samples), (x;,y;), j =1+ 1,...,1+ u. Suppose
k(.,.) is a Mercer kernel function, and let H be the associated reproducing kernel
Hilbert space (RKHS) and ||.|| be the corresponding norm. The LapRLS algorithm
solves the following least-squared loss function [84]:

.. v
mingen Y i = f ) +nall 1P+ —L5fLf (8.4)
L= (u+1)
where f = [f(x1),....f(xl + u)]". L is the graph Laplacian given as L =D — W,
where Wj;s are the edge weights in the adjacency graph defined on both labeled
and unlabeled data and the diagonal matrix D is given by D;; = ) W;;. Symbols 7,
J

and yp are the two regularization parameters. Intuitively, the first two terms in
Eq. (8.4) are for the supervised learning on only the labeled data (AD and NC
samples), while the last term in Eq. (8.4) involves both labeled and unlabeled data
(AD, NC and MCI samples) for unsupervised estimation of the intrinsic geometric
structure of the whole data. According to the Representer Theorem [84], the
solution to Eq. (8.4) is an expansion of kernel functions over both labeled and
unlabeled data:

£ =30 k(i x,). (8.5)

i=1
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Substituting Egs. (8.5) into (8.4), we arrive at the dual form of Eq. (8.4) with
respect to the (I + u)-dimensional variable vector o = [y, ..., 05 + u]:

VB

o KLK o, 8.6
(u+1)° (8.6)

1
min, cpes 5 (¥ = JKa) (Y — JKa) + ppol Ko+

where K = {k(x;, x;)} is an (I + u) x (I + u) kernel matrix over all labeled and
unlabeled data; Y = [yy, ..., y;, 0, ... 0] is an (I + u)-dimensional label vector, and
J=diag (1, ...,1,0,...,0)isan (I + u) x (I + u) diagonal matrix with the first
[ diagonal entries as 1 and the rest as 0. By computing the derivative of Eq. (8.6)
with respect to o as zero, we obtain the following solution:

-1

I

o= (JK + 0 +—5) v, (8.7)
(u+1)

where I is the identity matrix. It is worth noting that, when 7y, Eq. (8.7) gives zero
coefficients over the unlabeled data, and the coefficients over the labeled data are
exactly those given by the standard regularized least squares (RLS) method, i.e.,
LapRLS degenerates to RLS.

8.3.2.2 Multimodality LapRLS

Now, we derive the multimodality extension of LapRLS, called mLapRLS, for
classification between AD and NC. Given [ labeled data (from AD and NC
samples), (x;, y;), i = 1,...,[, and u unlabeled data (from MCI samples), (x;, y,),
j=1+1,....,] + u, we assume each data x; is composed of M modalities, i.e.,
X = {x}l),..., x,(»M)}, i=1,..,0] 4+ u.

Define the distance function between two multimodality data x; and x; as

d(xi,xj) = Z::l ﬂmd(m) (xl(m)yx](m))’ (8-8)

where d™(.,.) denotes the distance function on the mth modality, and f3,,s are the
nonnegative weighting parameters used to balance the contributions of different
modalities. All 3, s are constrained by >_,,.f,, = 1. According to Eq. (8.8), we can
compute the adjacency graph for the multimodality data, and then obtain the
corresponding edge weights matrix W and graph Laplacian L on the multimodality
data. Next, we can define the kernel function on two multimodality data x and x; as

k(X,xi) = ZZ:I ﬂmk(m) (x(m)’x§’11))’ (8'9)

where £ denotes the kernel matrix over the mth modality, similar to the defi-
nition given above for the single modality case. With the definition of k(x, x;), the
(I + u) x (I + u) kernel matrix K on the multimodality data can be straightfor-
wardly obtained as K = k(x;, x;). Once we have the graph Laplacian L, the
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definition of the kernel function k(x, x;) on the multimodality data, and the kernel
matrix K, the mLapRLS solution to the multimodality data can be obtained in the
same way as LapRLS is obtained in Eq. (8.7). Similar to LapRLS, mLapRLS will
degenerate to the corresponding multimodality RLS (mRLS) when y5 = 0. In this
case, mRLS uses only AD and NC samples for training.

8.4 AD/MCI Diagnosis and Prognosis

In this section, we will evaluate the machine learning based classification tech-
niques that are discussed in the previous sections for AD/MCI diagnosis and
prognosis using single and multiple modality data.

8.4.1 Single-Modality-based Diagnosis and Prognosis

8.4.1.1 MCI Diagnosis Using Enriched White Matter Connectivity
Description

The dataset contains images of 27 participants (10 MCI patients and 17 socio-
demographically matched NCs) who were recruited by the Duke-UNC Brain
Imaging and Analysis Center, North Carolina, USA. Informed consent was
obtained from all participants, and the experimental protocols were approved by
the institutional ethics board. Confirmation of diagnosis for all subjects was made
via expert consensus panels at the Joseph and Kathleen Bryan Alzheimer’s Disease
Research Center (Bryan ADRC) and the Department of Psychiatry at Duke Uni-
versity Medical Center. Diagnosis was based upon available data from a general
neurological examination, neuropsychological assessment evaluation, collateral
and subject symptom and functional capacity reports. Demographic information of
the participants is shown in Table 8.1.

A priori knowledge of the number of features that should be used for classifi-
cation is not available and this number is automatically determined as part of inner
loop of the nested LOOCYV. Although it generally yields slightly lower classifi-
cation performance, the nested LOOCV provides a better indicator of the gener-
alizability of a classifier. The classification accuracy by the enriched description of
WM connections (with six parameters) is 88.9 %, which is at least an 14.8 %
increment from that using any single physiological parameter. The area under
receiver operating characteristic (ROC) curve (AUC) of the enriched description
method is 0.929, indicating its excellent diagnostic power. It is found that simple
connectivity description, which uses only a single diffusion parameter, is unable to
provide good generalization power, as indicated by the much smaller AUC values.
The classification performance of the enriched and simple connectivity descrip-
tions is provided in Table 8.2.
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Table 8.1 Demographic information of the participant involved in the study

- MCI NC

No. of subjects 10 17

No. of males 5 8

Age (mean £ SD) 742 + 8.6 72.1 £ 8.2
Years of education (mean + SD) 177 £ 4.2 163 £ 24
MMSE score (mean + SD) 284 £ 1.5 29.4 + 09

Table 8.2 Classification performance and AUC values for enriched and simple connectivity
descriptions

Description Accuracy (%) AUC
Enriched 88.89 0.929
Fiber count 70.37 0.653
FA 74.07 0.859
MD 59.26 0.647
A 59.26 0.629
Ao 55.56 0.594
A3 59.26 0.612

A subset of most discriminant features is selected using the SVM-RFE algo-
rithm [59] in a backward sequential way to remove one feature at a time. The
selected subset is a group of features that yields the best classification performance
based on the training set. Since the selected subset of features might be different
for each LOO case, the most significant ROIs are determined as the regions
(features) with the highest selected frequency in all LOO cases. The most dis-
criminant regions that are selected during training stage are: (1) rectus gyrus,
which is located on the orbital surface of the frontal lobe; (2) insula, which is
located within lateral fissure between the temporal lobe and the frontal lobe; and
(3) precuneus, which is a part of the superior parietal lobe hidden in the medial
longitudinal fissure between the two cerebral hemispheres.

Note the classification framework is a data-driven approach where the
assumption of the set of brain measurements that optimally differentiate MCI
patients from cognitively normal individuals are not known a priori, but can only
be determined from the data. The LOOCV used guards against data overfitting, a
persistent problem in high dimensionality analyses of datasets with relatively small
sample size.

8.4.1.2 MCI Diagnosis Using Multi-Spectral Connectivity
Characterization

Thirty-seven participants (12 MCI patients and 25 socio-demographically matched
NCs) were recruited by the Duke-UNC Brain Imaging and Analysis Center, North
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Table 8.3 Demographic information of the participant involved in the rs-fMRI study

- MCI NC

No. of subjects 12 25

No. of males 6 9

Age (mean £ SD) 75.0 £ 8.0 729 £ 79
Years of education (mean + SD) 18.0 £ 4.1 158 £ 24
MMSE score (mean + SD) 28.5 +£ 1.5% 293 £ 1.1

% One of the patients does not have a MMSE score

Table 8.4 Classification accuracies and AUC values of whole- and multi-spectral network
characterization methods

Approach Accuracy (%) AUC
Unmasked + whole-spectrum 56.76 0.530
GM-masked + whole-spectrum 59.46 0.543
Unmasked + multi-spectral 67.57 0.620
GM-Masked + multi-spectral 86.49 0.863

Carolina, USA. Informed consent was obtained from all participants, and the
experimental protocols were approved by the institutional ethics board. Demo-
graphic information of the participants is provided in Table 8.3.

Classification performance for the multi-spectral characterization of rs-fMRI
regional mean time series was compared with the conventional whole-spectrum
characterization. The nested LOOCYV procedures described in the Sect. 8.2.1 were
applied for performance evaluation.

The effectiveness of GM-masked and unmasked BOLD signals was evaluated
in relation to the whole- and multi-spectral characterization methods. The com-
parison results are shown in Table 8.4.

In agreement with the hypothesis, GM-masked BOLD signal with multi-spec-
tral characterization outperforms the unmasked and whole-spectrum character-
ization methods. GM-masking, when used with the conventional whole-spectral
characterization, only shows slightly improvement in terms of classification
accuracy and AUC value. However, when combined with the multi-spectral
characterization, the classification accuracy increases by more than 18.9 % while
the AUC value increases by more than 0.24, indicating significant improvement in
diagnostic power. This marked improvement in performance demonstrates the
effectiveness and robustness of the GM-masked multi-spectral characterization in
providing relatively fine and localized analysis.

The most discriminant regions that are selected for classification are mainly
located in prefrontal cortex areas and temporal lobes. The selected regions
involved parts of frontal lobe such as rectus gyrus, orbitofrontal cortex and frontal
gyrus, parts of temporal lobe such as temporal poles, amygdala and parahippo-
campal gyrus, superior occipital gyrus of occipital lobe and precuneus of parietal
lobe.
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Table 8.5 Demographic information of the subjects involved in the study

- P-MCI NC

No. of subjects 100 125

No. and percentage of males (%) 57 (57.0) 61 (48.8)
Baseline age (mean £ SD) 750 £ 7.1 76.1 + 6.1
Baseline MMSE score (mean + SD) 26.5 £ 1.7 29.1 £ 1.0

8.4.1.3 MCI Diagnosis Using Hierarchical Brain Networks

A set of 125 normal control subjects and 100 progressive MCI (P-MCI) subjects
were involved in this study. This dataset was obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (www.loni.ucla.edu/ADNI).
The ADNI database contains approximately 200 cognitively normal elderly sub-
jects to be followed for 3 years, 400 subjects with MCI to be followed for 3 years,
and 200 subjects with early AD to be followed for 2 years. The P-MCI subjects
refer to converters who developed probable AD after the baseline scanning. The
diagnosis of AD is made according to the NINCDS/ADRDA criteria [85] for
probable AD. The demographic and clinical information of all the selected sub-
jects are summarized in Table 8.5.

The effectiveness of constructing hierarchical brain network from T1-weighted
MRI for MCI prediction was evaluated by the comparison of the discrimination
power of the network and the volumetric features, and the comparison of the
performance of different classifiers for the network features.

Comparison of Features

The 125 subjects were randomly partitioned into 20 training and test groups, each
with 150 subjects for training and 75 subjects for test. Five methods were tested in
the experiment: (1) FN: the proposed method, using the four-layer hierarchical
network features; (2) SN: using the network features from only the bottommost
layer with the highest resolution of ROIs; (3) FN-NC: using the network features
from all the four layers, but removing the edges across different layers; (4) SV:
using the volumetric features from only the bottommost layer with the highest
resolution of ROIs; (5) FV: using volumetric measures from all four layers.

Table 8.6 summarized the results. The classification accuracy is averaged
across all the training and test groups. In order to demonstrate the advantage of the
proposed network features, a paired ¢ test is conducted between the proposed
method (FN) and the other four methods, respectively. The p-value of the paired #-
test is reported in Table 8.6. It can be seen that the proposed method (FN) is
always statistically better (at the significance level of 0.05) than any of the other
four methods.
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Table 8.6 Comparison of discrimination efficacy of features

- Mean test accuracy (%) Paired r-test p-value
FN 85.07 -

SN 83.00 0.00272

FN-NC 83.13 0.00367

NY% 81.93 0.00166

FV 81.47 0.00015

From Table 8.6, the following results are observed:

e The proposed hierarchical network features in FN outperform the conventional
volumetric features in SV. The advantage may come from using both regional
correlations and the hierarchical structure.

e The better performance of network features over volumetric features with the
same hierarchical structure (SN vs. SV, and FN vs. FV) exhibit the benefits
purely from using the regional correlations.

e The better performance of the four-layer network features FN over the single
layer network features SN demonstrates the statistically significant benefit
purely from the hierarchy. Moreover, the result that the full hierarchy FN sta-
tistically outperforms the hierarchy without cross-layer correlations FN-NC
indicates the necessity of using the cross-layer edges in the network.

Comparison of Classifiers

The classification performance of the proposed classification scheme was com-
pared with other six possible schemes shown in Table 8.7. To facilitate the
description, the proposed scheme was denoted as P1, while the other six schemes
in comparison were denoted as P2—P7. In order for comparison, each of the six
schemes P2-P7 was also partitioned into four steps: rough feature selection,
refined feature selection, feature embedding and classification. Note that all
schemes P1-P7 employ the same rough feature selection as their first step.

The classification results are given in Fig. 8.6 and Table 8.7. In Table 8.7, the
overall classification accuracy is an average accuracy over different numbers of
training samples in Fig. 8.6. The results reveal that, among all the classification
schemes, the proposed scheme P1 (VIP selection 4+ PLS embedding + a linear
SVM) achieves the best overall classification accuracy of 84.35 %. This is slightly
better than that of P2, where a nonlinear SVM is employed. As shown in
Table 8.7, the classification schemes with PLS embedding (P1-P4) outperform
those without PLS embedding (P5-P7), achieving an overall accuracy above
84.0 %. In addition, the supervised embedding methods, i.e., PLS (P1-P4) and
KFDA (P7), perform better than the unsupervised Laplacian Eigenmap embedding
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Table 8.7 Configuration of classification schemes

Scheme  Configuration Accuracy (%)
P1 VIP selection + PLS embedding + linear SVM 84.35
P2 VIP selection + PLS embedding + nonlinear SVM 84.03
P3 No selection + PLS embedding + linear SVM 84.11
P4 No selection + PLS embedding + nonlinear SVM 84.10
P5 SVM-RFE selection + no embedding + nonlinear SVM 80.07
P6 No selection + Laplacian Eigenmap embedding + nonlinear SVM  79.16
P7 No selection + KFDA embedding + linear SVM 81.08
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Fig. 8.6 Comparison of seven classification schemes on network features. The classification
accuracy at each number of training samples is averaged over 20 randomly partitioned training
and test groups. The scheme configurations are shown in Table 8.7

(P6). Moreover, although it is a linear method, PLS embedding (P1-P4) even beats
the nonlinear supervised embedding of KFDA (P7).

Spatial Patterns

Some discriminative features resulting from the proposed two-step feature selec-
tion method are shown in Table 8.8. These features are consistently selected by
more than half of the 20 training and test groups. Note that each network feature
encodes the pairwise ROI relationship, instead of referring to only a single ROL
There are two parts in Table 8.8. On the upper portion of the table, both ROIs
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Table 8.8 Selected discriminative features

Hippocampus—amygdala

Hippocampus—Iingual gyrus
Hippocampus—uncus
Hippocampus—prefrontal/superolateral frontal lobe
Hippocampus—globus palladus
Hippocampus—entorhinal cortex
Hippocampus—cingulate region
Hippocampus—ventricle

Hippocampus and amygdala and fornix—ventricle
Uncus—fornix

Hippocampus—posterior limb of internal capsule
Globus palladus—anterior limb of internal capsule
Hippocampus—occipital lobe WM

associated with a network feature may be related to MCI diagnosis, such as hip-
pocampus, entorhinal cortex, fornix, cingulate, etc., as reported in the literature
[86, 87]. But the change speeds of tissue volumes are different over the two clinic
groups. Take the correlation between hippocampus and ventricle as an example. It
is known that the enlargement of ventricle is a biomarker for the diagnosis of the
AD [88]. However, different from the hippocampus volume loss that often occurs
at the very early stage of the dementia, the ventricle enlargement often appears in
the middle and late stages. On the lower portion of the table, the first ROI may be
affected by the disease, while the second ROI may remain constant to the disease.
For example, it has been reported in a DTI study [89] that the anterior and pos-
terior limbs of internal capsule and the occipital lobe WM may not significantly
differ between MCI and NCs. Table 8.8 may suggest that, it is the different pro-
gression pattern that makes the correlation between the two regions the discrim-
inative feature.

8.4.2 Multimodality-based Diagnosis and Prognosis

A series of experiments were performed on the multimodality data using the ADNI
database. Here, ADNI subjects with all corresponding MRI, PET, and CSF data at
baseline were used, leading to a total of 202 subjects, including 51 AD patients, 99
MCI patients, and 52 NCs. Table 8.9 lists the subject characteristics.

Standard image pre-processing was performed for all MRI and PET images.
Specifically, anterior commissure (AC)—posterior commissure (PC) correction is
first performed, followed by skull-stripping, removal of cerebellum, and seg-
mentation of structural MR images into three different tissues: GM, WM, and CSF.
Through atlas warping, we partitioned each subject image into 93 ROIs. For each
ROI, we calculated the GM tissue volume from the subject’s MRI image. For each



170 D. Shen et al.

Table 8.9 Demographic information of the subjects involved in the study
- AD (n = 51, 18F/33M)  MCI (n =99, 32F/67 M)  NC (n = 52, 18F/34 M)

Mean SD  Range  Mean SD Range Mean SD Range

Age 752 74  59-88 75.3 7.0 55-89 75.3 52 62-85
Education 14.7 36 4-20 15.9 2.9 8-20 15.8 32 8-20
MMSE 23.8 20  20-26 27.1 1.7 24-30 29.0 1.2 25-30
CDR 0.7 03  05-1 0.5 0.0 0.5-0.5 0.0 0.0 0-0

PET image, we first rigidly aligned it with its corresponding MRI image, and then
calculated the average value of PET signals in each ROI. Therefore, for each
subject, we got totally 93 features from its MRI image, 93 features from its PET
image, and 3 features (Afi4,, t-tau and p-tau) from the CSF biomarkers.

8.4.2.1 AD/MCI Diagnosis Using Multi-Kernel SVM

We used standard 10-fold cross-validation to measure the classification accuracy,
as well as the sensitivity and the specificity. Specifically, the whole set of subjects
were equally partitioned into 10 subsets, and each time the subjects within one
subset were selected as the testing set and all remaining subjects in the other 9
subsets were used for training the multiple-kernel classifier. This process was
repeated for 10 independent times. The SVM classifier was implemented using
LIBSVM toolbox [80], using a linear kernel and a default value for the parameter
C (i.e., C = 1). The weights in the multiple-kernel classification method were
selected from the training samples through a grid search in the range of 0-1 with a
step size of 0.1. For each feature f; in the training samples, feature normalization
was performed, i.e., f; = (f; —f,) /0, wherefi and o; are respectively the mean and
standard deviation of the ith feature across all training samples. The estimated f;
and o; will be used to normalize the corresponding feature of each test sample.

Multimodality Classification Based on MRI, PET, and CSF

Table 8.10 shows the classification result of the multimodality classification
method, compared with the methods based on each individual modality only. It’s
worth noting that Table 8.10 reports the averaged results of 10 experiments, with
the minimal and maximal values given in brackets. As can be seen from
Table 8.10, the combined use of MRI, PET, and CSF consistently achieve more
accurate discrimination between AD (or MCI) patients and normal controls.
Specifically, for AD versus NC classification, the multimodality classification
method achieves a classification accuracy of 93.2 %, a sensitivity of 93.0 %, and a
specificity of 93.3 %, while the best accuracy on individual modality is only
86.5 % (when using PET). On the other hand, for MCI versus NC classification,
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Table 8.10 Comparison of performance of single-modal and multimodal classification methods

Method AD versus NC MCI versus NC
ACC (%) SEN (%) SPE (%) ACC (%) SEN (%) SPE (%)
MRI 86.2 86.0 86.3 72.0 78.5 59.6
(82.9-89.0) (82.7-88.7) (83.1-89.1) (68.4-74.7) (75.6-80.6) (55.1-63.7)
CSF 82.1 81.9 82.3 71.4 78.0 58.8
(80.0-84.9) (80.0-84.7) (80.0-85.1) (68.2-73.3) (75.6-79.4) (54.3-61.7)
PET 86.5 86.3 86.6 71.6 78.2 59.3
(82.9-90.5) (82.7-90.3) (83.1-90.6) (67.4-74.7) (75.0-80.6) (52.9-63.7)
Combined 93.2 93.0 93.3 76.4 81.8 66.0
(89.0-96.5) (88.7-96.3) (89.1-96.6) (73.5-79.7) (79.4-84.4) (62.6-70.3)
Baseline 91.5 91.4 91.6 74.5 80.4 63.3

(88.5-96.5) (88.3-96.3) (88.6-96.6) (71.9-78.2) (78.3-83.3) (59.7-68.3)

The numbers in each bracket denote the minimal and maximal classification rate in 10 inde-
pendent experiments

AD Alzheimer’s disease, MCI mild cognitive impairment, NC normal control, ACC classification
ACCuracy, SEN SENsitivity, SPE SPEcificity

the multimodality classification method achieves a classification accuracy of
76.4 %, a sensitivity of 81.8 %, and a specificity of 66.0 %, while the best
accuracy on individual modality is only 72.0 % (when using MRI).

Furthermore, to compare with other multimodality classification methods, we
also use direct feature concatenation as a baseline method for multimodality AD
(or MCI) classification. Specifically, for each subject, we first concatenated 93
features from MRI, 93 features from PET, and 3 features from CSF, into a 189
dimensional vector. Remember that each feature has been normalized to have zero
mean and unit standard deviation. Then, we performed SVM-based classification
on all samples, with corresponding results shown in the bottom row of Table 8.10.
As can be observed from Table 8.10, our kernel combination method consistently
outperforms the baseline method for each performance measure.

Comparison of Different Combination Schemes

To study the effect of different combining weights, i.e., fvr1, Pcsr PpeT, On the
performance of the multimodality classification method, all the possible values,
ranging from 0 to 1 at a step size of 0.1, were tested under the constraint of
(Pmrr + Pcse + Pper = 1). Figures 8.7 and 8.8 show the corresponding classi-
fication results, including accuracy (top row), sensitivity (bottom left), and spec-
ificity (bottom right), with respect to different combining weights of MRI, PET,
and CSF. Note that, in each subplot, only the squares in the upper triangular part
have valid values due to the constraint (Smr1 + fcsk + Peer = 1). For each plot,
the three vertices of the upper triangle, i.e., the top left, top right, and bottom left
squares, denote individual-modality based classification results using only PET
(Bper = 1), CSF (fcsg = 1), and MRI (fyg; = 1), respectively.
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Fig. 8.7 AD Classification results with respect to different combining weights of MRI, PET and
CSF. Only the squares in the upper triangular part have valid values, due to the constraint:
(Bumrt + Bese + Prer = 1). Note that for each plot, the top left, top right, and bottom left
squares denote the individual-modality based classification results using PET (fpgr = 1), CSF

(Besk = 1), and MRI (Byrr = 1), respectively

As can be seen from Figs. 8.7 and 8.8, nearly all inner squares of the upper
triangle have larger values (better classification) than the three vertices, demon-
strating the effectiveness of the multimodality combination in AD (or MCI)
classification. Furthermore, Figs. 8.7 and 8.8 also show that the squares with
higher accuracy appear mainly in the inner of each triangle, instead of the
boundary. This implies that each modality is indispensable for achieving good
classification. Similar to what can be observed from Table 8.10, Figs. 8.7 and 8.8
also show that, for AD classification, the differences among accuracy, sensitivity,
and specificity are small, while, for MCI classification, it tends to have a higher
sensitivity but lower specificity.

Diagnosis Using Semi-Supervised Multimodality Classification
The mLapRLS was compared with mRLS on the multimodality (MRI, PET, and

CSF) data. Specifically, a 10-fold cross-validation was performed on 51 AD
patients and 52 NC subjects to get the labeled training data and testing data.
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Fig. 8.8 MCI Classification results with respect to different combining weights of MRI, PET and
CSF. Only the squares in the upper triangular part have valid values, due to the constraint:
(Pmr1 + Bese + Peer = 1). Note that for each plot, the top left, top right, and bottom left
squares denote the individual-modality based classification results using PET (fpgr = 1), CSF
(Bcsg = 1), and MRI (fygrr = 1), respectively

Unlabeled data were obtained from those 99 MCI subjects. A linear kernel was
used for both algorithms. Following [84], for mRLS, the parameters were set as
va = 0.05/1 and yp = 0, while for mLapRLS, they were set as y4 = 0.05// and
v5 = 0.05(1 + u)*/I. Here, [ denotes the number of AD and NC subjects, and u is
the number of MCI subjects. The Euclidean distance is used for each modality in
Eq. (8.8). For both algorithms, the values of the weighting parameters f3,,s were
determined through cross-validation using grid search.

Figure 8.9 shows the classification results of both algorithms on the multimo-
dality data, which include classification accuracy, sensitivity, specificity, and
AUC. The results in Fig. 8.9 indicate that, by using the MCI subjects as additional
unlabeled data, mLapRLS significantly improves the performances of disti